
EARLY ACCESSEARLY ACCESS

N O S T A R C H P R E S S
E A R LY A C C E S S P R O G R A M :

F E E D B A C K W E L C O M E !

Welcome to the Early Access edition of the as yet unpublished The Art of
Clean Code by Christian Mayer! As a prepublication title, this book may be
incomplete and some chapters may not have been proofread.

Our goal is always to make the best books possible, and we look forward
to hearing your thoughts. If you have any comments or questions, email us
at earlyaccess@nostarch.com. If you have specific feedback for us, please
include the page number, book title, and edition date in your note, and
we’ll be sure to review it. We appreciate your help and support!

We’ll email you as new chapters become available. In the meantime,
enjoy!

mailto:earlyaccess%40nostarch.com?subject=The%20Art%20of%20Clean%20Code%20Feedback%202/23/22

T H E A R T O F C L E A N C O D E
C H R I S T I A N M A Y E R

Early Access edition, 2/23/22

Copyright © 2022 by Christian Mayer.

ISBN 13: 978-1-7185-0218-5 (print)
ISBN 13: 978-1-7185-0219-2 (ebook)

Publisher: William Pollock
Executive Editor: Barbara Yien
Production Editor: Katrina Taylor
Developmental Editor: Liz Chadwick
Cover and Interior Design: Octopod Studios
Cover Illustrator: Gina Redman
Technical Reviewer: Noah Spahn
Copyeditor: Sadie Barry
Compositor: Jeff Lytle, Happenstance Type-O-Rama
Proofreader: Paula Fleming
Indexer: BIM Creatives, Inc

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press,
Inc. Other product and company names mentioned herein may be the trademarks of their
respective owners. Rather than use a trademark symbol with every occurrence of a trade-
marked name, we are using the names only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any informa-
tion storage or retrieval system, without the prior written permission of the copyright owner
and the publisher.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

C O N T E N T S

Introduction . xi
Chapter 1: How Complexity Harms Your Productivity 1
Chapter 2: The 80/20 Principle . 19
Chapter 3: Build a Minimum Viable Product 39
Chapter 4: Write Clean and Simple Code 51
Chapter 5: Premature Optimization is the Root of All Evil 79
Chapter 6: Flow . 93
Chapter 7: Do One Thing Well And Other Unix Principles . . 101
Chapter 8: Less Is More in Design . 125
Chapter 9: Focus . 135
Letter From The Author . 141

The chapters in red are included in this Early Access PDF.

To my kids Amalie and Gabriel

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

About the Author
Christian Mayer the founder of the popular Python site Finxter.com, an
educational platform that helps teach more than five million people a year
how to program. He has a PhD in computer science, and has published
a number of books, including Python One-Liners (No Starch Press, 2020),
Leaving the Rat Race with Python (2021), and the Coffee Break Python series.

About the Technical Reviewer
Noah Spahn has a diverse background in software engineering. He has a
Master of Software Engineering degree from California State University,
Fullerton, and currently works in the Computer Security Group at University
of California, Santa Barbara (UCSB). Noah has taught Python courses at the
UCSB Interdisciplinary Collaboratory, and an upper division course on the
Concepts of Programming Languages at Westmont College. Noah is glad to
teach anyone who is interested in learning.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

A C K N O W L E D G M E N T S

Putting together a programming book builds on the ideas and contribu-
tions of a multitude of people. Rather than trying to list them all, I want to
follow my own advice: less is more.

First and foremost, I want to thank you. I’ve written this book for you to
help you improve your coding skills and solve practical problems in the real
world. For trusting me with your valuable time, I’m grateful. My primary
goal with this book is to make it worth your while by sharing tips and strate-
gies to save you time and reduce your stress throughout your coding career.

My greatest source of motivation came from the active members of the
Finxter community. Every day, I get encouraging messages from Finxter stu-
dents that motivate me to keep producing content. As you read this book, I
want to wholeheartedly welcome you to the Finxter community.1 It’s a plea-
sure to have you here!

My deep gratitude goes to the No Starch Press team for making the
book writing process such an enlightening experience. I want to thank my
editor Liz Chadwick; it’s because of her outstanding lead that the book
reached a level of clarity I wouldn’t be able to pull off myself. My techni-
cal reviewer Noah Spahn invested his excellent technical skills to “debug
my writing.” Special thanks to No Starch Press’s founder Bill Pollock for
allowing me to contribute in a small way—with yet another book alongside

1. You can join our free Python email academy here: https://blog.finxter.com/subscribe/. We have
cheat sheets!

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

https://blog.finxter.com/subscribe/

x Acknowledgments

Python One-Liners and Python Dash—to his mission to educate and entertain
coders. Bill is an inspiring and sought-after leader in the coding industry,
yet he still finds the time to do the small things, such as responding to my
messages and questions during holidays, weekends, and nights!

I’m forever grateful to my beautiful and supportive wife, Anna; my
lovely daughter, Amalie, who is full of fantastic stories and ideas; and
my curious son, Gabriel, who never fails to make everybody around him
happier.

And with that, let’s get started, shall we?

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

I N T R O D U C T I O N

Once upon a time, Bill Gates’ parents invited
legendary investor Warren Buffett to his

family home to spend some time together.
In a CNBC interview, Warren Buffett recounts

how on this occasion, Bill’s father asked Warren and
Bill to write down the secret of their successes. I’ll tell
you in a moment what they wrote.

At the time, the tech prodigy Bill Gates had met the famous investor
Buffett only once or twice, but they had become fast friends, both leading
successful billion-dollar companies. The young Bill Gates was on the verge
of achieving his mission of placing a computer on every desk with his fast-growing
software giant Microsoft. Warren Buffett had made his name as one of the
most successful business geniuses in the world. Famously, Warren had grown
his majority-owned company, Berkshire Hathaway, from a broke textile company
to an international heavyweight in diversified business areas such as insur-
ance, transport, and energy.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

xii Introduction

So, what did those two unequal business legends consider the secret of
their success? As the story goes, without any collaboration, Bill and Warren
wrote down a single word: Focus.

N O T E You can watch Warren Buffet discussing the interaction in an interview on CNBC in
a YouTube clip entitled, “One word that accounted for Bill Gates’ and my suc-
cess: Focus” — Warren Buffett.

While this “success secret” sounds simple enough, you may wonder:
Does it apply to my career as a coder too? What does focus look like in prac-
tice—coding through the night with energy drinks and pizza, or perhaps
eating an all-protein diet and getting up at sunrise? What are the not-so-
obvious consequences of leading a focused life? And, importantly, are there
actionable tips on how a programmer like me can benefit from the abstract
principle to increase my productivity?

This book aims to answer these questions to help you lead a more
focused life as a programmer and become more effective in your daily work.
I’ll show you how you can increase your productivity by writing clean, con-
cise, and focused code that is easier to read, write, and collaborate on with
other programmers. As I’ll show you in the upcoming chapters, the focusing
principle holds in every stage of software development; you’ll learn how to
write clean code, create focused functions that do one thing well, create fast
and responsive applications, design focused user interfaces for usability and
aesthetics, and plan product roadmaps using minimum viable products. I’ll
even show you how achieving a pure state of focus can vastly increase your
concentration and help you experience more excitement and joy in your
task. As you’ll see, the overarching theme of this book is to focus in every
way you can—I’ll show you exactly how to do this in the upcoming chapters.

For any serious coder, it is essential to always be improving your focus
and productivity. When you do more valuable work, you tend to get higher
rewards from society. However, simply increasing your output is not the
solution. The trap goes like this: if I write more code, create more tests, read
more books, learn more, think more, communicate more, and meet more people, I’ll
get more done. But you cannot do more without doing something less. Time
is limited—you have 24 hours per day and 7 days a week, just like me and
everybody else. There’s an inescapable mathematical limitation: in a limited
space, if one thing grows, something else must shrink to make room. If you
read more books, you may meet fewer people. If you meet more people, you
may write less code. If you write more code, you may have less time with the
people you love. You cannot escape the fundamental trade-off: there can-
not be more without less in a limited space.

Rather than focus on the obvious consequence of simply doing more,
this book takes the reverse perspective: you reduce complexity, allowing
you to work less while getting more value from your results. Thoughtful
minimalism is the holy grail of personal productivity, and, as you’ll see in
later chapters, it works. You can create more value with fewer resources by
programming computers the right way and using the timeless principles
presented in this book.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Introduction xiii

By creating more value, you can also command higher pay. Bill Gates
famously said that a “great lathe operator commands several times the wage of an
average lathe operator, but a great writer of software code is worth 10,000 times the
price of an average software writer.”

One reason is that a great software developer performs a highly
leveraged activity: programming a computer the right way can replace
thousands of jobs and millions of hours of paid work. Code that runs self-
driving cars, for example, can replace the labor of millions of human driv-
ers while being cheaper, more reliable, and (arguably) much safer.

Who Is This Book For?
Are you a coding practitioner who wants to create more value with faster
code and less pain? Do you ever find yourself stuck in bug-finding mode?
Does the complexity of code often overwhelm you? Do you struggle to
decide on the next thing to learn, having to choose from hundreds of pro-
gramming languages—Python, Java, C++, HTML, CSS, JavaScript—and
thousands of frameworks and technologies—Android apps, Bootstrap,
TensorFlow, NumPy? If you can answer any of the questions with “YES!” (or
even “yes”), you have the right book in your hands!

This book is for every programmer who’s interested in increasing their
productivity—doing more with less. It’s for you if you seek simplicity and
believe in Occam’s Razor: “It is futile to do with more things that which can be
done with fewer.”

What Will You Learn?
This book shows you how to practically apply nine principles to increase
your potential as a programmer by orders of magnitude. These principles
will simplify your life and reduce complexity, struggles, and working hours.
I don’t claim that any of the principles are new. They’re variously well
known and established—and proven to work by the most successful coders,
engineers, philosophers, and creators. That’s what makes them principles
in the first place! However, in this book I will apply the principles explicitly
to coders, giving real-world examples and, where possible, code examples.

Chapter 1 will set up the main challenge to increasing value in produc-
tivity: complexity. You’ll learn to recognize the sources of complexity in
your life and your code and gain an understanding that complexity can
harm your productivity and output. Complexity is everywhere, and you
need to be constantly vigilant against it. Keep it simple!

In Chapter 2, you’ll learn the profound impact the 80/20 principle can
have on your life as a programmer. The majority of effects (80 percent)
come from a minority of causes (20 percent); this is a ubiquitous theme
in programming. You’ll learn that the 80/20 principle is fractal: 20 per-
cent of the 20 percent of coders will earn 80 percent of the 80 percent

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

xiv Introduction

of salary. In other words, 4 percent of the world’s coders earn 64 per-
cent of the money. The quest for continuous leverage and optimization
is always on!

In Chapter 3, you'll learn about building minimal viable products to test your
assumptions early, minimize waste, and increase the speed by which you
go through the build, measure, and learn cycle. The idea is to learn where
to focus your energy and attention by getting feedback early.

In Chapter 4, you’ll learn about the benefits of writing clean and simple
code. Contrary to what most people intuitively assume, code should be
written, first and foremost, to maximize readability rather than mini-
mize the usage of central processing unit (CPU) cycles. Collective pro-
grammer time and effort are far scarcer than CPU cycles, and writing
code that’s hard to grasp reduces the efficiency of your organization,
and of our collective human intelligence.

In Chapter 5, you’ll learn about the conceptual foundation of perfor-
mance optimization and the pitfalls of optimizing prematurely. Donald
Knuth, one of the fathers of computer science, used to say, “Premature
optimization is the root of all evil!” When you do need to optimize your code,
use the 80/20 principle: optimize the 20 percent of functions that run 80
percent of the time. Get rid of the bottlenecks. Ignore the rest. Repeat.

In Chapter 6, you’ll join me for a small excursion into Mihaly
Csikszentmihalyi’s (literally) exciting world of flow. The state of flow is
a state of pure concentration that increases productivity by magnitudes
and helps to build a culture around deep work—speaking in the words
of computer science professor Cal Newport, who will also lend some
ideas in this chapter.

In Chapter 7, you’ll learn about the Unix philosophy of doing one thing
and doing it well. Rather than having a monolithic (and, potentially,
more efficient) kernel with a huge provision of functionality, the devel-
opers of Unix chose to implement a small kernel with lots of optional
helper functions. This helped the Unix ecosystem to scale up while
remaining clean and (relatively) simple. We’ll see how you can apply
these principles to your own work.

In Chapter 8, you’ll enter another vital area in computer science that
benefits from a minimalistic mindset: design and user experience
(UX). Think of the differences between Yahoo Search and Google
Search, the Blackberry and the iPhone, and OkCupid and Tinder. The
most successful technologies often come with a radically simple user
interface for the reason that, in design, less is more.

In Chapter 9, you’ll revisit the power of focus and learn how to apply it
in diverse areas to increase your (and your programs’) output vastly!

Finally, we’ll wrap things up, give you actionable next steps, and release
you into the complex world equipped with a set of reliable tools to sim-
plify that world.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

1
H O W C O M P L E X I T Y H A R M S

Y O U R P R O D U C T I V I T Y

In this chapter, we’re going to have a com-
prehensive look at the important and highly

underexplored topic of complexity. What
exactly is complexity? Where does it occur? How

does it damage your productivity? Complexity is the
enemy of the lean and efficient organization and indi-
vidual, so it’s worth taking a close look at all areas
where we find complexity and what forms it takes. This chapter focuses on
the problem—complexity—and the remaining chapters will explore effec-
tive methods to attack it by redirecting the released resources previously
occupied by complexity.

Let’s start with a quick overview of where complexity may be off-putting
to a new coder:

•	 Choosing a programming language

•	 Choosing a coding project to work on—from thousands of open-source
projects and myriads of problems

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

2 Chapter 1

•	 Deciding which libraries to use (scikit-learn versus NumPy versus
TensorFlow)

•	 Deciding which emerging technologies to invest time in—Alexa apps,
smartphone apps, browser-based web apps, integrated Facebook or
WeChat apps, virtual reality apps

•	 Choosing a coding editor such as PyCharm, Integrated Development
and Learning Environment (IDLE), and Atom

Given the great confusion caused by these sources of complexity, it’s no
surprise that “How do I start?” is one of the most common questions from
programming beginners.

The best way to start is not by choosing a programming book and reading
over all syntactical features of the programming language. Many ambitious
students buy programming books as an incentive and then add the learning
task to their to-do lists—if they’ve spent money on the book, they better read
it or the investment will be lost. But as with so many other tasks on to-do lists,
reading a programming book is seldomly completed.

The best way to start is to choose a practical code project—a simple
one if you’re a beginner—and push it to completion. Don’t read coding
books or random tutorials on the web before completing a full project.
Don’t scroll through endless feeds on StackOverflow. Just set up the project
and start coding with the limited skills you have and your common sense.
A student of mine wanted to create a financial dashboard application
checking the historic returns of different asset allocations to answer ques-
tions such as “What was the maximum down year of a portfolio consisting
of 50% stocks and 50% government bonds?” At first she didn’t know how to
approach this project but soon found out about a framework called Python
Dash that deals with building data-based web apps. She learned how to set
up a server and studied just the HyperText Markup Language (HTML)
and Cascading Style Sheets (CSS) she needed to move forward, and now
her app is live and has already helped thousands of people find the right
asset allocation. But, more importantly, she joined the team of develop-
ers that created Python Dash and is even writing a book about it with No
Starch Press. She did all of this in one year—and you can, too. It’s okay if
you don’t understand what you’re doing; you will gradually increase your
understanding. Read articles only to make progress on the project in front
of you. The process of finishing your first project introduces a number of
highly relevant problems, including:

Which code editor should you use?

How to install your project’s programming language?

How to read input from a file?

How to store the input in your program for later use?

How to manipulate the input to obtain the desired output?

By answering these questions, you gradually build a well-rounded skill
set. Over time, you’ll be able to answer these questions better and more

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

How Complexity Harms Your Productivity 3

easily. You’ll be able to solve much bigger problems, and you’ll build up an
internal database of programming patterns and conceptual insights. Even
advanced coders learn and improve with this same process—only the cod-
ing projects have become much larger and more complicated.

With this project-based learning approach, you’ll likely find that you
struggle with complexity in areas such as finding bugs in ever-growing code-
bases, understanding code components and how they interact, choosing the
right feature to be implemented next, and understanding the mathematical
and conceptual basics of the code.

Complexity is everywhere, at every stage of a project. The hidden cost
of this complexity is often that brand-new coders throw in the towel and
their projects never see the light of day. So, the question arises: How do I
solve the problem of complexity?

The answer is straightforward: simplicity. Seek simplicity and focus in
every stage of the coding cycle. If you take only one thing away from this
book, let it be this: take a radically minimalistic position in every area you
encounter in programming. Throughout the book, we’ll discuss all of the
following methods:

•	 Declutter your day, do fewer tasks, and focus your efforts on the tasks
that matter. For example, instead of starting ten new interesting code
projects in parallel, carefully select one and focus all your efforts on
finishing this one project. In Chapter 2, you’ll learn about the 80/20
principle in programming in greater detail.

•	 Given one software project, strip away all unnecessary features and focus
on the minimum viable product (see Chapter 3), ship it, and validate
your hypotheses quickly and efficiently.

•	 Write simple and concise code wherever you can. In Chapter 4, you’ll
learn many practical tips on how to accomplish this.

•	 Reduce time and effort spent on premature optimization—optimizing
code without need is one of the major reasons for unnecessary com-
plexity (see Chapter 5).

•	 Reduce switching time by blocking large chunks of time for program-
ming to obtain a state of flow—a term from psychological research to
describe a focused state of mind that increases your attention, focus,
and productivity. Chapter 6 is all about reaching a state of flow.

•	 Apply the Unix philosophy of focusing code functions on one objective
only (“Do One Thing Well”). See Chapter 7 for a detailed guide into
the Unix philosophy with Python code examples.

•	 Apply simplicity in design to create beautiful, clean, and focused user
interfaces that are easy to use and intuitive (see Chapter 8).

•	 Apply focusing techniques when planning your career, your next proj-
ect, your day, or your area of expertise (see Chapter 9).

Let’s dive deeper into the concept of complexity to develop an under-
standing of one of the great enemies of your coding productivity.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

4 Chapter 1

What is Complexity?
In different fields, the term “complexity” comes with different meanings.
Sometimes, it’s strictly defined, such as the computational complexity of a com-
puter program that provides a means to analyze a given code function for
varying inputs. Other times, it’s loosely defined as the amount or structure
of interactions between system components. In this book, we’re going to use
it more generically.

We’ll define complexity as follows:

Complexity “a whole, made up of parts, that is difficult to analyze,
understand, or explain”

Complexity describes a whole system or entity. Because of the diffi-
culty in explaining this system, complexity causes struggle and confusion.
Because real-world systems are messy, you’ll find complexity everywhere:
the stock market, social trends, emerging political viewpoints, and big com-
puter programs with hundreds of thousands of lines of code—such as the
Windows operating system.

If you’re a coder, you are especially prone to overwhelming complexity,
such as from these different sources that we’ll cover in this chapter:

Complexity in a project life cycle

Complexity in software and algorithmic theory

Complexity in learning

Complexity in processes

Complexity in social networks

Complexity in your daily life

Complexity in a Project Life Cycle
Let’s dive into the different stages of the project life cycle: planning, defin-
ing, designing, building, testing, and deployment (see Figure 1-1).

Planning

Defining

DesigningBuilding

Testing

Deployment

Software
Development Life

Cycle (SDLC)

Figure 1-1: These are the six conceptual phases
of a software project based on the official
Institute of Electrical and Electronics Engineers
(IEEE) standard for software engineering.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

How Complexity Harms Your Productivity 5

Even if you’re working on a very small software project, you’re likely
going through all six phases of the software development life cycle. Note
that you may not necessarily go through each phase only once—in modern
software development, a more iterative approach is generally preferred
where each phase is revisited multiple times. Next, we’ll look at how com-
plexity has a significant impact on each phase.

Planning
The first stage of the software development life cycle is the planning phase,
sometimes known in engineering literature as requirement analysis. The pur-
pose of this phase is to determine how the product will look. A successful
planning phase leads to a strictly defined set of required features to deliver
to the end user.

Whether you’re a single person working on your hobby project or you’re
responsible for managing and orchestrating collaboration among multiple
software development teams, you must figure out the optimal set of features
of the software. A number of factors must be taken into consideration: the
costs of building a feature, the risk of not being able to successfully imple-
ment the feature, the expected value for the end user, marketing and sales
implications, maintainability, scalability, legal restrictions, and many more.

This phase is crucial because it can save you from wasting massive
amounts of energy later. Planning mistakes can lead to millions of dollars’
worth of wasted resources. On the other hand, careful planning can set the
business up for great success in the years to follow. The planning phase is a
time to apply your newly acquired skill of 80/20 thinking (see Chapter 2).

The planning phase is also difficult to do right because of the complex-
ity involved. Several considerations add to the complexity: assessing risk
properly in advance, figuring out the strategic direction of a company or
an organization, guessing the customers’ responses, weighing the positive
impact of different feature candidates, and determining the legal implica-
tions of a given software feature. Taken together, the sheer complexity of
solving this multi-dimensional problem is killing us.

Defining
The defining phase consists of translating the results from the planning
phase into properly specified software requirements. In other words, it for-
malizes the output of the previous phase to gain approval or feedback from
clients and end users who will later use the product.

If you’ve spent a lot of time planning and figuring out the project
requirements but fail in communicating them well, it’ll cause significant
problems and difficulties later. A wrongly specified requirement that helps
the project may be just as bad as a correctly formulated requirement that
doesn’t. Effective communication and precise specification are crucial to
avoid ambiguities and misunderstandings. In all human communication,
getting your message across is a highly complex endeavor due to the “curse
of knowledge” and other psychological biases that overweigh the relevance
of personal experiences. If you try to deliver ideas (or requirements for that

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

6 Chapter 1

matter) out of your head and into another one’s head, be careful: complex-
ity is out to get you!

Designing
The goal of the designing phase is to draft the architecture of the system,
decide on the modules and components that deliver the defined functional-
ity, and design the user interface—while keeping the requirements developed
in the previous two phases in mind. The gold standard of the designing
phase is to create a crystal-clear picture of how the final software product will
look and how it’s built. This holds for all methods of software engineering.
Agile approaches would just iterate over those phases more quickly.

But the devil lies in the detail! A great system designer must know about
the pros and cons of a huge variety of software tools they may use to build the
system. For example, some libraries may be easy for the programmer to
use but slow in execution speed. Building custom libraries is harder for the
programmers but may result in much higher speed and, consequently,
improved usability of the final software product. The designing phase
must fix these variables so that the benefit-and-costs ratio is maximized.

Building
The building phase is where many coders want to spend all their time. This
is where the transformation from the architectural draft to the software
product happens. Your ideas transform into tangible results.

Through proper preparation in the previous phases, a lot of complex-
ity has already been eliminated. Ideally, the builders should know which
features to implement from all the possible features, how the features look,
and which tools to use to implement them. Yet, the building phase is always
full of new and emerging problems. Unexpected things like bugs in exter-
nal libraries, performance issues, corrupted data, and human mistakes can
slow progress. Building a software product is a highly complicated endeavor.
A small spelling mistake can determine the correctness and viability of the
whole software product.

Testing
Congratulations, you’ve implemented all requested features and the program
seems to work. You’re not done yet, though. You still must test the behavior
of your software product for different user inputs and usage patterns. This
phase is often the most important of all—so much so that many practitioners
now advocate the use of test-driven development where you don’t even start to
implement (in the building phase) without having written all tests. While you
can argue against that point of view, it’s generally a good idea to spend time
testing your product by creating test cases and checking if the software deliv-
ers the correct result for these test cases.

For example, say you’re implementing a self-driving car. You must write
unit tests to check that each little function (a unit) in your code generates
the desired output for a given input. Unit tests will usually uncover some
faulty functions that behave strangely under certain (extreme) inputs. For

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

How Complexity Harms Your Productivity 7

example, consider the following Python function stub that calculates the
average red, green, and blue (RGB) color value of an image, perhaps used
to differentiate whether you travel through a city or a forest:

def average_rgb(pixels):
 r = [x[0] for x in pixels]
 g = [x[1] for x in pixels]
 b = [x[2] for x in pixels]
 n = len(r)
 return (sum(r)/n, sum(g)/n, sum(b)/n)

For example, the following list of pixels will create the average red,
green, and blue values of 96.0, 64.0, and 11.0, respectively:

print(average_rgb([(0, 0, 0),
 (256, 128, 0),
 (32, 64, 33)]))

Here’s the output:

(96.0, 64.0, 11.0)

Although the function seems simple enough, many things can go
wrong in practice. What if the pixel list of tuples is corrupted and some
(red, green, blue) tuples have only two instead of three elements? What if
one value is of a non-integer type? What if the output must be a tuple of
integers to avoid the floating-point error that is inherent to all floating-
point computations?

A unit test can test for all of those conditions to make sure that the
function works in isolation.

Here are two simple unit tests, one that checks whether the function
works for a border case with zeroes as inputs and another that checks
whether the function returns a tuple of integers:

def unit_test_avg():
 print('Test average...')
 print(average_rgb([(0, 0, 0)]) == average_rgb([(0, 0, 0), (0, 0, 0)]))

def unit_test_type():
 print('Test type...')
 for i in range(3):
 print(type(average_rgb([(1, 2, 3), (4, 5, 6)])[i]) == int)

unit_test_avg()
unit_test_type()

The result shows that the type check fails and the function doesn’t
return the correct type, which should be tuple-of-integer values:

Test average...
True
Test type...

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

8 Chapter 1

False
False
False

In a more realistic setting, testers would write hundreds of those unit
tests to check the function against all types of inputs—and whether it gen-
erates the expected outputs. Only if the unit tests reveal that the function
works properly can we move further to test more higher-level functions of
the application.

In fact, even if all your unit tests successfully pass, you haven’t yet com-
pleted the testing phase. You must test the correct interaction of the units
as they’re building a greater whole. You must design real-world tests, drive
the car for thousands or even tens of thousands of miles to uncover strange
behavior patterns under strange and unpredictable situations. What if your
car drives on a small road without road signs? What if the car in front of
you abruptly stops? What if multiple cars wait for each other on a crossroad?
What if the driver suddenly steers into approaching traffic?

There are so many tests to consider; the complexity is so high that many
people throw in the towel here. What looked good in theory, even after
your first implementation, often fails in practice after applying different
levels of software testing such as unit tests or real-world usage tests.

Deployment
The software has now passed the rigorous testing phase. It’s time to deploy
it! Deployment can take many forms. Apps may be published to market-
places, packages may be published to repositories, and major (or minor)
releases may be made public. In a more iterative and agile approach to
software development, you revisit the deployment phase multiple times
using continuous deployment. Depending on your concrete project, this phase
requires you to launch the product, create marketing campaigns, talk to
early users of the product, fix new bugs that will surely come to light after
being exposed to users, orchestrate the deployment of the software on dif-
ferent operating systems, support and troubleshoot different kinds of prob-
lems, or maintain the codebase to adapt and improve over time. This phase
can become quite messy, given the complexity and interdependency of the
various design choices you made and implemented in previous phases. The
subsequent chapters will suggest tactics to help you overcome the mess.

Complexity in Software and Algorithmic Theory
There can be as much complexity within a piece of software as there is in
the process that surrounds software development. Many metrics in software
engineering measure the complexity of software in a formal way.

First, we’ll look at algorithmic complexity, which is concerned with the
resource requirements of different algorithms. Using algorithmic complex-
ity, you can compare different algorithms that solve the same problem.
For example, say you’ve implemented a game application with a high-score
rating system. You want the players with the highest score to appear at the

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

How Complexity Harms Your Productivity 9

top of the list and the players with the lowest scores to appear at the bot-
tom. In other words, you need to sort the list. Thousands of algorithms exist
for sorting a list, and sorting a list is computationally more demanding for
1,000,000 players than it is for 100 players. Some algorithms scale better with
increasing size of the list input; others scale worse. While your app serves a
few hundred users, it doesn’t really matter which algorithm you choose, but as
your user base grows, the runtime complexity of the list grows superlinearly.
Soon, the end users will have to wait longer and longer for the list to be sorted.
They start complaining—you need better algorithms!

Figure 1-2 exemplifies the algorithmic complexity of two schematic algo-
rithms. The xaxis shows the size of the list to be sorted. The y-axis shows the
runtime of the algorithm (in time units). Algorithm 1 is much slower than
Algorithm 2. In fact, the inefficiency of Algorithm 1 becomes more and
more apparent the more list elements must be sorted. Using Algorithm 1,
your game app would become slower the more users are playing.

List size

Ru
nt

im
e

7

8

1e7

Algorithm 1
Algorithm 2

6

5

4

3

2

1

0

0 2000 4000 6000 8000

Figure 1-2: Algorithmic complexity of two different sorting algorithms

Let’s see whether this actually holds for real Python sorting routines.
Figure 1-3 compares three popular sorting algorithms: bubble sort, quick-
sort, and Timsort. Bubble sort has the highest algorithmic complexity.
Quicksort and Timsort have the same asymptotical algorithmic complex-
ity. But the Timsort algorithm is still much faster—that’s why it’s used as
Python’s default sorting routine. The runtime of the bubble sort algorithm
explodes with a growing list size.

In Figure 1-4, we repeat this experiment but only for Quicksort and
Timsort. Again, there’s a drastic difference in algorithmic complexity: Timsort

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

10 Chapter 1

scales better and is faster for the growing list size. Now you see why Python’s
built-in sorting algorithm hasn’t changed for such a long time!

List size (number of elements)

Ru
nt

im
e(

s)

175

200

Bubble sort
Quicksort
Timsort

150

125

100

75

50

25

0

0 10000 20000 30000 40000

Figure 1-3: Algorithmic complexity of bubble sort, Quicksort, and Timsort

List size (number of elements)

Ru
nt

im
e(

s)

Quicksort
Timsort

0

0.6

0.5

0.4

0.3

0.2

0.1

0.0

25000 50000 75000 100000 125000 150000 175000

Figure 1-4: Algorithmic complexity of Quicksort and Timsort

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

How Complexity Harms Your Productivity 11

Listing 1-1 shows the code in Python in case you want to reproduce the
experiment. I’d recommend you choose a smaller value for n because the
code runs a long time on my machine before terminating.

import matplotlib.pyplot as plt
import math
import time
import random

def bubblesort(l):
 # src: https://blog.finxter.com/daily-python-puzzle-bubble-sort/
 lst = l[:] # work with a copy, don’t modify the original
 for passesLeft in range(len(lst)-1, 0, -1):
 for i in range(passesLeft):
 if lst[i] > lst[i + 1]:
 lst[i], lst[i + 1] = lst[i + 1], lst[i]
 return lst

def qsort(lst):
 # Explanation: https://blog.finxter.com/python-one-line-quicksort/
 q = lambda lst: q([x for x in lst[1:] if x <= lst[0]])
 + [lst[0]]
 + q([x for x in lst if x > lst[0]]) if lst else []
 return q(lst)

def timsort(l):
 # sorted()uses Timsort internally
 return sorted(l)

def create_random_list(n):
 return random.sample(range(n), n)

n = 50000
xs = list(range(1,n,n//10))
y_bubble = []
y_qsort = []
y_tim = []

for x in xs:

 # Create list
 lst = create_random_list(x)

 # Measure time bubble sort
 start = time.time()

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

12 Chapter 1

 bubblesort(lst)
 y_bubble.append(time.time()-start)

 # Measure time qsort
 start = time.time()
 qsort(lst)
 y_qsort.append(time.time()-start)

 # Measure time Timsort
 start = time.time()
 timsort(lst)
 y_tim.append(time.time()-start)

plt.plot(xs, y_bubble, '-x', label='Bubblesort')
plt.plot(xs, y_qsort, '-o', label='Quicksort')
plt.plot(xs, y_tim, '--.', label='Timsort')

plt.grid()
plt.xlabel('List Size (No. Elements)')
plt.ylabel('Runtime (s)')
plt.legend()
plt.savefig('alg_complexity_new.pdf')
plt.savefig('alg_complexity_new.jpg')
plt.show()

Listing 1-1: Measuring elapsed runtime for three popular sorting routines

Algorithmic complexity is a thoroughly researched field. In my opin-
ion, the improved algorithms produced from this research are among the
most valuable technological assets of humanity, allowing us to solve the
same problems with fewer resources, over and over. We truly stand on the
shoulders of giants.

In addition to algorithmic complexity, we can measure the complexity of
code with cyclomatic complexity, a metric developed by Thomas McCabe in 1976
that describes the number of linearly independent paths through your code: the
number of paths that have at least one edge that’s not in another path. For
example, code with an if statement would result in two independent paths
through your code, so it would have a higher cyclomatic complexity than flat
code without any branching like that in an if statement. Figure 1-5 shows the
cyclomatic complexity of two Python programs that process user input
and respond accordingly. The first program contains only one conditional
branch, which could be considered as a fork in the road. Either branch could
be taken, but not both. Thus, the cyclomatic complexity is two because there
are two linearly independent paths. The second program contains two con-
ditional branches leading to a total of three linearly independent paths and
cyclomatic complexity of three. Each additional if statement increases cyclo-
matic complexity.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

How Complexity Harms Your Productivity 13

Path #2

pw = input('your password: ')
if pw == '42':
 print('correct!')

pw = input('your password: ')
if pw == '42':
 pw2 = input('your name: ')
 if pw2 == 'marvin':
 print('correct!')
 else:
 print('fail!')

start

end

Path #1

Path #2

Example 1: cyclomatic complexity = 2

Path #1

Example 2: cyclomatic complexity = 3

Path #3

pw == '42':

print(...)

pw == '42'

pw == 'marvin'

print(...) print(...)

Figure 1-5: Cyclomatic complexity of two Python programs

The cyclomatic complexity is a solid proxy metric for the hard-to-
measure cognitive complexity, that is, how difficult it is to understand a given
codebase. However, cyclomatic complexity ignores the cognitive complexity
that comes from, say, nesting multiple for loops compared to a flat for loop.
That’s why other measures such as NPath complexity improve upon cyclomatic
complexity. To sum up, code complexity not only is an important subject of
algorithmic theory but also is relevant for all practical matters when imple-
menting code—and for writing easy-to-understand, readable, and robust
code. Both algorithmic theory and programming complexity have been
thoroughly researched for decades. A primary goal of these efforts is to reduce
computational and non-computational complexity to mitigate its harmful effects
on productivity and resource utilization of humans and machines alike.

Complexity in Learning
Facts don’t exist in a vacuum but are interrelated. Consider these two facts:

Walt Disney was born in the year 1901.

Louis Armstrong was born in the year 1901.

If you fed a program with these facts, it could answer questions like
“What’s the birth year of Walt Disney?” as well as questions like “Who was born
in 1901?” To answer the latter, the program must figure out the interdepen-
dency of different facts. It may model the information like this:

(Walt Disney, born, 1901)
(Louis Armstrong, born, 1901)

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

14 Chapter 1

To get all persons born in 1901, it could use the query (*, born, 1901) or
any way to relate the facts and group them together.

In 2012, Google launched a new search feature showing info boxes on
the search result page. These fact-based info boxes are populated using
a data structure called the knowledge graph, which is a massive database
of billions of interrelated facts to represent information in a network-like
structure. Instead of storing objective and independent facts, this database
maintains information about the interrelationship between different facts
and pieces of information. The Google search engine uses this knowledge
graph to enrich its search results with higher-level knowledge and form
answers autonomously.

Figure 1-6 shows an example. One node on the knowledge graph may
be about the famous computer scientist Alan Turing. In the knowledge
graph, the concept of Alan Turing is connected to different pieces of infor-
mation such as his birth year (1912), his field of study (computer science,
philosophy, language theory), and his doctoral advisor (Alonzo Church). Each
of those pieces of information is also connected to other facts (Alonzo
Church’s field of study was computer science as well), forming a massive
network of interrelated facts. You can use this network to acquire new infor-
mation and answer user queries programmatically. A query about the "field
of study of Turing's doctor father" would result in the deducted answer
"computer science". While this may sound trivial or obvious, the ability to
generate new factoids like these has led to a breakthrough in information
retrieval and search engine relevancy. You’d probably agree that it’s far
more effective to learn by association than by remembering unrelated facts.

1912

has birth year

Computer
science

Philosophy

Linguistics

has field
of study

has field of studyhas field
of study

has doctoral
advisor has field

of study

Human

is

is
has field
of study

Knowledge graph representation (triples):
("Alan Turing″, "has doctoral advisor″, "Alonzo Church″)
("Alan Turing″, "has field of study″, "Philosophy″)
("Alan Turing″, "has field of study″, "Linguistics″)
…

Alan Turing

Alonzo
Church

Figure 1-6: Knowledge graph representations

Every field of study focuses only on a small part of the graph, each con-
sisting of myriads of interrelated factoids. You can only really understand a

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

How Complexity Harms Your Productivity 15

field by taking into account related facts. To understand Alan Turing thor-
oughly you must research his beliefs, philosophies, and the characteristics
of his doctorate advisor. To understand Church you must investigate his
relationship to Turing. Of course, there are too many related dependencies
and facts in the graph to expect to understand everything. The complex-
ity of these interrelations poses the most fundamental boundaries to your
ambitions to learn. Learning and complexity are two sides of the same coin:
complexity is at the boundary of the knowledge you’ve already acquired. To
learn more, you must first know how to control complexity.

We’re getting kind of abstract here, so let’s have an applicable example!
Say you want to program a trading bot that buys and sells assets accord-
ing to a set of sophisticated rules. You could learn lots of useful knowledge
before starting your project: the basics of programming, distributed sys-
tems, databases, application programming interfaces (APIs), web services,
machine learning, and data science and the related mathematics. You
could learn about practical tools such as Python, NumPy, scikit-learn, ccxt,
TensorFlow, and Flask. You could learn about trading strategies and stock
market philosophies. Many people approach these problems with such a
mindset and so never feel ready to start the project. The problem is that
the more you learn, the less knowledgeable you feel. You’ll never attain suf-
ficient mastery in all those fields to truly satisfy your desire to feel prepared.
Overwhelmed by the complexity of the whole endeavor, you feel like quit-
ting. Complexity is about to take its next victim: you.

Fortunately, in the chapters of this book, you’ll learn skills to combat
complexity: focus, simplification, scaling down, reduction, and minimalism.
This book will teach you those skills.

Complexity in Processes
A process is a series of actions taken with the goal of realizing a defined
result. The complexity of a process is calculated by its number of actions,
participants, or branches. In general, the more actions (and participants),
the more complicated a process becomes (see Figure 1-7).

Code Test Launch

Simple process

Code

Test Launch

Slightly more complex process

Code

Code

Feedback
Yes!

No!

Yes!

No!

Figure 1-7: Two example processes: one-person development versus
team development

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

16 Chapter 1

Many software companies follow process models for different aspects of
the business in an attempt to simplify processes; for example:

Software development may use agile development or scrum.

Customer relationship development may use customer relationship
management (CRM) and sales scripts.

New product and business model creation may use the business model
canvas.

When organizations accumulate too many processes, complexity starts
to clog the system. For example, before Uber entered the scene, the process
of traveling from location A to B might often have involved many steps: find-
ing telephone numbers of taxi organizations, comparing rates, preparing
different payment options, and planning different modes of transportations.
For many, Uber streamlined the process of traveling from A to B, integrating
the whole planning process into an easy-to-use mobile application. The radi-
cal simplification performed by Uber made traveling more convenient for
customers and reduced planning time and costs compared to the traditional
taxi industry.

In overly complex organizations, innovation finds fewer vehicles for
change because it’s unable to break through the complexity. Resources are
wasted as actions within processes become redundant. Trying to fix the suf-
fering business, managers invest energy to establish new processes and new
actions, and the vicious cycle begins to destroy the business or organization.

Complexity is the enemy of efficiency. The solution here is minimalism: to
keep your processes efficient, you must radically weed out unnecessary steps
and actions. It’s very unlikely that you’ll find your processes oversimplified.

Complexity in Your Daily Life, or the Death of a
Thousand Cuts

The purpose of this book is to increase the productivity of your program-
ming efforts. This can be interrupted by your own personal daily habits
and routines. You must tackle the daily distractions and the constant com-
petition for your valuable time. Computer science professor Cal Newport
talks about this in his excellent book Deep Work: Rules for Focused Success in
a Distracted World (Grand Central Publishing, 2016). He argues that there’s
both an increasing demand for work that requires deep thinking—such as
programming, researching, medicine, and writing—and a decreasing sup-
ply due to the proliferation of communication devices, opportunities, and
entertainment systems. If increasing demand meets decreasing supply, eco-
nomic theory suggests that prices will rise. If you are capable of engaging in
deep work, your economic value will increase. There has never been a bet-
ter time for programmers who can engage in deep work.

Now, the caveat: it has become almost impossible to engage in deep
work if you don’t brutally enforce it. The external world demands your

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

How Complexity Harms Your Productivity 17

attention. Your colleagues pop into your office. Your smartphone demands
your attention every 20 minutes. Your inbox pops up a new email dozens of
times a day—each asking for a slice of your time.

Deep work results in delayed gratification; it’s a satisfying feeling to have
spent weeks of work on a computer program and find that it works. However,
what you desire in most moments is instant gratification. Your subconsciousness
often looks for ways to escape from the effort of deep work. Small rewards
produce an easy boost of endorphins: checking your messages, engaging in
meaningless chitchat, flicking through Netflix. The promise of delayed grati-
fication becomes less and less attractive compared to the happy, colorful, and
lively world of instant gratification.

Your efforts to stay focused and productive are prone to dying the
death of a thousand cuts. Yes, you can turn off your smartphone once and
use willpower to avoid checking your social media and switching on your
favorite shows, but can you do it consistently day after day? Here, too, the
answer lies in applying radical minimalism to the root of the problem: unin-
stall social media apps rather than trying to manage consumption, reduce the
number of projects and tasks you’re involved in rather than trying to do more
by working more, go deep into one programming language rather than spend-
ing lots of time switching between many.

Conclusion
By now you should be thoroughly motivated by the need to overcome com-
plexity. For further exploration of complexity and how we might overcome
it, I do recommend reading Deep Work by Cal Newport.

Complexity harms productivity and reduces focus. If you don’t take
early control over complexity, it will quickly consume your most precious
resource: time. At the end of your life, you won’t judge whether you’ve led a
meaningful life based on how many emails you’ve replied to, hours of com-
puter games you’ve played, or Sudoku puzzles you’ve solved. By learning
how to handle complexity, by keeping it simple, you’ll be able to fight com-
plexity and give yourself a powerful competitive advantage.

In Chapter 2, you’ll learn about the power of the 80/20 principle: focus
on the vital few and ignore the trivial many.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

2
T H E 8 0/ 2 0 P R I N C I P L E

In this chapter, you’ll learn about the pro-
found impact of the 80/20 principle on your

life as a programmer. It has many names,
including the Pareto principle, named after its

discoverer Vilfredo Pareto. So, how does the principle
work, and why should you care? The 80/20 principle
refers to the idea that a majority of effects (80 percent)
come from a minority of causes (20 percent). It shows you a path to achieve
many more results as a professional coder by focusing your efforts on a few
important things and ignoring the many things that hardly move the needle.

80/20 Principle Basics
The principle says that the majority of effects come from the minority of
causes. For example, the majority of income is earned by the minority of
people, the majority of innovations come from the minority of researchers,
the majority of books are written by the minority of authors, and so on.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

20 Chapter 2

You may have heard about the 80/20 principle—it’s everywhere in
personal productivity literature. The reason for its popularity is two-fold.
First, the principle allows you to be relaxed and productive at the same
time, as long as you can figure out the things that matter, which make up
the 20 percent of activities that lead to 80 percent of the results, and focus
on those relentlessly. Second, we can observe the principle in a huge variety
of situations, giving it considerable credibility. It’s even tough to come up
with a counterexample, where the effects come equally from the causes.
Try to find some examples of 50/50 distributions where 50 percent of the
effects come from 50 percent of causes! Sure, the distribution is not always
80/20—the concrete numbers can change to 70/30, 90/10, or even 95/5—
but the distribution is always heavily skewed toward the minority producing
the majority of effects.

We represent the Pareto principle in a Pareto distribution, shown in
Figure 2-1.

Pareto distribution

Re
su

lts

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Causes

0 20 40 60 80 100

Figure 2-1: Example of a general Pareto distribution

The Pareto distribution plots the results (y-axis) against the causes
(x-axis). The results can be any measure of success or failure, like income,
productivity, or the number of bugs in a software project. The causes can
be any entity these results may be associated with, such as employees,
businesses, or software projects, respectively. To obtain the characteristic
Pareto curve, we order the causes according to the results they produce. For
example, the person with the highest income comes first on the x-axis, then
comes the person with the second-highest income, and so on.

Let’s look at a practical example.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

The 80/20 Principle 21

Application Software Optimization
Figure 2-2 shows the Pareto principle in action in an imaginary software
project: the minority of the code is responsible for the majority of the run-
time. The x-axis shows code functions sorted by the runtime they incur.
The y-axis shows the runtime of those code functions. The shaded area that
dominates the overall area under the plot shows that most code functions
contribute much less to the overall runtime than a few selected code func-
tions. Joseph Juran, one of the early discoverers of the Pareto principle,
calls the latter the vital few and the former the trivial many. Spending a lot
of time optimizing the trivial many barely improves the overall runtime.
The existence of Pareto distributions in software projects is well supported
by scientific evidence such as in “Power Laws in Software” by Louridas,
Spinellis, and Vlachos (2008).

20 code functions generate
vast majority of runtime!

Code functions

Pareto distribution

Ru
nt

im
e

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0 20 40 60 80 100

Figure 2-2: Example of a Pareto distribution in software engineering

Large companies like International Business Machines Corporation
(IBM), Microsoft, and Apple employ the Pareto principle to build faster,
more user-friendly computers by channeling their focus on the vital few;
that is, by repeatedly optimizing the 20 percent of the code that was
executed most often by the average user. Not all code is created equal. A
minority of code has a dominating impact on the user experience, while
much of the code has little impact. You might double-click the File Explorer
icon multiple times per day, but you seldom change the access rights of a
file. The 80/20 principle tells you where to focus your optimization efforts!

The principle is easy to understand, but it can be harder to know how
you can use the principle in your own life.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

22 Chapter 2

Productivity
By focusing on the vital few rather than the trivial many, you can increase your
productivity by a factor of 10, even 100. Don’t believe me? Let’s calculate where
these numbers come from, assuming an underlying 80/20 distribution.

We’ll use the conservative 80/20 parameters (80 percent of the results
come from 20 percent of the people) and then calculate the rate of produc-
tion for each group. In some fields (like programming), the distribution is
probably much more skewed.

Figure 2-3 shows that in a company of 10 employees, just 2 employees
produce 80 percent of the results, while 8 employees produce 20 percent of
the results. We divide 80 percent by two employees for an average output
of 40 percent per top-performing employee in the company. If we divide
the 20 percent of the results generated by the eight employees, we get an
average of 2.5 percent of output per bottom-performing employee. The
difference in performance is 16 times!

Results

16x

80%

Average
result per
person

80%
2

40%=

1x

20%

280%
8

2.5%=

Figure 2-3: The average output of the 20 percent top performers is
16 times the average output of the 80 percent bottom performers.

This 16-times difference in average performance is a fact in millions of
organizations throughout the world. The Pareto distribution is also fractal,
which means that the top 20 percent of the top 20 percent generate 80 percent
of 80 percent of the results, which causes many more significant performance
differences in large organizations with thousands of employees.

The differences in results cannot be explained by intelligence alone—a
person cannot be 1000 times more intelligent than another person. Instead,
the differences in results come from the specific behavior of the individual
or the organization. If you did the same things, you could get the same
results. However, before you change your behavior, you must be clear about
what result you want to accomplish, as research shows an extreme inequality
of results in almost any metric you can imagine.

Income Ten percent of the people earn almost 50 percent of the
income in the United States.

Happiness Less than 25 percent of the people in North America rate
themselves at 9 or 10 in a happiness scale that ranges 0–10 points in “a
0 to 10 scale, with the worst possible life as a 0 and the best possible life
as a 10.”

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

The 80/20 Principle 23

Monthly active users Just two websites of the top 10 websites get
48 percent of the cumulative traffic, as shown in Table 2-1 (based on
information from www.ahrefs.com).

Book sales Just 20 percent of the authors may receive as much as
97 percent of sales.

Scientific productivity For example, 5.2 percent of scientists account
for 38 percent of published articles.

The resources section at the end of the chapter links to some articles to
support this data. The inequality of results is a well-established phenomenon in
social science, and it is commonly measured in a metric called Gini coefficient.

Table 2-1: Cumulative Traffic of the Top 10 Most-Trafficked Websites in
the United States

Domain Monthly traffic Cumulative

1 en.wikipedia.org 1.134.008.294 26%

2 youtube.com 935.537.251 48%

3 amazon.com 585.497.848 62%

4 facebook.com 467.339.001 72%

5 twitter.com 285.460.434 79%

6 fandom.com 228.808.284 84%

7 pinterest.com 203.270.264 89%

8 imdb.com 168.810.268 93%

9 reddit.com 166.277.100 97%

10 yelp.com 139.979.616 100%

 4.314.988.360

So how can you become one of the top performers? Or, to formulate it
more generally: how can you move to the left on the Pareto distribution curve
in your organization (see Figure 2-4)?

O
ut

pu
t

?

Figure 2-4: To create more output, you need to move to the left
of the curve.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

www.ahrefs.com

24 Chapter 2

Success Metrics
Let’s say you want to optimize for income. How can you move to the left
in the Pareto curve? We’re leaving exact science behind here, because you
need to find the reasons some people succeed in your specific industry and
develop actionable success metrics you can control and implement. We define
the term success metric as measurements of behavior that lead to more suc-
cess in your field. The tricky thing is that the most crucial success metrics
are different in most fields. The 80/20 principle also applies to success met-
rics: some success metrics have a dominating impact on your performance
in a field, while others barely matter at all.

For example, when working as a doctoral researcher, I soon realized
that success was all about getting cited by other researchers. The more
citations you have as a researcher, the more credibility, visibility, and
opportunities you’ll have. However, increasing the number of citations is hardly
an actionable success metric that you can optimize daily. The number of
citations is a lacking indicator, because it is based on actions you took in the
past. The problem with lacking indicators is that they record only the conse-
quence of past actions. They don’t tell you the right actions to take daily for
success.

To obtain a measure for doing the right actions, the notion of lead-
ing indicators was introduced. A leading indicator is a metric that predicts
a change in the lacking indicator before it occurs. If you do more of the
leading indicator, the lacking indicator is likely to improve as a result. As
a researcher, then, you’ll receive more citations (lacking indicator) by pub-
lishing more high-class research papers (leading indicator). That means
writing high-class papers is the most important activity for most scientists,
not secondary activities such as preparing presentations, organizing, teach-
ing, or drinking coffee. The success metric for researchers is therefore gen-
erating a maximal number of high-quality papers, as shown in Figure 2-5.

Su
cc

es
s

m
et

ric
:

nu
m

be
r o

f w
or

ds
 w

rit
te

n
to

w
ar

ds
 h

ig
h-

cl
as

s
pa

pe
r

!

Figure 2-5: Success metric in research: number of words written toward
a high-class paper

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

The 80/20 Principle 25

To push to the left in research, you must write more words today, pub-
lish your next high-class paper sooner, receive more citations faster, grow
your scientific footprint, and become a more successful scientist. Roughly
speaking, many different success metrics can serve as a proxy for “being
successful in science.” For instance, when ordering them on a scale from
lack to lead measures, you may get number of citations, number of high-class
papers written, number of total words written in your life, and number of words
written today.

The 80/20 approach allows you to identify the activities on which you
must focus. Doing more of the success metrics, preferably actionable lead
measures, will increase your professional success, and that’s all that should
matter. Spend less time on all the different tasks. Refuse to die the death of
a thousand cuts. Be lazy with all activities but one: writing more words per day.

Say you work 8 hours per day, and you spread your day into eight 1-hour
activities. After completing the success metric exercise, you realize that you
can skip two 1-hour activities per day and complete four other activities in
half the time by being less perfectionistic. You have saved 4 hours per day,
but you still accomplish 80 percent of your results. Now you can invest 2
hours into writing more words toward high-class papers per day. Within
a few months, you’ll have submitted an extra paper, and over time, you’ll
submit more papers than any of your colleagues. You work only 6 hours per
day, and you generate imperfect quality in most of your work tasks. But you
shine on where it matters: you submit more research papers than anyone
else in your environment. As a result, you’ll soon be one of the top 20 per-
cent of researchers. You generate more with less.

Instead of becoming a “Jack of all trades, master of none,” you gain
expertise in the area that is most important to you. You heavily focus on the
vital few and ignore the trivial many. You lead a less stressful life, but you
enjoy more fruits from your invested labor, efforts, time, and money.

Focus and the Pareto Distribution
A closely related topic I want to discuss is focus. We’ll discuss focus in many
places in this book—for example, Chapter 10 discusses the power of focus
in detail—but the 80/20 principle explains why focus is so powerful. Let’s
dive into the argument!

Consider the Pareto distribution in Figure 2-6 that shows the percent-
age improvement of moving toward the top of the distribution. Alice is the
fifth most productive person in the organization. If she just overtakes one
person in the organization, thereby becoming the fourth most productive
person, she’d increase her output (salary) by 10 percent. One step further
than that, and her output increases by an additional 20 percent. In a Pareto
distribution, the growth per rank explodes exponentially, so even small
increases in productivity can result in big increases in income. Increasing
your productivity leads to superlinear improvements in your income, happi-
ness, and joy at work. Some call this phenomenon “the winner takes all.”

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

26 Chapter 2

O
ut

pu
t

+10%

+20%

+40%

+50%

Figure 2-6: Disproportional benefit of improving your rank in a
Pareto distribution

That’s why it doesn’t pay to spread your attention: if you don’t focus, you
participate in many Pareto distributions. Consider Figure 2-7: Alice and Bob
can each invest three units of learning efforts every day. Alice focuses on
one thing: programming. She just spends her three units of effort in learn-
ing to code. Bob spreads his focus to multiple disciplines: one unit of time
polishing his chess skills, one unit improving his programming skills, and
one unit improving his political skills. He’s reached average skills and out-
put in each of the three areas. But the Pareto distribution disproportionally
rewards the top performers, so Alice collects more total output reward.

O
ut

pu
t

O
ut

pu
t

O
ut

pu
t

Alice

Programming Chess Politics Total
output

#6 #6#6

#1 #9#9

O
ut

pu
t

O
ut

pu
t

O
ut

pu
t

Bob

Programming Chess Politics

Figure 2-7: Non-linearity of rank output—a strategic explanation attempt for the power of focus

The disproportional rewards hold within each area, too. For instance,
Bob may spend his time reading three general books (let’s call them

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

The 80/20 Principle 27

Introduction to Python, Introduction to C++, and Introduction to Java) while Alice
reads three books diving deep into machine learning with Python (let’s
call them Introduction to Python, Introduction to Machine Learning with Python,
and Machine Learning for Experts). As a result, Alice will focus on becoming
a machine learning expert and can demand a higher salary for her special-
ized skill set.

Implications for Coders
In programming, the results tend to be much more heavily skewed toward
the top than in most other fields. Instead of 80/20, the distribution often
looks more like 90/10 or 95/5. Bill Gates said a “great lathe operator commands
several times the wage of an average lathe operator, but a great writer of software
code is worth 10,000 times the price of an average software writer.” Gates argues
that the difference between a great and an average software writer is not 16
times, but 10,000 times! Here are several reasons why the software world is
prone to such extreme Pareto distributions:

•	 A great programmer can solve some problems that the average program-
mer simply cannot solve. In some instances, this makes him infinitely
times more productive.

•	 A great programmer can write code that is 10,000 times faster than the
code of an average programmer.

•	 A great programmer writes code with fewer bugs. Think about the effect
of a single security bug on Microsoft’s reputation and brand! Moreover,
every additional bug costs time, energy, and money for subsequent
modifications of the codebase and feature additions—the detrimental,
compounding effect of bugs.

•	 A great programmer writes code that is easier to extend, which may
improve the productivity of thousands of developers that work on his
code at a later stage of the software development process.

•	 A great programmer thinks out of the box and finds creative solutions
to circumvent costly development efforts and help focus on the most
important things.

In practice, a combination of these factors is at play, so the difference
can be even higher.

So, for you, the key question may be this: How do you become a great
programmer?

A Success Metric for Programmers
Unfortunately, the statement “become a great programmer” is not a suc-
cess metric you can directly optimize—it’s a multi-dimensional problem. A
great programmer understands code quickly, knows algorithms and data

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

28 Chapter 2

structures, knows different technologies and their strengths and weak-
nesses, can collaborate with other people, is communicative and creative,
stays educated and knows about ways to organize the software development
process, and possesses hundreds of soft and hard skills. But you can’t be
a master of all of those! If you don’t focus on the vital few, you’ll become
washed away by the trivial many. To become a great programmer, you must
focus on the vital few.

One of the vital few activities to focus on is to write more lines of code.
The more lines you write, the better coder you’ll become. It’s a simplifica-
tion of the multi-dimensional problem: by optimizing the proxy metric
(write more lines of code), you increase your odds of success at the target
metric (become a great writer of software code). See Figure 2-8.

Pr
og

ra
m

m
in

g
sk

ill
s

?
Su

cc
es

s
m

et
ric

: n
um

be
r

of
 li

ne
s

of
 c

od
e

w
rit

te
n

!

Figure 2-8: Success metric in programming: number of lines of code written

By writing more code, you’ll understand code better, and talk and
behave more like an expert coder. You attract better coders and find more
challenging programming tasks, so you write more code and become even
better. You get paid more and more per line of code you write. You or your
company can outsource the trivial many tasks.

Here’s an 80/20 activity you can follow every day: track the number of lines
you code every day and optimize it. Make it a game to at least match your aver-
age every day.

Pareto Distributions in the Real World
We’ll take a quick look at some real-world examples of the Pareto distribu-
tion in action.

GitHub Repository TensorFlow Contributions

We can see an extreme example of a Pareto distribution in contributions to
GitHub repositories. Let’s consider a wildly popular repository for machine
learning computations in Python: TensorFlow. Figure 2-9 shows the top
seven contributors to this GitHub repository. Table 2-2 shows the same data
numerically.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

The 80/20 Principle 29

GitHub TensorFlow Repository Commits

0
5000

10000
15000
20000
25000

Contributions (commits)

ten
so

rfl
ow

er-
ga

rd
en

er

yo
ng

tan
g

mrry

gu
na

n

Riv
er

70
7

be
no

its
tei

ne
r

sa
njo

y

Contributions (commits)

Figure 2-9: GitHub TensorFlow repository commit distribution

Table 2-2: Number of TensorFlow
Commits and their Contributors

 Contributor Commits

tensorflower-gardener 21426

yongtang 1251

mrry 1120

gunan 1091

River707 868

benoitsteiner 838

sanjoy 795

The user tensorflow-gardener contributed more than 20 percent of the
93,000 commits to this repository. Given that there are thousands of con-
tributors, the distribution is much more extreme than the 80/20 distribu-
tion. The reason is that the contributor tensorflow-gardener consists of a team
of coders at Google that created and maintains this repository. Yet, even
when this team is filtered out, the remaining individual top contributors
are hugely successful programmers with impressive track records. You can
check them out on the public GitHub page. Many of them have landed
exciting jobs working for very attractive companies. Whether they became
successful before or after they generated a large number of commits to
the open-source repository is a mere theoretical discussion. For all practi-
cal matters, you should start your success habit: write more lines of code
every day now. Nothing is stopping you from becoming number 2 on the
TensorFlow repository—by committing valuable code to the TensorFlow
repository two to three times per day for the next 2–3 years. If you persist,
you can join the ranks of the most successful coders on earth just by choos-
ing one powerful habit and sticking to it for a few short years!

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

30 Chapter 2

Programmer Net Worth

Sure enough, the net worth of programmers is also Pareto distributed. For
privacy reasons, it’s hard to get data about an individual’s net worth, but the
website www.networthshare.com does show the self-reported net worth of vari-
ous professions, including programmers. The data is a bit noisy, but it shows
the idiosyncratic skewness of real-world Pareto distributions (Figure 2-10).

–$2,000,000

$0

$2,000,000

$4,000,000

$6,000,000

$8,000,000

$10,000,000

$12,000,000

$14,000,000

$16,000,000

$18,000,000

wqjw
Hog

an

bic
ho

nfr
ise
mwwh

ret
ire

4ly
fe

ser
tra

20
02jbm

il

kry
pto

kn
igh

t

au
zz

iey
an

k

tar
ge

t10
milpm

litt
ler

un
ne

r

gu
mby

66
6

Inl
ov

eh
ap

pil
y

mwhe
ns

on

the
mon

ey
sp

rou
t

misc
12

34
us

slip
pe

rym
od

em

lab
an

ge
l

Joe
Hx

Fa
tSt

ac
ks

en
ch

an
ted

fam
ily

the
dre

sse
dtr

ad
er

joe
bo

bs
tev

ed
av

e

tro
jan

ho
rse
ve

rsi
fy

au
tum

ntr
ailpp

r
ktc

7

Figure 2-10: Self-reported net worth of 60 programmers

Quite a few software millionaires in our small sample of 29 data points!
But the curve is likely to be even more skewed in the real world because
there are also many billionaire programmers—Mark Zuckerberg, Bill
Gates, Elon Musk, and Steve Wozniak come to mind. Each of those tech
geniuses created the prototypes of their services themselves, laying a hand
on the source code. Lately, we’ve seen many more of those software zillion-
aires in the Blockchain space.

Freelance Gigs

The freelance developing space is dominated by two marketplaces where
freelancers can offer their services and clients can hire freelancers: Upwork
and Fiverr. Both platforms grow double digits per year in terms of users and
revenues, and both platforms are committed to disrupting the organization
of the world’s talents.

The average income of a freelance developer is $51 per hour. But this
is only the average rate—the top 10% of freelance developers reach much
higher hourly rates. In more or less open markets, income resembles a
Pareto distribution.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

www.networthshare.com

The 80/20 Principle 31

I have observed this skewed income distribution in my own experience
from three perspectives: (1) as a freelancer, (2) as a client hiring hundreds
of freelancers, and (3) as a course creator offering Python freelancing
education. Most students fail to reach even the average earning potential
because they don’t stay in the game for more than a month or so. The ones
who keep working on their freelancing business for several months daily
usually reach the average $51 per hour earning target. A minority of very
ambitious and dedicated students reach $100 per hour and more.

But why do some students fail while others thrive? Let’s plot the num-
ber of successful gigs completed by freelance developers on the Fiverr plat-
form with an average rating of at least 4 out of 5. I focused on the popular
area of machine learning in Figure 2-11. I collected the data from the Fiverr
website and tracked the number of completed gigs for 71 freelancers on the
two top search results for the category Machine Learning Gigs. Not surpris-
ingly, for us, the distribution resembles a Pareto distribution.

Number of successfully completed gigs

0 20 40 60 80 100

N
um

be
r o

f f
re

el
an

ce
rs

40

30

20

10

0

Figure 2-11: Histogram of Fiverr freelancers and the number of gigs they
completed

From my own experience as a teacher of thousands of freelancing stu-
dents, I’m fascinated to see that the vast majority of students have completed
fewer than ten gigs. I’m pretty sure that many of those students will later pro-
claim, “Freelancing doesn’t work.” To me, this statement is an oxymoron like
“work doesn’t work” or “business doesn’t work.” These freelancing students
fail because they don’t try hard and long enough. They assume that they can
make money easily, and when they realize that they must work persistently to
join the freelancing winners, they’re quick to give up.

This lack of freelancing persistence actually provides an excellent oppor-
tunity for you to move up the Pareto distribution. The simple success metric
that virtually ensures you eventually join the top 1–3 percent of freelancers is
this: complete more gigs. Stay in the game longer. Anyone can do this. The fact
that you’re reading this book shows that you have the commitment, ambition,

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

32 Chapter 2

and motivation to become a top 1–3 percent freelance coder and coding pro-
fessional. Most players suffer from a lack of focus, and even if they are very
skilled, intelligent, and well-connected, they have no chance of competing
against a focused, dedicated, and Pareto-knowledgeable programmer.

Pareto is Fractal
The Pareto distribution is fractal. If you zoom in, observing only a part of
the whole distribution, there’s another Pareto distribution! This works as
long as the data is not too sparse; in that case, it loses its fractal nature. A
single data point, for example, cannot be considered a Pareto distribution.
Let’s look at this property in Figure 2-12.

Pareto distribution

Pareto distribution

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 2 4 6 8 10 12 14 16

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0 20 40 60 80 100

Pareto distribution

0.09
0.08
0.07
0.06
0.05
0.04
0.03

20 30 40 50 60 70 80 90 100

Figure 2-12: The fractal nature of a Pareto distribution

In the center of Figure 2-12 is the Pareto distribution from Figure 2-1.
I used the simple Python script in Listing 2-1 to zoom into this Pareto
distribution:

import numpy as np
import matplotlib.pyplot as plt

alpha = 0.7

x = np.arange(100)
y = alpha * x / x**(alpha+1)

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

The 80/20 Principle 33

plt.plot(x, y)

plt.grid()
plt.title('Pareto Distribution')
plt.show()

Listing 2-1: An interactive script for you to zoom into a Pareto distribution

You can play with the code yourself; just copy it into your Python shell
and run the code. If you do this in your Python shell, you’ll be able to zoom
into different areas of the Pareto distribution.

The Pareto distribution has various practical applications in life and
programming, and I’ll discuss some of them in this book, but, in my expe-
rience, the most transformative application for you will be to become an
80/20 thinker, that is, you constantly try to find ways to accomplish much
more with much less. Please note that while the concrete Pareto num-
bers—80/20, 70/30, or 90/10—may vary in your own life, you may draw
some value from the fractal nature of productivity and output distributions.
For instance, it is always true that not only do a few programmers earn
much more than the rest but also a few from those top earners earn more
than the rest of the top earners. The pattern stops only when the data gets
too sparse. Here are some examples:

Income Twenty percent of the 20 percent of coders will earn 80 per-
cent of the 80 percent of income. In other words, 4 percent of the coders
will earn 64 percent of the income! This implies that you’re never stuck
with your current financial situation, even if you already belong to the
top 20 percent of coders. (This paper is just one of many that show the
fractal nature of income distributions: http://journalarticle.ukm.my/
12411/1/29%20Fatimah%20Abdul%20Razak.pdf.)

Activities Twenty percent of the 20 percent of the 20 percent of the
activities you have done this week are often responsible for 80 percent
of the 80 percent of the 80 percent of your results. In this scenario, 0.8
percent of the activities will lead to 51 percent of the results. Roughly
speaking, if you’re working 40 hours per week, 20 minutes may account
for half of the results in your work week! An example of such a 20-min-
ute activity would be writing a script that automates a business task and
saves you a couple of hours every few weeks that you can invest in other
activities. If you’re a programmer, deciding to skip the implementation
of an unnecessary feature can save you tens of hours of unnecessary
work. If you start to apply some 80/20 thinking, you’ll quickly find
many of those leveraged activities in your own work.

Progress No matter where you reside on any Pareto distribution, you
can increase your output exponentially by “moving to the left” using
your success habit and the power of focus. As long as the optimum
hasn’t been reached, there’s always room for progress, for reaching
more with less—even if you’re already a highly developed individual,
company, or economy.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

http://journalarticle.ukm.my/12411/1/29%20Fatimah%20Abdul%20Razak.pdf
http://journalarticle.ukm.my/12411/1/29%20Fatimah%20Abdul%20Razak.pdf

34 Chapter 2

The activities that can move you up the Pareto curve are not always
obvious, but they are never random. Many people give up searching for
the success metrics in their fields because they argue that the probabilistic
nature of the outcomes makes it completely random. What a wrong conclu-
sion! To become a master coder, writing less code per day won’t get you
there just as practicing less chess every day cannot lead you to becoming a
professional chess player. Other factors will come into play, but that doesn’t
make success a game of chance. By focusing on the success metrics in your
industry, you will manipulate the probabilities in your favor. As an 80/20
thinker, you are the house—and the house mostly wins.

80/20 Practice Tips
Let’s finish this chapter with ten practice tips to leverage the power of the
Pareto principle.

Figure out your success metrics.

Define your industry first. Identify what the most successful profes-
sionals in your industry are doing exceptionally well and which tasks
you can do every day to push you closer toward the top 20 percent. If
you’re a coder, your success metric may be the number of lines of code
written. If you’re an author, your success metric may be the number of
words written toward the next book. Create a spreadsheet and track
your success metric every day. Make it a game to stick to it and surpass
yourself. Set a minimum threshold, and don’t end the day until you’ve
accomplished the minimal threshold each day. Better yet, don’t start
the day until you have!

Figure out your big goals in life.

Write them down. Without clearly defined big goals (think: 10-year
goals), you won’t stick to one thing for a sufficiently long time. You have
seen that a critical strategy for moving up the Pareto curve is to stay in
the game longer while participating in fewer games.

Look for ways to achieve the same things with fewer resources.

How can you accomplish 80 percent of the result in 20 percent of the
time? Can you remove the remaining activities that take 80 percent of
the time but lead only to 20 percent of the results? If not, can you out-
source them? Fiverr and Upwork are cheap ways to find talent, and it
pays to leverage the skills of other people.

Reflect on your own successes.

What did you do that led to great results? How can you do more of
those things?

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

The 80/20 Principle 35

Reflect on your own failures.

How can you do less of the things that are responsible for the failure?

Read more books in your industry.

By reading more books, you simulate practical experience without the
massive time and energy investment of actually experiencing it. You
learn from the mistakes of others. You learn about new ways of doing
things. You acquire more skills in your field. A highly educated expert
coder can solve a problem 10–100 times quicker than a beginner can.
Reading books in your field is likely to be one of the success metrics in
your field that will catapult you to success.

Spend much of your time improving and tweaking existing products.

Do this rather than inventing new products. Again, this comes from the
Pareto distribution. If you have one product in your business, you can
invest all your energy pushing this one product up the Pareto curve,
generating exponentially increasing results for you and your company. But
if you create new products all the time without improving and optimizing
the old ones, you’ll always have subaverage products. Never forget: the big
results are found on the left of the Pareto distribution.

Smile.

It’s surprising how simple some consequences are. If you’re a positive
person, many things will be easier. More people will collaborate with
you. You’ll experience more positivity, happiness, and support. Smiling
is a highly leveraged activity with massive impact and little cost.

Don’t do things that reduce value.

These are things like smoking, eating unhealthily, sleeping little, drink-
ing alcohol, and watching too much Netflix. Avoiding things that drag
you down is one of your biggest leverage points. If you skip doing things
that harm you, you’ll become healthier, happier, and more successful.
And you’ll have more time and money to enjoy the good things in life:
relationships, nature, and positive experiences.

In the next chapter, you’ll learn a key concept that helps you focus on
the vital few features of your software: you’ll learn how to build a minimum
viable product.

Resources
Let’s have a look at the sources used in this chapter—feel free to explore
them further to find more applications of the Pareto principle!

Panagiotis Louridas, Diomidis Spinellis, and Vasileios Vlachos,
“Power Laws in Software,” ACM Transactions on Software Engineering and
Methodology 18, no.1 (September 2008), https://doi.org/10.1145/1391984
.1391986.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

https://doi.org/10.1145/1391984.1391986
https://doi.org/10.1145/1391984.1391986

36 Chapter 2

Scientific evidence that contributions to open-source projects are
Pareto distributed:

Mathieu Goeminne and Tom Mens, “Evidence for the Pareto Principle
in Open Source Software Activity,” Conference: CSMR 2011 Workshop
on Software Quality and Maintainability (SQM), (January 2011), https://
www.researchgate.net/publication/228728263_Evidence_for_the_Pareto_principle
_in_Open_Source_Software_Activity.

Source for the commit distribution in the GitHub repository
TensorFlow:

https://github.com/tensorflow/tensorflow/graphs/contributors.

My blog article on the income distribution of freelance developers:

Christian Mayer, “What’s the Hourly Rate of a Python Freelancer?”
Finxter, https://blog.finxter.com/whats-the-hourly-rate-of-a-python-freelancer/.

Scientific evidence that open markets adhere to the Pareto principles:

William J. Reed, “The Pareto Law of Incomes—an Explanation and an
Extension,” Physica A: Statistical Mechanics and its Applications 319 (March
2003), https://doi.org/10.1016/S0378-4371(02)01507-8.

A paper that shows the fractal nature of income distributions:

Fatimah Abdul Razak and Faridatulazna Ahmad Shahabuddin,
“Malaysian Household Income Distribution: A Fractal Point of View,”
Sains Malaysianna 47, no. 9 (2018), http://dx.doi.org/10.17576/jsm-2018
-4709-29.

Information about how you can build your side income as a freelance
developer with Python:

Christian Mayer, “How to Build Your High-Income Skill Python.” Video,
https://blog.finxter.com/webinar-freelancer/.

Python Freelancer resource page, Finxter (blog), https://blog.finxter.com/
python-freelancing/.

A deeper dive into the power of 80/20 thinking:

Richard Koch, The 80/20 Principle: The Secret to Achieving More with Less,
London: Nicholas Brealey, 1997.

Ten percent of the people earn almost 50 percent of the income in the
United States.

Facundo Alvaredo, Lucas Chancel, Thomas Piketty, Emmanuel Saez,
and Gabriel Zucman, World Inequality Report 2018, World Inequality Lab,
https://wir2018.wid.world/files/download/wir2018-summary-english.pdf.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

https://www.researchgate.net/publication/228728263_Evidence_for_the_Pareto_principle_in_Open_Source_Software_Activity
https://www.researchgate.net/publication/228728263_Evidence_for_the_Pareto_principle_in_Open_Source_Software_Activity
https://www.researchgate.net/publication/228728263_Evidence_for_the_Pareto_principle_in_Open_Source_Software_Activity
https://github.com/tensorflow/tensorflow/graphs/contributors
https://blog.finxter.com/whats-the-hourly-rate-of-a-python-freelancer/
https://doi.org/10.1016/S0378-4371(02)01507-8
http://dx.doi.org/10.17576/jsm-2018-4709-29
http://dx.doi.org/10.17576/jsm-2018-4709-29
https://blog.finxter.com/webinar-freelancer/
https://blog.finxter.com/python-freelancing/
https://blog.finxter.com/python-freelancing/
https://wir2018.wid.world/files/download/wir2018-summary-english.pdf

The 80/20 Principle 37

Less than 25 percent of the people in North America rate themselves
with 9 or 10 in a happiness scale that ranges 0–10 points in “a 0 to 10 scale,
with the worst possible life as a 0 and the best possible life as a 10.”

John Helliwell, Richard Layard, and Jeffrey Sachs, eds., World Happiness
Report 2016, Update (Vol. 1). New York: Sustainable Development
Solutions Network, ISBN 978-0-9968513-3-6, https://worldhappiness.report/
ed/2016/.

Twenty percent of the authors may even receive 97 percent of the sales.

Xindi Wang, Burcu Yucesoy, Onur Varol, Tina Eliassi-Rad, and Albert-
László Barabási, “Success in books: predicting book sales before
publication,” EPJ Data Sci. 8, no. 31 (October 2019), https://doi.org/10
.1140/epjds/s13688-019-0208-6.

Jordi Prats, “Harry Potter and Pareto’s fat tail,” Significance (August
2011) https://www.significancemagazine.com/14-the-statistics-dictionary/
105-harry-potter-and-pareto-s-fat-tail.

Of scientists, 5.2 percent account for 38 percent of the articles.

Javier Ruiz-Castillo and Rodrigo Costas, “Individual and field citation
distributions in 29 broad scientific fields,” Journal of Informetrics 12, no. 3
(August 2018), https://doi.org/10.1016/j.joi.2018.07.002.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

https://worldhappiness.report/ed/2016/
https://worldhappiness.report/ed/2016/
https://doi.org/10.1140/epjds/s13688-019-0208-6
https://doi.org/10.1140/epjds/s13688-019-0208-6
https://www.significancemagazine.com/14-the-statistics-dictionary/105-harry-potter-and-pareto-s-fat-tail
https://www.significancemagazine.com/14-the-statistics-dictionary/105-harry-potter-and-pareto-s-fat-tail
https://doi.org/10.1016/j.joi.2018.07.002

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

3
B U I L D A M I N I M U M
V I A B L E P R O D U C T

This chapter covers a well-known but still
undervalued idea popularized in Eric Ries’

book The Lean Startup (Crown Business, 2011).
The idea is to build a minimum viable product

(MVP), which is a version of your product stripped of
all except the most necessary features, in order to test
and validate your hypotheses quickly without losing a
lot of time in implementing features
your users may not end up using. In particular, you’ll learn how to radi-
cally reduce complexity in the software development cycle by focusing on
features you know your users want, because they’ve confirmed as much
from your MVP.

In this chapter we’ll introduce MVPs by looking at the pitfalls of devel-
oping software without using MVPS. We’ll then elaborate on the concept in
more detail and provide you with a number of practical tips on how to use
MVPs in your own projects to accelerate progress.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

40 Chapter 3

A Problem Scenario
The idea behind building an MVP is to combat problems that arise when
you program in stealth mode (see Figure 3-1). Stealth mode is when you
work on a project to completion without seeking any feedback from poten-
tial users. Say you come up with a wonderful idea for a program that will
change the world: a machine-learning–enhanced search engine specifically
for searching for code. You start coding enthusiastically on your idea a few
nights in a row.

Idea

Secret world

The stealth mode of programming

$1M
launch

Stealth programming

Figure 3-1: The stealth mode of programming consists of keeping
the app secret until the final polished version can be released in
the hope of immediate success. In most cases, this is a fallacy.

However, in practice, coding an app in one go can actually lead to
immediate success very, very, very rarely. Here’s a more likely outcome of
following the stealth mode of programming:

You quickly develop the prototype, but when you try your search
engine, you find that many search terms in the recommended results are
not relevant. When you search for Quicksort, you obtain a MergeSort code
snippet with a comment # This is not Quicksort. That doesn’t seem right.
So, you keep tweaking the models, but each time you improve the results
for one keyword, you create new problems for other search results. You’re
never quite happy with the result, and you don’t feel like you can present
your crappy code search engine to the world for three reasons: nobody
will find it useful; the first users will create negative publicity around
your website because it won’t feel professional and polished; and you
worry that if competitors see your poorly implemented concept, they’ll
steal it and implement it in a better way. These depressing thoughts cause
you to lose faith and motivation, and your progress on the app drops
to zero.

Figure 3-2 depicts what can and will go wrong in the stealth mode of
programming.

Here I’ll discuss the six most common pitfalls of working in stealth
mode.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Build a Minimum Viable Product 41

Idea

Secret world

What went wrong?

$97
$1M

launch

Stealth programming

1. Lost motivation
2. Distractions

3. Takes longer
than anticipated

4. No
product/
market fit

Figure 3-2: Common pitfalls in the stealth mode of programming

Loss of Motivation
In stealth mode, you’re alone with your idea, and doubts will pop up regu-
larly. You resist the doubts initially, while your initial enthusiasm for the
project is big enough, but the longer you work on your project the bigger
your doubts grow. Maybe you come across a similar tool already in exis-
tence, or you start to believe that it cannot be done. Loss of motivation can
kill your project entirely.

On the other hand, if you release an early version of the tool, encourag-
ing words from an early adopter could keep you motivated enough to perse-
vere, and feedback from users might inspire you on how to improve the tool
or overcome problems. You have external motivation.

Distraction
When you work alone in stealth mode, your daily distractions are difficult
to ignore. You work in your day job, you spend time with family and friends,
other ideas pop into your mind. These days, your attention is a rare good
sought by many devices and services. The longer you are in stealth mode,
the higher the likelihood of getting distracted before ever finishing your
polished app.

An MVP can combat this by reducing the time from idea to market
response, creating an environment of more immediate feedback that helps
refocus your attention. And who knows—maybe you’ll find some eager early
users of your MVP that can help propel the application development.

Running Over Time
Another powerful enemy of project completion is faulty planning. Say you
estimate that your product will take 60 hours to complete, so you initially
plan to work on it for 2 hours every day for a month. However, loss of
motivation and distractions cause you to average only one hour every day.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

42 Chapter 3

Further delays are caused by research you have to commit to, external dis-
tractions, and unexpected events and bugs that you must work around. An
infinite number of factors will increase your anticipated project duration,
and few will reduce it. By the end of the first month, you’re nowhere near
where you thought you’d be, feeding back into the loss-of-motivation loop.

An MVP is stripped of all unnecessary features. Thus, your planning
mistakes will be consequently fewer, and your progress will be much more
predictable. Fewer features mean fewer things will go wrong. Furthermore,
the higher the predictability of your project, the more you or the people
invested in your project will believe in the success of the project. Investors
and stakeholders love predictability!

Lack of Response
Say you overcome your low motivation, and you complete the product. You
finally launch your project, and nothing happens. Only a handful of users
even check it out, and they’re not enthusiastic about it. The most likely out-
come of any software project is silence—an absence of positive or negative
feedback. A common reason is that your product doesn’t deliver the specific
value the users’ demand. It’s almost impossible to find the so-called product-
market fit in your first shot. If you don’t get any feedback from the real world
during development, you start to drift away from reality, working on fea-
tures nobody will use.

Your MVP will help you find product market fit much quicker because,
as you’ll see later in this chapter, an MVP-based approach develops the proj-
ect to directly address the most pressing customer needs, which increases
your chances of customer engagement and therefore response to early
product versions.

Wrong Assumptions
The main cause for failure in stealth mode is your own assumptions. You
start a project with a bunch of assumptions, such as who the users will be,
what they do for a living, what problems they face, or how often they will
use your product. These assumptions are often wrong, and without external
testing you carry on blindly creating products your actual audience does
not want. Once you get no feedback or negative feedback, it corrodes any
motivation.

When I was creating my Finxter.com app for learning Python by solving
rated code puzzles, I assumed that most users would be computer science
students because I was one (reality: most users are not computer scientists).
I assumed that users would come when I released the app (reality: nobody
came initially). I assumed that many users would share their successes on
Finxter via their social media accounts (reality: only a tiny minority of users
shared their coding ranks). I assumed that users would submit their own
code puzzles (reality: from hundreds of thousands of users, only a handful
submitted code puzzles). I assumed that users wanted a fancy design with

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Build a Minimum Viable Product 43

colors and images (reality: a simple geeky design led to improved usage
behavior—see Chapter 8 on simple designs). All those assumptions led to
concrete implementation decisions that cost me tens, if not hundreds, of
hours implementing many features my audience did not want. If I knew
better, I would have tested these assumptions in an MVP, responded to
user feedback, saved myself time and energy, and reduced the likelihood
of jeopardizing the project’s success.

Unnecessary Complexity
There’s another problem with the stealth mode of programming: unneces-
sary complexity. Say you implement a software product consisting of four
features (see Figure 3-3). You’ve been lucky—the market accepted it. You’ve
spent considerable time implementing those four features, and you take the
positive feedback as a reinforcement for all four features. All future releases
of the software product will contain those four features—in addition to the
future features you’ll add to the software product.

Launch

Feature 1

Feature 2

Feature 3

Feature 4
Yes!

Idea

Software product

Feature 1 Feat. 2 Feat. 3 Feat. 4

Figure 3-3: A valuable software product consisting of four features

However, by releasing the package of four features at once rather than
one or two features at a time, you don’t know whether the market would’ve
accepted, or even preferred, any subset of features (see Figure 3-4).

Feature 1

Feature 2

Feature 3

Feature 4
Yes!

Software product
Yes!

No!

Figure 3-4: Which subsets of features would have been accepted
by the market?

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

44 Chapter 3

Feature 1 may be completely irrelevant, even though it took you the
most time to implement. At the same time, Feature 4 may be a highly valu-
able feature that the market demands. There are 2n different combinations
of software product packages out of n features. If you release them as fea-
ture bundles, how can you possibly know which is valuable and which is a
waste of time?

The costs of implementing the wrong features are already high, and
releasing feature bundles of wrong features adds the cumulative costs of
maintaining unnecessary features:

•	 Longer, feature-heavy projects require more time to “load” the whole
project in your mind.

•	 Each feature risks introducing new bugs.

•	 Each line of code adds time cost to opening, loading, and compiling
the project.

•	 Implementing Feature n requires you to check all previous Features
1, 2, . . ., n-1 to ensure that Feature n doesn’t interfere with their
functionality.

•	 Every new feature requires new unit tests that must compile and run
before you can release the next version of the code.

•	 Every added feature makes the codebase more complicated for a coder
to understand, increasing learning time for new coders joining the
project.

This is not an exhaustive list, but you get the point. If each feature
increases your future implementation costs by X percent, maintaining
unnecessary features can result in orders of magnitude difference in coding
productivity. You cannot afford to systematically keep unnecessary fea-
tures in your code projects!

So, you may ask: If the stealth mode of programming is unlikely to suc-
ceed, what’s the solution?

Building a Minimum Viable Product
The solution is simple: build a series of MVPs. Formulate an explicit
hypothesis—such as users enjoy solving Python puzzles—and create a product
that validates only this hypothesis. Remove all features that don’t help you
validate this hypothesis. Build an MVP based on that feature. By imple-
menting just a single feature per release, you more thoroughly understand
what features the marketplace accepts and which hypotheses are true. But
at all costs, avoid complexity. After all, if users don’t enjoy solving Python
puzzles, why even proceed with implementing the Finxter.com website? Once
you’ve tested your MVP on the real-world market and analyzed whether it
works, you can build a second MVP that adds the next most important fea-
ture. The term to describe this strategy of searching for the right product

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Build a Minimum Viable Product 45

via a series of MVPs is called rapid prototyping. Each prototype builds on
what you learn from the previous launches, and each is designed to bring
you maximal learning in minimal time and with minimum effort. You
release early and often in order to find product-market fit, which entails nailing
the product needs and desires of your target market (even if this target mar-
ket is very small in the beginning).

Let’s look at an example using the code search engine. You first formu-
late a hypothesis to test: coders need a way to search for code. Think about
what form the first MVP might take for your code search engine app. A
shell-based API? A backend server that performs a database lookup on all
open-source GitHub projects for exact word matches? The first MVP must
validate the main hypotheses. Thus, you decide the simplest way to validate
this hypothesis and gain some insight into possible queries is to build a user
interface without any sophisticated backend functionality that automatically
retrieves results for the query. You set up a website with an input field and
drive some traffic to it by sharing your idea in coding groups and on social
media and by spending a small amount on ads. The app interface is simple:
users enter the code they want to search for and hit a search button. You
don’t bother optimizing the search results too much; this is not the point of
your first MVP. Instead, you decide to simply relay to Google’s search results
after a quick postprocessing. The point is to collect the first, say, one hun-
dred search queries to find some common user behavior patterns before
you even start developing the search engine!

You analyze the data and find that 90 percent of the search queries
are related to error messages; coders are simply copying and pasting their
coding errors into the search field. Furthermore, you find that 60 out of
the 90 queries concern JavaScript. You conclude that the initial hypoth-
esis is validated: coders do indeed search for code. However, you learn the
valuable information that most coders search for errors than for, say, func-
tions. Based on your analysis, you decide to narrow your second MVP from
a general-purpose code search engine to an error search engine. This way,
you can tailor your product to the actual user needs and get more engaged
feedback from a subsection of coders in order to learn quickly and inte-
grate your learning in a useful product. You can always scale to other
languages and query types over time as you gain more and more traction
and market insights. Without your first MVP, you may have spent months
working on features almost nobody uses, like regular expression functional-
ity to find arbitrary patterns in the code, at the cost of features everybody
uses like error message searches.

Figure 3-5 sketches this gold standard of software development and
product creation. First, you find product-market fit through iteratively
launching MVPs until users love it. The chained launches of MVPs build
interest over time and allows you to incorporate user feedback to gradually
improve the core idea of your software. As soon as you’ve reached product-
market fit, you add new features—one at a time. Only if a feature can prove
that it improves key user metrics can it remain in the product.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

46 Chapter 3

Yes!
Yes!

No!
No!

User feedback

Implementation

MVP 1 MVP 2 MVP 3 MVP 3

Feature 1

Find product-market fit Scale u
p / sp

lit t
est

fea
ture

s

Minimum viable product and
iterative feedback loop

Figure 3-5: Two phases of software development involve the following: (1) Find product-
market fit through iterative MVP creation and build interest over time. (2) Scale up by add-
ing and validating new features through carefully designed split tests.

Using Finxter.com as an example, if I had followed the MVP rule from
the start, I would probably have created a simple Instagram account that
shared code puzzles and checked if users enjoyed solving them. Instead of
spending one year writing the Finxter app without validation, I could’ve
spent a few weeks or even months sharing puzzles on a social network.
Then, I could’ve taken lessons learned from interacting with the com-
munity to build a second MVP with slightly more functionality, such as
a dedicated website that hosts the coding puzzles and their correct solu-
tions. This method would have allowed me to build the Finxter app in a
fraction of the time and with a fraction of the unnecessary features. The
lesson of building an MVP stripped from all unnecessary features is one
I’ve learned the hard way.

The idea of an MVP was popularized by entrepreneur Eric Ries in his
best-selling book The Lean Startup (Crown Publishing, 2011). The billion-
dollar company Dropbox famously adopted the MVP approach. Instead
of spending time and effort on an untested idea to implement the compli-
cated Dropbox functionality of synchronizing folder structures into the
cloud—which requires a tight integration in different operating systems
and a thorough implementation of burdensome distributed systems con-
cepts such as replica synchronization—according to The Lean Startup, the
founders validated the idea with a simple product video, even though the
product featured in the video didn’t exist yet. Countless iterations followed
the validated Dropbox MVP to add more helpful features to the core proj-
ect that simplify the lives of their users. Since then, the concept has been
tested by thousands of successful companies in the software industry (and
beyond).

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Build a Minimum Viable Product 47

If the market signals that users love and value your product idea, you’ve
achieved product-market fit with just a simple, well-crafted MVP. From
there, you can iteratively build and refine your MVPs.

When you use an MVP-based approach for software development, add-
ing one feature at a time, it’s important to be able to identify which feature
to keep and which to reject. The final step of the MVP software creation
process is split testing: rather than release the iterations with new features
to your entire user base, you launch the new product to a fraction of your
users and observe the implicit and explicit response. Only if you like what
you see—for example, the average time spent on your website increases—
do you keep the feature. Otherwise, you reject it and stay with the previous
iteration without the feature. This means you must sacrifice the time and
energy you spent developing the feature, but it does allow you to keep your
product as simple as possible, allowing you to remain agile, flexible, and effi-
cient. By using split tests, you engage in data-driven software development.

Four Pillars of Building a Minimum Viable Product
When building your first software based on MVP thinking, consider these
four pillars:

Functionality The product provides a clearly formulated function to
the user, and it does it well. The function doesn’t have to be provided
with great economic efficiency. Your MVP for a chat bot might actually
just be you chatting with the user yourself; this clearly could not scale,
but you’re demonstrating the functionality of high-quality chatting—
even if you haven’t figured out how to provide this functionality in an
economically feasible way yet.

Design The product is well designed and focused, and its design
supports the value that your product offers to your target niche. One
common mistake in MVP generation is that you create an interface
that doesn’t accurately reflect your single-function MVP website. The
design can be straightforward, but it must support the value proposi-
tion. Think Google search—they certainly didn’t spend lots of effort
on design when releasing their first version of the search engine, but
the design was well suited for the product they offered: distraction-free
search.

Reliability Just because your product is minimal doesn’t mean it can
be unreliable. Make sure to write test cases and test all functions in
your code rigorously. Otherwise, your learnings from the MVP will be
corrupted by the negative user feedback based on its unreliability, and
not feedback on the features directly. Remember: you want to maxi-
mize learning with minimal effort.

Usability The MVP must be easy to use. The functionality is clearly
articulated, and the design supports it. Users don’t need to spend a lot
of time figuring out what to do or which buttons to click. The MVP is
responsive and fast enough to allow fluent interactions. This is often
simpler to achieve with a focused, minimalistic product: it is obvious

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

48 Chapter 3

how you should use a page with one button and one input field. Again,
the Google search engine’s initial prototype is a prime example, and it
was so usable that it lasted for more than two decades.

Many people frequently misunderstand this characteristic of MVPs:
they wrongly assume that, because it’s an extremely minimalist version of a
product, an MVP must provide little value, bad usability, and a lazy design.
However, the minimalist knows that the concision of an MPV actually comes
from a rigorous focus on one core functionality rather than from lazy prod-
uct creation. For Dropbox, creating an effective video showcasing intention
was easier than implementing the service itself. The MVP was a high-quality
product with great functionality, design, reliability, and usability.

Advantages of the Minimum Viable Product
The advantages of MVP-driven software design are manifold.

•	 You can test your hypotheses as cheaply as possible.

•	 You can often avoid actually writing the code until you know it’s neces-
sary, and then when you do write code, you minimize the amount of
work before gathering real-world feedback.

•	 You need much less time writing code and finding bugs—and if you do,
you’ll know that this activity is highly valuable for your users.

•	 Any new feature you ship to users provides instant feedback, and the
continuous progress keeps you and your team motivated to crank out
feature after feature. This dramatically minimizes the risks you’re
exposed to in the stealth mode of programming.

•	 You reduce the maintenance costs in the future because the MVP
approach reduces the complexity of your codebase by a long shot—
and all future features will be easier and less error prone.

•	 You’ll make faster progress, and implementation will be easier through-
out the life of your software—which keeps you in a motivated state and
on the road to success.

•	 You’ll ship products faster, earn money from your software faster, and
build your brand more predictably and reliably.

Stealth versus Minimum Viable Product Approach
A common counterargument against rapid prototyping and for the stealth
mode of programming is that stealth programming protects your ideas.
People assume their idea is special and unique enough that if they release
it in the raw form, as an MVP, it will get stolen by larger and more power-
ful companies who can implement it more quickly. Frankly, this is a fallacy.
Ideas are cheap; execution is king. Any given idea is unlikely to be unique,
and there’s a strong chance your idea has already been thought of by some
other person. Rather than reducing competition, the stealth mode of pro-
gramming may even encourage others to work on the same idea, because

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Build a Minimum Viable Product 49

like you, they assume that nobody else has already thought of it. For an idea
to succeed, it takes a person to push it into reality. If you fast forward a few
years, the person that succeeded will be the one who took quick and deci-
sive action, released early and often, incorporated feedback from real users,
and gradually improved their software by building on the momentum of
previous releases. Keeping the idea secret would simply restrict its growth
potential.

Conclusion
Envision your end product and think about the needs of your users before
you write any code. Work on your MVP and make it valuable, well designed,
responsive, and usable. Remove all features but those that are absolutely
necessary to achieve the goal. Focus on one thing at a time. Then, release
MVPs quickly and often—improve them over time by gradually testing
and adding more features. Less is more! Spend more time thinking about
the next feature to implement than you spend actually implementing each
feature. Every feature incurs not only direct but also indirect implementa-
tion costs for all features to come in the future. Use split testing to test the
response to two product variants at a time and quickly discard features that
don’t lead to an improvement in your key user metrics, such as retention,
time on page, or activity. This leads to a more holistic approach to busi-
ness—acknowledging that software development is only one step in the
whole product creation and value delivery process.

In the next chapter, you’ll learn why and how to write clean and simple
code, but remember: not writing unnecessary code is the surest way to clean
and simple code!

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

4
W R I T E C L E A N A N D S I M P L E C O D E

Clean code is code that’s easy to read, under-
stand, and change. It is minimal and concise,

as long as those attributes do not interfere
with readability. While writing clean code is

more an art than a science, the software engineer-
ing industry has agreed on multiple principles that,
if followed, will help you write cleaner code. In this
chapter, you’ll learn 17 principles on how to write
clean code that will significantly improve your pro-
ductivity and combat the problem of complexity.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

52 Chapter 4

You may wonder about the difference between clean and simple code.
These two concepts are closely interrelated because clean code tends to be
simple and simple code tends to be clean. But it’s possible to encounter com-
plex code that is still clean. Simplicity concerns the avoidance of complexity.
Clean code goes one step further and also concerns itself with managing
unavoidable complexity—for instance, through the effective use of com-
ments and standards.

Why Write Clean Code?
In the previous chapters, you learned that complexity is the number one
public enemy for any code project. You’ve learned that simplicity increases
your productivity, motivation, and the maintainability of your codebase.
In this chapter, we’ll carry this concept a step further and show you how to
write clean code.

Clean code is easier to understand for both your future self and your
fellow coders since people are more likely to add to clean code and the
potential for collaboration will increase. Consequently, clean code can
significantly reduce a project’s costs. As Robert C. Martin points out in his
book Clean Code (Prentice Hall, 2008), coders spend the vast majority of
their time reading old code in order to write new code. If the old code is
easy to read, this will speed the process considerably.

Indeed, the ratio of time spent reading versus writing is well over
10 to 1. We are constantly reading old code as part of the effort
to write new code. [Therefore,] making it easy to read makes it
easier to write.

If we take this ratio literally, this relationship is visualized in Figure 4-1.
The x-axis corresponds to the number of lines written in a given code proj-
ect. The y-axis corresponds to the time to write one additional line of code.
In general, the more code you’ve already written in one project, the more
time it takes to write an additional line of code. This is true for both clean
and dirty code.

Say you’ve written n lines of code, and you add the n+1st line of code.
Adding this line may potentially affect all previously written lines. It may,
for example, have a small performance penalty, which impacts the overall
project. It may use a variable defined somewhere else. It may introduce a
bug (with probability c), and to find that bug, you must search the whole
project. That means your expected time—and therefore, costs—per line
of code is c * T(n) for a steadily increasing time function T with increasing
input n. Adding a line may also force you to write additional lines of code to
ensure backward compatibility.

Lengthier code may introduce many other complications, but you get
the point: the more code you’ve written, the more the additional complexity
will slow your progress.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Write Clean and Simple Code 53

Lines of code written

Ti
m

e
pe

r a
dd

iti
on

al
 li

ne

Quick and
dirty code

Thoughtful and
clean code

Figure 4-1: Clean code improves the scalability
and maintainability of your codebase.

Figure 4-1 also shows the difference between writing dirty and clean
code. Dirty code is less time-consuming in the short-term and for small
code projects—if there were no benefits to writing dirty code, nobody
would do it! If you cram all your functionality into a 100-line code script,
you don’t need to invest a lot of time thinking about and restructuring your
project. Problems begin to arise only as you add more code: as your mono-
lithic code file grows from 100 to 1000 lines, it’ll be less efficient compared to
a more thoughtful approach in which you structure the code logically in dif-
ferent modules, classes, or files.

As a rule of thumb: always write thoughtful and clean code. The addi-
tional costs for rethinking, refactoring, and restructuring will pay back
many times over for any non-trivial project. The stakes can sometimes be
quite high: in 1962 the National Aeronautics and Space Administration
(NASA) attempted to send a spacecraft to Venus, but a tiny bug—an omis-
sion of a hyphen in the source code—caused the engineers to issue a self-
destruct command, which resulted in the loss of a rocket worth more than
$18 million at the time. If the code had been cleaner, the engineers may
have caught the error before the launch.

Whether or not you’re doing rocket science, the philosophy of carefully
crafting your programming will carry you further in life. Simple code also
facilitates scaling your project to more programmers and more features
because fewer coders will be scared off by the project’s complexity.

So, let’s learn how to write clean and simple code, shall we?

Writing Clean Code: The Principles
I learned to write clean code the hard way when I was developing a distrib-
uted graph processing system from scratch as part of my doctoral research.
If you’ve ever written a distributed application—where two processes

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

54 Chapter 4

residing on different computers interact with each other via messages—you
know that the complexity can quickly become overwhelming. My code grew
to thousands of lines, and bugs popped up frequently. I didn’t make any
progress for weeks at a time; it was very frustrating. The concepts were con-
vincing in theory, but somehow they didn’t work in my implementation.

Finally, after a month or so working full-time on the codebase without
seeing any encouraging progress, I decided to simplify the codebase radi-
cally. Among other changes, I started to use libraries instead of coding
functionality myself. I removed code blocks that I had commented out for a
possible later use. I renamed variables and functions. I structured the code
in logical units and created new classes instead of cramming everything
into a “God” class. After a week or so, not only was my code more readable
and understandable for other researchers, it was also more efficient and less
buggy. My frustration morphed into enthusiasm—clean code had rescued
my research project!

Improving your codebase and reducing complexity is called refactoring,
and it must be a scheduled and crucial element of your software develop-
ment process if you want to write clean and simple code. Writing clean code
is mainly about keeping two things in mind: knowing the best ways to build
your code from the ground up and going back to make revisions periodi-
cally. I’ll cover some important techniques for keeping your code clean in
the following 19 principles. While each principle covers a unique strategy to
write cleaner code, some of the principles overlap, but I felt like combining
the overlapping principles would reduce clarity and actionability. With this
out of the way, let’s get started with the first one!

Principle 1: Think in Big Pictures
If you work on a non-trivial project, you’ll likely end up with multiple files,
modules, and libraries working together within the overall application.
Your software architecture defines how your software elements interact. Good
architectural decisions can initiate huge leaps of improvement in perfor-
mance, maintainability, and usability. To build a good architecture, you’ll
need to take a step back and think in big pictures. Decide on features that
are needed in the first place. In Chapter 3 about building an MVP, you’ve
learned how to focus your project on the necessary features. If you do this,
you save yourself a lot of work and the code will be much more clean per
design. At this point, we assume you’ve already created your first applica-
tion with multiple modules, files, and classes. How can you apply big-picture
thinking to get some order into the mess? Considering the following ques-
tions can give you some ideas on how to best make your code cleaner:

•	 Do you need all the separate files and modules, or can you consolidate
some of them and reduce the interdependency of your code?

•	 Can you divide a large and complicated file into two simpler ones? Note
that there’s usually a sweet spot between two extremes: a large, mono-
lithic code block that is completely unreadable or myriads of small
code blocks that are impossible to mentally keep track of. Neither is

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Write Clean and Simple Code 55

desirable, and most stages in between are better options. Think of it as
an inverted “U” curve where the maximum represents the sweet spot
between a few large code blocks and many small code blocks.

•	 Can you generalize code and turn it into a library to simplify the main
application?

•	 Can you use existing libraries to get rid of many lines of code?

•	 Can you use caching to avoid recomputing the same result over and
over again?

•	 Can you use more straightforward and suitable algorithms that accom-
plish the same things as your current algorithms?

•	 Can you remove premature optimizations that don’t improve the over-
all performance?

•	 Can you use another programming language that would be more suit-
able for the problem at hand?

Big-picture thinking is a time-efficient way to drastically reduce the
complexity of your application as a whole. Sometimes it’s hard to imple-
ment those changes at later various stages of the process or because of
collaborations that might interfere. In particular, this kind of high-level
thinking can be difficult for applications with millions of lines of code, like
the Windows operating system. However, you simply cannot afford to ignore
these questions entirely because all small tweaks combined cannot mitigate
the adverse effects of wrong or lazy design choices. If you’re working in a
small startup or just for yourself, you can usually make bold architectural
decisions, such as changing the algorithm swiftly. If you’re working in a big
organization, you might not have as much flexibility. The bigger the appli-
cation, the more likely you are to find easy fixes and low-hanging fruits.

Principle 2: Stand on the Shoulders of Giants
Reinventing the wheel is rarely valuable. Programming is a decades-old
industry. The best coders in the world have provided us with a great legacy:
a database of millions of fine-tuned and well-tested algorithms and code
functions. Accessing the collective wisdom of millions of programmers is as
simple as using a one-line import statement. There’s no reason not to use
this superpower in your own projects.

Using library code is likely to improve the efficiency of your code.
Functions that have been used by thousands of coders tend to be much
more optimized than your own. Furthermore, library calls are easier
to understand and take less space in your code project than code you’ve
written in yourself. For example, suppose you need a clustering algorithm
to visualize clusters of customers. You can stand on the shoulders of giants by
importing a well-tested clustering algorithm from an external library and
passing your data into it. This is far more time-efficient than using your
own code—it will implement the same functionality with fewer bugs, less
space, and more performant code. Libraries are among the primary tools
master coders use to increase their productivity thousandfold.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

56 Chapter 4

As an example of some library code that can save you time, here’s the
two-liner that imports the KMeans module from the scikit-learn Python
library to find two cluster centers on a given dataset stored in variable X:

from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=2, random_state=0).fit(X)

Implementing the KMeans algorithm on your own instead would take
you several hours and likely more than 50 lines of code, cluttering your
codebase so that all future code would become harder to implement.

Principle 3: Code for People, Not Machines
You may think that the primary purpose of a piece of source code is to
define what machines should do and how they should do it. Not so. The sin-
gle purpose of a programming language such as Python is to help humans
write code. Compilers do the heavy lifting and translate your high-level code
to low-level code that is understandable by your machine. Yes, your code
will eventually be run by a machine. But code is still written mainly by
humans, and in today’s software development process, the code likely must
pass many levels of human judgement before it is deployed. First and fore-
most, you’re writing code for people, not machines.

Always assume that others will read your source code. Imagine you
moved to a new project and someone else had to take your place at the
codebase. There are many ways to make their job easier and minimize
frustration. First of all, use meaningful variable names so that readers can
easily follow what a given line of code is intended to accomplish. Listing 4-1
shows an example of poorly chosen variable names.

xxx = 10000
yyy = 0.1
zzz = 10

for iii in range(zzz):
 print(xxx * (1 + yyy)**iii)

Listing 4-1: Code that uses poorly chosen variable names

It’s difficult to guess what this code computes. Listing 4-2, on the other
hand, is a semantically equivalent code that uses meaningful variable
names.

investments = 10000
yearly_return = 0.1
years = 10

for year in range(years):
 print(investments * (1 + yearly_return)**year)

Listing 4-2: Code that uses meaningful variable names

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Write Clean and Simple Code 57

It’s much easier to understand what’s happening here: the variable
names indicate how to calculate the value of an initial investment of 10,000
compounded over 10 years, assuming an annual return of 10 percent.

While we won’t go into every way to implement this principle here (though
later principles will cover some of these in more detail), it also applies to other
aspects that might clarify intent, such as indentation, whitespaces, comments,
and line lengths, among others. Clean code radically optimizes for human
readability. As Martin Fowler, an international expert on software engineering
and author of the popular book Refactoring, argues, “Any fool can write code
that a computer can understand. Good programmers write code that humans
can understand” (Addison-Wesley, 1999).

Principle 4: Use the Right Names
Relatedly, experienced coders have often agreed on a set of specific naming
conventions for functions, function arguments, objects, methods, and vari-
ables, both implicit and explicit. Everybody benefits from adhering to these
conventions: code becomes more readable, easier to understand, and less
cluttered. If you violate these conventions, readers of your code are likely to
assume that it was written by an inexperienced programmer and may not
take your code seriously.

These conventions may differ from language to language. For example,
by convention Java uses camelCaseNaming for naming variables, while Python
uses underscore_naming for variables and functions. If you start using camel
case in Python, it may confuse the reader. You don’t want your untradi-
tional naming conventions to distract those reading your code. You want
them to focus on what your code does, not on your coding style. As outlined
by the principle of least surprise, there’s no value in surprising other coders by
choosing unconventional variable names.

So, let’s dive into a list of naming rules you can consider when writing
source code.

•	 Choose descriptive names. Say you create a function to convert curren-
cies from United States dollars (USD) to euros (EUR) in Python. Call it
usd_to_eur(amount) rather than f(x).

•	 Choose unambiguous names. You may think that dollar_to_euro(amount)
would be a good name for a currency conversion function. While it
is better than f(x), it’s worse than usd_to_eur(amount) because it intro-
duces an unnecessary degree of ambiguity. Do you mean United States,
Canadian, or Australian dollars? If you’re in the United States, the
answer may be obvious to you, but an Australian coder may not know
that the code is written in the United States and may assume a different
output. Minimize these confusions!

•	 Use pronounceable names. Most coders subconsciously read code by
pronouncing it in their minds. If a variable name is unpronounceable,
the problem of deciphering it takes attention and costs precious mental
space. For example, the variable name cstmr_lst may be descriptive and
unambiguous, but it’s not pronounceable. Choosing the variable name
customer_list is well worth the additional space in your code.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

58 Chapter 4

•	 Use named constants, not magic numbers. In your code, you may use
the magic number 0.9 multiple times as a factor to convert a sum in
USD to a sum in EUR. However, the reader of your code—including
your future self—has to think about the purpose of this number. It’s
not self-explanatory. A far better way of handling the magic number
0.9 is to store it in an all-uppercase variable—used to indicate that it is
a constant that doesn’t change—such as CONVERSION_RATE = 0.9 and use
it as a factor in your conversion computations. For example, you may
then calculate your income in EUR as income_euro = CONVERSION_RATE *
income_usd.

These are only a few naming rules. Beyond these quick tips, the
best way to learn naming conventions is to study the well-crafted code of
experts. Googling the relevant conventions (for example, “Python naming
conventions”) is a good place to start. You might also read programming
tutorials, join StackOverflow to query fellow coders, check out the GitHub
code of open-source projects, and join the Finxter blog community of ambi-
tious coders that help each other grow their programming skills.

Principle 5: Adhere to Standards and Be Consistent
Every programming language comes with an implicit or explicit set of rules
on how to write clean code. If you are an active coder, these standards will
always catch up with you eventually. However, you can speed the process by
taking the time to study the code standard of the programming language
you’re learning.

For example, you can access the official Python style guide, PEP 8, at
this link: https://www.python.org/dev/peps/pep-0008/. As with any style guide,
PEP 8 defines the correct code layout and indentation; the method to set
line breaks; the maximum number of characters in a line; the correct use
of commenting; the formulation of your own function documentation; and
the conventions for naming classes, variables, and functions. For instance,
Listing 4-3 shows a positive example from PEP 8’s guidelines on the cor-
rect way to use different stylings and conventions. You use four whitespaces
per indentation level, align function arguments consistently, use single
whitespaces when listing comma-separated values in argument lists, and
correctly name functions and variables by combining multiple words with
the underscore:

Aligned with the opening delimiter.
foo = long_function_name(var_one, var_two,
 var_three, var_four)

Add 4 spaces (an extra level of indentation) to distinguish
arguments from the rest.
def long_function_name(
 var_one, var_two, var_three,
 var_four):
 print(var_one)

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

https://www.python.org/dev/peps/pep-0008/

Write Clean and Simple Code 59

Hanging indents should add a level.
foo = long_function_name(
 var_one, var_two,
 var_three, var_four)

Listing 4-3: Use of indentation, spacing, and naming in Python according to PEP 8
standard

Listing 4-4 shows the wrong way to do it. The arguments are not
aligned, multiple words are not properly combined in variable and function
names, argument lists are not properly separated by a single empty space,
and indentation levels have only two or three empty spaces instead of four:

Arguments on first line forbidden when not using vertical alignment.
foo = longFunctionName(varone,varTwo,
 var3,varxfour)

Further indentation required as indentation is not distinguishable.
def longfunctionname(
 var1,var2,var3,
 var4):
 print(var_one)

Listing 4-4: Incorrect use of indentation, spacing, and naming in Python

All readers of your code will expect you to adhere to the accepted stan-
dards. Anything else will result in confusion and frustration.

Reading through style guides can be a tedious task, though. As a less
boring way to learn conventions and standards, use linters and integrated
development environments (IDEs) that tell you where and how you’ve made
mistakes. In a weekend hackathon with my Finxter team, we created a tool
called Pythonchecker.com that playfully helps you refactor your Python code
from messy to super clean. For Python, one of the best projects in this
regard is the black module for PyCharm. Similar tools exist for all major
programming languages. Just search the net for <Your Language> Linter to
find the best tools for your programming environment.

Principle 6: Use Comments
As mentioned earlier, when writing code for humans, not machines, you’ll
need to use comments to help readers understand it. Consider the code
without comments in Listing 4-5.

import re

text = '''
 Ha! let me see her: out, alas! She's cold:
 Her blood is settled, and her joints are stiff;
 Life and these lips have long been separated:
 Death lies on her like an untimely frost
 Upon the sweetest flower of all the field.
'''

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Pythonchecker.com

60 Chapter 4

f_words = re.findall('\\bf\w+\\b', text)
print(f_words)

l_words = re.findall('\\bl\w+\\b', text)
print(l_words)

'''
OUTPUT:
['frost', 'flower', 'field']
['let', 'lips', 'long', 'lies', 'like']

'''

Listing 4-5: Code without comments

Listing 4-5 analyzes a short text snippet from Shakespeare’s Romeo and
Juliet using regular expressions. If you’re not familiar with regular expres-
sions, you’ll probably struggle to understand what the code does. Even the
meaningful variable names don’t help much.

Let’s see if a few comments can resolve your confusion (see Listing 4-6).

import re

text = '''
 Ha! let me see her: out, alas! She's cold:
 Her blood is settled, and her joints are stiff;
 Life and these lips have long been separated:
 Death lies on her like an untimely frost
 Upon the sweetest flower of all the field.
'''

1 # Find all words starting with character 'f'
f_words = re.findall('\\bf\w+\\b', text)
print(f_words)

2 # Find all words starting with character 'l'
l_words = re.findall('\\bl\w+\\b', text)
print(l_words)

'''
OUTPUT:
['frost', 'flower', 'field']
['let', 'lips', 'long', 'lies', 'like']
'''

Listing 4-6: Code with comments

The two short comments at 1 and 2 illuminate the purpose of the regu-
lar expression patterns '\\bf\w+\\b' and '\\bl\w+\\b'. I won’t dive deeply into
regular expressions here, but the example shows how comments can help you
get a rough understanding of other people’s code without understanding the
syntactic sugar.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Write Clean and Simple Code 61

You can also use comments to abstract over blocks of code. For example,
if you have five code lines that deal with updating customer information
in a database, add a short comment before the block to explain this, as in
Listing 4-7.

1 # Process next order
order = get_next_order()
user = order.get_user()
database.update_user(user)
database.update_product(order.get_order())

2 # Ship order & confirm customer
logistics.ship(order, user.get_address())
user.send_confirmation()

Listing 4-7: Commented blocks give an overview of the code.

This shows how an online shop completes a customer order in two high-
level steps: 1 processing the next order and 2 shipping the order. The
comments help you understand the purpose of the code quickly without
needing to decipher each method call.

You can also use comments to warn programmers of potentially undesired
consequences. For example, Listing 4-8 alerts us that calling the function
ship_yacht() will actually ship an expensive yacht to a customer.

##
WARNING
EXECUTING THIS FUNCTION WILL SHIP A $1,569,420 YACHT!!
##
def ship_yacht(customer):
 database.update(customer.get_address())
 logistics.ship_yacht(customer.get_address())
 logistics.send_confirmation(customer)

Listing 4-8: Comments as warnings

You can employ comments in many more useful ways; they are not
only about applying the standards correctly. Keep the principle to code
for humans at the top of your mind when writing comments, and you will
be fine. As you read code from experienced programmers, you’ll absorb
the unspoken rules effectively and almost automatically over time. Since
you’re the expert on code you’ve written, helpful comments give outsiders
a glimpse into your thinking. Don’t miss out on sharing your insights with
other people!

Principle 7: Avoid Unnecessary Comments
That said, not all comments help readers understand code better. In some
cases, comments actually reduce clarity and confuse the readers of a given
codebase. To write clean code, you should not only use valuable comments
but also avoid unnecessary comments.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

62 Chapter 4

During my time as a computer science researcher, a skilled student of
mine successfully applied for a job at Google. He told me that the Google
headhunters had criticized his code style because he added too many
unnecessary comments. These types of comments are another way expert
coders can ascertain whether you’re a beginner, intermediate, or expert
coder yourself. Issues in the code, such as breaking style guides, being lazy or
sloppy with comments, or writing non-idiomatic code for a given program-
ming language, are called code smells that point to potential problems in the
code, and expert coders can spot them from miles away.

How do you know which comments to leave out? In most cases, a com-
ment is unnecessary if it is redundant. For example, if you’ve used meaning-
ful variable names, the code often becomes self-explanatory and doesn’t
require line-level comments. Let’s look at the code snippet with meaningful
variable names in Listing 4-9.

investments = 10000
yearly_return = 0.1
years = 10

for year in range(years):
 print(investments * (1 + yearly_return)**year)

Listing 4-9: Code snippet with meaningful variable names

It’s already clear that the code calculates your cumulative investment
return for 10 years, assuming a 10-percent yield. For the sake of argument,
let’s add some unnecessary comments in Listing 4-10.

investments = 10000 # your investments, change if needed
yearly_return = 0.1 # annual return (e.g., 0.1 --> 10%)
years = 10 # number of years to compound

Go over each year
for year in range(years):
 # Print value of your investment in current year
 print(investments * (1 + yearly_return)**year)

Listing 4-10: Unnecessary comments

All comments in Listing 4-10 are redundant. Some would have been
useful if you’d chosen less meaningful variable names, but explaining a
variable named yearly_return with a comment about it representing the
yearly return only adds unnecessary clutter.

In general, you should use common sense to decide whether a comment
is necessary, but here are some of the main guidelines.

•	 Don’t use inline comments. These can be avoided entirely by choosing
meaningful variable names.

•	 Don’t add obvious comments. In Listing 4-10, the comment explaining
the for loop statement is unnecessary. Every coder knows the for loop,
so there is no additional value in adding the comment # Go over each
year given the expression for year in range(years).

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Write Clean and Simple Code 63

•	 Don’t comment out old code; remove it. We programmers often hang
on to our beloved code snippets, even after we’ve (grudgingly) decided
to remove them, by simply commenting them out. This kills your code’s
readability! Always remove unnecessary code—for peace of mind, you
can use a version history tool such as Git that saves earlier drafts of your
project.

•	 Use documentation functionality. Many programming languages such
as Python come with built-in documentation functionality that allows
you to describe the purpose of each function, method, and class in your
code. If each of these has only a single responsibility (as per Principle
10), it’s often enough to use the documentation instead of comments to
describe what your code does.

Principle 8: The Principle of Least Surprise
The principle of least surprise states that a component of a system should
behave in a way most users expect it to behave. This principle is one of the
golden rules when designing effective applications and user experience. For
example, if you open the Google search engine, the cursor will place itself
in the search input field so that you can start typing your search keyword
right away, just as you would expect: no surprises.

Clean code also leverages this design principle. Say you write a cur-
rency converter that converts the user’s input from USD to Chinese
renminbi. You store the user input in a variable. Which variable name is
better suited, user_input or var_x? The principle of least surprise answers
this question for you!

Principle 9: Don’t Repeat Yourself
Don’t repeat yourself (DRY) is a widely recognized principle that recom-
mends, intuitively enough, avoiding repetitive code. For example, take
the Python code in Listing 4-11, which prints the same string five times
to the shell.

print('hello world')
print('hello world')
print('hello world')
print('hello world')
print('hello world')

Listing 4-11: Printing “hello world” five times

To reduce repetition, a better way of writing is shown in Listing 4-12.

for i in range(5):
 print('hello world')

Listing 4-12: Reducing repetition found in Listing 4-11

The code in Listing 4-12 will print hello world five times, just as
Listing 4-11 does, but without redundancy.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

64 Chapter 4

Functions can also be a useful tool to reduce repetition. Say you need
to convert miles into kilometers in multiple instances in your code, as in
Listing 4-13.

First, you create a variable miles and convert it to kilometers by multiply-
ing it with 1.60934. Second, you convert 20 miles to kilometers by multiplying
it with 1.60934, using the same constant conversion factor again, and store
the result in the variable distance.

miles = 100
kilometers = miles * 1.60934

distance = 20 * 1.60934

print(kilometers)
print(distance)

'''
OUTPUT:
160.934
32.1868
'''

Listing 4-13: Convert miles to kilometers twice

You’ve used the same multiplication procedure twice by multiplying the
miles value with the factor 1.60934 to convert miles to kilometers. DRY sug-
gests that it would be better to write a function miles_to_km(miles) once, as in
Listing 4-14, rather than performing the same conversion explicitly in the
code multiple times.

def miles_to_km(miles):
 return miles * 1.60934

miles = 100
kilometers = miles_to_km(miles)

distance = miles_to_km(20)

print(kilometers)
print(distance)

'''
OUTPUT:
160.934
32.1868
'''

Listing 4-14: Using a function to convert miles to kilometers

This way, the code is easier to maintain. You could, for example, tweak
the function to increase the conversion accuracy, and you would have to
make the change in only one place. In Listing 4-13, you’d have to search the

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Write Clean and Simple Code 65

code for all instances to make that improvement. Applying the DRY prin-
ciple also makes the code easier to understand for human readers. There’s
little doubt about the purpose of the function miles_to_km(20), but you may
have to think harder about the purpose of the computation 20 * 1.60934.

Violations of DRY are often abbreviated as WET: we enjoy typing, write
everything twice, and waste everyone’s time.

Principle 10: Single Responsibility Principle
The single responsibility principle means that every function should have
one main task. It’s better to use many small functions than one big function
accomplishing everything at the same time. The encapsulation of function-
ality reduces the overall code complexity.

As a rule of thumb, every class and every function should have only
one responsibility. Robert C. Martin, the inventor of this principle, defines
a responsibility as a reason to change. His gold standard when defining a
class and a function, thus, is to focus them on a single responsibility so that
only the programmer who needs this single responsibility changed would
request a change in the definition—and no other programmer with other
responsibilities would even consider to issue a change request for the class
when assuming, of course, that the code is correct. For example, a func-
tion that’s responsible for reading data from a database wouldn’t also be
responsible for processing the data. Otherwise, the function would have
two reasons to change: a change in the database model and a change in the
processing requirements. If there are multiple reasons to change, multiple
programmers may change the same class simultaneously. Your class has too
many responsibilities and has become messy and cluttered.

Let’s consider a small Python example that may run on an eBook
reader to model and manage a user’s reading experience (Listing 4-15).

1 class Book:

 2 def __init__(self):
 self.title = "Python One-Liners"
 self.publisher = "NoStarch"
 self.author = "Mayer"
 self.current_page = 0

 def get_title(self):
 return self.title

 def get_author(self):
 return self.author

 def get_publisher(self):
 return self.publisher

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

66 Chapter 4

 3 def next_page(self):
 self.current_page += 1
 return self.current_page

 4 def print_page(self):
 print(f"... Page Content {self.current_page} ...")

5 python_one_liners = Book()

print(python_one_liners.get_publisher())
NoStarch

python_one_liners.print_page()
... Page Content 0 ...

python_one_liners.next_page()
python_one_liners.print_page()
... Page Content 1 ...

Listing 4-15: Modeling the Book class while violating the single responsibility principle

The code in Listing 4-15 defines the class Book 1 with four attributes:
title, author, publisher, and the current page number. You define getter
methods for the attributes 2, along with some minimal functionality to move
to the next page 3, which may be called each time the user presses a button
on the reading device. The function, print_page(), is responsible for print-
ing the current page to the reading device 4. This is only given as a stub,
and would be more complicated in the real world. Finally, you create a Book
instance named python_one_liners 5, and you access its attributes via a series
of method calls and print statements in the last couple of lines. A real eBook
reader implementation, for example, would call the methods next_page() and
print_page() each time the user requests a new page when reading the book.

While the code looks clean and simple, it violates the single responsibil-
ity principle: the class Book is responsible both for modeling data, such as
the book content, and for printing the book to the device. Modeling and
printing are two different functions but are encapsulated in a single class.
You have multiple reasons to change. You may want to change the model-
ing of the book’s data: for example, you could use a database instead of
a file-based input/output method. But you may also want to change the
representation of the modeled data by, for example, using another book
formatting scheme on other types of screens.

Let’s fix this issue in Listing 4-16.

1 class Book:

 2 def __init__(self):
 self.title = "Python One-Liners"
 self.publisher = "NoStarch"
 self.author = "Mayer"

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Write Clean and Simple Code 67

 self.current_page = 0

 def get_title(self):
 return self.title

 def get_author(self):
 return self.author

 def get_publisher(self):
 return self.publisher

 def get_page(self):
 return self.current_page

 def next_page(self):
 self.current_page += 1

3 class Printer:

 4 def print_page(self, book):
 print(f"... Page Content {book.get_page()} ...")

python_one_liners = Book()
printer = Printer()

printer.print_page(python_one_liners)
... Page Content 0 ...

python_one_liners.next_page()
printer.print_page(python_one_liners)
... Page Content 1 ...

Listing 4-16: Adhering to the single responsibility principle

The code in Listing 4-16 accomplishes the same task, but it satisfies the
single responsibility principle. You create both a Book 1 and a Printer 3
class. The Book class represents book metadata and the current page num-
ber 2, while the Printer class is responsible for printing the book to the
device. You pass the book for which you want to print the current page into
the method Printer.print_page() 4. This way, data modeling (what is the
data?) and data presentation (how is the data presented to the user?) are decou-
pled, and the code becomes easier to maintain. For example, if you wanted
to change the book data model by adding a new attribute publishing_year,
you’d do it in the class Book. And if you wanted to reflect this change in the
data presentation by providing readers this information as well, you’d do so
in the class Printer.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

68 Chapter 4

Principle 11: Test
Test-driven development is an integral part of modern software develop-
ment. No matter how skilled you are, you will make mistakes in your code.
In order to catch them, you’ll need to run periodic tests, or build test-
driven code in the first place. Every great software company employs mul-
tiple levels of testing before it ships the final product to the public, since
it’s far better to discover errors internally than to learn about them from
unhappy users.

While there are no limitations to what types of tests you can perform to
improve your software applications, these are the most common types:

Unit Tests With unit tests, you write a separate application to check
the correct input/output relationship for different inputs of each func-
tion in the application. The unit tests are usually applied in regular
intervals—for example, each time a new software version is released.
This ensures a certain degree of progress by reducing the likelihood
that a software change causes previously stable features to suddenly fail.

User Acceptance Tests These allow people in your target market to
use your application in a controlled environment while you observe
their behavior. You then ask them how they liked the application and
how to improve it. These tests are usually deployed in the final phase of
project development after extensive testing within the organization.

Smoke Tests Smoke tests are rough tests designed to try to fail the
application under development before the teams building the software
give the application to the testing team. In other words, smoke tests are
often deployed by the application-building team for quality assurance
before handing it to the testing teams. When the app passes the smoke
test, it’s ready for the next round of testing.

Performance Tests Performance tests aim to show whether the appli-
cation meets or even exceeds its users’ performance requirements
rather than testing the actual functionality. For instance, before Netflix
releases a new feature, it must test its website for page-loading time.
If the new feature slows down the frontend too much, Netflix doesn’t
release it, proactively avoiding a negative user experience.

Scalability Tests If your application becomes successful, you may have
to handle 1000 requests per minute instead of the original 2 requests.
A scalability test will show whether your application is scalable enough
to handle that. Note that a performant application isn’t necessarily
scalable and vice versa. For instance, a speed boat is very performant
but doesn’t scale to thousands of people at a time!

Testing and refactoring will often reduce complexity and the num-
ber of errors in your code. However, be careful not to over-engineer (see
Principle 14)—you need to test scenarios that can occur only in the real
world. For example, testing whether the Netflix application can handle 100
billion streaming devices is unnecessary considering there are only 7 billion
potential viewers on the planet.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Write Clean and Simple Code 69

Principle 12: Small Is Beautiful
Small code is code that requires only a relatively small number of lines to
accomplish a single specified task. Here’s an example of a small code func-
tion that reads an integer value from a user and ensures the input is indeed
an integer:

def read_int(query):
 print(query)
 print('Please type an integer next:')
 try:
 x = int(input())
 except:
 print('Try again - type an integer!')
 return read_int(query)
 return x

print(read_int('Your age?'))

The code runs until the user types in an integer. Here’s an example run:

Your age?
Please type an integer next:
hello
Try again - type an integer!
Your age?
Please type an integer next:
twenty
Try again - type an integer!
Your age?
Please type an integer next:
20
20

By separating the logic of reading an integer value from a user, you can
reuse the same function multiple times. But, more importantly, you’ve bro-
ken up the code into smaller units of functionality that are relatively easy to
read and understand.

Instead, many beginner coders (or lazy intermediate coders) write large,
monolithic code functions, or so-called God objects, that do everything in a cen-
tralized manner. These monolithic code blocks are a nightmare to maintain.
For one thing, it’s easier for humans to understand one small code function at
a time than to try to integrate a specific feature into a 10,000-line code block.
You can potentially make far more mistakes in a large code block than in a few
small functions and code blocks that you can then integrate with your existing
codebase.

At the beginning of this chapter, Figure 4-1 showed that writing code
becomes more time-consuming with each additional line, though writing
clean code is much faster in the long run than writing dirty code. Figure 4-2
compares the time it takes to work with small code blocks versus monolithic
code blocks. For large code blocks, the time it takes to add each additional
line will increase superlinearly. If you stack multiple small code functions

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

70 Chapter 4

on top of each other, however, the time spent per additional line increases
quasi-linearly. To best achieve this effect, you’ll need to be sure each code
function is more or less independent of other code functions. You’ll learn
more about this idea in the next principle, The Law of Demeter.

Lines of code written

Ti
m

e
pe

r a
dd

iti
on

al
 li

ne
Big monolithic
code block

Many small
code blocks

Figure 4-2: Writing small and decoupled
code functions can mitigate the burden
of complexity. With the Big Monolithic
Code Block, time increases exponentially.
With the Many Small Code Blocks,
time increases quasi-linearly.

Principle 13: The Law of Demeter
Dependencies are everywhere. When you import a library in your code,
your code depends partially on the library’s functionality, but it will also
have interdependencies within itself. In object-oriented programming, one
function may depend on another function, one object on another object,
and one class definition on another class definition.

To write clean code, minimize the interdependency of your code ele-
ments by following the Law of Demeter, which was proposed in the late
1980s by Ian Holland, a software developer working on a software project
named after Demeter, the Greek goddess of agriculture, growth, and fertil-
ity. The project group promoted the idea of “growing software” as opposed
to simply building it. However, what became known as the Law of Demeter
has little to do with these arguably more metaphysic ideas—it’s a practical
approach of writing loosely coupled code in object-oriented programming.
Here’s a concise quote explaining the Law of Demeter from the project
group’s website http://ccs.neu.edu/home/lieber/what-is-demeter.html:

An important concept of Demeter is to split software into at least
two parts: The first part defines the objects. The second part
defines the operations. The goal of Demeter is to maintain a
loose coupling between the objects and the operations, so that
one can make modifications to either without serious impact on
the other. This cuts down significantly on maintenance time.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

http://ccs.neu.edu/home/lieber/what-is-demeter.html

Write Clean and Simple Code 71

In other words, you should minimize the dependencies of your code
objects. By reducing dependencies between code objects, you reduce the
complexity of your code and, in turn, improve maintainability. One specific
implication is that every object should call only its own methods or meth-
ods from adjacent objects rather than call methods of objects it obtains
from calling a method of an adjacent object. For the sake of explanation,
let’s define two objects A and B as friends if A calls a method provided by B.
Simple. But what if B’s method returns a reference to object C? Now, object
A may perform something like this: B.method_of_B().method_of_C(). This is
called chaining of method calls—in our metaphor, you talk to a friend of
your friend. The Law of Demeter states to talk only to your immediate friends,
so it discourages this type of method chaining. This may sound confusing
at first, so let’s dive into a more practical example shown in Figure 4-3.

Coffee_Machine
get_price()

Coffee_Cup
get_creator_machine()

Bad Good

Person
price_per_cup()

1

2

3

4

5

$399

$0.5 per cup

Coffee_Machine
get_price()

Coffee_Cup
get_costs_per_cup()
get_creator_machine()

Person
price_per_cup()

1

4

5

$0.5 per cup

$0.5
per cup

2

3

$399

Figure 4-3: Law of Demeter: talk only to your friends to minimize dependencies

Figure 4-3 shows two object-oriented code projects that calculate the
price per cup of coffee for a given person. One of the implementations vio-
lates the Law of Demeter, and the other one adheres to it. Let’s start with
the negative example first in which you use method chaining in the Person
class to talk to a stranger in 1 (see Listing 4-17).

VIOLATE LAW OF DEMETER (BAD)

class Person:
 def __init__(self, coffee_cup):
 self.coffee_cup = coffee_cup

 def price_per_cup(self):
 cups = 798
 1 machine_price = self.coffee_cup.get_creator_machine().get_price()
 return machine_price / cups

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

72 Chapter 4

class Coffee_Machine:
 def __init__(self, price):
 self.price = price

 def get_price(self):
 return self.price

class Coffee_Cup:
 def __init__(self, machine):
 self.machine = machine

 def get_creator_machine(self):
 return self.machine

m = Coffee_Machine(399)
c = Coffee_Cup(m)
p = Person(c)

print('Price per cup:', p.price_per_cup())
0.5

Listing 4-17: Code that violates Law of Demeter in 1

You create a method price_per_cup() that calculates the hard costs per
coffee cup based on the price of the coffee machine and the number of
cups produced by this machine. The Coffee_Cup object collects information
about the price of the coffee machine, which influences the price per cup,
and passes it to the caller of the method price_per_cup() on the Person object.

The diagram on the left shows a bad strategy for doing so. Let’s first
look at the step-by-step explanation of the code from Listing 4-17.

1. The method price_per_cup() calls the method Coffee_Cup.get_creator
_machine() to get a reference to the Coffee_Machine object that created
the coffee.

2. The method get_creator_machine() returns an object reference to the
Coffee_Machine object that has produced the cup’s contents.

3. The method price_per_cup() calls the method Coffee_Machine.get_price()
on the Coffee_Machine object it just obtained from the previous Coffee_Cup
method call.

4. The method get_price() returns the price of the machine.

5. The method price_per_cup() calculates the depreciation per cup and
uses this to estimate the price of a single cup. This is returned to the
caller of the method.

This is a bad strategy because the class Person depends on two objects:
Coffee_Cup and Coffee_Machine. A programmer responsible for maintaining
this class must know about both parent class definitions—any change in
either of those may impact the Person class as well.

The Law of Demeter minimizes such dependencies. You can see a bet-
ter way to model the same problem on the right in Figure 4-3 and in code

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Write Clean and Simple Code 73

Listing 4-18. In this code snippet, the Person class doesn’t talk to the Machine
class directly—it doesn’t even need to be aware of its existence!

ADHERE TO LAW OF DEMETER (GOOD)
class Person:
 def __init__(self, coffee_cup):
 self.coffee_cup = coffee_cup

 def price_per_cup(self):
 cups = 798
 1 return self.coffee_cup.get_costs_per_cup(cups)

class Coffee_Machine:
 def __init__(self, price):
 self.price = price

 def get_price(self):
 return self.price

class Coffee_Cup:
 def __init__(self, machine):
 self.machine = machine

 def get_creator_machine(self):
 return self.machine

 def get_costs_per_cup(self, cups):
 return self.machine.get_price() / cups

m = Coffee_Machine(399)
c = Coffee_Cup(m)
p = Person(c)

print('Price per cup:', p.price_per_cup())
0.5

Listing 4-18: Code that adheres to the Law of Demeter by not talking to strangers

Let’s examine this code in a step-by-step manner:

1. The method price_per_cup() calls the method Coffee_Cup.get_costs_per_cup()
to get the estimated price per cup.

2. The method get_costs_per_cup()—before replying to the calling method—
calls the method Coffee_Machine.get_price() to access the desired pricing
information for the whole machine.

3. The method get_price() returns the price information.

4. The method get_costs_per_cup() calculates the price per cup and returns
it to the calling method price_per_cup().

5. The method price_per_cup() simply forwards this calculated value to
its caller.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

74 Chapter 4

This is a better approach, because the class Person is now independent
of the class Coffee_Machine. The total number of dependencies is reduced.
For a project with hundreds of classes, reducing dependencies dramatically
reduces the overall complexity of your application. Here’s the danger in
terms of growing complexity for large applications: the number of poten-
tial dependencies grows superlinearly with the number of objects. Roughly
speaking, a superlinear curve grows faster than a straight line with a constant
slope. For example, doubling the number of objects can easily quadruple the
number of dependencies (which equals complexity). However, the Law of
Demeter can offset this trend by significantly reducing the number of depen-
dencies. If every object talks to only k other objects and you have n objects,
the total number of dependencies is bounded by k*n, which is a linear rela-
tionship if k is a constant. Thus, the Law of Demeter can mathematically help
you gracefully scale your applications!

Principle 14: You Ain’t Gonna Need It
This principle suggests that you should never implement code if you only
suspect that you’ll need to use it someday in the future—because you ain’t
gonna need it! Write code only if you’re 100-percent sure it’s necessary. Code
for today’s needs and not tomorrow’s. If in the future you actually need the
code you previously only suspected you needed, you can still implement the
feature then. But in the meantime, you’ve saved many unnecessary lines
of code.

It helps to think from first principles: the simplest and cleanest code
is the empty file. Now, go from there—what do you need to add to that? In
Chapter 3, you learned about the MVP: code that is stripped of features to
focus on the core functionality. If you minimize the number of features you
pursue, you’ll obtain cleaner and simpler code than you could ever attain
through refactoring methods or all other principles combined. Consider
leaving out features that provide relatively little value compared to others
you could implement instead. Opportunity costs are seldomly measured but
are often significant. You should really need a feature before you even con-
sider implementing it.

An implication of this is to avoid overengineering: creating a product that is
more performant and robust or contains more features than needed. It adds
unnecessary complexity, which should immediately ring your alarm bells.

For example, I’ve often encountered problems that could be solved
within a few minutes using a naïve algorithmic approach but, like many
programmers, I refused to accept the minor limitations of these algorithms.
Instead, I studied state-of-the-art clustering algorithms to eke out a few per-
centage points of clustering performance compared to the simple KMeans
algorithm. These long-tail optimizations were incredibly costly—I had to
spend 80 percent of the time to obtain 20 percent of the improvement. This
would have been unavoidable if I’d needed that 20 percent and had no other
way to get it, but in reality, I didn’t need to implement fancy clustering algo-
rithms. A typical case of overengineering!

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Write Clean and Simple Code 75

Always go for the low-hanging fruits first. Use naïve algorithms and
straightforward methods to establish a benchmark, then analyze which new
feature and performance optimization will yield superior results for the
overall application. Think global, not local: focus on the big picture (as per
Principle 1) rather than on small, time-consuming fixes.

Principle 15: Don’t Use Too Many Levels of Indentation
Most programming languages use text indentation to visualize the hier-
archical structure of potentially nested conditional blocks, function
definitions, or code loops. Overusing indentation, however, can decrease
the readability of your code. Listing 4-19 shows an example of a code snip-
pet with too many levels of indentation, which makes it hard to quickly
understand.

def if_confusion(x, y):
 if x>y:
 if x-5>0:
 x = y
 if y==y+y:
 return "A"
 else:
 return "B"
 elif x+y>0:
 while x>y:
 x = x-1
 while y>x:
 y = y-1
 if x==y:
 return "E"
 else:
 x = 2 * x
 if x==y:
 return"F"
 else:
 return "G"
 else:
 if x-2>y-4:
 x_old = x
 x = y * y
 y = 2 * x_old
 if (x-4)**2>(y-7)**2:
 return "C"
 else:
 return "D"
 else:
 return "H"

print(if_confusion(2, 8))

Listing 4-19: Too many levels of nested code blocks

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

76 Chapter 4

If you now try to guess the output of this code snippet, you’ll find it’s
actually difficult to trace. The code function if_confusion(x, y) performs
relatively simple checks on variables x and y. However, it’s easy to get lost in
the different levels of indentation. The code is not clean at all.

Listing 4-20 shows how to write the same code more cleanly and simply.

def if_confusion(x,y):
 if x>y and x>5 and y==0:
 return "A"
 if x>y and x>5:
 return "B"
 if x>y and x+y>0:
 return "E"
 if x>y and 2*x==y:
 return"F"
 if x>y:
 return "G"
 if x>y-2 and (y*y-4)**2>(2*x-7)**2:
 return "C"
 if x>y-2:
 return "D"
 return "H"

Listing 4-20: Fewer levels of nested code blocks

In Listing 4-20, we reduced indentation and nesting. You can now go
over all checks and see what applies first to your two arguments x and y.
Most coders will enjoy reading flat code much more than reading highly
nested code—even if it comes at the expense of redundant checks; here, for
example, x>y is checked multiple times.

Principle 16: Use Metrics
Use code quality metrics to track the complexity of your code over time.
The ultimate, if informal, metric is known as the number of WTFs per min-
ute, intended to measure your code readers’ frustration. The results will be
low for clean and simple code and high for dirty, confusing code.

As a proxy for this hard-to-quantify standard, you can use established
metrics such as the NPath complexity or cyclomatic complexity that have
been shown in Chapter 1, “How Complexity Harms Your Productivity.” For
most IDEs, many online tools and plugins will automatically calculate the
complexity as you write your source code, such as CyclomaticComplexity,
which you can find by searching in the plugins section of JetBrains at https://
plugins.jetbrains.com/. In my experience, the actual measure of complexity
used is less important than being aware of the fact that you need to weed
out complexity wherever you can. I highly recommend using these tools to
help you write cleaner and simpler code. The return on your invested time
will be phenomenal.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

https://plugins.jetbrains.com/
https://plugins.jetbrains.com/

Write Clean and Simple Code 77

Principle 17: Boy Scout Rule and Refactoring
The Boy Scout Rule is simple: leave the campground cleaner than you found it.
It’s a great rule to live and code by. Get into the habit of cleaning up every
piece of code you encounter. This will not only improve the codebases
you’re involved in and make your own life easier but also help you develop
the sharp eye of a master coder who can critically evaluate source code
quickly. As a bonus, it’ll help your team be more productive, and your col-
leagues will be grateful for your value-oriented attitude. Note that this
shouldn’t violate the rule we stated earlier about avoiding premature opti-
mization (overengineering). Spending time to clean up your code to reduce
complexity is almost always efficient. Doing so will yield big dividends in
reduced maintenance overhead, bugs, and cognitive demands. Put suc-
cinctly, overengineering is likely to increase complexity whereas cleaning up
the code will reduce complexity.

The process of improving your code is called refactoring. You could argue
that refactoring is the overall method comprising every principle we’ve dis-
cussed here. As a great coder, you’ll incorporate many of the clean code
principles from the beginning. Even then, however, you’ll still need to occa-
sionally refactor your code to clean up any messes you’ve made. In particular,
you should refactor your code before releasing any new features to keep the
code clean.

There are many techniques for refactoring code. One is to explain your
code to a colleague or have them look it over in order to discover any poor
decisions you’ve made and had not noticed on your own. For example, you
may have created two classes, Cars and Trucks, because you expected your
application would need to model both. As you explain your code to your
teammate, you realize that you don’t use the class Trucks very often—and
when you do, you use methods that already exist in the Car class. Your col-
league suggests creating a Vehicle class that handles all cars and trucks.
This allows you to get rid of many lines of code immediately. This type of
thinking can result in enormous improvements, since it will force you to
account for your decisions and explain your project from a bird’s-eye view.

If you’re an introverted coder, you can also explain your code to a rub-
ber duck instead—a technique known as rubber duck debugging.

Beyond speaking to your colleagues (or your rubber duck), you can use
the other clean code principles listed here to quickly evaluate your code
from time to time. When you do, you’ll likely discover some tweaks you can
apply quickly to greatly reduce complexity by cleaning up your codebase.
This integral part of your software development process will improve your
results significantly.

Conclusion
In this chapter, you’ve learned 17 principles on how to write clean and sim-
ple code. You’ve learned that clean code reduces complexity and increases
your productivity as well as the scalability and maintainability of your

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

78 Chapter 4

project. You’ve learned that you should use libraries wherever possible to
reduce clutter and increase your code quality. You’ve learned that choosing
meaningful names of variables and functions while adhering to standards
is important to reduce friction for future readers of your code. You’ve
learned to design functions to do one thing only. Reducing complexity and
increasing scalability by minimizing dependencies (according to the Law
of Demeter) can be done by avoiding direct and indirect method chaining.
You’ve learned to comment code in a way that provides a valuable glimpse
into your mind, but you’ve also learned to avoid unnecessary or trivial com-
ments. And, most importantly, you’ve learned that the key to unlocking
your clean code superpower is to code for humans, not machines.

You can gradually improve your clean code writing skills by collaborat-
ing with great coders, reading their code on GitHub, and studying the best
practices in your programming language. Integrate a linter that dynami-
cally checks your code against those best practices into your programming
environment. From time to time, revisit these clean code principles and
check your current project against them.

In the next chapter, you’ll learn another principle of effective coding
that goes beyond just writing clean code: premature optimization. You’ll be
surprised about how much time and effort is wasted by programmers that
haven’t yet figured out that premature optimization is the root of all evil!

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

5
P R E M A T U R E O P T I M I Z A T I O N

I S T H E R O O T O F A L L E V I L

In this chapter, you’ll learn how premature
optimization can hinder your productivity.

Premature optimization is the act of spend-
ing valuable resources—time, effort, lines of

code—on unnecessary code optimizations, especially
before you have all the relevant information. It is
one of the main problems with poorly written code.
Premature optimization comes in many flavors; this chapter will introduce
some of the most relevant ones. We’ll study practical examples of where
premature optimization occurs, which will be most relevant for your own
code projects. We’ll close the chapter with actionable tips on performance
tuning, ensuring that it is not premature.

Six Types of Premature Optimization
There’s nothing wrong with optimized code per se, but it always comes
with a cost, whether that’s additional programming time or extra lines of

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

80 Chapter 5

code. When you optimize code snippets, you’re generally trading complex-
ity for performance. Sometimes you can obtain both low complexity and
high performance, for example, by writing clean code, but you must spend
programming time to accomplish this! If you do this too early in the pro-
cess, you’ll often spend time optimizing code that may never be used in
practice or that has little impact on the overall runtime of the program.
You’ll also optimize without having enough context on when the code is
called and data on possible input values. Wasting precious resources like
programming time and code lines can reduce your productivity by orders
of magnitude, so it’s important to know how to spend them wisely.

But don’t take my word for it. Here’s what one of the most influen-
tial computer scientists of all time, Donald Knuth, says about premature
optimization:

Programmers waste enormous amounts of time thinking about,
or worrying about, the speed of noncritical parts of their pro-
grams, and these attempts at efficiency actually have a strong
negative impact when debugging and maintenance are consid-
ered. We should forget about small efficiencies, say about 97%
of the time: premature optimization is the root of all evil.1

Premature optimization can take many forms, so to explore the issue,
we’ll look at six common cases I’ve encountered in which you too might be
tempted to prematurely focus on small efficiencies, slowing your progress.

Optimizing Code Functions
Be wary of spending time optimizing functions before you know how much
those functions will be used. Say you encounter a function you just cannot
stand to leave unoptimized. You reason to yourself that it’s bad program-
ming style to use naïve methods and that you should use more efficient data
structures or algorithms to tackle the problem. You dive into research mode
and spend hours researching and fine-tuning algorithms. But as it turns
out, this function is executed only a few times in the final project: the opti-
mization doesn’t result in meaningful performance improvements.

Optimizing Features
Avoid adding features that aren’t strictly necessary and wasting time
optimizing those features. Suppose you develop a smartphone app that
translates text into Morse code, expressed by blinking lights. You’ve
learned in Chapter 3 that implementing an MVP first, rather than
creating a polished end product with many, possibly unnecessary, features,
is the best way to go. In this case, the MVP would be a simple app with one
function: translate text into Morse code by providing a text via a simple
input form and hitting a button on which the app then translates this text
to Morse code. However, you think the MVP rule doesn’t apply to your

1. “Structured Programming with go to Statements,” ACM Computing Surveys 6 no. 1 (1974).

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Premature Optimization is the Root of All Evil 81

project and decide to add a few extra features: a text-to-audio converter
and a receiver that translates light signals to text. After shipping your app,
you learn that your users never use these features. Premature optimization
has significantly slowed down your product development cycle and delayed
your ability to incorporate user feedback.

Optimizing Planning
If you prematurely optimize the planning phase, trying to find solutions to
problems that haven’t yet occurred, you risk delaying your ability to receive
valuable feedback. While you certainly shouldn’t avoid planning entirely,
getting stuck in the planning phase can be just as costly. To ship some-
thing of value to the real world, you must accept imperfection. You need
user feedback and sanity checks from testers to figure out where to focus.
Planning can help you avoid certain pitfalls, but if you’re not taking action,
you’ll never finish your project and will remain stuck in the ivory tower of
theory.

Optimizing Scalability
Prematurely optimizing the scalability of your application before you have a
realistic idea of the audience can be a major distractor and can easily cost you
tens of thousands of dollars’ worth of developer and server time. Expecting
millions of users, you design a distributed architecture that dynamically adds
virtual machines to handle peak load if necessary. However, creating dis-
tributed systems is a complex and error-prone task that may easily take you
months to implement. Many projects fail anyway; if you do become as success-
ful as your wildest dreams suggest, you’ll have plenty of opportunity to scale
your system with the increase of demand. Worse, the distribution may reduce
an application’s scalability, due to an increased communication and data con-
sistency overhead. Scalable distributed systems come at a price—are you sure
you need to pay it? Don’t try to scale to millions of users before you’ve served
your first one.

Optimizing Test Design
Optimizing for tests too soon is also a major driver of wasted developer
time. Test-driven development has many zealous followers who misinterpret
the idea of implementing tests before functionality to always write tests first—
even if the purpose of a code function is pure experimentation or the code
function doesn’t lend itself well to testing in the first place. To write experi-
mental code is to test concepts and ideas, and adding another layer of tests
to experimental code can harm progress and does not adhere to the philos-
ophy of rapid prototyping. In addition to that, suppose you believe in rigor-
ous test-driven development and insist on 100-percent test coverage. Some
functions—for instance, those that process free text from users—don’t
work very well with unit tests because of their unpredictable human-based
input. For those functions, only real human beings can test them in a mean-
ingful way—in these cases, real-world users are the only test that matters.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

82 Chapter 5

Nevertheless, you prematurely optimize for a perfect coverage of unit tests.
This approach has little value: it slows down the software development cycle
while introducing unnecessary complexity.

Optimizing Object-Oriented World-Building
Object-oriented approaches can often introduce major unnecessary com-
plexity and premature “conceptual” optimization. Suppose you want to
model your application’s world using a complex hierarchy of classes. You
write a small game about car racing. You create a class hierarchy where
the Porsche class inherits from the Car class, which inherits from the Vehicle
class. After all, every Porsche is a car, and every car is a vehicle. However,
the multi-level class hierarchy leads to complexity in your codebase, and
future programmers have trouble figuring out what your code does. In
many cases, these types of stacked inheritance structures add unnecessary
complexity. Avoid them by using the ideas of MVPs: start with the simplest
model, and extend it only if needed. Don’t optimize your code to model a
world with more details than the application actually needs.

Premature Optimization: A Story
Now that you have a general sense of the problems premature optimization
can cause, let’s write a small Python application and see in real time how
premature optimization adds unnecessary complexity to the code of a small
transaction tracking application that doesn’t need to scale gracefully to
thousands of users.

Alice, Bob, and Carl play poker each Friday night. After a few rounds,
they decide that they need to develop a system to keep track of the money
each player owes after a given game night. Alice is a passionate program-
mer and creates a small application that tracks the players’ balances, shown
in Listing 5-1.

transactions = []
balances = {}

1 def transfer(sender, receiver, amount):
 transactions.append((sender, receiver, amount))
 if not sender in balances:
 balances[sender] = 0
 if not receiver in balances:
 balances[receiver] = 0
 2 balances[sender] -= amount
 balances[receiver] += amount

def get_balance(user):
 return balances[user]

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Premature Optimization is the Root of All Evil 83

def max_transaction():
 return max(transactions, key=lambda x:x[2])

3 transfer('Alice', 'Bob', 2000)
4 transfer('Bob', 'Carl', 4000)
5 transfer('Alice', 'Carl', 2000)

print('Balance Alice: ' + str(get_balance('Alice')))
print('Balance Bob: ' + str(get_balance('Bob')))
print('Balance Carl: ' + str(get_balance('Carl')))

print('Max Transaction: ' + str(max_transaction()))

6 transfer('Alice', 'Bob', 1000)
7 transfer('Carl', 'Alice', 8000)

print('Balance Alice: ' + str(get_balance('Alice')))
print('Balance Bob: ' + str(get_balance('Bob')))
print('Balance Carl: ' + str(get_balance('Carl')))

print('Max Transaction: ' + str(max_transaction()))

Listing 1-1: A simple script to track transactions and balances

The script has two global variables, transactions and balances. The list
transactions tracks the transactions between players as they occur during a
game night. Each transaction is a tuple of the sender identifier, the receiver
identifier, and the amount to be transferred from sender to receiver 1. The
dictionary balances tracks a player’s current balance: a dictionary that maps
a user identifier to the number of credits of that user based on the transac-
tions occurred so far 2.

The function transfer(sender, receiver, amount) creates and stores a
new transaction in the global list, creates new balances for the sender and
receiver if they don’t already exist, and updates the balances according to
the given amount. The function get_balance(user) returns the balance of the
user given as an argument, and max_transaction() goes over all transactions
and returns the one that has the maximum value in the third tuple ele-
ment, the transaction amount.

Initially all balances are zero. The application transfers 2000 units
from Alice to Bob 3, 4000 units from Bob to Carl 4, and 2000 units from
Alice to Carl 5. At this point, Alice owes 4000 (with a negative balance of
-4000), Bob owes 2000, and Carl has 6000 units. After printing the maxi-
mum transaction, Alice transfers 1000 units to Bob 6, and Carl transfers
8000 units to Alice 7. Now, the accounts have changed: Alice has 3000,
Bob -1000, and Carl -2000 units. In particular, the application returns the
following output:

Balance Alice: -4000
Balance Bob: -2000
Balance Carl: 6000
Max Transaction: ('Bob', 'Carl', 4000)

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

84 Chapter 5

Balance Alice: 3000
Balance Bob: -1000
Balance Carl: -2000
Max Transaction: ('Carl', 'Alice', 8000)

But Alice isn’t happy with the application. She realizes that calling
max_transaction() results in redundant calculations—because the function is
called twice, the script goes over the list transactions twice to find the trans-
action with the maximum amount. But when calculating max_transaction()
the second time, it partially performs the same calculations again by going
through all the transactions to find the maximum—including those
for which it already knows the maximum, that is, the first three transac-
tions 1–3. Alice correctly sees some optimization potential by introducing a
new variable, max_transaction, that keeps track of the maximum transaction
seen so far whenever a new transaction is created.

Listing 5-2 shows the three lines of code Alice added to implement this
change.

transactions = []
balances = {}
max_transaction = ('X', 'Y', float('-Inf'))

def transfer(sender, receiver, amount):
...
 if amount > max_transaction[2]:
 max_transaction = (sender, receiver, amount)

Listing 1-2: Applied optimization to reduce redundant computations

The variable max_transaction maintains the maximum transaction amount
among all transactions seen so far. Thus, there’s no need for the maximum to
be recomputed after every game night. Initially, you set the maximum trans-
action value to negative infinity so that the first real transaction will definitely
be larger. Each time a new transaction is added, the program compares
that new transaction to the current maximum, and if it is larger, the current
transaction becomes the current maximum. Without the optimization, if you
called the function max_transaction() 1000 times on a list of 1000 transactions,
you’d have to perform 1,000,000 comparisons to find 1000 maxima because
you traversed the list of 1000 elements 1000 times (1000 × 1000 = 1,000,000).
With the optimization, you’d need to retrieve the currently stored value in
max_transaction only once for each function call. As the list has 1000 elements,
you need at most 1000 operations to maintain the current maximum. This
leads to a reduction of three orders of magnitude in the number of opera-
tions needed.

Many coders cannot resist implementing such optimizations, but their
complexity adds up. In Alice’s case, she’ll soon have to keep track of a hand-
ful of additional variables to track additional statistics her friends might
be interested in: min_transaction, avg_transaction, median_transaction, and
alice_max_transaction (to track her own maximum transaction value). Each

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Premature Optimization is the Root of All Evil 85

injects a few more lines of code into the project, increasing the likelihood
a bug will appear. If Alice forgets to update a variable at the proper loca-
tion, for instance, she’ll have to spend precious time fixing it. Even worse,
she may miss the bug entirely, resulting in a corrupted balance of Alice’s
account and a few hundreds of dollars of damage. Her friends might even
suspect that Alice had written the code in her favor! This final point may
sound a little tongue-in-cheek, but in real-world cases, the stakes are higher.
Second-order consequences can be even more severe than the more pre-
dictable first-order consequences of complexity.

All these potential problems could have been averted had Alice refrained
from applying a potential optimization without fully thinking through whether
this optimization was premature. The goal of the app is to broker one eve-
ning’s transaction between three friends. Realistically, there will be at most
a few hundred transactions and a dozen calls to max_transaction rather than
the thousands for which the optimized code is designed. Alice’s computer
could’ve executed the unoptimized code within a split second, and neither
Bob nor Carl would even have realized that the code was unoptimized. Plus,
the unoptimized code is simpler and easier to maintain.

However, suppose word gets around and a casino—which relies on high
performance, scalability, and long-term transaction histories—contacts
Alice to implement the same system. In that case, she can still fix the bottle-
neck of recomputing the maximum instead of tracking it quickly. But now
she’d be certain that the additional code complexity was indeed a good
investment. By avoiding optimization until the application requires it, she’d
have saved herself dozens of those unnecessary premature optimizations.

Six Tips for Performance Tuning
Alice’s story not only gave us a detailed picture of premature optimization
in practice but also hinted at the proper way to successfully optimize. It’s
important to remember that Donald Knuth did not argue that optimization
itself is the root of all evil. Instead, the real problem is premature optimiza-
tion. Now that Knuth’s quote has become quite popular, many mistakenly
take it to be an argument against all optimization. When it comes at the
right time, however, optimization can be critically important.

The rapid technological improvements in recent decades are largely
due to optimizations: circuit placement on chips, algorithms, and software
usability have been optimized continuously over time. Moore’s Law states
that the improvements in computer chip technology that make computing
incredibly cheap and efficient will continue exponentially for a long time
yet. Improvements in chip technology have significant potential, and they
cannot be considered premature. If they create value for many, optimiza-
tions are at the heart of progress.

As a rule of thumb, you should optimize only if you have clear evidence—
such as measurements from performance optimization tools—that the
code part or function to be optimized is indeed one of the bottlenecks
and that users of the application will appreciate or even demand a better

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

86 Chapter 5

performance. Optimizing the speed of starting the Windows operating sys-
tem is not premature because it’ll directly benefit millions of users, whereas
optimizing the scalability of your web application with an upper limit of
1000 users per month requesting a static website is premature. The costs of
developing an application are not as high as the costs of thousands of users
using it. If you can spend one hour of your time to save the users a few sec-
onds, it’s usually a win! Your users’ time is more valuable than your own.
This is why we use computers in the first place—to invest a few resources
upfront and gain many more resources back afterward. Optimization is
not always premature. Sometimes, you must optimize in order to create a
valuable product in the first place—why bother shipping an unoptimized
product that doesn’t generate any value? Having seen several reasons to
avoid premature optimization, we will now look at six performance tips to
help you choose how and when to optimize your code.

Measure First, Improve Second
Measure your software’s performance so you know where it can and should
be improved. What you don’t measure can’t be improved, since you have no
way to track your progress.

Premature optimization is often an optimization applied before you’ve
even measured, which is a direct cause of the idea that premature optimiza-
tion is the root of all evil. You should always optimize only after you have
begun to measure the performance of your non-optimized code, like mem-
ory footprint or speed. This is your benchmark. There’s no point in trying
to improve runtime, for example, if you don’t know what your original run-
time is. There’s no way to tell if your “optimization” actually increases total
runtime or results in no measurable effect unless you begin with a clear
benchmark.

As a general strategy for measuring performance, start with writing
the most straightforward, naïve code possible that’s also easy to read. You
may call this your prototype, the naïve approach, or the MVP. Document your
measurements in a spreadsheet. This is your first benchmark. Create an
alternative code solution and measure its performance against the bench-
mark. Once you’ve rigorously proven that your optimization improves your
code performance, the new optimized code becomes your new benchmark,
which all subsequent improvements should be able to beat. If an optimiza-
tion doesn’t measurably improve your code, throw it away.

This way, you can track your code’s improvement over time. You can
also document, prove, and defend an optimization to your boss, your peer
group, or even the scientific community.

Pareto is King
The 80/20 principle, or Pareto principle, discussed in Chapter 2, also applies
to performance optimization. Some features will take up considerably
more resources, such as time and memory footprint, than others, so focus-
ing on improving bottlenecks like these will help you effectively optimize
your code.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Premature Optimization is the Root of All Evil 87

To exemplify the high degree of imbalance of different processes run-
ning in parallel on my operating system, take a look at my current central
processing unit (CPU) usage in Figure 5-1.

Figure 5-1: Unequal distribution of the CPU demand of different
applications running on a Windows personal computer (PC)

If you plot this in Python, you see a Pareto-like distribution as shown in
Figure 5-2.

Figure 5-2: CPU usage of different applications on a Windows PC

A small percentage of application code requires a significant percent-
age of CPU usage. If I want to reduce the CPU usage on my computer, I just
need to close Cortana and Search and—voilà—a significant portion of the
CPU load disappears, shown in Figure 5-3.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

88 Chapter 5

Figure 5-3: The results after “optimizing” a Windows system by
closing not-needed applications

Removing the two most expensive tasks reduces the CPU load consid-
erably, but notice that the new plot looks similar to the first at a glance:
two tasks, this time Explorer and System, are still much more expensive
than the rest. This demonstrates an important rule of performance tun-
ing: performance optimization is fractal. As soon as you’ve removed one
bottleneck, you’ll find another bottleneck lurking around. Bottlenecks will
always be in any system, but if you repeatedly remove them as they appear,
you’ll get maximal “bang for your buck.” In a practical code project, you’ll
see the same distribution of a relatively small number of functions taking
the majority of the resources (for example, CPU cycles). Often you can
focus your optimization effort on the bottleneck function that takes the
most resources, such as by rewriting it with more sophisticated algorithms
or thinking about ways to avoid the computation (for example, caching of
intermediate results). Of course, the next bottleneck will appear right after
you’ve resolved the current one; that’s why you need to measure your code
and decide when it’s time to stop optimizing. For example, it doesn’t make
a lot of sense to improve the response time of a web application from 2 ms
to 1 ms when the user wouldn’t perceive the difference anyway. Due to the
fractal nature of optimizations and the Pareto principle (see Chapter 2),
obtaining these small gains often requires a lot of effort and developer time
and may yield very little gain in terms of usability or application utility.

Algorithmic Optimization Wins
Say you’ve decided your code needs a particular optimization because user
feedback and statistics indicate that your application is too slow. You’ve
measured your current speed in seconds or bytes and know the target speed
you’re aiming for, and you’ve found your bottleneck. Your next step is to fig-
ure out how to overcome that bottleneck.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Premature Optimization is the Root of All Evil 89

Many bottlenecks can be resolved by tuning your algorithms and data
structures. For example, imagine you’re developing a financial application.
You know your bottleneck is the function calculate_ROI(), which goes over
all combinations of potential buying and selling points to calculate the
maximum profit. As this function is the bottleneck of the entire applica-
tion, you want to find a better algorithm for it. After a bit of research, you
find out about the maximum profit algorithm, a simple, powerful replacement
that will speed up your computation significantly. The same research can
be done on data structures causing bottlenecks of their own.

To reduce bottlenecks and optimize performance, ask yourself:

•	 Can you find better algorithms that are already proven—for example,
in books, research papers, or even Wikipedia?

•	 Can you tweak existing algorithms for your specific problem at hand?

•	 Can you improve its data structures? Some common easy solutions
include using sets instead of lists (checking membership, for example,
is much faster for sets than lists) or dictionaries instead of collections of
tuples.

Spending time researching these questions pays off both for your appli-
cation and for you. You’ll become a better computer scientist in the process.

All Hail the Cache
Once you’ve made any necessary changes based on the previous tips, you can
move on to this quick and dirty trick for removing unnecessary computa-
tions: store the result of a subset of computations you have already performed
in a cache. This trick works surprisingly well for a variety of applications.
Before performing any new computation, you first check the cache to see if
you’ve already done that computation. This is similar to how you approach
simple calculations in your head—at a certain point, you don’t actually cal-
culate 6 × 5 in your head but simply rely on your memory to give you the
result right away. Consequently, caching makes sense only if the same type of
intermediate calculations reappears multiple times throughout your applica-
tion. Fortunately, this holds for most real-world applications—for example,
thousands of users may watch the same YouTube video in a given day, so cach-
ing it close to the user (rather than thousands of miles away in a distant data
center) saves scarce network bandwidth resources.

Let’s explore a short code example where caching results in significant
performance benefits: the Fibonacci algorithm.

def fib(n):
 if n < 2:
 return n
 fib_n = fib(n-1) + fib(n-2)
 return fib_n

print(fib(100))

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

90 Chapter 5

This will output the result of repeatedly adding the last and second-last
element of the series up to the 100th sequence element:

354224848179261915075

This algorithm is slow because the functions fib(n-1) and fib(n-2) cal-
culate more or less the same things. For instance, both separately calculate
the (n−3)-th Fibonacci element instead of reusing each other’s result for this
computation. The redundancy adds up—even for this simple function call,
the computation takes much too long.

One way to improve performance here is to create a cache. Caching
allows you to store the results of previous computations, so in this case,
fib2(n-3) is calculated only once, and when you need it again, you can
instantly pull the result from the cache.

In Python, we can make a simple cache by creating a dictionary where
you associate each function input (as an input string, for instance) with the
function output. You can then ask the cache to give you the computations
you’ve already performed.

Here’s the caching variant of Python Fibonacci:

cache = dict()

def fib(n):
 if n in cache:
 return cache[n]
 if n < 2:
 return n
 fib_n = fib(n-1) + fib(n-2)
 1 cache[n] = fib_n
 return fib_n

print(fib(100))
354224848179261915075

You store the result of fib(n-1) + fib(n-2) in the cache 1. If you already
have the n-th Fibonacci number result, you pull it from the cache rather
than recalculating it again and again. On my machine, this increases
the speed by almost 2000 times when calculating the first 40 Fibonacci
numbers!

There are two basic strategies for effective caching:

Perform computations in advance (“offline”) and store their results in the
cache.

This is a great strategy for web applications where you can fill up a
large cache once, or once a day, and then serve the result of your pre-
computations to the users. For them, your calculations seem blazingly
fast. Mapping services heavily use this trick to speed up the shortest
path computations.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Premature Optimization is the Root of All Evil 91

Perform computations as they appear (“online”) and store their results in
the cache.

An example is an online Bitcoin address checker that sums all incom-
ing transactions and deducts all outgoing transactions to compute
the balance of a given Bitcoin address. Once done, it could cache the
intermediate results for this address to avoid recomputing the same
transactions once the same user checks again. This reactive form
is the most basic form of caching, where you don’t need to decide
which computations to perform in advance.

In both cases, the more computations you store, the higher the likeli-
hood of cache hits where the relevant computation can be returned imme-
diately. However, as there’s usually a memory limit on the number of cache
entries you can save, you’ll need a sensible cache replacement policy: as the
cache has a limited size, it may fill up quickly. At that point, the cache can
store a new value only by replacing an old value. A common replacement
policy is first in, first out (FIFO), which would replace the oldest cache entry
with the new one. The best strategy depends on the concrete application,
but FIFO is a good first bet.

Less is More
Is your problem too hard to be solved efficiently? Make it easier! It sounds
obvious, but so many coders are perfectionists. They accept colossal com-
plexity and computational overhead just to implement a small feature that
may not even get recognized by users. Instead of optimizing, it’s often much
better to reduce complexity and get rid of unnecessary features and com-
putations. Consider the problems faced by search engine developers, for
example: “What is the perfect match for a given search query?” Finding the
optimal solution for such a problem is extremely hard and involves search-
ing billions of websites. However, search engines like Google don’t solve
the problem optimally; rather, they do the best they can in the time they
have by using heuristics. Instead of checking billions of websites against a
user search query, they focus on a couple of high-probability bets by using
rough heuristics to estimate the quality of individual websites (such as the
famous PageRank algorithm) and consult suboptimal websites if no other
high-quality website answers the query. You too should use heuristics rather
than optimal algorithms in most cases. Ask yourself the following questions:
What is your current bottleneck calculating? Why does it exist? Is it worth
the effort to solve the problem anyway? Can you remove the feature or offer
a downsized version? If the feature is used by 1 percent of your users,
but 100 percent perceive the increased latency, it may be time for some
minimalism (removing the feature that is hardly used but provides a bad
experience to those who use it).

To simplify your code, think about whether it makes sense to do one of
the following:

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

92 Chapter 5

•	 Remove your current bottleneck altogether by just skipping the feature.

•	 Simplify the problem by replacing it with a simpler version of the
problem.

•	 Get rid of one expensive feature to add ten cheap ones, in accordance
with the 80/20 policy.

•	 Omit one important feature so that you can pursue an even more
important one; think about opportunity costs.

Know When to Stop
Performance optimization can be one of the most time-consuming aspects
of coding. There’s always room for improvement, but your effort needed to
improve performance tends to increase once you have already exhausted
the low-hanging fruit techniques. At some point, improving performance is
just a waste of your time.

Ask yourself regularly: Is it worth the effort to keep optimizing? The
answer can usually be found by studying the users of your application. What
performance do they need? Do they even perceive the difference between
the original and the optimized version of the application? Do some of them
complain about bad performance? Answering these questions will give you
a rough estimate of the maximum runtime of your application. Now, you
can start optimizing bottlenecks until you reach this threshold. Then stop.

Conclusion
In this chapter, you’ve learned why it’s important to avoid premature opti-
mization. An optimization is premature if it takes more value than it adds.
Depending on the concrete project, value can often be measured in terms
of developer time, usability metrics, expected revenue of an app or feature,
or its utility for a subgroup of users. For instance, if an optimization can
save time or money for thousands of users, it is likely not premature, even if
you must spend significant developer resources to optimize the codebase.
However, if the optimization cannot lead to perceptible differences in the
quality of the lives of the users or programmers, it most likely is premature.
Yes, there are many more advanced models on the software engineering
process, but common sense and a general awareness of the dangers of
premature optimization go a long way without you needing to study fancy
books or research papers on software development models. For instance, a
useful rule of thumb is to write readable and clean code to start with and not
care too much about performance, then optimize the parts with a high expected
value based on experience, hard facts from performance tracking tools, and
real-world results from user studies.

In the next chapter, you’ll learn about the concept of flow—a program-
mer’s best friend.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

6
F L O W

Flow is the source code of ultimate human performance.
—Steven Kotler

In this chapter, you’ll learn about the con-
cept of flow and how you can use it to ramp

up your programming productivity. Many
programmers find themselves in office environ-

ments with constant interruptions, meetings, and other
diversions that can make it nearly impossible to reach
a pure state of productive programming. To gain more
insight on what flow is and how to accomplish it in
practice, we’ll examine many examples throughout this chapter, but gener-
ally speaking, flow is a state of pure concentration and focus, what some
people might call “being in the zone.”

Flow is not a strictly programmatic concept but a state that can be
applied to any task in any field. Here, we’ll look at how you can go about
attaining a state of flow and how it can be useful to you.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

94 Chapter 6

What is Flow?
The concept of flow was popularized by Mihaly Csikszentmihalyi (pronounced
“chick-sent-me-high”), a distinguished professor of psychology and manage-
ment at Claremont Graduate University and former head of the department of
psychology at the University of Chicago. In 1990, Csikszentmihalyi published
the ground-breaking book about his life’s work under the same title, Flow.

But what is flow? Let’s start with the somewhat subjective definition of
how it feels. Afterward, you’ll learn a more tangible definition of flow based
on what you can measure—as a coder, you’ll like the second definition more!

Experiencing flow is being in a state of complete immersion in the task
at hand: focused and concentrated. You forget about time; you’re in the
zone, hyper-aware. You might feel a sense of ecstasy, freed from all other
burdens of everyday life. Your inner clarity increases, and it becomes evident
to you what you need to be doing next—the activities flow naturally from
one to another. Your confidence in your ability to complete the next activity
is unshaken. Completing the activity is its own reward, and you enjoy every
second. Both your performance and your results go through the roof.

According to psychological research led by Mihaly Csikszentmihalyi,
there are six components of a state of flow.

Attention You feel a deep sense of concentration and complete focus.

Action You feel a bias toward action, and you move forward with your
current task quickly and efficiently—your focused awareness helps
drive the momentum. Every action feeds into the next action, creating a
flow of successful actions.

Self You become less aware of yourself, and you shut down your inner
critics, doubts, and fears. You think less about yourself (reflection) and
more about the task at hand (action). You lose yourself in the task at
hand.

Control Even as you’re less self-aware, you enjoy an increased sense
of control about the present situation, giving you calm confidence and
allowing you to think outside the box and develop creative solutions.

Time You lose the ability to experience time passing.

Reward The labor of the activity is all you want to do; there may be
no external reward, but being immersed in the activity is intrinsically
rewarding in itself.

The terms “flow” and “attention” are closely related. In a 2013 disserta-
tion on attention deficit hyperactivity disorder (ADHD), Rony Sklar points out
that the term “attention deficit” wrongly implies that patients experiencing it
cannot focus. Another term for flow is hyperfocus, and legions of psychology
researchers (for example, Kaufmann et al. 2000) have proven that ADHD
patients are quite capable of hyperfocus, they only struggle with sustaining
attention for tasks that are not intrinsically rewarding. You don’t need to get
diagnosed with ADHD to know that it’s hard to focus on things you don’t
enjoy doing.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Flow 95

But if you’ve ever completely lost yourself playing an exciting game, pro-
gramming a fun application, or watching an interesting movie—you know
how easy it is to reach flow if you like the activity. In a state of flow, your
body releases five feel-good neurochemical pleasure drugs such as endor-
phins, dopamine, and serotonin. It’s like experiencing the “benefits” of
taking recreational drugs but without some of the negative consequences—
even Csikszentmihalyi warned that it can be addictive (Csikszentmihalyi,
1992). Learning to enter a state of flow makes you smarter and more produc-
tive—if you manage to direct the flow activity into productive endeavors such
as programming.

Now, you may ask: Show me the meat—how do I get flow? Let’s answer
this next!

How to Achieve Flow
Csikszentmihalyi laid out three conditions to achieve flow: (1) your goals
must be clear, (2) the feedback mechanism in your environment must be
immediate, and (3) there must be a balance between opportunity and
capacity.

Clear Goals
If you’re writing code, you must have a clear goal toward which the smaller
actions align. In a state of flow, every action naturally leads to the next,
which leads to the next, so there must be an end goal. A fundamental con-
dition to obtain flow is to set a clear goal that you want to accomplish and
that you can target your small actions toward. Playing computer games is a
frequent environment for reaching a state of flow because if you succeed in
the small actions—such as jumping over a moving obstacle—you ultimately
succeed in the big goal—such as winning the level. To use flow to acceler-
ate your programming productivity, you must have a clear project goal.
Every line of code leads you closer to the successful completion of the larger
code project. Keeping track of the lines of code you’ve written is one way to
gamify your coding work!

Feedback Mechanism
A feedback mechanism rewards desired behavior and punishes undesired
behavior. Machine learning engineers know that they need to have a great
feedback mechanism to train highly effective models. For example, you
may teach a robot how to walk by rewarding it for each second it doesn’t fall
and telling it to optimize for a maximum total reward. The robot can then
automatically adjust its action to obtain maximum rewards over time. We
humans behave quite similarly when learning new things. We seek apprecia-
tion from our parents, teachers, friends, or mentors—even from neighbors
we don’t like—and adjust our actions to maximize appreciation while mini-
mizing (social) punishments. This way, we learn to take specific actions and
avoid others. Receiving feedback is vital for this way of learning.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

96 Chapter 6

Feedback is a precondition for flow. To implement more flow in your
working day, seek more feedback. Find project partners that you meet with
weekly to discuss your code and project goals, and then incorporate your
partner’s feedback. Publish your code on Reddit or StackOverflow and ask
for feedback. Publish your MVP early and often to receive user feedback.
Seeking feedback for your programming efforts works like a charm, even if
it is delayed gratification, because it’ll increase your level of engagement in
the activity that led to the feedback. After I published Finxter, my software
application for learning Python, I started to receive a never-ending stream
of user feedback, and I was hooked. The feedback kept me going back to
work on the code and allowed for many states of flow when I worked on the
code to improve the app.

Balance Opportunity and Capacity
Flow is an active state of mind. If the task is too easy, you get bored and lose
the sense of immersion. If it’s too hard, you’ll throw in the towel early. The
task must be challenging but not overwhelming.

Figure 6-1 shows the landscape of possible states of mind; this image is
taken and redrawn from Csikszentmihalyi’s original research.

Skill

C
ha

lle
ng

e

High

High

Low

Low

Anxiety

Boredom

Panic

Apathy

Increase
challenge

Increase skill

Flow

Figure 6-1: In a state of flow, you find the challenge is neither too hard nor too easy,
given your current skill level.

The x-axis quantifies your skill level from low to high, and the y-axis
quantifies the difficulty of a given task from low to high. So, for example,
if the task is much too hard for your skill level, you’ll feel panic, and if it’s
much too easy, you’ll feel apathy. But if a task’s difficulty matches your cur-
rent skills, you’ll maximize the likelihood of attaining flow.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Flow 97

 The trick is to constantly seek harder challenges without reaching anx-
iety levels and increase your level of skills accordingly. This learning loop
keeps you in a cycle toward higher and higher productivity and skill, and
greater enjoyment of work at the same time.

Flow Tips for Coders
In his 2015 white paper titled “Crafting Fun User Experiences: A Method
to Facilitate Flow,” Owen Schaffer identified these seven flow conditions:
(1) know what to do, (2) know how to do it, (3) know how well you’re doing,
(4) know where to go, (5) seek challenges, (6) work on your skills to over-
come the high challenges, and (7) free yourself from distractions (Human
Factors International). Based on these conditions and my own consider-
ations, I’ve compiled some quick tips and tactics for attaining flow that are
highly biased toward the coding niche.

Always have a practical code project in the works rather than spend-
ing your time in a state of unfocused learning. You can absorb new
information more quickly when it has a real impact on something you
care about. I recommend splitting your learning time into 70 percent
working on a practical fun project of your choice and 30 percent read-
ing books and tutorials or watching educational courses. I’ve learned
from my personal interaction and correspondence with tens of thou-
sands of coders in the Finxter community that a significant portion of
coding students have this backward and get stuck in the learning loop,
never feeling quite ready to leap into a real project. It’s always the same
story: these coders remain stuck in programming theory, learning and
learning without practical application, making them even more aware
of their knowledge limitations—a negative spiral toward paralysis. The
way out is to set your clear project goal and push the project through to
completion, no matter what. This coincides with one of the three pre-
conditions of flow.

Work on fun projects that fulfill your purpose. Flow is a state of excite-
ment, so you must be excited about your work. If you’re a professional
coder, spend time thinking about the purpose of your work. Find the
value of your project. If you’re learning to code, lucky you—you can
choose a fun project that excites you! Work on projects that are mean-
ingful for you. You’ll have more fun, a higher probability of success,
and more resilience against temporary setbacks. If you wake up and
cannot wait to work on your project, you know that flow is just around
the corner.

Perform from your strengths. This tip from management consultant
Peter Drucker is gold. There will always be more areas in which you are
weak than strong. In most activities, your skills are below average. If you
focus on your weaknesses, you’re virtually guaranteeing yourself to fail.
Instead, focus on your strengths, build large skill islands around them,
and essentially ignore most of your weaknesses. What are you uniquely

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

98 Chapter 6

good at? What are your specific interests in the broad area of computer
science? Make lists to answer those questions. One of the activities that
will most benefit your progression is figuring out your strengths and
then brutally structuring your day around those.

Block out your coding time in large chunks. This will give you time
to both comprehend the issues and tasks ahead of you—every coder
knows that it takes time to load a complicated code project into their
head—and get into the rhythm of your tasks. Say Alice and Bob work
on a given code project. It takes 20 minutes to attain a state where each
completely understands the demands of their code project by glancing
over the project, diving into a few code functions, and thinking about
the big picture. Alice spends three hours every three days on the project,
while Bob spends one hour every day. Who will make more progress in
the project? Alice works 53 minutes on the project per day ([3 hours –
20 minutes] ÷ 3). Given the high constant loading time, Bob works only
40 minutes on the project every day. Thus, all other things being equal,
Alice will outwork Bob by 13 minutes every day. She has a much higher
chance of achieving a state of flow as she can dive deeper into the prob-
lem and lose herself entirely in it.

Eliminate distractions during your flow time. It seems obvious, but how
seldomly it is implemented! Coders who can reduce distractions—social
networks, entertainment applications, chitchat about colleagues—attain
flow much more often than coders who can’t. To reach success, you must
do what most others are unwilling to do: shut down distractions. Switch
off your smartphone and close that social media tab.

Do the obvious things you know you need to do, outside of the task at
hand: get plenty of sleep, eat healthily, and get regular exercise. As a
coder, you know the expression garbage-in, garbage-out: if you feed a sys-
tem with bad inputs, you’ll obtain bad results. Try to cook a tasty meal
with decayed food—almost impossible! High-quality input leads to
high-quality output.

Consume high-quality information because the better your inputs, the
better your output. Read programming books instead of shallow blog
articles; better yet, read research papers published in top-rated jour-
nals, the highest quality information there is.

Conclusion
To summarize, here are some of the easiest ways in which you can begin to
attempt to attain flow: block large chunks of time, focus on one task, stay
healthy and sleep properly, set clear goals, find work you enjoy doing, and
actively seek flow.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Flow 99

If you seek flow, you’ll eventually find it. If you systematically work in a
state of flow daily, you’ll boost your work productivity by an order of mag-
nitude. This is a simple yet powerful concept for programmers and other
knowledge workers alike. As Mihaly Csikszentmihalyi says:

The best moments in our lives are not the passive, receptive,
relaxing times… The best moments usually occur if a person’s
body or mind is stretched to its limits in a voluntary effort to
accomplish something difficult and worthwhile.

In the next chapter, you’ll dive into the Unix philosophy about doing one
thing well, a principle that’s proven to be not only an excellent way to create
a scalable operating system but also a great way to live by as well!

References

F. Massimini, M. Csikszentmihalyi, and M. Carli, “The monitoring of
optimal experience: A tool for psychiatric rehabilitation,” Journal of
Nervous and Mental Disease 175, no. 9 (September 1987).

Rony Sklar, “Hyperfocus in adult ADHD: An EEG study of the differ-
ences in cortical activity in resting and arousal states” (M.A. thesis,
University of Johannesburg, 2013), http://hdl.handle.net/10210/8640.

Kevin Rathunde, “Montessori Education and Optimal Experience:
A Framework for New Research,” NAMTA Journal 26, no. 1 (January
2001): 11–43.

Steven Kotler, “How to Get Into The Flow State,” filmed at A-Fest
Jamaica, February 19, 2019, Mindvalley video, https://youtu.be/XG
_hNZ5T4nY.

Troy Erstling, “The Neurochemistry of Flow States,” Troy Erstling (blog),
https://troyerstling.com/the-neurochemistry-of-flow-states/.

Owen Schaffer, “Crafting Fun User Experiences: A Method to Facilitate
Flow,” Human Factors International white paper (2015), https://humanfactors
.com/hfi_new/whitepapers/crafting_fun_ux.asp.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

http://hdl.handle.net/10210/8640
https://youtu.be/XG_hNZ5T4nY
https://youtu.be/XG_hNZ5T4nY
https://troyerstling.com/the-neurochemistry-of-flow-states/
https://humanfactors.com/hfi_new/whitepapers/crafting_fun_ux.asp.
https://humanfactors.com/hfi_new/whitepapers/crafting_fun_ux.asp.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

7
D O O N E T H I N G W E L L

A N D O T H E R U N I X P R I N C I P L E S

This is the Unix philosophy: Write programs that do one thing
and do it well. Write programs to work together. Write programs to

handle text streams, because that is a universal interface. [. . .]
—Douglas McIlroy

The prevailing philosophy of the Unix
operating system is simple: do one thing

well. This means, for example, that it’s gen-
erally better to create a function or module

that can solve one problem, reliably and efficiently,
rather than trying to tackle multiple problems at
the same time. Later in this chapter, you’ll see some
Python code examples of “do one thing well” in action
and learn how the Unix philosophy applies to programming. I’ll then pres-
ent the top principles employed by some of the world’s most accomplished
computer engineers in creating today’s operating systems. If you’re a soft-
ware engineer, you’ll find much valuable advice on writing better code in
your own projects.

But first things first: What is Unix anyway, and why should you care?

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

102 Chapter 7

The Rise of Unix
Unix is a design philosophy that inspired many of the most popular operating
systems today, including Linux and macOS. The family of Unix operating sys-
tems emerged in the late 1970s when Bell Systems made the source code of its
technology open to the public. Since then, a multitude of extensions and new
versions has been developed by universities, individuals, and corporations.

Today, the trademarked Unix standard certifies that operating systems
meet specific quality requirements. Unix and Unix-like operating systems
have a major impact on computing. About 7 out of 10 web servers run on
Linux systems that use Unix as their base. Most supercomputers today run
Unix-based systems. Even the macOS is a registered Unix system.

Linus Torvalds, Ken Thompson, Brian Kernighan—the list of Unix
developers and maintainers contains the names of some of the world’s most
impactful coders across the globe. You would think there must be great
organizational systems in place to allow programmers all over the world to
collaborate to build the massive ecosystem of Unix code comprising mil-
lions of lines of code. And rightly so! The philosophy that enables this scale
of collaboration is the acronym DOTADIW (seriously)—or do one thing and
do it well. Whole books have been written about the Unix philosophy, so
here we’ll just focus on the most relevant ideas and use Python code snip-
pets to showcase some examples. To the best of my knowledge, no book has
ever contextualized the Unix principles for the Python programming lan-
guage before. So, let’s get started!

Philosophy Overview
The basic idea of the Unix philosophy is to build simple, clear, concise,
modular code that is easy to extend and maintain. This can mean many
different things—more on this later in the chapter—but the goal is to
allow many humans to work together on a codebase by prioritizing read-
ability over efficiency and favoring composability over monolithic design.
Monolithic applications are designed without modularity, meaning large
parts of the code logic cannot be reused, executed, or debugged without
accessing the overall application.

Say you write a program that takes a uniform resource locator (URL)
and prints the HTML from this URL on the command line. Let’s call this
program url_to_html(). According to the Unix philosophy, this program
should do one thing well, and that one thing is to take the HTML from the
URL and print it to the shell (see Listing 7-1). That’s it.

import urllib.request

def url_to_html(url):
 html = urllib.request.urlopen(url).read()
 return html

Listing 7-1: A simple code function that reads the HTML from a given URL and returns
the string

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Do One Thing Well And Other Unix Principles 103

That’s all you need. Don’t add more functionality, such as filtering out
tags or fixing bugs. For instance, you might be tempted to add code to fix
common mistakes a user might make, like forgetting closing tags, such as a
 tag that is not closed by as highlighted here:

Python One-Liners

According to the Unix philosophy, even if you spot these types of mis-
takes, you don’t fix them within this specific function.

Another temptation for this simple HTML function is to automatically
fix formatting. For example, the following HTML code doesn’t look pretty:

Python One-Liners

You may prefer this code formatting:

 Python One-Liners

However, your function’s name is url_to_html() , not prettify_html().
Adding a feature such as code prettifying would add a second functionality
that may not be needed by some users of the function.

Rather, you’d be encouraged to create another function called prettify
_html(url) whose “one thing” is to fix stylistic issues of the HTML. This
function may internally use the function url_to_html() to get the HTML
before processing it further.

By focusing every function on one purpose only, you improve the main-
tainability and extensibility of your code. The output of one program is the
input of another. You reduce complexity, avoid clutter in the output, and
focus on implementing one thing well.

Although a single subprogram may look small, even trivial, you can
combine those subprograms to create more complicated programs while
still keeping them easy to debug.

15 Useful Unix Principles
We’ll next dive deep into the 15 Unix principles most relevant for today and,
where possible, implement them in Python examples. I’ve compiled these
principles from Unix coding experts Eric Raymond and Mike Gancarz and
adapted them to modern Python programming. You’ll notice that many of
these principles comply or overlap with other principles in this book.

1. Make Each Function Do One Thing Well
The overarching principle of the Unix philosophy is to do one thing well.
Let’s see what that would look like in code. In Listing 7-2, you implement a

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

104 Chapter 7

function display_html() that takes a URL as a string and displays the pretti-
fied HTML on that URL.

import urllib.request
import re

def url_to_html(url):
 html = urllib.request.urlopen(url).read()
 return html

def prettify_html(html):
 return re.sub('<\s+', '<', html)

def fix_missing_tags(html):
 if not re.match('<!DOCTYPE html>', html):
 html = '<!DOCTYPE html>\n' + html
 return html

def display_html(url):
 html = url_to_html(url)
 fixed_html = fix_missing_tags(html)
 prettified_html = prettify_html(fixed_html)
 return prettified_html

Listing 7-2: Make each function or program do one thing well.

This code is depicted in Figure 7-1.

url_to_html (url)

fix_missing_tags (html)

display_html (url)

prettify_html (html)

 Python One-Liners

Python One-Liners

https://nostarch.com/p
ythononeliners/

<a ... /a>

https://nostarch.com/p
ythononeliners/

<a ... /a> <a ...

1

2

3
4

5

6

7

8
9

10

Figure 7-1: Overview of multiple simple functions—each doing one thing well—working together to
accomplish a bigger task

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Do One Thing Well And Other Unix Principles 105

This code provides a sample implementation that performs the follow-
ing steps in the function display_html:

1. Get the HTML from a given URL location.

2. Fix some missing tags.

3. Prettify the HTML

4. Return the result to the function caller.

If you run the code with a URL that points to the not-very-pretty HTML
code '< a href="https://finxter.com">Solve next Puzzle', the function
display_html would fix the poorly formatted (and incorrect) HTML by bro-
kering the inputs and outputs of the small code functions because each of
those does its one thing well.

You would print the result of the main function with this line:

print(display_html('https://finxter.com'))

This code would print the HTML code to your shell with a new tag and
the excess whitespaces removed:

<!DOCTYPE html>
Solve next Puzzle

Think of this whole program as a browser in your terminal. Alice calls
the function display_html(url), which takes the URL and passes it to another
function url_to_html(url), which collects the HTML from a given URL
location. No need to implement the same functionality twice. Fortunately,
the coder of the function url_to_html() has kept that function minimal so
you can use its returned HTML output directly as an input to the function
fix_missing_tags(html). In Unix lingo, this is called piping : the output of
one program is passed as an input to another program. The return value
of fix_missing_tags() is the fixed HTML code with a closing tag that
was missing in the original HTML. You then pipe the output into the func-
tion prettify_html(html) and wait for the result: the corrected HTML with
indentation to make it user-friendly. Only then does the function display
_html(url) return the prettified and fixed HTML code to Alice. You see that
a series of small functions connected and piped together can accomplish
quite big tasks!

In your project, you could implement another function that doesn’t
prettify the HTML but only adds the <!DOCTYPE html> tag. You could then
implement a third function that prettifies the HTML but doesn’t add the
new tag. By staying small, you can easily create new code based on the exist-
ing functionality, and there wouldn’t be a lot of redundancy. The modular
design of the code enables reusability, maintainability, and extensibility.

Compare this version to a possible monolithic implementation where
the function display_html(url) would have to do all those small tasks by itself.
You couldn’t partially reuse functionality, such as retrieving the HTML code

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

106 Chapter 7

from a URL or fixing faulty HTML code. If you use a monolithic code func-
tion that does all things itself, it would look like this:

def display_html(url):
 html = urllib.request.urlopen(url).read()
 if not re.match('<!DOCTYPE html>', html):
 html = '<!DOCTYPE html>\n' + html
 html = re.sub('<\s+', '<', html)
 return html

The function is now more complicated: it handles multiple tasks instead
of focusing on one. Even worse, if you implement variants of the same func-
tion without removing the whitespace after an opening tag '<', you’d have to
copy and paste the remaining code lines. This would lead to code redundancy
and reduced readability. The more functionality you add, the worse it will get!

2. Simple is Better Than Complex
Simple is better than complex is the overwhelming principle of this whole book.
You’ve already seen it in many shapes and forms—I stress this point hard
because if you don’t take decisive action to simplify, you’ll breed complex-
ity. In Python, the principle simple is better than complex even made it into the
unofficial rule book. If you open a Python shell and enter import this, you
obtain the famous Zen of Python (see Listing 7-3).

> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Listing 7-3: The Zen of Python

Since we’ve covered the concept of simplicity at length already, I won’t
go over it again here. If you’re still wondering why simple is better than
complex, go back to Chapter 1 about the negative productivity effects that
originate in high complexity.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Do One Thing Well And Other Unix Principles 107

3. Small is Beautiful
Rather than writing big code blocks, write small functions and work as an
architect brokering the interaction between those functions, as exemplified
in Figure 7-1. There are three main reasons to keep your program small:

Reduce complexity.

Code is harder to comprehend as it gets longer. This is a cognitive fact:
your brain can keep track of only so many chunks of information simul-
taneously. Too many pieces of information make it hard to see the big
picture. By going small and reducing the number of code lines in a
function, you improve readability and reduce the likelihood of injecting
costly bugs into your codebase.

Improve maintainability.

Structuring your code in many small pieces of functionality makes it
easier to maintain. Adding more small functions is unlikely to incur
side effects, whereas in a big, monolithic code block, any changes you
make can easily have unintended global effects, especially if multiple
programmers are working on the code at the same time.

Improve testability.

Many modern software companies use test-driven development, which
involves using unit tests to stress-test inputs to each function and unit
and compare the outputs with the expected ones. This allows you to
find and isolate bugs. Unit tests are much more effective and easier
to implement in small code, where each function focuses on just one
thing, so you know what the expected result should be.

Rather than implementing an example of small code in Python for this
principle, Python itself is the best example. Any master coder uses other
people’s code to improve their coding productivity. Millions of developers
have spent countless hours optimizing code that you can import into your
code in a split second. Python, like most other programming languages,
provides this functionality through libraries. Many of the less-frequently
used libraries don’t ship with the default implementation and need to be
explicitly installed. By not providing all the libraries as built-in function-
ality, the Python installation on your computer remains relatively small
but doesn’t sacrifice the potential power of external libraries. On top of
this, the libraries themselves are relatively small—all of them focus on a
restricted subset of functions. Rather than one monolithic library to rule all
problems, we have many small libraries, each responsible for a small part of
the picture. Small is beautiful.

Every few years, new architectural patterns appear with the prom-
ise of breaking up large, monolithic applications into beautiful, small
applications to scale up the software development cycle. Recent examples
have been the Common Object Request Broker Architecture (CORBA),
service-oriented architecture (SOA), and microservices. The idea of
these is to break up a large software block into a series of independently

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

108 Chapter 7

deployable components that can then be accessed by multiple programs
rather than just one. The hope is to accelerate the overall progress in the
software development space by sharing and building upon each other’s
microservices.

The underlying driver of these trends is the idea of writing modular
and reusable code. By studying the ideas presented in this chapter, you’ve
prepared yourself to quickly and fundamentally understand these and
upcoming trends with the same direction toward modularity. It pays to stay
ahead of the curve by applying sound principles from the start.

N O T E Diving deeper into this exciting topic is beyond the scope this book, but I suggest you
check out this online resource about microservices from Martin Fowler at https://
martinfowler.com/articles/microservices.html.

4. Build a Prototype as Soon as Possible
The Unix team is a keen proponent of the principle we discussed in
Chapter 3, build an MVP. This allows you to avoid getting stuck in the cycle
of perfectionism, adding more and more features and exponentially increas-
ing complexity without need. If you work on large software applications such
as an operating system, you simply cannot afford to go down the route of
complexity!

Figure 7-2 shows an example of an early app launch that’s stuffed itself
full of unnecessary features, in defiance of the MVP principle.

Unnecessary features!

Code Puzzle
print ('hello world')
What's the Output?

Minimum viable product:
Share on social media

Figure 7-2: Finxter.com app versus Finxter MVP

The app has features like interactive solution checking, puzzle voting,
user statistics, user management, premium functionality, and related videos,
and even simple features such as a logo. All of these are unnecessary for an
initial launch of the product. In fact, the MVP of the Finxter application

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
Finxter.com

Do One Thing Well And Other Unix Principles 109

should just be an image of a simple code puzzle shared on social media. This
is enough to validate the hypothesis of user demand without spending years
building the application. Fail early, fail often, fail forward.

5. Choose Portability Over Efficiency
Portability is the ability of a system or a program to be moved from one
environment to another and still function properly. One major advantage
of software is its portability: you can write a program on your computer,
and millions of users can run the same program on their computers with-
out adapting it at all.

However, portability comes at the cost of efficiency. This portability/
efficiency trade-off is well documented in technical literature: you can reach
higher efficiency by tailoring software to just one type of environment, but
this sacrifices portability. Virtualization is a great example of this trade-off:
by placing an additional layer of software between a piece of software and
the underlying infrastructure on which the software runs, your program
can run on almost any physical machine. Additionally, a virtual machine can
carry the current execution state from one physical machine to another.
This improves the portability of the software. However, the added layer
required for virtualization reduces the runtime and memory efficiency
because of the additional overhead of intermediating between the pro-
grams and the physical machine.

The Unix philosophy advocates choosing portability over efficiency;
this makes sense since the operating system is used by so many.

But the rule of thumb to prefer portability also applies to the broader
audience of software developers. Reducing portability means that you
reduce your application’s value. Today, it is common to improve porta-
bility radically—even at the costs of efficiency. Web-based applications
are expected to run on every computer with a browser, whether macOS,
Windows, or Linux. Web applications are also increasingly accessible,
accommodating things like blindness, even though it may be less efficient
to host a website that facilitates accessibility. Many resources are much
more valuable than computing cycles: human lives, human time, and other
second-order consequences of computers.

But what does it mean to program for portability, apart from these gen-
eral considerations? In Listing 7-4 we create a function that computes the
average of the specified arguments—the way we’ve written it, it’s not opti-
mized for portability.

import numpy as np

def calculate_average_age(*args):
 a = np.array(args)
 return np.average(a)

print(calculate_average_age(19, 20, 21))
20.0

Listing 7-4: Average function, not maximally portable

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

110 Chapter 7

This code is not portable for two reasons. First, the function name cal-
culate_average_age() is not general enough to be usable in any other context,
despite the fact that it simply calculated an average. You might not think
to use it, for example, to calculate the average number of website visitors.
Second, it uses a library needlessly because you could easily calculate the
average without any external library (see Listing 7-5). It’s generally a great
idea to use libraries, but only if they add value. In this case, adding a library
reduces portability because the user may not have this library installed;
plus, it incurs only little benefit for efficiency (if at all).

In Listing 7-5 we recreate the function with superior portability.

def average(*args):
 return sum(args) / len(args)

print(average(19, 20, 21))
20.0

Listing 7-5: Average function, portable

We rename the functions to be more general and do away with the
unnecessary import. Now you don’t have to worry if the library becomes
depreciated, and you can port the same code to your other projects.

6. Store Data in Flat Text Files
The Unix philosophy encourages the use of flat text files for storing data.
Flat text files are simple text or binary files without advanced mechanisms
to access the file content—unlike many more efficient but also more com-
plicated file formats used by, for example, the database community. These
are simple, human-readable data files. The common comma separated val-
ues (CSV) format is an example of a flat file format, where each line relates
to one data entry (see Listing 7-6) and someone new to the data can glean
some understanding just by looking at it.

Property Number,Date,Brand,Model,Color,Stolen,Stolen From,Status,Incident
number,Agency
P13827,01/06/2016,HI POINT,9MM,BLK,Stolen Locally,Vehicle, Recovered
Locally,B16-00694,BPD
P14174,01/15/2016,JENNINGS J22,,COM,Stolen Locally,Residence, Not
Recovered,B16-01892,BPD
P14377,01/24/2016,CENTURY ARMS,M92,,Stolen Locally,Residence, Recovered
Locally,B16-03125,BPD
P14707,02/08/2016,TAURUS,PT740 SLIM,,Stolen Locally,Residence, Not
Recovered,B16-05095,BPD
P15042,02/23/2016,HIGHPOINT,CARBINE,,Stolen Locally,Residence, Recovered
Locally,B16-06990,BPD
P15043,02/23/2016,RUGAR,,,Stolen Locally,Residence, Recovered Locally,B16-
06990,BPD
P15556,03/18/2016,HENRY ARMS,.17 CALIBRE,,Stolen Locally,Residence, Recovered
Locally,B16-08308,BPD

Listing 7-6: Data on stolen guns, from Data.gov, provided as a flat file format (CSV)

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Do One Thing Well And Other Unix Principles 111

You can share flat text files easily, open them in any text editor, and
modify them manually. However, this convenience comes at the cost of
efficiency: a data format specialized for a specific purpose could store and
read the data much more efficiently. Databases, for example, use their
own data files on disk, which use optimizations, like detailed indices and
compression schemes to represent dates. If you opened them, you wouldn’t
understand a thing. These optimizations allow programs to read from the
data with less memory consumption and less overhead than general flat
text files. In a flat file, a system would have to scan the whole file to read a
specific line. Web applications also require a more efficient optimized data
representation to allow users quick access with low latency, so they rarely
use flat representations and databases.

However, you should use optimized data representations only if you’re
sure you need them—for example, if you create an application that is highly
performance-sensitive, such as the Google search engine that can find the
most relevant web documents to a given user query in milliseconds! For
many smaller applications, such as training a machine learning model from
a real-world dataset with 10,000 entries, the CSV format is the recommended
way to store the data. Using a database with a specialized format would
reduce portability and add unnecessary complexity.

Listing 7-7 gives an example of one situation in which the flat format
is preferable using Python, one of the most popular languages for data sci-
ence and machine learning applications. Here we want to perform a data
analysis task on a dataset of images (faces), so we load data from a flat CSV
file and process it, favoring the portable approach over the more efficient
one of using a database.

From sklearn.datasets import fetch_olivetti_faces
From numpy.random import RandomState

rng = RandomState(0)

Load faces data
faces, _ = fetch_olivetti_faces(...)

Listing 7-7: Load data from a flat file in a Python data analysis task

In the function fetch_olivetti_faces, we load scikit-learn’s Olivetti faces
dataset, which contains a set of face images. The loading functions simply
read this data and load it into memory before starting with the real computa-
tion. No database or hierarchical data structures are needed. The program is
self-contained without installing a database or setting up advanced database
connections.

N O T E I’ve set up an interactive Jupyter notebook for you to run this example in here: https://
blog.finxter.com/clean-code/#Olivetti_Faces/.

7. Use Software Leverage to Your Advantage
Using leverage means applying a small amount of energy to multiply the
effects of your effort. In finance, for example, leverage means to use other

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

https://blog.finxter.com/clean-code/#Olivetti_Faces
https://blog.finxter.com/clean-code/#Olivetti_Faces
/

112 Chapter 7

people’s money to invest and grow. In a large corporation, it might mean
employing thousands of employees to provide time and energy. As a pro-
grammer, you should leverage the collective wisdom of generations of cod-
ers before you: use libraries for complex functionality rather than coding it
from scratch, use StackOverflow and the wisdom of the crowd to fix bugs in
your code, or ask other programmers to review your code. These are forms
of leverage that allow you to accomplish far more with far less effort.

The second source of leverage comes from computing power. A com-
puter can perform work much faster (and at much lower costs) than a
human being. Create better software, share it with more people, employ
more computing power, and use other people’s libraries and software more
often. Good coders create good source code quickly, but great coders tap
into the many sources of leverage available to them to elevate their code.

As an example, Listing 7-8 shows a one-liner program from my book,
Python One-Liners (No Starch Press, 2020), that scrapes a given HTML
document and finds all occurrences of a URL that contains the substring
'finxter' and either 'test' or 'puzzle'.

Dependencies
import re

Data
page = '''
<!DOCTYPE html>
<html>
<body>

<h1>My Programming Links</h1>
test your Python skills
Learn recursion
Great books from NoStarchPress
Solve more Python puzzles

</body>
</html>
'''

One-Liner
practice_tests = re.findall("(<a.*?finxter.*?(test|puzzle).*?>)", page)

Result
print(practice_tests)
[('test your Python skills',
'test'),
('Solve more Python puzzles', 'puzzle')]

Listing 7-8: One-liner solution to analyze web page links

By importing the re library, we leverage the powerful technology of
regular expressions, instantly putting thousands of lines of code to work

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Do One Thing Well And Other Unix Principles 113

and allowing us to write the entire program with a single line. Leverage is a
powerful companion on your path to becoming a great coder. For instance,
using libraries in your code rather than implementing everything yourself
is like using an app to plan your journey rather than working out every
detail with a paper map.

N O T E See https://pythononeliners.com/ for a video explaining this solution.

8. Avoid Captive User Interfaces
Captive user interfaces are those that require the user to interact with the
program before proceeding with the main execution flow. Examples are
mini-programs such as Secure Shell (SSH), top, cat, and vim, as well as pro-
gramming language features such as Python’s input() function. Captive
user interfaces limit the usability of the code because they’re not designed
to run without human involvement. However, oftentimes the functionality
provided by the code behind the captive user interface is also useful for
automated programs that must be able to run without manual interaction
with users. Roughly speaking, if you put good code behind a captive user
interface, it’s not reachable without user interaction!

Say you create a simple life expectancy calculator in Python that takes a
user’s age as input and returns the expected number of years left based on
a straightforward heuristic.

“If you’re under 85, your life expectancy is 72 minus 80% of your age.
Otherwise, it’s 22 minus 20% of your age.”

N O T E The heuristic, not the code, is based on a website entry on Decision Science News.

Your initial Python code might look something like Listing 7-9.

def your_life_expectancy():
 age = int(input('how old are you? '))

 if age<85:
 exp_years = 72 - 0.8 * age
 else:
 exp_years = 22 - 0.2 * age

 print(f'People your age have on average {exp_years} years left - use them
wisely!')

your_life_expectancy()

Listing 7-9: Life-expectancy calculator—a simple heuristic—implemented as a captive user
interface

Here are some runs of the code in Listing 7-9.

> how old are you? 10
People your age have on average 64.0 years left - use them wisely!
> how old are you? 20

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

https://pythononeliners.com/

114 Chapter 7

People your age have on average 56.0 years left - use them wisely!
> how old are you? 77
People your age have on average 10.399999999999999 years left - use them
wisely!

If you want to try it yourself, I’ve shared the program in a Jupyter note-
book at https://blog.finxter.com/clean-code/#Life_Expectancy_Calculator/. But,
please, don’t take it too seriously!

In the listing, we used Python’s input() function, which blocks the pro-
gram execution until the user input is received. Without user input, the
code doesn’t do anything. This captive user interface limits the usability of
the code. If you wanted to calculate the life expectancy for every age from 1
to 100 and plot it, you’d have to manually enter 100 different ages and store
the results in a separate file. Then, you’d have to copy and paste the results
into a new script to plot it. As it is now, the function really does two things:
process the user input and calculate the life expectancy, which also violates
the first Unix principle: make each function do one thing well.

To make the code compliant to this principle, we’ll separate the user
interface from the functionality, which is often a great idea to improve your
code (see Listing 7-10).

Functionality
def your_life_expectancy(age):
 if age<85:
 return 72 - 0.8 * age
 return 22 - 0.2 * age

User Interface
age = int(input('how old are you? '))

Combine user input with functionality and print result
exp_years = your_life_expectancy(age)
print(f'People your age have on average {exp_years} years left - use them
wisely!')

Listing 7-10: Life-expectancy calculator—a simple heuristic—without captive user interface

The code in Listing 7-10 is functionally identical to Listing 7-9, with one
significant advantage: we can use this new function in various situations,
even those that are unexpected by the initial developer. In Listing 7-11 we
use the function to calculate the life expectancy for input ages between 0
and 99 and plot the result; note the portability gained from removing the
user input interface.

import matplotlib.pyplot as plt

def your_life_expectancy(age):
 '''Returns the expected remaining number of years.'''
 if age<85:

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

https://blog.finxter.com/clean-code/#Life_Expectancy_Calculator/

Do One Thing Well And Other Unix Principles 115

 return 72 - 0.8 * age
 return 22 - 0.2 * age

Plot for first 100 years
plt.plot(range(100), [your_life_expectancy(i) for i in range(100)])

Style plot
plt.xlabel('Age')
plt.ylabel('No. Years Left')
plt.grid()

Show and save plot
plt.savefig('age_plot.jpg')
plt.savefig('age_plot.pdf')
plt.show()

Listing 7-11: Code to plot the life expectancy for years 0–99

Figure 7-3 shows the resulting plot.

Pareto distribution

Age

0 20 40 60 80 100

N
um

be
r o

f y
ea

rs
 le

ft

70

60

50

40

30

20

10

0

Figure 7-3: How the heuristic works for input years 0–99

Okay, any heuristic is crude by design—but the focus here is on how
avoiding a captive user interface has helped us put the code to work to
produce this plot. If we hadn’t adhered to the principle, we couldn’t have
reused the original code function your_life_expectancy because the captive
user interface required a user input for each year 0 to 99. By considering
the principle, we’ve simplified the code and opened up all kinds of future
programs to use and build upon the heuristic. Instead of optimizing for one
specific use case, we’ve written the code in a general way that can be used by
hundreds of different applications. Why not create a library out of it?

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

116 Chapter 7

9. Make Every Program a Filter
There’s a good argument to be made that every program already is a filter.
A filter transforms an input to an output using a specific filtering mecha-
nism. This allows us to easily plug together multiple programs by using the
output of one as the input of another. This increases the reusability of your
code significantly. For example, it’s generally not a good practice to print
the result of a computation in the function itself—instead, the philosophy
would suggest to rather let the program return a string that can then be
printed, written into a file, or used as input for another program.

For example, a program that sorts a list can be considered a filter that
filters the unsorted elements into a sorted order, as in Listing 7-12.

def insert_sort(lst):

 # Check if the list is empty
 if not lst:
 return []

 # Start with sorted 1-element list
 new = [lst[0]]

 # Insert each remaing element
 for x in lst[1:]:
 i = 0
 while i<len(new) and x>new[i]:
 i = i + 1
 new.insert(i, x)

 return new

print(insert_sort([42, 11, 44, 33, 1]))
print(insert_sort([0, 0, 0, 1]))
print(insert_sort([4, 3, 2, 1]))

Listing 7-12: This insertion sort algorithm filters an unsorted list to a sorted list.

The algorithm creates a new list and inserts each element at the posi-
tion where all elements on the left are smaller than the inserted element.
The function uses a complex filter to change the order of the elements,
transforming the input list into a sorted output list.

If any program already is a filter, you should design it as such by using
the intuitive input/output mapping. Let me explain this next.

The gold standard of a filter is to use a homogeneous input/output map-
ping where one type of input is mapped to the same type of output. For
example, if someone talks to you in English, they expect you to respond
in English—and not in another language. Similarly, if a function takes an
input argument, the expected output is a function return value. If a pro-
gram reads from a file, the expected output is a file. If a program reads the
input from the standard input, it should write the program to the standard

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Do One Thing Well And Other Unix Principles 117

output. You get the point: the most intuitive way to design a filter is to keep
the data in the same category.

Listing 7-13 shows a negative example with heterogeneous input/output
mapping where we build an average() function that transforms the input
arguments into their average—but instead of returning the average value,
average() prints the result to the shell.

def average(*args):
 print(sum(args)/len(args))

average(1, 2, 3)
2.0

Listing 7-13: Negative example of heterogeneous input/output mapping

A better approach, shown in Listing 7-14, makes the function average()
return the average value (homogeneous input/output mapping), which you
can then print to the standard output in a separate function call using the
print() function. This is better because it allows you, for example, to write
the output into a file rather than print it—or even use it as an input for
another function.

def average(*args):
 return sum(args)/len(args)

avg = average(1, 2, 3)
print(avg)
2.0

Listing 7-14: Positive example of homogeneous input/output mapping

Sure, some programs filter from one category to another—for example,
writing a file to the standard output or translating English to Spanish. But
following the principle of creating programs that do one thing well (see
Unix Principle 1), these programs should do nothing else. This is the gold
standard of writing intuitive and natural programs—design them as filters!

10. Worse is Better
This principle suggests that developing code with less functionality is often
the better approach in practice. When resources are limited, it’s better to
release a worse product and be first on the market than strive continually
to make it better before you can release it. This principle, conceived by list
processing (LISP) developer Richard Gabriel in the late eighties, is similar
to the MVP principle from Chapter 3. Don’t take this contra-intuitive prin-
ciple too literally. Worse is not better from a qualitative perspective. If you
had infinite time and resources, it would be best always to make the pro-
gram perfect in all instances. However, in a world with limited resources,
releasing something worse will often be more efficient. For instance, a

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

118 Chapter 7

crude and straightforward solution to a problem gives you a first-mover
advantage, attracts quick feedback from the early adopters, and gains
momentum and attention early in the software development process. Many
practitioners argue that a second-mover must invest far more energy and
resources to create a far superior product that’s able to pull users away from
the first-mover.

11. Clean Code is Better Than Clever Code
I slightly modified the original principle in the Unix philosophy, clarity is
better than cleverness, first to focus the principle on programming code and,
second, to align it with the principles you’ve already learned: how to write
clean code (see Chapter 4).

This principle highlights the trade-off between clean and clever code:
clever code shouldn’t come at the cost of simplicity.

For example, have a look at the simple bubble sort algorithm in
Listing 7-15. A bubble sort algorithm sorts a list by going through it itera-
tively and switching the position of any two adjacent elements that aren’t
sorted: the smaller element goes to the left, and the larger element goes to
the right. Each time that happens, the list becomes a bit more sorted.

def bubblesort(l):
 for boundary in range(len(l)-1, 0, -1):
 for i in range(boundary):
 if l[i] > l[i+1]:
 l[i], l[i+1] = l[i+1], l[i]
 return l

l = [5, 3, 4, 1, 2, 0]
print(bubblesort(l))
[0, 1, 2, 3, 4, 5]

Listing 7-15: Bubble sort algorithm in Python

The algorithm in Listing 7-15 is readable and clear, and it achieves the
goal and doesn’t contain unnecessary code.

Now, suppose your bright colleague argues that you could shorten the
code using conditional assignments to express the if statement with one fewer
line of code (see Listing 7-16).

def bubblesort_clever(l):
 for boundary in range(len(l)-1, 0, -1):
 for i in range(boundary):
 l[i], l[i+1] = (l[i+1], l[i]) if l[i] > l[i+1] else (l[i], l[i+1])
 return l

print(bubblesort_clever(l))
[0, 1, 2, 3, 4, 5]

Listing 7-16: “Clever” bubble sort algorithm in Python

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Do One Thing Well And Other Unix Principles 119

The trick doesn’t improve the code but does reduce readability and
clarity. Conditional assignment features may be clever, but using them
comes at the cost of expressing your ideas with clean code. For more tips
on how to write clean code, please refer to Chapter 4.

12. Design Programs to Connect With Other Programs
Your programs do not live in isolation. A program is called to perform a
task, either by a human being or by another program. You therefore need to
design the API to work with the outside world—users or other programs. By
adhering to Unix Principle 9, make any program a filter, which says to ensure
the input/output mapping is intuitive, you’re already designing connected
programs rather than making them live in isolation. The great programmer
is as much an architect as a craftsman. They create new programs as a unique
combination of old and new functions and other people’s programs. As a
result, interfaces are able to be front and center of the development cycle.

13. Make Your Code Robust
A codebase is robust if it cannot be easily broken. There are two perspectives
on code robustness: the programmer’s view and the user’s view.

As the programmer, you could potentially break code by modifying it.
A codebase is therefore robust against change if even a careless programmer
can work on the codebase without being able to destroy its functionality
easily. Say you have a big, monolithic code block, and every programmer in
your organization has edit access to that whole thing. Any small change could
break the whole thing. Now, compare this to software organizations like
Netflix or Google, where every change has to go through multiple approval
levels before being deployed in the real world; changes are thoroughly
tested, so deployed code is protected against breaking changes. By adding
layers of protection, Google and Netflix have made their code more robust
compared to the fragile, monolithic codebase scenario.

One way to accomplish codebase robustness is to control access rights
so that individual developers are not able to damage the application with-
out verifying from at least one additional person that the change is more
likely to add value than damage the code. The process may come at a price
of agility, but the price is worth paying if you’re not a one-person startup.
We’ve already seen other ways to ensure code robustness throughout the
book: small is beautiful, create functions that do one thing well, use test-
driven development, keep things simple. A few other easily applied tech-
niques are the following:

•	 Use versioning systems such as Git so that you can recover previous ver-
sions of your code.

•	 Back up your application data regularly to make it recoverable (data is
not part of a versioning system).

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

120 Chapter 7

•	 Use distributed systems to avoid a single point of failure: run your
application on multiple machines to reduce the probability of a failing
machine adversely affecting your application. Say one machine has a
failure probability of 1 percent per day—it’ll fail about every 100 days.
Creating a distributed system of five machines that fail independently
can theoretically reduce your failure probability to 0.015 × 100% =
0.00000001%.

For a user, an application is robust if you cannot easily break it by pro-
viding faulty or even malicious inputs. Assume that your users will behave
like a mob of gorillas smacking the keyboard and submitting random series
of characters, and that highly skilled hackers understand the application
better than you and are ready to exploit even the smallest security issue.
Your application must be robust against both types of users.

It’s relatively simple to shield against the former group. Unit testing
is one powerful tool: test any function against any function input you can
think of, especially border cases. For example, if your function takes an
integer and calculates the square root, check that it can handle negative
inputs and 0 because unhandled exceptions would break the chain of reli-
able, simple, chainable programs. However, unhandled exceptions lead to
another more subtle problem that was brought to my attention by security
expert and technical editor of this book, Noah Spahn: providing input
to break a program can give attackers a foothold into the host operating
system. So, check your program’s ability to process all kinds of inputs and,
thereby, make your code more robust!

14. Repair What You Can—But Fail Early and Noisily
While you should repair problems in your code wherever possible, you
shouldn’t hide the errors you cannot fix. A hidden error will quickly com-
pound, becoming bigger and bigger the longer it remains hidden.

Errors have the ability to accumulate. For example, say the speech rec-
ognition system in your driving assistance app is fed faulty training data
classifying two completely different phonetic waves as the same word (see
Figure 7-4). So your code raises an error trying to map two completely dif-
ferent phonetic waves to the same English word (for example, the error may
occur as you try to store this contradictory information in an inverted index
that maps English terms to phonetic waves). You can write your code in two
ways: hide the error or propagate the error up to the application, user, or
programmer. While many coders intuitively want to hide errors from the
users to improve usability, this is not the most sensible approach. Error
messages should carry useful information. If your code makes you aware
of this problem early, you could figure out a solution in advance. You bet-
ter become aware of errors early before their consequences cumulate and
destroy millions of dollars or even human lives.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Do One Thing Well And Other Unix Principles 121

“Right”

“Left”

Classifier

“Right”

Maps phonetic waves
to English words

Figure 7-4: Classifier in training phase maps two very different phonetic waves to the
same English words.

It’s better to raise unfixable errors and hand them to the user than
bury them, even if the user doesn’t appreciate the error message and the
usability of your application decreases. The alternative is to bury the errors
until they have grown too big to ever handle.

To continue with our faulty training data example, Listing 7-17 shows
an example in which the Python classify() function takes one input argu-
ment—the wave to be classified—and returns the English word associated
with this classification. Say you’ve implemented a duplicate_check(wave, word)
function that checks whether a substantially different wave in your database
results in the same classification using the wave and word pairs. In this case,
the classification is ambiguous because two completely different waves map
to the same English word, and you should share this with the user by raising
a ClassificationError rather than returning a random guess of the classi-
fied word. Yes, the user will be annoyed, but at least they have a chance to
handle the consequences of the error themselves. Repair what you can—but
fail early and noisily!

def classify(wave):
 # Do the classification
 word = # ...

 # Check if another wave
 # results in the same word
 if duplicate_check(wave, word):

 # Do not return a random guess
 # and hide the error!
 raise ClassificationError('Not Understood')

 return word

Listing 7-17: Code snippet with noisy failure instead of random guess if the wave cannot
be classified unambiguously

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

122 Chapter 7

15. Avoid Hand-Hacking: Write Programs to Write Programs If You Can
The principle suggests that code that can be generated automatically should
be, because humans are notoriously prone to failures, especially in an activ-
ity that’s repetitive and boring. There are many ways to accomplish this—in
fact, modern high-level programming languages such as Python are com-
piled down to machine code using such programs. By writing programs to
write programs, the creators of those compilers helped high-level program-
mers to create all kinds of application software without needing to worry
about low-level hardware programming languages. Without those programs
writing programs for us, the computer industry would still be in its infancy.

Code generators and compilers already produce large amounts of source
code today. Let’s examine an additional way to think of this principle. Today,
the technologies of machine learning and artificial intelligence lift this con-
cept of writing programs to write programs to yet another level. Intelligent
machines (machine learning models) are assembled by humans and then go
on to rewrite (and tune) themselves based on data. Technically, a machine
learning model is a program that has rewritten itself many times over until
its behavior has maximized a set fitness function (usually set by humans). As
machine learning permeates (and prevails over) more areas of computer
science, this principle will become more and more relevant in modern
computing. Human programmers will still play a major role in using those
powerful tools; after all, compilers have not replaced human labor but
have instead opened up a new world of applications created by human pro-
grammers. I expect that the same will happen in programming: machine
learning engineers and software architects will design advanced applica-
tions by connecting the different low-level programs, such as machine
learning models. Well, that’s one view on the topic—yours may be more
or less optimistic!

Conclusion
In this chapter, you’ve learned 15 principles designed by the Unix creators
to write better code. It’s worth repeating them—as you read through the
list, think about how each principle applies to your current code project.

•	 Make each function do one thing well

•	 Simple is better than complex

•	 Small is beautiful

•	 Build a prototype as soon as possible

•	 Choose portability over efficiency

•	 Store data in flat text files

•	 Use software leverage to your advantage

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Do One Thing Well And Other Unix Principles 123

•	 Avoid captive user interfaces

•	 Make every program a filter

•	 Worse is better

•	 Clean code is better than clever code

•	 Design programs to be connected with other programs

•	 Make your code robust

•	 Repair what you can—but fail early and noisily

•	 Write programs to write programs

In the next chapter, you’ll learn about the impact of minimalism in
design and how it can help you design applications that delight your users
by doing less.

Resources

Mike Gancarz, The Unix Philosophy, Boston: Digital Press, 1994.

Eric Raymond, The Art of Unix, Boston: Addison-Wesley, 2004, http://
www.catb.org/~esr/writings/taoup/html/.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

http://www.catb.org/~esr/writings/taoup/html/
http://www.catb.org/~esr/writings/taoup/html/

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

8
L E S S I S M O R E I N D E S I G N

Simplicity is a way of life for coders. While
you may not see yourself as a designer,

chances are that you will create many user
interfaces in your coding career. Whether you

need to create a visually appealing dashboard as a
data scientist, an easy-to-use API as a database engineer, or a simple web
frontend to fill data into a smart contract as a blockchain developer, know-
ing the basic design principles will save the day for you and your team—and
they’re easy to grasp, too! The design principles covered in this chapter are
universal.

Specifically, you’ll explore one vital area in computer science that ben-
efits most from a minimalistic mindset: design and user experience (UX).
To get an idea of the importance of minimalism in design and UX, think of
the differences between Yahoo Search and Google Search, the Blackberry
and the iPhone, Facebook Dating and Tinder: the winning technologies
often come with a radically simple user interface. Could it be that less is more
in design?

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

126 Chapter 8

We’ll first take a brief tour of some creations that have benefited tre-
mendously from the radical focus of their creators. Later, we’ll see how you
can apply minimalism in your own design efforts.

Minimalism in the Evolution of Mobile Phones
A prime example of minimalism in computing design can be seen in the
evolution of mobile phones (see Figure 8-1). The Nokia Mobira Senator
was one of the earliest commercial “mobile” phones, released in the 1980s,
weighing 10 kg, and quite complicated to handle. A year later, Motorola
marketed its own DynaTAC 8000X model that was 10 times lighter—weigh-
ing only 1 kg. Nokia had to up its game. In 1992, Nokia came up with the
1011 at half the weight of the DynaTAC 8000X. Nearly a decade later in
2000, in accordance with Moore’s Laws, Nokia achieved mega-success with
its iconic Nokia 3310, weighing only 88 g. As mobile phone technology grew
more sophisticated and complex, the complexity of the user interface, includ-
ing the size, weight, and even number of buttons, reduced drastically. The
evolution of mobile phones proves that radically minimalistic design can be
done, even as the complexity of the applications increases by orders of mag-
nitude. You could even argue that minimalistic design has paved the way for
the success of smartphone apps and their exploding usage in today’s world.
You’d have a hard time browsing the web, using mapping services, or send-
ing video messages with the Nokia Senator!

1980 1990 2000 2010

Nokia
Senator
(1982)
10 kg

12345
6789

Motorola
DynaTAC

8000X (1983)
>1 kg

#42

Nokia 1011
(1992)
500 g

Nokia 3310
(2000)
88 g

iPhone
(2007)
135 g

Figure 8-1: Some milestones in the evolution of mobile phones

Minimalistic design is apparent not only in smartphone development.
Individual companies use it to improve UX and create focused applications.
What better example could there be than the Google search engine?

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Less Is More in Design 127

Minimalism in Search
In Figure 8-2, I’ve sketched a minimalistic design that resembles how
Google—and its copycats—designs its primary user interface as a radically
simplified gate into the web. Make no mistake, the minimalistic and clean
design is not an accident. This landing page is frequented by billions of users
every day. It may be the primary real estate on the web. A small advertisement
on the Google landing page could generate billions of clicks and, likely, bil-
lions of USD in revenue for Google, but Google hasn’t allowed these ads to
clutter its landing page, despite the loss of short-term revenue opportunity—
the company managers know that maintaining their brand integrity and
focus, expressed through the minimalistic design, is even more valuable than
the revenues generated through selling out their prime real estate.

Figure 8-2: An example of a modern search engine with a minimalist design

Now compare this clean, focused design to the kind that alternative
search engines like Bing and Yahoo use to exploit their primary real estate
(see Figure 8-3).

Figure 8-3: Search engine or news aggregator?

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

128 Chapter 8

Even for basic search engine sites, companies like Yahoo have followed
the same path: they cluttered the valuable real estate with news and advertise-
ments to boost short-term revenues. But these revenues didn’t last because
the design drove away the commodity that generated it: users. Reduced
usability led to competitive disadvantages and the continuous erosion of
users’ habitual search behavior. Any additional website element unrelated
to search increases the cognitive challenge to the user, who must ignore
attention-grabbing headlines, ads, and images. The smooth search experi-
ence is one of the reasons why Google continuously increased its market
share. The last word isn’t spoken yet, but the rising popularity of focused
search engines during the last decades indicates the superiority of minimal-
istic and focused design.

Material Design
Google developed and currently adheres to the Material Design philosophy
and design language, which describes a way to organize and design screen
elements according to what users already understand intuitively: physical
world elements such as paper, cards, pens, and shadow. Figure 8-3 from the
previous section shows such an example of material design. The website is
structured into cards, each card representing a piece of content, which cre-
ates a layout that resembles a newspaper with an image and some headline
text. The look and feel of the website are almost materialistic, even though
the three-dimensional (3D) effect is a pure illusion on the two-dimensional
(2D) screen.

Figure 8-4 compares a material design on the left and a non-material
design with unnecessary elements stripped out on the right. You could
argue that the non-material design is more minimalistic, and, in a way, you
would be right. It takes less space and uses fewer colors and fewer nonfunc-
tional visual elements like shadows. However, lacking boundaries and an
intuitively familiar layout, the non-material design is often more confusing
to the reader. The true minimalist will always use fewer costly resources to
accomplish the same task. In some cases, this means reducing the number
of visual elements on a website. In other cases, this means adding some ele-
ments to reduce the time the user has to think. As a rule of thumb: user
time is a much scarcer resource than screen space.

You can find a full introduction to material design with many beautiful
case studies at https://material.io/design/. New design systems will emerge and
users will get more and more used to digital work, so the material metaphors
may well become less useful for the next generation of computer users. For
now, just note that minimalism requires careful consideration of the relevant
resources: time, space, and money—and you must weigh them according to
the needs of your application. To sum up, minimalistic design gets rid of
all unnecessary elements and results in a beautiful product likely to delight
your users.

Next, you’ll learn how to achieve it.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

https://material.io/design/

Less Is More in Design 129

Text

Headline

Image
Card

Free text
floating around

image

Material design Non-material design

No cards or
boundary

Figure 8-4: Material versus “non-material” design

How to Achieve Minimalistic Design
In this section, you’ll learn some technical tips and methods on how to
achieve a focused, minimalistic design.

Use Whitespace
Whitespace is one of the key pillars of minimalistic design. Adding whitespace
to your application first may seem like a waste of valuable real estate. You must
be crazy not to use every inch of a highly-trafficked website, right? You could
use it for advertisements, “call to actions” to sell more products, additional
information about the value proposition, or more personalized recommenda-
tions. The more successful your app becomes, the more stakeholders will fight
for every bit of attention they can get, and it’s likely that nobody will ask you to
remove non-whitespace elements from your app.

Thinking “subtractively” may not come naturally; however, replacing
design elements with whitespace will improve clarity and result in a more
focused UX. Successful companies manage to keep the main thing the
main thing by using whitespace to remain focused and sharp. For example,
Google’s landing page uses a lot of whitespace, and Apple uses lots of
whitespace when presenting its products. When thinking about your users,
remember this: if you confuse them, you’ll lose them. Whitespace increases
the clarity of user interfaces.

Figure 8-5 shows a simple design idea for an online pizza delivery service.
The whitespace supports the focus on the main thing: getting customers
to order pizza. Unfortunately, seldomly will a pizza delivery service be bold
enough to use whitespace in such an extreme way.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

130 Chapter 8

Figure 8-5: Use lots of whitespace

Whitespace can improve the clarity with text, too. Have a look at
Figure 8-6, which compares two ways of formatting a paragraph.

Figure 8-6: Whitespace in text

The left side of Figure 8-6 is far less readable. The right side injects
whitespace to improve readability and UX: margins on the left and right
around the text block, indentation of paragraphs, an increased line height,
top and bottom margins around paragraphs, and increased font size. The
costs of this additional space are negligible: scrolling is cheap, and we don’t
have to physically cut more trees for paper when the publication is digital.
On the other hand, the benefits are very real: the UX of your website or
application improves significantly!

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Less Is More in Design 131

Remove Design Elements
The principle is simple: go over each design element, one by one, and throw
it out if possible. Design elements are any visible elements of the user inter-
face, such as menu items, calls to action, featured lists, buttons, images,
boxes, shadows, form fields, pop-ups, videos, and everything else that takes
up real estate in your user interface. Literally, go over all design elements
and ask: Can I remove it? You’ll be surprised how often the answer will be yes!

Make no mistake—removing design elements is not easy! You’ve spent
time and effort creating them, and the sunk cost bias makes you tempted to
hold on to your creations even when they’re unnecessary. Figure 8-7 shows
an idealized editing process in which you classify each element according
to its importance regarding the UX. For example, does a menu item refer-
ring to your company’s blog help the user in the checkout process when
ordering a product? No, so it should be classified as not important. Amazon
has stripped all unnecessary design elements from the ordering process,
for instance, by introducing the one-click buy button. When I first learned
about this method in a scientific writing workshop, it completely trans-
formed the way I thought about editing. Removing unimportant and less
important design elements guarantees improved usability with little risk.
But only truly great designers have the boldness to remove important design
elements and leave only very important elements. Yet, this is what separates
great from merely good design.

Very important

Important

Somehow important

Less important

Not important

Editing process

Very important

Important

Somehow important

Less important

Not important

Figure 8-7: Idealized editing process

Figure 8-8 shows an example of a cluttered design and a minimalistic,
edited design. The order page on the left is what you may well see from an
online pizza delivery service. Some elements are very important, such as
the address to which to deliver the pizza and the order button, but those
like the overly detailed ingredient list and “What’s New?” info box are less
so. On the right, you see an edited version of this order page. We removed
unnecessary elements, focused on the most popular upsells, combined the
ingredients list with the headline, and combined the labels with the form
elements. This allowed us to add more whitespace and even increase the
size of a very important design element: the image of the tasty pizza! The

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

132 Chapter 8

reduced clutter and increased focus are likely to increase the conversion
rate of the order page through an improved UX.

Figure 8-8: Remove unimportant elements. Left: Unfocused order page with many design
elements. Right: Focused order page with unnecessary design elements removed.

Remove Features
The best way to implement a minimalistic design is to remove whole fea-
tures from your application! You’ve already studied this idea in Chapter 3
about creating MVPs, which have the minimum number of features needed
to validate a hypothesis. Minimizing the number of features is equally help-
ful in helping an established business refocus its product offerings.

Over time, applications tend to accumulate features—a phenomenon
known as feature creep. As a result, more and more focus must be shifted
toward maintaining existing features. Feature creep leads to bloated soft-
ware, and bloated software leads to technical debt. This reduces the agility
of an organization. The idea behind removing features is to release energy,
time, and resources and to reinvest into the few features that matter most to
your users.

Popular examples of feature creep and its harmful effects on usability
are Yahoo, AOL, and MySpace, who all somehow lost their focused products
by adding too much stuff to the user interfaces.

In contrast, the most successful products in the world are focused
and have resisted feature creep, even if it doesn’t look like it. Microsoft is a
great example of how building focused products helped it become a super suc-
cessful company. A common perception is that Microsoft products such as
Windows are slow, inefficient, and loaded with too many features. But noth-
ing could be further from the truth! What you see is all there is—you don’t see
the myriads of features Microsoft has removed. Although Microsoft is huge,
it’s actually very focused considering its size. Hundreds of thousands of soft-
ware developers write new Microsoft code every day. Here’s what Eric Traut,

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Less Is More in Design 133

a famous engineer who’s worked for both Apple and Microsoft, has to say
about Microsoft’s focused approach to software engineering:

A lot of people think of Windows as this really large, bloated
operating system, and that may be a fair characterization, I have
to admit. It is large. It contains a lot of stuff in it. But at its core,
the kernel and the components that make up the very core of the
operating system actually is pretty streamlined.

To sum this up, when creating an application used by many users for a
long period, removing features must be a core activity of your daily effort
because it frees up resources, time, energy, and user interface space that
can be reinvested into improving features that matter.

Reduce Variations of Fonts and Colors
Extensive variability leads to complexity. If you vary the font types, font
sizes, and colors too much, it’ll increase cognitive friction, increase the
perceived complexity of the user interface, and sacrifice clarity. As a mini-
malistic coder, you don’t want to build these psychological effects into your
application. Effective minimalist design often focuses on only one or two
font types, one or two colors, and one or two different font sizes. Figure 8-9
exemplifies the consistent and minimalistic use of font types, sizes, colors,
and contrasts. That said, do note that there are many approaches to design
and many ways to accomplish focus and minimalism on all levels. A mini-
malistic design might, for instance, use many different colors to make the
playful, colorful attributes of an application stand out.

Same font sizes
Same fonts

Same font sizes

Different color/contrast
stands out

Figure 8-9: Minimalistic use of font sizes, font types, colors, and contrasts

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

134 Chapter 8

Be Consistent
An application doesn’t normally consist of a single user interface but a
series of interfaces handling the user interaction. This leads us to another
dimension of minimalistic design: consistency. We define consistency as
the degree to which we’ve minimized the variability of design choices in
a given app. Instead of presenting the user a different “look and feel” in
each step in the interaction, consistency ensures that the application feels
like a coherent whole. For example, Apple provides many iPhone apps like
browsers, health apps, or mapping services, all of which have a similar
look and feel and are recognizable as Apple products. It can be challeng-
ing to get different app developers to agree on a consistent design, but it’s
extremely important for the strength of the Apple brand. To ensure brand
consistency, software companies use brand guidelines that any contributing
developer must adhere to. Make sure to check off this box when creating
your own application. You might accomplish this with the consistent use of
templates and (CSS) stylesheets.

Conclusion
This chapter focused on how minimalistic designers have come to dominate
the world of design, exemplified by some of the most successful software
companies such as Apple and Google. More often than not, the leading
technologies and user interfaces are radically simple. Nobody knows what
the future holds, but it seems that the wide adoption of speech recognition
and virtual reality will result in even simpler user interfaces. The ultimate
minimalistic design is invisible. With ubiquitous computing on the rise—
Alexa and Siri—I think we’ll see even simpler and even more focused user
interfaces in the decades ahead. So, to answer the question posed in the
beginning: yes, less is more in design!

In the next and final chapter of this book, we’ll conclude with focus—
and its relevance for today’s programmers.

References

Documentation for the material design style: https://material.io/design/
introduction/

Apple’s documentation to human interface design: https://developer.apple
.com/design/human-interface-guidelines/

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

https://material.io/design/introduction/
https://material.io/design/introduction/
https://developer.apple.com/design/human-interface-guidelines/
https://developer.apple.com/design/human-interface-guidelines/

9
F O C U S

In this short chapter, you’ll take a quick
guide through the most important les-

sons learned from this book: how to focus.
We started this book with a discussion about

complexity, the origin of many productivity obstacles.
Here, we summarize how to tackle complexity based
on what you’ve learned in this book.

The Weapon Against Complexity
The main thesis of this book is that complexity leads to chaos. Chaos is on
the other side of focus. To solve the challenges posed by complexity, you
need to use the powerful weapon of focus.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

136 Chapter 9

To justify this argument, let’s look at the scientific concept of entropy,
well known in many scientific fields such as thermodynamics and infor-
mation theory. Entropy defines the degree of randomness, disorder, and
uncertainty in a system. High entropy means high randomness and chaos.
Low entropy means order and predictability. Entropy is at the heart of the
famous second law of thermodynamics that states that the entropy of a system
increases with time—resulting in a state of high entropy.

Figure 9-1 depicts entropy exemplifying the arrangement of a fixed
number of particles. On the left, you see a state with low entropy where the
structure of the particles resembles a house. The location of each particle is
predictable and follows a higher-level order and structure. There’s a greater
plan on how the particles must be arranged. On the right, you see a state
with high entropy: the house structure is somehow broken down. Many par-
ticles have lost their order, giving way to chaos. Over time—if no external
force exerts energy to reduce entropy—entropy will increase, and all order
will be destroyed. Ruined castles, for example, are a testament to the sec-
ond law of thermodynamics. You may ask: What does thermodynamics have
to do with coding productivity? It’ll become clear in a moment. Let’s keep
thinking from first principles.

Low entropy High entropy

Figure 9-1: State of low versus high entropy

Productivity means creating something, whether you’re building a
house, writing a book, or writing a software app. Essentially, to be produc-
tive, you must reduce entropy so that the overall resources are arranged in a
way to make your greater plan whole.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Focus 137

Figure 9-2 shows the relationship between entropy and productivity.
You are a creator and a builder. You take raw resources and move them
from a state of high entropy into a state of low entropy using focused effort
toward the attainment of a greater plan. That’s it! This is the success secret and
everything you need in life to be super productive and successful: take time
to carefully plan your course of action, set specific goals, and design regular
habits and action steps that will give you the result you want. Then apply
focused effort using all resources you possess—time, energy, money, and peo-
ple—until your plan comes true.

High entropy Low entropy

Idea + plan Force

Figure 9-2: Relationship between entropy and productivity

It may sound trivial, but most people do this wrong. They may never
apply this focused effort toward an idea’s attainment, so the idea remains
trapped in their heads. Others may live from day to day, never planning
anything new. Only if you do both—plan carefully and focus your effort—
will you become a productive person. So, to become a builder of, say, a
smartphone app, you must bring order to the chaos by planning and by
applying focused effort until you achieve your goal.

If it is that simple, why isn’t everyone doing it? The primary obstacle,
as you’ve guessed, is the complexity that often comes from a lack of focus.
If you have multiple plans or you allow your plans to change more than
necessary over time, you’re more likely to move just a few steps toward your
goal before aborting the whole thing. Only if you focus for a long enough
time on one plan can you actually accomplish it. This holds for small accom-
plishments, such as reading a book (you almost have this done!), and big
accomplishments, such as writing and publishing your first app. Focus is the
missing link.

Figure 9-3 is graphic explaining the power of focus, plain and simple.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

138 Chapter 9

Your
goal

You

Your time
and energy

Focused effort toward goal

Unfocused efforts without goal

Figure 9-3: Same effort, different result

You have limited time and energy. Say you’ve got 8 hours of full-on
time or effort in a given day. You can decide how to spend those units. Most
people spend a little bit of time on a lot of activities. For example, Bob may
spend one hour in meetings, one hour coding, one hour browsing social
media, one hour in project discussions, one hour chitchatting, one hour
editing code documentation, one hour thinking about a new project, and
one hour writing a novel. Bob is likely to achieve average results at best in
all the activities he does because he spends so little time and effort on each
of them. Alice may spend 8 hours doing one thing: coding. She does it every
day. She makes rapid progress toward her goal of publishing a successful
app. She becomes exceptional in a few things rather than average in many
things. In fact, she excels in only one powerful skill: coding. And the prog-
ress toward her goal is unstoppable.

Unifying the Principles
I started writing this book assuming that focus is just one of many productiv-
ity principles, but it quickly became apparent to me that focus is the unifying
principle of all the principles outlined in this book. Here I’ll outline how:

The 80/20 Principle

Focus on the vital few: remember that 20 percent delivers 80 percent of
the results, and ignore the trivial many, increasing your productivity by
one or two orders of magnitude.

Build a Minimal Viable Product

Focus on one hypothesis at a time, thereby reducing the complexity of
your product, reducing feature creep, and maximizing the rate of prog-
ress toward product-market fit. Before you write any line of code, figure

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

Focus 139

out a clear hypothesis about your user’s needs. Remove all features
except the absolute necessary. Less is more! Spend more time thinking
about what features to implement than actually implementing them.
Release your MVP quickly and often, and improve it over time by test-
ing and adding gradually. Use split testing to test the response of two
product variants and discard features that don’t lead to improvements
in key user metrics.

Write Clean and Simple Code

Complexity slows your understanding of the code and increases the
risk of errors. As we learned from Robert C. Martin, “The ratio of time
spent reading versus writing is well over 10 to 1. We are constantly read-
ing old code as part of the effort to write new code.” Making your code
easy to read simplifies the writing of new code. In their famous book
The Elements of Style (Macmillan Publishing Co., Inc., 1959), authors
Strunk and White suggest a timeless principle to improve your writing:
omit needless words. I suggest you extend this principle to programming
and omit needless code.

Premature Optimization is the Root of All Evil

Focus your optimization efforts where they matter. Premature optimi-
zation is the act of spending valuable resources on code optimizations
that ultimately prove to be unnecessary. As Donald Knuth tells us,
“Forget about small efficiencies, say about 97% of the time: premature
optimization is the root of all evil.” In this chapter, I discussed my top
six performance tuning tips: take metrics for comparisons, consider the
80/20 principle, invest in improving algorithms, apply the less is more
principle, cache repeated results, and know when to stop—all of which
could be summarized in a single word, focus.

Flow

Flow is a state in which you’re completely involved in the task at hand—
you’re focused and concentrated. Flow researcher Csikszentmihalyi laid
out three conditions to achieve flow. (1) Your goals must be clear. Every
line of code leads you closer to the successful completion of the larger
code project. (2) The feedback mechanism in your environment must be pres-
ent, and, preferably, immediate. Find people, in person or online, to review
your work, and follow the MVP principle. (3) There’s a balance between
opportunity and capacity. If the task is too easy, you’ll lose the rush of
excitement; if it’s too hard, you'll throw in the towel early. If you follow
these conditions, you’re more likely to achieve a state of pure focus. Ask
yourself daily: What can I do today to push my software project to the
next level? This question is challenging but not overwhelming.

Do One Thing Well (Unix)

The basic idea of the Unix philosophy is to build simple, clear, concise,
modular code that is easy to extend and maintain. This can mean many

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

140 Chapter 9

different things, but the goal is to allow many humans to work together
on a codebase by prioritizing human over computer efficiency, favoring
composability over monolithic design. You focus every function on one
purpose only. You’ve learned 15 Unix principles to write better code,
including small is beautiful, make each function do one thing well, build a
prototype as soon as possible, and fail early and noisily. If you keep the focus
rule at the top of your mind, you’ll do just fine in regards to these prin-
ciples without necessarily needing to memorize every one of them.

Less is More in Design

This is about focusing your design with minimalism. Think of the dif-
ferences between Yahoo Search and Google Search, the Blackberry
and the iPhone, and OkCupid and Tinder: the winner technologies are
often those with a radically simple user interface. By using a minimal-
istic web or app design, you focus on the one thing you’re doing best.
Focus the user’s attention on the unique value your product provides!

Conclusion
Complexity is your enemy because it maximizes entropy. As a builder and
creator, you want to minimize entropy: the pure act of creation is one of
minimizing entropy. You accomplish this by applying focused effort. Focus
is the success secret of every creator. Keep in mind what both Warren
Buffett and Bill Gates considered the secret of their success: focus.

To implement focus in your work, ask yourself these questions:

•	 On which software project do I want to focus my efforts?

•	 Which features do I want to focus on to create my MVP?

•	 What is the minimal number of design elements I can implement to
test the viability of my product?

•	 Who will use my product and why?

•	 What can I remove from my code?

•	 Do my functions do one thing only?

•	 How can I achieve the same result in less time?

If you keep asking yourself these or similar focusing questions, the money
and time you spent on this book have been well worth it.

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

L E T T E R F R O M T H E A U T H O R

You made it through the whole book, and
you’ve gained insight into how to practically

improve your programming skills. You’ve
studied the tactics of writing clean and simple

code and the strategies of successful practitioners.
Allow me to wrap this book up with a personal note!

Having studied the complexity conundrum, you may ask: If simplifi-
cation is so powerful, why isn’t everybody doing it? The problem is that
implementing simplification, despite its great benefits, takes an enormous
amount of guts, energy, and willpower. Organizations big and small will
often firmly resist removing work and simplifying. Someone was respon-
sible for implementing, maintaining, and managing these features, and
they’ll often fight tooth and nail to keep their work even if they know it is
largely irrelevant. The problem is one of loss aversion—it’s hard to let go of

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

142 Letter From The Author

anything that provides even the slightest of value. This is something to fight
against; I’ve never regretted any simplification measure I’ve taken in my
life. Pretty much everything has value, but it’s important to consider how
much you pay for the value you get. When I started my Finxter educational
site, I consciously decided to largely ignore social media, and immediately
I started to see notable positive results from the additional time I gained to
spend on things that move the needle. Simplification is beneficial not just
to coding but to all areas of life; it has the power to make your life more
efficient and calmer at the same time. Hopefully, by reading this book, you
have become more open to simplification, reduction, and focus. If you do
decide to follow the route of simplification, you’ll be in good company:
Albert Einstein believed that“a simple and unassuming manner of life is best for
everyone, best both for the body and the mind.” Henry David Thoreau concludes:
“Simplicity, simplicity, simplicity! I say, let your affairs be as two or three, and not a
hundred or a thousand.” And Confucius knew that “Life is really simple, but we
insist on making it complicated.”

To help you with your continuous effort to simplify, I’ve created a one-
page book summary as a Portable Document Format (PDF) that you can
download on the book’s companion page, print, and pin to your office wall
at https://blog.finxter.com/simplicity/. Feel free to also sign up for my free Finxter
email academy, which teaches short and simple lessons about program-
ming—we generally focus on exciting tech industries such as Python, data
science, blockchain development, or machine learning—but we also discuss
productivity tips and tricks regarding minimalism, freelancing, and busi-
ness strategy.

Before you leave, please allow me to express my deep gratitude for you
spending so much time with me. My life goal is to help people get more done
through code, and I hope this book will help you accomplish that. I hope
you have gained insights into how you can boost your coding productivity by
doing less. And I hope you start your first, or next, coding project as soon as
you turn this page—and you remain active in the Finxter community of like-
minded coders. Cheers toward your success!

The Art of Clean Code (Early Access) © 2022 by Christian Mayer

https://blog.finxter.com/simplicity/

	Introduction
	Chapter 1: How Complexity Harms Your Productivity
	Chapter 2: The 80/20 Principle
	Chapter 3: Build a Minimum Viable Product
	Chapter 4: Write Clean and Simple Code
	Chapter 5: Premature Optimization is the Root of All Evil
	Chapter 6: Flow
	Chapter 7: Do One Thing Well And Other Unix Principles
	Chapter 8: Less Is More in Design
	Chapter 9: Focus
	Letter From The Author

