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Preface

Learning to build distributed systems is hard, especially if they are
large scale. It’s not that there is a lack of information out there. You
can find academic papers, engineering blogs, and even books on
the subject. The problem is that the available information is spread
out all over the place, and if you were to put it on a spectrum from
theory to practice, you would find a lot of material at the two ends
but not much in the middle.
That is why I decided to write a book that brings together the core
theoretical and practical concepts of distributed systems so that
you don’t have to spend hours connecting the dots. This book
will guide you through the fundamentals of large-scale distributed
systems, with just enough details and external references to dive
deeper. This is the guide I wished existed when I first started out.
If you are a developer working on the backend of web or mobile
applications (or would like to be!), this book is for you. When
building distributed applications, you need to be familiar with the
network stack, data consistency models, scalability and reliability
patterns, observability best practices, and much more. Although
you can build applicationswithout knowingmuch of that, youwill
end up spending hours debugging and re-architecting them, learn-
ing hard lessons that you could have acquired in amuch faster and
less painful way.
However, if you have several years of experience designing and
building highly available and fault-tolerant applications that scale
to millions of users, this book might not be for you. As an expert,
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you are likely looking for depth rather than breadth, and this book
focusesmore on the latter since it would be impossible to cover the
field otherwise.
The second edition is a complete rewrite of the previous edition.
Every page of the first edition has been reviewed and where ap-
propriate reworked, with new topics covered for the first time.
This book is available both in a physical and digital format. The
digital version is updated occasionally, which is why the book has
a version number. You can subscribe to receive updates from the
book’s landing page1.
As no book is ever perfect, I’m always happy to receive feedback.
So if you find an error, have an idea for improvement, or simply
want to comment on something, always feel free to write me2. I
love connecting with readers!

1https://understandingdistributed.systems/
2roberto@understandingdistributed.systems

https://understandingdistributed.systems/


Chapter 1

Introduction

“A distributed system is one in which the failure of a com-
puter you didn’t even know existed can render your own
computer unusable.”

– Leslie Lamport

Loosely speaking, a distributed system is a group of nodes that
cooperate by exchanging messages over communication links to
achieve some task. A node can generically refer to a physical ma-
chine, like a phone, or a software process, like a browser.

Why do we bother building distributed systems in the first place?

Some applications are inherently distributed. For example, the
web is a distributed system you are very familiar with. You access
it with a browser, which runs on your phone, tablet, desktop, or
Xbox. Together with other billions of devices worldwide, it forms
a distributed system.

Another reason for building distributed systems is that some appli-
cations require high availability and need to be resilient to single-
node failures. For example, Dropbox replicates your data across
multiple nodes so that the loss of a single one doesn’t cause your
data to be lost.
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Some applications need to tackle workloads that are just too big to
fit on a single node, nomatter how powerful. For example, Google
receives tens of thousands of search requests per second from all
over the globe. There is no way a single node could handle that.

And finally, some applications have performance requirements
that would be physically impossible to achieve with a single
node. Netflix can seamlessly stream movies to your TV at high
resolution because it has a data center close to you.

This book tackles the fundamental challenges that need to be
solved to design, build, and operate distributed systems.

1.1 Communication
The first challenge derives from the need for nodes to communi-
cate with each other over the network. For example, when your
browser wants to load awebsite, it resolves the server’s IP address
from the URL and sends an HTTP request to it. In turn, the server
returns a response with the page’s content.

How are the request and response messages represented on the
wire? What happens when there is a temporary network outage,
or some faulty network switch flips a few bits in the messages?
How does the server guarantee that no intermediary can snoop on
the communication?

Although it would be convenient to assume that some networking
library is going to abstract all communication concerns away, in
practice, it’s not that simple because abstractions leak1, and you
need to understand how the network stack works when that hap-
pens.

1“The Law of Leaky Abstractions,” https://www.joelonsoftware.com/2002/
11/11/the-law-of-leaky-abstractions/

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
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1.2 Coordination
Another hard challenge of building distributed systems is that
some form of coordination is required to make individual nodes
work in unison towards a shared objective. This is particularly
challenging to do in the presence of failures. The “two generals”
problem is a famous thought experiment that showcases this.

Suppose two generals (nodes), each commanding their own army,
need to agree on a time to jointly attack a city. There is some dis-
tance between the armies (network), and the only way to commu-
nicate is via messengers, who can be captured by the enemy (net-
work failure). Under these assumptions, is there a way for the gen-
erals to agree on a time?

Well, general 1 could send a message with a proposed time to
general 2. But since the messenger could be captured, general
1 wouldn’t know whether the message was actually delivered.
You could argue that general 2 could send a messenger with a re-
sponse to confirm it received the original message. However, just
like before, general 2 wouldn’t know whether the response was
actually delivered and another confirmation would be required.
As it turns out, no matter how many rounds of confirmation are
made, neither general can be certain that the other army will
attack the city at the same time. As you can see, this problem is
much harder to solve than it originally appeared.

Because coordination is such a key topic, the second part of the
book is dedicated to understanding the fundamental distributed
algorithms used to implement it.

1.3 Scalability
The performance of an application represents how efficiently it can
handle load. Intuitively, load is anything that consumes the sys-
tem’s resources such as CPU, memory, and network bandwidth.
Since the nature of load depends on the application’s use cases and
architecture, there are different ways to measure it. For example,
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the number of concurrent users or the ratio of writes to reads are
different forms of load.

For the type of applications discussed in this book, performance
is generally measured in terms of throughput and response time.
Throughput is the number of requests processed per second by
the application, while response time is the time elapsed in seconds
between sending a request to the application and receiving a
response.

As load increases, the application will eventually reach its capac-
ity, i.e., the maximum load it can withstand, when a resource is ex-
hausted. The performance either plateaus or worsens at that point,
as shown in Figure 1.1. If the load on the system continues to grow,
it will eventually hit a point wheremost operations fail or time out.

Figure 1.1: The system throughput on the y axis is the subset of
client requests (x axis) that can be handledwithout errors andwith
low response times, also referred to as its goodput.
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The capacity of a distributed systemdepends on its architecture, its
implementation, and an intricate web of physical limitations like
the nodes’ memory size and clock cycle and the bandwidth and
latency of network links. For an application to be scalable, a load
increase should not degrade the application’s performance. This
requires increasing the capacity of the application at will.

A quick and easy way is to buy more expensive hardware with
better performance, which is also referred to as scaling up. Unfor-
tunately, this approach is bound to hit a brick wall sooner or later
when such hardware just doesn’t exist. The alternative is scaling
out by adding more commodity machines to the system and hav-
ing them work together.

Although procuring additional machines at will may have been
daunting a few decades ago, the rise of cloud providers has
made that trivial. In 2006 Amazon launched Amazon Web Ser-
vices (AWS), which included the ability to rent virtual machines
with its Elastic Compute Cloud (EC22) service. Since then, the
number of cloud providers and cloud services has only grown,
democratizing the ability to create scalable applications.

In Part III of this book, we will explore the core architectural pat-
terns and building blocks of scalable cloud-native applications.

1.4 Resiliency
A distributed system is resilient when it can continue to do its job
even when failures happen. And at scale, anything that can go
wrongwill gowrong. Every component has a probability of failing
— nodes can crash, network links can be severed, etc. No matter
how small that probability is, the more components there are and
the more operations the system performs, the higher the number
of failures will be. And it gets worse because a failure of one com-
ponent can increase the probability that another one will fail if the
components are not well isolated.

2“Amazon EC2,” https://aws.amazon.com/ec2/

https://aws.amazon.com/ec2/
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Failures that are left unchecked can impact the system’s availabil-
ity3, i.e., the percentage of time the system is available for use. It’s
a ratio defined as the amount of time the application can serve re-
quests (uptime) divided by the total time measured (uptime plus
downtime, i.e., the time the application can’t serve requests).
Availability is often described with nines, a shorthand way of ex-
pressing percentages of availability. Three nines are typically con-
sidered acceptable by users, and anything above four is considered
to be highly available.

Availability % Downtime per day
90% (“one nine”) 2.40 hours
99% (“two nines”) 14.40 minutes
99.9% (“three nines”) 1.44 minutes
99.99% (“four nines”) 8.64 seconds
99.999% (“five nines”) 864 milliseconds

If the system isn’t resilient to failures, its availabilitywill inevitably
drop. Because of that, a distributed system needs to embrace fail-
ures and be prepared to withstand them using techniques such as
redundancy, fault isolation, and self-healing mechanisms, which
we will discuss in Part IV, Resiliency.

1.5 Maintainability
It’s a well-known fact that the majority of the cost of software is
spent after its initial development in maintenance activities, such
as fixing bugs, adding new features, and operating it. Thus, we
should aspire to make our systems easy to modify, extend and op-
erate so that they are easy to maintain.

Any change is a potential incident waiting to happen. Good test-
ing — in the form of unit, integration, and end-to-end tests — is a

3“AWS Well-Architected Framework, Availability,” https://docs.aws.amazon.
com/wellarchitected/latest/reliability-pillar/availability.html

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/availability.html
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/availability.html
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minimum requirement to modify or extend a system without wor-
rying it will break. And once a change has been merged into the
codebase, it needs to be released to production safely without af-
fecting the system’s availability.

Also, operators need to monitor the system’s health, investigate
degradations and restore the service when it can’t self-heal. This
requires altering the system’s behavior without code changes, e.g.,
toggling a feature flag or scaling out a service with a configuration
change.

Historically, developers, testers, and operators were part of differ-
ent teams, but the rise of microservices and DevOps has changed
that. Nowadays, the same team that designs and implements a sys-
tem is also responsible for testing and operating it. That’s a good
thing since there is no better way to discover where a system falls
short than being on call for it. Part V will explore best practices for
testing and operating distributed systems.

1.6 Anatomy of a distributed system
Distributed systems come in all shapes and sizes. In this book,
we are mainly concerned with backend applications that run
on commodity machines and implement some kind of business
service. So you could say a distributed system is a group of
machines that communicate over network links. However, from a
run-time point of view, a distributed system is a group of software
processes that communicate via inter-process communication (IPC)
mechanisms like HTTP. And from an implementation perspective,
a distributed system is a group of loosely-coupled components
(services) that communicate via APIs. All these are valid and
useful architectural points of view. In the rest of the book, we
will switch between them depending on which one is more
appropriate to discuss a particular topic.

A service implements one specific part of the overall system’s ca-
pabilities. At the core of a service sits the business logic, which
exposes interfaces to communicate with the outside world. Some



CHAPTER 1. INTRODUCTION 8

interfaces define the operations that the service offers to its users.
In contrast, others define the operations that the service can invoke
on other services, like data stores, message brokers, etc.
Since processes can’t call each other’s interfaces directly, adapters
are needed to connect IPC mechanisms to service interfaces. An
inbound adapter is part of the service’s Application Programming
Interface (API); it handles the requests received from an IPC mech-
anism, like HTTP, by invoking operations defined in the service
interfaces. In contrast, outbound adapters grant the business logic
access to external services, like data stores. This architectural style
is also referred to as the ports and adapters architecture4. The idea
is that the business logic doesn’t depend on technical details; in-
stead, the technical details depend on the business logic (depen-
dency inversion principle5). This concept is illustrated in Figure
1.2.
Going forward, we will refer to a process running a service as a
server, and a process sending requests to a server as a client. Some-
times, a process will be both a client and a server. For simplic-
ity, we will assume that an individual instance of a service runs
entirely within a single server process. Similarly, we will also as-
sume that a process has a single thread. These assumptions will
allow us to neglect some implementation details that would only
complicate the discussion without adding much value.

4“Ports And Adapters Architecture,” http://wiki.c2.com/?PortsAndAdapter
sArchitecture

5“Dependency inversion principle,” https://en.wikipedia.org/wiki/Depend
ency_inversion_principle

http://wiki.c2.com/?PortsAndAdaptersArchitecture
http://wiki.c2.com/?PortsAndAdaptersArchitecture
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://en.wikipedia.org/wiki/Dependency_inversion_principle
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Figure 1.2: In this example, the business logic uses the reposi-
tory interface, implemented by the PostgreSQL adapter, to access
the database. In contrast, the HTTP adapter handles incoming re-
quests by calling operations defined in the service interface.





Part I

Communication





Introduction

“The network is reliable.”
– Fallacies of distributed computing, L. Peter Deutsch

Communication between processes over the network, or inter-
process communication (IPC), is at the heart of distributed systems
— it’s what makes distributed systems distributed. In order for
processes to communicate, they need to agree on a set of rules
that determine how data is processed and formatted. Network
protocols specify such rules.
The protocols are arranged in a stack6, where each layer builds
on the abstraction provided by the layer below, and lower layers
are closer to the hardware. When a process sends data to another
through the network stack, the data moves from the top layer to
the bottom one and vice-versa at the other end, as shown in Figure
1.3:

• The link layer consists of network protocols that operate on lo-
cal network links, like Ethernet or Wi-Fi, and provides an in-
terface to the underlying network hardware. Switches oper-
ate at this layer and forward Ethernet packets based on their
destination MAC address7.

• The internet layer routes packets from onemachine to another
across the network. The Internet Protocol (IP) is the core pro-
tocol of this layer, which delivers packets on a best-effort ba-

6“Internet protocol suite,” https://en.wikipedia.org/wiki/Internet_protocol_s
uite

7“MAC address,” https://en.wikipedia.org/wiki/MAC_address

https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/MAC_address
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Figure 1.3: Internet protocol suite

sis (i.e., packets can be dropped, duplicated, or corrupted).
Routers operate at this layer and forward IP packets to the
next router along the path to their final destination.

• The transport layer transmits data between two processes. To
enable multiple processes hosted on the same machine to
communicate at the same time, port numbers are used to ad-
dress the processes on either end. The most important proto-
col in this layer is the Transmission Control Protocol (TCP),
which creates a reliable communication channel on top of IP.

• Finally, the application layer defines high-level communica-
tion protocols, like HTTP or DNS. Typically your applica-
tions will target this level of abstraction.

Even though each protocol builds on top of another, sometimes the
abstractions leak. If you don’t have a good grasp of how the lower
layers work, you will have a hard time troubleshooting network-
ing issues that will inevitably arise. More importantly, having an
appreciation of the complexity of what happens when you make a
network call will make you a better systems builder.

Chapter 2 describes how to build a reliable communication chan-
nel (TCP) on top of an unreliable one (IP), which can drop or dupli-
cate data or deliver it out of order. Building reliable abstractions
on top of unreliable ones is a common pattern we will encounter
again in the rest of the book.
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Chapter 3 describes how to build a secure channel (TLS) on top
of a reliable one (TCP). Security is a core concern of any system,
and in this chapter, we will get a taste of what it takes to secure a
network connection from prying eyes and malicious agents.
Chapter 4 dives into how the phone book of the internet (DNS)
works, which allows nodes to discover others using names. At its
heart, DNS is a distributed, hierarchical, and eventually consistent
key-value store. By studying it, we will get the first taste of even-
tual consistency8 and the challenges it introduces.
Chapter 5 concludes this part by discussing how loosely coupled
services communicate with each other through APIs by describing
the implementation of a RESTful HTTP API built upon the proto-
cols introduced earlier.

8We will learn more about consistency models in chapter 10.





Chapter 2

Reliable links

At the internet layer, the communication between two nodes hap-
pens by routing packets to their destination from one router to the
next. Two ingredients are required for this: away to address nodes
and a mechanism to route packets across routers.

Addressing is handled by the IP protocol. For example, IPv6 pro-
vides a 128-bit address space, allowing 2128 addresses. To decide
where to send a packet, a router needs to consult a local routing
table. The table maps a destination address to the address of the
next router along the path to that destination. The responsibility
of building and communicating the routing tables across routers
lies with the Border Gateway Protocol (BGP1).

Now, IP doesn’t guarantee that data sent over the internet will
arrive at its destination. For example, if a router becomes over-
loaded, it might start dropping packets. This is where TCP2 comes
in, a transport-layer protocol that exposes a reliable communica-
tion channel between two processes on top of IP. TCP guarantees
that a stream of bytes arrives in order without gaps, duplication,
or corruption. TCP also implements a set of stability patterns to

1“RFC 4271: A Border Gateway Protocol 4 (BGP-4),” https://datatracker.ietf.o
rg/doc/html/rfc4271

2“RFC 793: Transmission Control Protocol,” https://tools.ietf.org/html/rfc793

https://datatracker.ietf.org/doc/html/rfc4271
https://datatracker.ietf.org/doc/html/rfc4271
https://tools.ietf.org/html/rfc793
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avoid overwhelming the network and the receiver.

2.1 Reliability
To create the illusion of a reliable channel, TCP partitions a byte
stream into discrete packets called segments. The segments are
sequentially numbered, which allows the receiver to detect holes
and duplicates. Every segment sent needs to be acknowledged
by the receiver. When that doesn’t happen, a timer fires on the
sending side and the segment is retransmitted. To ensure that the
data hasn’t been corrupted in transit, the receiver uses a checksum
to verify the integrity of a delivered segment.

2.2 Connection lifecycle
A connection needs to be opened before any data can be transmit-
ted on a TCP channel. The operating system manages the connec-
tion state on both ends through a socket. The socket keeps track of
the state changes of the connection during its lifetime. At a high
level, there are three states the connection can be in:

• The opening state in which the connection is being created.
• The established state in which the connection is open and
data is being transferred.

• The closing state in which the connection is being closed.

In reality, this is a simplification, as there are more states3 than the
three above.

A server must be listening for connection requests from clients be-
fore a connection is established. TCP uses a three-way handshake
to create a new connection, as shown in Figure 2.1:

1. The sender picks a random sequence number x and sends a
SYN segment to the receiver.

3“TCP State Diagram,” https://en.wikipedia.org/wiki/Transmission_Control
_Protocol#/media/File:Tcp_state_diagram_fixed_new.svg

https://en.wikipedia.org/wiki/Transmission_Control_Protocol#/media/File:Tcp_state_diagram_fixed_new.svg
https://en.wikipedia.org/wiki/Transmission_Control_Protocol#/media/File:Tcp_state_diagram_fixed_new.svg
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2. The receiver increments x, chooses a random sequence num-
ber y, and sends back a SYN/ACK segment.

3. The sender increments both sequence numbers and replies
with an ACK segment and the first bytes of application data.

The sequence numbers are used by TCP to ensure the data is de-
livered in order and without holes.

Figure 2.1: Three-way handshake

The handshake introduces a full round-trip in which no applica-
tion data is sent. So until the connection has been opened, the
bandwidth is essentially zero. The lower the round trip time is,
the faster the connection can be established. Therefore, putting
servers closer to the clients helps reduce this cold-start penalty.
After the data transmission is complete, the connection needs
to be closed to release all resources on both ends. This termi-
nation phase involves multiple round-trips. If it’s likely that
another transmission will occur soon, it makes sense to keep the
connection open to avoid paying the cold-start tax again.
Moreover, closing a socket doesn’t dispose of it immediately as it
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transitions to a waiting state (TIME_WAIT) that lasts several min-
utes and discards any segments received during the wait. The
wait prevents delayed segments from a closed connection from be-
ing considered part of a new connection. But if many connections
open and close quickly, the number of sockets in the waiting state
will continue to increase until it reaches the maximum number of
sockets that can be open, causing new connection attempts to fail.
This is another reason why processes typically maintain connec-
tion pools to avoid recreating connections repeatedly.

2.3 Flow control
Flow control is a backoff mechanism that TCP implements to
prevent the sender from overwhelming the receiver. The receiver
stores incoming TCP segments waiting to be processed by the
application into a receive buffer, as shown in Figure 2.2.

Figure 2.2: The receive buffer stores data that hasn’t yet been pro-
cessed by the destination process.

The receiver also communicates the size of the buffer to the sender
whenever it acknowledges a segment, as shown in Figure 2.3.
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Assuming it’s respecting the protocol, the sender avoids sending
more data than can fit in the receiver’s buffer.

Figure 2.3: The size of the receive buffer is communicated in the
headers of acknowledgment segments.

This mechanism is not too dissimilar to rate-limiting at the service
level, a mechanism that rejects a request when a specific quota is
exceeded (see section 28.3). But, rather than rate-limiting on an
API key or IP address, TCP is rate-limiting on a connection level.

2.4 Congestion control
TCP guards not only against overwhelming the receiver, but also
against flooding the underlying network. The sender maintains
a so-called congestion window, which represents the total number
of outstanding segments that can be sent without an acknowledg-
ment from the other side. The smaller the congestion window is,
the fewer bytes can be in flight at any given time, and the less band-
width is utilized.
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When a new connection is established, the size of the congestion
window is set to a system default. Then, for every segment ac-
knowledged, the window increases its size exponentially until it
reaches an upper limit. This means we can’t use the network’s full
capacity right after a connection is established. The shorter the
round-trip time (RTT), the quicker the sender can start utilizing
the underlying network’s bandwidth, as shown in Figure 2.4.

Figure 2.4: The shorter the RTT, the quicker the sender can start
utilizing the underlying network’s bandwidth.

What happens if a segment is lost? When the sender detects a
missed acknowledgment through a timeout, a mechanism called
congestion avoidance kicks in, and the congestion window size is
reduced. From there onwards, the passing of time increases the
window size4 by a certain amount, and timeouts decrease it by an-
other.
As mentioned earlier, the size of the congestion window defines
the maximum number of bytes that can be sent without receiving

4“CUBIC: A New TCP-Friendly High-Speed TCP Variant,” https://citeseerx.is
t.psu.edu/viewdoc/download?doi=10.1.1.153.3152&rep=rep1&type=pdf

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.3152&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.3152&rep=rep1&type=pdf
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an acknowledgment. Because the sender needs to wait for a full
round trip to get an acknowledgment, we can derive themaximum
theoretical bandwidth by dividing the size of the congestion win-
dow by the round trip time:

Bandwidth = WinSize
RTT

The equation5 shows that bandwidth is a function of latency. TCP
will try very hard to optimize the window size since it can’t do
anything about the round-trip time. However, that doesn’t always
yield the optimal configuration. Due to theway congestion control
works, the shorter the round-trip time, the better the underlying
network’s bandwidth is utilized. This ismore reason to put servers
geographically close to the clients.

2.5 Custom protocols
TCP’s reliability and stability come at the price of lower band-
width and higher latencies than the underlying network can
deliver. If we drop the stability and reliability mechanisms that
TCP provides, what we get is a simple protocol named User
Datagram Protocol6 (UDP) — a connectionless transport layer
protocol that can be used as an alternative to TCP.
Unlike TCP, UDP does not expose the abstraction of a byte stream
to its clients. As a result, clients can only send discrete packets
with a limited size called datagrams. UDP doesn’t offer any relia-
bility as datagrams don’t have sequence numbers and are not ac-
knowledged. UDPdoesn’t implement flowand congestion control
either. Overall, UDP is a lean and bare-bones protocol. It’s used
to bootstrap custom protocols, which provide some, but not all, of
the stability and reliability guarantees that TCP does7.

5“Bandwidth-delay product,” https://en.wikipedia.org/wiki/Bandwidth-
delay_product

6“RFC 768: User Datagram Protocol,” https://datatracker.ietf.org/doc/html/
rfc768

7As we will later see, HTTP 3 is based on UDP to avoid some of TCP’s short-
comings.

https://en.wikipedia.org/wiki/Bandwidth-delay_product
https://en.wikipedia.org/wiki/Bandwidth-delay_product
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc768
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For example, in multiplayer games, clients sample gamepad
events several times per second and send them to a server that
keeps track of the global game state. Similarly, the server samples
the game state several times per second and sends these snapshots
back to the clients. If a snapshot is lost in transmission, there is
no value in retransmitting it as the game evolves in real-time; by
the time the retransmitted snapshot would get to the destination,
it would be obsolete. This is a use case where UDP shines; in
contrast, TCP would attempt to redeliver the missing data and
degrade the game’s experience.



Chapter 3

Secure links

We now know how to reliably send bytes from one process to an-
other over the network. The problem is that these bytes are sent in
the clear, and amiddleman could intercept the communication. To
protect against that, we can use the Transport Layer Security1 (TLS)
protocol. TLS runs on top of TCP and encrypts the communica-
tion channel so that application layer protocols, like HTTP, can
leverage it to communicate securely. In a nutshell, TLS provides
encryption, authentication, and integrity.

3.1 Encryption
Encryption guarantees that the data transmitted between a client
and a server is obfuscated and can only be read by the communi-
cating processes.

When the TLS connection is first opened, the client and the server
negotiate a shared encryption secret using asymmetric encryption.
First, each party generates a key pair consisting of a private and
public key. The processes can then create a shared secret by ex-
changing their public keys. This is possible thanks to some math-

1“RFC 8446: The Transport Layer Security (TLS) Protocol Version 1.3,” https:
//datatracker.ietf.org/doc/html/rfc8446

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446
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ematical properties2 of the key pairs. The beauty of this approach
is that the shared secret is never communicated over the wire.

Although asymmetric encryption is slow and expensive, it’s only
used to create the shared encryption key. After that, symmetric en-
cryption is used, which is fast and cheap. The shared key is peri-
odically renegotiated to minimize the amount of data that can be
deciphered if the shared key is broken.

Encrypting in-flight data has a CPU penalty, but it’s negligible
since modern processors have dedicated cryptographic instruc-
tions. Therefore, TLS should be used for all communications,
even those not going through the public internet.

3.2 Authentication
Although we have a way to obfuscate data transmitted across the
wire, the client still needs to authenticate the server to verify it’s
who it claims to be. Similarly, the server might want to authenti-
cate the identity of the client.

TLS implements authentication using digital signatures based on
asymmetric cryptography. The server generates a key pair with a
private and a public key and shares its public key with the client.
When the server sends a message to the client, it signs it with its
private key. The client uses the server’s public key to verify that
the digital signature was actually signedwith the private key. This
is possible thanks to mathematical properties3 of the key pair.

The problem with this approach is that the client has no idea
whether the public key shared by the server is authentic. Hence,
the protocol uses certificates to prove the ownership of a public
key. A certificate includes information about the owning entity,
expiration date, public key, and a digital signature of the third-
party entity that issued the certificate. The certificate’s issuing

2“A (Relatively Easy To Understand) Primer on Elliptic Curve Cryptography,”
https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-
curve-cryptography/

3“Digital signature,” https://en.wikipedia.org/wiki/Digital_signature

https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
https://en.wikipedia.org/wiki/Digital_signature
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entity is called a certificate authority (CA), which is also represented
with a certificate. This creates a chain of certificates that ends with
a certificate issued by a root CA, as shown in Figure 3.1, which
self-signs its certificate.

For a TLS certificate to be trusted by a device, the certificate, or one
of its ancestors, must be present in the trusted store of the client.
Trusted root CAs, such as Let’s Encrypt4, are typically included in
the client’s trusted store by default by the operating system ven-
dor.

Figure 3.1: A certificate chain ends with a self-signed certificate
issued by a root CA.

When a TLS connection is opened, the server sends the full cer-
tificate chain to the client, starting with the server’s certificate and

4“Let’s Encrypt: A nonprofit Certificate Authority,” https://letsencrypt.org/

https://letsencrypt.org/
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ending with the root CA. The client verifies the server’s certificate
by scanning the certificate chain until it finds a certificate that it
trusts. Then, the certificates are verified in reverse order from that
point in the chain. The verification checks several things, like the
certificate’s expiration date and whether the digital signature was
actually signed by the issuing CA. If the verification reaches the
last certificate in the path (the server’s own certificate) without er-
rors, the path is verified, and the server is authenticated.

One of the most common mistakes when using TLS is letting a
certificate expire. When that happens, the client won’t be able to
verify the server’s identity, and opening a connection to the re-
mote process will fail. This can bring an entire application down
as clients can no longer connect with it. For this reason, automa-
tion to monitor and auto-renew certificates close to expiration is
well worth the investment.

3.3 Integrity
Even if the data is obfuscated, a middleman could still tamper
with it; for example, random bits within the messages could be
swapped. To protect against tampering, TLS verifies the integrity
of the data by calculating amessage digest. A secure hash function
is used to create a message authentication code5 (HMAC). When a
process receives amessage, it recomputes the digest of themessage
and checks whether it matches the digest included in the message.
If not, then the message has either been corrupted during trans-
mission or has been tampered with. In this case, the message is
dropped.

The TLS HMAC protects against data corruption as well, not just
tampering. You might be wondering how data can be corrupted if
TCP is supposed to guarantee its integrity. While TCP does use a
checksum to protect against data corruption, it’s not 100% reliable6:

5“RFC 2104: HMAC: Keyed-Hashing for Message Authentication,” https://da
tatracker.ietf.org/doc/html/rfc2104

6“When the CRC and TCP checksum disagree,” https://dl.acm.org/doi/10.11
45/347057.347561

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2104
https://dl.acm.org/doi/10.1145/347057.347561
https://dl.acm.org/doi/10.1145/347057.347561
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it fails to detect errors for roughly 1 in 16 million to 10 billion pack-
ets. With packets of 1 KB, this is expected to happen once per 16
GB to 10 TB transmitted.

3.4 Handshake
When a new TLS connection is established, a handshake between
the client and server occurs during which:

1. The parties agree on the cipher suite to use. A cipher suite
specifies the different algorithms that the client and the
server intend to use to create a secure channel, like the:
• key exchange algorithm used to generate shared
secrets;

• signature algorithm used to sign certificates;
• symmetric encryption algorithm used to encrypt the ap-
plication data;

• HMAC algorithm used to guarantee the integrity and
authenticity of the application data.

2. The parties use the key exchange algorithm to create a shared
secret. The symmetric encryption algorithm uses the shared
secret to encrypt communication on the secure channel going
forward.

3. The client verifies the certificate provided by the server. The
verification process confirms that the server is who it says it
is. If the verification is successful, the client can start send-
ing encrypted application data to the server. The server can
optionally also verify the client certificate if one is available.

These operations don’t necessarily happen in this order, asmodern
implementations use several optimizations to reduce round trips.
For example, the handshake typically requires 2 round trips with
TLS 1.2 and just onewith TLS 1.3. The bottom line is that creating a
new connection is not free: yet another reason to put your servers
geographically closer to the clients and reuse connections when
possible.





Chapter 4

Discovery

So far, we have explored how to create a reliable and secure chan-
nel between two processes running on different machines. How-
ever, to create a new connection with a remote process, we must
first discover its IP address somehow. The most common way of
doing that is via the phone book of the internet: the Domain Name
System1 (DNS) — a distributed, hierarchical, and eventually con-
sistent key-value store.

In this chapter, we will look at how DNS resolution2 works in a
browser, but the process is similar for other types of clients. When
you enter a URL in your browser, the first step is to resolve the
hostname’s IP address, which is then used to open a new TLS con-
nection. For example, let’s take a look at how the DNS resolution
works when you typewww.example.com into your browser (see Fig-
ure 4.1).

1. The browser checks its local cache to see whether it has re-
solved the hostname before. If so, it returns the cached IP
address; otherwise, it routes the request to a DNS resolver,

1“RFC 1035: Domain Names - Implementation and Specification,” https://da
tatracker.ietf.org/doc/html/rfc1035

2“A deep dive into DNS,” https://www.youtube.com/watch?v=drWd9HIhJ
dU

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035
https://www.youtube.com/watch?v=drWd9HIhJdU
https://www.youtube.com/watch?v=drWd9HIhJdU
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a server typically hosted by your Internet Service Provider
(ISP).

2. The resolver is responsible for iteratively resolving the host-
name for its clients. The reasonwhy it’s iterativewill become
obvious in amoment. The resolver first checks its local cache
for a cached entry, and if one is found, it’s returned to the
client. If not, the query is sent to a root name server (root
NS).

3. The root name server maps the top-level domain (TLD) of the
request, i.e., .com, to the address of the name server responsi-
ble for it.

4. The resolver sends a resolution request for example.com to the
TLD name server.

5. The TLD name server maps the example.com domain name to
the address of the authoritative name server responsible for the
domain.

6. Finally, the resolver queries the authoritative name server for
www.example.com, which returns the IP address of the www
hostname.

If the query included a subdomain of example.com, like
news.example.com, the authoritative name server would have
returned the address of the name server responsible for the
subdomain, and an additional request would be required.

The original DNS protocol sent plain-text messages primarily over
UDP for efficiency reasons. However, because this allows any-
onemonitoring the transmission to snoop, the industry hasmostly
moved to secure alternatives, such as DNS on top of TLS3.

The resolution process involves several round trips in the worst
case, but its beauty is that the address of a root name server is
all that’s needed to resolve a hostname. That said, the resolution
would be slow if every request had to go through several name

3“RFC 7858: Specification for DNS over Transport Layer Security (TLS),” https:
//en.wikipedia.org/wiki/DNS_over_TLS

https://en.wikipedia.org/wiki/DNS_over_TLS
https://en.wikipedia.org/wiki/DNS_over_TLS
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Figure 4.1: DNS resolution process

server lookups. Not only that, but think of the scale required for
the name servers to handle the global resolution load. So caching
is used to speed up the resolution process since themapping of do-
main names to IP addresses doesn’t change often — the browser,
operating system, and DNS resolver all use caches internally.

How do these caches know when to expire a record? Every DNS
record has a time to live (TTL) that informs the cache how long the
entry is valid for. But there is no guarantee that clients play nicely
and enforce the TTL. So don’t be surprised when you change a
DNS entry and find out that a small number of clients are still try-
ing to connect to the old address long after the TTL has expired.

Setting a TTL requires making a tradeoff. If you use a long TTL,
many clientswon’t see a change for a long time. But if you set it too
short, you increase the load on the name servers and the average
response time of requests because clients will have to resolve the
hostname more often.

If your name server becomes unavailable for any reason, then the
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smaller the record’s TTL is, the higher the number of clients im-
pacted will be. DNS can easily become a single point of failure —
if your DNS name server is down and clients can’t find the IP ad-
dress of your application, theywon’t be able to connect it. This can
lead to massive outages4.
This brings us to an interesting observation. DNS could be a lot
more robust to failures if DNS caches would serve stale entries
when they can’t reach a name server, rather than treating TTLs
as time bombs. Since entries rarely change, serving a stale entry is
arguably a lot more robust than not serving any entry at all. The
principle that a system should continue to function even when a
dependency is impaired is also referred to as “static stability”; we
will talk more about it in the resiliency part of the book.

4“DDoS attack on Dyn,” https://en.wikipedia.org/wiki/2016_Dyn_cyberatta
ck

https://en.wikipedia.org/wiki/2016_Dyn_cyberattack
https://en.wikipedia.org/wiki/2016_Dyn_cyberattack
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APIs

Now that we know how a client can discover the IP address of a
server and create a reliable and secure communication link with
it, we want the client to invoke operations offered by the server.
To that end, the server uses an adapter — which defines its ap-
plication programming interface (API) — to translate messages re-
ceived from the communication link to interface calls implemented
by its business logic (see Figure 1.2).

The communication style between a client and a server can be di-
rect or indirect, depending on whether the client communicates di-
rectly with the server or indirectly through a broker. Direct com-
munication requires that both processes are up and running for the
communication to succeed. However, sometimes this guarantee
is either not needed or very hard to achieve, in which case indi-
rect communication is a better fit. An example of indirect commu-
nication is messaging. In this model, the sender and the receiver
don’t communicate directly, but they exchange messages through
a message channel (the broker). The sender sends messages to the
channel, and on the other side, the receiver reads messages from
it. Later in chapter 23, we will see how message channels are im-
plemented and how to best use them.

In this chapter, we will focus our attention on a direct communi-
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cation style called request-response, in which a client sends a request
message to the server, and the server replies with a response message.
This is similar to a function call but across process boundaries and
over the network.
The request and response messages contain data that is serialized
in a language-agnostic format. The choice of format determines
a message’s serialization and deserialization speed, whether it’s
human-readable, and how hard it is to evolve it over time. A tex-
tual format like JSON1 is self-describing and human-readable, at
the expense of increased verbosity and parsing overhead. On the
other hand, a binary format like Protocol Buffers2 is leaner and
more performant than a textual one at the expense of human read-
ability.
When a client sends a request to a server, it can block and wait
for the response to arrive, making the communication synchronous.
Alternatively, it can ask the outbound adapter to invoke a callback
when it receives the response, making the communication asyn-
chronous.
Synchronous communication is inefficient, as it blocks threads
that could be used to do something else. Some languages, like
JavaScript, C#, and Go, can completely hide callbacks through
language primitives such as async/await3. These primitives
make writing asynchronous code as straightforward as writing
synchronous code.
Commonly used IPC technologies for request-response interac-
tions are HTTP and gRPC4. Typically, internal APIs used for
server-to-server communications within an organization are im-
plemented with a high-performance RPC framework like gRPC.
In contrast, external APIs available to the public tend to be based

1“ECMA-404: The JSON data interchange syntax,” https://www.ecma-intern
ational.org/publications-and-standards/standards/ecma-404/

2“Protocol Buffers: a language-neutral, platform-neutral extensible mechanism
for serializing structured data,” https://developers.google.com/protocol-buffers

3“Asynchronous programming with async and await,” https://docs.microsoft
.com/en-us/dotnet/csharp/programming-guide/concepts/async/

4“gRPC: A high performance, open source universal RPC framework,” https:
//grpc.io/

https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://developers.google.com/protocol-buffers
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://grpc.io/
https://grpc.io/
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on HTTP, since web browsers can easily make HTTP requests via
JavaScript code.
A popular set of design principles for designing elegant and scal-
able HTTP APIs is representational state transfer (REST5), and an
API based on these principles is said to be RESTful. For example,
these principles include that:

• requests are stateless, and therefore each request contains all
the necessary information required to process it;

• responses are implicitly or explicitly labeled as cacheable or
non-cacheable. If a response is cacheable, the client can reuse
the response for a later, equivalent request.

Given the ubiquity of RESTful HTTP APIs, we will walk through
the process of creating an HTTP API in the rest of the chapter.

5.1 HTTP
HTTP6 is a request-response protocol used to encode and transport
information between a client and a server. In an HTTP transaction,
the client sends a request message to the server’s API endpoint, and
the server replies back with a response message, as shown in Figure
5.1.
In HTTP 1.1, a message is a textual block of data that contains a
start line, a set of headers, and an optional body:

• In a request message, the start line indicates what the request
is for, and in a response message, it indicates whether the
request was successful or not.

• The headers are key-value pairs with metadata that describes
the message.

• The message body is a container for data.
HTTP is a stateless protocol, which means that everything needed
by a server to process a request needs to be specified within the

5“Representational State Transfer,” https://www.ics.uci.edu/~fielding/pubs
/dissertation/rest_arch_style.htm

6“Hypertext Transfer Protocol,” https://en.wikipedia.org/wiki/Hypertext_T
ransfer_Protocol

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
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Figure 5.1: An example HTTP transaction between a browser and
a web server

request itself, without context from previous requests. HTTP uses
TCP for the reliability guarantees discussed in chapter 2. When it
runs on top of TLS, it’s also referred to as HTTPS.

HTTP 1.1 keeps a connection to a server open by default to avoid
needing to create a new one for the next transaction. However, a
new request can’t be issued until the response to the previous one
has been received (aka head-of-line blocking or HOL blocking); in
other words, the transactions have to be serialized. For example,
a browser that needs to fetch several images to render an HTML
page has to download them one at a time, which can be very inef-
ficient.

Although HTTP 1.1 technically allows some type of requests to be
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pipelined7, it still suffers from HOL blocking as a single slow re-
sponse will block all the responses after it. With HTTP 1.1, the
typical way to improve the throughput of outgoing requests is by
creating multiple connections. However, this comes with a price
because connections consume resources like memory and sockets.

HTTP 28 was designed from the ground up to address the main
limitations of HTTP 1.1. It uses a binary protocol rather than a
textual one, allowing it to multiplex multiple concurrent request-
response transactions (streams) on the same connection. In early
2020 about half of the most-visited websites on the internet were
using the new HTTP 2 standard.

HTTP 39 is the latest iteration of the HTTP standard, which is
based on UDP and implements its own transport protocol to
address some of TCP’s shortcomings10. For example, with HTTP
2, a packet loss over the TCP connection blocks all streams (HOL),
but with HTTP 3 a packet loss interrupts only one stream, not all
of them.

This book uses the HTTP 1.1 standard for illustration purposes
since its plain text format is easier to display. Moreover, HTTP
1.1 is still widely used.

5.2 Resources
Supposewewould like to implement a service tomanage the prod-
uct catalog of an e-commerce application. The service must allow
customers to browse the catalog and administrators to create, up-
date, or delete products. Although that sounds simple, in order to
expose this service via HTTP, we first need to understand how to
model APIs with HTTP.

7“HTTP pipelining,” https://en.wikipedia.org/wiki/HTTP_pipelining
8“RFC 7540: Hypertext Transfer Protocol Version 2 (HTTP/2),” https://tools.ie

tf.org/html/rfc7540
9“HTTP/3 is next Generation HTTP. Is it QUIC enough?,” https://www.yout

ube.com/watch?v=rlN4F1oyaRM
10“Comparing HTTP/3 vs. HTTP/2 Performance,” https://blog.cloudflare.co

m/http-3-vs-http-2/

https://en.wikipedia.org/wiki/HTTP_pipelining
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7540
https://www.youtube.com/watch?v=rlN4F1oyaRM
https://www.youtube.com/watch?v=rlN4F1oyaRM
https://blog.cloudflare.com/http-3-vs-http-2/
https://blog.cloudflare.com/http-3-vs-http-2/
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An HTTP server hosts resources, where a resource can be a phys-
ical or abstract entity, like a document, an image, or a collection
of other resources. A URL identifies a resource by describing its
location on the server.
In our catalog service, the collection of products is a type of re-
source, which could be accessed with a URL like https://www.exam
ple.com/products?sort=price, where:

• https is the protocol;
• www.example.com is the hostname;
• products is the name of the resource;
• ?sort=price is the query string, which contains additional pa-
rameters that affect how the service handles the request; in
this case, the sort order of the list of products returned in the
response.

The URL without the query string is also referred to as the API’s
/products endpoint.
URLs can also model relationships between resources. For exam-
ple, since a product is a resource that belongs to the collection of
products, the product with the unique identifier 42 could have the
following relative URL: /products/42. And if the product also has
a list of reviews associated with it, we could append its resource
name to the product’s URL, i.e., /products/42/reviews. However, the
API becomes more complex as the nesting of resources increases,
so it’s a balancing act.
Naming resources is only one part of the equation; we also have
to serialize the resources on the wire when they are transmitted in
the body of request and response messages. When a client sends a
request to get a resource, it adds specific headers to the message to
describe the preferred representation for the resource. The server
uses these headers to pick the most appropriate representation11
for the response. Generally, in HTTP APIs, JSON is used to repre-
sent non-binary resources. For example, this is how the represen-
tation of /products/42might look:

11“HTTP Content negotiation,” https://developer.mozilla.org/en-US/docs/
Web/HTTP/Content_negotiation

https://www.example.com/products?sort=price
https://www.example.com/products?sort=price
https://developer.mozilla.org/en-US/docs/Web/HTTP/Content_negotiation
https://developer.mozilla.org/en-US/docs/Web/HTTP/Content_negotiation
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{
"id": 42,
"category": "Laptop",
"price": 999

}

5.3 Request methods
HTTP requests can create, read, update, and delete (CRUD) re-
sources using request methods. When a client makes a request to a
server for a particular resource, it specifies which method to use.
You can think of a request method as the verb or action to use on
a resource.
The most commonly used methods are POST, GET, PUT, and
DELETE. For example, the API of our catalog service could be
defined as follows:

• POST /products—Create a new product and return the URL
of the new resource.

• GET /products—Retrieve a list of products. The query string
can be used to filter, paginate, and sort the collection.

• GET /products/42— Retrieve product 42.
• PUT /products/42—Update product 42.
• DELETE /products/42—Delete product 42.

Request methods can be categorized based on whether they are
safe and whether they are idempotent. A safe method should not
have any visible side effects and can safely be cached. An idem-
potent method can be executed multiple times, and the end result
should be the same as if it was executed just a single time. Idem-
potency is a crucial aspect of APIs, and we will talk more about it
later in section 5.7.

Method Safe Idempotent
POST No No
GET Yes Yes
PUT No Yes
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Method Safe Idempotent
DELETE No Yes

5.4 Response status codes
After the server has received a request, it needs to process it and
send a response back to the client. The HTTP response contains a
status code12 to communicate to the client whether the request suc-
ceeded or not. Different status code ranges have different mean-
ings.

Status codes between 200 and 299 are used to communicate suc-
cess. For example, 200 (OK)means that the request succeeded, and
the body of the response contains the requested resource.

Status codes between 300 and 399 are used for redirection. For ex-
ample, 301 (Moved Permanently)means that the requested resource
has been moved to a different URL specified in the response mes-
sage Location header.

Status codes between 400 and 499 are reserved for client errors. A
request that fails with a client error will usually return the same
error if it’s retried since the error is caused by an issue with the
client, not the server. Because of that, it shouldn’t be retried. Some
common client errors are:

• 400 (Bad Request) — Validating the client-side input has
failed.

• 401 (Unauthorized)— The client isn’t authenticated.
• 403 (Forbidden)— The client is authenticated, but it’s not al-
lowed to access the resource.

• 404 (Not Found)— The server couldn’t find the requested re-
source.

Status codes between 500 and 599 are reserved for server errors. A
request that fails with a server error can be retried as the issue that

12“HTTP Status Codes,” https://httpstatuses.com/

https://httpstatuses.com/
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caused it to fail might be temporary. These are some typical server
status codes:

• 500 (Internal Server Error) — The server encountered an un-
expected error that prevented it from handling the request.

• 502 (Bad Gateway) — The server, while acting as a gateway
or proxy, received an invalid response from a downstream
server it accessed while attempting to handle the request.13

• 503 (Service Unavailable)— The server is currently unable to
handle the request due to a temporary overload or scheduled
maintenance.

5.5 OpenAPI
Now that we understand how to model an API with HTTP, we
can write an adapter that handles HTTP requests by calling the
business logic of the catalog service. For example, suppose the
service is defined by the following interface:
interface CatalogService
{

List<Product> GetProducts(...);
Product GetProduct(...);
void AddProduct(...);
void DeleteProduct(...);
void UpdateProduct(...)

}

So when the HTTP adapter receives a GET /products request to
retrieve the list of all products, it will invoke the GetProducts(…)
method and convert the result into an HTTP response. Although
this is a simple example, you can see how the adapter connects the
IPC mechanism (HTTP) to the business logic.
We can generate a skeleton of the HTTP adapter by defining the

13In this book, we will sometimes classify service dependencies as upstream or
downstream depending on the direction of the dependency relationship. For ex-
ample, if service A makes requests to service B, then service B is a downstream
dependency of A, and A is an upstream dependency of B. Since there is no consen-
sus in the industry for these terms, other texts might use a different convention.
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API of the service with an interface definition language (IDL). An
IDL is a language-independent definition of the API that can be
used to generate boilerplate code for the server-side adapter and
client-side software development kits (SDKs) in your languages of
choice.

The OpenAPI14 specification, which evolved from the Swagger
project, is one of the most popular IDLs for RESTful HTTP APIs.
With it, we can formally describe the API in a YAML document,
including the available endpoints, supported request methods,
and response status codes for each endpoint, and the schema of
the resources’ JSON representation.

For example, this is how part of the /products endpoint of the cata-
log service’s API could be defined:

openapi: 3.0.0
info:
version: "1.0.0"
title: Catalog Service API

paths:
/products:

get:
summary: List products
parameters:

- in: query
name: sort
required: false
schema:
type: string

responses:
"200":
description: list of products in catalog
content:

application/json:
schema:

14“OpenAPI Specification,” https://swagger.io/specification/

https://swagger.io/specification/
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type: array
items:

$ref: "#/components/schemas/ProductItem"
"400":

description: bad input

components:
schemas:

ProductItem:
type: object
required:

- id
- name
- category

properties:
id:

type: number
name:

type: string
category:
type: string

Although this is a very simple example and we won’t go deeper
into OpenAPI, it should give you an idea of its expressiveness.
With this definition, we can then run a tool to generate the API’s
documentation, boilerplate adapters, and client SDKs.

5.6 Evolution
AnAPI starts out as a well-designed interface15. Slowly but surely,
it will have to change to adapt to new use cases. The last thing we
want to dowhen evolving anAPI is to introduce a breaking change
that requires all clients to be modified at once, some of which we
might have no control over.

There are two types of changes that can break compatibility, one
15Or at least it should.
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at the endpoint level and another at the message level. For exam-
ple, if we were to change the /products endpoint to /new-products,
it would obviously break clients that haven’t been updated to sup-
port the new endpoint. The same applies when making a previ-
ously optional query parameter mandatory.

Changing the schema of request or response messages in a
backward-incompatible way can also wreak havoc. For example,
changing the type of the category property in the Product schema
from string to number is a breaking change that would cause the
old deserialization logic to blow up in clients. Similar arguments16
can be made for messages represented with other serialization
formats, like Protocol Buffers.

REST APIs should be versioned to support breaking changes,
e.g., by prefixing a version number in the URLs (/v1/products/).
However, as a general rule of thumb, APIs should evolve in a
backward-compatible way unless there is a very good reason.
Although backward-compatible APIs tend not to be particularly
elegant, they are practical.

5.7 Idempotency
When an API request times out, the client has no idea whether the
server actually received the request or not. For example, the server
could have processed the request and crashed right before sending
a response back to the client.

An effective way for clients to deal with transient failures such as
these is to retry the request one or more times until they get a re-
sponse back. Some HTTP request methods (e.g., PUT, DELETE)
are considered inherently idempotent as the effect of executing
multiple identical requests is identical to executing only one re-
quest17. For example, if the server processes the same PUT request

16“Schema evolution in Avro, Protocol Buffers and Thrift,” https://martin.klepp
mann.com/2012/12/05/schema-evolution-in-avro-protocol-buffers-thrift.html

17“Idempotent Methods,” https://datatracker.ietf.org/doc/html/rfc7231#secti
on-4.2.2

https://martin.kleppmann.com/2012/12/05/schema-evolution-in-avro-protocol-buffers-thrift.html
https://martin.kleppmann.com/2012/12/05/schema-evolution-in-avro-protocol-buffers-thrift.html
https://datatracker.ietf.org/doc/html/rfc7231#section-4.2.2
https://datatracker.ietf.org/doc/html/rfc7231#section-4.2.2
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for the same resource twice in a row, the end effect would be the
same as if the PUT request was executed only once.

But what about requests that are not inherently idempotent? For
example, suppose a client issues a POST request to add a new
product to the catalog service. If the request times out, the client
has no way of knowing whether the request succeeded or not. If
the request succeeds, retrying it will create two identical products,
which is not what the client intended.

In order to deal with this case, the client might have to implement
some kind of reconciliation logic that checks for duplicate prod-
ucts and removes them when the request is retried. You can see
how this introduces a lot of complexity for the client. Instead of
pushing this complexity to the client, a better solution would be
for the server to create the product only once by making the POST
request idempotent, so that no matter how many times that spe-
cific request is retried, it will appear as if it only executed once.

For the server to detect that a request is a duplicate, it needs to be
decorated with an idempotency key — a unique identifier (e.g., a
UUID). The identifier could be part of a header, like Idempotency-
Key in Stripe’s API18. For the server to detect duplicates, it needs to
remember all the request identifiers it has seen by storing them in a
database. When a request comes in, the server checks the database
to see if the request ID is already present. If it’s not there, it adds
the request identifier to the database and executes the request. Re-
quest identifiers don’t have to be stored indefinitely, and they can
be purged after some time.

Now here comes the tricky part. Suppose the server adds the re-
quest identifier to the database and crashes before executing the re-
quest. In that case, any future retry won’t have any effect because
the server will think it has already executed it. So what we really
want is for the request to be handled atomically: either the server
processes the request successfully and adds the request identifier
to the database, or it fails to process it without storing the request

18“Designing robust and predictable APIs with idempotency,” https://stripe.c
om/blog/idempotency

https://stripe.com/blog/idempotency
https://stripe.com/blog/idempotency
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identifier.
If the request identifiers and the resources managed by the server
are stored in the same database, we can guarantee atomicity with
ACID transactions19. In other words, we can wrap the product cre-
ation and request identifier log within the same database transac-
tion in the POST handler. However, if the handler needs to make
external calls to other services to handle the request, the imple-
mentation becomes a lotmore challenging20, since it requires some
form of coordination. Later, in chapter 13.2, we will learn how to
do just that.
Now, assuming the server can detect a duplicate request, how
should it be handled? In our example, the server could respond
to the client with a status code that signals that the product
already exists. But then the client would have to deal with this
case differently than if it had received a successful response for
the first POST request (201 Created). So ideally, the server should
return the same response that it would have returned for the very
first request.
So far, we have only considered a single client. Now, imagine the
following scenario:

1. Client A sends a request to create a new product. Although
the request succeeds, the client doesn’t receive a timely re-
sponse.

2. Client B deletes the newly created product.
3. Client A retries the original creation request.

How should the server deal with the request in step 3? From
client’s A perspective, it would be less surprising21 to receive the
original creation response than some strange error mentioning
that the resource created with that specific request identifier has
been deleted. When in doubt, it’s helpful to follow the principle

19“Using Atomic Transactions to Power an Idempotent API,” https://brandur.
org/http-transactions

20“Implementing Stripe-like Idempotency Keys in Postgres,” https://brandur.
org/idempotency-keys

21“Making retries safe with idempotent APIs,” https://aws.amazon.com/build
ers-library/making-retries-safe-with-idempotent-APIs/

https://brandur.org/http-transactions
https://brandur.org/http-transactions
https://brandur.org/idempotency-keys
https://brandur.org/idempotency-keys
https://aws.amazon.com/builders-library/making-retries-safe-with-idempotent-APIs/
https://aws.amazon.com/builders-library/making-retries-safe-with-idempotent-APIs/
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of least astonishment.
To summarize, an idempotent API makes it a lot easier to imple-
ment clients that are robust to failures, since they can assume that
requests can be retried on failure without worrying about all the
possible edge cases.





Summary

Communicating over networks is what makes a system dis-
tributed. It’s all too easy to ignore the “leaking” complexity that
goes into it, since modern programming languages and frame-
works make it look like invoking a remote API is no different from
calling a local function. I know I did at first and eventually learned
this lesson after spending days investigating weird degradations
that ultimately turned out to be caused by exhausted socket pools
or routers dropping packets.
Since then, I spend a great deal of time thinking of everything that
can go wrong when a remote request is made: socket pools can
be exhausted, TLS certificates can expire, DNS servers can become
unavailable, routers can become congested and drop packets, non-
idempotent requests can result in unexpected states, and the list
goes on. The only universal truth is that the fastest, safest, most
secure, and reliable network call is the one you don’t have tomake.
And I hope that by reading about TCP, TLS, UDP, DNS, and HTTP,
you also have (re)discovered a profound respect for the challenges
of building networked applications.





Part II

Coordination





Introduction

“Here is a Raft joke. It is really a Paxos joke, but easier to
follow.”

– Aleksey Charapko

So far, we have learned how to get processes to communicate reli-
ably and securely with each other. We didn’t go into all this trou-
ble just for the sake of it, though. Our ultimate goal is to build
a distributed application made of a group of processes that gives
its users the illusion they are interacting with one coherent node.
Although achieving a perfect illusion is not always possible or de-
sirable, some degree of coordination is always needed to build a
distributed application.

In this part, we will explore the core distributed algorithms at the
heart of distributed applications. This is the most challenging part
of the book since it contains the most theory, but also the most re-
warding one once you understand it. If something isn’t clear dur-
ing your first read, try to read it again and engage with the content
by following the references in the text. Some of these references
point to papers, but don’t be intimidated. You will find that many
papers are a lot easier to digest and more practical than you think.
There is only so much depth a book can go into, and if you want
to become an expert, reading papers should become a habit.

Chapter 6 introduces formal models that categorize systems based
on what guarantees they offer about the behavior of processes,
communication links, and timing; they allow us to reason about
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distributed systems by abstracting away the implementation de-
tails.
Chapter 7 describes how to detect that a remote process is unreach-
able. Failure detection is a crucial component of any distributed
system. Because networks are unreliable, and processes can crash
at any time, without failure detection a process trying to commu-
nicate with another could hang forever.
Chapter 8 dives into the concept of time and order. We will first
learnwhy agreeing on the time an event happened in a distributed
system is much harder than it looks and then discuss a solution
based on clocks that don’t measure the passing of time.
Chapter 9 describes how a group of processes can elect a leader
that can perform privileged operations, like accessing a shared re-
source or coordinating the actions of other processes.
Chapter 10 introduces one of the fundamental challenges in dis-
tributed systems: replicating data across multiple processes. This
chapter also discusses the implications of the CAP and PACELC
theorems, namely the tradeoff between consistency and availabil-
ity/performance.
Chapter 11 exploresweaker consistencymodels for replicated data,
like strong eventual consistency and causal consistency, which al-
low us to build consistent, available, and partition-tolerant sys-
tems.
Chapter 12 dives into the implementation of ACID transactions
that span data partitioned among multiple processes or services.
Transactions relieve us from a whole range of possible failure sce-
narios so that we can focus on the actual application logic rather
than all the possible things that can go wrong.
Chapter 13 discusses how to implement long-running atomic
transactions that don’t block by sacrificing the isolation guar-
antees of ACID. This chapter is particularly relevant in practice
since it showcases techniques commonly used in microservice
architectures.



Chapter 6

System models

To reason about distributed systems, we need to define precisely
what can and can’t happen. A system model encodes expectations
about the behavior of processes, communication links, and timing;
think of it as a set of assumptions that allow us to reason about
distributed systems by ignoring the complexity of the actual tech-
nologies used to implement them.
For example, these are some common models for communication
links:

• The fair-loss link model assumes that messages may be lost
and duplicated, but if the sender keeps retransmitting a mes-
sage, eventually it will be delivered to the destination.

• The reliable link model assumes that a message is delivered
exactly once, without loss or duplication. A reliable link can
be implemented on top of a fair-loss one by de-duplicating
messages at the receiving side.

• The authenticated reliable linkmodel makes the same assump-
tions as the reliable link but additionally assumes that the
receiver can authenticate the sender.

Even though these models are just abstractions of real communi-
cation links, they are useful to verify the correctness of algorithms.
And, aswe have seen in the previous chapters, it’s possible to build
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a reliable and authenticated communication link on top of a fair-
loss one. For example, TCP implements reliable transmission (and
more), while TLS implements authentication (and more).

Similarly, we can model the behavior of processes based on the
type of failures we expect to happen:

• The arbitrary-faultmodel assumes that a process can deviate
from its algorithm in arbitrary ways, leading to crashes or
unexpected behaviors caused by bugs or malicious activity.
For historical reasons, this model is also referred to as the
“Byzantine”model. More interestingly, it can be theoretically
proven that a system using this model can tolerate up to 1

3 of
faulty processes1 and still operate correctly.

• The crash-recovery model assumes that a process doesn’t de-
viate from its algorithm but can crash and restart at any time,
losing its in-memory state.

• The crash-stopmodel assumes that a process doesn’t deviate
from its algorithm but doesn’t come back online if it crashes.
Although this seems unrealistic for software crashes, it mod-
els unrecoverable hardware faults and generally makes the
algorithms simpler.

The arbitrary-fault model is typically used to model safety-critical
systems like airplane engines, nuclear power plants, and systems
where a single entity doesn’t fully control all the processes (e.g.,
digital cryptocurrencies such as Bitcoin). These use cases are out-
side the book’s scope, and the algorithms presented here will gen-
erally assume a crash-recovery model.

Finally, we can also model timing assumptions:

• The synchronous model assumes that sending a message
or executing an operation never takes more than a certain
amount of time. This is not very realistic for the type
of systems we care about, where we know that sending
messages over the network can potentially take a very long

1“The Byzantine Generals Problem,” https://lamport.azurewebsites.net/pubs
/byz.pdf

https://lamport.azurewebsites.net/pubs/byz.pdf
https://lamport.azurewebsites.net/pubs/byz.pdf
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time, and processes can be slowed down by, e.g., garbage
collection cycles or page faults.

• The asynchronous model assumes that sending a message or
executing an operation on a process can take an unbounded
amount of time. Unfortunately, many problems can’t be
solved under this assumption; if sending messages can take
an infinite amount of time, algorithms can get stuck and
not make any progress at all. Nevertheless, this model is
useful because it’s simpler than models that make timing
assumptions, and therefore algorithms based on it are also
easier to implement2.

• The partially synchronous model assumes that the system be-
haves synchronously most of the time. This model is typi-
cally representative enough of real-world systems.

In the rest of the book, we will generally assume a system model
with fair-loss links, crash-recovery processes, and partial syn-
chrony. If you are curious and want to learn more about other
system models, “Introduction to Reliable and Secure Distributed
Programming”3 is an excellent theoretical book that explores
distributed algorithms for a variety of models not considered in
this text.
But remember, models are just an abstraction of reality4 since they
don’t represent the real world with all its nuances. So, as you read
along, question the models’ assumptions and try to imagine how
algorithms that rely on them could break in practice.

2“Unreliable Failure Detectors for Reliable Distributed Systems,” https://ww
w.cs.utexas.edu/~lorenzo/corsi/cs380d/papers/p225-chandra.pdf

3“Introduction to Reliable and Secure Distributed Programming,” https://ww
w.distributedprogramming.net/

4“All models are wrong,” https://en.wikipedia.org/wiki/All_models_are_w
rong

https://www.cs.utexas.edu/~lorenzo/corsi/cs380d/papers/p225-chandra.pdf
https://www.cs.utexas.edu/~lorenzo/corsi/cs380d/papers/p225-chandra.pdf
https://www.distributedprogramming.net/
https://www.distributedprogramming.net/
https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/All_models_are_wrong




Chapter 7

Failure detection

Several things can go wrong when a client sends a request to a
server. In the best case, the client sends a request and receives a
response. But what if no response comes back after some time?
In that case, it’s impossible to tell whether the server is just very
slow, it crashed, or a message couldn’t be delivered because of a
network issue (see Figure 7.1).
In the worst case, the client will wait forever for a response that
will never arrive. The best it can do is make an educated guess,
after some time has passed, on whether the server is unavailable.
The client can configure a timeout to trigger if it hasn’t received
a response from the server after a certain amount of time. If and
when the timeout triggers, the client considers the server unavail-
able and either throws an error or retries the request.
The tricky part is deciding how long to wait for the timeout to trig-
ger. If the delay is too short, the client might wrongly assume the
server is unavailable; if the delay is too long, the clientmightwaste
time waiting for a response that will never arrive. In summary, it’s
not possible to build a perfect failure detector.
But a process doesn’t need to wait to send a message to find out
that the destination is not reachable. It can also proactively try to
maintain a list of available processes using pings or heartbeats.
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Figure 7.1: The client can’t tell whether the server is slow, it
crashed or a message was delayed/dropped because of a network
issue.

A ping is a periodic request that a process sends to another to check
whether it’s still available. The process expects a response to the
pingwithin a specific time frame. If no response is received, a time-
out triggers and the destination is considered unavailable. How-
ever, the process will continue to send pings to it to detect if and
when it comes back online.
A heartbeat is amessage that a process periodically sends to another.
If the destination doesn’t receive a heartbeat within a specific time
frame, it triggers a timeout and considers the process unavailable.
But if the process comes back to life later and starts sending out
heartbeats, it will eventually be considered to be available again.
Pings and heartbeats are generally used for processes that interact
with each other frequently, in situations where an action needs to
be taken as soon as one of them is no longer reachable. In other cir-
cumstances, detecting failures just at communication time is good
enough.



Chapter 8

Time

Time is an essential concept in any software application; evenmore
so in distributed ones. We have seen it play a crucial role in the net-
work stack (e.g., DNS record TTL) and failure detection (timeouts).
Another important use of it is for ordering events.
The flow of execution of a single-threaded application is simple to
understand because every operation executes sequentially in time,
one after the other. But in a distributed system, there is no shared
global clock that all processes agree on that can be used to order
operations. And, to make matters worse, processes can run con-
currently.
It’s challenging to build distributed applications that work as in-
tended without knowing whether one operation happened before
another. In this chapter, we will learn about a family of clocks that
can be used to work out the order of operations across processes
in a distributed system.

8.1 Physical clocks
A process has access to a physical wall-time clock. The most com-
mon type is based on a vibrating quartz crystal, which is cheap but
not very accurate. Depending on manufacturing differences and
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external temperature, one quartz clock can run slightly faster or
slower than others. The rate at which a clock runs faster or slower
is also called clock drift. In contrast, the difference between two
clocks at a specific point in time is referred to as clock skew.

Because quartz clocks drift, they need to be synced periodically
with machines that have access to higher-accuracy clocks, like
atomic ones. Atomic clocks1 measure time based on quantum-
mechanical properties of atoms. They are significantly more
expensive than quartz clocks and accurate to 1 second in 3 million
years.

The synchronization between clocks can be implemented with a
protocol, and the challenge is to do so despite the unpredictable
latencies introduced by the network. The most commonly used
protocol is the Network Time Protocol (NTP2). In NTP, a client esti-
mates the clock skew by receiving a timestamp from a NTP server
and correcting it with the estimated network latency. With an es-
timate of the clock skew, the client can adjust its clock. However,
this causes the clock to jump forward or backward in time, which
creates a problem when comparing timestamps. For example, an
operation that runs after another could have an earlier timestamp
because the clock jumped back in time between the two operations.

Luckily, most operating systems offer a different type of clock that
is not affected by time jumps: a monotonic clock. Amonotonic clock
measures the number of seconds elapsed since an arbitrary point
in time (e.g., boot time) and can only move forward. A monotonic
clock is useful for measuring howmuch time has elapsed between
two timestamps on the same node. However, monotonic clocks
are of no use for comparing timestamps of different nodes.

Since we don’t have a way to synchronize wall-time clocks across
processes perfectly, we can’t depend on them for ordering oper-
ations across nodes. To solve this problem, we need to look at it
from another angle. We know that two operations can’t run con-

1“Atomic clock,” https://en.wikipedia.org/wiki/Atomic_clock
2“RFC 5905: Network Time Protocol Version 4: Protocol and Algorithms Speci-

fication,” https://datatracker.ietf.org/doc/html/rfc5905

https://en.wikipedia.org/wiki/Atomic_clock
https://datatracker.ietf.org/doc/html/rfc5905


CHAPTER 8. TIME 65

currently in a single-threaded process as one must happen before
the other. This happened-before relationship creates a causal bond
between the two operations, since the one that happens first can
have side-effects that affect the operation that comes after it. We
can use this intuition to build a different type of clock that isn’t
tied to the physical concept of time but rather captures the causal
relationship between operations: a logical clock.

8.2 Logical clocks
A logical clock measures the passing of time in terms of logical op-
erations, not wall-clock time. The simplest possible logical clock is
a counter, incremented before an operation is executed. Doing so
ensures that each operation has a distinct logical timestamp. If two
operations execute on the same process, then necessarily one must
come before the other, and their logical timestampswill reflect that.
But what about operations executed on different processes?

Imagine sending an email to a friend. Any actions you did before
sending that email, like drinking coffee, must have happened be-
fore the actions your friend took after receiving the email. Simi-
larly, when one process sends a message to another, a so-called
synchronization point is created. The operations executed by the
sender before the message was sent must have happened before
the operations that the receiver executed after receiving it.

A Lamport clock3 is a logical clock based on this idea. To implement
it, each process in the system needs to have a local counter that
follows specific rules:

• The counter is initialized with 0.
• The process increments its counter by 1 before executing an
operation.

• When the process sends a message, it increments its counter
by 1 and sends a copy of it in the message.

• When the process receives a message, it merges the counter
3“Time, Clocks, and the Ordering of Events in a Distributed System,” http://la

mport.azurewebsites.net/pubs/time-clocks.pdf

http://lamport.azurewebsites.net/pubs/time-clocks.pdf
http://lamport.azurewebsites.net/pubs/time-clocks.pdf
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it received with its local counter by taking the maximum of
the two. Finally, it increments the counter by 1.

Figure 8.1: Three processes using Lamport clocks. For example,
because D happened before F, D’s logical timestamp is less than
F’s.

Although the Lamport clock assumes a crash-stop model, a crash-
recovery one can be supported by e.g., persisting the clock’s state
on disk.

The rules guarantee that if operation 𝑂1 happened-before opera-
tion 𝑂2, the logical timestamp of 𝑂1 is less than the one of 𝑂2. In
the example shown in Figure 8.1, operation D happened-before F,
and their logical timestamps, 4 and 5, reflect that.

However, two unrelated operations can have the same logical
timestamp. For example, the logical timestamps of operations
A and E are equal to 1. To create a strict total order, we can
arbitrarily order the processes to break ties. For example, if we
used the process IDs in Figure 8.1 to break ties (1, 2, and 3), E’s
timestamp would be greater than A’s.

Regardless of whether ties are broken, the order of logical times-
tamps doesn’t imply a causal relationship. For example, in Figure
8.1, operation E didn’t happen-before C, even if their timestamps
appear to imply it. To guarantee this relationship, we have to use
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a different type of logical clock: a vector clock.

8.3 Vector clocks
A vector clock4 is a logical clock that guarantees that if a logical
timestamp is less than another, then the former must have
happened-before the latter. A vector clock is implemented with
an array of counters, one for each process in the system. And, as
with Lamport clocks, each process has its local copy.

For example, suppose the system is composed of three processes,
𝑃1, 𝑃2, and 𝑃3. In this case, each process has a local vector clock
implemented with an array5 of three counters [𝐶𝑃1, 𝐶𝑃2, 𝐶𝑃3].
The first counter in the array is associated with 𝑃1, the second
with 𝑃2, and the third with 𝑃3.

A process updates its local vector clock based on the following
rules:

• Initially, the counters in the array are set to 0.
• When an operation occurs, the process increments its counter
in the array by 1.

• When the process sends a message, it increments its counter
in the array by 1 and sends a copy of the array with the mes-
sage.

• When the process receives a message, it merges the array it
received with the local one by taking the maximum of the
two arrays element-wise. Finally, it increments its counter in
the array by 1.

The beauty of vector clock timestamps is that they can be partially
ordered6; given two operations 𝑂1 and 𝑂2 with timestamps 𝑇1
and 𝑇2, if:

4“Timestamps in Message-Passing Systems That Preserve the Partial Ordering,”
https://fileadmin.cs.lth.se/cs/Personal/Amr_Ergawy/dist-algos-papers/4.pdf

5In actual implementations, a dictionary is used rather than an array.
6In a total order, every pair of elements is comparable. Instead, in partial order,

some pairs are not comparable

https://fileadmin.cs.lth.se/cs/Personal/Amr_Ergawy/dist-algos-papers/4.pdf
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Figure 8.2: Each process has a vector clock represented by an array
of three counters.

• every counter in 𝑇1 is less than or equal to the corresponding
counter in 𝑇2,

• and there is at least one counter in 𝑇1 that is strictly less than
the corresponding counter in 𝑇2,

then 𝑂1 happened-before 𝑂2. For example, in Figure 8.2, B
happened-before C.

If 𝑂1 didn’t happen-before 𝑂2 and 𝑂2 didn’t happen-before 𝑂1,
then the timestamps can’t be ordered, and the operations are con-
sidered to be concurrent. So, for example, operations E and C in
Figure 8.2 can’t be ordered, and therefore are concurrent.

One problem with vector clocks is that the storage requirement on
each process grows linearly with the number of processes, which
becomes a problem for applications with many clients. However,
there are other types of logical clocks that solve this issue, like dot-
ted version vectors7.

This discussion about logical clocks might feel a bit abstract at this
point but bear with me. Later in the book, we will encounter some

7“Why Logical Clocks are Easy,” https://queue.acm.org/detail.cfm?id=291775
6

https://queue.acm.org/detail.cfm?id=2917756
https://queue.acm.org/detail.cfm?id=2917756
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practical applications of logical clocks. What’s important to inter-
nalize at this point is that, in general, we can’t use physical clocks
to accurately derive the order of events that happened on differ-
ent processes. That being said, sometimes physical clocks are good
enough. For example, using physical clocks to timestamp logsmay
be fine if they are only used for debugging purposes.





Chapter 9

Leader election

There are times when a single process in the system needs to have
special powers, like accessing a shared resource or assigning work
to others. To grant a process these powers, the system needs to
elect a leader among a set of candidate processes, which remains in
charge until it relinquishes its role or becomes otherwise unavail-
able. When that happens, the remaining processes can elect a new
leader among themselves.

A leader election algorithm needs to guarantee that there is atmost
one leader at any given time and that an election eventually com-
pletes even in the presence of failures. These two properties are
also referred to as safety and liveness, respectively, and they are gen-
eral properties of distributed algorithms. Informally, safety guar-
antees that nothing bad happens and liveness that something good
eventually does happen. In this chapter, we will explore how a
specific algorithm, the Raft leader election algorithm, guarantees
these properties.
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9.1 Raft leader election
Raft1’s leader election algorithm is implemented as a statemachine
in which any process is in one of three states (see Figure 9.1):

• the follower state, where the process recognizes another one
as the leader;

• the candidate state, where the process starts a new election
proposing itself as a leader;

• or the leader state, where the process is the leader.

In Raft, time is divided into election terms of arbitrary length that
are numbered with consecutive integers (i.e., logical timestamps).
A term begins with a new election, during which one or more can-
didates attempt to become the leader. The algorithm guarantees
that there is at most one leader for any term. But what triggers an
election in the first place?

When the system starts up, all processes begin their journey as fol-
lowers. A follower expects to receive a periodic heartbeat from
the leader containing the election term the leader was elected in.
If the follower doesn’t receive a heartbeat within a certain period
of time, a timeout fires and the leader is presumed dead. At that
point, the follower starts a new election by incrementing the cur-
rent term and transitioning to the candidate state. It then votes for
itself and sends a request to all the processes in the system to vote
for it, stamping the request with the current election term.

The process remains in the candidate state until one of three things
happens: it wins the election, another process wins the election, or
some time goes by with no winner:

• The candidate wins the election— The candidate wins the
election if the majority of processes in the system vote for
it. Each process can vote for at most one candidate in a term
on a first-come-first-served basis. This majority rule enforces
that at most one candidate can win a term. If the candidate
wins the election, it transitions to the leader state and starts

1“In Search of an Understandable Consensus Algorithm,” https://raft.github.
io/raft.pdf

https://raft.github.io/raft.pdf
https://raft.github.io/raft.pdf
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sending heartbeats to the other processes.
• Another process wins the election — If the candidate re-
ceives a heartbeat from a process that claims to be the leader
with a term greater than or equal to the candidate’s term, it
accepts the new leader and returns to the follower state.2 If
not, it continues in the candidate state. You might be won-
dering how that could happen; for example, if the candidate
processwas to stop for any reason, like for a long garbage col-
lection pause, by the time it resumes another process could
have won the election.

• Aperiod of time goes bywith nowinner— It’s unlikely but
possible that multiple followers become candidates simulta-
neously, and none manages to receive a majority of votes;
this is referred to as a split vote. The candidate will even-
tually time out and start a new election when that happens.
The election timeout is picked randomly from a fixed inter-
val to reduce the likelihood of another split vote in the next
election.

9.2 Practical considerations
There are other leader election algorithms out there, but Raft’s
implementation is simple to understand and also widely used
in practice, which is why I chose it for this book. In practice,
you will rarely, if ever, need to implement leader election from
scratch. A good reason for doing that would be if you needed
a solution with zero external dependencies3. Instead, you can
use any fault-tolerant key-value store that offers a linearizable4
compare-and-swap5 operation with an expiration time (TTL).
The compare-and-swap operation atomically updates the value of
a key if and only if the process attempting to update the value cor-
rectly identifies the current value. The operation takes three pa-

2The same happens if the leader receives a heartbeat with a greater term.
3We will encounter one such case when discussing replication in the next chap-

ter.
4We will define what linearizability means exactly later in section 10.3.1.
5“Compare-and-swap,” https://en.wikipedia.org/wiki/Compare-and-swap

https://en.wikipedia.org/wiki/Compare-and-swap
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Figure 9.1: Raft’s leader election algorithm represented as a state
machine.

rameters: 𝐾, 𝑉𝑜, and 𝑉𝑛, where 𝐾 is a key, and 𝑉𝑜 and 𝑉𝑛 are
values referred to as the old and new value, respectively. The op-
eration atomically compares the current value of 𝐾 with 𝑉𝑜, and
if they match, it updates the value of 𝐾 to 𝑉𝑛. If the values don’t
match, then 𝐾 is not modified, and the operation fails.

The expiration time defines the time to live for a key, after which
the key expires and is removed from the store unless the expiration
time is extended. The idea is that each competing process tries
to acquire a lease by creating a new key with compare-and-swap.
The first process to succeed becomes the leader and remains such
until it stops renewing the lease, after which another process can
become the leader.

The expiration logic can also be implemented on the client side,
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like this locking library6 for DynamoDB does, but the implemen-
tation is more complex, and it still requires the data store to offer
a compare-and-swap operation.

You might think that’s enough to guarantee there can’t be more
than one leader at any given time. But, unfortunately, that’s not
the case. To see why suppose multiple processes need to update a
file on a shared file store, andwewant to guarantee that only one at
a time can access it to avoid race conditions. Now, suppose we use
a lease to lock the critical section. Each process tries to acquire the
lease, and the one that does so successfully reads the file, updates
it in memory, and writes it back to the store:

if lease.acquire():
try:

content = store.read(filename)
new_content = update(content)
store.write(filename, new_content)

except:
lease.release()

The issue is that by the time the process gets to write to the file, it
might no longer hold the lease. For example, the operating system
might have preempted and stopped the process for long enough
for the lease to expire. The process could try to detect that by com-
paring the lease expiration time to its local clock before writing to
the store, assuming clocks are synchronized.

However, clock synchronization isn’t perfectly accurate. On top of
that, the lease could expire while the request to the store is in-flight
because of a network delay. To account for these problems, the
process could check that the lease expiration is far enough in the
future before writing to the file. Unfortunately, this workaround
isn’t foolproof, and the lease can’t guarantee mutual exclusion by
itself.

To solve this problem, we can assign a version number to each file
6“Building Distributed Locks with the DynamoDB Lock Client,” https://aws.

amazon.com/blogs/database/building-distributed-locks-with-the-dynamodb-
lock-client/

https://aws.amazon.com/blogs/database/building-distributed-locks-with-the-dynamodb-lock-client/
https://aws.amazon.com/blogs/database/building-distributed-locks-with-the-dynamodb-lock-client/
https://aws.amazon.com/blogs/database/building-distributed-locks-with-the-dynamodb-lock-client/
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that is incremented every time the file is updated. The process
holding the lease can then read the file and its version number from
the file store, do some local computation, and finally update the
file (and increment the version number) conditional on the version
number not having changed. The process can perform this valida-
tion atomically using a compare-and-swap operation, whichmany
file stores support.
If the file store doesn’t support conditional writes, we have to de-
sign around the fact that occasionally therewill be a race condition.
Sometimes, that’s acceptable; for example, if there are momentar-
ily two leaders and they both perform the same idempotent up-
date, no harm is done.
Although having a leader can simplify the design of a system as it
eliminates concurrency, it can also become a scalability bottleneck
if the number of operations performed by it increases to the point
where it can no longer keep up. Also, a leader is a single point of
failure with a large blast radius; if the election process stops work-
ing or the leader isn’t working as expected, it can bring down the
entire system with it. We can mitigate some of these downsides
by introducing partitions and assigning a different leader per par-
tition, but that comes with additional complexity. This is the solu-
tion many distributed data stores use since they need to use parti-
tioning anyway to store data that doesn’t fit in a single node.
As a rule of thumb, if we must have a leader, we have to minimize
the work it performs and be prepared to occasionally have more
than one.
Taking a step back, a crucial assumption we made earlier is that
the data store that holds leases is fault-tolerant, i.e., it can tolerate
the loss of a node. Otherwise, if the data store ran on a single node
and that node were to fail, we wouldn’t be able to acquire leases.
For the data store to withstand a node failing, it needs to replicate
its state over multiple nodes. In the next chapter, we will take a
closer look at how this can be accomplished.



Chapter 10

Replication

Data replication is a fundamental building block of distributed sys-
tems. One reason for replicating data is to increase availability. If
some data is stored exclusively on a single process, and that pro-
cess goes down, the data won’t be accessible anymore. However,
if the data is replicated, clients can seamlessly switch to a copy.
Another reason for replication is to increase scalability and perfor-
mance; the more replicas there are, the more clients can access the
data concurrently.
Implementing replication is challenging because it requires keep-
ing replicas consistent with one another even in the face of fail-
ures. In this chapter, we will explore Raft’s replication algorithm1,
a replication protocol that provides the strongest consistency guar-
antee possible— the guarantee that to the clients, the data appears
to be stored on a single process, even if it’s actually replicated.
Arguably, the most popular protocol that offers this guarantee is
Paxos2, but we will discuss Raft as it’s more understandable.
Raft is based on a mechanism known as state machine replication.
The main idea is that a single process, the leader, broadcasts op-

1“In Search of an Understandable Consensus Algorithm,” https://raft.github.
io/raft.pdf

2“Paxos Made Simple,” https://lamport.azurewebsites.net/pubs/paxos-
simple.pdf

https://raft.github.io/raft.pdf
https://raft.github.io/raft.pdf
https://lamport.azurewebsites.net/pubs/paxos-simple.pdf
https://lamport.azurewebsites.net/pubs/paxos-simple.pdf
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erations that change its state to other processes, the followers (or
replicas). If the followers execute the same sequence of operations
as the leader, then each follower will end up in the same state as
the leader. Unfortunately, the leader can’t simply broadcast oper-
ations to the followers and call it a day, as any process can fail at
any time, and the network can lose messages. This is why a large
part of the algorithm is dedicated to fault tolerance.
The reason why this this mechanism is called stated machine repli-
cation is that each process is modeled as a state machine3 that tran-
sitions from one state to another in response to some input (an op-
eration). If the state machines are deterministic and get exactly the
same input in the same order, their states are consistent. That way,
if one of them fails, a redundant copy is available from any of the
other state machines. State machine replication is a very powerful
tool to make a service fault-tolerant as long it can be modeled as a
state machine.
For example, consider the problem of implementing a fault-
tolerant key-value store. In this case, each state machine repre-
sents a storage node that accepts put(k, v) and get(k) operations.
The actual state is represented with a dictionary. When a put op-
eration is executed, the key-value pair is added to the dictionary.
When a get operation is executed, the value corresponding to the
requested key is returned. You can see how if every node executes
the same sequence of puts, all nodes will end up having the same
state.
In the next section, we will take a deeper look at Raft’s replication
protocol. It’s a challenging read that requires to pause and think,
but I can assure you it’s well worth the effort, especially if you
haven’t seen a replication protocol before.

10.1 State machine replication
When the system starts up, a leader is elected using Raft’s leader
election algorithm discussed in chapter 9, which doesn’t require

3“Finite-state machine,” https://en.wikipedia.org/wiki/Finite-state_machine

https://en.wikipedia.org/wiki/Finite-state_machine
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any external dependencies. The leader is the only process that can
change the replicated state. It does so by storing the sequence of
operations that alter the state into a local log, which it replicates
to the followers. Replicating the log is what allows the state to be
kept in sync across processes.
As shown in Figure 10.1, a log is an ordered list of entries where
each entry includes:

• the operation to be applied to the state, like the assignment of
3 to x. The operation needs to be deterministic so that all fol-
lowers end up in the same state, but it can be arbitrarily com-
plex as long as that requirement is respected (e.g., compare-
and-swap or a transaction with multiple operations);

• the index of the entry’s position in the log;
• and the leader’s election term (the number in each box).

Figure 10.1: The leader’s log is replicated to its followers.

When the leader wants to apply an operation to its local state, it
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first appends a new entry for the operation to its log. At this point,
the operation hasn’t been applied to the local state just yet; it has
only been logged.
The leader then sends an AppendEntries request to each follower
with the new entry to be added. This message is also sent out peri-
odically, even in the absence of new entries, as it acts as a heartbeat
for the leader.
When a follower receives an AppendEntries request, it appends the
entry it received to its own log (without actually executing the op-
eration yet) and sends back a response to the leader to acknowl-
edge that the request was successful. When the leader hears back
successfully from a majority of followers, it considers the entry to
be committed and executes the operation on its local state. The
leader keeps track of the highest committed index in the log, which
is sent in all futureAppendEntries requests. A follower only applies
a log entry to its local state when it finds out that the leader has
committed the entry.
Because the leader needs to wait for only a majority (quorum) of
followers, it can make progress even if some are down, i.e., if there
are 2𝑓 + 1 followers, the system can tolerate up to 𝑓 failures. The
algorithm guarantees that an entry that is committed is durable
and will eventually be executed by all the processes in the system,
not just those that were part of the original majority.
So far, we have assumed there are no failures, and the network
is reliable. Let’s relax those assumptions. If the leader fails, a
follower is elected as the new leader. But, there is a caveat: be-
cause the replication algorithm only needs a majority of processes
to make progress, it’s possible that some processes are not up to
date when a leader fails. To avoid an out-of-date process becom-
ing the leader, a process can’t vote for one with a less up-to-date
log. In other words, a process can’t win an election if it doesn’t
contain all committed entries.
To determine which of two processes’ logs is more up-to-date, the
election term and index of their last entries are compared. If the
logs end with different terms, the log with the higher term is more
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up to date. If the logs end with the same term, whichever log is
longer is more up to date. Since the election requires a majority
vote, and a candidate’s log must be at least as up to date as any
other process in that majority to win the election, the elected pro-
cess will contain all committed entries.
If an AppendEntries request can’t be delivered to one or more fol-
lowers, the leader will retry sending it indefinitely until a majority
of the followers have successfully appended it to their logs. Re-
tries are harmless as AppendEntries requests are idempotent, and
followers ignore log entries that have already been appended to
their logs.
If a follower that was temporarily unavailable comes back online,
it will eventually receive an AppendEntries message with a log en-
try from the leader. The AppendEntriesmessage includes the index
and term number of the entry in the log that immediately precedes
the one to be appended. If the follower can’t find a log entry with
that index and term number, it rejects the message to prevent cre-
ating a gap in its log.
When the AppendEntries request is rejected, the leader retries the
request, this time including the last two log entries — this is why
we referred to the request asAppendEntries and not asAppendEntry.
If that fails, the leader retries sending the last three log entries and
so forth.4 The goal is for the leader to find the latest log entrywhere
the two logs agree, delete any entries in the follower’s log after that
point, and append to the follower’s log all of the leader’s entries
after it.

10.2 Consensus
By solving state machine replication, we actually found a solution
to consensus5 —a fundamental problem studied in distributed sys-
tems research in which a group of processes has to decide a value

4In practice, there are ways to reduce the number of messages required for this
step.

5“Consensus,” https://en.wikipedia.org/wiki/Consensus_(computer_scien
ce)

https://en.wikipedia.org/wiki/Consensus_(computer_science)
https://en.wikipedia.org/wiki/Consensus_(computer_science)
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so that:

• every non-faulty process eventually agrees on a value;
• the final decision of every non-faulty process is the same ev-
erywhere;

• and the value that has been agreed on has been proposed by
a process.

This may sound a little bit abstract. Another way to think about
consensus is as the API of a write-once register6 (WOR): a thread-
safe and linearizable7 register that can only bewritten once but can
be read many times.

There are plenty of practical applications of consensus. For exam-
ple, agreeing on which process in a group can acquire a lease re-
quires consensus. And, as mentioned earlier, state machine repli-
cation also requires it. If you squint a little, you should be able to
see how the replicated log in Raft is a sequence of WORs, and so
Raft really is just a sequence of consensus instances.

While it’s important to understand what consensus is and how it
can be solved, you will likely never need to implement it from
scratch8. Instead, you can use one of the many off-the-shelf so-
lutions available.

For example, one of themost commonuses of consensus is for coor-
dination purposes, like the election of a leader. As discussed in 9.2,
leader election can be implemented by acquiring a lease. The lease
ensures that at most one process can be the leader at any time and
if the process dies, another one can take its place. However, this
mechanism requires the lease manager, or coordination service, to
be fault-tolerant. Etcd9 and ZooKeeper10 are two widely used co-

6“Paxos made Abstract,” https://maheshba.bitbucket.io/blog/2021/11/15/
Paxos.html

7We will define what linearizability means in the next section.
8nor want to, since it’s very challenging to get right; see “Paxos Made Live - An

Engineering Perspective,” https://static.googleusercontent.com/media/research.
google.com/en//archive/paxos_made_live.pdf

9“etcd: A distributed, reliable key-value store for the most critical data of a dis-
tributed system,” https://etcd.io/

10“Apache ZooKeeper: An open-source server which enables highly reliable dis-
tributed coordination,” https://zookeeper.apache.org/

https://maheshba.bitbucket.io/blog/2021/11/15/Paxos.html
https://maheshba.bitbucket.io/blog/2021/11/15/Paxos.html
https://static.googleusercontent.com/media/research.google.com/en//archive/paxos_made_live.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/paxos_made_live.pdf
https://etcd.io/
https://zookeeper.apache.org/
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ordination services that replicate their state for fault-tolerance us-
ing consensus. A coordination service exposes a hierarchical, key-
value store through its API, and also allows clients to watch for
changes to keys. So, for example, acquiring a lease can be imple-
mented by having a client attempt to create a key with a specific
TTL. If the key already exists, the operation fails guaranteeing that
only one client can acquire the lease.

10.3 Consistency models
Wediscussed statemachine replicationwith the goal of implement-
ing a data store that can withstand failures and scale out to serve
a larger number of requests. Now that we know how to build a
replicated data store in principle, let’s take a closer look at what
happens when a client sends a request to it. In an ideal world, the
request executes instantaneously, as shown in Figure 10.2.

Figure 10.2: A write request executing instantaneously

But in reality, things are quite different — the request needs to
reach the leader, which has to process it and send back a response
to the client. As shown in Figure 10.3, these actions take time and
are not instantaneous.

The best guarantee the system can provide is that the request
executes somewhere between its invocation and completion time.
You might think that this doesn’t look like a big deal; after all, it’s
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Figure 10.3: Awrite request can’t execute instantaneously because
it takes time to reach the leader and be executed.

what you are used to when writing single-threaded applications.
For example, if you assign 42 to x and read its value immediately
afterward, you expect to find 42 in there, assuming there is no
other thread writing to the same variable. But when you deal
with replicated systems, all bets are off. Let’s see why that’s the
case.

In section 10.1, we looked at how Raft replicates the leader’s state
to its followers. Since only the leader canmake changes to the state,
any operation that modifies it needs to necessarily go through the
leader. But what about reads? They don’t necessarily have to go
through the leader as they don’t affect the system’s state. Reads
can be served by the leader, a follower, or a combination of leader
and followers. If all reads have to go through the leader, the read
throughput would be limited to that of a single process. But, if any
follower can serve reads instead, then two clients, or observers, can
have a different view of the system’s state since followers can lag
behind the leader.

Intuitively, there is a tradeoff between how consistent the ob-
servers’ views of the system are and the system’s performance
and availability. To understand this relationship, we need to
define precisely what we mean by consistency. We will do so with
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the help of consistency models11, which formally define the possible
views the observers can have of the system’s state.

10.3.1 Strong consistency
If clients sendwrites and reads exclusively to the leader, then every
request appears to take place atomically at a very specific point in
time as if therewere a single copy of the data. Nomatter howmany
replicas there are or how far behind they are lagging, as long as the
clients always query the leader directly, there is a single copy of the
data from their point of view.

Because a request is not served instantaneously, and there is a sin-
gle process that can serve it, the request executes somewhere be-
tween its invocation and completion time. By the time it completes,
its side-effects are visible to all observers, as shown in Figure 10.4.

Figure 10.4: The side-effects of a strongly consistent operation are
visible to all observers once it completes.

Since a request becomes visible to all other participants between
its invocation and completion time, a real-time guarantee must

11“Consistency Models,” https://jepsen.io/consistency

https://jepsen.io/consistency
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be enforced; this guarantee is formalized by a consistency model
called linearizability12, or strong consistency. Linearizability is the
strongest consistency guarantee a system can provide for single-
object requests.13

Unfortunately, the leader can’t serve reads directly from its local
state because by the time it receives a request from a client, it might
no longer be the leader; so, if it were to serve the request, the sys-
tem wouldn’t be strongly consistent. The presumed leader first
needs to contact a majority of replicas to confirm whether it still
is the leader. Only then is it allowed to execute the request and
send back a response to the client. Otherwise, it transitions to the
follower state and fails the request. This confirmation step consid-
erably increases the time required to serve a read.

10.3.2 Sequential consistency
So far, we have discussed serializing all reads through the leader.
But doing so creates a single chokepoint, limiting the system’s
throughput. On top of that, the leader needs to contact a majority
of followers to handle a read, which increases the time it takes
to process a request. To increase the read performance, we could
also allow the followers to handle requests.

Even though a follower can lag behind the leader, it will always
receive new updates in the same order as the leader. For example,
suppose one client only ever queries follower 1, and another only
ever queries follower 2. In that case, the two clients will see the
state evolving at different times, as followers are not perfectly in
sync (see Figure 10.5).

The consistency model that ensures operations occur in the same
order for all observers, but doesn’t provide any real-time guaran-
tee about when an operation’s side-effect becomes visible to them,
is called sequential consistency14. The lack of real-time guarantees is

12“Linearizability,” https://jepsen.io/consistency/models/linearizable
13For example, this is the guarantee you would expect from a coordination ser-

vice that manages leases.
14“Sequential Consistency,” https://jepsen.io/consistency/models/sequential

https://jepsen.io/consistency/models/linearizable
https://jepsen.io/consistency/models/sequential
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Figure 10.5: Although followers have a different view of the sys-
tem’s state, they process updates in the same order.

what differentiates sequential consistency from linearizability.

A producer/consumer system synchronized with a queue is an ex-
ample of this model; a producer writes items to the queue, which
a consumer reads. The producer and the consumer see the items
in the same order, but the consumer lags behind the producer.

10.3.3 Eventual consistency
Although we managed to increase the read throughput, we had to
pin clients to followers — if a follower becomes unavailable, the
client loses access to the store. We could increase the availability
by allowing the client to query any follower. But this comes at a
steep price in terms of consistency. For example, say there are two
followers, 1 and 2, where follower 2 lags behind follower 1. If a
client queries follower 1 and then follower 2, it will see an earlier
state, which can be very confusing. The only guarantee the client
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has is that eventually all followers will converge to the final state if
writes to the system stop. This consistencymodel is called eventual
consistency.

It’s challenging to build applications on top of an eventually con-
sistent data store because the behavior is different from what we
are used to whenwriting single-threaded applications. As a result,
subtle bugs can creep up that are hard to debug and reproduce.
Yet, in eventual consistency’s defense, not all applications require
linearizability. For example, an eventually consistent store is per-
fectly fine if we want to keep track of the number of users visiting
a website, since it doesn’t really matter if a read returns a number
that is slightly out of date.

10.3.4 The CAP theorem
When a network partition happens, parts of the system become
disconnected from each other. For example, some clients might
no longer be able to reach the leader. The system has two choices
when this happens; it can either:

• remain available by allowing clients to query followers that
are reachable, sacrificing strong consistency;

• or guarantee strong consistency by failing reads that can’t
reach the leader.

This concept is expressed by the CAP theorem15, which can be sum-
marized as: “strong consistency, availability and partition toler-
ance: pick two out of three.” In reality, the choice really is only
between strong consistency and availability, as network faults are
a given and can’t be avoided.

Confusingly enough, the CAP theorem’s definition of availability
requires that every request eventually receives a response. But in
real systems, achieving perfect availability is impossible. More-
over, a very slow response is just as bad as one that never occurs.
So, in other words, many highly-available systems can’t be con-

15“Perspectives on the CAP Theorem,” https://groups.csail.mit.edu/tds/paper
s/Gilbert/Brewer2.pdf

https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
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sidered available as defined by the CAP theorem. Similarly, the
theorem’s definition of consistency and partition tolerance is very
precise, limiting its practical applications.16 Amore useful way to
think about the relationship between availability and consistency
is as a spectrum. And so, for example, a strongly consistent and
partition-tolerant system as defined by the CAP theorem occupies
just one point in that spectrum.17

Also, even though network partitions can happen, they are usually
rarewithin a data center. But, even in the absence of a network par-
tition, there is a tradeoff between consistency and latency (or per-
formance). The stronger the consistency guarantee is, the higher
the latency of individual operations must be. This relationship is
expressed by the PACELC theorem18, an extension to the CAP the-
orem. It states that in case of network partitioning (P), one has to
choose between availability (A) and consistency (C), but else (E),
even when the system is running normally in the absence of parti-
tions, one has to choose between latency (L) and consistency (C). In
practice, the choice between latency and consistency is not binary
but rather a spectrum.

This is why some off-the-shelf distributed data stores come with
counter-intuitive consistency guarantees in order to provide high
availability and performance. Others have knobs that allow you
to choose whether you want better performance or stronger con-
sistency guarantees, like Azure’s Cosmos DB19 and Cassandra20.

Another way to interpret the PACELC theorem is that there is a
tradeoff between the amount of coordination required and perfor-
mance. One way to design around this fundamental limitation is

16“A Critique of the CAP Theorem,” https://www.cl.cam.ac.uk/research/dtg/
www/files/publications/public/mk428/cap-critique.pdf

17“CAP Theorem: You don’t need CP, you don’t want AP, and you can’t have
CA,” https://www.youtube.com/watch?v=hUd_9FENShA

18“Consistency Tradeoffs inModernDistributedDatabase SystemDesign,” https:
//en.wikipedia.org/wiki/PACELC_theorem

19“Consistency levels in Azure Cosmos DB,” https://docs.microsoft.com/en-
us/azure/cosmos-db/consistency-levels

20“Apache Cassandra: How is the consistency level configured?,” https://docs
.datastax.com/en/cassandra-oss/3.0/cassandra/dml/dmlConfigConsistency.h
tml

https://www.cl.cam.ac.uk/research/dtg/www/files/publications/public/mk428/cap-critique.pdf
https://www.cl.cam.ac.uk/research/dtg/www/files/publications/public/mk428/cap-critique.pdf
https://www.youtube.com/watch?v=hUd_9FENShA
https://en.wikipedia.org/wiki/PACELC_theorem
https://en.wikipedia.org/wiki/PACELC_theorem
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://docs.datastax.com/en/cassandra-oss/3.0/cassandra/dml/dmlConfigConsistency.html
https://docs.datastax.com/en/cassandra-oss/3.0/cassandra/dml/dmlConfigConsistency.html
https://docs.datastax.com/en/cassandra-oss/3.0/cassandra/dml/dmlConfigConsistency.html


CHAPTER 10. REPLICATION 90

to move coordination away from the critical path. For example,
earlier we discussed that for a read to be strongly consistent, the
leader has to contact a majority of followers. That coordination tax
is paid for each read! In the next section, we will explore a differ-
ent replication protocol that moves this cost away from the critical
path.

10.4 Chain replication
Chain replication21 is a widely used replication protocol that uses
a very different topology from leader-based replication protocols
like Raft. In chain replication, processes are arranged in a chain.
The leftmost process is referred to as the chain’s head, while the
rightmost one is the chain’s tail.
Clients send writes exclusively to the head, which updates its lo-
cal state and forwards the update to the next process in the chain.
Similarly, that process updates its state and forwards the change
to its successor until it eventually reaches the tail.
When the tail receives an update, it applies it locally and sends
an acknowledgment to its predecessor to signal that the change
has been committed. The acknowledgment flows back to the head,
which can then reply to the client that the write succeeded22.
Client reads are served exclusively by the tail, as shown in Fig 10.6.
In the absence of failures, the protocol is strongly consistent as all
writes and reads are processed one at a time by the tail. But what
happens if a process in the chain fails?
Fault tolerance is delegated to a dedicated component, the config-
uration manager or control plane. At a high level, the control plane
monitors the chain’s health, and when it detects a faulty process, it
removes it from the chain. The control plane ensures that there is a

21“Chain Replication for Supporting High Throughput and Availability,” https:
//www.cs.cornell.edu/home/rvr/papers/OSDI04.pdf

22This is slightly different from the original chain replication paper since it’s
based on CRAQ, an extension of the original protocol; see “Object Storage on
CRAQ,” https://www.usenix.org/legacy/event/usenix09/tech/full_paper
s/terrace/terrace.pdf.

https://www.cs.cornell.edu/home/rvr/papers/OSDI04.pdf
https://www.cs.cornell.edu/home/rvr/papers/OSDI04.pdf
https://www.usenix.org/legacy/event/usenix09/tech/full_papers/terrace/terrace.pdf
https://www.usenix.org/legacy/event/usenix09/tech/full_papers/terrace/terrace.pdf
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Figure 10.6: Writes propagate through all processes in the chain,
while reads are served exclusively by the tail.

single view of the chain’s topology that every process agrees with.
For this towork, the control plane needs to be fault-tolerant, which
requires state machine replication (e.g., Raft). So while the chain
can tolerate up to N − 1 processes failing, where N is the chain’s
length, the control plane can only tolerate 𝐶

2 failures, where C is
the number of replicas that make up the control plane.

There are three failure modes in chain replication: the head can
fail, the tail can fail, or an intermediate process can fail. If the head
fails, the control plane removes it by reconfiguring its successor to
be the new head and notifying clients of the change. If the head
committed awrite to its local state but crashed before forwarding it
downstream, no harm is done. Since the write didn’t reach the tail,
the client that issued it hasn’t received an acknowledgment for it
yet. From the client’s perspective, it’s just a request that timed out
and needs to be retried. Similarly, no other client will have seen
the write’s side effects since it never reached the tail.

If the tail fails, the control plane removes it and makes its prede-
cessor the chain’s new tail. Because all updates that the tail has
received must necessarily have been received by the predecessor
as well, everything works as expected.

If an intermediate process X fails, the control plane has to link X’s
predecessor with X’s successor. This case is a bit trickier to handle
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since Xmight have applied some updates locally but failed before
forwarding them to its successor. Therefore, X’s successor needs
to communicate to the control plane the sequence number of the
last committed update it has seen, which is then passed to X’s pre-
decessor to send the missing updates downstream.

Chain replication can tolerate up to N − 1 failures. So, as more
processes in the chain fail, it can tolerate fewer failures. This iswhy
it’s important to replace a failing process with a new one. This can
be accomplished by making the new process the tail of the chain
after syncing it with its predecessor.

The beauty of chain replication is that there are only a handful of
simple failure modes to consider. That’s because for a write to
commit, it needs to reach the tail, and consequently, it must have
been processed by every process in the chain. This is very different
from a quorum-based replication protocol like Raft, where only a
subset of replicas may have seen a committed write.

Chain replication is simpler to understand and more performant
than leader-based replication since the leader’s job of serving client
requests is split among the head and the tail. The head sequences
writes by updating its local state and forwarding updates to its suc-
cessor. Reads, however, are served by the tail, and are interleaved
with updates received from its predecessor. Unlike in Raft, a read
request from a client can be served immediately from the tail’s lo-
cal state without contacting the other replicas first, which allows
for higher throughputs and lower response times.

However, there is a price to pay in terms of write latency. Since
an update needs to go through all the processes in the chain be-
fore it can be considered committed, a single slow replica can slow
down all writes. In contrast, in Raft, the leader only has to wait for
a majority of processes to reply and therefore is more resilient to
transient degradations. Additionally, if a process isn’t available,
chain replication can’t commit writes until the control plane de-
tects the problem and takes the failing process out of the chain. In
Raft instead, a single process failing doesn’t stop writes from be-
ing committed since only a quorum of processes is needed tomake
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progress.

That said, chain replication allows write requests to be pipelined,
which can significantly improve throughput. Moreover, read
throughput can be further increased by distributing reads across
replicas while still guaranteeing linearizability. The idea is for
replicas to store multiple versions of an object, each including
a version number and a dirty flag. Replicas mark an update
as dirty as it propagates from the head to the tail. Once the
tail receives it, it’s considered committed, and the tail sends an
acknowledgment back along the chain. When a replica receives
an acknowledgment, it marks the corresponding version as clean.
Now, when a replica receives a read request for an object, it will
immediately serve it if the latest version is clean. If not, it first
contacts the tail to request the latest committed version (see Fig
10.7).

Figure 10.7: A dirty read can be served by any replica with an ad-
ditional request to the tail to guarantee strong consistency.

As discussed in chapter 9, a leader introduces a scalability bottle-
neck. But in chain replication, the data plane (i.e., the part of the
system that handles individual client requests on the critical path)
doesn’t need a leader to do its job since it’s not concerned with
failures — its sole focus is throughput and efficiency. On the con-
trary, the control plane needs a leader to implement state machine
replication, but that’s required exclusively to handle the occasional
failure and doesn’t affect client requests on the critical path. An-
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other way to think about this is that chain replication reduces the
amount of coordination needed for each client request. In turn,
this increases the data plane’s capacity to handle load. For this
reason, splitting the data plane from the control plane (i.e., the con-
figuration management part) is a common pattern in distributed
systems. We will talk in more detail about this in chapter 22.
Youmight be wondering at this point whether it’s possible to repli-
cate data without needing consensus23 at all to improve perfor-
mance further. In the next chapter, we will try to do just that.

23required for state machine replication
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Coordination avoidance

Another way of looking at state machine replication is as a system
that requires two main ingredients:

• a broadcast protocol that guarantees every replica receives the
same updates in the same order even in the presence of faults
(aka fault-tolerant total order broadcast),

• and a deterministic function that handles updates on each
replica.

Unsurprisingly, implementing a fault-tolerant total order broad-
cast protocol is whatmakes statemachine replication hard to solve
since it requires consensus1. More importantly, the need for a to-
tal order creates a scalability bottleneck since updates need to be
processed sequentially by a single process (e.g., the leader in Raft).
Also, total order broadcast isn’t available during network parti-
tions as the CAP theorem applies2 to it as well3.

In this chapter, we will explore a form of replication that doesn’t
1Total order broadcast is equivalent to consensus, see “Unreliable Failure Detec-

tors for Reliable Distributed Systems,” https://www.cs.utexas.edu/~lorenzo/cor
si/cs380d/papers/p225-chandra.pdf

2“Perspectives on the CAP Theorem,” https://groups.csail.mit.edu/tds/paper
s/Gilbert/Brewer2.pdf

3Consensus is harder to solve than implementing a linearizable read/write reg-
ister, which is what the CAP theorem uses to define consistency.

https://www.cs.utexas.edu/~lorenzo/corsi/cs380d/papers/p225-chandra.pdf
https://www.cs.utexas.edu/~lorenzo/corsi/cs380d/papers/p225-chandra.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
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require a total order but still comes with useful guarantees. But
first, we need to talk about broadcast protocols.

11.1 Broadcast protocols
Network communication over wide area networks, like the inter-
net, only offers point-to-point (unicast) communication protocols,
like TCP. But to deliver a message to a group of processes, a broad-
cast protocol is needed (multicast). This means we have to some-
how build a multicast protocol on top of a unicast one. The chal-
lenge here is that multicast needs to support multiple senders and
receivers that can crash at any time.
A broadcast protocol is characterized by the guarantees it provides.
Best-effort broadcast guarantees that if the sender doesn’t crash, the
message is delivered to all non-faulty processes in a group. A sim-
ple way to implement it is to send the message to all processes in
a group one by one over reliable links (see Fig 11.1). However, if,
for example, the sender fails mid-way, some processes will never
receive the message.

Figure 11.1: Best-effort broadcast

Unlike best-effort broadcast, reliable broadcast guarantees that the
message is eventually delivered to all non-faulty processes in the
group, even if the sender crashes before themessage has been fully
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delivered. One way to implement reliable broadcast is to have
each process retransmit the message to the rest of the group the
first time it is delivered (see Fig 11.2). This approach is also known
as eager reliable broadcast. Although it guarantees that all non-faulty
processes eventually receive the message, it’s costly as it requires
sending the message 𝑁2 times for a group of 𝑁 processes.

Figure 11.2: Eager reliable broadcast

The number of messages can be reduced by retransmitting a mes-
sage only to a random subset of processes (e.g., 2 as in Fig 11.3).
This implementation is referred to as a gossip broadcast protocol4 as
it resembles how rumors spread. Because it’s a probabilistic pro-
tocol, it doesn’t guarantee that a message will be delivered to all
processes. That said, it’s possible to make that probability negligi-
ble by tuning the protocol’s parameters. Gossip protocols are par-
ticularly useful when broadcasting to a large number of processes
where a deterministic protocol just wouldn’t scale.

Although reliable broadcast protocols guarantee that messages are
delivered to all non-faulty processes in a group, they don’t make
any guarantees about their order. For example, two processes
could receive the same messages but in a different order. Total
order broadcast is a reliable broadcast abstraction that builds upon
the guarantees offered by reliable broadcast and additionally

4“Gossip protocol,” https://en.wikipedia.org/wiki/Gossip_protocol

https://en.wikipedia.org/wiki/Gossip_protocol
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Figure 11.3: Gossip broadcast

ensures that messages are delivered in the same order to all
processes. As discussed earlier, a fault-tolerant implementation
requires consensus.

11.2 Conflict-free replicated data types
Now, here’s an idea: if we were to implement replication with a
broadcast protocol that doesn’t guarantee total order, wewouldn’t
need to serialize writes through a single leader, but instead could
allow any replica to accept writes. But since replicas might receive
messages in different orders, they will inevitably diverge. So, for
the replication to be useful, the divergence can only be temporary,
and replicas eventually have to converge to the same state. This is
the essence of eventual consistency.

More formally, eventual consistency requires:

• eventual delivery— the guarantee that every update applied
at a replica is eventually applied at all replicas,

• and convergence — the guarantee that replicas that have ap-
plied the same updates eventually reach the same state.

Using a broadcast protocol that doesn’t deliver messages in the
same order across all replicas will inevitably lead to divergence
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(see Fig 11.4). One way to reconcile conflicting writes is to use con-
sensus to make a decision that all replicas need to agree with.

Figure 11.4: The same object is updated simultaneously by differ-
ent clients at different replicas, leading to conflicts.

This solution has better availability and performance than the one
using total order broadcast, since consensus is only required to rec-
oncile conflicts and can happen off the critical path. But getting the
reconciliation logic right isn’t trivial. So is there a way for replicas
to solve conflicts without using consensus at all?

Well, if we can define a deterministic outcome for any potential
conflict (e.g., the write with the greatest timestamp always wins),
there wouldn’t be any conflicts, by design. Therefore consensus
wouldn’t be needed to reconcile replicas. Such a replication strat-
egy offers stronger guarantees than plain eventual consistency,
i.e.:

• eventual delivery— the same guarantee as in eventual consis-
tency,

• and strong convergence — the guarantee that replicas that
have executed the same updates have the same state (i.e.,
every update is immediately persisted).

This variation of eventual consistency is also called strong even-
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tual consistency5. With it, we can build systems that are available,
(strongly eventual) consistent, and also partition tolerant.

Which conditions are required to guarantee that replicas strongly
converge? For example, suppose we replicate an object across N
replicas, where the object is an instance of some data type that sup-
ports query and update operations (e.g., integer, string, set, etc.).

A client can send an update or query operation to any replica, and:

• when a replica receives a query, it immediately replies using
the local copy of the object;

• when a replica receives an update, it first applies it to the lo-
cal copy of the object and then broadcasts the updated object
to all replicas;

• and when a replica receives a broadcast message, it merges
the object in the message with its own.

It can be shown that each replica will converge to the same state if:

• the object’s possible states form a semilattice, i.e., a set that
contains elements that can be partially ordered;

• and the merge operation returns the least upper bound be-
tween two objects’ states (and therefore is idempotent, com-
mutative, and associative).

A data type that has these properties is also called a convergent
replicated data type6, which is part of the family of conflict-free repli-
cated data types (CRDTs). This sounds a lot more complicated than
it actually is.

For example, suppose we are working with integer objects (which
can be partially ordered), and the merge operation takes the maxi-
mum of two objects (least upper bound). It’s easy to see how repli-
cas converge to the global maximum in this case, even if requests
are delivered out of order and/or multiple times across replicas.

5“Strong Eventual Consistency and Conflict-free Replicated Data Types,” https:
//www.microsoft.com/en-us/research/video/strong-eventual-consistency-and-
conflict-free-replicated-data-types/

6“Conflict-free Replicated Data Types,” https://hal.inria.fr/inria-00609399v1
/document

https://www.microsoft.com/en-us/research/video/strong-eventual-consistency-and-conflict-free-replicated-data-types/
https://www.microsoft.com/en-us/research/video/strong-eventual-consistency-and-conflict-free-replicated-data-types/
https://www.microsoft.com/en-us/research/video/strong-eventual-consistency-and-conflict-free-replicated-data-types/
https://hal.inria.fr/inria-00609399v1/document
https://hal.inria.fr/inria-00609399v1/document
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Althoughwe have assumed the use of a reliable broadcast protocol
so far, replicas could even use an unreliable protocol to implement
broadcast as long as they periodically exchange and merge their
states to ensure that they eventually converge (aka an anti-entropy
mechanism, we will see some examples in section 11.3). Of course,
periodic state exchanges can be expensive if done naively.

There are many data types that are designed to converge when
replicated, like registers, counters, sets, dictionaries, and graphs.
For example, a register is a memory cell storing some opaque se-
quence of bytes that supports an assignment operation to over-
write its state. To make a register convergent, we need to define a
partial order over its values and a merge operation. There are two
common register implementations that meet these requirements:
last-writer-wins (LWW) and multi-value (MV).

A last-writer-wins register associates a timestamp with every up-
date to make updates totally orderable. The timestamp could be
composed of a Lamport timestamp to preserve the happened-before
relationship among updates and a replica identifier to ensure there
are no ties. When a replica receives an update request from a client,
it generates a new timestamp and updates the register’s state with
that and the new value; finally, it broadcasts the state and times-
tamp to all replicas. When a replica receives a register state from
a peer, it merges it with its local copy by taking the one with the
greater timestamp and discarding the other (see Fig 11.5).

The main issue with LWW registers is that conflicting updates
that happen concurrently are handled by taking the one with
the greater timestamp, which might not always make sense. An
alternative way of handling conflicts is to keep track of all concur-
rent updates and return them to the client application, which can
handle conflicts however it sees fit. This is the approach taken
by the multi-value register. To detect concurrent updates, replicas
tag each update with a vector clock timestamp7 and the merge

7In practice, version vectors are used to compare the state of different replicas that
only keep track of events that change the state of replicas, see “Detection of Mutual
Inconsistency in Distributed Systems,” https://pages.cs.wisc.edu/~remzi/Class
es/739/Fall2017/Papers/parker83detection.pdf.

https://pages.cs.wisc.edu/~remzi/Classes/739/Fall2017/Papers/parker83detection.pdf
https://pages.cs.wisc.edu/~remzi/Classes/739/Fall2017/Papers/parker83detection.pdf
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Figure 11.5: Last-writer wins register

operation returns the union of all concurrent updates (see Fig
11.6).

Figure 11.6: Multi-value register

The beauty of CRDTs is that they compose. So, for example, you
can build a convergent key-value store by using a dictionary of
LWW or MV registers. This is the approach followed by Dynamo-
style data stores.
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11.3 Dynamo-style data stores
Dynamo8 is arguably the best-known design of an eventually
consistent and highly available key-value store. Many other data
stores have been inspired by it, like Cassandra9 and Riak KV10.
In Dynamo-style data stores, every replica can accept write and
read requests. When a client wants to write an entry to the data
store, it sends the request to all N replicas in parallel but waits for
an acknowledgment from just W replicas (a write quorum). Simi-
larly, when a client wants to read an entry from the data store, it
sends the request to all replicas but waits just for R replies (a read
quorum) and returns the most recent entry to the client. To resolve
conflicts, entries behave like LWW or MV registers depending on
the implementation flavor.
When W + R > N, the write quorum and the read quorum must
intersect with each other, so at least one read will return the lat-
est version (see Fig 11.7). This doesn’t guarantee linearizability on
its own, though. For example, if a write succeeds on less than W
replicas and fails on the others, replicas are left in an inconsistent
state, and some clients might read the latest version while others
don’t. To avoid this inconsistency, the writes need to be bundled
into an atomic transaction. We will talk more about transactions
in chapter 12.
TypicallyW andR are configured to bemajority quorums, i.e., quo-
rums that contain more than half the number of replicas. That
said, other combinations are possible, and the data store’s read and
write throughput depend on how large or small R and W are. For
example, a read-heavy workload benefits from a smaller R; how-
ever, this makes writes slower and less available (assuming W +
R > N). Alternatively, both W and R can be configured to be very
small (e.g., W = R = 1) for maximum performance at the expense
of consistency (W + R < N).

8“Dynamo: Amazon’s Highly Available Key-value Store,” https://www.allthi
ngsdistributed.com/files/amazon-dynamo-sosp2007.pdf

9“Cassandra: Open Source NoSQL Database,” https://cassandra.apache.org/
10“Riak KV: A distributed NoSQL key-value database,” https://riak.com/pro

ducts/riak-kv/

https://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
https://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
https://cassandra.apache.org/
https://riak.com/products/riak-kv/
https://riak.com/products/riak-kv/
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Figure 11.7: Intersecting write and read quorums

One problem with this approach is that a write request sent to
a replica might never make it to the destination. In this case,
the replica won’t converge, no matter how long it waits. To
ensure that replicas converge, two anti-entropy mechanisms are
used: read-repair and replica synchronization. So another way to
think about quorum replication is as a best-effort broadcast com-
bined with anti-entropy mechanisms to ensure that all changes
propagate to all replicas.

Read repair is a mechanism that clients implement to help bring
replicas back in syncwhenever they perform a read. Asmentioned
earlier, when a client executes a read, it waits for R replies. Now,
suppose some of these replies contain older entries. In that case,
the client can issue a write request with the latest entry to the out-



CHAPTER 11. COORDINATION AVOIDANCE 105

of-sync replicas. Although this approachworkswell for frequently
read entries, it’s not enough to guarantee that all replicas will even-
tually converge.
Replica synchronization is a continuous background mechanism
that runs on every replica and periodically communicates with
others to identify and repair inconsistencies. For example, sup-
pose replica X finds out that it has an older version of key K than
replica Y. In that case, it will retrieve the latest version of K from
Y. To detect inconsistencies and minimize the amount of data
exchanged, replicas can exchange Merkle tree hashes11 with a
gossip protocol.

11.4 The CALM theorem
At this point, you might be wondering how you can tell whether
an application requires coordination, such as consensus, andwhen
it doesn’t. The CALM theorem12 states that a program has a con-
sistent, coordination-free distributed implementation if and only
if it is monotonic.
Intuitively, a program is monotonic if new inputs further refine
the output and can’t take back any prior output. A program that
computes the union of a set is a good example of that — once an
element (input) is added to the set (output), it can’t be removed.
Similarly, it can be shown that CRDTs are monotonic.
In contrast, in a non-monotonic program, a new input can
retract a prior output. For example, variable assignment is a
non-monotonic operation since it overwrites the variable’s prior
value.
A monotonic program can be consistent, available, and partition
tolerant all at once. However, consistency in CALM doesn’t refer
to linearizability, the C in CAP. Linearizability is narrowly focused
on the consistency of reads and writes. Instead, CALM focuses on

11“Merkle tree,” https://en.wikipedia.org/wiki/Merkle_tree
12“Keeping CALM: When Distributed Consistency is Easy,” https://arxiv.org/

pdf/1901.01930.pdf

https://en.wikipedia.org/wiki/Merkle_tree
https://arxiv.org/pdf/1901.01930.pdf
https://arxiv.org/pdf/1901.01930.pdf
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the consistency of the program’s output13. In CALM, a consistent
program is one that produces the same output no matter in which
order the inputs are processed and despite any conflicts; it doesn’t
say anything about the consistency of reads and writes.
For example, say you want to implement a counter. If all you have
at your disposal are write and read operations, then the order of
the operations matters:
write(1), write(2), write(3) => 3

but:
write(3), write(1), write(2) => 2

In contrast, if the program has an abstraction for counters that sup-
ports an increment operation, you can reorder the operations any
way you like without affecting the result:
increment(1), increment(1), increment(1) => 3

In other words, consistency based on reads and writes can limit
the solution space14, since it’s possible to build systems that are
consistent at the application level, but not in terms of reads and
writes at the storage level.
CALM also identifies programs that can’t be consistent because
they are not monotonic. For example, a vanilla register/variable
assignment operation is not monotonic as it invalidates whatever
value was stored there before. But, by combining the assignment
operation with a logical clock, it’s possible to build a monotonic
implementation, as we saw earlier when discussing LWWandMV
registers.

11.5 Causal consistency
So we understand now how eventual consistency can be used to
implement monotonic applications that are consistent, available,

13Consistency can have different meanings depending on the context; make sure
you know precisely what it refers to when you encounter it.

14“Building on Quicksand,” https://dsf.berkeley.edu/cs286/papers/quicksan
d-cidr2009.pdf

https://dsf.berkeley.edu/cs286/papers/quicksand-cidr2009.pdf
https://dsf.berkeley.edu/cs286/papers/quicksand-cidr2009.pdf
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and partition-tolerant. Unfortunately, there are many applications
for which its guarantees are not sufficient. For example, even-
tual consistency doesn’t guarantee that an operation that happened-
before another is observed in the correct order by replicas. Suppose
you upload a picture to a social network and then add it to a gallery.
With eventual consistency, the gallery may reference the image be-
fore it becomes available, causing a missing image placeholder to
appear in its stead.

One of the main benefits of strong consistency is that it preserves
the happened-before order among operations, which guarantees that
the cause happens before the effect. So, in the previous example,
the reference to the newly added picture in the gallery is guaran-
teed to become visible only after the picture becomes available.

Surprisingly, to preserve the happened-before order (causal order)
among operations, we don’t need to reach for strong consistency,
since we can use a weaker consistency model called causal consis-
tency15. This model is weaker than strong consistency but stronger
than eventual consistency, and it’s particularly attractive for two
reasons:

• For many applications, causal consistency is “consistent
enough” and easier to work with than eventual consistency.

• Causal consistency is provably16 the strongest consistency
model that enables building systems that are also available
and partition tolerant.

Causal consistency imposes a partial order on the operations.
The simplest definition requires that processes agree on the order
of causally related operations but can disagree on the order of
unrelated ones. You can take any two operations, and either one
happened-before the other, or they are concurrent and therefore can’t
be ordered. This is the main difference from strong consistency,
which imposes a global order that all processes agree with.

For example, suppose a process updates an entry in a key-value
15“Causal Consistency,” https://jepsen.io/consistency/models/causal
16“Consistency, Availability, and Convergence,” https://apps.cs.utexas.edu/tec

h_reports/reports/tr/TR-2036.pdf

https://jepsen.io/consistency/models/causal
https://apps.cs.utexas.edu/tech_reports/reports/tr/TR-2036.pdf
https://apps.cs.utexas.edu/tech_reports/reports/tr/TR-2036.pdf
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store (operation A), which is later read by another process (opera-
tion B) that consequently updates another entry (operation C). In
that case, all processes in the system have to agree that A happened-
before C. In contrast, if two operations, X and Y, happen concur-
rently and neither happened-before the other, some processes may
observe X before Y and others Y before X.
Let’s see how we can use causal consistency to build a replicated
data store that is available under network partitions. We will
base our discussion on “Clusters of Order-Preserving Servers”
(COPS17), a key-value store that delivers causal consistency across
geographically distributed clusters. In COPS, a cluster is set up as
a strongly consistent partitioned data store, but for simplicity, we
will treat it as a single logical node without partitions.18 Later, in
chapter 16, we will discuss partitioning at length.
First, let’s define a variant of causal consistency called causal+ in
which there is no disagreement (conflict) about the order of unre-
lated operations. Disagreements are problematic since they cause
replicas to diverge forever. To avoid them, LWW registers can be
used as values to ensure that all replicas converge to the same state
in the presence of concurrent writes. An LWW register is com-
posed of an object and a logical timestamp, which represents its
version.
In COPS, any replica can accept read and write requests, and
clients send requests to their closest replica (local replica). When
a client sends a read request for a key to its local replica, the latter
replies with the most recent value available locally. When the
client receives the response, it adds the version (logical timestamp)
of the value it received to a local key-version dictionary used to
keep track of dependencies.
When a client sends a write to its local replica, it adds a copy of

17“Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage
with COPS,” https://www.cs.princeton.edu/~mfreed/docs/cops-sosp11.pdf

18COPS can track causal relationships between partitions (and therefore nodes),
unlike simpler approaches using version vectors, which limit causality tracking to
the set of keys that a single node can store (see “Session Guarantees for Weakly
Consistent Replicated Data,” https://www.cs.utexas.edu/users/dahlin/Classes
/GradOS/papers/SessionGuaranteesPDIS.pdf).

https://www.cs.princeton.edu/~mfreed/docs/cops-sosp11.pdf
https://www.cs.utexas.edu/users/dahlin/Classes/GradOS/papers/SessionGuaranteesPDIS.pdf
https://www.cs.utexas.edu/users/dahlin/Classes/GradOS/papers/SessionGuaranteesPDIS.pdf
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the dependency dictionary to the request. The replica assigns a
version to the write, applies the change locally, and sends an ac-
knowledgment back to the client with the version assigned to it. It
can apply the change locally, even if other clients updated the key
in the meantime, because values are represented with LWW regis-
ters. Finally, the update is broadcast asynchronously to the other
replicas.

When a replica receives a replicationmessage for awrite, it doesn’t
apply it locally immediately. Instead, it first checks whether the
write’s dependencies have been committed locally. If not, it waits
until the required versions appear. Finally, once all dependencies
have been committed, the replication message is applied locally.
This behavior guarantees causal consistency (see Fig 11.8).

Figure 11.8: A causally consistent implementation of a key-value
store

If a replica fails, the data store continues to be available as any
replica can accept writes. There is a possibility that a replica could
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fail after committing an update locally but before broadcasting it,
resulting in data loss. In COPS’ case, this tradeoff is considered
acceptable to avoid paying the price of waiting for one or more
long-distance requests to remote replicas before acknowledging a
client write.

11.6 Practical considerations
To summarize, in the previous chapters we explored different
ways to implement replication and learned that there is a tradeoff
between consistency and availability/performance. In other
words, to build scalable and available systems, coordination
needs to be minimized.
This tradeoff is present in any large-scale system, and some even
have knobs that allow you to control it. For example, Azure
Cosmos DB is a fully managed scalable NoSQL database that
enables developers to choose among 5 different consistency mod-
els, ranging from eventual consistency to strong consistency19,
where weaker consistency models have higher throughputs than
stronger ones.

19“Azure Cosmos DB: Pushing the frontier of globally distributed databases,”
https://azure.microsoft.com/en-gb/blog/azure-cosmos-db-pushing- the-
frontier-of-globally-distributed-databases/

https://azure.microsoft.com/en-gb/blog/azure-cosmos-db-pushing-the-frontier-of-globally-distributed-databases/
https://azure.microsoft.com/en-gb/blog/azure-cosmos-db-pushing-the-frontier-of-globally-distributed-databases/


Chapter 12

Transactions

Transactions1 provide the illusion that either all the operations
within a group complete successfully or none of them do, as if
the group were a single atomic operation. If you have used a
relational database such as MySQL or PostgreSQL in the past, you
should be familiar with the concept.

If your application exclusively updates data within a single rela-
tional database, then bundling some changes into a transaction is
straightforward. On the other hand, if your system needs to atom-
ically update data that resides in multiple data stores, the opera-
tions need to be wrapped into a distributed transaction, which is a
lot more challenging to implement. This is a fairly common sce-
nario in microservice architectures where a service needs to inter-
act with other services to handle a request, and each service has
its own separate data store. In this chapter, we explore various
solutions to this problem.

1“Transaction processing,” https://en.wikipedia.org/wiki/Transaction_proce
ssing

https://en.wikipedia.org/wiki/Transaction_processing
https://en.wikipedia.org/wiki/Transaction_processing
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12.1 ACID
Consider a money transfer from one bank account to another. If
the withdrawal succeeds, but the deposit fails for some reason, the
funds need to be deposited back into the source account. In other
words, the transfer needs to execute atomically; either both the
withdrawal and the deposit succeed, or in case of a failure, nei-
ther do. To achieve that, the withdrawal and deposit need to be
wrapped in an inseparable unit of change: a transaction.

In a traditional relational database, a transaction is a group of
operations for which the database guarantees a set of properties,
known as ACID:

• Atomicity guarantees that partial failures aren’t possible;
either all the operations in the transactions complete suc-
cessfully, or none do. So if a transaction begins execution
but fails for whatever reason, any changes it made must be
undone. This needs to happen regardless of whether the
transaction itself failed (e.g., divide by zero) or the database
crashed mid way.

• Consistency guarantees that the application-level invariants
must always be true. In other words, a transaction can only
transition a database from a correct state to another correct
state. How this is achieved is the responsibility of the appli-
cation developer who defines the transaction. For example,
in a money transfer, the invariant is that the sum of money
across the accounts is the same after the transfer, i.e., money
can’t be destroyed or created. Confusingly, the “C” in ACID
has nothing to do with the consistency models we talked
about so far, and according to JoeHellerstein, it was tossed in
tomake the acronymwork2. Therefore, wewill safely ignore
this property in the rest of the chapter.

• Isolation guarantees that a transaction appears to run in iso-
lation as if no other transactions are executing, i.e., the con-
current execution of transactions doesn’t cause any race con-

2“When is”ACID” ACID? Rarely.” http://www.bailis.org/blog/when-is-acid-
acid-rarely/

http://www.bailis.org/blog/when-is-acid-acid-rarely/
http://www.bailis.org/blog/when-is-acid-acid-rarely/
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ditions.
• Durability guarantees that once the database commits the
transaction, the changes are persisted on durable storage so
that the database doesn’t lose the changes if it subsequently
crashes. In the way I described it, it sounds like the job is
done once the data is persisted to a storage device. But, we
know better by now, and replication3 is required to ensure
durability in the presence of storage failures.

Transactions relieve developers from awhole range of possible fail-
ure scenarios so that they can focus on the actual application logic
rather than handling failures. But to understand how distributed
transactions work, we first need to discuss how centralized, non-
distributed databases implement transactions.

12.2 Isolation
The easiest way to guarantee that no transaction interferes with an-
other is to run them serially one after another (e.g., using a global
lock). But, of course, that would be extremely inefficient, which is
why in practice transactions run concurrently. However, a group
of concurrently running transactions accessing the same data can
run into all sorts of race conditions, like dirty writes, dirty reads,
fuzzy reads, and phantom reads:

• A dirty write happens when a transaction overwrites the
value written by another transaction that hasn’t committed
yet.

• A dirty read happens when a transaction observes a write
from a transaction that hasn’t completed yet.

• A fuzzy read happens when a transaction reads an object’s
value twice but sees a different value in each read because an-
other transaction updated the value between the two reads.

• A phantom read happens when a transaction reads a group
of objects matching a specific condition, while another trans-
action concurrently adds, updates, or deletes objects match-

3see Chapter 10
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ing the same condition. For example, if one transaction is
summing all employees’ salaries while another deletes some
employee records simultaneously, the final sum will be in-
correct at commit time.

To protect against these race conditions, a transaction needs to be
isolated from others. An isolation level protects against one or more
types of race conditions and provides an abstraction that we can
use to reason about concurrency. The stronger the isolation level
is, the more protection it offers against race conditions, but the less
performant it is.
An isolation level is defined based on the type of race conditions
it forbids, as shown in Figure 12.1.

Figure 12.1: Isolation levels define which race conditions they for-
bid.

Serializability is the only isolation level that isolates against all pos-
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sible race conditions. It guarantees that executing a group of trans-
actions has the same side effects as if the transactions run serially
(one after another) in some order. For example, suppose we have
two concurrent transactions, X and Y, and transaction X commits
before transaction Y. A serializable system guarantees that even
though their operations are interleaved, they appear to run after
the other, i.e., X before Y or Y before X (even if Y committed af-
ter!). To add a real-time requirement on the order of transactions,
we need a stronger isolation level: strict serializability. This level
combines serializability with the real-time guarantees of lineariz-
ability so thatwhen a transaction completes, its side effects become
immediately visible to all future transactions.

(Strict) serializability is slow as it requires coordination, which cre-
ates contention in the system. For example, a transaction may be
forced to wait for other transactions. In some cases, it may even
be forced to abort because it can no longer be executed as part of
a serializable execution. Because not all applications require the
guarantees that serializability provides, data stores allow develop-
ers to use weaker isolation levels. As a rule of thumb, we need to
consciously decide which isolation level to use and understand its
implications, or the data store will silently make that decision for
us; for example, PostgreSQL’s default isolation4 is read committed.
So, if in doubt, choose strict serializability.

There are more isolation levels and race conditions than the ones
we discussed here. Jepsen5 provides a good formal reference for
the existing isolation levels, how they relate to one another, and
which guarantees they offer. Although vendors typically docu-
ment the isolation levels of their products, these specifications
don’t always match6 the formal definitions.

Now that we know what serializability is, the challenge becomes
maximizing concurrency while still preserving the appearance of
serial execution. The concurrency strategy is defined by a concur-

4“PostgreSQL Transaction Isolation,” https://www.postgresql.org/docs/12/t
ransaction-iso.html

5“Consistency Models,” https://jepsen.io/consistency
6“Jepsen Analyses,” https://jepsen.io/analyses

https://www.postgresql.org/docs/12/transaction-iso.html
https://www.postgresql.org/docs/12/transaction-iso.html
https://jepsen.io/consistency
https://jepsen.io/analyses
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rency control protocol, and there are two categories of protocols that
guarantee serializability: pessimistic and optimistic.

12.2.1 Concurrency control
A pessimisticprotocol uses locks to block other transactions fromac-
cessing an object. The most commonly used protocol is two-phase
locking7 (2PL). 2PL has two types of locks, one for reads and one for
writes. A read lock can be shared by multiple transactions that ac-
cess the object in read-only mode, but it blocks transactions trying
to acquire a write lock. A write lock can be held only by a single
transaction and blocks anyone trying to acquire either a read or
write lock on the object. The locks are held by a lock manager that
keeps track of the locks granted so far, the transactions that ac-
quired them, and the transactions waiting for them to be released.
There are two phases in 2PL, an expanding phase and a shrinking
one. In the expanding phase, the transaction is allowed only to ac-
quire locks but not release them. In the shrinking phase, the trans-
action is permitted only to release locks but not acquire them. If
these rules are obeyed, it can be formally proven that the protocol
guarantees strict serializability. In practice, locks are only released
when the transaction completes (aka strict 2PL). This ensures that
data written by an uncommitted transaction X is locked until it’s
committed, preventing another transaction Y from reading it and
consequently aborting if X is aborted (aka cascading abort), result-
ing in wasted work.
Unfortunately, with 2PL, it’s possible for two or more transactions
to deadlock and get stuck. For example, if transaction X is waiting
for a lock that transaction Y holds, and transaction Y is waiting for
a lock granted to transaction X, then the two transactions won’t
make any progress. A general approach to deal with deadlocks is
to detect them after they occur and select a “victim” transaction to
abort and restart to break the deadlock.
In contrast to a pessimistic protocol, an optimistic protocol opti-
mistically executes a transaction without blocking based on the

7“Two-phase locking,” https://en.wikipedia.org/wiki/Two-phase_locking

https://en.wikipedia.org/wiki/Two-phase_locking
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assumption that conflicts are rare and transactions are short-lived.
Optimistic concurrency control8(OCC) is arguably the best-known
protocol in the space. In OCC, a transaction writes to a local
workspace without modifying the actual data store. Then, when
the transactionwants to commit, the data store compares the trans-
action’s workspace to see whether it conflicts with the workspace
of another running transaction. This is done by assigning each
transaction a timestamp that determines its serializability order.
If the validation succeeds, the content of the local workspace is
copied to the data store. If the validation fails, the transaction is
aborted and restarted.
It’s worth pointing out that OCC uses locks to guarantee mutual
exclusion on internal shared data structures. These physical locks
are held for a short duration and are unrelated to the logical locks
we discussed earlier in the context of 2PL. For example, during the
validation phase, the data store has to acquire locks to access the
workspaces of the running transactions to avoid race conditions.
In the database world, these locks are also referred to as latches to
distinguish them from logical locks.
Optimistic protocols avoid the overhead of pessimistic protocols,
such as acquiring locks andmanaging deadlocks. As a result, these
protocols are well suited for read-heavy workloads that rarely per-
form writes or workloads that perform writes that only occasion-
ally conflict with each other. On the other hand, pessimistic pro-
tocols are more efficient for conflict-heavy workloads since they
avoid wasting work.
Taking a step back, both the optimistic and pessimistic protocols
discussed this far aren’t optimal for read-only transactions. In 2PC,
a read-only transaction might wait for a long time to acquire a
shared lock. On the other hand, in OCC, a read-only transaction
may be aborted because the value it read has been overwritten.
Generally, the number of read-only transactions is much higher
than the number of write transactions, so it would be ideal if a
read-only transaction could never block or abort because of a con-

8“On Optimistic Methods for Concurrency Control,” https://www.eecs.harva
rd.edu/~htk/publication/1981-tods-kung-robinson.pdf

https://www.eecs.harvard.edu/~htk/publication/1981-tods-kung-robinson.pdf
https://www.eecs.harvard.edu/~htk/publication/1981-tods-kung-robinson.pdf
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flict with a write transaction.
Multi-version concurrency control9 (MVCC) delivers on that premise
by maintaining older versions of the data. Conceptually, when a
transaction writes an object, the data store creates a new version of
it. And when the transaction reads an object, it reads the newest
version that existed when the transaction started. This mechanism
allows a read-only transaction to read an immutable and consis-
tent snapshot of the data store without blocking or aborting due
to a conflict with a write transaction. However, for write transac-
tions, MVCC falls back to one of the concurrency control protocols
we discussed before (i.e., 2PL or OCC). Since generally most trans-
actions are read-only, this approach delivers major performance
improvements, which is why MVCC is the most widely used con-
currency control scheme nowadays.
For example, when MVCC is combined with 2PL, a write trans-
action uses 2PL to access any objects it wants to read or write so
that if another transaction tries to update any of them, it will block.
When the transaction is ready to commit, the transaction manager
gives it an unique commit timestamp 𝑇 𝐶𝑖, which is assigned to all
new versions the transaction created. Because only a single trans-
action can commit at a time, this guarantees that once the transac-
tion commits, a read-only transaction whose start timestamp 𝑇 𝑆𝑗
is greater than or equal to the commit timestamp of the previous
transaction (𝑇 𝑆𝑗 ≥ 𝑇 𝐶𝑖), will see all changes applied by the pre-
vious transaction. This is a consequence of the protocol allowing
read-only transactions to read only the newest committed version
of an object that has a timestamp less than or equal 𝑇 𝑆𝑗. Thanks
to this mechanism, a read-only transaction can read an immutable
and consistent snapshot of the data storewithout blocking or abort-
ing due to a conflict with a write transaction.
I have deliberately glossed over the details of how these concur-
rency control protocols are implemented, as it’s unlikely you will
have to implement them from scratch. But, the commercial data
stores your applications depend on use the above protocols to iso-

9“Multi-version concurrency control,” https://en.wikipedia.org/wiki/Multiv
ersion_concurrency_control

https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
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late transactions, so you must have a basic grasp of their trade-
offs. If you are interested in the details, I highly recommend Andy
Pavlo’s database systems course10.
That said, there is a limited form of OCC at the level of individual
objects that is widely used in distributed applications and that you
should know how to implement. The protocol assigns a version
number to each object, which is incremented every time the object
is updated. A transaction can then read a value from a data store,
do some local computation, and finally update the value condi-
tional on the version of the object not having changed. This valida-
tion step can be performed atomically using a compare-and-swap
operation, which is supported bymany data stores.11 For example,
if a transaction reads version 42 of an object, it can later update
the object only if the version hasn’t changed. So if the version is
the same, the object is updated and the version number is incre-
mented to 43 (atomically). Otherwise, the transaction is aborted
and restarted.

12.3 Atomicity
When executing a transaction, there are two possible outcomes: it
either commits after completing all its operations or aborts due to
a failure after executing some operations. When a transaction is
aborted, the data store needs to guarantee that all the changes the
transaction performed are undone (rolled back).
To guarantee atomicity (and also durability), the data store records
all changes to a write-ahead log (WAL) persisted on disk before
applying them. Each log entry records the identifier of the transac-
tion making the change, the identifier of the object being modified,
and both the old and new value of the object. Most of the time,
the database doesn’t read from this log at all. But if a transaction
is aborted or the data store crashes, the log contains enough in-
formation to redo changes to ensure atomicity and durability and

10“CMU 15-445/645: Database Systems,” https://15445.courses.cs.cmu.edu/fal
l2019/

11We have already seen an example of this when discussing leases in section 9.2.

https://15445.courses.cs.cmu.edu/fall2019/
https://15445.courses.cs.cmu.edu/fall2019/
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undo changes in case of a failure during a transaction execution.12

Unfortunately, this WAL-based recovery mechanism only guaran-
tees atomicity within a single data store. Going back to our origi-
nal example of sending money from one bank account to another,
suppose the two accounts belong to two different banks that use
separate data stores. We can’t just run two separate transactions
to respectively withdraw and deposit the funds — if the second
transaction fails, the system is left in an inconsistent state. What
we want is the guarantee that either both transactions succeed and
their changes are committed or they fail without any side effects.

12.3.1 Two-phase commit
Two-phase commit13 (2PC) is a protocol used to implement atomic
transaction commits across multiple processes. The protocol is
split into two phases, prepare and commit. It assumes a process acts
as coordinator and orchestrates the actions of the other processes,
called participants. For example, the client application that initiates
the transaction could act as the coordinator for the protocol.

When a coordinator wants to commit a transaction, it sends a
prepare request asking the participants whether they are prepared
to commit the transaction (see Figure 12.2). If all participants
reply that they are ready to commit, the coordinator sends a
commit request to all participants ordering them to do so. In
contrast, if any process replies that it’s unable to commit or
doesn’t respond promptly, the coordinator sends an abort request
to all participants.

There are two points of no return in the protocol. If a participant
replies to a prepare message that it’s ready to commit, it will have
to do so later, nomatter what. The participant can’t make progress
from that point onward until it receives a message from the coor-
dinator to either commit or abort the transaction. This means that

12The details of how this recoverymechanismworks are outside the scope of this
book, but you can learn more about it from any database textbook.

13“Two-phase commit protocol,” https://en.wikipedia.org/wiki/Two-phase_c
ommit_protocol

https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
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Figure 12.2: The two-phase commit protocol consists of a prepare
and a commit phase.

if the coordinator crashes, the participant is stuck.

The other point of no return is when the coordinator decides to
commit or abort the transaction after receiving a response to its pre-
pare message from all participants. Once the coordinator makes
the decision, it can’t change its mind later and has to see the trans-
action through to being committed or aborted, no matter what. If
a participant is temporarily down, the coordinator will keep retry-
ing until the request eventually succeeds.

Two-phase commit has a mixed reputation14. It’s slow since it re-
quires multiple round trips for a transaction to complete, and if
either the coordinator or a participant fails, then all processes part
of the transactions are blocked until the failing process comes back
online. On top of that, the participants need to implement the pro-
tocol; you can’t just take two different data stores and expect them

14“It’s Time to Move on from Two Phase Commit,” http://dbmsmusings.blog
spot.com/2019/01/its-time-to-move-on-from-two-phase.html

http://dbmsmusings.blogspot.com/2019/01/its-time-to-move-on-from-two-phase.html
http://dbmsmusings.blogspot.com/2019/01/its-time-to-move-on-from-two-phase.html
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to play ball with each other.

If we are willing to increase the complexity of the protocol, we can
make itmore resilient to failures by replicating the state of each pro-
cess involved in the transaction. For example, replicating the coor-
dinator with a consensus protocol like Raft makes 2PC resilient to
coordinator failures. Similarly, the participants can also be repli-
cated.

As it turns out, atomically committing a transaction is a form of
consensus, called uniform consensus, where all the processes have
to agree on a value, even the faulty ones. In contrast, the general
form of consensus introduced in section 10.2 only guarantees that
all non-faulty processes agree on the proposed value. Therefore,
uniform consensus is actually harder15 than consensus. Neverthe-
less, as mentioned earlier, general consensus can be used to repli-
cate the state of each process and make the overall protocol more
robust to failures.

12.4 NewSQL
As a historical side note, the first versions of modern large-scale
data stores that came out in the late 2000s used to be referred to
as NoSQL stores since their core features were focused entirely
on scalability and lacked the guarantees of traditional relational
databases, such as ACID transactions. But in recent years, that
has started to change as distributed data stores have continued to
add features that only traditional databases offered.

Arguably one of the most successful implementations of a
NewSQL data store is Google’s Spanner16. At a high level, Span-
ner breaks data (key-value pairs) into partitions in order to scale.
Each partition is replicated across a group of nodes in different
data centers using a state machine replication protocol (Paxos).

15“Uniform consensus is harder than consensus,” https://infoscience.epfl.ch/
record/88273/files/CBS04.pdf?version=1

16“Spanner: Google’s Globally-Distributed Database,” https://static.googleuse
rcontent.com/media/research.google.com/en//archive/spanner-osdi2012.pdf

https://infoscience.epfl.ch/record/88273/files/CBS04.pdf?version=1
https://infoscience.epfl.ch/record/88273/files/CBS04.pdf?version=1
https://static.googleusercontent.com/media/research.google.com/en//archive/spanner-osdi2012.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/spanner-osdi2012.pdf
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In each replication group, there is one specific node that acts as the
leader, which handles a clientwrite transaction for that partition by
first replicating it across a majority of the group and then applying
it. The leader also serves as a lock manager and implements 2PL
to isolate transactions modifying the partition from each other.

To support transactions that span multiple partitions, Spanner im-
plements 2PC. A transaction is initiated by a client and coordi-
nated by one of the group leaders of the partitions involved. All
the other group leaders act as participants of the transaction (see
Figure 12.3).

The coordinator logs the transaction’s state into a localwrite-ahead
log, which is replicated across its replication group. That way,
if the coordinator crashes, another node in the replication group
is elected as the leader and resumes coordinating the transaction.
Similarly, each participant logs the transaction’s state in its log,
which is also replicated across its group. So if the participant fails,
another node in the group takes over as the leader and resumes
the transaction.

To guarantee isolation between transactions, Spanner uses MVCC
combined with 2PL. Thanks to that, read-only transactions are
lock-free and see a consistent snapshot of the data store. In
contrast, write transactions use two-phase locking to create
new versions of the objects they change to guarantee strict
serializability.

If you recall the discussion about MVCC in section 12.2, you
should know that each transaction is assigned a unique times-
tamp. While it’s easy to do that on a single machine, it’s a lot more
challenging in a distributed setting since clocks aren’t perfectly
synchronized. Although we could use a centralized timestamp
service that allocates unique timestamps to transactions, it would
become a scalability bottleneck. To solve this problem, Spanner
uses physical clocks that, rather than returning precise times-
tamps, return uncertainty intervals [𝑡𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡, 𝑡𝑙𝑎𝑡𝑒𝑠𝑡] that take
into account the error boundary of the measurements, where
𝑡𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 ≤ 𝑡𝑟𝑒𝑎𝑙 ≤ 𝑡𝑙𝑎𝑡𝑒𝑠𝑡. So although a node doesn’t know the
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Figure 12.3: Spanner combines 2PC with 2PL and state machine
replication. In this figure, there are three partitions and three repli-
cas per partition.

current physical time 𝑡𝑟𝑒𝑎𝑙, it knows it’s within the interval with a
very high probability.

Conceptually, when a transaction wants to commit, it’s assigned
the 𝑡𝑙𝑎𝑡𝑒𝑠𝑡 timestamp of the interval returned by the transaction
coordinator’s clock. But before the transaction can commit and re-
lease the locks, it waits for a duration equal to the uncertainty pe-
riod (𝑡𝑙𝑎𝑡𝑒𝑠𝑡−𝑡𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡). Thewaiting time guarantees that any trans-
action that starts after the previous transaction committed sees the
changes applied by it. Of course, the challenge is to keep the uncer-
tainty interval as small as possible in order for the transactions to
be fast. Spanner does this by deploying GPS and atomic clocks in
every data center and frequently synchronizing the quartz clocks
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of the nodes with them.17. Other systems inspired by Spanner,
like CockroachDB18, take a different approach and rely instead on
hybrid-logical clocks which are composed of a physical timestamp
and a logical timestamp.19

17The clock uncertainty is generally less than 10ms.
18“CockroachDB,” https://www.cockroachlabs.com/
19“Logical Physical Clocks and Consistent Snapshots in Globally Distributed

Databases,” https://cse.buffalo.edu/tech-reports/2014-04.pdf

https://www.cockroachlabs.com/
https://cse.buffalo.edu/tech-reports/2014-04.pdf




Chapter 13

Asynchronous
transactions

2PC is a synchronous blocking protocol— if the coordinator or any
of the participants is slow or not not available, the transaction can’t
make progress. Because of its blocking nature, 2PC is generally
combined with a blocking concurrency control protocol, like 2PL,
to provide isolation. That means the participants are holding locks
while waiting for the coordinator, blocking other transactions ac-
cessing the same objects from making progress.
The underlying assumptions of 2PC are that the coordinator and
the participants are available and that the duration of the transac-
tion is short-lived. While we can do something about the partici-
pants’ availability by using state machine replication, we can’t do
much about transactions that, due to their nature, take a long time
to execute, like hours or days. In this case, blocking just isn’t an
option. Additionally, if the participants belong to different organi-
zations, the organizations might be unwilling to grant each other
the power to block their systems to run transactions they don’t con-
trol.
To solve this problem, we can look for solutions in the real world.
For example, consider a fund transfer between two banks via a
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cashier’s check. First, the bank issuing the check deducts the funds
from the source account. Then, the check is physically transported
to the other bank and there it’s finally deposited to the destination
account. For the fund transfer to work, the check cannot be lost
or deposited more than once. Since neither the source nor desti-
nation bank had to wait on each other while the transaction was
in progress, the fund transfer via check is an asynchronous (non-
blocking) atomic transaction. However, the price to pay for this is
that the source and destination account are in an inconsistent state
while the check is being transferred. So although asynchronous
transactions are atomic, they are not isolated from each other.

Now, because a check is just a message, we can generalize this
idea with the concept of persistentmessages sent over the network,
i.e., messages that that are guaranteed to be processed exactly once.
In this chapter, we will discuss a few implementations of asyn-
chrounous transactions based on this concept.

13.1 Outbox pattern
A common pattern1 inmodern applications is to replicate the same
data to different data stores tailored to different use cases. For
example, suppose we own a product catalog service backed by a
relational database, and we decide to offer an advanced full-text
search capability in its API. Although some relational databases
offer a basic full-text search functionality, a dedicated service such
as Elasticsearch2 is required for more advanced use cases.

To integrate with the search service, the catalog service needs to
update both the relational database and the search service when
a new product is added, or an existing product is modified or
deleted. The service could update the relational database first and
then the search service, but if the service crashes before updating
the search service, the system would be left in an inconsistent

1“Online Event Processing: Achieving consistency where distributed transac-
tions have failed,” https://queue.acm.org/detail.cfm?id=3321612

2“Elasticsearch: A distributed, RESTful search and analytics engine,” https://
www.elastic.co/elasticsearch/

https://queue.acm.org/detail.cfm?id=3321612
https://www.elastic.co/elasticsearch/
https://www.elastic.co/elasticsearch/
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state. So we need to wrap the two updates into a transaction
somehow.

We could consider using 2PC, but while the relational database
supports the X/Open XA3 2PC standard, the search service
doesn’t, which means we would have to implement the protocol
for the search service somehow. We also don’t want the catalog
service to block if the search service is temporarily unavailable.
Although we want the two data stores to be in sync, we can
accept some temporary inconsistencies. So eventual consistency
is acceptable for our use case.

We can solve this problem by having the catalog service send a per-
sistent message to the search service whenever a product is added,
modified or deleted. One way of implementing that is for a lo-
cal transaction to append the message to a dedicated outbox table4
when it makes a change to the product catalog. Because the re-
lational database supports ACID transactions, the message is ap-
pended to the outbox table if and only if the local transaction com-
mits and is not aborted.

The outbox table can then be monitored by a dedicated relay pro-
cess. When the relay process discovers a new message, it sends
the message to the destination, the search service. The relay pro-
cess deletes the message from the table only when it receives an
acknolowedgment that it was was delivered successfully. Unsur-
prisingly, it’s possible for the same message to be delivered multi-
ple times. For example, if the relay process crashes after sending
the message but before removing it from the table, it will resend
the message when it restarts. To guarantee that the destination
processes the message only once, an idempotency key is assigned
to it so that the message can be deduplicated (we discussed this in
chapter 5.7).

In practice, the relay process doesn’t send messages directly to the

3“Distributed Transaction Processing: The XA Specification,” https://pubs.ope
ngroup.org/onlinepubs/009680699/toc.pdf

4“Pattern: Transactional outbox,” https://microservices.io/patterns/data/tra
nsactional-outbox.html

https://pubs.opengroup.org/onlinepubs/009680699/toc.pdf
https://pubs.opengroup.org/onlinepubs/009680699/toc.pdf
https://microservices.io/patterns/data/transactional-outbox.html
https://microservices.io/patterns/data/transactional-outbox.html
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destination. Instead, it forwards messages to a message channel5,
like Kafka6 or Azure Event Hubs7, responsible for delivering them
to one or more destinations in the same order as they were ap-
pended. Later in chapter 23, we will discuss message channels
in more detail.

If you squint a little, you will see that what we have just imple-
mented here is conceptually similar to state machine replication,
where the state is represented by the products in the catalog, and
the replication happens through a log of operations (the outbox
table).

13.2 Sagas
Now suppose we own a travel booking service. To book a trip, the
travel service has to atomically book a flight through a dedicated
service and a hotel through another. However, either of these ser-
vices can fail their respective request. If one booking succeeds, but
the other fails, then the former needs to be canceled to guarantee
atomicity. Hence, booking a trip requires multiple steps to com-
plete, some of which are only required in case of failure. For that
reason, we can’t use the simple solution presented earlier.

The Saga8 pattern provides a solution to this problem. A saga is
a distributed transaction composed of a set of local transactions
𝑇1, 𝑇2, ..., 𝑇𝑛, where 𝑇𝑖 has a corresponding compensating local
transaction 𝐶𝑖 used to undo its changes. The saga guarantees that
either all local transactions succeed, or, in case of failure, the com-
pensating local transactions undo the partial execution of the trans-
action altogether. This guarantees the atomicity of the protocol;
either all local transactions succeed, or none of them do.

5For example, Debezium is an open source relay service that does this, see https:
//debezium.io/.

6“Apache Kafka: An open-source distributed event streaming platform,” https:
//kafka.apache.org

7“Azure Event Hubs: A fully managed, real-time data ingestion service,” https:
//azure.microsoft.com/en-gb/services/event-hubs/

8“Sagas,” https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.
pdf

https://debezium.io/
https://debezium.io/
https://kafka.apache.org
https://kafka.apache.org
https://azure.microsoft.com/en-gb/services/event-hubs/
https://azure.microsoft.com/en-gb/services/event-hubs/
https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf
https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf
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Another way to think about sagas is that every local transaction 𝑇𝑖
assumes all the other local transactions will succeed. It’s a guess,
and it’s likely to be a good one, but still a guess at the end of the
day. So when the guess is wrong, a mistake has beenmade, and an
“apology9” needs to be issued in the form of compensating trans-
actions𝐶𝑖. This is similar to what happens in the real world when,
e.g., a flight is overbooked.
A saga can be implemented with an orchestrator, i.e., the transac-
tion coordinator, that manages the execution of the local transac-
tions across the processes involved, i.e., the transaction’s partici-
pants. In our example, the travel booking service is the transac-
tion’s coordinator, while the flight and hotel booking services are
the transaction’s participants. The saga is composed of three local
transactions: 𝑇1 books a flight, 𝑇2 books a hotel, and 𝐶1 cancels
the flight booked with 𝑇1.
At a high level, the saga can be implemented with the workflow10

depicted in Figure 13.1:
1. The coordinator initiates the transaction by sending a book-

ing request (𝑇1) to the flight service. If the booking fails, no
harm is done, and the coordinator marks the transaction as
aborted.

2. If the flight booking succeeds, the coordinator sends a book-
ing request (𝑇2) to the hotel service. If the request succeeds,
the transaction is marked as successful, and we are all done.

3. If the hotel booking fails, the transaction needs to be aborted.
The coordinator sends a cancellation request (𝐶1) to the flight
service to cancel the previously booked flight. Without the
cancellation, the transaction would be left in an inconsistent
state, which would break its atomicity guarantee.

The coordinator can communicate asynchronously with the partic-
ipants via message channels to tolerate temporary failures. As the
transaction requiresmultiple steps to succeed, and the coordinator

9”Building on Quicksand,” https://dsf.berkeley.edu/cs286/papers/quicksan
d-cidr2009.pdf

10“Clarifying the Saga pattern,” http://web.archive.org/web/20161205130022
/http://kellabyte.com:80/2012/05/30/clarifying-the-saga-pattern

https://dsf.berkeley.edu/cs286/papers/quicksand-cidr2009.pdf
https://dsf.berkeley.edu/cs286/papers/quicksand-cidr2009.pdf
http://web.archive.org/web/20161205130022/http://kellabyte.com:80/2012/05/30/clarifying-the-saga-pattern
http://web.archive.org/web/20161205130022/http://kellabyte.com:80/2012/05/30/clarifying-the-saga-pattern
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can fail at any time, it needs to persist the state of the transaction
as it advances. By modeling the transaction as a state machine, the
coordinator can durably checkpoint its state to a data store as it
transitions from one state to the next. This ensures that if the co-
ordinator crashes and restarts, or another process is elected as the
coordinator, it can resume the transaction from where it left off by
reading the last checkpoint.

Figure 13.1: A workflow implementing an asynchronous transac-
tion

There is a caveat, though; if the coordinator crashes after sending
a request but before backing up its state, it will send the same re-
quest again when it comes back online. Similarly, if sending a re-
quest times out, the coordinator will have to retry it, causing the
message to appear twice at the receiving end. Hence, the partici-
pants have to de-duplicate themessages they receive tomake them
idempotent.

In practice, you don’t need to build orchestration engines from
scratch to implement such workflows, since cloud compute ser-
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vices such as AWS Step Functions11 or Azure Durable Functions12
make it easy to create managed workflows.

13.3 Isolation
We started our journey into asynchronous transactions as a way to
work around the blocking nature of 2PC. But to do that, we had to
sacrifice the isolation guarantee that traditional ACID transactions
provide. As it turns out, we can work around the lack of isolation
aswell. For example, oneway to do that is by using semantic locks13.
The idea is that any data the saga modifies is marked with a dirty
flag, which is only cleared at the end of the transaction. Another
transaction trying to access a dirty record can either fail and roll
back its changes or wait until the dirty flag is cleared.

11“AWS Step Functions,” https://aws.amazon.com/step-functions/
12“Azure Durable Functions documentation ,” https://docs.microsoft.com/en-

us/azure/azure-functions/durable/
13“Semantic ACID properties in multidatabases using remote procedure calls

and update propagations,” https://dl.acm.org/doi/10.5555/284472.284478

https://aws.amazon.com/step-functions/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/
https://dl.acm.org/doi/10.5555/284472.284478




Summary

If you pick any textbook about distributed systems or database
systems, I guarantee you will find entire chapters dedicated to the
topics discussed in this part. In fact, you can find entire books
written about them! Although you could argue that it’s unlikely
you will ever have to implement core distributed algorithms such
as state machine replication from scratch, I feel it’s important to
have seen these at least once as it will make you a better “user” of
the abstractions they provide.

There are two crucial insights I would like you to take away from
this part. One is that failures are unavoidable in distributed sys-
tems, and the other is that coordination is expensive.

By now, you should have realized that what makes the coordina-
tion algorithms we discussed so complex is that they must toler-
ate failures. Take Raft, for example. Imagine how much simpler
the implementation would be if the networkwere reliable and pro-
cesses couldn’t crash. If you were surprised by one or more edge
cases in the design of Raft or chain replication, you are not alone.
This stuff is hard! Fault tolerance plays a big role at any level of
the stack, which is why I dedicated Part IV to it.

The other important takeaway is that coordination adds complex-
ity and impacts scalability and performance. Hence, you should
strive to reduce coordination when possible by:

• keeping coordination off the critical path, as chain replica-
tion does;
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• proceeding without coordination and “apologize” when an
inconsistency is detected, as sagas do;

• using protocols that guarantee some form of consistency
without coordination, like CRDTs.



Part III

Scalability





Introduction

“Treat servers like cattle, not pets.”

– Bill Baker

Over the last few decades, the number of people with access to the
internet has steadily climbed. In 1996, only 1% of people world-
wide had access to the internet, while today, it’s over 65%. In
turn, this has increased the total addressable market of online busi-
nesses and led to the need for scalable systems that can handle
millions of concurrent users.

For an application to scale, it must runwithout performance degra-
dations as load increases. And as mentioned in chapter 1, the only
long-term solution for increasing the application’s capacity is to
architect it so that it can scale horizontally.

In this part, we will walk through the journey of scaling a simple
CRUD web application called Cruder. Cruder is comprised of
a single-page JavaScript application that communicates with
an application server through a RESTful HTTP API. The server
uses the local disk to store large files, like images and videos,
and a relational database to persist the application’s state. Both
the database and the application server are hosted on the same
machine, which is managed by a compute platform like AWS EC2.
Also, the server’s public IP address is advertised by a managed
DNS service, like AWS Route 5314.

14“Amazon Route 53,” https://aws.amazon.com/route53/

https://aws.amazon.com/route53/
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Users interact with Cruder through their browsers. Typically, a
browser issues a DNS request to resolve the domain name to an
IP address (if it doesn’t have it cached already), opens a TLS con-
nection with the server, and sends its first HTTP GET request to it
(see Figure 13.2).

Figure 13.2: Cruder’s architecture

Although this architecture is good enough for a proof of concept,
it’s not scalable or fault-tolerant. Of course, not all applications
need to be highly available and scalable, but since you are reading
this book to learn how such applications are built, we can assume
that the application’s backend will eventually need to serve mil-
lions of requests per second.
And so, as the number of requests grows, the application server
will require more resources (e.g., CPU, memory, disk, network)
and eventually reach its capacity, and its performance will start
to degrade. Similarly, as the database stores more data and serves
more queries, it will inevitably slow down as it competes for re-
sources with the application server.
The simplest and quickest way to increase the capacity is to scale
up the machine hosting the application. For example, we could:

• increase the number of threads capable of running simulta-
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neously by provisioning more processors or cores,
• increase disk throughput by provisioning more disks
(RAID),

• increase network throughput by provisioning more NICs,
• reduce random disk access latency by provisioning solid-
state disks (SSD),

• or reduce page faults by provisioning more memory.
The caveat is that the application needs to be able to leverage the
additional hardware at its disposal. For example, adding more
cores to a single-threaded application will not make much differ-
ence. More importantly, when we’ve maxed out on the hardware
front, the application will eventually hit a hard physical limit that
we can’t overcome no matter how much money we are willing to
throw at it.
The alternative to scaling up is to scale out by distributing the ap-
plication across multiple nodes. Although this makes the appli-
cation more complex, eventually it will pay off. For example, we
can move the database to a dedicated machine as a first step. By
doing that, we have increased the capacity of both the server and
the database since they no longer have to compete for resources.
This is an example of amore general pattern called functional decom-
position: breaking down an application into separate components,
each with its own well-defined responsibility (see Figure 13.3).
As wewill repeatedly see in the following chapters, there are other
two general patterns that we can exploit (and combine) to build
scalable applications: splitting data into partitions and distribut-
ing them among nodes (partitioning) and replicating functionality
or data across nodes, also known as horizontal scaling (replication).
In the following chapters, we will explore techniques based on
those patterns for further increasing Cruder’s capacity, which re-
quire increasingly more effort to exploit.
Chapter 14 discusses the use of client-side caching to reduce the
number of requests hitting the application.
Chapter 15 describes using a content delivery network (CDN), a
geographically distributed network of managed reverse proxies,
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Figure 13.3: Moving the database to its own dedicated machine is
an example of functional decomposition

to further reduce the number of requests the application needs to
handle.

Chapter 16 dives into partitioning, a technique used by CDNs, and
pretty much any distributed data store, to handle large volumes of
data. The chapter explores different partitioning strategies, such as
range and hash partitioning, and the challenges that partitioning
introduces.

Chapter 17 discusses the benefits of offloading the storage of large
static files, such as images and videos, to a managed file store. It
then describes the architecture of Azure Storage, a highly available
and scalable file store.

Chapter 18 talks about how to increase the application’s capacity
by load-balancing requests across a pool of servers. The chapter
starts with a simple approach based on DNS and then explores
more flexible solutions that operate at the transport and applica-
tion layers of the network stack.

Chapter 19 describes how to scale out the application’s relational
database using replication and partitioning and the challenges that
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come with it. It then introduces NoSQL data stores as a solution
to these challenges and recounts their evolution since their initial
adoption in the industry.
Chapter 20 takes a stab at discussing caching from a more general
point of view by diving into the benefits and pitfalls of putting a
cache in front of the application’s data store. Although caching is a
deceptively simple technique, it can create subtle consistency and
operational issues that are all too easy to dismiss.
Chapter 21 talks about scaling the development of the application
across multiple teams by decomposing it into independently de-
ployable services. Next, it introduces the concept of an API gate-
way as a means for external clients to communicate with the back-
end after it has been decomposed into separated services.
Chapter 22 describes the benefits of separating the serving of client
requests (data plane) from the management of the system’s meta-
data and configuration (control plane), which is a common pattern
in large-scale systems.
Chapter 23 explores the use of asynchronous messaging channels
to decouple the communication between services, allowing two
services to communicate even if one of them is temporarily un-
available. Messaging offers many other benefits, which we will
explore in the chapter along with its best practices and pitfalls.





Chapter 14

HTTP caching

Cruder’s application server handles both static and dynamic
resources at this point. A static resource contains data that usually
doesn’t change from one request to another, like a JavaScript or
CSS file. Instead, a dynamic resource is generated by the server
on the fly, like a JSON document containing the user’s profile.
Since a static resource doesn’t change often, it can be cached. The
idea is to have a client (i.e., a browser) cache the resource for some
time so that the next access doesn’t require a network call, reducing
the load on the server and the response time.1

Let’s see how client-side HTTP caching works in practice with a
concrete example. HTTP caching is limited to safe request meth-
ods that don’t alter the server’s state, like GET or HEAD. Suppose
a client issues a GET request for a resource it hasn’t accessed be-
fore. The local cache intercepts the request, and if it can’t find the
resource locally, it will go and fetch it from the origin server on
behalf of the client.
The server uses specific HTTP response headers2 to let clients
know that a resource is cachable. So when the server responds

1This is an example of the replication pattern in action.
2“HTTP caching,” https://developer.mozilla.org/en-US/docs/Web/HTTP

/Caching

https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching
https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching
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with the resource, it adds a Cache-Control header that defines for
how long to cache the resource (TTL) and an ETag header with a
version identifier. Finally, when the cache receives the response,
it stores the resource locally and returns it to the client (see Figure
14.1).

Figure 14.1: A client accessing a resource for the first time (the Age
header contains the time in seconds the object was in the cache)

Now, suppose some time passes and the client tries to access the
resource again. The cache first checks whether the resource hasn’t
expired yet, i.e., whether it’s fresh. If so, the cache immediately
returns it. However, even if the resource hasn’t expired from the
client’s point of view, the server may have updated it in the mean-
time. That means reads are not strongly consistent, but we will
safely assume that this is an acceptable tradeoff for our applica-
tion.

If the resource has expired, it’s considered stale. In this case, the
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cache sends a GET request to the server with a conditional header
(like If-None-Match) containing the version identifier of the stale
resource to check whether a newer version is available. If there is,
the server returns the updated resource; if not, the server replies
with a 304 Not Modified status code (see Figure 14.2).

Figure 14.2: A client accessing a stale resource

Ideally, a static resource should be immutable so that clients can
cache it “forever,” which corresponds to a maximum length of a
year according to the HTTP specification. We can still modify a
static resource if needed by creating a new one with a different
URL so that clients will be forced to fetch it from the server.

Another advantage of treating static resources as immutable is that
we can update multiple related resources atomically. For example,
if we publish a new version of the application’s website, the up-
dated HTML index file is going to reference the new URLs for the
JavaScript and CSS bundles. Thus, a client will see either the old
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version of the website or the new one depending on which index
file it has read, but never a mix of the two that uses, e.g., the old
JavaScript bundle with the new CSS one.

Another way of thinking about HTTP caching is that we treat
the read path (GET) differently from the write path (POST, PUT,
DELETE) because we expect the number of reads to be several
orders of magnitude higher than the number of writes. This is a
common pattern referred to as the Command Query Responsibility
Segregation3 (CQRS) pattern.4

To summarize, allowing clients to cache static resources has re-
duced the load on our server, and all we had to do was to play
with some HTTP headers! We can take caching one step further
by introducing a server-side HTTP cache with a reverse proxy.

14.1 Reverse proxies
A reverse proxy is a server-side proxy that intercepts all commu-
nications with clients. Since the proxy is indistinguishable from
the actual server, clients are unaware that they are communicating
through an intermediary (see Figure 14.3).

Figure 14.3: A reverse proxy acts as an intermediary between the
clients and the servers.

A common use case for a reverse proxy is to cache static resources
returned by the server. Since the cache is shared among the clients,
it will decrease the load of the server a lotmore than any client-side
cache ever could.

3“CQRS,” https://martinfowler.com/bliki/CQRS.html
4This is another instance of functional decomposition.

https://martinfowler.com/bliki/CQRS.html
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Because a reverse proxy is a middleman, it can be used for much
more than just caching. For example, it can:

• authenticate requests on behalf of the server;
• compress a response before returning it to the client to speed
up the transmission;

• rate-limit requests coming from specific IPs or users to pro-
tect the server from being overwhelmed;

• load-balance requests acrossmultiple servers to handlemore
load.

We will explore some of these use cases in the next chapters. NG-
INX5 andHAProxy6 arewidely-used reverse proxies thatwe could
leverage to build a server-side cache. However, many use cases for
reverse proxies have been commoditized bymanaged services. So,
rather than building out a server-side cache, we could just leverage
a Content Delivery Network (CDN).

5“NGINX,” https://www.nginx.com/
6“HAProxy,” https://www.haproxy.com/

https://www.nginx.com/
https://www.haproxy.com/




Chapter 15

Content delivery
networks

A CDN is an overlay network of geographically distributed
caching servers (reverse proxies) architected around the design
limitations of the network protocols that run the internet.
When using aCDN, clients hit URLs that resolve to caching servers
that belong to the CDN. When a CDN server receives a request,
it checks whether the requested resource is cached locally. If not,
the CDN server transparently fetches it from the origin server (i.e.,
our application server) using the originalURL, caches the response
locally, and returns it to the client. AWSCloudFront1 andAkamai2
are examples of well-known CDN services.

15.1 Overlay network
Youwould think that the main benefit of a CDN is caching, but it’s
actually the underlying network substrate. The public internet is
composed of thousands of networks, and its core routing protocol,
BGP, was not designed with performance in mind. It primarily

1“Amazon CloudFront,” https://aws.amazon.com/cloudfront/
2“Akamai,” https://www.akamai.com/

https://aws.amazon.com/cloudfront/
https://www.akamai.com/
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uses the number of hops to cost how expensive a path is with re-
spect to another, without considering their latencies or congestion.
As the name implies, a CDN is a network. More specifically, an
overlay network3 built on top of the internet that exploits a variety
of techniques to reduce the response time of network requests and
increase the bandwidth of data transfers.
When we first discussed TCP in chapter 2, we talked about the
importance ofminimizing the latency between a client and a server.
Nomatter how fast the server is, if the client is located on the other
side of the world from it, the response time is going to be over 100
ms just because of the network latency, which is physically limited
by the speed of light. Not tomention the increased error rate when
sending data across the public internet over long distances.
This is why CDN clusters are placed inmultiple geographical loca-
tions to be closer to clients. But how do clients knowwhich cluster
is closest to them? One way is via global DNS load balancing4: an
extension to DNS that considers the location of the client inferred
from its IP, and returns a list of the geographically closest clusters
taking into account also the network congestion and the clusters’
health.
CDN servers are also placed at internet exchange points, where ISPs
connect to each other. That way, virtually the entire communica-
tion from the origin server to the clients flows over network links
that are part of the CDN, and the brief hops on either end have low
latencies due to their short distance.
The routing algorithms of the overlay network are optimized
to select paths with reduced latencies and congestion, based
on continuously updated data about the health of the network.
Additionally, TCP optimizations are exploited where possible,
such as using pools of persistent connections between servers

3“The Akamai Network: A Platform for HighPerformance Internet Applica-
tions,” https://groups.cs.umass.edu/ramesh/wp-content/uploads/sites/3/
2019/12/The-akamai-network-a-platform-for-high-performance- internet-
applications.pdf

4“Load Balancing at the Frontend,” https://landing.google.com/sre/sre-
book/chapters/load-balancing-frontend/

https://groups.cs.umass.edu/ramesh/wp-content/uploads/sites/3/2019/12/The-akamai-network-a-platform-for-high-performance-internet-applications.pdf
https://groups.cs.umass.edu/ramesh/wp-content/uploads/sites/3/2019/12/The-akamai-network-a-platform-for-high-performance-internet-applications.pdf
https://groups.cs.umass.edu/ramesh/wp-content/uploads/sites/3/2019/12/The-akamai-network-a-platform-for-high-performance-internet-applications.pdf
https://landing.google.com/sre/sre-book/chapters/load-balancing-frontend/
https://landing.google.com/sre/sre-book/chapters/load-balancing-frontend/
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to avoid the overhead of setting up new connections and using
optimal TCP window sizes to maximize the effective bandwidth
(see Figure 15.1).

Figure 15.1: A CDN reduces the round trip time of network calls
for clients and the load for the origin server.

The overlay network can also be used to speed up the delivery
of dynamic resources that cannot be cached. In this capacity, the
CDN becomes the frontend for the application, shielding it against
distributed denial-of-service (DDoS) attacks5.

15.2 Caching
A CDN can have multiple content caching layers. The top layer is
made of edge clusters deployed at different geographical locations,
as mentioned earlier. But infrequently accessed content might not
be available at the edge, inwhich case the edge serversmust fetch it
from the origin server. Thanks to the overlay network, the content
can be fetched more efficiently and reliably than what the public
internet would allow.
There is a tradeoff between the number of edge clusters and the
cache hit ratio6, i.e., the likelihood of finding an object in the cache.

5“Denial-of-service attack,” https://en.wikipedia.org/wiki/Denial-of-servic
e_attack

6A cache hit occurs when the requested data can be found in the cache, while a
cache miss occurs when it cannot.

https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack
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The higher the number of edge clusters, the more geographically
dispersed clients they can serve, but the lower the cache hit ratio
will be, and consequently, the higher the load on the origin server.
To alleviate this issue, the CDN can have one or more intermedi-
ary caching clusters deployed in a smaller number of geographical
locations, which cache a larger fraction of the original content.
Within a CDN cluster, the content is partitioned among multiple
servers so that each one serves only a specific subset of it; this is
necessary as no single server would be able to hold all the data.
Because data partitioning is a core scalability pattern, we will take
a closer look at it in the next chapter.



Chapter 16

Partitioning

When an application’s data keeps growing in size, its volume will
eventually become large enough that it can’t fit on a single ma-
chine. To work around that, it needs to be split into partitions, or
shards, small enough to fit into individual nodes. As an additional
benefit, the system’s capacity for handling requests increases as
well, since the load of accessing the data is spread overmore nodes.

When a client sends a request to a partitioned system, the request
needs to be routed to the node(s) responsible for it. A gateway ser-
vice (i.e., a reverse proxy) is usually in charge of this, knowing how
the data is mapped to partitions and nodes (see Figure 16.1). This
mapping is generally maintained by a fault-tolerant coordination
service, like etcd or Zookeeper.

Partitioning is not a free lunch since it introduces a fair amount of
complexity:

• A gateway service is required to route requests to the right
nodes.

• To roll up data across partitions, it needs to be pulled from
multiple partitions and aggregated (e.g., think of the com-
plexity of implementing a “group by” operation across par-
titions).
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Figure 16.1: A partitioned application with a gateway that routes
requests to partitions

• Transactions are required to atomically update data that
spans multiple partitions, limiting scalability.

• If a partition is accessed much more frequently than others,
the system’s ability to scale is limited.

• Adding or removing partitions at run time becomes challeng-
ing, since it requires moving data across nodes.

It’s no coincidence we are talking about partitioning right after dis-
cussing CDNs. A cache lends itself well to partitioning as it avoids
most of this complexity. For example, it generally doesn’t need to
atomically update data across partitions or perform aggregations
spanning multiple partitions.

Now that we have an idea of what partitioning is and why it’s
useful, let’s discuss howdata, in the formof key-value pairs, can be
mapped to partitions. At a high level, there are two main ways of
doing that, referred to as range partitioning and hash partitioning. An
important prerequisite for both is that the number of possible keys
is very large; for example, a boolean key with only two possible
values is not suited for partitioning since it allows for at most two
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partitions.

16.1 Range partitioning
Range partitioning splits the data by key range into lexicograph-
ically sorted partitions, as shown in Figure 16.2. To make range
scans fast, each partition is generally stored in sorted order on disk.

Figure 16.2: A range-partitioned dataset

The first challenge with range partitioning is picking the partition
boundaries. For example, splitting the key range evenly makes
sense if the distribution of keys is more or less uniform. If not, like
in the English dictionary, the partitions will be unbalanced and
some will have a lot more entries than others.

Another issue is that some access patterns can lead to hotspots,
which affect performance. For example, if the data is range
partitioned by date, all requests for the current day will be served
by a single node. There are ways around that, like adding a
random prefix to the partition keys, but there is a price to pay in
terms of increased complexity.

When the size of the data or the number of requests becomes too
large, the number of nodes needs to be increased to sustain the in-
crease in load. Similarly, if the data shrinks and/or the number
of requests drops, the number of nodes should be reduced to de-
crease costs. The process of adding and removing nodes to balance
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the system’s load is called rebalancing. Rebalancing has to be imple-
mented in a way that minimizes disruption to the system, which
needs to continue to serve requests. Hence, the amount of data
transferred when rebalancing partitions should be minimized.
One solution is to create a lot more partitions than necessary when
the system is first initialized and assign multiple partitions to each
node. This approach is also called static partitioning since the num-
ber of partitions doesn’t change over time. When a new node joins,
some partitions move from the existing nodes to the new one so
that the store is always in a balanced state. The drawback of this
approach is that the number of partitions is fixed and can’t be eas-
ily changed. Getting the number of partitions right is hard — too
many partitions add overhead and decrease performance, while
too few partitions limit scalability. Also, some partitions might
end up being accessed much more than others, creating hotspots.
The alternative is to create partitions on demand, also referred to
as dynamic partitioning. The system starts with a single partition,
and when it grows above a certain size or becomes too hot, the
partition is split into two sub-partitions, each containing approxi-
mately half of the data, and one of the sub-partitions is transferred
to a new node. Similarly, when two adjacent partitions become
small or “cold” enough, they can be merged into a single one.

16.2 Hash partitioning
Let’s take a look at an alternative way of mapping data to par-
titions. The idea is to use a hash function that deterministically
maps a key (string) to a seemingly randomnumber (a hash) within
a certain range (e.g., 0 and 264 − 1). This guarantees that the keys’
hashes are distributed uniformly across the range.
Next, we assign a subset of the hashes to each partition, as shown
in Figure 16.3. For example, one way of doing that is by taking the
modulo of a hash, i.e., hash(key) mod N, where N is the number of
partitions.
Although this approach ensures that the partitions contain more
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Figure 16.3: A hash-partitioned dataset

or less the same number of entries, it doesn’t eliminate hotspots
if the access pattern is not uniform. For example, if a single key is
accessed significantly more often than others, the node hosting the
partition it belongs to could become overloaded. In this case, the
partition needs to be split further by increasing the total number
of partitions. Alternatively, the key needs to be split into sub-keys
by, e.g., prepending a random prefix.

Assigning hashes to partitions via the modulo operator can be-
come problematic when a new partition is added, as most keys
have to bemoved (or shuffled) to a different partition because their
assignment changed. Shuffling data is extremely expensive as it
consumes network bandwidth and other resources. Ideally, if a
partition is added, only 𝐾

𝑁 keys should be shuffled around, where
𝐾 is the number of keys and 𝑁 is the number of partitions. One
widely used hashing strategywith that property is consistent hash-
ing.

With consistent hashing1, a hash function randomly maps both the
partition identifiers and keys onto a circle, and each key is assigned
to the closest partition that appears on the circle in clockwise order
(see Figure 16.4).

Now, when a new partition is added, only the keys that now map
1“Consistent Hashing and Random Trees: Distributed Caching Protocols for Re-

lieving Hot Spots on the World Wide Web,” https://www.cs.princeton.edu/cours
es/archive/fall09/cos518/papers/chash.pdf

https://www.cs.princeton.edu/courses/archive/fall09/cos518/papers/chash.pdf
https://www.cs.princeton.edu/courses/archive/fall09/cos518/papers/chash.pdf
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Figure 16.4: With consistent hashing, partition identifiers and keys
are randomly distributed around a circle, and each key is assigned
to the next partition that appears on the circle in clockwise order.

to it on the circle need to be reassigned, as shown in Figure 16.5.
The main drawback of hash partitioning compared to range par-
titioning is that the sort order over the partitions is lost, which is
required to efficiently scan all the data in order. However, the data
within an individual partition can still be sorted based on a sec-
ondary key.
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Figure 16.5: After partition P4 is added, the key ’for’ is reassigned
to P4, but the assignment of the other keys doesn’t change.





Chapter 17

File storage

Using a CDN has significantly reduced the number of requests hit-
ting Cruder’s application server. But there are only so many im-
ages, videos, etc., the server can store on its local disk(s) before
running out of space. Towork around this limit, we can use aman-
aged file store, like AWS S31 or Azure Blob Storage2, to store large
static files. Managed file stores are scalable, highly available, and
offer strong durability guarantees. A file uploaded to a managed
store can be configured to allow access to anyone who knows its
URL,whichmeanswe can point theCDN straight at it. This allows
us to completely offload the storage and serving of static resources
to managed services.

17.1 Blob storage architecture
Because distributed file stores are such a crucial component of
modern applications, it’s useful to have an idea of how they work
underneath. In this chapter, we will dive into the architecture of

1“Amazon Simple Storage Service,” https://aws.amazon.com/s3/
2“Azure Blob Storage,” https://azure.microsoft.com/en-us/services/storage/

blobs/#overview

https://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/services/storage/blobs/#overview
https://azure.microsoft.com/en-us/services/storage/blobs/#overview
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Azure Storage3 (AS), a scalable cloud storage system that provides
strong consistency. AS supports file, queue, and table abstractions,
but for simplicity, our discussion will focus exclusively on the file
abstraction, also referred to as the blob store.
AS is composed of storage clusters distributed across multiple re-
gions worldwide. A storage cluster is composed of multiple racks
of nodes, where each rack is built out as a separate unit with re-
dundant networking and power.
At a high level, AS exposes a global namespace based on domain
names that are composed of two parts: an account name and a file
name. The two names together form a unique URL that points to
a specific file, e.g., https://ACCOUNT_NAME.blob.core.windows.
net/FILE_NAME. The customer configures the account name, and
the AS DNS server uses it to identify the storage cluster where the
data is stored. The cluster uses the file name to locate the node
responsible for the data.
A central location service acts as the global control plane in charge
of creating new accounts and allocating them to clusters, and also
moving them from one cluster to another for better load distribu-
tion. For example, when a customer wants to create a new account
in a specific region, the location service:

• chooses a suitable cluster to which to allocate the account
based on load information;

• updates the configuration of the cluster to start accepting re-
quests for the new account;

• and creates a new DNS record that maps the account name
to the cluster’s public IP address.

From an architectural point of view, a storage cluster is composed
of three layers: a stream layer, a partition layer, and a front-end
layer (see Figure 17.1).
The stream layer implements a distributed append-only file system
in which the data is stored in so-called streams. Internally, a stream

3“Windows Azure Storage: A Highly Available Cloud Storage Service with
Strong Consistency,” https://sigops.org/s/conferences/sosp/2011/current
/2011-Cascais/printable/11-calder.pdf

https://ACCOUNT_NAME.blob.core.windows.net/FILE_NAME
https://ACCOUNT_NAME.blob.core.windows.net/FILE_NAME
https://sigops.org/s/conferences/sosp/2011/current/2011-Cascais/printable/11-calder.pdf
https://sigops.org/s/conferences/sosp/2011/current/2011-Cascais/printable/11-calder.pdf
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Figure 17.1: A high-level view of Azure Storage’s architecture

is represented as a sequence of extents, where the extent is the unit
of replication. Writes to extents are replicated synchronously using
chain replication4.

The stream manager is the control plane responsible for assigning
an extent to a chain of storage servers in the cluster. When the
manager is asked to allocate a new extent, it replies with the list of
storage servers that hold a copy of the newly created extent (see
Figure 17.2). The client caches this information and uses it to send
future writes to the primary server. The stream manager is also
responsible for handling unavailable or faulty extent replicas by
creating new ones and reconfiguring the replication chains they
are part of.

The partition layer is where high-level file operations are translated
4we discussed chain replication in section 10.4
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Figure 17.2: The stream layer uses chain replication to replicate
extents across storage servers.

to low-level stream operations. Within this layer, the partition man-
ager (yet another control plane) manages a large index of all files
stored in the cluster. Each entry in the index contains metadata
such as account and file name and a pointer to the actual data in
the stream service (list of extent plus offset and length). The parti-
tion manager range-partitions the index and maps each partition
to a partition server. The partition manager is also responsible for
load-balancing partitions across servers, splitting partitions when
they become too hot, and merging cold ones (see Figure 17.3).

The partition layer also asynchronously replicates accounts across
clusters in the background. This functionality is used to migrate
accounts from one cluster to another for load-balancing purposes
and disaster recovery.

Finally, the front-end service (a reverse proxy) is a stateless service
that authenticates requests and routes them to the appropriate par-
tition server using the mapping managed by the partition man-
ager.

Although we have only coarsely described the architecture of AS,
it’s a great showcase of the scalability patterns applied to a con-
crete system. As an interesting historical note, AS was built from
the ground up to be strongly consistent, while AWS S3 started of-
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Figure 17.3: The partition manager range-partitions files across
partition servers and rebalances the partitions when necessary.

fering the same guarantee in 20215.

5“Diving Deep on S3 Consistency,” https://www.allthingsdistributed.com/2
021/04/s3-strong-consistency.html

https://www.allthingsdistributed.com/2021/04/s3-strong-consistency.html
https://www.allthingsdistributed.com/2021/04/s3-strong-consistency.html
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Network load balancing

By offloading requests to the file store and the CDN, Cruder is able
to serve significantly more requests than before. But the free lunch
is only going to last so long. Because there is a single application
server, it will inevitably fall over if the number of requests directed
at it keeps increasing. To avoid that, we can create multiple appli-
cation servers, each running on a different machine, and have a
load balancer distribute requests to them. The thinking is that if one
server has a certain capacity, then, in theory, two servers should
have twice that capacity. This is an example of the more general
scalability pattern we referred to as scaling out or scaling horizon-
tally.

The reasonwe can scaleCruder horizontally is thatwe have pushed
the state to dedicated services (the database and the managed file
store). Scaling out a stateless application doesn’t require much ef-
fort, assuming its dependencies can scale accordingly as well. As
we will discuss in the next chapter, scaling out a stateful service,
like a data store, is a lot more challenging since it needs to repli-
cate state and thus requires some formof coordination, which adds
complexity and can also become a bottleneck. As a general rule of
thumb, we should try to keep our applications stateless by push-
ing state to third-party services designed by teams with years of
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experience building such services.

Distributing requests across a pool of servers has many benefits.
Because clients are decoupled from servers anddon’t need to know
their individual addresses, the number of servers behind the load
balancer can increase or decrease transparently. And since multi-
ple redundant servers can interchangeably be used to handle re-
quests, a load balancer can detect faulty ones and take them out of
the pool, increasing the availability of the overall application.

As you might recall from chapter 1, the availability of a system is
the percentage of time it’s capable of servicing requests and do-
ing useful work. Another way of thinking about it is that it’s the
probability that a request will succeed.

The reason why a load balancer increases the theoretical availabil-
ity is that in order for the application to be considered unavailable,
all the servers need to be down. With N servers, the probability
that they are all unavailable is the product of the servers’ failure
rates1. By subtracting this product from 1, we can determine the
theoretical availability of the application.

For example, if we have two servers behind a load balancer and
each has an availability of 99%, then the application has a theoret-
ical availability of 99.99%:

1 − (0.01 ⋅ 0.01) = 0.9999

Intuitively, the nines of independent servers sum up.2 Thus, in
the previous example, we have two independent servers with two
nines each, for a total of four nines of availability. Of course, this
number is only theoretical because, in practice, the load balancer
doesn’t remove faulty servers from the pool immediately. The for-
mula also naively assumes that the failure rates are independent,
which might not be the case. Case in point: when a faulty server is

1“AWS Well-Architected Framework, Availability,” https://docs.aws.amazon.
com/wellarchitected/latest/reliability-pillar/availability.html

2Another way to think about it is that by increasing the number of servers lin-
early, we increase the availability exponentially.

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/availability.html
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/availability.html
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removed from the load balancer’s pool, the remaining ones might
not be able to sustain the increase in load and degrade.

In the following sections, we will take a closer look at some of the
core features offered by a load balancer.

Load balancing

The algorithms used for routing requests can vary from round-
robin to consistent hashing to ones that take into account the
servers’ load.

As a fascinating side note, balancing by load is a lot more chal-
lenging than it seems in a distributed context. For example, the
load balancer could periodically sample a dedicated load endpoint
exposed by each server that returns a measure of how busy the
server is (e.g., CPU usage). And since constantly querying servers
can be costly, the load balancer can cache the responses for some
time.

Using cached or otherwise delayed metrics to distribute requests
to servers can result in surprising behaviors. For example, if a
server that just joined the pool reports a load of 0, the load bal-
ancer will hammer it until the next time its load is sampled. When
that happens, the server will report that it’s overloaded, and the
load balancer will stop sendingmore requests to it. This causes the
server to alternate between being very busy and not being busy at
all.

As it turns out, randomly distributing requests to servers without
accounting for their load achieves a better load distribution. Does
that mean that load balancing using delayed load metrics is not
possible? There is a way, but it requires combining load metrics
with the power of randomness. The idea is to randomly pick two
servers from the pool and route the request to the least-loaded one
of the two. This approach works remarkably well in practice3.

Service discovery
3“The power of two random choices,” https://brooker.co.za/blog/2012/01/1

7/two-random.html

https://brooker.co.za/blog/2012/01/17/two-random.html
https://brooker.co.za/blog/2012/01/17/two-random.html
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Service discovery is the mechanism the load balancer uses to dis-
cover the pool of servers it can route requests to. A naive way to
implement it is to use a static configuration file that lists the IP ad-
dresses of all the servers, which is painful to manage and keep up
to date.

A more flexible solution is to have a fault-tolerant coordination
service, like, e.g., etcd or Zookeeper, manage the list of servers.
When a new server comes online, it registers itself to the coordina-
tion service with a TTL. When the server unregisters itself, or the
TTL expires because it hasn’t renewed its registration, the server
is removed from the pool.

Adding and removing servers dynamically from the load
balancer’s pool is a key functionality cloud providers use to
implement autoscaling4, i.e., the ability to spin up and tear down
servers based on load.

Health checks

A load balancer uses health checks to detect when a server can no
longer serve requests and needs to be temporarily removed from
the pool. There are fundamentally two categories of health checks:
passive and active.

A passive health check is performed by the load balancer as it
routes incoming requests to the servers downstream. If a server
isn’t reachable, the request times out, or the server returns a
non-retriable status code (e.g., 503), the load balancer can decide
to take that server out of the pool.

Conversely, an active health check requires support from the down-
stream servers, which need to expose a dedicated health endpoint
that the load balancer can query periodically to infer the server’s
health. The endpoint returns 200 (OK) if the server can serve re-
quests or a 5xx status code if it’s overloaded and doesn’t havemore
capacity to serve requests. If a request to the endpoint times out,
it also counts as an error.

4“Autoscaling,” https://docs.microsoft.com/en-us/azure/architecture/best-
practices/auto-scaling

https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
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The endpoint’s handler could be as simple as always returning 200
OK, since most requests will time out when the server is degraded.
Alternatively, the handler can try to infer whether the server is
degraded by comparing local metrics, like CPU usage, available
memory, or the number of concurrent requests being served, with
configurable thresholds.

But here be dragons5: if a threshold is misconfigured or the health
check has a bug, all the servers behind the load balancer may fail
the health check. In that case, the load balancer could naively
empty the pool, taking the application down. However, in prac-
tice, if the load balancer is “smart enough,” it should detect that a
large fraction of the servers are unhealthy and consider the health
checks to be unreliable. So rather than removing servers from the
pool, it should ignore the health checks altogether so that new re-
quests can be sent to any server.

Thanks to health checks, the application behind the load balancer
can be updated to a new version without any downtime. During
the update, a rolling number of servers report themselves as un-
available so that the load balancer stops sending requests to them.
This allows in-flight requests to complete (drain) before the servers
are restartedwith the new version. More generally, we can use this
mechanism to restart a server without causing harm.

For example, suppose a stateless application has a rare memory
leak that causes a server’s available memory to decrease slowly
over time. When the server has very little physical memory avail-
able, it will swap memory pages to disk aggressively. This con-
stant swapping is expensive and degrades the performance of the
server dramatically. Eventually, the leak will affect the majority of
servers and cause the application to degrade.

In this case, we could force a severely degraded server to restart.
That way, we don’t have to develop complex recovery logic when
a server gets into a rare and unexpected degraded mode. More-
over, restarting the server allows the system to self-heal, giving its

5“Implementing health checks,” https://aws.amazon.com/builders-library/
implementing-health-checks/

https://aws.amazon.com/builders-library/implementing-health-checks/
https://aws.amazon.com/builders-library/implementing-health-checks/
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operators time to identify the root cause.

To implement this behavior, a server could have a separate back-
ground thread — a watchdog — that wakes up periodically and
monitors the server’s health. For example, the watchdog could
monitor the available physical memory left. When a monitored
metric breaches a specific threshold for some time, the watchdog
considers the server degraded and deliberately crashes or restarts
it.

Of course, the watchdog’s implementation needs to be well-tested
and monitored since a bug could cause servers to restart contin-
uously. That said, I find it uncanny how this simple pattern can
make an application a lot more robust to gray failures.

18.1 DNS load balancing
Now that we are familiar with the job description of a load bal-
ancer, let’s take a closer look at how it can be implemented. While
you won’t have to build your own load balancer given the abun-
dance of off-the-shelf solutions available, it’s important to have a
basic knowledge of how a load balancer works. Because every re-
quest needs to go through it, it contributes to your applications’
performance and availability.

A simple way to implement a load balancer is with DNS. For ex-
ample, suppose we have a couple of servers that we would like
to load-balance requests over. If these servers have public IP ad-
dresses, we can add those to the application’s DNS record and
have the clients pick one6 when resolving the DNS address, as
shown in Figure 18.1.

Although this approachworks, it’s not resilient to failures. If one of
the two servers goes down, the DNS server will happily continue
to serve its IP address, unaware that it’s no longer available. Even
if we were to automatically reconfigure the DNS record when a
failure happens and take out the problematic IP, the change needs

6“Round-robin DNS,” https://en.wikipedia.org/wiki/Round-robin_DNS

https://en.wikipedia.org/wiki/Round-robin_DNS
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Figure 18.1: DNS load balancing

time to propagate to the clients, since DNS entries are cached, as
discussed in chapter 4.
The one use case where DNS is used in practice to load-balance is
for distributing traffic to different data centers located in different
regions (global DNS load balancing). We have already encountered
a use for this when discussing CDNs.

18.2 Transport layer load balancing
A more flexible load-balancing solution can be implemented with
a load balancer that operates at the TCP level of the network stack
(aka L4 load balancer7) through which all the traffic between
clients and servers flows.
A network load balancer has one or more physical network interface

7layer 4 is the transport layer in the OSI model
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cards mapped to one or more virtual IP (VIP) addresses. A VIP, in
turn, is associated with a pool of servers. The load balancer acts
as an intermediary between clients and servers — clients only see
the VIP exposed by the load balancer and have no visibility of the
individual servers associated with it.

When a client creates a new TCP connection with a load balancer’s
VIP, the load balancer picks a server from the pool and henceforth
shuffles the packets back and forth for that connection between the
client and the server. And because all the traffic goes through the
load balancer, it can detect servers that are unavailable (e.g., with a
passive health check) and automatically take them out of the pool,
improving the system’s reliability.

A connection is identified by a tuple (source IP/port, destination
IP/port). Typically, some form of hashing is used to assign a con-
nection tuple to a server that minimizes the disruption caused by
a server being added or removed from the pool, like consistent
hashing8.

To forward packets downstream, the load balancer translates9 each
packet’s source address to the load balancer’s address and its des-
tination address to the server’s address. Similarly, when the load
balancer receives a packet from the server, it translates its source
address to the load balancer’s address and its destination address
to the client’s address (see Figure 18.2).

As the data going out of the servers usually has a greater volume
than the data coming in, there is a way for servers to bypass the
load balancer and respond directly to the clients using a mecha-
nism called direct server return10, which can significantly reduce
the load on the load balancer.

A network load balancer can be built using commodity machines
8“SREcon19 Americas - Keeping the Balance: Internet-Scale Loadbalancing De-

mystified,” https://www.youtube.com/watch?v=woaGu3kJ-xk
9“Network address translation,” https://en.wikipedia.org/wiki/Network_a

ddress_translation
10“Introduction to modern network load balancing and proxying,” https://blog

.envoyproxy.io/introduction-to-modern-network-load-balancing-and-proxying-
a57f6ff80236

https://www.youtube.com/watch?v=woaGu3kJ-xk
https://en.wikipedia.org/wiki/Network_address_translation
https://en.wikipedia.org/wiki/Network_address_translation
https://blog.envoyproxy.io/introduction-to-modern-network-load-balancing-and-proxying-a57f6ff80236
https://blog.envoyproxy.io/introduction-to-modern-network-load-balancing-and-proxying-a57f6ff80236
https://blog.envoyproxy.io/introduction-to-modern-network-load-balancing-and-proxying-a57f6ff80236
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Figure 18.2: Transport layer load balancing

and scaled out using a combination ofAnycast11 andECMP12. Load
balancer instances announce themselves to the data center’s edge
routers with the same Anycast VIP and identical BGP weight. Us-
ing an Anycast IP is a neat trick that allows multiple machines to
share the same IP address and have routers send traffic to the one
with the lowest BGPweight. If all the instances have the same iden-
tical BGP weight, routers use equal-cost multi-path routing (con-
sistent hashing) to ensure that the packets of a specific connection
are generally routed to the same load balancer instance.

Since Cruder is hosted in the cloud, we can leverage one of the
11“Anycast,” https://en.wikipedia.org/wiki/Anycast
12“Equal-cost multi-path routing,” https://en.wikipedia.org/wiki/Equal-

cost_multi-path_routing

https://en.wikipedia.org/wiki/Anycast
https://en.wikipedia.org/wiki/Equal-cost_multi-path_routing
https://en.wikipedia.org/wiki/Equal-cost_multi-path_routing
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manymanaged solutions for network load balancing, such asAWS
Network Load Balancer13 or Azure Load Balancer14.
Although load balancing connections at the TCP level is very
fast, the drawback is that the load balancer is just shuffling bytes
around without knowing what they actually mean. Therefore,
L4 load balancers generally don’t support features that require
higher-level network protocols, like terminating TLS connections.
A load balancer that operates at a higher level of the network
stack is required to support these advanced use cases.

18.3 Application layer load balancing
An application layer load balancer (aka L7 load balancer15) is an
HTTP reverse proxy that distributes requests over a pool of servers.
The load balancer receives an HTTP request from a client, inspects
it, and sends it to a backend server.
There are two different TCP connections at play here, one between
the client and the L7 load balancer and another between the L7
load balancer and the server. Because a L7 load balancer operates
at the HTTP level, it can de-multiplex individual HTTP requests
sharing the same TCP connection. This is even more important
with HTTP 2, where multiple concurrent streams are multiplexed
on the same TCP connection, and some connections can be a lot
more expensive to handle than others.
The load balancer can do smart things with application traffic, like
rate-limit requests based on HTTP headers, terminate TLS connec-
tions, or force HTTP requests belonging to the same logical session
to be routed to the same backend server. For example, the load bal-
ancer could use a cookie to identify which logical session a request
belongs to and map it to a server using consistent hashing. That
allows servers to cache session data in memory and avoid fetching

13“Network Load Balancer,” https://aws.amazon.com/elasticloadbalancing/
network-load-balancer/

14“Azure Load Balancer,” https://azure.microsoft.com/en-us/services/load-
balancer/

15layer 7 is the application layer in the OSI model

https://aws.amazon.com/elasticloadbalancing/network-load-balancer/
https://aws.amazon.com/elasticloadbalancing/network-load-balancer/
https://azure.microsoft.com/en-us/services/load-balancer/
https://azure.microsoft.com/en-us/services/load-balancer/
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it from the data store for each request. The caveat is that sticky ses-
sions can create hotspots, since some sessions can be much more
expensive to handle than others.
A L7 load balancer can be used as the backend of a L4 load balancer
that load-balances requests received from the internet. Although
L7 load balancers have more capabilities than L4 load balancers,
they also have lower throughput, making L4 load balancers better
suited to protect against certain DDoS attacks, like SYN floods16.
A drawback of using a dedicated load balancer is that all the traffic
directed to an application needs to go through it. So if the load
balancer goes down, the application behind it does too. However,
if the clients are internal to the organization, load balancing can be
delegated to them using the sidecar pattern. The idea is to proxy all
a client’s network traffic through a process co-located on the same
machine (the sidecar proxy). The sidecar process acts as a L7 load
balancer, load-balancing requests to the right servers. And, since
it’s a reverse proxy, it can also implement various other functions,
such as rate-limiting, authentication, and monitoring.
This approach17 (aka “service mesh”) has been gaining popularity
with the rise of microservices in organizations with hundreds of
services communicating with each other. As of this writing, pop-
ular sidecar proxy load balancers are NGINX, HAProxy, and En-
voy. The main advantage of this approach is that it delegates load-
balancing to the clients, removing the need for a dedicated load
balancer that needs to be scaled out and maintained. The draw-
back is that it makes the system a lot more complex since now we
need a control plane to manage all the sidecars18.

16A SYN flood is a form of denial-of-service attack in which an attacker rapidly
initiates a TCP connection to a server without finalizing the connection.

17“Service mesh data plane vs. control plane,” https://blog.envoyproxy.io/ser
vice-mesh-data-plane-vs-control-plane-2774e720f7fc

18“ServiceMeshWars, Goodbye Istio,” https://blog.polymatic.systems/service-
mesh-wars-goodbye-istio-b047d9e533c7

https://blog.envoyproxy.io/service-mesh-data-plane-vs-control-plane-2774e720f7fc
https://blog.envoyproxy.io/service-mesh-data-plane-vs-control-plane-2774e720f7fc
https://blog.polymatic.systems/service-mesh-wars-goodbye-istio-b047d9e533c7
https://blog.polymatic.systems/service-mesh-wars-goodbye-istio-b047d9e533c7




Chapter 19

Data storage

Because Cruder is stateless, we were able to scale it out by running
multiple application servers behind a load balancer. But as the
application handles more load, the number of requests to the rela-
tional database increases as well. And since the database is hosted
on a single machine, it’s only a matter of time until it reaches its
capacity and it starts to degrade.

19.1 Replication
We can increase the read capacity of the database by creating repli-
cas. The most commonway of doing that is with a leader-follower
topology (see Figure 19.1). In this model, clients send writes (up-
dates, inserts, and deletes) exclusively to the leader, which persists
the changes to its write-ahead log. Then, the followers, or replicas,
connect to the leader and stream log entries from it, committing
them locally. Since log entries have a sequence number, follow-
ers can disconnect and reconnect at any time and start fromwhere
they left off by communicating to the leader the last sequence num-
ber they processed.

By creating read-only followers and putting them behind a load
balancer, we can increase the read capacity of the database. Repli-
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Figure 19.1: Single leader replication

cation also increases the availability of the database. For example,
the load balancer can automatically take a faulty replica out of the
pool when it detects that it’s no longer healthy or available. And
when the leader fails, a replica can be reconfigured to take its place.
Additionally, individual followers can be used to isolate specific
workloads, like expensive analytics queries that are run periodi-
cally, so that they don’t impact the leader and other replicas.

The replication between the leader and the followers can happen
either fully synchronously, fully asynchronously, or as a combina-
tion of the two.

If the replication is fully asynchronous, when the leader receives a
write, it broadcasts it to the followers and immediately sends a
response back to the client without waiting for the followers to
acknowledge it. Although this approach minimizes the response
time for the client, it’s not fault-tolerant. For example, the leader
could crash right after acknowledging a write and before broad-
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casting it to the followers, resulting in data loss.

In contrast, if replication is fully synchronous, the leader waits for
the write to be acknowledged by the followers before returning a
response to the client. This comes with a performance cost since
a single slow replica increases the response time of every request.
And if any replica is unreachable, the data store becomes unavail-
able. This approach is not scalable; the more followers there are,
the more likely it is that at least one of them is slow or unavailable.

In practice, relational databases often support a combination
of synchronous and asynchronous replication. For example, in
PostgreSQL, individual followers can be configured to receive
updates synchronously1, rather than asynchronously, which is
the default. So, for example, we could have a single synchronous
follower whose purpose is to act as an up-to-date backup of
the leader. That way, if the leader fails, we can fail over to the
synchronous follower without incurring any data loss.

Conceptually, the failover mechanism needs to: detect when the
leader has failed, promote the synchronous follower to be the new
leader and reconfigure the other replicas to follow it, and ensure
client requests are sent to the new leader. Managed solutions like
AWS RDS or Azure SQL Database, support read replicas2 and au-
tomated failover3 out of the box, among other features such as au-
tomated patching and backups.

One caveat of replication is that it only helps to scale out reads, not
writes. The other issue is that the entire database needs to fit on
a single machine. Although we can work around that by moving
some tables from the main database to others running on different
nodes, we would only be delaying the inevitable. As you should
know by now, we can overcome these limitations with partition-
ing.

1“PostgreSQL Server Configuration, Replication,” https://www.postgresql.o
rg/docs/14/runtime-config-replication.html

2“Amazon RDS Read Replicas,” https://aws.amazon.com/rds/features/read-
replicas/

3“Multi-AZ deployments for high availability,” https://docs.aws.amazon.co
m/AmazonRDS/latest/UserGuide/Concepts.MultiAZ.html

https://www.postgresql.org/docs/14/runtime-config-replication.html
https://www.postgresql.org/docs/14/runtime-config-replication.html
https://aws.amazon.com/rds/features/read-replicas/
https://aws.amazon.com/rds/features/read-replicas/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.MultiAZ.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.MultiAZ.html
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19.2 Partitioning

Partitioning allows us to scale out a database for both reads and
writes. Even though traditional (centralized) relational databases
generally don’t support it out of the box, we can implement it at
the application layer in principle. However, implementing par-
titioning at the application layer is challenging and adds a lot of
complexity to the system. For starters, we need to decide how to
partition the data among the database instances and rebalance it
when a partition becomes too hot or too big. Once the data is par-
titioned, queries that span multiple partitions need to be split into
sub-queries and their responses have to be combined (think of ag-
gregations or joins). Also, to support atomic transactions across
partitions, we need to implement a distributed transaction proto-
col, like 2PC. Add to all that the requirement to combine partition-
ing with replication, and you can see how partitioning at the ap-
plication layer becomes daunting.

Taking a step back, the fundamental problemwith traditional rela-
tional databases is that they have been designed under the assump-
tion they fit on a single beefy machine. Because of that, they sup-
port a number of features that are hard to scale, like ACID trans-
actions and joins. Relational databases were designed in an era
where disk space was costly, and normalizing the data to reduce
the footprint on disk was a priority, even if it came with a signifi-
cant cost to unnormalize the data at query time with joins.4

Times have changed, and storage is cheap nowadays, while CPU
time isn’t. This is why, in the early 2000s, large tech companies
began to build bespoke solutions for storing data designed from
the ground up with high availability and scalability in mind.

4That said, reducing storage costs isn’t the only benefit of normalization: it also
helps maintain data integrity. If a piece of data is duplicated in multiple places,
then to update it, we have to make sure it gets updated everywhere. In contrast, if
the data is normalized, we only need to update it in one place.
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19.3 NoSQL
These early solutions didn’t support SQL andmore generally only
implemented a fraction of the features offered by traditional rela-
tional data stores. White papers such as Bigtable5 and Dynamo6
revolutionized the industry and started a push towards scalable
storage layers, resulting in a plethora of open source solutions in-
spired by them, like HBase and Cassandra.

Since the first generation of these data stores didn’t support SQL,
theywere referred to asNoSQL. Nowadays, the designation is mis-
leading as NoSQL stores have evolved to support features, like
dialects of SQL, that used to be available only in relational data
stores.

While relational databases support stronger consistency models
such as strict serializability, NoSQL stores embrace relaxed consis-
tency models such as eventual and causal consistency to support
high availability.

Additionally, NoSQL stores generally don’t provide joins and rely
on the data, often represented as key-value pairs or documents
(e.g., JSON), to be unnormalized. A pure key-value store maps an
opaque sequence of bytes (key) to an opaque sequence of bytes
(value). A document store maps a key to a (possibly hierarchi-
cal) document without a strictly enforced schema. The main dif-
ference from a key-value store is that documents are interpreted
and indexed and therefore can be queried based on their internal
structure.

Finally, since NoSQL stores natively support partitioning for scal-
ability purposes, they have limited support for transactions. For
example, Azure Cosmos DB currently only supports transactions
scoped to individual partitions. On the other hand, since the data
is stored in unnormalized form, there is less need for transactions
or joins in the first place.

5“Bigtable: A Distributed Storage System for Structured Data,” https://static
.googleusercontent.com/media/research.google.com/en//archive/bigtable-
osdi06.pdf

6we talked about Dynamo in section 11.3

https://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf
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Although the data models used by NoSQL stores are generally not
relational, we can still use them to model relational data. But if we
take aNoSQL store and try to use it as a relational database, wewill
end upwith theworst of bothworlds. If used correctly, NoSQL can
handle many of the use cases that a traditional relational database
can7, while being essentially scalable from day 1.8

Themain requirement for using aNoSQLdata store efficiently is to
know the access patterns upfront and model the data accordingly;
let’s see why that is so important. Take Amazon DynamoDB9, for
example; its main abstraction is a table that contains items. Each
item can have different attributes, but it must have a primary key
that uniquely identifies an item.
The primary key can consist of either a single attribute, the parti-
tion key, or of two attributes, the partition key and the sort key. As
you might suspect, the partition key dictates how the data is par-
titioned and distributed across nodes, while the sort key defines
how the data is sortedwithin a partition, which allows for efficient
range queries.
DynamoDB creates three replicas for each partition and uses state
machine replication to keep them in sync10. Writes are routed to
the leader, and an acknowledgment is sent to the client when two
out of three replicas have received the write. Reads can be either
eventually consistent (pick any replica) or strongly consistent
(query the leader). Confusingly enough, the architecture of Dy-
namoDB is very different from the one presented in the Dynamo
paper, which we discussed in chapter 11.3.
At a high level, DynamoDB’s API supports:

• CRUD operations on single items,
7“AWS re:Invent 2018: Amazon DynamoDB Deep Dive: Advanced Design Pat-

terns for DynamoDB (DAT401),” https://www.youtube.com/watch?v=HaEPX
oXVf2k

8On the other hand, while we certainly can find ways to scale a relational
database, what works on day 1 might not work on day 10 or 100.

9“Amazon DynamoDB,” https://aws.amazon.com/dynamodb/
10“AWS re:Invent 2018: Amazon DynamoDB Under the Hood: How We Built a

Hyper-Scale Database (DAT321),” https://www.youtube.com/watch?v=yvBR7
1D0nAQ

https://www.youtube.com/watch?v=HaEPXoXVf2k
https://www.youtube.com/watch?v=HaEPXoXVf2k
https://aws.amazon.com/dynamodb/
https://www.youtube.com/watch?v=yvBR71D0nAQ
https://www.youtube.com/watch?v=yvBR71D0nAQ
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• queryingmultiple items that have the same partition key (op-
tionally specifying conditions on the sort key),

• and scanning the entire table.
There are no join operations, by design, since they don’t scale well.
But that doesn’t mean we should implement joins in the applica-
tion. Instead, as we will see shortly, we should model our data so
that joins aren’t needed in the first place.
The partition and sort key attributes are used to model the table’s
access patterns. For example, suppose the most common access
pattern is retrieving the list of orders for a specific customer sorted
by date. In that case, it would make sense for the table to have the
customer ID as the partition key, and the order creation date as the
sort key:

Partition Key Sort Key Attribute Attribute
jonsnow 2021-07-13 OrderID: 1452 Status: Shipped
aryastark 2021-07-20 OrderID: 5252 Status: Placed
branstark 2021-07-22 OrderID: 5260 Status: Placed

Now suppose that we also want the full name of the customer in
the list of orders. While, in a relational database, a table contains
only entities of a certain type (e.g., customer), in NoSQL, a table
can contain entities of multiple types. Thus, we could store both
customers and orders within the same table:

Partition Key Sort Key Attribute Attribute
jonsnow 2021-07-13 OrderID: 1452 Status: Shipped
jonsnow jonsnow FullName: Jon Snow Address: …
aryastark 2021-07-20 OrderID: 5252 Status: Placed
aryastark aryastark FullName: Arya Stark Address: …

Because a customer and its orders have the same partition key, we
can now issue a single query that retrieves all entities for the de-
sired customer.
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See what we just did? We have structured the table based on the
access patterns so that queries won’t require any joins. Now think
for a moment about how you would model the same data in nor-
malized form in a relational database. You would probably have
one table for orders and another for customers. And, to perform
the same query, a join would be required at query time, which
would be slower and harder to scale.

The previous example is very simple, and DynamoDB supports
secondary indexes to model more complex access patterns— local
secondary indexes allow for alternate sort keys in the same table,
while global secondary indexes allow for different partition and
sort keys, with the caveat that index updates are asynchronous and
eventually consistent.

It’s a commonmisconception thatNoSQLdata stores aremore flex-
ible than relational databases because they can seamlessly scale
without modeling the data upfront. Nothing is further from the
truth — NoSQL requires a lot more attention to how the data is
modeled. Because NoSQL stores are tightly coupled to the access
patterns, they are a lot less flexible than relational databases.

If there is one concept you should take away from this chapter, it’s
this: using a NoSQL data store requires identifying the access pat-
terns upfront to model the data accordingly. If you want to learn
how to do that, I recommend reading “The DynamoDB Book”11,
even if you plan to use a different NoSQL store.

As scalable data stores keep evolving, the latest trend is to combine
the scalability of NoSQL with the ACID guarantees of relational
databases. These new data stores are also referred to as NewSQL12.
WhileNoSQLdata stores prioritize availability over consistency in
the face of network partitions, NewSQL stores prefer consistency.
The argument behind NewSQL stores is that, with the right de-
sign, the reduction in availability caused by enforcing strong con-

11“The DynamoDB Book,” https://www.dynamodbbook.com/
12“Andy Pavlo — The official ten-year retrospective of NewSQL databases,” ht

tps://www.youtube.com/watch?v=LwkS82zs65g

https://www.dynamodbbook.com/
https://www.youtube.com/watch?v=LwkS82zs65g
https://www.youtube.com/watch?v=LwkS82zs65g
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sistency is hardly noticeable13 for many applications. That, com-
bined with the fact that perfect 100% availability is not possible
anyway (availability is defined in 9s), has spurred the drive to
build storage systems that can scale but favor consistency over
availability in the presence of network partitions. CockroachDB14
and Spanner15 are well-known examples of NewSQL data stores.

13“NewSQL database systems are failing to guarantee consistency, and I blame
Spanner,” https://dbmsmusings.blogspot.com/2018/09/newsql-database-
systems-are-failing-to.html

14“CockroachDB,” https://github.com/cockroachdb/cockroach
15we talked about Spanner in section 12.4

https://dbmsmusings.blogspot.com/2018/09/newsql-database-systems-are-failing-to.html
https://dbmsmusings.blogspot.com/2018/09/newsql-database-systems-are-failing-to.html
https://github.com/cockroachdb/cockroach




Chapter 20

Caching

Suppose a significant fraction of requests that Cruder sends to its
data store consists of a small pool of frequently accessed entries.
In that case, we can improve the application’s performance and re-
duce the load on the data store by introducing a cache. A cache is a
high-speed storage layer that temporarily buffers responses from
an origin, like a data store, so that future requests can be served
directly from it. It only provides best-effort guarantees, since its
state is disposable and can be rebuilt from the origin. We have al-
ready seen some applications of cachingwhen discussing the DNS
protocol or CDNs.

For a cache to be cost-effective, the proportion of requests that can
be served directly from it (hit ratio) should be high. The hit ratio
depends on several factors, such as the universe of cachable objects
(the fewer, the better), the likelihood of accessing the same objects
repeatedly (the higher, the better), and the size of the cache (the
larger, the better).

As a general rule of thumb, the higher up in the call stack caching
is used, the more resources can be saved downstream. This is why
the first use case for caching we discussed was client-side HTTP
caching. However, it’s worth pointing out that caching is an opti-
mization, and you don’t have a scalable architecture if the origin,
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e.g., the data store in our case, can’t withstand the loadwithout the
cache fronting it. If the access pattern suddenly changes, leading
to cache misses, or the cache becomes unavailable, you don’t want
your application to fall over (but it’s okay for it to become slower).

20.1 Policies
When a cache miss occurs, the missing object has to be requested
from the origin, which can happen in two ways:

• After getting an “object-not-found” error from the cache, the
application requests the object from the origin and updates
the cache. In this case, the cache is referred to as a side cache,
and it’s typically treated as a key-value store by the applica-
tion.

• Alternatively, the cache is inline, and it communicates
directly with the origin, requesting the missing object on
behalf of the application. In this case, the application only
ever accesses the cache. We have already seen an example
of an inline cache when discussing HTTP caching.

Because a cache has a limited capacity, one or more entries need to
be evicted tomake room for new ones when its capacity is reached.
Which entry to remove depends on the eviction policy used by the
cache and the objects’ access pattern. For example, one commonly
used policy is to evict the least recently used (LRU) entry.

A cache can also have an expiration policy that dictates when an
object should be evicted, e.g., a TTL.When an object has been in the
cache for longer than its TTL, it expires and can safely be evicted.
The longer the expiration time, the higher the hit ratio, but also the
higher the likelihood of serving stale and inconsistent data.

The expiration doesn’t need to occur immediately, and it can be de-
ferred to the next time the entry is requested. In fact, that might be
preferable— if the origin (e.g., a data store) is temporarily unavail-
able, it’s more resilient to return an object with an expired TTL to
the application rather than an error.
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An expiry policy based on TTL is a workaround for cache invali-
dation, which is very hard to implement in practice1. For exam-
ple, if you were to cache the result of a database query, every time
any of the data touched by that query changes (which could span
thousands of records or more), the cached result would need to be
invalidated somehow.

20.2 Local cache
The simplest way to implement a cache is to co-locate it with the
client. For example, the client could use a simple in-memory hash
table or an embeddable key-value store, like RocksDB2, to cache
responses (see Figure 20.1).

Figure 20.1: In-process cache

Because each client cache is independent of the others, the same
objects are duplicated across caches, wasting resources. For exam-
ple, if every client has a local cache of 1GB, then no matter how
many clients there are, the total size of the cache is 1 GB. Also, con-

1“Cache coherence,” https://en.wikipedia.org/wiki/Cache_coherence
2“RocksDB,” http://rocksdb.org/

https://en.wikipedia.org/wiki/Cache_coherence
http://rocksdb.org/
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sistency issues will inevitably arise; for example, two clients might
see different versions of the same object.

Additionally, as the number of clients grows, the number of
requests to the origin increases. This issue is exacerbated when
clients restart, or new ones come online, and their caches need to
be populated from scratch. This can cause a “thundering herd”
effect where the downstream origin is hit with a spike of requests.
The same can also happen when a specific object that wasn’t
accessed before becomes popular all of a sudden.

Clients can reduce the impact of a thundering herd by coalescing
requests for the same object. The idea is that, at any given time,
there should be at most one outstanding request per client to fetch
a specific object.

20.3 External cache
An external cache is a service dedicated to caching objects, typi-
cally in memory. Because it’s shared across clients, it addresses
some of the drawbacks of local caches at the expense of greater
complexity and cost (see Figure 20.2). For example, Redis3 orMem-
cached4 are popular caching services, also available as managed
services on AWS and Azure.

Unlike a local cache, an external cache can increase its throughput
and size using replication and partitioning. For example, Redis5
can automatically partition data across multiple nodes and repli-
cate each partition using a leader-follower protocol.

Since the cache is shared among its clients, there is only a single
version of each object at any given time (assuming the cache is not
replicated), which reduces consistency issues. Also, the number of
times an object is requested from the origin doesn’t grow with the
number of clients.

3“Redis,” https://redis.io/
4“Memcached,” https://memcached.org/
5“Redis cluster tutorial,” https://redis.io/topics/cluster-tutorial

https://redis.io/
https://memcached.org/
https://redis.io/topics/cluster-tutorial
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Figure 20.2: Out-of-process cache

Although an external cache decouples clients from the origin, the
load merely shifts to the external cache. Therefore, the cache will
eventually need to be scaled out if the load increases. When that
happens, as little data as possible should be moved around (or
dropped) to avoid the cache degrading or the hit ratio dropping
significantly. Consistent hashing, or a similar partitioning tech-
nique, can help reduce the amount of data that needs to be shuffled
when the cache is rebalanced.

An external cache also comes with a maintenance cost as it’s yet
another service that needs to be operated. Additionally, the latency
to access it is higher than accessing a local cache because a network
call is required.

If the external cache is down, how should the clients react? You
would think it might be okay to bypass the cache and directly hit
the origin temporarily. But the origin might not be prepared to
withstand a sudden surge of traffic. Consequently, the external
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cache becoming unavailable could cause a cascading failure, re-
sulting in the origin becoming unavailable as well.
To avoid that, clients could use an in-process cache as a defense
against the external cache becoming unavailable. That said, the
origin also needs to be prepared to handle these sudden “attacks”
by, e.g., shedding requests; we will discuss a few approaches for
achieving that in the book’s resiliency part. What’s important to
remember is that caching is an optimization, and the system needs
to survive without it at the cost of being slower.



Chapter 21

Microservices

If Cruder is successful in the market, we can safely assume that
we will continue to add more components to it to satisfy an ever-
growing list of business requirements, as shown in Figure 21.1.

Figure 21.1: A monolithic application composed of multiple com-
ponents

The components will likely become increasingly coupled in time,
causing developers to step on each other’s toes more frequently.
Eventually, the codebase becomes complex enough that nobody
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fully understands every part of it, and implementing new features
or fixing bugs becomes a lot more time-consuming than it used to
be.

Also, a change to a component might require the entire applica-
tion to be rebuilt and deployed. And if the deployment of a new
version introduces a bug, like a memory or socket leak, unrelated
components might also be affected. Moreover, reverting a deploy-
ment affects the velocity of every developer, not just the one that
introduced a bug.

One way to mitigate the growing pains of a monolithic application
is to functionally decompose it into a set of independently deploy-
able services that communicate via APIs, as shown in Figure 21.2.
The APIs decouple the services from each other by creating bound-
aries that are hard to violate, unlike the ones between components
running in the same process.

Figure 21.2: An application split into independently deployable
services that communicate via APIs

Each service can be owned and operated by a small team. Smaller
teams collaborate more effectively than larger ones, since the com-
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munication overhead grows quadratically1 with the team’s size.
And because each team controls its own codebase and dictates its
own release schedule, less cross-team communication is required
overall. Also, the surface area of a service is smaller than thewhole
application, making it more digestible to developers, especially
new hires.

Each team is also free in principle to adopt the tech stack and hard-
ware that fits their specific needs. After all, the consumers of the
APIs don’t care how the functionality is implemented. This makes
it easy to experiment and evaluate new technologies without af-
fecting other parts of the system. As a result, each service can have
its own independent data model and data store(s) that best fit its
use cases.

This architectural style is also referred to as the microservice archi-
tecture. The termmicro is misleading, though— there doesn’t have
to be anything micro about services.2 If a service doesn’t do much,
it only adds operational overhead and complexity. As a rule of
thumb, APIs should have a small surface area and encapsulate a
significant amount of functionality.3

21.1 Caveats
To recap, splitting an application into services adds a great deal
of complexity to the overall system, which is only worth paying if
it can be amortized across many development teams. Let’s take a
closer look at why that is.

Tech stack

While nothing forbids each microservice to use a different tech
stack, doing so makes it more difficult for a developer to move

1“The Mythical Man-Month,” https://en.wikipedia.org/wiki/The_Mythica
l_Man-Month

2Amore appropriate name for the microservices architecture is service-oriented
architecture, but unfortunately, that name comes with some baggage as well.

3This idea is described well in John Ousterhout’sA Philosophy of Software Design,
which I highly recommend.

https://en.wikipedia.org/wiki/The_Mythical_Man-Month
https://en.wikipedia.org/wiki/The_Mythical_Man-Month
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from one team to another. And think of the sheer number of li-
braries — one for each language adopted — that need to be sup-
ported to provide common functionality that all services need, like
logging.

It’s only reasonable, then, to enforce a certain degree of standard-
ization. One way to do that, while still allowing some degree of
freedom, is to loosely encourage specific technologies by provid-
ing a great development experience for the teams that stick with
the recommended portfolio of languages and technologies.

Communication

Remote calls are expensive and introduce non-determinism. Much
of what is described in this book is about dealing with the com-
plexity of distributed processes communicating over the network.
That said, a monolith doesn’t live in isolation either, since it serves
external requests and likely depends on third-party APIs as well,
so these issues need to be tackled there as well, albeit on a smaller
scale.

Coupling

Microservices should be loosely coupled so that a change in one
service doesn’t require changing others. When that’s not the case,
you can end upwith a dreaded distributedmonolith, which has all
the downsides of a monolith while being an order of magnitude
more complex due to its distributed nature.

There are many causes of tight coupling, like fragile APIs that re-
quire clients to be updatedwhenever they change, shared libraries
that have to be updated in lockstep across multiple services, or the
use of static IP addresses to reference external services.

Resource provisioning

To support a large number of independent services, it should be
simple to provision newmachines, data stores, and other commod-
ity resources — you don’t want every team to come up with their
own way of doing it. And, once these resources have been provi-
sioned, they have to be configured. To pull this off efficiently, a
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fair amount of automation is needed.

Testing

While testing individualmicroservices is not necessarilymore chal-
lenging than testing amonolith, testing the integration ofmicroser-
vices is a lot harder. This is because very subtle and unexpected
behaviors will emerge only when services interact with each other
at scale in production.

Operations

Just like with resource provisioning, there should be a common
way of continuously delivering and deploying new builds safely
to production so that each team doesn’t have to reinvent the wheel.

Additionally, debugging failures, performance degradations, and
bugs is a lot more challenging with microservices, as you can’t
just load the whole application onto your local machine and step
through it with a debugger. This is why having a good observabil-
ity platform becomes crucial.

Eventual consistency

As a side effect of splitting an application into separate services,
the data model no longer resides in a single data store. However,
as we have learned in previous chapters, atomically updating data
spread in different data stores, and guaranteeing strong consis-
tency, is slow, expensive, and hard to get right. Hence, this type
of architecture usually requires embracing eventual consistency.

So to summarize, it’s generally best to startwith amonolith and de-
compose it only when there is a good reason to do so4. As a bonus,
you can still componentize the monolith, with the advantage that
it’s much easier to move the boundaries as the application grows.
Once themonolith iswellmatured and growing pains start to arise,
you can start to peel off one microservice at a time from it.

4“MicroservicePremium,” https://martinfowler.com/bliki/MicroservicePre
mium.html

https://martinfowler.com/bliki/MicroservicePremium.html
https://martinfowler.com/bliki/MicroservicePremium.html
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21.2 API gateway
After decomposing Cruder into a group of services, we need to re-
think how the outside world communicates with the application.
For example, a client might need to perform multiple requests to
different services to fetch all the information it needs to complete a
specific operation. This can be expensive onmobile devices, where
every network request consumes precious battery life.

Moreover, clients need to be aware of implementation details,
such as the DNS names of all the internal services. This makes it
challenging to change the application’s architecture as it requires
changing the clients as well, which is hard to do if you don’t
control them. Once a public API is out there, you had better be
prepared to maintain it for a very long time.

As is common in computer science, we can solve almost any prob-
lem by adding a layer of indirection. We can hide the internal APIs
behind a public one that acts as a facade, or proxy, for the internal
services (see Figure 21.3). The service that exposes this public API
is called the API gateway (a reverse proxy).

21.2.1 Core responsibilities
Let’s have a look at some of the most common responsibilities of
an API gateway.

Routing

The most obvious function of an API gateway is routing inbound
requests to internal services. One way to implement that is with
the help of a routing map, which defines how the public API maps
to the internal APIs. This mapping allows internal APIs to change
without breaking external clients. For example, suppose there is
a 1:1 mapping between a specific public endpoint and an internal
one — if in the future the internal endpoint changes, the external
clients can continue to use the public endpoint as if nothing had
changed.

Composition
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Figure 21.3: The API gateway hides the internal APIs from its
clients.

The data of a monolithic application generally resides in a single
data store, but in a distributed system, it’s spread across multiple
services, each using its own data store. As such, we might en-
counter use cases that require stitchingdata together frommultiple
sources. The API gateway can offer a higher-level API that queries
multiple services and composes their responses. This relieves the
client from knowingwhich services to query and reduces the num-
ber of requests it needs to perform to get the data it needs.

Composing APIs is not simple. The availability of the composed
API decreases as the number of internal calls increases, since each
has a non-zero probability of failure. Moreover, the data might be
inconsistent, as updates might not have propagated to all services
yet; in that case, the gateway will have to resolve this discrepancy
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somehow.

Translation

The API gateway can translate from one IPC mechanism to an-
other. For example, it can translate a RESTful HTTP request into
an internal gRPC call.

It can also expose different APIs to different clients. For example,
the API for a desktop application could potentially return more
data than the one for a mobile application, as the screen estate is
larger and more information can be presented at once. Also, net-
work calls are more expensive for mobile clients, and requests gen-
erally need to be batched to reduce battery usage.

To meet these different and competing requirements, the gateway
can provide different APIs tailored to different use cases and trans-
late these to internal calls. Graph-based APIs are an increasingly
popular solution for this. A graph-based API exposes a schema com-
posed of types, fields, and relationships across types, which de-
scribes the data. Based on this schema, clients send queries declar-
ing precisely what data they need, and the gateway’s job is to fig-
ure out how to translate these queries into internal API calls.

This approach reduces the development time as there is no need
to introduce different APIs for different use cases, and clients are
free to specify what they need. There is still an API, though; it just
happens that it’s described with a graph schema, and the gateway
allows to perform restricted queries on it. GraphQL5 is the most
popular technology in this space at the time of writing.

21.2.2 Cross-cutting concerns
As the API gateway is a reverse proxy, it can also implement cross-
cutting functionality that otherwise would have to be part of each
service. For example, it can cache frequently accessed resources
or rate-limit requests to protect the internal services from being
overwhelmed.

5“GraphQL,” https://graphql.org/

https://graphql.org/
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Authentication and authorization are some of the most common
and critical cross-cutting concerns. Authentication is the process of
validating that a so-called principal—a human or an application—
issuing a request is who it says it is. Authorization is the process of
granting the authenticated principal permissions to perform spe-
cific operations, like creating, reading, updating, or deleting a par-
ticular resource. Typically, this is implemented by assigning one
or more roles that grant specific permissions to a principal.

A common way for a monolithic application to implement authen-
tication and authorization is with sessions. Because HTTP is a
stateless protocol, the application needs a way to store data be-
tweenHTTP requests to associate a request with any other request.
When a client first sends a request to the application, the applica-
tion creates a session object with an ID (e.g., a cryptographically-
strong random number) and stores it in an in-memory cache or
an external data store. The session ID is returned in the response
through an HTTP cookie so that the client will include it in all fu-
ture requests. That way, when the application receives a request
with a session cookie, it can retrieve the corresponding session ob-
ject.

So when a client sends its credentials to the application API’s lo-
gin endpoint, and the credential validation is successful, the prin-
cipal’s ID and roles are stored in the session object. The application
can later retrieve this information and use it to decide whether to
allow the principal to perform a request or not.

Translating this approach to a microservice architecture is not
that straightforward. For example, it’s not obvious which service
should be responsible for authenticating and authorizing requests,
as the handling of requests can span multiple services.

One approach is to have the API gateway authenticate external re-
quests, since that’s their point of entry. This allows centralizing the
logic to support different authentication mechanisms into a single
component, hiding the complexity from internal services. In con-
trast, authorizing requests is best left to individual services to avoid
coupling the API gateway with domain logic.
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When the API gateway has authenticated a request, it creates a se-
curity token. The gateway passes this token with the request to the
internal services, which in turn pass it downstream to their depen-
dencies. Now, when an internal service receives a request with a
security token attached, it needs to have a way to validate it and
obtain the principal’s identity and roles. The validation differs de-
pending on the type of token used, which can be opaque and not
contain any information, or transparent and embed the principal’s
informationwithin the token itself. The downside of an opaque to-
ken is that it requires calling an external auth service to validate it
and retrieve the principal’s information. Transparent tokens elimi-
nate that call at the expense of making it harder to revoke compro-
mised tokens.

Themost popular standard for transparent tokens is the JSONWeb
Token6 (JWT). A JWT is a JSON payload that contains an expiration
date, the principal’s identity and roles, and other metadata. In ad-
dition, the payload is signed with a certificate trusted by the inter-
nal services. Hence, no external calls are needed to validate the
token.

Another common mechanism for authentication is the use of API
keys. An API key is a custom key that allows the API gateway to
identify the principal making a request and limit what they can
do. This approach is popular for public APIs, like the ones of, e.g.,
Github or Twitter.

We have barely scratched the surface of the topic, and there are
entire books7written on the subject that you can read to learnmore
about it.

21.2.3 Caveats
One of the drawbacks of using an API gateway is that it can be-
come a development bottleneck. Since it’s tightly coupledwith the
APIs of the internal services it’s shielding, whenever an internal

6“Introduction to JSONWeb Tokens,” https://jwt.io/introduction
7“Microservices Security in Action,” https://www.manning.com/books/micr

oservices-security-in-action

https://jwt.io/introduction
https://www.manning.com/books/microservices-security-in-action
https://www.manning.com/books/microservices-security-in-action
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API changes, the gateway needs to be modified as well. Another
downside is that it’s one more service that needs to be maintained.
It also needs to scale to whatever the request rate is for all the ser-
vices behind it.
That said, if an application has many services and APIs, the pros
outweigh the cons, and it’s generally a worthwhile investment. So
how do you go about implementing a gateway? You can roll your
own API gateway, using a reverse proxy as a starting point, like
NGINX, or use a managed solution, like Azure API Management8
or Amazon API Gateway9.

8“AzureAPIManagement,” https://azure.microsoft.com/en-gb/services/api-
management/

9“Amazon API Gateway,” https://aws.amazon.com/api-gateway/

https://azure.microsoft.com/en-gb/services/api-management/
https://azure.microsoft.com/en-gb/services/api-management/
https://aws.amazon.com/api-gateway/
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Control planes and data
planes

The API gateway is a single point of failure. If it goes down, then
so does Cruder, which is why it needs to be highly available. And
because every external request needs to go through it, it must also
be scalable. This creates some interesting challenges with regard
to external dependencies.

For example, suppose the gateway has a specific “configuration”
or management endpoint to add, remove and configure API keys
used to rate-limit requests. Unsurprisingly, the request volume for
the configuration endpoint is a lot lower than the one for the main
endpoint(s), and a lower scale would suffice to handle it. And
while the gateway needs to prefer availability and performance
over consistency for routing external requests to internal services,
it should prefer consistency over availability for requests sent to
the management endpoint.

Because of these different and competing requirements, we could
split the API gateway into a data plane service that serves external
requests directed towards our internal services and a control plane
service that manages the gateway’s metadata and configuration.
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As it turns out, this split is a common pattern1. For example, in
chain replication in section 10.4, the control plane holds the config-
uration of the chains. And in Azure Storage, which we discussed
in chapter 17, the stream and partitionmanagers are control planes
that manage the allocation of streams and partitions to storage and
partition servers, respectively.

More generally, a data plane includes any functionality on the criti-
cal path that needs to run for each client request. Therefore, it must
be highly available, fast, and scale with the number of requests.
In contrast, a control plane is not on the critical path and has less
strict scaling requirements. Itsmain job is to help the data plane do
its work bymanagingmetadata or configuration and coordinating
complex and infrequent operations. And since it generally needs
to offer a consistent view of its state to the data plane, it favors
consistency over availability.

An application can have multiple independent control and data
planes. For example, a control plane might be in charge of scaling
a service up or down based on load, while another manages its
configuration.

But separating the control plane from the data plane introduces
complexity. The data plane needs to be designed to withstand
control plane failures for the separation to be robust. If the data
plane stops serving requests when the control plane becomes un-
available, we say the former has a hard dependency on the latter. In-
tuitively, the entire system becomes unavailable if either the con-
trol plane or the data plane fails. More formally, when we have
a chain of components that depend on each other, the theoretical
availability of the system is the product of the availabilities of its
components.

For example, if the data plane has a theoretical availability of
99.99%, but the control plane has an availability of 99%, then the
overall system can only achieve a combined availability of 98.99%:

1“Control Planes vs Data Planes,” https://brooker.co.za/blog/2019/03/17/co
ntrol.html

https://brooker.co.za/blog/2019/03/17/control.html
https://brooker.co.za/blog/2019/03/17/control.html
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0.9999 ⋅ 0.99 = 0.9899

In other words, a system can at best be only as available as its
least available hard dependency. We can try to make the control
plane more reliable, but more importantly, we should ensure that
the data plane can withstand control plane failures. If the control
plane is temporarily unavailable, the data plane should continue
to run with a stale configuration rather than stop. This concept is
also referred to as static stability.

22.1 Scale imbalance
Generally, data planes and control planes tend to have very differ-
ent scale requirements. This creates a risk as the data plane can
overload2 the control plane.
Suppose the control plane exposes an API that the data plane pe-
riodically queries to retrieve the latest configuration. Under nor-
mal circumstances, you would expect the requests to the control
plane to be spread out in timemore or less uniformly. But, in some
cases, they can cluster within a short time interval. For example,
if, for whatever reason, the processes that make up the data plane
are restarted at the same time and must retrieve the configuration
from the control plane, they could overload it.
Although the control plane can defend itself to some degree with
the resiliency mechanisms described in chapter 28, eventually, it
will start to degrade. If the control plane becomes unavailable be-
cause of overload or any other reason (like a network partition), it
can take down the data plane with it.
Going back to the previous example, if part of the data plane is
trying to start but can’t reach the control plane because it’s over-
loaded, it won’t be able to come online. So how can we design
around that?

2“Avoiding overload in distributed systems by putting the smaller service in
control,” https://aws.amazon.com/builders- library/avoiding-overload-in-
distributed-systems-by-putting-the-smaller-service-in-control/

https://aws.amazon.com/builders-library/avoiding-overload-in-distributed-systems-by-putting-the-smaller-service-in-control/
https://aws.amazon.com/builders-library/avoiding-overload-in-distributed-systems-by-putting-the-smaller-service-in-control/
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One way is to use a scalable file store, like Azure Storage or S3, as
a buffer between the control plane and the data plane. The control
plane periodically dumps its entire state to the file store regardless
of whether it changed, while the data plane reads the state peri-
odically from it (see Figure 22.1). Although this approach sounds
naive and expensive, it tends to be reliable and robust in practice.
And, depending on the size of the state, it might be cheap too.3

Figure 22.1: The intermediate data store protects the control plane
by absorbing the load generated by the data plane.

Introducing an intermediate store as a buffer decouples the control
plane from the data plane and protects the former from overload.
It also enables the data plane to continue to operate (or start) if
the control plane becomes unavailable. But this comes at the cost
of higher latencies and weaker consistency guarantees, since the
time it takes to propagate changes from the control plane to the
data plane will necessarily increase.
To decrease the propagation latency, a different architecture is
needed in which there is no intermediary. The idea is to have
the data plane connect to the control plane, like in our original
approach, but have the control plane push the configuration
whenever it changes, rather than being at the mercy of periodic
queries from the data plane. Because the control plane controls
the pace, it will slow down rather than fall over when it can’t keep

3This is another example of the CQRS pattern applied in practice.
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up.4

To further reduce latencies and load, the control plane can ver-
sion changes and push only updates/deltas to the data plane. Al-
though this approach is more complex to implement, it signifi-
cantly reduces the propagation time when the state is very large.

However, the control plane could still get hammered if many data
plane instances start up around the same time (due to a massive
scale-out or restart) and try to read the entire configuration from
the control plane for the first time. To defend against this, we can
reintroduce an intermediate data store that contains a recent snap-
shot of the control plane’s state. This allows the data plane to read
a snapshot from the store at startup and then request only a small
delta from the control plane (see Figure 22.2).

Figure 22.2: The intermediate data store absorbs the load of bulk
reads, while the control plane pushes small deltas to the data plane
whenever the state changes.

4That said, there is still the potential to overload the control plane if it needs to
juggle too many connections.
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22.2 Control theory
Control theory gives us another5way to think about control planes
and data planes. In control theory, the goal is to create a controller
that monitors a dynamic system, compares its state to the desired
one, and applies a corrective action to drive the system closer to it
while minimizing any instabilities on the way.

In our case, the data plane is the dynamic systemwe would like to
drive to the desired state, while the controller is the control plane
responsible for monitoring the data plane, comparing it to the de-
sired state, and executing a corrective action if needed.

The control plane and the data plane are part of a feedback loop.
And without all three ingredients (monitor, compare, and action),
you don’t have a closed loop, and the data plane can’t reach the
desired state6. The monitoring part is the most commonly missing
ingredient to achieve a closed loop.

Take chain replication, for example. The control plane’s job
shouldn’t be just to push the configuration of the chains to the
data plane. It should also monitor whether the data plane has
actually applied the configuration within a reasonable time. If it
hasn’t, it should perform some corrective action, which could be
as naive as rebooting nodes with stale configurations or excluding
them from being part of any chain.

A more mundane example of a control plane is a CI/CD pipeline
for releasing a newversion of a servicewithout causing any disrup-
tion. One way to implement the pipeline is to deploy and release a
new build blindly without monitoring the running service — the
build might throw an exception at startup that prevents the ser-
vice from starting, resulting in a catastrophic failure. Instead, the
pipeline should release the new build incrementally while moni-
toring the service and stop the roll-out if there is clear evidence that

5“AWS re:Invent 2018: Close Loops & Opening Minds: How to Take Control of
Systems, Big & Small ARC337,” https://www.youtube.com/watch?v=O8xLxNj
e30M

6That said, having a closed loop doesn’t guarantee that either, it’s merely a pre-
requisite.

https://www.youtube.com/watch?v=O8xLxNje30M
https://www.youtube.com/watch?v=O8xLxNje30M
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something is off, and potentially also roll it back automatically.
To sum up, when dealing with a control plane, ask yourself what’s
missing to close the loop. We have barely scratched the surface
of the topic, and if you want to learn more about it, “Designing
Distributed Control Systems”7 is a great read.

7“Designing Distributed Control Systems,” https://www.amazon.com/gp/pr
oduct/1118694155

https://www.amazon.com/gp/product/1118694155
https://www.amazon.com/gp/product/1118694155




Chapter 23

Messaging

Suppose Cruder has an endpoint that allows users to upload a
video and encode it in different formats and resolutions tailored
to specific devices (TVs, mobile phones, tablets, etc.). When the
API gateway receives a request from a client, it uploads the video
to a file store, like S3, and sends a request to an encoding service
to process the file.
Since the encoding can take minutes to complete, we would like
the API gateway to send the request to the encoding service with-
out waiting for the response. But the naive implementation (fire-
and-forget) would cause the request to be lost if the encoding ser-
vice instance handling it on the other side crashes or fails for any
reason.
Amore robust solution is to introduce a message channel between
the API gateway and the encoding service. Messaging was first in-
troduced in chapter 5 when discussing APIs. It’s a form of indirect
communication in which a producer writes a message to a channel
— or message broker — that delivers the message to a consumer
on the other end.
A message channel acts as a temporary buffer for the receiver. Un-
like the direct request-response communication stylewe have been
using so far, messaging is inherently asynchronous, as sending a
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message doesn’t require the receiving service to be online. The
messages themselves have a well-defined format, consisting of a
header and a body. The message header contains metadata, such
as a unique message ID, while the body contains the actual con-
tent.

Typically, a message can either be a command, which specifies
an operation to be invoked by the receiver, or an event, which
signals the receiver that something of interest happened to the
sender. A service can use inbound adapters to receive messages
from channels and outbound adapters to send messages to chan-
nels, as shown in Figure 23.1.

Figure 23.1: The message consumer (an inbound adapter) is part
of the API surface of the service.

After the API gateway has uploaded the video to the file store, it
writes amessage to the channel with a link to the uploaded file and
responds with 202 Accepted, signaling to the client that the request
has been accepted for processing but hasn’t completed yet. Even-
tually, the encoding service will read the message from the chan-
nel and process it. Because the request is deleted from the channel
only when it’s successfully processed, the request will eventually
be picked up again and retried if the encoding service fails to han-
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dle it.

Decoupling theAPI gateway (producer) from the encoding service
(consumer) with a channel provides many benefits. The producer
can send requests to the consumer even if the consumer is tem-
porarily unavailable. Also, requests can be load-balanced across a
pool of consumer instances, making it easy to scale out the consum-
ing side. And because the consumer can read from the channel at
its own pace, the channel smooths out load spikes, preventing it
from getting overloaded.

Another benefit is that messaging enables to process multiple mes-
sages within a single batch or unit of work. Most messaging brokers
support this pattern by allowing clients to fetch up to N messages
with a single read request. Although batching degrades the pro-
cessing latency of individual messages, it dramatically improves
the application’s throughput. So when we can afford the extra la-
tency, batching is a no brainer.

In general, a message channel allows any number of producer and
consumer instances to write and read from it. But depending on
how the channel delivers a message, it’s classified as either point-
to-point or publish-subscribe. In a point-to-point channel, the mes-
sage is delivered to exactly one consumer instance. Instead, in a
publish-subscribe channel, each consumer instance receives a copy
of the message.

Unsurprisingly, introducing a message channel adds complexity.
The message broker is yet another service that needs to be main-
tained and operated. And because there is an additional hop be-
tween the producer and consumer, the communication latency is
necessarily going to be higher; more so if the channel has a large
backlog of messages waiting to be processed. As always, it’s all
about tradeoffs.

Becausemessaging is a core pattern of distributed systems, wewill
take a closer look at it in this chapter, starting with the most com-
mon communication styles it enables.

One-way messaging
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In this messaging style, the producer writes a message to a point-
to-point channel with the expectation that a consumer will eventu-
ally read and process it (see Figure 23.2). This is the style we used
in the example earlier.

Figure 23.2: One-way messaging style

Request-response messaging

This messaging style is similar to the direct request-response style
we are familiar with, albeit with the difference that the request
and response messages flow through channels. The consumer has
a point-to-point request channel from which it reads messages,
while every producer has its dedicated response channel (see
Figure 23.3).

When a producer writes a message to the request channel, it dec-
orates it with a request ID and a reference to its response chan-
nel. Then, after a consumer has read and processed the message,
it writes a reply to the producer’s response channel, tagging it with
the request’s ID, which allows the producer to identify the request
it belongs to.

Broadcast messaging

In thismessaging style, the producerwrites amessage to a publish-
subscribe channel to broadcast it to all consumer instances (see Fig-
ure 23.4). This style is generally used to notify a group of processes
that a specific event has occurred. For example, we have already
encountered this pattern when discussing the outbox pattern in
section 13.1.
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Figure 23.3: Request-response messaging style

Figure 23.4: Broadcast messaging style

23.1 Guarantees
Amessage channel is implemented by a messaging service, or bro-
ker, like AWS SQS1 or Kafka, which buffers messages and decou-
ples the producer from the consumer. Different message brokers
offer different guarantees depending on the tradeoffs their imple-
mentations make. For example, you would think that a channel
should respect the insertion order of its messages, but you will
find that some implementations, like SQS standard queues2, don’t
offer any strong ordering guarantees. Why is that?

Because a message broker needs to scale horizontally just like
1“Amazon Simple Queue Service,” https://aws.amazon.com/sqs/
2“Amazon SQS Standard queues,” https://docs.aws.amazon.com/AWSSimpl

eQueueService/latest/SQSDeveloperGuide/standard-queues.html

https://aws.amazon.com/sqs/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/standard-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/standard-queues.html
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the applications that use it, its implementation is necessarily
distributed. Andwhenmultiple nodes are involved, guaranteeing
order becomes challenging, as some form of coordination is
required. Some brokers, like Kafka, partition a channel into
multiple sub-channels. So when messages are written to the
channel, they are routed to sub-channels based on their partition
key. Since each partition is small enough to be handled by a single
broker process, it’s trivial to enforce an ordering of the messages
routed to it. But to guarantee that the message order is preserved
end-to-end, only a single consumer process is allowed to read
from a sub-channel3.
Because the channel is partitioned, all the caveats discussed in
chapter 16 apply to it. For example, a partition could become
hot enough (due to the volume of incoming messages) that the
consumer reading from it can’t keep up with the load. In this
case, the channel might have to be rebalanced by adding more
partitions, potentially degrading the broker while messages are
being shuffled across partitions. It should be clear by nowwhy not
guaranteeing the order of messages makes the implementation of
a broker much simpler.
Ordering is just one of the many tradeoffs a broker needs to make,
such as:

• delivery guarantees, like at-most-once or at-least-once;
• message durability guarantees;
• latency;
• messaging standards supported, like AMQP4;
• support for competing consumer instances;
• broker limits, such as the maximum supported size of mes-
sages.

Because there are so many different ways to implement channels,
in the rest of this section, we will make some assumptions for the
sake of simplicity:

3This is also referred to as the competing consumer pattern, which is implemented
using leader election.

4“Advanced Message Queuing Protocol,” https://en.wikipedia.org/wiki/Ad
vanced_Message_Queuing_Protocol

https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
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• Channels are point-to-point and supportmany producer and
consumer instances.

• Messages are delivered to the consumer at least once.
• While a consumer instance is processing a message, the mes-
sage remains in the channel, but other instances can’t read
it for the duration of a visibility timeout. The visibility time-
out guarantees that if the consumer instance crashes while
processing the message, the message will become visible to
other instances when the timeout triggers. When the con-
sumer instance is done processing the message, it deletes it
from the channel, preventing it from being received by any
other consumer instance in the future.

The above guarantees are similar to the ones offered by managed
services such as Amazon’s SQS and Azure Queue Storage5.

23.2 Exactly-once processing
Asmentioned before, a consumer instance has to delete a message
from the channel once it’s done processing it so that another in-
stance won’t read it. If the consumer instance deletes the message
before processing it, there is a risk it could crash after deleting the
message but before processing it, causing the message to be lost
for good. On the other hand, if the consumer instance deletes the
message only after processing it, there is a risk that it crashes after
processing the message but before deleting it, causing the same
message to be read again later on.

Because of that, there is no such thing6 as exactly-once message deliv-
ery. So the best a consumer can do is to simulate exactly-once mes-
sage processing by requiring messages to be idempotent and delet-
ing them from the channel only after they have been processed.

5“Azure Queue Storage,” https://azure.microsoft.com/en-us/services/storag
e/queues/

6“You Cannot Have Exactly-Once Delivery Redux,” https://bravenewgeek.c
om/you-cannot-have-exactly-once-delivery-redux/

https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-us/services/storage/queues/
https://bravenewgeek.com/you-cannot-have-exactly-once-delivery-redux/
https://bravenewgeek.com/you-cannot-have-exactly-once-delivery-redux/
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23.3 Failures
When a consumer instance fails to process a message, the visibil-
ity timeout triggers, and the message is eventually delivered to
another instance. What happens if processing a specific message
consistently fails with an error, though? To guard against the mes-
sage being picked up repeatedly in perpetuity, we need to limit the
maximumnumber of times the samemessage can be read from the
channel.

To enforce a maximum number of retries, the broker can stamp
messages with a counter that keeps track of the number of times
the message has been delivered to a consumer. If the broker
doesn’t support this functionality out of the box, the consumer
can implement it.

Once we have a way to count the number of times a message has
been retried, we still have to decide what to do when the maxi-
mum is reached. A consumer shouldn’t delete a message without
processing it, as that would cause data loss. But what it can do is
remove themessage from the channel after writing it to a dead letter
channel— a channel that buffers messages that have been retried
too many times.

This way, messages that consistently fail are not lost forever but
merely put on the side so that they don’t pollute the main channel,
wasting the consumer’s resources. A human can then inspect these
messages to debug the failure, and once the root cause has been
identified and fixed, move them back to the main channel to be
reprocessed.

23.4 Backlogs
One of the main advantages of using a message broker is that it
makes the system more robust to outages. This is because the pro-
ducer can continue writing messages to a channel even if the con-
sumer is temporarily degraded or unavailable. As long as the ar-
rival rate of messages is lower than or equal to their deletion rate,
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everything is great. However, when that is no longer true and the
consumer can’t keep up with the producer, a backlog builds up.
A messaging channel introduces a bimodal behavior in the sys-
tem. In one mode, there is no backlog, and everything works as
expected. In the other, a backlog builds up, and the system en-
ters a degraded state. The issue with a backlog is that the longer it
builds up, the more resources and/or time it will take to drain it.
There are several reasons for backlogs, for example:

• more producer instances come online, and/or their through-
put increases, and the consumer can’t keep up with the ar-
rival rate;

• the consumer’s performance has degraded and messages
take longer to be processed, decreasing the deletion rate;

• the consumer fails to process a fraction of the messages,
which are picked up again until they eventually end up
in the dead letter channel. This wastes the consumer’s
resources and delays the processing of healthy messages.

To detect andmonitor backlogs, we canmeasure the average time a
message waits in the channel to be read for the first time. Typically,
brokers attach a timestamp of when the message was first written
to it. The consumer can use that timestamp to compute how long
the message has been waiting in the channel by comparing it to
the timestamp taken when the message was read. Although the
two timestamps have been generated by two physical clocks that
aren’t perfectly synchronized (see section 8.1), this measure gener-
ally provides a good warning sign of backlogs.

23.5 Fault isolation
A single producer instance that emits “poisonous” messages that
repeatedly fail to be processed can degrade the consumer and
potentially create a backlog because these messages are processed
multiple times before they end up in the dead-letter channel.
Therefore, it’s important to find ways to deal with poisonous
messages before that happens.
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If messages are decorated with an identifier of the source that gen-
erated them, the consumer can treat them differently. For exam-
ple, suppose messages from a specific user fail consistently. In
that case, the consumer could decide to write these messages to
an alternate low-priority channel and remove them from the main
channel without processing them. The consumer reads from the
slow channel but does so less frequently than the main channel,
isolating the damage a single bad user can inflict to the others.



Summary

Building scalable applications boils down to exploiting three or-
thogonal patterns:

• breaking the application into separate services, each with its
own well-defined responsibility (functional decomposition);

• splitting data into partitions and distributing them across
nodes (partitioning);

• replicating functionality or data across nodes (replication).
We have seen plenty of applications of these patterns over the past
few chapters. By now, you should have a feel for the pros and cons
of each pattern.
There is another message I subtly tried to convey: there is a small
subset ofmanaged services that you can use to build a surprisingly
large number of applications. The main attraction of managed ser-
vices is that someone else gets paged for them.7

Depending on which cloud provider you are using, the name of
the services and their APIs differ somewhat, but conceptually they
serve the same use cases. You should be familiar with some way
to run your application instances in the cloud (e.g., EC2) and load-
balance traffic to them (e.g., ELB). And since you want your appli-
cations to be stateless, you also need to be familiar with a file store
(e.g., S3), a key-value/document store (e.g., DynamoDB), and a
messaging service (e.g., SQS, Kinesis). I would argue that these
technologies are reasonable enough defaults for building a large

7As we will discuss in Part V, maintaining a service is no small feat.
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number of scalable applications. Once you have a scalable core,
you can add optimizations, such as caching in the form of man-
aged Redis/Memcached or CDNs.



Part IV

Resiliency





Introduction

“Anything that can go wrong will go wrong.”

– Murphy’s law

In the last part, we discussed the three fundamental scalability pat-
terns: functional decomposition, data partitioning, and replication.
They all have one thing in common: they increase the number of
moving parts (machines, services, processes, etc.) in our applica-
tions. But since every part has a probability of failing, the more
moving parts there are, the higher the chance that any of them
will fail. Eventually, anything that can go wrong will go wrong 8;
power outages, hardware faults, software crashes, memory leaks
— you name it.

Remember whenwe talked about availability and “nines” in chap-
ter 1? Well, to guarantee just two nines, an application can only be
unavailable for up to 15 minutes a day. That’s very little time to
take any manual action when something goes wrong. And if we
strive for three nines, we only have 43 minutes per month avail-
able. Clearly, the more nines we want, the faster our systems need
to detect, react to, and repair faults as they occur. In this part, we
will discuss a variety of resiliency best practices and patterns to
achieve that.

To build fault-tolerant applications, we first need to have an idea
of what can go wrong. In chapter 24, we will explore some of the
most common root causes of failures.

8Also known as Murphy’s law
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Chapter 25 describes how to use redundancy, the replication of
functionality or state, to increase the availability of a system. As
we will learn, redundancy is only helpful when the redundant
nodes can’t fail for the same reason at the same time, i.e., when
failures are not correlated.
Chapter 26 discusses how to isolate correlated failures by parti-
tioning resources and then describes two very powerful forms of
partitioning: shuffle sharding and cellular architectures.
Chapter 27 dives into more tactical resiliency patterns for tolerat-
ing failures of downstream dependencies that you can apply to
existing systems with few changes, like timeouts and retries.
Chapter 28 discusses resiliency patterns, like load shedding
and rate-limiting, for protecting systems against overload from
upstream dependencies.



Chapter 24

Common failure causes

We say that a system has a failure1 when it no longer provides a
service to its users that meets its specification. A failure is caused
by a fault: a failure of an internal component or an external depen-
dency the system depends on. Some faults can be tolerated and
have no user-visible impact at all, while others lead to failures.

To build fault-tolerant applications, we first need to have an idea
of what can go wrong. In the next few sections, we will explore
some of the most common root causes of failures. By the end of it,
you will likely wonder how to tolerate all these different types of
faults. The answers will follow in the next few chapters.

24.1 Hardware faults
Any physical part of a machine can fail. HDDs, memory modules,
power supplies, motherboards, SSDs, NICs, or CPUs, can all stop
working for various reasons. In some cases, hardware faults can
cause data corruption as well. If that wasn’t enough, entire data
centers can go down because of power cuts or natural disasters.

1“A Conceptual Framework for System Fault Tolerance,” https://resources.sei.
cmu.edu/asset_files/TechnicalReport/1992_005_001_16112.pdf

https://resources.sei.cmu.edu/asset_files/TechnicalReport/1992_005_001_16112.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalReport/1992_005_001_16112.pdf
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As we will discuss later, we can address many of these infrastruc-
ture faults with redundancy. You would think that these faults are
the main cause for distributed applications failing, but in reality,
they often fail for very mundane reasons.

24.2 Incorrect error handling
A study from 20142 of user-reported failures from five popular dis-
tributed data stores found that themajority of catastrophic failures
were the result of incorrect handling of non-fatal errors.
In most cases, the bugs in the error handling could have been de-
tected with simple tests. For example, some handlers completely
ignored errors. Others caught an overly generic exception, like Ex-
ception in Java, and aborted the entire process for no good reason.
And some other handlers were only partially implemented and
even contained “FIXME” and “TODO” comments.
In hindsight, this is perhaps not too surprising, given that error
handling tends to be an afterthought.3 Later, in chapter 29, we
will take a closer look at best practices for testing large distributed
applications.

24.3 Configuration changes
Configuration changes are one of the leading root causes for catas-
trophic failures4. It’s not just misconfigurations that cause prob-
lems, but also valid configuration changes to enable rarely-used
features that no longer work as expected (or never did).
What makes configuration changes particularly dangerous is that
their effects can be delayed5. If an application reads a configura-

2“Simple Testing Can PreventMost Critical Failures: AnAnalysis of Production
Failures in Distributed Data-Intensive Systems,” https://www.usenix.org/syste
m/files/conference/osdi14/osdi14-paper-yuan.pdf

3This is the reason the Go language puts so much emphasis on error handling.
4“A List of Post-mortems: Config Errors,” https://github.com/danluu/post-

mortems#config-errors
5“Early Detection of Configuration Errors to Reduce Failure Damage,” https:

//www.usenix.org/system/files/conference/osdi16/osdi16-xu.pdf

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf
https://github.com/danluu/post-mortems#config-errors
https://github.com/danluu/post-mortems#config-errors
https://www.usenix.org/system/files/conference/osdi16/osdi16-xu.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-xu.pdf
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tion value only when it’s actually needed, an invalid value might
take effect only hours or days after it has changed and thus escape
early detection.
This is why configuration changes should be version-controlled,
tested, and released just like code changes, and their validation
should happen preventively when the change happens. In chapter
30, wewill discuss safe release practices for code and configuration
changes in the context of continuous deployments.

24.4 Single points of failure
A single point of failure (SPOF) is a component whose failure
brings the entire system down with it. In practice, systems can
have multiple SPOFs.
Humans make for great SPOFs, and if you put them in a posi-
tion where they can cause a catastrophic failure on their own, you
can bet they eventually will. For example, human failures often
happen when someone needs to manually execute a series of op-
erational steps in a specific order without making any mistakes.
On the other hand, computers are great at executing instructions,
which is why automation should be leveraged whenever possible.
Another common SPOF is DNS6. If clients can’t resolve the do-
main name for an application, they won’t be able to connect to
it. There are many reasons why that can happen, ranging from do-
main names expiring7 to entire root level domains going down8.
Similarly, the TLS certificate used by an application for its HTTP
endpoints is also a SPOF9. If the certificate expires, clients won’t
be able to open a secure connection with the application.

6“It’s always DNS,” https://twitter.com/ahidalgosre/status/1315345619926
609920?lang=en-GB

7“Foursquare Goes Dark Too. Unintentionally.,” https://techcrunch.com/201
0/03/27/foursquare-offline

8“Stop using .IO Domain Names for Production Traffic,” https://hackernoon.c
om/stop-using-io-domain-names-for-production-traffic-b6aa17eeac20

9“Microsoft Teams goes down after Microsoft forgot to renew a certificate,” ht
tps://www.theverge.com/2020/2/3/21120248/microsoft-teams-down-outage-
certificate-issue-status

https://twitter.com/ahidalgosre/status/1315345619926609920?lang=en-GB
https://twitter.com/ahidalgosre/status/1315345619926609920?lang=en-GB
https://techcrunch.com/2010/03/27/foursquare-offline
https://techcrunch.com/2010/03/27/foursquare-offline
https://hackernoon.com/stop-using-io-domain-names-for-production-traffic-b6aa17eeac20
https://hackernoon.com/stop-using-io-domain-names-for-production-traffic-b6aa17eeac20
https://www.theverge.com/2020/2/3/21120248/microsoft-teams-down-outage-certificate-issue-status
https://www.theverge.com/2020/2/3/21120248/microsoft-teams-down-outage-certificate-issue-status
https://www.theverge.com/2020/2/3/21120248/microsoft-teams-down-outage-certificate-issue-status
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Ideally, SPOFs should be identified when the system is designed.
The bestway to detect them is to examine every system component
and ask what would happen if it were to fail. Some SPOFs can be
architected away, e.g., by introducing redundancy, while others
can’t. In that case, the only option left is to reduce the SPOF’s blast
radius, i.e., the damage the SPOF inflicts on the system when it
fails. Many of the resiliency patterns we will discuss later reduce
the blast radius of failures.

24.5 Network faults
When a client sends a request to a server, it expects to receive a
response from it a while later. In the best case, it receives the re-
sponse shortly after sending the request. If that doesn’t happen,
the client has two options: continue to wait or fail the request with
a time-out exception or error.
As discussed in chapter 7, when the concepts of failure detection
and timeouts were introduced, there are many reasons for not get-
ting a prompt response. For example, the server could be very
slow or have crashed while processing the request; or maybe the
network could be losing a small percentage of packets, causing lots
of retransmissions and delays.
Slow network calls are the silent killers10 of distributed systems.
Because the client doesn’t know whether the response will even-
tually arrive, it can spend a long time waiting before giving up, if
it gives up at all, causing performance degradations that are chal-
lenging to debug. This kind of fault is also referred to as a gray
failure11: a failure that is so subtle that it can’t be detected quickly
or accurately. Because of their nature, gray failures can easily bring
an entire system down to its knees.
In the next section, we will explore another common cause of gray
failures.

10“Fallacies of distributed computing,” https://en.wikipedia.org/wiki/Fallacie
s_of_distributed_computing

11“Gray Failure: The Achilles’ Heel of Cloud-Scale Systems,” https://www.mi
crosoft.com/en-us/research/wp-content/uploads/2017/06/paper-1.pdf

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/06/paper-1.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/06/paper-1.pdf
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24.6 Resource leaks
From an observer’s point of view, a very slow process is not very
different from one that isn’t running at all — neither can perform
useful work. Resource leaks are one of the most common causes
of slow processes.

Memory is arguably the most well-known resource affected by
leaks. A memory leak causes a steady increase in memory con-
sumption over time. Even languages with garbage collection are
vulnerable to leaks: if a reference to an object that is no longer
needed is kept somewhere, the garbage collector won’t be able to
delete it. When a leak has consumed so much memory that there
is very little left, the operating system will start to swap memory
pages to disk aggressively. Also, the garbage collector will kick in
more frequently, trying to release memory. All of this consumes
CPU cycles and makes the process slower. Eventually, when there
is no more physical memory left, and there is no more space in the
swap file, the process won’t be able to allocate memory, and most
operations will fail.

Memory is just one of the many resources that can leak. Take
thread pools, for example: if a thread acquired from a pool makes
a synchronous blocking HTTP call without a timeout and the call
never returns, the thread won’t be returned to the pool. And since
the pool has a limited maximum size, it will eventually run out of
threads if it keeps losing them.

You might think that making asynchronous calls rather than syn-
chronous ones would help in the previous case. However, modern
HTTP clients use socket pools to avoid recreating TCP connections
and paying a performance fee, as discussed in chapter 2. If a re-
quest is made without a timeout, the connection is never returned
to the pool. As the pool has a limited maximum size, eventually,
there won’t be any connections left.

On top of that, your code isn’t the only thing accessing memory,
threads, and sockets. The libraries your application depends on
use the same resources, and they can hit the same issues we just
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discussed.

24.7 Load pressure
Every system has a limit of how much load it can withstand, i.e.,
its capacity. So when the load directed to the system continues
to increase, it’s bound to hit that limit sooner or later. But an or-
ganic increase in load, that gives the system the time to scale out
accordingly and increase its capacity, is one thing, and a sudden
and unexpected flood is another.
For example, consider the number of requests received by an ap-
plication in a period of time. The rate and the type of incoming
requests can change over time, and sometimes suddenly, for a va-
riety of reasons:

• The requests might have a seasonality. So, for example, de-
pending on the hour of the day, the application is hit by users
in different countries.

• Some requests are much more expensive than others and
abuse the system in unexpected ways, like scrapers slurping
in data at super-human speed.

• Some requests are malicious, like those of DDoS attacks that
try to saturate the application’s bandwidth to deny legiti-
mate users access to it.

While some load surges can be handled by automation that adds
capacity (e.g., autoscaling), others require the system to reject re-
quests to shield it from overloading, using the patterns we will
discuss in chapter 28.

24.8 Cascading failures
You would think that if a system has hundreds of processes, it
shouldn’t makemuch of a difference if a small percentage are slow
or unreachable. The thing about faults is that they have the poten-
tial to spread virally and cascade from one process to the other
until the whole system crumbles to its knees. This happens when
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system components depend on each other, and a failure in one in-
creases the probability of failure in others.

For example, suppose multiple clients are querying two database
replicas, A and B, behind a load balancer. Each replica handles
about 50 transactions per second (see Figure 24.1).

Figure 24.1: Two replicas behind a load balancer; each is handling
half the load.

Suddenly, replica B becomes unavailable because of a network
fault. The load balancer detects that B is unavailable and removes
it from the pool. Because of that, replica A has to pick up the slack
for B and serve twice the requests per unit time it was serving
before (see Figure 24.2).

If replica A struggles to keep up with the incoming requests,
the clients will experience increasingly more timeouts and start
to retry requests, adding more load to the system. Eventually,
replica A will be under so much load that most requests will time
out, forcing the load balancer to remove it from the pool. In other
words, the original network fault that caused replica B to become
unavailable cascaded into a fault at replica A.

Suppose now that replica B becomes available again and the load
balancer puts it back in the pool. Because it’s the only replica in
the pool, it will be flooded with requests, causing it to overload
and eventually be removed again.
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Figure 24.2: When replica B becomes unavailable, A will be hit
with more load, which can strain it beyond its capacity.

You can see how even after the network fault is gone, the applica-
tion continues to struggle because of a feedback loop that causes
the load to jump from one replica to another. Failures with this
characteristic are also referred to as metastable12.

A big enough corrective action is usually needed to break the loop,
like temporarily blocking traffic from getting to the replicas in the
first place. Unfortunately, these failures are very hard to mitigate
once they have started, and the best way to prevent them is to stop
faults from spreading from one component to another in the first
place.

24.9 Managing risk
As it should be evident by now, a distributed application needs to
accept that faults are inevitable and be prepared to detect, react to,
and repair them as they occur.

At this point, you might feel overwhelmed by the sheer amount
of things that can go wrong. But just because a specific fault has

12“Metastable Failures in Distributed Systems,” https://sigops.org/s/confere
nces/hotos/2021/papers/hotos21-s11-bronson.pdf

https://sigops.org/s/conferences/hotos/2021/papers/hotos21-s11-bronson.pdf
https://sigops.org/s/conferences/hotos/2021/papers/hotos21-s11-bronson.pdf
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a chance of happening, it doesn’t mean we have to do something
about it. We first have to consider the probability it will manifest
and the impact it will cause to the system’s users when it does. By
multiplying the two factors together, we get a risk score13 that we
can use to prioritize which faults to address (see Figure 24.3) first.
For example, a fault that is very likely to happen, and has a large
impact, should be tackled head on; on the other hand, a fault with
a low likelihood and low impact can wait.

Figure 24.3: Risk matrix

Oncewedecide thatwe need to do something about a specific fault,
we can try to reduce its probability and/or reduce its impact. This
will be the main focus of the next chapters.

13“Risk matrix,” https://en.wikipedia.org/wiki/Risk_matrix

https://en.wikipedia.org/wiki/Risk_matrix




Chapter 25

Redundancy

Redundancy, the replication of functionality or state, is arguably
the first line of defense against failures. When functionality or state
is replicated over multiple nodes and a node fails, the others can
take over. Moreover, as discussed in Part III, replication is also a
core pattern that enables our applications to scale out horizontally.
Redundancy is the main reason why distributed applications can
achieve better availability than single-node applications. But only
some forms of redundancy actually improve availability. Marc
Brooker lists four prerequisites1:

1. The complexity added by introducing redundancy mustn’t
cost more availability than it adds.

2. The systemmust reliably detect which of the redundant com-
ponents are healthy and which are unhealthy.

3. The system must be able to run in degraded mode.
4. The system must be able to return to fully redundant mode.

Let’s see how these prerequisites apply to a concrete example.
Hardware faults such as disk, memory, and network failures can
cause a node to crash, degrade or become otherwise unavailable.
In a stateless service, a load balancer can mask these faults using

1“When Redundancy Actually Helps,” https://brooker.co.za/blog/2019/06
/20/redundancy.html

https://brooker.co.za/blog/2019/06/20/redundancy.html
https://brooker.co.za/blog/2019/06/20/redundancy.html
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a pool of redundant nodes. Although the load balancer increases
the system’s complexity and, therefore, the number of ways the
system can fail, the benefits in terms of scalability and availability
almost always outweigh the risks it introduces (e.g., the load
balancer failing).

The load balancer needs to detect which nodes are healthy and
which aren’t to take the faulty ones out of the pool. It does that
with health checks, as we learned in chapter 18. Health checks
are critical to achieving high availability; if there are ten servers
in the pool and one is unresponsive for some reason, then 10%
of requests will fail, causing the availability to drop. Therefore,
the longer it takes for the load balancer to detect the unresponsive
server, the longer the failures will be visible to the clients.

Now, when the load balancer takes one or more unhealthy servers
out of the pool, the assumption is that the others have enough ca-
pacity left to handle the increase in load. In other words, the sys-
temmust be able to run in degradedmode. However, that by itself
is not enough; new servers also need to be added to the pool to
replace the ones that have been removed. Otherwise, there even-
tually won’t be enough servers left to cope with the load.

In stateful services, masking a node failure is a lot more complex
since it involves replicating state. We have discussed replication at
length in the previous chapters, and it shouldn’t come as a surprise
by now that meeting the above requisites is a lot more challenging
for a stateful service than for a stateless one.

25.1 Correlation
Redundancy is only helpful when the redundant nodes can’t fail
for the same reason at the same time, i.e., when failures are not cor-
related. For example, if a faulty memory module causes a server
to crash, it’s unlikely other servers will fail simultaneously for the
same reason since they are running on different machines. How-
ever, if the servers are hosted in the same data center, and a fiber
cut or an electrical storm causes a data-center-wide outage, the en-
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tire application becomes unavailable no matter howmany servers
there are. In other words, the failures caused by a data center out-
age are correlated and limit the application’s availability. So if we
want to increase the availability, we have to reduce the correlation
between failures by using more than one data center.

Cloud providers such as AWS and Azure replicate their entire
stack in multiple regions for that very reason. Each region
comprises multiple data centers called Availability Zones (AZs)
that are cross-connected with high-speed network links. AZs are
far enough from each other to minimize the risk of correlated
failures (e.g., power cuts) but still close enough to have low
network latency, which is bounded by the speed of light. In fact,
the latency is low enough by design to support synchronous
replication protocols without a significant latency penalty.

With AZs, we can create applications that are resilient to data cen-
ter outages. For example, a stateless service could have instances
running in multiple AZs behind a shared load balancer so that if
an AZ becomes unavailable, it doesn’t impact the availability of
the service. On the other hand, stateful services require the use
of a replication protocol to keep their state in sync across AZs.
But since latencies are low enough between AZs, the replication
protocol can be partially synchronous, like Raft, or even fully syn-
chronous, like chain replication.

Taking it to the extreme, a catastrophic event could destroy an en-
tire region with all of its AZs. To tolerate that, we can duplicate
the entire application stack in multiple regions. To distribute the
traffic to different data centers located in different regions, we can
use global DNS load balancing. Unlike earlier, the application’s state
needs to be replicated asynchronously across regions2 given the
high network latency between regions (see Figure 25.1).

That said, the chance of an entire region being destroyed is ex-
tremely low. Before embarking on the effort of making your appli-
cation resilient against region failures, you should have very good

2“Active-Active for Multi-Regional Resiliency,” https://netflixtechblog.com/
active-active-for-multi-regional-resiliency-c47719f6685b

https://netflixtechblog.com/active-active-for-multi-regional-resiliency-c47719f6685b
https://netflixtechblog.com/active-active-for-multi-regional-resiliency-c47719f6685b
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Figure 25.1: A simplistic multi-region architecture

reasons for it. It’s more likely your application will be forced to
have a presence in multiple regions for legal compliance reasons.
For example, there are laws mandating that the data of European
customers has to be processed and stored within Europe3.

3“The CJEU judgment in the Schrems II case,” https://www.europarl.europa.
eu/RegData/etudes/ATAG/2020/652073/EPRS_ATA(2020)652073_EN.pdf

https://www.europarl.europa.eu/RegData/etudes/ATAG/2020/652073/EPRS_ATA(2020)652073_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/ATAG/2020/652073/EPRS_ATA(2020)652073_EN.pdf


Chapter 26

Fault isolation

So far, we have discussed how to address infrastructure faults with
redundancy, but there are other kinds of failures that we can’t tol-
erate with redundancy alone because of their high degree of corre-
lation.

For example, suppose a specific user sends malformed requests
(deliberately or not) that cause the servers handling them to crash
because of a bug. Since the bug is in the code, it doesn’tmatter how
many DCs and regions our application is deployed to; if the user’s
requests can land anywhere, they can affect all DCs and regions.
Due to their nature, these requests are sometimes referred to as
poison pills.

Similarly, if the requests of a specific user require a lot more re-
sources than others, they can degrade the performance for every
other user (aka noisy neighbor effect).

The main issue in the previous examples is that the blast radius
of poison pills and noisy neighbors is the entire application. To
reduce it, we can partition the application’s stack by user so that
the requests of a specific user can only ever affect the partition it
was assigned to.1 That way, even if a user is degrading a partition,

1We discussed partitioning in chapter 16 from a scalability point of view.
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the issue is isolated from the rest of the system.
For example, suppose we have 6 instances of a stateless service
behind a load balancer, divided into 3 partitions (see Figure 26.1).
In this case, a noisy or poisonous user can only ever impact 33
percent of users. And as the number of partitions increases, the
blast radius decreases further.

Figure 26.1: Service instances partitioned into 3 partitions

The use of partitions for fault isolation is also referred to as the
bulkhead pattern, named after the compartments of a ship’s hull. If
one compartment is damaged and fills up with water, the leak is
isolated to that partition and doesn’t spread to the rest of the ship.

26.1 Shuffle sharding
The problem with partitioning is that users who are unlucky
enough to land on a degraded partition are impacted as well. For
stateless services, there is a very simple, yet powerful, variation of
partitioning called shuffle sharding2 that can help mitigate that.
The idea is to introduce virtual partitions composed of random (but

2“Shuffle Sharding: Massive andMagical Fault Isolation,” https://aws.amazon
.com/blogs/architecture/shuffle-sharding-massive-and-magical-fault-isolation/

https://aws.amazon.com/blogs/architecture/shuffle-sharding-massive-and-magical-fault-isolation/
https://aws.amazon.com/blogs/architecture/shuffle-sharding-massive-and-magical-fault-isolation/


CHAPTER 26. FAULT ISOLATION 249

permanent) subsets of service instances. This makes it much more
unlikely for two users to be allocated to the same partition as each
other.

Let’s go back to our previous example of a stateless service with
6 instances. How many combinations of virtual partitions with 2
instances can we build out of 6 instances? If you recall the combi-
nations formula from your high school statistics class, the answer
is 15:

𝑛!
𝑟!(𝑛 − 𝑟)! = 6!

2!4! = 15

There are now 15 partitions for a user to be assigned to, while be-
fore, we had only 3, which makes it a lot less likely for two users
to end up in the same partition. The caveat is that virtual parti-
tions partially overlap (see Figure 26.2). But by combining shuffle
sharding with a load balancer that removes faulty instances, and
clients that retry failed requests, we can build a system with much
better fault isolation than one with physical partitions alone.

Figure 26.2: Virtual partitions are far less likely to fully overlap
with each other.
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26.2 Cellular architecture
In the previous examples, we discussed partitioning in the context
of stateless services. We can take it up a notch and partition the en-
tire application stack, including its dependencies (load balancers,
compute services, storage services, etc.), by user3 into cells4. Each
cell is completely independent of others, and a gateway service is
responsible for routing requests to the right cells.

We have already seen an example of a “cellular” architecture when
discussing Azure Storage in Chapter 17. In Azure Storage, a cell is
a storage cluster, and accounts are partitioned across storage clus-
ters (see Figure 26.3).

Figure 26.3: Each storage cluster (stamp) is a cell in Azure Storage.
3Partitioning by user is just an example; we could partition just as well by physi-

cal location, workload, or any other dimension thatmakes sense for the application.
4“New Relic case: Huge scale, small clusters: Using Cells to scale in the Cloud,”

https://www.youtube.com/watch?v=eMikCXiBlOA

https://www.youtube.com/watch?v=eMikCXiBlOA
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An unexpected benefit of cellular architectures comes from setting
limits to the maximum capacity of a cell. That way, when the sys-
tem needs to scale out, a new cell is added rather than scaling out
existing ones. Since a cell has a maximum size, we can thoroughly
test and benchmark it at that size, knowing that wewon’t have any
surprises in the future and hit some unexpected brick wall.





Chapter 27

Downstream resiliency

Now that we have discussed how to reduce the impact of faults at
the architectural level with redundancy and partitioning, we will
dive into tactical resiliency patterns that stop faults from propagat-
ing from one component or service to another. In this chapter, we
will discuss patterns that protect a service from failures of down-
stream dependencies.

27.1 Timeout
When a network call is made, it’s best practice to configure a time-
out to fail the call if no response is receivedwithin a certain amount
of time. If the call is made without a timeout, there is a chance it
will never return, and as mentioned in chapter 24, network calls
that don’t return lead to resource leaks. Thus, the role of timeouts
is to detect connectivity faults and stop them from cascading from
one component to another. In general, timeouts are a must-have
for operations that can potentially never return, like acquiring a
mutex.

Unfortunately, some network APIs don’t have a way to set a time-
out in the first place, while others have no timeout configured by
default. For example, JavaScript’s XMLHttpRequest is theweb API
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to retrieve data from a server asynchronously, and its default time-
out is zero1, which means there is no timeout:

var xhr = new XMLHttpRequest();
xhr.open("GET", "/api", true);
// No timeout by default, so it needs to be set explicitly!
xhr.timeout = 10000; // 10K milliseconds
xhr.onload = function () {

// Request finished
};
xhr.ontimeout = function (e) {

// Request timed out
};
xhr.send(null);

The fetch web API is a modern replacement for XMLHttpRequest
that uses Promises. When the fetch API was initially introduced,
there was no way to set a timeout at all2. Browsers have only later
added support for timeouts through the Abort API3. Things aren’t
much rosier for Python; the popular requests library uses a default
timeout of infinity4. And Go’sHTTP package doesn’t use timeouts5
by default.

ModernHTTP clients for Java and .NETdo a better job and usually,
come with default timeouts. For example, .NET Core HttpClient
has a default timeout of 100 seconds6. It’s lax but arguably better
than not having a timeout at all.

As a rule of thumb, always set timeouts when making network
calls, and be wary of third-party libraries that make network calls

1“Web APIs: XMLHttpRequest.timeout,” https://developer.mozilla.org/en-
US/docs/Web/API/XMLHttpRequest/timeout

2“Add a timeout option, to prevent hanging,” https://github.com/whatwg/fe
tch/issues/951

3“Web APIs: AbortController,” https://developer.mozilla.org/en-US/docs/
Web/API/AbortController

4“Requests Quickstart: Timeouts,” https://requests.readthedocs.io/en/maste
r/user/quickstart/#timeouts

5“net/http: make default configs have better timeouts,” https://github.com/g
olang/go/issues/24138

6“HttpClient.Timeout Property,” https://docs.microsoft.com/en-us/dotnet/
api/system.net.http.httpclient.timeout?view=net-6.0#remarks

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/timeout
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/timeout
https://github.com/whatwg/fetch/issues/951
https://github.com/whatwg/fetch/issues/951
https://developer.mozilla.org/en-US/docs/Web/API/AbortController
https://developer.mozilla.org/en-US/docs/Web/API/AbortController
https://requests.readthedocs.io/en/master/user/quickstart/#timeouts
https://requests.readthedocs.io/en/master/user/quickstart/#timeouts
https://github.com/golang/go/issues/24138
https://github.com/golang/go/issues/24138
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.timeout?view=net-6.0#remarks
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.timeout?view=net-6.0#remarks
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but don’t expose settings for timeouts.

But how do we determine a good timeout duration? One way is
to base it on the desired false timeout rate7. For example, suppose
we have a service calling another, and we are willing to accept that
0.1% of downstream requests thatwould have eventually returned
a response time out (i.e., 0.1% false timeout rate). To accomplish
that, we can configure the timeout based on the 99.9th percentile
of the downstream service’s response time.

We also want to have good monitoring in place to measure the
entire lifecycle of a network call, like the duration of the call, the
status code received, and whether a timeout was triggered. We
will talk more about monitoring later in the book, but the point I
want to make here is that we have to measure what happens at the
integration points of our systems, or we are going to have a hard
time debugging production issues.

Ideally, a network call should bewrappedwithin a library function
that sets a timeout and monitors the request so that we don’t have
to remember to do this for each call. Alternatively, we can also use
a reverse proxy co-located on the same machine, which intercepts
remote calls made by our process. The proxy can enforce timeouts
and monitor calls, relieving our process ofthis responsibility. We
talked about this in section 18.3 when discussing the sidecar pat-
tern and the service mesh.

27.2 Retry
We know by now that a client should configure a timeout when
making a network request. But what should it do when the
request fails or times out? The client has two options at that point:
it can either fail fast or retry the request. If a short-lived connec-
tivity issue caused the failure or timeout, then retrying after some
backoff time has a high probability of succeeding. However, if the
downstream service is overwhelmed, retrying immediately after

7“Timeouts, retries, and backoff with jitter,” https://aws.amazon.com/builder
s-library/timeouts-retries-and-backoff-with-jitter/

https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter/
https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter/
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will only worsen matters. This is why retrying needs to be slowed
down with increasingly longer delays between the individual
retries until either a maximum number of retries is reached or
enough time has passed since the initial request.

27.2.1 Exponential backoff
To set the delay between retries, we can use a capped exponential
function, where the delay is derived bymultiplying the initial back-
off duration by a constant that increases exponentially after each
attempt, up to some maximum value (the cap):

delay = 𝑚𝑖𝑛(cap, initial-backoff ⋅ 2attempt)

For example, if the cap is set to 8 seconds, and the initial backoff
duration is 2 seconds, then the first retry delay is 2 seconds, the
second is 4 seconds, the third is 8 seconds, and any further delay
will be capped to 8 seconds.

Although exponential backoff does reduce the pressure on the
downstream dependency, it still has a problem. When the down-
stream service is temporarily degraded, multiple clients will likely
see their requests failing around the same time. This will cause
clients to retry simultaneously, hitting the downstream service
with load spikes that further degrade it, as shown in Figure 27.1.

To avoid this herding behavior, we can introduce random jitter8
into the delay calculation. This spreads retries out over time,
smoothing out the load to the downstream service:

delay = 𝑟𝑎𝑛𝑑𝑜𝑚(0, 𝑚𝑖𝑛(cap, initial-backoff ⋅ 2attempt))

Actively waiting and retrying failed network requests isn’t the
only way to implement retries. In batch applications that don’t
have strict real-time requirements, a process can park a failed

8“Exponential Backoff And Jitter,” https://aws.amazon.com/blogs/architect
ure/exponential-backoff-and-jitter/

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
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Figure 27.1: Retry storm

request into a retry queue. The same process, or possibly another,
can read from the same queue later and retry the failed requests.
Just because a network call can be retried doesn’t mean it should
be. If the error is not short-lived, for example, because the process
is not authorized to access the remote endpoint, it makes no sense
to retry the request since it will fail again. In this case, the process
should fail fast and cancel the call right away. And as discussed in
chapter 5.7, we should also understand the consequences of retry-
ing a network call that isn’t idempotent and whose side effects can
affect the application’s correctness.

27.2.2 Retry amplification
Suppose that handling a user request requires going through a
chain of three services. The user’s client calls service A,which calls
service B, which in turn calls service C. If the intermediate request
from service B to service C fails, should B retry the request or not?
Well, if B does retry it, A will perceive a longer execution time for
its request, making it more likely to hit A’s timeout. If that hap-
pens, A retries the request, making it more likely for the client to
hit its timeout and retry.
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Having retries at multiple levels of the dependency chain can am-
plify the total number of retries — the deeper a service is in the
chain, the higher the load it will be exposed to due to retry ampli-
fication (see Figure 27.2).

Figure 27.2: Retry amplification in action

And if the pressure gets bad enough, this behavior can easily over-
load downstream services. That’s why, when we have long depen-
dency chains, we should consider retrying at a single level of the
chain and failing fast in all the others.

27.3 Circuit breaker
Suppose a service uses timeouts to detect whether a downstream
dependency is unavailable and retries tomitigate transient failures.
If the failures aren’t transient and the downstream dependency re-
mains unresponsive, what should it do then? If the service keeps
retrying failed requests, it will necessarily become slower for its
clients. In turn, this slowness can spread to the rest of the system.

To deal with non-transient failures, we need a mechanism that
detects long-term degradations of downstream dependencies and
stops new requests from being sent downstream in the first place.
After all, the fastest network call is the one we don’t have to make.
The mechanism in question is the circuit breaker, inspired by the
same functionality implemented in electrical circuits.

The goal of the circuit breaker is to allow a sub-system to fail with-
out slowing down the caller. To protect the system, calls to the
failing sub-system are temporarily blocked. Later, when the sub-
system recovers and failures stop, the circuit breaker allows calls
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to go through again.

Unlike retries, circuit breakers prevent network calls entirely, mak-
ing the pattern particularly useful for non-transient faults. In other
words, retries are helpful when the expectation is that the next call
will succeed, while circuit breakers are helpful when the expecta-
tion is that the next call will fail.

A circuit breaker can be implemented as a statemachinewith three
states: open, closed, and half-open (see Figure 27.3).

Figure 27.3: Circuit breaker state machine

In the closed state, the circuit breakermerely acts as a pass-through
for network calls. In this state, the circuit breaker tracks the num-
ber of failures, like errors and timeouts. If the number goes over
a certain threshold within a predefined time interval, the circuit
breaker trips and opens the circuit.

When the circuit is open, network calls aren’t attempted and fail
immediately. As an open circuit breaker can have business impli-
cations, we need to consider what should happen when a down-
stream dependency is down. If the dependency is non-critical, we
want our service to degrade gracefully rather than to stop entirely.
Think of an airplane that loses one of its non-critical sub-systems
in flight; it shouldn’t crash but rather gracefully degrade to a state
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where the plane can still fly and land. Another example is Ama-
zon’s front page; if the recommendation service is unavailable, the
page renderswithout recommendations. It’s a better outcome than
failing to render the whole page entirely.
After some time has passed, the circuit breaker gives the
downstream dependency another chance and transitions to the
half-open state. In the half-open state, the next call is allowed
to pass through to the downstream service. If the call succeeds,
the circuit breaker transitions to the closed state; if the call fails
instead, it transitions back to the open state.
You might think that’s all there is to understand how a circuit
breaker works, but the devil is in the details. For example, how
many failures are enough to consider a downstream dependency
down? How long should the circuit breaker wait to transition
from the open to the half-open state? It really depends on the
specific context; only by using data about past failures can we
make an informed decision.



Chapter 28

Upstream resiliency

The previous chapter discussed patterns that protect services
against downstream failures, like failures to reach an external
dependency. In this chapter, we will shift gears and discuss
mechanisms to protect against upstream pressure.1

28.1 Load shedding
A server has very little control over howmany requests it receives
at any given time. The operating system has a connection queue
per port with a limited capacity that, when reached, causes new
connection attempts to be rejected immediately. But typically, un-
der extreme load, the server crawls to a halt before that limit is
reached as it runs out of resources like memory, threads, sockets,
or files. This causes the response time to increase until eventually,
the server becomes unavailable to the outside world.
When a server operates at capacity, it should reject excess requests2
so that it can dedicate its resources to the requests it’s already pro-
cessing. For example, the server could use a counter to measure

1We have already met a mechanism to protect against upstream pressure when
we discussed health checks in the context of load balancers in chapter 18.

2“Using load shedding to avoid overload,” https://aws.amazon.com/builders-
library/using-load-shedding-to-avoid-overload

https://aws.amazon.com/builders-library/using-load-shedding-to-avoid-overload
https://aws.amazon.com/builders-library/using-load-shedding-to-avoid-overload
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the number of concurrent requests being processed that is incre-
mented when a new request comes in and decreased when a re-
sponse is sent. The server can then infer whether it’s overloaded
by comparing the counter with a threshold that approximates the
server’s capacity.
When the server detects that it’s overloaded, it can reject incoming
requests by failing fast and returning a response with status code
503 (Service Unavailable). This technique is also referred to as load
shedding. The server doesn’t necessarily have to reject arbitrary
requests; for example, if different requests have different priorities,
the server could reject only low-priority ones. Alternatively, the
server could reject the oldest requests first since those will be the
first ones to time out and be retried, so handling them might be a
waste of time.
Unfortunately, rejecting a request doesn’t completely shield the
server from the cost of handling it. Depending on how the rejec-
tion is implemented, the server might still have to pay the price
of opening a TLS connection and reading the request just to reject
it. Hence, load shedding can only help so much, and if load keeps
increasing, the cost of rejecting requests will eventually take over
and degrade the server.

28.2 Load leveling
There is an alternative to load shedding, which can be exploited
when clients don’t expect a prompt response. The idea is to intro-
duce amessaging channel between the clients and the service. The
channel decouples the load directed to the service from its capac-
ity, allowing it to process requests at its own pace.
This pattern is referred to as load leveling and it’s well suited to
fending off short-lived spikes, which the channel smooths out (see
Figure 28.1). But if the service doesn’t catch up eventually, a large
backlog will build up, which comes with its own problems, as dis-
cussed in chapter 23.
Load-shedding and load leveling don’t address an increase in load



CHAPTER 28. UPSTREAM RESILIENCY 263

Figure 28.1: The channel smooths out the load for the consuming
service.

directly but rather protect a service from getting overloaded. To
handle more load, the service needs to be scaled out. This is why
these protection mechanisms are typically combined with auto-
scaling3, which detects that the service is running hot and auto-
matically increases its scale to handle the additional load.

28.3 Rate-limiting
Rate-limiting, or throttling, is a mechanism that rejects a request
when a specific quota is exceeded. A service can have multiple
quotas, e.g., for the number of requests or bytes received within a
time interval. Quotas are typically applied to specific users, API
keys, or IP addresses.

For example, if a service with a quota of 10 requests per second per
API key receives on average 12 requests per second from a specific
API key, it will, on average, reject 2 requests per second from that
API key.

When a service rate-limits a request, it needs to return a response
with a particular error code so that the sender knows that it failed
because a quota has been exhausted. For services withHTTPAPIs,

3“Autoscaling,” https://en.wikipedia.org/wiki/Autoscaling

https://en.wikipedia.org/wiki/Autoscaling
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the most common way to do that is by returning a response with
status code 429 (Too Many Requests). The response should include
additional details about which quota has been exhausted and by
howmuch; it can also include a Retry-After header indicating how
long to wait before making a new request:
If the client application plays by the rules, it will stop hammering
the service for some time, shielding the service fromnon-malicious
usersmonopolizing it bymistake. In addition, this protects against
bugs in the clients that cause a client to hit a downstream service
for one reason or another repeatedly.
Rate-limiting is also used to enforce pricing tiers; if users want to
use more resources, they should also be willing to pay more. This
is how you can offload your service’s cost to your users: have them
pay proportionally to their usage and enforce pricing tiers with
quotas.
You would think that rate-limiting also offers strong protection
against a DDoS attack, but it only partially protects a service from
it. Nothing forbids throttled clients from continuing to hammer a
service after getting 429s. Rate-limited requests aren’t free either
— for example, to rate-limit a request by API key, the service has
to pay the price of opening a TLS connection, and at the very least,
download part of the request to read the key. Although rate limit-
ing doesn’t fully protect against DDoS attacks, it does help reduce
their impact.
Economies of scale are the only true protection against DDoS at-
tacks. If you run multiple services behind one large gateway ser-
vice, no matter which of the services behind it are attacked, the
gateway service will be able to withstand the attack by rejecting
the traffic upstream. The beauty of this approach is that the cost
of running the gateway is amortized across all the services that are
using it.
Although rate-limiting has some similarities with load shedding,
they are different concepts. Load shedding rejects traffic based
on the local state of a process, like the number of requests concur-
rently processed by it; rate-limiting instead sheds traffic based on
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the global state of the system, like the total number of requests
concurrently processed for a specific API key across all service in-
stances. And because there is a global state involved, some form
of coordination is required.

28.3.1 Single-process implementation
The distributed implementation of rate-limiting is interesting in its
own right, and it’s well worth spending some time discussing it.
We will start with a single-process implementation first and then
extend it to a distributed one.

Suppose we want to enforce a quota of 2 requests per minute, per
API key. A naive approach would be to use a doubly-linked list
per API key, where each list stores the timestamps of the last N
requests received. Whenever a new request comes in, an entry is
appended to the list with its corresponding timestamp. Then, pe-
riodically, entries older than a minute are purged from the list.

By keeping track of the list’s length, the process can rate-limit in-
coming requests by comparing it with the quota. The problem
with this approach is that it requires a list per API key, which
quickly becomes expensive in terms of memory as it grows with
the number of requests received.

To reduce memory consumption, we need to come up with a way
to reduce the storage requirements. One way to do this is by divid-
ing time into buckets of fixed duration, for example of 1 minute,
and keeping track of how many requests have been seen within
each bucket (see Figure 28.2).

A bucket contains a numerical counter. When a new request comes
in, its timestamp is used to determine the bucket it belongs to. For
example, if a request arrives at 12.00.18, the counter of the bucket
for minute “12.00” is incremented by 1 (see Figure 28.3).

With bucketing, we can compress the information about the num-
ber of requests seen in a way that doesn’t grow with the number
of requests. Now that we have a memory-friendly representation,
how can we use it to implement rate-limiting? The idea is to use a
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Figure 28.2: Buckets divide time into 1-minute intervals, which
keep track of the number of requests seen.

Figure 28.3: When a new request comes in, its timestamp is used
to determine the bucket it belongs to.

slidingwindow thatmoves across the buckets in real time, keeping
track of the number of requests within it.

The sliding window represents the interval of time used to decide
whether to rate-limit or not. The window’s length depends on the
time unit used to define the quota, which in our case is 1 minute.
But there is a caveat: a sliding window can overlap with multiple
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buckets. To derive the number of requests under the sliding win-
dow, we have to compute aweighted sum of the bucket’s counters,
where each bucket’s weight is proportional to its overlap with the
sliding window (see Figure 28.4).

Figure 28.4: A bucket’s weight is proportional to its overlap with
the sliding window.

Although this is an approximation, it’s a reasonably good one for
our purposes. And it can be made more accurate by increasing
the granularity of the buckets. So, for example, we can reduce the
approximation error using 30-second buckets rather than 1-minute
ones.
We only have to store as many buckets as the sliding window can
overlap with at any given time. For example, with a 1-minute win-
dowand a 1-minute bucket length, the slidingwindow can overlap
with at most 2 buckets. Thus, there is no point in storing the third
oldest bucket, the fourth oldest one, etc.
To summarize, this approach requires two counters per API key,
which is much more efficient in terms of memory than the naive
implementation storing a list of requests per API key.

28.3.2 Distributed implementation
When more than one process accepts requests, the local state is no
longer good enough, as the quota needs to be enforced on the total
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number of requests per API key across all service instances. This
requires a shared data store to keep track of the number of requests
seen.

As discussed earlier, we need to store two integers per API key,
one for each bucket. When a new request comes in, the process re-
ceiving it could fetch the current bucket, update it andwrite it back
to the data store. But that wouldn’t work because two processes
could update the same bucket concurrently, which would result in
a lost update. The fetch, update, and write operations need to be
packaged into a single transaction to avoid any race conditions.

Although this approach is functionally correct, it’s costly. There
are two issues here: transactions are slow, and executing one per
request would be very expensive as the data store would have to
scale linearly with the number of requests. Also, because the data
store is a hard dependency, the service will become unavailable if
it can’t reach it.

Let’s address these issues. Rather than using transactions, we
can use a single atomic get-and-increment operation that most data
stores provide. Alternatively, the same can be emulated with
a compare-and-swap. These atomic operations have much better
performance than transactions.

Now, rather than updating the data store on each request, the pro-
cess can batch bucket updates in memory for some time and flush
them asynchronously to the data store at the end of it (see Fig-
ure 28.5). This reduces the shared state’s accuracy, but it’s a good
trade-off as it reduces the load on the data store and the number
of requests sent to it.

What happens if the data store is down? Remember the CAP theo-
rem’s essence: when there is a network fault, we can either sacrifice
consistency and keep our system up or maintain consistency and
stop serving requests. In our case, temporarily rejecting requests
just because the data store used for rate-limiting is not reachable
could damage the business. Instead, it’s safer to keep serving re-
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Figure 28.5: Servers batch bucket updates in memory for some
time, and flush them asynchronously to the data store at the end
of it.

quests based on the last state read from the store.4

28.4 Constant work
When overload, configuration changes, or faults force an applica-
tion to behave differently from usual, we say the application has
a multi-modal behavior. Some of these modes might trigger rare
bugs, conflict with mechanisms that assume the happy path, and
more generally make life harder for operators, since their mental
model of how the application behaves is no longer valid. Thus, as
a general rule of thumb, we should strive to minimize the number
of modes.

For example, simple key-value stores are favored over relational
databases in data planes because they tend to have predictable per-
formance5. A relational database hasmany operationalmodes due
to hidden optimizations, which can change how specific queries
perform from one execution to another. Instead, dumb key-value
stores behave predictably for a given query, which guarantees that

4This is another application of the concept of static stability, first introduced in
chapter 22.

5“Some opinionated thoughts on SQL databases,” https://blog.nelhage.com/p
ost/some-opinionated-sql-takes/

https://blog.nelhage.com/post/some-opinionated-sql-takes/
https://blog.nelhage.com/post/some-opinionated-sql-takes/
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there won’t be any surprises.
A common reason for a system to change behavior is overload,
which can cause the system to become slower and degrade at the
worst possible time. Ideally, the worst- and average-case behav-
ior shouldn’t differ. One way to achieve that is by exploiting the
constant work pattern, which keeps the work per unit time constant.
The idea is to have the system perform the same amount of work6
under high load as under average load. And, if there is any vari-
ation under stress, it should be because the system is performing
better, not worse. Such a system is also said to be antifragile. This is
a different property from resiliency; a resilient system keeps oper-
ating under extreme load, while an antifragile one performs better.
We have already seen one application of the constant work pattern
when discussing the propagation of configuration changes from
the control plane to the data plane in chapter 22. For example, sup-
pose we have a configuration store (control plane) that stores a bag
of settings for each user, like the quotas used by the API gateway
(data plane) to rate-limit requests. When a setting changes for a
specific user, the control plane needs to broadcast it to the data
plane. However, as each change is a separate independent unit of
work, the data plane needs to perform work proportional to the
number of changes.
If you don’t see how this could be a problem, imagine that a large
number of settings are updated for the majority of users at the
same time (e.g., quotas changed due to a business decision). This
could cause an unexpectedly large number of individual update
messages to be sent to every data plane instance, which could
struggle to handle them.
The workaround to this problem is simple but powerful. The con-
trol plane can periodically dump the settings of all users to a file in
a scalable and highly available file store like Azure Storage or AWS
S3. The dump includes the configuration settings of all users, even
the ones for which there were no changes. Data plane instances

6“Reliability, constant work, and a good cup of coffee,” https://aws.amazon.c
om/builders-library/reliability-and-constant-work/

https://aws.amazon.com/builders-library/reliability-and-constant-work/
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CHAPTER 28. UPSTREAM RESILIENCY 271

can then periodically read the dump in bulk and refresh their lo-
cal view of the system’s configuration. Thus, no matter howmany
settings change, the control plane periodically writes a file to the
data store, and the data plane periodically reads it.
We can take this pattern to the extreme and pre-allocate empty con-
figuration slots for themaximumnumber of supported users. This
guarantees that as the number of users grows, the work required
to propagate changes remains stable. Additionally, doing so al-
lows to stress-test the system and understand its behavior, know-
ing that it will behave the same under all circumstances. Although
this limits the number of users, a limit exists regardless of whether
the constant work pattern is used or not. This approach is typi-
cally used in cellular architectures (see 26.2), where a single cell
has a well-defined maximum size and the system is scaled out by
creating new cells.
The beauty of using the constantwork pattern is that the data plane
periodically performs the same amount of work in bulk, no mat-
ter how many configuration settings have changed. This makes
updating settings reliable and predictable. Also, periodically writ-
ing and reading a large file is much simpler to implement correctly
than a complex mechanism that only sends what changed.
Another advantage of this approach is that it’s robust against a
whole variety of faults thanks to its self-healing properties. If the
configuration dump gets corrupted for whatever reason, no harm
is done since the next update will fix it. And if a faulty update was
pushed to all users by mistake, reverting it is as simple as creating
a new dump andwaiting it out. In contrast, the solution that sends
individual updates is much harder to implement correctly, as the
data plane needs complex logic to handle and heal from corrupted
updates.
To sum up, performing constant work is more expensive than do-
ing just the necessary work. Still, it’s often worth considering it,
given the increase in reliability and reduction in complexity it en-
ables.





Summary

As the number of components or operations in a system increases,
so does the number of failures, and eventually, anything that can
happen will happen. In my team, we humorously refer to this as
“cruel math.”
If you talk to an engineer responsible for a production system, you
will quickly realize that they tend to be more worried about min-
imizing and tolerating failures than how to further scale out their
systems. The reason for that is that once you have an architecture
that scales to handle your current load, you will be mostly con-
cerned with tolerating faults until you eventually reach the next
scalability bottleneck.
What you should take away from this part is that failures are in-
evitable since, no matter how hard you try, it’s just impossible to
build an infallible system. When you can’t design away some fail-
ure modes (e.g., with constant work), the best you can do is to re-
duce their blast radius and stop the cracks from propagating from
one component to the other.





Part V

Maintainability





Introduction

“Everyone knows that debugging is twice as hard as writing
a program in the first place. So if you’re as clever as you can
be when you write it, how will you ever debug it?”

– Brian Kernighan

It’s a well-known fact that the majority of the cost of software is
spent after its initial development in maintenance activities, such
as fixing bugs, adding new features, and operating it. Thus, we
should aspire to make our systems easy to modify, extend and op-
erate so that they are easy to maintain.

Good testing — in the form of unit, integration, and end-to-end
tests — is a minimum requirement to be able to modify or extend
a system without worrying it will break. And once a change has
been merged into the codebase, it needs to be released to produc-
tion safely without affecting the application’s availability. Also,
the operators need to be able to monitor the system’s health, inves-
tigate degradations and restore the service when it gets into a bad
state. This requires altering the system’s behavior without code
changes, e.g., toggling a feature flag or scaling out a service with a
configuration change.

Historically, developers, testers, and operators were part of differ-
ent teams. First, the developers handed over their software to a
team of QA engineers responsible for testing it. Then, when the
software passed that stage, it moved to an operations team respon-
sible for deploying it to production, monitoring it, and responding



278

to alerts. However, this model is being phased out in the industry.
Nowadays, it’s common for developers to be responsible for test-
ing and operating the software they write, which requires embrac-
ing an end-to-end view of the software’s lifecycle.
In this part, we will explore some of the best practices for testing
and operating large distributed applications.
Chapter 29 describes the different types of tests — unit, integra-
tion, and end-to-end tests — that we can leverage to increase the
confidence that a distributed application works as expected. This
chapter also explores the use of formal verificationmethods to ver-
ify the correctness of an application before writing a single line of
code.
Chapter 30 dives into continuous delivery and deployment
pipelines to release changes safely and efficiently to production.
Chapter 31 discusses how to use metrics, service-level indicators,
and dashboards to monitor the health of distributed applications.
It then talks about how to define and enforce service-level objec-
tives that describe how the service should behave when it’s func-
tioning correctly.
Chapter 32 introduces the concept of observability and its relation
to monitoring. Later, it describes how to debug production issues
using logs and traces.
Chapter 33 describes how to modify a system’s behavior without
changing its code, which is a must-have to enable operators to
quickly mitigate failures in production when everything else fails.



Chapter 29

Testing

The longer it takes to detect a bug, the more expensive it becomes
to fix. A software test can verify that some part of the application
works as intended, catching bugs early in the process. But the real
benefit that comes from testing shows up only later when devel-
opers want to make changes to the existing implementation (e.g.,
bug fixes, refactorings, and new features) without breaking the ex-
pected behaviors. Tests also act as always up-to-date documenta-
tion and improve the quality of public interfaces since developers
have to put themselves in the users’ shoes to test them effectively.

Unfortunately, testing is not a silver bullet because it’s impossible
to predict all the states a complex distributed application can get
into. It only provides best-effort guarantees that the code being
tested is correct and fault-tolerant. No matter how exhaustive the
test coverage is, tests can only cover failures developers can imag-
ine, not the kind of complex emergent behavior that manifests it-
self in production1.

Although tests can’t guarantee that code is bug-free, they certainly
do a good job validating expected behaviors. So, as a rule of thumb,

1Cindy Sridharan wrote a great blog post series on the topic, see “Testing Mi-
croservices, the sane way,” https://copyconstruct.medium.com/testing-
microservices-the-sane-way-9bb31d158c16

https://copyconstruct.medium.com/testing-microservices-the-sane-way-9bb31d158c16
https://copyconstruct.medium.com/testing-microservices-the-sane-way-9bb31d158c16
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if you want to be confident that your implementation behaves in
a certain way, you have to add a test for it.

29.1 Scope
Tests come in different shapes and sizes. To begin with, we need
to distinguish between the code paths a test is actually testing (aka
system under test or SUT) from the ones that are being run. The
SUT represents the scope of the test. It determines whether the test
is categorized as a unit test, an integration test, or an end-to-end
test.

A unit test validates the behavior of a small part of the codebase,
like an individual class2. A good unit test should be relatively
static in time and change only when the behavior of the SUT
changes — refactoring, bug fixes, or new features shouldn’t break
it. To achieve that, a unit test should:

• use only the public interfaces of the SUT;
• test for state changes in the SUT (not predetermined
sequences of actions);

• test for behaviors, i.e., how the SUT handles a given input
when it’s in a specific state.

An integration test has a larger scope than a unit test, since it verifies
that a service can interactwith an external dependency as expected.
Confusingly, integration testing has different meanings for differ-
ent people. Martin Fowler3 makes the distinction between narrow
and broad integration tests. A narrow integration test exercises
only the code paths of a service that communicate with a specific
external dependency, like an adapter and its supporting classes. In
contrast, a broad integration test exercises code paths across mul-
tiple live services. In the rest of the chapter, we will refer to these
broader integration tests as end-to-end tests.

2The kind of unit test I have in mind is the sociable kind; see “On the Diverse
And Fantastical Shapes of Testing,” https://martinfowler.com/articles/2021-test-
shapes.html

3“IntegrationTest,” https://martinfowler.com/bliki/IntegrationTest.html

https://martinfowler.com/articles/2021-test-shapes.html
https://martinfowler.com/articles/2021-test-shapes.html
https://martinfowler.com/bliki/IntegrationTest.html
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An end-to-end test validates behavior that spans multiple services
in the system, like a user-facing scenario. These tests usually run
in shared environments, like staging or production, and therefore
should not impact other tests or users sharing the same environ-
ment. Because of their scope, they are slow and more prone to
intermittent failures.

End-to-end tests can also be painful and expensive to maintain.
For example, when an end-to-end test fails, it’s generally not ob-
vious which service caused the failure, and a deeper investigation
is required. But these tests are a necessary evil to ensure that user-
facing scenarios work as expected across the entire application.
They can uncover issues that tests with smaller scope can’t, like
unanticipated side effects and emergent behaviors.

One way to minimize the number of end-to-end tests is to frame
them as user journey tests. A user journey test simulates a multi-
step interaction of a user with the system (e.g., for an e-commerce
service: create an order, modify it, and finally cancel it). Such a
test usually requires less time to run than the individual journey
parts split into separate end-to-end tests.

As the scope of a test increases, it becomes more brittle, slow, and
costly. Intermittently failing tests are nearly as bad as no tests at
all, as developers stop trusting them and eventually ignore their
failures. When possible, it’s preferable to have tests with smaller
scope as they tend to be more reliable, faster, and cheaper. A good
trade-off is to have a large number of unit tests, a smaller fraction
of integration tests, and even fewer end-to-end tests (see Figure
29.1).

29.2 Size
The size of a test4 reflects howmuch computing resources it needs
to run, like the number of nodes. Generally, that depends on
how realistic the environment is where the test runs. Although

4“Software Engineering at Google: Lessons Learned from Programming Over
Time,” https://www.amazon.com/dp/B0859PF5HB

https://www.amazon.com/dp/B0859PF5HB
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Figure 29.1: Test pyramid

the scope and size of a test tend to be correlated, they are distinct
concepts, and it helps to separate them.

A small test runs in a single process and doesn’t perform any block-
ing calls or I/O. As a result, it’s very fast, deterministic, and has a
very small probability of failing intermittently.

An intermediate test runs on a single node and performs local I/O,
like reads from disk or network calls to localhost. This introduces
more room for delays and non-determinism, increasing the likeli-
hood of intermittent failures.

A large test requires multiple nodes to run, introducing even more
non-determinism and longer delays.

Unsurprisingly, the larger a test is, the longer it takes to run and
the flakier it becomes. This is why we should write the smallest
possible test for a given behavior. We can use a test double in place
of a real dependency, such as a fake, a stub, or amock, to reduce the
test’s size, making it faster and less prone to intermittent failures:

• A fake is a lightweight implementation of an interface that
behaves similarly to a real one. For example, an in-memory
version of a database is a fake.

• A stub is a function that always returns the same value no
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matter which arguments are passed to it.
• Finally, a mock has expectations on how it should be called,
and it’s used to test the interactions between objects.

The problemwith test doubles is that they don’t resemble how the
real implementation behaves with all its nuances. The weaker the
resemblance is, the less confidence we should have that the test
using the double is actually useful. Therefore, when the real im-
plementation is fast, deterministic, and has few dependencies, we
should use that rather than a double. When using the real imple-
mentation is not an option, we can use a fake maintained by the
same developers of the dependency if one is available. Stubbing,
or mocking, are last-resort options as they offer the least resem-
blance to the actual implementation, which makes tests that use
them brittle.

For integration tests, a good compromise is to combine mocking
with contract tests5. A contract test defines a request for an external
dependency with the corresponding expected response. Then the
test uses this contract tomock the dependency. For example, a con-
tract for a REST API consists of an HTTP request and response. To
ensure that the contract is valid and doesn’t break in the future, the
test suite of the external dependency uses the same contract defi-
nition to simulate the client request and ensure that the expected
response is returned.

29.3 Practical considerations
As with everything else, testing requires making trade-offs. Sup-
pose wewant to end-to-end test the behavior of a specific API end-
point exposed by a service. The service talks to:

• a data store,
• an internal service owned by another team,
• and a third-party API used for billing (see Figure 29.2).

As suggested earlier, we should try to write the smallest possible
5“ContractTest,” https://martinfowler.com/bliki/ContractTest.html

https://martinfowler.com/bliki/ContractTest.html
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test for the desired scope while minimizing the use of test doubles
that don’t resemble how the real implementation behaves.

Figure 29.2: How should we test the service?

Let’s assume the specific endpoint under test doesn’t communi-
cate with the internal service, so we can safely use a mock in its
place. And if the data store comes with an in-memory implemen-
tation (a fake), we can use that in the test to avoid issuing network
calls. Finally, we can’t easily call the third-party billing API since
that would require issuing real transactions. However, assuming
a fake is not available, the billing service might still offer a testing
endpoint that issues fake transactions.
Here is a more nuanced example in which it’s a lot riskier to go
for a smaller test. Suppose we need to test whether purging the
data belonging to a specific user across the entire application stack
works as expected. In Europe, this functionality is mandated by
law (GDPR), and failing to comply with it can result in fines up to
20 million euros or 4% annual turnover, whichever is greater. In
this case, because the risk of the functionality silently breaking is
high, we want to be as confident as possible that it’s working as
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expected. This warrants the use of an end-to-end test that runs
in production periodically and uses live services rather than test
doubles.

29.4 Formal verification
Software tests are not the only way to catch bugs early. Taking the
time towrite a high-level description of how a system behaves, i.e.,
a specification, allows subtle bugs and architecture shortcomings to
be detected before writing a single line of code.

A specification can range from an informal one-pager to a formal
mathematical description that a computer can check. Since it’s
hard to specify what we don’t fully understand, a specification
can help us reason about the behaviors of the system we are de-
signing. It also acts as documentation for others and as a guide
for the actual implementation. On top of the benefits mentioned
so far, by writing the specification in a formal language, we also
gain the ability to verify algorithmically whether the specification
is flawed (model checking).

Writing a specification doesn’t mean describing every corner of a
system in detail. The specification’s goal is to catch errors while
they are still cheap to fix. Therefore, we only want to specify those
parts that aremost likely to contain errors and are hard to detect by
other means, like traditional tests. Once we have decided what to
specify, we also need to choose the level of abstraction, i.e., which
details to omit.

TLA+6 is a well-known and widely used formal specification lan-
guage7. The likes of Amazon or Microsoft use it to describe some
of their most complex distributed systems, like S3 or Cosmos DB8.

In TLA+, a behavior of a system is represented by a sequence of
states, where a state is an assignment of values to global variables.

6“The TLA+ Home Page,” https://lamport.azurewebsites.net/tla/tla.html
7TLA stands for Temporal Logic of Actions.
8“Industrial Use of TLA+,” https://lamport.azurewebsites.net/tla/industrial-

use.html

https://lamport.azurewebsites.net/tla/tla.html
https://lamport.azurewebsites.net/tla/industrial-use.html
https://lamport.azurewebsites.net/tla/industrial-use.html
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Thus, the specification of a system is the set of all possible behav-
iors.

One of the goals of writing a specification is to verify that it sat-
isfies properties we want the system to have, like safety and live-
ness. A safety property asserts that something is true for all states
of a behavior (invariant). A liveness property instead asserts that
something eventually happens. TLA+ allows to describe and ver-
ify properties that should be satisfied by all possible states and be-
haviors of a specification. This is extremely powerful, since a sys-
tem running at scale will eventually run into all possible states and
behaviors, and humans are bad at imagining behaviors in which
several rare events occur simultaneously.

For example, suppose we have a service that uses key-value store
X, and we would like to migrate it to use key-value store Y that
costs less and has proven to perform better in benchmarks. At a
high level, one way we could implement this migration without
any downtime is the following:

1. The service writes to both data stores X and Y (dual write)
while reading exclusively from X.

2. A one-off batch process backfills Y with data from X created
before the service started writing to Y.

3. The application switches to read and write exclusively from
and to Y.

This approach might seem reasonable, but will it guarantee that
the data stores eventually end up in the same state?

If we were to model this with TLA+, the model checker would
be able to identify several problems, like a liveness violation that
leaves the system in an inconsistent state when a service instance
crashes after writing to A but before writing to B. The beauty of
automatedmodel checking is that it returns an error trace with the
behavior (i.e., sequence of states) that violates the properties when
it fails.

Although modeling writes as atomic (i.e., either both writes suc-
ceed, or they both fail) fixes the liveness issue, the model isn’t cor-
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rect yet. For example, if two service instances are writing to A and
B simultaneously, the two data stores can end up in different states
because the order of writes can differ, as shown in Fig 29.3.

Figure 29.3: Data stores can see writes in different orders.

If you remember the discussion about transactions in section 13.1,
you know we can solve this problem by introducing a message
channel between the service and data stores that serializes all
writes and guarantees a single global order. Regardless of the
actual solution, the point is that a formal model enables us to test
architectural decisions that would be hard to verify otherwise.





Chapter 30

Continuous delivery and
deployment

Once a change and its newly introduced tests have beenmerged to
a repository, it needs to be released to production. When releasing
a change requires a manual process, it won’t happen frequently.
Thismeans that several changes, possibly over days or evenweeks,
end up being batched and released together, increasing the likeli-
hood of the release failing. And when a release fails, it’s harder
to pinpoint the breaking change1, slowing down the team. Also,
the developer who initiated the release needs to keep an eye on it
bymonitoring dashboards and alerts to ensure that it’s working as
expected or roll it back.
Manual deployments are a terrible use of engineering time. The
problem gets further exacerbated when there are many services.
Eventually, the only way to release changes safely and efficiently
is to automate the entire process. Once a change has been merged
to a repository, it should automatically be rolled out to production
safely. The developer is then free to context-switch to their next
task rather than shepherding the deployment. The whole release
process, including rollbacks, can be automated with a continuous

1There could be multiple breaking changes, actually.
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delivery and deployment (CD) pipeline.
Because releasing changes is one of the main sources of failures,
CD requires a significant amount of investment in terms of safe-
guards, monitoring, and automation. If a regression is detected,
the artifact being released — i.e., the deployable component that
includes the change— is either rolled back to the previous version
or forward to the next one, assuming it contains a hotfix.
There is a balance between the safety of a rollout and the time
it takes to release a change to production. A good CD pipeline
should strive to make a good trade-off between the two. In this
chapter, we will explore how.

30.1 Review and build
At a high level, a code change needs to go through a pipeline
of four stages to be released to production: review, build,
pre-production rollout, and production rollout.

Figure 30.1: Continuous delivery and deployment pipeline stages

It all startswith a pull request (PR) submitted for reviewby a devel-
oper to a repository. When the PR is submitted for review, it needs
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to be compiled, statically analyzed, and validatedwith a battery of
tests, all of which shouldn’t take longer than a few minutes. To in-
crease the tests’ speed andminimize intermittent failures, the tests
that run at this stage should be small enough to run on a single pro-
cess or node, while larger tests run later in the pipeline.

The PR needs to be reviewed and approved by a team member
before it can be merged into the repository. The reviewer has to
validate whether the change is correct and safe to be released to
production automatically by the CD pipeline. A checklist can help
the reviewer not to forget anything important, e.g.:

• Does the change include unit, integration, and end-to-end
tests as needed?

• Does the change include metrics, logs, and traces?
• Can this change break production by introducing a
backward-incompatible change or hitting some service
limit?

• Can the change be rolled back safely, if needed?

Code changes shouldn’t be the only ones going through this re-
view process. For example, static assets, end-to-end tests, and con-
figuration files should all be version-controlled in a repository (not
necessarily the same one) and be treated just like code. The same
service can then have multiple CD pipelines, one for each reposi-
tory, potentially running in parallel.

I can’t stress enough the importance of reviewing and releasing
configuration changes with a CD pipeline. As discussed in chap-
ter 24, one of the most common causes of production failures are
configuration changes applied globally without any prior review
or testing.

Also, applications running in the cloud should declare their infras-
tructure dependencies, like virtual machines, data stores, and load
balancers, with code (aka Infrastructure as Code (IaC)2) using tools

2“What is Infrastructure as Code?,” https://docs.microsoft.com/en-us/devop
s/deliver/what-is-infrastructure-as-code

https://docs.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://docs.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
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like Terraform3. This allows the provisioning of infrastructure to
be automated and infrastructure changes to be treated just like any
other software change.

Once a change has been merged into its repository’s main branch,
the CD pipelinemoves to the build stage, in which the repository’s
content is built and packaged into a deployable release artifact.

30.2 Pre-production
During this stage, the artifact is deployed and released to a syn-
thetic pre-production environment. Although this environment
lacks the realism of production, it’s useful to verify that no hard
failures are triggered (e.g., a null pointer exception at startup due
to a missing configuration setting) and that end-to-end tests suc-
ceed. Because releasing a new version to pre-production requires
significantly less time than releasing it to production, bugs can be
detected earlier.

There can be multiple pre-production environments, starting with
one created from scratch for each artifact and used to run simple
smoke tests, to a persistent one similar to production that receives
a small fraction of mirrored requests from it. AWS, for example, is
known for using multiple pre-production environments4.

Ideally, the CD pipeline should assess the artifact’s health in
pre-production using the same health signals used in production.
Metrics, alerts, and tests used in pre-production should be equiv-
alent to those used in production, to avoid the former becoming a
second-class citizen with sub-par health coverage.

3“Terraform: an open-source infrastructure as code software tool,” https://ww
w.terraform.io/

4“Automating safe, hands-off deployments,” https://aws.amazon.com/build
ers-library/automating-safe-hands-off-deployments/

https://www.terraform.io/
https://www.terraform.io/
https://aws.amazon.com/builders-library/automating-safe-hands-off-deployments/
https://aws.amazon.com/builders-library/automating-safe-hands-off-deployments/
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30.3 Production
Once an artifact has been rolled out to pre-production successfully,
the CD pipeline can proceed to the final stage and release the arti-
fact to production. It should start by releasing it to a small number
of production instances at first5. The goal is to surface problems
that haven’t been detected so far as quickly as possible before they
have the chance to cause widespread damage in production.

If that goes well and all the health checks pass, the artifact is in-
crementally released to the rest of the fleet. While the rollout is in
progress, a fraction of the fleet can’t serve any traffic due to the
ongoing deployment, and so the remaining instances need to pick
up the slack. For this to not cause any performance degradation,
there needs to be enough capacity left to sustain the incremental
release.

If the service is available in multiple regions, the CD pipeline
should first start with a low-traffic region to reduce the impact
of a faulty release. Then, releasing the remaining regions should
be divided into sequential stages to minimize risks further. Natu-
rally, the more stages there are, the longer the CD pipeline takes
to release the artifact to production. One way to mitigate this
problem is by increasing the release speed once the early stages
complete successfully and enough confidence has been built up.
For example, the first stage could release the artifact to a single
region, the second to a larger region, and the third to N regions
simultaneously.

30.4 Rollbacks
After each step, the CD pipeline needs to assess whether the arti-
fact deployed is healthy and, if not, stop the release and roll it back.
A variety of health signals can be used to make that decision, such
as the result of end-to-end tests, health metrics like latencies and
errors and alerts.

5This is also referred to as canary testing.
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Monitoring just the health signals of the service being rolled out
is not enough. The CD pipeline should also monitor the health of
upstream and downstream services to detect any indirect impact
of the rollout. The pipeline should allow enough time to pass be-
tween one step and the next (bake time) to ensure that it was suc-
cessful, as some issues only appear after some time has passed. For
example, a performance degradation could be visible only at peak
time. To speed up the release, the bake time can be reduced after
each step succeeds and confidence is built up. The CD pipeline
could also gate the bake time on the number of requests seen for
specific API endpoints to guarantee that the API surface has been
properly exercised.

When a health signal reports a degradation, the CD pipeline stops.
At that point, it can either roll back the artifact automatically or
trigger an alert to engage the engineer on call, who needs to decide
whether a rollback is warranted or not6. Based on the engineer’s
input, the CD pipeline retries the stage that failed (e.g., perhaps
because something else was going into production at the time) or
rolls back the release entirely.

The operator can also stop the pipeline and wait for a new artifact
with a hotfix to be rolled forward. This might be necessary if the
release can’t be rolled back because of a backward-incompatible
change. Since rolling forward is much riskier than rolling back,
any change introduced should always be backward compatible as
a rule of thumb. One of the most common causes for backward
incompatibility is changing the serialization format used for per-
sistence or IPC purposes.

To safely introduce a backward-incompatible change, it needs to
be broken down intomultiple backward-compatible changes7. For
example, suppose the messaging schema between a producer and
a consumer service needs to change in a backward-incompatible
way. In this case, the change is broken down into three smaller

6CD pipelines can be configured to run only during business hours to minimize
the disruption to on-call engineers.

7“Ensuring rollback safety during deployments,” https://aws.amazon.com/b
uilders-library/ensuring-rollback-safety-during-deployments/

https://aws.amazon.com/builders-library/ensuring-rollback-safety-during-deployments/
https://aws.amazon.com/builders-library/ensuring-rollback-safety-during-deployments/
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changes that can individually be rolled back safely:
• In the prepare change, the consumer is modified to support
both the new and old messaging format.

• In the activate change, the producer is modified to write the
messages in the new format.

• Finally, in the cleanup change, the consumer stops support-
ing the old messaging format altogether. This change is only
released once there is enough confidence that the activated
change won’t need to be rolled back.

An automated upgrade-downgrade test part of the CD pipeline in
pre-production can be used to validate whether a change is actu-
ally safe to roll back.





Chapter 31

Monitoring

Monitoring is primarily used to detect failures that impact users
in production and to trigger notifications (or alerts) to the human
operators responsible for the system. Another important use case
for monitoring is to provide a high-level overview of the system’s
health via dashboards.

In the early days, monitoring was used mostly to report whether
a service was up, without much visibility of what was going on
inside (black-box monitoring). In time, developers also started to
instrument their applications to report whether specific features
worked as expected (white-box monitoring). This was popular-
ized with the introduction of statsd1 by Etsy, which normalized
collecting application-level measurements. While black-box mon-
itoring is useful for detecting the symptoms of a failure, white-box
monitoring can help identify the root cause.

The main use case for black-box monitoring is to monitor external
dependencies, such as third-party APIs, and validate how users
perceive the performance and health of a service from the outside.
A common black-box approach is to periodically run scripts (syn-

1“Measure Anything, Measure Everything,” https://codeascraft.com/2011/0
2/15/measure-anything-measure-everything/

https://codeascraft.com/2011/02/15/measure-anything-measure-everything/
https://codeascraft.com/2011/02/15/measure-anything-measure-everything/
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thetics2) that send test requests to external API endpoints andmon-
itor how long they took and whether they were successful. Syn-
thetics are deployed in the same regions the application’s users are
and hit the same endpoints they do. Because they exercise the sys-
tem’s public surface from the outside, they can catch issues that
aren’t visible from within the application, like connectivity prob-
lems. Synthetics are also useful for detecting issues with APIs that
aren’t exercised often by users.

For example, if the DNS server of a service were down, the issue
would be visible to synthetics, since they wouldn’t be able to re-
solve its IP address. However, the service itself would think every-
thing was fine, and it was just getting fewer requests than usual.

31.1 Metrics
Ametric is a time series of rawmeasurements (samples) of resource
usage (e.g., CPU utilization) or behavior (e.g., number of requests
that failed), where each sample is represented by a floating-point
number and a timestamp.

Commonly, a metric can also be tagged with a set of key-value
pairs (labels). For example, the label could represent the region,
data center, cluster, or node where the service is running. Labels
make it easy to slice and dice the data and eliminate the instru-
mentation cost of manually creating a metric for each label com-
bination. However, because every distinct combination of labels
is a different metric, tagging generates a large number of metrics,
making them challenging to store and process.

At the very least, a service should emit metrics about its load
(e.g., request throughput), its internal state (e.g., in-memory cache
size), and its dependencies’ availability and performance (e.g.,
data store response time). Combined with the metrics emitted by
downstream services, this allows operators to identify problems
quickly. But this requires explicit code changes and a deliberate

2“Using synthetic monitoring,” https://docs.aws.amazon.com/AmazonClou
dWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html
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effort by developers to instrument their code.

For example, take a fictitiousHTTP handler that returns a resource.
There is a whole range of questions we will want to be able to an-
swer once it’s running in production3:

def get_resource(id):
resource = self._cache.get(id) # in-process cache
# Is the id valid?
# Was there a cache hit?
# How long has the resource been in the cache?

if resource is not None:
return resource

resource = self._repository.get(id)
# Did the remote call fail, and if so, why?
# Did the remote call time out?
# How long did the call take?

self._cache[id] = resource
# What's the size of the cache?

return resource
# How long did it take for the handler to run?

Now, suppose we want to record the number of requests the han-
dler failed to serve. One way to do that is with an event-based
approach — whenever the handler fails to handle a request, it re-
ports a failure count of 1 in an event4 to a local telemetry agent,
e.g.:

{
"failureCount": 1,
"serviceRegion": "EastUs2",
"timestamp": 1614438079

3I have omitted error handling for simplicity.
4We will talk more about event logs in section 32.1; for now, assume an event is

just a dictionary.
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}

The agent batches these events and emits them periodically to a
remote telemetry service, which persists them in a dedicated data
store for event logs. For example, this is the approach taken by
Azure Monitor’s log-based metrics5.

As you can imagine, this is quite expensive, since the load on the
telemetry service increases with the number of events ingested.
Events are also costly to aggregate at query time — suppose we
want to retrieve the number of failures in North Europe over the
past month; we would have to issue a query that requires fetching,
filtering, and aggregating potentially trillions of events within that
time period.

So is there away to reduce costs at query time? Becausemetrics are
time series, they can bemodeled andmanipulatedwithmathemat-
ical tools. For example, time-series samples can be pre-aggregated
over fixed time periods (e.g., 1 minute, 5 minutes, 1 hour, etc.) and
represented with summary statistics such as the sum, average, or
percentiles.

Going back to our example, the telemetry service could pre-
aggregate the failure count events at ingestion time. If the
aggregation (i.e., the sum in our example) were to happen with
a period of one hour, we would have one failureCount metric per
serviceRegion, each containing one sample per hour, e.g.:

"00:00", 561,
"01:00", 42,
"02:00", 61,
...

The ingestion service could also create multiple pre-aggregates
with different periods. This way, the pre-aggregated metric with
the best period that satisfies the query can be chosen at query

5“Log-based metrics in Application Insights,” https://docs.microsoft.com/en-
us/azure/azure-monitor/app/pre-aggregated-metrics-log-metrics#log-based-
metrics

https://docs.microsoft.com/en-us/azure/azure-monitor/app/pre-aggregated-metrics-log-metrics#log-based-metrics
https://docs.microsoft.com/en-us/azure/azure-monitor/app/pre-aggregated-metrics-log-metrics#log-based-metrics
https://docs.microsoft.com/en-us/azure/azure-monitor/app/pre-aggregated-metrics-log-metrics#log-based-metrics
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time. For example, CloudWatch6 (the telemetry service used by
AWS) pre-aggregates data as it’s ingested.

We can take this idea one step further and also reduce ingestion
costs by having the local telemetry agents pre-aggregate metrics
client-side. By combining client- and server-side pre-aggregation,
we can drastically reduce the bandwidth, compute, and storage
requirements for metrics. However, this comes at a cost: we lose
the ability to re-aggregate metrics after ingestion because we no
longer have access to the original events that generated them. For
example, if a metric is pre-aggregated over a period of 1 hour, it
can’t later be re-aggregated over a period of 5 minutes without the
original events.

Becausemetrics aremainly used for alerting and visualization pur-
poses, they are usually persisted in a pre-aggregated form in a data
store specialized for efficient time series storage7.

31.2 Service-level indicators
As noted before, one of the main use cases for metrics is alerting.
But that doesn’t mean we should create alerts for every possible
metric — for example, it’s useless to be alerted in the middle of the
night because a service had a big spike in memory consumption a
few minutes earlier.

In this section, we will discuss one specific metric category that
lends itself well to alerting: service-level indicators (SLIs). An SLI is
a metric that measures one aspect of the level of service provided by
a service to its users, like the response time, error rate, or through-
put. SLIs are typically aggregated over a rolling time window and
representedwith a summary statistic, like an average or percentile.

SLIs are best defined as a ratio of twometrics: the number of “good
events” over the total number of events. That makes the ratio easy

6“Amazon CloudWatch concepts,” https://docs.aws.amazon.com/AmazonCl
oudWatch/latest/monitoring/cloudwatch_concepts.html

7like, e.g., Druid; see “A Real-time Analytical Data Store,” http://static.druid.i
o/docs/druid.pdf

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html
http://static.druid.io/docs/druid.pdf
http://static.druid.io/docs/druid.pdf
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to interpret: 0 means the service is completely broken and 1 that
whatever is being measured is working as expected (see Figure
31.1). As we will see later in the chapter, ratios also simplify the
configuration of alerts. Some commonly used SLIs for services are:

• Response time— The fraction of requests that are completed
faster than a given threshold.

• Availability—The proportion of time the service was usable,
defined as the number of successful requests over the total
number of requests.

Figure 31.1: An SLI defined as the ratio of good events over the
total number of events

Once we have decided what to measure, we need to decide where
to measure it. Take the response time, for example. Should we
measure the response time as seen by the service, load balancer, or
clients? Ideally, we should select the metric that best represents
the users’ experience. If that’s too costly to collect, we should pick
the next best candidate. In the previous example, the client metric
is the most meaningful of the lot since it accounts for delays and
hiccups through the entire request path.

Now, how should we measure the response time? Measurements
can be affected by many factors, such as network delays, page
faults, or heavy context switching. Since every request does not
take the same amount of time, response times are best repre-
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sented with a distribution, which usually is right-skewed and
long-tailed8.

A distribution can be summarized with a statistic. Take the av-
erage, for example. While it has its uses, it doesn’t tell us much
about the proportion of requests experiencing a specific response
time, and all it takes to skew the average is one large outlier. For
example, suppose we collected 100 response times, of which 99
are 1 second, and one is 10 minutes. In this case, the average is
nearly 7 seconds. So even though 99% of the requests experience a
response time of 1 second, the average is 7 times higher than that.

A better way to represent the distribution of response times is with
percentiles. A percentile is the value below which a percentage of
the response times fall. For example, if the 99th percentile is 1 sec-
ond, then 99% of requests have a response time below or equal
to 1 second. The upper percentiles of a response time distribu-
tion, like the 99th and 99.9th percentiles, are also called long-tail
latencies. Even though only a small fraction of requests experience
these extreme latencies, it can impact the most important users for
the business. They are the ones thatmake the highest number of re-
quests and thus have a higher chance of experiencing tail latencies.
There are studies9 that show that high latencies negatively affect
revenues: a mere 100-millisecond delay in load time can hurt con-
version rates by 7 percent.

Also, long-tail latencies can dramatically impact a service. For ex-
ample, suppose a service on average uses about 2K threads to serve
10K requests per second. By Little’s Law10, the average response
time of a thread is 200 ms. Now, if suddenly 1% of requests start
taking 20 seconds to complete (e.g., because of a congested switch
and relaxed timeouts), 2K additional threads are needed to deal

8“latency: a primer,” https://igor.io/latency/
9“Akamai Online Retail Performance Report: Milliseconds Are Critical,” https:

//www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-
state-of-online-retail-performance-report

10Little’s law says the average number of items in a system equals the average
rate at which new items arrive multiplied by the average time an item spends in
the system; see “Back of the envelope estimation hacks,” https://robertovitillo.c
om/back-of-the-envelope-estimation-hacks/

https://igor.io/latency/
https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report
https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report
https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report
https://robertovitillo.com/back-of-the-envelope-estimation-hacks/
https://robertovitillo.com/back-of-the-envelope-estimation-hacks/
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just with the slow requests. So the number of threads used by the
service has to double to sustain the load!

Measuring long-tail latencies and keeping them in check doesn’t
just make our users happy but also drastically improves the re-
siliency of our systems while reducing their operational costs. In-
tuitively, by reducing the long-tail latency (worst-case scenario),
we also happen to improve the average-case scenario.

31.3 Service-level objectives
A service-level objective (SLO) defines a range of acceptable values
for an SLI within which the service is considered to be in a healthy
state (see Figure 31.2). An SLO sets the expectation to the ser-
vice’s users of how it should behave when it’s functioning cor-
rectly. Service owners can also use SLOs to define a service-level
agreement (SLA) with their users — a contractual agreement that
dictates what happens when an SLO isn’t met, generally resulting
in financial consequences.

For example, an SLO could define that 99% of API calls to end-
point X should complete below 200 ms, as measured over a rolling
window of 1 week. Another way to look at it is that it’s acceptable
for up to 1% of requests within a rolling week to have a latency
higher than 200 ms. That 1% is also called the error budget, which
represents the number of failures that can be tolerated.

SLOs are helpful for alerting purposes and also help the teamprior-
itize repair tasks. For example, the team could agree that when an
error budget is exhausted, repair items will take precedence over
new features until the SLO is repaired. Furthermore, an incident’s
importance can bemeasured by howmuch of the error budget has
been burned. For example, an incident that burned 20% of the er-
ror budget is more important than one that burned only 1%.

Smaller time windows force the team to act quicker and priori-
tize bug fixes and repair items, while longer windows are better
suited to make long-term decisions about which projects to invest
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Figure 31.2: An SLO defines the range of acceptable values for an
SLI.

in. Consequently, it makes sense to have multiple SLOs with dif-
ferent window sizes.
How strict should SLOs be? Choosing the right target range is
harder than it looks. If it’s too lenient, we won’t detect user-facing
issues; if it’s too strict, engineering time will be wasted with micro-
optimizations that yield diminishing returns. Even if we could
guarantee 100% reliability for our systems (which is impossible),
we can’t make guarantees for anything that our users depend on
to access our service and which is outside our control, like their
last-mile connection. Thus, 100% reliability doesn’t translate into
a 100% reliable experience for users.
When setting the target range for SLOs, it’s reasonable to start
with comfortable ranges and tighten them as we build confidence.
We shouldn’t just pick targets our service meets today that might
become unattainable in a year after load increases. Instead, we
should work backward from what users care about. In general,
anything above 3 nines of availability is very costly to achieve and
provides diminishing returns.
Also, we should strive to keep things simple and have as few SLOs
as possible that provide a good enough indication of the desired
service level and review them periodically. For example, suppose
we discover that a specific user-facing issue generated many sup-
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port tickets, but none of our SLOs showed any degradation. In
that case, the SLOs might be too relaxed or simply not capture a
specific use case.

SLOs need to be agreed on with multiple stakeholders. If the er-
ror budget is being burned too rapidly or has been exhausted, re-
pair items have to take priority over features. Engineers need to
agree that the targets are achievable without excessive toil. Prod-
uct managers also have to agree that the targets guarantee a good
user experience. As Google’s SRE book mentions11: “if you can’t
ever win a conversation about priorities by quoting a particular
SLO, it’s probably not worth having that SLO.”

It’s worth mentioning that users can become over-reliant on the
actual behavior of our service rather than its documented SLA. To
prevent that, we can periodically inject controlled failures12 in pro-
duction — also known as chaos testing. These controlled failures
ensure the dependencies can cope with the targeted service level
and are not making unrealistic assumptions. As an added bene-
fit, they also help validate that resiliency mechanisms work as ex-
pected.

31.4 Alerts
Alerting is the part of a monitoring system that triggers an action
when a specific condition happens, like a metric crossing a thresh-
old. Depending on the severity and the type of the alert, the action
can range from running some automation, like restarting a service
instance, to ringing the phone of a human operator who is on call.
In the rest of this section, we will mostly focus on the latter case.

For an alert to be useful, it has to be actionable. The operator
shouldn’t spend time exploring dashboards to assess the alert’s
impact and urgency. For example, an alert signaling a spike in
CPU usage is not useful as it’s not clear whether it has any impact

11“Service Level Objectives,” https://sre.google/sre-book/service-level-object
ives/

12“Chaos engineering,” https://en.wikipedia.org/wiki/Chaos_engineering

https://sre.google/sre-book/service-level-objectives/
https://sre.google/sre-book/service-level-objectives/
https://en.wikipedia.org/wiki/Chaos_engineering
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on the system without further investigation. On the other hand,
an SLO is a good candidate for an alert because it quantifies the
impact on the users. The SLO’s error budget can be monitored to
trigger an alert whenever a large fraction of it has been consumed.
Before discussing how to define an alert, it’s important to under-
stand that there is a trade-off between its precision and recall. For-
mally, precision is the fraction of significant events (i.e., actual is-
sues) over the total number of alerts, while recall is the ratio of
significant events that triggered an alert. Alerts with low preci-
sion are noisy and often not actionable, while alerts with low recall
don’t always trigger during an outage. Although it would be nice
to have 100% precision and recall, improving one typically lowers
the other, and so a compromise needs to be made.
Suppose we have an availability SLO of 99% over 30 days, and we
would like to configure an alert for it. A naive way would be to
trigger an alert whenever the availability goes below 99%within a
relatively short timewindow, like an hour. But howmuch of the er-
ror budget has actually been burned by the time the alert triggers?
Because the time window of the alert is one hour, and the SLO er-
ror budget is defined over 30 days, the percentage of error budget
that has been spent when the alert triggers is 1 hour

30 days = 0.14%. A
system is never 100% healthy, since there is always something fail-
ing at any given time. So being notified that 0.14% of the SLO’s
error budget has been burned is not useful. In this case, we have
a high recall but a low precision.
We can improve the alert’s precision by increasing the amount
of time the condition needs to be true. The problem is that now
the alert will take longer to trigger, even during an actual outage.
The alternative is to alert based on how fast the error budget is
burning, also known as the burn rate, which lowers the detection
time. The burn rate is defined as the percentage of the error
budget consumed over the percentage of the SLO time window
that has elapsed — it’s the rate of exhaustion of the error budget.
So using our previous example, a burn rate of 1 means the error
budget will be exhausted precisely in 30 days; if the rate is 2, then
it will be 15 days; if the rate is 3, it will be 10 days, and so on.
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To improve recall, we can have multiple alerts with different
thresholds. For example, a burn rate below 2 could be classified
as a low-severity alert to be investigated during working hours,
while a burn rate over 10 could trigger an automated call to an
engineer. The SRE workbook has some great examples13 of how
to configure alerts based on burn rates.

While themajority of alerts should be based on SLOs, some should
trigger for known failure modes that we haven’t had the time to
design or debug away. For example, suppose we know a service
suffers from a memory leak that has led to an incident in the past,
but we haven’t yet managed to track down the root cause. In this
case, as a temporary mitigation, we could define an alert that trig-
gers an automated restart when a service instance is running out
of memory.

31.5 Dashboards
After alerting, the other main use case for metrics is to power real-
time dashboards that display the overall health of a system. Un-
fortunately, dashboards can easily become a dumping ground for
charts that end up being forgotten, have questionable usefulness,
or are just plain confusing. Good dashboards don’t happen by co-
incidence. In this section, wewill discuss some of the best practices
for creating useful dashboards.

When creating a dashboard, the first decisionwe have tomake is to
decide who the audience is14 and what they are looking for. Then,
given the audience, we canwork backward to decidewhich charts,
and therefore metrics, to include.

The categories of dashboards presented here (see Figure 31.3) are
by no means standard but should give you an idea of how to orga-
nize dashboards.

SLO dashboard
13“Alerting on SLOs,” https://sre.google/workbook/alerting-on-slos/
14“Building dashboards for operational visibility,” https://aws.amazon.com/b

uilders-library/building-dashboards-for-operational-visibility

https://sre.google/workbook/alerting-on-slos/
https://aws.amazon.com/builders-library/building-dashboards-for-operational-visibility
https://aws.amazon.com/builders-library/building-dashboards-for-operational-visibility
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Figure 31.3: Dashboards should be tailored to their audience.

The SLO summary dashboard is designed to be used by various
stakeholders from across the organization to gain visibility into the
system’s health as represented by its SLOs. During an incident,
this dashboard quantifies the impact the incident is having on the
users.

Public API dashboard

This dashboard displays metrics about the system’s public API
endpoints, which helps operators identify problematic paths dur-
ing an incident. For each endpoint, the dashboard exposes sev-
eral metrics related to request messages, request handling, and re-
sponse messages, like:

• Number of requests received or messages pulled from ames-
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saging broker, request size statistics, authentication issues,
etc.

• Request handling duration, availability and response time of
external dependencies, etc.

• Counts per response type, size of responses, etc.

Service dashboard

A service dashboard displays service-specific implementation de-
tails, which require an in-depth understanding of its inner work-
ings. Unlike the previous dashboards, this one is primarily used
by the team that owns the service. Beyond service-specific metrics,
a service dashboard should also contain metrics of upstream de-
pendencies like load balancers and messaging queues and down-
stream dependencies like data stores.

This dashboard offers a first entry point into what’s going on
within the service when debugging. As we will later learn when
discussing observability, this high-level view is just the starting
point. The operator typically drills down into the metrics by
segmenting them further and eventually reaches for raw logs and
traces to get more detail.

31.5.1 Best practices
As newmetrics are added and old ones removed, charts and dash-
boards need to be modified and kept in sync across multiple en-
vironments (e.g., pre-production and production). The most effec-
tive way to achieve that is by defining dashboards and charts with
a domain-specific language and version-controlling them just like
code. This allows dashboards to be updated from the same pull
request that contains related code changes without manually up-
dating dashboards, which is error-prone.

As dashboards render top to bottom, the most important charts
should always be located at the very top. Also, charts should be
rendered with a default timezone, like UTC, to ease the communi-
cation between people located in different parts of the worldwhen
looking at the same data.
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All charts in the same dashboard should use the same time resolu-
tion (e.g., 1 minute, 5 minutes, 1 hour, etc.) and range (24 hours,
7 days, etc.). This makes it easy to visually correlate anomalies
across charts in the same dashboard. We can pick the default time
range and resolution based on the dashboard’s most common use
case. For example, a 1-hour range with a 1-minute resolution is
best for monitoring an ongoing incident, while a 1-year rangewith
a 1-day resolution is best for capacity planning.

We should keep the number of data points andmetrics on the same
chart to aminimum. Rendering toomany points doesn’t just make
charts slow to download/render but alsomakes it hard to interpret
them and spot anomalies.

A chart should contain only metrics with similar ranges (min and
max values); otherwise, the metric with the largest range can com-
pletely hide the others with smaller ranges. For that reason, it
makes sense to split related statistics for the same metric into mul-
tiple charts. For example, the 10th percentile, average and 90th
percentile of a metric can be displayed in one chart, and the 0.1th
percentile, 99.9th percentile, minimum and maximum in another.

A chart should also contain useful annotations, like:

• a description of the chart with links to runbooks, related
dashboards, and escalation contacts;

• a horizontal line for each configured alert threshold, if any;
• a vertical line for each relevant deployment.

Metrics that are only emitted when an error condition occurs can
be hard to interpret as charts will show wide gaps between the
data points, leaving the operator wondering whether the service
stopped emitting that metric due to a bug. To avoid this, it’s best
practice to emit a metric using a value of zero in the absence of an
error and a value of 1 in the presence of it.
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31.6 Being on call
A healthy on-call rotation is only possible when services are built
from the ground up with reliability and operability in mind. By
making the developers responsible for operating what they build,
they are incentivized to reduce the operational toll to a minimum.
They are also in the best position to be on call since they are in-
timately familiar with the system’s architecture, brick walls, and
trade-offs.

Being on call can be very stressful. Even when there are no call-
outs, just the thought of not having the usual freedom outside of
regular working hours can cause a great deal of anxiety. This is
why being on call should be compensated, and there shouldn’t be
any expectations for the on-call engineer to make any progress on
feature work. Since they will be interrupted by alerts, they should
make the most of it and be given free rein to improve the on-call
experience by, e.g., revising dashboards or improving resiliency
mechanisms.

Achieving a healthy on-call rotation is only possible when alerts
are actionable. When an alert triggers, to the very least, it should
link to relevant dashboards and a run-book that lists the actions
the engineer should take15. Unless the alert was a false positive,
all actions taken by the operator should be communicated into a
shared channel like a global chat accessible by other teams. This
allows other engineers to chime in, track the incident’s progress,
and more easily hand over an ongoing incident to someone else.

The first step to address an alert is to mitigate it, not fix the under-
lying root cause that created it. A new artifact has been rolled out
that degrades the service? Roll it back. The service can’t cope with
the load even though it hasn’t increased? Scale it out.

Once the incident has been mitigated, the next step is to under-
stand the root cause and come up with ways to prevent it from
happening again. The greater the impact was, as measured by

15Ideally, we should automatewhatwe can tominimizemanual actions that oper-
ators need to perform. As it turns out, machines are good at following instructions.



CHAPTER 31. MONITORING 313

the SLOs, the more time we should spend on this. Incidents that
burned a significant fraction of an SLO’s error budget require a for-
mal postmortem. The goal of the postmortem is to understand the
incident’s root cause and come up with a set of repair items that
will prevent it from happening again. Ideally, there should also be
an agreement in the team that if an SLO’s error budget is burned
or the number of alerts spirals out of control, the whole team stops
working on new features to focus exclusively on reliability until a
healthy on-call rotation has been restored.
The SRE books16 provide a wealth of information and best prac-
tices regarding setting up a healthy on-call rotation.

16“SRE Books,” https://sre.google/books/

https://sre.google/books/




Chapter 32

Observability

A distributed system is never 100% healthy since, at any given
time, there is always something failing. A whole range of failure
modes can be tolerated, thanks to relaxed consistency models and
resiliency mechanisms like rate limiting, retries, and circuit break-
ers. But, unfortunately, they also increase the system’s complexity.
And with more complexity, it becomes increasingly harder to rea-
son about the multitude of emergent behaviors the system might
experience, which are impossible to predict up front.

As discussed earlier, human operators are still a fundamental part
of operating a service as there are things that can’t be automated,
like debugging the root cause of a failure. When debugging, the
operator makes a hypothesis and tries to validate it. For example,
the operatormight get suspicious after noticing that the variance of
their service’s response time has increased slowly but steadily over
the past weeks, indicating that some requests take much longer
than others. After correlating the increase in variance with an in-
crease in traffic, the operator hypothesizes that the service is get-
ting closer to hitting a constraint, like a resource limit. But metrics
and charts alone won’t help to validate this hypothesis.

Observability is a set of tools that provide granular insights into
a system in production, allowing one to understand its emergent
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behaviors. A good observability platform strives to minimize the
time it takes to validate hypotheses. This requires granular events
with rich contexts since it’s impossible to know up front what will
be useful in the future.
At the core of observability, we find telemetry sources like metrics,
event logs, and traces. Metrics are stored in time-series data stores
that have high throughput but struggle with high dimensionality.
Conversely, event logs and traces end up in stores that can handle
high-dimensional data1 but struggle with high throughput. Met-
rics are mainly used for monitoring, while event logs and traces
are mainly for debugging.
Observability is a superset of monitoring. While monitoring is fo-
cused exclusively on tracking a system’s health, observability also
provides tools to understand and debug the system. For example,
monitoring on its own is good at detecting failure symptoms but
less so at explaining their root cause (see Figure 32.1).

32.1 Logs
A log is an immutable list of time-stamped events that happened
over time. An event can have different formats. In its simplest
form, it’s just free-form text. It can also be structured and repre-
sented with a textual format like JSON or a binary one like Proto-
buf. When structured, an event is typically represented with a bag
of key-value pairs:
{

"failureCount": 1,
"serviceRegion": "EastUs2",
"timestamp": 1614438079

}

Logs can originate from our services or external dependencies, like
1Azure Data Explorer is one such event store, see “Azure Data Explorer: a big

data analytics cloud platform optimized for interactive, adhoc queries over struc-
tured, semi-structured and unstructured data,” https://azure.microsoft.com/me
diahandler/files/resourcefiles/azure-data-explorer/Azure_Data_Explorer_whi
te_paper.pdf

https://azure.microsoft.com/mediahandler/files/resourcefiles/azure-data-explorer/Azure_Data_Explorer_white_paper.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/azure-data-explorer/Azure_Data_Explorer_white_paper.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/azure-data-explorer/Azure_Data_Explorer_white_paper.pdf
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Figure 32.1: Observability is a superset of monitoring.

message brokers, proxies, data stores, etc. Most languages offer li-
braries that make it easy to emit structured logs. Logs are typically
dumped to disk files, which are sent by an agent to an external log
collector asynchronously, like an ELK stack2 or AWS CloudWatch
logs.
Logs provide a wealth of information about everything that’s hap-
pening in a service, assuming it was instrumented properly. They
are particularly helpful for debugging purposes, as they allow us
to trace back the root cause from a symptom, like a service instance
crash. They also help investigate long-tail behaviors that are invis-
ible to metrics summarized with averages and percentiles, which
can’t explain why a specific user request is failing.
Logs are simple to emit, particularly so free-form textual ones.
But that’s pretty much the only advantage they have compared
to metrics and other telemetry data. Logging libraries can add
overhead to our services if misused, especially when they are not
asynchronous and block while writing to disk. Also, if the disk
fills up due to excessive logging, at best we lose logs, and at worst,

2“What is the ELK Stack?,” https://www.elastic.co/what-is/elk-stack

https://www.elastic.co/what-is/elk-stack
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the service instance stops working correctly.

Ingesting, processing, and storing massive troves of data is not
cheap either, no matter whether we plan to do this in-house or use
a third-party service. Although structured binary logs are more ef-
ficient than textual ones, they are still expensive due to their high
dimensionality.

Finally, but no less importantly, logs have a low signal-to-noise
ratio because they are fine-grained and service-specific, making it
challenging to extract useful information.

Best practices

To make the job of the engineer drilling into the logs less painful,
all the data about a specific work unit should be stored in a single
event. Awork unit typically corresponds to a request or amessage
pulled from a queue. To effectively implement this pattern, code
paths handling work units need to pass around a context object
containing the event being built.

An event should contain useful information about the work unit,
like who created it, what it was for, and whether it succeeded or
failed. It should also includemeasurements, like how long specific
operations took. In addition, every network call performedwithin
the work unit needs to be instrumented and log, e.g., its response
time and status code. Finally, data logged to the event should be
sanitized and stripped of potentially sensitive properties that de-
velopers shouldn’t have access to, like users’ personal data.

Collating all data within a single event for a work unit minimizes
the need for joins but doesn’t completely eliminate it. For example,
if a service calls another downstream, we will have to perform a
join to correlate the caller’s event log with the callee’s one to un-
derstand why the remote call failed. To make that possible, every
event should include the identifier of the request (or message) for
the work unit.

Costs

There are various ways to keep the costs of logging under con-
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trol. A simple approach is to have different logging levels (e.g.,
debug, info, warning, error) controlled by a dynamic knob that de-
termineswhich ones are emitted. This allows operators to increase
the logging verbosity for investigation purposes and reduce costs
when granular logs aren’t needed.
Sampling3 is another tool at our disposal for reducing verbosity.
For example, a service could log only every nth event. Addition-
ally, events can also be prioritized based on their expected signal-
to-noise ratio: logging failed requests should have a higher sam-
pling frequency than logging successful ones.
The options discussed so far only reduce the logging verbosity on
a single node. As we scale out and add more nodes, the logging
volume will necessarily increase. Even with the best intentions,
someone could check in a bug that leads to excessive logging. To
avoid costs soaring through the roof or overloading our log collec-
tor service, log collectors need to be able to rate-limit requests.
Of course, we can always decide to create in-memory aggregates
(e.g., metrics) from the measurements collected in events and emit
just those rather than raw logs. However, by doing so, we trade
off the ability to drill down into the aggregates if needed.

32.2 Traces
Tracing captures the entire lifespan of a request as it propagates
throughout the services of a distributed system. A trace is a list
of causally-related spans that represent the execution flow of a re-
quest in a system. A span represents an interval of time that maps
to a logical operation or work unit and contains a bag of key-value
pairs (see Figure 32.2).
When a request begins, it’s assigned a unique trace ID. The trace
ID is propagated from one stage to another at every fork in the
local execution flow from one thread to another, and from caller
to callee in a network call (through HTTP headers, for example).

3“Dynamic Sampling by Example,” https://www.honeycomb.io/blog/dyna
mic-sampling-by-example/

https://www.honeycomb.io/blog/dynamic-sampling-by-example/
https://www.honeycomb.io/blog/dynamic-sampling-by-example/
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Figure 32.2: An execution flow can be represented with spans.

Each stage is represented with a span — an event containing the
trace ID.

When a span ends, it’s emitted to a collector service, which assem-
bles it into a trace by stitching it together with the other spans be-
longing to the same trace. Popular distributed tracing collectors
include Open Zipkin4 and AWS X-ray5.

Traces allow developers to:

• debug issues affecting very specific requests, which can be
used to investigate failed requests raised by customers in
support tickets;

• debug rare issues that affect only an extremely small fraction
of requests;

• debug issues that affect a large fraction of requests that have
something in common, like high response times for requests
that hit a specific subset of service instances;

• identify bottlenecks in the end-to-end request path;
• identify which users hit which downstream services and
4“Zipkin: a distributed tracing system,” https://zipkin.io/
5“AWS X-Ray,” https://aws.amazon.com/xray/

https://zipkin.io/
https://aws.amazon.com/xray/
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in what proportion (also referred to as resource attribution),
which can be used for rate-limiting or billing purposes.

Tracing is challenging to retrofit into an existing system since it
requires every component in the request path to be modified to
propagate the trace context fromone stage to the other. And it’s not
just the components that are under our control that need to support
tracing; third-party frameworks, libraries, and services need to as
well.6.

32.3 Putting it all together
The main drawback of event logs is that they are fine-grained and
service-specific. When a user request flows through a system, it
can pass through several services. A specific event only contains
information for the work unit of one specific service, so it can’t
be of much use for debugging the entire request flow. Similarly,
a single event doesn’t give much information about the health or
state of a specific service.
This is where metrics and traces come in. We can think of them
as abstractions, or derived views, built from event logs and op-
timized for specific use cases. A metric is a time series of sum-
mary statistics derived by aggregating counters or observations
over multiple events. For example, we could emit counters in
events and have the backend roll them up into metrics as they are
ingested. In fact, this is how some metric-collection systems work.
Similarly, a trace can be derived by aggregating all events belong-
ing to the lifecycle of a specific user request into an ordered list.
Just like in the previous case, we can emit individual span events
and have the backend aggregate them together into traces.

6The service mesh pattern can help retrofit tracing.
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Manageability

Operators use observability tools to understand the behavior of
their application, but they also need a way to modify the behavior
without code changes. One example of this is releasing a new ver-
sion of an application to production, which we discussed earlier.
Another example is changing the way an application behaves by
modifying its configuration.
An application generally depends on a variety of configuration set-
tings. Some affect its behavior, like the maximum size of an inter-
nal cache, while others contain secrets, like credentials to access
external data stores. Because settings vary by environment and
can contain sensitive information, they should not be hardcoded.
To decouple the application from its configuration, the configura-
tion can be persisted in a dedicated store1 like AWS AppConfig2
or Azure App Configuration3.
At deployment time, the CD pipeline can read the configuration
from the store and pass it to the application through environment

1“Continuous Configuration at the Speed of Sound,” https://www.allthingsd
istributed.com/2021/08/continuous-configuration-on-aws.html

2“AWS AppConfig Documentation,” https://docs.aws.amazon.com/appconfi
g/

3“Azure App Configuration,” https://azure.microsoft.com/en-us/services/
app-configuration/

https://www.allthingsdistributed.com/2021/08/continuous-configuration-on-aws.html
https://www.allthingsdistributed.com/2021/08/continuous-configuration-on-aws.html
https://docs.aws.amazon.com/appconfig/
https://docs.aws.amazon.com/appconfig/
https://azure.microsoft.com/en-us/services/app-configuration/
https://azure.microsoft.com/en-us/services/app-configuration/
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variables. The drawback of this approach is that the configuration
cannot be changed without redeploying the application.
For the application to be able to react to configuration changes,
it needs to periodically re-read the configuration during run time
and apply the changes. For example, if the constructor of anHTTP
handler depends on a specific configuration setting, the handler
needs to be re-created when that setting changes.
Once it’s possible to change configuration settings dynam-
ically, new features can be released with settings to toggle
(enable/disable) them. This allows a build to be released with a
new feature disabled at first. Later, the feature can be enabled for
a fraction of application instances (or users) to build up confidence
that it’s working as intended before it’s fully rolled out. Similarly,
the same mechanism can be used to perform A/B tests4.

4“A/B testing,” https://en.wikipedia.org/wiki/A/B_testing

https://en.wikipedia.org/wiki/A/B_testing


Summary

If you have spent even a few months in a team that operates a
production service, you should be very familiar with the topics
discussed in this part. Although we would all love to design new
large-scale systems and move on, the reality is that the majority
of the time is spent in maintenance activities, such as fixing bugs,
adding new features to existing services, and operating production
services.
In my opinion, the only way to become a better system designer is
to embrace these maintenance activities and aspire to make your
systems easy to modify, extend and operate so that they are easy
to maintain. By doing so, you will pick up a “sixth sense” that
will allow you to critique the design of third-party systems and
ultimately make you a better systems designer/builder.
So my advice to you is to use every chance you get to learn from
production services. Be on call for your services. Participate in
as many post-mortems as you can and relentlessly ask yourself
how an incident could have been avoided. These activities will
pay off in the long term a lot more than reading about the latest
architectural patterns and trends.





Chapter 34

Final words

Congratulations, you reached the end of the book! I hope you
learned something you didn’t know before and perhaps even had
a few “aha” moments. Although this is the end of the book, it’s
just the beginning of your journey.
The best way to continue your learning journey is to go out in the
world and design, build and maintain large-scale systems. Some
of the best-paid jobs in the industry involve building such systems,
and there is no shortage of demand. The second-best way is by
reading industry papers, which provide a wealth of knowledge
about distributed systems that have stood the test of time. And
after reading this book, these papers should be accessible to you.
For example, you could start with “Windows Azure Storage:
A Highly Available Cloud Storage Service with Strong Consis-
tency”1, which describes Azure’s cloud storage system. Azure’s
cloud storage is the core building block on top of which Microsoft
built many other successful products. One of the key design
decisions was to guarantee strong consistency, making the appli-
cation developers’ job much easier. I like this paper a lot because
it touches upon many of the concepts discussed in this book.

1“Windows Azure Storage: A Highly Available Cloud Storage Service with
Strong Consistency,” https://sigops.org/s/conferences/sosp/2011/current
/2011-Cascais/printable/11-calder.pdf

https://sigops.org/s/conferences/sosp/2011/current/2011-Cascais/printable/11-calder.pdf
https://sigops.org/s/conferences/sosp/2011/current/2011-Cascais/printable/11-calder.pdf
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Once you have digested the Azure storage paper, I suggest
reading “Azure Data Explorer: a big data analytics cloud plat-
form optimized for interactive, ad-hoc queries over structured,
semi-structured and unstructured data”2. This paper discusses
the implementation of a cloud-native event store built on top of
Azure’s cloud storage — a great example of how these large-scale
systems compose on top of each other.
If any concept is new to you or unclear, follow your curiosity down
the rabbit hole by exploring referenced papers.3. As a bonus exer-
cise, this book is sprinkled with great papers and references. Read
them all to complete all the side quests!
In terms of book recommendations, Martin Kleppman’s “De-
signing Data-Intensive Applications”4 is a must-read. The book
describes the pros and cons of various technologies for processing
and storing data. Also, for some more high-level case studies,
check out Alex Xu’s “System Design Interview”5 — it’s a good
read even if you aren’t preparing for interviews.
As no book is ever perfect, I’m always happy to receive feedback.
So if you have found an error, have an idea for improvement, or
simply want to comment on something, always feel free to write
me6. I love connecting with readers.
Finally, please consider leaving a review onGoodreads orAmazon
if you liked the book. It makes all the difference to prospective
readers.

2“Azure Data Explorer: a big data analytics cloud platform optimized for in-
teractive, ad-hoc queries over structured, semi-structured and unstructured data,”
https://azure.microsoft.com/mediahandler/files/resourcefiles/azure-data-
explorer/Azure_Data_Explorer_white_paper.pdf

3If you are new to reading papers, use the three-pass approach by S. Keshav, see
“How to Read a Paper,” https://web.stanford.edu/class/ee384m/Handouts/H
owtoReadPaper.pdf

4“Designing Data-Intensive Applications,” https://www.amazon.com/dp/14
49373321

5“System Design Interview,” https://www.amazon.co.uk/dp/B08CMF2CQF
6roberto@understandingdistributed.systems

https://azure.microsoft.com/mediahandler/files/resourcefiles/azure-data-explorer/Azure_Data_Explorer_white_paper.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/azure-data-explorer/Azure_Data_Explorer_white_paper.pdf
https://web.stanford.edu/class/ee384m/Handouts/HowtoReadPaper.pdf
https://web.stanford.edu/class/ee384m/Handouts/HowtoReadPaper.pdf
https://www.amazon.com/dp/1449373321
https://www.amazon.com/dp/1449373321
https://www.amazon.co.uk/dp/B08CMF2CQF
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