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front matter

preface

A mentor of mine once told me, at the beginning of my tech career, “If
there’s one thing you can do to better your career, it’s contributing to
open source.” I’d harbored that thought in the back of my mind
throughout the years but never had a reason to do so. I thought,
“What could I build that would be useful for others?” While working at
1904labs I developed the ECO API for (at the time) Twitter Heron. It
came from a client’s need—and from a little bit of selfishness; I really
wanted to write and contribute that code. Eventually, Twitter donated
Heron to the Apache Foundation, and I was invited to be a committer
and part of the project management committee for Heron. The project
interested me because it was the first open source project I did a
deep dive on.

About a year later, from that initial commit on Heron’s main branch at
about 4 p.m. on a Monday, I received an email with the subject line,
“Apache Heron Book or Course Project” from Eleonor Gardner. After
a quick read, I almost discarded the email, thinking it was a hoax.
After all, why would anyone want me to write a book or teach a
course project? Well, how wrong was I? After a discussion with Mike
Stephens, Manning’s associate publisher, and a few email exchanges
with his assistant, Eleonor, I knew I needed some help. I reached out
to my friend and fellow Apache Heron committer, Ning Wang, praying



that he’d be interested in writing a book with me. Luckily, he was—
and that was the start to our long and rewarding journey.

Initially, the conversations about this book were for us to write
specifically about Heron. But Ning had some ideas to make the book
better. After all, technologies change quickly and breaking changes in
software can make a book obsolete quickly. We wanted to write about
a topic that would live beyond individual streaming frameworks. We
agreed to write a framework-agnostic book to teach the core
concepts in a way that would allow readers to be able to jump into
any streaming framework’s documentation and hit the ground
running.

So, we started writing the book using only words and then Ning and I
were “gently” guided to try another approach. Again. And again. And
again. And again. We learned that diagrams make the content of a
book much easier for readers to absorb. We created our first
diagrams on paper with pen, and they were dismal:



Over the course of writing the book, our primitive-looking, scrawled
creations evolved into the diagrams you now see in the book. Ning
and I designed and developed all of these diagrams ourselves. We
are extremely proud of what we have created, and we hope that you
see value in this book.

—Josh Fischer, November 2021

acknowledgments



First, I must thank my kids and my ever-so-wonderful partner,
Melissa. She is the most patient and fabulous person anyone could
ever ask for. She has helped me endure all the tough spots of life
while writing this book. My kids—Aiden, Wes, Hollyn, Oliver, Declan,
and Dylan—have been patient, and often self-entertaining, on the late
nights or early mornings while I took time to write.

Thank you, Ning, for sticking with me through the process of writing.
Learning from you has been one of the greatest benefits of writing
this book.

I must thank Dan Tumminello, Dave Lodes, Laura Stobie, Jim Towey,
Steve Willis, Mike Banocy, Sean Walsh, Pavan Veeramachineni,
Robert McMillan, Chad Storm, Karthik Ramasamy, and Chandra
Shekar. All of them have been a great influence on me personally and
professionally.

Last but not least, I want to thank Bert Bates. He is without a doubt
the most patient, forgiving, and all-around fantastic teacher I have
ever had. Becky Whitney always participated in conversations that
may have been tough, but kept us on track to deliver for Manning.
Thank you, Mike Stephens, for giving me a chance. Eleonor Gardner
set up our initial conversations, and, finally, Andy Marinkovich and
Keri Hales, who put the finishing touches on the book.

To all the reviewers, Andres Sacco, Anto Aravinth, Anupam
Sengupta, Apoorv Gupta, Beau Bender, Brent Honadel, Brynjar
Smári Bjarnason, Chris Lundberg, Cicero Zandona, Damian Esteban,
Deepika Fernandez, Fernando Antonio da Silva Bernardino,
Johannes Lochmann, Kent R. Spillner, Kumar Unnikrishnan, Lev
Andelman, Marc Roulleau, Massimo Siani, Matthias Busch, Miguel
Montalvo, Sebastián Palma, Simeon Leyzerzon, Simon Seyag, and



Simon Verhoeven: your comments, questions, and concerns have all
made this a better book. Thank you.

—Josh Fischer, November 2021

Two years! I have lost count of how many people I need to thank.
This book wouldn’t be possible without any of the people listed here,
as well as many others not listed.

Firstly, it wouldn’t be possible for me to complete this book without my
daughter’s understanding and support. I owe you two years of
weekends, Xinyi! It has also been more than two years since I visited
my parents, Jili Wang and Shujun Liu, and my sister, Feng Wang, in
China. I miss them very much.

Many thanks to my co-author, Josh. What a ride it has been! It
wouldn’t have been possible without your creativity and excellent
ideas.

I believe in the power of data processing, and I feel so grateful that I
have the chance to work with many great engineers. Many of the
things I have learned from you are critical for this book: thank you to
Maosong Fu, Neng Lu, Huijun Wu, Dmitry Rusakov, Xiaoyao Qian,
Yao Li, Zhenxiao Luo, Hao Luo, Mainak Ghosh, Da Cheng, Fred Dai,
Beinan Wang, Chunxu Tang, Runhang Li, Yaliang Wang, Thoms
Cooper, and Faria Kalim of the Real-Time Compute team at Twitter;
Pavan Patibandla, Farshad Rostamabadi, Kurt Norwood, Julien
Dubeau, Cathy Nam, Leo Zhang, Neha Bhambhani, Nick Wu, Robyn
Nason, Zachery Miranda, Jeffrey Wang, and Nirmal Utwani of the
Data Pipeline team at Amplitude; and many others in the Apache
Heron community.



As a first-time writer (and in English!), it would be a mission
impossible for me without all the help I received from the hardworking
Manning editors. Thank you so much Bert Bates, Becky Whitney,
Jennifer Houle, Matthew Spaur, and the many other editors and
reviewers who contributed. I have learned so much from you!

—Ning Wang, November 2021

about this book

Grokking Streaming Systems helps you unravel what streaming
systems are, how they work, and whether they’re right for your
business. Because they’re written to be tool-agnostic, you’ll be able to
apply what you learn no matter which framework you choose. You’ll
start with the key concepts and then work your way through
increasingly complex examples, including tracking a real-time count
of IoT sensor events and detecting fraudulent credit card transactions
in real time. You’ll even be able to easily experiment with your own
streaming system by downloading the custom-built and super-
simplified streaming framework designed for this book. By the time
you’re done, you’ll be able to assess the capabilities of streaming
frameworks and solve common challenges that arise when building
streaming systems.

Who should read this book?

We have written this book for developers who have at least a couple
of years of experience and who are looking to improve their
knowledge and expertise. If you’ve been building web clients, APIs,



batch jobs, etc., and are wondering what’s next, then this book is for
you.

How this book is organized: A road map

This book has a simple setup—just 11 chapters split into two parts;
after you work your way through chapters 1 through 5 in order, you
should be able to work through the remaining chapters in any order
you choose. Here’s the rundown:

Chapter 1 introduces readers to streaming systems from a
1,000-foot view and compares them against other typical
computer systems.
Chapter 2 delves into the fundamental ways in which streaming
systems work.
Chapter 3 discusses parallelization, data grouping, and how
streaming jobs can scale.
Chapter 4 covers stream graphs and how streaming jobs can be
represented.
Chapter 5 walks you through delivery semantics, such as how a
developer can use a streaming system to reliably deliver events
(or not).
Chapter 6 reviews the core concepts and offers a preview of later
chapters.
Chapter 7 discusses windows—how these systems can help you
slice up endless streams of data.
Chapter 8 describes streaming joins, or bringing data together in
real time.



Chapter 9 tells you all about how streaming systems handle
failures.
Chapter 10 lets you know how streaming systems deal with
stateful operations in real time.
Chapter 11 wraps up the later chapters and offers our advice on
where to go next with your interest in streaming systems.

About the code

We’ve provided code for chapters 2, 3, 4, 5, 7, and 8. You can
download it from
https://github.com/nwangtw/GrokkingStreamingSystems. In addition,
the source code can be downloaded free of charge from the Manning
website at https://www.manning.com/books/grokking-streaming-
systems. To run the examples, you will need Java 11, Apache Maven
3.8.1, and the command-line tool Netcat, or NMap.

This book contains many examples of source code, both in numbered
listings and in line with normal text. In both cases, source code is
formatted in a fixed-width font to separate it from ordinary
text. Sometimes code is also shown in bold to indicate that it has
changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code. In many cases, the original
source code has been reformatted; we’ve added line breaks and
reworked indentation to accommodate the available page space in
the book. In rare cases, even this was not enough, and listings
include line-continuation markers (➥). Additionally, comments in the
source code have often been removed from the listings when the
code is described in the text. Code annotations accompany many of
the listings, highlighting important concepts.

https://github.com/nwangtw/GrokkingStreamingSystems
https://www.manning.com/books/grokking-streaming-systems


liveBook discussion forum

Purchase of Grokking Streaming Systems includes free access to
liveBook, Manning’s online reading platform. Using liveBook’s
exclusive discussion features, you can attach comments to the book
globally or to specific sections or paragraphs. It’s a snap to make
notes for yourself, ask and answer technical questions, and receive
help from the author and other users. To access the forum, go to
https://livebook.manning.com/book/grokking-streaming-
systems/discussion/. You can also learn more about Manning’s
forums and the rules of conduct at
https://livebook.manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a
meaningful dialogue between individual readers and between readers
and the author can take place. It is not a commitment to any specific
amount of participation on the part of the authors, whose contribution
to the forum remains voluntary (and unpaid). We suggest you try
asking them some challenging questions lest their interest stray! The
forum and the archives of previous discussions will be accessible
from the publisher’s website as long as the book is in print.

about the authors
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Part 1. Getting started with streaming
Part 1 of this book drops you head-first into the world of streaming
systems. It can help you answer questions, such as “Why do
streaming systems work this way?” and “Why would I ever use
them?” Chapter 1 describes the high-level differences in what sets
streaming systems apart from others. Chapter 2 is the hello world of
streaming, where we walk you through the fundamentals of how
these streaming systems work. Chapter 3 describes how to scale out
these systems, and chapter 4 shows you how data can traverse
streaming jobs. Chapter 5 spells out how these systems can help
you reliably deliver data in real time, and chapter 6 recaps the
important points from each chapter. By the end of part 1, you will
have the knowledge necessary to jump into any streaming
framework of your choice and hit the ground running.



1 Welcome to Grokking Streaming
Systems

In this chapter

an introduction to stream processing
differentiating between stream processing systems and other
systems

“If it weren’t for the rocks in its bed, the stream would have no

song.”

—C��� P������

In this chapter, we will try to answer a few basic questions about
streaming systems, starting with “what is stream processing?” and
“what are these stream processing systems, or streaming systems,
used for?” The objective is to cover some basic ideas that will be
discussed in later chapters.

What is stream processing?

Stream processing has been one of the most popular technologies in
the recent years in the big data domain. Streaming systems are the
computer systems that process continuous event streams.



A key characteristic of stream processing is that the events are
processed as soon as (or almost as soon as) they are available. This
is to minimize the latency between the original event’s entrance into
the streaming system and the end result from processing the event.
In most cases, the latency varies from a few milliseconds to seconds,
which can be considered real-time or near real-time; hence, stream
processing is also called real-time processing. From the usage point
of view, stream processing is typically used for analyzing different
types of events. As a result, the terms real-time analytics, streaming
analytics, and event processing might also be used to reference
stream processing systems in different scenarios. In this book, stream
processing is the chosen term, which is well-adopted by the industry.

Examples of events:

Here are a few examples of events:

The mouse clicks on a computer
The taps and swipes on a cell phone
The trains arriving at and leaving a station
The messages and emails sent out by a person
The temperatures collected by sensors in a laboratory
The interactions on a website (page views, user logins, clicks,
and so on) from all users
The logs generated by computer servers in a data center
The transactions of all accounts in a bank

Note that, typically, there isn’t a predetermined ending time for the
events processed in streaming systems. You can think of them as
never-ending; hence, the events are often considered continuous and



unbounded. Events are everywhere—literally. We are living in the
information age. A lot of data is generated, collected, and processed
all the time.

Think about it
Stream processing systems are
the computer systems designed to
process continuous event
streams.

Streaming system examples

Let’s look at two examples:

The first example is a temperature-monitoring system in a
laboratory. Many sensors are installed in different locations to
collect temperature data every second. The streaming system is
built to process the collected data and display the real-time
information in a dashboard. It can also trigger alerts when any
anomaly is detected. Laboratory administrators use the system
to monitor all the rooms and make sure the temperature is in the
right range.



The second example is the monitoring and analyzing systems
that process user interactions, such as page views, user logins,
or button clicks on a website. When you visit a website, it is
common that a lot of events are logged. These raw events often
have many fields, so it is not efficient to digest directly. Also,
some of the fields are not human-readable and need to be
translated before consuming. Streaming systems are very helpful
for converting the raw events data into more useful information,
such as number of requests, active users, views on each page,
and suspicious user behaviors, in this context.

In the examples above, a huge number of events can be processed
by streaming systems to dig out useful information hidden in the data
in real time. Streaming systems are very useful because there is a lot
of useful information hidden in these events, and real time is critical in
many cases.

Streaming systems and real time

A streaming system refers to a system that extracts useful
information from continuous streams of events. More specifically, as
we mentioned at the beginning of this section, we would like
streaming systems to process the events and generate results as
soon as possible after the events are collected. This is desirable
because it allows the results to be available with minimal delays and
the proper reactions to be performed in time. Their real-time nature



makes streaming systems very useful in many scenarios, such as the
laboratory and the website, where low-latency results are desired.

In the laboratory, the monitoring system can trigger alerts, start
backup devices automatically, and notify the administrators, when
necessary. If failed equipment is not repaired or replaced in time and
the temperature is not under control, the temperature-sensitive
devices and samples could be affected or damaged. Some ongoing
experiments may be interrupted as well. For a website, in addition to
monitoring issues, charts and dashboards generated by streaming
systems could be helpful for developers to understand how users
engage with the website so they can improve their products
accordingly.

How a streaming system works

After seeing some examples of events and streaming systems, you
should now have some ideas about what streaming systems are. The



next few pages will show you how streaming systems work from a
very high level by comparing them with other types of systems.

Comparison of four typical computer
systems

You’ll find that stream processing systems and other computer
systems have many things in common. After all, a streaming system
is still a computer system. Below are a few typical systems we chose
to compare:

Applications
Backend services
Batch processing services
Stream processing services

Applications

An application is a computer program that users interact with directly.
Programs installed on your computer and apps installed on your
smartphone are applications. For example, the calculator, text editor,
music and video players, messenger, web browser, and games
installed on a computer or smartphone are all applications. They are



everywhere! Users interact with computers via all kinds of
applications.

Users use applications to perform tasks. You can create a note or a
book in a text editor and save it in a file. If you have a video file, you
can use a video player application to open and play it. You can use a
web browser to search for information, watch videos, and shop on the
internet.

Inside an application

Applications will vary a lot. A command-line tool, a text editor, a
calculator, a photo processor, a browser, and a video game look and
feel significantly different from each other. Have you ever thought of
them to be the same type of software? Internally, they are even more
different. A simple calculator can be implemented with a few lines of
code, while a web browser or a game has millions of lines in its code
base.

Despite all the differences, the basic process in most applications are
similar: there is a starting point (when the application is opened), an
ending point (when the application is closed), and a loop (the main
loop) of the following three steps:

1. Get user input
2. Execute logic
3. Show results



Backend services

A backend service is a computer program that runs behind the
scenes. Different from an application, a backend service doesn’t
interact with users directly. Instead, it responds to requests and
performs specific tasks accordingly. A service is normally a long-
running process, and it waits for incoming requests all the time.

Let’s look at a simple web service as an example. When a request is
received, the program parses the requests, performs tasks
accordingly, and, finally, responds. After a request is handled, the
program waits for the next request again. The web service is often
not working alone. It works with other services together to serve the
requests. Services can handle requests from each other, and each
one is responsible for a specific task. The figure below shows a web
service and a storage service working together to serve a page
request.



Inside a backend service

Inside a backend service, there is a main loop, too, but it works
differently, because the requests processed by a service are quite
different from the user inputs in an application. Because an
application is normally used by a single user, checking the user input
at the beginning of the main loop is normally sufficient, but in a
backend service, many requests can arrive at the same time, and the
requests can arrive at any moment. To handle the requests promptly,
multi-threading is an important technique for this use case. A thread
is a subtask executed within a process; multiple threads can exist
within the context of one process. Multiple threads share the
process’s resources like memory, and they can be executed
concurrently.



A typical service looks like the previous diagram. When a request is
received, the request handler creates a new thread to perform the
real logic, and it returns immediately without waiting for the results.
The time-consuming calculation (the real logic) is then performed
concurrently on its own thread. This way, the main loop runs very
quickly, so the new incoming requests can be accepted as soon as
possible.

Batch processing systems

Both applications and backend services are designed to serve clients
(human users or remote requests) as soon as possible. Batch
processing systems are different. They are not designed to respond



to any input. Instead, they are designed to execute tasks at
scheduled times or when resources permit.

You can see real-life examples of batch processing systems fairly
often. For example, in a post office, mail is collected, sorted,
transported, and delivered at scheduled times because it is more
efficient this way. It would be hard to imagine a system in which
someone accepts your handwritten letter, runs out the door, and tries
to deliver the letter to the recipient immediately. Well, it could work,
but it would be super inefficient, and you would need a really good
excuse to justify the effort.

Nowadays, huge amounts of data, such as articles, emails, user
interactions, and the data collected from services and devices, are
generated every second. It is critical and challenging to process the
data and find useful information. Batch processing systems are
designed for this use case.

Look!
Batch processing systems are
designed to process huge
amounts of data efficiently.

Inside a batch processing system

In a typical batch processing system, the whole process is broken
into multiple steps, or stages. The stages are connected by storages



that store intermediate data.

In our example, the incoming data is processed in batches (an
example could be user interaction data for each hour on a website).
When new data is available (the whole batch is received and ready to
be processed), stage 1 is started to load the data and execute its
logic. The results are persisted in the intermediate storage for the
following stages to pick up and process. After all the data in the batch



is processed by the stage, the stage is shut down and the next stage
(stage 2 in the diagram above) is started to execute on the
intermediate results generated by stage 1. The processing is
completed after the batch is processed by all the stages.

Stream processing systems

The batch processing architecture is a very powerful tool in the big
data world. However, batch processing systems have one major
limitation: latency.

Batch processing systems require data to be collected and stored as
batches at regular intervals, such as hourly or daily before starting.
Any events collected in a particular time window need to wait until the
end of the window to be processed. This could be unacceptable in
some cases, such as for the monitoring system in a laboratory, where
alerts will be triggered in the following hour with a batch processing
system. In these cases, it could be more desirable for data to be
processed immediately after it is received—in other words, to get the
results in real time. Stream processing systems are designed for
these more real-time use cases. In a stream processing system, data
events are processed as soon as possible once they are received.

We have used the post office as our real-world example of a batch
processing system. In this system, mail is collected, transported, and
delivered a few times a day at scheduled times. A real-world example
of a stream processing system could be an assembly line in a factory.
The assembly line has multiple steps, too, and it keeps running to
accept new parts. In each step, an operation is applied to one product



after another. At the end of the assembly line, the final products come
out one by one.

Look!
Stream processing systems are
designed to process huge
amounts of data with low latency.

Inside a stream processing system

A typical stream processing system architecture looks similar to the
batch processing systems. The whole process is broken into multiple
steps called components, and data keeps flowing from component to
component until the processing steps have completed.



The major difference between stream processing systems and batch
processing systems is that the components are long running
processes. They keep running and accepting new data to process.
Each event will be processed immediately by the next component
after it is processed by the previous component. Therefore, the final
results will be generated shortly after an event is received by the
streaming system.



The advantages of multi-stage
architecture

Both batch and stream processing systems have a multi-stage
architecture. This architecture has a few advantages that make it
suitable for data processing use cases:

More flexible—Developers can add or take away stages to their
jobs as they see fit.
More scalable—Stages are connected, but each of them is
independent from each other. If one stage becomes the
bottleneck of the whole process with the existing instances
(instances 1 through 3 in the diagram below), it is easy to bring
up more instances (instances 4 and 5) to increase the
throughput.
More maintainable—Complicated processes can be composed
with simple operations, which are easier to implement and
maintain.



The multi-stage architecture in batch
and stream processing systems

Batch processing systems



In batch processing systems, stages run independently of each other,
and instances in the same stage also run independently of each
other. This means they are not all running at the same time. All the
instances in the system can be executed one by one or batch by
batch, as long as the execution order is correct. As a result, you can
build a batch processing system to process a huge (we really mean
it) amount of data with very limited resources (though it will take more
time to process with fewer resources). To compensate for the
overhead of persistence of intermediate data, normally it is more
efficient to process events in bigger batches. For example, hourly or
daily are common batching windows. The events happening at the
beginning of a window have to wait for the whole hour or day to be
closed before being processed. This is the cause of the high latency.

One major advantage is that failure handling is easy with batch
processing systems. In case an issue happens, such as a computer
crashing or failing to read or write data, the failing step can simply be
rescheduled on another machine and rerun.

Stream processing systems

On the streaming side of things, all the steps are long running
processes. Events are transferred from one to another continuously.
As a result, we don’t have the ability to stop stages when they are not
working properly anymore, and failure handling becomes more
complicated. However, events are being processed as soon as
possible, so we can get real-time results.

Compare the systems



Let’s compare the systems we have introduced in this section to have
a better idea how different types of computer systems work.

Application Backend
service

Batch
processing
system

Stream
processing
system

Process
user inputs

Process
requests

Process data Process data

Interact with
users
directly

Interact with
clients and
other services
directly. Interact
with users
indirectly.

Apply operations
on data. The
results can be
consumed by
users directly or
indirectly.

Apply operations
on data. The
results can be
consumed by
users directly or
indirectly.

Applications
are started
and
stopped by
users.

Instances of a
service are long
running
processes.

Instances in the
system are
scheduled to start
and stop.

Instances in the
system are long
running processes.

Single main
loop

Single main
loop with
threads

Multi-stage
process

Multi-stage
process



A model stream processing system

After looking at a few different systems, let’s focus on stream
processing systems. From the previous section, you have learned
that a streaming system consists of multiple long running component
processes.



The answer to the question depends on the systems you want to
build. What do you want to do? How big is the traffic? How many
resources do you have? How will you manage these resources? How
will you recover from a failure? How will you make sure the results
are correct after the recovery? There are many questions to consider
when building a stream processing system. So, the answer seems to
be a yes?

Well, yes, streaming systems can be fairly complicated, but they are
not that hard to build either. In the next chapters, we are going to
learn how to build streaming systems and how they work internally.
Are you ready?



Summary

In this chapter, we learned that stream processing is a data
processing technology that processes continuous events to get real-
time results. We also studied and compared typical architectures of
four different types of computer systems to understand how stream
processing systems differ from the others:

Applications
Backend services
Batch processing systems
Stream processing systems

Exercise

1. Can you think of more examples of applications, services, batch
processing systems, and stream processing systems?



2 Hello, streaming systems!

In this chapter

learning what events are in streaming systems
understanding the different streaming components
assembling a job from streaming components
running your code

“First, solve the problem. Then, write the code.”

—J��� J������

The chief needs a fancy tollbooth





It started as HTTP requests, and it
failed

As technology has quickly advanced over the years, most of the
manual parts of tollbooths have been replaced with IoT (Internet of
Things) devices. When a vehicle enters the bridge, the system is
notified of the vehicle type by the IoT sensor. The first version of the
system is to count the total number of vehicles by type (cars, vans,
trucks, and so on) that have crossed the bridge. The chief would like
the result to be updated in real time, so every time a new vehicle
passes, the corresponding count should be updated immediately.

AJ, Miranda, and Sid, as usual, started out with the tried and true
backend service design that used HTTP requests to transfer data.
But it failed.



Traffic increased for the holidays. The system took on a load that it
couldn’t handle. The latency of the requests caused the system to fall
behind, leading to inaccurate up-to-date results for the chief and a
headache for AJ and Miranda.

AJ and Miranda take time to reflect





AJ ponders about streaming systems



Without getting too far into the details of networking and packet
exchanges, there is a difference in how streaming systems
communicate over systems that use the http backend service
architecture. The main difference in the backend service design is
that a client will send a request, wait for the service to do some
calculations, then get a response. In streaming systems, a client will
send a request and not wait for the request to be processed before
sending another. Without the need to wait for data to be processed,
systems can react much more quickly.

Still a little unclear? We will get you more details step by step as we
continue in this chapter.

Comparing backend service and
streaming

Backend service: A synchronous model



Streaming: An asynchronous model

How a streaming system could fit

At a high level, AJ gets rid of the request/response model and
decouples the process into two steps. The diagram below shows how



a streaming system would fit in the scenario of counting vehicles that
cross the bridge. We will cover the details in the rest of the chapter.

Queues: A foundational concept



Before moving forward, let’s take a particular look at a data structure:
a queue. It is heavily used in all streaming systems.

Traditional distributed systems typically communicate via the
request/response model—also known as the synchronous model.
With streaming systems this is not the case, as the request/response
model introduces unneeded latency when working with real-time data
(technically speaking, near real-time could be more accurate, but
streaming systems are often considered to be real-time systems). At
a high level, distributed streaming systems keep a long running
connection to components across the system to reduce data transfer
time. This long running connection is for continually transferring data,
which allows the streaming systems to react to events as they occur.

All distributed systems have some form of process running under the
hood to transfer data for you. Among all the options, a queue is very
useful to simplify the architecture for streaming use cases:

Queues can help decouple modules in a system so that each
part can run at its own pace without worrying about the
dependencies and synchronization.
Queues can help systems process events in order, since they
are a FIFO (first in first out) data structure.



However, using queues to order continually transferring data is not all
rainbows and sunshine. There can be many unexpected pitfalls when
guaranteeing how data is processed. We will cover this topic in
chapter 5.

Data transfer via queues

Take a minute or two to understand the diagram below. It shows two
components and the intermediate queue of events between them, as
well as the queues to the upstream and the downstream components.
This transferring of data from one component to the next creates the
concept of a stream, or continuously flowing data.

Process and thread
In computers, a process is the execution of a program, and a
thread is an execution entity within a process. The major
difference between them is that multiple threads in the same



process share the same memory space, while processes have
their own memory spaces. Both of them can be used to
execute the data operation processes in the diagram that
follows. Streaming systems might choose either one (or a
combination of both) according to their requirements and
considerations. In this book, to avoid confusion, process is the
chosen term (unless explicitly stated otherwise) to represent
independent sequence of execution no matter which one is
really in the implementation.

Our streaming framework (the start of
it)

During the initial planning phases for writing this book, several
discussions took place on how to teach streaming concepts without



tight coupling to a specific streaming technology for its examples.
After all, it’s known that technology is advancing every day, and
keeping the book up to date with ever-changing technology would
have been extremely challenging. We feel that a lightweight
framework, which we creatively named the Streamwork, will help
introduce the basic concepts in streaming systems in a framework-
agnostic way.

The Streamwork framework has an overly simplified engine that runs
locally on your laptop. It can be used to build and run simple
streaming jobs, which can hopefully be helpful for you to learn the
concepts. It is limited in terms of functionality that is supported in
widely used streaming frameworks, such as Apache Heron, Apache
Storm, or Apache Flink, which stream data in real time across
multiple physical machines, but it should be easier to understand.

One of the most interesting aspects (in our opinion) of working with
computer systems is that there’s not a single correct way to solve all
problems. In terms of functionality, streaming frameworks, including
our Streamwork framework, are similar to each other, as they share
the common concepts, but internally, the implementations could be
very different because of considerations and tradeoffs.

Think about it!
It would be a lot of work to build streaming systems from
scratch. Frameworks take care of the heavy lifting, so we can
focus on the business logic. However, sometimes it is
important to know how frameworks work internally.



The Streamwork framework overview

Generally, streaming frameworks have two responsibilities:

Provide an application programing interface (API) for users to
hook up customer logic and build the job
Provide an engine to execute the streaming job

We will see the API later. It should be understood that the goal of this
book is not to teach you how to use the Streamwork API. The
framework is used only as a framework-agnostic tool. Let’s look at the
engine first. The following diagram attempts to describe at a high
level all of the moving pieces in the Streamwork framework. It should
be understood that there is another process that starts each of the
executors, and each executor starts a data source or a component.
Each executor is standalone and does not stop or start other
executors.



The framework is very simple in this chapter. However, all the
components mentioned are comparable to real streaming frameworks
components. The Streamwork framework will evolve in later chapters
when more functionality is added.

Zooming in on the Streamwork engine

We are going to zoom in to show in detail how executors apply user
logic on events.



Core streaming concepts



There are five key concepts in most streaming systems: event, job,
source, operator, and stream. Keep in mind that these concepts apply
to most streaming systems with a one-to-one mapping.

If we ignore the executors and only look at user-defined objects, we
get a new diagram to the right, which is a cleaner (more abstract)
view of the streaming system without any details. This diagram (we
call it a logical plan) is a high-level abstraction that shows the
components and structure in the system and how data can logically
flow through them. From this diagram, we can see how the source
object and the operator object are connected via a stream to form a
streaming job. It should be known that a stream is nothing more than
a continuous transfer of data from one component to another.



More details of the concepts

The diagram below shows the five key concepts, event, job, source,
operator, and stream, with more details.

We will cover how the concepts are used in a streaming system as
we walk through the different parts of your first streaming job. For
now, make sure the five key concepts are crystal clear.

The streaming job execution flow



With the concepts we have learned in the last two pages, you can
now visualize this vehicle count streaming job of two components and
one stream between them to look like the image on the right.

The sensor reader brings data in from the sensor and stores the
events in a queue. It is the source.
The vehicle counter is responsible for counting vehicles that pass
through the stream. It is an operator.
The continuous moving of data from the source to the operator is
the stream of vehicle events.

The sensor reader is the start of the job, and the vehicle counter is
the end of the job. The edge that connects the sensor reader (source)
and the vehicle counter (operator) represents the stream of vehicle
types (events) flowing from the sensor reader to the vehicle counter.

In this chapter, we are going to dive into the system above. It will run
on your local computer with two terminals: one accepts user input
(the left column), and the other one shows the outputs of the job (the
right column).



Your first streaming job

Creating a streaming job using the Streamwork API is straightforward
with the following steps:

1. Create an event class.
2. Build a source.
3. Build an operator.
4. Connect the components.

Your first streaming job: Create your event
class

An event is a single piece of data in a stream to be processed by a
job. In the Streamwork framework, the API class Event is
responsible for storing or wrapping user data. Other streaming
systems will have a similar concept.



In your job, each event represents a single vehicle type. To keep
things simple for now, each vehicle type is just a string like car and
truck. We will use VehicleEvent as the name of the event
class, which is extended from the Event class in the API. Each
VehicleEvent object holds vehicle information that can be
retrieved via the getData() function.

public class VehicleEvent extends Event { 

  private final String vehicle; ❶ 
   
  public VehicleEvent(String vehicle) { 

    this.vehicle = vehicle;     ❷ 
  } 
   
  @Override 
  public String getData() { 

    return vehicle;             ❸ 
  } 
}

❶ Gets vehicle data stored in the event

❷ The constructor that takes vehicle as a string and stores it

❸ The internal string for vehicles

Your first streaming job: The data source

A source is the component that brings data from the outside world
into a streaming system. The earth icon is a representation of data
that would be outside of your job. In your streaming job the sensor
reader accepts vehicle type data from a local port into the system.



All streaming frameworks have an API that gives you the ability to
write the logic that only you care about for data sources. All data
source APIs have some type of lifecycle hook that will be called to
accept data in from the outside world. This is where your code would
be executed by the framework.

What is a lifecyle hook?
Lifecycle hooks in software frameworks are methods that are
called in some type of repeatable pattern by the framework in
which they reside. Typically, these methods allow developers
to customize how their application behaves during a life cycle
phase of a framework they are building their application in. In
the case of the Streamwork framework we have a lifecycle
hook (or method) called getEvents(). It is called
continuously by the framework to allow you to pull data in from
the outside world. Lifecyle hooks allow developers to write the



logic they care about and to let the framework take care of all
the heavy lifting.

Your first streaming job: The data source
(continued)

In your job the sensor reader will be reading events from the sensor.
In this exercise you will simulate the bridge sensor by creating the
events yourself and sending them to the open port on your machine
that the streaming job is listening to. The vehicle types you send to
the port will be picked up by the sensor reader and emitted into the
streaming job to show what it’s like to process an infinite (or
unbounded) stream of events.

The Java code for the SensorReader class looks like:



public class SensorReader extends Source { 
  private final BufferedReader reader; 
  public SensorReader(String name, int port) { 
    super(name); 
    reader = setupSocketReader(port); 
  } 
   
  @Override 

  public void getEvents(List<Event> eventCollector) {       ❶ 

    String vehicle = reader.readLine();                     ❷ 

    eventCollector.add(new VehicleEvent(vehicle));          ❸ 
    System.out.println("SensorReader --> " + vehicle); 
  } 
}

❶ The lifecycle hook of the streaming system to execute user defined
logic

❷ Read one vehicle type from input.

❸ Emit the string into the collector.

Your first streaming job: The operator

Operators are where the user processing logic will occur. They are
responsible for accepting events from upstream to process and
generating output events; hence, they have both input and output. All
of the data processing logic in your streaming systems will typically
go into the operator components.



To keep your job simple, we have only one source and one operator
in it. The current implementation of the vehicle counter is to just count
the vehicles and then to log the current count in the system. Another,
and potentially better, way to implement the system is for the vehicle
counter to emit vehicles to a new stream. Then, logging the results
can be done in an additional component that would follow after the
vehicle counter. It is typical to have a component that has only one
responsibility in a job.

By the way, Sid is the CTO. He is kind of old-fashioned sometimes,
but he is very smart and interested in all kinds of new technologies.

Your first streaming job: The operator
(continued)

Inside the VehicleCounter component, a <vehicle,
count> map is used to store vehicle type counts in memory. It is



updated accordingly when a new event is received.

In this streaming job, the vehicle counter is the operator that counts
vehicle events. This operator is the end of the job, and it doesn’t
create any output to the downstream operators.

public class VehicleCounter extends Operator { 
  private final Map<String, Integer> countMap = 
    new HashMap<String, Integer>(); 
         
  public VehicleCounter(String name) { 
    super(name); 
  } 
   
  @Override 
  public void apply(Event event,List<Event> collector) { 
    String vehicle = ((VehicleEvent)event).getData(); 

    Integer count = countMap.getOrDefault(vehicle, 0); ❶ 

    count += 1;                                        ❷ 

    countMap.put(vehicle, count);                      ❸ 
    System.out.println("VehicleCounter --> "); 

    printCountMap();                                   ❹ 
  } 
}



❶ Retrieve the count from the map.

❷ Increase the count.

❸ Save the count back to the map.

❹ Print the current count.

Your first streaming job: Assembling the job

To assemble the streaming job, we need to add both the
SensorReader source and the VehicleCounter operator and
connect them. There are a few hooks in the Job and Stream
classes we built for you:

Job.addSource() allows you to add a data source to the
job.
Stream.applyOperator() allows you to add an operator
to the stream.

The following code matches the steps outlined in the previous image:

public static void main(String[] args) { 

  Job job = new Job();                                ❶ 



  Stream bridgeOut=job.addSource(new SensorReader()); ❷ 
   

  bridgeOut.applyOperator(newVehicleCounter());       ❸ 
   
  JobStarter starter = new JobStarter(job); 

  starter.start();                                    ❹ 
}

❶ Create the job object.

❷ Add the source object and get a stream.

❸ Apply the operator to the stream.

❹ Start the job.

Executing the job

All you need to execute the job is a Mac, Linux, or Windows machine
with access to a terminal (command prompt on Windows). You will
also need a few tools to compile and run the code: git, Java
development kit (JDK) 11, Apache Maven, Netcat (or Nmap on
Windows). After all the tools are installed successfully, you can pull
the code down and compile it:

$ git clone https://github.com/nwangtw/GrokkingStreamingSystems.git 
$ cd GrokkingStreamingSystems 
$ mvn package

The mvn command above should generate the following file:
target/gss.jar. Finally, to run the streaming job, you’ll need
two terminals: one for running your job and the other for sending data
for your job to ingest.



Open a new terminal (the input terminal), and run the following
command. (Note that nc is the command on Mac and Linux; on
Windows, it is ncat). This will start a small server at port 9990 that
can be connected to from other applications. All user inputs in this
terminal will be forwarded to the port.

$ nc -lk 9990

Then, in the original terminal (the job terminal) that you used to
compile the job, run the job with the following command:

$ java -cp target/gss.jar com.streamwork.ch02.job.VehicleCountJob

Inspecting the job execution

After the job is started, type car into the input terminal, and hit the
return key, then the count will be printed in the job terminal.



Now if you continue typing in truck in the input terminal, the counts
of car and truck will be printed in the job terminal.

You can keep typing in different type of vehicles (to make it more
interesting, you can prepare a bunch of vehicles in a text editor first
and copy/paste them into the input terminal), and the job will keep
printing the running counts, as in the example below, until you shut
down the job. This demonstrates that as soon as data enters the
system your streaming job takes action on it without delay.



Look inside the engine

You have learned how the components and the job are created. You
also observed how the job runs on your computer. During the job
execution, you’ve hopefully noticed the events automatically move
from the sensor reader object to the vehicle counter object without
you needing to implement any additional logic. Fancy, right?

Your job or components don’t run by themselves. They are driven by
a streaming engine. Let’s take a look under the hood and inspect how
your job is executed by the Streamwork engine. There are three



moving parts (at the current state), and we are going to look into them
one by one: source executor, operator executor, and job starter.

Look inside the engine: Source executors

In the Streamwork we’ve built for you, the source executor
continuously runs data sources by executing over infinite loops that
pull data in from the outside world to be placed on an outgoing queue
within the streaming job. Even though there is a yes decision on Exit,
yes will never be reached.



Look inside the engine: Operator executors

In the Streamwork, the operator executor works in a similar way to
the source executor. The only difference is that it has an incoming



event queue to manage. Even though there is a yes decision on Exit,
yes will never be reached.



Look inside the engine: Job starter

The JobStarter is responsible for setting up all the moving parts
(executors) in a job and the connections between them. Finally, it
starts the executors to process data. After the executors are started,
events start to flow through the components.

Remember!



Keep in mind that this is the architecture of a typical streaming
engine, and an attempt to generalize how frameworks work at
a high level. Different streaming frameworks may work in
different ways.

Keep events moving

Let’s zoom out to look at the whole engine and its moving parts,
including the user- defined components of the actual job.



After our job is started, all the executors start running concurrently or,
in other words, at the same time!

The life of a data element

Let’s discuss a different aspect of streaming systems and take a look
at the life of a single event. When you input car and press the enter
key in the input terminal, the event will travel through the streaming
system, as explained in the following diagram.



Reviewing streaming concepts

Congratulations on finishing your first streaming job! Now, let’s take a
few minutes to step back and review the key concepts of streaming
systems.



Summary

A streaming job is a system that processes events in real time.
Whenever an event happens, the job accepts it into the system and
processes it. In this chapter, we have built a simple job that counts
vehicles entering a bridge. The following concepts have been
covered:

Streams and events
Components (sources and operators)
Streaming jobs



In addition, we looked into our simple streaming engine to see how
your job is really executed. Although this engine is overly simplified,
and it runs on your computer instead of a distributed environment, it
demonstrates the moving parts inside a typical streaming engine.

Exercises

1. What are the differences between a source and an operator?
2. Find three examples in real life that can be simulated as

streaming systems. (If you let us know, they might be used in the
next edition of this book!)

3. Download the source code and modify the SensorReader
source to generate events automatically.

4. Modify your VehicleCounter logic to calculate the collected
fees in real time. You can decide how much to charge for each
vehicle type.

5. The VehicleCounter operator in the first job has two
responsibilities: counting vehicles and printing the results, which
is not ideal. Can you change the implementation and move the
printing logic to a new operator?



3 Parallelization and data grouping

In this chapter

parallelization
data parallelism and task parallelism
event grouping

“Nine people can’t make a baby in a month.”

—F�������� P. B�����

In the previous chapter, AJ and Miranda tackled keeping a real-time
count of traffic driving over the bridge using a streaming job. The
system she built is fairly limited in processing heavy amounts of
traffic. Can you imagine going through a bridge and tollbooth with
only one lane during rush hour? Yikes! In this chapter, we are going
to learn a basic technique to solve a fundamental challenge in most
distributed systems. This challenge is scaling streaming systems to
increase throughput of a job or, in other words, process more data.

The sensor is emitting more events

In the previous chapter, AJ tackled keeping a real-time count of traffic
driving over the chief’s bridge using a streaming job. Detecting traffic
with one sensor emitting traffic events was acceptable for collecting



the traffic data. Naturally, the chief wants to make more money, so he
opted to build more lanes on the bridge. In essence, he is asking for
the streaming job to scale in the number of traffic events it can
process at one time.

A typical solution in computer systems to achieve higher throughput
is to spread out the calculations onto multiple processes, which is
called parallelization.



Similarly, in streaming systems, the calculation can be spread out to
multiple instances. You can imagine with our vehicle count example
that having multiple lanes on the bridge and having more tollbooths
could be very helpful for accepting and processing more traffic and
reducing waiting time.

Even in streaming, real time is hard

Increasing lanes caused the job to fall behind



New concepts: Parallelism is
important

Parallelization is a common technique in computer systems. The idea
is that a time-consuming problem can often be broken into smaller
sub-tasks that can be executed concurrently. Then, we can have
more computers working on the problem cooperatively to reduce the
total execution time greatly.

Why it’s important

Let’s use the streaming job in the previous chapter as an example. If
there are 100 vehicle events waiting in a queue to be processed, the
single vehicle counter would have to process all of them one by one.



In the real world, there could be millions of events every second for a
streaming system to process. Processing these events one by one is
not acceptable in many cases, and parallelization is critical for solving
large-scale problems.

New concepts: Data parallelism

It is not fast enough to solve the counting problem with one computer.
Luckily, the chief has multiple computers on hand—because what



tollbooth IT operation center doesn’t? It is a reasonable idea to assign
each vehicle event to a different computer, so all the computers can
work on the calculation in parallel. This way you would process all
vehicles in one step instead of processing them one by one in 100
steps. In other words, the throughput is 100 times greater. When
there is more data to process, more computers instead of one bigger
computer can be used to solve the problem faster. This is called
horizontal scaling.



A quick note
It should be noted that modern
day CPUs have internal instruction
pipelines to improve processing
performance dramatically. For this
case (and the rest of the book), we
will keep the calculations simple
and ignore this type of
optimization whenever we refer to
parallelization.

New concepts: Data execution
independence

Say the phrase data execution independence out loud, and think
about what it could mean. This is quite a fancy term, but it isn’t as
complex as you think.

Data execution independence, in regards to streaming, means the
end result is the same no matter the order of the calculations or
executions being performed across data elements. For example, in
the case of multiplying each element in the queue by 4, they will have
the same result whether they are done at the same time or one after
another. This independence would allow for the use of data
parallelism.



New concepts: Task parallelism

Data parallelism is critical for many big data systems as well as
general distributed systems because it allows developers to solve
problems more efficiently with more computers. In addition to data
parallelism, there is another type of parallelization: task parallelism,
also known as function parallelism. In contrast to data parallelism,



which involves running the same task on different data, task
parallelism focuses on running different tasks on the same data.

A good way to think of task parallelism is to look at the streaming job
you studied in chapter 2. The sensor reader and vehicle counter
components keep running to process incoming events. When the
vehicle counter component is processing (counting) an event, the
sensor reader component is taking a different, new event at the same
time. In other words, the two different tasks work concurrently. This
means an event is emitted from the sensor reader, then it is
processed by the vehicle counter component.

Data parallelism vs. task parallelism

Let’s recap:



Data parallelism represents that the same task is executed on
different event sets at the same time.
Task parallelism represents that different tasks are executed at
the same time.

Data parallelism is widely used in distributed systems to achieve
horizontal scaling. In these systems, it would be relatively easy to
increase parallelization by adding more computers. Conversely, with
task parallelism, it normally requires manual intervention to break the
existing processes into multiple steps to increase parallelization.

Streaming systems are combinations of data parallelism and task
parallelism. In a streaming system, data parallelism refers to creating
multiple instances of each component, and task parallelism refers to
breaking the whole process into different components to solve the
problem. In the previous chapter, we have applied the task
parallelism technique and broken the whole system into two
components. In this chapter, we are going to learn how to apply the
data parallelism technique and create multiple instances of each
component.



In most cases, if you see the term parallelization or parallelism
without the data or task in streaming systems, it typically refers to
data parallelism. This is the convention we are going to apply in this
book. Remember that both parallelisms are critical techniques in data
processing systems.

Parallelism and concurrency

Is there a difference?

This paragraph could easily start a contentious tech uproar,
potentially as easily as writing a paragraph to justify the use of tabs
over spaces. During the planning sessions of this book, these
concepts came up several times. Typically, these conversations
would always end up with us asking ourselves which term to use.



Parallelization is the term we’ve decided to use when explaining how
to modify your streaming jobs for performance and scale. More
explicitly in the context of this book, parallelism refers to the number
of instances of a specific component. Or you could say parallelism is
the number of instances running to complete the same task.
Concurrency, on the other hand, is a general word that refers to two
or more things happening at the same time.

It should be noted that we are using threads in our streaming
framework to execute different tasks, but in real-world streaming jobs
you would typically be running multiple physical machines
somewhere to support your job. In this case you could call it parallel
computing. Some readers may question whether parallelization is the
accurate word when we are only referring to code that is running on a
single machine. This is yet another question we asked ourselves. Is
this correct for us to write about? We have decided not to cover this
question. After all, the goal of this book is that, by the end, you can
comfortably talk about topics in streaming. Overall, just know that
parallelization is a huge component of streaming systems, and it is
important for you to get comfortable talking about the concepts and
understanding the differences well.



Parallelizing the job

This is a good time to review the state of the last streaming job we
studied. You should have a traffic event job that contains two
components: a sensor reader and a vehicle counter. As a refresher,
the job can be visualized as the below image.

This implementation has worked for the previous chapter. However,
we will now introduce a new component we decided to call the event
dispatcher. It will allow us to route data to different instances of a
parallelized component. With the eventDispatcher the chapter
2 job structure will look like the following. The image below is an end



result of reading through this chapter and working through the steps
to build up the job. By the end of this chapter, you will have added
two instances of each component and understand how the system
will decide to send data to each instance.

Parallelizing components

The following image shows the end goal of how we want to parallelize
the components in the streaming job. The event dispatcher will help
us distribute the load across downstream instances.



Parallelizing sources



First, we are only going to parallelize the data sources in the
streaming job from one to two. To simulate a parallelized source, this
new job will need to listen on two different ports to accept your input.
The ports we will use are 9990 and 9991. We have updated the
engine to support parallelism, and the change in the job code is very
straightforward:

Stream bridgeStream = job.addSource( 

  new SensorReader("sensor-reader", 2, 9990) 
);

To run the job, you need to first create two input terminals and
execute the command with different ports:

Then, you can compile and execute the sample code in a separate
job terminal:



$ mvn package 
$ java -cp target/gss.jar \ 
  com.streamwork.ch03.job.ParallelizedVehicleCountJob1

At this point you should have three terminals open to run your job:
input terminal 1, input terminal 2, and the job terminal. Input terminals
1 and 2 are where you will be typing vehicle events to be picked up
by the streaming job. The next page will show some sample output.

Networking FYI
Due to limitations of networking,
we cannot have more than one
process, thread, or compute
instance listening on the same
port. Since we have two of the
same sources running on the
same machine for our learning
purposes, we have to run the extra
instance of source on a different
port.

Viewing job output





Parallelizing operators

Running the new job

Now, let’s parallelize the VehicleCounter operator:

bridgeStream.applyOperator( 
  new VehicleCounter("vehicle-counter", 2));

Keep in mind we are using two parallelized sources, so we will need
to execute the same netcat command as we did before in two
separate terminals. For a refresher, each command tells Netcat to
listen for connections on the ports specified in each command.



Then, you can compile and execute the sample code in a third,
separate job terminal:

$ mvn package 
$ java -cp gss.jar \ 
  com.streamwork.ch03.job.ParallelizedVehicleCountJob2

This job that runs will have two sources and operators. It can be
represented by the diagram below. The job output follows.

Viewing job output





Events and instances

VehicleCounter :: instance 0 --> ❶ 
  car: 1 
   
… (Omitted for brevity) 
 
 

VehicleCounter:: instance 1 -->  ❷ 
  car: 1 
  truck: 1

❶ A car is processed by VehicleCounter 0.

❷ Another car is processed by VehicleCounter 1.

If you take a close look at the results of the vehicle counter instances,
you will see that both of them receive a different car event.
Depending on how the system is set to run this type of behavior, it
may not be desirable for a streaming job. We will study the new
concept of event grouping later to understand the behavior and how
to improve the system. For now, just understand that any vehicle can
be processed by either of the two tollbooth instances.

Another important concept you need to understand here is event
ordering. Events have their order in a stream—after all, they all reside
in queues, typically. How do you know if one event will be processed
before another? Generally, two rules apply:

Within an instance, the processing order is guaranteed to be the
same as the original order (the order in the incoming queue).



Across instances, there is no guarantee about the processing
order. It is possible that a later event can be processed and/or
finished earlier than another event that arrived earlier, if the two
events are processed by different instances.

A more concrete example follows.

Event ordering



Let’s look at the four vehicle events that were entered in the input
terminals. The first and third vehicles are car and van, and they are
sent to VehicleCounter instance 0, while the second and the
fourth events truck and car are routed to VehicleCounter
instance 1.

In the Streamwork engine, the two operator instances are executed
independently. Streaming engines normally guarantee that the first
and the third vehicles are processed in their incoming order because
they are processed in the same instance. However, there is no
guarantee that the first vehicle car is processed before the second
vehicle truck, or the second vehicle truck is processed before
the third vehicle van because the two operator processes are
independent of each other.

Event grouping

Up until now your parallelized streaming job had vehicle counter
instances that were getting events randomly (really, pseudorandomly)
routed to the vehicle counter instances.

SensorReader:: instance 0 --> 

  car                               ❶ 

VehicleCounter :: instance 0 -->    ❷ 
  car: 1 
… (Omitted for brevity) 
SensorReader:: instance 1 --> 

  car                               ❶ 

VehicleCounter:: instance 1 -->     ❸ 
  car: 1 
  van: 1



❶ The streaming job has no predictable behavior of how it will route
data to either VehicleCounter 0 or VehicleCounter
1.

❷ A car is processed by VehicleCounter 0.

❸ Another car is processed by VehicleCounter 1.

This pseudorandom routing is acceptable in many cases, but
sometimes you may prefer to predictably route events to a specific
downstream instance. This concept of directing events to instances is
called event grouping. Grouping may not sound very intuitive, so let
us try to explain a bit: all the events are divided into different groups,
and each group is assigned a specific instance to process. There are
several event grouping strategies. The two most commonly used are:

Shuffle grouping—Events are pseudorandomly distributed to
downstream components,
Fields grouping—Events are predictably routed to the same
downstream instances based on values in specified fields in the
event.

Normally, event grouping is a functionality baked into streaming
frameworks for reuse by developers. Flip through the next few pages
to go a little deeper into how these two different grouping strategies
work.

Shuffle grouping

Shuffle grouping defined in few words is the random distribution of
data elements from a component to a downstream operator. It allows



for a relatively even distribution of load to downstream operators.

Round robin is the way to perform a shuffle grouping in many
frameworks. In this grouping strategy, downstream instances (aka the
incoming queues) are picked in equal portions and in circular order.
Compared to a shuffle grouping based on random numbers, the
distribution can be more even, and the calculation can be more
efficient. The implementation is similar to the diagram below. Note
that in the diagram the two truck vehicles are counted by two
different VehicleCounter instances.



Shuffle grouping: Under the hood

To make sure that events are routed evenly across instances, most
streaming systems use the round robin method for choosing the next
destination for their event.



Fields grouping

Shuffle grouping works well for many use cases. However, if you
needed a way to predictably send elements, shuffle grouping won’t
work. Fields grouping is a good candidate to assist with a predictable
routing pattern for your data processing needs. It works by making a
decision on where to route data based on fields out of the streamed
event element (usually designated by the developer). Field grouping
is also called group by or group by key in many scenarios.



In this chapter’s streaming job, we take each vehicle that comes in
from the bridge and send them to either vehicle counter 0 or vehicle
counter 1 based on the vehicle type, so the same type of vehicle is
always routed to the same vehicle counter instance. By doing this, we
keep the count of individual vehicle types by instance (and more
accurately).

Fields grouping: Under the hood



To make sure the same vehicle events are always assigned to the
same group (routed to the same instance), typically a technique
called hashing is used. Hashing is a widely used type of calculation
that takes a large range of values (such as strings) and maps them
onto a smaller set of values (such as integer numbers).

The most important property of hashing is that for the same input, the
result is always the same. After we get the hashing result (usually
some large integer, such as 98216, called the key), we perform this
calculation:

key % parallelism ❶

❶ Divides the key by the parallelism and returns the remainder to
decide which instance of the downstream operator the event will
be assigned to. In the case that there are two instances, the event
whose key is 98216 will be routed to the incoming queue of
instance 0 because 98216 % 2 equals 0.



Event grouping execution

The event dispatcher is a piece of the streaming system that sits
between component executors and executes the event grouping
process. It continuously pulls events from its designated incoming
queue and places them on its designated outgoing queues based on
the key returned from the grouping strategy. Keep in mind that all
streaming systems have their own way of doing things. This overview
is specific to the Streamwork framework we provided for you.



Look inside the engine: Event
dispatcher

The event dispatcher is responsible for accepting events from the
upstream component executor, applying the grouping strategy, and
emitting the events to the downstream component.





Applying fields grouping in your job

By applying fields grouping to your job, it will be much easier to keep
an aggregated count of different vehicle types, as each vehicle type
will always be routed to the same instance. With the Streamwork API,
it is easy to enable fields grouping:

bridgeStream.applyOperator( 

  new VehicleCounter("vehicle-counter", 2, new FieldsGrouping()) ❶ 
);

❶ Apply fields grouping.

The only thing you need to do is to add an extra parameter when you
call the applyOperator() function, and the Streamwork engine
will handle the rest for you. Remember that streaming frameworks
help you focus on your business logic without worrying about how the
engines are implemented. Different engines might have different
ways to apply fields grouping. Typically, you may find the function
with the name of groupBy() or {operation}ByKey() in
different engines.

To run the example code, it is the same as before. First, you need to
have two input terminals with the following commands running, so
you can type in vehicle types.

Then, you can compile



and execute the sample code in a third, separate job terminal:

$ mvn package 
$ java -cp target/gss.jar \ 
  com.streamwork.ch03.job.ParallelizedVehicleCountJob3

Event ordering

If you run the above commands, the job terminal will print an output
similar to the following.



Comparing grouping behaviors

Let’s put the shuffle and grouping job outputs side by side and view
the differences in behavior with the same job input. It doesn’t really
matter which terminal the input is from, so we combine them into one.
See if you can identify the differences in how each job output differs.



Summary

In this chapter, we’ve read about the fundamentals of scaling
streaming jobs. Scalability is one of the major challenges for all
distributed systems, and parallelization is a fundamental technique for
scaling them up. We’ve learned how to parallelize components in a



streaming job and about the related concepts of data and task
parallelisms. In streaming systems, if the term parallelism is used
without data and task, it normally refers to data parallelism.

When parallelizing components, we also need to know how to control
or predict the routing of events with event grouping strategies to get
the expected results. We can achieve this predictability via shuffle
grouping or fields grouping. In addition, we also looked into the
Streamwork streaming engine to see how parallelization and event
grouping are handled from a conceptual point of view to prepare for
the next chapters and real-world streaming systems.

Parallelism and event grouping are critical because they are useful
for solving a critical challenge in all distributed systems: throughput. If
a bottleneck component can be identified in a streaming system, you
can scale it horizontally by increasing its parallelism, and the system
is capable of processing events at a faster speed.

Exercises

1. Why is parallelization important?
2. Can you think of any other grouping strategy? If you can think of

one, can you implement it in Streamwork?
3. The field grouping in the example is using the hash of the string.

Can you implement a different field grouping that uses the first
character instead? What are the advantages and disadvantages
of this new grouping strategy?



4 Stream graph

In this chapter

stream fan-out
stream fan-in
graph and DAG (directed acyclic graph)

In the previous chapters, AJ has built a streaming job and then scaled
it up. It works well for monitoring vehicles on the bridges. However,
the structure of the job is quite simple, as the job is pretty much a list
of operators. In this chapter, we are going to learn how to build more
complicated streaming systems to solve additional problems in the
real world.

“Bad programmers worry about the code. Good programmers

worry about data structures and their relationships.”

—L���� T�������

A credit card fraud detection system

Sid has been impressed by the vehicle counting system AJ built, and
he is thinking of new problems to solve with stream processing
technology now. The one he is mostly interested in is a fraud



detection problem, but he has one concern: the new system will be
more complicated and requires very low latency. Can it be solved with
a streaming system?

The streaming job built in the previous two chapters is limited in
capability. Every data element that enters the job is required to pass
through both components in a fixed order: the sensor reader and then
the vehicle counter. There is no conditional routing of data for edge
cases or errors that could occur in streaming systems. You could
visualize the path of the data elements in your streaming job as a
straight line.



More about the credit card fraud
detection system

In this chapter, we are going to build a credit card fraud detection
system. It will be more complicated than the tollbooth problem we had
before.

The fraud detection business





Streaming isn’t always a straight line

We can build the system like the tollbooth system. First, the
transaction source component is responsible for accepting
transaction events from external systems. Then, the analyzers are
applied one by one, and risk scores are added into the events.
Finally, a score aggregator makes a final decision from the scores.

The solution works, but it is not ideal. New analyzers will be added in
the future, the list will grow, and the end-to-end latency will increase.
Plus, the job could be harder to maintain when there are many
analyzers.



Another option is to build the system like the diagram below. All three
analyzers connect to the transaction source and run independently.
The score aggregator collects results from them and aggregates the
scores to make a final decision. In this solution, the end-to-end
latency won’t increase when more analyzers are added.

Zoom into the system



The fraud detection job in detail



Let’s take a deeper look into the fraud detection job and see each
component’s responsibility.

How do we know if a transaction is
potentially fraudulent?
Fraud scores can range from 0–3. A score of 0 means no
fraud is detected by any analyzer, and a score of 3 means
fraud is detected by all analyzers. Each analyzer will add a
point to the score. We can consider a transaction potentially
fraudulent with a score of 2 or greater.



New concepts

In chapter 2, you learned the moving parts in a streaming system, the
data sources and the operators, and the connections. We also looked
at how the underlying engine handles them. These are all very
important concepts that we will keep using through the whole book.



In this chapter, we are going to look into streaming jobs that have
more complicated structures. The new diagram looks more
complicated than the old straight-line diagram. This is correct, but
there is nothing to worry about.

Before moving forward, let’s look at a few new concepts we can learn
from this new diagram:

Upstream and downstream components
Stream fan-out
Stream fan-in
Graph and DAG (directed acyclic graph)

With these new concepts, we can construct more complicated
streaming systems to solve more general problems.

Upstream and downstream
components



Let’s start with two new concepts: upstream components and
downstream components. They are pretty simple and straightforward.

Overall, a streaming job looks like a series of events flowing through
components. For each component, the component (or components,
as we will discuss later) directly in front is its upstream component,
and the component directly behind is its downstream component.
Events flow from an upstream component to a downstream
component. If we look at the diagram of the streaming job we built in
the previous chapter, events flow from the sensor reader to the
vehicle counter. Therefore, the sensor reader is the upstream
component, and the vehicle counter is the downstream component.

Stream fan-out and fan-in



Now, let’s look at the new diagram proposed by AJ. It looks quite
different from the previous job overall. The major difference is that
one component may have more than one upstream or downstream
component.

The transaction source component has three downstream
components connected to it. This is called stream fan-out. Similarly,
the score aggregator has three upstream components (we can also
say that the three analyzers have the same downstream component).
This is called stream fan-in.



Graph, directed graph, and DAG

The last three concepts we will cover in this chapter are graph,
directed graph, and DAG. First of all, a graph is a data structure that
consists of a set of vertices (or nodes) and edges (also known as
connections or lines) that connect pairs of vertices. Two data
structures used by developers, tree and list, are examples of graphs.

If every edge in a graph has a direction (from one vertex to another
one), this graph is called a directed graph. The diagram below is an



example of directed graph with five vertices and seven directed
edges.

A special type of directed graph is a directed acyclic graph, or a DAG.
A DAG is a directed graph that has no directed cycles, which means
that in this type of graph, there is no way to start from a vertex and
loop back to it following directed edges.

The diagram above is a DAG because from any of the vertices, no
path can be found to loop back to itself. In the directed graph
diagram, vertices C, D, and E form a cycle; hence, this graph is not a



DAG. Note that there is another cycle on vertex B because it has an
edge looping back to itself directly.

DAG in stream processing systems

DAG is an important data structure in computer science and in
stream processing systems. We won’t jump into too much
mathematical detail here, but it is important to know that DAG is a
common term in the streaming world.

It is convenient to represent how events flow through a system with a
directed graph. A loop in a directed graph means that events can be
looped back and reprocessed in the same component again. It needs
to be handled very carefully because of the extra complexity and
risks. In some cases, loops could be necessary, but they are relatively
rare. Most stream processing systems don’t have loops; hence, they
can be presented as DAGs.



Note that, from this chapter forward, when we draw a job diagram, we
are going to draw a DAG. It will only include the logical components
of the job without the engine objects, such as the executors and
event dispatchers (unless they are necessary), like in the diagram
above, so we can focus on the business logic without worrying about
the details in the engine layer. Parallelism is not included either
because it is not business logic related.

All new concepts in one page

We have talked about quite a few concepts in this chapter. Let’s put
them together in one page, so it is easier to distinguish the
relationships between them.



Stream fan-out to the analyzers

It is time to jump into our system now, starting from the stream fan-
out part. The stream fan-out in the fraud detection system is between
the source component and the analyzer operators. With the



Streamwork API, it is straightforward to link the stream coming from
the source component to the evaluators. We can connect the source
and evaluators, as in the code below.

  Job job = new Job(); 
  Stream transactionOut = job.addSource(new TransactionSource()); 
  Stream evalResults1 = transactionOut.applyOperator(new AvgTicketAnalyzer()); 
  Stream evalResults2 = transactionOut.applyOperator(new 
WindowedProximityAnalyzer()); 
  Stream evalResults3 = transactionOut.applyOperator(new 

WindowedTransactionAnalyzer()); ❶

❶ Multiple operators are applied to the same stream.

Basically, multiple operators, in this case the evaluators, can be
applied to the same transaction stream from the source component.
In the runtime, every event emitted from the source component will
be duplicated three times and sent to the three evaluators.



A stream fan-out is one
component with multiple
downstream components.

Look inside the engine

The real work happens inside the engine. In the Streamwork engine,
when a new operator is hooked up to a stream, a new queue is
created between the operator’s event dispatcher and the instance
executors of the component that generates the stream. In other
words, one instance executor can push events into multiple outgoing
queues.



There is a problem: Efficiency

Now, every evaluator should have a copy of the transaction events,
and they can apply their evaluation logic. However, this solution is not
very efficient.



Each event is a transaction record. It contains a lot of the information
about the transaction, such as merchandise id, transaction id,
transaction time, amount, user account, merchandise categories,
customer location, and so on. As a result, events are relatively large
in size:

class TransactionEvent extends Event { 
  long transactionId; 
  float amount; 
  Date transactionTime; 
  long merchandiseId; 
  long userAccount; 
  …… 
}

In the current solution, every event is duplicated multiple times
because they are pushed to different queues. Because of the different
queues, different analyzers are able to process each event
asynchronously. These fat events are transferred through the network
and loaded and handled by the analyzers. In addition, some



analyzers don’t need or can’t process some of the events, but these
events are still transferred and processed. As a result, the memory
and network resource usage are not efficient and can be improved,
which could be important when event traffic is high.

Stream fan-out with different streams

In stream fan-out, different outgoing queues don’t need to be the
same as each other. The word different has two meanings here:

An emitted event could be pushed into some outgoing queues
but skip others.
Furthermore, events in different outgoing queues toward different
downstream components could have different data structures.

As a result, only the necessary events with necessary fields are sent
to each evaluator.



Look inside the engine again

We have learned that one component executor can have multiple
outgoing queues. Previously, the executor just pushed the same
event to all the outgoing queues connected to the event dispatchers
of the downstream components. Now, to support multiple streams,
the executor needs to take the events emitted from each component
and puts them into the correct outgoing queues.



The component object provides this information via channels.
Different events are emitted into different channels, and the
downstream components can choose which channel to receive
events from.

This multi-channel fan-out gives
us more flexibility. With more
flexibility, we have more options to
tune the job to make it more
efficient.



Communication between the
components via channels

To support this new type of stream fan-out, the component and the
executor need to be updated:

The component needs to be able to emit events into different
channels.
The executor needs to take events from each channel and push
them into the right outgoing queues.
The last piece is that the downstream component needs to be
able to select a specific channel when connecting to it via
applyOperator().



Multiple channels

With multichannel support, the fan-out in the fraud detection system
can be modified to send only necessary fields in events to the
evaluators. Firstly, in the TransactionSource class, channel
information can be specified when events are emitted. Note that the



same incoming event can be converted into different events in
different channels.

                            

eventCollector.add(new DefaultEvent(transactionEvent));    ❶ 

eventCollector.add("location_based",                       ❷ 

                    new LocationalEvent(transactionEvent); ❸

❶ The event is emitted into the default channel.

❷ Choose another channel to push events into.

❸ The events in this channel have different data structures.

Then, when an evaluator is added into the streaming job via the
applyOperator() function, a channel can be specified first.

Job job = new Job(); 
Stream transactionOut = job.addSource(new TransactionSource()); 
 
Stream evalScores1 = transactionOut 

    .applyOperator(new AvgTicketAnalyzer()); ❶ 
Stream evalScores2 = transactionOut 

    .selectChannel("location_based")         ❷ 
    .applyOperator(new WindowedProximityAnalyzer()); 
Stream evalScores3 = transactionOut 
    .applyOperator(new WindowedTransactionAnalyzer());



❶ A default channel is used when no channel is selected to apply the
operator.

❷ A specific channel is selected to apply the operator.

Stream fan-in to the score aggregator

The evaluators receive transaction events and perform their own
evaluations. The output of each evaluator is a risk score for each
transaction. In our system, the risk scores of each transaction are
sent to the score aggregator component to make the decision. If fraud
is detected, an alert is written into a fraud transaction database.

You can see from the diagram that the score aggregator operator
takes input from multiple upstream components—the evaluators. You
can also think of it in a different way: the output streams from the
evaluators are merged, and the events in all of them are sent to the
score aggregator operator in the same way. This is a stream fan-in.



One thing worth mentioning is that, in the score aggregator operator,
events from different streams are treated in the same way. Another
case is that the events in different incoming streams could have
different data and need to be used differently. This second case is a
more complicated stream fan-in that could be the focus of a full
chapter. At the moment, let’s focus only on the simple case.

Stream evalScores1 = …… 
Stream evalScores2 = …… 
Stream evalScores3 = …… 
Operator aggregator = new ScoreAggregator( 
    "aggregator", 2, new GroupByTransactionId()); 

Streams.of(evalScores1, evalScores2, evalScores3) ❶ 

    .applyOperator(aggregator);                   ❷

❶ Multiple streams are merged into one Streams object.

❷ The ScoreAggregator operator is applied on the Streams
object. Note that GroupByTransactionId is a subclass of
FieldsGrouping to make sure the scores for a specific
transaction are sent to the same aggregator instance.

Stream fan-in in the engine

Stream fan-in is straightforward in the Streamwork engine. The
incoming queue of a component (connected to its event dispatcher)
can be used by multiple upstream components. When an event is
emitted by any of the upstream components (in fact, by an instance of
the component), the event will be put in the queue. The downstream
component pulls events from the queue and processes them. It
doesn’t distinguish between who pushed the events into the queue.



As we discussed before, the
queue decouples the upstream
and downstream components.

A brief introduction to anotherstream
fan-in: Join



We mentioned that, in addition to the stream fan-in used in the
example job, there is a more complicated type of fan-in. We will
present a brief introduction to it, so you can have a better idea of all
types of fan-ins and fan-outs.

In the simple stream fan-in, all incoming events have the same data
structure and are treated the same way. In other words, the incoming
streams are the same. What if the incoming streams are different
from each other and need to be combined together? If you have ever
used any databases, you should have some idea of an operation on
multiple tables: join. If you don’t know it, or you have forgotten it (we
all know how reliable human memory is), no need to worry—it is not a
prerequisite.

In databases, the join operation is used to combine columns from
multiple tables. For example, a table of user-id and name and
another table of user-id and phone-number can be joined to
create a new table of user-id, name and phone-number by
matching the user-id column in the two original tables. In the



streaming world, the basic purpose of the join operation is similar:
joining fields from multiple data sources.

However, relative to database tables, streams are much more
dynamic. Events are accepted and processed continuously, and
matching fields from multiple continuous data sources requires a lot
more considerations. We are going to stop here on the basic concept
of join and leave further exploration of this topic to its own chapter.

Look at the whole system



Now that we have discussed stream fan-out and fan-in one by one in
the previous sections, let’s put them together and zoom out to take
another look at the whole system. From a high level, the job can be
represented as the graph below; sometimes we call it the logical plan.
It represents the logical structure (components and their connections)
of the job.

In the real world, fraud detection systems will evolve continuously,
and new evaluators will be introduced from time to time. With the
Streamwork framework, or other stream processing frameworks,
adding, removing, and replacing evaluators is pretty simple and
straightforward.

Graph and streaming jobs



With the support of stream fan-out and fan-in, now we can build
streaming systems in more complicated and general graph type
structures. This is a very important step forward because with this
new structure, we can cover more real-world problems.

Here are the DAGs of two example streaming systems. Can you try
to imagine what kind of systems they might be?



The example systems

The truth is, these graphs can be so many things! Here are potential
answers for the two diagrams.



The first diagram could be a simple traffic monitoring system. The
events collected by the traffic sensors are sent to three core
processors: an accident detector, a congestion detector, and a
junction optimizer. The congestion detector has a location-based
aggregator as a preprocessor.



The second diagram could be a fault detection system that processes
events from sensor readers in multiple versions. The events
generated from the first two versions are not compatible with the
detector; hence, an adapter is needed for them. In the system, all the
sensor readers can work together seamlessly, and it is easy to add
new versions or deprecate old versions.

After all, stream jobs are not very complicated. The example systems
are significantly simplified compared to the real-world systems.
Nevertheless, hopefully you have a better idea of what streaming
systems can do now. In their simplest form, streaming jobs are
components and their connections. Once a streaming job is set up
and running, events flow through the components along the
connections forever.

Summary

In this chapter, we moved forward from the list type system structure
we discussed in previous chapters to a more general type of system
structure: the graph. Because events flow through systems from the
sources to the operators, in most cases a streaming job can be
presented as a directed acyclic graph (DAG). Most jobs in the real
world have graph architecture; hence, this is a critical step.



Different from the components in the list type system structure, in a
job graph, a component can link to multiple upstream components
and downstream components. These types of connections are called
stream fan-in and fan-out. The streams coming into a component or
going out of it could have the same types of events or different types.

In addition, we also looked at the Streamwork framework a little bit to
see how the engine handles the connections. Hopefully, this will be
helpful for your understanding of how streaming systems work in
general.

Exercises

1. Can you add a new evaluator to the fraud detection job?
2. Currently, each evaluator takes a transaction event from the

transaction source component and creates a score. Now two
evaluators have the same type of calculation at beginning of their
evaluation. Could you change the job for this case? The result
will look like the graph below:





5 Delivery semantics

In this chapter

introducing delivery semantics and their impact
at-most-once delivery semantic
at-least-once delivery semantic
exactly-once delivery semanticdelivery semantics.

“There’s never enough time to do it right, but there’s always enough

time to do it over.”

—J��� B������

Computers are pretty good at performing accurate calculations. However,
when computers work together in a distributed system, like many
streaming systems, accuracy becomes a little bit more (I mean, a lot more)
complicated. Sometimes, we may not want 100% accuracy because other
more important requirements need to be met. “Why would we want wrong
answers?” you might ask. This is a great question, and it is the one that we
need to ask when designing a streaming system. In this chapter, we are
going to discuss an important topic related to accuracy in streaming
systems: delivery semantics.

The latency requirement of the fraud
detection system



In the previous chapter, the team built a credit card fraud detection system
which can make a decision within 20 milliseconds for each transaction and
store the result in a database. Now, let’s ask an important question when
building any distributed system: what if any failure happens?



Revisit the fraud detection job

We are going to use the fraud detection system from the previous chapter
as our example in this chapter to discuss the topic of delivery semantics.
So let’s look at the system and the fraud detection job briefly to refresh
your memory first.



The fraud detection job has multiple analyzers working in parallel to
process the transactions that enter the card network. The fraud scores
from these analyzers are sent to an aggregator to calculate the final results
for each transaction, and the results are written to the database for the
transaction presenter.

The 20-millisecond latency threshold is critical. If the decision is not made
in time, the transaction presenter won’t be able to provide the answer for
the transaction to the bank, which would be bad. Ideally, we would like the
job to run smoothly and meet the latency requirement all the time. But, you
know, stuff happens.

About accuracy



We make lots of tradeoffs in distributed systems. A challenge in any
streaming system is to reliably process events. Streaming frameworks can
help keep the job running reliably as often as possible, but you need to
know what you really need. We are used to seeing accurate results with
computers; hence, it is important to understand that accuracy is not
absolute in streaming systems. When necessary, it might need to be
sacrificed.

Don’t panic! In the next few pages we will look at solutions with these types
of results.



Partial result

A partial result is a result of incomplete data; hence, we can’t guarantee its
accuracy. The following figure is an example of partial result when the
average ticket analyzer has temporary issues.

It’s common in streaming systems to
make tradeoffs.



A new streaming job to monitor system
usage

Now that we have seen the requirements of the fraud detection job, to
better understand different delivery semantics, we want to introduce
another job that has different requirements to compare. The fraud detection
system has been a hit in the credit card processing business. With the
speed of system operations, other credit card companies are becoming
interested in this idea, and with interest increasing, the team decided to
add another streaming job into the system to help monitor system usage.
The job tracks key information, such as how many transactions have been
processed.



The new system usage job

The new system usage job is used internally to monitor the current load of
the system. We can start with two critical numbers that we are interested in
first:

How many transactions have been processed? This number is
important for us to understand the trend of the overall amount of data
the fraud detection job is processing.



How many suspicious transactions have been detected? This number
could be helpful for us to understand the number of new records
created in the result database.

The counting logic is in the SystemUsageAnalyzer operator:

class SystemUsageAnalyzer extends Operator { 
  private int transactionCount = 0; 
  private int fraudTransactionCount = 0; 
   
  public void apply(Event event, EventCollector collector) { 
    String id = ((TransactionEvent)event).getTransactionId(); 

    transactionCount++;                      ❶ 
 

    Thread.sleep(20);                        ❷ 
     
     

    boolean fraud = fraudStore.getItem(id);  ❸ 
 
    if (fraud) { 

      fraudTransactionCount++;               ❹ 
    } 
 
    collector.emit(new UsageEvent( 
    transactionCount, fraudTransactionCount)); 
  } 
}

❶ Count the transaction.

❷ Pause for 20 milliseconds for the fraud detection job to finish its process.

❸ Read the detection result of the transaction from database. This
operation may fail if the database is not available, and an exception will
be thrown.

❹ Count the fraud transaction if the result is true.

The operator looks very simple:

For every transaction, the value of transactionCount increases
by one.
If the transaction is a detected fraud transaction, the value of
fraudTransactionCount increases by one.



However, the getItem() call in the function could fail. How the job
behaves when failures happen is a key difference between different
delivery semantics.

The requirements of the new system
usage job

Before worrying about the failures, we have a few more things to talk
about. First, let’s look at the requirements of the job. As an internal tool, the
latency and accuracy requirements can be quite different from the fraud
detection job:

Latency—The 20-millisecond latency requirement of the fraud
detection job is not necessary in the system usage job, since the
results are not used by the presenter service to generate decisions for
the banks. We humans can’t read the results that quickly anyway.
Moreover, a small delay when something goes wrong could be totally
acceptable.
Accuracy—On the other hand, accurate results could be important for
us to make the right decision.



We will walk you through the most common delivery semantics to get you
started in your stream-processing journey. Along the way we will discuss
the different ways you can use streaming systems to guarantee how
transactions will be processed and why you would want to use them.

New concepts: (The number of) times
delivered and times processed

To understand what delivery semantics really means, the concepts of times
processed and times delivered will be very helpful:

Times processed can refer to the number of times an event was
processed by a component.



Times delivered can refer to the number of times the result was
generated by a component.

The two numbers are the same in most cases, but not always. For
example, in the flow chart of the logic in the SystemUsageAnalyzer
operator below, it is possible that the get detection result step can fail if the
database is having issues. When the step fails, the event is processed
once (but not successfully), and no result is generated. As a result, the
times processed would be 1, and the times delivered would be 0. You may
also consider times delivered as times successfully processed.

New concept: Delivery semantics



Here comes the key topic of this chapter: delivery semantics, also known
as delivery guarantees or delivery assurances. It is a very important
concept to understand for streaming jobs before we move on to more
advanced topics.

Delivery semantics concerns how streaming engines will guarantee the
delivery (or successful processing) of events in your streaming jobs. There
are three main buckets of delivery semantics to choose from. Let’s
introduce them briefly here and look at them one by one in more detail
later.

At-most-once—Streaming jobs guarantee that every event will be
processed no more than one time, with no guarantees of being
successfully processed at all.
At-least-once—Streaming jobs guarantee that every event will be
successfully processed at least one time with no guarantees about the
number of times it is processed.
Exactly-once—Streaming jobs guarantee that every event will be
successfully processed once and only once (at least it looks this way).
In some frameworks, it is also called effectively-once. If you feel that
this is too good to be true because exactly-once is extremely hard to
achieve in distributed systems, or the two terms seem to be
controversial, you are definitely not alone. We will talk about what
exactly-once really is later in its own section.



Choosing the right semantics

You may ask whether it is true that exactly-once is the go-to semantic for
everything. The advantage is pretty obvious: the results are guaranteed to
be accurate, and the correct answer is better than an incorrect answer.

With exactly-once, the streaming engine will do everything for you and
there is nothing to worry about. What are the other two options for? Why
do we need to learn about them? The fact is, all of them are useful
because different streaming systems have different requirements.

Here is a simple table for the tradeoffs to begin with. We will revisit the
table later after more discussion.



Delivery
semantics

At-most-once At-least-once Exactly-once

Accuracy
No
accuracy
guarantee
because of
missing
events

No accuracy
guarantee
because of
duplicated
events

(Looks like)
accurate
results are
guaranteed

Latency
(when errors
happen)

Tolerant to
failures; no
delay when
errors
happen

Sensitive to
failures;
potential delay
when errors
happen

Sensitive to
failures;
potential
delay when
errors
happen

Complexity
Very simple Intermediate

(depends on
the
implementation)

Complex



Let’s continue to learn how the delivery semantics are actually handled in
streaming systems. Then, you should be able to understand the tradeoffs
better. Note that in the real world, each framework could have its own
architecture and handle delivery semantics very differently. We will try to
explain in a framework agnostic manner.

At-most-once

Let’s start from the simplest semantic: at-most-once. Inside the jobs with
this semantic, events are not tracked. Engines will do their best to process
each event successfully, but if any error occurs along the way, the engines
will forget the events and carry on processing others. The diagram below
shows how events are handled in the Streamwork engine for at-most-once
jobs.

Since the engines don’t track events, the whole job can run very efficiently
without much overhead. And since the job will just continue running without
the need of recovering from the issues, the latency and higher throughput



won’t be affected by the errors. In addition, the job will also be easier to
maintain because of the simplicity. On the other hand, the effect of losing
events when the system is having issues is that the results could be
temporarily inaccurate.

The fraud detection job

Let’s look back at the fraud detection job with the at-most-once semantic.
The fraud detection job is responsible for adding up fraud scores on each
transaction that enters the card network, and it must generate the results
within 20 milliseconds.



The good

With the at-most-once guarantee, the system is simpler and processes
transactions with lower latency. When something goes wrong in the
system, such as a transaction failing to process or transport, or any
instance is temporarily unavailable, the affected events will simply be
dropped and the score aggregator will just process with the available data,
so the critical latency requirement is met.

Low resource and maintenance costs is the other main motivation to
choose the at-most-once semantic. For example, if you have a huge
amount of data to process in real time with limited resources, the at-most-
once semantic could be worth your consideration.

The bad

Now, it is time to talked about the catch: inaccuracy. It is definitely an
important factor when choosing the at-most-once semantic. At-most-once
is suitable for the cases in which temporary inaccuracy is acceptable. It is
important to ask yourself this question when you consider this option: what
is the impact when the results are inaccurate temporarily?



The hope

If you want the advantages of at-most-once as well as accurate results,
don’t lose hope yet. Although it might be too much to expect everything at
the same time, there are still a few things we can do to overcome this
limitation (to some extent). We will talk about these practical techniques at
the end of this chapter, but for now, let’s move on and look at the other two
delivery semantics.

At-least-once

No matter how convenient the at-most-once semantic is, the flaw is
obvious: there is no guarantee that each event will be reliably processed.
This is just not acceptable in many cases. Another flaw is that, since the
events have been dropped without any trace, there is not much we can do
to improve the accuracy.

Next comes the next delivery semantic—at-least-once—which can be
helpful for overcoming the flaws discussed previously. With at-least-once,
the streaming engines will guarantee that events will be processed at least
one time. A side effect of at-least-once is that events may be processed
more than one time. The diagram below shows how events are handled in
the Streamwork engine for at-least-once jobs.

Note that tracking events and making sure each of them is successfully
processed might sound easy, but it’s not a trivial task in distributed
systems. We will look into it in the next few pages.



At-least-once with acknowledging

A typical approach to support the at-least-once delivery semantic is that
each component within a streaming job acknowledges that it has
successfully processed an event or experienced a failure. Streaming
frameworks usually supply a tracking mechanism for you with a new
process acknowledger. This acknowledger is responsible for tracking the
current and completed processes for each event. When all processes are
completed, and there is no current process left for an event, it will report a



success or fail message back to the data source. Let’s look at our system
usage job running with the at-least-once semantic below.

The acknowledger
Some of you may ask: why don’t we
send the acknowledgment message
back to the source directly? The main
reason is related to the single
responsibility principle. The source is
responsible for bridging the
streaming job with the outside world,
and we would like to keep it simple.



After the source component emits an event, it will keep it in a buffer first.
After it receives a success message from the acknowledger, it will remove
the event from the buffer, since the event has been successfully
processed. If the source component receives a fail message for the event,
it will replay that event by emitting it into the job again.

Track events

Let’s get closer and see how events are tracked with an example. The
engine will wrap the core event in some metadata as it leaves the data
source. One of these pieces of meta-data is an event id that is used for
tracking the event through the job. Components would report to the
acknowledger after the process is completed.

Note that the downstream components are included in acknowledgment
data, so the acknowledger knows that it needs to wait for the tracking data
from all the downstream components before marking the process fully
processed.



Handle event processing failures

In another case, if the event fails to process in any component, the
acknowledger will notify the source component to resend.



Track early out events

The last case we need to take a look at is when not all events go through
all the components. Some events may finish their journey earlier. This is
why the downstream component information in the acknowledgment
message is important. For example, if the transaction is not valid and won’t



need to be written to storage, the system usage analyzer will be the last
stop of the event, and the process will be completed there.

Acknowledging code in components

If you are wondering how the engine will know how a component will pass
or fail an event, that is good! Below we have snippets of code that will be
implemented in the SystemUsageAnalyzer and the UsageWriter
components.



class SystemUsageAnalyzer extends Operator { 
  public void apply(Event event, EventCollector collector) { 
    if (isValidEvent(event.data)) { 
      if (analyze(event.data) == SUCCESSFUL) { 

        collector.emit(event);                       ❶ 
        collector.ack(event.id);     
      } else { 
        //signal this event as failure 

        collector.fail(event.id);                    ❷ 
      } 
    } else { 
      // signal this event as successful 

      collector.ack(event.id);                       ❸ 
    } 
  } 
} 
 
 
 
class UsageWriter extends Operator { 
  public void apply(Event event, EventCollector collector) { 
    if (database.write(event) == SUCCESSFUL) { 
      //signal this event as successful 

      collector.ack(event.id);                       ❹ 
    } else { 
      // signal this event as unsuccessful 

      collector.fail(event.id);                      ❺ 
    } 
  } 
}

❶ An acknowledgment will be sent out when an event is emitted to
acknowledge the event as successful.

❷ Analyzing failed. Acknowledge this event as unsuccessful.

❸ The event should be skipped. Acknowledge this event as successful, so
the source component won’t replay it.

❹ No need to emit the event out. Manually acknowledge this event as
successful.

❺ The database is having issues writing. Acknowledge this event as
unsuccessful.

New concept: Checkpointing



Acknowledging works fine for the at-least-once semantic, but it has some
drawbacks.

The acknowledgment logic (aka code change) is needed.
The order of events processing could be different from the input, which
could cause issues. For example, if we have three events [A, B, C] to
process, and the processing job has a failure when processing event
A, another copy of event A will be replayed later by the source, and
eventually four events, [A (failed), B, C, A], are emitted into the job,
and event A is successfully processed after B and C.

Luckily, there is another option to support the at-least-once semantic (with
tradeoffs, like everything else in the distributed systems): checkpointing. It
is an important technique in streaming systems to achieve fault tolerance
(i.e., the system continues operating properly after the failures). Because
there are many pieces involved, it is a little messy to explain checkpointing
in detail in streaming systems. So let’s try a different way. Although the
concept of checkpointing sounds technical, it is, in fact, very likely that you
have experienced it in real life if you have ever played video games. If you
haven’t played any, that’s OK. You can also think of any text editor software
(or maybe you want to try a video game now).

Now, let’s play an adventure game fighting all kinds of zombies and saving
the world. It is not very common that you will complete the game nonstop
from the beginning to the end, unless you are like a superhero and never
fail. Most of us will fail occasionally (or more than occasionally). Hopefully,
you have saved your progress so you can reload the game and resume
where you were instead of starting over from the very beginning. In some
games, the progress might be saved automatically at critical points. Now,
imagine that you live in the universe of the game. Your time should be
continuous without interruption, even though in real life you have been
rolled back a few (or many) times to earlier states. The operation of saving
a game is very much like checkpointing.



New concept: State

If you play video games, you know how important saved data is. I can’t
imagine how I can finish any game (or any work) without that functionality.
A more formal definition of checkpoint is a piece of data, typically persisted
in storage, that can be used by an instance to restore to a previous state.
We will now cover another related concept: state.

Let’s go back to the zombie universe and see what data would be needed
to restore and continue the adventure. The data could be very different
from game to game, but we should be able to imagine that the following
data will be needed in the saved games:

The current score and levels of skills
The equipment you have
The tasks that have been finished

One key property that makes the data important is that it changes along
with the game-play. The data that doesn’t change when you are working
hard to save the world, such as the map and the appearance of the
zombies, doesn’t need to be included in the saved games.



Now, let’s go back to the definition of state in streaming systems: the
internal data inside each instance that changes when events are
processed. For example, in the system usage job, each instance of the
system usage analyzer keeps track of the count of transactions it has
processed. This count changes when a new transaction is processed, and
it is one piece of information in the state. When the instance is restarted,
the count needs to be recovered.

While the concepts of checkpointing and state are not complicated, we
need to understand that checkpointing is not a trivial task in distributed
systems like in streaming systems. There could be hundreds or thousands
of instances working together to process events at the same time. It is the
engine’s responsibility to manage the checkpointing of all the instances
and make sure they are all synchronized. We will leave it here and come
back to this topic later in chapter 10.

Checkpointing in the system usage job
for the at-least-once semantic

Before introducing checkpointing for at-least-once, we need to introduce a
useful component between the API gateway and the system usage job: an
event log. Note that the term is used for the purposes of this book and is
not widely used, but it shouldn’t be hard to get. An event log is a queue of
events in which each event is tracked with an offset (or a timestamp). The
reader (or consumer) can jump to a specific offset and start loading data
from there. In real life, events might be organized in multiple partitions, and
offsets are managed independently in each partition, but let’s keep things
simple here and assume there is only one offset and one transaction
source instance.

With an event log in front of the transaction source component, every
minute (or other interval) the source instance creates a checkpoint with the



current state—the current offset it is working on. When the job is restarted,
the engine will identify the right offset for the instance to jump to (a
rollback) and start processing events from that point. Note that the events
processed by the instance from the checkpointing time to the restart time
will be processed again, but it is OK under the at-least-once semantic.

Checkpointing and state manipulation
functions

Checkpointing is very powerful. Many things are happening when a job is
running with checkpointing enabled. A few major points include:



Periodically, each source instance needs to create the checkpoint with
their current states.
The checkpoints need be saved into a (hopefully fault-tolerant) storage
system.
The streaming job needs to restart itself automatically when a failure is
detected.
The job needs to identify the latest checkpoints, and each restarted
source instance needs to load its checkpoint file and recover its
previous state.
We don’t have unlimited storage, so older checkpoints need to be
cleaned up to save resources.

After looking at all the points above, don’t panic! It is true that the whole
checkpointing mechanism is a bit complicated, and there are many things
happening to make it work. Luckily, most of these are handled by the
streaming frameworks, and the stream job owners need to worry about
only one thing: the state. More specifically, the two state manipulation
functions:

Get the current state of the instance. The function will be invoked
periodically.



Initialize the instance with a state object loaded from a checkpoint.
The function will be invoked during the startup of the streaming job.

As long as the two functions above are provided, the streaming framework
will do all the dirty work behind the scenes, such as packing the states in a
checkpoint, saving it on disk, and using a checkpoint to initialize instances.

State handling code in the transaction
source component

The following is a code example of the TransactionSource
component with the Streamwork framework:

The base class is changed from Source to StatefulSource.

With this new base class, a new getState() function is introduced
to extract the state of the instance and return to the engine.
Another change is that the setupInstance() function takes an
additional State object to set up the instance after it is constructed,
which didn’t exist for the stateless operators.

public abstract class Source extends Component {                 ❶ 
  public abstract void setupInstance(int instance); 
  public abstract void getEvents(EventCollector eventCollector); 
} 
 

public abstract class StatefulSource extends Component {         ❶ 

  public abstract void setupInstance(int instance, State state); ❷ 
  public abstract void getEvents(EventCollector eventCollector); 

  public abstract State getState();                              ❸ 
} 
 
class TransactionSource extends StatefulSource { 
  MessageQueue queue; 
  int offset = 0; 
  ...... 
  public void setupInstance(int instance, State state) { 
    SourceState mstate = (SourceState)state; 
    if (mstate != null) { 



      offset = mstate.offset;                                    ❹ 
      log.seek(offset); 
    } 
  } 
   
  public void getEvents(Event event, EventCollector eventCollector) { 
    Transaction transaction = log.pull(); 
    eventCollector.add(new TransactionEvent(transaction)); 

    offset++;                                                    ❺ 
  } 
   
public State getState() { 
    SourceState state = new SourceState(); 
    State.offset = offset; 

    return new state;                                            ❻ 
  } 
}

❶ Source and StatefulSource classes

❷ A new state object is used to set up the instance.

❸ This new function is used to extract the state of the instance.

❹ The data in the state object is used to set up the instance.

❺ The offset value changes when a new event is pulled from the event log
and emitted to the downstream components.

❻ The state object of the instance contains the current data offset in the
event log.

Exactly-once or effectively-once?

For the system usage job, neither at-most-one nor the at-least-once
semantics are ideal because accurate results are not guaranteed, but we
need them to make the right decision. To achieve this goal, we can choose
the last semantic: exactly-once, which guarantees that each event is
successfully processed once and only once. Hence, the results are
accurate.

First, let’s discuss what we mean by exactly-once. It is critical to
understand the fact that every event is not really processed or successfully



processed exactly one time like the name suggests. The real meaning is
that if you look at the job as a black box—in other words, if you look only at
the input and the output and ignore how the job really works internally, it
looks like each event is processed successfully once and only once.
However, if we dive into the system internally, it is possible for each event
to be processed more than one time. Now, if you look at the topic of this
chapter it is delivery semantics instead of process semantics. Subtle, right?

When the semantic was briefly introduced earlier in this chapter, we
mentioned that it is called effectively-once in some frameworks.
Technically, effectively-once could be a more accurate term, but exactly-
once is widely used; thus, we decided to use the term exactly-once as the
standard in this book, so you won’t be confused in the future.

If you still feel that the looks like (or effectively) part is tricky, it is totally
understandable. To help you understand better what it really is, let’s steer
away and talk a little about an interesting concept next: idempotency.
Hopefully, it will be helpful in giving you a better idea about what we mean
by effectively.

A real exactly-once is extremely
difficult in distributed systems—for
real.



Bonus concept: Idempotent operation

Idempotent operation seems like a loaded term, right? It is a computational
and mathematical term that means no matter how many times a function is
given a quantity, the output will always be the same. Another way to think
about it is: making multiple identical calls to the operation has the same
effect as making a single call. Clear as mud? No worries. Let’s get into one
example in the context of a credit card class.

Let’s look at two methods of the class: setCardBalance() and
charge().

The setCardBalance() function sets the card balance to a new
value specified as the parameter.
The charge() function adds the new amount to the balance.

class CreditCard { 
  double balance; 

  public void setCardBalance(double balance) { ❶ 
    this.balance = balance; 
  } 

  public void charge(float amount) {           ❷ 
    balance += amount; 
  } 
}

❶ The results would be the same no matter how many times (more than 0
times though) the setCardBalance() function is called with the
same parameter.

❷ The balance (state) would change every time the charge() function is
called with the same parameter.



One interesting property of the setCardBalance() function is that
after it is called once, the state of the credit card object (the card balance)
is set to the new value. If the function is then invoked the second time, the
balance will still set to the new value again, but the state (the balance) is
the same as before. By looking at the card balance, it looks like the
function is only called one time because you can’t tell if it is called once or
more than once. In other words, the function might be called once or more
than once, but it is effectively once, since the effect is the same. Because
of this behavior, the setCardBalance() function is an idempotent
operation.

As a comparison, the charge() function is not an idempotent operation.
When it is invoked once, the balance will increase by the amount. If the call
is repeated for the second time by mistake, the balance will increase again,
and the card object will be in a wrong state. Therefore, since the function is
not idempotent, it really needs to be called exactly once for the state to be
correct.

The exactly-once semantic in streaming systems works like the
setCardBalance() function above. From the states of all the
instances in the job, it looks like each event is processed exactly one time,
but internally, the event might be processed more than once by each
component.

Exactly-once, finally

After learning the real meaning of the semantic and the concept of the
idempotent operation, plus knowing the power of returning the accurate
results, are you more interested in how exactly-once works now? Exactly-
once may sound fancy, but it is really not that complicated. Typically, the
exactly-once semantic is supported with checkpointing, which is very
similar to the at-least-once support. The difference is that checkpoints are



created for both sources and operators, so they can all travel back in time
together during a rollback. Note that checkpoints are needed only for the
operators with internal states. Checkpoints are not needed for the
operators without internal states because there is nothing to recover during
a rollback.

Does it sound simple so far? Don’t celebrate yet. The state of a source
instance is just an offset. But the state of an operator instance could be
much more complicated, since it is specific to the logic. For operators, the
state could be a simple number, a list, a map, or a complicated data
structure. Although streaming engines are responsible for managing the
checkpoints data normally, it is important to understand the cost behind the
scenes.



State handling code in the system usage
analyzer component

With the Streamwork framework, to make the SystemUsageAnalyzer
component handle the creation and usage of instance state, the changes
are similar to the TransactionSource we have seen earlier.

The base class is changed from Operator to
StatefulOperator.

The setupInstance() function takes an extra state parameter.

A new getState() function is added.

public abstract class Operator extends Component { 
  public abstract void setupInstance(int instance); 
  public abstract void getEvents(EventCollector eventCollector); 
  public abstract GroupingStrategy getGroupingStrategy(); 
} 
 
public abstract class StatefulOperator extends Component { 

  public abstract void setupInstance(int instance, State state); ❶ 
  public abstract void apply(Event event, EventCollector eventCollector); 
  public abstract GroupingStrategy getGroupingStrategy(); 

  public abstract State getState();                              ❷ 
} 
 
class SystemUsageAnalyzer extends StatefulOperator { 
  int transactionCount; 
  public void setupInstance(int instance, State state) { 
    AnalyzerState mstate = (AnalyzerState)state; 

    transactionCount = state.count;                              ❸ 
    …… 
  } 
   
   
  public void apply(Event event, EventCollector eventCollector) { 
    transactionCount++; 

    eventCollector.add(transactionCount);                        ❹ 
  } 
   
  public State getState() { 
    AnalyzerState state = new AnalyzerState(); 

    State.count = transactionCount;                              ❺ 
    return state; 



  } 
}

❶ A new state object is used to set up the instance.

❷ This new function is used to extract the state of the instance.

❸ When an instance is constructed, a state object is used to initialize the
instance.

❹ The count variable changes when events are processed.

❺ A new state object is created to store instance data periodically.

Note that the API supported by the Streamwork framework is a low-level
API to show you how things work internally. Nowadays, most frameworks
support higher level APIs, such as functional and declarative APIs. With
these new types of APIs, reusable components are designed, so users
don’t need to worry about the details. You should be able to tell the
difference when you start using one in the future.

Comparing the delivery semantics again

All the delivery semantics have their own use cases. Now that we have
seen all the delivery semantics, let’s compare the differences again (in an
overly simplified manner) in one place. We can see from the table that
follows it is clear that different delivery semantics have different pros and
cons. Sometimes, none of them are perfect for your use case. In those
cases, then, you will have to understand the tradeoffs and make the
decision accordingly. You may also need to change from one to another
when requirements change.

Regarding decisions and tradeoffs, a reasonable concern for people
considering choosing at-most-once and at-least-once for benefits like
latency and efficiency is that accuracy is not guaranteed. There is a
popular technique to avoid this problem that could be helpful to make



people feel better: lambda architecture. With lambda architecture, a
companion batch process is running on the same data to generate
accurate results with higher end-to-end latency. Since we have a lot to
digest in this chapter, we will talk about it later in more detail in chapter 10.



Delivery
semantics

At-most-once At-least-once Exactly-once

Accuracy
No accuracy
guarantee
because of
missing
events

No accuracy
guarantee
because of
duplicated
events

(Looks like)
accurate
results are
guaranteed

Latency
(when errors
happen)

Tolerant to
failures; no
delay when
errors happen

Sensitive to
failures;
potential delay
when errors
happen

Sensitive to
failures;
potential
delay when
errors
happen

Complexity/
resource
usage

Very simple
and light
weight

Intermediate
(depends on
the
implementation)

Complex
and
heavyweight

Maintenance
burden Low Intermediate High

Throughput
High Intermediate Low

Code
No code
change is
needed

Some code
change is
needed

More code
change is
needed



Delivery
semantics

At-most-once At-least-once Exactly-once

Dependency
No external
dependencies

No external
dependencies
(with
acknowledging)

Need
external
storage to
save
checkpoints

Summary

In this chapter, we discussed an important new concept in streaming
systems: delivery semantics or delivery guarantees. Three types of
semantics you can choose for your streaming jobs are:

At-most-once—Each event is guaranteed to be processed no more
than once, which means it could be skipped when any failure happens
in the streaming jobs.
At-least-once—Events are guaranteed to be processed by the stream
jobs, but it is possible that some events will be processed more than
once in the face of failures.
Exactly-once—With this semantic, from the results, it looks like each
event is processed only once. It is also known as effectively-once.

We discussed the pros and cons of each of these semantics in this chapter
and briefly talked about an important technique to support at-least-once
and exactly-once in streaming systems: checkpointing. The goal is for you
be able to choose the most suitable delivery semantics for your own use
cases.



Exercises

1. Which delivery semantic would you choose if you were building the
following jobs, and why?

Find out the most popular hashtags on Twitter.
Import records from a data stream to a database.

2. In this chapter, we have looked at the system usage analyzer
component in the system usage job and modified it to be an
idempotent operation. What is the usage writer component? Is it an
idempotent operation or not?

Up next ...

From chapter 2 through chapter 5, quite a few concepts have been
introduced. They are the most common and basic concepts you need
when you start building streaming systems. In the next chapter, we are
going to take a small break and review what we have learned so far. Then,
we will jump into more advanced topics like windowing and join operations.



6 Streaming systems review and a
glimpse ahead

In this chapter

a review of the concepts we’ve learned
an introduction of more advanced concepts to be covered in the
chapters in part 2

“Technology makes it possible for people to gain control over

everything, except over technology.”

—J��� T����

After learning the basic concepts in streaming systems in the
previous chapters, it is time to take a small break and review them in
this chapter. We will also take a peek at the content in the later
chapters and get ready for the new adventure.

Streaming system pieces

A job is an application that loads incoming data and processes it. All
streaming jobs have four different pieces: event, stream, source, and
operator. Note that these concepts may or may not be named in a
similar fashion in different frameworks.



Parallelization and event grouping

Processing events one by one is usually not acceptable in the real
world. Parallelization is critical for solving problems on a large scale
(i.e., it can handle more load). When using parallelization, it is



necessary to understand how to route events with a grouping
strategy.



DAGs and streaming jobs

A DAG, or directed acyclic graph, is used to represent the logical
structure of a streaming job and how data flows through it. In more
complicated streaming jobs like the fraud detection system, one
component can have multiple upstream components (fan-in) and/or
downstream components (fan-out).

DAGs are useful for representing
streaming jobs.



Delivery semantics (guarantees)



After understanding the basic pieces of streaming jobs, we stepped
back and looked at the problems to solve again. What are the
requirements? What is important for the problem? Throughput,
latency, and/or accuracy?

After the requirements are clear, delivery semantics need to be
configured accordingly. There are three delivery semantics to choose
from:

At-most-once—Streaming jobs will process events with no
guarantees of being successfully processed at all.
At-least-once—Streaming jobs guarantee that every event will be
successfully processed at least once, but there is no guarantee
how many times each event will be processed.
Exactly-once—Streaming jobs guarantee that, it looks like each
event is processed once and only once. It is also known as
effectively-once.

The exactly-once guarantees accurate results, but there are some
costs that can’t be ignored, such as latency and complexity. It is
important to understand what requirements are essential for each
streaming job in order to choose the right option.

Delivery semantics used in the credit
card fraud detection system

In chapter 5, a new system usage job was added into the credit card
fraud detection system. It gives a real-time view of the usage of the



whole system. The fraud detect job and the new job have different
requirements:

Latency is more important for the original fraud detection job.
Accuracy is more important for the new system usage job.

As a result, different delivery semantics are chosen for them
accordingly.



Which way to go from here

The chapters up until now have covered the core concepts of
streaming systems. These concepts should get you started building
streaming jobs for many purposes in a framework of your choosing.



But they are definitely not all in streaming systems! As you move
forward in your career and start to solve bigger, more complex
problems, you are likely going to run into scenarios that will require
more advanced knowledge of streaming systems. In the following
chapters in part 2 of this book, a few more advanced topics will be
discussed:

Windowed computations
Joining data in real time
Backpressure
Stateless and stateful computations

For the basic concepts we have studied in the previous chapters,
order is important so far as each chapter built upon the previous.
However, in the second part of the book each chapter is more
standalone, so you can read the chapters either sequentially or in an
order you prefer. To make it easier for you to choose which ones to
read first, here is a glimpse ahead of what will be covered in each of
the chapters.

Windowed computations

So far, we have been processing events one by one in our examples.
However, in the fraud detection job, the analyzers rely on not only the
current event but also on the information of when, where, and how a
card was used recently to identify unauthorized card usages. For
example, the windowed proximity analyzer identifies fraud by
detecting credit cards charged in different locations in a short period



of time. How can we build streaming systems to solve these types of
problems?

In streaming systems, to slice events into event sets to process,
windowed computations will be needed. In chapter 7, we will study
different windowing strategies in streaming systems with the
windowed proximity analyzer in the fraud detection job.

In addition, windowed computation often has its limitations, and these
limitations are important for this analyzer and many other real-world
problems. In this chapter, we are also going to discuss a widely used
technique: using key-value stores (dictionary-like database systems)
to implement windowed operators.



In streaming systems, windowed
operators process event sets
instead of individual events.

Joining data in real time

In chapter 8, we will build a new system to monitor the CO2 emission
of all the vehicles in Silicon Valley in real time. Vehicles in the city
report their models and locations every minute. These events will be
joined with other data to generate a real-time CO2 emission map.



For people who have worked with databases before, join shouldn’t be
a strange concept. It is used when you need to reference data across
multiple tables. In streaming systems, there is a similar join operator
with its own characteristics, and it will be discussed in chapter 8. Note
that join is the type of stream fan-in we have mentioned (but skipped)
in chapter 4.

Backpressure



After you have a streaming job running to process data, you will
(hopefully not too soon) face a problem: computers are not reliable!
Well, to be fair, computers are reliable mostly, but typically streaming
systems might keep running for years, and many issues can come
up.

The team got a request from the banks to review the fraud detection
system and provide a report about the reliability of the system. More
specifically, will the job stop working when there is any computer or
network issue, and will the results be missing or inaccurate? It is a
reasonable request, since a lot of money is involved. In fact, even
without the request from the banks, it is an important question
anyway, right?

Backpressure is a common self-protection mechanism supported by
most streaming frameworks. With backpressure, the processes will



slow down temporarily and try to give the system a chance to recover
from problems, such as temporary network issues or sudden traffic
spikes overloading computers. In some cases, dropping events could
be more desirable than slowing down. Backpressure is a useful tool
for developers to build reliable systems. In chapter 9, we will see how
streaming engines detect and handle issues with backpressure.

Stateless and stateful computations

Maintenance is important for all computer systems. To reduce cost
and improve reliability, Sid has decided to migrate the streaming jobs
to new and more efficient hardwares. This will be a major
maintenance task, and it is critical to proceed carefully to make sure
everything works correctly.



A debt we have left behind in chapter 5, delivery semantics, is stateful
component. We have discussed briefly what a stateful component is
and how it is used in at-least-once and exactly-once delivery
semantics. However, sometimes less is more. It is important to
understand the tradeoffs to make better technical decisions when
building and maintaining streaming systems.

In chapter 10, we will look into how stateful components work
internally in greater detail. We will also talk about alternative options
to avoid some of the costs and limitations.



Part 2. Stepping up
The second part of this book takes you deep into theory with some
framework-agnostic implementations of how streaming systems
handle more complex topics. Chapter 7 shows you how to slice
never-ending streams of data into meaningful chunks, and chapter 8
lays out the process of joining data in real time. In chapter 9, you find
out how streaming systems can help you recover from processing
failures, and in chapter 10, you dive into the complexities of
managing state in real-time streaming jobs. Finally, chapter 11
quickly recaps the book’s content and gives you some guidance on
what to do after reading this book.



7 Windowed computations

In this chapter

standard windowing strategies
time stamps in events
windowing watermark and late events

“The attention span of a computer is only as long as its power

cord.”

—U������

In the previous chapters, we built a streaming job to detect fraudulent
credit card transactions. There could be many analyzers that use
different models, but the basic idea is to compare the transaction with
the previous activities on the same card. Windowing is designed for
this type of work, and we are going to learn the windowing support in
streaming systems in this chapter.

Slicing up real-time data

As the popularity of the team’s new product has grown so has the
attention of new types of hackers. A group of hackers has started a
new scheme involving gas stations.



Here’s how it works: They capture an innocent victim’s card
information and duplicate it from multiple new physical credit cards.
From there, the attackers will send the newly created fraudulent cards
out to others in the group and orchestrate spending money on the
same credit card from multiple locations across the world at the same
time to purchase gas. They hope that by charging the card all at
once, the card holder will not notice the charges until it’s too late. The
result is free gas. Why do they go to a global scale to try and get free
tanks of gas? We can consider this a mystery.

How do we prevent this scam?

For the purposes of this book, we are going to use round numbers for
easy math calculations. We will also assume that the fastest anyone



can travel is 500 miles per hour on a plane. Luckily, the team has
already thought of this type of scam.

Breaking down the problem in detail

We have two problems that we are trying to solve here. First, we are
looking for large jumps of distance within a single credit card.
Second, we are looking for large jumps in card usage across multiple
credit cards. In the first scenario, we will be looking to mark specific
card transactions as fraudulent; in the second one, we will be looking
to flag merchants (gas stations) as under attack by these menacing
gas thieves.

Here’s our formula:

final double maxMilesPerHour = 500; 
final double distanceInMiles = 2000; 
final double hourBetweenSwipes = 2; 
if (distanceInMiles > hourBetweenSwipe * maxMilesPerHour) { 
  // mark this transaction as potentially fraudulent 
}



Breaking down the problem in detail
(continued)

This hacker group in particular likes to create massive worldwide
attacks—all filling up cars with gas. It’s important to look at the
behaviors of the entire credit card system as well as one credit card
in the system. When these large-scale gas station attacks happen,
we need some way to block stores from processing any credit cards
that are being attacked to further enhance the security of the system.
Study the diagram below that uses a few US cities as examples for
locations from which a card could be charged.



We have two ways to prevent this type of scam:

We can block individual credit cards from being charged.
We can block gas stations from processing any credit cards.

But what tools do we have in our streaming systems to help us detect
fraudulent activity?

Two different contexts

To address our two different ways of preventing fraud, let’s look at the
graph from a previous page to further show how we can split up the
context. Remember that the windowed proximity analyzer looks for



fraud within the context of single credit cards, and the new analyzer
works within the context of stores.

Windowing in the fraud detection job



Most of the analyzer components in the fraud detection job use some
type of window (we will discuss this next) to compare the current
transaction against the previous ones. In this chapter, we are going to
focus on the windowed proximity analyzer, which detects individual
credit cards being swapped in different locations. For the gas
stations, we are going to leave it to our smart readers.



What exactly are windows?

Since the credit card transactions are constantly running through the
system, it can be challenging to create cut-off points or segments of
data to process. After all, how do you choose an end to something
that is potentially infinite, such as a data stream?

Using windows in streaming systems allows developers to slice up
the endless stream of events into chunks for processing. Note that
the slicing can be either time-based (temporal) or event count-based
in most cases. We are going to use time-based windows in context
later, since they fit our scenarios better.



Looking closer into the window



What we’ve done with streaming systems so far in this book has been
on a per-event, or individual, basis. This method works well for many
cases, but it could have some limitations as you start to get into more
complex problems. In many other cases, it can be useful to group
events via some type of interval to process. Check out the diagrams
below to learn a little more about the very basic concept of
windowing.



New concept: Windowing strategy

After understanding what windowing is, let’s look at how the events
are grouped together using a windowing strategy. We are going to
walk you through three different types of windowing strategies and
discuss their differences in the windowed proximity analyzer. The
three types of windowing strategies are:

Fixed window
Sliding window
Session window

Often, there is no hard requirement for choosing a windowing
strategy (how the events are grouped). You will need to talk with other
technologists and product owners on your team to make the best
decision for the specific problem you are trying to solve.



Fixed windows

The first and most basic window is fixed window. Fixed windows are
also referred to as tumbling windows. Events received from the
beginning to the end of each window are grouped as a batch to be
processed together. For example, when a fixed one-minute time
window (also known as a minutely window) is configured, all the
events within the same one-minute window will be grouped together



to be processed. Fixed windows are simple and straightforward, and
they are very useful in many scenarios. The question is: do they work
for the windowed proximity analyzer?



Fixed windows in the windowed
proximity analyzer

Here is an example of using a fixed window to look for repeated
charges from the same card. To keep things simple, we are just using
minutely windows to see what each group of events would look like.
The goal is to find out repeated transactions from each card within
each one-minute window. We will worry about the other things, such
as the 500-miles-per-hour max distance logic later.

It’s important to note that using a fixed time window only means the
time interval is fixed. It’s possible to get more or fewer events in each
window based on the number of events flowing through the job.



Detecting fraud with a fixed time
window

Let’s look at how the card proximity analyzer would behave using
fixed time windows. The amount of transactions per window has been



limited to only a few, so we can learn the concepts of windowing most
easily.

If you look closely at this diagram, it will hopefully be more clear how
fixed time windows would affect potential fraud scores. By running
fixed time windows, you are just cutting off other transactions that run
through the system, even if they are only a second outside of the
window. Do you think this is the windowing type we should use to
most accurately detect fraud?

The answer is that a fixed time window is not ideal for our problem. If
two transactions on the same card are a just few seconds apart, but
they fall into two different fixed windows, such as the two transactions
from the card ....6789, we won’t be able to run the card proximity
function on them.



Fixed windows: Time vs. count

Before moving forward to the next windowing strategy, let’s take a
look at two types of fixed windows first:

Time windows are defined by an unchanging interval of time.
Count windows are defined by an unchanging interval of number
of events processed.



Sliding windows

Another widely supported windowing strategy is a sliding window.
Sliding windows are similar to fixed time windows but different in that
they also have a defined slide interval. A new window is created



every slide interval instead of when the previous window ends. The
window interval and slide interval allow windows to overlap, and
because of this, each event can be included into more than one
window. Technically, we can say that a fixed window is a special case
of sliding window in which the window interval equals the slide
interval.



Sliding windows: Windowed proximity
analyzer

We could use a sliding window to look for repeated charges from the
same card in overlapping windows of time. The diagram below shows
one-minute sliding windows with 30-second slide intervals. When
using sliding windows it’s important to understand that an event may
be included in more than one window.



Detecting fraud with a sliding window



Sliding windows differ from fixed windows, as they overlap each other
based on the specified interval. The slide provides a nice mechanism
for a more evenly distributed aggregation of events to determine
whether a transaction is to be marked as fraudulent or not. Sliding
windows help with the lopping off of events, as we saw in fixed
windows.

As the window slides, the data elements it can make operations on
changes. The gradual slide or advance of what data it can reference
offers a more gradual and consistent view of data.

Pop Quiz!
Do you think the overlap on sliding
windows would be better or worse
for calculating averages? Why?



Session windows

The last windowing strategy we would like to cover before jumping
into the implementation is the session window. A session represents
a period of activity separated by a defined gap of inactivity, and it can
be used to group events. Typically, session windows are key-specific,
instead of global for all events like the fixed and sliding windows.



Session windows (continued)

Session windows are typically defined with a timeout, which is the
max duration for a session to stay open. We can imagine there is a
timer for each key. If there are no events under the key received



before the timer times out, the session window will be closed. Next
time, when an event under the key is received, a new session will be
started. In the diagram below, let’s take look at the transactions from
two cards (session windows are typically key specific, and the key
here is the card number). Note that the threshold for the gap of
inactivity is 10 minutes.



Detecting fraud with session windows

Session windows are relatively less straightforward than fixed and
sliding windows. Let’s try to see how session windows can potentially
be used in the fraud detection job. We don’t have an analyzer with
this model in the current design; however, it could be a good one to
consider and a good example to demonstrate one use case of
session windows.

When someone is shopping in a mall, typically they spend some time
looking and comparing first. After some time, finally a purchase is
made with a credit card. Afterwards, the shopper may visit another
store and repeat the pattern or take a break (you know, shopping can
be strenuous). Either way, it is likely that there will be a period of time
where the card is not swiped.



Therefore, if we look at the two card transaction timelines above, the
timeline to the left looks more legitimate than the one to the right,
because only one or two transactions happen in each short period of
time (session window), and there are gaps between the purchases. In
the timeline to the right, the card has been charged many times
continuously without a reasonable gap.

Summary of windowing strategies



We have gone through the concepts of three different windowing
strategies. Let’s put them together and compare the differences. Note
that time-based windows are used in the comparison, but fixed and
sliding windows can be event count-based as well.

Fixed windows (or tumbling windows) have fixed sizes, and a
new window starts when the previous one closes. The windows
don’t overlap with each other.
Sliding windows have the same fixed size, but a new one starts
before the previous one closes. Therefore, the windows overlap
with each other.
Session windows are typically tracked for each key. Each window
is opened by activity and closed by a gap of inactivity.



Slicing an event stream into data sets

After all the concepts, let’s move on to the implementation-related
topics. With windowing strategies, events are processed in small sets
instead of isolated events now. Because of the difference, the
WindowedOperator interface is slightly different from the regular
Operator interface.



Windowing: Concept or
implementation



Fundamentally, a windowed operator is a mechanism to reorganize
events as event sets, and streaming engines are typically responsible
for managing the event sets. Compared to the jobs we have seen
before this chapter, the streaming engines need more resources for
windowed operators. The more events there are in each window, the
more resource the streaming engines need. In other words, stream
jobs are more efficient when the window sizes are small. However,
real world problems are often not that ideal. C’est la vie.

Some of you may have already seen the issues with using windowed
operators to implement the windowed proximity analyzer in the fraud
detection job:

In this analyzer, we would like to track transactions far away from
each other and compare the distance and the time between
them. More specifically, if the distance is greater than 500 miles
per hour times the time difference between two transactions in
hours, the operator will mark the transaction as likely fraudulent.
So do we need a multi-hour long sliding window? Hundreds of
billions of transactions could be collected in this window, which
could be expensive to track and process.
Things become more complicated when the 20-millisecond
latency requirement is taken into consideration. With a sliding
window, there is a slide interval to determine, and it needs to be
short. If this interval is too long (for example, one second), most
transactions (those that happened in the first 980 milliseconds in
the second) are going to miss the 20-millisecond deadline.



In conclusion, the concepts are useful for us to choose the right
strategy for the problem, but to implement the analyzer in the fraud
detection job, we need to be more creative than simply relying on the
frameworks. Note that this is not a rare case in real-world systems.
Streaming frameworks are mainly designed for fast and lightweight
jobs, but life is never perfect and simple.

Another look

Now let’s see how the team solves the challenge and stops the gas
thieves. The first step is to understand how exactly the transactions
are processed in the windowed proximity analyzer.

In this operator, we want to track the times and locations of
transactions on each card and verify that the time and distance
between any two transactions don’t violate the rule. However, “any
two transactions in the window” isn’t really a necessary statement.
The problem can be simplified if we look at it in a slightly different
way: at any time when a new transaction comes in, we can compare
the time and location of the transaction with the previous transaction



on the same card and apply our equation. The past transactions on
the card, before the previous one, and all the transactions on the
other cards have no effect on the result and can be ignored.

Now since we have the equation already, the problem becomes pretty
straightforward: how do we find the previous transaction on the same
card?

You might be wondering: what about the sliding window? Good
question, and let’s take another look at it too. The perimeter of the
earth is about 25,000 miles, so 12,500 miles is the max distance
between any two places on earth. Based on our 500 miles per hour
traveling speed rule, a person can travel to any place on earth within
about 25 hours. Therefore, transactions older than 25 hours don’t
need to be calculated. The updated version of the problem to solve is:
how can we find out the previous transaction on the same card within
the past 25 hours?



Key–value store 101

After thinking about the calculation within the windowed proximity
analyzer operator, they decided to use a key–value store system to
implement it. This is a very useful technique to build windowed
operators without using the standard windowed operator support in
streaming frameworks, so let’s talk about it here.

A key–value store (also known as a K–V store) is a data storage
system designed for storing and retrieving data objects with keys. It
has been a very popular paradigm in the past decade. In case you
are not familiar with the term, it works just like a dictionary in which
each record can be uniquely identified by a specific key. Unlike the
more traditional (and better known) relational databases, the records
are totally independent from each other in key–value stores.

Why would we want storing systems that have fewer functions? The
major advantages are performance and scalability. Because key–
value stores don’t need to keep track of the relations between
different records, rows, and columns, the internal calculations can be
a lot simpler than the traditional databases. As a result, operations
like reading and writing run much faster. And because the records are
independent of each other, it is also much easier to distribute data on
multiple servers and make it work together to provide a key–value



store service that can handle a huge amount of data. The two
advantages are important for the fraud detection system as well as
many other data processing systems.

Another interesting feature supported by some key–value stores is
expiration. An expiration time could be provided when a key–value
pair is added into the store. When the expiration time comes, the
key–value pair will be removed automatically from the system and the
occupied resources will be freed. This feature is very convenient for
windowed operators in streaming systems (more specifically, the
“within the past 25 hours” part of our problem statement).

Implement the windowed proximity
analyzer

With the help of this key–value store, streaming engines don’t need to
keep and track all the events in the windows in memory. The
responsibility has been returned to the system developers. The bad
news is: the usage of a key–value store can be different from case to
case. There is no simple formula to follow when implementing
windowing strategies with key–value stores. Let’s take a look at the
windowed proximity analyzer as an example.

In the analyzer, we need to compare the time and location of each
transaction with the previous transaction on the same card. The
current transaction is in the incoming event, and the previous
transaction for each card needs to be kept in the key–value store.
The key is the card id, and the value is the time and location (to keep



it simple, in the source code that follows the whole event is stored as
the value).

public class WindowedProximityAnalyzer implements Operator {                 ❶ 
  final static double maxMilesPerHour = 500; 
  final static double distanceInMiles = 2000; 
  final static double hourBetweenSwipes = 2; 
  final KVStore store; 
   
  public setupInstance(int instance) { 

    store = setupKVStore();                                                  ❷ 
  } 
   
  public void apply(Event event, EventCollector eventCollector) { 
    TransactionEvent transaction = (TransactionEvent) event; 

    TransactionEvent prevTransaction = kvStore.get(transaction.getCardId()); ❸ 
 
 
    boolean result = false; 
    if (prevTransaction != null) { 
      double hourBetweenSwipe = 
          transaction.getEventTime() - prevTransaction.getEventTime(); 
      double distanceInMiles = calculateDistance(transaction.getLocation(), 
          prevTransaction.getLocation()); 
      if(distanceInMiles > hourBetweenSwipe * maxMilesPerHour) { 
        // Mark this transaction as potentially fraudulent. 

        result = true;                                                        ❹ 
      } 
    } 
 
    eventCollector.emit(new AnazlyResult(event.getTransactionId(), result)); 

    kvStore.put(transaction.getCardId(), transaction);  }                     ❺ 
}

❶ Operator instead of WindowedOperator is used here.

❷ Set up the key-value store.

❸ The previous transaction is loaded from the key-value store.

❹ Fraudulent transaction is detected.

❺ The current transaction is stored into the key-value store using the
card id as the key. The previous value is replaced now.



Event time and other times for events

There is one more concept we will cover before wrapping up this
chapter. In the code of the windowed proximity analyzer, there is one
important piece we would like to zoom in and take a closer look at.

transaction.getEventTime();

So what is event time? Are there other times? Event time is the time
at which the event actually occurs. Most processes on the event don’t
happen immediately. Instead, after the event has occurred, it is
normally collected and sent to some backend systems later, and then
even later it is really processed. All these things happen at different
times, so yes, there are quite a few other times. Let’s use our simple
traffic monitoring system as the example and look at the important
times related to an event.



Among all the times, the most important ones for each event are
event time and processing time. Event time for an event is like the
birthday for a person. Processing time, on the other hand, is the time
at which the event is being processed. In the fraud detection system,
what we really care about is the time when the card is swiped, which
is the event time of the transaction. Event time is typically included in
the event objects so that all the calculations on the event have the
same time to get the consistent results.

Windowing watermark

Event time is used in many windowed computations, and it is
important to understand the gap between event time and processing



time. Because of the gap, the windowing strategies we have learned
in this chapter aren’t as straightforward as they look.

If we look at the traffic monitor system as an example and configure
the vehicle counter operator with simple fixed windows to count the
number of vehicles detected in each minute, what would be the open
and close times for each window? Note that the time for each event
to arrive at the vehicle counter operator instances (the processing
time) is a little after it is created in an IoT sensor (the event time). If
the window is closed exactly when the end of the window comes, the
events occurring near the end of the window on the IoT sensors will
be missing because they haven’t been received by the counter
instances yet. Note that they can’t be put into the next window
because, based on the event time, they belong to the already-closed
window.

The solution to avoid missing events is to keep the window open for a
little longer and wait for the events to be received. This extra waiting
time is commonly known as the windowing watermark.



If we look back at the implementation of the windowed proximity
analyzer, the watermark is another reason the standard windowed
operator is not ideal for the case. Leaving extra time before
processing event sets would introduce extra latency and make the
20-millisecond latency requirement even more challenging to meet.

Late events

The windowing watermark is critical for avoiding missing events and
generating completed event sets to process. The concept should be
easy to understand, but deciding the waiting time isn’t as easy.

For example, in the traffic monitoring system, our IoT sensors work
very well. As a result, normally, all the vehicle events are collected
successfully within one second. In this case, a one second windowing
watermark could be reasonable.



However, the word normally might trigger an alert. Earlier in the book,
we mentioned a few times that one major challenge in building any
distributed system is failure handling. It is often a good habit to ask:
what if it doesn’t work as expected? Even in a simple system like this
one, events could be delayed to be later than one second if
something goes wrong—for example, the sensor or the reader could
slow down temporarily, or the network could be throttled if the
connection is not stable. When this delay happens, the events
received after the corresponding window has been closed are known
as late events. What can we do about them?

Sometimes, dropping these late events could be an option, but in
many other cases, it is important for these events to be handled
correctly. Most real-world streaming frameworks provide mechanisms
to handle these late events, but we will not go into more detail, as the
handling is framework-specific. For now, the key takeaway is to keep
these late events in mind and not forget about them.



Summary

Windowed computation is critical in streaming systems because it is
the way to slice isolated events into event sets to process. In this
chapter, we have discussed three standard windowing strategies
widely supported by most streaming frameworks:

Fixed windows
Sliding windows
Session windows

The basic support in streaming frameworks has its own limitations
and may not work in many scenarios. Therefore, in addition to the
concepts and how the streaming frameworks handle the windowed
operators, we have also learned how to use a key–value store to
simulate a windowed operator and overcome the limitations.

At the end of the chapter, we also covered three related concepts that
are important when solving real-world problems:



Different times related to each event, including event time versus
processing time
Windowing watermarks
Late events

Exercise

1. At the beginning of the chapter, we mentioned that we have two
ways to prevent fraudulent credit card transactions:

We can block individual credit cards from being charged.
We can block gas stations from processing any credit cards.

Afterward, we focused on detecting issues on individual credit
cards but haven’t paid much attention to the second option. The
exercise for you is: how can we detect suspicious gas stations,
so we can block them from processing credit cards?



8 Join operations

In this chapter

correlating different types of events in real time
when to use inner and outer joins
applying windowed joins

“An SQL query goes into a bar, walks up to two tables, and

asks, can I join you?”

—A��������

If you have ever used any SQL (structured query language)
database, most likely you have used, or at least learned about, the
join clause. In the streaming world, the join operation may not be as
essential as it is in the database world, but it is still a very useful
concept. In this chapter, we are going to learn how join works in a
streaming context. We will use the join clause in databases to
introduce the calculation and then talk about the details in streaming
systems. If you are familiar with the clause, please feel free to skip
the introduction pages.

Joining emission data on the fly



Well what do you know? The chief got lucky and fell into an
opportunity of tracking the emissions of cars in Silicon Valley,
California. Nice, right?

Well, with every great opportunity comes challenges. The team is
going to need to find a way to join events from vehicles in specific city
locations along with the vehicles’ estimated emission rates on the fly.
How will they do it? Let’s check it out.



The emissions job version 1

They have already implemented a first version of the emissions job.
The interesting part of the job is the data store to the right of the
emission resolver. It is a static lookup table used by the emission
resolver to search for the emission data of each vehicle. Note that we
assume that the vehicles with the same make, model, and year have
the same emissions in this system.



The emission resolver

The key component in this job is the emission resolver. It takes a
vehicle event, looks up the emission data for the vehicle in the data
store, and emits an emission event, which contains the zone and
emission data. Note that the output emission event contains data
from two sources: the incoming vehicle event and the table.



This operator can be considered a very basic join operator, which
combines data from different data sources based on related data
between them (vehicle make, model, and year). However, the
emission data is from a table instead of a stream. Join operators in
streaming jobs take it one step further by providing real-time data.

Accuracy becomes an issue

The job works OK in general, and it generates real-time emission
data successfully. However, one important factor in the equation is
missing: temperature (you know, CO2 emission varies under different
temperatures, and there are different seasons in California too). As a
result, the emissions per zone reported by the system are not
accurate enough. It is too late to add a temperature sensor to the
devices installed on each vehicle now, so it becomes the team’s
challenge to solve in a different way.



The enhanced emissions job

The team added another data source to bring current temperature
events into the job for more accurate reporting. The temperature
events are joined with the vehicle events using the zone id. The
output emission events are then emitted to the emission resolver.



Focusing on the join



The major changes in the new version are:

The extra data source that accepts temperature events into the
job
The event joiner that combines two streams into one

The temperature event source works like normal sources, which are
responsible for accepting data into stream jobs. The key change is
the newly added event joiner operator, which has two incoming event
streams and one outgoing event stream. Events arrive in real time,



and it is really rare for the events from the streams to be perfectly
synchronized with each other. How should we make different types of
events work together in the join operator? Let’s dig into it.

What is a join again?

It’s probably natural to think of SQL when someone refers to a join
operator. After all, join is a term that comes from the relational
database world.

A join is an SQL clause where you take a certain number of fields
from one table and combine them with another set of fields from
another table, or tables, to produce consolidated data. The diagram
below shows the join operator in terms of relational databases; the
streaming join is discussed in the following pages.



SELECT v.time, v.make, v.model, v.year, t.zone, t.temperature 
FROM vehicle_events v 
INNER JOIN temperature t on v.zone = t.zone;

How the stream join works

How can we make joins on data that is constantly moving and being
updated? The key is to convert the temperature events into a table.



Stream join is a different kind of fan-in

In chapter 4, we discussed the fraud detection scenario where we
aggregated the fraud scores from the upstream analyzers to help
determine whether a transaction was fraudulent or not. Is the score
aggregator the same type of operator?



The answer is no. In the score aggregator, all the incoming streams
have the same event type. The operator doesn’t need to know which
stream each event is from, and it just applies the same logic. In the
event joiner, the events in the two incoming streams are quite
different and handled differently in the operator. The score aggregator
is a merge operator, and the event joiner is a join operator. They are
both fan-in operators.



Vehicle events vs. temperature events

Note that in the join operator, the temperature events are converted
into the temporary temperature table, but the vehicle events are
processed as a stream. Why convert the temperature events instead
of the vehicle events? Why not convert both streams into tables?
These questions can be important when you build your own systems.

First, one outgoing event is expected for each incoming vehicle
event. So it makes sense to keep the vehicle events flowing through
the operator like a stream. Secondly, it could be more complicated to
manage vehicle events as the lookup table. There are many more
vehicles than zones in the system, so it would be much more
expensive to keep the vehicle events in a temporary in-memory table.
Furthermore, only the latest temperature for each zone is important
for us, but the vehicle event needs to managed (adding and
removing) more carefully, since every event counts.

Anyway, let’s put the vehicle events into a table and then join them
with the stream of temperature events. There will be multiple rows for



each zone in the table, and the results will be event batches instead
of individual events.

Table: A materialized view of
streaming

We are going to be a little more abstract here: what is the relationship
between the temperature events and the temperature table?
Understanding their relationship could be helpful for us to understand
what makes the temperature events special and make better
decisions when building new streaming systems.

One important fact about temperature data is that, at any moment, we
only need to keep the latest temperature for each zone. This is
because we only care about the latest temperature of each zone
instead of the individual changes or the temperature history. The



diagram belows shows the changes of the temperature table before
and after two temperature events are received and processed.

Each temperature event is used to update the table to the latest data.
Therefore, each event can be considered a change of the data in the
table, and the stream of the events is a change log.

On the other end, when a join happens, the lookup is performed on
the temperature table. At any moment, the temperature table is the
result after all the events up to the specific point of time have been
applied. Hence, the table is considered a materialized view of the
temperature events. An interesting effect of a materialized view is that
the event interval is not that important anymore. In the example, the
interval of temperature events for each zone is 10 minutes, but the
system would work the same way whether the interval is one second
or one hour.



Vehicle events are less efficient to be
materialized

On the other hand, compared to the temperature events, the vehicle
events are less efficient to be materialized. Vehicles move around the
city all the time, and every single vehicle event for the same vehicle
needs to be included in the join instead of the latest one. As a result,
the vehicle events table is basically a list of pending vehicle events to
be processed. Plus, the number of vehicles is likely to be much
greater than the number of zones normally. In conclusion, compared
to the temperature events, the vehicle events are more complicated
and less efficient to be materialized.

The diagram above shows the vehicle events are appended into the
table instead of being used to update rows. While there are some



things we can do to improve the efficiency, such as adding an extra
count column and aggregating rows that have the same make,
model, year, and zone instead of simply appending to the end of
the table, it is quite clear that the temperature events are much more
convenient to be materialized than the vehicle events. In real-world
problems, this property could be an important factor to help decide
how the streams should be handled if a join operator is involved.

Data integrity quickly became an issue

The emissions job worked great to help keep track of emissions
throughout the area the team planned for. But guess what? People
use applications in ways they weren’t meant to be used.



Why does this issue happen, and how we can address the issue? We
will need to look into different types of join operators.

What’s the problem with this join
operator?

The key to this join operator is obtaining the temperature for a given
zone. Let’s take a look at a table-centric representation of the
operator below. In the diagram, each vehicle event is represented as
a row in the table, but keep in mind that the vehicle events are



processed one by one like a stream. Another important thing to keep
in mind is that the the temperature table is dynamic, and the
temperature values could change when new temperature events
come in.

Now, the data integrity issue is caused by a special case: the zone 7
in the last vehicle event is not in the temperature table. What should



we do now? To answer this question, we need to discuss two new
concepts first: inner join and outer join.

Inner join

Inner join processes only vehicle events that have matching zone in
the temperature table.



If you look carefully at the above result of the join operator, you will
see that there is no row in the result associated with zone 7. This is
because inner joins only return rows of data that have matching
values, and there is no zone 7 in the temperature table.

With inner join, emission in these unknown zones will be missed,
since the vehicle events are dropped. Is this a desirable behavior?

Outer join

Outer joins differ from inner, as they include the matching and non-
matching rows on a specified column or data. Therefore, no event will
be missing, although there could be some incomplete events in the
result.



With the outer join we have a
chance to handle the special case
later.



The team decided to do an outer join to capture non-matching rows
and handle them later.

The inner join vs. outer join

Vehicle events that have no matching data in the temperature table
are handled differently with inner and outer joins. Inner joins only
return results that have matching values on both sides, but outer joins
return results whether or not there is matching data.



Different types of joins



If you are familiar with the join clause in databases, you will
remember that there are a few different types of outer joins: full outer
joins (or full joins), left outer joins (or left joins), and right outer joins
(or right joins). All join operators are included in the diagrams that
follow to illuminate the differences in the context of an SQL database.

Outer joins in streaming systems



Now we know the inner and outer joins in SQL databases. Overall,
things are pretty similar in the streaming world. One difference is that,
in many cases (such as the CO2 emission job), events in one of the
incoming streams are processed one by one, while the other streams
are materialized into tables to be joined. Usually, the special stream is
treated as the left stream, and the streams to be materialized are the
right streams. Therefore, the join used in the event joiner is a left
outer join

With left outer join, the team can identify the vehicles that are moving
outside of the planned area and improve the data integrity issue by
filling in the average temperature into the resulting vehicle-
temperature events instead of dropping them. The results are more
accurate now.



Note that in more complicated (hence, interesting) cases, there could
be more than one right stream, and different types of joins can be
applied to them.

A new issue: Weak connection

After fixing the data integrity issue, the team noticed another problem
a few weeks later: some values in the temperature table look strange.
After investigating, they found the root cause: one sensor has
connection issues, and sometimes it reports temperature successfully
every few hours instead of every 10 minutes. The issue can be fixed
by repairing the device and its connection, but at the same time, can
we make the system more resilient to the connection issues?

In general, streaming systems
have to account for the possibility
that some of their event sources
might be unreliable.



Windowed joins

A new concept can be very helpful for making the job handle the
unreliable connection issue: windowed joins. The name explains itself
well: a windowed join is an operator that combines both windowing
and join. In the previous chapter, we discussed windowed
computation in detail. The details are not required here, so don’t
worry if you picked this chapter to read first.

With windowed joins, the job works similarly to the original version:
the vehicle events are handled one by one, and the temperature
events are materialized into a lookup table. However, the
materialization of the temperature events is based on a fixed time
window instead of the continuous events. More specifically,
temperature events are collected into a buffer first and materialized
into an empty table as a batch every 30 minutes. If all the sensors
report data successfully in the window, the calculation should work
just fine. However, in case no temperature event is received from a
sensor within the window, the corresponding row in the lookup table
will be empty, and the event joiner can then estimate the current
value from the neighbor zones. In the diagram below, the
temperatures in zone 2 and 4 are used to estimate the temperature of
zone 3. By using a windowed join, we can make sure all the
temperature data in the table is up-to-date.



By changing from a continuous materialization to a window-based
materialization, we sacrifice the latency of temperature changes a
little (temperatures are updated every 30 minutes instead of 10
minutes), but in return, we get a more robust system that can detect
and handle some unexpected issues automatically.

Joining two tables instead of joining a
stream and table

Before wrapping up the chapter, as an example, let’s take a look at
the option in which both streams are converted to tables first and then
the two tables are joined together using the CO2 emission monitor
system. With this solution, the overall process in the component has
two steps: materialization and join. First, the two incoming streams
are materialized into two tables. Then, the join logic is applied on the
tables, and the results are emitted out to the downstream



components. Usually, windowing is used in the materialization step,
and the join operation is very similar to the join clause in SQL
databases. Note that a different windowing strategy can be applied to
each incoming stream.

Because the overall process is rather standard, developers can focus
on the join calculation without worrying about handling streams
differently. This could be an advantage when building more
complicated join operators; hence, this option is important to know.
On the other hand, the latency might not be ideal because the events
are processed in small batches instead of continuously. Remember
that it is up to the developers to choose the best option according to
the requirements.



Revisiting the materialized view

We have discussed that the temperature events are more efficient to
be materialized than the vehicle events, and we have also discussed
that, typically, the events in one special stream are processed one by
one, and the other streams are materialized into temporary tables,
but we can also materialize all streams and join the tables. I bet some
curious readers will ask: can we join with the raw temperature events
instead of the materialized view?

Let’s try to keep all the temperature events as a list and avoid the
temporary table. To avoid running out of memory, we will drop the
temperature events that are older than 30 minutes. For each vehicle
event, we need to search for the last temperature of the zone in the
temperature list by comparing the zone id in the vehicle event with
the zone id of each temperature in the list. The final results will be the
same, but with a lookup table which could be a hash map, a binary
search tree, or a simple array with the zone id as the index, the
searching would be much more efficient. From the comparison, we
can tell that the materialized view can be considered an optimization.



In fact, the materialized view is a popular optimization pattern in many
data processing applications.

The materialized view is a popular
pattern to optimize data
processing applications.

Since it is an optimization, we can be more creative about how to
manage the events if there are ways to make the operator more
efficient. For example, in the real world a lot more information, such
as noise level and air quality, can be collected by these sensors.
Because we only care about the real-time temperature in each zone
in this job, we can drop all other information and only extract the
temperature data from the events and put them into the temporary
lookup table. In your systems, if it makes your jobs more efficient, you
can also try to create multiple materialized views from a single stream
or create one materialized view from multiple streams to build more
efficient systems.

Summary

In this chapter, we discussed the other type of fan-in operator: join.
Similar to merge operators, join operators have multiple incoming
streams. However, instead of applying the same logic to all events
from different streams, events from different streams are handled
differently in join operators.



Similar to the join clause in SQL databases, there are different types
of joins. Understanding the joins is important for solving the data
integrity issue:

Inner joins only return results that have matching values in both
tables.
Outer joins return results whether or not there is matching data in
both tables. There are three types of outer joins: full outer joins
(or full joins), left outer joins (or left joins), and right outer joins (or
right joins).

In the CO2 emission monitoring system, the vehicle events are
processed like a stream, and the temperature events are used as a
lookup table. A table is a materialized view of a stream. At the end of
the chapter, we also learned that windowing can be used together
with join and a different option to build join operators: materializing all
the incoming streams into tables and then joining them together.



9 Backpressure

In this chapter

an introduction to backpressure
when backpressure is triggered
how backpressure works in local and distributed systems

“Never trust a computer you can’t throw out a window.”

—S���� W������

Be prepared for unexpected events is a critical rule when building any
distributed systems, and streaming systems are not exceptions. In
this chapter, we are going to learn a widely supported failure handling
mechanism in streaming systems: backpressure. It is very useful for
protecting a streaming system from breaking down under some
unusual scenarios.

Reliability is critical

In chapter 4, the team built a stream processing system to process
transactions and detect credit card fraud. It works well, and
customers are happy so far. However, the chief has a concern—a
very good one.



Review the system

Before moving forward, let’s review the structure of the system to
refresh our memory.



Streamlining streaming jobs



The reason streaming systems are increasingly being used is the
need for on-demand data, and on-demand data can be unpredictable
sometimes. Components in a streaming system or a dependent
external system, such as the score database in the diagram, might
not be able to handle the traffic, and they also might have their own
issues occasionally. Let’s look at a few potential issues that could
arise in the fraud detection system.

After all, failure handling is an important topic in all distributed
systems, and our fraud detection system is no different. Things can
go wrong, and some safety nets are important for preventing
problems from arising.



 Noodle on it
What if instances fall behind or
crash?

New concepts: Capacity, utilization,
and headroom

Familiarize yourself with these related concepts, which will be helpful
in discussing backpressure:

Capacity is the maximum number of events an instance can
handle. In the real world, capacity is not that straightforward to
measure; hence, CPU and memory utilization are often used to
estimate the number. Keep in mind that in a streaming system,
the number of events that various instances can handle could be
very different.
Capacity utilization is a ratio (in the form of a percentage) of the
actual number of events being processed to the capacity.
Generally speaking, higher capacity utilization means higher
resource efficiency.



Capacity headroom is the opposite of capacity utilization—the
ratio represents the extra events an instance can handle on top
of the current traffic. In most cases, an instance with more
headroom could be more resilient to unexpected data or issues,
but its efficiency is lower because more resources are allocated
but not fully used.

More about utilization and headroom



In real-world systems, something unexpected could occasionally
happen, causing the capacity utilization to spike. For example:

The incoming events could suddenly spike from time to time.
Hardware could fail, such as a computer restarting because of a
power issue, and the network performance might be poor when
bandwidth is occupied by something else.

It is important to take these potential issues into consideration when
building distributed systems. A resilient job should be able to handle
these temporary issues by itself. In streaming systems, with enough
headroom, the job should be running fine without any user
intervention.

However, headroom can’t be unlimited (plus, it is not free). When
utilization capacity reaches 100%, the instance becomes busy, and
backpressure is the next front line.



In a streaming job, the headroom could be different from
one instance to another. Generally speaking, the
headroom of a component is the minimal headroom of all
the instances of the component; and the headroom of a
job is the minimal headroom of all the instances in the job.
Ideally, the capacity utilization of all the instances in a job
should be at a similar level.
For critical systems, like the fraud detection system, it’s a
good practice to have enough headroom on every
instance, so the job is more tolerant to unexpected issues.

New concept: Backpressure

When the capacity utilization reaches 100%, things become more
interesting. Let’s dive into it using the fraud detection job as an
example.



When the instance becomes busy and can’t catch up with the
incoming traffic, its incoming queue is going to grow and run out of
memory eventually. The issue will then propagate to other
components, and the whole system is going to stop working.
Backpressure is the mechanism to protect the system from crashing.



Backpressure, by definition, is a pressure that is opposite to the data
flowing direction—from downstream instances to upstream instances.
It occurs when an instance cannot process events at the speed of the
incoming traffic, or, in other words, when the capacity utilization
reaches 100%. The goal of the backwards pressure is to slow down
the incoming traffic when the traffic is more than the system can
handle.

Measure capacity utilization

Backpressure should trigger when the capacity utilization reaches
100%, but capacity and capacity utilization are not very easy to
measure or estimate. There are many factors that determine the limit
of how many events an instance can handle, such as the resource,
the hardware, and the data. CPU and memory usage is useful but not
very reliable for reflecting capacity, either. We need a better way;
luckily, there is one.

We have learned that a running streaming system is composed of
processes and event queues connecting them. The event queues are
responsible for transferring events between the instances, like the
conveyor belts between workers in an assembly line. When the
capacity utilization of an instance reaches 100%, the processing
speed can’t catch up with the incoming traffic. As a result, the number
of events in the incoming queue of the instance starts to accumulate.
Therefore, the length of the incoming queue for an instance can be
used to detect whether the instance has reached its capacity.



Normally, the length of the queue should go up and down within a
relatively stable range. If it keeps growing, it is very likely the instance
has been too busy to handle the traffic.

In the next few pages, we will discuss backpressure in more detail
with our local Streamwork engine first to get some basic ideas, then
we will move to more general distributed frameworks.

Note that backpressure is especially useful for the temporary issues,
such as instances restarting, maintenance of the dependent systems,
and sudden spikes of events from sources. The streaming system will
handle them gracefully by temporarily slowing down and resuming
afterwards without user intervention. Therefore, it is very important to
understand what backpressure can and cannot do, so when system
issues happen, you have things under control without being panicky.



Backpressure in the Streamwork
engine

Let’s start from our own Streamwork engine first, since it is more
straightforward. As a local system, the Streamwork engine doesn’t
have complicated logic for backpressure. However, the information
could be helpful for us to learn backpressure in real frameworks next.

In the Streamwork engine, blocking queues (queues that can
suspend the threads that try to append more events when the queue
is full or take elements when the queue is empty) are used to connect
processes. The lengths of the queues are not unlimited. There is a
maximum capacity for each queue, and the capacity is the key for
backpressure. When an instance can’t process events fast enough,
the consuming rate of the queue in front of it would be lower than the
insertion rate. The queue will start to grow and become full
eventually. Afterward, the insertion will be blocked until an event is
consumed by the downstream instance. As the result, the insertion
rate will be slowed down to the same as the event processing speed
of the downstream instance.



Backpressure in the Streamwork
engine: Propagation

Slowing down the event dispatcher isn’t the end of the story. After the
event dispatcher is slowed down, the same thing will happen to the
queue between it and the upstream instances. When this queue is
full, all the instances of the upstream component will be affected. In
the diagram below, we need to zoom in a little more than normal to
see the blocking queue in front of the event dispatcher that is shared
by all the upstream instances.



When there is a fan-in in front of this component, which means there
are multiple direct upstream components for the downstream
component, all these components will be affected because the events
are blocked to the same blocking queue.

Our streaming job during a
backpressure



Let’s look at how the fraud detection job is affected by backpressure
with our Streamwork engine when one score aggregator instance has
trouble catching up with the incoming traffic. At the beginning, only
the score aggregator runs at a lower speed. Later, the upstream
analyzers will be slowed down because of the backpressure.
Eventually, the backpressure will bog down all your processing
power, and you’ll be stuck with an underperforming job until the issue
goes away.



Backpressure in distributed systems

Overall, it is fairly straightforward in a local system to detect and
handle backpressure with blocking queues. However, in distributed



systems, things are more complicated. Let’s discuss these potential
complications in two steps:

1. Detecting busy instances
2. Backpressure state

Detecting busy instances

As the first step, it is important to detect busy instances, so the
systems can react proactively. We mentioned in chapter 2 that the
event queue is a widely used data structure in streaming systems to
connect the processes. Although normally unbounded queues are
used, monitoring the size of the queues is a convenient way to tell
whether an instance can keep up with the incoming traffic. More
specifically, there are at least two different units of length we can use
to set the threshold:

The number of events in the queue
The memory size of the events in the queue

When the number of events or the memory size reaches the
threshold, there is likely an issue with the connected instance. The
engine declares a backpressure state.



Backpressure state

After a backpressure state is declared, similar to the Streamwork
engine, we would want to slow down the incoming events. However,
this task could often be much more complicated in distributed
systems than in local systems, because the instances could be
running on different computers or even different locations. Therefore,
streaming frameworks typically stop the incoming events instead of
slowing them down to give the busy instance room to breathe
temporarily by:

Stopping the instances of the upstream components, or
Stopping the instances of the sources



Although much less popular, we would also like to cover another
option later in this chapter: dropping events. This option may sound
undesirable, but it could be useful when end-to-end latency is more
critical and losing events is acceptable. Basically, between the two
options, there is a tradeoff between accuracy and latency.

The two options are explained in the diagram below. We’ve added a
source instance to help with explanations, and left out the details of
some intermediate queues and event dispatchers for brevity.

Backpressure handling: Stopping the
sources



Performing a stop at the source component is probably the most
straightforward way to relieve backpressure in distributed systems. It
allows us to drain the incoming events to the slow instance as well as
all other instances in a streaming job, which could be desirable when
it is likely that there are multiple busy instances.



Backpressure handling: Stopping the
upstream components

Stopping the incoming event could also be implemented at the
component level. This would be a more fine-grained way (to some
extent) than the previous implementation. The hope is that only
specific components or instances are stopped instead of all of them
and that the backpressure can be relieved before it is propagated
widely. If the issue stays long enough, eventually the source
component will still be stopped. Note that this option can be relatively
more complicated to implement in distributed systems and has higher
overhead.



Relieving backpressure

After a job is in a backpressure state for a while and the busy
instance has recovered (hopefully), the next important question is:
what is the end of a backpressure state, so the traffic can be
resumed?



The solution shouldn’t be a surprise, as it is very similar to the
detection step: monitoring the size of the queues. Opposite to the
detection in which we check whether the queue is too full, this time
we check whether the queue is empty enough, which means the
number of events in it has decreased to be below a low threshold,
and it has enough room for new events now.

Note that relieving doesn’t mean the slow instance has recovered.
Instead, it simply means there is room in the queue for more events.

Here, one important fact to keep in mind is that backpressure is a
passive mechanism designed for protecting the slow instance and the
whole system from more serious problems (like crashing). It doesn’t
really address any problem in the slow instance and make it run
faster. As a result, backpressure could be triggered again if the slow



instance still can’t catch up after the incoming events are resumed.
We are going to take a closer look at the thresholds for detecting and
relieving backpressure first and then discuss the problem afterward.

New concept: Backpressure
watermarks

The sizes of the intermediate queues are examined and compared
with the thresholds for the declaration and relieving of the
backpressure state. Let’s take a closer look at these two thresholds
together with a new concept: backpressure watermarks. They are
typically the configurations provided by streaming frameworks:

Backpressure watermarks represent the high and low utilizations
of the intermediate queues between the processes.
When the size of the data in a queue is higher than the high
backpressure watermark, backpressure state should be declared
if it hasn’t been already.
When a backpressure is present, and the size of the data in the
queue that triggered backpressure is lower than the low
backpressure watermark, the backpressure can be relieved.
Note that it is not ideal for this low backpressure watermark to be
zero because that means the previously busy instance won’t
have work to do between the relieving of backpressure and new
events reaching the queue.

The data sizes in the queues go up and down when a job is
processing events. Ideally, the numbers are always between the low



and high backpressure watermarks, so the events are processed in
full speed.

Another approach to handle lagging
instances: Dropping events

Backpressure is useful for protecting systems and keeping things
running. It works well in most cases, but in some special cases you
also have another option: simply dropping events.

In this approach, when a lagging instance is detected, instead of
stopping and resuming the incoming events, the system would just



discard the new events emitted into the incoming queue of the
instance.

The option might sound scary because the results will be inaccurate.
You are definitely right about that. If you remember the delivery
semantics we talked about in chapter 5, you will notice that this option
should only be used in the at-most-once cases.

However, it may not be as scary as it sounds. The results are
inaccurate only when an instance can’t catch up with the traffic, which
should be rare if the system is configured correctly. In other words,
the results should be accurate almost all the time. We have
mentioned a few times that backpressure is a self-protection
mechanism for the extreme scenarios to prevent the systems from
crashing. The backpressure state is not an ideal state for streaming
jobs. If it happens too often to your streaming job, you should take



another look at the system and try to find the root causes and
address them.

Why do we want to drop events?

Why would we ever want to throw away an event in a system? You
are not alone if you are wondering. Well, that’s a question to definitely
ask yourself when designing your jobs: are you willing to trade away
accuracy for end-to-end latency in case any instance fails to catch up
with the work load?

Let’s take social media platforms as an example and track the
number of user interactions, such as likes, in real time. With the
second option, the count is always the latest, although it is not 100%
accurate. In the case that 1 instance in 100 is affected, we can expect
the error to be less than 1%. If backpressure is applied to stop
events, the count will be accurate, but you won’t get the latest count
during the backpressure state, because the system is slowed down.
After the backpressure state is relieved, it also needs time to catch up
to the latest events. In the case that the issue is permanent, you
won’t have the latest count until the issue is addressed, which could
likely be worse than the < 1% error. Basically, with the dropping
events approach, you get a more real-time system with likely
accurate enough results.

Back to the fraud detection job—the deadline is critical to us. Pausing
the data processing for a few minutes and missing the deadline until
the backpressure is addressed would not be acceptable to us.
Comparatively speaking, it may be more desirable to keep the
process going without delay, although the accuracy is sacrificed



slightly. Engineers should definitely be notified, so the underlying
issue is investigated and fixed as soon as possible. Monitoring the
number of dropped events is critical for us to understand the current
state and the accuracy level of the results.

Backpressure could be a symptom
when the underlying issue is
permanent

Backpressure is an important mechanism in streaming systems for
handling temporary issues, such as instance crashing and sudden
spikes of the incoming traffic, to avoid more serious problems. The
streaming systems can resume a normal state automatically after the
underlying issue is gone without user intervention. In other words,



with backpressure, the stream systems are more resilient to
unexpected issues, which is generally desirable in distributed
systems. In theory, it would be ideal if backpressure never happened
in a streaming system, but as you well know, life is not perfect, and it
never will be. Backpressure is a necessary safety net.

While we hope that the issue is temporary and backpressure can
handle it for us, it all depends on the underlying situation. It is totally
possible that the instance won’t recover by itself and owners’
interventions will be required to take care of the root cause. In these
cases, permanent backpressure becomes a symptom. Typically, there
are two permanent cases that should be treated differently:

The instance simply stops working, and backpressure will never
be relieved,
The instance is still working, but it can’t catch up with the
incoming traffic. Backpressure will be triggered again soon after it
is relieved.

Instance stops working, so backpressure
won’t be relieved

In this case, no events will be consumed from the queue, and the
backpressure state will never be relieved at all. This is relatively
straightforward to handle: fixing the instance. Restarting the instance
could be an immediate remediation step, but it could be important to
figure out the root cause and address accordingly. Often, the issue
leads to bugs to be fixed.



Instance can’t catch up, and backpressure
will be triggered again

It is more interesting when an instance can’t catch up with the traffic.
In this case, the data processing can resume temporarily after the
data in the queue has been drained, but backpressure will be
declared again soon. Let’s take a closer look at this case.

Stopping and resuming may lead to
thrashing if the issue is permanent

Now, let’s take a look at an effect that we will term thrashing. If the
underlying issue is permanent, when the job declares a state of
backpressure, the events in the queues are drained by all instances;
then, as soon as the backpressure state is relieved, as new data



events flood the instance once again, the state is declared again
shortly. Thrashing is a cycle of declaring and relieving backpressure.

Thrashing is expected if the situation doesn’t change. If the same
instance still can’t catch up with the traffic, the data size in the queue
will increase again until it reaches the high watermark and triggers a
backpressure again. And after the next time the backpressure is
relieved, it is likely to happen again. The number of events in the
incoming queue of the instance looks like the chart above. To recover
from a thrashing, we need to find the root cause and address it.



Handle thrashing

If you see the thrashing, you will likely need to consider why the
instance doesn’t process fast enough. For example, is there an
internal issue that makes the instance slow down, or is it time to scale
up your system? Typically, this kind of issue comes from two sources
—the traffic and the components:

The event traffic from the source might have increased
permanently to a level that is more than the job can handle. In
this case, it is likely the job needs to be scaled up to handle the
new traffic. More specifically, the parallelisms (the number of
instances of a specific component—read chapter 3 for more
details) of the slow components in the job may need to be
increased as the first step.
The processing speed of some components could be slower than
before for some reason. You might need to look into the
components and see if there is something to optimize or tune.
Note that the dependencies used by the components should be
taken into consideration as well. It is not rare that some
dependencies can run slower when the pattern of traffic
changes.

It is important to understand the data and the
system

Backpressure occurs when an instance can’t process events at the
speed of the incoming traffic. It is a powerful mechanism to protect
the system from crashing, but it is important for you, the owner of the



systems, to understand the data and the systems and figure out what
causes backpressure to be triggered. Many issues might happen in
real-world systems, and we can’t cover all of them in this book.
Nevertheless, we hope that understanding the basic concepts will be
helpful for you to start your investigation in the right direction.

Summary

In this chapter, we discussed a widely supported mechanism:
backpressure. More specifically:

When and why backpressure happens
How stream frameworks detect issues and handle them with
backpressure
Stopping incoming traffic or dropping events—how they work and
the tradeoffs
What we can do if the underlying issues don’t go away.

Backpressure is an important mechanism in stream systems. We
hope and believe that understanding the details about it could be
helpful for you to maintain and improve your systems.



10 Stateful computation

In this chapter

an introduction to stateful and stateless components
how stateful components work
related techniques

“Have you tried turning it off and on again?”

—T�� IT C����

We talked about state in chapter 5. In most computer programs, it is
an important concept. For example, the progress in a game, the
current content in a text editor, the rows in a spreadsheet, and the
opened pages in a web browser are all states of the programs. When
a program is closed and opened again, we would like to recover to
the desired state. In streaming systems, handling states correctly is
very important. In this chapter, we are going to discuss in more detail
how states are used and managed in streaming systems.

The migration of the streaming jobs

System maintenance is part of our day-to-day work with distributed
systems. A few examples are: releasing a new build with bug fixes
and new features, upgrading software or hardware to make the



systems more secure or efficient, and handling software and
hardware failures to keep the systems running.

AJ and Sid have decided to migrate the streaming jobs to new and
more efficient hardware to reduce cost and improve reliability. This is
a major maintenance task, and it is important to proceed carefully.

Stateful components in the system
usage job



Stateful components are very useful for the components that have
internal data. We talked about them briefly in chapter 5 in the context
of the system usage job. It is time take a closer look now and see
how they really work internally.

We have discussed stateful
components briefly in previous
chapters. They are needed at a
few places in our streaming job.

In order to resume the processing after a streaming job is restarted,
each instance of a component needs to persist its key internal data,
the state, to external storage beforehand as a checkpoint. After an
instance is restarted, the data can be loaded back into memory and
used to set up the instance before resuming the process.

The data to persist varies from component to component. In the
system usage job:

The transaction source needs to track the processing offsets.
The offsets denote the positions that the transaction source
component is reading from the data source (the event log).
The transaction counts are critical for the system usage analyzer
and need to be persisted.
The usage writer doesn’t have any data to save and restore.

Therefore, the first two components need to be implemented as
stateful components, and the last one is a stateless component.



Revisit: State

Before going deeper, let’s pause here and revisit a very basic
concept: what is a state? As we explained in chapter 5, state is the
internal data inside each instance that changes when events are
processed. For example, the state of the transaction source
component is where each instance is loading from the data source
(aka the offset). The offset moves forward after new events are
loaded. Let’s look at the state changes of a transaction source
instance before and after two transactions are processed.



The states in different components

Things become interesting when we look at states in different
components together. In chapter 7 about windowed computation, we
said that the processing time of an event is different for different
instances because the event flows from one instance to another.
Similarly, for the same event, in different instances, the state changes
happen at different times. Let’s look at the state changes of a
transaction source instance and a system usage analyzer instance
together before and after two transactions are processed.



State data vs. temporary data

So far, the definition of state is straightforward: the internal data
inside an instance that changes when events are processed. Well,
the definition is true, but some state data could be temporary and



doesn’t need to be recovered when an instance is restored. Typically,
temporary data is not included in the state of an instance.

For example, caching is a popular technique to improve performance
and/or efficiency. Caching is the process of a component sitting in
front of an expensive or slow calculation (e.g., a complex function or
a request to a remote system) and storing the results, so the
calculation doesn’t need to be executed repetitively. Normally, caches
are not considered to be instance state data, although they could
change when events are processed. After all, an instance should still
work correctly with a brand new cache after being restarted. The
database connection in each usage writer instance is also temporary
data, since the connection will be set up again from scratch after the
instance is restarted.

Another example is the transaction source component in the fraud
detection job. Internally, each instance has an offset of the last
transaction event it has loaded from the data source. However, like
we have discussed in chapter 5, because latency is critical for this
job, it is more desirable to skip to the latest transaction instead of
restoring to the previous offset when an instance is restarted. The
offset is temporary in this job, and it should not be considered to be
state data. Therefore, the component is a stateless component
instead of a stateful one.



In conclusion, instance state includes only the key data, so the
instance can be rolled back to a previous point and continue working
from there correctly. Temporary data is typically not considered to be
state data in stream systems.

Stateful vs. stateless components: The
code

The transaction source component exists in both the system usage
job and the fraud detection job, and it works in a similar way. The only
difference is that it is stateful in the system usage job and stateless in
the fraud detection job. Let’s put their code together to look at the
changes in the stateful component:

The setupInstance() function has an extra state
parameter.
There is a new getState() function.



class TransactionSource extends StatefulSource { 
  EventLog transactions = new EventLog(); 
  int offset = 0; 
  ...... 
  public void setupInstance(int instance, State state) { 
    SourceState mstate = (SourceState)state; 
    if (mstate != null) { 

      offset = mstate.offset;                                         ❶ 
      transactions.seek(offset); 
    } 
  } 
   
  public void getEvents(Event event, EventCollector eventCollector) { 
    Transaction transaction = transactions.pull(); 
    eventCollector.add(new TransactionEvent(transaction)); 

    offset++;                                                         ❷ 
    system.out.println("Reading from offset %d", offset); 
  } 
   
public State getState() { 
    SourceState state = new SourceState(); 
    State.offset = offset; 

    return new state;                                                 ❸ 
  } 
} 
 
 

class TransactionSource extends Source {                              ❹ 
  EventLog transactions = new EventLog(); 
  int offset = 0; 
  ...... 
  public void setupInstance(int instance) { 
    offset = transactions.seek(LATEST); 
  } 
   
  public void getEvents(Event event, EventCollector eventCollector) { 
    Transaction transaction = transactions.pull(); 
    eventCollector.add(new TransactionEvent(transaction)); 
    offset++; 
    system.out.println("Reading from offset %d", offset); 
  } 
}

❶ The stateful version in the system usage job

❷ The data in the state object is used to set up the instance.

❸ The state object of the instance contains the current data offset in
the event log.



❹ The stateless version in the fraud detection job

The stateful source and operator in the
system usage job

In chapter 5, we have read the code of the TransactionSource
and the SystemUsageAnalyzer classes. Now, let’s put them
together and compare. Overall, the state handling is very similar
between stateful sources and operators.

class TransactionSource extends StatefulSource { 
  MessageQueue queue; 
  int offset = 0; 
  ...... 
  public void setupInstance(int instance, State state) { 
    SourceState mstate = (SourceState)state; 
    if (mstate != null) { 

      offset = mstate.offset;                                         ❶ 
      log.seek(offset); 
    } 
  } 
   
  public void getEvents(Event event, EventCollector eventCollector) { 
    Transaction transaction = log.pull(); 
    eventCollector.add(new TransactionEvent(transaction)); 

    offset++;                                                         ❷ 
  } 
   
public State getState() { 
    SourceState state = new SourceState(); 
    State.offset = offset; 

    return new state;                                                 ❸ 
  } 
} 
 
 
 
class SystemUsageAnalyzer extends StatefulOperator { 
  int transactionCount; 
  public void setupInstance(int instance, State state) { 
    AnalyzerState mstate = (AnalyzerState)state; 



    transactionCount = state.count;                                   ❹ 
  } 
   
  public void apply(Event event, EventCollector eventCollector) { 

    transactionCount++;                                               ❺ 
         
         
    eventCollector.add(transactionCount); 
  } 
   
  public State getState() { 
    AnalyzerState state = new AnalyzerState(); 

    State.count = transactionCount;                                   ❻ 
    return state; 
  } 
}

❶ The data in the state object is used to set up the instance.

❷ The offset value changes when a new event is pulled from the event
log and emitted to the downstream components.

❸ The state object of the instance contains the current data offset in
the event log.

❹ When an instance is constructed, a state object is used to initialize
the instance.

❺ The count variable changes when events are processed.

❻ A new state object is created to store instance data periodically.

States and checkpoints

Compared to stateless components we have seen before, two
functions are added in stateful components and need to be
implemented by developers:

The getState() function, which translates the instance data
to a state object.



The setupInstance() function, which uses a state object to
reconstruct an instance.

Now, let’s look at what really happens behind the scenes to connect
the dots. This information could be useful for you to build efficient and
reliable jobs and investigate when issues happen.

In chapter 5, we defined checkpoint as “a piece of data that can be
used by an instance to restore to a previous state.” The streaming
engine, more specifically, the instance executor and the checkpoint
manager (remember the single responsibility principle?), is
responsible for calling the two functions in the following two cases,
respectively:

The getState() function is called periodically by the instance
executor to get the latest state of each instance, and the state
object is then sent to the checkpoint manager to create a
checkpoint.

The setupInstance() function is called by the instance
executor after the instance is created, and the most recent
checkpoint is loaded by the checkpoint manager.



Checkpoint creation: Timing is hard

The instance executors are responsible for calling the instances’
getState() function to get the current states and then sending
them to the checkpoint manager to be saved in the checkpoint. An
open question is how the instance executors know the right time to
trigger the process.

An intuitive answer might be triggering by clock time. All instance
executors trigger the function at exactly the same time. A snapshot of
the whole system can be taken just like when we put a computer into
hibernation mode in which everything in memory is dumped to disk,
and the data is reloaded back into memory when the computer is
woken up.

However, in streaming systems this technique doesn’t work. When a
checkpoint creation is started, some events have been processed by
some components but not processed by the downstream components
yet. If a checkpoint is created this way and used to reconstruct
instances, the states of different instances would be out of sync, and
the results will be incorrect afterwards.



For example, in a working streaming job, each event is processed by
an instance of the source component (the transaction source in the
system usage job), and then sent to the right instance of the
downstream component (the system usage analyzer in the system
usage job). The process repeats until there is no downstream
component left. Therefore, each event is processed at a different time
in different components, and at the same time, different components
are working on different events.

To avoid the out-of-sync issue and keep the results correct, instead of
dumping states at the same clock time, the key is for all the instances
to dump their states at the same event-based time: right after the
same transaction is processed.

Event-based timing

For checkpointing in streaming systems, time is measured by event id
instead of clock time. For example, in the system usage job, the
transaction source would be at the time of transaction #1001 when



transaction #1001 has just been processed by it and emitted out. The
system usage analyzer would be at the time of after transaction
#1000 at the same moment and reaches the time of transaction
#1001 after transaction #1001 is received, processed, and emitted
out. The diagram below shows the clock time and the event-based
time in the same place. To keep things simple, we are assuming that
each component has only one instance. The multiple instance case
will be covered later when we discuss the implementation.

With this event-based timing, all instances can dump their states at
the same time to create a valid checkpoint.



Creating checkpoints with checkpoint
events

So how is event-based timing implemented in streaming frameworks?
Like events, the timing is built in a streaming context we have been
talking about throughout this book. Sound interesting?

Event-based timing sounds straightforward overall, but there is a
problem: typically, there are multiple instances created for each
component, and each event is processed by one of them. How are
the instances synchronized with each other? Here, we would like to
introduce a new type of events, control events, which have a different
routing strategy than the data events.

So far, all our streaming jobs have been processing data events, such
as vehicle events and credit card transactions. Control events don’t
contain data to process. Instead, they contain data for all modules in
a streaming job to communicate with each other. In the checkpoint
case, we need a checkpoint event with the responsibility of notifying
all the instances in a streaming job that it is time to create a
checkpoint. There could be other types of control events, but the
checkpoint event is the only one in this book.

Periodically, the checkpoint manager in the job issues a checkpoint
event with a unique id and emits it to the source component, or more
accurately, the instance executors of the instances of the source
component. The instance executors then insert the checkpoint event
into the stream of regular data events, and the journey of the
checkpoint event starts.



Note that the instances of the source component that contain user
logic don’t know the existence of the checkpoint event. All they know
is that the getState() function is invoked by the instance
executor to extract the current states.

A checkpoint event is handled by
instance executors

Each instance executor repeats the same process:

Invoking the getState() function and sending the state to the
checkpoint manager
Inserting the checkpoint event into its outgoing stream



If you look at the diagram below closely, you will find that each
checkpoint event also contains a checkpoint id. The checkpoint id can
be considered an event-based time. When an instance executor
sends the state object to the checkpoint manager, the id is included,
so the checkpoint manager knows that the instance is in this state at
this time. The id is included in the checkpoint object, as well, for the
same purpose.



A checkpoint event flowing through a
job

After the checkpoint event is inserted into the event stream by the
source instance executors, it is going to flow through the job and visit
the instance executors of all the operators in the job. The two
diagrams below show that the checkpoint event with id 1 is processed
by the transaction source and the system usage analyzer
components one after the other.

The last component, usage writer, doesn’t have a state, so it notifies
the checkpoint manager that the event has been processed without a
state object. The checkpoint manager then knows that the checkpoint
event has visited all the components in the job, and the checkpoint is
finally completed and can be persisted to storage.



Overall, the checkpoint event flows through the job similarly to a
regular event but not in exactly the same way. Let’s look one level
deeper.

Creating checkpoints with checkpoint
events at the instance level

The checkpoint event flows from component to component. State
objects are sent to the checkpoint manager one by one by the
instance executors when the checkpoint event is received. As a



result, all the states are created between the same two events (200
and 201) for every single component in the example shown here.

One thing we shouldn’t forget is that there could be multiple instances
for each component. We learned in chapter 4 that each event is
routed to a specific instance based on a grouping strategy. The
checkpoint event is routed quite differently; let’s take a look. (Note
that this page and the next might be a little too detailed for some
readers. If you have this feeling, please feel free to skip them and
jump to the checkpoint loading topic.)



The simple answer is that all the instances need to receive the
checkpoint event to trigger the getState() call correctly. In our
Streamwork framework, the event dispatcher is responsible for
synchronizing and dispatching the checkpoint event. Let’s start with
the dispatching first (since it is simpler) and talk about the
synchronizing in the next page.

When an event dispatcher receives a checkpoint event from the
upstream component, it will emit one copy of the event to each



instance of the downstream component. For comparison, for a data
event, typically only one instance of the downstream component will
receive it.

Checkpoint event synchronization

While the checkpoint event dispatching is fairly straightforward, the
synchronization part is a little trickier. Checkpoint event
synchronization is the process for the event dispatcher to receive the
incoming checkpoint events. Each event dispatcher receives events
from multiple instances (in fact, it could also receive events from
instances of multiple components), so one checkpoint event is
expected from each upstream instance executor. These checkpoint
events rarely arrive at the same time like in the example in the
diagram shown here. So what should it do in this case?



If we look at the diagram above and take the event-based timing into
consideration, the time that the checkpoint event #1 represents is
between data events #200 and #201. A checkpoint event is received
by all the instance executors, so it is possible that the checkpoint
event is processed by one instance earlier than the others like in the
diagram above. In this case, after receiving the first checkpoint event,
the event dispatcher will block the event stream that the checkpoint
event came from, until the checkpoint event is received from all the
other incoming connections. In other words, the checkpoint event is
treated like a barrier, or a blocker. In the example above, the
checkpoint event arrives from the bottom connection first. The event
dispatcher will block the process of data event #201 and keep
processing events (the data events #200 and the one before it) from
the upper incoming connection until the checkpoint event is received.

After the checkpoint event #1 is received from both connections,
since there are no other incoming connections to wait for, the event
dispatcher emits the checkpoint event to all the downstream instance
executors and starts consuming data events. As a result, data event
#200 is dispatched before checkpoint event #1 and data event #201
by the event dispatcher.



Checkpoint loading and backward
compatibility

Now that we have discussed how checkpoints are created, let’s take
a look at how checkpoints are loaded and used. Unlike the creation
process, which happens repetitively, checkpoint loading happens only
once in each life cycle of a stream job: at the start time.

When a streaming job is started (e.g., something has happened, like
an instance has just crashed, and the job needs to be restarted on
the same machines; the job instances moved to different machines
like the migration AJ and Sid are working on), each instance executor
requests the state data for the corresponding instance from the
checkpoint manager. The checkpoint manager in turn accesses the
checkpoint storage, looks for the latest checkpoint, and returns the
data to the instance executors. Each instance executor then uses the



received state data to set up the instance. After all the instances are
constructed successfully, the stream job starts processing events.

The whole process is fairly straightforward, but there is a catch:
backward compatibility. The checkpoint was created in the previous
run of the job, and the state data in the checkpoint is used to
construct the new instances. If the job is simply restarted (manually or
automatically), there shouldn’t be any problem, as the logic of the
instances is the same as before. However, if the logic of the existing
stateful components has changed, it is important for developers to
make sure that the new implementation works with the old
checkpoints, so the instances’ states can be restored correctly. If this
requirement is not met, the job might start from a bad state, or it
might stop working.

Some streaming frameworks manage the checkpoints between
deployments as a special type of checkpoints: savepoints. These
savepoints are similar to regular checkpoints, but they are triggered
manually, and developers have more control. This can be a factor to
consider when developers choose streaming frameworks for their
systems.



Checkpoint storage

The last topic related to checkpoints is storage. Checkpoints are
typically created periodically with a monotonically increasing
checkpoint id, and this engine-managed process continues until the
streaming job is stopped.

When instances are restarted, only the most recent checkpoint is
used to initialize them. In theory, we can keep only one checkpoint for
a stream job and update it in place when a new one is created.

However, life is full of ups and downs. For example, the checkpoint
creation can fail if some instances are lost and the checkpoint is not
completed, or the checkpoint data can be corrupted because of disk
failures and can’t be loaded. In order to make the streaming systems
more reliable, typically the most recent N checkpoints are kept in the
storage and the older checkpoints can be dropped and the N is



typically configurable. In case the most recent checkpoint is not
usable, the checkpoint manager will fall back to the second latest
checkpoint and try to use it to restore the streaming job. The fall back
can happen again if needed until a good one is loaded successfully.

Stateful vs. stateless components

We have read enough about the details of stateful components and
checkpoints. It is time to take a break, look at the bigger picture, and
think about the pros and cons of stateful components. After all,
stateful components are not free. The real question is: should I use
stateful components or not?

The fact is that only you, the developer, have the final answer.
Different systems have different requirements. Even though some
systems have similar functionality, they may run totally differently
because the incoming event traffic has different patterns, such as the
throughput, data size, cardinality, and so on. We hope that the brief
comparison below can be helpful for you to make better decisions



and build better systems. In the rest of this chapter, we are going to
talk about two practical techniques to support some useful features of
stateful components with stateless components.



Stateful component Stateless
component

Accuracy
Stateful computation is
important for the exactly-
once semantic, which
guarantees accuracy
(effectively).

There is no
accuracy
guarantee
because instance
states are not
managed by the
framework.

Latency
(when errors
happen)

Instances will roll back
to the previous state
after errors happen.

Instances will
keep working on
the new events
after errors
happen.

Resource
usage More resources are

needed to manage
instance states.

No resource is
needed to
manage instance
states.

Maintenance
burden There are more

processes (e.g.,
checkpoint manager,
checkpoint storage) to
main-tain and backward
compatibility is critical.

There is no extra
maintenance
burden.



Stateful component Stateless
component

Throughput

Throughput could drop if
checkpoint management
is not well tuned.

There is no
overhead to
handle high
throughput.

Code
Instance state
management is needed.

There is no extra
logic.

Dependency
Checkpoint storage is
needed.

There is no
external
dependency.

We use stateful components only
when they are necessary. We do
this to keep the job as simple as
possible to reduce the burden of
maintenance.

Manually managed instance states



From the comparison, it is clear that accuracy is the advantage of
stateful components. When something happens, and some instances
need to be restarted, streaming engines help to manage and rollback
the instance states. In addition to the burden, the engine-managed
states also have some limitations. One obvious limitation is that the
checkpoint shouldn’t be created too frequently because the extra
burden would be higher, and the system would become less efficient.
Furthermore, it could be more desirable for some components to
have different intervals, which is not feasible with engine-managed
states. Therefore, sometimes, it is a valid option to consider is
managing instance states manually. Let’s use the system usage job
as an example to study how it works.

The diagram below shows the system usage job with a state storage
hooked up. Different instances store their states in the storage
independently. Like we discussed earlier, absolute time won’t really
work because different instances are working on different events. And
since we are managing states manually, now we don’t have the
checkpoint events to provide event-based timing. What should we do
to synchronize different instances?



The key is to have something in common that can be used by all
components and instances to sync up with each other. One solution
is to use transaction id. For example, transaction source instances
store offsets, and system usage analyzer instances store transaction
ids and current counts in the storage every minute. When the job is
restarted, transaction source instances load the offset from storage,
and then they go back a little (a number of events or a few minutes
back) and restart from there. The system usage analyzer instances
load the most recent transaction ids and counts from the storage.
Afterwards, the analyzer instances can skip the incoming events until
the transaction ids in the states are found and then the regular
counting can be resumed. In this solution, transaction source and
system usage analyzers can manage their instance states in different
ways because the two components are not tightly coupled by the
checkpoint ids anymore. As a result, the overhead could be lower,
and we also get more flexibility, which could be important for some
real-world use cases.



Lambda architecture

Another popular and interesting technique is called lambda
architecture. The name sounds fancy, but take it easy; it is not that
complicated.

To understand this technique, we will need to recall a concept from
chapter 1 about the comparison of batch and stream processing
systems. While streaming processing systems can generate results in
real time, batch processing systems are normally more failure tolerant
because if things go wrong, it is easy to drop all the temporary data
and reprocess the event batch from the beginning. In consequence,
the final results are accurate because each event is calculated
exactly once toward the final results. Also, because batch processing
systems can be more efficient to process a huge number of events, in
some cases more complicated calculations that are hard to do in real
time can be applied.

The idea of lambda architecture is rather simple: running a streaming
job and a batch job in parallel on the same event data. In this
architecture, the streaming job is responsible for generating the real-
time results that are mostly accurate but provides no guarantee when
bad things happen; the batch job, on the other hand, is responsible
for generating accurate results with higher latency.



With lambda architecture, there will be two systems to build and
maintain, and the presentation of the two sets of results can be more
complicated. However, the accuracy requirement of the streaming job
can be much less strict, and the streaming job can focus on what it is
designed for and good at: processing events in real time.

Summary

In this chapter, we revisited the instance state and took a closer look.
Then, we dived into more details of how instance states and
checkpoints are managed in streaming jobs, including:

Checkpoint creation via checkpoint events
Checkpoint loading and the backward compatibility issue
Checkpoint storage

After briefly comparing stateful and stateless components, we also
learned two popular techniques that can be used to archive some



benefits of stateful components without the burdens:

Manually managed instance states
Lambda architecture

Exercises

1. If the system usage job is converted into a stateless job, what
are the pros and cons? Can you improve it by manually
managing the instance states? And what would happen if a
hardware failure occurred and the instances were restarted on
different machines?

2. The fraud detection job is optimized for real-time processing
because of the latency requirement. What are the tradeoffs, and
how can it be improved with lambda architecture?



11 Wrap-up: Advanced concepts in
streaming systems

In this chapter

reviewing the more complex topics in streaming systems
understanding where to go from here

“It’s not whether you get knocked down; it’s whether you get up.”

—V���� L�������

You did it! You have reached the end of part two of this book, and we have
discussed quite a few topics in more detail. Let’s review them quickly to
strengthen your memory.

Is this really the end?

Well, we authors think it’s safe to say this is the end of the book, but you
can count on having many more years of learning and experimenting in
front of you. As we sit and write this chapter, we’re reflecting on the long
journey of learning. What an adventure it has been for us! Hopefully, after
reading this book, you feel that you benefited from it—we certainly have.

What you will get from this chapter



There have been many complex topics covered in the second half of the
book. We’d like to recap the main points. You may not need to know all of
these topics in depth in the beginning of your career, but knowing them
will help you establish yourself in the upper echelon of technologists in the
field when it comes to real-time systems. After all, learning these topics
well is not a trivial task.

Windowed computations

We learned that not all streaming jobs want to handle events one at a
time. It can be useful to group events together in some cases, whether
that is time- or count-related.



The major window types

Creating or defining a window is entirely up to the developer. We showed
three different base window types, using the fraud detection job as an
example. Note that time-based windows are used in the diagrams below.

FIXED WINDOWS



SLIDING WINDOWS

SESSION WINDOWS



Joining data in real time

In chapter 8, we covered joining data in real time. In this scenario, we had
two different types of events being emitted from the same geographic
region. We needed to decide how to join events that are in two different
event types and coming at different intervals.



SQL vs. stream joins

Most of us are familiar (enough) with the join clause in SQL. In streaming
systems, it is similar but not quite the same. In one typical solution, one
incoming stream works like a stream, and the other stream is (or streams
are) converted into a temporary in-memory table and used as reference
data. The table can be considered to be a materialized view of a stream.

There are two things to remember:

1. Stream join is another type of fan-in.
2. A stream can be materialized into a table continuously or using a

window.



Inner joins vs. outer joins

Like the join clause in SQL, there are four types of joins in streaming
systems as well. You need to choose the right one for your own use case.



Unexpected things can happen in
streaming systems

Building reliable distributed systems is challenging and interesting. In
chapter 9, we explored common issues that can occur in streaming
systems and cause some instances to lag behind, as well as a widely
supported technique for temporary issues: backpressure.



Backpressure: Slow down sources or
upstream components

Backpressure is a force opposite to the data flow direction that slows
down the event traffic. Two methods we covered for addressing



backpressure were stopping the sources and stopping the upstream
components.

STOPPING THE SOURCES

STOPPING THE UPSTREAM COMPONENTS

Another approach to handle lagging
instances: Dropping events



In this approach, when an instance is lagging behind, instead of stopping
and resuming the processing of the source or the upstream components,
the system will just throw away the new events being routed to the
instance.

It is certainly reasonable to be cautious when choosing this option, as the
events will be lost. However, it may not be as scary as it sounds. The
results are not accurate only when backpressure is happening, which
should be rare in theory. So, they should still be accurate almost all the
time. On the other side, dropping events could be desirable in the cases in
which end-to-end latency is more important than accuracy. Don’t forget
that dropping events is much more lightweight than pausing and resuming
the event processing.

Backpressure can be a symptom when
the underlying issue is permanent



We have mentioned a few times that backpressure is a self-protection
mechanism for avoiding more serious issues in extreme scenarios. While
we hope that the issue that causes some instances to lag behind is
temporary and backpressure can handle it automatically, it is possible that
the instance won’t recover and the owner’s interventions will be required
to take care of the root cause. In these cases, permanent backpressure is
a symptom, and developers need to address the root causes.

The instance stops working, so backpressure
won’t be relieved

In this case, no events will be consumed from the queue, and the
backpressure state will never be relieved at all. This is relatively
straightforward to handle: by fixing the instance. Restarting the instance
could be an immediate remediation step, but it could be important to figure
out the root cause and address it accordingly. Often, the issue leads to
bugs that need to be fixed.

The instance can’t catch up, and backpressure
will be triggered again: Thrashing

If you see the thrashing, you will likely need to consider why the instance
doesn’t process quickly enough. Typically, this kind of issue comes from
two causes: the traffic and the components. If the traffic has increased or
the pattern has changed, it could be necessary to tune or scale up the
system. If the instance runs slower, you will need to figure out the root
cause. Note that it is important to take the dependencies into
consideration as well. After all, it is important for you, the owner of the
systems, to understand the data and the systems and figure out what is
causing the backpressure to be triggered.



Stateful components with checkpoints

In chapter 10, we learned how we could stop and start a streaming job
without losing data. Stateful components allow for the recreation of a
context, so the components resume the processing from the state where it
stopped previously. In our specific case, AJ and Miranda needed a way to
stop and restart the system usage job on new machines transparently.

A checkpoint, a piece of data that can be used by an instance to restore to
a previous state, is the key for persisting and restoring instance states.

The getState() function is called periodically by the instance
executor to get the latest state of each instance, and the state object
is then sent to the checkpoint manager to create a checkpoint.



The setupInstance() function is called by the instance
executor after the instance is created, and the most recent checkpoint
is loaded by the checkpoint manager.

Event-based timing

Every instance in a streaming job needs to get its state at the same time,
so a job can be restored to a previous time when needed. However, the
time here isn’t the clock time. Instead, it needs to be event-based time.



The checkpoint manager is responsible for generating a checkpoint event
periodically and emitting it to all the source instances. The event then
flows through the whole job to notify each instance that it is time to send
the internal state to the checkpoint manager. Note that, unlike the regular
data events, which are routed to one instance of a downstream
component, the checkpoint event is routed to all the instances of a
downstream component.

At the instance level, each event dispatcher connects to multiple upstream
instances and multiple downstream instances. The incoming checkpoint
events of the event dispatcher may not arrive at the same time, and they
need to be synchronized before sending out to the downstream instances.



Stateful vs. stateless components

As a creator or maintainer of streaming jobs, you will need to decide when
to use a stateless or a stateful component. This is where you will need to
go with your gut instinct or collaborate with a team to make this decision.
It is not clear-cut when to use a stateful or stateless component in every
scenario, so in times like these, you really become the artist. The following
table compares several aspects of stateful and stateless components.

Stateful components are fantastic in terms of adding reliability to a
streaming job, but remember to keep things simple at first. As soon as you
introduce state into your streaming jobs, the complexity of planning,
debugging, diagnosing, and predicting could make them much more
cumbersome. Make sure you understand the cost before making each
decision.



Stateful component Stateless component

Accuracy
Stateful computation is
important for the
exactly-once semantic,
which guarantees
accuracy (effectively).

There is no accuracy
guarantee because
instance states are not
managed by the
framework.

Latency
(when errors
happen)

Instances will roll back
to the previous state
after errors happen.

Instances will keep
working on the new
events after errors
happen.

Resource
usage More resources are

needed to manage
instance states.

No resource is needed
to manage instance
states.

Maintenance
burden There are more

processes (e.g.,
checkpoint manager,
checkpoint storage) to
maintain, and
backward compatibility
is critical.

There is no extra
maintenance burden.

Throughput
Throughput could drop
if checkpoint
management is not
well tuned.

There is no overhead
to handle high
throughput.



Stateful component Stateless component

Code

Instance state
management is
needed.

There is no extra logic.

Dependency
Checkpoint storage is
needed.

There is no external
dependency.

You did it!

Pat yourself on the back; that was a lot of material to cover. You have
made it through about 300 pages of how streaming systems work! So,
what’s next? Well, you can start working hard to increase your knowledge
and experience on the subject. Don’t have a degree? Don’t worry; you
don’t need one. With a little dedication you can definitely master
streaming systems (and your tech career). We’ve listed a few ideas for
you to consider. Again, you don’t necessarily have to work on them in the
same order.

Pick an open source project to learn

Try to rebuild the problems you’ve worked through in the book in a real
open source streaming framework. See if you can recognize the parts that
make up our Streamwork engine in real streaming frameworks. What are
instances, instance executors, and event dispatchers called in the frame
you picked?



Start a blog, and teach what you learn

The best way to learn something is to teach it. Start to build your own
brand, and be ready for some critical reviewers to come your way, too. It is
interesting to see people interpret the same concept from many different
angles.

Attend meetups and conferences

There are many details and real-world use cases in stream systems and
other event processing systems. You can learn a lot from other people’s
stories in related meetups and conferences. You can also go further by
speaking and holding virtual presentations and discussions as well!

Contribute to open source projects

If there is one thing we can say will work for you most in this list, it’s this
one. In our experience, nothing has increased our technology and people
skills more than this strategy. Contributing to open source projects
exposes you to advanced technologies and allows you to plan, design,
and implement features with real-life professionals across the world. Most
importantly, we would bet that working on open source projects will fulfill
you more than anything you’ve ever been paid for. There is something
about contributing to a cause being driven by purpose that will pay more
than any paycheck can for years to come.

Don’t quit, ever

Obtaining any extraordinary goal comes with walking through failure over
and over. Be okay with failure. It is what will make you better.
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