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Foreword by Gildas Avoine

Gildas AVOINE
Director of the CNRS Computer Security Research Network, INSA Rennes,

University of Rennes, IRISA, CNRS, France

French academic and industrial research in cybersecurity is at the forefront of the

international scene. While France cannot claim to have sovereignty over cybersecurity

technologies, it undeniably possesses a wealth of skills, as French expertise covers all

areas of cybersecurity.

Research in cryptography illustrates French excellence, but it should not

overshadow other domains where French influence is just as remarkable, including

formal methods for security, protection of privacy, security of systems, software and

networks, security of hardware systems and multimedia data security, according to

the classification proposed by the CNRS Computer Security Research Network

(GdR).

The security of multimedia data is covered in this book. The evolution of our

society from the written word to sound and image, with the notable arrival of the

mobile phone and the democratization of the Internet has brought about new security

needs. These are only the beginning of the transformation of our society, and the

recent deployment of videoconferencing shows that research into the security of

multimedia data is constantly confronted with new scientific challenges.

The complexity of the subject and its multidisciplinary dimension, which primarily

combines signal processing and cryptography, are perfectly illustrated by the variety of
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subjects detailed throughout this book. The chapters thus reveal the scientific obstacles

to be dealt with by the community, by anchoring them in real scenarios, such as the

fraudulent copying of films, the deception of artificial intelligence or the spreading of

doctored images on social media.

This book, made up of two volumes, is thus promised to become a reference in the

field of multimedia data security, an introduction that is both exhaustive and in-depth

that students, engineers and researchers will be able to appreciate through more than

600 pages enriched with numerous references. Everyone can indulge in their favorite

kind of reading, whether linear or random.

Finally, I would like to thank all of the authors for their commitment to supporting

the scientific community, and I would particularly like to thank William Puech for

editing this edition of the book. William, alongside Patrick Bas and then Caroline

Fontaine, is responsible for the theme of multimedia data security within the Computer

Security GdR, thus allowing the entire cybersecurity community to better understand

this fascinating subject.

Happy reading!



Foreword by Cédric Richard

Cédric RICHARD
Director of the CNRS GdR ISIS, Côte d’Azur Observatory,

University of Côte d’Azur, Nice, France

With the relentless increase in bandwidth and storage space, as well as the

proliferation of mobile devices and the development of new standards, multimedia

data is affecting our societies by changing the way that we access data and

information. It is also changing our relationship to culture, by transforming

interactions between individuals and their relationships with organizations.

Multimedia activities are present in all major sectors of activity (security, health,

telecommunications, etc.) and have supported their successive developments because

of the common backbone they build, from information support to the application and

user.

In this context, by protecting confidentiality and copyright, verifying integrity,

analyzing and authenticating content, tracing copies and controlling access,

particularly critical questions about multimedia data security are being asked. For

example, the protection strategies implemented must take into account the specific

needs of multimedia while meeting the requirements of the means of communication,

thus establishing a compromise. A wrong approach can indeed lead to excessive

coding of the data, or the alteration of their perceptual quality, and thus failure in the

targeted security objectives.

As an interface discipline, the art of multimedia security is difficult!
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However, with this two-part book, William Puech and his co-authors take up the

challenge brilliantly by painting an exhaustive and current panorama of multimedia

security. They offer an in-depth analysis of authentication and hidden data

embedding methods, biometric technologies and multimedia protection and

encryption processes. Without giving in to an outdated formalism that could hinder

the fluidity of their presentations, the authors captivate the reader by presenting the

state of the art of each subject directly and in an illustrative way.

William Puech and the contributors to this book have provided considerable work

to their French-speaking scientific communities of information, signal, image, vision

and computer security, represented by the two appropriate French GdR groups of the

CNRS. I would like to express all of my gratitude to them.



Preface

William PUECH
LIRMM, Université de Montpellier, CNRS, France

Nowadays, more than 80% of transmitted data on social media and archived in

our computers, tablets, mobile phones or in the cloud is multimedia data. This

multimedia data mainly includes images (photographs, computer-generated images),

videos (films, animations) or sound (music, podcasts), but equally more and more

three-dimensional (3D) data and scenes, for applications ranging from video games

to medical data, passing through computer-aided design, video surveillance and

biometrics. It is becoming necessary, urgent, not to say vital, to secure this

multimedia data during its transmission or archiving, but also during its visualization.

In fact, with everything digital, it is becoming increasingly easy to copy this

multimedia data, to view it without rights, to appropriate it, but also to counterfeit it.

Over the last 30 years, we have observed an expansive development around

multimedia security, both internationally and in France. In fact, at the French level,

there are dozens of research teams in laboratories, but also a large number of

industrials, who are focusing their activities on these aspects. This activity can also

be found in several GdR (research groups) of the CNRS, but in particular the GdR

ISIS (information, signal, image and vision) and the GdR computer security.

Multimedia security is a relatively new theme, as evidenced by the publication

dates of the articles referenced in the various chapters of these two volumes. In fact,

out of about 900 references, nearly 50% of them are less than 10 years old, and more

than 35% are between 10 and 20 years old. Of course, let us not forget certain

authors, such as Auguste Kerckhoffs (1835–1903) and Claude Shannon
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(1916–2001), without whom our community would not have advanced in the same

way. The history of multimedia security really begins at the end of the 1990s, with

the beginning of watermarking, steganography, but in a very timid manner, this being

motivated by the digitization of content and the protection of rights holders. In 2001,

motivated by the attack of September 11, research in steganalysis hidden signal

detection and statistical detection became the top priority. Between 2000 and 2010,

there was an international explosion in watermarking security. There were also major

contributions in steganography and steganalysis. During this same decade, research

into securing multimedia data by specific encryption was born with the aspects of

selective or partial encryption and crypto-compression, while guaranteeing the

preservation of international formats and standards. From 2010, new facets of

multimedia data security have emerged with forensics aspects, as well as statistical

approaches. There has also been a strong development in signal processing in the

encrypted domain, as well as the tracing of traitors. In 2020, research in forensics and

steganalysis has been gaining momentum, in particular with the emergence of

machine learning, and especially with the exploitation and development of deep

convolutional neural networks. The recent advances in this field have varied greatly,

from steganography (GAN), adversarial methods, methods by content generation, to

the processing of encrypted content, including the links between learning and

information leakage, applications in biometrics and “real-life” content analysis.

This project of works began more than two years ago and has really meant a lot to

me. In fact, at the French level, we have a certain strength in this field, and numerous

gems that we have brought to light. Nothing could have been achieved without the

support of the GdR ISIS and GdR computer security. It is largely because of these

GdR that we have succeeded in tracking research activities in the field of multimedia

security from a French point of view. The towns represented in these two works

illustrate the richness and national diversity (Caen, Grenoble, La Rochelle, Lille,

Limoges, Lyon, Montpellier, Paris, Poitiers, Rennes, Saint-Étienne and Troyes),

because some of these cities, as we will see during our reading, are represented by

several laboratories and/or universities.

As we will be able to see throughout these two volumes, even if they are grouped

around multimedia security, the research themes are very broad and the applications

varied. In addition, the fields cover a broad spectrum, from signal processing to

cryptography, including image processing, information theory, encoding and

compression. Many of the topics in multimedia security are a game of cat and mouse,

where the defender of rights must regularly transform into a counter-attacker in order

to resist the attacker.

The first volume primarily focuses around the authentication of multimedia data,

codes and the embedding of hidden data, from the side of the defender as well as the

attacker. Concerning the embedding of hidden data, it also addresses the aspects of

invisibility, color, tracing and 3D data, as well as the detection of hidden messages in
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images by steganalysis. The second volume mainly focuses on the biometrics,

protection, integrity and encryption of multimedia data. It covers aspects such as

image and video crypto-compression, homomorphic encryption, the embedding of

hidden data in the encrypted domain, as well as the sharing of secrets. I invite the

reader, whether they are a student, teacher, researcher or industrial to immerse

themselves in these works, not necessarily by following the intended order, but going

from one chapter to another, as well as from one volume to another.

These two volumes, even though they cover a broad spectrum in multimedia

security, are not meant to be exhaustive. I think, and hope, that a third volume will

complete these first two. In fact, I am thinking of sound (music and speech), video

surveillance/video protection, camera authentication, privacy protection, as well as

the attacks and counter-attacks that we see every day.

I would like to thank all of the authors, chapter managers, their co-authors, their

collaborators and their teams for all of their hard work. I am very sorry that I have

had to ask them many times to find the best compromises between timing, content

and length of the chapters. Thank you to Jean-Michel, Laurent, Philippe (×2),

Patrick (×2), Teddy, Sébastien (×2), Christophe, Iuliia, Petra, Vincent, Wassim,

Caroline and Pauline! Thank you all for your openness and good humor! I would

also thank the GdR ISIS and computer Security through Gildas and Cédric, but also

Christine and Laure for their proofreading, as well as for establishing a connection

with ISTE Ltd. I would also like to thank all of the close collaborators with whom I

have worked for more than 25 years on the various themes that I have had the chance

to address. PhD students, engineers, interns and colleagues, all of them will

recognize themselves, whether they are in my research team (ICAR team) or in my

research laboratory (LIRMM, Université de Montpellier, CNRS).

In particular, I would like to thank Vincent, Iuliia, Sébastien and Pauline for having

accepted to embark on this adventure. Pauline, in addition to writing certain chapters,

has been a tremendous collaborator for the advancement of this book. All of those

responsible for the chapters have seen that, Pauline has been my shadow over the past

two years, to ensure that these two works could see the light of day in 2021. Thank you

Pauline! To conclude, I would like to warmly thank all of the members of my family,

and in particular Magali and our three children, Carla, Loriane and Julian, whom I

love very much and who have constantly supported me.

November 2021
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Between its raw acquisition from a camera sensor and its storage, an image

undergoes a series of operations: denoising, demosaicing, white balance, gamma

correction and compression. These operations produce artifacts in the final image,

often imperceptible to the naked eye but yet detectable. By analyzing those artifacts,

it is possible to reconstruct the history of an image. Indeed, one can model the

different operations that took place during the creation of the image, as well as their

order and parameters.

Information about the specific camera pipeline of an image is relevant by itself, in

particular because it can guide the restoration of the image. More importantly, it

provides an identifying signature of the image. A model of the pipeline that is

inconsistent across the whole image is often a clue that the image has been tampered

with.

For a color version of all figures in this chapter, see www.iste.co.uk/puech/multimedia1.zip.
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However, the traces left by each step can be altered or even erased by subsequent

processing operations. Sometimes these traces are even maliciously masked to make

a forged image seem authentic to forensic tools. While it may be easy to deliberately

hide the artifacts linked to a step in the processing of the image, it is more difficult

to simultaneously hide several of the artifacts from the entire processing chain. It is

therefore important to have enough different tests available, each of them focused on

different artifacts, in order to find falsifications.

We will therefore review the operations undergone by the raw image, and

describe the artifacts they leave in the final image. For each of these operations, we

will discuss how to model them to detect the significant anomalies caused by a

possible manipulation of the image.

1.1. Introduction

1.1.1. General context

The Internet, digital media, new means of communication and social networks

have accelerated the emergence of a connected world where perfect mastery over

information becomes utopian. Images are ubiquitous and therefore have become an

essential part of the news. Unfortunately, they have also become a tool of

disinformation aimed at distracting the public from reality.

Manipulation of images happens everywhere. Simply removing red eyes from

family photos could already be called an image manipulation, whereas it is simply

aimed at making an image taken with the flash on look more natural. Even amateur

photographers can easily erase the electric cables from a vacation panorama and

correct physical imperfections such as wrinkles on a face, not to mention the

touch-ups done on models in magazines.

Beyond these mostly benign examples, image manipulation can lead to falsified

results in scientific publications, reports or journalistic articles. Altered images can

imply an altered meaning, and can thus be used as fake evidence, for instance to use

as defamation against someone or report a paranormal phenomenon. More frequently,

falsified images are published and relayed on social media, in order to create and

contribute to the spread of fake news.

The proliferation of consumer software tools and their ease of use have made

image manipulation extremely easy and accessible. Some software even go as far as

to automatically restore a natural look to an image when parts of it have been altered

or deleted. Recently, deep neural networks have made it possible to generate

manipulated images almost automatically. One example is the site This Person Does
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Not Exist1, which randomly generates faces of people who do not exist while being

unexpectedly realistic. The most surprising application is undoubtedly the arrival of

deepfake methods, which allow, among other things, a face in a video to be replaced

with the one of another person (face swapping).

1.1.2. Criminal background

These new possibilities of image manipulation have been exploited for a long time

by governments, criminal organizations and offenders. Stalinist propaganda images

can come to mind, in which certain characters who had become undesirable were

removed from official photographs (Figure 1.1).

Figure 1.1. An example showing how an image has been modified
several times in a row, each person who had lost favor seeing their image

removed from the photo. Only Joseph Stalin appears in all four photos

Today, image manipulation can serve the interests of criminal or terrorist

organizations as part of their propaganda (false claims, false events, masking of

identification elements, addition of objects). Face swapping and deepfake techniques

are also a simple way to undermine the image and privacy of public figures by

placing them in compromising photos. The manipulation of images is also a means of

exerting coercion, pressure or blackmail against a third party. These new image

1 Available at: www.thispersondoesnotexist.com.
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manipulation techniques are also used by pedophiles to generate photographs that

satisfy their fantasies. Manipulated images can also be used to cause economic harm

to companies through disinformation campaigns. Administrative documents can be

falsified in order to obtain official papers, a rental document or a loan from

specialized organizations. Face morphing, whose objective is to obtain the photo of a

visually “compatible” face from two faces, enables two users to share the same ID in

order to deceive an identity check.

1.1.3. Issues for law enforcement

In the past, confessions, testimonies or photographs were enough to prove guilt.

Technologies were not sufficiently developed to mislead investigators. Today, these

methods are no longer sufficient and law enforcement authorities need innovative

scientific tools to be able to present reliable evidence in court. As technology evolves

rapidly, law enforcement agencies must continuously ensure scientific monitoring in

order to keep up with the state-of-the-art technology, to anticipate and to have the

most recent tools available to detect manipulation and other forms of cheating for

malicious purposes. It is essential to maintain a high level of training for the experts

responsible for authenticating the images. In fact, the role of the police, and in

particular of the technical and scientific police, is to highlight any falsification in

order to allow perpetrators to be sentenced, but also to exonerate the persons under

judicial enquiry if they are innocent or if their crime cannot be proven. The role of

the expert in image authentication is to detect any form of manipulation, rigging or

editing aimed at distorting reality. They must be able to answer the following

questions:

– Is the image real?

– Does it represent the real scene?

– What is the history of the image and its possible manipulations?

– What is the manipulated part?

– Has the image come from the device that supposedly took it?

In general, it is easier to conclude that an image is falsified than to say it is

authentic. Detecting manipulation traces is getting harder over time, as new forgery

methods are being developed. As a result, not finding any forgery traces does not

prove the image’s authenticity. The level of expertise of the forger should also be

taken into account. In fact, the possible traces of manipulation will not be the same

depending on whether the author is a neophyte, a seasoned photographer or a special

effects professional. The author can also use so-called anti-forensic techniques aimed

at masking traces of manipulation so that they become undetectable by experts; it is

up to the expert to know these techniques and their weaknesses.
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1.1.4. Current methods and tools of law enforcement

As technologies evolve over time, detection tools must also adapt. Particularly

during the transition from film photography to digital images, the authentication

methods that were mainly based on semantic analysis of the scene (visual analysis of

defects, consistency of shadows and lighting, vanishing points) have been completed

through structural and statistical analyses.

To date, available commercial tools are not helpful to the authentication of an

image. Most of the time, experts need to design their own tools. This raises the

concern of deciding on what ground results from such tools should be accepted as

evidence in court. In order to compensate for this lack of objective and precise tools,

the police recruits trainees, who participate in national projects (DEFALS challenge

funded by the DGA and the French National Research Agency) or international

projects (H2020 projects of the European Commission). The objective is to involve

university researchers as well as industrialists and practitioners (forensic experts).

In addition, experts develop good practice guides such as the “Best Image

Authentication Practice Manual” within the framework of the ENFSI2 to standardize

and formalize analysis methodologies.

Digital images are an essential medium of communication in today’s world. People

need to be able to trust this method of communication. Therefore, it is essential that

news agencies, governments and law enforcement maintain and preserve trust in this

essential technology.

1.1.5. Outline of this chapter

Our objective is to recognize each step of the production chain of an image. This

information can sometimes appear in the data accompanying the image, called

EXIF (Exchangeable Image File Format), which also includes information such as

the brand and model of the camera and lens, the time and location of the photograph,

and its shooting settings. However, this information can be easily modified, and is

often automatically deleted by social media for privacy reasons. Therefore, we are

interested in the information left by the operations on the image itself rather than in

the metadata. Some methods, like the one presented in Huh et al. (2018), offer to

check the consistency of the data present in the image with its EXIF metadata.

Knowledge of the image production chain allows for the detection of changes.

A first application is the authentication of the camera model. The processing chain

is specific to each device model; so it is possible to determine the device model by

2 ENFSI: European Network of Forensic Science Institutes.
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identifying the processing chain, as implemented in Gloe (2012) where features are

used to classify photographs according to their source device. More recently, Agarwal

and Farid (2017) showed that even steps common to many devices, such as JPEG

compression, sometimes have implementation differences that allow us to differentiate

models from multiple manufacturers, or even models from the same manufacturer.

Another application is the detection of suspicious regions in an image, based on

the study of the residue – sometimes called noise – left by the processing chain. This

residue is constituted of all the traces left by each operation. While it is often

difficult, or even impossible, to distinguish each step in the processing chain

individually, it is easier to distinguish two different processing chains as a whole.

Using this idea, Cozzolino and Verdoliva proposed to use steganography tools (see

Chapter 5 entitled “Steganography: Embedding data into Multimedia Content”) to

extract the image residue (Cozzolino et al. 2015b). Treating this residue as a piece of

hidden information in the image, an algorithm such as Expectation–Maximization

(EM) is then used to classify the different regions of the image. Subsequently, neural

networks have shown good performance in extracting the residue

automatically (Cozzolino and Verdoliva 2020; Ghosh et al. 2019), or even in carrying

out the classification themselves (Zhou et al. 2018).

The outline of this chapter arises from previous considerations. Section 1.2

describes the main operations of the image processing chain.

Section 1.3 is dedicated to the effect each step of the image processing pipeline has

on the image’s noise. This section illustrates how and why the fine analysis of noise

enables the reverse engineering of the image and leads to the detection of falsified

areas because of the discrepancies in the noise model.

We then detail the two main operations that lead to the final coding of the image.

Section 1.4 explains how demosaicing traces can be detected and analyzed to detect

suspicious areas of an image. Section 1.5 describes JPEG encoding, which is usually

the last step in image formation, and the one that leaves the most traces. Similarly

to demosaicing, we show how the JPEG encoding of an image can be

reverse-engineered to understand its parameters and detect anomalies. The most

typical cases are cropping and local manipulations, such as internal or external copy

and paste.

Section 1.6 specifically addresses the detection of internal copy-move, a common

type of manipulation. Finally, section 1.7 discusses neural-network-based methods,

often efficient but at the cost of interpretability.
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Raw Acquisition

Demosaicing

Color Correction

JPEG Compression

Figure 1.2. Simplified processing pipeline of an image, from its acquisition by
the camera sensor to its storage as a JPEG-compressed image. The left column
represents the image as it goes through each step. The right column plots the noise of
the image as a function of intensity in all three channels (red, green, blue). Because
each step leaves a specific footprint on the noise pattern of the image, analyzing this
noise enables us to reverse engineer the pipeline of an image. This in turn enables us
to detect regions of an image which were processed differently, and are thus likely to
be falsified
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1.2. Describing the image processing chain

The main steps in the digital image acquisition process, illustrated in Figure 1.2,

will be briefly described in this section. Other very important steps, such as denoising,

are beyond the scope of this chapter and will therefore not be covered here.

1.2.1. Raw image acquisition

The first step of acquiring a raw image consists of counting the number of

incident photons over the sensor along the exposure time. There are two different

technologies used in camera sensors: charge coupled devices (CCDs) and

complementary metal-oxide-semiconductors (CMOS). Although their operating

principles differ, both can be modeled in a very similar way (Aguerrebere et al.
2013). Both sensors transform incoming light photons into electronic charge, which

interacts with detection devices to produce electrons stored in a potential light well.

When the latter is full, the pixels become saturated. The final step is to convert the

analog voltage measurements into digital quantized values.

1.2.2. Demosaicing

Most cameras cannot see color directly, because each pixel is obtained through

a single sensor that can only count the number of photons reaching it in a certain

wavelength range. In order to obtain a color image, a color filter array (CFA) is placed

in front of the sensors. Each of them only counts the photons of a certain wavelength.

As a result, each pixel has a value relative to one color. By using filters of different

colors on neighboring pixels, the missing colors can then be interpolated.

Although others exist, almost all cameras use the same CFA: the Bayer array,

which is illustrated in Figure 1.3. This matrix samples half the pixels in green, a

quarter in red and the last quarter in blue. Sampling more pixels in green is justified

by the human visual system, which is more sensitive to the color green.

Unlike other steps in the formation of an image, a wide variety of algorithms are

used to demosaic an image. The most simple demosaicing algorithm is bilinear

interpolation: missing values are interpolated by averaging the most direct neighbors

sampled in that channel. As the averaging is done regardless of the image gradient,

this can cause visible artifacts when interpolated against a strong gradient, such as on

image edges.

To avoid these artifacts, more recent methods attempt to simultaneously take into

account information from the three color channels and avoid interpolation along a

steep gradient. For instance, the Hamilton–Adams method is carried out in three
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stages (Hamilton and Adams 1997). First, it interpolates the missing green values by

taking into account the green gradients corrected for the discrete Laplacian of the

color already known at each pixel to interpolate horizontally or vertically, in the

direction where the gradient is weakest. It then interpolates the red and blue channels

on the pixels sampled in green, taking the average of the two neighboring pixels of

the same color, corrected by the discrete Laplacian of the green channel in the same

direction. Finally, it interpolates the red channel of blue-sampled pixels and the blue

channel of red-sampled pixels using the corrected average of the Laplacian of the

green channel, in the smoothest diagonal.

Figure 1.3. The Bayer matrix is by far the most
used for sampling colors in cameras

Linear minimum mean-square error demosaicing (Getreuer 2011) suggests

working not directly on the three color channels (red, green and blue), but on the

pixelwise differences between the green channel and each of the other two channels

separately. It interpolates this difference separately in the horizontal and vertical

directions, in order to estimate first the green channel, followed by the differences

between red and green, and then between blue and green. The red and blue channels

can then be recovered by a simple subtraction. This method, as well as many others,

makes the underlying assumption that the difference of color channels is smoother

than the color channels themselves, and therefore easier to interpolate.

More recently, convolutional neural networks have been proposed to demosaic

an image. For instance, demosaicnet uses a convolutional neural network to jointly

interpolate and denoise an image (Gharbi et al. 2016; Ehret and Facciolo 2019). Even

if these methods offer superior results to algorithms without training, they also require

more resources, and are therefore not widely used yet in digital cameras.

The methods described here are only a brief overview of the large array of

methods that exist for image demosaicing. This variety is increased by the fact that

most industrial cameras do not disclose their often private demosaicing algorithm.
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No demosaicing method is perfect – after all, it is a matter of reconstructing

missing information – and produces some level of artifacts, although some produce

much fewer artifacts than others. Therefore, it is possible to detect these artifacts to

obtain information on the demosaicing method applied to the image, which is

explained in section 1.4.

1.2.3. Color correction

White balance aims to adjust values obtained by the sensors, so that they match the

colors perceived by the observer by adjusting the gain values of each channel. White

balance adjusts the output using characteristics of the light source, so that achromatic

objects in the real scene are rendered as such (Losson and Dinet 2012).

For example, white balance can be achieved by multiplying the value of each

channel, so that a pixel that has a maximum value in each channel is found to have

the same maximum value 255 in all channels.

Then, the image goes through what is known as gamma correction. The charge

accumulated by the sensor is proportional to the number of photons incident on the

device during the exposure time. However, human perception is not linear with the

signal intensity (Fechner 1860). Therefore, the image is processed to accurately

represent human vision by applying a concave function of the form fk,γ = ku
1
γ ,

where γ typically varies between 1.8 and 2.2. The idea behind this procedure is not

only to enhance the contrast of the image but also to encode more precisely the

information in the dark areas, which are too dark in the raw image.

Nevertheless, commercial cameras generally do not apply this simple function,

but rather a tone curve. Tone curves allow image intensities to be mapped according

to precomputed tables that simulate the nonlinearity present in human vision.

8x8 blocks

Compressed file

8x8 table

Input image

Color space 

transformation

DCTQuantizationEntropy coding

Downsampling 

of the 

chrominance

Figure 1.4. JPEG compression pipeline
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1.2.4. JPEG compression

The stages of the JPEG compression algorithm, illustrated in Figure 1.4, are

detailed below. The first stage of the JPEG encoding process consists of performing a

color space transformation from RGB to YCBCR, where Y is the luminance

component and CB and CR are the chrominance components of the blue difference

and the red difference. Since the Human Visual System (HVS) is less sensitive to

color changes than to changes in luminance, color components can be subsampled

without affecting visual perception too much. The subsampling ratio generally

applied is 4:2:0, which means that the horizontal and vertical resolution is reduced by

a factor of 2. After the color subsampling, each channel is divided into blocks of

8 × 8 and each block is processed independently. The discrete cosine transform

(DCT) is applied to each block and the coefficients are quantized.

The JPEG quality factor Q, ranging between 1 and 100, corresponds to the rate

of image compression. The lower this rate, the lighter the resulting file, but the more

deteriorated the image. A quantization matrix linked to Q provides a factor for each

component of the DCT blocks. It is during this quantization step that the greatest loss

of information occurs, but it is also this step that allows the most space in memory to

be saved. The coefficients corresponding to the high frequencies, whose variations the

HVS struggles to distinguish, are the most quantized, sometimes going so far as to be

entirely canceled.

Finally, as in the example in Figure 1.5, the quantized blocks are encoded without

loss to obtain a JPEG file. Each 8 × 8 block is zig-zagged and the coefficients are

arranged as a vector in which the first components represent the low frequencies and

the last ones represent the high frequencies.

Lossless compression by RLE coding (range coding) then exploits the long series

of zeros at the end of each vector due to the strong quantization of the high frequencies,

and then a Huffman code allows for a final lossless compression of the data, to which

a header is finally added to form the file.

1.3. Traces left on noise by image manipulation

1.3.1. Non-parametric estimation of noise in images

Noise estimation is a necessary preliminary step to most image processing and

computer vision algorithms. However, compared to the literature on denoising,

research on noise estimation is scarce (Lebrun et al. 2013). Most homoscedastic

white noise estimation methods (Lee 1981; Bracho and Sanderson 1985; Donoho and

Johnstone 1995, 1994; Immerkær 1996; Mastin 1985; Voorhees and Poggio 1987;

Lee and Hoppel 1989; Olsen 1993; Rank et al. 1999; Ponomarenko et al. 2007)
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follow the same paradigm: they look for flat regions in the image and estimate noise

in high frequencies, where noise dominates over signal.

102 -33 -58 35 58 -51 15 -12

5 -34 49 18 27 1 -5 3

-46 14 80 -35 -50 19 7 -18

-53 21 34 -20 2 34 36 12

9 -2 9 -5 -32 -15 45 37

-8 15 -16 7 -8 11 4 7

19 -28 -2 -26 -2 7 -44 -21

18 25 -12 -44 35 48 -37 -3

DCT coefficients

6 -3 -6 2 2 -1 0 0

0 -3 4 1 1 0 0 0

-3 1 5 -1 -1 0 0 0

-4 1 2 -1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Quantization table

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

Quantization

[      ]

Quantized DCT coefficients

Figure 1.5. An example of the impact of quantization on a DCT block. Each DCT
coefficient is quantized by a value found in a quantization matrix. Rounding to the
nearest integer results in many of the high-frequency coefficients being set to zero.
Each block is zig-zagged to be encoded as a vector with a sequence of zeros

We shall limit ourselves to discuss the method acknowledged as the best estimator

for homoscedastic noise in the review (Lebrun et al. 2013), the Ponomarenko et al.’s
method (Ponomarenko et al. 2007). This method computes the variance of overlapping

8 × 8 pixels blocks. To avoid the effects of textures and edges, blocks are sorted

according to their low-frequency energy; only a small percentile (typically 0.5%) is

used to select the blocks whose low- and medium-frequency energy is lowest. The

final noise estimation is obtained by computing the median of the variances in the

high frequencies of these blocks.

Homoscedastic white noise estimation algorithms can be adapted to estimate an

arbitrary signal-dependent noise curve, as pointed out by Colom et al. (2014).

However, after undergoing the complete camera processing chain detailed in

section 1.3.2, noise depends not only on signal but also on frequency. A multi-scale

estimation is needed in order to estimate highly correlated frequency-dependent

noise (Lebrun et al. 2015). Following this observation, Colom and Buades extended

Ponomarenko et al.’s method (Ponomarenko et al. 2007) to incorporate such a

multi-scale approach (Colom and Buades 2013).
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1.3.2. Transformation of noise in the processing chain

This section examines the way in which noise is affected at each step of the

camera processing chain (see section 1.2). Noise curves obtained with the extended

Ponomarenko et al.’s method (Colom and Buades 2013) along the processing chain

(raw image, demosaicing, white balance, gamma correction and JPEG-encoding) are

presented in Colom (2014) and compared to the temporal estimation.

Temporal estimations of noise curves are non-parametric, and good enough to be

considered as ground-truth. Having ground-truth noise curves is an important issue

when evaluating the performance of estimation methods. These temporal estimations

are built by taking burst photos of the same scene, which consists of a calibration

pattern with large flat zones (Figure 1.6), under constant lighting with a steady

camera. Under these conditions, the variance of a pixel value can only be explained

by noise. Thus, the noise curve obtained by computing the standard deviation of the

temporal series yields the ground-truth noise curve. These noise curves depend on

the camera used as well as the particular processing chain, including the ISO level

and the exposure time.

Figure 1.6. Calibration model used for the construction of the temporal series

1.3.2.1. Raw image acquisition

The value at each pixel generated by the process described in section 1.2.1 can

be modeled as a Poisson variable, whose expectation is the real value of the pixel.

The noise measured at the CCD or CMOS sensor has several components; Table 1.1

describes the main sources.

Figure 1.2 shows the noise curve obtained by temporal series (ground truth) and

the estimation obtained from a single image computed using Ponomarenko et al.’s
method (Colom and Buades 2013) with a simplified pipeline. Note that the estimate is

accurate since all curves match. At this step, all channels have the same noise curve.

As noise follows a Poisson distribution, the noise variance follows a simple linear

relation σ2 = a + bu, where u is the intensity of the ideal noiseless image, and a
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and b are constants. Consequently, the noise curves are strictly increasing. Moreover,

although the noise curves do not account for it, the noise characteristics reported above

suggest that the noise is uncorrelated, that is, the noise at a certain pixel is not related

to noise at any other pixel with the same signal intensity.

Type of noise Description

Shot noise

Due to the physical nature of light. It describes the

fluctuations in the number of photons detected due to

their independent emission from each other.

Dark noise

Some electrons accumulate on the potential well

as the result of a thermal cause. These electrons are

known as dark current because they are present and

will be detected even in the absence of light.

Photo response non-uniformity

(PRNU)

It describes the way in which the individual pixels

in the sensor array respond to uniform light sources.

Due to variations in pixel geometry, substrate material,

and micro-lenses, different pixels do not produce

the same number of electrons from the same number of

photons hitting them.

Readout noise

During the readout phase of the acquisition process,

a voltage value is read at each pixel. This voltage

is computed as a potential difference from a

reference level which represents the absence of light.

Thermal noise, inherent in the readout circuit, affects

the output values.

Electronic noise

It is caused by the absorption of electromagnetic

energy by the semiconductors of the camera

circuits and the cross-talk phenomenon.

Table 1.1. Description of the main sources
of noise during the acquisition process

1.3.2.2. Demosaicing
Demosaicing is presented in more detail in section 1.2.2. After this step, the noise

at each pixel is correlated with its neighbors. After demosaicing, each channel has

a different noise curve since channels are processed differently by the demosaicing

algorithm.

In addition, the noise curves calculated using Ponomarenko et al.’s method and

those obtained from the temporal series no longer match. This is due to the fact that



How to Reconstruct the History of a Digital Image, and of Its Alterations 15

Ponomarenko et al.’s algorithm assumes white noise and estimates noise at high

frequencies, which are affected by demosaicing. As the image processing chain is

sequential, the temporal noise curves and those measured on a single image will no

longer match after demosaicing.

1.3.2.3. Color correction

White balance increases the intensity range of the image. Since the weights are

different for each color channel, as mentioned in section 1.2.3, the three noise curves

are less correlated after this step. Then, gamma correction greatly increases the noise

and the dynamic range of the image, due to the power law function. Furthermore,

the noise curves are no longer monotonically increasing after this step. Indeed, if

we denote γ the function applied during the gamma correction step, the asymptotic

expansion around the intensity u yields γ(u + n) = γ(u) + γ′(u)n, where n is the

noise at the intensity u.

1.3.2.4. JPEG compression

The dynamic range remains unchanged after JPEG compression. However, noise

is reduced after JPEG compression due to the quantization of the DCT coefficients, in

particular those corresponding to high frequencies. Furthermore, the curve estimated

by Ponomarenko et al.’s algorithm (Colom and Buades 2013) differs more from the

temporal series curves, because the noise estimation method estimates noise at high

frequencies, which are altered or even destroyed by compression.

The noise present in JPEG images is the result of several transformations on the

initial noise model, which initially follows a Poisson distribution. In the end, the final

image’s noise does not follow any predefined model, it instead depends on many

unknown parameters that are set by each manufacturer. The only certainty we have is

that noise is intensity dependent and frequency dependent. Therefore, it is preferable

to use non-parametric models to estimate noise curves, so as to estimate the curves

from the image itself.

1.3.3. Forgery detection through noise analysis

Image tampering, such as external copy–paste (splicing) or internal texture

synthesis, can be revealed by inconsistencies in local noise levels, since noise

characteristics depend on lighting conditions, camera sensors, ISO setting, and

post-processing, as shown in section 1.3.2.

One of the unique features characterizing noise is the photographic response

non-uniformity (PRNU), as presented in section 1.3.2. Chen et al. propose to detect

the source digital camera by estimating the PRNU (Chen et al. 2008). According to

the authors, the PRNU represents a unique fingerprint of image sensors and, hence, it

would reveal altered images.
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One of the most popular algorithms for detecting splicing using noise level traces

is proposed by Mahdian and Saic (2009). It consists of dividing the image into blocks

and estimating the noise level using wavelets in each block. Blocks are then merged

into homogeneous regions, the noise standard deviation being the homogeneity

condition. The output of this method is a map showing the segments of the image

having a similar noise standard deviation.

A different approach is introduced in Pan et al. (2011), where the noise

estimation is based on the kurtosis concentration phenomenon. The kurtosis of

natural images across different frequency bands is constant. This allows for the

estimation of noise variance when it follows an additive white Gaussian noise

(AWGN) model. The method then segments the image into regions based on their

noise variance using the k-means algorithm.

The method presented in Yao et al. (2017) makes use of the signal dependency of

noise. Instead of a single noise level, it estimates a noise-level function. The image

is segmented into edges and flat regions. It estimates the noise level on flat regions

and the camera response function (CRF) on edges. Noise level functions are then

compared and an empirical threshold is set to detect the salient curves. The main

disadvantage of this method is that it assumes that the image has only undergone

demosaicing.

We will now describe a recent method based on multi-scale noise analysis for the

detection of tampering in JPEG-compressed images. After the complete camera

processing chain, noise is not only signal dependent but also frequency dependent,

which is mainly due to the correlation introduced by demosaicing and the

quantization of DCT coefficients during JPEG compression. In this context, a

multi-scale approach is necessary to capture the noise in the low frequencies. Indeed,

when successive subscales are considered, the low frequencies become high

frequencies due to the contraction of the DCT domain, which makes it possible to

estimate the noise in low frequencies with the methods presented in section 1.3.1.

One could argue that the noise contained in the low and medium frequencies could be

directly estimated without considering subscales, but this is a risky procedure since

these frequencies also contain part of the signal. This problem is avoided by the

proposed method because, at each scale, the algorithm finds blocks having low

variance in the low and medium frequencies to estimate the noise.

Consider the operator S that tessellates the image into sets of blocks of 2 × 2

pixels, and replaces each block by a pixel whose value is the average of the four

pixels. We define the nth scale of an image u, and we denote it by Sn, as the result of

applying n times the operator S to the image u.

The first step of the method consists of splitting the image into blocks of 512 ×
512 with 1/2 overlap, which are called macro-blocks. Noise curves are estimated using
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Ponomarenko et al.’s method (Colom and Buades 2013) in each of the three RGB

channels for each macro-block, as well as for the complete image (global estimation),

at scales 0, 1 and 2. For each scale and channel, the noise curves obtained from each

macro-block are compared to the global estimation.

Ideally, a non-forged image should exhibit the same noise level function for all

of its macro-blocks, as well as for the entire image. However, when estimating noise

curves in the presence of textures, noise overestimation is likely to happen (Liu et al.
2006). Therefore, textured macro-blocks are expected to give higher noise levels, even

when they are not tampered with. Thus, the global estimation obtained provides, in

fact, a lower bound for the noise curves of the individual macro-blocks. Therefore,

any macro-block with lower noise levels than the global estimation is suspicious, as it

would be an indicator that the underlying region has a different noise model than the

rest of the image.

For detection purposes, we consider the percentage of bins in the noise curve of

the macro-block whose count is below the global estimation, independently for each

RGB channel and for each scale. The geometric mean of percentages obtained for

each channel provides a heat map, unique to each scale. These heat maps show

macro-blocks with noise levels that are incompatible with the global estimation, at a

given scale.

Different criteria can be considered to define detections. One possibility is to

consider that a macro-block is detected if, at any scale, the geometric mean of the

percentage of cells below the overall image curve is 100%. This means that the noise

curve calculated by the macro-block, at a certain scale, is entirely below the noise

curve of the overall image, for all three RGB channels.

The size of the macro-blocks may appear to be too big compared to other methods

willing to detect forgeries by noise analysis. This choice is made in order to achieve

S2 with a reasonable number of bins to obtain an accurate enough estimation. Each

sub-scale implies a reduction of the image by a factor of 2 in each direction. In this

way, if the macro-blocks are 512 × 512 in S0, in S1, they are 256 × 256, and in S2,

the macro-blocks are 128 × 128.

Figure 1.7 shows an example of an image where an external copy–paste has been

performed. The vase on the right has been cropped from the auxiliary image and pasted

onto the original image. The results of applying the proposed method to this forged

image are shown in Figure 1.8.

At S0, the results do not show any different behavior in the tampered zone. If

another scale is considered, S1, we find that the manipulated area has lower noise

levels than the rest of the image. In fact, the noise curves corresponding to

macro-blocks containing the spliced region have about 80% of their bins below the
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global noise curve, this percentage being slightly different for each channel. Finally,

S2 provides the strongest proof of falsification. Indeed, the noise curves

corresponding to forged macro-blocks have all of their bins below the global

estimation in all the three RGB channels.

(a) Original image (b) Auxiliary image (c) Falsified image

Figure 1.7. Example of falsification: the vase in b) has
been cut out and copied onto a), which gives c)

COMMENT ON FIGURE 1.7.– The original image was taken with ISO 800 and
exposure time 1/8 s. The auxiliary image was taken with ISO 100 and exposure time
1.3 s. Both images were taken with the same Panasonic Lumix DMC-FZ8 camera
under the high-quality JPEG compression setting.

This example illustrates the need for a multi-scale approach for noise inconsistency

analysis applied to forgery detection.

To conclude, noise inconsistency analysis is a rich source for forgery detection

due to the fact that forged regions are likely to present different noise models from

the rest of the image. However, to exploit this, it is necessary to have algorithms that

are capable of dealing with signal and frequency-dependent noise. The multi-scale

approach is shown as an appropriate framework for noise inconsistency analysis.

1.4. Demosaicing and its traces

Image demosaicing, which will be presented in detail in section 1.2.2, leaves

artifacts that can be used to find falsifications. The Bayer CFA (see Figure 1.3) is by

far the most commonly used. Mosaic detection algorithms thus focus on this matrix,

although they could be adapted to other patterns.
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(a) S0 red channel (b) S0 green

channel

(c) S0 blue

channel

(d) S0 geometric

mean

(e) S1 red channel (f) S1 green

channel

(g) S1 blue

channel

(h) S1 geometric

mean

(i) S2 red channel (j) S2 green

channel

(k) S2 blue

channel

(l) S2 geometric

mean

Figure 1.8. Percentage of points below the global noise curve and
geometric mean for each macro-block at S0, S1 and S2

1.4.1. Forgery detection through demosaicing analysis

Detecting demosaicing artifacts can answer two questions:

– Is it possible that a given image was obtained with a given device?

– Is there a region of the image whose demosaicing traces are inconsistent with

the rest of the image?

Two different approaches can be used to study the demosaicing of an image. One

could try to estimate the specific demosaicing algorithm that was used in the image.

Such an estimation might prove that an image was not taken by a given camera,

assuming the demosaicing method is different from the one used by the camera.

Within an image itself, a region that was demosaiced differently than the global

image is likely to be forged. Such an analysis could be justified by the large variety of

demosaicing methods, however this variety also limits the potential detection. To

establish or disprove the link between an image and a camera through the

demosaicing algorithm would require us to know the algorithm used, which is rarely

the case. Estimating the specific demosaicing algorithm used by a camera would

require a large amount of images from said cameras; while theoretically possible, no

such work has ever been attempted. The ability to detect regions of an image that

have been demosaiced with a different algorithm than the rest of the image is only

theoretical; in practice the estimation of a demosaicing method once again requires

more data than can usually be provided by a small region of an image. Furthermore,
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most demosaicing algorithms do not interpolate all regions in the same way. As a

consequence, a reliable comparison of two estimations is difficult, as the same

algorithm may have interpolated two regions differently. That being said, global

learning-based methods can make use of the demosaicing algorithm to get

information on an image, although this is just one feature learned and used among

others, and not something that is conclusive by itself. For instance, Siamese-like

networks such as Noiseprint (Cozzolino and Verdoliva 2020) implicitly learn some

information on the demosaicing algorithm to detect forgeries. These methods will be

presented in more detail in section 1.7.

A more promising approach is to directly detect the position of the Bayer matrix.

Indeed, while the CFA pattern is almost always a Bayer matrix, the exact position of

the matrix, that is, the offset of the CFA, varies. Detecting the position of the matrix

therefore has two uses:

– we can compare the position of the Bayer matrix in the image to the one normally

used by a specific device. If the positions do not correspond, then the image was either

not taken by that device, or it was cropped in the processing;

– in the case of copy-move, both internal and external (splicing), there is a 3
4

probability that the position of the Bayer matrix does not correspond between the

original image and the pasted region. Therefore, detecting the position of the Bayer

matrix, both globally and locally, can be used to find inconsistencies.

Most current demosaicing detection methods focus on this second idea, as local

CFA inconsistencies give useful information on the image and can be found relatively

easily in ideal conditions, that is, in uncompressed images, as we will now present.

1.4.2. Detecting the position of the Bayer matrix

Different methods make it possible to detect either the position of the Bayer matrix

directly or inconsistencies of this matrix in the image.

1.4.2.1. Joint estimation of the sampled pixels and the demosaicing
algorithm

In a pioneering paper on demosaicing analysis, Popescu and Farid (2005) propose

to jointly estimate a linear model for the demosaicing algorithm and detect which

pixels have been sampled in a given channel with an expectation-maximization (EM)

algorithm. The demosaicing algorithm is estimated on pixels detected as interpolated

(i.e. not sampled) as a linear combination of neighboring pixels in that channel.

Sampled pixels are detected as pixels where the linear combination yields a result far

from the correct value of the pixel. A pseudo-probability map of each pixel being

sampled is then computed. Assuming the linear model is correct, sampled pixels will

be correctly detected and there will be a strong 2-periodicity of the map, which can
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easily be seen as a peak in the Fourier transform of the image. However, in a region

which has been altered, the estimated linear model will no longer be correct, either

because the demosaicing estimation appears differently or because there are no

demosaicing traces left at all. The 2-periodicity peak will thus locally disappear, and

can be detected as potential evidence of a forgery. This method can then potentially

classify the used demosaicing algorithm, or detect the absence of demosaicing

artifacts, sign of manipulations such as blurring or inpainting to hide data on the

image. To detect a change in the position of the Bayer matrix, (González Fernández

et al. 2018) use a DCT instead of a Fourier transform. This simple modification

enables one to directly visualize a change of position as a local change of signs at the

observed peaks, instead of a harder-to-visualize phase difference. Unfortunately,

while these detections were possible when Popescu’s article was first published, the

demosaicing algorithms have become much more complex since then, both thanks to

theoretical progress and increased computational power in cameras. Modern

demosaicing algorithms process channels jointly and are strongly nonlinear,

preventing an easy modelization of the demosaicing process.

1.4.2.2. Double demosaicing detection

Another method proposes to directly detect the CFA pattern used in the

image (Kirchner 2010). In order to do this, the image is remosaiced and demosaiced

in the four possible positions, with a simple algorithm such as bilinear interpolation.

The reasoning is that demosaicing should produce an image closer to the original

when it is remosaiced in the correct position. They then compare the residuals to

detect which position of the CFA has been used. Since CFA artifacts are generally

more visible in the green channel, they decide first the position of the sampled green

pixels, before deciding between the remaining two positions with the red and blue

channels, a paradigm that has been used in most publications since then. Their use of

the bilinear algorithm limits them in the same way (Popescu and Farid 2005;

González Fernández et al. 2018) due to the linearity and chromatic independence of

the bilinear algorithm, which is not shared by most modern demosaicing algorithms.

However, their method does not depend on the choice of algorithm, and could

therefore provide very good results should the originally used demosaicing algorithm

be known.

1.4.2.3. Direct detection of the grid by intermediate values

In order to break away from a specific algorithm, Choi et al. (2011) highlights

that pixels are more likely to present extreme values locally in the channel in which

they are sampled and, on the contrary, to take on intermediate values when they are

interpolated (Choi et al. 2011). Therefore, they count the number of intermediate

values in the four positions to decide which position is the correct one. The idea that

pixels are more likely to take extreme values in their sampled channel is generally

true with most algorithms, which makes this method produce good classification

scores. However, the probability bias can be reversed when the algorithms make
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heavy use of the high frequencies of other channels, which can lead to confident, but

incorrect detection of certain regions of the image.

1.4.2.4. Detecting the variance of the color difference

Shin et al. (2017) attempts to avoid the assumption that color channels are

processed independently. Instead of working separately with each channel, as was

done until then, they work on the difference between the green and red channels, as

well as between the green and blue channels. This reflects more accurately the

operations done by many demosaicing algorithms, which first interpolate the green

channel before using the green channel’s information to interpolate the red and blue

channels. They compute the variance of these differences in the four possible patterns

on the two computed maps, and identify the correct pattern as the one featuring the

highest variance, which is expected of the original pattern, whose pixels are all

sampled instead of interpolated. Although the dependence of the color channels is

hard-coded, the color difference is actually used in many current algorithms and

represents a first step toward a full understanding of demosaicing artifacts.

1.4.2.5. Detection by neural networks of the relative position of blocks

More recently, Bammey et al. (2020) proposed to train a self-supervised

convolutional neural network (CNN) to detect modulo-(2, 2) position of the blocks in

the image. As CNNs are invariant to translation, they need to rely on image

information to detect this position. Demosaicing artifacts, and to some extent JPEG

artifacts, are the only relevant information a network can use to this end. As a result,

training a network to detect this position will implicitly make it analyze demosaicing

artifacts. This will thus lead to a local detection of the Bayer matrix’s position.

Erroneous outputs of the network are caused by inconsistencies in the image’s

mosaic, and can thus be seen as traces of forgery.

This method obtains better results than previous works, and can help further

analyze the forgery as different kinds of forgeries will cause different artifacts. For

instance, copy-move will cause a locally consistent shift in the network’s output,

whereas inpainting – usually performed by cloning multiple small patches onto the

target area – may show each cloned patch detected with a different pattern. Other

manipulations, such as blurring, or the copy-move of an image that features no

mosaic – for instance due to downsampling – may locally remove the mosaic, and the

output of the network will thus be noise like in the forged region. It is possible to

achieve even better results with internal learning, by retraining the network directly

on images to study. This lets the network adapt to different post-processing, most

importantly to JPEG compression.

However, this method is more computationally intense than the other presented

algorithms, especially when internal learning is needed. This makes it less practical to

use when many images are to be analyzed.
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1.4.3. Limits of detection demosaicing

Recent methods proposed by Choi et al. (2011), Shin et al. (2017) or Bammey

et al. (2020) are able to analyze the mosaic of images well enough for practical

applications. It is now possible to detect, even locally, the position of the Bayer

matrix. Detecting the presence of demosaicing artifacts is generally easy, even

though their absence is not necessarily a sign of falsification because most modern

demosaicing algorithms leave little to no artifacts on easy-to-interpolate regions.

However, the range of images that can be detected remains limited. Demosaicing

artifacts are 2-periodic, and they reside in the highest frequencies. As a result, they

are entirely lost when the image is downsampled by a factor of at least 2. More

generally, image resizing will also rescale the demosaicing artifacts; even though

those might not always be lost, detection methods would need to be adapted to the

new frequencies of the artifacts. JPEG compression is an even more important

limitation. As compression mainly drops precision on the high-frequency

components of an image, demosaicing artifacts are easily lost on compressed images.

To date, even the best methods struggle to analyze CFA artifacts even at a relatively

high compression quality factor of 95. Internal learning presented in Bammey et al.
(2020) provides some degree of robustness to JPEG compression; however,

demosaicing artifact detection remains limited to high-quality images, uncompressed

or barely compressed, and at full resolution. This complements well the detection of

JPEG compression, which we will now present.

1.5. JPEG compression, its traces and the detection of its alterations

In this section, we seek to determine the compression history of an image. We

will focus on the JPEG algorithm, which is nowadays the most common method to

store images. Most cameras use this format but others exist, such as HEIF, used in

particular in Apple products since 2017. HEIF is also a lossy compression algorithm

and therefore leaves traces; nevertheless, these traces are different from the ones

produced by JPEG. As we will see, the analysis of the JPEG coding of an image

makes it possible to detect local manipulations. For this, the methods take advantage

of the structured loss of information caused by this step in the processing chain.

1.5.1. The JPEG compression algorithm

In JPEG encoding, the division of the image into 8 × 8 blocks and the application

of a quantization step lead to the appearance of discontinuities at the edges of these

blocks in the decompressed image.

Figure 1.9 shows the blocking effect that appears after JPEG compression.

Contrast enhancement allows us to clearly see the 8 × 8 blocks. The greatest loss of
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information is during the quantization step, explored in more detail in section 1.2.4.

The blocking effect is due to quantization, depending on the Q parameter, applied on

all 8 × 8 size blocks. Therefore, standard JPEG compression leaves two

characteristic traces: the division into 8×8 non-overlapping blocks and the

quantization, according to a quantization matrix, of the DCT coefficients. In other

words, the two features to be detected from the image are:

1) the origin of the 8×8 grids;

2) the values of the quantization matrix.

(a) Uncompressed image (b) Compressed image with quality of 80

Figure 1.9. Close-ups on an image before and after compression. The
contrast has been enhanced to observe the JPEG artifacts, in particular

the blocking effect, allowing us to see the edges of the 8 × 8 blocks

In order to authenticate an image, the previous detections must verify that (1) the

origin of the grid is aligned with the top left of the image; and (2) the quantization

matrix calculated from the image is similar to the one in the header of the JPEG file. If

the image is not in the JPEG format (providing the header file giving the quantization

matrix), then estimating this information from the image itself is even more useful as

an initial analysis.

Methods by Pevny and Fridrich (2008) make it possible to detect if an image has

undergone a double compression, which creates an immediate argument against the

authenticity of the image. Indeed, this would imply a duplicate in the processing chain

of the image.

In the following sections, grid detection and quantization matrix estimation

methods are illustrated. When no detection is made, the image may be classified as

not having undergone JPEG compression.
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1.5.2. Grid detection

In a JPEG-compressed image, the 8 × 8 blocks are created following a regular

pattern starting at the pixel in the top left of the image and therefore coinciding with

an original grid (0, 0).

The aim of the method is to find the stage of separation in 8 × 8 blocks of the

JPEG algorithm. This leads to having the position of the grid by giving its origin (this

can vary if the image is cropped). If a grid is present, among the 8 × 8 = 64 different

original possibilities, only one is correct.

Here, two families of methods are presented: methods based on block artifacts and

methods based on the impact of quantization on the DCT coefficients.

1.5.2.1. Compression artifacts

These are methods based on the detectable traces left by compression. In their

article, Minami and Zakhor propose a way of detecting JPEG grids with the aim of

removing the blocking artifacts (Minami and Zakhor 1995). Later on, in Fan and

de Queiroz (2003), the same ideas are used to decide whether an image has

undergone JPEG compression, depending on whether traces are present or not. These

methods use filters to bring out the traces of compression (Chen and Hsu 2008; (Li

et al. 2009)). The simplest method calculates the absolute value of the gradient

magnitude of the image (Lin et al. 2009), and others use the absolute value of

derivatives of order 2 (Li et al. 2009). However, these two filters can have a strong

response to edges and to textures present in the image and therefore can sometimes

lead to faulty grid detections. To reduce the interference of details in the scene, a

cross-difference filter, proposed by Chen and Hsu (2008), is more suitable. This filter,

represented in Figure 1.10, amounts to calculating the absolute value of the result of

a convolution of the image by a 2 × 2 kernel. The grid becomes visible because of

the differentiating filter applied to the compressed image. The stronger the

compression, the more this feature is present.

Recently, methods like the one proposed in Nikoukhah et al. (2020) have made

these methods automatic and unsupervised thanks to statistical validation.

1.5.2.2. DCT coefficients

These are methods based on the impact of compression on the DCT coefficients.

After quantization, the compression makes the size of the image file smaller by setting

many of the DCT values to zero. As illustrated in Figure 1.5, the quantization leads to

setting a lot of the high-frequency coefficients to zero. The values of the quantization

matrix are generally larger in high frequencies. The stronger the compression, the

more values are set to zero.
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(a) Uncompressed image (b) Compressed image

(c) Derivative filter applied

to the uncompressed image

(d) Derivative filter applied

to the compressed image

(e) Map of votes of the

uncompressed image

(f) Map of votes of the

compressed image

Figure 1.10. Derivative filter and vote map applied to the same image without
compression in a) and after JPEG compression of quality 80 in b)
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COMMENT ON FIGURE 1.10.– The compressed image features a grid structure. The
saturated zone on the right of the image hides any traces of compression. In the vote
map, each pixel is associated with the grid for which it voted, in other words, the grid
with the most zeros. For the compressed image, one color is dominant: it corresponds
to the position (0, 0).

Based on the example of CAGI (Iakovidou et al. 2018), the ZERO method

determines the origin of the grid by testing the 64 possibilities and selecting the one

on which the DCT coefficients of the blocks has the most zeros (Nikoukhah et al.
2019). In other words, given an image, all of its pixels vote for the grid they think

they belong to. In the event of a tie, the vote is not taken into account.

Figures 1.10(e) and 1.10(f) present the vote map: each pixel’s color represents

which of the 64 possible grids the pixel notes. Navy blue corresponds to the original

grid (0, 0), and red to a non-valid vote, in the event of a tie. At the top right of the

image, the saturated zone is not used to detect JPEG traces since it does not contain

any information.

The derivative filter presented in Figures 1.10(c) and 1.10(d) makes it possible to

highlight the compression artifacts, and the vote map presented in Figures 1.10(e)

and 1.10(f) is a colormap where each color is associated with a grid origin. In both

cases, there is a clear difference between the image that has not undergone

compression and the one which has undergone compression. In fact, these filters,

which are part of the tools used by journalists and police experts today, lack a

validation step. Indeed, as they are presented, users need to interpret them. It is

important to understand why a filter detects one area rather than another. The goal

would be to get a binary result.

In the case of an uncompressed image, no “vote” stands out significantly compared

to the others. In the case of the compressed image in Figure 1.10(f), navy blue is

dominant: it corresponds to position (0, 0).

Whether it is the cross-difference or the pixel vote map, some areas remain difficult

to interpret, therefore justifying the need for a statistical validation. For example, the

saturated parts have no visible JPEG grid and therefore cannot be used to reach a

decision.

1.5.3. Detecting the quantization matrix

The histogram of each of the 64 DCT coefficients makes it possible to determine

the quantization step that corresponds to the associated value in the quantization

matrix. Quantization has a very clear effect on the DCT coefficients histograms of an

image, visible in Figure 1.11 before and after compression. DCT components
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generally follow Laplacian distribution (Clarke 1985; Wallace 1992), except for the

first coefficient that represents the average of the block.

The JPEG quantization step transforms each DCT coefficient into an integer,

multiple of the quantization value (Fridrich et al. 2001). These integer values lead to

real values for each pixel during compression, which are then rounded off to integer

values. Due to the second rounding, the DCT coefficients of the image are no longer

integer, but show a narrow distribution around the quantization values, as shown in

Figure 1.11. The quantization value in Figure 1.11 is q = 6, and so the uncompressed

coefficients are centered around the values 0, 6,−6, 12,−12, and so on. Once a

quantization model has been obtained for the DCT coefficients, forgery detection

methods such as (Ye et al. 2007), look for inconsistencies in the histograms, after

having established a stochastic model.

For example, Bianchi et al.’s method first estimates the quantization matrix used by

the first JPEG compression, and then tries to model the frequencies of the histogram

of each DCT coefficient (Bianchi et al. 2011).

1.5.4. Beyond indicators, making decisions with a statistical model

Block artifacts, the number of zeros and the frequency interval of the histograms

can be seen as compression detectors. However, a statistical validation is needed to

determine whether the observations are indeed caused by compression or they are

simply due to chance. This validation can be carried out by the a contrario
approach (Desolneux et al. 2008).

Applied to the whole image, these methods make it possible to know if an image

has undergone JPEG compression, and if necessary, to know the position of the grid.

The position of the grid origin indicates if the image has undergone a cropping after

compression, as long as this cropping is not aligned with the initial grid, which can

happen by chance in one out of 64 cases.

To verify an image, it is important to make the previous analysis methods local

by checking the consistency of each part of the image with the global model. Several

methods detect forgeries in areas having a different JPEG history than the rest of the

image (Iakovidou et al. 2018; Nikoukhah et al. 2019).

Figure 1.12 illustrates a method that highlights an area where the JPEG grid origin

is different from the rest of the image. In fact, the vote map in Figure 1.12(c) shows

that it is already possible to visually distinguish the objects of the image having voted

for a different grid than the rest of the image. A statistical validation automates the

decision by giving a binary mask of the detection, as illustrated in Figures 1.12(e) and

1.12(f).
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(a) Uncompressed image

(b) Compressed image with quality of 93

Figure 1.11. Histogram of a DCT coefficient for an image before
and after compression. There is a clear structure after quantization

of the coefficients. The value of quantization is q = 6
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(a) An area has been copied several times

in this image

(b) Original image

(c) Vote-map of the falsified image (d) Vote-map of the original image

(e) The four falsified areas

are detected automatically

(f) No detection is detected automatically

Figure 1.12. In a), an area has been copied four
times. The original image is shown in b)
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COMMENT ON FIGURE 1.12.– In (c) and (d), the color indicates the origin of the grid
of the JPEG blocks detected locally for the falsified and original images, respectively.
The navy blue color corresponds to the detected main grid of origin (0, 0). In (c), the
areas whose block origin does not match the rest of the image are clearly visible. This
detection is made automatic by the a contrario method, whose result can be seen in
(e) and (f), where no anomaly is detected in the original image (f), while the falsified
image (e) finds the four areas detected as being altered. The original and falsified
images come from the database (Christlein et al. 2012).

Likewise, the quantization matrix can be estimated in order to know if it is

consistent in each block of the image, and with the global quantization matrix which

can be found in the associated header file, which allows the decompression of the

image (Thai et al. 2017).

1.6. Internal similarities and manipulations

Finally, we will study the so-called internal manipulations, which modify an image

by directly using parts of itself, like inpainting (Arias et al. 2011) and copy and paste.

Unlike other forgeries, these manipulations do not necessarily change residual

traces of an image, because the parts used for the modification come from the same

image. Therefore, specific methods are necessary for their detection.

The main difficulty in the detection of internal manipulations is the internal

similarity of the image. A specialized database was created specifically to measure

the rate of false detections between altered and authentic images, but with similar

content in different regions (Wen et al. 2016).

The first methods are based on the study of Cozzolino et al. (2015a). Other

methods use and compare key points, like those obtained with SIFT (Lowe 2004),

which allows similar content to be linked. But this is often too permissive to detect

copy and paste. This is why specialized methods, such as proposed by Ehret (2019),

propose comparisons between descriptors to avoid the detection of similar objects,

which are often distinguishable as shown in Figure 1.13. An example of copy and

paste can be found in Figure 1.14.

Neural networks can also be used to detect copy-move manipulations, such as in

Wu et al. (2018), where a first branch of the network detects the source and altered

regions, while a second branch determines which of the two is the forgery, while other

methods generally cannot distinguish the source from falsification.
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(a) Real image, the two objects

are similar but different

(b) Altered image with two copies

of the same object

(c) A difference is visible

on the patches of the two similar objects

of the real image

(d) But when the image is altered,

the patches of the two copies of the same

object are identical

Figure 1.13. The image in a) represents two similar, but different objects,
while the image in b) represents two copies of the same object. Both

images come from the COVERAGE database (Wen et al. 2016)

COMMENT ON FIGURE 1.13.– The patches in (c) and (d) correspond to the
descriptors used by Ehret (2019) associated with the look-at points represented by
the red dots for the images that are authentic (a) and falsified (d), respectively.
Differences are visible when the objects are only similar, whereas in the case of an
internal copy–paste, the descriptors are identical. It is through these differences that
internal copy–paste detection methods can distinguish internal copies from the
presence of objects that would naturally be similar.
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(a) Original image (b) Ground truth mask (c) No match

found in the original

image

(d) Image altered by

internal copy and paste

(e) Ground truth mask

of the altered image

(f) Connections are

found between the two

identical copies

Figure 1.14. Example of detection of copy–paste type modification on the images
in Figure 1.13. The original and altered images are in (a) and (d), respectively, the
ground-truth masks in (b) and (e), and the connections (Ehret 2019) between the areas
detected as too similar in (c) and (f)

1.7. Direct detection of image manipulation

To detect a particular manipulation, one must first be aware of the existence of

this type of manipulation. As new manipulation possibilities are continually being

created, it is necessary to continually adapt to new types of manipulation, otherwise

the detection methods quickly become outdated. To break out of this cycle, several

methods seek to detect manipulations without prior knowledge of their nature.

Recently, generative adversarial networks (GAN) have shown their ability to

synthesize convincing images. A GAN is made up of two neural networks competing

against each other: the first network seeks to create new images that the second one
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fails to detect, while the second network seeks to differentiate original images from

the ones generated by the first network.

Finally, the most common example concerns the use of automatic filters offered

by image editing software such as Photoshop. Simple to use and able to produce

realistic results, they are widely used. Neural networks can learn to detect the use of

these filters or even reverse them (Wang et al. 2019), the training data can be

generated automatically, but must deal with the immense variety of filters existing on

this software.

Figure 1.15. Structure of the Mayer and Stamm (2019) network to compare the source
of two patches. The same first network A is applied to each patch to extract a residue.
These residues are then passed on to a network B which will compare their source and
decide if the patches come from the same image or not

Recently, Siamese networks have also been used for the detection of falsification

(Mayer and Stamm 2019). They are bipartites, as shown in Figure 1.15. They consist

of a first convolutional network that is applied independently to two image patches to

extract hidden information from each, and then of a second network that compares the

information extracted on the two patches to determine whether they come from the

same picture. A big advantage of these methods is the ease of obtaining training data,

since it is enough to have non-falsified images available and to train the network to

detect whether or not the patches were obtained from the same picture. An example

of detection with Siamese networks can be found in Figure 1.16.

1.8. Conclusion

In this chapter, we have described methods that analyze an image’s formation

pipeline. This analysis takes advantage of alterations made by the camera from the

initial raw image to its final form, usually compressed JPEG. We have reviewed the

transformations undergone by the raw image, and shown that each operation leaves

traces. Those traces can be used to reverse engineer the camera pipeline,

reconstructing the history of the image. It can also help detect and localize
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inconsistencies caused by forgeries, as regions whose pipeline appears locally

different than on the rest of the image. With that in mind, it is usually impossible to

guarantee that an image is authentic. Indeed, a perfect falsification, which would not

leave any traces, is not impossible, although it would require great expertise to

directly forge a raw image – or revert the image into a raw-like state – and simulate a

new processing chain after the forgery has been done. Falsifiers rarely have the

patience nor the skills needed to carry out this task, however one cannot exclude that

software to automatically make forged images appear authentic may emerge in the

future.

(a) Falsified image (b) Ground truth (c) Detection of the Siamese

network

Figure 1.16. Example of modification detection
with the Siamese network (Mayer and Stamm 2019)

COMMENT ON FIGURE 1.16.– The forged image comes from the database associated
with Huh et al. (2018). The Siamese network gives a similarity score for each patch
with a reference patch. The black areas in the Siamese network result correspond to
patches that are incompatible with the reference patch.
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Machine learning using deep neural networks applied to image recognition works

extremely well. However, it is possible to modify the images very slightly and

intentionally, with modifications almost invisible to the eye, to deceive the

classification system into misclassifying such content into the incorrect visual

category. This chapter provides an overview of these intentional attacks, as well as

the defense mechanisms used to counter them.

2.1. Introduction

Deep neural networks have made it possible to automatically recognize the visual

content of images. They are very good at recognizing what is in an image and

categorizing its content into predefined visual categories. The vast diversity of the

many images that are used to train a deep network allows it to recognize visual

content with a high degree of accuracy and a certain capacity for generalization.

From thousands of examples of images of animals, manufactured objects, places,
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people, elements of flora, etc., a deep neural network can almost certainly detect that

an unknown image shows a dog, a cat, an airplane.

However, it is possible to intentionally modify these images so that the network is

completely wrong in its classification. These modifications are made by an attacker

whose goal is to deceive the classification, for example to pass off inappropriate

content (child pornography) as something perfectly harmless. The big surprise is that

these modifications are very small and are almost imperceptible to our eyes. These

attacks take advantage of a certain vulnerability of deep networks, which can be quite

easy to fool, as we will show in this chapter.

Passing off one piece of visual content for another is very problematic. Putting

small pieces of paper of a particular shape and color in certain places on road signs

prevents their automatic recognition by dashboard cameras in autonomous vehicles.

Wearing a medallion decorated with a particular texture on clothing can make a person

invisible to an algorithm detecting the presence of pedestrians. The examples multiply,

and are sometimes funny, sometimes disturbing and sometimes dangerous when the

decisions of the network puts lives at stake.

Adversarial images that are capable of deceiving classifiers are defined in

section 2.2, and an overview of attacks intended to deceive a classifier whose

technology is based on deep neural networks is provided in section 2.3. In response,

many studies propose defenses, and section 2.4 aims to present them.

We will begin this chapter with a short presentation of the history of the field,

and the vocabulary that we will be using. We will also present the main features of

machine learning and image classification by deep neural networks.

2.1.1. A bit of history and vocabulary

This chapter deals with the vulnerabilities of deep neural networks, but in fact all
machine learning algorithms have flaws and are vulnerable to intentional attacks. It

was while researchers were working on automatic email classification in an attempt to

separate spam from real messages that the first flaws were revealed. It was the work

of Dalvi and his colleagues, and also Lowd and Meek in 2004, that showed that it

was possible to deceive a linear classifier trained to detect spam (Dalvi et al. 2004;

Lowd and Meek 2005). At that time, deep networks did not exist, and the techniques

to choose from for machine learning processes relied on classifiers based on support-

vector machines in particular.

Ten years later, the adversarial machine learning sector is gaining momentum,

because at the moment the incredible power of deep networks is being revealed, but
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at the same time they are very vulnerable. Around 2014, researchers were working on

making images that could deceive a classifier based on a deep neural network. These

images are called “adversarial images”.

Therefore, adversarial images are images that have been manipulated so that the

network that classifies them is mistaken and assigns these images to an erroneous

class. For example, if a image of a cat is shown, the network responds that this image

is of an airplane. However, manipulation is almost invisible and by looking at the

manipulated image, it looks exactly like a cat. The network itself is very confident in

its decision that it is an airplane. Figure 2.1 illustrates this, where the American flag,

when altered intentionally, is recognized as a vending machine, or even a sandal.

(a) (b) (c)

(d) (e)

Figure 2.1. The original image and adversarial images; the
manipulations are almost invisible, the classification is incorrect

COMMENT ON FIGURE 2.1.– (a) The original image, classified correctly as a flag.
(b) An adversarial image, created using the C&W method, classified as a vending
machine by the network. (c) An adversarial image, created using the PGD2 method,
classified as a sandal by the network. (d) Distortion (greatly amplified to make it more
visible) exists in image (b) and is created using C&W, making the original adversarial
image. (e) Highly amplified distortion existing in image (c) and created using PGD2,
making the original adversarial image.
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Historically, one of the first studies into the many facets of vulnerability in

learning algorithms was carried out by Barreno et al. (2006). In this seminal article,

they discuss the vulnerability of artificial learning algorithms during the learning

phases (they discuss poisoning) and the test phases (they discuss evasion), they

distinguish between targeted attacks and non-targeted attacks, propose techniques for

evaluating the power of these attacks and mention some defense mechanisms to

avoid them. They also differentiate vulnerabilities according to the knowledge an

attacker may have of the system they want to deceive, distinguishing “white box

attacks” from “black box attacks”. We will come back to these terms in section 2.3.

A very good historical perspective can be found in the article by Biggio and Roli

(2018). Some excellent recent and complete developments are suggested by Serban

and Poll (2018). We recommend reading these two publications.

2.1.2. Machine learning

Machine learning is part of the artificial intelligence field. Machine learning is an

interdisciplinary field, with a mix of applied mathematics, statistics and algorithmics.

It enables a computer to perform a task based on the careful examination of

representative data. The set of rules that the machine must follow in order to perform

a task is often either impossible to list “manually” because it is too complex

(automatic translation for example), or defined, but leads to an exponential

combination of behaviors given all possible input data (chess, go). Machine learning

is specifically based on the analysis of huge amounts of data to estimate a model for

performing the task. The more data and the more diverse the data, the better the

model and the automatic fulfillment of the target task.

Machine learning has two phases. The learning or training phase first learns a

model from a set of training data. The second phase applies the learned model to

new data and therefore carries out the task. Sometimes, learning and application are

intertwined in an effort to continuously improve the quality of the model.

The nature of the information available during the learning phase determines two

types of approaches. Supervised learning uses data-label pairs, with the label being

the responses we want the task to produce for each data item. It is then a question

of classification of the data when the labels have discrete or categorical values, or of

regression if they are continuous. On the other hand, non-supervised learning does

not have labels. Since it is not always possible to label the large amounts of data,

intermediate approaches have been designed where the degree of supervision is more

or less high. There are so-called semi-supervised (the data are not all labeled), or

even partially supervised (only some of the labels relevant to given data are provided)
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approaches. There are also other forms of learning, such as reinforcement learning

and transfer learning, but we will not go into them in detail here.

The fields of application are extremely varied, as are the tasks to be carried out:

classification tasks, recognition tasks, translation tasks, grouping tasks, analysis tasks

and prediction tasks; the list is almost endless. Learning applies to data of very

different natures: symbolic, digital data, data of a continuous or discrete nature,

graphs, trees, feature vectors, including images, sounds, texts and time series for

example.

In this chapter, we focus on a specific type of data and the particular task of

classifying images into predefined visual categories. The labels are associated with

images, for example, airplane, boat, car, table, chair, building, person, dog, cat, ball,

cutlery, daisy or tomato. We now consider a supervised learning environment. Once

the model has been learned, it is a question of classifying new unknown images,

without labels, into the right visual category or categories as best as possible.

Any machine learning process is built on a few fundamental concepts, whether

technical or theoretical, that we will detail in this section. First is the concept of an

objective function. This very generic term designates a function that reflects the

performance of the model; in other words, its ability to perform the intended task.

The training optimizes the parameters of the model in order to gradually maximize

the objective function. This function is often a decreasing function of a global error

linked to the incomplete performance of the task. The opposite of a mean squared

error or a cross-entropy are two classic examples of objective functions. These

functions are continuous with respect to the parameters of the model and make it

possible to detect whether or not a small modification of the parameters improves the

performance of the task.

The improvement of the learning is achieved by a gradual adjustment of the

parameters of the model, so that the new values of these parameters increase the

quality of the model observed through the objective function. Therefore, an

optimization process is at work which, we hope, will find the optimum parameters

without making the search for them too costly. The adjustment consists of a better

positioning of a hyper-plane separating two families of data, for example.

After optimization, the learned model works well on the data used in training,

which is normal. However, it is important that this model has generalization

capabilities, so that, it can correctly process new and unknown data. Sometimes,

when the model over-fits, it has little or no generalization capabilities. This must be

avoided, so techniques such as cross-validation, regularization or random pruning

could be used.
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2.1.3. The classification of images by deep neural networks

This section describes what deep neural networks are and what the image

classification task is. This section only provides an overview of these concepts and

only presents the most important ones. We invite the reader to study the work by

Goodfellow et al. (2016), which presents these concepts in much more detail and

precision. In addition, this section introduces the mathematical notations needed to

describe attacks and defenses later on.

In the red, green and blue color space, an image I of L lines and C columns is

represented by a three-dimensional table in space {0,1, . . . ,255}3×L×C. The pixels

are integers between 0 and 255 (if coded on one byte). The output of the classifier

is a class, that is, categorical data. The k possible categories (for example, airplanes,

boats, cars, tables, chairs, buildings, people, dogs, cats) are ordered arbitrarily and the

output of the classifier is an integer between 1 and k, denoted by �̂.

The image classifying deep neural network here is schematically broken down into

three levels. The first layer performs preprocessing that adapts the input image to the

neural network. It often includes a sub-sampling of the image to a given size r × r
(typically 224 × 224), and mainly reduces the dynamics of the pixels to the range [0, 1]
(a historical choice, but other choices are possible, like, for example reducing toward

[−1, 1]). This can be done by dividing the pixel value by 255. More sophisticated

transfer functions, which are sometimes different from one color channel to another,

are also used. The output of this preprocessing is x = T(I), traditionally noted as a

column vector at m = 3× r × r components in [0, 1]m.

The second layer is the neural network. A neuron is a small automaton that

combines the data it receives from other neurons, and produces a value which is then

transmitted to one or more neurons, which will each combine that value with the

values received from other neurons and so on, which makes up an overall network.

Neurons are often organized in layers, connected to each other, and it is the great

multiplication of these layers that gives the term “deep”. For example, there are

networks made up of hundreds of interconnected layers, each made up of thousands

of artificial neurons.

Therefore, a neuron is a small automaton that first operates a linear combination

of the values received (from other neurons, for example), which are weighted by

synaptic weights, and then added up. The value produced is then passed to an

activation function, also called a thresholding function. Such functions introduce

nonlinearity into the behavior of the neuron, which is essential. Sigmoid activation

functions, hyperbolic tangent function, or Rectified Linear Unit (ReLU)-based

functions are often used. These nonlinear functions are continuous, non-decreasing

and are almost universally differentiable.
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The output of the neural network is a real vector at k components called the logit

vector: z = R(x,θ) ∈ Rk. The larger z(j), the jth logit, is, the more likely the input

data x belongs to class j. The θ symbol is a “catch-all” parameter, representing the

set of synaptic weights (of all neurons in all layers).

The third layer translates the logits into a probability vector p ∈ [0, 1]k s.t.∑k
j=1 p(k) = 1. The value p(j) is the probability that the input image is of class j.

This translation is done with the function softmax, p = S(z), defined by,

∀ 1 ≤ j ≤ k:

p(j) =
ez(j)∑k
i=1 e

z(i)
[2.1]

It is the gradual adjustment of the synaptic weights θ, parameters of the function

R(·), which forms the core of supervised learning, the first and the last layer being

non-parametric. These weights are gradually adjusted so that the final value produced

at the output of the classifier ultimately corresponds to the label associated with the

input data.

The network is used in propagation mode when the input data gradually passes

through it, and the network eventually produces the probability vector p. The error

between the output p and what should have been produced is measured. For a label �
associated with the input x, the output is ideally a probability vector p�

� where

p�� (j)= 1 and where the other components of this vector are zero. The cross-entropy

h(p,p�
� ) is a metric quantifying how p is different to p�. The loss for the input x of

the label � is the number L(x, �,θ) = h(S(R(x,θ)),p�
� ).

Backpropogation consists of tracing the error made by a neuron back through the

network, from downstream to upstream, to its synapses and therefore to the upstream

neurons. The gradient of the cross-entropy is calculated like this. This is greatly

simplified by a chain calculus because the network is a composition of functions or

layers. Therefore, the set of these weights θ is updated iteratively by a gradient

descent algorithm to decrease the cross-entropy. At iteration i:

θ(i+1) = θ(i) − η∇θL(xj(i), �j(i),θ) [2.2]

where {xj(i), �j(i)} corresponds to training data drawn at random at the ith iteration

of the stochastic descent gradient and η > 0 is the learning rate.
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It is this constant back and forth between propagation (calculated from

S(R(x,θ))) and backpropagation (calculated from ∇θh(S(R(x,θ)),p�
� )), which

ensures the convergence of the learning toward local minimum weights θ of the

cross-entropy calculated on the training datasets.

Once the learning is over, the test phase can start. During that phase, unknown data

is checked against the model, which eventually produces a probability vector p. The

class predicted for the tested data is the one associated with the greatest probability

observed in p, that is:

�̂ = f(x) := arg max
1≤i≤k

p(i) [2.3]

2.1.4. Deep Dreams

A loss L(x, �,θ) is a continuous function with respect to parameters θ of the

network, but also to the input data x. In equation [2.2], it is its gradient with respect

to θ that appears. What does the opposite of the gradient mean, with respect to x,

−∇xL(x, �,θ)? It is a three-dimensional table with the same dimension as x, which

indicates what tiny modification should be made to x to reduce the loss, that is, so

that the input data is even better classified as belonging to the category �.

This idea is at the root of Deep Dreams (Tual and Coutagne 2015; Wikipedia

2020), the psychedelic images, which are shown in Figure 2.2. They were built by

increasing the structures recognized by a network in a given image and show us what

allows it to predict the category �.

These images where the recognized structures are amplified excessively are now

part of the folklore of deep convolutional networks. However, this idea of calculating a

gradient rather than a variable x is largely used to visually understand and interpret the

decisions of neural networks. References in this field include the papers by Yosinski

et al. (2015) and Simonyan et al. (2014).

This raises questions about the quantity +∇xL(x, �,θ). Added to the variable x,

it decreases the probability p(�): this perturbation erases the typical structures of the

class � and the resulting image is not as well recognized as being in class �. In the

same way, a perturbation −∇xL(x, �′,θ) with �′ �= � increases the probability that

the image is in class �′, which can lead to a wrong classification. This is, in fact, the

basic idea for generating white box adversarial images.
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↓

Figure 2.2. Illustration of the Deep Dreams process applied
to the original image (a) (source: (Wikipedia 2020))

2.2. Adversarial images: definition

Let f : Rm → {1, · · · , k} be a classifier mapping a vector of pixels (forming an

image) to a discrete label, giving the class that this vector belongs to, among k possible

classes. For an image x ∈ Rm and a target label � ∈ {1, · · · , k}, an adversarial

perturbation r is produced by resolving the following optimization problem:
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min ‖r‖p
such that f(x+ r) = �

(x+ r) is an image

[2.4]

This equation fits with targeted and non-targeted attacks, as well as white box or

black box attacks.

Targeted attacks are those where the attacker wants to see the attacked image

classified exactly in the category � (e.g. the attacker wants an image of a dog to be

classified as an image of a cat). Non-targeted attacks are those where the attacker

wants an attacked image x + r to be classified in whichever class, as long as � is

different from the class f(x) that it belongs to (e.g. the attacker wants an image of a

dog to be classified as anything, except a dog).

White box attacks consider the scenario where the attacker knows everything about

the classifier network. They can thus imitate it in their garage, assemble it and test

an attack, then once operational, they can deploy it. Black box attacks consider the

opposite, that the attacker does not know the network details. On the contrary, they

have a model of the classifier in their garage. They cannot “open” it and see how it

works, but they can use it as an oracle; in other words, submit images to it and observe

its predictions as many times as they want to. Certain articles consider “gray boxes”,

that is, contexts where the attacker only has partial knowledge of the network. We will

come back to all of this later in section 2.3.2.

Equation [2.4] contains a distortion term to be minimized. It is frequently the

magnitude of the distortion that is measured, often according to the norm

L2, L1, L∞ (Goodfellow et al. 2014a; Carlini and Wagner 2017), since they are quite

intuitive, and, when the measure gives a very weak distortion, it is then often almost

invisible to the eye. However, these metrics do not reflect our perception of images

and small distortions can sometimes be very visible. Also, it is clear that we want to

measure the distortion according to another metric, rather than one based on the way

our visual system works from a neurological and psychological point of view (Wang

et al. 2004; Sharif et al. 2018; Fezza et al. 2019). Unfortunately, this metric is much

more complex to calculate. Therefore, the Lp norms are often favored in practice.

Equation [2.4] defines adversial images via an optimization problem. The attack

is the process implemented to find the solution to this problem. The variable x
existing in a space of a very large dimension m. Finding this solution is difficult

since the function f(·) has no explicit form. It is likely that an attack actually finds an

approximate solution; in other words, it finds a perturbation r of greater distortion

than the bare minimum, given by the solution of equation [2.4]. So a first criterion to
evaluate the quality of an attack is the distortion it produces.
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A second criterion is given by the second line of equation [2.4]. An attack achieves

its goal (targeted or non-targeted) if f(x + r) = �. But this problem is so difficult to

resolve that an attack can sometimes fail, failing to produce an adversial image (x+r).
So the second criterion to evaluate the quality of an attack is the probability of its
success.

These two criteria are deeply linked by a trade-off. It is easy to develop an attack

that always succeeds: this attack replaces x by a whole other image x′, whose

predicted class is �, but the distortion ‖x′ − x‖p is huge and is clearly visible to the

naked eye. It is easy to develop a zero distortion attack: it is the attack which uses the

untouched x, but the probability of success is zero (unless x is immediately

misclassified by the network). These two extreme attacks are pointless, but they

illustrate this trade-off. The probability of success is an increasing function of

distortion.

The third criterion is the complexity of the algorithm, measured by its memory

consumption or by the required computation time. The algorithms listed below are

often iterative, and counting the number of iterations that are needed to make an

adversarial image of good visual quality is a valuable indicator. The lower the

complexity, the faster the attack, but then the probability of success is often very low

or the distortion is very high.

Before presenting different algorithms attacking networks by producing

adversarial images, let us come back to the last term of equation [2.4]. It is said that

(x+ r) is an image. Let us see what this means and what it involves.

This definition, which is based on x = T(I) and not on image I, is historical. It

reflects the fact that the community working on computer vision and those working on

neural networks are not interested in the preprocessing layer because there is nothing

to learn or train. So the condition (x + r) is an image simply means that x + r ∈
[0, 1]m, just like x. It would be possible to come to a “real” digital image (with values

of pixels between 0 and 255) by simply applying the inverse preprocessing T−1(·).
In reality, from our point of view, things are not that simple. We have described

the preprocessing as being part of the classifier. So x is an internal variable that the

classifier does not have access to. However, the aim of the attacker is to attack the input

image I, and not x. In addition, the method of first finding x + r, and then applying

the inverse preprocessing to form an image is sometimes not possible, because there

is no such image such that its preprocessing gives x + r. We will come back to this

later in this chapter.

2.3. Attacks: making adversarial images

This section gives a quick overview of techniques used to produce adversarial

images. We are not exhaustive, we will describe attacks which are, in a way, exemplary
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of what the literature offers, very vast literature that is rapidly expanding. All of the

techniques presented here are based on equation [2.4], which they enrich in a number

of ways.

We mainly describe the case where the network is perfectly known to the attacker

(white box attack) and the attacks are not targeted (untargetted attacks). We will extend

this framework at a later stage.

2.3.1. About white box

2.3.1.1. The attacker’s objective function
In this scenario, the attacker has access to the probability vector p, calculated by

the network. With the original image being from class �g, the vector p must move

away from p�
�g

(the image is less recognized as being from class �g). In an attack

targeting the class �, p must get closer to p�
� . Like supervised learning, the attacker

also works with an objective function defined via cross-entropy:

J (x, �) = h(p,p�
� )− h(p,p�

�g ) [2.5]

= log(p(�g))− log(p(�)) [2.6]

Decreasing the objective function amounts to increasing the predicted probability

for the class � and decreasing that of the original class �g. Note that a perturbation

makes the image adversarial if J (x+ r, �) < 0.

The definition of the objective function is more difficult for non-targeted attacks.

Decreasing only h(p,p�
�g
) is not enough. The first trick is to target the most probable

class, other than �g. Hence an objective function:

J (x) = log(p(�g))−max
� �=�g

log(p(�)) [2.7]

There are other objective functions in the literature. We will see, for example, the

DeepFool attack, which detects that a predicted high probability class is not

necessarily an easier class to reach.

2.3.1.2. Two big families
The core of equation [2.4] is formed by minimizing a distortion and successfully

deceiving the system. Also, the algorithms producing adversarial images are divided

into two families, according to whether they set themselves the objective of never

exceeding a distortion whose maximum value is specified, or the objective of

succeeding in producing adversarial images that will all be able to deceive the

system, without limiting the distortion (although the minimum is sought). Let us

characterize these two families before listing the algorithms.
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2.3.1.2.1. Distortion objective
All of the algorithms producing adversarial images included in this family aim

to maximize the probability of success while not exceeding a fixed distortion. This

distortion is not necessarily an explicit parameter of the attack, but it is determined by

some of its parameters. This is generally expressed by:

min J (x+ r)

such that ‖r‖p ≤ ε
[2.8]

where J is the lossy function of the attacker and ε is the maximum distortion allowed.

The performance of this type of attack is measured by their probability of success

Psuc = P(f(x + r) �= �g), which of course depends on the value given to ε. If the

attack does not succeed for a given value of ε, then this value can be increased and the

algorithm starts again with this new, larger ε. Note that the ε, having finally made it

possible to create an adversarial image, is not necessarily minimal.

2.3.1.2.2. Success target
In this family, algorithms aim for success and always produce an adversarial image

at the cost of arbitrary, but minimal, distortion. This is expressed by:

min ‖r‖p
such that J (x+ r) < 0

[2.9]

It is the minimum distortion expectation that characterizes the performance of

these algorithms once the network is fooled.

These two families of attacks use a development limited to the first order of the

objective function as a basic principle:

J (x+ r) = J (x) + r�∇xJ (x) + o(‖r‖) [2.10]

The distortions r which decrease the objective function are therefore positioned

toward the opposite of the gradient −∇xJ (x). This approximation, being local, is

only valid for the distortions of low amplitude.

From the value of the objective function, a backpropagation process is initiated,

which goes back to the vector representing the image while keeping the synaptic

weights unchanged. Then, it is this vector that modifies the original image so that the

system is eventually fooled. The perturbation is, therefore, a function of the gradient.

It is worth noting that because of auto-differentiation (Goodfellow et al. 2016), the

calculation of the gradient is automatic. On the other hand, the complexity of this

calculation is just double that of the propagation. Let us now list the main algorithms

belonging to these two families.
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2.3.1.3. Distortion objective: main attacks

2.3.1.3.1. FGSM

The first algorithm that uses the gradient to create a perturbation and produces an

adversarial image is the one proposed by Goodfellow et al. (2014a). It is FGSM, which

stands for the Fast Gradient Sign Method. This method is very simple and depends on

a perturbation calculated as:

y = x+ r = x− ε sign∇xJ (x) [2.11]

It is this perturbation that minimizes the objective function to the first order for the

constraint ‖r‖∞ = ε.

The characteristic elements of attacks whose objective is distortion are found here

(see equation [2.8]). By studying the gradient of the objective function J , and by

calculating the opposite, it is then possible to determine how to modify the vector at

the input of the network to decrease J and hopefully lead to its misclassification.

The value of ε controls the maximum distortion allowed. This method is very simple

and very quickly creates adversarial images that can sometimes mislead the classifier.

However, it is a bit rough, since it only uses one observation of the gradient to

determine which perturbation to apply.

2.3.1.3.2. I-FGSM

It is simple to refine FGSM by having it observe the gradient multiple times as

the perturbation is created. So I-FGSM (Kurakin et al. 2016) is the iterative version

of FGSM. Contrary to what equation [2.11] allows, the perturbation is not directly

calculated. I-FGSM initializes y0 := x and then iterates by increasing the inverse of

the gradient each time by α. The recurrence is therefore:

yi+1 := projB∞[x;ε](yi − α sign∇xJ (yi)) [2.12]

where projA is the estimation on the region A (in the minimum sense of the Euclidean

space) followed by a term-to-term threshold to stay in the Hypercube [0, 1].

Here, the region A is the ball B∞[x; ε] of L∞ norm, center x and radius ε > α.

Therefore, the first iterations remain inside the ball and the projection is not active,

then the iterations calculate perturbations that get out of the hyper ball and the

projection brings them back to its surface. This iterative approach is also known as

the Basic Iterative Method (BIM) (Papernot et al. 2018).

I-FGSM and BIM carry out targeted or non-targeted attacks, and it all depends on

the definition of the objective function.
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2.3.1.3.3. PGD2

Projected Gradient Descent is also an iterative method, but it projects the gradient

on a ball of norm L2, and not on ball of norm L∞ (Madry et al. 2017). Therefore:

yi+1 := projB2[x;ε](yi − αη(∇xJ (yi))) [2.13]

where η(x) := x/ ‖x‖, which is a normalization, according to the norm L2.

The ball L2 used for the projection is B2[x; ε], center x and radius ε. Once again,

the attack does not end when yi touches the ball B2[x; ε] for the first time. It continues

and seeks to minimize the objective function while remaining on the ball.

2.3.1.3.4. M-IFGSM

Iterative approaches progress along the gradient at a fixed pace, symbolized by

α (see equations [2.12] and [2.13]). Adjusting this value is difficult: if it is too small

the algorithms will not progress and find an adversarial image because the number of

iterations is limited; if it is too large the algorithms will progress quickly, but then the

gradient cannot be followed finely, which can create fluctuations.

Approaches such as M-IFGSM (Dong et al. 2018) incorporate a progressive

adaptation mechanism for the pace: during the first iterations, it is an advantage to

progress rapidly along the gradient. On the other hand, later, it is better to progress in

small steps to better follow the gradient and reach a local minimum.

2.3.1.4. Success goal: main attacks

Techniques in this family are typically more expensive. The discovery of a near

adversarial image is guaranteed if the complexity is not limited.

2.3.1.4.1. L-BFGS

Szegedy et al. (2013) discuss the problem of creating adversarial images using a

Lagrangian formulation. Distortion is no longer a constraint, but is integrated into the

objective function:

�(r) := J (x+ r) + λ ∗ ‖r‖2 [2.14]
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For a given value of λ > 0, the minimization of the objective function
without constraint is carried out using the numerical method BFGS
(Broyden– Fletcher–Goldfarb–Shanno). It is an iterative gradient descent method.

A strong value for λmeans that the minimum r� of the objective function is not an
adverse perturbation, because it has given too much weight to the Euclidean distortion.
On the contrary, a value that is too low gives a minimum r�, making J (x + r) very
negative and causing a big distortion. This is illustrated by Figure 2.3. Therefore, it is
necessary to do a binary search to find an adequate Lagrange multiplier. This means
that the program carrying out the attack has two layered iterative loops, which explains
its great complexity.
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Figure 2.3. Illustration of L-BFGS in 1D

COMMENT ON FIGURE 2.3.– The perturbation r is collinear with the gradient of the
objective function. The abscissa is the norm of r. The objective function J (x + r) is
given in red. It disappears and becomes negative when r is strong enough to be
adverse. The distortion ‖r‖2 is given as black dotted lines, and the function
J (x+ r) + λ ∗ ‖r‖2 is given in blue and magenta for two values of λ. The first
value is too small (in blue): the minimum is “far after” the red asterisk; the
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perturbation is adverse, but of great distortion. The second value is too big (in
magenta): the minimum is before the red asterisk; the perturbation is not adverse.

2.3.1.4.2. C&W

The very well-known attack by Carlini and Wagner (2017), noted as C&W later,

follows this idea. However, it also deals with the constraint that x+ r must remain in

[0, 1]m by a change of variable replacing x + r by σ(w), where w ∈ Rn and σ(·) :
R → [0, 1] is the sigmoid function applied component by component. In addition, for

a given λ, C&W uses the numerical method Adam (Kingma and Ba 2015), to find the

minimum of an objective function in Rm:

�(w) := [J (σ(w)) + μ]+ − μλ ‖σ(w)− x‖2 [2.15]

where μ > 0 is a margin and [x]+ := x if x > 0, 0 if not.

When J (σ(w)) < −μ, the first term becomes zero and the distortion takes σ(w)
back toward x, as illustrated by Figure 2.4. This can cause fluctuations around the

margin. Again, a binary search is needed to find a good value of λ, hence great

complexity.

2.3.1.4.3. DDN

Decoupling Direction and Norm (Rony et al. 2019) is an iterative attack, very

similar to PGD2, seen here before. The formulation of DDN is:

yi+1 := projS2[x;ρi](yi + αη(∇xJ (yi))) [2.16]

Here, the projection is carried out on the sphere S2[x; ρi] of radius ρi and center x,

even though yi+1 is inside. The main difference with the PGD2 formulation given by

equation [2.13] is that the radius of this sphere changes from one iteration to another.

This radius at iteration i is obtained by calculating ρi = (1−γ)‖yi−x‖ when yi is an

adverse vector. When this is not the case, then ρi = (1+ γ)‖yi −x‖, with γ ∈ (0, 1).

2.3.1.5. Other attacks

Other attacks are in the same style, but with variations, either on the definition of

the objective function, or on the definition of the distortion. Finally, this overview of

attacks ends with the description of a few techniques that take quite different paths to

achieve their goals. They are separate because it is not easy to arrange them in one of

the two families presented above.
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Figure 2.4. Illustration of C&W in 1D. The perturbation r is collinear to the gradient

of the objective function. This is the same configuration as in Figure 2.3, except the

margin μ = 0.5 for the threshold of equation [2.15]. Notice its effect: the blue minimum

is closer to the red asterisk

Figure 2.5. Illustration, in two dimensions, of adverse attacks on a binary classifier

COMMENT ON FIGURE 2.5.– From left to right: PGD2, C&W, DDN. The regions
associated with the two classes are in red and blue. The level lines indicate the
predicted probabilities. The objective is to find an adverse point in the red area,
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which is as close as possible to the starting point x. In gray (respectively black), are
the paths taken for PGD2 (Kurakin et al. 2016) (radius of the green circle) or for a
parameter λ for C&W (Carlini and Wagner 2017).

2.3.1.5.1. DeepFool

It is a non-targeted white box attack that uses a more sophisticated objective

function. In equation [2.7], a non-targeted attack uses the objective function in order

to assign the most likely class for the classifier to the adversarial image under

construction, apart from the original class �g . So, the objective function has a

positive, but low, value in x. It seems easier to make it negative.

With DeepFool, Moosavi-Dezfooli shows that this reasoning is incorrect. The ease

of making the objective function negative certainly depends on its initial value, but

also on its gradient. At the first order, according to equation [2.10], the minimum

distortion necessary in the L2 norm is achieved when r ∝ −∇xJ (x, �) with:

‖r‖ =
J (x, �)

‖∇xJ (x, �)‖ [2.17]

It is best to target the � class that requires the least distortion. This is illustrated by

Figure 2.6. But this formula is only an approximation at the first order. In addition, it

must be estimated for all (or part of) the classes, except for the original class �g.

2.3.1.5.2. ILC

The Iterative Least-likely Class (ILC) (Papernot et al. 2018) proposes another

alternative objective function. It is possible that the class assigned to the attacked

image is sometimes semantically close to the original class �g. An image of a

swallow taken for an image of a sparrow seems more insignificant to us than if this

same image of a swallow is taken for an image of a car. Thus, ILC prefers to target

the least likely class for the original image.

2.3.1.5.3. JSMA

Papernot et al. (2016b) propose a targeted attack for low distortions in norm L0.

The attack finds out which pixels play an important role in the classification. This

approach, called the Jacobian-based Saliency Map Attack (JSMA), estimates the

Jacobian matrix of the function x → p. This calculation determines which elements

of x have the most influence, not only to increase the predicted probability of the

targeted class p(�), but also to decrease the predicted probabilities of all of the other

classes.

Few pixels have this property, but modifying them is extremely effective in

deceiving the classifier. However, they must be modified with a large amplitude,
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which produces “salt and pepper noise” in the image. This modification is often very
visible, but can pass for an error in the coding of the photo.
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Figure 2.6. Illustration of DeepFool

COMMENT ON FIGURE 2.6.– The blue and red curves correspond to the objective
function J (x, �) for two classes �1 and �2, which are different when the perturbation
r is collinear with their gradient. The abscissa corresponds to the r norm. Notice that
p(�g) = 0.8, p(�1) = 0.1, p(�2) = 0.05. As p(�1) > p(�2), it seems interesting to
target the class �1: the blue objective function starts from lower down. This is an
error because this one is canceled “later” than that of the class �2 in red. To find
out, DeepFool calculates the gradient in x, which amounts here to approaching the
objective function by its tangent in ‖r‖ = 0 (dotted).

This technique is remarkable since it is quite fascinating to note that changing the
value of a few pixels, or even a single pixel, is enough to lead to a misclassification.
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2.3.1.5.4. Universal attacks

Moosavi-Dezfooli et al. (2017) have shown that it is possible to create a unique

adversarial perturbation that works whatever the image proposed to the network. To do

this, they repeatedly apply the DeepFool algorithm (see section 2.3.1.5.1) to all of the

images in the training set until a particular perturbation causes the misclassification of

a large part of these images. More formally, their approach looks for the perturbation r,

bounded by ε, such that:

min ‖r‖p ≤ ε

such that Px∼Pdata
(f(x+ r) �= lg) ≥ 1− δ

[2.18]

where δ indicates the proportion of images from the training set that have become

adversarial images and belong to the sample Pdata of all of the images.

Generally, the algorithm succeeds in finding multiple adversarial samples, which

are often visually very different from each other, thus facilitating universal attacks.

2.3.1.5.5. Geometric attacks

So far, attacks change pixels’ value additively: y = x + r. They are sometimes

called value-metric attacks. Geometric attacks do not change the value of the pixels

but their position, by slight rotations and local translations. An optical flow applies

a displacement field to the pixels of the original image: the pixel at position (k, l) is

moved to position (k, l) + Δ(k, l) in the adversarial image.

Xiao et al. (2018) sought to optimize this optical flow by observing the variations

in classification probabilities. The objective function integrates J (x, �) and a part

regularizing the optical flow so that it generates small continuous movements. Again,

a BFGS-type numerical method is used. The adversarial images often seem perfect.

2.3.1.5.6. Generative Adversarial Network attacks

Generative Adversarial Networks (GAN) (Goodfellow et al. 2014b) form a class

of machine learning algorithms that learn to estimate a probability distribution from

samples submitted to them. The learned distribution forms a model that the network

can then use to generate new samples that are completely synthesized, but that will

belong to this same distribution. By consuming a very large collection of images of

the faces of existing people, a generative network can then synthesize new artificial,

but realistic, faces.

GAN are made of two distinct parts, a generator that learns the distribution and

generates a new sample, and a discriminator that estimates whether the sample it

observes comes from the generator or directly from the learning set, and then notifies

the generator. These two parts compete against each other, in that the generator tries
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to create an artificial sample that the discriminator will not be able to distinguish from

a real sample. The discriminator, therefore, forces the generator to improve the quality

of the synthesis.

From this general idea, it then seems natural to use these GAN to produce

adversarial images. The generator creates adversarial images that nevertheless appear

normal to our eyes. Baluja and Fischer (2017), for example, trained a generator to

create images, which mislead a particular network by modifying them via a residual

network (He et al. 2016).

We are, therefore, very far from the gradient calculation mechanism of the first

attacks. The advantage of that generative approach is the almost instantaneous speed

to produce an adversarial image. But there are many drawbacks. The learning time

is very long. This approach therefore only makes sense if the attacker has a large

number of adversarial images to create. In addition, a learned network only targets a

given class and is only valid against a particular classifier.

2.3.2. Black or gray box

The black box model is much more strict than the white box model. The attacker

does not know anything about the targeted network. At this point, it is impossible to

calculate gradients and therefore impossible to apply the techniques mentioned so far.

Nevertheless, the attacker can use the targeted network as an oracle and observe the

way in which it labels an image that is proposed.

The gray box and black box models assume that the attacker has much less

information at their disposal. For the gray box model, we suppose that the attacker

knows some elements of the targeted network. For example, that the network uses a

pre-trained model made available off the shelf, but with defense mechanisms that are

secret. The attacker can then partly reproduce the behavior of the targeted network to

set up their attacks.

2.3.2.1. Two concepts about the black box

If the “black box” means observing the inputs/outputs of a system, what are these

outputs? Some believe that the output that the attacker has access to is the predicted

probability vector p. Others believe that the output is the predicted class � = f(x).

The nature of these outputs makes a big difference, as noted in the article by Ilyas

et al. (2018). The predicted class f(x) is a constant piecewise function. Almost

certainly, the attacker does not see if a small amplitude perturbation r is going in the

right direction, since it does not necessarily change the output. This is not the case

for the predicted probability vector.



Deep Neural Network Attacks and Defense 63

2.3.2.2. Output = probability vector

In this case, there is no big difference with white box attacks. The attacker

calculates an objective function, like in section 2.3.2.1, and seeks a perturbation that

minimizes it. The only difference is that unfortunately, the gradient is no longer

available. The attacker then uses so-called zero order numerical methods, such as

differential evolution algorithms (Storn and Price 1997), sometimes called genetic

algorithms. These algorithms randomly take distortions, calculate their objective

functions, select the distortions which have obtained the lowest values and recombine

them with random mutations. This selection–recombination–mutation cycle is

repeated.

In this way, the One pixel attack (Su et al. 2017) is the counterpart of the JSMA

attack, where the pixels (even the pixel) to be modified are found thanks to the

genetic algorithm. Likewise, Engstrom’s work (Engstrom et al. 2017) is the black

box counterpart of the geometric attacks by Xiao et al. (2018) in white box.

Likewise, Zhao et al. (2017) involve generators of adversarial distortions, like in

Baluja and Fischer (2017), where the discriminator is a black box classifier.

An alternative to genetic algorithms is estimating the gradient of the objective

function in certain directions:

∂J (x)

∂x(i)
≈ J (x+ hei)− J (x− hei)

2h
[2.19]

To estimate the gradient, we have to calculate this deviation for all of the pixels

1 ≤ i ≤ m, which is costly. Chen et al. (2017) show that this is not necessary. They

apply a stochastic gradient descent where the directions ei are iteratively drawn at

random. This attack is called zeroth-order optimization (ZOO). Let us quote another

attack belonging to this category, designed by Narodytska and Kasiviswanathan

(2017).

2.3.2.3. Output = predicted class

Szegedy et al. (2013) are among the first to realize that adversarial images

designed to attack one specific network are also adversarial for another network. But

it was Papernot et al. (2016a) who first explored the transfer properties of attacks by

studying gray box and black box attacks. Let us also cite the work of Liu et al. (2016)

as a notable article on this subject. A similar phenomenon, traditional in machine

learning, is well known: it is possible, to a certain extent, to transfer what has been

learned by one network to another.

Papernot et al. (2016) rely on the observation of the proportion of adversarial

images deceiving the first system, which also succeed in deceiving the second. To be

more precise, they distinguish transfers between learning systems built on the same
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fundamental principle from transfers between systems built on different principles (a

transfer between a deep network and an SVM-based system for example).

The results of their study (Papernot et al. 2016a) show that the transfers are

possible and easy between neural systems. On the other hand, although always

possible, the transfer of attacks is more difficult between systems built on models that

cannot be derived, mathematically speaking, like those built from SVMs, nearest

neighbors or decision trees (this is opposed, for example, to neural networks, for

which it is easy to calculate the gradient).

This observation then makes it possible to attack black box learning systems. By

multiplying the requests to the targeted classifier, the attacker can build a model: a

new classifier is trained to imitate the black box in the sense that the outputs of this

surrogate classifier must ultimately be identical to those of the targeted black box.

Then, the attacker uses this new model, but in a white box, to forge adversarial images,

with the hope that they also deceive the black box network because of the transfer

property.

2.4. Defenses

There are just as many defenses as there are attacks. This section provides an

overview. Schematically, we can distinguish three families of defenses:

– Reactive techniques: these strategies are based on preprocessing, carried out

before feeding the network. These block the images if adversarial content is detected

or filter and clean the images, hoping to remove the adversarial perturbation.

– Proactive techniques: these strategies build networks that are inherently stronger

to adversarial attacks. This category includes, for example, approaches which

incorporate many adversarial images into the learning phase.

– Obfuscation techniques: these strategies hide or obfuscate the important

parameters that an attacker needs to produce adversarial images.

Another viable view distinguishes whether the defense is an add-on module

connected to the network (and therefore the classifier works with or without defense),

or whether the defense is an integral part of the network resulting in a radical

transformation of the classifier.

2.4.1. Reactive defenses

This family groups together the techniques which detect the adversarial nature of

an image and/or apply a preprocessing to the images submitted to the network, to

eliminate what makes them adversarial from their content.
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Detection techniques introduce an additional class. This class is not necessarily

labeled “adversarial images”, but simply “unknown class”. The fundamental theory

is that the goal of the attacker is not to target this class. The attack fails if this class

is the result of classification. The detection is sometimes justified as follows: (1) the

images are points in a large-dimensional space Rm concentrated along manifolds;

(2) attacks push these images out of their manifold. The detectors learn to distinguish

these manifolds by collecting statistics, calculated either in the image domain, or in

the hidden layers.

The preprocessings filter the images in order to remove the adversarial distortion,

without altering the visual content. Here, the images are never rejected, we hope they

are cleaned and therefore harmless. In theory, filtering amounts to projecting an

image onto the manifolds of the natural images mentioned above. Once again, some

techniques filter the images before classification, others filter the representations that

travel in the networks.

In reality, reactive techniques mix preprocessing and detection. It is possible to

build a detector from preprocessing by thresholding the quantity of the filtered noise of

the image. Therefore, we list examples of reactive defenses without clear distinction.

2.4.1.1. Learn about the manifold of natural images

This is the issue for many defenses. The advantage is that this learning only

consumes original images. Thus, the defense is not biased toward one or more

specific attacks. MagNet (Meng and Chen 2017) employs autoencoders to project the

image and bring it closer to the manifold of natural images. Variants use sparse

representations of image patches like D3 (Moosavi-Dezfooli et al. 2018), estimates

based on mixtures of Gaussians (Ghosh et al. 2018), or deep generator networks like

PixelDefend (Song et al. 2017) or Defense-GAN (Samangouei et al. 2018). More

uncommon, Dubey et al. (2019) search the Internet for the images most similar to the

query, then decide on its class by a majority vote on the predictions of the similar

images.

2.4.1.2. Interaction with the classifier

A simple method of detection is feature squeezing (Xu et al. 2017). Many simple

filters are applied to degrade or simplify the image, hence the name “squeezer”

(compression, slight blur filter), before submitting it to the network. Then, the

deviations at the output of the network are observed with respect to the predicted

probability vector p given for the original image. Any significant deviation suggests

that the tested image is adversarial. Guo et al. (2017) and Liang et al. (2018)

developed approaches that are very close one another. SafetyNet (Lu et al. 2017) is

based on the analysis of active neurons in the classifier. They encode typical

activation patterns of a deep layer of a network processing clean images, and

compare this description to the current one when an unknown image is processed.
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This comparison is made via a radial kernel support vector machine. Bypassing this

defense forces the attacker to integrate the response of all of the rectification units in

the network into their attack, which is difficult in practice. This defense works well,

even when the network is big. A more recent version of this defense idea is called

Network Invariance Checking (Ma et al. 2019).

2.4.2. Proactive defenses

Proactive defenses aim to improve the intrinsic strength of models.

2.4.2.1. Reducing the amplitude of gradients

If the network function experiences strong gradients, then a very small perturbation

is needed to greatly modify the output of the network. This explains the vulnerability

of the network to attacks. Reducing the amplitude of the gradients makes the network

stronger.

One of the very first approaches is “distillation”, which is originally a technique

for transferring what has been learned by a large network to a smaller

network (Hinton et al. 2015). In very broad terms, the distillation trains the small

network, not with the labels of the images, but with the probability vectors predicted

by the large network, which are more informative than simple labels. Papernot et al.
(2016c) rely on distillation, but apply this transfer on the same network architecture.

Therefore, the first version of the network is trained on labels, and the second is

trained on the knowledge learned from the first. This “autotransfer” is made at a high

temperature in the softmax function, which reduces the amplitude of the gradients of

the network function. Nevertheless, Carlini and Wagner designed attacks that made

the distillation defenses fail (see the C&W attack, in section 2.3.1.4).

Gu and Rigazio (2014) suggest training networks with a new constraint: each

layer must be “contracting”, in the sense of a Lipschitzian function (Tsuzuku et al.
2018). This is incorporated during the training by a penalty, which aims to reduce the

variation of its response to perturbations it receives as an input. Overall, this

increases the strength of the network and requires the applied distortion to be

significantly stronger for an attack to be successful.

2.4.2.2. Adversarial training

Learning with more data allows a network to generalize better, to refine the

boundaries between classes in the representation space. This classic trick is done by

adding quasi copies of images that have undergone small translations or rotations.

The idea is the same here, by improving learning with adversarial images. The

network therefore learns that, despite the perturbation, such-and-such an image is

indeed in such-and-such a category. The principle is simple, but the implementation
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is difficult. An attack targets a network, which during the learning process is, by

definition, unpredictable. Each time the synaptic weights are updated, the adversarial

versions of the training images must be recalculated. The attack must therefore be

super fast. This is how Goodfellow et al. (2014a) proceed thanks to the simplest of

attacks: FGSM.

This idea leads to the concept of robust optimization by a min–max formulation,

where the learning process has an objective:

min
θ

∑
j

max
rj |‖rj‖<ε

L(xj + rj , �j ,θ) [2.20]

with {xj , �j} training data.

In a way, the training tries to get all of the images in the ball with center xj and

radius ε to be classified as xj . We can also cite various works exploring these same

ideas (Huang et al. 2015; Madry et al. 2017; Tramèr et al. 2017). Let us quote the

approach by Lee et al. (2017) again, where a generative network creates adversarial

images, which feed a classifier carrying out adversarial learning.

Many gray areas remain in adversarial training. The robustness provided is

sometimes disputed. The network is more robust against simple attacks, but still just

as vulnerable to more complex attacks. The robustness is obvious on the training

images, but it does not generalize well. There is a price to pay: the network is more

robust against attacks but less precise on the original images. The consensus is not

yet established with certainty because the adversarial training is difficult to carry out.

Many variations exist, gradually increasing the quantity of adversarial images, while

increasing the strength of the attacks from a very large number of original images.

All of this is costly, with the benefits not always outweighing the extra costs.

2.4.3. Obfuscation technique

Creating adversarial images in white box relies most often on the utilization of

the gradient of the differentiable objective function. Introducing strong nonlinearities

makes the network non-differentiable and prevents the calculation of a gradient. This

family of techniques was explored by Goodfellow et al. (2014a) (see Buckman et al.
(2018)). Athalye et al. (2018) have explored this subject and show the ineffectiveness

of this approach: in white box, nothing forces the attacker to use the gradient of the

objective function. It can modify the network and replace any nonlinearity with a

smoother function.

Obfuscation becomes more serious when it is based on the insertion of a secret

key in the classifier, like in cryptography. This is the only way to prevent white box
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analysis. The attacker knows all of the details of the network except one secret high

entropy parameter. This is difficult to combine with machine learning and often

requires re-training the whole network, or part of it, each time a secret key is

taken (Shumailov et al. 2018; Taran et al. 2020).

Another possibility is to make the classifier random. For each call to the network,

the final prediction depends on a random value that the attacker cannot know. This

could be a slight modification to the input image, or modifications within the network:

Dhillon et al. (2018) suggest randomly suppressing certain neurons (those which react

weakly) and to increase, in proportion, the importance of the reaction of the conserved

neurons.

2.4.4. Defenses: conclusion

We have mentioned several defenses; there are many others, sometimes simple

variations, and sometimes more original contributions too. In general, the evaluation

of their effectiveness leaves a lot to be desired. Many of them are evaluated on very

small sets of tests, can only withstand a particular class of attacks without being clearly

perceptible, or are even too expensive to be usable in practice. There is not yet a

rigorous protocol to assess the quality of a defense technique making a network more

robust to adversarial attacks. It is very difficult to compare the respective merits of

different defensive strategies.

The addition of defense strategies sometimes leads to a reduction in the quality of

the networks: the classification performance on the natural images (not attacked) of

a network with defense is worse than without a defense. This observation is disputed

because nothing completely implies such tension (although some theoretical papers

claim otherwise).

Some approaches take a more formal point of view and try to guarantee the

robustness of the network, as long as the distortion remains below a boundary, whose

value must be calculated. Still at an early stage, we nevertheless cite the promising

studies (Huang et al. 2017; Katz et al. 2017; Sinha et al. 2017; Wong and Kolter

2017; Raghunathan et al. 2018; Ruan et al. 2018). Another contribution, written in

French, tackles the same topic (Bazille et al. 2019)

2.5. Conclusion

This chapter has provided an overview of attack and defense techniques, involving

the vulnerabilities of machine learning systems based on deep neural networks for

image recognition tasks. This field of research is very active and the work is increasing

every day.
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They aim to make attacks more and more imperceptible (Zhang et al to appear),

even when examined through sophisticated psycho-visual metrics (Fezza et al. 2019).

They also aim to be faster in order to make defenses based on robust learning (Zhang

et al. 2019).

Some works aim to better understand the causes of attacks and the reasons for the

success or failure of defenses. Instead, these works explore problems linked to the

distribution of data in high-dimensional spaces, the effects of thresholding functions

and the theoretical guarantees that a network can offer.

Of course, attacks and defenses are not limited to just images, and some work

explores the creation of adversarial videos (Jiang et al. 2019; Wei et al. 2019),

audio (Carlini and Wagner 2018; Qin et al. 2019), texts (Behjati et al. 2019) and time

series (Fawaz et al. 2019), in an attempt to understand the relationships between

vulnerabilities and multimodal data (Park et al. 2019), or even explore the problems

of deceiving malware (Martins et al. 2020).

Additionally, other works consider different tasks, such as similarity

search (Amsaleg et al. 2017), clustering, feature selection, embedding, hashing,

similarity learning and outlier detection.

Much remains to be understood, it is very encouraging.
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In this chapter, we propose to analyze the principle of digital watermarking of

images through the prism of the use of error-correcting codes in a very specific

framework, namely the so-called robust watermark. The process of watermarking can

be studied according to the formality of the transmission of information in a possibly

noisy channel. These error-correcting codes have demonstrated their value in this

type of application, which is why they were quite naturally introduced in the context

of watermarking. In this chapter, classical Hamming error-correcting codes as well as

Bose-Chaudhuri-Hocquenghem (BCH) codes and Reed–Solomon (RS) codes are

associated with random and packet error structures. In order to illustrate the impact

and benefit of using error-correcting codes, we deploy a simple use case based on by

index modulation watermarking. In particular, we discuss the differences in behavior

regarding robustness, according to the attack and the code used. We conclude the

chapter by introducing a more original code and show how a specific code can

respond to a particular problem, here the problem of cropping.

3.1. Introduction

Over the years, several watermarking paradigms have emerged due to the

protection requirements of many applications. It is very easy to modify or falsify
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images because of public access to image processing software. Checking the integrity

and authenticating an image are therefore important issues. In this context, the idea

of the fragile watermark is to insert a pattern so that any modification of the image

changes the pattern. The modified regions can therefore be detected by analyzing this

pattern. The disadvantage of this watermarking paradigm is that it is not possible to

distinguish between content modified inadvertently or with good intentions, and

content that has been maliciously modified. For example, the oldest methods classify

a compressed image in the category of falsified images, yet its semantics have not

changed. Examples of work can be found in previous studies (Yeung and Mintzer

1997; Wolfgang and Delp 1999; Khan et al. 2014; Bravo-Solorio et al. 2018; Shehab

et al. 2018). A similar paradigm is semi-fragile watermarking. Work on semi-fragile

watermarking (Lu et al. 2003; Ho and Li 2004; Maeno et al. 2006) has been

developed in order to distinguish malicious modifications from those that are not.

These two approaches clash with the principle of robust watermarking which

aims to resist image modifications. In fact, so-called robust techniques aim to resist

all types of image modifications in order to extract information without error. The

error-correcting code tool will be positioned in this context of robust watermarking,

since the function of the code is to correct the errors and therefore remove the

influence of the attacks on the image. Therefore, first of all, we propose to introduce

robust watermarking, which is the framework this chapter is centered around: the

error-correcting codes aim to improve robustness in the face of various attacks.

In the following, after recalling the context of robust watermarking (section 3.2)

and index modulation (section 3.3), we present section 3.4, classical Hamming

error-correcting codes as well as BCH codes and RS codes. In sections 3.5 and 3.6,

we discuss a simple use case based on watermarking by index modulation applied to

color images. In section 3.7, we analyze the differences in behavior concerning

robustness according to the attack undergone and the code used. This chapter

concludes (section 3.8) with the introduction of a more original code, and we show

how a particular code can answer a particular problem.

3.2. Study framework: robust watermarking

In this chapter, we will concentrate on so-called robust watermarking, which

constitutes the classical application framework for the use of codes in watermarking.

Many applications, such as copyright protection, require the perfect extraction of a

mark inserted in an image that has been modified. In practice, a digital watermarking

method will “survive” an attack to a certain extent and it is believed that when an

image is too deteriorated, the extraction of the mark loses its value.

The robust watermarking paradigm allows a three-step scenario: inserting the mark

into a host image, the transmission of the marked image in a noisy channel (noisy due
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to an attack on the watermarked image) and finally, the detection step. We detail each

step in this section. Note that this formulation through the idea of noisy channels

gives full meaning to the introduction of codes. In order to simply explain the use of

error-correcting in a watermarking framework, we describe the classical outline of

insertion and detection.

We show the classical diagram of insertion of a mark in Figure 3.1. Image X ,

chosen as the host of the mark, can be of different types, that is, in grayscale or in

color (defined in the RGB color space or other color spaces). Depending on the

methods, image X can be represented in a space other than the original spatial

domain (frequency coefficients, wavelet coefficients). From the transformed image

X ′, coefficients noted as CX are chosen with the extraction function Extr (random

selection of the insertion sites, decomposition of the entire image) because of the

secret key k.

Content area

Watermarking area

X Tr X ′ k m

Extr

CX Insertion CY

Extr−1

Y ′ Tr−1 Y

Figure 3.1. Classical diagram of watermark insertion

Then, the message m is inserted by modifying CX in the watermarking area, which

is only accessible with the key k to cut off access to this area. The coefficients CY are

then reintegrated into the transformed image and we get a marked image Y with the

inverse transformed Tr−1.

In the second step of this scenario, the image marked Y is transmitted through a

noisy channel C (Figure 3.2). The noise n represents the possible different attacks on

a channel (e.g. compression and noise). Here, we see the parallel that can be drawn

with the framework for analyzing the transmission of information.

Without any other “preparation” of the message, the robustness of the information

hidden in front of a given attack depends on several criteria.

At the detection stage (Figure 3.3), we access the watermark channel because of

the extraction function Extr and the key k of image Z . Then, we apply the planned

detection method to the coefficients CZ . If the power of the attack is reasonable, the

estimate m′ is the same as m.
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Y Channel C Z

Noise n

Figure 3.2. Diagram of the transmission of an image in a channel affected by noise

Content area

Watermarking area

Z Tr Z ′

k

m′

Extr

CZ Detector

Figure 3.3. Classical diagram of detection of a mark

The insertion area can be chosen according to the attack that the mark must resist.

Changing the representation of the image makes it possible to take advantage of

certain properties of resistance to certain attacks. For example, naively, resistance to

an attack of the filtering type can be obtained by modifying the frequency coefficients

corresponding to the low frequencies. Another essential point to consider is the

synchronization of the mark; in other words, the choice of the insertion sites in an

image. If the attacks we are facing have an influence on the position of the

coefficients, it is necessary to take this into account at the insertion (and detection)

stage. In some cases, the choices for insertion space and synchronization are not that

different. For example, in the spacial domain, inserting information on pixels

representing the edge areas (choice of coefficients according to a fixed property) can

be equivalent to inserting information in high frequencies.

For the following, in order to more precisely illustrate the impact of the use of

error-correcting codes on a watermarking method, we propose the use of a

quantization strategy called index modulation (or QIM) (Chen and Wornell 1999b)

for its performance when combined with error-correcting codes.
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3.3. Index modulation

In 1999, Chen and Wornell proposed index modulation (or the QIM method) to

perform watermarking by quantization. This algorithm is known for its ease of

implementation and its low cost of calculation, but also for its fragility in the face of

scaling attacks. Pérez-González et al. (2005) suggest an improvement called Rational
Dither Modulation to better resist this last attack. Chen and Wornell have also

proposed variations, such as Dither Modulation (DM) QIM and Distortion
Compensated (DC) QIM as well as an associated theoretical study. The DMQIM

method is an adaptation of the QIM method which moves the quantification cells

with a random vector (Zamir and Feder 1994; Chen and Wornell 1999b). The

modified values are more difficult to identify and make access to the watermarking

channel more difficult. The DCQIM method is composed of a processing step added

after the QIM quantification in order to improve the invisibility/robustness

compromise. The authors also propose a vector variation called Spread Transform
Dither Modulation, which consists of quantifying the projection of the sample

vectors on a direction axis. Chen and Wornell proposed a second extension of the

QIM method called Lattice QIM (Moulin and Koetter 2005), a method that we have

chosen to use in this chapter for its regular structure (Euclidean network) and its

robustness potential, previously associated with error-correcting codes. There are

many contributions using the QIM method and its variations (e.g. Eggers et al.
(2000a); Bas et al. (2003); Wang and Lin (2004); Oostveen et al. (2004); Li and Cox

(2007); Abdul et al. (2013)).

In the next part of this chapter, we propose to study the Lattice QIM (LQIM)

method.

3.3.1. LQIM: insertion

The quantization space of this method is a Euclidean lattice (ZL) of dimension L
where a host sample x ∈ RL is transformed into an element y from this network. The

scalar QIM method is the special case L = 1.

The sample x is made by selecting coefficients from the image. To insert a bit

of information, L pixel values are selected in the image. For example, a strategy of

random selection of these values can be adopted. These insertion sites are secret and

only accessible to the sender and the receiver because of a secret key.

To insert a bit of information m ∈ {0, 1}, x is quantized by y belonging to one of

the following subsets called cosets denoted by Λ0 and Λ1 defined as:⎧⎪⎪⎨⎪⎪⎩
Λ0 = ΔZL − Δ

4

Λ1 = ΔZL +
Δ

4

[3.1]
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thanks to the following quantization function Qm:

y = Qm(x,Δ) =
⌊ x
Δ

⌋
Δ+ (−1)m+1Δ

4
[3.2]

with Δ the quantization step of the method.

Figure 3.4 is an example of quantization in dimension L = 2 of vector x. For

any cross or circle with center ym, the dotted diamonds define the boundaries of each

quantization cell. On insertion, x is transformed into the nearest ym in Euclidean

distance.

3.3.2. LQIM: detection

On reception of an image, which has been marked and then modified, the message

can be detected by extracting the coefficients used for insertion using the secret key. To

extract the information bit m, the coset closest to the associated z vector is calculated

to determine the estimate m̂ such that:

m̂ = arg min
m∈{0,1}

d(z,Λm)

d(z,Λ) = min
y∈Λ

‖z − y‖2
[3.3]

with the Euclidean norm, ‖.‖2.

The detection equation [3.3] is illustrated with Figure 3.4.

In this section, we have described the insertion and detection part of Figures 3.1

and 3.3. In the case of a real application, the transformation Tr and the method of

extracting coefficients or synchronization must also be selected. A simple example is

the insertion in the spatial domain with random extraction of pixels. In section 3.4, we

propose to tackle the integration of error-correcting codes more specifically in digital

watermarking strategies.

3.4. Error-correcting codes approach

Error-correcting codes are powerful tools in information theory. They are used to

resolve problems to do with signal transmission in noisy channels (not reliable).

Robust digital watermarking can be seen as a transmission issue. In this chapter, we

intend to review how error-correcting codes can be integrated into watermarking

strategies in order to improve robustness against certain attacks. Depending on the



Codes and Watermarks 83

attack encountered, the errors produced may have a particular structure and therefore

one error-correcting code may be more effective than another. The next part of this

section is dedicated to a brief overview of the BCH (Bose and Ray-Chaudhuri 1960)

and RS (Reed and Solomon 1960) codes, which are Hamming codes (Hamming

1950).

•

+

•

+

•

+

•

+

×x

y0

×x

y1

Δ

Figure 3.4. Representation of the quantization space
(or Euclidean network) in dimension L = 2. The symbol +

represents bit 1 (coset Λ1) and ◦ represents bit 0 (coset Λ0)
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3.4.1. Generalities

When data are transmitted in a channel, transmission errors can occur. The role of

error-correcting codes is to correct these transmission errors. To protect this

information, a code corrector adds repetition to a message so that errors can be

detected and corrected after transmission. In Figure 3.5, we present a diagram

illustrating the different stages of transformation and transmission of a message.

m Enc

c

Noisy channel C

c′ = c+ e

Dec m′

Source word

Code word

Encoding function

Addition of error e

Decoding function Decoded message

Figure 3.5. The different stages allowing the reliable
transmission of a message in a channel

An encoding function is an injective application φ defined as:

φ : {0, 1}k → {0, 1}n

with k being the dimension of the code and n being the length of the code.

φ designs a code of parameters (k, n). So a word (from the source) m ∈ {0, 1}k
has a code word for an image c = φ(m) ∈ {0, 1}n. The encoding function φ is

designed by Enc() (Figure 3.5). A code corrector is a set C = Im(φ).
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When a code word c′ is transmitted in a channel, it may contain errors. To correct

these, a basic algorithm includes comparing the word received with the code words;

in other words, the elements of C, such that:

C = Im(φ) = {φ(m) | m ∈ {0, 1}k}

to find c ∈ C which is closest to c′, in the sense of Hamming distance.

The word c′ is then decoded through the code word c.

Hamming distance is the number of distinct symbols between two words c1 and

c2. It is defined by:

dH(c1, c2) = #{i | (c1)i �= (c2)i}

We also define Hamming weights as the number of symbols, that are not zero, of a

word c. It is defined by:

wH(c) = #{i | ci �= 0}

Note that this basic algorithm takes a long time to finish because the number of

comparisons made is exponential (complexity in O(n2k)). If k is small, the decoding

time is acceptable, but this becomes impractical when k is larger. When decoding, we

implicitly assume that when the number of errors is low enough, the number of code

words closest to c′ is equal to 1 (perfect codes).

Another important basic concept about correcting codes is the idea of minimal
distance which represents the smallest distance between two code words of a C code.

It makes it possible to characterize the decoding power. A minimum distance code d
is written as (n, k, d) and is capable of correcting t errors, such that:

t =
d− 1

2

There are codes with more structure, such as linear codes. A code is said to be

linear if there is a matrix G ∈ Mn,k(GF (2)) with k rows and n columns with

coefficients in {0, 1} of rank = k, such that:

∀m ∈ {0, 1}k, φ(m) = G×m

The linearity of a code gives image C a vector subspace structure of {0, 1}. The

minimal distance of a linear code d is therefore equal to the smallest non-zero
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Hamming weight of a code word of C. For a given linear code, it can be hard work to

determine its minimal distance. However, there is an increase in this called the

Singleton bound:

d ≤ n− k + 1

When d = n − k + 1, the parameter code (n, k, d) is a code known as maximum
distance separable(MDS).

G is called the generator matrix of φ. A linear code is also associated with the

concept of control matrix. Control matrix H ∈ Mn−k,n(GF (2)) of the code C is

defined as:

m ∈ C ⇐⇒ Hm = 0

The main advantage of the linearity of a code is being able to build faster

decoding algorithms. We have introduced the most important aspects of the basic

concepts on corrective codes and give an overview of the BCH and RS codes in

sections 3.4.3 and 3.4.4. First, we propose to study a particular construction widely

used in watermarking: code concatenation.

3.4.2. Codes by concatenation

The robustness of a watermarking algorithm can be improved by using the

principle of error correction by concatenation (Figures 3.6–3.8). In the context of

watermarking, it is quite simply a question of using two concatenated codes: a

so-called external coding or “outer coding”, which will be a simple coding by

repetition, and an internal coding or “inner coding”, which will be a classical code

like Hamming code, BCH or RS. During decoding, the repetition of the mark makes

it possible to reduce the level of error (and can also provide certain properties such as

robustness to cropping attacks) and the associated classical code will have the

function of correcting the errors in order to be able to decide whether the signature

received and reconstructed is valid or not. In fact, an error-correcting code cannot

show its potential when the error level is too high, and therefore this repetition of the

encoded signature makes it possible to improve the error rate of the channel and

bring it to an acceptable level. In some cases, this allows interaction on Watermark

channels at very high error levels (0.1 < BER < 0.5).

Figure 3.6 shows this principal of construction of the mark that we are going to

insert from the signature to be hidden. The repeat setting is adaptive, depending on

the size of the image and the signature.
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Internal coding 

(repetition, 

Hamming or 

BCH coding)

External coding 

(repetition 

coding)

WatermarkSignature

Figure 3.6. Strategy by “concatenation codes”

External decoding 

(repetition

decoding)

Internal decoding 

(repetition, 

Hamming or 

BCH decoding)

Watermark Signature

Figure 3.7. Decoding in the case of the code by “concatenation codes”

Obviously on reception, the opposite procedure is applied to decode the signature

from the mark, as shown in Figure 3.7.

Figure 3.8 illustrates the complete diagram associated with the use of codes in the

context of watermarking. First of all, a signature is created from a secret key. Then this

signature is encoded through the internal encoding (in the example we use a simple

4-bit repetition code). Then the external coding is applied by repetition of the encoded

signature, with a repetition parameter that depends on the size of the image or on the

watermarking strategy (e.g. ROI encoding).

Figure 3.8. Illustration of the creation of a mark by code concatenation
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Note that we are talking about repeating code because a repeating code simply

consists of building the mark from the signature by repeating each code word n times.

Decoding simply consists of an averaging operation for each code word received, in

order to distinguish a 0 from a 1.

3.4.3. Hamming codes

Hamming codes are linear block codes. For an integer m > 1, we have the

following representation for binary Hamming codes in the form (n, k, d) = (2m − 1,
2m − 1−m,m).

For m = 3, we have Hamming codes of parameters (7, 4, 3). These Hamming codes

code size 4 data bits in blocks of length 7 (Hamming code word). The additional

3 bits are parity bits. Each of these 3 bits represents the parity of 3 of the 4 data bits,

and no parity bit represents the same data bits twice. All parity bits are even parity.

The Hamming error-correcting code (7, 4, 3) can correct a 1-bit error in each of the

Hamming code words.

For a linear code (n, k, d), the matrix of generator G is a k × n matrix, for which

the vector space generated is the code given. A parity-check matrix for a linear code

(n, k, d) is a (n− k)× n H matrix, for which Hx = 0 for any style of code x.

The generator matrix G used in the making of Hamming codes is made up of I ,

the identity matrix and the parity-check matrix A, where G = [I|A].

The process of building the code is as follows.

Let d1, d2, d3 and d4 be bits of data, and a Hamming code (7,4,3) can define parity

bits p1, p2 and p3 such that:

p1 = d1 ⊕ d2 ⊕ d4

p2 = d1 ⊕ d3 ⊕ d4

p3 = d2 ⊕ d3 ⊕ d4

We can now build the generator matrix G from the Hamming code:

G =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 1 0 0 0 0

1 0 0 1 1 0 0

0 1 0 1 0 1 0

1 1 0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
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where the first, second and fourth bits are parity bits, respectively, and the third, fifth,

sixth and seventh bits are data bits, respectively. This is specified by the following

elements:

x1 = x3 ⊕ x5 ⊕ x7

x2 = x3 ⊕ x6 ⊕ x7

x4 = x5 ⊕ x6 ⊕ x7

with (x1, x2, x4) and (x3, x5, x6, x7) denoting parity and data bits, respectively.

From the side of the recipient, we have the parity-check matrix H = [AT |I] given

by h1, h2 and h3, where:

h1 = x4 ⊕ x5 ⊕ x6 ⊕ x7

h2 = x2 ⊕ x3 ⊕ x6 ⊕ x7

h3 = x1 ⊕ x3 ⊕ x5 ⊕ x7

If there is an error (assuming one at most), (h1h2h3) will be the binary

representation of indications of incorrect bits. A binary Hamming code has a

parity-check matrix, which has m column vectors. For the code with parameters

(7, 4, 3), the parity-check matrix is:

H =

⎛⎜⎜⎜⎝
0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

⎞⎟⎟⎟⎠
When we multiply the code word received by the parity-check matrix, we get the

corresponding parity ranging from 000 to 111. These three bits give us the location of

the error. The word 000 indicates that there was no transmission error, while non-zero

words (001 through 111) indicate the location of the error relative to the seven received

code word bits. We can then correct at most t = �(d − 1)/2� errors because the

minimum Hamming distance between our code words is 7 – 4 = 3. We can therefore

correct 1 error at most.

As soon as we know the location of the error, we can simply reverse the

corresponding bit to correct the error. Next, we remove the parity bits from positions

one, two and four to extract the message. The Hamming codes are perfect error

correction codes 1. In other words, any word received including one error at most is
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decoded correctly and the code has the smallest possible size of all the codes, which

correct a single error.

The Hamming codes that we used can correct an error in each code word and,

additionally, they allowed us to simply introduce the concepts related to the use of the

codes. However, it is necessary to study other types of codes that correct more errors.

We have selected BCH codes, which are explained in section 3.4.4.

3.4.4. BCH codes

3.4.4.1. Cyclic block codes

Let C be a linear block code over a finite field F of length n. C is called a cyclic

code, if for each code word c = (c1, ..., cn) of C, the word (cn, c1, ..., cn−1) of Fn

obtained by a cyclic shift to the right of the components is also a code word of C.

BCH codes are codes in cyclic blocks, such that for any positive integer m ≥ 3
and t with t ≤ 2m−1 − 1, there is a BCH code of length n = 2m − 1 able to correct t
errors and of dimension k = n−m× t.

To go even further, we define some basic terminology.

– Irreducible polynomial: we call a polynomial f(x) irreducible over K[x] if it

has no proper divisors in the field K[x].

– Primitive polynomial: the polynomial f(x) is primitive if it is irreducible of

degree n > 1 and it is not a divisor of 1 + xm for all m < 2n − 1.

– Galois field: for each primitive polynomial of order pm, there is a unique finite

field of order pm denoted by GF (pm). α ∈ GF (2r) is primitive if αm �= 1 for

1 ≤ m ≤ 2r − 1 and each non-zero word in GF (2r) can be expressed as a power of

α.

In Table 3.1, the construction of GF (24) using the primitive polynomial h(x) =
1 + x+ x4 is illustrated, where each vector is indicated as a power of β.

– Minimal polynomial: the minimal polynomial of α is the polynomial K[x] of

smallest degree admitting for root mα(x) where mα(x) is irreducible in K. If f(x)
is any polynomial above K such that f(α) = 0, then mα(x) is a factor of f(x) and

mα(x) is unique. mα(x) is also a factor of 1+x2r−1. α is an element of F = GF (2r)
and the order of α is the smallest positive integer m such that αm = 1 and α ∈
GF (2r) is a primitive element if there is order 2r − 1.

3.4.4.2. An example of construction: BCH (15,7,5)
BCH error-correcting codes of length 2r − 1 (r ≥ 4) are defined by g(x) =

mβ(x)mβ3(x). The generator polynomial gp(x) = m1(x)m3(x) is of degree 2r and
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the code has dimension n − 2r = 2r − 1 − 2r. β is a primitive element in GF (24)
made with p(x) = 1+x+x4, m1(x) = 1+x+x4 and m3(x) = 1+x+x2+x3+x4.

Therefore, gp(x) = m1(x)m3(x) = 1+x4+x6+x7+x8 is the generator polynomial

of BCH code (15, 7, 5) which, in turn, gives us the generator matrix G:

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 1 1 1 0 0 0 0 0 0

0 0 0 1 0 1 1 1 0 0 0 0 0 0 1

0 0 1 0 1 1 1 0 0 0 0 0 0 1 0

0 1 0 1 1 1 0 0 0 0 0 0 1 0 0

1 0 1 1 1 0 0 0 0 0 0 1 0 0 0

0 1 1 1 0 0 0 0 0 0 1 0 0 0 1

1 1 1 0 0 0 0 0 0 1 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Word Polynomial in x Power of β

0000 0 −
1000 1 β0 = 1

0100 x β1

0010 x2 β2

0001 x3 β3

1100 1 + x = x4 β4

0110 x+ x2 = x5 β5

0011 x2 + x3 = x6 β6

1101 1 + x+ x3 = x7 β7

1010 1 + x2 = x8 β8

0101 x+ x3 = x9 β9

1110 1 + x+ x2 = x10 β10

0111 x+ x2 + x3 = x11 β11

1111 1 + x+ x2 + x3 = x12 β12

1011 1 + x2 + x3 = x13 β13

1001 1 + x3 = x14 β14

Table 3.1. Galois field GF(24)
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H is the parity check matrix for error correcting codes BCH (15, 7, 5). It is defined

by:

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β0 β0

β β3

β2 β6

...
...

β2r−2 β3(2r−2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
By using Table 3.1, we obtain the following parity-check matrix:

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1

β β3

β2 β6

β3 β9

β4 β12

β5 1

β6 β3

β7 β6

β8 β9

β9 β12

β10 1

β11 β3

β12 β6

β13 β9

β14 β12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The decoding algorithm will then be constructed as follows:

1) calculate the syndrome wH = [s1, s3] = [w(β), w(β3)];

2) if s1 = s3 = 0, there are no errors;

3) if (s1)
3 = s3, a single error in position i, where s1 = βi;
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4) if s3 = 0 and s1 �= 0, two errors in positions (i + 5)%15 and (i + 10)%15,

where s1 = βi;

5) constructing a quadratic equation:

x2 + s1x+ (
s3
s1

+ s21) = 0

BCH codes are designed for random errors. For packet errors, it can be more

effective to use RS codes.

3.4.5. RS codes

3.4.5.1. Principle of RS codes

RS codes (Reed and Solomon 1960) are non-binary cyclic correcting codes whose

symbols are made of m bits, where m > 2.

RS codes (n, k, d) of symbols containing m bits exist for all n, k and d satisfying

the following conditions:

0 < k < n < 2m + 2

where k is the number of data symbols (in other words, the size of the code) to encode

and n is the number of symbols in a code word (in other words, the size of the code):

(n, k, d) = (2m − 1, 2m − 1− 2t, 2t+ 1)

where d is the minimal Hamming distance between the code words transmitted and

received; in other words, the number of different symbols between the two words and

t the capacity of the code correction. RS codes can correct any combination of up to t
where t is given by:

t = �(d− 1)/2�

3.4.5.2. Bounded distance decoding algorithms

Bounded distance decoding algorithms can correct up to t erroneous symbols. One

of the algorithms (Justesen and Høholdt 2004) is illustrated in this section.
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For a word received r = (r1, r2, ..., rn):

1) solve the following linear system:

⎡⎢⎢⎢⎢⎢⎢⎣
1 x1 x2

1 . . . xl0
1 r1 r1x1 . . . r1x

l1
1

1 x2 x2
2 . . . xl0

2 r2 r2x2 . . . r2x
l1
2

...
...

... . . .
...

...
... . . .

...

1 xn x2
n . . . xl0

n rn rnxn . . . rnx
l1
n

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q0,0

Q0,1

Q0,2

...

Q0,l0

Q1,0

Q1,1

...

Q1,l1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0
...

0

0

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[3.4]

with l0 = n− 1− t and l1 = n− 1− t− (k − 1) ;

2) write:

Q0(x) =

l0∑
j=0

Q0,jx
j

and:

Q1(x) =

l1∑
j=1

Q1,jx
j

3) calculate:

g(x) = −Q0(x)

Q1(x)

4) if g(x) ∈ F [x] then the corrected code word is cc = g(x1), g(x2), . . . , g(xn) if

not, decoding fails.

3.4.5.3. Performance against packet errors of RS codes

RS codes are particularly useful against burst noise and they exhibit lower

performance against errors that are random. This is illustrated in the following

example.

Consider a (n, k, d) = (40, 11, 30) RS code, where each symbol is made up of

m = 6 bits, as shown in Figure 3.9. As d = 30 indicates that this code can correct

any t = 14 symbol error in a block of 40. Consider the presence of a burst of noise
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lasting 60 bits that disturbs 10 symbols, as shown in Figure 3.9. The RS (40, 11, 30)
error correcting codes can correct any 14 symbol errors using the bounded distance

decoding algorithm regardless of the type of error the attack induced.

Figure 3.9. Performance of RS codes against packet errors

The code corrects by blocks of 6 bits and replaces the whole symbol by the correct

one without taking into account the number of corrupted bits in the symbol, that is, it

treats an error of 1 bit in the symbol in the same way as it treats an error of 6 bits of

the symbol, replacing them with the correct 6 bit symbol.

This gives the RS codes a tremendous burst noise advantage over binary codes. In

this example, if the 60-bit noise disturbance can occur in a random fashion rather than

as a contiguous burst, it could affect many more than 14 symbols, which is beyond the

capability of the code. This shows the advantage of using RS codes to correct burst

errors and their inability to correct random errors beyond a certain limit.

Any attack that affects the watermarked image in a random fashion might make

the watermark decoding difficult for images watermarked using RS codes. In the

watermarking channel, the errors, characterized by the different attacks, occur in

random or burst manner. Depending on the placement of the watermark in an image

and the use of error correcting codes, the robustness of the signature can be increased

against the attacks.

Note that for RS codes, conventional bounded distance decoding algorithms

correct up to t = �(n− k)/2� symbol errors, as shown in the example above. By

using list decoding, Sudan (1997) and later Guruswami and Sudan (1998) have

shown that the RS’s error correction capability can be improved to tS = n − √
2kn

and tGS = n − √
nk , respectively, which makes then more effective against burst

errors or errors in bulk.

To conclude, the integration of corrective codes in a digital watermarking strategy

consists of inserting a code word in an image. Against a given attack, the question

will be to choose the correction code that provides the best correction performance

by observing the structure of the errors linked to this attack (block or random error,

for example). However, using “classical” codes is not always the best strategy. For

example, another error structure has recently been studied, associated with codes
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called rank-metric codes that are best for correcting this error structure. The works of

Lefèvre et al. (2018, 2019) are the first contributions introducing rank-metric codes

to improve the robustness of digital watermarking. These codes are different to

classical Hamming codes because the metric corresponds to the rank of a matrix on a

finite field and has the mathematical properties of a distance. We discuss these codes

at the end of this chapter.

3.5. Contradictory objectives of watermarking: the impact of codes

The aim of robust watermarking is to optimize three properties in particular: the

maximum amount of information that an image can contain, the invisibility of the

mark (and preservation of the quality of the host content) and the robustness of the

mark to image changes and, in some cases, security. This is why in recent years we

have defined watermarking according to these four characteristics. However, in

general, when one of these properties is improved, the others are degraded.

Watermarking requires a mark to be invisible to the naked eye and does not

degrade the host content. To achieve this, the distortions between host content and

marked content must be low enough. Ideally, a mark should be imperceptible to the

human visual system (HVS), which is the subject of Chapter 4 of this volume,

entitled “Invisibility”. This can also be invisible to a machine, in other words, a

statistical invisibility, but it is a property that relates more to steganography than to

digital watermarking. For the HVS, the perceptual approach of digital watermarking

of images makes it possible to create insertion distortions in the areas of the image

most sensitive to visual change. In Chapter 4, we discuss how we can take into

account HVS sensitivity to minimize psycho-visual distortions to the insertion in the

specific framework of color images. Concretely, the addition of an error correction

code in the construction of the inserted mark does not have a direct impact on this

idea of invisibility. It is obvious that the burying strategy is the main process

influencing this invisibility. However, the introduction of a code that allows an

increase in robustness can make it possible, in certain cases, to limit the “insertion

force” parameter needed for the correct decoding of the signature, such as the

parameter of quantification in the example that serves as a common theme. And so,

we limit visual degradation indirectly.

The capacity is the maximum amount of useful information that the image to be

marked can contain with respect to a given insertion method. In general, we always use

binary symbols, but it is possible to encode the information on only two symbols. The

more information we insert, the more the number of modified coefficients increases

and the more the distortion increases. The quality of the marked image decreases.
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To measure this amount, we can calculate the embedding rate in the spatial domain,

such that:

ER(X ,Y) =
l

|{(i, j) | Y[i, j] �= X [i, j], 1 ≤ i ≤ m, 1 ≤ j ≤ n}| [3.5]

with 1 being the bit number of the message, and the denominator is the number of

modified pixels for image X of size m× n.

The unit of this measurement is bit per pixel. We can also make the same

measurement in a transformed space (bit per modified coefficients). At first glance,

the insertion of an encoding step will limit this capacity since we are adding

repetition. This is even true with the code concatenation process. However, at first
glance, the use of codes makes it possible to get to the maximum capacity level for a

given robustness and level of attack.

Finally, the robustness of a watermark is its ability to preserve the message it

transmits against a distortion (or attack) on the marked image. In practice, an attack

has parameters that indicate its “force”; in other words, how much the noise signal

damages the host signal containing the mark. There are many types of attacks. The

so-called desynchronization attacks change the location of the mark’s insertion sites.

For example, we have the geometric modifications of the image, such as translation

or rotation. Image cropping and re-framing also desynchronizes the mark by changing

the image size. In this case, it is necessary to adapt the insertion method of the mark.

In other words, a simple vector quantization on the pixels of the image cannot prevent

a desynchronization of coefficients.

There are different ways to measure the robustness of a mark. The most

well-known example is the calculation of an error rate (bit error rate (TEB or BER)),

between the original message and the one estimated by the receptor of the marked

image:

BER =
|{i | mi �= m′

i}|
l

[3.6]

with m′ = (m′
1, . . . ,m

′
l) the detected message.

Another well-known way is to calculate the correlation between m and m′.

Depending on the needs and analysis criteria of each, an image error rate can be

defined (Image Error Rate (IER)) and is defined as:

IER =

{
0 if BER = 0

1 otherwise
[3.7]
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which makes it possible to measure the performance of a correction code without a

decoding algorithm, for example. In the case of a binary code corrector, the number

of detected errors must not exceed the correction rate of the code chosen. So IER = 0

means decoding took place without errors. If we are dealing with non-binary symbols,

we are using a symbol error rate, which is the ratio of erroneous non-binary symbols.

In practice, when an attack is powerful enough to delete a mark, the detected BER

is 0.5, which corresponds to a random binary sequence, but when the distortions

generated by this attack are less significant, the BER tends toward 0. However, in

certain situations, the BER is close to 1, which means that almost all the bits have

been inverted. In this case, the detected information is not destroyed (since it is

“inverted”), in that the Shannon entropy does not vary.

The security of a watermarking scheme is as important a subject as the three

properties previously discussed. It is inspired by security in cryptography to protect

multimedia content. However, there are important differences between these two

research areas (Cox et al. 2006). Being able to determine a level of security requires

a specific study of the application for which a watermarking scheme is intended. In

the context of robust watermarking, the aim of a watermarking method is to insert an

invisible signal in a host image while maintaining acceptable image quality. Here, the

security analysis involves evaluating the problem of an attacker (illegitimate

recipient) accessing or even modifying the watermarking channel (Barni et al. 2003).

A secure watermarking method can produce, for example, marked images whose

access to the mark channel is inaccessible without a key, which is only known to the

sender and the legitimate recipient. In this chapter, we do not discuss security

analysis.

3.6. Latest developments in the use of correction codes for
watermarking

The first contributions on (semi-)fragile watermarking using correction codes

appeared in the 2000s. Lee and Won suggested using parity bits as a message of the

mark, whose bit positions are mixed thanks to a random sequence (or insertion key).

The imperceptibility of the mark is ensured by modifying only the least significant

bits (Lee and Won 2000). Their algorithm makes it possible to restore the modified

zones. Sun and Chang (2002) have introduced a semi-fragile method of

authentication using correction codes. They also propose inserting parity bits of code

words in coefficients invariant to the JPEG compression. Then, He et al. proposed

inserting a mark by using coefficients extracted from ART (Angular Radial
Transform) descriptors, which are invariant to geometric type distortions (He et al.
2003). ART coefficients and the message inserted are both encoded by a Hamming

code, thus enabling robustness to the most common image modifications. Their

works focus on resistance to these attacks and do not offer a study on detection and
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localization performance. As for Zhou et al., they proposed a semi-fragile block

authentication algorithm in the wavelet domain, capable of detecting and locating

modified parts of the image (Zhou et al. 2004). Their authentication mechanism is

based on a signature extracted from the host image, which is encoded by a small

BCH code. Then, Chan and Chang (2007) developed a method for inserting BCH

codewords into least significant bits to locate and restore modified pixels. They later

improved their works by increasing the precision of their high significance bit

prediction method (Chan and Chang 2007). At the same time, Chang et al. (2011)

showed how to overcome packet error problems occurring in high-order bits, as well

as how to resist the vector quantization attack described by Wong and Memon

(2000). They describe a fragile method using a small Hamming code and a chaotic

function (similar to a pseudo-random number generator) capable of locating modified

regions.

In the rest of this section, we offer a non-exhaustive state of the art of correcting

codes applied to robust digital watermarking. The required message to be inserted

into a mark is encoded by a generator matrix of a correction code, then the code word

obtained is used as payload at the insertion stage. At the detection stage, an estimate of

the code word is calculated and then decoded by the correction code. The integration

of the correction codes for the digital watermark is therefore done ad hoc.

The first works appeared in the early 2000s. Kesal et al. (2000) proposed the

binary codes produced by Reed Muller with an iterative decoding (Kschischang et al.
2001; Al-Askary 2003) to deal with the Gaussian channel. Darbon et al. (2001)

studied combinations of BCH codes and repeating codes to optimize robustness

performance against attacks such as JPEG compression and the median filter, while

ensuring optimal capacity. For greater clarity, we use the code concatenation diagram

in Figure 3.10. We then have a BCH code C1, and a repetition code C2. The Enc1()

encoding function can represent the use of a repetition code or a BCH code and the

Enc2() function represents a repetition code.

m = (m1, . . . ,mk) �−→ c = mG1 = (c1, . . . , cn1
)︸ ︷︷ ︸

Encoding of m by C1

n1 − k repetition bits

�−→ d = cG2 = (d1, . . . , dn2
).︸ ︷︷ ︸

Encoding of c by C2

n2 − n1 repetition bits

Figure 3.10. Concatenation diagram (or hybrid coding) of two correction codes
C1(n1, k) (inner coding) and C2(n2, n1) (outer coding) of respective generator matrices
G1 and G2. The word m is a required message of k bits. The final code word d is
inserted into the image as a mark

The concept of form of error is not present in this work. Similarly for the work of

Baudry et al., a similar study of these codes was proposed for the Gaussian
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channel (Baudry et al. 2001). Even if Zinger et al. proposed similar works (hybrid
encoding), they are interested in different variants on BCH codes, such as BCH codes

by subtraction, extended and by bit (Zinger et al. 2001). The aim of these variants is

to gain flexibility (length limited to n = 2m − 1) on the parameters of the BCH codes

in order to optimize the capacity. Using BCH codes by bit involves using several

shorter length code words to encode as many bits as possible against an allowed

payload size, while also improving the maximum number of errors to correct. The

idea is the same with BCH codes by subtraction and extended BCH codes: the code

words can be shortened or lengthened by a few bits while also keeping the same

generator polynomial (see MacWilliams and Sloane (1977)).

Later, many works on codes inspired by this work have been published on different

types of watermarking support. For example, Hsieh and Wu and Chan et al. offered

improvements to the robustness of an image watermark against JPEG compression,

low-pass filter, to certain geometric attacks and even against the Stirmark attack (Hsieh

and Wu 2001; Chan et al. 2005).

Regarding the video, Chan et al. developed a method based on wavelet coefficient

decomposition which inserts the repetition bits of a code word into the audio channel

and obtained better robustness against various video attacks, such as reduced video

quality (frame dropping) (Chan and Lyu 2003). There are also works for sound

processing: Liu and Lin (2006) have incorporated BCH codes to improve the

robustness of their mark against attacks, such as amplitude changes or MP3

compression.

Other examples have also proposed integrating RS codes to correct burst

errors (Abdul et al. 2013). The work developed also implements list decoding for RS

codes. In addition, the correction codes have made it possible to improve

watermarking methods to authenticate images (Zhang et al. 2005; Chan and Chang

2007). Works have also been developed for tracing data (Schaathun 2008). More

recent works propose new methods integrating correction codes, but their use

remains the same (encoding before insertion and decoding after detection of the

mark).

Finally, a large number of publications have applied convolutional codes

(e.g. (Viterbi 1967; Hernandez et al. 2000; Lancini et al. 2002)) and Turbo codes
(e.g. (Berrou et al. 1993; Baldo et al. 2001; Rey et al. 2003; Doërr et al. 2005;

Dugelay et al. 2006; Chemak et al. 2007)) by watermarking. In the case where the

marked signal is transmitted in a noisy channel (Gaussian channel, JPEG

compression, or low-pass filters), Turbo codes make it possible to obtain the best

detection performance while approaching the capacity (second Shannon theory). In

order to summarize this section, we present a summary of some works in the

literature in Table 3.2.
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Authors Codes Contributions

Kesal et al. (2000) T, RM, H, DI QV, CMP, CG

Hernandez et al. (2000) CConv, DV, BCH SS, CMP, image/video, CG, JPEG

Eggers et al. (2000b) T, BCH CS + T, blind/non-blind, image, filter, CG

Darbon et al. (2001) Hybrid2 SW+ QV, tradeoff, image, JPEG, CG

Baudry et al. (2001) Hybrid, CConv, DV SW, AR, image, compr JPEG,CG

Zinger et al. (2001) Hybrid, BCH3 Theoretical, image, CBS

Hsieh and Wu (2001) Hybrid CMP, image, JPEG, filters, AG

Baldo et al. (2001) Turbo, DI SS, CMP, image, CG

Lancini et al. (2002) CC, Turbo CMP, image, video, MPEG, AG

Chan and Lyu (2003) RS, Turbo Audio domain, video, video attacks

Chan et al. (2005) RS, Turbo Audio domain, video, video attacks

Rey et al. (2003) Turbo block, BCH, REP Eurecom, CMP, image, CG, JPEG

Cvejic et al. (2003) Turbo SS, Codes, audio, filters, MP3

Zhang et al. (2005) CC Authentication, codes, color, fragile

Doërr et al. (2005) Turbo Eurecom, resynchr, EGM, AG

Dugelay et al. (2006) Turbo Eurecom, OFR, image, AG, Stirmark

Domain Ceptstrum, audio,
Liu and Lin (2006) BCH

asynchronous attacks

Verma et al. (2006) CC, DV Blue channel, image color

Malicious image changes, codes,
Chan and Chang (2007) Hamming

detection and reconstruction

SS, multiresolution, medical, compression,
Chemak et al. (2007) Turbo

noises, filters

Schaathun (2008) RS, DL Fingerprinting, CG, cut-and-paste

Abdul et al. (2013) Hybrid, RS, DL QV, DWT, color, CG, JPEG, filters

Logo, concatenation codes, JPEG,
Al Maeeni et al. (2015) Turbo, BCH product

cropping, median filter

Table 3.2. Summary table of different contributions
in watermarking and correction codes
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Sigles Notations

RM Reed-Muller

H Hamming codes

T Turbo codes

CConv Convolutional codes

DI Iterative decoding

DV Viterbi Decoding (Algorithm)

CMP Code comparisons

QV Vector quantization

SS Spread Spectrum

CG Gaussian channel

CS Costa Scheme

SW Substitution Watermarking (Burgett et al. 1998)

AR Redundancy analysis

CBS Binary symmetric channel

AG Geometric attacks

REP Repetition codes

OFR Optical Flow Regulation

DL List decoding

EGM Elastic Graph Matching (Lades et al. 1993)

Table 3.3. Table of acronyms in Table 3.2

3.7. Illustration of the influence of the type of code, according to the
attacks

In this section, we simply illustrate the influence of a correction code on the

robustness of a watermarking algorithm, as well as the differences that can exist

depending on the code. For this, we suggest using the standard burying strategy

presented at the beginning of the chapter; in other words, by index modulation (QIM)

that we adapt to the color. The burial takes place in the wavelet domain and we adjust

the insertion force parameter so that invisibility is ensured. The size of the signature

is fixed at 64 bits. Finally, the attacks tested are JPEG compression, white noise, and

saturation modification. We do not increase the illustration of attacks because the

results remain consistent. Note that desynchronizing attacks (such as translation or
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rotation for example) are not described, since the robustness against this type of

attack does not result primarily from the codes, but from the burying algorithm itself.

To analyze different codes, we watermark different images of the Kodack

database, with a repetition of the test with different keys for the signature. The results

curves present the performance of the different codes against the different attacks, by

indicating the average of the measurements of the BER. In all of the figures, the

x-axis represents the attack parameter, and the y-axis represents the average BER.

3.7.1. JPEG compression

The first attack studied is JPEG compression. Due to the compression, we get an

attacked image that loses some of its high-frequency content. The insertion is done at

a scale associated with a “medium” frequency band. As a result, at standard

compression rates, the error randomly affects the content of the mark (depending on

the content of the image). We test the compression with a quality parameter from 1 to

96 in steps of 5. On images of size 512 × 512, the results are presented in Figure

3.11. It should be noted that for a quality factor lower than 50, the image is degraded.

Figure 3.11. Comparison of the robustness
of different codes against the JPEG attack

We note that from this quality level, all the codes have difficulties protecting the

signature: the degradation is too strong and therefore the watermark channel is too

noisy. Unsurprisingly, the absence of code is associated with the worst result. We

can see that the codes intended to correct errors by erasure (error by blocking) are not

suitable for this type of error or attack (RS code), unlike codes fighting against random

errors.
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The results will depend on the content of the image: the compression will adapt

to this content and the errors will be greater when the images contain little

information, for example textures, because the mark is the detail directly removed

during the compression.

To illustrate this, we show the measurements for five different images with RS

encoding. We apply a JPEG compression with a quality factor equal to 40. We can

see Figure 3.12 that the results are very different depending on the content of the

image. The frequential content of the image in Figure 3.13 is generally rich in high

frequencies, while the image in Figure 3.14 is low in detail. We find that for the second

image, it is more difficult to reconstruct the signature because of the content of the host

image.

Figure 3.12. Comparison for different images of the Kodack database
of robustness with an RQ encoding and an attack JPEG Quality = 40

This first simple experiment first of all shows the improvement, in terms of

robustness, provided by the addition of a code. It also illustrates the importance of

understanding and characterizing the attack in order to deduce therefrom the type of

error that is associated, and therefore the most suitable correction code.

However, as we have seen, this result also depends on the element that we do not

know at first glance, that is to say the content of the image.
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Figure 3.13. Image of a bear

Figure 3.14. Image of a plant
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3.7.2. Additive Gaussian noise

We now propose the study of the attack by adding Gaussian white noise. In this

case, the parameter is the noise level or, more precisely, the signal-to-noise level.

Since by definition, the associated error is random, we see in Figure 3.15 that the

codes designed for errors by area are again, not suitable. It is evident that the larger

the image, the more efficient the external repetition coding and, therefore, the decoded

signature displays little or no error in the end.

Figure 3.15. Comparison of the different encodings
against an attack by adding Gaussian white noise

3.7.3. Saturation

Finally, we intend to study the impact of another type of attack: the modification of

saturation. Saturation characterizes the colorful appearance of a pixel; in other words,

the distance between the “color” pixel and the gray level axis. The modification of

saturation will therefore involve bringing each pixel closer, or further from the gray

axis. This is why the attack parameter takes both negative values (approximation of

the gray axis) and positive values.

In order to fully understand the impact of this attack, we illustrate the result on

the Lena image using an extreme setting, at –100 and +100. In the case of –100, the

image becomes gray since each pixel is projected on the gray axis (Figure 3.16a). In

the opposite direction, with a positive parameter at +100, there is an overflow

phenomenon: the value of certain pixels comes out of the RGB cube, and therefore a

phenomenon of “saturation” of the coordinates occurs on the different channels and

they are suppressed to 255 (Figure 3.16b).
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Figure 3.16. Effects of changes to saturation on the Lena image.
a) Minimal change to saturation: −100, b) maximal change to saturation: 100

On reading the results of Figure 3.17, we see that the attack through weakening

the saturation does not pose any problem, except when there is a projection on the

gray axis, because in this case the image is no longer in color; however, the watermark

used modifies the color vectors. We can see that when the saturation increases, above a

factor of 30, apart from the RS code, the codes find it hard to reconstruct the signature.

This is simply explained by the fact that the overflow phenomena will cause errors by

area and therefore, this type of error will be better corrected by RS encoding.

Figure 3.17. Comparison of coding processes faced
with saturation for an image of size 512 × 512
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In this section, we have seen that, faced with certain image modifications, the

error produced can have a particular error structure. Taking the latter information into

account, a suitable choice of correction codes makes it possible to optimize the

detection performance. For example, when considering BCH and RS codes, BCH

codes are more efficient than RS codes when the error is random. When the error has

a per-packet structure, the RS codes are better. To continue this discussion between

the right choice of code and the type of attack, we intend to introduce a particular

code in section 3.8.

3.8. Using the rank metric

A useful tool for increasing the robustness of a mark is using error-correction

codes. They make it possible to correct the errors produced by a given attack.

Depending on the attack and the structure of the resulting errors, the type of code

used is more or less effective.

Hamming distance-based codes have been around for over 40 years and have

been the subject of many studies (MacWilliams and Sloane 1977) and applications in

various fields, such as watermarking (Abdul et al. 2013). For some attacks, it

happens that the errors are per packet, as we have seen. In this case, it is better to use

more structured codes, that is, codes defined on a larger alphabet (e.g. GF (2m)),
such as RS codes where it is possible to decode errors by packet. The errors are then

no longer decoded independently on each bit, but on packets of m bits so that several

errors in the same binary packet only count for a single error (a symbol error) in a

code word.

In this section, we consider the use of a new metric called rank metric. These

codes are already widely used in telecommunications for coding networks (Silva and

Kschischang 2009) and in cryptography (Gabidulin et al. 1991; Gaborit et al. 2014).

They are able to correct errors with a specific structure. Consider a code on GF (2m)
of size m. Each coordinate of a code word on GF (2m) is encoded on m bits and since

the length of the code is m, each code word can be seen as a matrix of size m×m.

As the metric used is the rank of a binary matrix, the decoding condition is shown

with this metric; in other words, the code words received, whose errors have a low

rank, can be corrected accurately. For example, an attack which reverses all the bits

of a mark (in other words of a code word) cannot be corrected by a Hamming code.

On the other hand, with rank metric codes, the error will be of rank 1 because the

error is a matrix only made of binary symbols 1, and so, the code word that has been

transmitted is found with ease.

We intend to introduce this type of correction in a watermarking process. Rank

metric codes will first be defined, then a watermarking method combining the Lattice
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QIM method and the rank metric codes will be described. Thanks to a block

decomposition of the image, we show how the proposed method can be resistant to

image cropping.

3.8.1. Rank metric correcting codes

First, we propose to define and analyze rank metric codes.

3.8.1.1. Definitions and properties

Consider linear code C of length n, defined in an alphabet A = GF (qm). The

code words C are line vectors of the vector space GF (qm)n. Each component of the

code word of C can be expressed as a vector belonging to GF (q)m. It is possible to

write these components in the form of a column vector and therefore represent a code

word by a matrix defined on GF (q)m×n.

Considering a basis B from GF (qm) over GF (q) and a code word

x = (x1, ..., xn) ∈ GF (qm)n, we get a matrix representation of x, denoted as

Mat(x) = (xij)i,j , or X when there is no ambiguity defined, such that:

X =

⎛⎜⎜⎜⎝
x11 . . . x1n

...
...

xm1 . . . xmn

⎞⎟⎟⎟⎠
as for everything 1 ≤ j ≤ n:

xj =

m∑
i=1

xijβi

It is because of this matrix representation that it is possible to define a new metric

on GF (qm)n by using the rank of a matrix.

3.8.1.2. Rank distance

Let x = (x1, . . . , xn) ∈ GF (qm)n. Rank x, denoted as wR(x), equals:

wR(x) = rk(X) [3.8]

Let y = (y1, . . . , yn) ∈ GF (qm)n. The rank distance of x to y, denoted as

dR(x, y), equals:

dR(x) = rk(X − Y ) [3.9]
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Of course, dR does have the properties of a distance. Compared to Hamming

distance, we have the following property:

wR(x) ≤ wh(x) [3.10]

with x as a code word, and wh as the Hamming weight function.

We can also deduce that:

dR(x) ≤ dh(x) [3.11]

Briefly, this property is real because the number of linearly independent rows or

columns (i.e. the rank) of a code word is always smaller than the number of different

symbols in twos (Hamming weights). In other terms, since the rank of a vector is

independent to the base used, the rank metric is less precise than the Hamming metric,

because two vectors with the same weight can have the same rank.

3.8.1.3. Principle of rank metric codes

Delsarte was the first to study the rank metric (Delsarte 1978). Many properties of

Hamming codes have adapted to rank metric codes. Linear code C defined on a finite

field GF (qm) can be seen as a subspace of GF (qm)n, but also as a metric space that

has rank distance.

In addition, as C is a linear code, C is a subspace of GF (qm)n. The linearity of

a code is an interesting property since it makes it possible to manipulate code words

more easily. As for Hamming codes, it is possible to define the minimal distance dmin

from a rank metric code, such that:

dmin = min
x�=y ∈ C

dR(x, y) [3.12]

with the linearity property of the code, we have:

dmin = min
x ∈ C∗

wR(x). [3.13]

We note a linear rank metric code C is of length n, dimension k and minimal

distance d by its parameters [n, k, d]r or [n, k, (d − 1)/2]r or even [n, k]r, if it is not

necessary to specify the minimum distance.
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3.8.1.4. Decoding Gabidulin codes

The decoding bounds of rank metric codes (Singleton and Gilber–Varshanov

bounds) are similar to those of Hamming codes. They are very useful for building

decoding algorithms. Unlike classical Hamming codes, there is only a small number

of families of codes for which a decoding algorithm is known.

Gabidulin codes are one of these families and have as parameters [n, k, n−k+1]r
on GF (qn), with n being the length of the code, k is the size of the code and d =
n− k+1 is the minimal distance (Gabidulin 1985). These codes are called Maximum
Rank Distance (MRD), and so can correct up to (n− k)/2 errors. They can be seen as

a rank metric family, similar to the famous RS codes (which are MDS). Since 1985,

many decoding algorithms have been proposed (Gabidulin 1992; Loidreau 2006).

On closer inspection, the RS code decoding algorithm can be adapted for

Gabidulin codes. By using a variant of the Welch–Berlekamp algorithm on linear

polynomials, it is possible to obtain a quadratic complexity decoding.

3.8.1.5. Introduction to rank metric in a watermarking strategy

In practice, we use these codes in an extension GF (qm) of GF (2) and we can

unite a binary vector of size m to each coordinate of a code word in such a way that

code word c can be represented by a binary matrix of size m×m.

The integrated code word c is modified by an error e that can also be seen as a

binary matrix of size m×m.

To assess the case in which the rank metric is more effective than the classical

Hamming metric, we compare their behaviors by observing some examples of errors.

Let y = c+ e be a code word received after the extraction of a mark.

EXAMPLE.– m = 4 and a code word c:

c =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 1 0

1 1 0 1

1 0 0 1

1 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
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with y such that:

y =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 1 0

1 0 0 0

1 0 0 1

1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎠
We have the following error:

e =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 1 0 1

0 0 0 0

0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎠
We observe that the error matrix e is of rank 2. If a rank metric code is able to

correct up to 2 errors, then the word y is uniquely decoded in c. With a Hamming

code of length 16, the error is of weight equal to 4. In this case, it is possible to find

efficient codes with the two metrics for a reasonable dimension k.

Regardless of y and c, if we choose an error e such that:

e =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 0 1

1 1 0 1

1 0 0 0

1 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎠
the Hamming weight of e is 9, while the rank of e is 4: so it is impossible to find

efficient codes with the two metrics.

If e is the identity matrix, the error is of full rank and only Hamming codes are

useful.
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From this example, we see that the rank metric codes become more interesting

when the error has a particular structure. For example:

e =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 1 0

1 1 1 0

1 1 1 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
with the Hamming metric, we have nine errors in 16 transmitted bits and there is no

code capable of decoding correctly, whereas with rank metric, e is only of rank 1.

Therefore, we can easily decode such an error (e.g. with a Gabidulin code of

parameters [4, 2, 3]).

In the same way that some attacks will be “linked” to RS or BCH codes, this

type of error is found in the context of specific attacks. Rank metric codes will, in this

case, be an alternative application to digital watermarking which is more efficient than

classical Hamming codes.

We now propose a watermarking method integrating rank metric codes in order to

protect against image cropping.

3.8.2. Code by rank metric: a robust watermarking method for image
cropping

Image cropping erases an area of an image, which seriously damages the image.

The information that has been inserted locally is therefore destroyed. One of the oldest

contributions on image cropping was proposed by Swanson et al. (1996a, 1996b).

Their method of watermarking uses a modulation algorithm of the bits of low weights

on the DCT coefficients to insert their mark. Image cropping can also be associated

with a similar attack called collage attack, which involves replacing an area of an

image by another. This attack is also known as a variation of the image forgery attack,

which is studied by Holliman and Memon (2000) in the context of the authentification

of a digital image, studied by Fridrich and Goljan (2001). This type of attack is mainly

studied in issues of image authentication or detection of modifications (malicious or

not).

Later on, other works (Fridrich and Goljan 2001) proposed a mechanism for

inserting an image into itself (or self-embedding) to withstand several attacks, such as

falsification, cropping (or reframing) or even the replacement of areas in an image.

The idea involves inserting a compressed version of a host image into itself using

least significant bit modulation on DCT coefficients.
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More recent works were published on the same subject (Aggarwal and Singla

2011; Khalid et al. 2013; Saneie and Naghsh 2016; Goli and Naghsh 2017). For

example, an original approach is inspired by the mathematics of Sudoku

(Felgenhauer and Jarvis 2006; Russell and Jarvis 2006). Their insertion strategy is

based on the same principle as the self-embedding mechanism (reduction of the size

of the host image to obtain a smaller mark), previously described to resolve the

problem of image cropping and reframing. In the insertion stage, the host image is

divided into N cells, identified by the integers from 1 to N (as in a sudoku grid). A

new image is then generated with each cell replaced in a solution grid, the size of

which is reduced, then inserted into a host image because of the modulation of the

low-order bits on the DCT coefficients. However, these contributions only address

problems of image authentication and detection of modifications by fragile

watermarking methods. Compared to robust watermarking, the objectives are

completely different.

The problem of image cropping can become more complex when the size of the

attacked image is smaller than that of the marked image. At the detection stage, the

mark must be synchronized before it can be extracted. One of the classic approaches

against this problem was proposed by Kutter (1999). To insert a robust mark, this is

repeated in several places of the image, as for the coding by repetition studied in this

chapter.

To illustrate the possible contribution of codes, we intend to use the distinct

features of the rank metric code to fight against this type of attack.

3.8.2.1. Description of the “rank metric method against cropping”

It seems rather difficult to design a method resistant to a cropping type attack.

Basically, all contributions are based on the use of information repetition, that is, on

the use of some form of information redundancy. Therefore, each locally inserted

detail must depend on other details inserted in other regions of the image to detect

the mark without error. The only solution to reconstruct the original message without

error is to distribute the mark throughout the image. If an area is cropped and small

enough, then the message can be extracted correctly. In the book, the approaches used

are equivalent to using a repeating code.

We propose a different approach to deal with the image cropping problem using

rank metric codes. To do this, a host image is broken down in n2 blocks with n as

the length of a rank metric code (decomposition scheme illustrated in Figure 3.18).

Each bit of the rank code word is then inserted into a block using L = 2 coefficients.

We get an image that looks exactly like the matrix of a rank code word. Therefore,

the distortions produced by the attacked image are reproduced directly on the error

matrix e.
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⎛⎜⎜⎜⎝
b1,1 . . . b1,n

...
. . .

...

bn,1 . . . bn,n

⎞⎟⎟⎟⎠
Code word

Block decomposition

Figure 3.18. Insertion strategy using rank metric code and image
block decomposition. Each bit bi,j is associated with a block

For example, a square-shaped area (of size l) is cropped. The blocks affected by

this attack are directly transposed onto the error matrix e. Now consider a cropped

row or column of width l. In the matrix e, a 1-bit line or a column appears. As we

have seen previously, e has a specific error structure that is perfectly managed by rank

metric codes. In fact, rk(e) = r′ with r′ is the number of blocks (in width) affected

by the image cropping.

The two examples previously described produce errors of the same rank. In the

second case, the distortion is maximized compared to the first case (cropped square)

for errors of the same rank. In Figure 3.19, we show examples of attacked images,

which all have a matrix error of the same rank.

Another interesting example of the rank metric is as follows: swapping two rows

or columns of the same width does not change the rank of the error matrix if the

coefficients chosen in each block have the same positions and the cut bands overlap the

entire deconstruction of the image exactly. This swapping operation can be repeated

indefinitely without changing the rank of the error. This case study is not considered

in this chapter for lack of realism.

In section 3.8.2.2, we describe and analyze the robustness of the method proposed

against image cropping.

3.8.2.2. Robustness of the rank metric against cropping

In our study, we distinguish between two types of cropping: the first type groups

together images whose vertical or horizontal bands are entirely cut (Figure 3.20a)

and the second type groups together images where only rectangular shapes are cut
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(Figure 3.20b). Also note that the cut bands do not necessarily overlap the block

decomposition of the image. For errors of the same rank, the distortion is maximized

with the first type compared to the second.

Figure 3.19. Cropped images with errors from the same rank

In our experimental measurements, we consider the first type of cropping for

convenience and clarity. With the second type, the average rank of the error is exactly

the same with a lower cropping percentage.

We measure distortions of images using the percentage of cropped image region

denoted by cr. For the first type, we define cr such that:

cr = 100.
l

h
[3.14]

where l is the number of pixels, in width, of the cut column and h is the height of the

image.
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(a)

(b)

Figure 3.20. Types of image cropping. The top two
rows (a) represent type 1 errors and the

two bottom rows (b) represent type 2 errors
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Figure 3.21. Average error rate and rank as a
function of the cropping percentage cr
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We have randomly chosen 1,000 images from the Corel image database whose size

is 300 × 400 or 400 × 300 and calculated the respective averages of the BERs, the

image error rates and error ranks. We have chosen different Gabidulin codes to assess

the robustness of the proposed method against image cropping. In Figure 3.21, we see

that the binary error rate and error rank curves are linearly increasing as cr increases

for all values of n. When the average error rank (± 1.6) becomes greater than the

maximum number of errors, we can see that the IER curves vary quickly from 0 to 1.

Therefore, it becomes impossible to detect the original message. We then denote by

crmax the highest percentage allowing an error-free detection.

This first observation shows, through experimentation, the applicability of rank

metric codes in a digital watermarking strategy against image cropping. Of course,

sometimes the detection performance is very poor. The main idea of the proposed

method is to take advantage of the mathematical properties of the rank of a matrix.

It is also possible to produce an example of a marked, and then cut image where

detection is impossible (see Figure 3.22).

Figure 3.22. Examples of attacked images with the poorest
detection performance. The error rank is large (≥ (n− k)/2)

compared with the percentage of cropped area (cr′)

Discussing the parameters in more detail, when the encoding rate k/n decreases,

the correction power t increases, which results in a higher value of crmax; in other

words, the mark is more robust. Likewise, when n increases with fixed k, the encoding

rate decreases and the correction power also increases, which also makes it possible

to obtain a more robust mark.

However, the image quality should be carefully evaluated when inserting the mark

because if n increases, it significantly degrades the host image. In fact, a greater value

of n implies the quantization of n2 × L coefficients (the blocks are smaller).
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Compared to BCH codes, rank metric codes are more efficient when we are faced

with the first type of image cropping. We can see that the values of crmax reached by

the rank metric codes correspond to higher BERs than the correction rates given by

equivalent BCH codes. For example, with (n, k) = (23, 8) and crmax = 37%, we have

a BER = 0.12 > t′/n′ = 0.09 (see Table 3.4 for other examples).

Gabidulin BCH

[n, k, t] crmax BER to crmax [n′, k′, t′] t′/n′

16, 5, 5 41 % 0,11 255, 87, 26 0,10

16, 8, 4 42 % 0,1 255, 131, 18 0,07

16, 11, 2 41 % 0,04 255, 171, 11 0,04

23, 8, 7 37 % 0,12 511, 175, 46 0,09

23, 12, 5 36 % 0,10 511, 250, 31 0,06

23, 15, 4 39 % 0,07 511, 340, 20 0,04

32, 10, 11 35 % 0,13 1023, 348, 87 0,09

32, 16, 8 35 % 0,10 1023, 513, 57 0,06

32, 21, 5 35 % 0,07 1023, 688, 36 0,04

Table 3.4. Table of code correction parameters. For each row
of the table, we have parameters of a rank metric code on the left

and on the right are the parameters of an equivalent BCH code (t/n � t′/n′)

However, rank metric codes are less effective than BCH codes when we are faced

with the second type of image cropping. This is explained by the fact that the BER

obtained at the value crmax is smaller than the correction rate t′/n′, associated with

the equivalent BCH code. In addition, BCH codes can correct random errors and,

therefore, are more robust against all types of image cropping if the BER is smaller

than t′/n′. However, in this particular application, we can consider that the rank metric

codes remain a better choice of correction codes, especially in the case where the

Gabidulin codes are MRD. Even though BCH codes are the best for random errors,

we are constrained by the choice of parameters. In fact, the length of a BCH code is

an integer of the form n = 2m − 1.

Combined with the LQIM method and a block decomposition strategy in the

spatial domain, we have shown that the proposed method can be robust to different

types of image cropping by taking into account certain constraints. Additionally,

these newly-introduced codes in digital watermarking make it possible to obtain

better detection performance in certain cases (first type of image cropping). However,

an important problem remains associated with this type of image modification: the
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synchronization of the mark when the size of the attacked image is different to that of

the marked image. The aim of this section is to illustrate how a reflection on the

nature of the error can lead to the use of more “specialized” codes.

3.9. Conclusion

In this chapter, in order to introduce the contribution of correction codes, we have

chosen to explain the paradigm of robust watermarking, which aims to insert an

invisible and robust mark to image modifications.

We then offered an introduction to correction codes by repetition, BCH and RS

codes and recalled how they could be integrated very simply into robust watermarking.

Through a simple example with a burying strategy by index modulation, we have

shown how the use of codes improves robustness against attacks whose errors have

a specific structure. We focused on the fact that the study of the error structure will

guide us on the use of similar encoding. Simple experiments have illustrated this,

which seems to be a line of thought that should probably be followed.

Finally, following this idea, we presented a type of error correction code, rarely in

watermarking, using the rank metric instead of Hamming metric. Technically,

Gabidulin codes were combined with the LQIM method to obtain a new type of

resistance against specific attacks. For this, it was necessary to adapt the burying

strategy (strategy of block decomposition of the image instead of inserting

information at random positions). The image is then divided into blocks and each bit

of a code word rank is associated with a block. This insertion strategy allows us to

take advantage of the structure of the rank metric against different image cropping

configurations. After studying the robustness of the proposed method with rank

metric codes against this attack, we also showed that Gabidulin codes are more

effective than BCH codes when the distortions are maximized for a fixed error rank.

The last section showed how the design of the watermarking algorithm can, and

should, take into account both the nature of the errors, the properties of the code and

the burying process.
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In this chapter, we intend to discuss the different strategies to ensure the invisibility

of a message embedded in a color image. The term “invisibility” here relates to the

visual aspect. For grayscale images, many solutions have been developed, attempting

to take into account the modeling of the human visual system (HVS) in order to limit

degradation. However, the extension of these solutions to color images often proposes

an adaptation of the strategies dedicated to grayscale images, configured by a wise

choice of a color component. Even when a dedicated approach to color is introduced

(such as through the use of quaternion formalism), the same challenge is present; in

other words, the correct choice of the direction of the insertion color. In this chapter,

we discuss these aspects and we conclude by introducing a method configuring this

choice of color direction, depending on psycho-visual considerations.

4.1. Introduction

In this chapter, we focus on the watermarking of color images that involves the

current framework of modern watermarking algorithms. In this book, different

watermarking methods for color images are presented, however, many of them
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proceed in a similar way: selecting a chromatic or achromatic channel in order to

have only one scalar detail to manipulate per pixel, and then a watermarking strategy

is applied from the techniques that are defined for grayscale images. Keeping this in

mind, the first color solutions (Kutter et al. 1997; Yu et al. 2001) suggested

watermarking the blue component in order to minimize the visual impact in the

modified image. In fact, it is well known that modifications of the blue component

will be less visible. As is often the case, this stronger invisibility will go hand in hand

with a greater fragility. Continuing this strategy, but looking for other compromises,

different methods introduced the modification of the luminance component (Voyatzis

and Pitas 1998) or the saturation component (Kim et al. 2001), which allowed them

to be more robust, but generally had greater distortion during insertion. In fact, the

modification of a component like luminance leads to visible damage (if not, the

insertion force must be very small).

Since then, several propositions for color have been made, but the majority of

them use strategies that we consider “grayscale”, or scalar methods, as they only use

one component. Therefore, the challenge is always to choose this component well.

Through the choice of a single component, the risk is that the concept of color is not

taken into account, or more precisely, the vector dimension of the information is not

used. This generally leads, from the choice of the component, to favoring robustness

or invisibility. In addition, poor choice of the component does not make it possible

to obtain an optimal invisibility for the human visual system (HVS). In order to take

into account this information that is translated by three values, certain methods tend to

treat each color component independently of one another and again apply a grayscale

method on each component (e.g. Dadkhah et al. (2014)). These methods, therefore,

treat the color components independently. However it is now well-established that the

color components are correlated, and so these marginal approaches do not allow us to

obtain an optimal invisibility for the HVS.

This is why, in order to maximize the invisibility/robustness compromise,

approaches have appeared that consider color information in a more global way. For

example, Abadpour and Kasaei (2008) used the information obtained from the

projections of a main component analysis. Other contributions suggest the use of

transformed domains that are adapted to color, such as the quaternion discrete cosine

transform (Li et al. 2018) or specific manipulations (Parisis et al. 2004). There are

also vector methods on wavelet coefficients that are calculated from the three RGB

planes or from another space, which will try to limit the visual degradation by setting

the insertion force in the domain of the transform to using, for example, the concept

of Just Noticeable Difference (JND) (Chou and Liu 2010) that we describe below. In

this case, the algorithm does not take into account the perceptual dimension of the

color during the decomposition, but in the configuration of the modification. To

integrate the concept of HVS, the works proposed by Chareyron et al. (2004) allow

the insertion of a 2D mark in the chromatic xy plane. Their approach is based on a

histogram manipulation offered by Coltuc and Bolon (1999). To improve the
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invisibility of the mark, the color distances corresponding to the distortions are

calculated in the L*a*b* color space (Chareyron and Trémeau 2006). As we have

mentioned, in order to introduce HVS modeling, the concept of JND has been used

for a long time. JND initially makes it possible to assess the damage linked to a

watermarking strategy, but this concept remains an open problem with regard to

digital models, in particular without preconception about the content of the image.

JND is used in grayscale approaches, particularly for insertion in the transform

domain (DCT). For example, Watson’s perceptual model (Watson 1993), proposed in

1993, makes it possible to visually optimize the quantization DCT matrices for a

given image during its compression due to adaptations of contrast and luminance.

These works were incorporated into digital watermarking by Li and Cox (2007) and

also by Hu et al. (2010) in order to minimize insertion noise. However, as we can see,

these works remain in the domain of grayscale images, and inclusion of color

according to this strategy remains more unreliable (Chou and Liu 2010; Wan et al.
2020). Some of the literature dedicated to watermarking color images uses the

concept of quaternions. However, as we will show in this chapter, the representation

space remains configured by choices of chromatic direction controlling this question

of invisibility. The quaternionic context for color image watermarking is discussed in

section 4.3.

A more detailed understanding of the processing of color by the HVS would

improve the invisibility of a mark. To illustrate this point, this chapter discusses a

vector quantification method (section 4.2), associated with a biological model of

HVS photoreceptors to be able to insert information into color images. The model

studied is based on a psychovisual approach (section 4.4), making it possible to

understand the HVS’s perception of color differences (work introduced by Alleysson

and Méary (2012)). We then adapt it to digital watermarking in order to minimize

psychovisual distortions. We then detail the different steps of a robust watermarking

scenario for color images, as well as the algorithms used to adapt the QIM Lattice

(LQIM) method.

First of all, in order to illustrate the issue of color watermarking, we propose a

general framework in section 4.2, making it possible to manipulate the color within

the framework of a watermarking algorithm.

4.2. Color watermarking: an approach history?

As we have said, different approaches have been offered, based on the use of

color space suitable for the insertion of a watermark, that is invisible to the naked

eye. As a reminder, one of the first approaches involved inserting a mark in the blue

component of the RGB space because the HVS is less sensitive to distortions in this

channel (Kutter et al. 1997; Yu et al. 2001).
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It is therefore a question of constructing a vector modification procedure, and to

illustrate this, we choose a modification by quantization. Note that the discussion

conducted in this framework by quantization can be generalized to other modification

strategies and to simplify the understanding of the impact of modification, we intend

to describe the process in the spatial domain.

4.2.1. Vector quantization in the RGB space

Vector quantization allows us to insert information about the values of a color pixel

(three dimensions). It can be considered as a quantization on a line segment generated

by a direction vector (Figure 4.1).

r

g

b

P

P ′

×

×
k.u

Figure 4.1. Quantization in the RGB color space
on an oriented line by a direction vector u

Let P be a value of a color pixel. The result of quantization, denoted by P ′ is

defined by:

P ′ = P +
s′ − s

‖uP ‖2 .uP [4.1]

with uP , a direction vector, and s =< P, uP >, the canonical scalar product of P by

uP .

This equation modifies the color P according to s along the direction axis uP .

Depending on the color P on which the vector quantization is applied, the color

distortion perceived by the HVS is different.
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At the detection stage, the value to be estimated is s′. If the color is modified after

the insertion of a watermark, we have:

s′ =< P ′′, uP ′′ > [4.2]

with P ′′, a color modified after inserting information, and uP ′′ , its associated direction

vector. We then have a decoding condition on the direction vectors: it is necessary that

the direction vectors uP and uP ′′ are close enough to have a good estimate of s′.

Assuming we are in a case where detection is possible, that is, the color difference

P ′′ − P ′ is small enough, we then have:

< P ′′, uP ′′ >�< P ′, uP >= s′

4.2.2. Choosing a color direction

The main differences between color specific watermarking methods are as follows:

– the insertion method (as for grayscale approaches);

– the choice of “color” information that will carry the message.

Whether the approaches are direct (use of a color channel), indirect (change of

spaces) or even adapted (construction of a specific transform), in general, they can be

modeled by the insertion of a message following a certain direction in the RGB cube.

Therefore, the aim is to find a direction that minimizes the color quantization noise

for the HVS.

To start with, we will study a basic approach that involves choosing a fixed

insertion direction for the whole image. This approach illustrates the influence of this

choice of direction when there is no local adaptation. If we randomly choose a

direction vector constant for every color in the image, the HVS detects color

distortions very easily (Figure 4.2(b)) since the choice of direction introduces colors

that are not relevant to the content of the image.

We can reduce the detected quantization noise by using a direction that is

judiciously fixed for the whole image; this is the case for a large number of

algorithms in this book. A direction vector that limits color distortions is vector

ug = (1, 1, 1)/
√
3, which represents the gray level axis in the RGB space. An

example is illustrated in Figure 4.2(c). In fact, compared to Figure 4.2(b), for the

same level of modification, we no longer see false colors appearing.

However, these first results are not satisfactory in terms of watermarking

invisibility. Depending on the color we modify, the detection of quantization noise is
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different, we have to introduce a so-called adaptive approach. For each color P , we

must determine which direction vector choice minimizes the quantization noise, in

the sense of the HVS. Figure 4.2(d) shows an example of a watermarked image with

an adaptive approach that we will describe in section 4.4.5. We can see that the

quantization noise is less visible. However, on closer inspection, we observe a slight

colored noise in the homogeneous (or non-textured) areas of the image, such as the

green and brown background; the local context of the image is also important.

(a) Source image (b) Random direction constant

(c) ug direction constant (d) Optimal direction suitable

for each color

Figure 4.2. Example of inserting a mark with different approaches and direction
vectors with equivalent digital distortion (overall, the signal to noise ratio
is equivalent for the three images). The image used is a cropped version
of the image kodim23.png from the Kodak Image Database (available at:
http://r0k.us/graphics/kodak/kodim23.html)

As we suggested in the introduction, approaches using a more evolved

representational space must address the same question: which is the best direction?

To show this, we intend to recall the context of image watermarking according to

quaternionic transforms.
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4.3. Quaternionic context for watermarking color images

Quaternions can be a tool to manipulate color, which explains the different works

offering quaternion-based watermarking (Bas et al. 2003; Tsui et al. 2008). In this

section, we offer a few introductory elements on the tool.

4.3.1. Quaternions and color images

The quaternion algebra is algebra, H, of dimension 4 over R, made up of the

elements of the form:

q = (q0, q1, q2, q3) = (S(q), V (q)) [4.3]

with the real number S(p), the scalar part, and the vector V (p), the vector part of the

quaternion q.

All the usual geometric operations of R3 can be found when we limit the operations

of quaternions to the set H0 of pure quaternions (if q = (S(q), V (q)) then S(q) = 0).

Let q1 and q2 be two pure quaternions representing the vectors V1 and V2 of R3,

respectively, so:

1) q1 + q2 = V1 + V2;

2) q1.q2 = V1.V2;

3) q1q2 = −V1.V2 + V1 ∧ V2.

Note that the quaternionic product of two pure quaternions contains, in its real

part, the scalar product of the two vectors represented, and, in its imaginary part, the

cross product. This result is present in some uses of quaternions for color images.

The algebra is provided with the product:

pq = (S(p)S(q)− V (p).V (q), S(p)V (q) + S(q)V (p) + V (p)× V (q))

where V (p).V (q) (respectively, V (p)×V (q)) denotes the scalar product (respectively,

mixed or vectorial) of two vectors V (p) and V (q) of R3.

The algebra H is associative but not commutative.

We can find the so-called Hamilton form q = q0 + iq1 + jq2 + kq3, of quaternion

q, by writing: i = (0, 1, 0, 0), j = (0, 0, 1, 0) and k = (0, 0, 0, 1). The calculation

rules then become:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j
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We find a vocabulary that is similar to that of complex numbers. The conjugate q of

a quaternion q is defined by: q = q0−iq1−jq2−kq3. Any quaternion q that is not zero

accepts an inverse, called q−1 = q/|q|2, where |q|2 = qq = qq = q20 + q21 + q22 + q23 .

The positive real number
√
qq =

√|q|2 is the magnitude of q, denoted |q|. As for

complex numbers, it is possible to define combined quaternions (if q = (S(q), V (q))
then S(q)2 + ‖V (q)‖2 = 1).

Since a color contains only three components in the RGB space, it has been

suggested that we describe the color information on the imaginary part of the

quaternions (Sangwine 2000):

f : [m,n] �→ (fr, fg, fb)

Z × Z → H0

The color of a pixel of an image f at spatial coordinates (m,n) is then coded in

the following way:

f [m,n] = fr[m,n]i+ fv[m,n]j + fb[m,n]k [4.4]

with fr[m,n], fv[m,n] and fb[m,n] as the red, green and blue components of the

pixel of coordinates (m,n), respectively. This is how, in the vast majority of

quaternion based color watermarking algorithms, the information is modified.

Consider a pixel color f [m,n] = (fr[m,n], fv[m,n], fb[m,n]) coded by a pure

quaternion q:

q = (0, fr[m,n], fv[m,n], fb[m,n]) [4.5]

We want to extract the colorimetric coordinates (intensity, hue and saturation).

First we need to define a vector μ (pure unitary quaternion) representing the axis of

intensities. The intensity I of q is the projection of this on μ:

I = q.μ

This axis is generally defined as the grayscale axis, so μ = (0, 1√
3
, 1√

3
, 1√

3
), but in

a watermarking strategy a choice for this direction μ can be more adaptive. Following

this idea, we can generalize the operations for manipulating color information through

the quaternion formalism (Carré et al. 2012):

q̂ =

(
α

2
+

β

2

)
eμφqe−μφ −

(
α

2
− β

2

)
μeμφqe−μφμ



Invisibility 137

with the result:⎧⎪⎪⎪⎨⎪⎪⎪⎩
T̂ = T + φ ;

Ŝ = βS ;

Î = αI

⎫⎪⎪⎪⎬⎪⎪⎪⎭
These few simple operations allow us to illustrate the first links between

quaternions and color. We note that, again, the central element to all modifications is

the definition of an axis μ, around which the different transforms will be configured.

This is the case for quaternionic watermarking algorithms. However, most of them

use a transformed domain, particularly a frequency domain.

4.3.2. Quaternionic Fourier transforms

Quaternionic Fourier transforms (QFT) were introduced in the context of color

images by Sangwine and Ell (2001) in order to generalize the complex Fourier

transform for color images. There are several versions of quaternionic Fourier

transforms with different aims, particularly because the quaternionic product is not

commutative. Sangwine offers a color version by adding a direction that is

characterized by a pure unitary quaternion, to the expression of the exponential μ (Ell

and Sangwine 2006). Most often, in order to avoid favoring any color for the spectral

analysis, the neutral quaternion μ = μgris = (i + j + k)/
√
3 is chosen and

corresponds to the achromatic axis of the RGB space. The definition is as follows:

Fgauche[o, p] =
1√
MN

M−1∑
m=0

N−1∑
n=0

e−2μπ( om
M + pn

N )f [m,n] [4.6]

It is possible to place the exponential to the right of the function f . We then

obtain the definition of another Fourier transform since the quaternionic product is

not commutative.

Different authors have looked to give an interpretation to the information described

by the spectrum coefficients. We can identify three main approaches:

– describe the quaternion spectrum with the exponential representation (Assefa

et al. 2010);

– break down each spectral coefficient into two parts, one simplex and one perplex,

in order to separate the luminosity data from the chrominance data (Sangwine and Ell

2001);

– carry out an analysis of elementary atoms (Denis et al. 2007).
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This frequency information present in the quaternionic spectrum is especially

used in digital image watermarking (Bas et al. 2003). To analyze watermarking in

quaternion space, we introduce the Cayley–Dickson construction, which allows the

separation of data into a luminosity part and a chromaticity part (Ell and Sangwine

2000). This rewriting has made it possible to analyze the transformations carried out

with the quaternions through a “colormetric” view. We have seen that a quaternion

can be considered as a vector of the base (e, i, j, k) with e = 1, the real unitary

vector:

q = ae+ bi+ cj + dk

with a, b, c, d as any four real numbers of which a is the real part and (b, c, d) is the

imaginary part.

We can choose another base, for example (e, μ, ν, μν) with μ and ν, two pure

unitary orthogonal quaternions. Their product μν is also a pure and orthogonal

quaternion to the other vectors of the base. We can write q in this base:

q = qe + qμμ+ qνν + qμνμν

with, for example, the real number qe = q.e defined by the scalar product and which

therefore corresponds to the projection of q on e.

Likewise, we can calculate qμ = q.μ, qν = q.ν and qμν = q.μν of real numbers.

Notice that it is possible to regroup the quaternion q in two isomorphic subspaces

in C. In fact, the first block (qe, qμ) corresponds to the real part and the projection

term on μ, the remainder being expressed in the plane (ν, μν), which is the plane

perpendicular to μ. The quaternion can therefore be written as:

q = q‖ + q⊥ν

with q‖ = qee+ qμμ and q⊥ = qνe+ qμνμ, q‖ being the parallel part to μ and q⊥ the

perpendicular part.

In the case of pixel color manipulation, two pure quaternions are used for this

decomposition: the first vector μ is, for example, the gray axis in the cube RGB:

μ = μgrey =
i+ j + k√

3

The second is the axis perpendicular to μ in the direction of the red color (pointing

out axis i):

ν =

√
2

3
(i,− j

2
,−k

2
)

since the red is used as a reference for a zero-value hue in the chromticity plane.
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In this case, when a color image is divided into parts parallel and perpendicular

to μ, it seems that this decomposition allows the separation of luminosity data on the

parallel part, and chromatic data on the part perpendicular to μ. We find the classic

representation associated with luminance–chrominance spaces.

When a watermarking algorithm suggests using the quaternion space to carry out

the insertion of a message, especially in the transformed domain, in many cases the

operation can be interpreted through the Cayley–Dickson representation. This results

in a modification of the color pixels in one of the directions: the impact of the

modification will therefore depend on the explicit or implicit choice of the μ axis.

Although the approach uses a more complex model which seems to take the color

into account, the algorithm remains configured by a wise choice of insertion color

direction.

In section 4.4, we propose to discuss a psychovisual model that makes the choice

of direction as adaptive as possible, that is, we show how to determine the optimal

direction vectors for any RGB color.

4.4. Psychovisual approach to color watermarking

4.4.1. Neurogeometry and perception

Understanding how humans perceive color differences can allow us to minimize

insertion color distortions perceptually; in other words, to improve watermark

invisibility. To achieve this objective, we need a color discrimination model. This

model would be three dimensional, due to the human trichromy, and should mimic

the representation of light by the cones of the human retina for their spectral

sensitivities as well as their intensity encoding dynamics.

This type of model, known as neurogeometry, was suggested in the context of the

perception of shapes based on achromatic data. A detailed description of the

construction of forms by the primary visual cortex is given in Petitot (2003, 2008).

Few other contributions have considered neurogeometry in the context of color

vision (Koenderink et al. 1970; Zrenner et al. 1999; Alleysson and Méary 2012), and

even less in the application context of color watermarking.

In this section, we limit our study to the modeling part and its application for color

watermarking: more precisely, we use a chromatic discrimination ellipsoid model

based on the Naka–Rushton law of photoreceptor dynamics.

A simple and effective way to model color discrimination data involves

considering color discrimination to be a nonlinear operation in a three-dimensional
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Euclidean vector space ϕ ∼= R3. The space has the standard scalar product

xy = x1y1 + x2y2 + x3y3, where x = [x1, x2, x3] and y = [y1, y2, y3] are two

vectors in R3 linked to two points, M and N , as
−−→
OM = x and

−−→
ON = y with O, the

origin of vectorial space associated with ϕ. The magnitude of a vector x is given by

||x|| = √
x.x. The distance between x and y is given by d(x, y) = ||x− y||.

Assume that this space ϕ is a physical space in which the HVS maps another

representation ψ, marked by a quadratic form q(x) = xtGx where G is a symmetrical

positive definite matrix representing the metric brought about by the nonlinearity of

the HVS. This quadratic form defines a new form for vectors in the visual space, such

as |x| =√q(x), and a scalar product balanced such that:

< x, y >= xtGy [4.7]

In this model, we assume that the HVS maps the physical space of light ϕ and the

perceptual space ψ. An equal discrimination contour is represented by a circle on an

isoluminant surface and the physical space is a space in which this constant

discrimination circle in ψ corresponds to an ellipse in ϕ. The mapping function

between these spaces is given by the neuronal function. This model is illustrated in

Figure 4.3. In this figure, we assume that the HVS is a nonlinear function f between

the flat physical space of light ϕ and the curved space of perception ψ. In this

section, we use a modification of the Naka–Rushton transduction equation to account

for visual nonlinearity.

Figure 4.3. Relationship between physical space ϕ and perceptual space ψ

For the sake of generality, we must consider that G depends on the physical

stimulus x and on the adaptation state of the observer x0, so we write G(x, x0). The

question to be solved for a color discrimination space is to find the relationship

between the nonlinearity brought about by the HVS, and the shape of the metric

G(x, x0). One way to clarify this relationship is to fix the adaptive nonlinearity
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function. This cannot be done in general, but we assume that the nonlinearity of the

HVS operates on each color channel separately and that it is parametric with an

adaptation parameter, which modifies the curve of the nonlinearity.

4.4.2. Photoreceptor model and trichromatic vision

Based on this principle, we introduce a three-dimensional construction of an HVS

trichomatic model (Alleysson and Méary 2012).

An HVS is a complex system that adapts according to environmental conditions,

and it is no surprise that color vision is a nonlinear, adaptive phenomenon.

Assume for now that x is a physical one-dimensional variable corresponding to

light entering the eye. y = f(x, x0) is the transformation of this variable by the HVS

according to an adaptation factor x0.

We define f as a simplification of the Naka–Rushton function, which checks the

transduction of light by the photoreceptor (Alleysson and Hérault 2001):

f(x) = α
x

x+ 1

y = f(x/x0) = α
x

x+ x0
[4.8]

where y is the level of transduction. In other words, y represents the electric response

of a cone as a function of x, the level of excitation of the cone produced by light and

x0, the state of adaptation.

x0 is modified according to the average excitation level of the photoreceptor.

Equation [4.8] represents the behavior of the photoreceptor according to two

constants, α and x0, set by the environmental conditions and the HVS state. In fact,

the adaptation process of a photoreceptor is only partially understood and this model

is probably a simplification.

We assume that this is the nonlinear, adaptive function of equation [4.8], which

matches physical space to perceptual space. The function saturates α when x → ∞
and x0 gives the half-maximum of the curve. The function’s curve changes according

to x0. A low x0 gives a high curvature, while a high x0 gives a low curvature. This

nonlinear function is shown in Figure 4.4.
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Figure 4.4. Nonlinear function of perception

Therefore, considering the three-dimensional space of the physical colors ϕ, we

establish the link between the physical and perceptual space by:

y =

⎡⎢⎢⎢⎣
�

m

s

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
f(L/L0)

f(M/M0)

f(S/S0)

⎤⎥⎥⎥⎦ = f

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
L

M

S

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣
L0

M0

S0

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ [4.9]

= f(x, x0)

where x = [L,M, S] and x0 = [L0,M0, S0] are coordinates of the physical stimulus

in the space ϕ, and the adaptation of the observer expressed as a parameter in the

space ϕ, respectively.

Here, we implicitly assume, without losing generality, that the coordinates in the

space ϕ correspond to the responses of cones L, M and S. L, M and S are then the

encoding of the physical stimulus x by the HVS, suitable for x0.

To summarize, the human retina possesses three types of photoreceptors, which are

cones L, M and S. The responses of each of these cones are processed by a nonlinear

parametric function that defines the perceptual variables. For each color channel, there

are two parameters, α and x0:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

l = αL
L

L+ L0

m = αM
M

M +M0

s = αS
S

S + S0

[4.10]
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where the parameters αL, αM and αS are gains on the respective components L, M
and S. The constants L0, M0 and S0 are the adaptation states of the respective cones.

In the trichromatic model of color vision, it is possible to find a three-dimensional

construction of color discrimination with the photoreceptor model described above. In

the space of transduction lms, pairs of points separated by the same distance have the

same level of perception of the color difference. When these pairs are converted in the

excitation space LMS, Euclidean distances are no longer equal even though the same

level of perception is maintained.

This distortion phenomenon can be better observed by constructing a sphere

centered at Plms = (lc,mc, sc) in the space lms defined as:

⎧⎪⎪⎨⎪⎪⎩
l = r cos(u) cos(v) + lc

m = r sin(u) cos(v) +mc

s = r sin(v) + sc

[4.11]

with r, the radius of the sphere, −π ≤ u ≤ π and −π/2 ≤ v ≤ π/2.

By converting the sphere in the space LMS, we get a volume V defined by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L =
(r cos(u) cos(v) + lc)L0

αL − r cos(u) cos(v)− lc

M =
(r sin(u) cos(v) +mc)M0

αM − r sin(u) cos(v)−mc

S =
(r sin(v) + sc)S0

αS − r sin(v)− sc

[4.12]

The distances between the center of the volume Plms and the points on the surface

of the volume are therefore constant:

‖P − Plms‖2 = r, ∀P ∈ § [4.13]

with a constant radius of r.

Note that r is no longer constant in the case of the volume V of center PLMS =
f−1(Plms).
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4.4.3. Model approximation

We then need to explain how to calculate G(x, x0), the metric from f . To do this,

we consider that in the perceptual space ψ, an equal discrimination contour around a

point (�c,mc, sc) is a sphere S with radius 1. So we write:

S = {y ∈ ψ|dytdy = 1, dy = [�− �c,m−mc, s− sc]} [4.14]

As we have seen, in the physical space, the resulting surface is given by the linear

approximation of the nonlinearity f̄(xc, x0) around xc. As we can consider dy to be

very small, it is given by the Jacobian of f :

J(xc, x0) [4.15]

=

⎡⎢⎢⎢⎣
∂f(Lc,L0)

∂Lc

∂f(Lc,L0)
∂Mc

∂f(Lc,L0)
∂Sc

∂f(Mc,M0)
∂Lc

∂f(Mc,M0)
∂Mc

∂f(Mc,M0)
∂Sc

∂f(Sc,S0)
∂Lc

∂f(Sc,S0)
∂Mc

∂f(Sc,S0)
∂Sc

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
αLL0

(Lc+L0)2
0 0

0 αMM0

(Mc+M0)2
0

0 0 αSS0

(Sc+S0)2

⎤⎥⎥⎥⎦ [4.16]

This approximation makes it possible to establish a direct correspondence between

dy = [�− �c,m−mc, s− sc] and dx = [L− Lc,M −Mc, S − Sc]:

dy = J(xc, x0)dx ⇐⇒ dx = J−1(xc, x0)dy [4.17]

As we have mentioned, a circle in perceptual space ψ corresponds to an ellipse in

physical space ϕ expressed as:

E = {x ∈ E|dxtGdx = 1, G = J(xc, x0)
−tJ(xc, x0)

−1} [4.18]

G is equal to:

G =

⎡⎢⎢⎢⎣
(Lc+L0)

4

α2
LL2

0
0 0

0 (Mc+M0)
4

α2
MM2

0
0

0 0 (Sc+S0)
4

α2
SS2

0

⎤⎥⎥⎥⎦ [4.19]

We see that, from a color defined by coordinates (Lc,Mc, Sc), we have two groups

of parameters in this transformation, (L0,M0, S0) and (αL, αM , αS).
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4.4.4. Parameters of the model

To use this model, the constants L0, M0 and S0 and the gains αL, αM and αS can

be calculated using MacAdam ellipses (MacAdam 1942) (Figure 4.5).

Figure 4.5. MacAdam ellipses in the luminance plane of the color space
xyY, 1931. Ellipses are 10 times larger than their original sizes

If we want to calculate these parameters from the MacAdam ellipses, we have

to first transform the MacAdam measurement made in the CIE-xyl space into space

LMS. To do this, we use the following transformation:

⎡⎢⎢⎢⎣
L

M

S

⎤⎥⎥⎥⎦ = Y

⎡⎢⎢⎢⎣
0.15514 0.54312 0.03286

−0.15514 0.45684 0.03286

0 0 0.00801

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x/y

1

1−x−y
y

⎤⎥⎥⎥⎦ [4.20]

With this transformation of (x, y, l) into (L,M, S) and with the parameter (αL =
1665, αM = 1665, αS = 226), (L0 = 66,M0 = 33, S0 = 0.16), it has been shown

that this allows a good reconstruction of MacAdam ellipses (Figure 4.6) (Alleysson

1999).
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Figure 4.6. The ellipses obtained from the psychovisual
model almost correspond to the MacAdam ellipses after

an optimal choice of constants (Alleysson 1999)

4.4.5. Application to watermarking color images

In section 4.4.4, we introduced a color vision model to develop a less visible

method of watermarking. In the color space LMS, we constructed ellipsoids that

concretely illustrate how to control psychovisual distortion while ensuring

satisfactory robustness.

In fact, the idea of psychovisual distorsion represents the perception of the color

difference on insertion, as opposed to digital (Euclidean) distortions obtained with

metrics such as the PSNR. As psychovisual distortions better describe the invisibility

of the watermark for the HVS than digital distortion measurements, the theory is that

it becomes possible to obtain a better compromise between invisibility and

robustness: for the same level of psychovisual distortion, there are different levels of

digital distortion, depending on the insert setting, and choosing maximum digital

distortion improves robustness.

In this section, we intend to remove, for each color pixel P , the direction vector

uP which has the largest magnitude in its ellipsoid.
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4.4.6. Conversions

Here we give the color space conversion matrices to work from XYZ and LMS

psychovisual spaces to RGB space. The transformations are chosen according to the

1931 CIE standard1. The conversion between color spaces is represented by the

following matrices:

M1 = MRGB→XY Z =

⎛⎜⎜⎜⎝
0.488718 0.310680 0.200602

0.176204 0.812985 0.010811

0.000000 0.010205 0.989795

⎞⎟⎟⎟⎠

M2 = MXY Z→LMS =

⎛⎜⎜⎜⎝
0.38971 0.68898 −0.07868

−0.22981 1.18340 0.04641

0.0 0.0 1.0

⎞⎟⎟⎟⎠
Let PRGB , PXY Z and PLMS be the color pixels in their respective RGB spaces,

XY Z and LMS. We have:

PLMS = M2PXY Z

PXY Z = M1PRGB

PLMS = M2M1PRGB

[4.21]

In section 4.2, we have seen that the choice of a direction vector has an enormous

impact on the invisibility of a watermark. When we choose a fixed direction for all

the colors, we note strong psychovisual distortions in certain areas of the image.

However, invisibility is greatly improved when the best direction vector is chosen for

each color pixel. Since we assume that the psychovisual distortions are the same for

all the elements of ψ, we can choose the point furthest away from P , indicated by Pf ,

to allow the maximum numerical distortions authorized during integration in order to

reinforce robustness. The direction vector uP is defined such that uP =
−−→
PPf .

Note that E is the set of points belonging to the volume of perception associated

with P . We have the farthest point Pf from P :

Pf = max
P ′∈E

‖P − P ′‖2 [4.22]

1 White point of equal energy E.
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To estimate Pf or uP , we use the Jacobian: to extract an optimal direction, we

simply use the fact that the main axes of the ellipses can be calculated from the

eigenvectors of the metric. Note that, from equation [4.19], it is possible to directly

calculate the expression of the direction up for each color.

4.4.7. Psychovisual algorithm for color images

The algorithm that we present in this section makes it possible to insert a mark in a

color image whose quality is improved from a psychovisual point of view. Compared

to a classical insertion scenario, we suggest adding a step to adapt insertion to the

color space (illustrated in Figure 4.7).

X

Direction calculation

Proj

uP

SX Tr X ′

k

m

Extr

CX

Insertion

CY

Extr−1

Y ′Tr−1SYQVCY

Figure 4.7. Classical insertion diagram combined with color vector quantization (QVC)
based on a psychovisual model. The elements within the red frame represent the steps
of vector quantization. Tr() and Extr() are the space transformation and coefficient
extraction functions, k is the secret key and m is the binary message

Before transforming the host image in the chosen quantization space, we calculate

a direction vector for each color pixel of the image X . This direction vector will be
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defined from the optimal axis presented in section 4.4.6. Then we introduce the scalar

product, s (the “Proj” step in Figure 4.7).

s =< P, uP > [4.23]

We then obtain a scalar value image SX . Considering the knowledge of the set

of computed direction vectors, we have a one-to-one correspondence between X and

SX . In Figure 4.8, we can see that image SX is a dark grayscale version of the color

image X .

Figure 4.8. Pairs of images (host image X , associated scalar image SX ).
Random images from the Corel database (available at:

https://sites.google.com/site/dctresearch/Home/content-based-image-retrieval)

The next step then involves changing the representation of SX . A good first

choice of representation is the spatial domain, but a transformed space can be used

(transformed into discrete cosine [DCT] or transformed into wavelet coefficients

[DWT]). These different representations (denoted Tr and Tr−1 for the inverse

operation) of the image make it possible to obtain useful properties according to

requirements, such as breaking the image down into independent frequency bands.
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An extraction function Extr must then be chosen in order to select the coefficients

to be changed. In this chapter, we have chosen a function which randomly determines

insertion sites of the image SX . Another method for selecting coefficients was

presented in Chapter 3, which involves breaking an image down into blocks and then

randomly selecting coefficients in each block. The result of this extraction takes place

in the watermarking space, which is a secret space (known only to the creator of the

mark and its recipient). Access to this space can be secured with a secret key k.

Once the coefficients CX are selected, they are modified by the insertion method

(the LQIM method, but it is also possible to use other watermarking methods)

according to the message m, then integrated into the representation of the image used

for extraction and we get the marked image Y ′. So, for any modified color P ′ (QVC

stage), we have:

P ′ = P +
(s′ − s)

‖uP ‖2 uP [4.24]

where s′ is the scalar modified by the chosen insertion method.

The set of s′ forms the grayscale image SY . Of course, note that the use of different

error correcting codes, such as those proposed in Chapter 3 (e.g. Hamming, BCH,

Reed–Solomon and Gabidulin codes), is completely possible and straightforward. In

this chapter, we focus only on the “invisibility control” aspect and its optimization

with respect to robustness.

At the detection stage (Figure 4.9), we identify the grayscale image SZ by

recalculating the direction vectors associated with each color of the image received Z
(equation [4.23]), and then accessing the watermark channel using the Extr extraction

function and the key k.

Z

Direction calculation

Proj

uP

SZ Tr Z k m

Extr

CZ Detector

Figure 4.9. Classical mark detection diagram. As with insertion,
we find the extraction part of the scalar image SZ framed in red
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We then apply the detector associated with the chosen insertion method to the

coefficients CZ . If the power of the attack is reasonable and the mark robustness

parameters are well chosen, the estimate m′ should be the same as m.

As we said for the detection, the calculation of the direction vectors is an important

step. Assuming that the colors are reasonably modified, the ability to correctly detect

the message lies in the variation of the direction vector. In our experiments we will

see that the variations of the direction vectors are acceptable and make it possible to

ensure good detection.

We have detailed a classical watermarking algorithm for color images using a

color vector quantization method based on a psychovisual model of the HVS. The

LQIM method was chosen to be adapted to watermarking color images (introduced

in section 4.2). To be able to use it, we adapt the classical insertion diagram with our

psychovisual quantization model 4.7, then we integrate the quantifier Qm into the

insertion function of the LQIM method. The insertion sites are chosen randomly

from the coefficients available for insertion. One of the advantages of this insertion

strategy is improving the invisibility of the mark, especially in textured areas of the

image. At the detection stage, we also combine the extraction stage of the received

coefficients CZ (Figure 4.9) with the classical decoding scheme using the LQIM

detector.

Section 4.4.8 gives an evaluation of the robustness performance of the CLQIM

method against various image modifications.

4.4.8. Experimental validation of the psychovisual approach for color
watermarking

The images used for the experiments belong to the Corel database (1,000 random

images selected from the 10,000 available). The insertion sites are determined

randomly. To evaluate the invisibility, parameters such as the size of the message or

the dimension of the Euclidean lattice L of the Lattice QIM method are calculated in

order to obtain an adequate image quality and an adequate insertion rate.

4.4.8.1. Validation of invisibility

In this section, we propose different groups of marked images in order to

appreciate the improvement in invisibility, compared to marked images following a

vector quantization of constant direction vector.

We then denote the following two approaches by GA and AA:

– the color version with a constant direction axis u = (1, 1, 1) (GA). We have

chosen this direction vector because choosing the luminance axis is, in our opinion, a

satisfactory compromise in order to guarantee a good level of invisibility of a mark;
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– the color version with an adaptive direction axis uP (AA).

These two watermarking methods are the color adaptations of the LQIM method

previously presented in this chapter. For each approach, the direction vectors are the

same magnitude (arbitrarily set at 0.5). For the same level of digital distortion, it is a

question of validating, through experimentation, that the AA approach inserts a less

visible mark than the GA approach.

In these experiments, we evaluate the digital distortion thanks to the

signal-to-noise ratio, characterizing the quantization noise of the LQIM method,

denoted as DWR.

In Figure 4.10, we show examples of color images marked with the GA approach

of the LQIM method. For each image in this figure, we can easily see that the colors

saturate toward gray. It therefore becomes easier to perceive color differences by

comparing them to neighboring pixels. The visual appearance of quantization noise

is salt and pepper noise and it adds texture to the image.

Figure 4.10. Cropped color images (Lena and Kodak base of size 60 × 60) marked
with the LQIM method (GA approach), DWR � − 5.5 dB on average and ER = 0.5

With the AA approach (Figure 4.11), the quantization noise has the effect of

saturating the colors toward blue and green. This adapts according to the modified

color. It is therefore more difficult to perceive the noise. Compared to neighboring

pixels in areas of the same color, we find that detecting color difference is difficult.
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Figure 4.11. Cropped color images (Lena and Kodak base of size 60 × 60) marked
with the LQIM method (AA approach), DWR � − 5.5 dB on average and ER = 0.5

At equal digital distortion, images marked with the GA and AA approaches are

not affected with the same quantization noise from a psychovisual point of view. The

perception of quantization noise with the AA approach is much lower for the HVS

compared to that of the AA approach. We can see this in the images of Figures 4.10

and 4.11, but these results were also confirmed in other tests.

To able to better observe the insertion noise, we have chosen images of size

60 × 60 and have chosen a strong insertion rate (ER = 0.5). In practice, the images

are much larger in size (e.g. 1,080 × 1,920 for high definition) and the insertion rate

is weaker, which makes the insertion noise less visible for the HVS.

We repeated the comparison experiment of the GA and AA approaches described

above with different observers (15 in number) and with the Kodak image base,

composed of 24 elements of size 768 × 512. For each image of this database, we

offered a pair of images marked with the two color approaches GA and AA (still with

the LQIM method). For the 24 pairs of images, each observer voted for the “least

noisy” image.

The results of this experiment are presented in Table 4.1. Of these subjects, only

4% of images on average were described as “least noisy” with the GA approach. Of

these results, we conclude that the use of a psychovisual model allows us to obtain a

much better invisibility.
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Approaches GA approaches AA approaches

Average votes 4 ± 3% 96 ± 3%

Table 4.1. Psychovisual experiments of marked image comparisons

COMMENT ON TABLE 4.1.– Each person had to decide which of the images was more
degraded (a watermarked image with the constant approach, and the other with the
adaptive approach). The parameters are DWR = 20 dB, ER = 0.5 for each image.
This table shows the percentage of images noted as less degraded for each approach.

We now intend to compare the two approaches in terms of their robustness

performance against several image modifications. We offer a simple experiment for

this. We propose to insert a message of size n = 128 bits. In order to ensure

satisfactory image quality and mark invisibility, we determined the average

maximum quantization step before a mark was visible for each method. We measured

average bit error rates (100 repetitions for the same quantization step) depending on

the strength of the applied image modification. We now propose to analyze the

robustness against classical attacks.

4.4.8.2. Impact on robustness

4.4.8.2.1. Modification of luminance

We model the modification of luminance by equation [4.25]:

y = x+ β × (1, . . . , 1) [4.25]

where y is the modified version of x, the value of a pixel.

The robustness results are shown in Figure 4.12. The error curves oscillate like a

step function between 0 and 1 periodically. This attack is special because it applies

modifications that are not dependent on the image. This behavior is justified, both

by the use of the LQIM method, and by the structure of the error produced by the

modification of luminance (studied in detail in Chapter 3).

For the LQIM AA curve, the oscillation period is greater than that of the LQIM

GA curve, which gives a larger error-free interval around 0.

4.4.8.2.2. Modification in the HSV space

We now consider examples of color image modifications. By representing an

image in the HSV color space, we modify each color component h, s and v.
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Figure 4.12. Binary error for methods GA and
AA depending on the parameter β

In Figure 4.13(b), we observe that the LQIM AA SP curves are closer to 0 than

the LQIM GA SP curves on each component, therefore showing that taking an HVS

model into account allows us to improve the robustness of a watermarking algorithm,

not just its invisibility.

4.5. Conclusion

In this chapter, we have dealt with the challenge of the invisibility of hidden

information in the context of color images. For this, the latest developments of digital

watermarking for color images have been proposed. We find that the majority of the

methods are an extension of the approaches for grayscale images. We then showed

that, in many cases, the key is wisely choosing the color direction vector at insertion,

and this is true even with dedicated spaces, such as quaternions. We then recalled the

impact of this direction choice and discussed the importance of taking the HVS into

account.
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Figure 4.13. Bit error rate for (a) hue; (b) saturation;
and (c) value modification

We then discussed a psychovisual approach, allowing us to model the behavior of

photoreceptors in the human retina. Thanks to the calibration of the constants, based

on the measurements of MacAdam ellipses, the photoreceptor model makes it

possible to simulate the behavior of an average HVS in terms of the perception of

color differences. We then applied it to digital watermarking of color images in order

to extract the direction vectors needed for vector quantization and chose to adapt the

LQIM method to make it able to watermark color images. In terms of invisibility, this

method makes it possible to obtain much better invisibility than a non-adaptive

method with equal digital distortion. We also see an improvement in robustness. The

last section shows the importance of this parameter in an invisibility problem for

color watermarking.
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This chapter presents the basic concepts in steganography. These concepts most

often use digital images as a medium, but many of them can be applied to other content

coming from sensors, such as sounds or videos. After a reminder of the theoretical

foundations linked to steganography, we will present the fundamental principles of the

field and then detail the basic methods, using image in its spatial format1 or JPEG2.

The second part of this chapter will present more advanced concepts in

steganography; these concepts either allow an increase in the security, or take other

practical contexts into account (e.g. the steganography of a group of images,

steganography of color images or the use of a high-resolution image during

embedding).

For a color version of all figures in this chapter, see www.iste.co.uk/puech/multimedia1.zip.

1 In other words, where each pixel is coded by a gray level or by three color channels.

2 Here, the image is encoded as a set of DCT coefficients, see https://fr.wikipedia.org/

wiki/JPEG.
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5.1. Introduction and theoretical foundations

Steganography seeks to modify the content of a document (most commonly

called a “cover” document) in order to embed a message that is undetectable, by

producing a steganographied document called a “stego” . The practical context of the

use of steganography, presented in Simmons (1984) as “The Prisoners’ Problem”, is

presented as follows: Alice seeks to transmit sensitive information to Bob over a

benign communication channel (e.g. sending a vacation photo attached to an email).

The adversary, usually called Eve3, is able to detect the use of steganography

methods by using steganalysis methods4.

The rise of steganography and steganalysis came after September 11, 2001, when

American newspapers reported that the Al Qaeda group could use steganography

methods to communicate within their network. History has also shown that

steganography was used in particular for various sensitive, and most often malicious

activities, such as:

– terrorist networks5;

– pedophile networks, to hide images within images6;

– “botnet” networks, to send commands to slave computers without being blocked

by firewalls (Pevnỳ et al. 2016).

More generally, steganography can be used as a solution for communication,

without a hint of suspicion.

In the academic field, steganography and steganalysis have also benefited from the

enthusiasm at the beginning of the 21st century for methods that make it possible to

hide data (“data-hiding”). Such methods can also be used to address copyright issues

in digital content by linking the embedded message to the owner of the image. For

more than 20 years now, steganography and steganalysis have been well-established

disciplines within the broader field of information security.

In this chapter, we show key concepts in steganography using digital images as

media, however many of the concepts presented can be used for other media acquired

by sensors, such as sound or videos. The different building blocks of steganography

are illustrated in Figure 5.1.

3 For “eavesdropper”, a secret listener to private conversations.

4 These methods are described in Chapter 6.

5 See: www.unodc.org/documents/frontpage/Use_of_Internet_for_Terrorist_Purposes.pdf.

6 See: http://news.bbc.co.uk/2/hi/science/nature/2082657.stm.
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Figure 5.1. General operation of steganography
and roles of different actors (Alice, Bob and Eve)

In general, a steganography algorithm must face two constraints:

1) the embedding of the message must be undetectable; in other words, Eve must

not be able to detect either the use of the algorithm, or the embedding of a message;

2) the algorithm must also maximize the embedding capacity; in other words, the

size of the embedded message.

In the remainder of this chapter, we will focus our attention on steganography of

digital images, compressed in the JPEG format or not.

First, we will present the fundamental principles in steganography (section 5.2),

we will then offer a concise overview of the basic methods in steganography

(section 5.3), and finally conclude with a presentation of advanced methods

(section 5.4).

5.2. Fundamental principles

The theoretical contributions that make it possible to satisfy the constraints

presented above generally use information theory, coding theory and image analysis.

5.2.1. Maximization of the size of the embedded message

The embedding capacity, that is, the maximum size of the message that the

steganography algorithm is likely to embed in the cover content, is calculated using

the Source Coding Theorem by Shannon (1948). This theorem can be presented as

follows.

Let:

– xi, a sample i of cover image7;

7 By sample, we mean the value of a pixel of an image for one of the three color channels if it

is coded without loss, or the value of a DCT coefficient for the JPEG format.
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– a steganographic signal associated with sample i is defined by si ∈
{Kmin, . . . ,Kmax}, with {pi(Kmin), . . . , pi(Kmax)}, the (Kmax − Kmin + 1)
modification probabilities associated with each of the values of si. Note here that

for most relatively secure schemes, embedding only allows binary modifications (so

Kmin = −1,Kmax = 0 or Kmin = 0,Kmax = +1) or ternary (Kmin = −1,

Kmax = +1);

– an additive embedding scheme, where the sample content stego is given by

yi = xi + si.

Therefore, the Source Coding Theorem states that the amount of maximum

information supported by the sample yi is given by the entropy of the random

variable Si, so:

H (Si) = −
Kmax∑

k=Kmin

pi(k) log2 pi(k) bits [5.1]

The informed reader will note that this entropy does not depend on the host

sample xi. This is justified by the fact that the host content is known by Alice, who

can therefore design an encoding system that does not have to take the signal into

account, even if it remains unknown to Bob. This result is justified by the results on

the consideration of side information, as presented in Costa (1983).

From a practical point of view, taking the entropy calculation into account is

essential. Take an example where Alice tries to embed 100 bits in 1,000 pixels of a

grayscale encoded image (each pixel has a value between 0 and 255). If Alice uses

the basic least-significant-bit-based substitution method (also called LSB

substitution8, see section 5.3.1), on average, 50 pixels are modified like this and the

probability of modification of a pixel is therefore 50/1,000 = 0.05.

The source coding theorem shows that for the same average number of

modifications, the maximum message size that can be embedded using an encoding

method, which is less naive than LSB substitution, is equal to:

1000 (−0.05 log2 (0.05)− 0.95 log2(0.95)) ≈ 286 bits

so by going from 100 to 286 bits, the length of the embedded message is almost three

times greater than that of the embedded message by LSB substitution.

8 Least-significant-bit-based substitution methods (also see section 5.3.1) are basic methods

where in order to embed a message of N bits, the least significant bits of N pixels selected with

the secret key are directly replaced by the message to transmit.
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5.2.2. Message encoding

Finding a coding method that could be used in steganography and that was close

to Shannon’s entropy was not an easy task.

The coding methods with linear codes proposed very early on by Crandall (1998)

have made it possible to increase the embedding capacity (for a given average

number of modifications) without really approaching the theoretical limit. Just like

more advanced methods, these methods are based on the idea that there are several

stego documents that are coding the same message, and that sensible coding

involves selecting the stego content which is the closest to the cover content (see

Figure 5.2).

Figure 5.2. Coding for steganography: the coding system generates several code
words associated with the same message, m, in order to select the one that is closest
to the cover content, and so minimizes the distortion between the cover content, and
the stego content

Let us take the toy example of a cover content composed of 3 randomly drawn bits

[x1, x2, x3], and its stego counterpart [y1, y2, y3], and assume that the coding system

is looking to embed 2 bits by minimizing the average number of modifications. The

LSB substitution method9 involves selecting two of three bits with a secret key and

replacing them with the message to embed. Therefore, on average, each bit has a

probability of 1
2 × 2

3 = 1
3 of being modified. Now, if we use linear coding, which

involves acknowledging that the first bit is coded10 by m1 = y1 ⊕ y2, and the second

bit is coded by m2 = y2 ⊕ y3; then x2 is only modified if it allows both values of

x1 ⊕ x2 and x2 ⊕ x3 to be changed, that is, with a probability of 0.25. Furthermore,

x1 (respectiely, x3) is only modified if it allows the value of x1 ⊕ x2 (respectively,

x2 ⊕ x3) to change, that is, with a probability of 0.25 for each, and also a probability

of 0.25 that the 2 bits to be embedded are already present in the cover content. In the

end, the probability of modification of each bit is only 0.25, compared to 0.33 for the

9 See, once again, section 5.3.1.

10 With ⊕ being the operator XOR.
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LSB substitution scheme. Note once again that the source coding theorem says that

for a modification probability of 0.25, the maximum size of the embedded message

is −0, 25 log2(0, 25) − 0, 75 log2(0, 75) ≈ 0, 81 bit embedded per modified sample,

instead of 0.75 bit per sample, as proposed by the method described.

However, Filler et al. (2011) suggested a convenient way to get closer to this

maximum limit by designing codes using a coding system by syndromes, and using a

trellis. These codes are called Syndrome Trellis Codes (STC), they combine the

principle of syndrome coding and a sequential optimization algorithm, which allows

us to embed the desired message while minimizing the number of modifications

required (the Viterbi algorithm which follows the trellis). Note that this coding

system can be used more generally with any additive distortion11 between the cover

image and stego image. We do not go into detail about the operation of the STC, but

the reader can remember that in the case of an additive distortion, the performances

of the STC are very close to the maximum bound, given by the Shannon entropy.

5.2.3. Detectability minimization

As specified in the Introduction, a steganography algorithm will only be secure if

it is undetectable, which will happen if Eve does not suspect the presence of a hidden

message when analyzing stego content.

It is unrealistic to consider that detectability is directly proportional to the number

of modifications made to the cover image to embed the message. For example, a

modified pixel in a noisy part of the image (for example a texture) will help to

increase the detectability of the image much less than a pixel modified in a standard

part of the image, or even in the worst case, a constant area. In fact, it is easy to see

that Eve will have a much easier time finding a suspicious modification if it appears

in an area with weak fluctuations (or even zero when the pixel levels are saturated)

than in an area that difficult to model. The detectability measurement therefore

cannot be a simple Euclidean distance between the cover image and the stego image,

and we need to analyze the cover image beforehand in order to be able to associate

each sample of the image with its own empirical detectability.

The theoretical formalization adopted in most cases to minimize detectability is

the use of additive embedding costs. Each sample of the cover image xi is linked to

a cost ρki for each modification k (this comes down to considering that each sample

si of the steganographic signal is drawn independently of the others). The costs are

additive since the modification of a sample following embedding does not lead to a

11 See section 5.2.3 for a more precise definition of distorsion.
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modification of the costs related to the other samples12. The mathematical expectation

of the distortion D between the cover image and the stego image is therefore given

by:

E[D] =
∑
i,k

pki ρ
k
i [5.2]

Due to the lack of space, we cannot go into detail about the calculations that

highlight the relation between the modification cost ρki and the probability of

modifying each sample pki . However, it is important to remember that a Lagrangian

formulation13 makes it possible to minimize the distortion given in equation [5.2]

while respecting the constraint linked to entropy (equation [5.1]), in order to express

a clear relationship between these two characteristics. As an example, in the case of

binary embedding, and considering that the cost associated with no modification is

zero, the relationship between the cost of a modification ρi and its probability pi is

given as:

ρi = λ log
1− 2pi

pi
[5.3]

where λ is a constant depending only on the size of the message to embed.

It is important to note that in practice, these costs ρki can be used directly by the

STC in order to minimize a distortion which, when the number of samples is large, is

very close to D.

If this protocol follows a rigorous theoretical framework, the calculation of costs

ρki from the cover image is completely different. In fact, this calculation involves using

heuristic functions based on the rational that a cost must be high if the value of the

cover sample can be easily predicted from its surroundings; on the contrary, a cost

must be low if this same prediction becomes difficult; in other words, if the sample is

located in a noisy area.

The majority of implementations in steganography, therefore, seek to first calculate

the cost ρki for each sample i relative to each modification k, then second, use STC

coding to embed the desired message, while minimizing the sum of costs relating to

embedding. The breakdown of these different stages is illustrated in Figure 5.3.

12 Non-additive costs can, however, be considered via synchronization methods (see

section 7.3).

13 See: https://en.wikipedia.org/wiki/Lagrange_multiplier.
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Figure 5.3. General principle of embedding, encoding and decoding
in steganography. The secret key can be used to encrypt the message,

permute samples of cover content and/or configure the STC

5.3. Digital image steganography: basic methods

In this section, we go into detail about the different implementation methods in

steganography, which mainly differ by the function used to calculate the costs.

5.3.1. LSB substitution and matching

The substitution of the least significant bits (also called LSB substitution for Least
Significant Bits) is an extremely naive method, which involves replacing the least

significant bits of a pixel or DCT coefficient with the bit to be embedded. The least

significant bit being the parity bit, this embedding therefore amounts to applying the

rule specified in Figure 5.4(a). The decoding of the message embedded by Bob is

done very simply by reading the parity bits of the samples that have the message14.

Even though this steganography method is very simple, it has two major

drawbacks:

1) as shown in section 5.2.1, coding by substitution is clearly suboptimal;

2) the naive selection of the samples carrying the message also makes this method

very detectable, and there are even steganalysis methods that make it possible to easily

estimate the size of the message embedded by the LSB substitution, as in the example

presented in Dumitrescu et al. (2003) or in section 8.3.2 of Chapter 8. An alternative to

this embedding strategy involves using a random number by performing an operation

of type + 1 and − 1 in an equiprobable way to change the value of the least significant

bit: this is the principle of LSB matching, which is illustrated in Figure 5.4(b), and its

steganalysis is studied in section 8.3.3 of Chapter 8.

14 These samples can be chosen by Alice and Bob by using a same secret key.
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(a) LSB substitution (b) LSB correspondence

Figure 5.4. Principles of LSB substitution
and LSB correspondence, the dotted arrows represent

a modification performed with a probability of 0.5, n ∈ N+

5.3.2. Adaptive embedding methods

We now present adaptative steganography methods, that is, methods that analyze

the cover image beforehand in order to associate a detection cost with each sample.

These methods all use the rational so that a sample (pixel or DCT coefficient), which

is located in a complex or noisy area of the image, will be associated with a lower cost

(since the sample will be difficult to predict) than a coefficient found in a simple or

not very noisy area of the image.

The first two methods presented operate in the spatial domain, and the third

operates in the JPEG domain.

5.3.2.1. Example of costs in the pixel domain (HILL scheme)

The HILL scheme is remarkable for its simplicity and efficiency. The creators who

proposed this algorithm (Li et al. 2014) started from the principle that for an image

encoded in the spatial domain, the pixels belonging to textured or noisy areas had

to be associated with a low modification cost, while the pixels belonging to standard

zones had to be associated with a high cost. For this scheme, the characterization

of noise is simply done by using a high-pass filter H (differentiating filter) and two

low-pass filters, L1 and L2, which are also used to take into account the variations
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in the surroundings of the pixel considered. The calculation of the cost map ρ for an

image I, coded in grayscale, is then the result of three 2D convolutions:

ρ =
1

|I ∗H| ∗ L1
∗ L2 [5.4]

with:

H =

⎡⎢⎢⎢⎣
−1 2 −1

2 −4 2

−1 2 −1

⎤⎥⎥⎥⎦
and L1 and L2 are two averaging low-pass filters of sizes 3 × 3 and 15 × 15,

respectively.

Figure 5.5 shows the associated cost image for a given grayscale image. We can

see that the costs located in the textured areas are much lower than the costs located

in the standard areas.

5.3.2.2. Cost taking into account detectability (MiPod scheme)
MiPod is a much less heuristic method that involves matching a statistical

detectability to each cost (Sedighi et al. 2016). The statistical detectability of a

modification can be associated with a quantity, called deflection, which is linked to

the probability that the image or pixel considered belongs to the cover class or the

stego class. The greater the deflection, the more important the evidence added to the

stego hypothesis. Assuming that each pixel before quantization can be considered as

a continuous random variable following a Gaussian law of variance σ2
i , and that the

probability of performing an operation ±1 during embedding is equal to pi, then the

cost is given by:

ρi =
pi
σ4
i

[5.5]

with the square of the deflection being equal to p2i /σ
4
i for each sample.

It is important to note that the cost does not only depend on the properties of the

image, such as the variance σ2
i (directly estimated from the local variance of each

pixel of the image), but also on the modification probability pi; equation [5.3] is

therefore not directly suitable for embedding, but the resolution of the two

constraints presented in section 5.1 remains possible. We can also see that the cost

decreases when σ2
i increases (the noise associated with each pixel becomes greater

and greater), or when pi decreases (the probability of modifying the pixel decreases).

Figure 5.6 shows the modification probabilities of each pixel for two different

embedding rates.
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Figure 5.5. a) Cover Image. b) Associated cost map for the HILL algorithm. Image
textures are associated with the lowest costs. c) Modification probability map, the
maximum probability being equal to 1/3 for a ternary embedding and the maximal
embedding rate at log2(3) � 1.6 bit per pixel

5.3.2.3. Example of costs in the JPEG domain (UERD scheme)
The cost calculation proposed by the UERD scheme (Guo et al. 2015) is carried

out for cover images compressed in JPEG, so it is necessary to associate a cost with

each quantified DCT coefficient ci of the image (qi being the associated quantization

step). The authors of this scheme intend to ensure that the coefficients belonging to

textured blocks15 are associated with a low cost (high, respectively). Measuring

“texture” is simply performed by calculating the energy DB of the 8 × 8 B JPEG

block containing ci. This energy is defined by DB =
∑

i∈B qi|ci|, and we can see that

15 That is, containing many non-zero DCT coefficients.
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the constructed cost is proportional to the quantization step qi, in order to show the

fact that an operation of type (+1) on a quantized coefficient results in a difference of

qi on a DCT transform of the image. Apart from the DC coefficients that have a

slightly different cost, the cost ρi linked with each coefficient ci is therefore given by:

ρi =
qi

DB + 0.25
(
D←

B +D→
B +D↓

B +D↑
B +D↙

B +D↘
B +D↖

B +D↗
B
) [5.6]

The second value of the denominator makes it possible to take into account the

energies of the eight blocks related to the block considered.

Figure 5.6. Map of associated modification probabilities
for the MiPod algorithm for two different embedding rates

5.4. Advanced principles in steganography

After having presented the basic principles of steganography (coding and cost

calculation), we now present different ways which allow further improvements of the

security of an embedding scheme, or allow it to adapt to different contexts. We would

like to point out to the reader that these recent advances often remain associated with

areas where research will probably lead to further developments in the future. These

advanced principles are listed as follows:

– the synchronization of modifications, which makes it possible to correlate the

surrounding modifications of the image;

– steganography of color images, which applies the methods used on grayscale

images to three-component images;

– batch steganography, which allows the distribution of the message within several

images;
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– the use of side information, which takes errors related to quantization into

account, in order to improve the security of the scheme;

– steganography mimicking a statistical model, which reinforces security by

making the embedding truthful to a statistical model of the image;

– adversarial steganography, which uses an embedding that directly seeks to

bypass the steganalyst;

– finally, the conclusion highlights the need to develop robust steganography
methods to transcoding.

5.4.1. Synchronization of modifications

In order to decrease the detectability of an embedding scheme, a possible strategy

is to synchronize the modifications. If, for example, in the spatial domain, a pixel

has been modified by an operation of type (+ 1), it may be a good idea to favor an

embedding of type (+ 1) rather than (+ 0) or (− 1) on a neighboring pixel, in order

to favor the appearance of a stego signal whose variations are similar to those of the

image. Therefore, it is necessary to make the calculation of the cost of a coefficient

dependent on the modifications already carried out in its surroundings. This is the

principle of the synchronization of modifications.

A general way to carry out this synchronization is to break down the natural

sampling grid of the coefficients that code the image16 into a group of separated

grids17, such that for a given lattice, each coefficient can be modified independently

from the others, that is, using an additive cost. This principle is illustrated in

Figure 5.7 where four lattices {Λ1,Λ2,Λ3,Λ4} are used.

It is important to distinguish two main classes of synchronization methods:

1) heuristic methods, which increase or decrease the costs related to embedding.

The vast majority of methods belong to this class. For example, if in the spatial domain

a + 1 has been carried out on a pixel, the cost relative to the modification (+ 1) on a

related pixel will be reduced; on the other hand, a cost relating to a modification (− 1)

will be increased;

2) methods based on probabilistic models of the steganographic signal. Here, the

costs come directly from the conditional probabilities specified above, and then apply

the relationships between the costs and the modification probabilities.

16 For example, the natural grid of the pixels of the image in the spatial domain, or a matrix of

DCT coefficients in the JPEG domain.

17 Called lattices.
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Figure 5.7. Principle of synchronized embedding using two or four lattices

COMMENT ON FIGURE 5.7.– The costs or the probabilities of embeddings are first
calculated on lattice Λ1, where the modifications are assumed to be independent. The
embedding is then carried out on Λ1, then the costs or the probabilities of embeddings
are calculated on lattice Λ2, taking into account the modifications already made on
Λ1. When four lattices are used, the algorithm then iterates up to the lattice Λ4, where
the costs are calculated from the modifications made to Λ1, Λ2 and Λ3. The arrows
represent the connectivity relationships used to account for dependencies and update
costs.

In order to illustrate an implementation belonging to the first class method, we

briefly present the method proposed by Li et al. (2015) via the synchronization scheme

Clustering Modification Directions (CMD). This scheme can be used, for example,

with the cost proposed by HILL in section 5.3.2.1. Four lattices are used (see Figure

5.7(b)). Without loss of generality, here we consider a modification of type (+ 1),

where μij is the average of the modifications already made in the surroundings of the

pixel (i, j) on previous lattices; the new cost ρ′ij is given by :

ρ′ij (+1) =
1

9
ρij (+1) , if μij > 0 [5.7]

ρ′ij (+1) = ρij (+1) , if μij ≤ 0 [5.8]

Note that the weight 1/9 is arbitrary and is used to maximize the performance of

the scheme. The embedding stops once all four lattices have been searched. Figure 5.8

shows the effect of synchronization on the modifications (− 1/+ 1) made to the image,

and shows how this strategy helps facilitate related modifications. The gain linked

to synchronization, in terms of practical security, is significant, since the probability
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of detection error for the steganalyst can increase by 5%, with relation to the HILL

scheme for a embedding rate of 0.4 per pixel.

(a) HILL (b) CMD

Figure 5.8. Visualization of modifications (− 1, + 1) made to the image
without synchronization using a) the HILL method and b) the CMD strategy

COMMENT ON FIGURE 5.8.– We can see that changes of the same sign are more
related when synchronization is used. Also note that even if the security of the schema
is increased, the number of modifications still increases by 20% on average after
synchronization.

5.4.2. Batch steganography

Batch steganography, introduced by Ker (2007), considers a scenario where Alice

does not have a single image to embed her message, but several images. Unlike a

classical steganography scenario where Alice only transmits one image to Bob, here

Alice will have to distribute the message in each of the images making up the group.

The enemy, Eve, could design an analysis method using the group of images sent by

Alice (which leads to group steganalysis, or pool steganalysis, see section 8.6.6 of

this work).

The main part of the problem with batch steganography is therefore how Alice

distributes her message in different images. From a practical point of view, this

scenario is explained in at least two situations: when Alice transmits several images

to Bob at once and when Alice sends images to Bob sequentially. Note that in the

first case, the size of the message transmitted will be known, while in the second
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case, Alice may have to adjust the total size of the message to be transmitted to suit

her communication needs. Without going into detail in terms of steganalysis (this is

not the objective of this chapter), it should be noted that the more content transmitted

by Alice to Bob that Eve accumulates, the better she will be able to perform an

accurate analysis to decide whether or not Alice is transmitting stego data to Bob.

The main message distribution methods studied in the literature (Pevnỳ and

Nikolaev 2015; Cogranne et al. 2017; Zakaria et al. 2019) are described as follows:

– the transmission of the message in the smallest possible number of images, and

the other images of the group therefore belonging to the cover class;

– the distribution of the message evenly within the group; this uniformity can result

in:

- an identical message size for each image,

- an identical embedding rate for each image18;

– but also distribution strategies taking into account the content of the images:

- the cost of modification (see equation [5.2]) is constant for each image,

- the statistical distortion (see equation [5.5]) is constant for each image,

- the overall cost minimization applied to all the images. Note that this strategy

is only possible if Alice first has all of the cover images to transform into stego images,

while this is not the case for the two previous strategies.

If the conclusions related to the safest strategy are not developed enough to be

definitive yet (they depend on Eve’s steganalysis strategy), some interesting results

emerge:

– in Cogranne et al. (2017), the overall cost minimization provides the most secure

strategy for an all-knowing steganalyst, who would know the distribution strategy;

– when this strategy needs to be estimated (Zakaria et al. 2019), constant statistical

distortion would maximize practical security.

Note that in the cited references, neither transmitting the message in as few images

as possible nor the strategy of evenly distributing the message across the group appears

to be the best option.

18 In the case of images in the JPEG format, with the embedding rate often being expressed in

bits, not non-zero AC coefficients; this is not equivalent to an identical size.
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5.4.3. Steganography of color images

The methods of the literature propose to embed the message in a grayscale

image in the majority of cases, and a really fast shortcut would involve developing

a steganography method for color images19, by inserting the same amount of data in

each channel independently. This reasoning is flawed for several reasons:

1) the color components are not independent, this dependency is important

for red/green/blue channels and much less important for the luminance/red

chrominance/blue chrominance channels20 used by JPEG coding;

2) the steganalyst has many more samples to carry out their analysis (at the most,

three times more data), and the results from Ker et al. (2008) show that at equal

detectability, the size of the embedded message must theoretically change with the

square root of the number of samples for naive coding;

3) the content of each of the channels can be very different from one channel to

another: while it is often very similar for RGB images, for JPEG images coded in

luminance/red chrominance/blue chrominance, the perceptual content is much more

significant on the luminance component than on the two chrominance components. So

it is suitable to embed less data on these two components.

A slightly more thorough way of approaching the problem of color steganography

is to understand it as a problem of batch steganography (see section 5.4.2), where

Alice has to distribute the message within each of the three channels.

An approach like this was developed by Cogranne et al. (2020) in the case of

JPEG images. The different strategies mentioned in section 5.4.2 are applied, and the

authors find that the strategy minimizing the statistical distortion is most often the

most effective. An alternative proposed by Taburet et al. (2018) consists of setting the

proportions of the message to be distributed among the three components. Practical

security is maximized when 80% of the message is embedded into the luminance

component, while no subsampling is applied to the chrominance channels21. Finally,

when the images are coded in the spatial domain, the work by Wang et al. (2019) has

shown the importance of being able to synchronize the modifications, both between

the neighboring pixels and the color components.

This scheme intends to first carry out embedding on the green channel of the

image, and then use the CMD algorithm (see section 5.4.2) to update the costs on the

red and blue channels, according to the modifications made on the green channel.

19 That is, coded on three components.

20 See: https://fr.wikipedia.org/wiki/Chrominance.

21 For more information on color subsampling, see: https://en.wikipedia.org/wiki/Chroma_

subsampling.
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The green channel is chosen first since it is the one that is the most correlated with

the other two channels. The updating rules are identical to the CMD rules presented

in equations [5.7] and [5.8], but the term μi,j now takes the modification carried out

in the green channel into account. Compared to the naive HILL algorithm, the gain in

terms of practical security is substantial (the error rate increases by more than 10%)

when the embedding rates are about 0.4 bit per pixel.

5.4.4. Use of side information

Side information embedding methods use a reliable measure of undetectability

based on the quantization error produced when transforming the image, such as

JPEG compression, a geometric or colorimetric transformation followed by a

recompression. The term “side information” comes under “the pre-cover image”, that

is, the image before it is transformed into a cover image, and which is encoded, either

in the continuous domain or in a high-resolution domain (e.g. 16 bits for the

pre-cover image versus 8 bits for the cover image).

In the case of binary embedding, intuitively it is quite easy to realize that if the

coefficient before quantization is almost equidistant from two quantization cells (case

(a) in Figure 5.9), then this coefficient can be modified equally toward either of the

cells and in this case, the modification will be undetectable. However, if the coefficient

happens to be very close to a quantization cell (case (c) in Figure 5.9), then modifying

this coefficient toward a cell further away will be more detectable.

Figure 5.9. Principle of weighting by the quantization error: situation (a), where the
unquantized value is equidistant from two quantized values, will be more favorable
to the modification of the value toward the surrounding quantized area than situation
(c), where the unquantized value is very close to the quantized value. Situation (b) is
intermediate

We can cite several applications, in chronological order, which use the concept of

side information.

In the case of double JPEG compression, the Perturbed Quantization (PQ)

algorithm (Fridrich et al. 2004, 2005) suggested using wet-paper codes to modify

only the DCT coefficients, such as ( 12 − e) = 0, where e represents the quantization

error associated with the quantization step q (see Figure 5.9). Filler et al. (2011)
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revisits this statement by specifying that the cost must be equal to ρSI = ( 12 − e) for

the non-zero coefficients, which do not change. This strategy is called S1.

The initial article presenting STC offered by Filler et al. (2011) also proposes

three other strategies called S2, S3 and S4. In each case, the zero coefficients are not

modified. Also note that the costs only depend on the pre-cover content (i.e. before

quantization), unlike the adaptive schemes that were presented before.

– For S2, ρSI = ( 12 − e)q.

– For S3, ρSI = 1 if the quantified value is equal to –1 or 1 and ρ = 2
(
1
2 − e

)
otherwise.

– For S4, ρSI = q, if the quantified value is equal to –1 or 1 and ρ = 2
(
1
2 − e

)
q

otherwise.

Among the four strategies, S1, S2, S3 and S4, Filler et al. (2011) show that it is

strategy S4 that is the least detectable.

The article presented by Denemark and Fridrich (2015) reviews the use of side

information for modern adaptive embedding algorithms S-Uniward (Holub et al.
2014), HILL and J-Uniward (Holub et al. 2014). For each of the algorithms, binary

and ternary embeddings are considered. For binary embedding, the relationship

between adaptive cost ρAd and the new cost is given as:

ρSI = 2

(
1

2
− e

)
ρAd [5.9]

We can see here that the quantization step q has been replaced by the adaptive

cost ρAd, which amounts to considering that this implementation seeks to minimize

the difference between the sum of costs produced by the conversion from pre-cover

content to cover content. Also note that factor 2 does not change the optimization

process that involves minimizing the sum of costs.

For a ternary embedding, the authors of the same article propose two different

variations. Without loss of generality, if the unquantified value is closer to the lower

value than to the upper value (which is the case, for example, (b) in Figure 5.9), then

the (–1) operation does not take side information into account (it is an arbitrary choice,

perhaps justifiable by experimentation):

ρ
(−1)
SI = ρAd [5.10]
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while the operation (+1) considers:

ρ
(+1)
SI = 2

(
1

2
− e

)
ρAd [5.11]

It should be noted that most often the use of side information makes it possible to

considerably increase the performance of the embedding scheme in terms of security.

For example, the SI version of J-Uniward for a quality factor of 75% allows the

increase of the error rate in steganalysis by more than 20% for an embedding rate

around 0.4 bit per non-zero AC coefficient.

5.4.5. Steganography mimicking a statistical model

Another relatively intuitive strategy for hiding information is camouflaging

(unlike methods that use a cost measuring statistical distortion); here the idea is to

directly mimic the statistical properties of the cover image. As an illustrative

example, if the cover content can be completely characterized by a given distribution

f(), it is “enough” to produce stego content, also following the distribution f().

Such an operation, however, is only conceivable when we can characterize f()
clearly. If not, the embedding inevitably becomes detectable. In this section, we

present two examples based on the principle of mimicking, one relatively old and the

other more recent.

5.4.5.1. Distribution of DCT coefficients

Sallee (2003) proposes to mimic the distribution of the DCT coefficients of a

JPEG image. The chosen distribution f() is a generalized Cauchy distribution of type

f(x) = p−1
2s (|x/s|+ 1)−p, where p and s are two parameters to estimate. The author

assumes that the coefficients are statistically independent of each other. The

“mimicking” is carried out by ensuring that the distribution of the coefficients, after

setting the least significant bits to zero, remains unchanged. The coding is based on

an arithmetic decoder that makes it possible to embed a message while respecting, at

best, the probabilities of appearance of each of the values of the coefficients. The

only constraint linked to this type of coding is that the histogram of coefficients, with

their least significant bits at zero, must remain unchanged to be able to build a

decoder, which is possible for this implementation, but can be difficult in other

circumstances.

This method was pioneering, while also offering advanced concepts in

steganography at the same time (imitation of a model, advanced coding) and it has

remained a reference in steganography for a long time. However, it has become

relatively detectable by steganalysis methods that capture the dependencies between

the DCT coefficients, since they are not preserved.
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5.4.5.2. Photonic noise

Much more recently, Bas (2016) and Taburet et al. (2020) sought to imitate the

statistical model of photonic noise, either regarding the pixels of the image or the DCT

coefficients. Here, steganographic embedding (called “natural steganography”) does

not mimic the statistical model of the cover image, but instead mimics the statistical

model of a cover image that would have been acquired with a higher ISO sensitivity

than that of the cover image.

The statistical distribution of this photonic noise depends on the processing chain

that makes it possible to switch from the RAW image saved by the sensor to the

cover image (coded in the spatial domain or in the JPEG domain). In the RAW

domain, the statistical model is simple since the photonic noise applied to each

photo-site is independently distributed according to a normal distribution

N (0, aμ+ b), where μ represents the noise-free value of the photo-site and (a, b) are

the constants linked only to the sensor and parameter ISO1 (also see Figure 5.10(a)).

In the RAW domain, the steganographic signal added to the photo-sites is also

distributed by normal distribution N (0, a′x + b′), where x is the value of the

observed photo-site and (a′, b′) are chosen to mimic a sensitivity ISO2 > ISO1.

Assuming that x � μ, the image seems to have been corrupted by a photonic noise of

distribution N (0, (a+ a′)μ+ b+ b′).

(a) Standardized histogram of photonic noise

(Leica Monochrome, ISO 4 000) in the RAW domain and

associated normal distribution (dotted lines)

(b) JPEG intervening

blocks for an

embedding carried out

in the central block

Figure 5.10. Natural steganography seeks to mimic the normal distribution of the
photonic noise a); this distribution in the JPEG domain becomes multivariate, and it
must use a lattice decomposition to take the correlations between the DCT coefficients
b) into account
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Since an image developed and transmitted by Alice is rarely in the RAW domain,

it is necessary to model the distribution of the photonic noise in the spatial domain or

in the JPEG domain. In both cases, when the development is linear, the distribution

of the steganographic signal is a multivariate Gaussian, which takes into account the

relationships between neighboring pixels or neighboring DCT coefficients.

Therefore, from a practical point of view, the modifications should be synchronized

(see section 7.3) on a number of lattices that can be very large (4 × 64, see also

Figure 5.10(b)). Furthermore, the conversion between the law of probability imitating

the photonic noise and the costs used during the embedding is done using

equation [5.3].

When it is possible to correctly model the image development chain, natural

steganography allows a large amount of information to be embedded22, while also

ensuring good, practical security. These good performances are explained, on the one

hand, by the methodology used (imitating a statistical model), and, on the other hand,

by using synchronization schemes (see section 7.3) and the RAW image that exploits

the rounding error (see section 5.4.4).

5.4.6. Adversarial steganography

Adversarial steganographic methods automatically take into account an enemy,

the steganalyst, Eve, to produce embedding costs. We can consider two families of

adversarial methods described below: attacking methods and methods using

adversarial generators.

5.4.6.1. Attacking steganography

Adversarial steganographic methods are designed in such a way that Alice

directly seeks to bypass the enemy, in this case, the steganalyst Eve. These schemes

can become repetitive: Alice first uses an embedding scheme Ins1() and Eve

constructs a steganalysis method An1() that seeks to detect Ins1(). Second, Alice

tries to design an embedding scheme Ins2(), which will bypass An1(). Depending on

the security scenario considered, that is, depending on Alice’s knowledge of Eve’s

strategy and vice versa, this game between Alice and Eve can continue to develop.

Eve can, for example, design a method An2() seeking to detect Ins2() or

{Ins1(), Ins2()}. Alice can then try to bypass this new classifier via a Ins3() scheme,

and so forth.

The first adversarial embedding was proposed by Kouider et al. (2013), here the

costs used by Ins2() are built from a set of linear classifiers (see section 8.4.2) taught

22 In direct relation to the gap between the two ISO parameters.
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to detect Ins1(). Therefore, if a modification of type +1 is made on a coefficient xi,

the cost ρi will be such that:

ρi =
∑
k

[fk(xi + 1)− fk(xi)] [5.12]

with fk() being the function that returns the value before thresholding for the kth
classifier.

In this way, the low costs are associated with undetectable modifications.

More recently, Tang et al. (2019) proposed an adversarial scheme where the

enemy, Eve, trained a deep neural network An1(). These networks have two

advantages; they have become the references in steganalysis (see section 8.5 of

Chapter 8), and the function An1() is a function which differentiates itself simply

and quickly. In general, the costs of certain DCT coefficients of the image are

modified for a modification (+1) as follows:

ρ′i(+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
αρi(+1) if∂An1

∂xi
(x) < 0

ρi(+1) if∂An1

∂xi
(x) = 0

αρi(+1) if∂An1

∂xi
(x) > 0

[5.13]

where α is usually 2.

Therefore, the costs decrease if the modification allows the image to move from

the cover region to the stego region (negative derivative for a (+1) operation), and

they increase in the opposite scenario. This new embedding method Ins2(), called

ADV-EMB (for Adversarial Embedding), most often allows the classifier An1() to be

bypassed, but does not give Alice a solution if Eve intends to train a new detector

again An2() targeted at Ins2(), because in the next step, Alice will have to face two

enemies, An1() and An2().

To answer this problem, Bernard et al. (2019) offered a strategy, involving the

iteration k in selecting the adversarial stego image generated during the k first

iterations (each image bypassing the last classifier trained by Eve), which bypasses at

“best” (i.e. the most considered as a cover image) the best k classifiers (see also

Figure 5.11, which illustrates the strategy). In game theory, this strategy is called a

min–max strategy. This strategy allows each iteration to increase the practical

security of the embedding scheme. The gain can be significant, for example the
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adversarial version for the UERD scheme (see section 5.3.2.3) allows, after eight

iterations, the increase of the error rate in the detection of more than 10% for an

embedding rate of 0.4 bits per non-zero AC coefficient.

Figure 5.11. The first two iterations of the strategy proposed by Bernard et al. (2019)
on a toy example, where the enemies are linear classifiers and the marked distance

at the decision boundary represents the output value of the functions Ank()

COMMENT ON FIGURE 5.11.– (a) The first iteration, for a cover content x, the
original stego content Ins1(x) is logically replaced by its adversarial version
Ins2(x) (boxed); at this stage, Eve only has one classifier An1(). (b) Eve constructs
a new classifier An2(), which is again bypassed by Alice, creating the content
Ins3(x). In the end, the content chosen by Alice will be the content Ins3(x), it is, in
fact, the most difficult content to classify by the best classifier; in this case, An1(),
since this maximizes its output for the best adversarial content.

5.4.6.2. Steganography through adversarial generator

If attacking steganography can attack a specific embedding scheme by seeking

to bypass it, there are adversarial methods that automatically learn to generate

embeddings that try to be undetectable. These methods, based on the concept of

generative adversarial networks23, use two neural networks, one playing the role of

the steganograph (Alice) and the other playing the role of the steganalyst (Eve). The

optimization of the respective constraints of Alice and Eve is done together. The basic

principle of this type of scheme first presented by Tang et al. (2017) and improved

by Yang et al. (2019) is illustrated in Figure 5.12, where two neural networks are

shown:

1) an embedding probability generator network, which analyzes the image in order

to predict a probability of modification pi for each pixel (i). The associated cost,

23 See Goodfellow et al. (2014).
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ρi, is then calculated using equation [5.3]. This network is associated with a loss

function, related to the size of the message to be embedded via equation [5.1]. This

generator analyzes the cover image based on a network initially dedicated to image

segmentation;

2) an adversarial network, playing the role of the steganalyst, using a steganalysis

network as detailed in section 8.5 of Chapter 8, and which is associated with a loss

function related to the detectability of the embedding used.

Figure 5.12. Principle of steganography based on adversarial generators

The training of the two networks takes place alternately:

1) the loss function of the generator is a weighted sum of the loss associated with

the size of the embedded message and the loss associated with detectability. The aim

here is to find an image generator capable of embedding a message of the desired size,

while minimizing detectability;

2) the enemy looks for it, only to maximize detectability, as traditionally in

steganalysis, its loss function uses a group of cover images and stego images for

training.

So that the training of these two networks is possible, it is necessary that all of the

operations performed are differentiable: the function generating a stego image must

be able to be differentiated with respect to its parameters. The embedding function is

therefore modified so that it takes this constraint into account.

In terms of performance, the embedding scheme obtained by Yang et al. (2019)

after the convergence of the system makes it possible to have performance, in terms
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of detectability, which is slightly superior to the HILL scheme (see section 5.3.2.1),

which is remarkable given the totally automated nature of this approach.

5.5. Conclusion

This chapter concludes by clarifying that the field of steganography, which saw

its first formalizations at the end of the 20 century, remains in constant development.

These developments are linked to the fact that the steganalysis domain is progressing,

but also that new paths (see section 5.4) have emerged.

If other areas of research were presented by Ker et al. (2013) (non-additive

embedding, scaling laws, aspects linked to security), it should also be noted that the

future methods of steganography will increasingly have to take possible

transcoding24 of stego content into account. In fact, this operation is used more and

more by social networks or videoconferencing platforms to have a transmission rate

that can adapt to the quality of service. Steganography will then have to take into

account the constraints linked to the watermarking of documents (see Bas et al.
(2016)) in order to allow indetectable transmission, but also be robust to this

processing that has become common.
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Traitor Tracing

Teddy FURON
IRISA, University of Rennes, Inria, CNRS, France

This chapter presents the problem of traitor tracing and the most efficient solution

known, Tardos codes. Tracing codes form an application overlay to the transmission

layer by watermarking: a codeword is generated for each user, then inserted, by

watermarking, into a confidential document to be shared. First and foremost, the

chapter emphasizes the modeling of collusion when several traitors combine their

copies. Thanks to this model, mathematics (statistics, information theory) give us the

basic limits of this tool.

6.1. Introduction

A valuable document is distributed to a group U of n users, each labeled by an

integer: U = [n], where [n] := {1, . . . , n}. These users are not to be trusted. Some of

them may “leak” this document. Nothing can stop them, apart from a deterrent

weapon: traitor tracing. Each user receives a unique personalized copy of the content.

We assume that it is possible to do this personalization by inserting a unique

codeword into the content using a watermarking technique. If a leak occurs, decoding

the watermark of the illegal copy will reveal the identity of the traitor, exposing them

to severe prosecution. Traitor tracing explores the case where several traitors secretly

For a color version of all figures in this chapter, see www.iste.co.uk/puech/multimedia1.zip.
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cooperate to cover their tracks and prevent identification. This group of dishonest

users is called a collusion.

This chapter is organized as follows. Section 6.1 introduces the main components:

code construction, collusion strategy, accusation with a simple decoder, based on a

score function and thresholding. Section 6.2 provides a simplified proof of Tardos’

original scheme. Section 6.3 presents the many extensions found in the literature, two

of which are detailed in sections 6.4 (the search for better score functions) and 6.5 (the

search for better thresholding).

6.1.1. The contribution of the cryptography community

Cryptologists were the first to study this problem. They came up with a model

that explains what content and collusion attack are. Content is a series of discrete

symbols (e.g. bits), some of which can be modified without damaging the use of the

content. Only the defender (the official source of the document) knows the location

of these modifiable symbols, which they can use to insert a user’s codeword into the

content. On receiving the document, the traitors can reveal certain so-called

detectable positions by comparing their versions. This model, known by the name

Marking Assumption, was invented by Boneh and Shaw (1998).

The model restricts what traitors can do to detectable positions. The group of c
traitors is denoted by C = {j1, . . . , jc} ⊂ U . The narrow-sense version (or restricted
digit model) requires traitors to assemble the pirated copy of the document symbol

by symbol. If they have the same symbol in a certain location, the position is not

detectable and this symbol is found in the pirated copy. Otherwise, at a detectable

position, they choose one of their symbols at this location, according to a certain

collusion strategy. This model is summarized by:

yi ∈ {xj1,i, · · · , xjc,i}, ∀i ∈ [m] [6.1]

where y is the hidden sequence in pirated content, yi is its symbol at the ith position

and xj,i is the hidden symbol in the copy of the jth user at position i.

Note that there are as many codewords (xj)
n
j=1 as there are users, and their length

is m.

There are other less restrictive models for collusion: the wide-sense version or

arbitrary digit model (Boneh and Shaw 1998), the unreadable digit model (Boneh and

Shaw 1998), the general digit model or the weak marking assumption (Safavi-Naini

and Wang 2001; Fodor et al. 2018).

The second contribution of cryptologists was the definition of desirable properties

of a code (group of identifiers) (Stinson and Wei 1998) and the proposal of solutions
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that were mainly based on error correction codes. These will not be covered since we

now know that Tardos codes are better.

6.1.2. Multimedia content

In multimedia applications, content is modeled as a series of blocks (a few

seconds of audio, a scene from a movie, a block of pixels from an image). A

watermarking technique (see Chapter 3) hides a symbol of an identifier in each block.

The idea of detectable position is useless here: everyone knows that each block hides

a symbol. However, watermarking is a secret codeword primitive. Without this

codeword, we assume that we cannot read or modify the hidden symbols. Therefore,

an attack involves constructing the pirated copy by copying and pasting blocks from

the personalized versions. Thus, the Marking Assumption model described in

equation [6.1] becomes valid.

Figure 6.1 shows a standard solution in the film industry (called “DNA

watermarking”). The watermarking of the video blocks is done in advance. For a

binary code, there are two versions of each block: watermarked with a “1” or a “0”.

The personalization during the distribution is fast because it is enough to sequentially

take the blocks that hide the codeword of the user (Shahid et al. 2013). When the

traitors have a certain block in only one version (watermarked with “1” for example),

this symbol ends up in the pirated copy.

Figure 6.1. Sequential watermarking of a movie. A thumbnail image
represents a video block, watermarked to hide the symbol “1” or “0”. The
traitors sequentially form a pirated movie by selecting one of their blocks
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6.1.3. Error probabilities

The most important criterion in the specifications is to avoid accusing an innocent

user. The probability of accusing at least one innocent user is noted by PFP. This

probability must be low and we must make sure that it is smaller than a level ηR
stated. This is what we call proof of robustness.

The second criterion is the identification of traitors. We must set a goal:

– “catch one”: the aim is to identify at least one traitor;

– “catch all”: the aim is to identify all of the traitors. You must assume that all

traitors participate in the collusion fairly. It is impossible to identify a traitor if they

have little involvement in the counterfeiting of the pirated copy;

– “catch a colluder”: the aim is to identify one traitor in particular.

The completeness of a scheme comes down to proving that the probability PFN of

not achieving the set goal is smaller than a certain stated level ηC . The first two aims

require investigating the events of accusation of the c traitors. This is difficult because

these events are not independent. The last aim is simpler because it only considers one

traitor.

In practice, ηC should be low enough so that traitor tracing is deterrent enough.

PFN is sometimes used as a metric to compare accusation schemes that meet all of the

first criterion on ηR. Other comparisons are based on the number of identified traitors

(“catch many”) still under the constraint PFP ≤ ηR.

6.1.4. Collusion strategy

The collusion strategy, or attack, describes the process that traitors use to create

pirated content, and more precisely its impact on the series of symbols that will be

extracted by decoding the watermark of the pirated content. This series of symbols is

called the pirated series and is denoted by y.

The descent set is the set of all pirated series that a collusion can construct from the

codewords of the traitors. According to the Marking Assumption [6.1], the descent set

can contain 2md series for a binary code, where md < m is the number of detectable

positions. A working hypothesis is that traitors share the risk evenly (unless there are

traitors among traitors; seec Zhao and Liu (2006)), which reduces the descent set.

How the accusation behaves for each pirated series of this set should then be judged,

and this should be done for any possible collusion of a certain size. This is impossible.

It results in more assumptions about the collusion strategy.
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Four hypotheses are commonly used (Furon et al. 2008):

– memoryless (Moulin 2008, definition 2.4): as we will see later, in Tardos

codes, the symbols of the identifiers are statistically independent. We make the same

assumption about the symbols of the pirated series. So the value of yi depends on the

traitors’ symbols at this position only {xj1,i, · · · , xjc,i};

– permutation invariant (Moulin 2008, definition 2.5): there is no concept of order

among traitors. So the way of deciding the value of yi is invariant to any permutation

of {xj1,i, · · · , xjc,i}. This means that this strategy only considers the empirical

distribution (the histogram) of these symbols. In the binary case, this distribution is

completely defined by the number σi of symbols “1” to position i: σi :=
∑

j∈C xj,i

(so the number “0” is c− σi);

– stationary: we assume that collusion has a unique strategy that it employs across

all positions. So we can leave out the index i ∈ [m] later;

– random: this strategy is not necessarily deterministic.

The following model of a collusion attack of size c comes from these four

hypotheses:

θc := (θc,0, . . . , θc,c)
� ∈ [0, 1](c+1), with θc,σ := P (Y = 1|Σ = σ) [6.2]

The attack is then described by the probability that the traitors choose a symbol

“1” in the pirated series, when they have σ “1” of c symbols in their codeword to a

certain position. In other words, traitors have c+1 biased coins. At a certain position i,
they have σi symbols “1”, they then flip the coin σi to choose the value of the symbol

yi. The Marking Assumption (see equation [6.1]) requires that θc,0 = 0 and θc,c = 1.

Amiri and Tardos (2009) mention an eligible channel. This model defines the set Θc

of size c collusion strategies of size:

Θc := {θc ∈ [0, 1](c+1)|θc,0 = 1− θc,c = 0} [6.3]

Here is a list of classic strategies at each position i ∈ [m]:

– interleaving attack (or uniform attack): traitors randomly pick which of them

will place their content block into pirated content. If σ of them have block “1”, then

the probability of this block ending up in the pirated copy is:

θc,σ = σ/c, ∀σ ∈ {0, . . . , c} [6.4]
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– majority vote: traitors choose the majority symbol:

θc,σ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, σ > c/2

1/2, σ = c/2 (if c is even)

0, if not

[6.5]

– minority vote: traitors choose the minority symbol when possible:

θc,σ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 0 < σ < c/2whereσ = c

1/2, σ = c/2 (if c is even)

0, if not

[6.6]

– coin flip: the traitors toss an unbiased coin to choose when given a choice:

θc = (0, 1/2, . . . , 1/2, 1)� [6.7]

– all 1 attack: the traitors always choose the symbol “1” when they can, that is, if

σ > 0:

θc = (0, 1, . . . , 1)� [6.8]

– all 0 attack: the traitors always choose the symbol “0” when they can, that is, if

σ < c:

θc = (0, 0, . . . , 0, 1)� [6.9]

These are only a few examples; the set of available strategies Θc is actually

infinite.

6.2. The original Tardos code

In this chapter, Tardos codes denote a family of codes that share the same original

structure (Tardos 2003, 2008). In other words, any modification to the parameters of

the code, or to the way of identifying, compared to the original version by Tardos is

not a reason to change the name: these are all Tardos codes. This section offers the

original version.
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6.2.1. Constructing the code

The construction is done in three stages:

– a r.v. (random variable) P ∈ (0, 1) is defined. This can be a discrete r.v. with a set

of possible values P = {ωi}Ki=1 ⊂ (0, 1) and associated probabilities {fi := Pr(P =
ωi)}Ki=1 or an absolutely continuous r.v. with a probability density f : (0, 1) → R+;

– the encoder takes m realizations of this r.v. independently according to its law.

These realizations are stored in the vector p := (p1, . . . , pm), called secret series;

– the encoder generates the codewords of the users by independently drawing

n×m Bernoulli r.v. such that Xj,i ∼ B(pi). The code X is a binary matrix of size

n×m, and the codeword of the user j is xj = (xj,1, . . . , xj,m). This means that, for

all users, Pr(Xj,i = 1) = pi depends on the position in the series.

The law of the r.v. P is public while the vector p is a secret shared with the

accusation algorithm. The code is made up of n private codewords, in that a user only

knows, at most, their own identifier, unless they are a traitor. By forming a collusion,

traitors can share their knowledge of their c codewords.

6.2.2. The collusion strategy and its impact on the pirated series

The hypotheses on the collusion strategy in section 6.1.4 are very useful in deriving

a statistical model of r.v. {Yi}mi=1 decoded symbols of the pirated series. We define

Π(pi) := Pr(Yi = 1|pi) (the dependency in θc is omitted, unless there is ambiguity).

At the index i, the symbols of the codewords of the traitors are distributed as Bernoulli

r.v. B(pi), given the construction of the code. So Σi, the number of “1” for c traitors

in position i, following a binomial distribution B(c, pi):

P(Σi = σ) =

(
c

σ

)
pσi (1− pi)

c−σ, ∀σ ∈ {0, 1, . . . , c} [6.10]

For a given position i, Yi is a Bernoulli r.v.: Yi ∼ B(Π(pi)) of parameter:

Π(pi) := P(Yi = 1|pi) =
c∑

σ=0

P(Yi = 1|σ)P(Σi = σ|pi) [6.11]

=
c∑

σ=0

θc,σ

(
c

σ

)
pσi (1− pi)

c−σ [6.12]

We see that Yi follows a different law from Xji and that this law depends on

the collusion strategy. Note the following properties of this function illustrated in

Figure 6.2:
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1) Π(p) is a polynomial of degree at most c, where Π(0) = θc,0 = 0 and

Π(1) = θc,c = 1;

2) two collusion strategies of the same size c produce two different distributions:

θc �= θ′
c → ∃p ∈ (0, 1), Π(p;θc) �= Π(p;θ′

c); [6.13]

3) a collusion strategy produces an attack “between ‘All-0’ and ‘All-1”’, in that:

∀p ∈ [0, 1], pc ≤ Π(p) ≤ 1− (1− p)c [6.14]

4) the so-called interleaving attack has the remarkable property that Π(p) is

independent from c: ∀p ∈ [0, 1], Π(p) = p.

(a) (b)

Figure 6.2. Π(p) := P (Y = 1|p) for c = 3 a) and c = 5 b). All 1 attack:
Π(p) = 1 − (1 − p)c, all 0 attack: Π(p) = pc, interleaving: Π(p) = p, coin flip:
Π(p) = (1 − (1 − p)c + pc)/2, minority and majority do not have a simple formula.
This function remains in the blue zone, marked by the “All-1” and “All-0” strategies

The second property proves the identifiability of the model when the size of the

collusion is known. This means that we can learn the θc strategy if we see a large

number of (Yi, Pi) occurrences. However, the fourth property shows that the

identifiability of the model no longer remains when we do not know the size of the

collusion: it is sometimes impossible to distinguish attacks of different sizes (since

they generate the same distribution of symbols Yi).
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In the same way, we can also calculate the distribution of Yi, knowing that one of

the traitors has a “1” symbol in the i position (say xj1i = 1). Together, the collusion

has σ > 0 symbols “1”, if the remaining traitors (c− 1) have σ − 1 “1”:

P(Σi = σ|pi, xj1i = 1) =

(
c− 1

σ − 1

)
pσ−1
i (1− pi)

c−σ

If xj1i = 0, the collusion has σ < c symbols “1”, if the remaining traitors (c− 1)
have σ “1”:

P(Σi = σ|pi, xj1i = 0) =

(
c− 1

σ

)
pσi (1− pi)

c−σ−1

Generally, we note Πx(pi) := P(Yi = 1|pi, xj1i = x) for x ∈ {0, 1}:

Πx(pi) =
c−1+x∑
σ=x

θc,σ

(
c− 1

σ − x

)
pσ−x
i (1− pi)

(c−1−σ+x) [6.15]

The following properties are given:

1) Π(p) is the barycenter of Π1(p) and Π0(p) with the weights p and 1− p:

Π(p) = pΠ1(p) + (1− p)Π0(p) [6.16]

2) at the extreme values of p, we have:

limp→0 Π0(p) = 0, lim
p→0

Π1(p) = θc,1

limp→1 Π0(p) = θc,c−1, lim
p→1

Π1(p) = 1

3) by a simple calculation: ∀p ∈ (0, 1):

Π1(p) = Π(p) + c−1(1− p)Π′(p) [6.17]

Π0(p) = Π(p)− c−1pΠ′(p) [6.18]

where Π′(·) is the derivative of Π(·) (see equation [6.11]), with relation to p. This

last equation does not have a simple interpretation, but it is essential for proving the

completeness of the Tardos code (see section 6.2.3.2).

6.2.3. Accusation with a simple decoder

Once a pirated copy is found, decoding the watermark of content block by block

results in the pirated series y, which is no longer random. To decide if user j is a
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traitor, a simple decoder calculates a score sj from the codeword xj , the pirated series

y and the secret p:

sj =
m∑
i=1

U(xji, yi, pi) [6.19]

where U(·) : {0, 1} × {0, 1} × (0, 1) → R is called the score function.

The user is accused if sj > τ , where τ is a threshold. In other words, the accusation

tests two hypotheses for each user: H0, the user j is innocent versus H1, the user j is

guilty. Let Pfp and Pfn be false positive (wrongly accusing someone of being innocent)

and false negative probabilities (exonerating someone that is guilty) of this test for
each user. The r.v. modeling the score of an innocent user (a traitor) is denoted Sinn

(respectively Stra). So Pfp = P(Sinn > τ) and Pfn = P(Stra < τ).

6.2.3.1. Robustness

The robustness requires the probability PFP of accusing one innocent user in n
tests to be smaller than ηR. As the codewords of the innocent users are independent

(knowing p and y), the scores are also independent:

PFP = P
(∪j /∈C{Sj > τ}) = 1− P

(∩j /∈C{Sj < τ}) [6.20]

= 1− (1− Pfp)
n−c < ηR [6.21]

where n− c is the number of innocent users.

It is easy to see that if Pfp < ηR/n, the constraint of equation [6.21] is respected.

Robustness is not so easy since we are faced with a rare event: a classic requirement

is ηR ≈ 10−3 and n ≈ 106, so much so that ηR/n is of the order 10−9.

6.2.3.2. Completeness

Completeness considers the scores of c traitors. The aim is to relate the fact that

P(Sj < τ) = Pfn, ∀j ∈ C to the total probability, PFN, for different objectives

(section 6.1.3):

– “catch one”: failing to identify at least one traitor means that none have been

accused:

PFN = P (∩j∈C{Sj < τ}) ≤ min
j∈C

P(Sj < τ) ≤ Pfn [6.22]

This aim is therefore achieved if Pfn < ηC ;
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– “catch all”: failing to accuse all traitors means that at least one has not been

accused. According to the union bound, we have:

PFN = P (∪j∈C{Sj < τ}) ≤
∑
j∈C

P(Sj < τ) = cPfn [6.23]

which shows that the objective is achieved if Pfn < ηC/c;

– “catch a colluder”: the probability of failing to catch a particular traitor is

PFN = Pfn.

For a given level ηC , the most difficult objectives to achieve, in that Pfn is more

constrained, are in the following order: “catch all”, “catch a colluder” and “catch one”.

6.2.4. Study of the Tardos code-Škorić original

This section explains the choices made in Tardos (2003, 2008) and the

improvements offered in Škorić et al. (2008a). The proofs of robustness and

completeness are simplified. We assume that ηC = 1/2 for a “catch one” or “catch a

colluder” objective. Therefore, it is enough to show that Pfn < 1/2.

The main idea is to choose a score function, such that the statistics of Sinn do not

depend on the collusion strategy. So the scores of the users are compared to a universal

threshold τ . Here, universal means that the threshold is set, regardless of the collusion

strategy and (y,p). The constraint Pfp = P(Sinn > τ) must be guaranteed, whatever

the size and collusion strategy. In statistical terms, the size c and the collusion strategy

are nuisance parameters since they are unknown to the accusation algorithm. Ideally,

the score of someone innocent must be a pivotal quantity, that is, whose distribution

does not depend on nuisance parameters. In practice, only moments of orders 1 and 2

will be invariant.

For an innocent user, insisting that ∀p ∈ (0, 1), ∀y ∈ {0, 1},

E(U(Xinn, y, p)) = 0 and V(U(Xinn, y, p)) = 1 is equivalent to choosing the

following score function (Furon et al. 2008) called Tardos-Škorić:

U(1, 1, p) =

√
1− p

p
, U(0, 0, p) =

√
p

1− p

U(0, 1, p) = −
√

p

1− p
, U(1, 0, p) = −

√
1− p

p
[6.24]

We see that the score function takes positive values when the user has the same

symbol as the one found in the pirated series. This quantity is especially large as
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this symbol is rare at this position in the code. This gives us a clue that this user is

potentially a traitor. In the same way, the score function takes negative values if the

symbols are different. This gives us a clue that the user is potentially innocent. Their

final score reflects this evidence by adding up these quantities over all of the positions

of the code. Let us define the random variables:

Sinn =
m∑
i=1

U(Xinn,i, yi, pi) [6.25]

Stra =

m∑
i=1

U(Xtra,i, yi, pi) [6.26]

We see that this score function has good sense, making E(Sinn)= 0 and

V(Sinn)=m, whatever the secret series, p, and the decoded pirated series y may be.

Bernstein’s inequality gives an upper bound to the probability Pfp, which

decreases exponentially with τ (Furon and Desoubeaux 2014). Other inequalities are

possible (e.g. Hoeffding, Kearns and Saul). This makes it possible to find the

necessary code length given in Tardos (2003, 2008). The r.v. U(Xinn,i, yi, pi) are

independent (according to the construction of the code and the collusion strategy

model) of zero-expectation and unit variance. Furthermore, ∀i ∈ [m],
|U(Xinn,i, yi, pi)| < M , where M = max({√pi/(1− pi)} ∪ {√(1− pi)/pi}). So,

∀τ > 0:

Pfp ≤ e−
3τ2

6m+2Mτ [6.27]

This Bernstein bound is true for a given secret series since M depends on p. It is very

useful in practice to find the value of the threshold τ , but this bound is not universal.

One solution is to introduce a limit parameter 0 < t < 1/2, which is used to bound the

score function1. The score function becomes:

Ū(x, y, p) =

{
U(x, y, p) if t < p < 1− t

0 otherwise
[6.28]

One consequence is that we can now set M to 1/
√
t. Equation [6.27] is now valid,

whatever the couple (p,y).

1 Tardos and his successors use t to limit the probability density medium f of the r.v. P in

encoding. The modification proposed here simplifies the calculations.
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As for the score of a traitor, using the properties of section 6.2.2, we can show that:

E(Ū(Xtra, Y, p)) =
∑

(y,x)∈{0,1}
Ū(x, y, p) Pr(Y = y|Xtra = x, p) Pr(Xtra = x|p)

=

{
2
√
p(1− p)(Π1(p)−Π0(p)), if t < p < 1− t

0 otherwise

=

{
2
c

√
p(1− p)Π′(p), if t < p < 1− t

0 otherwise
[6.29]

where Π′(·) is derivative of Π(·) (see equation [6.11]) in relation to p.

The choice made in the original article (Tardos 2003) by an absolutely continuous

r.v. P of density:

f(p) =
1

π
√
p(1− p)

, ∀0 < p < 1 [6.30]

gives:

E (Stra) = mE
(
Ū(Xtra, Y, P )

)
=

∫ 1

0

E
(
Ū(Xtra, Y, p)

)
f(p)dp [6.31]

=
2m

πc

∫ 1−t

t

Π′(p)dp =
2m

πc
(Π(1− t)−Π(t)) [6.32]

For any strategy following the model explained in section 6.1.4, E (Stra) → 2m/πc
when t → 0 (in fact, we can show that 2(1 − t)c − 1 ≤ Π(1 − t) − Π(t) ≤ 1). The

more traitors there are, the lower E (Stra) is, and, at the first order, the distribution of

Stra converges with that of Sinn. To combat this effect, we need to increase the length

of the m code.

The score Stra is a sum of m finite variance independent r.v. The law of Stra tends

toward a Gaussian distribution when m → ∞, according to the central limit theorem

(assuming Lindeberg’s condition to be true). So, mean and median converge

asymptotically: P(Stra < E(Stra)) ≈ 1/2 (a more precise proof of completeness uses

a probability bound that Stra deviates from its expectation, like a Chebychev bound,

for example). This makes Pfn smaller than 1/2 if τ is smaller than E(Stra).

All of these elements placed end-to-end give a constraint on the length of the

code m. With a probability greater than 1/2 (assuming this is sufficiently deterrent), a
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particular traitor will be identified (whatever the collusion strategy) if
2m/πc(2(1 − t)c − 1) = τ . At the same time, the probability of accusing at least one

innocent user will be smaller than ηR, if e−
3τ2

6m+2Mτ ≤ ηR/n by equation [6.27]. These

two parts limit the length of the code:

m ≥ π2c2

2
log

(
n

ηR

)
G(t, c) [6.33]

where:

G(t, c) :=
1

(2(1− t)c − 1)2

(
1 +

2

3π

2(1− t)c − 1

c
√
t

)
[6.34]

By making t dependent on c, we can limit G(t, c). For example, let tc := 1 −
((h+1)/2)1/c (s.t. 2(1 − tc)

c − 1 = h where 0 < h < 1) to get G(tc, c) ≤ 2 for

h = 0, 9. In the end, robustness and completeness are proved if m > m(n, c, ηR, 1/2)
where:

m(n, c, ηR, 1/2) = π2c2 log

(
n

ηR

)
[6.35]

This is an asymptotic result (using the central limit theorem for completeness). In

other words, m = Ω(c2 log n/ηR).

6.2.5. Advantages

This demonstration has the following advantages.

6.2.5.1. Pedagogy

Equation [6.29] is very important for understanding the construction of the code.

Suppose the set secret code, that is, f(p) = δ(p− p0). In other words, P is no longer

a r.v. but a constant p0 ∈ (t, 1 − t). In this case, E(Stra) = mE(Ū(Xtra, Y, p0)). The

code will be even shorter, as the expectation E(Stra) will be larger than E(Sinn) = 0.

Figure 6.3 plots the function E(Ū(Xtra, Y, p)) according to p for classical attacks.

We can see that p0 = 1/2 is a great choice to fight against the collusion strategy

“interleaving”, since function y is maximal. On the other hand, this choice is

catastrophic for the collusion strategy “minority vote”, since the function takes a zero

value in 1/2 for c = 3. It then becomes impossible to distinguish the score of someone

that is innocent from the score of a traitor since they have the same expectation. For

c > 3, the minority strategy even gives negative expectations. To fight against the
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“minority vote”, it is better to choose a value of p0 close to 0 or 1, but this is a very

bad choice against interleaving, for example. Figure 6.3 shows that it is impossible to

choose a satisfactory value of p0 for all of the strategies.

Since the value of p0 must be decided at the code creation before the traitors choose

their attack, the game is unfair for the defender. Introducing a random variable P
reverses the situation: not only can traitors no longer adapt their strategy to the pi
values (since p is a secret sequence), but they must also choose a unique strategy to

“fight” against all cases, i.e. all of the values stored in p. Not knowing this strategy in

advance, the defender is advised to choose values across the (0, 1) support, so that on

average it gives E(Stra). This is shown in equation [6.31].

Figure 6.3. The function p → E(Ū(Xtra, Y, p)) for c = 3 (a) and c = 5 (b)

6.2.5.2. Latest developments

Robustness and completeness were proved by Tardos (2003) for code length

m = 100c2 log n/ηR. This constant 100 is unusual, but understandable: a code length

proportional to c2 log n/ηR was the Holy Grail at the time. Our very simplified proof

finds a much smaller multiplicative constant π2, which is only twice as large as the

best result π2
/2 (valid asymptotically when c → ∞ (Škorić et al. 2008a)).

6.2.5.3. Worst case attack

The strength of a collusion strategy is measured by its ability to decrease E (Stra),
which for equation [6.29] is proportional to the quantity Π(1 − tc) − Π(tc). For a

given collusion size, it is the “minority vote” attack that is the most dangerous for this
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score function and density f (see equation [6.30]). The article by Škorić et al. (2008a)

provides the same conclusion.

6.2.6. The problems

This demonstration has three problems.

6.2.6.1. Too restrictive

This educational study is simple, but only works for ηC = 1/2 and asymptotically

for n → ∞. A more useful proof uses an upper bound of Pfn, which generally depends

on V(Stra). This variance is bounded by m since E(Ū(Xtra, Y, p)
2) = 1, ∀p ∈ [t, 1−t].

A very loose bound, such as the Chebyshev inequality, gives a good result. Suppose

that Pfn must be less than ε, then for all values of n:

m(n, c, ηR, ε) = π2c2
(
log

n

ηR
+

1

3ε
+O

(√
1

ε
log

n

ηR

))
[6.36]

In fact, the most critical part is the proof of the robustness, where the finest possible

bound is required, while the proof of completeness is less challenging.

6.2.6.2. Ill-posed problem

This problem is common in any theoretical study, starting from the specifications

set out in section 6.1. The size c of the collusion is an integral part of the problem, so

much so that the code depends on c. This is true for the parameters (m, t, τ).
However, the true size of the collusion is not known, neither to the codeword

generator nor the accusation algorithm. One way to work around the problem is to

assume that c ≤ cmax. This blinds the code to the true value of c. The robustness is

always guaranteed, but the completeness is proven under the assumption that the true

collusion size is less than, or equal to, cmax.

6.2.6.3. Function score that is too constrained

Here is a problem with the score function U(·) (see equation [6.24]). Its choice is

too constrained. It must provide separability (the score of a traitor is statistically

larger than the score of someone innocent) and, at the same time, the independence

regarding the collusion strategy (the distributions of Sinn and Stra are almost set, at

least for the first and second statistical moments – and using an approximation for

Stra). This second property is crucial in order to find a universal threshold, τ , because

of equation [6.27]. Disconnecting the separability and independence from the

nuisance parameters provides more freedom to find more discriminating score

functions. However, finding a threshold becomes more difficult.
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6.3. Tardos and his successors

Many papers have been published on Tardos codes. This section provides a

review by summarizing the known results on the length of code needed, as part of

section 6.2.4, other criteria and extensions.

6.3.1. Length of the code

The most known improvement on code length was provided by Škorić et al.
(2008a), which mirrored the initial score function by dividing the length by two. This

score function (see equation [6.24]) is now the norm.

The following works have kept the same definition of P and U(·), as in Blayer

and Tassa (2008), Škorić et al. (2008a), and Laarhoven and de Weger (2014), but have

developed a finer analysis to reveal smaller constants. The latest developments on the

constant κ := m/(c2 log n/ηR) are as follows:

– asymptotically when c → ∞, κ → π2
/2 ≈ 4, 93 (Škorić et al. 2008a);

– for a large collusion, κ = π2
/2 +O(c−1/3) (Laarhoven and de Weger 2014);

– for all c > 2, κ = 10.89.

6.3.2. Other criteria

6.3.2.1. Code length

This is the ultimate criterion. The authors of an article on Tardos codes propose

other choices of P and U(·), and/or other bounds for error probabilities to deduce a

necessary code length, depending on (c, n, ηR, ηC), smaller than latest developments.

This is what has been performed in the previous articles (Tardos 2003, 2008; Blayer

and Tassa 2008; Laarhoven and de Weger 2014).

6.3.2.2. Signal-to-noise ratio

Replacing the threshold τ by E(Stra), we note the following condition: P(Sinn >
E(Stra)) = ηR/n, which means that someone innocent should not have a score as high

as the typical score of a traitor. A rough approximation is to say that Sinn follows a

Gaussian law, since it is the sum of a large number of independent r.v. (but not of the

same law, hence Lindeberg’s condition). So m ≈ ρ−1
(
Φ−1(1− ηR/n)

)2
, where ρ is

similar to a signal-to-noise ratio for a symbol coming out of the score function:

ρ :=
(E(U(Xtra, Y, P ))− E(U(Xinn, Y, P )))2

V(U(Xinn, Y, P ))
[6.37]
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This criterion is used in the articles (Furon et al. 2008; Škorić et al. 2008a, 2008b).

Special attention is given to the attack that minimizes ρ to define the code length

needed to fight against a worst-case collusion. Note that the central limit theorem

explains that ρ is a citerion (the larger it is, the better), but this theorem cannot be used

for the proof of robustness.

6.3.2.3. Theoretical rates

A third criterion is the attainable rate of a simple decoder R(S)(P ;θc), which is

defined as mutual information I(Y ;Xtra|P,θc) between the symbols of the pirated

series and symbols of the traitor’s codeword. Section 6.4.2 provides more detail on

this quantity from information theory, and defined by the equation [6.41]. As the

decoder performs a hypothesis test for each user (is the user j innocent or guilty?),

this quantity is the maximum among all of the simple decoders of the error exponent

Efp of the probability of wrongly accusing an innocent person (for a given false

negative probability ηC):

Efp := − lim
m→∞

1

m
logPfp [6.38]

If it is not zero, Pfp can converge to 0, as m approaches infinity as fast as

e−mR(S)(P ;θc). In fact, a Chernoff type upper bound decreases toward 0 for the best

simple decoder. Therefore, we guarantee Pfp ≤ ηR/n if:

m ≥ 1

R(S)(P ;θc)
log

n

ηR
[6.39]

This makes the quantity R(S)(P ;θc) a criteria (the larger it is, the better it is).

Note that this is a theoretical result: the best score function achieving this error

exponent is given by the Neyman–Pearson lemma (see section 6.4.1). However, this

score function is the log-likelihood (see equation [6.40]), which requires the

expression of P(Y = y,Xtra = x|p,θc) and P(Y = y|p,θc). This is a problem since

these probabilities depend on the collusion strategy θc, which is unknown by the

decoder initially. On the other hand, any simple decoder has a lower error exponent

than R(S)(P ;θc). Therefore, the collusion strategy minimizing this quantity will be a

powerful attack for any simple decoder.

This criterion has been generalized to joint decoders. These decoders calculate a

score per user group of size 
. These decoders are theoretically more powerful, but

their complexity proportional to the number of groups of size 
 among n is much

bigger. In fact, for 
 = c, this leads to the concept of capacity (Moulin 2008; Huang

and Moulin 2012, 2014).
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6.3.3. Extensions

Literature on Tardos codes proposes three families of the following extensions.

6.3.3.1. Binary codes

The idea is to keep Tardos codes binary, but the pirated series y is not necessarily

binary. This is an assumption that makes sense in multimedia applications, where

the codeword symbols are hidden in the content using a watermark technique. This

watermark layer is not perfect when traitors degrade the quality of pirated content (by

lossy compression in video, for example). Deletions (noted by × symbols) or decoding

errors (decoding a “1” while “0” was hidden in the content block) produce Marking
Assumption violations.

The collusion strategy itself can be more complex than just copying and pasting

blocks. Traitors can also merge “1” and “0” blocks (Schaathun 2014). The simplest

is to merge an average pixel-to-pixel of images to video blocks. This will disrupt the

decoding of the watermark, which can result in a “1” or “0” symbol, in × deletion (as

in the unreadable digit model (Boneh and Shaw 1998; Huang and Moulin 2014) or the

general digit model (Safavi-Naini and Wang 2001)), or a double detection (denoted

by d): the watermarking decoder detects the merging of a block containing a “1”

and a block containing “0”. In other words, the pirated series is no longer binary:

y ∈ {0, 1,×, d}m.

Another extension is to work with a watermark decoder that gives soft

outputs (Kuribayashi 2010, pp. 103–117; Meerwald and Furon 2012, section V.B),

like the likelihoods (l1,i, l0,i) that the ith block contains the symbols “1” and “0”.

From a theoretical point of view, the difficulty is extending the Marking
Assumption: we must limit the power of traitors by constraining the set of possible

collusion strategies. For example, if θc,σ(×) = 1, ∀σ ∈ {0, . . . , c}, then the pirated

series is just a series of deletions that cancels any chance of identifying the traitor.

From a practical point of view, the difficulty is creating score functions for these new

symbols, × and d, (Pérez-Freire and Furon 2009, section 4) or these soft outputs

(Meerwald and Furon 2012, section V.B).

6.3.3.2. q-ary codes

Another family of extensions offers the construction of code on a q-ary alphabet:

xj ∈ {0, 1, . . . , q − 1}m. The Marking Assumption stays the same: when the traitors

all have the same symbol, it is found in the pirated series. The difficulty is modeling

the collusion strategy for detectable positions. The models wide-sense version (or

arbitrary digit model) (Barg et al. 2003) and narrow-sense version are two examples.

The generalization of the probabilistic model θc in the case of q-ary was never

considered since its size is too large: θc stores all of the probabilities P(y|t) for y ∈
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{0, 1, . . . , q−1} and the type t (or empirical distribution, histogram of frequencies) of

the traitors’ symbols. It turns out that the number of types on c symbols of an alphabet

of size q can grow as
(
c+q−1
q−1

)
, i.e. O(cq−1). Simpler models are used instead (Boesten

and Škorić 2011, 2013; Huang and Moulin 2014; Škorić and Oosterwijk 2015).

6.3.3.3. Joint decoders

The final extension is the concept of joint decoders. As mentioned before, these

decoders calculate a score for a group of 
 users. Information theory shows that score

functions can be more powerful: the 
-uplets made up of only traitors will statistically

have a higher score than 
-uplets of innocent people. However, the number of scores

to calculate is of the order O(n�), which quickly becomes prohibitive in calculation

time.

Proceeding iteratively gives a tractable complexity. At the first iteration, simple

scores are calculated, that is, one score per user. The users who have the greatest

scores are suspected, and the others are innocent. The second iteration calculates the

scores for all pairs among the suspected users, and so forth. The idea is to reduce the

number of suspects so that each iteration calculates a more or less constant number of

scores, although 
 gradually increases.

Another idea is that an identified traitor is a snitch. Knowing the identity of certain

traitors and their codewords, makes it possible to design more discriminating score

functions. So, an iterative decoder can accuse someone if their score is high enough,

and integrate their codeword into the score function, which will allow more separate,

new scores to be calculated to find a second traitor more easily, and so on.

6.4. Research of better score functions

Among all of the further developments of the Tardos code, this section presents

new, more powerful score functions for binary codes with the model described

previously.

These score functions are more powerful since they are less constrained than the

function of equation [6.24]. In fact, they give more separate expected scores of

innocent people and traitors, but these do not have independent distributions of the

collusion strategy. So, it is not possible to find a universal threshold like before. We

return to this problem in section 6.5.

6.4.1. The optimal score function

The simple decoder corresponds to a series of n hypotheses tests to decide if the

user j ∈ [n] is innocent or a traitor. Decision theory gives us the optimal test, that is
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to say the one that minimizes Pfn for a set Pfp. This is the Neyman–Pearson test. For

this, we need to have a statistical model of the hypotheses to be tested.

– If the user is innocent, then the symbols of their codeword are independent

of the decoded symbols in the pirated content: Pr(Y = y,X = x|p,θc) =
Pr(Y = y|p,θc)p

x(1− p)(1−x).

– If the user is a traitor, then the symbols correlate with those of the pirated copy:

Pr(Y = y,X = x|p,θc) = Pr(Y = y|x, p,θc)p
x(1− p)(1−x).

The optimal score function is simply the log-likelihood of the ratio of these two

probabilities (we also call this accusation a maximum likelihood decoder):

U(x, y, p) = log
Pr(Y = y|x, p,θc)

Pr(Y = y|p,θc)

= y log
Πx(p;θc)

Π(p;θc)
+ (1− y) log

1−Πx(p;θc)

1−Π(p;θc)
[6.40]

The expressions of Π(·) and Πx(·) are given by equations [6.11] and [6.15]. Here,

we have added the notation θc to make it clear that these functions are calculated for

a given collusion strategy. In fact, this score function is only optimal if the collusion

strategy is definitely θc. However, when accusing, this is never known. So this optimal

score function is elusive in practice. Its interest is theoretical to measure the difference

between a heuristic score function and optimality if we know the collusion strategy.

Applying this test blindly proves to be dangerous: it will be optimal if the traitors

really have used this strategy, it will possibly be disastrous for another strategy.

6.4.2. The theory of the compound communication channel

Let us pick out one specific traitor. Collusion can be seen as the transmission of its

codeword through a binary communication channel. This channel is characterized by

the transition probabilities Πx(p;θc) that depend on a state of the channel θc.

This is exactly the scenario of the compound communication channel, where a

codeword is transmitted through a channel which is not totally unknown. The

decoder knows that this channel belongs to a certain family, but it does not know

which member of this family transmitted the codeword. Under certain conditions, it

has recently been shown that a good strategy is to expect the worst (Abbe and Zheng

2010). Some channels produce more transmission errors than others. We can measure

their quality by mutual information I(Y ;X). The worst channel of the family is the

one with the lowest measurement. If this is strictly positive, then a Neyman–Pearson

decoder designed for this channel is theoretically justified. If the channel that was
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used is actually the worst, then the decoder is optimal. If the channel that was used is

not the worst, then the decoder will at least be as powerful as the worst case.

In Tardos codes, the conditions of this compound communication channel theorem

are met (Meerwald and Furon 2012). To apply this result, we need to find the worst

collusion strategy, that is, the one that minimizes mutual information, as mentioned in

section 6.3.2, R(S)(P ;θc) = I(Y ;Xtra|P,θc).

Knowing that the more traitors there are, potentially the more powerful they are

(also many of us are often stupid), the decoder will assume that c ≤ cmax. Prosaically,

the formula for the length of the necessary code (see equation [6.36]) says that it is

pointless to want to accuse if there are more traitors. So the worst collusion strategy

θ̆cmax is one that minimizes R(S)(P ;θc) for c = cmax. We will find this collusion

strategy numerically, then we will put it into equation [6.40] to get a score function.

We must therefore minimize the function:

R(S)(P ;θc) := I(Y ;Xtra|P,θc) = EP (I(Y ;Xtra|P = p,θc)) [6.41]

with:

I(Y ;Xtra|P = p,θc) =
∑

x∈{0,1}
px(1− p)1−x

×
(
Πx(p;θc) log

Πx(p;θc)

Π(p;θc)
+ (1−Πx(p;θc)) log

1−Πx(p;θc)

(1−Π(p;θc))

)
Minimizing this function is not so easy when c is large. A useful simplification

observes that the “interleaving” strategy quickly becomes (as c increases) one of the

worst strategies in the Θc set. So the idea is to inject this model into equation [6.40]

to get a new function score. This is what Laarhoven suggests (2014, equation (2)).

The optimal score function for the strategy θcmax = (0, 1/cmax, . . . , (cmax−1)/cmax, 1)
simplifies to:

U(x, y, p) =

⎧⎪⎨⎪⎩
log

(
1 + 1

cmax

(
1−p
p

)(2y−1)
)

if x = y

log
(
1− 1

cmax

)
if x �= y

[6.42]

Oosterwijk et al.’s score function (Oosterwijk et al. 2013, equation (43)) is in fact

a first-order approximation when cmax is large:

U(x, y, p) ∝
⎧⎨⎩
(

1−p
p

)2y−1

if x = y

−1 if x �= y
[6.43]
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Just like for the Tardos–kori decoder, the parameter t > 0 is needed to limit its

amplitude. This score function is optimal, in that it produces a saddle point equilibrium

for the signal-to-noise ratio criterion (see equation [6.37]) (Oosterwijk et al. 2013,

th. 2).

6.4.3. Adaptive score functions

Adaptive score functions proceed in two steps. They analyze the pirated series y,

knowing the secret p, to deduce an inference as to the collusion strategy. Then, they

calculate a score using a score function adapted to what it has learned. This approach

is sometimes called “learn and match”.

6.4.3.1. Estimation of the collusion strategy knowing c

If the decoder knows the size c but not the strategy, it can estimate θc from the

observations (y,p). This is possible, according to property 2 of the function Π(·)
(see equation [6.13]). The maximum likelihood estimator is given by the following

formulation, which is solved numerically:

θ̂c = arg max
θ∈Θc

m∑
i=1

yi log(Π(pi;θ)) + (1− yi) log(1−Π(pi;θ)) [6.44]

Another possibility is the expectation–maximization algorithm, since the

distribution of Yi knowing pi is a mix of Bernoulli distributions. Let

Σi =
∑

j∈C Xj,i, that is, the number of “1” symbols that the traitors have at the

index i. This variable will be a latent variable. The expectation–maximization

algorithm starts by choosing a random collusion strategy, θ̂
(0)

c ∈ Θc, and then

iterates through the following steps.

6.4.3.1.1. Step E

At the iteration t, this step evaluates the distribution of Σi ∈ {0, . . . , c} for an

estimated strategy θ̂
(t−1)

c , because of the Bayes’ rule:

T
(t)
i,σ := Pr

(
Σi = σ|yi, pi, θ̂(t−1)

c

)
= Pr

(
Yi = yi|Σi = σ, pi, θ̂

(t−1)

c

) Pr(Σi = σ|pi)
Pr
(
Yi = yi|pi, θ̂(t−1)

c

)
= (θ̂(t−1)

c,σ )yi(1− θ̂(t−1)
c,σ )1−yi [6.45]

× Pr(Σi = σ|pi)∑c
σ′=0(θ̂

(t−1)
c,σ′ )yi(1− θ̂

(t−1)
c,σ′ )1−yi Pr(Σi = σ′|pi)

where Pr(Σi = σ|pi) is given by equation [6.10].
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6.4.3.1.2. Step M

At the t iteration, this step gives a new estimate θ̂
(t)

c of the collusion strategy

knowing the probabilities {T (t)
i,σ} of the latent variables. This is done by maximizing

the expectation of the log-likelihood: θ̂
(t+1)

c = argmaxQ(θc) with:

Q(θc) =
m∑
i=1

c∑
σ=0

T
(t)
i,σ log(Pr(Yi = yi|Σi = σ,θc)) [6.46]

The (c−1) parameters θ̂c,1, . . . , θ̂c,c−1 are estimated by maximizing this quantity,

while θ̂
(t)
c,0 = 1− θ̂

(t)
c,c = 0, according to the Marking Assumption (see equation [6.3]).

With the second derivative always being negative, maximizing means canceling the

gradient given by:

∂Q(θc)

∂θc,σ
=

m∑
i=1

T
(t)
i,σ

(
yi
θc,σ

− 1− yi
1− θc,σ

)
[6.47]

So:

θ̂(t)c,σ =

∑m
i=1 yiT

(t)
i,σ∑m

i=1 T
(t)
i,σ

[6.48]

The algorithm iterates these two steps until the maximum of the function Q(·) no

longer increases. This expectation–maximization algorithm can be generalized to take

deletions or double detections into account (see section 6.3.3.1; (Furon et al. 2012,

section V)).

6.4.3.2. Size of the unknown collusion

If the collusion strategy was correctly estimated, the score function used would be

the likelihood ratio calculated for θc, that is, the optimal score function. However, the

collusion size is unknown when accusing, which prevents c and θc (see section 6.2.2)

being identified. Compared with the theory of the compound communication channel

of section 6.4.2, it reverses the situation.

In fact, assume that the collusion chooses the strategy θc, and consider the set of

strategies which give the same distribution of the symbols in the pirate series. Note

this set, E(θc) = {θ|Π(p;θ) = Π(p;θc), ∀p ∈ (0, 1)}. This set is not restricted to the

singleton {θc} (hence the error of identifiability). In fact, we can show that for any

integer c′ > c, there is a strategy θ̃c′ of size c′, which “mimics” θc: E(θc) ∩Θc′ =
{θ̃c′}.
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Suppose that c < cmax, which means E(θc) ∩ (∪cmax
c=1 Θc) is not empty. It turns

out that the compound communication channel theory can be applied to this family

of strategies (Meerwald and Furon 2012, annex), and that the worst strategy in this

family is θ̃cmax . This theoretically justifies the score function, set by the following

cmax: (1) estimate θ̃cmax by maximum likelihood (see equation [6.44]) or by

expectation–maximization algorithm (see equation [6.48]). By saying that the

collusion size is cmax, we denote this estimate; (2) use the score function

equation [6.40] where θc = θ̂cmax .

6.4.4. Comparison

We have seen several alternative score functions to the Tardos-Škorić one (see

equation [6.24]). Some are fixed, and others adapt to the pirated series received. Here

is an experimental protocol to compare them in the spirit of the proof in section 6.2.4,

where Pfn = 1/2. We choose a certain size and a certain collusion strategy. We

generate a secret sequence, p, and many codewords knowing p, we choose c of them,

form a pirated series, and calculate the traitors’ and innocent people’s scores. We

choose a threshold τ as the median of the traitors’ scores to have Pfn ≈ 1/2 (half of

the traitors are accused). Finally, we estimate Pfp = P(Sinn > τ).

Figure 6.4 gives a comparison of these score functions for the classical collusion

strategies from section 6.1.4. Here, the quantity indicated is | log10(P̂fp)|, the bigger

it is, the more the scores of the innocent and traitors are statistically separated, and

the better the score function. The Tardos-Škorić function has almost the same

performance from one strategy to another. This is the sense of his invention: the

distributions of the scores Sinn and Stra are independent of θc. Its worst attack is

minority voting (see section 6.2.4). The performances of the “Optimal” score

function reveal the difficulty of the attack. So, “interleaving” and “coin flip” are the

most dangerous collusion strategies for c = 5 (among those tested). The

“Compound” and “Laarhoven” score functions are equal, with the major weakness of

the majority vote for the Compound, and the minority vote for the Laarhoven score

function. Finally, the adaptive score function has the performance closest to the

optimal. However, it is more complex due to the estimation of θ̂cmax .

6.5. How to find a better threshold

Finding a threshold for any score function is not easy because the distribution of

an innocent person’s score, Sinn, depends on the collusion strategy (except for the

Tardos-Škorić strategy; equation [6.24]), which once again is unknown on accusation.

This is illustrated by Figure 6.5.

One approach involves refusing to find a universal threshold which would

guarantee a false positive probability, whatever the size and strategy of the collusion,
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and whatever the secret p. In practice, on the other hand, it is enough to find a

threshold for a given realization p, and for a decoded pirated series y. Even in these

conditions, the score Sinn stays a random variable, since the codewords of the

innocent people were created randomly by nature: in equation [6.25], the symbol xj,i

has been replaced by the r.v. Xinn,i ∼ B(pi).

Figure 6.4. The quantity | log10(Pfp)| for Pfn ≈ 1/2 for the six collusion strategies
in section 6.1.4 and the five following score functions: “Compound” [6.41],
“Estimate” (section 6.4.3.2), “Laarhoven” [6.42], “Optimal” [6.40], and “Tardos” [6.24].
With m = 768, c = 5, cmax = 10

So we seek a specific threshold τ(p,y), such as Pfp = Pr(Sinn > τ(p,y)).
Upper bounds give a threshold value, guaranteeing Pfp < PFP/n, for example

Kearns–Saul and Cramer–Chernoff inequalities (Furon and Desoubeaux 2014).

However, it is difficult to know if these bounds are tight. If this is not the case, the

threshold value will be very high and we risk not identifying any traitor.

Another possibility is estimating this threshold by a random Monte Carlo

simulation. We generate a large number, n′, of new codewords. As these are

generated after receiving y, their associated scores (for this pair (y,p)) are likely to

be scores of innocent people. An estimate of τ(y,p) is the highest score

�n′ × PFP/n�. So, a fraction PFP/n of n′ scores are above this threshold. The

difficulty is that n′ must be greater than n/PFP (by several orders of magnitude for
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good precision). If n ≈ 106 and PFP ≈ 10−3, we must generate a hundred billion

codewords. There are stochastic simulations suitable for estimating such small

probabilities. This area of numerical probabilities is called the study of rare events.

So, we can estimate the threshold τ(y,p) by importance sampling or by importance
splitting, which has been implemented in Cérou et al. (2008) and Furon and

Desoubeaux (2014).

Figure 6.5. Histograms of innocent people’s scores for the “Laarhoven score function”
[6.42] and two collusion strategies, “minority vote” and “majority vote”, m = 768,

c = 5, cmax = 10, n = 105. Traitor scores are displayed with red asterisks

6.6. Conclusion

This chapter shows that binary Tardos codes are now well understood. It is a fully

developed technology, which is now beginning to be transferred to industry. Latest

developments are not so clear, regarding q-ary codes (see section 6.3.3.2). The

required code length stays in O(c2 log n), but the multiplicative constant is

theoretically smaller. On the other hand, creating score functions that can achieve

these theoretical performances remains to be done.
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Finally, let us not underestimate the great weakness of Tardos codes: accusation

is an exhaustive decoding that calculates the score of all of the users. This can be a

problem when n is too big and there is a time limit for accusation.
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Three-dimensional (3D) meshes are now widely used in industry across a range of

fields, for example, video games, medical diagnosis, computer-aided design (CAD)

or, more recently, 3D printing. In this context, data hiding techniques are attractive

for hiding and preserving information associated with a mesh or a 3D point cloud.

For example, it is possible to add the property rights of the model in an industrial

context. In a medical setting, patient information can be added for connecting the

patient with their data and the preservation of anonymity. The main advantage of data

hiding methods, compared to encryption, is that meshes can be used and visualized.

3D mesh encryption is preferred if visual masking is required. In addition, data hiding

methods prevent the sharing of multiple files. In this chapter, we present the challenges

of these technologies, as well as the constraints linked to the structure of 3D meshes,

in particular its impact on the synchronization step. We draw up a recent development,

focused on a variety of different approaches. We then present in detail so-called high-

capacity methods that allow the embedding of a significant payload, such as the history

of meshes, their metadata or their textures. Finally, we discuss the current situation and

future areas of research in the field of 3D watermarking.
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7.1. Introduction

3D objects can be represented digitally in several ways using meshes, implicit

surfaces, NURBS or voxels, for example. A 3D mesh is an approximation of the

surface of a 3D object, defined using geometric and connectivity information. 3D

meshes have become a norm for 3D representation due to their ease of use. On the

other hand, 3D scanner systems are more and more common, and 3D printing is

now becoming easily accessible, which increases the presence of digital 3D

representations in the form of meshes. In this context, data hiding makes it possible

to embed additional information into a digital medium in an unnoticeable way, while

respecting the initial format. This information can be a secret message, metadata,

owner ID or a mark, for example. Data hiding involves modifying a digital medium

to add information. In fact, a medium in which information is embedded must be able

to be viewed or manipulated using standard software in a standard file format.

The work carried out in the fields of digital images or videos shows that data

hiding is an interesting solution to these various problems. Data hiding allows us to

embed a message into a 3D mesh in an unnoticeable way. There are several forms

of data hiding. Robust watermarking allows owner ID to be embedded for copyright,

and this owner ID must be protected, even after modifications. Fragile watermarking

makes it possible to check the integrity of a mesh, and it is designed to be altered after

certain modifications. There is also high capacity data hiding which makes it possible

to hide a large amount of information in a 3D mesh, such as information on creation,

semantic content or textures. Data hiding in 3D meshs is a recent area of study. The

representation of surfaces in R3, in the form of a mesh, makes it possible to use these

3D meshes as a medium for a secret message. Most studied meshes are two-manifold

triangle meshes. However, specific methods can be designed for other types of meshes

or point clouds (points in R3 with no relationship between them). Therefore, 3D mesh

media create new challenges for data hiding. For example, synchronization in 3D

meshes, that is, the definition of an order of traversal of the elements of the mesh, is

not trivial like in 2D, where the pixels are associated with a regular grid. In addition,

in the context of image watermarking, the embedding medium is the pixel, i.e. the

pixels are modified to hold additional information. On 3D objects, the embedding

medium is larger, and it is possible to modify the position of the points in space or the

connectivity of the mesh, for example. Another challenge is generating few distortions

on the surface, while being potentially undetectable or robust against attacks.

In this chapter, section 7.2 defines the preliminary notions concerning the aspects

of watermarking in general, and the digital representation of 3D objects. Section 7.3

poses the problem of synchronization. In section 7.4, we describe the principle of

3D data hiding. In section 7.5, we present a state-of-the-art method offering

interdisciplinary approaches. In section 7.6, we explain the possible improvements to

be made in a 3D data hiding process. In section 7.7, we present the results and



3D Watermarking 221

compare the different methods. Finally, in section 7.8, we analyze future areas of

research and current trends.

7.2. Preliminaries

7.2.1. Digital watermarking

Data hiding involves hiding data in a host medium in an unnoticeable way. The

different data hiding classes are shown in Figure 7.1. They are organized from the

most general to the most specific; each is defined according to the data hiding usage

scenario. Cox et al. (2007) clearly set the context for data hiding; the methods have

two main modules, the embedding and extraction of the message. A synchronization

stage is necessary to define the same order between the embedding and extraction

steps. Data hiding methods must also be based on Kerckhoffs’s principle, which states

that the secret of a method cannot depend on the secret of the algorithm, but must only

be based on the secrecy of a key (Kerckhoffs 1883).

Figure 7.1. Classification of data hiding methods, based on the
work of Petitcolas et al. (1999) and Cheng and Wang (2007)

First, a secret key is used to secure the synchronization step and define an order

on the areas chosen for embedding. The embedding stage makes it possible to hide a

message in the media format. For example, the most conventional method consists of

modifying the low order bits encoding the pixels in the case of an image medium.

Note that, generally, the message is encrypted using the secret key. The extraction

module makes it possible to extract the hidden message thanks to the key used during

the embedding phase. The message can be reconstructed in two steps that involve

finding the embedding areas, and then extracting the bits in order. There are

properties inherent to data hiding systems, which face a compromise between

imperceptibility, robustness, capacity and security. In general, improving one of these
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properties decreases the others. So we must compromise, as illustrated in Figure 7.2,

which is dictated by the scenario considered (Figure 7.1). In the majority of cases,

the mark must be imperceptible so as not to modify the shape, then the compromise

is made between capacity, robustness and security.

Figure 7.2. Data hiding trade-off

7.2.2. 3D objects

A 3D mesh is an approximation of a continuous surface. A good approximation is

possible if the density of vertices is suitable (Botsch et al. 2010). A 3D mesh, M =
(V,K), is therefore defined by its geometry, V , and its topological connectivity, K. A

point cloud represents the geometry of a 3D object. This point cloud is the group of n
points or vertices, denoted as V such that:

V = {v1, . . . , vn}, vi ∈ R3, 1 ≤ i ≤ n [7.1]

An example of a 3D object, the Stanford Bunny1, is present in low resolution in

Figure 7.3. The topological realization is a complex of cells, defining the

decomposition of space into cells. An n-cell in a space is defined as a subset,

homeomorphic to En = {x ∈ Rn | |x| < 1} (Dieck 2008). A mesh is then the

geometric realization of a topological representation, which is independent of the

space in which the mesh is embedded. We denote the mesh, M = (V, F,E), and all

its primitives: all the vertices, V , all the faces F , and all the edges, E, of the mesh.

Most processing algorithms require triangle meshes f ∈ V × V × V , since they

allow a representation to rely on more stringent topological properties. More

generally, a surface is defined as a “two-dimensional manifold (2-manifold), dense,

connected, orientable and possibly with an edge, embedded in R3” (O’Neill 2006). A

two-dimensional connected surface is 2-manifolds, if at any point x, the nearby

1 Available at: https://graphics.stanford.edu/data/3Dscanrep/.
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surroundings can be continuously deformed into a disk (Hoffmann 1989). More

simply, we consider the case where an edge is shared by exactly two faces, and where

the surface does not intersect itself. This definition of the surface assumes either a

mesh created to respect these rules, or a step of preprocessing a point cloud or a

polygon soup, to obtain a well-defined surface. 3D meshes are often represented as

triangular faces, connected by their edges. Formally, a triangle mesh, M , is a

simplicial complex (Dieck 2008), denoted as:

M = (V, S) [7.2]

where S is a finite, non-empty set of subset of V, and refers to connectivity.

(a) (b) (c)

Figure 7.3. The Stanford Bunny in low-resolution, 1,889 vertices and 3,851 faces,
a) making the mesh of the 3D object, b) faces and c) point cloud

Finally, a mesh, M , is a two-dimensional simplicial complex, made up of

simplexes:

– a set of vertices, the 0-simplexes of S:

S0 = {{v0}; {v1}; . . . }
– a set of edges, the 1-simplexes of S:

S1 = {{v0, v1}; {v0, v2}; . . . }
– a set of triangular faces, the 2-simplexes of S:

S2 = {{v0, v1, v2}; {v0, v1, v3}; . . . }

A vertex is a single point, which is associated with a single point in the

representation space. It is this association that allows the geometric realization of a

topological shape.
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7.3. Synchronization

3D meshes do not have structures allowing trivial ordering of primitives. A step

of ordering the elements to be traversed is necessary. 3D mesh file formats are

generally used to store the geometry and topology of a mesh. Since 3D meshes are

unstructured, the position of these elements in a file does not affect the result. It is

therefore necessary to have an inorder traversal of the elements of a mesh that does

not depend on the storage format. The “traversal” of a mesh is used in different

processes, such as compression, visualization or data hiding. Depending on the use,

the authors choose to define this order from the topology of the mesh or from the

geometry. 3D scheduling is a challenge since, unlike image processing or voxel

representations, the mesh is not embedded in a regular 2D or 3D grid.

7.3.1. Traversal scheduling

Connectivity-based scheduling was first developed for triangle mesh compression

systems. The first methods define an inorder traversal of the triangles, such as the

“Edgebreaker” method, proposed by Rossignac (1999). This algorithm performs the

same traversal of the mesh by passing from triangle to triangle, by their adjacency

connection. These adjacency relationships are denoted by symbols, which show

entropy coding. The use of a manifold and orientable triangle mesh makes it possible

to traverse the sides. This traversal was initially suggested by Ohbuchi et al. (1997)

and is called the TSPS (Triangle Strip Peeling Sequence). This type of sequencing

was used in watermarking by Mao et al. (2001), Cayre and Macq (2003), and Bajaj

et al. (1999), which unwind the sides in a spiral. This method is very sensitive to

changes to mesh connectivity, such as edge collapse for triangle meshes. To traverse

the sides of a mesh from a given side, Lin et al. (2013) uses a Breadth-First Search,

the order of selection of the sides and vertices is given by a secret key. Huang and

Tsai offer another traversal based on the Breadth-First Search but using principal

component analysis to select the first side and inorder traversal (Huang and Tsai

2015).

7.3.2. Patch scheduling

Luo and Bors proposed a watermarking method based on the partitioning of the

mesh in regions with equal geodesic distance (Luo and Bors 2011). From a given

vertex, the geodesic distances to the other vertices are calculated. Each strip of vertices

is used as a medium to embed a bit. The order between the patches is immediately

given by the distance to the input vertex. The watermarking method by Wang et al.
(2011) generates cylindrical patches on the mesh, which are ordered by their location

in space.
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7.3.3. Scheduling based on graphs

Some authors consider meshes as graphs for the scheduling step. In fact, to a

complex mesh M = (V, F,E), a graph, G = (V,E), is associated. The mesh is a

geometric realization of this topological connectivity, the weighted graph,

G = (V,E, ω), and its associated graph, where ω : E → R+. More generally, if we

consider a complete graph G′ = (V,E′) on the vertices of the mesh, then ∀i, j,

i �= j, evi,vj ∈ E′, and in particular E ⊆ E′. Graph traversal is a complex problem,

and we present two types of traversal: spanning trees and Hamiltonian paths.

7.3.3.1. Spanning trees

A spanning tree on a graph is a connected and acyclic subgraph included in this

graph, which connects all of its vertices. It is possible to define an order starting from

a vertex and traversing the tree in width or depth, for example. Spanning trees are

used in point cloud compression, since they make it possible to define a structure on

the vertices without having to perform a mesh step, then a compression step which,

in the end, will be more time consuming. Authors have proposed similar methods for

iterative construction of a spanning tree on a point cloud (Gumhold et al. 2005; Merry

et al. 2006). The edge to be added to the sub-tree is chosen to produce the smallest

prediction residual for the compression method. Minimum spanning tree (MST) is

a well-known problem in graph theory, in particular through the Kruskal algorithm

(Kruskal 1956) and Prim’s algorithm (Prim 1957). Figure 7.4a presents a point cloud

of a 3D object, “horse”, and the unique MST built on it, as shown in Figure 7.4b.

(a) (b)

Figure 7.4. a) 3006 3D point cloud, and b) MST built on the point cloud

Amat et al. (2010) proposed a fragile watermarking method. Scheduling is done

by calculating the MST of a point cloud, then thanks to an entry point and scanning

scheme, they define an order of traversal of the tree. Tournier et al. (2011) proposed
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to build a robust Euclidean minimum spanning tree (EMST) in a point cloud in order

to define a robust order to the displacement of vertices. The analysis of the stability of

the EMSTs is done according to Prim’s algorithm, since it makes it possible to build

an ordered path from a starting vertex. For each stage of the algorithm, we want to

calculate the area in which the vertex, vi ∈ V , can be moved without changing the

EMST connectivity. This area depends on the choice of the first vertex, v0, and the set

of vertices selected before vi. In Figure 7.5, we show an example of a vertex moved

so much that it causes a change in the construction of the EMST. The problem of

analyzing the stability of the EMST is a complex problem that is easier to study in the

form of a sub-problem:

– at the i > 0 stage of Prim’s algorithm, we change the position of the vertex, vi,
and we note its new position, v∗;

– the geometric distortion is limited to the ray, ]f(vi), vi), where f(vi) is the father

of vi in Prim’s algorithm.

In order to keep the same connections in the EMST, the following two conditions

must be met:

– v∗ = v∗i , v∗ is selected at the same stage, i, of Prim’s algorithm;

– f(v∗) = f(v∗i ), the father of v∗, is always the father of vi.

We can calculate the two displacement radii of each vertex, vi, on the ray,

]f(vi), vi). The first corresponds to a displacement in the direction of the sub-tree,

r−i , the second in the opposite direction, r+i . The radius of movement is therefore

given by ri = min{r−i , r+i }. Let us denote by x = 1
||f(vi)·vi|| (vi − f(vi)) the

normalized direction vector of the ray, ]f(vi), vi), if v∗ ∈]vi − r · x; vi + r · x[, so the

EMST will not be changed at the i stage of Prim’s algorithm (Itier et al. 2015b).

(a) (b)

Figure 7.5. The problem of sensitivity of EMSTs

7.3.3.2. Hamiltonian path

Hamiltonian paths are paths which pass once, and only once, through any point of

the graph (Hamilton 1853). A Hamiltonian graph is a graph with a Hamiltonian path.

There is no necessary and sufficient condition to find a Hamiltonian path, but there
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are many sufficient conditions, given for example by Dirac’s theorem (1952), which

states that a simple graph with n ≥ 3 vertices is Hamiltonian if the degree of each

vertex is greater than or equal to n/2. More generally, the Koenig–Redei theorem

states that a complete graph is Hamiltonian. The first observation is to notice that the

construction of a Hamiltonian path is less complex than that of an EMST.

Furthermore, a Hamiltonian path is more stable in construction, with respect to

changes in geometry, than an EMST. In fact, finding the closest neighbor from a

single vertex offers less choice than the closest neighbor from a set of vertices given

by Prim’s algorithm. Figure 7.6 compares the stages of construction of an EMST

(Figure 7.6a) and a Hamiltonian path (Figure 7.6b), from a starting vertex. At stage i,
the edges in red belong to either the tree or the path, and the edges in green are

compared to find vi+1. We find that the number of edge weights to compare at each

step is greater in the case of EMSTs.

Finding a minimal Hamiltonian path in a complete graph is also a complex

problem that has been proven NP -complete: the traveling salesman’s problem.

However, finding any Hamiltonian path in a complete graph is a simple problem, it

makes it possible to obtain an order in an efficient way in a point cloud, according to

the heuristic of the choice of the vertex to be connected. In compression, Gurung

et al. (2011) proposed a method of ordering triangles by following a Hamiltonian

path, like “Edgebreaker”. Zhang et al. (2013) improved this approach with a better

compression rate. Hamiltonian paths depend on the cost given to each edge. For a

graph in the R3 space, the Euclidean distance is often the option chosen. It is then

possible to connect a vertex to another unvisited one, such that the cost is minimal.

Note that the choice of the minimum cost is arbitrary, and it could be maximum.

(a) (b)

Figure 7.6. Structure at the i stage. The vertices and edges in red are already
covered, the edges in green are compared in order to add the next vertex,

for a) the EMST built with Prim’s algorithm, b) a Hamiltonian path

Let us denote Gn = (Vn, Em, w) as the weighted graph, defined as the complete

graph on the vertices of the mesh, where w: E → R+. Em represents the edges of

the graph (different from the mesh connectivity) with m = n(n − 1)/2. Each edge,

ei, has a weight defined as its length in Euclidean distance. The path built at the i
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stage is a Hamiltonian sub-path, Pn, on the set Vi = {v0, . . . , vi}, which is made up

of the edges chosen previously, {e0, . . . ei−1}. All of the edges are either in Vi, or in

Vn\Vi = {vi+1, . . . , vn}, the set of unvisited vertices, as shown in Figure 7.7.

Figure 7.7. State of the sets at step i: vi the current vertex

From a secret key, it is possible to get a starting vertex, v0. Vertices are added to

the path recursively by searching for the vertex, vi+1, closest to the current vertex

denoted by vi, i ∈ [0, n − 1]. The search for the nearest neighbor involves finding

the edge of minimum weight, ei between vi ∈ Vi, and one of the unvisited vertices,

vi+1 ∈ Vn\Vi. The whole of the search is reduced to E′
i, which is the set of edges of

vi, such that ek = e{vi, vk}, k ∈ Vn\Vi and |E′
i| = n− i− 1. The edge ei is chosen

as:

ω(ei) < ω(ek), i �= k, ei, ek ∈ E′
i [7.3]

Finally, at the end of the construction, Pn is a Hamiltonian path on

G = (Vn, Em).

To simplify the problem, we consider the movement of a vertex at each step of the

path construction. The path built in the previous steps Pi+1 must then be kept after

the movement of the vertex, vi+1. At iteration i, the vertex vj , j ∈ [0, |V |−1] belongs

to Pi if j ∈ [0, i]. So two cases are possible for each vertex vj , j �= i+ 1:

1) j ∈ [0, i] ⇔ vj ,∈ Vi;

2) j ∈ [i+ 2, n] ⇔ vj ,∈ Vn\Vi.

In the first case, the vertex vi+1 may be moved too close to the sub-path, Pi, and a

vertex of the set of vertices already added to the path, vj ∈ Vi, j �= i, could become its
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predecessor, as illustrated in Figure 7.8a. The vertex vi+1 is moved to a new position,

v′i+1, close to vj , so the weight di = ‖vi, v′i+1‖2 of the edge ei becomes larger than

the weight dj = ‖vj , v′i+1‖2 of the edge ej . Therefore, at the decoding step, the edge

ej between vj and v′i+1 would be chosen and the Hamiltonian path would be modified.

The constraint is defined as:

‖vj , vj+1‖2 < ‖vj , v′i+1‖2, ∀vj ∈ Vi, j �= i [7.4]

In the second case, the vertex vi+1 is moved to a new position, v′i+1, which is

too far from its predecessor in the path. In this situation, another vertex vj ∈ Vn\Vi

becomes the closest neighbor to vi. This case is shown in Figure 7.8b, which shows

that another vertex is chosen as the decoding stage. So it is vital that:

‖vi, v′i+1‖2 < ‖vi, vj‖2, ∀vj ∈ Vn\Vi, j �= i+1 [7.5]

(a) (b)

Figure 7.8. a) vi+1 is moved too close to the sub-path,
and b) vi+1 is placed too far from its predecessor

It is therefore possible to define a displacement radius for each vertex. Let r− be

the maximum approach distance. It is defined as the limit distance between the current

vertex and the sub-path; if the current vertex is found closer then it will be chosen

before in the construction step. And vice-versa, let r+ be the maximum distance away

from the current vertex of the sub-path. This is the point from which the vertex will not

be chosen at the same stage of the construction of the path. The displacement radius

is then defined as:

ri+1 = min(r+i+1, r
−
i+1) [7.6]
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where r− and r+ are calculated by:

r−i+1 = min(‖vj , vi+1‖2 − ‖vj , vj+1‖2), vj ∈ Vi, j �= i [7.7]

r+i+1 = min(‖vi, vj‖2)− ‖vi, vi+1‖2, vj ∈ Vn\Vi, j �= i+1 [7.8]

This radius is useful for defining the most sensitive or the most robust vertices. In

addition, this analysis highlights the constraints from which a watermarking method

can be developed (Itier and Puech 2017).

7.4. 3D data hiding

3D data hiding is used in different ways depending on the desired objective, as

presented in section 7.2. The embedding can be done by:

– Injection: the message is embedded directly into the media, which causes the

media size to increase. This behavior is a security flaw, with respect to a potential

attacker.

– Substitution: the message is embedded in such a way as to replace the redundant

information of the medium, or to substitute a part of the information which alters the

medium the least. This technique is the most used.

– Distortion: extraction is done by analyzing the difference between the media

objects and the marked objects.

The distortion methods mainly require the support object (non-blind methods),

which is rarely possible in practical cases. Substitution techniques were popularized

by Cox et al. (1997) with spread spectrum methods, which embed a message from a

linear combination of the host signal with a noise signal, modulated by the signal to

be embedded. One approach to information theory is to think of the data hiding as

communication with adjacent information. Theoretically, this point of view is

described by the “Dirty Paper” codes, a practical implementation which was provided

by Chen and Wornell with the Quantization Index Modulation (QIM) method (Chen

and Wornell 2001). More generally, the data hiding methods are separated by the

authors into two categories according to their embedding domain: the spatial domain

and the transformed domain. So, to embed a message in the spatial domain, the

methods directly change the geometry of a mesh; in other words, they modify the

position of the vertices in the embedding space of the topology. In contrast, in the

transformed domains, the embedding of the message takes place after a reversible

transformation in the new domain. The properties of the data hiding methods

according to the embedding domain are summarized in Table 7.1.
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Properties Spatial domain Transformed domains

Capacity High Weak

Robustness Weak High

Perceptual quality Controllable Not very controllable

Complexity Weak High

Table 7.1. Properties of data hiding methods,
according to their embedding domain

7.4.1. Transformed domains

Robust watermarking in a transformed domain requires a reversible preprocessing

step that converts the meshes into coefficients in frequency space. Several

transformed domains of 3D meshes have been used for data hiding, for example the

harmonic transform (Liu et al. 2008; Wang et al. 2009), or the wavelet

transform (Uccheddu et al. 2004; Wang et al. 2008). The wavelet transform allows

embedding in low resolutions, which involves great robustness under the constraint

that the same low resolution can be calculated after modifications on the mesh. The

transformation step generally requires structured meshes, for example 2-manifold

meshes, and is often not usable without preprocessing the mesh or the point cloud.

These methods are especially used for robust 3D mesh watermarking applications. In

fact, these applications only require a low capacity, for example 64 bits, while

preserving the data embedded after modification of the mesh.

7.4.2. Spatial domain

In order to ensure robustness, methods in the spatial domain are generally based

on the change of statistical distributions specific to the mesh (Cho et al. 2007; Luo

and Bors 2011; Bors and Luo 2013). The strength of these methods is based on the

modification of histograms, which removes the dependence of these methods on the

synchronization of primitives of the mesh. However, these methods are less robust

than embedding methods in transformed domains and offer a low embedding

capacity compared to embedding methods in the spatial domain. Nevertheless,

methods in the spatial domain generally allow a higher capacity but have lower

robustness. Most high capacity or steganography methods fall into this category.

These embedding schemes are often based on the concept of QIM, which allows a

high capacity with few distortions of the support vector. One of the first methods that

was defined as high capacity was proposed by Cayre and Macq, for embedding in

triangle meshes (Cayre and Macq 2003). The synchronization step involves first

organizing the triangles that serve as an information medium, thanks to the TSPS
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method, and then inserting the information using a QIM-based technique, illustrated

in Figure 7.9. The main idea of the method involves inserting a bit by considering the

projection of a vertex on the opposite edge as support. Figure 7.1 shows the

embedding of the bit, “1”, in two different configurations, the vertex is moved so that

its projection is in an interval which encodes the value “1”. The authors suggest

choosing the first triangle, which is the start of the synchronization method with two

different approaches. The first approach involves choosing a triangle with the

minimum area, and the second involves performing a principal component analysis

(PCA) and use the triangles that intersect the three main axes. This method allows a

certain robustness against affine transformations. In addition, the capacity of the

method is approximately 1 bit per vertex (bpv). Nevertheless, this method requires

triangle meshes for synchronization but also as support. The extension of the method

to polygon meshes is not trivial. The capacity of Cayre and Macq’s method (Cayre

and Macq 2003) was improved by Wang and Cheng (2005) to achieve a minimum of

3 bpv. The authors use a multilevel embedding procedure, which first inserts in the

same way as the reference method, then in the height of the triangle, thanks to a

threshold, and lastly, in the rotation of the angle between the base and the height of

the triangle. This method is limited by the numerical precision, depending on the

number of divisions chosen. The authors propose keeping a capacity between 3 and

6 bpv, while taking visual distortions into account in their new method (Cheng and

Wang 2007). This method extends the type of input meshes to polygon meshes, and

defines a new synchronization based on contagious diffusion, as if the input polygon

and one of its edges were contaminated. The transmission is done through a common

edge, the cost in calculation time to traverse all the mesh is O(n). To increase the

capacity, Chao et al. (2009) use a multilevel embedding method on each coordinate

of a vertex. By using the three coordinates of a vertex, the method allows us to embed

3 bits per vertex in each layer, except for the three vertices used for synchronization,

which gives a capacity of 3(|V | − 3)nlayers bpv. This capacity is limited by the

precision of the floating-point number used to store the position of the vertices. The

simple IEEE 754 standard offers 23 bits for the mantissa, which allows the authors to

confirm that their method with this standard has a theoretical maximum capacity of

69 bpv.

7.4.3. Other domains

Other domains have been proposed, for example the data representation domain.

It involves using redundancies in the representation of the mesh as an information

medium. Meshes are generally represented by a list of vertices, their coordinates in

R3 and a list of polygons. The order in which these items appear in the lists does not

affect the 3D result. Bogomjakov et al. (2008) reorders the edges and sides. Therefore,

the message is embedded in the primitive permutations, with respect to their order of

traversal in the mesh (Edgebreaker, Rossignac (1999)).



3D Watermarking 233

(a) (b)

Figure 7.9. Embedding method of the algorithm of Cayre and Macq (2003), the bit “1”
is embedded by moving the vertex C0 to the position C1, so that its projection on the
opposite edge corresponds to an interval that encodes the correct value. The opposite
edge can be divided into a) two intervals and b) four intervals

Figure 7.10. Overview of a data hiding method in a point cloud in the spatial
domain, where ε is the synchronization parameter, k is the secret key, Σ

is the quantization step and m is the message to be embedded

7.5. Presentation of a high-capacity data hiding method

In this section, we study a data hiding method in the spatial domain based on

the steps presented in section 7.4. These steps are summarized in Figure 7.10. We

illustrate each of these steps in the high-capacity data hiding method proposed by

Itier et al. (2015a). Synchronization is done by following the construction order of the

Hamiltonian path in the complete graph of the point cloud from a first vertex given

by the secret key. To respect the constraints on the stability of the Hamiltonian path,
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presented in section 7.3.3.2, embedding and synchronization are done together. The

message is embedded on each pair of vertices, making up an edge of the Hamiltonian

path, by quantization of the polar coordinates so as to embed part of the message and

keep the traversal order of the vertices of the Hamiltonian path.

7.5.1. Embedding of the message

In this section, we present a practical implementation of the QIM method on the

position of the vertices of the mesh. We want to embed the message M of size

|M| < |V | − 1, defined on an alphabet, S = {s0, ..., sq}, in a mesh of |V | vertices.

For each iteration, i, 0 ≤ i < |V |, the vertex vi+1 is moved, with respect to its

predecessor, vi, in the Hamiltonian path by changing its coordinate system, from the

Cartesian coordinates at local spherical coordinates, with respect to the predecessor

vertex. Embedding is then carried out according to a coordinate of the new

coordinate system, ρ, θ and φ. The vector pi between the vertices vi = (xi, yi, zi)
and vi+1 = (xi+1, yi+1, zi+1) is defined as:

pi =

⎡⎢⎢⎢⎣
xi+1 − xi

yi+1 − yi

zi+1 − zi

⎤⎥⎥⎥⎦ [7.9]

The conversion into spherical coordinates is written as pi = (ρi, θi, φi).
Following the embedding of the message and the reverse transform in the initial

coordinate system, the new position of the vertex vi+1 is denoted as v′i+1. The main

idea of the method is to define a displacement interval, Δ, which limits the

quantization of the components of the vector. Let c be the value of the element, so the

lower bound of the interval, Δ, is given as:

bl =
⌊ c

|Δ|
⌋
× |Δ| [7.10]

The upper bound is simply bu = bl + |Δ|. The interval Δ is then divided into q
subintervals, encoding the words of S . Their lower bounds are denoted by: δj , j ∈
[0, q − 1]. Finally, to embed a word, sj , it is enough to move the vertex into the

corresponding interval:

c′ =

{
bl + δj if c < bl +

δj+δj+1

2

bl + δj+1 − γ otherwise
[7.11]

where γ = 1
k × |δ|, k ∈ N, k > 1, is a fraction of the size of the subinterval.
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Let x be the number of subintervals, and the theoretical capacity of this method

for a mesh of |V | vertices is given as:

cp = 3× log2(x)× (|V | − 1) [7.12]

If we set x = 2, we get a binary system similar to the one proposed in Itier et al.
(2015a). For a binary alphabet, S = {0, 1}, the subintervals, δ0 and δ1, correspond to

one bit of the message. From a practical point of view, the value x = 256 is interesting,

since S defines a set of coded words on one byte. The capacity is then 24 bits per edge

of the Hamiltonian path. This capacity is consistent with the precision of the floating

point that is used in standard binary 3D mesh formats, like STL2 or PLY3. However, a

larger capacity may reach the precision limits of some formats.

7.5.2. Causality issue

Causality issues can occur when a vertex is moved, through modification of its

coordinates, during an iteration of the embedding algorithm. In order to extract the

message, the traversal of the mesh must follow the exact same route on the vertices as

in the embedding step. This traversal is noted Pn, where n is the number of vertices.

Finally, the movement of a vertex can lead to loss of synchronization if the embedding

path is different to the extraction path. At the i step, if the embedding on the vertex

v causes a violation of the stability rules of the Hamiltonian path, then the traversal

of the graph following the construction of a Hamiltonian path from the same vertex

v0 will no longer be the same. In fact, v will not be chosen at step i. To avoid this

phenomenon, we propose a verification step, which authorizes or forbids a movement.

The sub-paths of Pn, denoted as P0,i and Pi+1,n−1, are Hamiltonian paths built from

step 0 to step i, and from step i + 1 to step n − 1, respectively. The stability of the

traversal Pn depends on the consideration of two conditions after the calculation of

the new position of the vertex, vi:

– preserve the path P0,i;

– preserve the path Pi+1,n−1.

An obvious solution to the second case is to combine the synchronization and

embedding steps. In fact, it is not necessary to keep the path after a vertex movement,

it is enough to confirm at each step that the path previously constructed is maintained.

The first case is more tricky. The constraints given by equations [7.4] and [7.5] must

be confirmed for each movement of the vertex.

2 Developed by 3D Systems.

3 Developed by Stanford University.
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Finally, if the movement produces a desynchronization, we can choose a simple

solution that involves not moving this vertex and therefore, not using it as a medium

for inserting information. In a blind scenario, it is not possible to know if a vertex

carries information or not. Therefore, at the extraction stage, information will be read

for this vertex and will potentially be false. These confirmation steps, in addition to

the construction of the Hamiltonian path, add distance calculations to search for the

closest neighbors at each iteration, which, from a naive implementation, is quite time

restrictive.

7.6. Improvements

From the method presented in section 7.5, it is possible to construct new methods

which respond to certain needs, for example to improve their security, robustness or

execution time.

7.6.1. Error-correcting codes

One of the first improvements involves dedicating part of the embedding capacity

to set up mechanisms that make it possible to secure the hidden message. In fact, due

to the strong embedding conditions on the Hamiltonian path, some vertices can be

found in the case where it is impossible to embed one or more bit(s). So in order to

allow the correct Hamiltonian path to be read on extraction, the vertices have their

position remain unchanged, which causes errors to appear in the extracted message.

Furthermore, in some cases, using too small a quantization interval, Δ, may result

in certain numerical precision errors. One of the solutions is to use error-correcting

codes, such as Reed–Solomon codes (Reed and Solomon 1960) or Hamming codes

(Hamming 1950). The use of these codes reduces the payload corresponding to the

secret message but makes it possible to ensure better recovery of the secret message

after decoding.

7.6.2. Statistical arithmetic coding

In some cases, the secret message does not have a uniform distribution, that is,

if it is not encrypted or encrypted with a permutation method (or Scrambling). The

point is to be able to preprocess the secret message by using its statistical properties

to compress it or to make its embedding easier, for example. In this case, instead

of dividing the quantization interval, Δ, depending on the number of bits, B, to be

embedded per vertex uniformly, a more suitable type of encoding can be used in order

to divide the quantization interval to better represent the message. Statistical arithmetic

coding is one solution, as presented by Itier and Puech (2017). This coding makes it

possible to find better positions for the vertices to embed the message with fewer
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errors (of unmoved vertices). This approach also allows the reduction of geometric

distortions induced in the 3D mesh. In fact, the subintervals coding the most frequent

words are wider, which implies that the movement of the vertices in the interval Δ
is smaller, on average. This approach also makes the tasks of analyzing and detecting

hidden messages (or steganalysis) more difficult.

7.6.3. Partitioning and acceleration structures

One of the main jobs of the method proposed by Itier et al. involves, at each stage

of the construction of the Hamiltonian path, finding the closest point in the set Vn\Vi

of the last point, vi, added in the path (Itier et al. 2015a). The method used to look

for the closest vertex (or Nearest Neighbor Search) must have a very low execution

time, but must also be able to take into account the modifications made to the vertex

after inserting v′i+1. So a naive approach like linear search, that is, a comparison of all

the distances between vi and the vertices of the set Vn\Vi, becomes very difficult to

sustain in this context because of its complexity in O(n). In order to be able to reduce

the time for this task, implementing an acceleration structure is necessary. In the 3D

domain, acceleration structures, such as Octree (Drost and Ilic 2018) and Kd-Tree can

be put in place to accelerate the nearest neighbor search. However, depending on the

implementation of these structures, it is sometimes difficult to update the structure.

In fact, because of the modifications that can be made to the position of the vertices

after embedding of the message, we need to partially update the structure without

having to completely recalculate it. This is why we recommend the use of a K-d-B-

Tree (Robinson 1981), as illustrated in Figure 7.11.

This k dimensional binary tree is made up of two types of nodes. First, region

nodes offering a binary choice along a specific axis and a cut value (often the average

of the bounding box on that same axis), where its left-child node contains the region

aligned to the bounding box with vertices less than the cut value, and its right-child

node contains the region with the vertices greater than the cut value. Finally, leaf

nodes contain an array of vertex indices, located at the level of the region defined by

the node. One of the advantages of this k dimensional binary tree is that it uses the

properties of a search in a Kd-Tree, and that it is easily updated. To update the tree, the

algorithm must test whether the vertex v′i+1 is in the same leaf of the tree as vi+1. If

it is, then the tree is not changed; otherwise, the leaf found is the new node, receiving

the index of the vertex v′i+1. It will then be necessary to remove the index of the vertex

vi+1 from its starting node.

Thanks to this partitioning of the space and its update at each iteration of

embedding in the Hamiltonian path, it is then possible to find the nearest vertex vi+1

of vi very quickly. In addition, the use of an acceleration structure makes it possible

to respond more quickly to one of the conditions of the causality problem and, in

particular, the condition defined by equation [7.5] in section 7.3.3.2 by looking for

the second closest point (or the first closest point by ignoring vi+1).
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Figure 7.11. Representation of a K-d-B-Tree

7.7. Experimental results

The evaluation of data hiding approaches is based on the compromise presented

in Figure 7.2 in section 7.5. We know that increasing the capacity of a data hiding

method comes at the expense of its robustness. Furthermore, in order to increase the

visual imperceptibility of the embedding, the shape and connectivity of the mesh

must be modified as little as possible. We evaluate the capacity of the method and the

distortions introduced into the 3D object following the embedding. The capacity of a

method can be defined in bits per vertex or by its payload, that is, the space dedicated

solely to the secret message. Note that additional data to the secret message, such as

error-correcting codes, are not part of the payload of a method. There are many

benchmark quality assessment metrics in 3D, and they allow us to objectively

quantify the quality of one 3D object relative to another. These metrics are classed in

two categories, those in correlation with the human visual system, and those that are

not. The latter is very widely used because it is generally well integrated, for example

the Hausdorff distance, the root mean square error (RMSE), PSNR1 (or peak
signal-to-noise ratio) (Chao et al. 2009) or even the geometric Laplacian (Karni and

Gotsman 2000). The metrics correlated to the human visual system are more recent

and are accompanied by subjective evaluations. For example, Corsini et al. (2007)

proposed a metric called the “3D Watermarking Perception Metric” (3DWPM), with

the aim of evaluating their 3D watermarking method. One of the metrics most

correlated with the human visual system is the “Mesh Structural Distortion

Measure 2” (MSDM2), proposed by Lavoué (2011).
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(a) (b)

(c) (d)

Figure 7.12. Example of data hiding in a 3D Bunny object with Δ = 10−4:
a) original 3D object, b) Hamiltonian path, c) marked 3D object and

d) geometric distortions between the original 3D object and the marked one

In this section, we present the experimental results of the method proposed by

Itier and Puech (2017). This method is an extension of the method presented in

section 7.1, using statistical arithmetic coding, as explained in section 7.6.2.

Figure 7.12 presents the 3D “Bunny” object, containing 34,834 vertices, in which a

secret message is embedded with the parameter Δ = 10−4. First, we can visually

compare the original 3D object (see Figure 7.12a) and its marked version (see

Figure 7.12c) and note that the embedding can be considered as imperceptible, given

the very weak geometric distortions illustrated in Figure 7.12d. This low impact on

the geometry is mainly due to the fact that the Hamiltonian path built, illustrated in

Figure 7.12b, although based on the point cloud, passes through edges mainly from

the 3D mesh.

The method studied is compared with other state of the art high-capacity methods,

and Table 7.2 presents the results of the methods in terms of capacity, given in bits per

vertex, Hausdorff distance (Cignoni et al. 1996) and PSNR1 (Chao et al. 2009).
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Capacity (bpv) Hausdorff distance × 10–3 PSNR1 (dB)

Chao et al. (2009) ≤ 27 – 100.57

Gao et al. (2012) ≤ 1.5 0.548 70.02

(Itier et al. 2015b) Δ = 1,10–4 ≤ 24 0.27 127.236

Table 7.2. Comparison with previous methods on the 3D Bunny object

To generalize on a larger number of objects, databases of 3D objects4 are used.

These bases contain a wide variety of shapes and sizes (in number of vertices). The

number of vertices of these 3D objects varies between 1,000 and 200,000. Table 7.3

presents different 3D objects with their number of vertices and their theoretical

maximum capacity, given in bit per vertex. Each object is marked by inserting a

message using the maximum capacity of the object. Geometric distortions of marked

objects are evaluated using PSNR1 and MSDM2 metrics. Since the method does

not always allow inserting into every vertex, the quality of the extracted message is

measured using the bit error rate (BER) and the peak signal-to-noise ratio (PSNR).

As Table 7.3 shows, embedding in meshes causes geometric distortions to have a

very low impact on 3D objects, as we notice with PSNR1 greater than 110 dB and

MSDM2 results lower than 10−2. Also note that embedding in full capacity of each

3D object reveals a very low presence of errors in the message extracted from the 3D

objects. The BER observed in the tested 3D objects is very low, close to 10−3, or

even equal to 0 in the case of the 3D “eagle” object. High BER values, as in the 3D

object chair1, correspond to 3D objects that have vertices whose distances between

them are close to or less than Δ, which prevents finding positions that do not break the

causality of the Hamiltonian path when inserting the message. Thus, errors are mainly

due to vertices that could not be moved. The use of error-correcting codes, proposed

in section 7.6, make it possible to correct the majority of these errors. However, then

the amount of information embedded (payload) is reduced.

7.8. Trends in high-capacity 3D data hiding

7.8.1. Steganalysis

Data hiding can be used as a secret communication tool. We shall therefore

discuss steganography, as explained in detail in Chapter 5. The secret data are shared

using an information medium, which may be a 3D object. Steganalysis (see

Chapter 8) is concerned with detecting the presence of hidden messages within

4 MADRAS project, Stanford University, LGMA.
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media. Recently, steganalysis approaches have been applied to 3D objects (Yang

et al. 2014; Li and Bors 2016a, 2016b). To cope with these advances, interest in new

embedding methods, which are visually and statistically imperceptible, has increased

(Yang et al. 2017). For example, Itier and Puech’s (2017) method introduces

distortions that are detectable by the steganalysis system used by Li (2018). The

proposed embedding strongly influences the dihedral angles of the 3D object.

However, if the embedding is only done on the radial coordinate, the modification of

the dihedral angles between the triangles is reduced.

3D metrics Message metrics
3D object

Number

of vertices

Theoretical

capacity PSNR1(dB) MSDM2(×10–3) PSNR(dB) BER(×10–3)

Armadillo 172,974 518,922 134.44 1.27 23.49 2.632

Bitorus 3,000 9,000 116.862 0.55 31.34 4.024

Blade2 24,738 74,214 123.375 3.52 48.6 0.067

Bunny 34,834 104,502 127.236 0.41 52.61 0.042

Casting 5,096 15,288 118.308 3.48 32.77 2.411

Chair1 12,326 36,978 125.168 4.54 5.49 457.288

Dragon 50,000 150,000 128.618 1.84 55.07 0.031

Eagle 1,000 3,000 112.824 1.32 +,∞ 0

Hand 36,619 109,857 125.463 1.72 36.11 0.807

Horse 112,642 337,926 134.965 2.09 48.68 0.047

Rabbit 70,658 211,974 131.27 0.41 46.34 0.103

Venus 100,759 302,277 130.454 1.56 44.02 0.189

Table 7.3. Evaluation of the quality of the approach studied (Itier and Puech 2017)

7.8.2. Security analysis

Security in the data hiding field is defined as the impossibility that an

unauthorized user can access the hidden channel (Kalker 2001). Perez-Freire and

Perez-Gonzalez (2009) extended this definition: security also relies on the difficulty

of estimating the secret parameters of the embedding function based on the

observation of marked data. In general, thorough safety analysis of methods is not

considered by the authors. Some authors assume that the method does not need to be

secure. In other cases, the problem has an obvious high complexity but many biases.

For example, the robust watermarking method proposed by Bors and Luo (2013)

shows security vulnerabilities (Itier et al. 2014). Some methods are considered secure
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since the number of difficulties makes the problem too complex for an attacker. In

this case, it is much easier to remove the payload than to access it (Cayre and Macq

2003).

7.8.3. 3D printing

3D data hiding was initially linked to digital applications such as cinema, games

or modeling. One of its main purposes is the protection of shapes. With the rise of

3D printing technologies, for prototyping for example, the protection of shapes also

takes place in the real world. These protections are based on the local variations of

thickness of the object to embed the message. Extraction is then done using a scanner.

One of the first methods proposed by Yamazaki et al. (2014) is non-blind and requires

the realignment of the scanned shape with the reference model. Recently, the first

methods of blind watermarking of 3D-printed objects have been proposed. Extraction

can be done using a camera (Zhang et al. 2018) or a paper scanner (Delmotte et al.
2019).

7.9. Conclusion

In this chapter, we have presented essential concepts, as well as latest

developments in 3D data hiding methods. We have shown, using an example, the

different steps to be implemented in a data hiding scheme, and the problems they

generate.

The security of 3D data hiding methods is still an unresolved question. Each

application context requires an appropriate scenario. An interesting area of work is to

propose efficient steganography methods, validated by rigorous steganalysis. A major

unresolved problem involves developing a data hiding method that is not designed for

a specific application. This method must take into account the compromise between

the data and automatically adapt the parameters for each use. More generally,

protection of 3D shapes should not consist only of the protection of a mesh

associated with the shape, since it is possible to re-mesh an object. The emergence of

3D printing poses new challenges in this context. In fact, the sharpness of the

resolution of printing and precise acquisition methods can produce totally different

meshes while preserving shape. Thus, hiding 3D data becomes inevitable for

designers and manufacturers, or for privacy. Industry makes profits by designing and

exploiting its own shapes, and they need tools that help them preserve their

properties. 3D acquisition and 3D printing are already available and used daily for

entertainment, medical imaging and increasingly on social media. At the same time,

governments, industry and hackers are collecting, exploiting or monetizing

proprietary and personal data. It is therefore necessary to deepen the work in the field

of 3D data hiding, in particular on the security of methods, and to develop tools for

common use.
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In Chapter 5, we presented the concept of steganography, that is, methods of

hiding information in digital images. In particular, we concentrated on the fact that

steganography methods are constructed in a context where an enemy seeks to

identify images used to spread hidden information (Stego images) from a list of

images. In this chapter, we will see how to perform an analysis of a digital image to

obtain information about the data that may have been hidden there.

8.1. Introduction, challenges and constraints

Before getting to the heart of the matter, we will briefly remind you that the

purpose of steganography is to hide secret information in digital media so that the

latter remain visually and statistically “as close as possible” to the original media.

The example of the prisoner problem1 (Simmons 1984) helps to illustrate this

For a color version of all figures in this chapter, see www.iste.co.uk/puech/multimedia1.zip.

1 Also see section 5.1.
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situation. The aim of steganalysis can seem quite simple at first glance: it is a matter

of “only” detecting media containing hidden information to prevent their

transmission. In practice, the subject matter is much broader than that. In reality, as

very often in the field of security, the goal of steganalysis largely depends on the

scenario considered and, in particular, on the knowledge that Eve has “initially”2.

In this chapter, we will see that steganalysis has been widely studied as a tool for

evaluating steganography methods. This approach sets down a very specific situation

in which Eve is assumed to be omniscient, in that she can access (almost) all the

information about the hidden data. In this scenario, we generally assume that Eve is

only unaware of (1) what the hidden message is, although its statistical distribution is

known; (2) what insertion key is used and (3) whether a message is actually inserted.

This scenario is very practical for the steganographer, Alice, because, on the one

hand, it allows her to focus on the problem of interest without taking into account the

incidental “technical difficulties”. Furthermore, in this scenario, Alice considers the

worst case in terms of steganalysis, so she can be sure that her assessment is

pessimistic and that, in practice, a more realistic enemy will hardly be able to come

up with such a precise steganalysis because they often do not know the size of the

inserted message or the algorithm used. In section 8.6 we will see that the

experimental conditions are also significantly different from the operational

conditions under which steganalysis could be carried out.

8.1.1. The different aims of steganalysis

Many works have been proposed in order to implement different types of

steganalysis; we will briefly describe them in the rest of this section:

– on the one hand, different detection methods can be considered, depending on

the Cover media3: images, sounds and videos being different media and compressed

differently, they should be treated differently to find hidden information. More

broadly, steganography in texts or in computer networks is so different by nature that

it seems difficult to analyze them in a similar way;

– other works, in a way which is more similar to what is done in cryptanalysis,

focus on searching for the insertion key from images containing hidden information.

These works often require the steganalyst, Eve, to have significant knowledge;

– in quantitative steganalysis, the aim is to estimate the size of a possible hidden

message. We can easily understand that estimating the size of the message can be

compared to a binary detection problem. Quite a naive first view involves estimating

2 See section 5.1 for the definition of the roles of Alice, Bob and Eve.

3 See section 5.1 for the definition of the terms Cover and Stego.
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the size of the hidden message and deciding that the medium is Stego when this

estimate exceeds a given threshold;

– finally, we can mention active steganalysis, in which Eve slightly modifies the

transmitted medium in order to preserve its visual appearance while making extraction

of the hidden message impossible.

Because of lack of space, it is difficult to tackle all the problems that make up

steganalysis in only one chapter. In addition, even though these issues are interesting,

we will stick to only the classical framework that concerns the detection of information

hidden in digital images.

As we have explained previously, steganalysis was mainly developed to make the

evaluation of steganography methods possible. Most works in this field refer to

Kerckhoffs’ principle (Kerckhoffs 1883), reworked by Claude E. Shannon, like the

fact that “the enemy knows the system used”. In accordance with this principle,

steganalysis generally relies on the fact that Eve is only unaware of the inserted

message and the insertion key used. We will return to this in greater detail in

section 8.3 on the scenario of targeted steganalysis, but this assumes that Eve knows

the type of media – generally an image, the insertion algorithm, the size of the

message and its statistical properties.

8.1.2. Different methods to carry out steganalysis

The most effective methods for hidden information detection are undoubtedly

those based on signatures. In this case, it is possible to detect steganography

indirectly, by identifying a particular property that is found systematically when the

insertion of a message has been carried out with a certain tool and only in this case. It

is therefore a question of detecting a specific feature linked to the use of a precise

tool, rather than the presence of hidden information itself. This approach can be

compared to what is done for computer security (detection of network attacks or

viruses, for example) and is discussed in section 8.2 through some examples.

A second family of more general steganalysis methods, based on modeling and

statistical detection, is discussed in section 8.3. In practice, this sort of detection

method is very complex to implement, since it requires a very precise statistical

model of a Cover image and a Stego image in order to be able to statistically evaluate

if a given image is more likely to come from one of these two models. In this section,

we precisely define the framework of targeted steganalysis, which is necessary for

building statistical models like this.

Section 8.4 deals with the use of statistical learning methods. The most effective

steganalysis methods rely on this approach, and so naturally it is those which have

been the most widely studied. Here, steganalysis can be subdivided into two distinct
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problems: the first relates to the extraction of relevant characteristics, and the second

relates to learning to automatically classify, based on a vast set of examples,

characteristics from Cover and Stego images.

Recently, we have witnessed a spectacular development of deep learning

methods, or Deep Learning, which, on the other hand, is carried out in a single phase

which combines characterization and classification. The use of these methods for

steganalysis is discussed in section 8.5.

This chapter concludes, in section 8.6, with a short, non-exhaustive list of the

topics that seem the most interesting and which remain largely open.

8.2. Incompatible signature detection

In the field of computer security, signature detection is generally defined as a

detection method based on looking for specific patterns or characteristic traces

indicating the use of a particular software or algorithm. Here, the software aspect is

important, because a signature does not depend on the insertion method considered,

but is quite specific to a given implementation. As we will see in this section, this

signature can appear in the metadata of the media, or in the properties of the signal

that form the media.

A simple example is illustrated by the F5 steganography algorithm, proposed by

A. Westfeld in 2001 (Westfeld 2001). It is combined with a demonstrator in order to

allow its use within the scientific community. Westfeld did not want to fully program

the JPEG compression part and used an available encoder, but this encoder inserted

the following comment systematically in the file header “JPEG Encoder Copyright

1998, James R. Weeks and BioElectroMech”. As this encoder is used very little, it was

possible to detect the images containing hidden information with F5, not by directly

detecting the hidden data, but by detecting this very specific comment. Here, it is

a matter of detecting an “implementation error” and steganography software should

generally not leave “ signatures” that allow it to be identified. In this sense, a signature

is always a flaw linked to a very specific implementation.

A second example of signature detection, this time using mathematical properties,

was presented in Goljan and Fridrich (2015) and relates to color images. Remember

that the sensor of a photographic camera is insensitive to color by nature. To show

the color, a red, green or blue microfilter is placed in front of each photo-site of the

sensor, which then records the color information corresponding to the color of the filter

(Sharma and Bala 2017). You must then “reconstruct the two missing colors”, which

is performed from neighboring pixels. It was found in Goljan and Fridrich (2015) that

steganography can go against the fundamental rules of reconstruction of the value of

the missing colors. For example, in the linear interpolation framework, if the green
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component of a pixel estimated from its neighbors becomes more important than all

its neighboring pixels because of steganography, this value will become incompatible

with its neighbor and the steganography will be shown.

Goljan and Fridrich (2015), therefore, proposed using seven features, which count

the number of pixels whose value does not agree with the rules for reconstructing

colors from neighboring pixels; these values are always assumed to be zero for a

natural image and make it possible to detect steganography in color images by

signature.

Another example of incompatible signature is that of Cover images encoded in

the spatial domain, but which have been previously compressed in the JPEG format.

This strategy may seem interesting at first, because an uncompressed image can

theoretically accommodate a greater amount of hidden information than a

compressed version. However, if an image encoded in the spatial domain was first

compressed using the JPEG standard, the 8 × 8 block of pixels can be broken down

as a sum of the components of the DCT representation, weighted by integer

coefficients. More precisely, let us denote by X an 8 × 8 block of pixels which can

be written as:

X = round

(
7∑

k=0

7∑
l=0

ck,lqk,lDk,l

)
[8.1]

where qk,l is the elements of the quantization matrix, ck,l is the (unknown) coefficients

of the components of the DCT base, noted Dk,l, and round(·) is the rounding function.

If some pixels of this block, X, are modified after JPEG compression, it becomes

impossible to find integer coefficients, ck,l, that make it possible to show the X
block. The steganalyst, Alice, can then conclude that this image seems to have been

compressed in the JPEG format, but that some pixels conflict with what should

have been obtained during the decompression. Once again, this mathematical

incompatibility can be used to detect a Stego image.

More recently, a fairly similar signature, also based on what has been called

“compatibility with JPEG compression”, is proposed in Butora and Fridrich (2020)

and Cogranne (2020). In this case, it is a question of detecting steganography in the

images compressed in JPEG format by using the fact that modifying the DCT

coefficients can lead to the production of pixel values that are not possible for a

natural image. This detection method uses a statistical steganalysis method and is

described in more detail at the end of section 8.3.

Finally, note that while these signature detection methods are generally very

reliable in the sense that errors are uncommon, each software or algorithm must
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nevertheless be carefully analyzed in order to find characteristic traces which reveal

that it has been used. This type of analysis is very time consuming while also being

difficult to generalize. The following steganalysis strategies are intended to be more

common.

8.3. Detection using statistical methods

The detection methods presented in the rest of this chapter are often less reliable

than signature detection methods, but have the advantage of being much more general,

in the sense that they aim to detect changes related to hiding information in the very

content of a medium.

We first introduce simple statistical methods. Consider an image X of size

M ×N , described as a matrix of pixels encoded on 8 bits, xm,n ∈ {0; . . . ; 255},

so the steganalysis involves choosing between the two following hypotheses:

1) H0: pixels xm,n come from a Cover image;

2) H0: pixels xm,n come from a Stego image.

The main difficulty is to define precisely what statistically characterizes a Cover

image, and what differentiates it from a Stego image.

8.3.1. Statistical test of χ2

Historically, the first approach that addressed that this problem was proposed in

Westfeld and Pfitzmann (1999). Unable to statistically describe what a natural image

is, it has been proposed that we model the pixels after using steganography. To explain

how this test works, we need to remember how the insertion of a message by least

significant bits (LSB) works4. In order to insert the ith bit of the message mi ∈ {0; 1}
into the pixel xm,n, steganography by substitution of the least significant bits modifies

the pixel in the following way:

zm,n = xm,n − LSB(xm,n) +mi [8.2]

where zm,n is the pixel of the Stego image and LSB(xm,n) is the least significant bit

of xm,n.

It is generally accepted in steganalysis that the message inserted, m =
(m1, . . . ,mI), is a sequence of all independent and identically distributed bits (i.i.d)

according to a uniform law: P [mi = 0] = P [mi = 1] = 1/2.

4 See also section 5.3.1, in Chapter 5.
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The result of the insertion of the bit mi in the pixel xm,n is that the Stego pixel

can be modeled by the following probability distribution:

P [zm,n = xm,n] =
1

2
= P [zm,n = x̄m,n] [8.3]

with x̄ = x+ (−1)x the integer value x whose least significant bit has been inverted.

Furthermore, assuming that all of the pixels are used to hide a (very) large secret

message, the distribution of Stego pixels can be modeled as follows:

∀k ∈ {0; . . . ; 255} , ∀(m,n) , P [zm,n = k] = P
[
zm,n = k̄

]
[8.4]

It then becomes possible to statistically test whether an image is a Stego image

by measuring the difference between the theoretical distribution of equation [8.4] and

that observed on an analyzed image. This is precisely the purpose of the χ2 test that

measures the difference between a theoretical distribution and those from observations

as follows:

χ2 =
255∑
k=0

(Nk −N	
k )

2

N	
k

with N	
k =

Nk +Nk̄

2
[8.5]

where Nk represents the number of pixels whose value is k and N	
k represents the

expected number of pixels with the value k.

In fact, equation [8.5] represents a measure of the difference between theoretical

distribution and empirical distribution through the term: (Nk − N	
k )

2. Figure 8.1

illustrates the distribution models of equations [8.4] and [8.5] for a Stego image; in

fact, we see a number of pixels k and k̄ which are “equalized” on the Stego image.

When the value of χ2 is beyond a given threshold, τ , the image is considered

to be a Cover image, or statistically too different to the theoretical distribution to

be considered a Stego image [8.4]. How should the threshold τ then be set? The

authors in Westfeld and Pfitzmann (1999) propose choosing a threshold to make sure

that, theoretically, a Stego image is considered as natural with a probability5 p0. For

this, the authors use the distribution of χ2, which makes it possible to calculate this

probability with the following relationship:

pχ2(τ) = P
[
χ2 > τ

]
= 1−

∫ τ

0

t(ν−2)/2e−t/2

2ν−2Γ(ν)
dt [8.6]

with ν = 128 − 1, the “number of degrees of freedom” defined by the number of

“pairs of values”, which can be swapped between them.

5 Probability known as “missed detection” or “false-negative”.
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Figure 8.2 illustrates this way of setting the decision threshold depending on a

“false-negative” probability, p0, set previously. It also allows us to compare the

theoretical distribution of the statistic, χ2, from equation [8.5] with the theoretical

distribution of χ2. The difference between the observations and the theoretical model

is mainly due to the fact that the vast majority of the images do not have pixels with

all the values between 0 and 255, and therefore have a number of degrees of freedom

less than ν = 128− 1.

Figure 8.2. Illustration of probability distributions (empirical and theoretical)
for the result of the χ2 test and the resulting error probabilities

The strength of the χ2 test is that it offers a statistical test without having to solve

the (very tricky) problem of modeling the statistical distribution of pixels of a Cover

image. In fact, the test essentially proposes checking whether the pixels of an

analyzed image correspond to the model of a Stego image; otherwise the image is

considered to be a Cover image by default. Another use of this test is to try to set the

detection threshold, τ , based on a missed detection probability, pχ2(τ), defined in

equation [8.6].

Unfortunately, this test is not very efficient, especially since it does not model the

statistical distribution of a Cover image, but only the Stego image. In statistical

detection, when only one of the two hypotheses can be characterized, we generally

carry out a “goodness-of-fit” test, measuring the adequacy of the observations to this

model, and this is generally less reliable than when you can exactly characterize the
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two competing hypotheses, as proposed by the likelihood-ratio test presented in

section 8.3.2.

8.3.2. Likelihood-ratio test

In order to fully understand the approach presented in this section, it is necessary

to formalize steganalysis and statistical detection.

A statistical test is a function δ, which, from a group of observations, X, returns a

binary decision: δ : X → {0, 1}, so that the hypothesis, H0, is accepted if δ(X) = 0.

Let us briefly recall that a test is never perfect and that there are two possible types of

errors: false-positive and false-negative (or false alarm and no detection). In general,

the hypothesis H0 is said to be “null”, and corresponds to a “normal” case, while the

alternative hypothesis, H1, corresponds to the difficult situation that we want to detect.

The false-positive, therefore, corresponds to the case where the test decides to accept

the hypothesis H1 when, in reality, the observations come from the hypothesis H0.

In the case that we are interested in, the analyzed image is a Cover image which is

classified as a Stego image. On the other hand, a false-negative corresponds to the case

where the test accepts the hypothesis H0, when the observations really come from the

alternative hypothesis H1; for steganalysis, this is the case where the guardian, Eve,

misses the detection of a Stego image.

In order to show how weak the χ2 test is, we need a statistical model of the Cover

images. This is built by assuming that the pixels are statistically independent and all

come from a Gausian distribution:

xm,n ∼ N (μm,n, σ
2
m,n

)
[8.7]

where μm,n represents the mathematical expectation of the pixel (i.e. its “average” or

theoretical value), and σ2
m,n represents the noise variance.

This is a model commonly used in image processing, which assumes that an image

can be decomposed into a theoretical “content” and noise, linked to the camera defects.

To be more precise, the pixels are represented by integer values and, for the sake of

simplicity, we assume that this has no impact on the probability distribution of the

pixels:

p0 = P [xm,n=k] = (p0(k))k∈Z ∝
(

1

σm,n

√
2π

exp

(
(k − μm,n)

2

2σ2
m,n

))
k∈Z

[8.8]
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First, we study the case where Alice uses steganography by LSB substitution6.

Each pixel can be modified with the same probability of β
2 = I

2MN , which relates to

the ratio of the number of bits of the inserted message (I), per pixel (MN ), and the

distribution of a Stego pixel then becomes:

p1(k) = P [xm,n = k|H1] =

(
1− β

2

)
p0(k) +

β

2
p0(k̄) [8.9]

Result
Truth Hypothesis 0:

(Cover image)

Hypothesis 1:

(Stego image)

Accept Hypothesis 0

Accept Hypothesis 1

Correct decision

False-negative

(missed detection)
(pFN: 1 − ς)

False-positive (false alarm)

(pFP: α=P [δ(X)=H1|H0])
Correct decision

(ς=P [δ(X)=H1|H1])

Table 8.1. The different possibilities of good and bad detection. For a color
version of this table, see www.iste.co.uk/puech/multimedia1.zip

How can we use these statistical models to decide whether an examined image, X,

comes from the hypothesis model instead H0
7, or from the hypothesis H1

8?

There are several solutions that have one central element in common, the

likelihood ratio (LR), which is expressed as:

Λ(X) =
p1(X)

p0(X)
=
∏
m,n

p1(xm,n)

p0(xm,n)
[8.10]

with p0 and p1, which are the statistical distribution models for Cover and Stego

images, respectively, defined by equations [8.8] and [8.9], respectively.

The second part of the equality of equation [8.10] results directly from the

statistical independence model between the pixels which, although not totally exact,

is very widely used because it significantly simplifies things.

Clearly, the likelihood ratio (LR) is greater if the probability of observing the data

to be analyzed is greater under H1 than under H0; conversely, if the probability of

6 See also section 5.3.1.

7 Defined in equation [8.8].

8 Defined in equation [8.9].
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observing these data is much greater under H0 than under H1, the LR will be low.

Based on this observation, the likelihood ratio test simply involves thresholding this

likelihood ratio: δ(X) = H0 if Λ(X) < τ and δ(X) = H1 and Λ(X) ≥ τ .

The use of the LR test is theoretically justified because the Neyman–Pearson

lemma states that it helps achieve the greatest power9 ς for a false-positive

probability, α, set at α = P [Λ(X) > τ ]. This last relationship also makes it possible

to set the threshold in order to respect a previously established false-positive rate.

Using the Cover image model of equation [8.8] and the Stego image model of

equation [8.9], the LR is written as:

Λ(X) =
∏
m,n

[
(1− β) + β

p0(xm,n) + p0(x̄m,n)

2p0(xm,n)

]
[8.11]

For the sake of simplicity, the logarithm of LR is generally used. This is to

replace the product in equation [8.11] by the sum. Moreover, by using the definition

of p0(xm,n) equation [8.8], a (slightly tedious) calculation makes it possible to

simplify the previous relationship as follows (Cogranne 2011):

log
(
Λ(X)

)
=
∑
m,n

β log
(
Λ(xm,n)

)
=
∑
m,n

β
(xm,n − μm,n)(xm,n − x̄m,n)

2σ2
m,n

[8.12]

In this approach, the most interesting thing is not so much having a simple

relationship, making the calculation of the likelihood ratio possible (although some

simplifications had to be made), but more being able to characterize the statistical

distribution of the latter and therefore, in fine, controlling the probabilities of false

alarms and non-detection.

In particular, it is possible to show the mathematical expectation and variance of

the term log
(
Λ(X)

)
for a Cover image given by:

E
[
log
(
Λ(X)

)|H0

]
= 0 and Var

[
log
(
Λ(X)

)|H0

]
=

β2

4σ2
m,n

[8.13]

It is then possible to standardize the LR as follows:

log (Λ(X)) =
1

�

∑
m,n

log (Λ(xm,n)) with � =

(∑
m,n

β2

4σ2
m,n

)1/2

[8.14]

9 See definition in Table 8.1.
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so that, in accordance with the central limit theorem (Lehmann and Romano 2005,

theorem 11.2.5), it is possible to calculate the statistical distribution of the LR-log for

a given image:

{
if H0 : log (Λ(X)) ∼ N (0, 1)

if H1 : log (Λ(X)) ∼ N (�1)
[8.15]

With the Gaussian distribution being fairly easy to use, we can easily calculate

the decision threshold, τ , to ensure a fixed false-positive probability, α0: τ(α0) =
Φ−1 (1− α0) so that P [log (Λ(X)) > τ(α0)|H0] = α0. Similarly, the power of the

test ς can be calculated as the probability, P [log (Λ(X)) > τ |H0] = 1− Φ(τ − �).

Many observations are necessary to understand these different results. On the one

hand, let us note that it is very “typical” for the mathematical expectation of the LR

for a Stego image to be equal to its variance. It is for this reason that the normalization

factor, �, in equation [8.14] also corresponds to the expectation in equation [8.15].

We also note that all the previous calculations require knowledge of the

mathematical expectation, μm,n, and the variance, σ2
m,n, of each of the pixels, but, in

practice, these variables are not known. It is therefore suggested that we replace them

with estimates, which are quite hard to obtain “accurately”, and this is where the

application of this approach becomes much more complicated and the guarantee of

the error probabilities in particular becomes very difficult. Some results are presented

in Figure 8.3, using the ALASKA image database (Cogranne et al. 2019).

Figure 8.3(a) shows that the distribution of the LR-log obtained for Cover images is

fairly consistent with the theory. For Stego images, it depends on the � factor, which

varies for each image, creating this “spread”. Figure 8.3(b) compares the

false-positive probability depending on the decision threshold, τ , in theory and in

practice, using two different image bases. We can also see that this property is valid

for “fairly high” probabilities. However, note that, in the case where we want to

obtain very low false-positive rates, the estimates are not precise enough to offer

relevant guarantees. Finally, Figure 8.3(c) shows the performances obtained through

a ROC (Receiver Operating Characteristic) curve, which presents a false-positive

probability, α0(τ), depending on the detection power ς(τ). We can see that for an

insertion rate β ≈ 0.09 (24 kilobits inserted into images of 512 x 512 pixels), the

performance is very good on the two bases used for high error probabilities.



260 Multimedia Security 1



Steganalysis 261

Figure 8.3. Results of the application of the LRG test, equation [8.14]

8.3.3. LSB match detection

Essentially, the detectors presented in section 8.3.2 show that steganography by

substitution of the LSB clearly introduces a bias by increasing even values and

decreasing odd values. This explains why this insertion method is to be avoided, to

benefit the correspondence (LSBM or LSB±1), which modifies the least significant

bits, according to the insertion rule defined in section 5.3.1.

After having presented the application of a statistical test for steganalysis in

detail, we can address the detection of LSB±1, which has been studied in the

literature through “simple” tests much less. We will also consider the case of an

adaptive steganography scheme, that is, the probability of using the pixel xm,n is

potentially different for each pixel10 and will therefore be denoted βm,n. The reader

will note that it is very easy to replace the “average insertion rate”, β with an

insertion rate for each pixel, βm,n, without any additional modification, in

equations [8.9] and [8.11]–[8.14].

10 And this via the use of an insertion cost, see sections 5.2.3 and 5.3.2.
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We will not explain all the details of the calculations, which can be found

in Cogranne (2011) and Sedighi et al. (2016a), but the LR-log calculation for the

least significant bits correspondence leads, after a few simplifications, to:

Λ±(X)=
∑
m,n

βm,nΛ
±(xm,n)=

∑
m,n

βm,n

(
(xm,n−μm,n)

2−1/12

σ4
m,n

− 1

σ2
m,n

)
[8.16]

Again, the most interesting thing here is calculating the error probabilities of this

test and, using the central limit theorem like before, this requires knowing the first two

moments, which are given by:

E [Λ±(xm,n)|H0] = 0 , E [Λ±(xm,n)|H1] =
2β2

m,n

σ4
m,n

Var [Λ±(xm,n)] =
2β2

m,n

σ4
m,n

[8.17]

The comparison between the LR for LSB substitution detection, given in

equation [8.12], and the LR for the detection of LSB±1, given in equation [8.16],

shows that the detection of LSBR (substitution) is essentially based on a deviation

from the expectation through the term (xm,nμm,n). Conversely, the detection of

LSB±1 is essentially based on a difference between the theoretical variance and that

observed through the term (xm,n − μm,n)
2. However, if estimating the mathematical

expectation of pixels is widely studied11, the precise estimate of the variance of

pixels is much harder and has been studied much less. We also want to detect a

deviation from a variance that is not known and needs to be estimated, regardless of

the presence of hidden information. All of this explains why the statistical

steganalysis methods tackling adaptive insertion methods are not as efficient as the

LSB substitution steganalysis seen in section 8.3.2.

The application of statistical detection explains why the steganalysis of LSB±1 is

more difficult; it should be noted that the performance study also shows that, for a

given pixel, the “detectablility” essentially depends on the “insertion-on-noise

relationship”, defined by β2
m,n/σ

4
m,n in the relationships of equation [8.17].

An interesting application of the theory of hypothesis testing has been to use this

result concerning the “statistical detectability” of each pixel to design an insertion

algorithm (Sedighi et al. 2016a) which, instead of minimizing the heuristic

distortion, minimizes the theoretical detectability. Although this requires estimating

the mathematical expectation and the variance of each pixel (which remains an

unresolved problem), it has shown its effectiveness. More details on this application

of the theory of hypothesis testing in steganography are given in section 5.3.2.2.

11 It is a matter of “denoising”, which is of major interest for the improvement of images.
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To conclude this section on statistical steganalysis, let us mention that a method

of statistical steganalysis on JPEG images has recently been proposed that amazes

with how efficient it is. This method, presented by Butora and Fridrich (2020) and

Cogranne (2020), exploits the fact that the pixels are quantized before using the

discrete cosine transform (DCT). For a compressed image, it is possible to

decompress it12 and to measure the variance of the quantization noise by:

1

MN

∥∥X− round
(
X
)∥∥2

2
=

1

MN

∑
m,n

(
xm,n − round

(
xm,n

))2
[8.18]

where M and N are the number of lines and columns of image X, and round
( · ) is

the rounding function to the closest integer value.

If information has been hidden in the DCT coefficients, the rounding error in the

spatial domain makes it possible to obtain the statistic defined in equation [8.18],

which will tend to increase. This test is really effective (it was slightly improved in

Cogranne et al. (2020b) with a “near-perfect” detection of a few hundred bits). This

can be explained by the fact that it is based on a very precise model and does not

depend on the parameters to be estimated, but only on the quantization noise which is

the same regardless of the image analyzed. However, this is a very specific case that

can be equivalent to incompatible signature detection (see section 8.2).

8.4. Supervised learning detection

We will now describe steganalysis approaches that are radically different from

what has been previously described. These methods are neither based on the presence

of an incompatible signature, nor on the prior knowledge of a statistical model of the

Cover and/or Stego image, but are based on supervised statistical learning methods,

whose foundations can be broken down into two phases. First, it is a matter of

extracting the “features” from objects in the database considered. These features

must reveal the presence of hidden information (or what we want to detect in general)

and must make it possible to reduce a complex and variable object, such as an image,

of any size, to a real-valued vector of p. Based on these features, a learning method is

used to determine a decision rule, which will provide a binary result, which will be

the result of steganalysis. Thus learning is supervised, in that each image is

associated, during this phase of learning, with a label that indicates if the image is a

Cover or Stego. Determining a decision rule actually corresponds to the resolution of

12 That is, to recalculate the value of the pixels from the quantized DCT coefficients.
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an optimization problem that seeks to associate a value that is as close as possible to

the label to be predicted with each feature vector.

Figure 8.4. Illustration of the supervised learning principal, which aims
to determine a detection rule from a labeled database (right image

licensed under CC BY-SA 4.0, produced by Zirguezi)

In this section, we will now briefly describe how these two phases, (1) features

extraction and (2) supervised learning, are usually implemented in steganography.

8.4.1. Extraction of characteristics in the spatial domain

8.4.1.1. SPAM characteristics

It would obviously take too long to describe the evolution of steganalysis up to

modern techniques in detail, but note that, generally, a keystone of current methods

originated in Pevný et al. (2010), which uses the differences between adjacent pixels

that we will denote D→:

d→m,n = xm,n − xm,n+1 [8.19]

with →, which here represents the horizontal direction in which the differences are

calculated, among the eight possible used {←,→, ↑, ↓,↖,↘,↗,↙}.

On the basis of these differences, it is suggested that we estimate the frequency

with which successive differences are found in an image. Representing an empirical
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frequency corresponds to a count that is generally, simply yet inaccurately, known as

“histogram” in steganalysis. These counts are arranged in vector:

f→
k,l =

∑
m,n

1
[
d→m,n == k, d→m,n+1 == l

]
, (k, l) ∈ {−T, . . . , T} [8.20]

with 1 [·], the indicator function, 1 [e] = 1 if the event e is true – and 1 [c] = 0
otherwise – and T , the maximum difference threshold considered.

Given that the values of adjacent differences together on neighboring positions

are counted, these vectors are called “co-occurrence” in steganalysis. This concept

can be generalized by using more than two disjoint values at the cost of increasing

the number of possible co-occurrence values. In fact, by using co-occurrences of c
adjacent differences between −T and T , it gives (2T+1)c different values of possible

co-occurrences. Finally, the last step proposed in Pevný et al. (2010) aims to limit

the number of characteristics by gathering together the values calculated for opposite

directions, for example ← and →, or even ↖ and ↘. The authors propose grouping

together “diagonal” directions and horizontal and vertical directions:

fk,l =
1

4

(
f→
k,l + f←

k,l + f↑
k,l + f↓

k,l

)
[8.21]

This step, called “symmetrization”, aims to reduce the number of characteristics.

The original SPAM, Subtractive Pixel Adjacency Matrix (Pevný et al. 2010)

characteristics, use triplets of three adjacent differences, c = 3 , fk,l,m (kown as

second order), and three distinct values for each T = 3. This means counting a

distinct number of “co-occurrences” of (3 × 2 + 1)3 = 73 = 343. Adding the fact

that diagonal co-occurrences are distinguished from horizontal and vertical

co-occurrences during the symmetrization phase, this gives a total of 686

characteristics.

Clearly this is quite a high number of characteristics (also know as dimensions)

compared to the problems generally studied in the field of statistical learning.

8.4.1.2. RM characteristics

However, it has been empirically observed that, for the particular case of

steganalysis, which essentially involves a very weak signal detection within the

Cover media, generalizing an approach like this makes it possible to improve the

detection performance. The approach that we have briefly described was largely

developed afterward in a methodology whose operating principle is illustrated in

Figure 8.5. This figure illustrates the “Spatial Rich Model” operating as proposed in

Fridrich and Kodovskỳ (2012). This is essentially an improvement of the method



266 Multimedia Security 1

proposed in Pevný et al. (2010). Furthermore, these models are fairly standard, and

also illustrate the fact that the current methods of steganalysis are divided into four

main stages, which are (1) calculation of residuals; (2) quantization and thresholding;

(3) counting co-occurrences and finally (4) redundancy reduction by symmetrization.

Calculating residuals is generally done by using a linear filter. From an image, X,

whose pixels are given by xm,n, we apply the same relationship between adjacent

pixels on the whole image:

r(n)m,n =
∑
i,j

xm+i,n+jk
(n)
i,j [8.22]

This weighted sum of neighboring pixels is a convolution operation, R(n) =
X �K(n), whose kernel K(n) specifies the value of these weighting factors. We

generally speak of a low-pass filter when
∑

i,j ki,j = 1; it is typically a “smoothing”,

aiming to decrease the “noise”. On the other hand, in steganalysis, the term

“residuals” is used to characterize high-pass filtering, characterized by
∑

i,j ki,j = 0,
k0,0 = −1. In other words, it is about “estimating” the value of a pixel, xm,n, from

its neighbors, x̂
(n)
m,n =

∑
(i,j) �=(0,0) xm+i,n+jk

(n)
i,j , and then calculating the

difference, r
(n)
m,n = x̂

(n)
m,n − xm,n, which corresponds to the “estimation error”, due to

the filter, K(n).

To be able to catch all the possible traces due to steganography, the number of

filters is important; 78 residuals are used to construct the RM characteristics presented

in Fridrich and Kodovskỳ (2012).

Inspected

image

Residuals #1

Filter #1

Quantization

Thresholding
Co-occurrence

(Histo.)

Symmetrization

(redundancy)

. . . . . .

Residuals #r . . .

. . . . . .

Residuals

#R

Filter #R

Quantization

Thresholding
Co-occurrence

(Histo.)

Symmetrization

(redundancy)

Figure 8.5. Illustration of the principle of extraction
of RM characteristics (Spatial Rich Model)

The second step is quantization and thresholding. Generally, weighting factors

used in the kernels K(n) are not integers, and the residuals R(n) must be grouped

together into “close” values to be able to work out “histograms”. The general idea is
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dividing the residuals, R(n), by a quantization step, q, and then rounding the results.

The quantization step, q, then determines the “granularity” of the histogram. A very

large step gives a rough histogram: for example, a step of q = 10 leads to rounding

to the nearest 10; on the other hand, a step of q = 1 leads to rounding to the nearest

integer. Thresholding simply involves limiting the range of possible values (despite

quantization) in order to limit the extent of resulting “co-occurrences”. It is simply

suggested that we only count the values of the residuals below a certain threshold, T ,

and ignore the values beyond.

Finally, this second step can be represented by:

r̃(n)m,n = ThresholdT

(
Round

(
r
(n)
m,n

q

))
[8.23]

with ThresholdT , the thresholding operation with the threshold T , and Round, the

rounding operation to the nearest integer.

In Spatial Rich Models (Fridrich and Kodovskỳ 2012), three distinct quantization

steps are used, (q = {1, 2, 3}), but the threshold is always set at T = 3, in order to

be able to represent smaller or greater residue values, depending on the quantization

step.

The third step aims to represent the “residuals” through histograms with several

dimensions or co-occurrences. This mainly allows a better representation of the

global statistical properties of the residuals, regardless of their positions in an image,

but also to reduce the amount of data and, finally, to have an identical representation,

whatever the size of the image analyzed. The co-occurrence calculation for a given

type of residual, R(n), is done, as explained in equation [8.20], by counting the

number of adjacent values, whose values are all equal to a certain pattern. It is

therefore a generalization of equation [8.20] to a tuplet of c adjacent residuals. It is

also worth noting that by using c adjacent residuals, we can also multiply the

directions, which can be much more general than just the eight directions considered,

in the case of pairs. The calculation of co-occurrences is generally limited to vertical

and horizontal directions, since all possible paths would become too large with

co-occurrences of dimension c = 4, like the ones used in Fridrich and Kodovskỳ

(2012).

Finally, the last step involves merging, similar co-occurrences, typically vertical

to the left or to the right, generally by calculating an average. The underlying

principle is that there is no objective reason to assume that traces of steganography

are represented differently in one direction than they are in another. Symmetrization

is a harder step to generally define, since it greatly depends on the filters used to

calculate the residuals, on the one, and the co-occurrences used, on the other.
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Generally, we agglomerate the different directions (vertical and horizontal

co-occurrences), as well as the filters that can be deduced from one another by

symmetry. This stage makes it possible to greatly reduce the number of

characteristics used. In fact, consider the classic case of characteristics from rich

spatial models (Fridrich and Kodovskỳ 2012). We count 78 distinct filters with three

quantification steps, a thresholding with the threshold T = 2, and co-occurrences

calculated horizontally and vertically. Eventually, an image characterized by RMs

has (after symmetrization) 34,761 features.

8.4.1.3. Extraction of characteristics in the JPEG domain

With regard to images compressed in the JPEG format, extraction of characteristics

introduces a first problem: should the DCT coefficients be used directly, which can be

modified, or is it better to “decompress” the image in order to analyze the pixels?

The two approaches have been studied and, today, detection in the decompressed

images shows more interesting performances. This is specifically due to the fact that

the modeling and analysis of contiguous pixels are much simpler than the analysis of

the DCT coefficients, which are the result of different filters and have properties that

do not allow an easy analysis.

A compromise between these two areas of analysis has been proposed by Holub

and Fridrich (2015); we will briefly describe it since it performs well and has led to

many more recent works, in particular (Song et al. 2015). This approach, called DCTR

(for DCT residuals), analyzes an image by first decompressing it, then applying a

DCT transformation to the pixels, similar to that used in JPEG compression. More

precisely, we have briefly explained that JPEG compression applies a series of 64

(8 × 8) orthogonal filters to disjoint blocks of 64 (8 × 8) pixels. The principle of

DCTR is based on the use of these 64 filters on non-disjoint blocks. More precisely,

these filters are applied by convolution with the decompressed image, which amounts

to calculating DCT coefficients in addition to those used in the JPEG compression

on parts of adjacent 8 × 8 blocks. The result of this operation is 64 distinct images

that are the same size as the original image, each one corresponding to the application

of one of the DCT transformation filters. This stage is equivalent to calculating 64

residuals.

These images are then quantified, modified in absolute values (negative values are

reported as positive values), and then thresholded. The quantization is all the greater

as the quality factor is small (in a similar way to JPEG quantization matrices) and the

threshold is set at 4. For each of these 64 “sub-images”, several histograms are

calculated, depending on the position of the residuals. The idea is clearly to give a

“reference” that is comparable to the DCT coefficients, which are used in JPEG

compression (and therefore possibly modified by steganography) with those which

are not used, but which correspond to images that are statistically very similar, as

they are only shifted by a few pixels.
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In the case of DCTR, no symmetrization is used; however, some positions of “DCT

residuals” are gathered, and we end up with 25 histograms by DCT filters and 4 + 1

values in the thresholded histogram, that is, a total of 64 × 25 × 5 = 8,000 features.

8.4.2. Learning how to detect with features

Once the features have been extracted, a classification phase remains to be

implemented. More precisely, it is necessary to extract these features for a large

amount of Cover images in order to then hide information in these images using a

steganography method to generate Stego images, and finally to extract characteristics

from these Stego images. Learning a classification rule in such a framework is part of

supervised statistical learning: we have seen two feature sets, the first for images

without Cover information and the second for Stego images. There are many

supervised statistical learning methods; in general, this corresponds mathematically

to an optimization problem to find the parameters of a function, making it possible to

maximize the detection performance. Since in steganalysis the main adapted

classifiers are linear, we will focus on this type of method.

Consider two bases of L features calculated on I images, that we denote in matrix

form C = (c(1), . . . , c(I)) for Cover images (of class −1) and S = (s(1), . . . , s(I)) for

Stego images (of class 1). A linear classifier is based on a projection of the features on

a discrimination vector, w�c(i) =
∑L

l=1 wlc
(i)
l . This operation is a weighted sum of

features. The goal is therefore to find a vector of the weighting coefficients, w, which

makes it possible to differentiate the Cover and Stego data after projection. A simple

criterion for this involves seeking weighting coefficients, w, so that the vectors ci are

close to the value −1, while the vectors si are close the value 1.

If large vectors, y0 and y1, are created, with the first vector containing I times

the value of −1 and the second vector containing I times the value of 1, it is then a

question of finding the weighting factors, w, that minimize the difference between the

values w�C and y0 (and vice versa between w� × S and y1), let
∥∥w�C− y0

∥∥2
2
+∥∥w�S− y1

∥∥2
2
.

This method actually comes to a minimization problem, in the sense of least

squares. This approach is particularly interesting, since an analytical solution is given

by:

w =
(
X�X

)−1
X�y [8.24]

where X is a matrix that groups together features X = (C,S) and, similarly, the

vector y contains all label values y = (y0;y1).

Therefore, this method functions correctly, and it is generally useful to add a

regularization factor, which makes it possible to find a compromise between a
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“simple” solution and a solution that is adapted to the data used for learning. It is this

method which was proposed in Cogranne et al. (2015), and which allows

performance that is very close to the state of the art in just a few seconds (for 10,000

images and 40,000 characteristics).

An interesting alternative approach that is based on another linear classifier is the

Fisher approach, which is very similar to the previous one, but aims to maximize the

separability criterion:

w� (μ1 − μ0)

w� (Σ0 +Σ1)w
[8.25]

where μi is the mean of the features for the images of the class i, and Σi is the

covariance matrix of the features of the class i.

This method also presents the advantage of having a directly calculable solution:

w = (Σ0 +Σ1)
−1

(μ1 − μ0) [8.26]

The main attraction of the method proposed in Kodovskỳ et al. (2012) is the use

of a variety of classifiers. For this, many classifiers are trained on “sub-sets” of

images and/or on “sub-sets” of characteristics. The attraction is mainly based on the

fact that this specific training and this procedure for multiplying classifiers makes it

possible to eventually build a “robust”, nonlinear and efficient classifier. This method

has been improved in Cogranne and Fridrich (2015), but, in both cases, the results are

slightly better than those obtained with a simple linear classifier for a much greater

computational complexity (of the order of 20–100 times more).

8.5. Detection by deep neural networks

We now present the latest developments in learning-based steganalysis methods,

namely, the use of deep neural networks. Neural networks have been studied since

the 1950s. Initially, they were proposed to model brain behavior. In computer

science, especially artificial intelligence, they have been used for 30 years for

learning purposes. In the early 2000s (Hinton and Salakhutdinov 2006), deep neural

networks were considered to have a learning time that was too long, and to be less

efficient than classifiers like SVMs or random forests.

Thanks to recent advances in the field of neural networks (Bengio et al. 2013),

computing power provided by graphics cards (GPU) and, finally, the profusion of

data, deep learning approaches have been proposed as a natural extension of neural

networks. Since 2012, these deep networks have profoundly marked the fields of

signal processing and artificial intelligence, because their performance has made it
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possible to surpass the most efficient methods of the time, but also to solve problems

that scientists could not solve until now (LeCun et al. 2015).

In steganalysis, over these last 10 years, detection of a hidden message in an

image has mainly been carried out by the calculation of a rich model

(RM)13 (Fridrich and Kodovskỳ 2012) followed by a classification by an ensemble

classifier (EC) (Kodovskỳ et al. 2012). In 2015, the first study using a convolutional

neural network (CNN) obtained the first results of steganalysis by “deep-learning”,

coming close to the results of two-step approaches (EC + RM)14 (Qian et al. 2015).

Since then, over the period 2015 to 2019, many publications have shown that it is

possible to obtain better performances, for spatial images (uncompressed/

steganalysis) and JPEG steganalysis, but also for informed steganalysis, quantitative

steganalysis and color steganalysis.

In section 8.5.1, we present the structure of a deep neural network in a generic

way. Reading this section can be supplemented by reading about artificial learning,

and, in particular, about the definition of perceptron, stochastic gradient descent,
backpropagation and the extension to the multi-classes case.

8.5.1. Foundation of a deep neural network

In the following sections, we recall major concepts of a CNN; we will recall the

basic building blocks of a network based on the Yedroudj-Net network, which was

published in 2018 (Yedroudj et al. 2018b) and which uses ideas that are present in

Alex-Net (Krizhevsky et al. 2012), as well as those present in networks developed for

steganalysis, including the very first network by Qian et al., the Xu-Net network (Xu

et al. 2016) and the Ye-Net network (Ye et al. 2017).

8.5.1.1. Global view of a CNN
Before describing the structure of a neural network, as well as its foundations, it is

useful to remember that a neural network belongs to the family of machine learning.

In the case of supervised learning, which is what interests us, it is necessary to have

an image database, with a label for each image, that is, its class.

Deep learning networks are large neural networks that can directly take raw data

as input.

In image processing, the network is directly supplied by the pixels that make up

the image. A deep learning network then learns to extract the intrinsic characteristics

13 See section 8.4.1.2.

14 EC + RM will generally refer to two-step approaches based on the calculation of a rich model

(RM) then the use of an ensemble classifier (EC).
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(generally called a feature map or latent space), and to draw the separation boundary

of the different classes (separator planes).

The learning protocol is similar to classic machine learning methods. Each image

is given at the input of the network. Each pixel value is transmitted to one or more

neurons. The network is made up of a given number of blocks. One block is made

up of neurons that take real values as input, perform calculations and then transmit

the calculated real values to the next block. A neural network can then be represented

by a directed graph where each node represents a computation unit. The learning is

then carried out by providing the network with examples composed of an image and its

label, and the network modifies the parameters of these computation units by learning,

thanks to the backpropagation and stochastic gradient descent algorithms.

The CNNs used for steganalysis are mainly built in three parts called modules:

the preprocessing module, the convolution module and the classification module. As

an example, Figure 8.6 outlines the network proposed by Yedroudj et al. in 2018

(Yedroudj et al. 2018b). This network processes grayscale images of pixel size

256 × 256.

8.5.2. The preprocessing module

In Figure 8.6, we can see that, in the preprocessing module, the image is filtered

by 30 high-pass filters. The use of one or many high-pass filters as preprocessing is

present in the majority of networks used for steganalysis during the period between

2015 and 2019. As an example, the kernel “square S5a” (Fridrich and Kodovskỳ 2012)

is given by:

F (0) =
1

12

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 2 −2 2 −1

2 −6 8 −6 2

−2 8 −12 8 −2

2 −6 8 −6 2

−1 2 −2 2 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
[8.27]

This initial filtering step allows the network to converge faster and is probably

necessary for good performance when the training base is too small (Yedroudj et al.
2018a) (only 4,000 Cover/Stego pairs of pixel size 256 × 256). The filtered images

are then transmitted to the first convolution block of the network. The Yedroudj-Net

network has five convolution blocks (Yedroudj et al. 2018b), like the Qian et al.
network (Qian et al. 2015) and the Xu et al. network (Xu et al. 2016).
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Note that the recent SRNet network (Boroumand et al. 2019) does not use fixed

pre-filters, but learns the values of filters. This requires a much larger database (more

than 15,000 Cover/Stego pairs of 256 × 256 pixels), and possibly using a preliminary

training to start from a good initialization. There is also a debate in the community as

to whether we should use fixed filter values, initialize the filter values with preselected

values and then refine these values by training or have a random initialization and

leave the network to learn the values of the filters. At the time of writing this chapter,

we think that the best choice is related to the architecture of the network, the size of

the training database used and the possibility of using pre-training/transfer learning.

8.5.2.1. The convolution module
To avoid any confusion on the terms, we will avoid using the term layer; the term

operations will be preferred for an elementary function (convolution or activation,

for example), and the term block for a set of these operations that can follow one

another. A block is made up of computation units which take real values as input,

perform calculations, then return real values, which are transmitted to the next

block. In practical terms, a block takes a set of feature maps15 on input and return a

set of feature maps at output. Inside a block, we find a certain number of operations,

including the following four: convolution, activation, pooling and finally

normalization.

Note that the concept of a neuron as defined in the literature before the

appearance of convolutional networks is still present, but it has disappeared from the

source codes of data structures. In convolution modules, we have to imagine a neuron

as a computation unit which, for a position in the feature map taken by the

convolution kernel during the convolution operation, performs the weighted sum

between the kernel and the group of pixels considered. The concept of a neuron

corresponds to the scalar product between the input data, the pixels and data specific

to the neuron16 followed by the application of a function of R in R called the

activation function. Then, by extension, we can consider that pooling and

normalization are operations specific to neurons.

Not counting the preprocessing block, the Yedroudj-Net network (Yedroudj et al.
2018b) has a convolution module made up of five convolution blocks, like the Qian

et al. network and the Xu et al. network (Xu et al. 2016). The Ye-Net

network (Ye et al. 2017) has a convolution module made up of eight convolution

blocks. The SRNet network (Boroumand et al. 2019) contains a convolution module

made up of 11 convolution blocks.

In Figure 8.6, representing the Yedroudj-Net network, the first block of the

convolution module generates 30 feature maps, each of pixel size 256 × 256. Note

15 Which can be seen as a group of images.

16 That is, the convolution kernel.
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that this means 30 filters, and so 30 convolutions that are trained on the group of

images given as input (30 filtered images) of pixel size 256 × 256. In each of the five

blocks, there is a convolution operation, a normalization operation (“Batch” +

“Scale”), an activation operation (ABS, trunc, ReLU) and a pooling operation

(“average” or “max pooling”).

8.5.2.2. The classification module

The last block of the convolution module (see section 8.5.2.1) is connected to the

classification module, which is generally a fully connected neural network made up

of one to three blocks. This classification module is often a traditional neural network

where each neuron is completely connected to the next layer of neurons and to the

previous layer of neurons.

After this completely connected neural network, we often find a “softmax”

function, which makes it possible to standardize the two outputs provided by the

network, so that the produced values belong to [0, 1] and that their sum is equal to 1.

The softmax function then returns a class membership score, that is, a score per

output neuron. These scores are simply called probabilities. We will keep this name.

In the typical scenario of binary steganalysis, the network therefore delivers two

output values: one giving the probability of classification in the first class (e.g. the

Cover class), and the other giving the probability of classification in the second class

(e.g. the Stego class). The classification decision is then obtained by returning the

class with the highest probability. The Yedroudj-Net network (see Figure 8.6)

effectively provides two output values.

Note that before this classification module, we can find a particular pooling
operation, such as a Global Average Pooling, a Spatial Pyramid Pooling (SPP) (He

et al. 2014) or a Statistical Moment Extractor (Fuji-Tsang and Fridrich 2018). A

pooling operation like this returns a vector of fixed size, that is, a feature map that is

a fixed size, and this is whatever the dimension of the image at the input of the

network. The block coming after this pooling operation is always connected to a

vector of a fixed size, so it has a fixed number of input parameters. Therefore, it is

possible to present images of all sizes to the network, without having to modify the

topology of the network. This property is available in the Yedroudj-Net

network (Yedroudj et al. 2018b), the Zhu-Net network (Zhang et al. 2020) or

the (Fuji-Tsang and Fridrich 2018) network.

Note that Fuji-Tsang and Fridrich (2018) is the only article (up to 2019 and the

ALASKA steganalysis competition (Cogranne et al. 2019; Yousfi et al. 2019)), which

seriously considered the viability of a network invariant to the dimension of images.

However, the problem remains unresolved. The solution proposed in Fuji-Tsang and

Fridrich (2018) is a variation of the concept of “average pooling”. Up to 2019, the

small number of studies is not enough to determine which network topology to choose,
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or how to build the training database, or to what extent the number of inserted bits

influences learning.

We end here with the quick presentation of CNNs, seen through the major

publications in steganography/steganalysis17.

8.5.2.3. Using the modification probability map (Selection Channel-Aware)
(SCA)

The modification probability map, when known to Eve, can significantly improve

performance in steganalysis. At the end of 2018, two approaches (Selection
Channel-Aware [SCA]) combine this knowledge with deep neural networks:

SCA-Ye-Net (which is the SCA version of Ye-Net) (Ye et al. 2017) and SCA-SRNet

(which is the SCA version of SRNet) (Boroumand et al. 2019). The idea is to use a

network used for uninformed steganalysis and to inject, not only an image to be

steganalyzed, but also a modification probability map. Therefore, we assume that Eve

knows, or can obtain, a good estimate (Sedighi and Fridrich 2015) from this map,

that is, that Eve has access to information about the selection channel (SCA).

This modification probability map is given to the SCA-Ye-Net (Ye et al. 2017)

preprocessing block, and equally to the first convolution block for SCA-SRNet

(Boroumand et al. 2019), but the kernel values are replaced by their absolute value.

After convolution, each feature map is added point-by-point to the corresponding

filtered modification probability map. Note that the activation function of this first

convolution (preprocessing block for SCA-Ye-Net or first block for SCA-SRNet) is

(if this is not already the case) replaced by a “ReLU” activation. In SCA-Ye-Net, the

truncation activation function is, in fact, replaced by a ReLU. This makes it possible

to “virtually” spread the information relating to the image and the information

relating to the probability map throughout the network.

Note that this procedure for transforming a classical network into an SCA

network is inspired by the propagation of the modification probability map proposed

by Denemark et al. (2016). The two articles cited in the previous paragraph are an

improvement in comparison to the previous maxRM Rich Models (Denemark et al.
2014). In maxRM, instead of accumulating the number of occurrences in the

co-occurrence matrix, we use an accumulation of the maximum of a local probability.

In Denemark et al. (2016), the idea is to transform the modification probability map

in the same way as filtering the image, then update the co-occurrence matrix using

the modified version of the modification probability map rather than the initial

modification probability map.

17 For more details on the description of convolution, activation, pooling, normalization,

effectiveness and complexity in terms of time and memory, or the link between Deep Learning
and past approaches, or even integration approaches by Deep Learning, the reader can visit

Chaumont (2020); available at: https://arxiv.org/abs/ 1904.01444.
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8.5.2.4. JPEG steganalysis

The best CNN for JPEG steganalysis at the end of 2018 was SRNet (Boroumand

et al. 2019). At that time, it was the only network for JPEG steganalysis to obtain

an SCA version. It is interesting to list and briefly discuss previous CNNs used for

JPEG steganalysis. The first network, published in February 2017, was the Zeng et al.
network. It was assessed with 1 million images (Zeng et al. 2017, 2018). Then, in June

2017, at IH&MMSec’2017, two networks were proposed: PNet (Chen et al. 2017) and

Xu-Net-Jpeg (Xu 2017). Finally, SRNet (Boroumand et al. 2019) was put online in

September 2018.

In the Zeng et al. network (Zeng et al. 2017, 2018), the preprocessing block takes

as an input a “de-quantized” image (real values), convolves it with 25 DCT bases

and then quantizes and truncates the 25 filtered images. This preprocessing block uses

handcrafted filter kernels (DCT bases), the kernel values are fixed, and these filters

are inspired by the rich DCTR models (Holub and Fridrich 2015). It is based on three

different quantizations, and the preprocessing block produces 3 × 25 residual images.

The CNN is then made up of three sub-networks that each produce a feature vector of

dimension 512. The sub-networks are inspired by Xu-Net (Xu et al. 2016). The three

characteristic vectors, returned by the three sub-networks, are then given to a fully

connected structure, and the network ends with a softmax layer.

Like what was done for spatial steganalysis, this network uses a preprocessing

block proposed by Holub and Fridrich (2015). Note that the most effective rich models

are the Gabor Filter Rich Models (GFR) (Song et al. 2015). Also note that this network

takes advantage of the concept of an ensemble of features, which comes from the

three sub-networks. The Zeng et al. network is less effective than the Xu-Net-Jpeg

network (Xu 2017), but gives an interesting first approach, guided by Rich Models.

The main idea of PNet (and also VNet which is less efficient, but takes up less

memory) (Chen et al. 2017) is to mimic Phase-Aware Rich Models, such as

DCTRs (Holub and Fridrich 2015) or GFRs (Song et al. 2015), and to obtain an input

image, broken down into 64 feature maps, representing the 64 phases of a JPEG

image. The preprocessing block takes a de-quantized image (real values) as an input,

performs convolutions with four filters, the “SQUARE5 × 5” coming from the

Spatial Rich Model (Fridrich and Kodovskỳ 2012), a high-pass filter, “point”, (called

“catalyst kernel”), which completes the “SQUARE5 × 5”, and two directional Gabor

filters (angles 0 and π/2).

Straight after the second convolution block, a PhaseSplit Module divides the

residual image into 64 feature maps (a map = a stage), in the same way as rich

models. Some interesting procedures have been used, such as (1) linking

convolutions with fixed values in the preprocessing block, with a second convolution

whose weights are learned; (2) a smart update of the parameters of batch
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normalization; (3) the use of “Filter Group Option”, which potentially builds

sub-networks; (4) bagging on five cross-validations; (5) using the last five evaluations

to give the average error of a network; (6) shuffling the database at the start of each

period in order to have better behavior of batch normalization and help

generalization; and (7) potentially the use of an ensemble of networks of the same

type with a pooling of the outputs by majority vote. With such expertise, PNet beat

the classic two-step machine learning approaches in non-SCA and SCA (Classifier

set + GFR) scenarios.

The Xu-Net-Jpeg (Xu 2017) is much more attractive as the approach is slightly

better than PNet and does not require a strong domain inspiration, as you do for

PNet. Xu-Net-Jpeg is heavily inspired by ResNet (He et al. 2016), a well-established

network in the machine learning community. ResNet allows the use of deeper

networks, thanks to the use of shortcuts. In Xu-Net, the preprocessing block takes a

de-quantized image (real values) as an input, convolves the image with 16 DCT bases

(in the same way as the Zeng et al. network (Zeng et al. 2017, 2018)) then applies an

absolute value, a truncation and a set of BN convolutions, ReLU, until obtaining a

feature vector of dimension 384, which is given to a fully connected block. Note that

“max pooling” or “average pooling” is replaced by convolutions. This network is

really simple and in 2017 it was the most effective method. In general, the networks

proposed by the machine learning community are often very competitive, with little

specific knowledge of the steganalysis field to integrate into the topology of a

network to obtain a very efficient network18.

In 2018, the state-of-the-art CNN for JPEG steganalysis (which can also be used

for spatial steganalysis) was SRNet (Boroumand et al. 2019). Note that for the SRNet

version, which knows about the selection channel (SCA), the modification

probability by DCT coefficient is first re-expressed in the spatial domain by applying

an inverse DCT, and by using the absolute values for the DCT base. The selection
map obtained then enters the network and is convolved with each kernel (this first

convolution is equivalent to the preprocessing block). Note that convolutions in this

first block of this selection map are such that the kernels of the filters are modified to

their absolute values. After passing the convolution, the feature maps are added with

the square root of the previously convolved values of the selection map. Note that this

idea goes back over what was presented in the SCA Ye-Net version

(SCA-TLU-CNN) (Ye et al. 2017), with integration of adjacent information, and the

recent proposal for steganalysis with awareness of the selection channel (SCA) in

18 The recent ALASKA#2 competition (Cogranne et al. 2020a) has also shown that networks

from the Deep Learning community can be directly used in steganalysis producing excellent

results.
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JPEG with Rich Models (Denemark et al. 2016), or the construction of the selection
map, and more specifically, the quantity δ

1/2
uSA

19.

8.6. Current avenues of research

We finish this introductory chapter to steganalysis with a brief list of the open

problems that seem to be the most interesting and the most important in this field.

8.6.1. The problem of Cover-Source mismatch

The first problem that we will describe is Cover-Source mismatch (CSM); this

problem is actually a fairly general case in the field of statistical learning, where it is

referred to as “generalization”. In practice, this is the mismatch between the learning

base, on which the classifier is trained, and the test base on which we want to detect

the presence of hidden information. The defining feature of steganalysis is double,

compared to CSM. On the one hand, in steganalysis we want to detect very weak

signals; on the other hand, we generally work with characteristics of (very) large

dimensions. Together, these two features mean that the detection methods will be

very sensitive to the learning bases and difficult to generalize.

A fairly exhaustive study concerning the evaluation of the factors leading to CSM

was carried out in Giboulot et al. (2020), showing, for example, the major role of

image processing. Unfortunately, there is no work to understand the root causes yet,

and, as a result, it remains very difficult to overcome this problem.

8.6.2. The problem with steganalysis in real life

Similarly, steganalysis in real life been not been explored much (Ker and Pevný

2014). In fact, as we mentioned in the introduction, steganalysis was developed with

the main aim of evaluating the different methods of steganography. To do this, the

community generally works using the targeted steganalysis scenario and with specific

image databases, in particular the BOSS (Bas et al. 2011) database consisting of

images from seven reflex cameras (no smartphone or compact), all processed the

same, starting from the RAW file. Work has shown that developing these RAW

images in different ways can lead to very different results (Sedighi et al. 2016b). A

first competition was launched for this purpose with a much more heterogeneous

image base (Cogranne et al. 2019) and proposals show the difficulty of carrying out

steganalysis on heterogeneous images. The winners, in particular, relied on a increase

of learning, according to the JPEG compression parameters (Yousfi et al. 2019), but

many questions about steganalysis in real-life remain open.

19 uSA means upper bounded Sum of Absolute values.
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8.6.3. Reliable steganalysis

A problem that is fairly similar to the previous two concerns reliable steganalysis.

In fact, as we mentioned in section 8.3.2, a test is inevitably full of errors

(false-positives and false-negatives), and the result depends greatly on the application

context. In steganalysis, it is important to minimize false-positives, given the large

number of images that we may have to analyze. On the other hand, methods based on

statistical learning generally aim to minimize the overall error rate, PE . However,

assuming that it is possible to design a detection method where the probabilities of

false-positive and false-negative are both about 1%, it is clearly unrealistic to use this

method in practice. It is clear to argue that, with a Bayesian approach, an image

considered as being steganographed by a detector like this would actually be more

likely from a false-positive, given that on an image-sharing site such as Flickr,

probably less than 1% of images actually contain hidden information.

Therefore, the crucial question arises of how to design a reliable steganalysis

method that would guarantee a very low probability of false-positive; typically, a

probability of false-positive less than 10−6 (i.e. less than 1 in 1 million). We have

seen that the theory of hypothesis tests makes it possible to design methods of

steganalysis like this, but relies on a statistical model of the images which is not

necessarily exact, even more so when certain parameters have to be estimated. A very

interesting study in Pevný and Ker (2015) studies the possibility of learning with the

criterion of minimizing the probability of false-positive, if the power ς is fixed at

50%. However, this preliminary work deserves to be looked at in more depth, and

steganalysis methods providing a precise “p-value”20 are sorely lacking.

8.6.4. Steganalysis of color images

As indicated in Chapter 4, the vast majority of images today are in color; for

practical applications, it is therefore necessary to study this type of image. However,

academic work differs from practical use since the vast majority of work in

steganalysis relates to “grayscale” images (see Cogranne et al. 2019, 2020a, 2020b).

On the contrary, detection of hidden information in color images seems more

interesting in practice. This subject remains largely undiscovered. In fact, a

significant number of researchers think that a color image can be represented by three

images in grayscale (one red, one green and one blue), which can be analyzed

separately.

However, it seems intuitive to consider that the color channels are statistically

correlated, in particular due to the “demosaicing” during the acquisition and

20 That is, a probability that this detection corresponds to a false-positive for an given image.
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processing of images. However, work which has been carried out in this field has not

shown a great improvement by analyzing the components together (Goljan et al.
2014; Abdulrahman et al. 2016). For example, the first work in this field (Goljan

et al. 2014) proposed adding histograms obtained from pixel values in different

colors. This certainly allowed a slight improvement in detection, but below what was

expected.

Finally, this field of study has not been studied very much for color images

compressed with the JPEG standard. This is more harmful, because JPEG color

images do not represent green, red and blue, but luminance/chrominance components

whose statistical correlations are less significant. On the other hand, color channels

are treated separately in the JPEG standard, so they should be analyzed in different

ways. Unfortunately, detection of steganography in JPEG color channels has hardly

ever been studied (see, for example, (Taburet et al. 2018) and the articles (Cogranne

et al. 2019; Yousfi et al. 2019) relating to the ALASKA steganalysis challenge and

about JPEG color images).

8.6.5. Taking into account the adaptivity of steganography

A very different problem, already mentioned in section 8.5.2.3 in the context of

neural networks, is about the consideration of the “selection channel” for

steganalysis. The channel selection shows the probabilities of using each pixel, βm,n.

Clearly, it seems interesting (as shown by equations [8.14] and [8.16]) that a detector

can use a, possibly misleading, estimate of these probabilities of use. But this is not

very effective with current detection methods. For example, one of the first advances

proposed in the field (Denemark et al. 2014) involves replacing the calculation of

co-occurrence histograms (see section 8.4.1) by adding, for each of the blocks

considered, the maximum probability of modification, βm,n, of this sample. In this

study (Denemark et al. 2014), the authors indicate that they have tried several

weighting functions and finally found that the maximum obtains the best results, in

terms of performance. In addition, the authors indicate that this function is also

robust to a misestimation of the selection channel, βm,n. This is particularly

important, since this quantity is not directly attainable and therefore must be

estimated. This requires knowing the insertion method and size of the message and,

in practice, the performances obtained from the estimated probability or from the real

probability are very similar. In all cases, SCA methods (SCA) remain very ad hoc,

and they are empirically explained, mainly by results in terms of statistical detection

performance.

8.6.6. Grouped steganalysis (batch steganalysis)

A problem that has also been studied very little concerns “grouped”

steganography, also called “batch” steganography (Ker and Pevný 2012). This is a
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more general scenario where Alice can “spread out” her message in many different

images, which are then sent to Bob. The steganalyst, Eve, must therefore observe a

batch of images, q, and make a “grouped” decision about all of these images: they

may all be Cover images, or some may contain a variable part of the message to hide.

For steganography21, this case can be modeled as a problem of message allocation,

which must be dispersed in several images in order to minimize the probability of

detection. For the steganalyst, Eve, the job of analyzing a batch of images is much

more tricky. Many questions remain open, in particular: How can you analyze a lot of

images, unknown at first? Is it better to use a method designed to analyze several

images together, or should you carry out q independent image analyzes? Finally,

should not the order of the images be taken into account? Some works have been

proposed, in particular (Cogranne et al. 2017; Pevný and Nikolaev 2015), which are

based on a detector adapted to the analysis of each image individually. The first

article studies how to regulate the “(continuous) scores” obtained for each image.

The second work (Pevný and Nikolaev 2015) carries out a detection in two stages: a

histogram of the same “scores” is first constructed, then a second classifier is trained

to identify the batches of Cover images. More recently, a study relating to the lack of

knowledge of the strategy of spreading the message has been proposed in Zakaria

et al. (2019).

8.6.7. Universal steganalysis

The last issue that we want to tackle is universal steganalysis. Again, this is a

more general framework than targeted binary decision, which, as we have shown,

makes it possible to assess a specific method of steganography. In practice, it is

interesting to design steganalysis methods that work when neither the size of the

message nor the insertion algorithm are known. Steganalysis without knowing the

size of the message refers to so-called “quantitative” approaches, that is, aiming to

estimate the size of the inserted message (Pevný et al. 2009). The study of the

performance of the general classifier (Cogranne and Fridrich 2015), in the context

where the size of the message is unknown, specifically shows that the

latter (Kodovskỳ et al. 2012) cannot be used directly, since the detection threshold is

fixed according to the steganographed images used during training. The approach

proposed in Pevný et al. (2009) essentially involves using images containing

different sized messages during training.

Similarly, multi-class steganalysis has not received much attention. Again, the

extension of the general classifier has been considered with this in mind (Cogranne

and Fridrich 2015) by using two simple and relatively efficient approaches; the first,

known as “Cover media versus the rest”, involves creating an alternative hypothesis

21 See also Chapter 5.
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gathering all the possible insertion algorithms and, in the end, carrying out a

statistical learning aimed at detecting any of the steganography methods. On the

other hand, the second approach involves considering H + 1 hypotheses, relating to

the H insertion algorithms considered, then the case of Cover images is added. To

detect steganography and identify the insertion method, it is possible to create many

classifiers that are specifically trained to distinguish between two hypotheses.

Analyzing an image therefore requires using all the classifiers to then choose the

hypothesis that gathers the most “votes” from the set of all the classifiers.

8.7. Conclusion

In this chapter, we have presented different steganalysis methods. Generally, we

have presented “signature” detection methods, which essentially aim to detect traces

linked to the use of specific software. Although very efficient, these methods are not

very generalizable and not very interesting from a methodological point of view.

We have also studied statistical steganalysis methods, which require an exact

model of statistical distribution of the Cover and Stego images. These methods are

not very efficient in terms of detection, but allow us to understand how we can carry

out steganalysis. This makes it possible to improve the stegananalysis in particular, or

even to come up with a steganography method.

Finally, we have seen that, in practice, the most effective methods are based on

statistical learning. This can be done by extraction of characteristics, and then

classification. Recently, methods based on deep neural networks have made it

possible to considerably improve the performance of steganalysis methods, at the

expense of increased calculation complexity.

We have also seen that steganalysis is a constantly evolving field. In particular,

we insisted on the fact that most academic work is difficult to use in practice. In

particular, the main obstacles that remain to be studied have been described. In this

field, the recent steganalysis “challenges” that we organized in 2019 (Cogranne et al.
2019) and in 2020 (Cogranne et al. 2020a) have made it possible to make significant

progress and will certainly impact work in the coming years.
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