

Learn AI with

Python

Explore Machine Learning and Deep Learning

Techniques for Building Smart AI Systems Using

Scikit-Learn, NLTK, NeuroLab, and Keras

Gaurav Leekha

www.bpbonline.com

FIRST EDITION 2022

Copyright © BPB Publications, India

ISBN: 978-93-91392-611

All Rights Reserved. No part of this publication may be

reproduced, distributed or transmitted in any form or by any

means or stored in a database or retrieval system, without the

prior written permission of the publisher with the exception to the

program listings which may be entered, stored and executed in a

computer system, but they can not be reproduced by the means

of publication, photocopy, recording, or by any electronic and

mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the

best of author’s and publisher’s knowledge. The author has made

every effort to ensure the accuracy of these publications, but

publisher cannot be held responsible for any loss or damage

arising from any information in this book.

All trademarks referred to in the book are acknowledged as

properties of their respective owners but BPB Publications cannot

guarantee the accuracy of this information.

www.bpbonline.com

Dedicated to

Aarav Leekha

My son, the beat of my heart, and the energy of my soul.

About the Author

Gaurav Leekha is a Deep Learning researcher. He has 7 years of

academic experience of teaching technical courses along with 5+

years of technical content creation as a freelancer on variety of

topics related to Machine Learning, Deep Learning, Artificial

Intelligence, and Web Development Technologies.

He has authored a few research papers published in renowned

journals. He is also the reviewer of prominent journals and has

been the technical reviewer for various online courses. He has

also earned multiple certifications in the field of machine learning

and deep learning.

Outside work, Gaurav likes to cook food for his family, play with

his eight-year-old son and practice vipassana meditation.

About the Reviewer

Bharat Sikka is the author of the book “Elements of Deep

Learning for Computer Vision” and a Data Scientist based in

Mumbai, India. Over the years, he has worked on implementing

algorithms in Artificial Intelligence in domains like Financial Risk,

Fraud, and Governance, Computer Vision among others and is

currently working as a Data Scientist at State Bank of India.

He also has a thorough knowledge and understanding of various

programming languages such as Python, R, MATLAB and Octave

for Machine Learning, Deep Learning, Data Visualization and

Analysis in Python, R and through Power BI, Tableau.

Bharat holds a MS in Data Science and Analytics from Royal

Holloway, University of London and BTech in Information

Technology from Symbiosis International University and has earned

multiple certifications including MOOCs on varied fields including

machine learning.

He is a science fiction fanatic, loves travelling and a great cook.

Acknowledgement

First, I would like to express my gratitude to God whose blessings

inspired me to write this book. I strongly believe in sharing my

knowledge and helping others to succeed.

This book wouldn’t have happened if I hadn’t had the support of

my caring parents, my loving wife, and my genius son. I will take

this opportunity to thank them for their continued support. My

sincere thanks to my elder brother and sister for encouraging and

believing in me always.

Words are not enough to express my gratitude to Dr. Rajesh

Kumar Aggarwal, Professor, Department of Computer Engineering,

NIT-Kurukshetra, for his continued guidance and insightful

comments. Along with that, accept my heartful gratitude for your

time and support to motivate me and other people towards the

path of spirituality and humanity.

Finally, I would also thank my friends who trust my abilities and

knowledge to write this book.

Preface

Artificial Intelligence has existed for a long time and proven to be

a disruptive force in the modern world where everything is driven

by data and automation. From newspapers to TV channels, the

hype around AI these days is ubiquitous and due to a huge

improvement in the field of AI, it along with its subfields-Machine

Learning and Deep Learning-has become a buzzword in recent

years.

AI is used extensively across many fields, such as robotics, object

detection, image recognition, speech recognition, self-driving

vehicles, humanoid robots, recommender system, chatbots, Virtual

personal assistants, and so on. The primary goal of this book is

to let you explore some real-world scenarios and understand where

and which algorithms to use in each context. This exciting recipe-

based book also contain functional codes written in Python.

Over the 10 chapters in this book, you will learn the following:

Chapter 1 covers the basics of Artificial Intelligence and explains

all the important terms and definitions. It also explains various

fields of study in AI and applications of AI in various industries.

It will assist you in installing the Python programming language

on different platforms.

Chapter 2 covers the basics of Machine Learning and its different

learning styles. It also introduces you to the most popular

machine learning algorithms and their implementation using

Python.

Chapter 3 deals with supervised machine learning tasks namely

Classification and Regression. It covers various steps to build a

classifier and regressor using Python. It also discusses various

performance metrics used to evaluate classification and regression

models.

Chapter 4 deals with unsupervised machine learning tasks namely

Clustering. It covers some important ML clustering algorithms and

their implementation using Python. It also discusses various

metrics used to evaluate the performance of clustering algorithms.

Chapter 5 covers logic programming with some implementation

examples useful for solving problems in the real-life domain.

Chapter 6 discusses, in-depth, what is Natural Language

Processing (NLP) and how to implement it in Python. It

introduces you to Python’s Natural Language Toolkit (NLTK). It

then shows how you can implement various important concepts of

NLP using NLTK.

Chapter 7 describes the working of an automatic speech

recognition (ASR) system. It also covers various steps to build a

classifier and regressor using Python.

Chapter 8 discusses Artificial Neural Network (ANN) in detail. It

then covers building some useful neural networks such as Single

layer neural networks, Multilayer neural networks, etc., in Python.

Chapter 9 is a key chapter that discusses, in detail, reinforcement

learning and its building blocks namely agent and environment. It

describes how to construct an environment and agent using the

Python programming language.

Chapter 10 is another key chapter, covering the basics of deep

learning and convolutional neural networks (CNNs). It then

explains the evolution of CNN and how it provides complicated

object detection in images. It also explains how to build an image

classifier using CNN in Python.

Downloading the code bundle

and coloured images:

Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/9c16d0

Errata

We take immense pride in our work at BPB Publications and

follow best practices to ensure the accuracy of our content to

provide with an indulging reading experience to our subscribers.

Our readers are our mirrors, and we use their inputs to reflect

and improve upon human errors, if any, that may have occurred

during the publishing processes involved. To let us maintain the

quality and help us reach out to any readers who might be

having difficulties due to any unforeseen errors, please write to us

at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by

the BPB Publications’ Family.

Did you know that BPB offers eBook versions of every book

published, with PDF and ePub files available? You can upgrade to

the eBook version at www.bpbonline.com and as a print book

customer, you are entitled to a discount on the eBook copy. Get

in touch with us at business@bpbonline.com for more details.

At you can also read a collection of free technical articles, sign up

for a range of free newsletters, and receive exclusive discounts

and offers on BPB books and eBooks.

BPB is searching for authors like you

If you're interested in becoming an author for BPB, please visit

www.bpbonline.com and apply today. We have worked with

thousands of developers and tech professionals, just like you, to

help them share their insight with the global tech community. You

can make a general application, apply for a specific hot topic that

we are recruiting an author for, or submit your own idea.

The code bundle for the book is also hosted on GitHub at In

case there's an update to the code, it will be updated on the

existing GitHub repository.

We also have other code bundles from our rich catalog of books

and videos available at Check them out!

PIRACY

If you come across any illegal copies of our works in any form

on the internet, we would be grateful if you would provide us

with the location address or website name. Please contact us at

business@bpbonline.com with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are

interested in either writing or contributing to a book, please visit

REVIEWS

Please leave a review. Once you have read and used this book,

why not leave a review on the site that you purchased it from?

Potential readers can then see and use your unbiased opinion to

make purchase decisions, we at BPB can understand what you

think about our products, and our authors can see your feedback

on their book. Thank you!

For more information about BPB, please visit

Table of Contents

1. Introduction to AI and Python

Introduction

Structure

Objectives

Introduction to Artificial Intelligence (AI)

Why to learn AI?

Understanding intelligence

Types of intelligence

Various fields of study in AI

Applications of AI in various industries

How does artificial intelligence learn?

AI agents and environments

What is an agent?

What is an agent’s environment?

AI and Python – how do they relate?

What is Python?

Why choose Python for building AI applications?

Python3 – installation and setup

Windows

Linux

Ubuntu

Linux Mint

CentOS

Fedora

Installing and compiling Python from Source

macOS/Mac OS X

Conclusion

Questions

2. Machine Learning and Its Algorithms

Introduction

Structure

Objectives

Understanding Machine Learning (ML)

The Landscape of Machine Learning Algorithms

Components of a Machine Learning algorithm

Different learning styles in machine learning algorithms

Supervised learning

Unsupervised learning

Semi-supervised learning

Reinforcement learning

Popular machine learning algorithms

Linear regression

Logistic regression

Decision tree algorithm

Random forest

Naïve Bayes algorithm

Support Vector Machine (SVM)

k-Nearest Neighbor (kNN)

K-Means clustering

Conclusion

Questions

3. Classification and Regression Using Supervised Learning

Introduction

Structure

Objectives

Classification

Various steps to build a classifier using Python

Step 1 – Import ML library

Step 2 – Import dataset

Step 3 – Organizing data-training and testing set

Step 4 – Creating ML model

Step 5 – Train the model

Step 6 – Predicting test set result

Step 7 – Evaluating the accuracy

Lazy earning versus eager learning

Performance metrics for classification

Confusion matrix

Accuracy

Precision

Recall

Specificity

F1 score

Regression

Various steps to build a regressor using Python

Step 1 – Import ML library

Step 2 – Import dataset

Step 3 – Organizing data into training and testing set

Step 4 – Creating ML model

Step 5 – Train the model

Step 6 – Plotting the regression line

Step 7 – Calculating the variance

Performance metrics for regression

Mean Absolute Error (MAE)

Mean Squared Error (MSE)

R-Squared (R2)

Adjusted R-squared (R2)

Conclusion

Questions

4. Clustering Using Unsupervised Learning

Introduction

Structure

Objectives

Clustering

Various methods to form clusters

Important ML clustering algorithms

K-means clustering algorithm

Mean-shift clustering algorithm

Hierarchical clustering algorithm

Performance metrics for clustering

Silhouette analysis

Davies–Bouldin index

Dunn index

Conclusion

Questions

5. Solving Problems with Logic Programming

Introduction

Structure

Objectives

Logic programming

Building blocks of logic programming

Useful Python packages for logic programming

Implementation examples

Checking and generating prime numbers

Solving the puzzles

Conclusion

Questions

6. Natural Language Processing with Python

Introduction

Structure

Objective

Natural Language Processing (NLP)

Working of NLP

Phases/logical steps in NLP

Implementing NLP

Installing Python’s NLTK Package

Installing NLTK

Downloading NLTK corpus

Understanding tokenization, stemming, and lemmatization

Tokenization

Stemming

Lemmatization

Difference between lemmatization and stemming

Understanding chunking

Importance of chunking

Understanding Bag-of-Words (BoW) model

Why the BoW algorithm?

Implementing the BoW algorithm using Python

Understanding stop words

When to remove stop words?

Removing stop words using the NLTK library

Understanding vectorization and transformers

Vectorization techniques

Transformers

Some examples

Predicting the category

Gender finding

Conclusion

Questions

7. Implementing Speech Recognition with Python

Introduction

Structure

Objective

Basics of speech recognition

Working of the speech recognition system

Building a speech recognizer

Difficulties while developing a speech recognition system

Visualization of audio signals

Characterization of the audio signal

Monotone audio signal generation

Extraction of features from speech

Recognition of spoken words

Conclusion

Questions

8. Implementing Artificial Neural Network (ANN) with Python

Introduction

Structure

Objective

Understanding of Artificial Neural Network (ANN)

A biological neuron

Working of ANN

The basic structure of ANN

Types of ANNs

Optimizers for training the neural network

Gradient descent

Stochastic Gradient Descent (SGD)

Mini-Batch Gradient Descent

Stochastic Gradient Descent with Momentum

Adam (Adaptive Moment Estimation)

Regularization

Regularization techniques

Installing useful Python package for ANN

Examples of building some neural networks

Perceptron-based classifier

Single-layer neural networks

Multi-layer neural networks

Vector quantization

Conclusion

Questions

9. Implementing Reinforcement Learning with Python

Introduction

Structure

Objective

Understanding reinforcement learning

Workflow of reinforcement learning

Markov Decision Process (MDP)

Working of Markov Decision Process (MDP)

Difference between reinforcement learning and supervised learning

Implementing reinforcement learning algorithms

Reinforcement learning algorithms

Types of reinforcement learning

Benefits of reinforcement learning

Challenges with reinforcement learning

Building blocks of reinforcement learning

Agent

Environment

Constructing an environment using Python

Constructing an agent using Python

Conclusion

Questions

10. Implementing Deep Learning and Convolutional Neural

Network

Introduction

Structure

Objective

Understanding Deep Learning

Machine learning versus deep learning

Elucidation of Convolutional Neural Networks

The Architecture of Convolutional Neural Network

Localization and object recognition with deep learning

Deep learning models

Image classification using CNN in Python

Conclusion

Questions

Index

CHAPTER 1

Introduction to AI and Python

Introduction

What’s the very first thing that comes into your mind when you

think of Artificial Intelligence It may be an automated machine,

robots, or an image of the brain with some processing. If yes,

then your understanding of AI is appropriate but vague. So, you

may be wondering, what exactly the concept of AI is? This chapter

provides a brief overview of AI. It covers various fields of study in

AI, real-life applications of AI, and agents and environments. This

chapter also addresses the Python programming language, one of

the most popular programming languages used by developers

today for building AI applications. It also highlights features of

Python, its installation, and steps to run the Python script.

Structure

In this chapter, we will discuss the following topics:

Introduction to Artificial Intelligence (AI)

Learning AI

Understanding intelligence

Various fields of study in AI

Application of AI in various industries

How does artificial intelligence learn?

AI – agents and environments

AI and Python – how do they relate?

Python3 – installation and setup

Objectives

After studying this unit, you will understand the basics of AI. You

will also learn various fields of study in AI and its applications in

various industries. You will be able to install Python 3 on

Windows, Linux, and Mac OS X. You will also understand the

reason for choosing Python for AI projects.

Introduction to Artificial Intelligence (AI)

John McCarthy, an American computer scientist, who was a

pioneer and an inventor, coined the term Artificial Intelligence in

his 1955 proposal for the 1956 Dartmouth Conference, the first

artificial intelligence conference. According to him, AI is The

science and engineering of making intelligent machines, especially

intelligent computer

As we can see, Artificial Intelligence is composed of two words,

first is Artificial, which means man-made, and second is

Intelligence, which means thinking power. Hence, we can say that

AI means a man-made thinking power. We can define AI as:

"A branch of information technology by which we can create

intelligent machines that can think like a human, behave like a

human, and also able to make the decisions at its own.”

AI is accomplished by studying how humans think, learn, and

decide while trying to solve a problem, and then using this

outcome as a base for developing intelligent machines. The best

part of AI is that we do not have to preprogram a machine,

instead we can create a machine with programmed algorithms that

can work with its own intelligence.

Why to learn AI?

Are machines capable of thinking? This is a simple question that

is very difficult to answer. Different researchers defined terms such

as thought or intelligence in different ways. When we look more

closely at AI, this is just one of the problems that are

encountered.

But, one thing is clear that the current progress in the

development of algorithms, combined with greater processing

power and exponential growth in the amount of available data,

means that AI is now capable of developing systems that can

perform tasks that were previously viewed as the exclusive domain

of human beings. Some of the capabilities of AI, due to which we

should learn it, are as follows:

AI is capable of learning through In our day-to-day life, we deal

with huge amounts of data and our mind can’t keep track of

such huge data. AI’s capability of learning through data helps us

to automate things.

AI is capable of teaching In this digital era, data itself keep

changing at a rapid pace, so the knowledge that is derived from

such data must also be updated constantly. To fulfill this purpose,

a system should be intelligent, and AI can help us to create such

intelligent systems.

AI can respond in real If you use the internet regularly, you’re

probably using some real-time applications in the fields of e-

commerce, healthcare, retail, manufacturing, self-driving cars, and

so on. AI along with the help of neural networks can analyze the

data more deeply and hence can respond to the situations that

are based on the conditions in real time.

AI can achieve a greater degree of Deep learning, a subset of

machine learning, extends the potential of AI to more complex

tasks that can only be computed through multiple steps. These

tasks are often performed with a greater degree of accuracy.

Understanding intelligence

To build AI applications (smart systems that can think and act

like a human), it’s necessary to understand the concept of

intelligence. As discussed before, different researchers defined

terms such as thought or intelligence in different ways. Let’s

define intelligence keeping in mind the scope of AI:

Ability to take From a set of many deciding factors, it’s important

to take the optimal, correct, and accurate decisions. This measures

intelligence in a generic way as well as in terms of AI.

Ability to prove Another important factor that measures intelligence

is the ability to prove that why this decision has been chosen.

Ability to think Do you think, in this world, everything can be

proved by mathematical formulae or proof? No, as humans, for

many things, we need to apply our common sense, think logically,

and conclude. This ability also measures intelligence.

Ability to learn and How do we develop our experiences?

Whenever we learn something new, we develop our experiences.

These experiences help all of us to make better decisions and

better opportunities in the future. This also measures intelligence

in a generic way as well as in terms of AI because the more we

learn from the external environment, the more we have the ability

to improve ourselves.

Types of intelligence

According to Howard an American development psychologist, there

are eight multiple intelligences.

It is the ability to speak, recognize, and use the mechanism of

phonology, syntax, and semantics. Some of the characteristics of

people with linguistic–verbal intelligence are:

They enjoy reading and writing.

They can explain things very well.

They are good at debating or giving persuasive speeches.

They are also good at remembering written and spoken

information.

For example, writers, narrators, teachers, and journalists.

Musical It is the ability to create, communicate, and understand

pitch, rhythm, and meaning of sounds. Some of the characteristics

of people with musical intelligence are:

They enjoy singing as well as playing musical instruments.

They can recognize musical patterns and tones easily.

They are good at remembering songs and melodies.

They have a great understanding of musical structure, rhythm, and

notes.

For example, musicians, singers, music teachers, and composers.

It is the ability to use, understand relationships in the absence of

action or objects, and understand complex as well as abstract

ideas. Some of the characteristics of people with logical–-

mathematical intelligence are:

They have excellent problem-solving skills.

They enjoy thinking about abstract ideas.

They are good at solving scientific experiments.

They also like conducting scientific experiments.

For example, mathematicians, engineers, computer programmers,

and scientists.

It is the ability to perceive visual information, change it, re-create

images without reference to the objects, construct 3-dimensional

images, move, and rotate them. Some of the characteristics of

people with visual–spatial intelligence are:

They enjoy drawing and painting.

They recognize patterns very easily.

They are good at interpreting pictures, graphs, and charts.

They are also good at putting puzzles together.

For example, architects, artists, astronauts, and physicists.

Bodily kinesthetic It is the ability to use part of or complete body

to solve problems. It is the control of fine and coarse motor

skills. Some of the characteristics of people with bodily kinesthetic

intelligence are:

They have excellent physical coordination.

They enjoy creating things by themselves.

They are good at dancing and sports.

For example, players, builders, actors, and dancers.

Intra-personal It is the ability to distinguish among one’s feelings,

intentions, and motivations. Some of the characteristics of people

with intra-personal intelligence are:

They are good at analyzing their strengths and weaknesses.

They enjoy analyzing and learning through theories and ideas.

They have excellent self-awareness.

They understand the basis for their motivations as well as

feelings.

For example, writers, theorists, and scientists.

Inter-personal Unlike intra-personal intelligence, it is the ability to

recognize and make distinctions among other feelings, beliefs, and

intentions. Some of the characteristics of people with interpersonal

intelligence are:

They are good at communicating verbally.

They are also skilled at nonverbal communication.

They always tend to create a positive relationship with others.

They are also good at resolving conflicts in groups.

For example, psychologists, philosophers, and politicians.

Naturalistic It is the ability to explore the environment and

learning about other species. The individuals who have this type

of intelligence are said to be highly aware of even the smallest

changes. Some of the characteristics of people with naturalistic

intelligence are:

They would be interested in studying subjects such as botany,

biology, and zoology.

They enjoy camping, gardening, hiking, and outdoor activities.

They don’t enjoy learning topics that have no relation to nature.

For example, farmer, gardener, biologist, and conservationist.

A system is artificially intelligent if it is equipped with at least one

or at most all intelligence in it.

Various fields of study in AI

As soon as we start thinking about AI, various terms like Machine

Learning Deep Learning Natural Language Processing Data

Statistical Artificial Neural Network Genetic and so on come into

our mind. But if we see broadly, AI is not an isolated domain, it’s

an umbrella of every technology that helps transcend human

capabilities. Let’s have a look at some of the fields of study

within AI:

Machine Learning Machine Learning, one of the most popular

fields of study, is a subset of AI that allows machines to learn on

their own as humans can learn from their experiences. It learns

from the dataset and makes predictions.

Deep Learning Deep Learning is a subset of ML concerned with

algorithms inspired by the function of the brain called ANN. It

makes the computation of a multi-layer neural network possible.

According to the Oxford dictionary, Logic is the reasoning conducted

or assessed according to strict principles and To an extent, it carries

the same meaning in AI as well. We can define logic as proof of

validation behind any reason provided. But why it’s important to

include logic in AI? It’s because we want our system (agent) to

think like humans, and for doing so, it should be capable of

making the decision based on the current situation.

Knowledge We humans are best at understanding, reasoning, and

interpreting knowledge because as per our knowledge, we can

perform various actions in the real world. But how machines can

do all these things comes under Knowledge Representation KR is

concerned with AI agents thinking and how thinking contributes to

the intelligent behavior of agents. Intelligence is dependent on

knowledge because an AI agent will only be able to accurately act

on the input when it has some knowledge or experience about

that input.

Applications of AI in various industries

Artificial intelligence, machine learning, and deep learning are here,

growing, and with each passing day they are making machines

smarter and smarter. In fact, they are becoming a disruptive force

that is redefining today’s world. They have come roaring out of

high-tech labs to become something that we use every day

without even realizing it. Also, the acceleration we have seen in

recent years shows no signs of slowing down. With applications

ranging from heavy industry to healthcare, the presence and

importance of AI and ML technology are being felt across a broad

spectrum of industries. Let’s have a look at the top five fast-

growing industries that are tremendously reaping the benefits of

this technology:

Education is the backbone of any nation. AI is improving the

education system by replacing traditional techniques with

personalized, and immersive learning techniques. This way, it helps

teachers to tailor students’ weaknesses. Two of the realities of

immersive learning are Augmented Reality and Virtual Reality

Augmented reality is a type of software that uses the device’s

camera to overlay digital aspects into the real world. It facilitates

the teachers and the trainers in performing those tasks, in a safe

environment, which they previously could not. On the other hand,

virtual reality creates a 360-degree view digital environment, which

allows students to interact directly with the study material by

using e-learning resources on mobile devices.

One of the latest advancements in healthcare is Google’s Medical

Brain, which is enabled with a new type of AI algorithm. Google’s

Medical Brain is used to make predictions about the likelihood of

death among patients. AI is also helping the laboratory segment

of healthcare with ML-enabled laboratory robots that can study

new molecules and reactions. In recent years, cancer has been

one of the leading causes of death. Companies like Infervision

have developed an AI-based system, which is trained with suitable

algorithms, to review CT scans and detect early signs of cancer. In

this coronavirus pandemic phase, AI is also used to accurately

forecast infections, deaths, and recovery timelines of the COVID-

19.

Driverless or self-driving vehicles are not a sci-fi thing anymore.

With huge advancements in AI, it became a reality now. Tech

giants such as Google, Apple, Amazon, Cisco, Intel, and Bosch

are leading the R&D in autonomous driving. Whereas automobile

companies such as General Motors Tesla, BMW, and Mercedes are

some serious players in the self-driving vehicle game. Autonomai,

enabled with Deep Learning and AI capabilities, is an autonomous

middleware platform developed by an Indian company named Tata

ELEXSI. It’s not far when we will see and use self-driving vehicles

on Indian roads as well.

In this e-commerce and digital era, we all have the experience of

online shopping and we sometimes also buy the stuff that is not

required at all or we seldom use. The new strategy of e-commerce

companies is to sell the stuff to their customers even before they

realize the need for it. Companies achieve this by realizing their

customers' preferences and various other factors like attractive

deals, special coupons, and discounts. This strategy is called

‘purchase recommendations’ or ‘intuitive selling’, which is purely

based on AI algorithms. For example, by using AI algorithms and

computer vision, Amazon go is redefining the way of shopping in

supermarkets. It adds the items automatically in customers’ virtual

cart and once the customer leaves the store, adds the charges on

the Amazon account. So, no more lines at the time of checkout.

Digital Imagine how effective marketing becomes if most of the

time-consuming tasks such as identifying the right perspective,

segmenting as well as targeting audiences, building a winning

content strategy, and scheduling the release could be driven

without human intervention. AI is bringing this power into

marketing automation by using tools like Boomtrain, Phrases,

Persado, Adext, RankBrain, Chatbots, and so on.

You may be wondering if AI, ML, and DL have any application(s)

for day-to-day life or they are meant for industrial use only. Look

around and you could see and feel AI-powered things and devices.

Following are some cool AI applications enhancing our lifestyle:

Virtual Personal Assistants (they are Most of us are interacting

with virtual personal assistants like Siri, Alexa, Cortana, and

Google Now on a regular basis for getting the desired

information. It’s AI technology with the help of which these VPAs

continually learn information about us to provide better services.

In fact, now we can use Google Assistant to talk to the ‘Tulips’

flower. Google and Wageningen University made it possible by

mapping tulip signals to human signals on Google Assistant’s

existing Neural Machine Translation. Google Assistant now added

Tulipish as a language and offers translation between dozens of

other human languages. So, now we can say, Okay Google, talk to

my Astonishing, right?

Video I am sure everyone has memories about the classic video

games like Road Super Virtua and Nokia Snake game. But if we

see today’s video games like Call of Grand Theft and Far they are

very advanced because they are empowered by AI algorithms.

These algorithms make today’s games look highly realistic because

the characters in the game understand a gamer’s behavior, learn

from stimuli, and change their traits accordingly. Such features

attract a player to come back to play again and again.

Humanoid (human-like robots for Around 2 years ago, a humanoid

robot named Sophia became the first-ever robot to have a

nationality. Yes, in October 2017, Sophia, created by a Hong Kong

firm named Hanson Robotics, got Saudi Arabia’s citizenship. This

AI-powered robot can imitate human gestures, facial expressions,

and initiate discussion on predefined topics as well. That’s why we

can call Sophia ‘a social humanoid robot’.

In fact, India is also not far behind. We have Rashmi, the world’s

first Hindi-speaking humanoid robot, who is hosting a show on

Red FM since December 2018. It is created by Ranchi’s Ranjit

Srivastava. We can call Rashmi, ‘The Indian Sister of Sophia’.

Maps and Everyone has Google Maps or any other app similar to

it on their smartphones for finding directions and routes. With

such apps, there is no more fear of getting lost. Here also AI is

helping us out. Google uses Graph Neural Networks which is an

ML architecture to reduce the percentage of inaccurate Expected

Time of Arrivals

Cab-service ride-sharing In today’s scenario, one of the best ways

to commute is cab services like Ola, Uber, and so on. To save

expenses, many of us used to share our rides with other

passengers. But have you ever thought:

How does the cab service app get a booking from the person

going on the same route as yours?

In a shared ride, how an individual’s fare is determined?

All such queries have only one answer – AI algorithms.

How does artificial intelligence learn?

Today, AI helps various industries as discussed in the preceding

section. These AIs are often self-taught, they work off a simple set

of instructions to create a unique set of rules and strategies. So

how exactly does a machine learn? There are various ways to

build self-teaching programs, but they all rely on the following

three basic types of machine learning:

Supervised It takes the data sample (usually called training data)

and associated output (usually called labels or responses) with

each data sample during the training process of the model. The

main objective of supervised learning is to learn an association

between input training data and corresponding labels.

Unsupervised Unsupervised learning methods (as opposed to

supervised learning methods) do not require any pre-labeled

training data. In such methods, the machine learning model or

algorithm tries to learn patterns and relationships from the given

raw data without any supervision. Although there are a lot of

uncertainties in the result of these models, we can also obtain a

lot of useful information like all kinds of unknown patterns in the

data, the features that can be useful for categorization, and so on.

Reinforcement In reinforcement learning algorithms, a trained

agent interacts with a specific environment. The job of the agent

is to interact with the environment and once observed, it takes

actions regarding the current state of that environment.

AI agents and environments

AI is all about practical reasoning, reasoning in order to do

something, and an AI system is composed of an agent and its

environment. The agents act in their environment and the

environment may contain other agents.

What is an agent?

An agent may be defined as anything that can perceive its

environment through sensors and acts upon that environment

through effectors. An agent, having mental properties such as

knowledge, belief, intention, and so on, runs in the cycle of

perceiving, thinking, and acting. Examples of agents are:

A human agent has sensory organs like eyes, ears, tongue, skin,

and nose, which work as sensors. On the other hand, it has

hands, legs, and vocal tract, which work as effectors.

A robotic agent has cameras and infrared range finders, which act

as sensors. On the other hand, it has various motors acting as

effectors.

A software agent has keystrokes, files, received network packages,

and encoded bit strings, which work as sensors. On the other

hand, it has sent network packages, content displays on the

screen, which work as effectors.

Figure 1.1: Agent and its environment

For an AI agent, the following are the four important rules:

Rule It must have the ability to perceive the environment.

Rule It must use observation to make decisions.

Rule The decisions it makes should result in an action.

Rule Every action it takes must be a rational action.

Agent terminology

The performance measure of an It may be defined as the criteria

determining how successful an agent is.

The behavior of an It may be defined as the action that an agent

performs after any given sequence of percepts.

An agent’s perceptual inputs at a given instance is called a

percept.

Percept It may be defined as the history of all that an agent has

perceived till now.

Sensor, through which an agent observes its environment, is a

device detecting the change in the environment and sending the

information to other devices.

They are the devices affecting the environment. They can be

hands, legs, arms, fingers, display screen, sent network packet,

wings, fins, and so on.

Actuators, only responsible for moving and controlling a system,

are the components of machines that convert energy into motion.

Examples of actuators can be electric motors, gears, rails, and so

on.

Rationality and rational agent

The rationality of an agent is concerned with the performance

measure of that agent. As we know, the agent should perform

actions to obtain useful information. So, in simple words, we can

define rationality as the status of being sensible, reasonable, and

having a good sense of judgment. There are following four factors

on which the rationality of any agent depends upon:

The Performance Measures an agent.

Agent’s Percept Sequence

Agent’s Prior Knowledge about the environment.

The Actions an agent can carry out.

(PM, PS, PK, A)

An ideal rational agent is the one that has clear preferences,

models uncertainty, and is capable of doing expected actions to

maximize its performance measure, based on its percept sequence

and built-in knowledge base. A rational agent is said to perform

the right actions always. Here the right actions mean the actions

that cause the agent to be most successful in the given percept

sequence.

Structure of an AI agent

The main task of artificial intelligence is to create and design an

agent program that implements the agent function. In this way,

the following structure of an AI agent can be viewed as the

combination of architecture and agent program:

Agent = Architecture + Agent program

Architecture, agent function, and agent program are the three

main terms involved in the structure of an AI agent.

It is the machinery an AI agent executes on.

Agent It may be defined as the map from the percept sequence

to an action.

f : p* → A

Agent It is an implementation of agent function that executes on

the physical architecture to produce function.

P.E.A.S representation

P.E.A.S representation is a type of model in which the properties

of an AI agent or rational agent can be grouped. It consists of

four words:

P: Performance measure

E: Environment

A: Actuators

S: Sensors

As discussed, the objective for the success of an agent’s behavior

is the performance measure.

Let’s see two examples of agents with their P.E.A.S representation:

Self-driving The P.E.A.S representation for self-driving vehicles will

be:

P Safety, time, legal driving, and comfort.

E Road, road signs, other vehicles, and pedestrian.

A Accelerator, steering, brake, clutch, signal, and horn.

S Camera, speedometer, GPS, sonar, and accelerometer.

Vacuum The P.E.A.S representation for vacuum cleaners will be:

P Cleanness, battery life, efficiency, and security.

E Room, wooden floor, carpet, other obstacles like shoes, bed,

table, and so on.

A Brushes, wheels, and vacuum extractors.

S Camera, cliff sensor, dirt detection sensor, bump sensor, and

infrared wall sensor.

Types of agents

Based on the degree of perceived intelligence and capability,

agents can be grouped into the following four classes:

Simple reflex agent

Model-based reflex agent

Goal-based agent

Utility-based agent

Simple reflex agent

They choose actions based only on the current percept and ignore

the rest of the percept history.

They work based on the condition–action rule, which is a rule that

maps a state, that is, condition to an action. If the condition is

true, the action is taken, otherwise not. For example, a room

cleaner agent works only if there is dirt in the room.

Their environment is fully observable.

Figure 1.2: Simple reflex agent

Model-based reflex agent:

In order to choose their actions, they use a model of the world.

It must keep track of the internal state, adjusted by each percept,

that depends on the percept history.

They can handle partially observable environments.

Model is the knowledge about how things happen in the world.

Internal state is a representation of unobserved aspects of the

current state, which depends upon percept history.

In order to update the agent’s state, it requires the following

information:

How the world evolves?

How do the actions of agents affect the world?

Figure 1.3: Model-based reflex agent

Goal-based agent

They choose their actions and take decisions based on how far

they are currently from their goals – a description of a desirable

situation.

Every action of such agents is intended to reduce the distance

from the goal.

This approach, that is goal-based, is more flexible than reflex

agents because the knowledge supporting a decision is explicitly

modeled, which allows for modifications.

Figure 1.4: Goal-based agents

Utility-based agent

They are developed having their end uses as building blocks.

In order to decide which is the best among multiple possible

alternatives, utility-based agents are used.

They choose their actions and take decisions based on a

preference (utility) for every state.

Sometimes, achieving the desired goal is not enough because

goals are inadequate when:

We have conflicting goals and only a few among them can be

achieved.

Goals have some uncertainty of being achieved.

Figure 1.5: Utility-based agents

What is an agent’s environment?

Everything in the world that surrounds the agent is called an

agent’s environment. It can’t be a part of an agent itself, but it’s

a situation in which the agent is present. In simple words, we

can say that the environment is where an agent lives and

operates. It’s an environment that provides an agent something to

sense and act upon it.

Nature of environments

There are several aspects such as the shape and frequency of the

data, the nature of the problem, and the volume of knowledge

available at any given time, that distinguish one type of AI

environment from another. If anyone wants to tackle a specific AI

problem, they should first understand the characteristics of AI

environments. From that perspective, based on the nature of the

environment, we use several categories to group AI problems.

Fully observable versus partially Fully observable AI environments

are those on which, at any given time, an agent sensor can sense

or access the complete state of an environment. It’s very simple

as there is no need to maintain the internal state to keep track of

history. Image recognition operates in a fully observable AI

environment.

Partially observable AI environments are those on which, at any

given time, an agent sensor cannot sense or access the complete

state of an environment. Self-driving vehicle scenarios operate in a

partial observable AI environment.

Complete versus Complete AI environments are those on which, at

any given time, an agent has enough information to complete a

branch of the problem. Chess is a classic example of such AI

environments.

On the other hand, incomplete AI environments are those in

which agents can’t anticipate many moves in advance. The agents,

at any given time, focus on finding a good equilibrium state.

Poker is a classic example of incomplete AI environments.

Static versus Static AI environment is an environment that cannot

change itself while an agent is deliberating. That’s the reason they

are easy to deal as the agent doesn’t need to continually look at

the world while deciding for an action. Speech analysis and

crossword puzzles are the problems operating on a static AI

environment.

In contrast, dynamic AI environment is an environment that can

change itself while an agent is deliberating. In dynamic

environments, at each action, agents need to continually look at

the world. Taxi driving and vision AI systems in drones are some

problems operating in dynamic AI environments.

Discrete versus Discrete AI environment is an environment in

which there are a finite (although arbitrarily large) number of

percepts and actions that can be performed within. The games

such as Chess and GO also come under a discrete environment.

In contrast to a discrete environment, a continuous environment

relies on unknown and rapidly changing data sources. Vision AI

systems in drones and self-driving vehicles are examples of a

continuous AI environment.

Deterministic versus As the name implies, in a deterministic AI

environment, an agent’s current state and selected action can

determine the next state of the environment. As in a fully

observable environment, the agent does not need to worry about

uncertainty in a deterministic environment as well. Most of the

real-world AI environments are not deterministic in nature.

On the other hand, a stochastic AI environment is an

environment that cannot be determined completely by an agent.

It’s random in nature. Self-driving vehicles are examples of

stochastic processes.

Single-agent versus As the name implies, in a single-agent AI

environment, there is only one agent that is involved and

operating by itself.

In contrast, in a multi-agent AI environment, multiple agents are

involved and operating.

AI and Python – how do they relate?

There is a lot of confusion among researchers and developers

about which programing language to choose for building AI

applications. The list may include LISP, Prolog, Python, Java, C#,

and a few more as well. The choice of a programming language

depends upon many factors like ease of code, personal preference,

and available resources. Although the skills of the developer

always matter more than any programming language, here, we are

going to justify just one, that is, Python programming language

for AI.

What is Python?

Python, created by Guido Van Rossum in 1991, is an OOPs based

high-level interpreted programming language and focuses on Rapid

Application Development and Don’t Repeat Yourself Due to ease

of learning and adaptation, Python has become one of the fastest-

growing programming languages. Python’s ever-evolving libraries

make it a good choice for any project whether IoT, Data Science,

AI or Mobile App.

Why choose Python for building AI applications?

Python programming language is favored by developers for a

whole set of applications, but what makes it a particularly good fit

for applications/projects involving AI? Let’s have a look:

A great library and framework One of the aspects that makes

Python the most popular language used for AI is its abundance of

libraries and frameworks. A library is a module or group of

modules, published by various sources like PyPi, that includes a

pre-written piece of code that saves development time and allows

users to perform different actions or reach some functionality. As

we know, ML and DL require continuous data processing, and

Python’s libraries let us access, handle, and transform data. The

following are some of the widespread libraries we can use for

building AI applications:

It is very useful in handling basic ML algorithms like clustering,

regression, classification, and so on.

It is used for high-level data structures and analysis. It allows the

filtering and merging of data. It can also be used for gathering

data from external resources.

It’s a very useful Python library for deep learning. It uses the GPU

in addition to the CPU, hence allows fast calculations.

Another useful library for deep learning. It allows efficient training

and utilizing an ANN with massive datasets.

One of the most useful Python libraries for working with natural

language recognition and computational linguistics.

It is used for visualization. We can easily create 2D plots,

histograms, charts with Matplotlib.

Another very useful Python library for deep learning. It allows

switching between the CPU and the GPU.

Ease of use and Python is almost unrivaled when it comes to

ease of use and simplicity, particularly for novice AI developers.

Python’s ease of use and simplicity has several advantages for ML

and DL:

ML and DL both rely on extremely complex algorithms and multi-

stage workflows. That’s why the less the developers worry about

the intricacies of coding, the more they can focus on finding the

solutions to the problems.

The simple syntax of Python makes it faster in development than

many other programming languages. That’s the reason a developer

can quickly test algorithms without having to implement them.

In addition to the preceding benefits, Python’s easily readable code

is invaluable for collaborative coding.

Low-entry The process of learning Python programming language

is very easy because it resembles to everyday English language.

That’s the reason data scientists can quickly pick up Python and

start using it for developing AI applications without wasting too

much time into learning the language.

Due to its flexibility, Python for AI is a great choice:

Developers have an option to choose either OOPs or scripting.

No need to recompile the source code and developers can

implement any changes and check the result quickly.

It can be combined with other programming languages.

Moreover, Python’s flexibility also allows a developer to choose

from various programming styles like the imperative, functional,

object-oriented, or procedural style.

Platform Python is also a very versatile language. What we mean

is that Python is platform-independent and can run on any

platform including Windows, macOS, Linux, Unix, and 21 others.

With some small-scale changes in code, you can get your code

running in the new OS. Again, this saves development time and

money in testing on various platforms.

The abundance of community It’s always very helpful if there is

strong community support built around the language. Python is an

open-source programming language, which means that it is

supported by a lot of resources. Moreover, a lot of Python

documentation is also available online as well as in Python

forums where developers can discuss errors, solve problems, and

help each other out.

Python3 – installation and setup

Let’s see how to set up a working Python 3 distribution on

Windows, macOs, and Linux.

Windows

Installing Python on Windows OS does not involve much more

than downloading the Python installer from the Python.org website

and running it. Follow the steps to install Python 3 on Windows:

Downloading Python installer

First, open a browser window and go to Python.org website. Now,

navigate to the download page for windows.

Underneath the heading at the top that says Download the latest

version for click on the link for the Latest Python 3 Release –

Python 3.x.x (as of this writing, the latest is Python 3.8.0).

Scroll to the bottom and select either of the following:

Windows x86-64 executable installer for 64-bit.

Windows x86 executable installer for 32-bit.

Running the installer

Now after downloading an installer, we need to simply run it by

double-clicking on the downloaded file. A dialog box should appear

that looks something like shown in the following screenshot:

Figure 1.6: Python setup

In order to make sure that the interpreter will be placed in your

execution path, check the box that says Add Python 3.x.x to

Linux

There are very high chances your Linux distribution has Python

installed already, but it probably won’t be the latest version.

Instead of Python 3, it may have Python 2.

In order to find out what version(s) you have, try the following

commands on terminal windows:

python –version

python2 –version

python3 --version

One or more of preceding commands should respond with a

version, as shown in the following:

$ python3 --version

Python 3.8.0

Suppose if the version shown is of Python 2 or a version of

Python 3 that is not the latest one (3.8.0 as of this writing), then

you should install the latest version. The procedure of installing

the latest Python version will depend on the Linux distribution you

are running.

Ubuntu

Depending on the Ubuntu distribution version, the instructions for

installing Python vary. First, we need to determine our local

Ubuntu version by running the following command:

$ lsb_release -a

We will get something like the following output for the preceding

command:

No LSB modules are available.

Distributor ID: Ubuntu

Description: Ubuntu 16.04.4 LTS

Release: 16.04

Codename: xenial

Check the version number you see under Release in the output.

Depending on the version number for your Ubuntu distribution,

follow the instructions:

Ubuntu 16.10 and 17.04 have Python 3.x.x in the Universe

repository. we can install it with the following commands:

$ sudo apt-get update

$ sudo apt-get install python3.8

Once installed, we can invoke it with the command

Ubuntu 14.04 or 16.04 do not have Python 3.x.x in the Universe

repository; hence, we need to get it from a Personal Package

Archive For instance, to install Python from the PPA named use

the following commands:

$ sudo add-apt-repository ppa:deadsnakes/ppa

$ sudo apt-get update

$ sudo apt-get install python3.8

Once installed, we can invoke it with the command

Linux Mint

We can follow the preceding instructions for Ubuntu 14.04 as

Mint and Ubuntu use the same package management system. The

PPA named deadsnakes works with Mint as well.

CentOS

The IUS Community is providing newer versions of software for

Enterprise Linux distros that is, Red Hat Enterprise and CentOS.

We can use their work to install Python 3.

In order to install, we must first update our system with the yum

package manager. Use the following commands to do so:

$ sudo yum update

$ sudo yum install yum-utils

After that, we can install the CentOS IUS package by using the

following command:

$ sudo yum install https://centos7.iuscommunity.org/ius-release.rpm

Now, with the help of the following commands, we can install

Python and Pip:

$ sudo yum install python36u

$ sudo yum install python36u-pip

Fedora

Fedora has a roadmap to switch to Python 3, which indicates that

the current version and the next few versions will all ship with

Python 2 as the default; however, Python 3 will be installed. If the

python3 installed on Fedora is not Python 3.8, you can use the

following command to install it:

$ sudo dnf install python3.8

Installing and compiling Python from Source

It may be possible that our Linux distribution will not have the

latest version of Python, or we may not be able to build the

latest version ourselves. In that case, we can use the following

steps to build and compile Python from the source:

Downloading the source code

To start with, we need to get the Python source code. As we did

for Windows, we can go to the Downloads page of Python.org

and check for the latest source (3.8.0) for Python 3.

Now once the version is selected, at the bottom of the page

there is a Files section. We now need to select the Gzipped

source tarball and must download it on our machine.

For them who prefer a command-line method, they can use wget

to download it to their current directory:

$ wget https://www.python.org/ftp/python/3.8.0/Python-3.8.0.tgz

Preparing the system

In order to build Python from scratch, we need to follow some

steps that are specific to that Linux distribution. Although, on all

the distributions, the goal of these steps is same, but in case, if

it does not use you might still need to translate them according

to your Linux distribution.

Before getting started, we need to update the system packages on

our machine. For apt-based systems (Debian, Ubuntu, and so on)

use the following commands:

$ sudo apt-get update

$ sudo apt-get upgrade

Next, make sure that your system has the tools needed to build

Python. Some of them are listed as follows in the command.

Commands for apt-based systems like Debian, Ubuntu, and so on

are as follows:

$ sudo apt-get install -y make build-essential libssl-dev zlib1g-dev

libbz2-dev libreadline-dev libsqlite3-dev wget curl llvm libncurses5-

dev libncursesw5-dev xz-utils tk-dev

Commands for yum-based systems like CentOS are as follows:

$ sudo yum -y groupinstall development

$ sudo yum -y install zlib-devel

Building and compiling Python

As we have the prerequisites and the TAR file, we can unpack the

source into a directory. The following command will create a new

directory called

$ tar xvf Python-3.8.0.tgz

Now go to the directory:

$ cd Python-3.8.0

Now, in order to prepare the build, we need to run the

./configure tool as follows:

$./configure --enable-optimizations --with-ensurepip=install

Next, build the Python programs using where the -j option will

ask you to split the building into parallel steps to speed up the

compilation.

$ make -j 8

As we want to install a new version of Python, we will use the

altinstall target here so that the system’s version of Python should

not be overwritten. As you’re installing Python into we should run

as root:

$ sudo make altinstall

Verifying the installation

Finally, with the help of the following command, we can test

whether our new Python version is installed or not:

$ python3.8 -V

Python 3.8.0

macOS/Mac OS X

If you are using Mac OS X, the best way to install Python is

through the Homebrew package manager. If you don’t have

Homebrew, you can install it by navigating to

Once you have installed Homebrew, use the following command

to install Python3:

$ brew install python3

Conclusion

The intent of this chapter was to get you familiarized with the

foundations of Artificial Intelligence and Python before deep diving

into building AI applications. The capabilities of AI, with a focus

on important fields of study under AI, are introduced in this

chapter. Machine learning, deep learning, logic, artificial neural

network (ANN), and knowledge representation are some of the

most important areas covered under AI. Keeping in mind the

scope of AI, this chapter also defines intelligence.

AI is no longer a science-fiction term; it becomes a reality now.

Industries are deploying AI and its subsets, namely, machine

learning and deep learning for a more productive and profitable

solution. In this chapter, we tried to make you feel the presence

and importance of AI technology in five fast-growing industries,

and also how these industries are reaping the benefits of this

technology. Next up, we also explored some cool AI applications

enhancing our day-to-day life.

The subject of AI is all about practical reasoning and is

composed of agents and its environment. Concepts relevant to

agents and environments have also been covered in this chapter

including the structure of agents, types of agents, rationality, and

nature of the environment.

We briefly described the relation between AI and Python including

the features of Python that make it one of the most suitable

languages for building AI applications. Finally, you learned how to

install and set up Python on various platforms like Windows,

macOS/Mac OS X, and Linux.

We brought everything covered in this chapter together to make

you understand the basic concepts of AI, its impact on our

lifestyle, and also learn about the Python programming language.

This gets you ready for the next chapters, where you will

implement AI algorithms with Python.

Questions

What is Artificial Intelligence (AI)? Describe some of the AI

applications and explain how they are enhancing our lifestyle?

What are the most important fields of study within AI?

What is an AI agent? Explain its structure and types.

What is a rational agent? What are the factors on which the

rationality of any agent depends?

Write down the features of the Python programming language that

make it a good fit for building AI applications.

1 Gardner, Howard. Frames of Mind: The Theory of Multiple

Intelligences. New York: Basic Books, 1983.

CHAPTER 2

Machine Learning and Its Algorithms

Introduction

Do you find any similarity between steam engines, age of science,

and digital technology? They are known as the first three industrial

revolutions responsible for fundamentally transforming our society

and the world around us.

In this digital era, we are experiencing this for the fourth time.

But, this fourth industrial revolution is powered by Artificial

Intelligence Machine Learning Deep IoT of edge computing along

with increasing computing power like quantum computing. The

data or the information is the driver and fuel of this industrial

revolution.

No doubt, with better computational power and more storage

resources, this data is increasing day by day at a very rapid pace.

For businesses and organizations, the real challenge is to make

sense of this huge data. That’s the reason they are trying to build

intelligence systems by using methodologies from ML, one of the

most exciting fields of computer science. We can see ML as the

application and science of algorithms that provide meaning to the

data.

This chapter provides a brief overview of ML and its model. It

also addresses various ML methods. Using the Python

programming language, we will also implement some of the most

useful ML algorithms.

Structure

Understanding machine learning

The landscape of machine learning algorithms

Components of a machine learning algorithm

Different learning styles in machine learning algorithms

Supervised learning

Unsupervised learning

Semi-supervised learning

Reinforcement learning

Popular machine learning algorithms

Linear regression

Logistic regression

Decision tree

Random forest

Naïve Bayes

Support Vector Machine (SVM)

k-Nearest Neighbor (KNN)

k-means clustering

Objectives

After studying this chapter, you should be able to implement

various popular machine learning algorithms, namely, Linear

Regression, Logistic Regression, Decision Tree, Random Forest,

Support Vector Machine (SVM), Naïve Bayes, k-Nearest Neighbor,

and k-means clustering in the Python programming language. You

will also learn different learning styles such as supervised,

unsupervised and semi-supervised, and reinforcement used in ML

algorithms.

Understanding Machine Learning (ML)

Machine learning, a subset of AI, is the practice of computer

systems to extract patterns out of raw data by using an algorithm

or a method. ML algorithms allow computer systems to learn

from experience without explicit programming or any human

intervention. To give you an example, a spam filter, one of the

first applications of ML, can easily determine if the email is

important or a spam.

The Landscape of Machine Learning Algorithms

The field of machine learning consists of learning algorithms that

help the machine to learn from data and improve its performance

with time. Also, based on its interaction with the environment or

input data, there are different ways an algorithm can model a

problem. In this section, we’ll go through the components of an

ML algorithm, different learning styles, or learning models that an

ML algorithm can have, and we’ll take a tour of the most popular

ML algorithms also.

Components of a Machine Learning algorithm

Before deep diving into the components of the ML algorithm, we

must understand ML through the very interesting definition given

by Professor Mitchell in

“A computer program is said to learn from experience E with respect

to some class of tasks T and performance measure P, if its

performance at tasks in T, as measured by P, improves with

experience E.”

The preceding definition focuses on the following three

parameters:

Task

Performance

Experience

These three are the main components of any of the learning

algorithms shown in the following figure:

Figure 2.1: Components of ML algorithm

Let’s simplify the definition of ML:

ML is that field of AI which consists of learning algorithms that

improve their performance (P), at executing some task say T, over the

time with experience E.

The three main components of the ML algorithm are described as

follows:

Task A task should be defined in a two-fold manner. A task, T,

from a problem’s perspective, can be defined as the real-world

problem to be solved. The problem, finding the best marketing

strategy or predicting the house price, can be anything. Whereas

from the ML perspective, defining a task is quite different because

it’s difficult to solve ML-based tasks by using the traditional

programming approach. A task, T, is called a machine learning-

based task if it is based on the workflow that the system should

follow to operate on sample data points. These sample data

points typically consist of data attributes or features. Classification,

Regression, Anomaly detection, Clustering, Translation, and so on,

are some of the tasks that could be classified as the ML tasks.

Experience In layman’s terms, experience is the knowledge a

person gets by doing something or observing someone else do it.

In the case of machine learning-based tasks, it is the knowledge

gained from sample data points provided to the ML algorithm.

After getting the data points, the ML algorithm runs iteratively

and learns from the inherent pattern. Such learning by the ML

algorithm or model is called experience (E), which will be used to

solve task T. There are various ways of learning and gaining

experience, including supervised, unsupervised, semi-supervised,

and reinforcement learning. We will discuss them in the next

section.

Performance How do we know if our ML model, which is

supposed to perform a task T and learning or gaining experience

E from sample data points over time, is performing well or not?

This is where the third component of the ML algorithm comes

into the picture. This component is called performance, P, which

is a quantitative metric used to measure how well the ML model

is performing the task, T, with experience, E. Accuracy score, F1

score, precision, confusion matrix, recall, and specificity are some

of the performance metrics we can choose from to measure the

performance of our ML model.

Different learning styles in machine learning algorithms

Let’s look at the following four different learning styles in ML

algorithms.

Supervised learning

Supervised learning methods are the ML methods that are most

commonly used. It takes the data sample (usually called training

data) and the associated output (usually called labels or

responses) with each data sample during the training process of

the model. The main objective of supervised learning is to

understand the association between input training data and

corresponding labels.

Let’s understand it with an example. Suppose we have:

Input variable:

Output variable:

In order to learn the mapping function from the input to output,

we need to apply an algorithm whose main objective is to

approximate the mapping function so well that we can also easily

predict the output variable for the new input data, as shown in

the following example:

Y = f(x)

These methods are called supervised learning methods because

the ML model learns from the training data where the desired

output is already known. Logistic regression, k-Nearest neighbors

(KNN), Decision tree, and Random Forest are some of the well-

known supervised machine learning algorithms.

Based on the type of ML-based tasks, supervised learning methods

can be divided into two major classes as follows:

The main objective of the classification-based tasks is to predict

categorical output responses based on the input data that is being

provided. The output depends on the ML model’s learning in the

training phase. Categorical means unordered and discrete values;

hence, the output responses will belong to a specific discrete

category.

For example, predicting high-risk patients and discriminating them

from low-risk patients is also a classification task. Suppose for

newly admitted patients, an emergency room in a hospital

measures 12 variables (such as blood sugar, blood pressure, age,

weight, and so on). After measuring these variables, a decision is

to be taken whether to put the patient in ICU or not. There is a

simple condition that a high priority should be given to the

patients who may survive more than a month.

The main objective of regression-based tasks is to predict

continuous numerical output responses based on the input data

that is being provided. The output depends on the ML model’s

learning in the training phase. Similar to classification, with the

help of regression, we can predict the output responses for

unseen data instances, but that is with continuous numerical

output values. Predicting the price of houses is one of the most

common real-world examples of regression.

Unsupervised learning

Unsupervised learning methods (as opposed to supervised learning

methods) do not require any pre-labeled training data. In such

methods, the machine learning model or algorithm tries to learn

patterns and relationships from the given raw data without any

supervision. Although there are a lot of uncertainties in the result

of these models, we can still obtain a lot of useful information

like all kinds of unknown patterns in the data and the features

that can be useful for categorization.

To make it clearer, suppose we have:

Input variable: x

There would be no corresponding output variable. For learning,

the algorithm needs to discover interesting patterns in data. K-

means Clustering, Hierarchical Clustering, and Hebbian Learning

are some of the well-known unsupervised machine learning

algorithms.

Based on the type of ML-based tasks, unsupervised learning

methods can be categorized into the following broad areas:

Clustering, one of the most useful unsupervised machine learning

algorithms/methods, is used to find the similarity and relationship

patterns among data samples. Once the relationship patterns are

found, it clusters the data samples into groups having similar

features. The following figure illustrates the working of clustering

methods:

Figure 2.2: Clustering Method

One other useful unsupervised machine learning algorithm/method

is Association. In order to find patterns representing the

interesting relationships between a variety of items, association

analyzes a large dataset. For example, analyzing customer

shopping patterns comes under association. It is also known as

Association Rule Mining or Market Basket Analysis.

Anomaly Sometimes, we need to find out and eliminate the

observations that do not occur generally. In that case, the most

useful unsupervised ML method is Anomaly detection. It uses

learned knowledge to differentiate between anomalous and normal

data points. K-means clustering, mean shift clustering, and K-

nearest neighbors (KNN) are some of the unsupervised learning

algorithms that can detect anomalous data based on its features.

Dimensionality As the name implies, dimensionality reduction is

used to reduce the number of feature variables for every data

sample by selecting a principal feature. One of the main reasons

behind using the dimensionality reduction method is the problem

of feature space complexity (curse of dimensionality). This problem

arises when we start analyzing and extracting features, probably

millions of features from our data sample. For example, Principal

Component Analysis KNN are some of the popular dimensionality

reduction methods.

Semi-supervised learning

Semi-supervised machine learning methods fall between supervised

and unsupervised machine learning methods. In simple words,

they are neither fully supervised nor fully unsupervised. For

training, such methods use a small amount of pre-labeled

annotated data and lots of unlabeled data. Following are the two

approaches that one can follow to implement semi-supervised

learning methods:

In this approach, we can first use the small amount of annotated

and labeled data to build the supervised model. Once done with

the supervised model, we can then apply the same to large

amounts of unlabeled data to get more labeled samples. Then,

train the model on these labeled samples and repeat the process.

In this approach, we can first use the unsupervised methods to

cluster similar data samples and then annotate these groups.

Once annotated, we can use them to train the model.

Reinforcement learning

Reinforcement machine learning methods are a bit different from

supervised, unsupervised, and semi-supervised machine learning

methods. In these kinds of learning algorithms, a trained agent

interacts with a specific environment. The job of the agent is to

interact with the environment and once observed, it takes actions

regarding the current state of that environment. Let’s understand

the working of reinforcement learning methods in the following

steps:

Prepare an agent with some set of strategies.

Observe the environment’s current state.

Regarding the current state of the environment, select the optimal

policy and perform suitable action accordingly.

An agent gets a reward or penalty based on the action it took

according to the current state of the environment.

If needed, update the set of strategies.

Repeat the process until the agent learns and adopts the optimal

policy.

Popular machine learning algorithms

There are so many ML algorithms that we can feel overwhelming

when algorithm names are thrown around us. It is always

expected from us to just know what these algorithms are and

where they actually fit. So, let’s take a tour of various popular ML

algorithms and their implementation in the Python programming

language.

Linear regression

A statistical model that attempts to model the linear relationship

between a dependent variable with a given set of independent and

explanatory variables by fitting a linear equation into the observed

data is called linear regression. What does the linear relationship

between variables mean? It means that with the change (increase

or decrease) in the value of one or more independent variables,

the value of the dependent variable will also change (increase or

decrease) accordingly.

Mathematically, a linear regression line has an equation of the

form:

Y = m X + b

Where Y is the dependent variable and X is the independent or

explanatory variable.

The slope of the regression line is It represents the effect X has

on

b is the When X = 0, Y = b

Types of linear regression

Simple Linear Regression and Multiple Linear Regression are the

two types of linear regressions. Let’s learn about them and their

implementation using Python.

Simple Linear Regression (SLR)

SLR, the most basic version of linear regression, predicts a

response using a single feature. It assumes that the two variables

are linearly related.

Implementing simple linear regression in Python:

Let’s see how we can implement SLR in the Python programming

language. In the following example, we will use a small dataset.

We can also use a dataset from the scikit-learn library, which will

be used in our next example:

Example-1:

#Importing necessary packages

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

#Defining a function for calculating values needed for Simple

Linear Regression (SLR)

def coef_estimation(x, y):

n = np.size(x) #calculating number of observations ‘n’.

mean_x, mean_y = np.mean(x), np.mean(y) #calculating mean of x

and y vectors

cross_xy = np.sum(y*x) – n*mean_y*mean_x #calculating cross-

deviation and deviation about x.

cross_xx = np.sum(x*x) – n*mean_x*mean_x

reg_b_1 = cross_xy / cross_xx #calculating regression coefficients,

i.e., b.

reg_b_0 = mean_y – reg_b_1*mean_x

return(reg_b_0, reg_b_1)

#Defining a function for plotting the regression line

def plot_regression_line(x, y, b):

plt.scatter(x, y, color = "r", marker = "o", s = 20) #plotting actual

points as scatter plot

y_pred = b[0] + b[1]*x #predicting response vector

plt.plot(x, y_pred, color = "g")#plotting the regression line and

labels on it

plt.xlabel('x')

plt.ylabel('y')

plt.show()

#Defining the main() function to provide dataset and calling

preceding-defined functions

def main():

x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14])

y = np.array([100, 300, 350, 500, 750, 850, 900,950, 1250, 1350,

1400, 1550, 1600, 1650,1700])

b = coef_estimation(x, y)

print("Estimated coefficients:\nreg_b_0 = {} \nreg_b_1 =

{}".format(b[0],b[1]))

plot_regression_line(x, y, b)

if __name__ == "__main__":

main()

We will get the following output for the preceding Python

program:

Output:

Estimated coefficients:

reg_b_0 = 187.08333333333337

reg_b_1 = 118.03571428571429

Figure 2.3: Simple Linear Regression

Example-2:

In this example, we will implement SLR by using a diabetes

dataset from scikit-learn:

#Importing necessary packages

import matplotlib.pyplot as plt

import numpy as np

from sklearn import datasets, linear_model

from sklearn.metrics import mean_squared_error, r2_score

%matplotlib inline

#Loading the dataset and creating its object

diabetes_data = datasets.load_diabetes()

#Using one feature

X = diabetes_data.data[:, np.newaxis, 2]

#Splitting the data into training and testing sets

X_train = X[:-35]

X_test = X[-35:]

#Splitting the target into training and testing sets

y_train = diabetes_data.target[:-35]

y_test = diabetes_data.target[-35:]

#Creating linear regression object

SLR_reg = linear_model.LinearRegression()

#Training the model using the training sets

SLR_reg.fit(X_train, y_train)

#Making predictions by using the testing set

y_pred = SLR_reg.predict(X_test)

Printing Regression Coefficient, Mean Squared Error(MSE),

Variance Score. Also plotting the regression line and labels on it

print('Coefficients: \n', SLR_reg.coef_)

print("Mean squared error: %.2f"

% mean_squared_error(y_test, y_pred))

print('Variance score: %.2f ' % r2_score(y_test, y_pred))

plt.scatter(X_test, y_test, color='red')

plt.plot(X_test, y_pred, color='green', linewidth=3)

plt.xticks(())

plt.yticks(())

plt.show()

We will get the following output for the preceding Python

program:

Output:

Coefficients:

[963.82249207]

Mean squared error: 3487.66

Variance score: 0.26

Figure 2.4: Simple Linear Regression for diabetes dataset

Multiple Linear Regression (MLR)

MLR, the extension of SLR, predicts a response that is a

dependent variable using two or more than two features or

independent variables.

Suppose a dataset is having observations and features, then the

regression line for these features can be calculated with the help

of the following equation:

… +

Where is the predicted response value.

And … regression coefficients.

MLR model also includes the error known as residual error. This

changes the preceding calculation as follows:

= + + … +

Implementing multiple linear regression in Python:

#Importing necessary packages

import matplotlib.pyplot as plt

import numpy as np

from sklearn import datasets, linear_model, metrics

%matplotlib inline

#Loading the dataset and creating its object

boston_data = datasets.load_boston(return_X_y=False)

#Defining feature matrix X and response vector Y

X = boston_data.data

y = boston_data.target

#Splitting the data into training and testing sets

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.6,

random_state=1)

#Creating regression object and do the training of the model

MLR_reg = linear_model.LinearRegression()

MLR_reg.fit(X_train, y_train)

Printing Regression Coefficient, and Variance Score. Also plotting

the regression line and labels on it

print('Coefficients: \n', MLR_reg.coef_)

print('Variance score: {}'.format(MLR_reg.score(X_test, y_test)))

plt.style.use('bmh')

plt.scatter(MLR_reg.predict(X_train), MLR_reg.predict(X_train) -

y_train,

color = "green", s = 20, label = 'Train_data')

plt.scatter(MLR_reg.predict(X_test), MLR_reg.predict(X_test) - y_test,

color = "blue", s = 10, label = 'Test_data')

plt.hlines(y = 0, xmin = 0, xmax = 50, color = 'red', linewidth =

1.25)

plt.legend(loc = 'upper right')

plt.title("Residual errors(eo)")

plt.show()

We will get the following output for the preceding Python

program.

Output:

Coefficients:

[-7.95572889e-02 7.11808367e-02 5.82382970e-02 1.48237233e+00

-1.67360287e+01 2.95000985e+00 2.33290549e-02 -1.35721280e+00

3.13822151e-01 -1.16929875e-02 -8.07436236e-01 6.67075368e-03

-6.71019667e-01]

Variance score: 0.7325323805669589

Figure 2.5: Multiple Linear Regression

Logistic regression

Logistic regression, a supervised learning classification algorithm,

predicts the probability of a dependent variable. Being a

classification algorithm, the dependent or target variable can have

two possible classes (1 or 0). Here, 1 stands for success/yes and

0 stands for failure or no. In simple words, the target variable is

binary in nature. LR is one of the simplest machine learning

algorithms, which can be used for various classification problems

like diabetes prediction, cancer detection, spam detection, and so

on.

In the following example, we will implement logistic regression on

digit datasets, which can be downloaded from

Implementing logistic regression algorithm in Python:

#Importing necessary packages

%matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

#Downloading the digit dataset

from sklearn.datasets import load_digits

digits_dataset = load_digits()

Printing total images and labels in the dataset

print(digits_dataset.data.shape)

print(digits_dataset.target.shape)

(1797, 64)

(1797,)

The preceding output shows that there are 1797 images (8 by 8

images for a dimensionality of 64) and 1797 labels (integers from

0 to 9).

#Let’s have a look at the training data

plt.figure(figsize=(20,4))

for index, (image, label) in enumerate(zip(digits.data[0:10],

digits.target[0:10])):

plt.subplot(1, 10, index + 1)

plt.imshow(np.reshape(image, (8,8)), cmap=plt.cm.gray)

plt.title('Training: %i\n' % label, fontsize = 20)

Figure 2.6: Training data (0-9 digits) for Logistic Regression

#Splitting the dataset into training and testing data set

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(digits.data,

digits.target, test_size=0.30, random_state=0) #70% data for

Training and 30% Data for Testing

#Import the LogisticRegression class from sklearn and use the fit

method to train the model

from sklearn.linear_model import LogisticRegression

logRegression = LogisticRegression()

logRegression.fit(x_train, y_train)

#Predicting for images

logRegression.predict(x_test[0].reshape(1,-1))

logRegression.predict(x_test[0:10])

y_pred = logRegression.predict(x_test)

#Calculating performance metrics (Confusion matrix, Classification

Report and Accuracy).

from sklearn.metrics import classification_report, confusion_matrix,

accuracy_score

print('Confusion Matrix:-\n', confusion_matrix(y_test, y_pred))

print('Classification Report:-\n', classification_report(y_test, y_pred))

print('Accuracy:-\n',accuracy_score(y_test,y_pred))

We will get the following output for the preceding Python

program:

Output:

Confusion Matrix:-

[[45 0 0 0 0 0 0 0 0 0]

[0 47 0 0 0 0 2 0 3 0]

[0 0 51 2 0 0 0 0 0 0]

[0 0 1 52 0 0 0 0 0 1]

[0 0 0 0 48 0 0 0 0 0]

[0 1 0 0 0 55 1 0 0 0]

[0 1 0 0 0 0 59 0 0 0]

[0 1 0 1 1 0 0 50 0 0]

[0 3 1 0 0 0 0 0 55 2]

[0 0 0 1 0 1 0 0 2 53]]

Classification Report:-

 precision recall f1-score support

 0 1.00 1.00 1.00 45

 1 0.89 0.90 0.90 52

 2 0.96 0.96 0.96 53

 3 0.93 0.96 0.95 54

 4 0.98 1.00 0.99 48

 5 0.98 0.96 0.97 57

 6 0.95 0.98 0.97 60

 7 1.00 0.94 0.97 53

 8 0.92 0.90 0.91 61

 9 0.95 0.93 0.94 57

 accuracy 0.95 540

 macro avg 0.96 0.96 0.96 540

weighted avg 0.95 0.95 0.95 540

Accuracy:-

0.9537037037037037

The preceding output that shows our model gives 95.37 %

accuracy.

Decision tree algorithm

Decision trees are the most powerful supervised learning

classification algorithm. It works based on a tree that has the

following two main entities:

Decision Where the data is split.

Where we get the output.

Let’s look at the following binary tree that predicts whether a

person is fit or not. In order to predict this, we need to provide

various information like eating habits, age of the person exercise

habits, and so on.

Figure 2.7: Decision Tree

Implementing decision tree algorithm in Python:

Let’s see how we can implement a Decision Tree Classifier in the

Python programming language. For this, we are going to use the

Pima Indians Diabetes dataset. You can download it from

https://archive.ics.uci.edu/ml/datasets/diabetes and save it to your

system.

#Importing necessary packages

import pandas as pd

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import train_test_split

#Download the Pima-Indians-Diabetes dataset and read it using

Pandas as follows

Data_column_names = ['pregnant', 'glucose', 'bp', 'skin', 'insulin',

'bmi', 'pedigree', 'age', 'label']

Dataset_pima_diabetes = pd.read_csv(r"C:\Users\Desktop\pima-

indians-diabetes.csv", header=None, names= Data_column_names)

#With the help of following script, you can look at the dataset

Dataset_pima_diabetes.head()

Figure 2.8: Pima-Indians Dataset

#Splitting the dataset in features and target variables

feature_columns = ['pregnant', 'insulin','bmi',

'age','glucose','bp','pedigree','skin']

#Features

X = Dataset_pima_diabetes[feature_columns]

#Target variable

y = Dataset_pima_diabetes.label

#Splitting the dataset for training and testing purpose. Here we

are splitting the dataset into 80% training data and 20% of

testing data

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=1)

#Train the model. We are using DecisionTreeClassifier() class of

Scikit-learn

DT_classifier = DecisionTreeClassifier()

DT_classifier = DT_classifier.fit(X_train,y_train)

#Make predictions from trained model

y_pred = DT_classifier.predict(X_test)

#Calculating performance metrics (Confusion matrix, Classification

Report and Accuracy) of our decision tree classifier

from sklearn.metrics import classification_report, confusion_matrix,

accuracy_score

print('Confusion Matrix:-\n', confusion_matrix(y_test, y_pred))

print('Classification Report:-\n', classification_report(y_test, y_pred))

print('Accuracy:-\n',accuracy_score(y_test,y_pred))

We will get the following output for the preceding Python

program:

Output:

Confusion Matrix:-

[[78 21]

[25 30]]

Classification Report:-

 precision recall f1-score support

 0 0.76 0.79 0.77 99

 1 0.59 0.55 0.57 55

 accuracy 0.70 154

 macro avg 0.67 0.67 0.67 154

weighted avg 0.70 0.70 0.70 154

Accuracy:-

0.7012987012987013

You can see that the accuracy of our Decision tree classifier is

around 70%.

With the help of the following code, we can also visualize the

decision tree:

#Visualizing our decision tree

import graphviz

from sklearn import tree

dot_data =

tree.export_graphviz(DT_classifier,out_file=None,feature_names=featur

e_columns,class_names=True)

graph = graphviz.Source(dot_data)

graph.render("DTVisualize",view=True)

As output, the preceding code will generate a PDF file named

DTVisualize.pdf having the decision tree of the Pima-Indians-

diabetes dataset. We set the view parameter in a graph.render() to

so that it will open the file as well. If you do not want it to

open the file automatically, you can also set it to ‘False’.

Output:

'DTVisualize.pdf '

Random forest

Random forest, a supervised machine learning classification

algorithm, creates decision trees on data samples, and after

getting the prediction from each of them, it selects the best

solution by means of voting. It reduces overfitting by averaging

the result, that’s why we get better results as compared with

using a single decision tree. The following figure illustrates the

working of the Random Forest algorithm:

Figure 2.9: Working of Random Forest Algorithm

The Random forest starts with the selection of random samples

from the dataset. It then constructs a decision tree for every

sample and gets the prediction result from all of them. Once we

get the predictions, it votes among them and selects the most

voted prediction result as the final predicted result.

Implementing Random forest algorithm in Python:

In the following example, we will implement the Random Forest

algorithm on the same dataset, that is, the Pima Indians Diabetes

dataset, on which we implemented the Decision Tree Classifier.

Let’s implement it and see the variation in the accuracy result:

#Importing necessary packages

import pandas as pd

from sklearn.model_selection import train_test_split

#Download the Pima-IndianDiabetes dataset and read it using

Pandas as follows

Data_column_names = ['pregnant', 'glucose', 'bp', 'skin', 'insulin',

'bmi', 'pedigree', 'age', 'label']

Dataset_pima_diabetes = pd.read_csv(r"C:\Users\Desktop\pima-

indians-diabetes.csv", header=None, names= Data_column_names)

#Splitting the dataset in features and target variables

feature_columns = ['pregnant', 'insulin','bmi',

'age','glucose','bp','pedigree','skin']

Features

X = Dataset_pima_diabetes[feature_columns]

Target variable

y = Dataset_pima_diabetes.label

#Splitting the dataset for training and testing purpose. Here we

are splitting the dataset into 80% training data and 20% of

testing data

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=1)

#Train the model. We are using RandomForestClassifier() class of

Scikit-learn

RF_classifier = DecisionTreeClassifier()

RF_classifier = RF_classifier.fit(X_train,y_train)

#Make predictions from trained model

y_pred = RF_classifier.predict(X_test)

#Calculating performance metrics (Confusion matrix, Classification

Report and Accuracy) of our decision tree classifier

from sklearn.metrics import classification_report, confusion_matrix,

accuracy_score

print('Confusion Matrix:-\n', confusion_matrix(y_test, y_pred))

print('Classification Report:-\n', classification_report(y_test, y_pred))

print('Accuracy:-\n',accuracy_score(y_test,y_pred))

We will get the following output for the preceding Python

program:

Output:

Confusion Matrix:-

[[89 10]

[24 31]]

Classification Report:-

 precision recall f1-score support

 0 0.79 0.90 0.84 99

 1 0.76 0.56 0.65 55

 accuracy 0.78 154

macro avg 0.77 0.73 0.74 154

weighted avg 0.78 0.78 0.77 154

Accuracy:-

0.7792207792207793

You can see the accuracy of our random forest classifier is around

78%, which is around 8% higher than the accuracy we achieved

by the decision tree classifier.

Naïve Bayes algorithm

Naïve Bayes, one of the simplest supervised learning algorithms,

is a statistical classification technique based on applying Bayes’

theorem. It assumes that all the predictors are independent of

each other, that is, the existence of a feature in a class is

independent of the existence of any other feature in a similar

class. Such kind of assumption, which is considered naïve, is

called class conditional independence.

In Bayesian classification, our main interest is to find the

probability of a label given some observed features, that is, the

posterior probability. Mathematically, we can express it with the

help of the Bayes theorem:

Where:

P(L|features): Posterior probability of class.

Prior probability of class.

P(features | The probability of predictor given class.

The prior probability of predictor.

Naïve Bayes models for building Naïve Bayes classifier in Python:

One of the most powerful Python libraries that helps in building

Naïve Bayes classifier is Scikit-learn. It has the following three

Naïve Bayes models:

Gaussian Naïve It assumes that the data from each label is drawn

from a simple Gaussian distribution. Gaussian distribution (also

known as the normal distribution) is a probability distribution,

which is symmetric about the mean. In graph form, it will appear

as a bell curve, which shows that the data near the mean are

more frequently occurs than the data which is far from the mean.

Multinomial Naïve It assumes that the data from each label is

drawn from a simple multinomial distribution. Multinomial Naïve

Bayes is appropriate for the features representing discrete counts.

Bernoulli Naïve It assumes the features to be binary, that is, 0s

and 1s. For example, one of the best applications of Bernoulli

Naïve Bayes is test classification with the Bag of Words model.

Implementing Naïve Bayes classifier with binary labels (single

feature):

In the case of a single feature, the Naïve Bayes classifier

calculates the probability of an event with the help of the

following steps:

First, the Naïve Bayes classifier calculates the prior probability for

the given class labels.

Second, it finds likelihood probability with each attribute for each

class.

Once it calculates prior and likelihood probabilities, it puts the

values in the Bayes formula and calculates the posterior

probability.

Finally, it will check which class has a higher probability.

For this example, we are using a dummy dataset having the

following three columns:

Weather

Temperature

Play

Here Weather and Temperature are the features and Play is the

label.

#Importing necessary packages

from sklearn import preprocessing #LabelEncoder

from sklearn.naive_bayes import GaussianNB #Gaussian Naive

Bayes model

#Assigning features and label variables to the columns of our

dataset

weather=['Sunny','Sunny','Overcast','Rainy','Rainy','Overcast','Sunny',

'Sunny','Rainy','Overcast','Rainy']

temp=['Hot','Hot','Hot','Mild','Cool','Cool','Mild','Cool','Mild','Mild','Mild']

play=['N','N','Y','Y','N','N','Y','Y','Y','Y','Y']

#Creating Label Encoder

Lbl_encoder = preprocessing.LabelEncoder()

Convert string labels into numbers

encode_weatherdata= Lbl_encoder.fit_transform(weather)

encode_temperaturedata= Lbl_encoder.fit_transform(temp)

encode_labeldata= Lbl_encoder.fit_transform(play)

Printing encoded data

print (“Encoded Weather Data is:”, encode_weatherdata)

print (“Encoded Temperature Data is:”, encode_temperaturedata)

print (“Encoded Label Data is:”, encode_labeldata)

Combining both the features in a single list of tuples

combn_features=tuple(zip(encode_weatherdata,

encode_temperaturedata))

print (“Combined features in a single list of tuples:”,

combn_features)

#Generating a Gaussian Classifier

NB_model = GaussianNB()

Training our model

NB_model.fit(combn_features, encode_labeldata)

#Predicting the Output

predicted= NB_model.predict([[1,0]]) # 1:-Rainy, 0:-Cool

print ("Predicted Value:", predicted)

We will get the following output for the preceding Python

program.

Output:

Encoded Weather Data is: [2 2 0 1 1 0 2 2 1 0 1]

Encoded Temperature Data is: [1 1 1 2 0 0 2 0 2 2 2]

Encoded Label Data is: [0 0 1 1 0 0 1 1 1 1 1]

Combined features in a single list of tuples is: ((2, 1), (2, 1), (0,

1), (1, 2), (1, 0), (0, 0), (2, 2), (2, 0), (1, 2), (0, 2), (1, 2))

Predicted Value: [0]

Implementing Naïve Bayes classifier with multiple labels:

In this example, we will do a multi-class classification in Naïve

Bayes. Such kind of classification is used in cases where one

needs to classify, for example, a news article about technology,

cricket, politics, or the economy.

In the model-building part, we can use the iris-flower dataset,

perhaps the best-known database to be found in pattern

recognition. You can download it from Iris-Flower Dataset

comprises four features, namely, sepal length sepal width petal

length and petal width This data has three types of iris-flower:

and Here, we can build a model to classify the types of iris

flower. This dataset is also available in the Scikit-learn library.

#Importing necessary packages

from sklearn import datasets # scikit-learn dataset library

from sklearn.model_selection import train_test_split #

train_test_split function

from sklearn.naive_bayes import GaussianNB #Gaussian Naive

Bayes model

#Loading iris-flower dataset

iris_flower = datasets.load_iris()

Printing the names of the features

print ("Features: ", iris_flower.feature_names)

Printing the label type of flowers

print ("Labels: ", iris_flower.target_names)

Printing data shape

iris_flower.data.shape

Printing the iris-flower data features (top 10 records)

print (iris_flower.data[0:10])

Printing the iris-flower labels (0:setosa, 1:versicolor, 2:virginica)

print (iris_flower.target)

Splitting iris-dataset into training set and test set

X_train, X_test, y_train, y_test = train_test_split(iris_flower.data,

iris_flower.target, test_size=0.3,random_state=115) # 70% data for

training and 30% data for testing purpose

#Generating a Gaussian Classifier

NB_iris = GaussianNB()

#Training the classifier model using the training sets

NB_iris.fit(X_train, y_train)

#Predicting the response for testing dataset

y_pred = NB_iris.predict(X_test)

#Importing the scikit-learn metrics module for calculating the

accuracy

from sklearn import metrics

print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

We will get the following output for the preceding Python

program.

Output:

Features: ['sepal length (cm)', 'sepal width (cm)', 'petal length

(cm)', 'petal width (cm)']

Labels: ['setosa' 'versicolor' 'virginica']

(150, 4)

[[5.1 3.5 1.4 0.2]

[4.9 3. 1.4 0.2]

[4.7 3.2 1.3 0.2]

[4.6 3.1 1.5 0.2]

[5. 3.6 1.4 0.2]

[5.4 3.9 1.7 0.4]

[4.6 3.4 1.4 0.3]

[5. 3.4 1.5 0.2]

[4.4 2.9 1.4 0.2]

[4.9 3.1 1.5 0.1]]

Accuracy: 0.9333333333333333

The preceding output shows that the accuracy of our classifier is

around 93%.

Support Vector Machine (SVM)

A Support Vector Machine a supervised ML classification

algorithm, is a powerful yet flexible algorithm. They were first

introduced in the 1960s, but in the 1990s, they also got refined.

SVM can handle multiple continuous and categorical variables.

That’s the reason, SVMs are becoming extremely popular

nowadays.

Working of SVM algorithm

An SVM model is basically a representation of numerous classes

in a hyperplane, generated iteratively by SVM, in a

multidimensional space. One of the most important goals of SVM

is to find a Maximum Marginal Hyperplane and for this, it divides

the datasets into classes. This is illustrated in the following figure:

Figure 2.10: Support Vector Machine

Let’s have a look at some of the important points in SVM:

Support Support vectors are the data points that are closest to

the hyperplane.

As shown in the preceding figure, it is the gap between two lines

on the closest data points of different classes. We can calculate

margins as the perpendicular distance from the line to the SVs

(support vectors).

It is the space or decision plane divided between a set of objects

having different classes.

Implementing SVM algorithm in Python:

Let’s see how we can implement SVM in Python programming

language. For this, we are going to generate a sample dataset,

from having linearly separable data.

#Importing necessary packages

import numpy as np

import matplotlib.pyplot as plt

from scipy import stats

import seaborn as sns; sns.set()

#Generating sample dataset having linearly separable data

from sklearn.datasets.samples_generator import make_blobs

X_data, y_data = make_blobs(n_samples=500, centers=2,

random_state=0, cluster_std=0.30)

plt.scatter(X_data[:, 0], X_data[:, 1], c=y_data, s=30, cmap='winter');

Figure 2.11: Sample Dataset having linearly separable dataset

The preceding output is having sample dataset with 500 samples

and 2 clusters.

Implementing discriminative classification i.e. Dividing the

classes from each other

xfit = np.linspace(-1, 3.5)

plt.scatter(X_data[:, 0], X_data[:, 1], c=y_data, s=30, cmap='winter')

for m, b in [(1, 0.65), (0.5, 1.6), (-0.2, 2.9)]:

plt.plot(xfit, m * xfit + b, '-k')

plt.xlim(-1, 3.5);

Figure 2.12: Discriminative Classification

In order to find MMH, drawing a margin of some width, up to

the nearest point, around each line

xfit = np.linspace(-1, 3.5)

plt.scatter(X_data[:, 0], X_data[:, 1], c=y_data, s=30, cmap='winter')

for m, b, d in [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2, 2.9, 0.2)]:

yfit = m * xfit + b

plt.plot(xfit, yfit, '-k')

plt.fill_between(xfit, yfit - d, yfit + d, edgecolor='none',

color='#AAAAAA', alpha=0.4)

plt.xlim(-1, 3.5);

Figure 2.13: Discriminative Classification with margin of width

#Training the algorithm. Calling fit method of SVC class

from sklearn.svm import SVC # "Support vector classifier"

model = SVC(kernel='linear')

model.fit(X_data, y_data)

#Plotting the decision function for 2-dimensional SVC

def decision_function(model, ax=None, plot_support=True):

if ax is None:

ax = plt.gca()

xlim = ax.get_xlim()

ylim = ax.get_ylim()

x = np.linspace(xlim[0], xlim[1], 30)

y = np.linspace(ylim[0], ylim[1], 30)

Y, X = np.meshgrid(y, x)

xy = np.vstack([X.ravel(), Y.ravel()]).T

P = model.decision_function(xy).reshape(X.shape)

ax.contour(X, Y, P, colors='k',

levels=[-1, 0, 1], alpha=0.5,

linestyles=['--', '-', '--'])

if plot_support:

ax.scatter(model.support_vectors_[:, 0],

model.support_vectors_[:, 1],

s=400, linewidth=2, facecolors='none');

ax.set_xlim(xlim)

ax.set_ylim(ylim)

plt.scatter(X_data[:, 0], X_data[:, 1], c=y_data, s=30, cmap='winter')

decision_function(model);

Figure 2.14: Decision function for 2-D SVC

Getting the support vectors points

model.support_vectors_

array([[1.2591839, 3.48188418],

[1.62869156, 1.49705048],

[2.19960206, 1.72547019]])

Kernel SVM

In the preceding example, we have implemented SVM that finds

decision boundaries for linearly separable data. But, in the case of

non-linearly separable data, the preceding SVM algorithm cannot

be used. For that, we need to use a modified version of SVM

called Kernel SVM. In the following implementation example, we

will be using different kernels, polynomial, Radial Basis Function

and sigmoid on the Iris-flower dataset.

Implementing Kernel SVM in Python:

#Importing necessary packages

from sklearn import datasets # scikit-learn dataset library

from sklearn.model_selection import train_test_split #

train_test_split function

#Loading iris-flower dataset

iris_flower = datasets.load_iris()

Printing the names of the features

print ("Features: ", iris_flower.feature_names)

Printing the label type of flowers

print ("Labels: ", iris_flower.target_names)

Printing data shape

iris_flower.data.shape

Printing the iris-flower data features (top 10 records)

print (iris_flower.data[0:10])

Printing the iris-flower labels (0:setosa, 1:versicolor, 2:virginica)

print (iris_flower.target)

Splitting iris-dataset into training set and test set

X_train, X_test, y_train, y_test = train_test_split(iris_flower.data,

iris_flower.target, test_size=0.3,random_state=115) # 70% data for

training and 30% data for testing purpose

Training the algorithm by using SVC class fit method. Here we

are using Polynomial kernel

from sklearn.svm import SVC

svm_K_classifier = SVC(kernel='poly', degree=8)

svm_K_classifier.fit(X_train, y_train)

#Predicting the response for testing dataset

y_pred = svm_K_classifier.predict(X_test)

Importing the scikit-learn classification_report and

confusion_matrix module for evaluating the algorithm

from sklearn.metrics import classification_report, confusion_matrix

print('Confusion Matrix:\n', confusion_matrix(y_test,y_pred))

print('Classification Report:\n',classification_report(y_test,y_pred))

We will get the following output for the preceding Python

program:

Output:

Confusion Matrix:

[[18 0 0]

[0 10 0]

[0 3 14]]

Classification Report:

 precision recall f1-score support

 0 1.00 1.00 1.00 18

 1 0.77 1.00 0.87 10

 2 1.00 0.82 0.90 17

 accuracy 0.93 45

 macro avg 0.92 0.94 0.92 45

weighted avg 0.95 0.93 0.93 45

Similarly, we can train the algorithm by using the Radial Basis

Function kernel:

Training the algorithm by using SVC class fit method. Here we

are using rbf kernel

from sklearn.svm import SVC

svm_K_classifier = SVC(kernel='rbf ')

svm_K_classifier.fit(X_train, y_train)

#Predicting the response for testing dataset

y_pred = svm_K_classifier.predict(X_test)

Importing the scikit-learn classification_report and

confusion_matrix module for evaluating the algorithm

from sklearn.metrics import classification_report, confusion_matrix

print('Confusion Matrix:\n', confusion_matrix(y_test,y_pred))

print('Classification Report:\n',classification_report(y_test,y_pred))

We will get the following output for the preceding Python

program:

Output:

Confusion Matrix:

[[18 0 0]

[0 10 0]

[0 2 15]]

Classification Report:

 precision recall f1-score support

 0 1.00 1.00 1.00 18

 1 0.83 1.00 0.91 10

 2 1.00 0.88 0.94 17

 accuracy 0.96 45

 macro avg 0.94 0.96 0.95 45

weighted avg 0.96 0.96 0.96 45

Now, train the algorithm by using Sigmoid kernel:

Training the algorithm by using SVC class fit method. Here we

are using rbf kernel

from sklearn.svm import SVC

svm_K_classifier = SVC(kernel='sigmoid')

svm_K_classifier.fit(X_train, y_train)

#Predicting the response for testing dataset

y_pred = svm_K_classifier.predict(X_test)

Importing the scikit-learn classification_report and

confusion_matrix module for evaluating the algorithm

from sklearn.metrics import classification_report, confusion_matrix

print('Confusion Matrix:\n', confusion_matrix(y_test,y_pred))

print('Classification Report:\n',classification_report(y_test,y_pred))

We will get the following output for the preceding Python

program:

Output:

Confusion Matrix:

[[0 18 0]

[0 10 0]

[0 17 0]]

Classification Report:

 precision recall f1-score support

 0 0.00 0.00 0.00 18

 1 0.22 1.00 0.36 10

 2 0.00 0.00 0.00 17

 accuracy 0.22 45

 macro avg 0.07 0.33 0.12 45

weighted avg 0.05 0.22 0.08 45

k-Nearest Neighbor (kNN)

This is a supervised machine learning algorithm for classification

and regression but mainly used for classification. To predict the

values of new data points, KNN uses feature similarity. The new

data points will be assigned a value, which is based on how

closely it matches the points in the training set. Let’s understand

its working in the following steps:

First, we need to provide KNN the dataset, that is, the training

and test data.

Second, we must provide the value of k (it can be any integer),

that is, the nearest data points to the KNN algorithm.

Finally, for every point in the test data, the KNN algorithm will do

the calculation as follows:

It calculates the distance between test data and each row of

training data. It can use any of the methods, Euclidean,

Manhattan, or Hamming distance. But it generally uses the

Euclidean function. Let’s understand these distances:

Euclidean It calculates the distance between two real-valued

vectors. Mostly we use it to calculate the distance between two

rows of data having numerical values (floating or integer values).

The following is the formula to calculate Euclidean distance:

Here:

r and s are the two points in Euclidean

and are Euclidean vectors.

n denotes the

Hamming It calculates the distance between two binary vectors.

Mostly we find the binary strings when we use one-hot encoding

on categorical columns of data. In one-hot encoding, the integer

variable is removed and a new binary variable will be added for

each unique integer value. For example, if a column had the

categories say and We might one-hot encode each example as a

bitstring with one bit for each column as follows:

Length = [1, 0, 0]

Width = [0, 1, 0]

Breadth = [0, 0, 1]

The Hamming distance between any of the preceding two

categories mentioned can be calculated as the sum or the average

number of bit differences between the two binary strings. We can

see that the Hamming difference between length and width

categories is about 2/3 and 0.666 because 2 out of 3 positions

are different.

Manhattan The Manhattan distance, also known as the City Block

distance, is calculated as the sum of absolute differences between

the two vectors. It is mostly used for the vectors that describe

objects on a uniform grid such as a city block or chessboard. The

following is the generalized formula to calculate Manhattan

distance in n-dimensional space:

Here,

and are data points.

n denotes the

Once calculated the distance, KNN now sorts the distance values

in ascending order and chooses the top K rows from this sorted

array.

Now, based on the most frequent class of these rows, a class to

the test point will be assigned.

Implementing KNN Classifier in Python

In this example, we will be implementing the KNN classifier in

Python. We will be using the Iris-Flower dataset:

#Importing necessary packages

import numpy as np

import pandas as pd

#Downloading the Iris-flower dataset

path = https://archive.ics.uci.edu/ml/machine-learning-

databases/iris/iris.data

Assigning column names to the dataset

column_names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-

width', 'Class']

Reading dataset to Pandas dataframes

iris_data = pd.read_csv(path, names= column_names)

Data preprocessing

X = iris_data.iloc[:, :-1].values

y = iris_data.iloc[:, 4].values

Splitting the dataset into train and test data

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)

75% data for training and 25% data for testing purpose

Data scaling for sending scaled data to the train the model

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)

Training the algorithm by using KNeighborsClassifier class fit

method

from sklearn.neighbors import KNeighborsClassifier

Knn_classifier = KNeighborsClassifier(n_neighbors=8)

Knn_classifier.fit(X_train, y_train)

#Predicting the response for testing dataset

y_pred = Knn_classifier.predict(X_test)

Importing the scikit-learn classification_report and

confusion_matrix module for evaluating the algorithm

from sklearn.metrics import classification_report, confusion_matrix

print('Confusion Matrix:\n', confusion_matrix(y_test,y_pred))

print('Classification Report:\n',classification_report(y_test,y_pred))

We will get the following output for the preceding Python

program.

Output:

Confusion Matrix:

[[12 0 0]

[0 16 0]

[0 2 8]]

Classification Report:

 precision recall f1-score support

 Iris-setosa 1.00 1.00 1.00 12

Iris-versicolor 0.89 1.00 0.94 16

Iris-virginica 1.00 0.80 0.89 10

 accuracy 0.95 38

 macro avg 0.96 0.93 0.94 38

 weighted avg 0.95 0.95 0.95 38

Implementing KNN regressor in Python

In this example, we will implement the KNN regressor in Python.

The steps are almost same as we used while implementing the

KNN classifier in Python.

#Importing necessary packages

import numpy as np

from sklearn.datasets import load_iris

iris_data = load_iris()

X = iris_data.data[:, :4]

y = iris_data.target

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)

#This is the only change i.e. we need to import

KNeighborRegressor class and train the model

from sklearn.neighbors import KNeighborsRegressor

knn_regressor = KNeighborsRegressor(n_neighbors=5)

knn_regressor.fit(X_train, y_train)

Printing the Mean Square Error

print ("The MSE is:",format(np.power(y-

knn_regressor.predict(X),4).mean()))

We will get the following output for the preceding Python

program.

Output:

The MSE is: 5.666666666666667

K-Means clustering

K-means clustering, one of the simplest unsupervised machine

learning algorithms, groups similar data points together and

discovers underlying patterns. k in K-means refers to the fixed

number of clusters in a dataset. While computing the centroids,

the k-means algorithm assigns data points in such a manner that

the sum of the squared distance between the data points and

centroid would be minimum.

The way the k-means clustering algorithm works is shown in the

following steps:

Specify the number of clusters, that is,

It shuffles the dataset to initialize centroids and then randomly

selects k data points for the centroids.

Next, it keeps iterating the following until it finds the optimal

centroid, that is, there is no change to the centroids:

First, it calculates the sum of squared distance between data

points and centroids.

Second, it assigns each data point to the nearest cluster.

Finally, it takes the average of all data points of clusters to

compute the centroids for those clusters.

Implementing k-means clustering in Python

In this example, we will implement k-means clustering on the 2-

dimensional dataset sample, which we generated on 700 sample

values, having 5 clusters.

#Importing necessary packages

%matplotlib inline

import matplotlib.pyplot as plt

import seaborn as sns; sns.set()

import numpy as np

from sklearn.cluster import KMeans

#Generating 2-dimensional dataset having 5 blobs

from sklearn.datasets.samples_generator import make_blobs

X, y_true = make_blobs(n_samples=700, centers=5, cluster_std=0.8)

#Let’s visualize our dataset

plt.scatter(X[:, 0], X[:, 1], s=10);

plt.show()

Figure 2.15: 2-D Data having 5-blobs

#Creating an object of k-means and providing number of clusters

kmeans = KMeans(n_clusters=5)

#Train the model by using fit method of k-means() class

kmeans.fit(X)

do the predictions

y_kmeans = kmeans.predict(X)

Plotting and visualizing cluster’s centers picked by k-means

estimators

plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=10, cmap='rainbow')

centers = kmeans.cluster_centers_

plt.scatter(centers[:, 0], centers[:, 1], c='black');

plt.show()

Figure 2.16: Cluster centers picked by k-means estimators

Conclusion

In this chapter, we learned the basics of Machine Learning and

explored various components associated with it. We also

understood different learning styles, namely, supervised,

unsupervised and semi-supervised, and reinforcement used in

machine learning algorithms. We learned that the main objective

of supervised learning, composed of subfields such as

classification and regression, is to learn an association between

input training data and corresponding labels. While classification

models allow us to predict categorical output responses for the

given input data, we can use the regression model to predict

continuous numerical output responses for the given input data.

We understood that the unsupervised learning methods do not

require any pre-labeled training data and it learns patterns and

relationships from given raw data without any supervision.

Classification, Dimensionality Reduction, Anomaly Detection, and

Association are the subfields of unsupervised learning. We also

explored that semi-supervised machine learning methods neither

fully supervised nor fully unsupervised use a small amount of pre-

labeled annotated data and lots of unlabeled data for training

purposes. In reinforcement learning, the agent interacts with the

environment and acts according to the current state of the

environment.

We described some popular machine learning algorithms such as

Linear Regression, Logistic Regression, Decision Tree, Random

Forest, k-Nearest Neighbor k-means clustering, Naïve Bayes, and

Support Vector Machine Along with their descriptions, these

algorithms have also been implemented using the Scikit-learn

Python library for machine learning. We implemented these

algorithms in Jupyter Notebook.

We went over the roadmap for applying machine learning to real-

world problems, which we will use as a foundation of deeper

discussions and hands-on examples in the upcoming chapters.

Questions

What is Machine Learning (ML)? What are the various

components a machine learning algorithm has?

Explain different learning styles in the machine learning algorithms.

What is Logistic Regression? Implement it in the Python

programming language.

What is Multiple Linear Regression? How can we implement it in

the Python programming language?

What is the difference between the Decision Tree and the Random

Forest algorithm? Find their accuracy after implementing both on

the same dataset in the Python programming language.

Briefly explain the working of k-nearest neighbor (KNN) and K-

means clustering algorithm.

1 Tom M Mitchell et al. “Machine learning. 1997”. In: Burr Ridge,

IL: McGraw Hill 45.37 (1997), pp. 870–877.

CHAPTER 3

Classification and Regression Using Supervised Learning

Introduction

Artificial intelligence, especially Machine Learning is continuously

growing and set to be the most transformative technology existing

over the next decade. Self-driving vehicles, fraud detection systems,

tumor detection, and instant machine translation are a few of the

advancements and applications of ML that have already started

having an impact on society. Machine learning algorithms started

stepping into every aspect of our lives too. They have already

become a part of our daily routines. From voice-enabled personal

assistants like Alexa, Siri, Google Assistant, and Cortana to

optimized music, movies, and news recommendations to

suggestive searches, everything we use is directly or indirectly

affected by ML.

In the previous chapter, you got a brief overview of ML and

various learning styles like supervised, unsupervised, semi-

supervised, and reinforcement in ML algorithms. This chapter

provides details about supervised ML tasks: Classification and

Regression. It also addresses various steps to build a Classifier

and Regressor using the Python programming language. You will

also get a glimpse of the best evaluation metrics to check the

performance of both classification and regression algorithms.

Structure

In this chapter, we will discuss the following topics:

Classification

Various steps to build a classifier using Python

Performance metrics for classification

Confusion matrix

Accuracy

Precision

Recall

Specificity

F1 score

Regression

Various steps to build a regressor using Python

Performance metrics for regression

Mean Absolute Error

Mean Squared Error

R2 – the coefficient of determination

Objectives

After studying this chapter, you should be able to build a classifier

and regressor using the Python programming language. You will

also learn about various performance metrics used to evaluate

classification and regression models.

Classification

Classification, a sub-field of supervised ML, may be defined as the

process of predicting classes or categorical output responses

based on the input data that is being provided. The output

depends upon the ML model’s learning in the training phase.

Categorical means unordered and discrete values; hence, the

output responses will belong to a specific discrete category.

Let’s understand it with an example of weather prediction. We will

keep it simple and try to predict the weather among two

categories, sunny or rainy. This prediction will be based on

multiple data samples that consist of the following attributes:

Humidity

Temperature

Atmospheric pressure

Precipitation

Wind

This classification can be termed as a binary classification problem

because there are only two distinct classes, sunny and rainy. The

following figure depicts this task:

Figure 3.1: Classification for weather prediction

The preceding example represents a binary classification, but in

case if there are more than two distinct classes, it becomes a

multi-class classification task. In such classification problems, the

prediction response can be one among the probable set of

classes. For example, predicting numeric digits from scanned

handwritten images is a multi-class classification problem because

the output class label for any image can be any digit (0–9). The

following figure will depict the difference between binary and

multi-class classification.

Figure 3.2: Binary versus multi-class classification

Various steps to build a classifier using Python

In the previous section, we understood classification with an

example. Now let us build a classifier in the Python programming

language. Following are the various steps to do so:

Step 1 – Import ML library

To start building a classifier in Python, we need to have an ML

library. Here, by using the following Python command, we will

import – an open-source machine learning library:

import sklearn

Step 2 – Import dataset

We know that to train an ML model, we always need a dataset.

In this step, we will import the sklearn’s Breast Cancer Wisconsin

Diagnostic which is widely used for classification purposes and

containing 569 instances and information on 30 features. The

classification labels used in this dataset are, namely, malignant or

benign. We can use the following command to import it from

Scikit-learn:

from sklearn.datasets import load_breast_cancer

Once imported, we can load the dataset in a variable name so

that we can use it throughout our program. The following is the

command to load this dataset in a variable named

data_cancer = load_breast_cancer()

Sklearn’s Breast Cancer Wisconsin Diagnostic Dataset has an

important set of information, namely, Classification label names,

The actual labels, Feature names, and Attributes. We will give new

variables, namely, and respectively, for each of them as follows:

labelnames = data_cancer['target_names']

labels = data_cancer['target']

featurenames = data_cancer['feature_names']

features = data_cancer['data']

With the help of the following command, you can print this set of

information:

print(labelnames)

Output:

['malignant' 'benign']

The preceding output shows that the dataset has two classification

labels, namely, malignant and

print(labels)

Output:

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1

1 1 0 1 0 0

1 0 1 0 0 1 1 1 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1

0 1 1 0 1 1

1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 0

1 1 1 1 0 1

1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1

0 0 0 1 0

1 0 1 1 1 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0

0 1 1 0 0 1 1

1 0 1 1 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 0

0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 1 1

1 1 1 1 1 1

1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1

0 0 0 1 1

1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 1 0 0

0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1

1 1 1 1 1

1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1

1 1 0 1 1

0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1

1 1 1 0 1

1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0

1 0 1 0 0

1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 0 0 0 0 0 0 1]

The preceding output shows that the classification labels are

mapped to 0 and where 0 represents malignant and 1 represents

print(featurenames)

Output:

['mean radius' 'mean texture' 'mean perimeter' 'mean area'

'mean smoothness' 'mean compactness' 'mean concavity'

'mean concave points' 'mean symmetry' 'mean fractal dimension'

'radius error' 'texture error' 'perimeter error' 'area error'

'smoothness error' 'compactness error' 'concavity error'

'concave points error' 'symmetry error' 'fractal dimension error'

'worst radius' 'worst texture' 'worst perimeter' 'worst area'

'worst smoothness' 'worst compactness' 'worst concavity'

'worst concave points' 'worst symmetry' 'worst fractal dimension']

print(features)

Output:

[[1.799e+01 1.038e+01 1.228e+02 … 2.654e-01 4.601e-01 1.189e-01]

[2.057e+01 1.777e+01 1.329e+02 … 1.860e-01 2.750e-01 8.902e-02]

[1.969e+01 2.125e+01 1.300e+02 … 2.430e-01 3.613e-01 8.758e-02]

…

[1.660e+01 2.808e+01 1.083e+02 … 1.418e-01 2.218e-01 7.820e-02]

[2.060e+01 2.933e+01 1.401e+02 … 2.650e-01 4.087e-01 1.240e-01]

[7.760e+00 2.454e+01 4.792e+01 … 0.000e+00 2.871e-01 7.039e-02]]

Step 3 – Organizing data-training and testing set

The accuracy of an ML model can be measured by testing that

model on new unseen data. For that purpose, it is important to

split the dataset into two parts, namely, training and testing set.

Let us see how we can divide our dataset into 70% training set

and remaining 30% into testing set:

from sklearn.model_selection import train_test_split

train, test, train_labels, test_labels =

train_test_split(features,labels,test_size = 0.30, random_state = 0)

Step 4 – Creating ML model

In the previous step, we divided our dataset into 70% training

and 30% testing set. Now let us create our ML model with the

help of the Naïve Bayes classifier. The command is given as

follows:

from sklearn.naive_bayes import GaussianNB #import the Gaussian

Naïve Bayes model

NB_Gaussian = GaussianNB() #initialize the model

Step 5 – Train the model

To use the previously created ML model for testing purposes, we

first need to train the model. It can be done by using the

following fit() function:

NB_Classifier = NB_Gaussian.fit(train, train_labels)

Step 6 – Predicting test set result

In this step, let us evaluate our trained model on the test dataset

and predict the result. We will use the following function called

predictions = NB_Classifier.predict(test)

For example, printing the predicted values for malignant and

benign classes:

print(predictions)

Output:

[0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0 1 1 0 1 0 1

0 1 0 1 0 1

0 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 0

0 1 1 0 1 1

0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1

0 1 1 0 1

0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0

1 1 0 1 0

1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 0 0 0 1 1 1]

Step 7 – Evaluating the accuracy

Finally, we can evaluate the accuracy of our trained ML model as

follows:

from sklearn.metrics import confusion_matrix

cm_NBClassifier= confusion_matrix(test_labels, predictions)

print('Confusion Matrix:',cm_NBClassifier)

Output:

Confusion Matrix: [[57 6]

[7 101]]

from sklearn.metrics import accuracy_score

print('Accuracy:',accuracy_score(test_labels,predictions))

Output:

Accuracy: 0.9239766081871345

We can see that the accuracy of our ML model is 92.40%.

Lazy earning versus eager learning

In a nutshell, we can divide the previously stated classification

process mainly into the following two steps:

Building an ML model with a given set of training tuples.

Applying that ML model to a given set of testing tuples.

And based on these steps, in the data classification process, there

are two types of learners, namely, lazy and eager learners.

Lazy learners simply store training datasets or do only a little

processing and wait for the testing tuple to start classifying the

data. Such learners spend less time learning and more time on

data classification. Case-based reasoning and K-nearest neighbors

are lazy learner algorithms.

On the other hand, Eager learners, when given a training dataset,

start building a classification model without waiting to get the

testing tuple. Such learners spend more time learning and less

time on data classification. Artificial Neural Networks Naïve Bayes,

and Decision Trees are some eager learner algorithms.

Performance metrics for classification

What do you think, our job is finished once we finish the

implementation of our ML model? No, certainly not because we

should find out how effective this model is. There are different

evaluation metrics to check the performance of classification

algorithms. We should choose the metrics for our ML model very

sensibly as it influences how the performance of the ML model is

measured. The following are some of the important performance

metrics to evaluate predictions for classification problems:

Confusion matrix

The confusion matrix, mainly used for classification problems

having the output of two or more types of classes, is one of the

most intuitive metrics to find the accuracy of your ML model. The

following figure depicts the structure of a confusion matrix:

Figure 3.3: Structure of the confusion matrix

We can see that the confusion matrix is a table having two

dimensions, namely, Actual and Predicted. These dimensions have

the values, namely, True Positives True Negatives False Positives

and False Negatives Let’s understand the terms associated with

the confusion matrix:

True Positives Both Actual class and Predicted class = 1. For

example, the case will come under TPs if someone is Diabetic (1),

and the ML model also classifies his/her case as Diabetic (1).

True Negatives Both Actual class and Predicted class = 0. For

example, the case will come under TNs if someone is Non-

Diabetic (0), and the ML model also classifieshis/her case as

NON-Diabetic (0).

False Positives Actual class = 0 and Predicted class = 1. For

example, the case will come under FPs if someone is Non-

Diabetic (0), but the ML model classifies his/her case as Diabetic

(1).

False Negatives Actual class = 1 and Predicted class = 0. For

example, the case will come under FNs if someone is Diabetic

(1), and the ML model classifies his/her case as Non-Diabetic (0).

Scikit-learn ML library provides the confusion_matrix function with

the help of which we can compute the confusion matrix for the

created classification model.

Accuracy

Accuracy, one of the most common performance metrics for ML

classification models, is the total correct predictions made divided

by all predictions made. Following is the formula to calculate the

accuracy of our classification model:

Scikit-learn ML library provides the accuracy_score function with

the help of which we can compute the accuracy of the created

classification model.

When to use?

Accuracy can be used as an evaluation measure for balanced

classification problems, that is, where the target classes are not

skewed.

For example, the fruits image dataset is having 60% images of

apples and the remaining 40% images of oranges, which means

the target classes are balanced. In such cases, accuracy as a

metric for our classification model will be a good choice.

When NOT to use Accuracy:

On the other hand, accuracy as an evaluation measure is NOT

useful where the target class is very sparse.

For example, what will be the result of prediction if we will try to

predict whether an asteroid will hit the earth or not? The model

will predict NO every time and it will be 99% accurate. In this

way, the classification ML model will be accurate and not valuable

at all.

Precision

Precision is a measure that answers the following question:

How much predicted proportions are truly positive?

By using a confusion matrix, we can calculate the precision by

using the following formula:

We can see that precision tells us how precise our ML model is,

that is, how many actual positives are there out of those

predicted positives.

Precision can be used as an evaluation measure for systems

where the cost of FPs is very high. For example, in email spam

detection, FPs means that a non-spam email has been identified

as spam. So, for models like spam detection, the precision should

be high otherwise the user might lose important emails.

Recall

Recall is another useful measure that answers the following

question:

How many actual positives are correctly classified?

By using a confusion matrix, we can calculate recall by using the

following formula:

For example, Recall will be 0 in an asteroid prediction problem –

if an asteroid will hit the earth or not because we never predicted

a true positive. On the other hand, Recall will be 1 if we predict 1

for every example.

Recall can be used as an evaluation measure for systems in which

our motive is to capture as many positives as possible. For

instance, the ML system predicts whether a person has cancer or

not. In such systems, we would like to detect the disease

although we are not very sure.

Specificity

Specificity, the exact opposite to recall, is a measure that answers

the following question:

How many actual negatives are correctly classified?

By using a confusion matrix, we can calculate recall by using the

following formula:

F1 score

F1 score, utilizing tradeoff of precision versus recall, is the

harmonic mean of precision and recall. The score is a number

between 0 and 1(the best is 1 and the worst is 0) and can be

calculated with the help of the following formula:

F1 Score= 2 * (precision * recall) / (precision + recall)

Figure 3.4: Precision–Recall tradeoff

Our ML classifier should have both good precision and a good

recall. The F1 score is having an equal relative contribution of

precision and recall hence maintains a balance between the two.

Scikit-learn ML library provides the f1_score function with the help

of which we can compute the F1 score of our classifier. The

function can be imported from sklearn.metrics.

Regression

Regression, a sub-field of supervised ML, may be defined as the

process of predicting continuous numeric values based on the

input data that is being provided. In simple words, the regression

task is an ML task having a value estimation as to its main

objective. Unlike classification, which uses classes to learn the

specific relationship between independent variables, that is, inputs,

and corresponding dependent variables, that is, outputs, regression

ML models use input data features and their corresponding

continuous numeric output variables.

As discussed in the previous chapter, Simple Linear Regression

and Multiple Linear Regression are the two most commonly used

regression models. SLR predicts a response using a single feature

and assumes that the two variables are linearly related, whereas

MLR predicts a response using two or more than two features or

independent variables. The following figure shows SLR and MLR

models to predict house prices based on their plot area:

Figure 3.5: Simple and Multiple Linear Regression models

Various steps to build a regressor using Python

In this section, we are going to learn various steps to build a

regressor using the Python programming language. For this

purpose, we will use Scikit-learn – an open-source machine

learning library.

Step 1 – Import ML library

The process of building a regressor using Python starts by

importing the ML library. As discussed, we will use the Scikit-learn

ML library, which can be imported with the help of the following

Python command:

import sklearn

Step 2 – Import dataset

Once we import the Scikit-learn ML library, we need a dataset to

train our machine learning model. To give you an example, we

will create a linear regression model by using sklearn’s Boston

house-price We can use the following command to import this

dataset:

from sklearn.datasets import load_boston

After the dataset is imported, we need to load the dataset. With

the help of the following command, we will load this dataset in a

variable named

boston_data = datasets.load_boston(return_X_y=False)

Also after the dataset is imported, we need to define the feature

matrix X and the response vector Y as follows:

X = boston_data.data

y = boston_data.target

Step 3 – Organizing data into training and testing set

To test the ML model on new unseen data, we need to split the

dataset into two parts, training set and test set. For this purpose,

Scikit-learn provides us a function named Let’s see how we can

divide the dataset into 70% training set and the remaining 30%

test set:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=1)

Step 4 – Creating ML model

Once we divide the dataset into the training and test set, our ML

model has to be created. Here, for creating the ML model for the

cancer dataset, we will use LinearRegression() from The command

is as follows:

from sklearn import linear_model

MLR_reg = linear_model.LinearRegression() #creating regression

object

Step 5 – Train the model

To use this ML model for testing, we first need to train this

model. It can be done by using fit() function as follows:

MLR_reg.fit(X_train, y_train)

Step 6 – Plotting the regression line

We can now plot the regression line as follows:

import matplotlib.pyplot as plt

import numpy as np

from sklearn import metrics

%matplotlib inline

plt.style.use('bmh')

plt.scatter(MLR_reg.predict(X_train), MLR_reg.predict(X_train) -

y_train, color = "green", s = 20, label = 'Train_data')

plt.scatter(MLR_reg.predict(X_test), MLR_reg.predict(X_test) - y_test,

color = "blue", s = 10, label = 'Test_data')

plt.hlines(y = 0, xmin = 0, xmax = 50, color = 'red', linewidth =

1.25)

plt.legend(loc = 'upper right')

plt.title("Residual errors(eo)")

plt.show()

Output:

Figure 3.6: Multiple Linear Regression model for Boston House Price

prediction

Step 7 – Calculating the variance

Last but not the least, we can calculate the variance, that is, how

far observed values differ from the average of predicted values, for

our linear regression model with the help of the following

command:

print('Variance score: {}'.format(MLR_reg.score(X_test, y_test)))

Output:

Variance score: 0.7836295385076281

Performance metrics for regression

The following are some of the important performance metrics to

evaluate predictions for regression problems:

Mean Absolute Error (MAE)

As the name implies, it represents the absolute difference between

the target value and the predicted value. Rather than indicating

underperformance or overperformance of our regression model,

MAE gives us an idea of how wrong the model predictions were.

The following are some of the characteristics of MAE:

Robust to MAE does not penalize the errors as extremely as

Mean Squared Error That’s the reason it is not suitable for the

applications that pay more attention to the outliers.

Linear Another important characteristic of the MAE performance

metric is that it always results in a linear score. By linear score,

we mean that all the individual differences are weighted equally.

Let’s have a look at the formula to calculate MAE:

Here, y is the Actual Output Value and Ŷ is the Predicted Output

Value.

Scikit-learn ML library provides us the mean_absolute_error

function to compute MAE.

Mean Squared Error (MSE)

MSE is the average of the squared difference between the target

value and the predicted value. The only difference between MAE

and MSE is that rather than taking the absolute difference

between the target value and the predicted value in MAE, MSE

squares that difference. The advantage of MSE over MAE is that

MSE penalizes even a very small error, which leads to over-

estimation of how bad our regression model is.

Let’s have a look at the formula to calculate MSE:

Here also, Y is the Actual Output Value and Ŷ is the Predicted

Output Value.

Scikit-learn ML library provides us the mean_squared_error function

to compute MAE.

R-Squared (R2)

What if the MSE for your regression model is 29? Is your model

good enough or it needs improvement? On the other hand, what

if the MSE for your regression model is 0.2?

By looking at MSE, it is very hard to predict if the regression

model is good. Hence, we have to measure how good a

regression model is than the constant baseline.

For such measurements, we have a performance metric called R2

or the coefficient of determination. Although R2 is like MSE but is

scale free, the advantage of being scale free means, despite the

output value (very small or very large), the value of R2 will always

be between -∞ and 1.

Let’s have a look at the formula to calculate R2:

In the preceding equation, the numerator is MSE (Model) and the

denominator is MSE (Baseline), that is, the variance in values.

In a nutshell, R2 represents the ratio between how good a

regression model is and how good the naïve mean model is.

Scikit-learn ML library provides us the r2_score function to

compute R2.

Adjusted R-squared (R2)

The major flow with R-squared is that its value never decreases

no matter how many number of variables we add to the

regression model. In fact, the value of R-squared remains the

same or increases with the addition of new independent variables

to the data. Clearly, this doesn’t make sense because every

independent variable might not be useful in determining the

output.

Adjusted R2 deals with this issue because it considers the number

of independent variables used for determining the target variable.

Let’s have a look at the formula to calculate R2:

In the preceding equation:

n is the number of data points in the dataset.

m is the number of independent variables.

R is the R-squared value determined by the model.

Example:

The following is a simple Python recipe that gives us an insight

about how to use these performance metrics on our regression

model:

from sklearn.metrics import mean_absolute_error

from sklearn.metrics import mean_squared_error

from sklearn.metrics import r2_score

Xactual = [2, -1, 8, 9]

Ypredict = [1.5, -0.7, 6, 7.9]

print ('Mean Absolute Error(MAE) =',mean_absolute_error(Xactual,

Ypredict))

print ('Mean Squared Error(MSE) =',mean_squared_error(Xactual,

Ypredict))

print ('Coefficient of Determination (R Squared) =',r2_score(Xactual,

Ypredict))

Output:

Mean Absolute Error(MAE) = 0.9749999999999999

Mean Squared Error(MSE) = 1.3874999999999997

Coefficient of Determination (R Squared) = 0.9195652173913044

Conclusion

In this chapter, we learned about two main tasks, Classification

and Regression, of Supervised Machine Learning. We learned that

the classification model allows us to predict categorical output

responses for the given input data, whereas the regression model

allows us to predict continuous numerical output responses for

the given input data.

Starting with importing the dataset to evaluating the performance,

we also explored various steps for building a classifier and

regressor in the Python programming language along with an

example. In a nutshell, the basic pipeline of classification or

regression tasks works as follows:

The task, whether classification or regression, starts with some

initial configuration of the model.

Once configured, based on the input, the model predicts the

output.

The predicted output is now compared with the target value.

Based on the comparison, the measure of model performance is

taken.

Finally, to achieve the optimal value of the performance metric we

choose, we need to iteratively adjust the various parameters of the

model.

We have also covered the various performance matrices for both

classification and regression.

However, the constant standard for evaluating the performance of

a classifier is different for different tasks, accuracy, the total

correct predictions made divided by all predictions made, is a

common standard in the case of every classification task. Other

important matrices for evaluating the performance of a

classification algorithm that we covered in this chapter include

recall, precision, Specificity, F1 Score, and so on. On the other

hand, this is quite true for regression as well. Some of the

important metrics for evaluating the performance of a regression

algorithm that we covered in this chapter are Mean Absolute Error

Mean Squared Error and R-squared

In the next chapter, you will learn about clustering, which is one

of the most useful areas of unsupervised learning.

Questions

Explain classification with an example. State the differences

between binary and multi-class classification.

What are the various steps to build a classifier using the Python

programming language? Explain with an example.

What is a Confusion matrix? Explain various terms associated with

it.

What is the significance of the F1 Score as an evaluation metric

for classification algorithms?

What is Regression? State the differences between simple linear

regression and multiple linear regression?

What are the various steps to build a regressor using the Python

programming language? Explain with an example.

Explain Mean Squared Error (MSE), Mean Absolute Error (MAE),

and R-squared (R2) performance evaluation metrics for regression

algorithms.

1 https://scikit-learn.org/stable

2 https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+

(Diagnostic)

CHAPTER 4

Clustering Using Unsupervised Learning

Introduction

Machine learning works well if we have a labeled data. But what

about the cases when we do not have the labeled data? One

option is to get some labeled data and the other is to use

unsupervised machine learning. Unsupervised ML algorithms

discover the interesting patterns in data for learning without any

label data and teacher for guidance. That’s the reason they are

closely aligned with what we call true Artificial Intelligence

In the previous chapter, you got a brief overview of supervised ML

tasks: Classification and Regression. This chapter provides details

about Clustering, an unsupervised ML task. It addresses various

methods to form clusters. You will get to know about the most

commonly used Clustering algorithms and their implementation in

the Python programming language. Also, you will get a glimpse of

the best evaluation metrics for clustering.

Structure

In this chapter, we will discuss the following topics:

Clustering

Various methods to form clusters

Important ML clustering algorithms

K-means clustering Algorithm

Mean-shift clustering Algorithm

Hierarchical clustering algorithm

Performance metrics for clustering

Silhouette analysis

Davies–Bouldin index (DB index)

Dunn index

Objectives

After studying this unit, you should be able to implement various

machine learning clustering algorithms, such as k-means, mean-

shift, and hierarchical clustering, in the Python programming

language. You will also learn about the performance metrics for

clustering algorithms.

Clustering

What if you need to find the similarity and relationship patterns

among your data samples using machine learning? To do so, ML

provides us an unsupervised learning method called Clustering. As

the name implies, this method, after finding the relationship

patterns, clusters the data samples that have similar features into

groups. We can depict the working of clustering methods in the

following figure:

Figure 4.1: Clustering

It is quite clear from Figure 4.1 that the system has four distinct

clusters of images. The first cluster depicts the star images, the

second cluster depicts smiley images, the third cluster depicts

diamond images, and the fourth cluster depicts circle images. The

main objective of the clustering method is always to create

different clusters in such a way that elements that belong to the

same clusters are near each other and the elements of other

clusters are far apart.

Various methods to form clusters

The clusters, as you can see in the preceding figure, are formed

in a spherical form. But do you think it is the only way/method

to form clusters? No, there are various other methods also with

the help of which we can form clusters. Some of the important

methods are discussed as follows:

Density-based As the name implies, density-based methods use

dense region to form clusters of data samples. The advantages of

using this method are that it is having a good accuracy rate and

the ability to merge two clusters together. The following are the

two popular examples of density-based methods:

Density-Based Spatial Clustering of Applications with Noise It

separates core samples of high-density from low-density samples

and expands clusters from them. This method is most suitable for

the data having clusters of similar density.

Ordering Points to Identify Clustering Structure It is closely related

to DBSCAN, separates core samples of high-density from low-

density samples, and expands clusters from them. But unlike

DBSCAN, OPTICS keeps cluster hierarchy for a variable

neighborhood radius. This method is most suitable for large

datasets.

Hierarchical-based As the name implies, hierarchical-based methods

use tree-type structures to form clusters of data samples. In other

words, the clusters are formed based on the hierarchy. The two

categories of this method are bottom–up (agglomerative) and top–

down (divisive). The following are the two popular examples of

hierarchical-based methods:

Clustering using Representatives CURE, for efficiently handling the

clusters and eliminating outliers, adopts a middle ground in

between the centroid based and the all-point extremes. It is an

efficient data clustering algorithm for large datasets and also

identifies clusters having non-spherical shapes.

Balanced Iterative Reducing Clustering using Hierarchies BIRCH

first generates a compact summary of large datasets retaining as

much information as possible and then clusters this smaller

summary rather than clustering the large dataset itself. Its major

drawback is that it can only process metric attributes that is,

attributes in which no categorical attributes are present.

As the name implies, partitioning methods use partitioning of an

object into n number of clusters where the number of clusters

formed will be equal to the number of partitions. The following

are the two popular examples of hierarchical-based methods:

Clustering Large Applications based upon Randomized Search

introduced by Raymond T.Ng and Jiawei Han of IEEE computer

society, is a partitioning method of clustering particularly designed

to cluster spatial data.

k-means K-means clustering, one of the simplest unsupervised

machine learning algorithms, groups similar data points together

and discovers underlying patterns. ‘k’ in K-means refers to the

fixed number of clusters in a dataset. While computing the

centroids, the k-means algorithm assigns data points in such a

manner that the sum of the squared distance between the data

points and centroid would be minimum.

As the name implies, grid methods use grid-like structures to

form clusters. Once formed, various clustering operations

performed on these grids will be independent of the number of

data objects. The following are the two popular examples of

hierarchical-based methods:

Statistical Information Grid proposed by Wang, Yang, and Muntz

at VLDB 97, is a clustering method in which the spatial area is

divided into rectangular cells. For each rectangular cell, the higher-

level cell is divided into various smaller cells in the next lower

level. The statistical information of every cell is calculated and

stored beforehand to calculate its parameters. To answer spatial

data queries, it uses a top–down approach. This process will be

repeated until the bottom layer is reached.

Clustering in Quest proposed by Agrawal, Gehrke, Gunopulos,

Raghavan, is based on automatically identifying the subspace of

high-dimensional data space that allows better clustering when

compared with the original space.

Important ML clustering algorithms

In this section, we will be discussing some important ML

Clustering algorithms and their implementation in Python.

K-means clustering algorithm

K-means clustering, one of the simplest unsupervised machine

learning algorithms, groups similar data points together and

discovers underlying patterns. ‘k’ in K-means refers to the fixed

number of clusters in a dataset. While computing the centroids,

the k-means algorithm assigns data points in such a manner that

the sum of the squared distance between the data points and

centroid would be minimum.

The way the k-means clustering algorithm works is explained in

the following steps:

Specify the number of clusters, that is, ‘k’.

It shuffles the dataset to initialize centroids and then randomly

selects ‘k’ data points for the centroids.

Next, it keeps iterating the following until it finds the optimal

centroid that is, there is no change to the centroids:

First, it calculates the sum of squared distance between data

points and centroids.

Second, it assigns each data point to the nearest cluster.

Finally, it takes the average of all data points of clusters to

compute the centroids for those clusters.

Implementing k-means clustering in Python

Example1:

In this example, we will implement k-means clustering on the 2-

dimensional dataset sample, which we generated on 200 sample

values, having 3 clusters.

#Importing necessary packages

%matplotlib inline

import matplotlib.pyplot as plt

import seaborn as sns; sns.set()

import numpy as np

from sklearn.cluster import KMeans

#Generating 2-dimensional dataset having 3 blobs

from sklearn.datasets.samples_generator import make_blobs

X, y_true = make_blobs(n_samples=200, centers=3, cluster_std=0.8)

#Let’s visualize our dataset

plt.scatter(X[:, 0], X[:, 1], s=10);

plt.show()

Figure 4.2: 2-D data having 3-blobs

#Creating an object of k-means and providing number of clusters

kmeans = KMeans(n_clusters=3)

#Train the model by using fit method of k-means() class

kmeans.fit(X)

do the predictions

y_kmeans = kmeans.predict(X)

Plotting and visualizing cluster’s centers picked by k-means

estimators

plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=10, cmap='rainbow')

centers = kmeans.cluster_centers_

plt.scatter(centers[:, 0], centers[:, 1], c='black');

plt.show()

Figure 4.3: Cluster centers picked by k-means estimators

Example 2:

In this example, we will apply k-means clustering on the scikit-

learn’s digit dataset. Let’s see how k-means will identify the digits

without the original label information.

#Importing necessary packages

%matplotlib inline

import matplotlib.pyplot as plt

import seaborn as sns; sns.set()

import numpy as np

from sklearn.cluster import KMeans

from sklearn.datasets import load_digits

#Loading sklearn digit dataset. We will also make its object.

digits = load_digits()

digits.data.shape

Output:

(1797, 64)

We can see from the preceding output that digit dataset is having

1797 samples and 64 features.

#Creating an object of k-means.

kmeans = KMeans(n_clusters=10, random_state=0)

#Train the model by using fit method of k-means() class

clusters = kmeans.fit_predict(digits.data)

kmeans.cluster_centers_.shape

Output:

(10, 64)

We can see from the preceding output that 10 clusters with 64

features are created by k-means.

#Picking up cluster centers learned by K-means clustering

algorithm.

fig, ax = plt.subplots(2, 5, figsize=(8, 3))

centers = kmeans.cluster_centers_.reshape(10, 8, 8)

for axi, center in zip(ax.flat, centers):

axi.set(xticks=[], yticks=[])

axi.imshow(center, interpolation='nearest', cmap=plt.cm.binary)

Figure 4.4: Cluster centers picked by k-means estimators

#Matching the learned cluster lables with true lables found in

them.

from scipy.stats import mode

labels = np.zeros_like(clusters)

for i in range(10):

mask = (clusters == i)

labels[mask] = mode(digits.target[mask])[0]

#Checking the accuracy.

from sklearn.metrics import accuracy_score

accuracy_score(digits.target, labels)

Output:

0.7952142459654981

`

Elbow method for k evaluation in K-means Clustering

algorithm

What is the fundamental step for any unsupervised algorithm? It

is to evaluate the optimal number of clusters into which the data

points may be clustered. One of the most popular methods to

evaluate the optimal value of k is the elbow method. It first runs

the k-means clustering on the dataset for a range of values for k.

Then it computes an average score for each value of k in that

range. By default, it computes:

Distortion score is the average of the squared distances from the

cluster centers of the respective clusters.

It may be defined as the sum of squared distances from each

point to its assigned center.

While implementing the preceding k-means clustering, we choose

k = It is because from the visualization of data, we can see that

the optimal number of clusters should be around 3. But we may

be wrong because visualization of data alone cannot provide the

right answer always. So, let’s evaluate the optimal value of k for

our dataset by using the elbow method:

#Importing necessary packages

import matplotlib.pyplot as plt

import seaborn as sns; sns.set()

from sklearn import metrics

from scipy.spatial.distance import cdist

import numpy as np

from sklearn.cluster import KMeans

#Generating 2-dimensional dataset having 3 blobs

from sklearn.datasets.samples_generator import make_blobs

X, y_true = make_blobs(n_samples=200, centers=3, cluster_std=0.8)

#Let’s visualize our dataset

plt.scatter(X[:, 0], X[:, 1], s=10);

plt.show()

Figure 4.5: Data having 3-blobs

distortions = []

inertias = []

mapping_1 = {}

mapping_2 = {}

K = range(1, 9)

for k in K:

Building and fitting the model

kmeans_model = KMeans(n_clusters=k).fit(X)

kmeans_model.fit(X)

distortions.append(sum(np.min(cdist(X,

kmeans_model.cluster_centers_,'euclidean'), axis=1)) / X.shape[0])

inertias.append(kmeans_model.inertia_)

mapping_1[k] = sum(np.min(cdist(X,

kmeans_model.cluster_centers_,'euclidean'), axis=1)) / X.shape[0]

mapping_2[k] = kmeans_model.inertia_

Visualizing the result using different values of distortion

plt.plot(K, distortions, 'bx-')

plt.xlabel('Values of K')

plt.ylabel('Distortion')

plt.title('The Elbow Method using Distortion')

plt.show()

Figure 4.6: The Elbow method using different values of distortion

Visualizing the result using different values of inertia

plt.plot(K, inertias, 'bx-')

plt.xlabel('Values of K')

plt.ylabel('Inertia')

plt.title('The Elbow Method using Inertia')

plt.show()

Figure 4.7: The Elbow method using different values of inertia

We can find the optimal value of k at the elbow, that is, the

point after which the distortion and inertia start decreasing linearly

(check the preceding outputs). That’s the reason, for our dataset,

we can conclude that the optimal number of clusters is 3.

Advantages of K-means Clustering algorithm

Some of the advantages of K-means clustering are given as

follows:

Easy to understand and implement.

In the case of having a large number of variables, the K-means

clustering algorithm is much faster than the Hierarchical clustering

algorithm.

In comparison with the Hierarchical clustering algorithm, we get

tighter clusters with the K-means clustering algorithm.

Disadvantages of K-means Clustering algorithm

Some of the disadvantages of K-means clustering are given as

follows:

Difficult to predict the value of k.

Initial input (like the number of clusters) and order of data can

impact the final output.

Sensitive to rescaling, that is, the output will be impacted strongly

if we rescale our data by any means like normalization or

standardization.

Mean-shift clustering algorithm

The mean-shift algorithm, used in unsupervised learning, is one of

the most dominant ML clustering algorithms. It is also called a

non-parametric algorithm because it does not make any kind of

assumptions. As the name implies, this algorithm iteratively

assigns the data points to the clusters by shifting points toward

the cluster centroid (contains the highest density of data points).

One of the advantages of the mean-shift algorithm over other ML

clustering algorithms, like k-means, is that it does not require the

user to specify the number of clusters in advance.

Let us understand the working of the mean-shift clustering

algorithm with the help of the following steps:

The first step is the centroid initialization in which all the data

points are initialized to cluster centroids. In this way, we can start

with as many clusters as data points. The aim of the mean-shift

algorithm is to achieve the optimal number of clusters.

In this step, the algorithm will update the location of the new

centroid.

Once updated, the algorithm will now iteratively repeat this

process. It will then move to the highest density of data points,

that is, cluster centroid.

Finally, it will stop once the centroids reach a position from where

they cannot move further.

Implementing mean-shift clustering algorithm in Python:

Let’s see how we can implement mean-shift clustering in the

Python programming language. For this, we are going to generate

a sample dataset from

#Importing necessary packages

import numpy as np

import pandas as pd

from sklearn.cluster import MeanShift

from sklearn.datasets.samples_generator import make_blobs

from matplotlib import pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

#Generating sample dataset

from sklearn.datasets.samples_generator import make_blobs

centers = [[2,2,2],[5,5,5],[3,10,10]]

X, _ = make_blobs(n_samples = 300, centers = centers,

cluster_std = 0.5)

plt.scatter(X[:,0],X[:,1])

plt.show()

Figure 4.8: Sample dataset

The preceding output is having sample dataset with 300 samples

and 3 clusters.

Train the model using meanshift algorithm

ms = MeanShift(bandwidth = 2)

ms.fit(X)

Storing the cordinates for the cluster centers

cluster_centers = ms.cluster_centers_

Plotting the data points and centroids. We will be using Axes3D

to plot 3D graph.

fig = plt.figure()

ms_ax = fig.add_subplot(111, projection='3d')

ms_ax.scatter(X[:,0], X[:,1], X[:,2], marker='x')

ms_ax.scatter(cluster_centers[:,0], cluster_centers[:,1],

cluster_centers[:,2], marker='x', color='red', s=500, linewidth=10,

zorder=10)

plt.show()

Figure 4.9: 3D graph of centroids

Advantages of mean-shift clustering algorithm

Some of the advantages of mean-shift clustering are given as

follows:

We do not make any model assumptions as we do while

implementing K-means or Gaussian mixture.

Mean-shift clustering can model the complex clusters having a

non-convex shape.

It can automatically determine the number of clusters with the

help of only one parameter named bandwidth.

Mean-shift clustering does not have the problem of local minima.

Disadvantages of mean-shift clustering algorithm

Some of the disadvantages of mean-shift clustering are given as

follows:

It is not useful in the case of high dimensions, that is, when the

number of clusters changes abruptly.

In some specific applications, we need a specific number of

clusters.

The mean-shift algorithm does not differentiate between

meaningful and meaningless modes.

Hierarchical clustering algorithm

Hierarchical clustering algorithm amalgamates the unlabeled data

points having the same characteristics. The two categories of this

clustering algorithm are given as follows:

Agglomerative hierarchical As the name implies, this category of

hierarchical clustering algorithm first treats the data points as a

single cluster and then agglomerate, that is, merge the pairs of

clusters by using the bottom–up approach.

Divisive hierarchical As the name implies, this category of

hierarchical clustering algorithm divides one big cluster into small

clusters by using the top–down approach.

Agglomerative hierarchical clustering is one of the most commonly

used clustering algorithms. Let us understand its working with the

help of the following steps:

Agglomerative hierarchical clustering always starts with having

some number of clusters because it treats every data point as a

single cluster. For this purpose, let us say we have an M number

of clusters.

The nature of agglomerative clustering is to join two closet data

points to form a big cluster. Hence, it will first give us M-1

clusters and similarly, to form bigger clusters, it will join two

closest clusters resulting in a total of M-2 clusters.

Repeat the preceding two steps to form a big cluster. The step

should be repeated until there remain no more data points left to

combine. In other words, until M becomes 0.

At last use dendrograms to divide that one big cluster into

multiple clusters.

Understanding the role of dendrograms in agglomerative

hierarchical clustering

As discussed, the role of the dendrogram is to split one big

cluster into multiple clusters of correlated data points. In this way,

the role of the dendrogram started once we created the big

cluster. Let’s understand the role of dendrogram with the help of

the following Python program:

#Importing necessary packages

%matplotlib inline

import matplotlib.pyplot as plt

import numpy as np

#Plotting the data points for our example

X = np.array([[10,11],[13,21],[18,20],[24,18],[33,38],[86,76],[74,86], [63,85],

[78,65],[88,97],])

labels = range(1, 11)

plt.figure(figsize=(10, 7))

plt.subplots_adjust(bottom=0.1)

plt.scatter(X[:,0],X[:,1], label='True Position')

for label, x, y in zip(labels, X[:, 0], X[:, 1]):

plt.annotate(label,xy=(x, y), xytext=(-3, 3),textcoords='offset points',

ha='right', va='bottom')

plt.show()

Figure 4.10: Data points

From the preceding figure, it is clear that we have only two

clusters for our example but as we know in real life there can be

thousands of clusters.

Plotting the dendograms of our datapoints

from scipy.cluster.hierarchy import dendrogram, linkage

from matplotlib import pyplot as plt

linked = linkage(X, 'single')

labelList = range(1, 11)

plt.figure(figsize=(10, 7))

dendrogram(linked, orientation='top',labels=labelList,

distance_sort='descending',show_leaf_counts=True)

plt.show()

Figure 4.11: Dendrograms created from our data points

Predicting the clusters by using AgglomerativeClustering from

sklearn.cluster

from sklearn.cluster import AgglomerativeClustering

cluster = AgglomerativeClustering(n_clusters=2, affinity='euclidean',

linkage='ward')

cluster.fit_predict(X)

Plotting the clusters

plt.scatter(X[:,0],X[:,1], c=cluster.labels_, cmap='rainbow')

Figure 4.12: Two clusters plotted from our data points

Implementing hierarchical clustering algorithm in Python

Let’s see how we can implement hierarchical clustering in the

Python programming language. For this, we are going to use

Pima-Indians Diabetes dataset..

#Importing necessary packages

import matplotlib.pyplot as plt

import pandas as pd

%matplotlib inline

import numpy as np

from pandas import read_csv

#Getting the data points from the Pima Indians Diabetes dataset

DATASET

path = r"C:\diabetes.csv"

headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi',

'age', 'class']

data = read_csv(path, names=headernames)

array = data.values

X = array[:,0:8]

Y = array[:,8]

data.shape

Output:

(768, 9)

Plotting the dendograms of our datapoints

diabetes_patient_data = data.iloc[:, 3:5].values

import scipy.cluster.hierarchy as shc

plt.figure(figsize=(10, 7))

plt.title("Patient Dendogram")

dend_patient = shc.dendrogram(shc.linkage(data, method='ward'))

Figure 4.13: Dendrograms created from Pima-Indian-Database

Predicting the clusters by using AgglomerativeClustering from

sklearn.cluster

from sklearn.cluster import AgglomerativeClustering

cluster = AgglomerativeClustering(n_clusters=4, affinity='euclidean',

linkage='ward')

cluster.fit_predict(diabetes_patient_data)

Plotting the clusters

plt.figure(figsize=(10, 7))

plt.scatter(diabetes_patient_data [:,0], diabetes_patient_data [:,1],

c=cluster.labels_, cmap='rainbow')

Figure 4.14: Clusters created from Pima-IndiansDiabetes Database

Advantages of hierarchical clustering algorithm

Some of the advantages of hierarchical clustering are given as

follows:

It is easy to understand and implement.

No need to pre-specify the number of clusters. We can easily

obtain the number of clusters by cutting the dendrogram at a

proper level.

Disadvantages of hierarchical clustering algorithm

Some of the disadvantages of hierarchical clustering are given as

follows:

It does not work well on a large amount of data, missing data,

and with mixed data types.

In comparison with other efficient algorithms, such as k-means,

the computation time for clustering is long.

Performance metrics for clustering

Which of these learning algorithms, supervised or unsupervised,

do you think is easier for the quality assessment? In the case of

supervised learning algorithms, we already have the output labels

for each example; hence, it is quite easier to measure the

performance of supervised learning algorithms. Conversely, in the

case of unsupervised learning, we have the unlabeled data; hence,

it is not that easy to measure their performance. However, there

are some performance metrics that can give us an insight into

the change in clusters. But these performance metrics, instead of

measuring the validity of the ML model’s prediction, will only

evaluate the comparative performance between two ML models.

The following are some of the performance metrics with the help

of which we can measure the quality of clustering algorithms:

Silhouette analysis

This metric measures the distance between clusters to check the

quality of the clustering model. It uses the Silhouette score to

assess the parameters such as the number of clusters. Silhouette

score, ranges between [-1, 1], measures the closeness of each

point in one cluster to the points in other nearby clusters. Let’s

perform the analysis of the Silhouette score:

+1 Silhouette This score indicates that the sample we are using is

very far away from its nearby cluster.

0 Silhouette This score indicates that the sample used is on the

decision boundary that separates two nearby clusters.

-1 Silhouette This score indicates that the sample used is assigned

to the wrong cluster.

The following is the formula for calculating the Silhouette score:

silhouette score = (p - q)/max (p,q)

Here, p is the mean distance to the points in the nearest cluster,

and q is the mean intra-cluster distance to all the points.

Davies–Bouldin index

Davies–Bouldin index, another good metric for clustering analysis,

helps us get the answer to the following two questions:

Is there enough space between the two clusters?

What is the density of clusters?

The following is the formula for calculating the DB index:

Here, n is the number of clusters, and σi is the average distance
of all points in cluster i from the cluster centroid

The lower the Davies–Bouldin index value, the better the cluster

density.

Dunn index

Dunn index works the same as Davies–Bouldin index but they

both differ in the following points:

Dunn index considers only those clusters in a clustering model

that are close with each other, whereas Davies–Bouldin index

considers the separation of each one of the clusters.

Dunn index boosts when the performance of the clustering model

boosts, whereas Davies–Bouldin index boosts in the case of dense

clusters.

The following is the formula for calculating the DB index:

Here, i, j, k are the indices for clusters, p is the inter-cluster

distance, and q is the intra-cluster distance.

Conclusion

In this chapter, we learned about Clustering, which is one of the

most useful areas of unsupervised machine learning. We learned

that the clustering model allows us to find the similarity and

relationship patterns among data samples and after detecting the

relationship patterns, based on similar features, it clusters the data

samples into groups.

Despite forming the clusters in spherical form, there are four

other methods, namely, Density-based method, Hierarchical-based

method, Partitioning method, and Grid method to form the

clusters. All these methods have been covered in this chapter.

We also covered the three commonly used clustering algorithms,

namely, k-means, mean-shift, and hierarchical clustering along with

their advantages and disadvantages. You also learned their

implementation in the Python programming language.

In a nutshell, the basic pipeline of clustering task works as

follows:

The task of clustering starts with the data points, assigned to a

cluster of their own.

Once the data points are accessed, the model will compute all

the centroids.

The process will be repeated iteratively, and the model will move

to the highest density of data points that is, cluster centroids.

The output of clustering tasks are the isolated groups of similar

data points, and these are dissimilar from the data points of

other groups.

The various performance matrices, namely Silhouette Analysis,

Davies–Bouldin index, and Dunn index, for clustering have also

been covered.

However, like supervised learning, in the case of unsupervised

learning, we don’t have that luxury because we are dealing with

unlabeled data. That’s the reason it is not easy to measure the

performance of clustering tasks and the idea of testing seems a

flawed premise. But even when labeled data is unavailable, there

are numerous metrics that examine the quality of clustering

results. Rather than measuring the validity of the ML model’s

prediction, these metrices can give us insight into how the

clusters might change. The metrics we covered will also evaluate

the comparative performance between the two ML models.

In the next chapter, you will learn about logic programming and

how we can solve problems by using it.

Questions

What is clustering? Explain various methods to form clusters.

What are the various steps of the k-means clustering algorithm?

Write a code to implement it in the Python programming

language.

What are the various steps of the mean-shift clustering algorithm?

Write a code to implement it in the Python programming

language.

What is a hierarchical clustering algorithm? Explain.

What is the role of dendrograms in the agglomerative hierarchical

clustering algorithm?

Explain various performance evaluation metrics for clustering

algorithms.

1 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, VOL. 14, NO. 5, Page 1003-1016,

SEPTEMBER/OCTOBER 2002

2 STING : A Statistical Information Grid Approach to Spatial Data

Mining, VLDB 97 Conference

3 Automatic Subspace Clustering of High Dimensional Data for

Data Mining Applications, 94-105 ACM SIGMOD Conference 1998:

Seattle, Washington

CHAPTER 5

Solving Problems with Logic Programming

Introduction

If you have done coding before, there are chances that you are

comfortable with some of the imperative programming languages

like C++, Java, or Python. We know, in such a programming

paradigm, every program is an organized list of instructions that

modifies its state when executed. Isn’t it the simplest and the

most common way of computer programming? But it is not the

focus of this chapter.

Instead, in this chapter, we are going to learn about a different

computer programing paradigm in which the program uses facts

and rules to express the problem. This kind of programming

paradigm is called logic programming. You will also get to know

about the building blocks of logic programming. Furthermore, with

the help of some examples, we will also implement logic

programing in the Python language.

Structure

In this chapter, we will discuss the following topics:

Logic programming

Building blocks of logic programming

Python packages for logic programming

Implementation examples

Objectives

After studying this chapter, you should be able to implement logic

programming in the Python programming language. With the help

of two useful implementation examples, namely, Checking and

generating prime numbers and solving Zebra puzzle, you will learn

to solve problems in the logic programming domain. You will also

be able to install two useful python packages, named Kanren and

SymPy.

Logic programming

We all are familiar with the term logic or more precisely formal

logic in one or another sense. In layman language, logic may be

defined as the study of what comes after what. On the other

hand, in technical terms, logic may be defined as the study of

principles of correct reasoning. For example, if A = B and B = C

then we can easily infer that A = C.

Let’s now talk about logic programming. Logic programming, a

combination of two individual words logic and programming, is a

programming paradigm in which a program is a database of

relations, that is, knowledge made of facts and rules. In simple

words, in logic programming, a program is a set of organized

instructions expressing facts and rules about a particular problem

domain. A graphical representation of logic programming is given

as follows:

Figure 5.1: Logic Programming

Building blocks of logic programming

In order to solve problems, logic programming uses facts and

rules. These facts and rules, hence, are called the building blocks

of logic programming. Let’s know more about facts and rules in

detail:

The simplest definition of facts is that these are true statements.

For example, the national game of India is Hockey. In the case of

logic programming, the facts are the true statements about the

program and the data itself.

To achieve the given goal, along with facts, logic programming

also needs constraints that can lead us to conclusions about the

problem domain. Rules, written as logical clauses to express facts,

are such constraints in logic programs.

Syntax of The following statement is the syntax of rules:

X->Y1,Y2 …,Ym

We can read the preceding statement as:

X if Y1 and Y2 and …and Ym

Here, X is the head of the preceding rule and Y1, Y2, …, Ym is

the body of that rule.

A rule that does not have any body is called fact. For example, X

from the preceding stated rule.

In a nutshell, facts and rules are the backbones of logic programs

with the help of which it achieves the given goal and leads to a

conclusion.

Useful Python packages for logic programming

The following are the two useful Python packages with the help of

which we can start logic programming:

Kanren is one of the important Python packages used for logic

programming. We can easily express logic as facts and rules. It

helps the programmer to simplify its code for business logic as

well. The following is the Python command to install it:

pip install kanren

SymPy, a library for symbolic mathematics, is another useful

python package for logic programming. It’s almost a full-featured

CAS Algebra The following is the python command to install it:

pip install sympy

Implementation examples

In this section, we will implement two logic programming

examples in the Python programming language.

Checking and generating prime numbers

Logic programming can help us find prime numbers from a list

of numbers as well as generate them. The following steps show

how to check and generate prime numbers:

First, by using Kanren Python library, import the required

packages:

from kanren import isvar, run, membero

from kanren.core import success

from kanren.core import fail

from kanren.core import goaleval

from kanren.core import condeseq

from kanren.core import eq

from kanren.core import var

from sympy.ntheory.generate import prime, isprime

import itertools as it

Next, let us define a function for checking prime numbers from

the given list of numbers:

def prime_check(M):

if isvar(M):

return condeseq([(eq,M,p)] for p in map(prime, it.count(1)))

else:

return success if isprime(M) else fail

Now, declare a variable and use this to find the prime numbers

from the list of numbers:

M = var()

print((set(run(0,M,(membero,M,(1,3,4,5,6,7,9,10,11,12,14,15,20,21,22,

23,29,30,41,44,52,55,59,61,89)),(prime_check,M)))))

Output:

{3, 5, 7, 41, 11, 61, 23, 89, 59, 29}

We can also generate prime numbers. Let’s generate the first 15

prime numbers:

print((run(15,M,prime_check(M))))

(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47)

Solving the puzzles

Many puzzles like Sudoku, N-queen, 8-puzzles, Zebra puzzle can

be solved by using logic programming. Here, we will solve a

variant of Zebra Puzzle, which was published by Life International

magazine in 1962. In this puzzle, they provided a series of clues

about 5 houses containing people of different nationalities and

animals along with other things too. The readers need to figure

out which house had the animal Zebra in it.

First, let us check the variant of the puzzle to be solved:

There are five houses.

The English man lives in the red house.

The Swede has a dog.

The Dane drinks tea.

The green house is immediately to the left of the white house.

They drink coffee in the green house.

The man who smokes Pall Mall has birds.

In the yellow house they smoke Dunhill.

In the middle house they drink milk.

The Norwegian lives in the first house.

The man who smokes Blend lives in the house next to the house

with cats.

In a house next to the house where they have a horse, they

smoke Dunhill.

The man who smokes Blue Master drinks beer.

The Japanese smokes Prince.

The Norwegian lives next to the blue house.

They drink water in a house next to the house where they smoke

Blend.

Programmatically, we can solve such a problem in a number of

ways. If we can make a table to solve it, we can brute force it.

Isn’t it? But then it’s going to be a big table. For this, we can

dump that table into a database and query it with Structured

Query Language (SQL). But, it’s not that easy due to the

following kind of statements:

The man who smokes Blend lives in the house next to the house

with cats.

Such kind of statements declare a relationship between some X

and some other Here, X represents the house. X can be anything

but the most important thing in these kinds of statements is the

word ‘some’. Because it is the logic variable that acts as a

placeholder for a value without even specifying a single actual

value. That’s the reason, the solver can try out different possible

solutions before landing on a final one.

On the other hand, we have a logical solution with the help of

logic programming. For this, the solver should think of each clue

as a rule. Consider all the rules and tell what values will satisfy

all of them. The following are the two examples given:

(eq, (var(), var(), var(), var(), var()), houses)

The preceding example sets up houses as a list of logic variables,

that is, houses equals a list of five logic variables. In other words,

it indicates that each of the houses will itself contain a list of

logic variables. Such an example does not represent an

assignment but it actually declares equality.

(membero,('Englishman', var(), var(), var(), 'red'), houses)

The preceding example shows that one of them has two

properties, namely, Englishman and The other three out of five

should be filled by the puzzle solver and are left blank as logic

variables.

In this way, we need to input all the constraints/rules. Once the

input is complete, you can run the solver to find out what houses

meet the requirements in rules for Zebra.

The solution of this puzzle using the Python logic programming

are given as follows:

First, by using kanren Python library, import the required packages:

from kanren import *

from kanren.core import lall

import time

Next, let us define a function, namely, left_to_house() to check

whose house is left to whose house and another function, namely,

next_to_house() to check whose house is next to whose house:

def left_to_house(q, p, list):

return membero((q,p), zip(list, list[1:]))

def next_to_house(q, p, list):

return conde([left_to_house (q, p, list)], [left_to_house (p, q, list)])

Now, declare the variable named houses and define the

rules/constraints as follows:

houses = var()

rules_for_zebrahouse = lall(

(eq, (var(), var(), var(), var(), var()), houses),

(membero,('Englishman', var(), var(), var(), 'red'), houses),

(membero,('Swede', var(), var(), 'dog', var()), houses),

(membero,('Dane', var(), 'tea', var(), var()), houses),

(left_to_house,(var(), var(), var(), var(), 'green'), (var(), var(), var(),

var(), 'white'), houses),

(membero,(var(), var(), 'coffee', var(), 'green'), houses),

(membero,(var(), 'Pall Mall', var(), 'birds', var()), houses),

(membero,(var(), 'Dunhill', var(), var(), 'yellow'), houses),

(eq,(var(), var(), (var(), var(), 'milk', var(), var()), var(), var()),

houses),

(eq,(('Norwegian', var(), var(), var(), var()), var(), var(), var(),

var()), houses),

(next_to_house,(var(), 'Blend', var(), var(), var()), (var(), var(),

var(), 'cats', var()), houses),

(next_to_house,(var(), 'Dunhill', var(), var(), var()), (var(), var(),

var(), 'horse', var()), houses),

(membero,(var(), 'Blue Master', 'beer', var(), var()), houses),

(membero,('German', 'Prince', var(), var(), var()), houses),

(next_to_house,('Norwegian', var(), var(), var(), var()), (var(), var(),

var(), var(), 'blue'), houses),

(next_to_house,(var(), 'Blend', var(), var(), var()), (var(), var(),

'water', var(), var()), houses),

(membero,(var(), var(), var(), 'zebra', var()), houses)

)

Finally, we need to run the solver with the following constraints:

solutions = run(0, houses, rules_for_zebrahouse)

The following line of code will get the output from the solver:

Zebra_house = [house for house in solutions[0] if 'zebra' in house]

[0][0]

print ('\n'+ Zebra_house + ' had zebra.')

Output:

German had zebra.

Conclusion

In this chapter, we learned about the basic concepts of logic

programming and implemented some of its examples in the

Python programming language. We got to know that logic

programming is a kind of programming paradigm that is based

on “Logic” or more precisely “Formal Logic”. We also learned

about the building blocks of logic programming, which are facts

and rules. Facts, we understood, are the true statements about

the program and data, whereas rules are the constraints, which

lead the solver to some conclusions. If we talk about the

mathematical structure of these building blocks, rules have both

head and the body, whereas facts only have the head and do not

contain the body.

For implementing logic programming in the Python programming

language, we discussed two useful packages, named Kanren and

SymPy. You also learned the commands to install these packages

in your computer system. You can use logic programming to solve

a variety of problems such as N-queen, 8-puzzles, and Sudoku,

and so on. With the help of two useful implementation examples,

namely, Checking and Generating Prime Numbers and Solving Zebra

we learned how to solve problems in this domain.

From our Zebra puzzle, we understood why logic programming is

important to solve such puzzles. Some of the reasons are:

To create tables to solve such puzzles is time consuming.

It is difficult to solve and understand the statements that declare

a relationship between two X variables.

Logic variable acts as a placeholder for a value without even

specifying a single value.

AI is the capacity of an artificial machine to act smartly, and

Logic on the other side is important for AI as the intelligent

agents need to know the facts about the environment in which

they operate. The facts contain both declarative and procedural

knowledge. For example, procedural knowledge – don’t put the

finger in the fire; declarative knowledge – putting your finger in

the fire will burn it and you don’t want to get hurt.

In the next chapter, you will learn about the basic concepts of

Natural Language Processing logic programming along with its

implementation in the Python programming language.

Questions

What do you mean by Formal Logic? Also, explain logic

programming.

What are facts and rules? How are they useful in solving

problems using logic programming?

What are the uses of Kanren and SymPy Python packages? How

can you install them?

Write a program in Python programming language to generate the

first 10 prime numbers by using the logic programming paradigm.

What is a Zebra puzzle? Write a Python program to solve this

puzzle using the logic programming paradigm.

CHAPTER 6

Natural Language Processing with Python

Introduction

What is our method of communication with others? It is our

language, isn’t it? It is the language in which we can speak, read,

and write. In other words, we do things like making plans,

making decisions, thinking, and so on, all in our natural language.

But here one of the most important questions is that in this era

of Artificial Intelligence can we similarly communicate with

machines as we do with other human beings, that is, in our

natural language?

In this chapter, we are going to learn about one of the hottest

topics in the field of data science that concerns enabling

machines to process and understand human language. You will

also get to know about the working and phases of NLP. We will

also cover important concepts like tokenization, stemming,

lemmatization, chunking, Bag-of-Words (BoW) model, stop words,

vectorization, and transformers. Furthermore, from an

implementation perspective, we will be learning how to install and

work with Natural Language Toolkit Python package.

Structure

This chapter is structured as follows:

Natural Language Processing (NLP)

Installing Python’s NLTK package

Understanding tokenization, stemming, and lemmatization

Understanding chunking

Understanding Bag-of-Words (BoW) model

Understanding stop words

Understanding vectorization and transformers

Implementation examples

Objective

After studying this chapter, you should be able to install and use

Python’s NLTK package. You will learn some important NLP

concepts such as tokenization, stemming, lemmatization, chunking,

Bag-of-Words model, stop words, vectorization, and transformers.

You will also be able to implement those NLP concepts using the

Python programming language.

Natural Language Processing (NLP)

Natural Language Processing is a field of computer science, more

precisely a field of AI that concerns enabling machines to

comprehend and process the language in which we (humans)

communicate. In technical terms, the main task of NLP is to

program machines for understanding, analyzing, and processing

the huge amount of natural language data.

Working of NLP

To understand the working of NLP, we first need to understand

how we use our natural language. In our day-to-day life, we

usually say a hundred or thousands of words. Similarly, other

human beings infer those words and answer accordingly. Isn’t it

simple communication for us? It is simple for us because we

humans can derive a context from what is said and how it is

said. In the same way, rather than focusing on voice modulation,

natural language processing does draw on contextual patterns.

Look at the following examples:

Man is to women as king is to what?

You can easily interpret the preceding question and answer it. The

question shows that man relates to the king, hence women can

relate to the

queen

We got the answer from our experience, but can the machine

behave in the same way. Check the following steps to understand

how the machines learn in the same way as we learn:

The first basic step is to feed enough data to machines so that

they can use it and learn from experience.

Once the machine will get enough data, it will create word vectors

using that data. It uses a deep learning algorithm for this task.

To provide answers like humans, the machine will perform simple

algebraic operations on the word vectors that are created earlier

from data.

Phases/logical steps in NLP

The following figure represents the phases/logical steps in NLP:

Figure 6.1: NLP phases

Morphological It is the first phase of natural language processing.

It explores the structure of words by breaking down the chunks of

input language sentences into sets of tokens. For example,

unfriendly = un-friend-ly. Morphological analysis is important for

information retrieval, language modeling, and machine translation.

Syntactic It is one of the most important phases/components of

NLP. The following are the two main purposes of this phase:

Checking whether a sentence is well-formed or not.

Breaking up the sentence into a structure that gives us the

syntactic relationship between various words.

Semantic Drawing the exact dictionary meaning from the input text

is an important phase of NLP. This phase is called semantic

analysis. In this phase, the input text is checked for its

meaningfulness. The output of this phase would be the object

references. For example, the sentence hot ice cream does not

have any meaning, hence it would be rejected by a semantic

analyzer.

Pragmatic In this phase, NLP fits the actual objects existing in

each context with object references produced by a semantic

analyzer. For example, the sentence Keep the book in the rack on

the table is having two semantic interpretations. From such

sentences, the pragmatic analyzer needs to choose between

possible semantic interpretations.

Implementing NLP

To implement NLP and build applications with it, one needs to

have a great understanding of language along with a specific skill

set. The tools will also play an important role to process the

language efficiently. NLTK, Mallet, GATE, UIMA, Gensim, Open

NLP, and Standford toolkit are some open-source tools, and some

are developed by organizations to develop their applications.

In this chapter, we will be using NLTK. In comparison with the

NLP tools, which are stated earlier, NLTK is much easier to use.

It is written in Python hence the learning curve is fast.

Installing Python’s NLTK Package

Prerequisites for installing are:

To install NLTK, we need to first install Python (if not yet

installed) on our computer system. To install Python, first, go to

the link https://www.python.org/downloads/ and then select the OS

on which you are running your computer system:

Figure 6.2: Downloading Python

Installing NLTK

Let us understand how we can install NLTK on various operating

systems:

Windows OS

The following are the steps to install NLTK on MS Windows:

Open the Command Prompt (cmd) and go to the pip folder

location.

Next, use the following command:

pip3 install nltk

To verify the installation, open the PythonShell and type the

following command:

importnltk

If you have got no error after running the preceding command,

means the installation is successful.

Mac/Unix OS

Use the following command to install NLTK on Mac/Unix OS:

pip install –user -U nltk

In case if you do not have pip installed on your computer

system, you first need to install that also.

Through Anaconda distribution installer

An alternative to install NLTK is the Anaconda distribution

installer. The following are the steps to install NLTK:

Step1: Use this link

https://www.anaconda.com/products/individual#download-section to

install Anaconda. You can choose as per your OS.

Figure 6.3: Installing Anaconda distribution

Open the Anaconda Command Prompt run the following

command:

conda install -c anaconda nltk

Downloading NLTK corpus

We learned how to install NLTK on various operating systems but

to work with it we also need to download its corpus/datasets.

Open the Python Shell and type the following commands:

importnltk

nltk.download()

After running the commands, we will get the following window:

Figure 6.4: Downloading NLTK corpus

Click on the Download button and you will get all the NLTK

datasets/corpus on your computer system.

Understanding tokenization, stemming, and lemmatization

In this section, we will discuss some useful NLP concepts, such

as, tokenization, stemming, and lemmatization. First, let’s get

started with tokenization.

Tokenization

Language translation, QA systems, chatbots, sentiment analysis,

and voice systems are some of the valuable applications that can

be built by using NLP. To build such applications, the most

important step is to understand the pattern in the text. Tokens

(the smaller parts of the text) play a vital role in finding and

understanding the pattern in the text.

In this way, we can define tokenization as the process of breaking

up a piece of text into smaller parts. These smaller parts, which

can be sentences and words, are called tokens. For example,

sentences are made up of words, hence words are tokens in a

sentence. Similarly, paragraphs are made up of sentences, hence

sentences are tokens in a paragraph.

To achieve the process of tokenization in Python, the NLTK

provides a package named

As we have discussed before, we can have tokens from sentences

(in the form of words) and paragraphs (in the form of sentences).

Let’s see how we can do this by using the nltk.tokenize package:

Tokenizing One of the important text processing activities is to

split the sentences into words. The Python package nltk.tokenoze

provides the following modules to tokenize sentences into words:

This module is used for the basic tokenization of sentences into

words. Let us understand it’s working with the help of the

following example:

import nltk

from nltk import word_tokenize

word_tokenize("This module can be used for basic tokenizing of

sentences into words.")

Output:

['This',

'module',

'can',

‘be’,

'used',

'for',

'basic',

'tokenizing',

'of ',

'sentences',

'into',

'words',

'.']

This method is invoked by word_tokenize() module with an

assumption that the text has already been segmented into

different sentences. The following are some characteristics of the

treebank tokenizer method:

It splits standard contractions. For example, can’t -> ca n’t.

When followed by whitespaces, this method also splits off

commas and single quotes.

It separates periods that appear at the end of the line.

Let us understand it’s working with the help of the following

example:

import nltk

from nltk.tokenize import TreebankWordTokenizer

sentence = '''Good vegan pizza cost $12.25\ninPheonix, Arizona.

Please buy me\ntwo of them.\nThank you.'''

TreebankWordTokenizer().tokenize(sentence)

Output:

['Good',

'vegan',

'pizza',

'cost',

'$',

'12.25',

'in',

'Pheonix',

',',

'Arizona.',

'Please',

'buy',

'me',

'two',

'of ',

'them.',

'Thank',

'you',

'.']

sentence1 = "He'll save and invest for his retirement."

TreebankWordTokenizer().tokenize(sentence1)

Output:

['He', "'ll", 'save', 'and', 'invest', 'for', 'his', 'retirement', '.']

sentence2 = "Hello, he can't go to market,"

TreebankWordTokenizer().tokenize(sentence2)

Output:

['Hello', ',', 'he', 'ca', "n't", 'go', 'to', 'market', ',']

As the name implies, this tokenizer splits punctuations into

separate tokens. Let’s understand it’s working with the help of the

following example:

import nltk

from nltk.tokenize import WordPunctTokenizer

sentence = "He'll save and invest for his retirement."

WordPunctTokenizer().tokenize(sentence)

Output:

['He', "'", 'll', 'save', 'and', 'invest', 'for', 'his', 'retirement', '.']

You can see the difference in the output of

TreebankWordTokenizer() and

As the name implies, this method uses a regular expression for

tokenizing sentences into words. Let’s understand it’s working with

the help of the following example:

import nltk

from nltk.tokenize import RegexpTokenizer

tokenizer = RegexpTokenizer("[\w']+")

sentence = "He'll save and invest for his retirement."

tokenizer.tokenize(sentence)

Output:

["He'll", 'save', 'and', 'invest', 'for', 'his', 'retirement']

Tokenizing We understood word tokenization, that is, tokenizing

sentences into words with the help of the word_tokenizer()

module. Now, we will tokenize paragraphs, that is, tokenizing

paragraphs into sentences. For this, NLTK provides us the

sent_tokenize() module.

But here the question arises if we have a word tokenizer then

why do we need a sentence tokenizer? Both are important in one

or another way. For example, if you would need to count average

words in sentences, then you need both a sentence tokenizer as

well as a word tokenizer. Let us understand its working and how

sentence tokenizer is different from word tokenizer with the help

of the following example:

import nltk

from nltk.tokenize import sent_tokenize

text = "It shows the difference between word tokenizer and

sentence tokenizer. It's a simple example."

sent_tokenize(text)

Output:

['It shows the difference between word tokenizer and sentence

tokenizer.',

"It's a simple example."]

Stemming

Stemming, an important part of the pipelining process in NLP

and NLU, may be defined as the process of reducing a word to

its root/base after removing suffixes and prefixes. In simple words,

stemming produces morphological variants of a word. For

example, the stemming algorithms or stemmers reduce the words

eating, eats, and eaten to eat.

One of the most important applications of stemming is in

information retrieval systems in search engines. Stemming reduces

the size of the index because a search engine can store only the

stems and it does not need to store all forms of the word.

Stemming The following figure has all the stemming

algorithms/stemmers, which we will discuss in this section:

Figure 6.5: Various stemming algorithms

NLTK provides us PorterStemmer class with the help of which we

can easily implement a porter stemming algorithm, which is

designed to remove as well as replace suffixes of English words.

Check the following example:

import nltk

from nltk.stem import PorterStemmer

stemming_word = PorterStemmer()

stemming_word.stem('writing')

Output:

'write'

stemming_word.stem('working')

Output:

'work'

Another common stemming algorithm is the Lancaster Stemming

algorithm, which is developed at Lancaster University. NLTK

provides us the LancasterStemmer class with the help of which we

can easily implement this algorithm. Check the following example:

import nltk

from nltk.stem import LancasterStemmer

stemming_Lanc = LancasterStemmer()

stemming_Lanc.stem('reads')

Output:

'read'

stemming_Lanc.stem('sweets')

Output:

'sweet'

Another useful stemming algorithm is the Regular Expression

Stemming algorithm, which takes a single RE and removes prefix

or suffix matching that expression. NLTK provides us

RegexpStemmer class with the help of which we can easily

implement this algorithm. Check the following example:

import nltk

from nltk.stem import RegexpStemmer

Regexp_stemmer = RegexpStemmer('ing')

Regexp_stemmer.stem('enjoying')

Output:

'enjoy'

Regexp_stemmer.stem('ingenjoy')

Output:

'enjoy'

The Snowball Steaming algorithm supports 15 non-English

languages. To work with this algorithm, we first need to create an

instance of the language and then call the method NLTK provides

us SnowballStemmer class with the help of which we can easily

implement this algorithm. Check the following example:

import nltk

from nltk.stem import SnowballStemmer

SnowballStemmer.languages#Languge supported by Snowball

Stemmer

Output:

('arabic',

'danish',

'dutch',

'english',

'finnish',

'french',

'german',

'hungarian',

'italian',

'norwegian',

'porter',

'portuguese',

'romanian',

'russian',

'spanish',

'swedish')

Language_French = SnowballStemmer('french')

Language_French.stem ('Bonjoura')

Output:

'bonjour'

Language_English = SnowballStemmer('english')

Language_English.stem ('Eating')

Output:

'eat'

Language_English.stem ('Reading')

Output:

'read'

Lemmatization

The lemmatization technique is similar to the stemming technique

that we have discussed before but the difference is that

lemmatization gives us the root word as output, rather than root

stem, which we usually get after stemming. The technical name of

the root word is lemma.

To achieve lemmatization, NLTK provides us WordNetLemmatizer

class. This class is a thin wrapper around the wordnet corpus,

and to find lemma, it uses morphy() function to the Check the

following example:

import nltk

from nltk.stem import WordNetLemmatizer

ex_lemmatizer = WordNetLemmatizer()

ex_lemmatizer.lemmatize('reading')

Output:

'reading'

ex_lemmatizer.lemmatize('sweets')

Output:

'sweet'

Difference between lemmatization and stemming

Although both techniques look similar, technically there are some

differences between them, which are given in the following table:

table:

table: table: table: table: table: table: table: table: table: table:

table: table: table: table: table: table: table: table: table: table:

table: table: table: table: table: table: table: table:

table: table: table: table: table: table: table: table:

Table 6.1: Difference between lemmatization and stemming

With the help of the following programming example, we will be

able to understand the difference between both the techniques

more clearly:

#Implementing Stemming

import nltk

from nltk.stem import PorterStemmer

ex_wordstemmer = PorterStemmer()

ex_wordstemmer.stem('believe')

Output:

Believ

#Implementing Lemmatization

import nltk

from nltk.stem import WordNetLemmatizer

ex_lemmatizer = WordNetLemmatizer()

ex_lemmatizer.lemmatize(' believe ')

Output:

believe

Understanding chunking

Chunking, one of the important processes in NLP, is used to

extract phrases from the unstructured text. In other words,

chunking is used to analyze the structure of a sentence to identify

constituents such as noun groups, verb groups, verbs, and so on.

Chunking is also called partial parsing and works on top of the

POS tagging.

Importance of chunking

Do you think for text processing, simply breaking sentences into

words is going to help? We must understand that a sentence

involves various entities like a person, place, a date, a day, and

so on. and an entity alone is of no use. That’s why phrases are

more useful than individual words. Chunking does this job and

breaks sentences into phrases to yield some meaningful results.

Let’s understand this concept with the help of the hierarchical

structure of a sentence. The hierarchical structure of a sentence

consists of the following components:

Figure 6.6: Hierarchical structure of a sentence

The last component is words that make up phrases. These are

the following five categories of phrases:

Noun Phrase

Verb Phrase

Adjective Phrase

Adverb Phrase

Prepositional Phrase

Once you know the categories of phrases, it is also important to

understand the phrase structure. Phrase structure is also called as

constituency grammar because it is based on the constituency

relation. The following is an example of phrase structure, which

can be understood in terms of NP and VP:

Figure 6.7: Example of phrase structure

Example:

Follow the steps to implement noun–phrase chunking in Python:

Chunk grammar It is the first step for implementing noun–phrase

chunking. Here we need to define the grammar for chunking,

which would be containing the rules that need to be followed.

Chunk parser Once you define the chunk grammar, it is time to

create a chunk parser, which will parse the grammar and produce

the output in tree format.

The following is an easy-to-understand Python recipe of chunker

based on regular expression pattern:

import nltk

S = [("This", "DT"),("book", "NN"),("has","VBZ"),("ten","JJ"),

("chapters","NNS")]

chunker=nltk.RegexpParser(r'''

NP:{

<.*>*}

}{

''')

chunker.parse(S)

Output=chunker.parse(S)

Output.draw()

Figure 6.8: Tree-like structure of the sentence after chunking

Understanding Bag-of-Words (BoW) model

Bag-of-Words is an NLP technique of text modeling, which is used

to extract the features from the text. The BoW is a representation

of the text describing the existence of words inside a document. It

is called a bag of words because it is only concerned with the

occurrence of the words in the document and any kind of

information about the structure of words is discarded.

Why the BoW algorithm?

Why do we need BoWs? Is there any issue with simple and easy

text?

We know that the text is unstructured, and Machine Learning

algorithms require structured and fixed-length input data. With the

help of the BoW technique, we can easily convert raw data

(variable-length texts) into a fixed-length vector.

We also know that ML algorithms work well with numeric data

rather than textual data. With the help of the BoW technique, we

can easily convert the textual data into its equivalent vector of

numbers.

Example:

The following is an example to understand how the BoW

technique converts text into vectors:

Sentence Bag-of-Words model is a very useful NLP technique.

Sentence Bag-of-Words model is used to extract the features from

the text.

Considering the preceding sentences, we have the following 16

distinct words:

bag

of

words

model

is

very

useful

NLP

technique

used

to

extract

the

features

from

text

We see that the vocabulary has 16 distinct words. We can use a

fixed-length representation of 16 with one position in the vector

for scoring each word. The scoring method is very simple, use 1

for the presence of each word otherwise use 0.

The following table will represent the scoring of the Sentence 1:

1:

1:

1:

1:

1:

1:

1:

1:

1:

1:

1:

1:

1:

1:

1:

1:

1:

Table 6.2: Scoring of the Sentence 1

We can write the preceding frequencies in vector as follows:

Sentence 1 - [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0]

Similarly, the following table will represent the scoring of Sentence

2:

2:

2:

2:

2:

2:

2:

2:

2:

2:

2:

2:

2:

2:

2:

2:

2:

2:

Table 6.3: Scoring of the Sentence 2

We can write the preceding frequencies in vector as follows:

Sentence 2 - [1,1,1,1,1,0,0,0,0,1,1,1,1,1,1,1]

Implementing the BoW algorithm using Python

To implement the preceding BoW model, we will use the function

named CountVectorizer() from the Scikit-learn Python library:

from sklearn.feature_extraction.text import CountVectorizer

Sentences=['Bag of Words model is very useful NLP technique.',

'Bag of Words model is used to extract the features from text.']

vector_count = CountVectorizer()

text_feature = vector_count.fit_transform(Sentences).todense()

print(vector_count.vocabulary_)

{'bag': 0, 'of ': 7, 'words': 15, 'model': 5, 'is': 4, 'very': 14, 'useful':

13, 'nlp': 6, 'technique': 8, 'used': 12, 'to': 11, 'extract': 1, 'the': 10,

'features': 2, 'from': 3, 'text': 9}

print(text_ feature)

[[1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1]

[1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 1]]

The preceding output represents the feature vectors, that is, text

to numeric form. They can now be used in ML algorithms.

Understanding stop words

What is one of the major tasks of pre-processing? It filters out

useless data from our dataset. Isn’t it? In NLP, such useless

words are called stop words. Stop words usually refer to the most

common words in a language that does not add much meaning

to the sentence. For example, words such as

When to remove stop words?

There is no hard and fast rule on when to keep unwanted words

out of our corpus. But it is recommended to remove stop words

if you want to perform tasks such as language classification, text

classification, sentiment analysis, spam filtering, auto-tag

generation, and caption generation because while performing these

tasks, stop words do not provide any information to our model.

On the contrary, if your task is related to machine translation,

question-–answer problems, language modeling, or text

summarization, it is better to keep these unwanted words because

they may be a crucial part of these applications.

Removing stop words using the NLTK library

With the help of the following example, let’s see how we can

remove the stop words using the NLTK library:

#Importing the NLTK Python library stopwords

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize

#Sentence with stop words

sample_sentence = "Hey, this is pretty cool. We will do more

such cool things."

stop_words = set(stopwords.words('english'))

text_tokens = word_tokenize(sample_sentence)

#Filtering the stop words

filtered_sentence = [w for w in text_tokens if not w.lower() in

stop_words]

filtered_sentence = []

for w in text_tokens:

if w not in stop_words:

filtered_sentence.append(w)

#Printing the sentence with stop words

print(f"Tokenized text with stop words: \n{text_tokens}")

#Printing the sentence without stop words

print(f"Tokenized text without stop words: \n{filtered_sentence}")

The output of the preceding Python script is as follows:

Tokenized text with stop words:

['Hey', ',', 'this', 'is', 'pretty', 'cool', '.', 'We', 'will', 'do', 'more', 'such',

'cool', 'things', '.']

Tokenized text without stop words:

['Hey', ',', 'pretty', 'cool', '.', 'We', 'cool', 'things', '.']

Understanding vectorization and transformers

Vectorization is a methodology to map words or phrases from the

vocabulary to its corresponding vector of real numbers. These

vectors of real numbers further used to find word similarities and

word findings. In simple words, the process of converting words

into numbers is called vectorization.

Vectorization techniques

The following are some of the useful vectorization techniques:

Count This is one of the simplest techniques to perform text

vectorization. In this technique, a document term matrix is

created, which is a set of dummy variables indicating whether a

particular word appears in the document or not. Each individual

cell in the document term matrix denotes the frequency (known as

term frequency) of the word in a particular document, whereas the

columns represent each word in the corpus. Let’s understand it

with an example:

Example

To implement this example, we will be using the CountVectorizer

package of Scikit-learn Python library. This package is available

under

from sklearn.feature_extraction.text import CountVectorizer

Data_corpus = [

'This book is on Artificial Intelligence.',

'This book implements programs in Python.',

'And Python is one of the best programming language.',

'Is this the first book?',

]

Count_vectorizer = CountVectorizer()

M = Count_vectorizer.fit_transform(Data_corpus)

print(Count_vectorizer.get_feature_names())

print(M.toarray())

['and', 'artificial', 'best', 'book', 'first', 'implements', 'in', 'intelligence',

'is', 'language', 'of ', 'on', 'one', 'programming', 'programs', 'python',

'the', 'this']

[[0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1]

[0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1]

[1 0 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0]

[0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1]]

Count_vectorizer2 = CountVectorizer(analyzer='word', ngram_range=

(2, 2))

M2 = Count_vectorizer2.fit_transform(corpus)

print(Count_vectorizer2.get_feature_names())

['and python', 'artificial intelligence', 'best programming', 'book

implements', 'book on', 'first book', 'implements programs', 'in

python', 'is book', 'is one', 'is this', 'of the', 'on artificial', 'one of ',

'programming language', 'programs in', 'python is', 'the best', 'the

first', 'this book', 'this is', 'this the']

This is like the count vectorization technique because in this

technique a document term matrix is created, and each individual

cell denotes the frequency of the word in a particular document.

The difference in the N-gram method is that the columns in the

document term matrix represent all the columns of adjacent words

of length n. In simple words, we can say that count vectorization

is N-Gram where n =1.

For example, “I like Artificial Intelligence” has four words, and n

=4.

For n = 2, that is, bigram, the columns would be- [“I like”, “like

Artificial”, “Artificial Intelligence”].

For n = 3, that is, trigram, the columns would be- [“I like

Artificial”, “like Artificial Intelligence”].

For n = 4, that is, four-gram, the columns would be- [“I like

Artificial Intelligence”].

The trade-off is between the number of N values because the

smaller value of N may not be sufficient to provide the most

useful information. In contrast, the high value of N will yield a

huge matrix with loads of features.

Term Document Frequency This technique is also similar to the

count vectorization technique because in this technique a

document term matrix is created, and each column represents an

individual unique word. TF–IDF method is different in the sense

that along with the term frequency, each cell also contains a

weight value signifying the importance of that word for the

document. Rather than taking the consideration of a word in a

single document, it takes into consideration a word in the entire

corpus. Let’s understand Term Frequency and inverse document

frequency (IDF):

Term Frequency As the name implies, it is the frequency of a

word in a document. For a specified word, TF is defined as the

percentage of the number of times a word(m) occurs in a

particular document (n) divided by the total number of words in

the document. The following is the formula for finding TF:

tf (‘word’) = Frequency of ‘word’ appears in the document D/total

number of words in the document

For example, consider the following document:

Mohan loves to play cricket.

The term frequency value for the word Mohan will be tf(‘Mohan’)

= 1/5.

Inverse Document Frequency IDF measures the importance of a

particular word in the corpus, that is, how common that word is

across all the documents in the corpus. For a specified word, IDF

is defined as the logarithmic ratio of the number of total

documents to the number of a document with a particular word.

The following is the formula for finding IDF:

idf(‘word’) =log(Total number of documents in corpus/number of

document with ‘word’ in it)

For example, suppose the word the is present in all the

documents in a corpus of 500 documents. Then the idf for word

the would be:

idf(‘the’) = log(500/500) i.e., log(1) = 0

In this way, TF–IDF(term) = TF(term) * IDF(term).

The formula for finding TF–IDF is as follows:

Here,

is word m within document n

is the frequency of m in n

is the number of documents containing m

X is the total number of documents

Let’s understand it with an example:

Example

To implement this example, we will use the TfidfVectorizer package

of Scikit-learn Python library. This package is available under

from sklearn.feature_extraction.text import TfidfVectorizer

import pandas as pd

corpus = ["this is the first document."," this document is the

second document."," and this is the third one."," is this the first

document."]

tfidfvectorizer = TfidfVectorizer()

vectors_list = tfidfvectorizer.fit_transform(corpus)

feature_names = tfidfvectorizer.get_feature_names()

print(f"Feature Names are: \n{feature_names}")

matrix = vectors_list.todense()

list_dense = matrix.tolist()

df=pd.DataFrame(list_dense, columns=feature_names)

print(df)

The following is the output of the preceding Python script:

Feature Names are:

['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this']

 and document first is

one second the \

0 0.000000 0.469791 0.580286 0.384085 0.000000 0.0000

00 0.384085

1 0.000000 0.687624 0.000000 0.281089 0.000000 0.5386

48 0.281089

2 0.511849 0.000000 0.000000 0.267104 0.511849 0.00000

0 0.267104

3 0.000000 0.469791 0.580286 0.384085 0.000000 0.0000

00 0.384085

 third this

0 0.000000 0.384085

1 0.000000 0.281089

2 0.511849 0.267104

3 0.000000 0.384085

Transformers

The paper titled Attention is All You introduces a novel concept in

NLP called Transformers. It aims to solve seq2seq (sequence-to-

sequence) tasks along with handling the long-range dependencies

with ease.

Read the following quotation from the previously mentioned paper:

“The Transformer is the first transduction model relying entirely on

self-attention to compute representations of its input and output

without using sequence-aligned RNNs or convolution.”

The transduction here means the conversion of the input sequence

to the output sequence; hence, we can say that the basic concept

of a Transformer is to handle the dependencies between input and

output with self-attention and recurrence.

Let’s understand the meaning of self-attention. According to the

previously mentioned paper:

“Self-attention, sometimes called intra-attention, is an attention

mechanism relating different positions of a single sequence in order to

compute a representation of the sequence.”

Figure 6.9: Understanding self-attention

Look at Figure 6.9 and try to figure out what the term it refers

to? Is it referring to the coffee or It’s simple for human beings

but not for an algorithm to answer. When the NLP model

processing the word self-attention tries to associate it with

In simple words, to get a better understanding of a specified

word in the sequence, self-attention allows the NLP model to

check other words in the input sequence.

We will use the TfidfTransformer package of Scikit-learn Python

library for our examples in the next section. This package will

transform a count matrix to normalized Term Frequency or Term

Document Frequency representation.

Some examples

In this section, we are going to solve two simple but useful NLP

examples, namely, Predicting the category and Gender finding by

using the Python programming language.

Predicting the category

Every word is important but categorizing the document is equally

important. Categorizing a document means in which category of

text a word falls. For example, we want to predict the given

sentence falls in which category like email, sports, business, and

so on. For our following example, we will be using 20 newsgroup

datasets from the Scikit-learn Python library:

#Import the required packages

from sklearn.datasets import fetch_20newsgroups

from sklearn.naive_bayes import MultinomialNB

from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.feature_extraction.text import CountVectorizer

#Defining five different category maps

c_map = {'talk.religion.misc': 'Religion', 'rec.autos':

'Autos','rec.sport.hockey':'Hockey','sci.electronics':'Electronics',

'sci.space': 'Space'}

#Creating the training set

t_data = fetch_20newsgroups(subset='train',

categories=c_map.keys(), shuffle=True, random_state=5)

#Building a count vectorizer and extracting the term counts

v_count = CountVectorizer()

train_tc = v_count.fit_transform(t_data.data)

print("\nDimensions of training data:", train_tc.shape)

#Creating tf-idf transformer

tfidf = TfidfTransformer()

train_tfidf = tfidf.fit_transform(train_tc)

#Defining the test data

input_data = [

'Columbia is the name of a space shuttle',

'Hindu, isai, Sikh, Muslim all are religions',

'We should drive safely',

'Puck is a round disk made of hard rubber',

'Television, Microwave, Mixer Grinder, Refrigerator, all uses

electricity']

#Multinomial Naïve Bayes classifier training

classifier = MultinomialNB().fit(train_tfidf, t_data.target)

#Transforming input data by using count vectorizer

input_tc = v_count.transform(input_data)

#Transforming vectorized data by using tf-idf transformer

input_tfidf = tfidf.transform(input_tc)

#Predicting output categories

predictions = classifier.predict(input_tfidf)

for sent, category in zip(input_data, predictions):

print('\nThe Input Data is:', sent, '\n Category:', \

c_map[t_data.target_names[category]])

In the preceding program, first, we fetch the Sklearn 20newsgroup

dataset and other useful packages. As we will be predicting the

categories, we need to define different categories. We are defining

five categories for this program. After that, we are creating the

training set from our dataset.

Once done with the training set, we need to extract the term

counts and for this, we build a count vectorizer by using Sklearn

CountVectorizer() package. We now need to define the transformer

and we are using the Sklearn TF-–IDF transformer. Along with the

training set, the classifier also needs the test data. Hence, next,

we will define the test dataset.

Now we need to fit the model and here, for this task, we are

using a multinomial Naïve Bayes classifier. Next, we need to

vectorize our input data by using a count vectorizer. After this, we

need to pass this vectorize data to TF–IDF transformer to

transform this data. At last, we will use the predict() function to

predict the output categories.

Output:

The following is the output of the preceding Python script:

Figure 6.10: Predicted Output Categories

Gender finding

This example is to train a classifier that will predict the gender by

providing names of males and females. First, the classifier will

decide what features of the input are valid. Second, the classifier

will decide how it can encode those features. We need to create a

feature extractor function that will build a dictionary containing

appropriate data about a given name (male or female).

#Import the required packages

import random

from nltk.corpus import names

from nltk import NaiveBayesClassifier

from nltk.classify import accuracy

#Defining the function to calculate features

def features(name):

name = name.lower()

return {

'last_char': name[-1],

'last_two': name[-2:],

'last_three': name[-3:],

'first': name[0],

'first2': name[:2]

}

names_M = [(name, 'male') for name in

names.words(r"C:/Users/Leekha/Desktop/malenames.txt")]

names_F = [(name, 'female') for name in

names.words(r"C:/Users/Leekha/Desktop/femalenames.txt")]

names_labels = names_M + names_F

random.shuffle(labeled_names)

Splitting the dataset into training set and testing set.

train_set, test_set = featuresets[500:], featuresets[:500]

Training the Naive Bayes classifier

classifier = NaiveBayesClassifier.train(train_set)

male_gender = classifier.classify(features('Aarav'))

female_gender = classifier.classify(features('Shilpi'))

print("Aarav is a {}.".format(male_gender))

print("Shilpi is a {}.".format(female_gender))

#Getting the accuracy

print(accuracy(classifier, test_set))

#Printing first 15 feature sets

classifier.show_most_informative_features(15)

Output:

Figure 6.11: Predicted Genders

Conclusion

In this chapter, we learned about the basic concept of Natural

Language Processing (NLP) and implement some of its examples

in the Python programming language. We got to know that NLP, a

field of Artificial Intelligence, concerns with enabling machines to

comprehend and process the language in which we communicate,

that is, our natural language. We also came to know about the

working of NLP. We understood four phases of NLP, namely,

morphological analysis, syntactic analysis, semantic analysis, and

pragmatic analysis.

From the implementation perspective in the Python programming

language, we discussed an extremely useful package called NLTK.

You also learned the commands to install this package and its

corpus/dataset on various operating systems. We also discussed

some of the important concepts, such as tokenization, stemming,

and lemmatization. We also implanted them by using the Python’s

NLTK package.

We also understood one important process of NLP called

chunking, which is used to analyze the structure of a sentence to

identify the constituents such as noun groups, verb groups, verbs,

and so on. We also discussed phrase structure with the help of

an example and implemented it in the Python programming

language.

The BoW model, an important and most used model in NLP, is

also discussed. It is used to extract the features from the text so

that we can provide structured and fixed-length input data to ML

algorithms. We also implemented an example of the BoW model

by using the Python’s Scikit-learn library.

You can use NLP to solve a variety of problems and build a

variety of applications. With the help of two useful implementation

examples, namely, Predicting the category and Gender we learned

how to solve problems in this domain.

In the next chapter, you will learn about the basic concept of

speech recognition along with its implementation in the Python

programming language.

Questions

What is Natural Language Processing (NLP)? How does it work?

Explain various phases of NLP.

What is tokenization? How do you implement it by using the

NLTK package?

What is stemming? Explain along with examples the various

stemming algorithms provided by the NLTK package?

What is lemmatization? Explain the difference between Stemming

and Lemmatization.

Define chunking. How can we implement it in Python?

What is Bag-of-Words (BoW) model? Explain its importance with

the help of an example.

What are stop words in NLP? How can we remove them by using

the NLTK python package?

What is Vectorization? Explain various vectorization techniques with

examples.

Explain the concept of Transformers in NLP.

1 https://arxiv.org/abs/1706.03762

CHAPTER 7

Implementing Speech Recognition with Python

Introduction

Other than our natural language, what else plays a prominent role

in human–human interaction? It is speech, isn’t it? That is why it

is quite natural for us to expect speech interfaces with machines.

Over the last four decades, to ease the communication barrier

between humans and machines, speech technology has come into

existence. But over the past 6 to 7 years, I am sure everyone has

doubtlessly noticed a quantum jump in the quality of a wide

range of speech-enabled personal assistants like Amazon’s Alexa,

Apples’ Siri, Google Assistant, or Microsoft’s Cortana, and voice-

activated appliances as well as other similar technology around us.

Likewise, soon, more than half of all the web searches will be

done by voice.

In this chapter, we are going to learn about speech recognition, a

technology that has unbelievable achievements from the first

laboratory model to the commercial products available in the

market today. You will also get to know about building a speech

recognizer using the Python programming language. We will also

discuss about the difficulties that one can face while developing a

speech recognition system.

Structure

This chapter is structured as follows:

Basics of speech recognition

Working of the speech recognition system

Building a speech recognizer

Difficulties while developing a speech recognition system

Visualization of audio signals

Characterization of the audio signal

Monotone audio signal generation

Extraction of features from speech

Recognition of spoken words

Objective

The main objective of this chapter is to make you understand

how you can develop a speech recognition system in the Python

programming language. But before that, you must know about the

basics and working of the speech recognition system. This chapter

will fulfill this objective too. Last but not the least, this chapter

will also make you aware of the difficulties you can face while

developing an ASR system.

Basics of speech recognition

In the present era, among the tasks with the help of which we

can interact with machines in our spoken language, automatic

speech recognition that is also known as computer speech

recognition is one of the fastest-growing and most commercially

promising techniques. Speech recognition that allows the machines

to identify the words, phrases, and sentences human beings speak

is the first task among the three tasks of speech processing. The

other two tasks consist of Natural Language Processing (allows

machines to read, understand, and make sense of human

languages) and Speech Synthesis (allows machines to convert

normal language text into speech). In this chapter, we will focus

on speech recognition.

Working of the speech recognition system

The following figure depicts the structure of a speech recognition

system:

Figure 7.1: Structure of speech recognition system

The speech recognition system consists of the following two parts:

Front-end processing

Back-end processing

Front-end processing

Front-end processing consists of two techniques, namely,

preprocessing and feature extraction. Let’s discuss them in detail.

Preprocessing

The first part of a speech recognition system is preprocessing,

which covers the following tasks:

Analog-to-digital conversion

Background noise filtering

Pre-emphasis

Blocking

Windowing

Typically, a speech signal is a stream of 8-bit numbers at the rate

of 10,000 numbers per second. It is a large amount of data and

one of the biggest challenges of a speech recognition system is to

reduce this huge data to some manageable representation. After

the conversion of this electric signal conversion, next, it will filter

the background noise and keep the SNR say greater than 40

decibels.

Once background noise filtration is completed, it spectrally flattens

the signal. This is called pre-emphasis, which actually amplifies the

important areas of the spectrum. For example, in the spectrum

region of 1KHz to 5KHz, hearing is more sensitive. By assisting

the spectral analysis algorithm, pre-emphasis will amplify this area

of the spectrum.

Feature extraction

As the name implies, feature extraction is used to find features of

an utterance having acoustic correlations in the speech signal.

These features can be computed on a frame-by-frame basis by

using several feature extraction techniques. The following are some

of the most used feature extraction techniques:

Linear predictive cepstral coefficient In the time domain, the LPCC

model of speech production is given in following equation:

In the preceding equation,

s[n] denotes the speech signal samples,

a[k] are the predictor coefficients,

The total squared prediction error is given in the following

equation:

Here p is the order of the predictor.

The main objective of linear predictive analysis is to determine the

coefficients a[k] for every speech frame in such a way that error is

minimized.

Now, given the LPC coefficients the LPCC coefficients are

computed using recursion as follows:

These coefficients for every window of the speech will be used as

features of the speech recognizer.

Mel frequency cepstral coefficient It may be defined as the real

cepstrum of a windowed short-term signal derived from the fast

Fourier transform of that signal. Block figure of MFCC is depicted

in the following figure:

Figure 7.2: Block diagram of MFCC

The following are the given steps to compute MFCC feature

vectors:

A 39-dimensional MFCC feature vector is computed from 25 ms of

a window with 51 ms overlap using the following steps:

Pre-emphasize and weight the speech signal by a Hamming

window. The Hamming window is defined as:

Where n is the total number of samples in an interval.

Now, take the Fourier transform of the weighted signals.

Next, average the spectral magnitude values using a triangular

window at uniform spaces on the Mel-scale to consider auditory

characteristics. The Mel-scale is defined in the following equation:

Where 𝑓 is the frequency in hertz.

Take a logarithm of the averaged spectral values. The convolution

between sound source (pitch) and articulation (vocal tract impulse

response) becomes addition due to the logarithm operations.

Take the inverse Fourier transform of the logarithmic spectral

values. Remove the first coefficient and weight the next 12 cepstral

coefficients using the following formula:

Where is the cepstral coefficient and l is the liftering coefficient.

Append normalized frame energy, producing a 13-dimensional

feature vector.

Compute the first- and the second-order time derivatives of the 13

coefficients using the following regression formula:

Where t is the time, and and represents the following and

previous cepstral coefficients in the time frame, respectively. The

derivatives are appended to the original MFCCs, producing a 39-

dimensional feature vector for every frame.

Perceptual linear prediction PLP technique is based on the

variation of LPC, which we discussed before. Considering human

auditory perceptions, in PLP the critical filter bank consists of 17

filters spaced by one Bark on the Bark scale along with a

frequency range of 0-5 kHz. The carrier frequency is defined by

the following equation:

Here, f is the frequency in Hz and z covers the range of 0-5 kHz

by the 17 band pass filters i.e., 0 ≤ z ≤ 17 Bark. Each band is

simulated by a spectral weighting, as shown in the following

equation:

Here, = - 0.5 and are the center frequencies. The benefit of this

analysis is that it significantly improves recognition accuracy,

especially in multi-speaker recognition.

Back-end processing

Back-end processing mainly involves pattern recognition, which will

compare the feature vectors extracted in the front end with the

machine’s knowledge of speech. For pattern recognition, back-end

processing constructs a language and an acoustic model. Let’s

discuss both of these models in detail.

Acoustic modeling

Acoustic modeling is used to establish a connection between

acoustic information and phonetics. As we know that speech is a

temporal signal, the speech unit is mapped to its acoustic

counterpart using temporal models. Some of the most used

models for acoustic modeling are HMM Markov ANN Neural and

DBN Bayesian

Language modeling

The main goal of language modeling is to generate the

probabilities of a word W for which it uses the structural

constraints available in the language. Language modeling uses the

following two approaches:

Grammar-based For small vocabulary constraints tasks such as

phone dialing, it uses the grammar-based approach.

Stochastic On the other hand, for large vocabulary constraints

tasks such as broadcast news transcription, it uses the stochastic

approach.

Building a speech recognizer

One of the centers of attention for artificial intelligence projects

like robotics is ASR (automatic speech recognition). Without

speech recognition, we cannot even imagine the cognitive

interaction of humans and machines, especially robots. In this

section, we will learn how to develop a speech recognizer in the

Python programming language. But building a speech recognizer is

not an easy task. It has a lot of difficulties and before deep

diving into building a speech recognizer, we will first discuss

about the difficulties.

Difficulties while developing a speech recognition system

The following are some of the difficulties the developer might face

while developing a speech recognition system:

Vocabulary Vocabulary size plays an important role in the success

of a speech recognizer. The larger the size of the vocabulary, the

harder it would be to recognize that. For example, for a voice-

menu system, we need a small vocabulary size containing 2-100

words and on the other hand for a database retrieval task, we

need a large vocabulary size containing around 10,000 words.

Channel Another important dimension that plays an important role

is the characteristics of the channel. If we talk about human

speech, we need high bandwidth with full frequency, whereas in

the case of telephone speech, we need low bandwidth with limited

frequency. It is tough to recognize telephonic speech.

Mode of We have three modes of speech-isolated, connected, and

continuous speech. Among these three, continuous speech is

tough to recognize.

Style of We have three styles of speech-formal, spontaneous, and

conversational speech. Among these three, conversational speech is

tough to recognize.

Speech recognition is affected by signal-to-noise ratio (SNR), which

can be high (>30 dB), medium (between 30 and 10 dB), and low

(< 10dB). It is also affected by the type of background noise like

stationary, and crosstalk by other speakers.

Now, let’s understand various steps to build a speech recognizer:

Visualization of audio signals

This is the first step in building a speech recognizer. With the

help of this step, we can understand the structure of an audio

signal. Recording and sampling are the two sub-steps to be

followed while visualizing audio signals. A recording is needed in

case if you want to read the audio signal from a file. Sampling is

required to convert digitized signals into discrete numerical form.

We should do sampling at a certain frequency because high

frequency makes it feel as a continuous audio signal.

In the following example, by using the Python programming

language, we will analyze an audio signal that is stored in a file.

#importing necessary packages

import numpy as np

import matplotlib.pyplot as plt

from scipy.io import wavfile

#Reading the stored audio file, returning sampling frequency and

audio signal

freq_sampling, audio_sig =

wavfile.read("C:/Users/Leekha/Desktop/audio_Harvard.wav")

#Displaying various parameters of the audio signal

print('\nSignal shape:', audio_sig.shape)

print('Signal Datatype:', audio_sig.dtype)

print('Signal duration:', round(audio_sig.shape[0] /

float(freq_sampling), 2), 'seconds')

#Normalizing the audio signal

audio_sig = audio_sig / np.power(2, 15)

#To visualize the signal, extracting first 200 values from it

audio_sig = audio_sig [:200]

time_axis = 1000 * np.arange(0, len(audio_sig), 1) /

float(freq_sampling)

#Now, let’s visualize the stored audio signal

plt.plot(time_axis, audio_sig, color='red')

plt.xlabel('Time (ms)')

plt.ylabel('Amplitude')

plt.title('Audio Signal')

plt.show()

Output:

Signal shape: (445699,)

Signal Datatype: int16

Signal duration: 55.71 seconds

Figure 7.3: Visualization of the audio signal

Characterization of the audio signal

Characterization of the audio signal is another important step in

which we will convert time-domain signal into a frequency domain.

For such transformation, we use a mathematical tool named

Fourier Transform.

Now, let’s characterize the audio signal we have used previously

for visualization purposes:

#importing necessary packages

import numpy as np

import matplotlib.pyplot as plt

from scipy.io import wavfile

#Reading the stored audio file, returning sampling frequency and

audio signal

freq_sampling, audio_sig =

wavfile.read("C:/Users/Leekha/Desktop/audio_Harvard.wav")

#Displaying various parameters of the audio signal

print('\nSignal shape:', audio_sig.shape)

print('Signal Datatype:', audio_sig.dtype)

print('Signal duration:', round(audio_sig.shape[0] /

float(freq_sampling), 2), 'seconds')

#Normalizing the audio signal

audio_sig = audio_sig / np.power(2, 15)

#Extracting length and half length of the signal

len_signal = len(audio_sig)

half_len = np.ceil((len_signal + 1) / 2.0).astype(np.int)

#Using Fourier Transform

signal_frequency = np.fft.fft(audio_sig)

#Normalizing frequency domain signal

signal_frequency = abs(signal_frequency[0:half_len]) / length_signal

signal_frequency **= 2

#Extracting length and half length of the frequency transformed

signal

len_fts = len(signal_frequency)

#Adjusting Fourier transformed signal for both even and odd case:

if len_signal % 2:

signal_frequency[1:len_fts] *= 2

else:

signal_frequency[1:len_fts-1] *= 2

#Extracting the power in dB and measuring frequency in kHz for

x-axis

signal_power = 10 * np.log10(signal_frequency)

x_axis = np.arange(0, half_len, 1) * (freq_sampling / len_signal) /

1000.0

#Visualizing characterized signal

plt.figure()

plt.plot(x_axis, signal_power, color='green')

plt.xlabel('Frequency (kHz)')

plt.ylabel('Signal power (dB)')

plt.show()

Output:

Signal shape: (445699,)

Signal Datatype: int16

Signal duration: 55.71 seconds

Figure 7.4: Characterization of an audio signal

Monotone audio signal generation

Here we will be generating the audio signal with some predefined

parameters:

#importing necessary packages

import numpy as np

import matplotlib.pyplot as plt

from scipy.io.wavfile import write

#File for saving the output audio signal

file_output =

"C:/Users/Leekha/Desktop/audio_Harvard_monotone.wav"

#Specifying the parameters

duration = 35 # in seconds

freq_sampling = 44100 # in Hz

freq_tone = 784

min_val = -4 * np.pi

max_val = 4 * np.pi

#Generating the audio signal

t = np.linspace(min_val, max_val, duration * freq_sampling)

audio_sig = np.sin(2 * np.pi * freq_tone * t)

#Saving the audio signal file in the output file

write(file_output, freq_sampling, audio_sig)

#Extracting first 200 values for our graph

audio_sig = audio_sig[:200]

time_axis = 1000 * np.arange(0, len(audio_sig), 1) /

float(freq_sampling)

#Visualizing the generated audio signal

plt.plot(time_axis, audio_sig, color='red')

plt.xlabel('Time in milliseconds')

plt.ylabel('Amplitude')

plt.title('Generated audio signal')

plt.show()

Output:

Figure 7.5: Monotone audio signal

Extraction of features from speech

After converting the speech signal into the frequency domain, we

need to extract its features. Feature extraction is one of the most

important steps in building the speech recognizer. There are

various techniques such as MFCC, PLP, PLP–RASTA, which can be

used for this task. For our example, we will use the MFCC feature

extraction technique.

#importing necessary packages

import numpy as np

import matplotlib.pyplot as plt

from scipy.io import wavfile

from python_speech_features import mfcc, logfbank

#Reading the stored audio file, returning sampling frequency and

audio signal

freq_sampling, audio_sig =

wavfile.read("C:/Users/Leekha/Desktop/audio_Harvard.wav")

#Taking first 15000 samples for analysis

audio_sig = audio_sig[:15000]

#Exatracting MFCC features and printing its parameters

mfcc_features = mfcc(audio_sig, freq_sampling)

print('\nMFCC:\nNumber of windows =', mfcc_features.shape[0])

print('Length of each feature =', mfcc_features.shape[1])

Output:

MFCC:

Number of windows = 186

Length of each feature = 13

#Plotting and visualizing the MFCC features

mfcc_features = mfcc_features.T

plt.matshow(mfcc_features)

plt.title('MFCC')

Output:

Text(0.5, 1.05, 'MFCC')

Figure 7.6: MFCC features

#Exatracting Filter bank features and printing its parameters

filterbank_features = logfbank(audio_sig, freq_sampling)

print('\nFilter bank:\nNumber of windows =',

filterbank_features.shape[0])

print('Length of each feature =', filterbank_features.shape[1])

Output:

Filter bank:

Number of windows = 186

Length of each feature = 26

#Plotting and visualizing the Filterbank features

filterbank_features = filterbank_features.T

plt.matshow(filterbank_features)

plt.title('Filter bank')

plt.show()

Output:

Figure 7.7: Filter bank features

Recognition of spoken words

For recognizing the spoken words, we will use Google Speech API

in Python. For our example, we need to install the following

Python packages:

The command to install PyAudio package is pip install

The command to install SpeechRecognition package is pip install

The command to install Google-Speech-API package is pip install

#importing necessary packages

import speech_recognition as srec

#creating an object

recording = srec.Recognizer()

#voice will be taken by Microphone() module as input

with srec.Microphone() as source:

recording.adjust_for_ambient_noise(source)

print("Say something:")

audio = recording.listen(source)

#Google API will recognize the voice and provide output

try:

print("What you said is: \n" + recording.recognize_google(audio))

except Exception as e:

print(e)

Output:

Say something:

What you said is:

speech recognition example

Conclusion

In this chapter, we learned about the basics of speech recognition

and how to build a speech recognizer in the Python programming

language. We got to know that speech recognition, which is one

of the fastest-growing and most commercially promising

techniques, is the first task among the three tasks of speech

processing. It allows the machines to identify the words, phrases,

and sentences human beings speak. We also came to know about

the working of speech recognition system under which we

understood its two parts, namely, front-end processing and back-

end processing.

From the implementation perspective, we learned how to develop

a speech recognizer in the Python programming language. We

discussed the difficulties one can face while developing the speech

recognition system. Vocabulary size, channel quality, speaking

mode, speaking style, and type of noise are some of the common

difficulties. In the next chapter, you will learn about the basic

concepts of Artificial Neural Network along with its

implementation in the Python programming language.

Questions

What is automatic speech recognition (ASR)? How does it work?

What is feature extraction? Explain along with any two feature

extraction techniques.

What is the role of acoustic modeling and language modeling in

speech recognition? Explain.

What are some of the common difficulties one can face while

building a speech recognition system?

Write down the Python program to extract features from a speech

by using the MFCC feature extraction technique.

Write down the Python program for recognizing spoken words by

using Google-Speech-API.

CHAPTER 8

Implementing Artificial Neural Network (ANN) with Python

Introduction

Hubots – are they some kind of humans or machines?

Human beings, with their intelligence, can quickly find the answer

to the previous question. In fact, we humans can easily tell the

difference between the two of them. Do you think a machine can

tell the right answer?

Yes, machines can also tell the right answer but for making such

predictions correctly, it must rely on algorithms like the Artificial

Neural Network which is inspired by the way our brain processes

information by managing nonlinear relationships between inputs

and outputs. There are both surprising similarities and differences

in how humans think and how machines learn.

In this chapter, we will learn about the ANN, an efficient

computing system whose central theme is borrowed from the

biological nervous system. You will also get to know about the

Python packages, which are useful for constructing the ANNs.

With the help of some examples, we will understand how to

construct the ANNs.

Structure

In this chapter, we will cover the following topics:

Understanding of Artificial Neural Network

Installing useful Python packages for ANN

Examples of building some neural networks:

Perceptron-based classifier

Single-layer neural networks

Multi-layer neural networks

Vector quantization

Objective

The main objective of this chapter is to make the learner

understand how they can construct ANN in the Python

programming language. The learner will understand the basic

concepts of ANN along with some useful Python packages for

building ANNs. The learner will also be able to build neural

networks such as Perceptron-based classifiers, single-layer neural

networks, multi-layer neural networks, and vector quantization.

Understanding of Artificial Neural Network (ANN)

ANNs are those computational models that are inspired by the

way the human brain processes information using the biological

nervous system. In other words, we can say that the ANN is a

biologically inspired network of artificial neurons configured to

process the nonlinear relationship between inputs and outputs in

parallel like our brain does. Therefore, the ANNs are sometimes

termed as Artificial Neural Systems and Parallel Distributed

Processing

To understand the working of the ANN, we first need to

understand the working of the human brain, that is, how our

brain processes information using biological neurons.

A biological neuron

Does the following figure come into your mind when you hear the

word neural network?

Figure 8.1: Biological neuron credit: https://towardsdatascience.com

As you can see in the preceding figure, a biological neuron

consists of the following four parts:

Dendrites, which look like branches of a tree, are responsible for

receiving signals from other neurons they are connected to.

It is located inside the cell body of a neuron. Its key task is to

sum all the signals received from dendrites and generate the

input.

It is just like a wire through which a signal travels from one

neuron to another.

It is the point of interconnection between two neurons. The higher

the synaptic weight of the connections, the higher the amount of

signal that will be transmitted between neurons. Based on weights,

there are two types of synapses:

Excitatory A synapse is known as excitatory if the corresponding

synaptic weight is positive.

Inhibitory A synapse is known as inhibitory if the corresponding

synaptic weight is negative.

For better understanding, the figure depicting the model of a

biological neuron is shown here:

Figure 8.2: Model of a biological neuron

Working of ANN

The following is the diagram of an ANN (refer figure

Figure 8.3: Artificial Neural Network

From the preceding figure, we can see that the ANNs are a kind

of weighted directed graph. The nodes are formed by artificial

neurons and directed edges are connections between neuron

inputs and outputs. These directed edges are having weights

(representing the strength of interconnection among artificial

neurons) on them.

Now let us understand the working of the ANNs with the help of

the following steps:

First, it receives the input signal in various forms of information.

Once received, each input then is multiplied by its corresponding

weight.

Now, all the weighted inputs will be summed up inside the

artificial neuron, that is, the computing unit. Here, suppose if the

weighted sum is zero, a bias will be added to make the output

non-zero. The weight of the bias is always equal to 1.

At last, the sum of weighted inputs will be passed through an

activation function.

Here the question arises as to what is an activation function?

To obtain the desired output, we need to apply some set of

transfer functions applied over the input. These sets of transfer

functions are called activation functions.

Let’s see some of the most commonly used activation functions

(broadly divided into two categories, linear and nonlinear):

Linear

Such activation functions are also called identity activation

functions because the equation they have is similar to that of a

straight line.

F(x) = x

infinity to +infinity

It is used only at the output layer that is, the last layer of

neurons in ANN. The output layer produces the given outputs for

the program.

The following figure depicts the linear activation function:

Figure 8.4: Linear activation function

Nonlinear

The following are some of the nonlinear activation functions:

Sigmoid It is a kind of nonlinear activation function having an S-

shaped curve, as shown in figure

F(x) = sigm(x) =

0 to 1 (another commonly used range for sigmoid activation

function is from -1 to 1).

It is mainly used in the output layer for binary classification,

which refers to predicting one of two classes.

The following figure depicts the sigmoid activation function:

Figure 8.5: Sigmoid activation function

Tangent hyperbolic (Tanh): It is also a nonlinear activation function

having an S-shaped curve. It is basically a mathematically shifted

version of the sigmoid (logistic) activation function with the

additional value ranging from 0 to -1.0. This additional value is

useful in the case when the input values to the network are

negative.

F(x) = tanh(x) =

-1 to 1

It is mainly used in the hidden layer for classification between two

classes.

The following figure depicts the Tanh activation function:

Figure 8.6: Tanh activation function

RELU (Rectified Linear RELU, also a nonlinear activation function,

is the most widely used activation function because of having a

less computationally expensive nature than the Tanh and the

sigmoid activation functions.

F(x) = max(0, x), that is, it gives an output = x if x is positive

an 0 otherwise.

(0, infinity).

It is used in almost all Convolutional Neural Networks

The following figure depicts the RELU activation function:

Figure 8.7: RELU activation function

Leaky ReLU activation Leaky ReLU function is an improved version

of the ReLU activation function, which addresses one of the

biggest problems of the latter. As we know, in the ReLU activation

function, the gradient is 0 for all the negative values of inputs(x),

which further may lead to a dead ReLU problem, that is, the

neurons get dead in that region.

Rather than defining the function as 0, the leaky ReLU activation

function defines the function as an extremely small linear

component of input(x). It means this activation function returns

output for negative values as well. Therefore, we would not

encounter the problem of dead neurons in that region. The

following is the formula for leaky ReLU function:

f(x)= max (0.01*x,x)

The following table depicts the analogies between Biological

Neuron Model and Artificial Neuron model

Table 8.1: BNN versus ANN

The basic structure of ANN

ANNs are composed of layers of artificial neurons called units,

organized in interconnected layers, where each artificial neuron can

make simple decisions and feed those decisions to other neurons.

The following figure depicts the working of interconnected layers

comprised in an ANN framework:

Figure 8.8: Basic structure of ANN

The explanation of three interconnected layers comprised in an

ANN framework is as follows:

Input As the name implies, this layer contains those neurons/units

that receive input in various forms of information from the

outside world.

Hidden Hidden layer is an intermediate layer between input and

output layers. It contains the neurons/units that process the

inputs obtained by its previous layer. The activation function is

also applied over this layer.

Output As the name implies, the neurons/units in the output

layer collect and transmit the information exactly as it has been

designed to give.

The one thing that should be kept in mind is the connection

between units/neurons of adjacent layers having ‘weights’

associated with them.

Types of ANNs

The following table consists of various types of ANNs. The factors

used are network topology, number of hidden layers, weights, and

memory unit:

unit: unit: unit:

unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit:

unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit:

unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit:

unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit:

unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit:

unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit:

unit: unit:

unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit:

unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit:

unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit:

unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit:

unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit:

unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit:

unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit:

unit: unit: unit: unit:

unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit:

unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit:

unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit:

unit: unit: unit: unit: unit: unit: unit: unit:

unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit:

unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit:

unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit:

unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit:

unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit:

unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit: unit:

Table 8.2: Types of ANN

Optimizers for training the neural network

Optimizers may be defined as the algorithms or methods to

update various parameters, such as weights and learning rate, of

your NN to minimize an error function (loss function).

This section will walk you through various types of optimizers:

Gradient descent

Gradient descent, the most basic but most used optimization

method, is a first-order optimization algorithm that depends on

the first-order derivative of a loss function. This approach reduces

a loss function by moving in the direction opposite to that of the

steepest ascent and achieve the minima. Gradient descent is also

adopted in backpropagation in NN where the loss is transferred

from one layer to another and the parameter i.e., weights are

updated depending upon when the minimum loss is achieved. The

following is the mathematical equation of gradient descent:

Where W represents the weight and α represents the learning rate.

Advantages of Gradient descent:

Easy to understand.

The computation is easy.

Disadvantages of Gradient descent:

It may trap at local minima.

As this method calculates the gradient for the whole datasetin one

update, it may take months or years to converge to the minima if

the dataset is too large.

It requires large memory.

Stochastic Gradient Descent (SGD)

SGD is a variant of gradient descent. It updates the model’s

parameters one by one and more frequently. For example, if our

dataset is having 10000 rows, the stochastic gradient descent

algorithm will update the model’s parameters 10000 times in one

cycle of dataset rather than in one time in the gradient descent.

Advantages of Stochastic gradient descent:

It converges in less time.

It requires less memory.

Disadvantages of gradient descent:

The frequent update of the model parameter may result in a noisy

gradient.

It becomes computationally expensive because of frequent updates.

High variance.

Mini-Batch Gradient Descent

Mini-Batch gradient descent, a combination of the concepts of

batch gradient descent and SGD, splits the training dataset into

small batches and performs an update after every batch.

Advantages of Mini-Batch gradient descent:

Less variance.

It requires a medium amount of memory.

It performs more efficient gradient calculations.

Disadvantages of Mini-Batch gradient descent:

It does not guarantee good convergence.

The smaller the learning rate the slower will be the convergence

rate.

Stochastic Gradient Descent with Momentum

As the name entails, it is a stochastic optimization method that

adds a term called momentum to regular SGD. Momentum

accelerates the convergence towards the relevant direction and

increases the stability to a certain extent. The following is the

formula for SGD with momentum:

Here, L is the loss function.

β is another hyperparameter that takes the value from 0 to 1.

α is the learning rate.

is the gradient with respect to weight.

Advantages of SGD with Momentum:

It reduces the noise and high variance of parameters.

It converges faster than the gradient Descent method.

Disadvantages of SGD with Momentum:

An extra hyperparameter is added that needs to be selected

manually and accurately.

Adam (Adaptive Moment Estimation)

Adam optimizer, one of the most popular and famous gradient

descent optimization methods, works with momentums of first

and second order. Adam computes adaptive learning rates for

each parameter to decrease the velocity so that we do not jump

over the minimum. It stores the decaying average of the past

gradients as well as the decaying average of the past squared

gradients as follows:

Advantages of Adam:

It converges rapidly.

It reduces the high variance of parameters.

Disadvantages of Adam:

It is computationally costly.

Regularization

Neural networks are complex models, and it makes them prone to

overfitting i.e., they perform well on the training dataset but not

so good on the test dataset. In other words, we can say that

neural network models have a high variance, and they cannot

generalize well on the dataset they have not been trained on.

Getting more data and using regularization are the two ways to

address overfitting in neural networks. The first way i.e., getting

more data for training is quite impossible and expensive too.

That’s why regularization is the most common method to reduce

overfitting.

Regularization techniques

The following are the given two commonly used regularization

techniques applied in neural networks:

L1 and L2 regularization

L1 and L2, the most common types of regularization, update the

general cost function by penalizing the complex models that is,

adding another term known as the Complexity term or

Regularization

Cost function = Loss + Regularization term

The benefit of adding the regularization term is that the values of

weight matrices decrease. Now the question arises as to how it

reduces overfitting with this? After adding the regularization term,

the model assumes that an NN with smaller weight matrices

leads to simpler models and hence reduces the overfitting to quite

an extent.

The regularization term in both L1 and L2 differs as shown in the

following equation:

In L1:

Here, λ(lambda) is the regularization parameter whose value is

optimized for better results.

As seen, the absolute value of weights is penalized, hence the

weights may be reduced to zero here.

In L2:

L2 regularization forces the weights to decay towards zero but not

exactly zero, hence it is very useful when we are not trying to

compress our model. Otherwise, prefer L1 over L2.

Dropout

As the name implies, this regularization technique sets the

probability of keeping a certain node in the NN to make it much

smaller and simpler. We only decide the threshold but the

probability of keeping each node is set at random. For example,

there is a 25% probability of removing a node from the network if

we set the threshold to 0.75.

To regularize an NN, it might seem a bad idea to randomly

remove nodes from it. Yet, dropout regularization is a widely used

method. But why does it work so well?

In dropout regularization, each node has a random probability of

being removed, hence the NN cannot rely on any input node.

That’s the reason, the NN will be reluctant to provide high

weights to some features because they might vanish. Consequently,

the weights are spread across all the features and shrink the

model to regularize it.

Installing useful Python package for ANN

For building ANNs, we will be using a powerful Python package

for neural networks called NeuroLab. This package consists of

basic neural networks algorithms along with flexible network

configurations as well as learning algorithms for Python. The

following command is used to install the NeuroLab:

pip install NeuroLab

In case you are using an anaconda environment, the following

would be the command to install the NeuroLab:

conda install -c labfabulous neurolab

Examples of building some neural networks

Here, we will be creating some neural networks by using the

Python NeuroLab package.

Perceptron-based classifier

Perceptron is the building block of neural networks. The following

Python code is used to build a simple Perceptron-based classifier:

#Importing the required python packages:

import matplotlib.pyplot as plt

import neurolab as nl

#Providing the input values. We also need to provide the target

value because it is of supervised learning:

input = [[0.5, 0.3], [0, 1.5], [1.6, 0.8], [0.7, 2.1]]

target = [[0], [0], [0], [1]]

#Building the neural network with 2 inputs and 1 neuron:

net = nl.net.newp([[0, 1],[0, 1]], 1)

#Train the network using Delta rule:

error = net.train(input, target, epochs=200, show=15, lr=0.1)

#Visualizing the output and plotting the graph:

plt.figure()

plt.plot(error)

plt.xlabel('Number of epochs')

plt.ylabel('Training error')

plt.grid()

plt.show()

The output of the preceding Python script is given as follow:

Figure 8.9: Training error versus number of epochs (Perceptron-based

classifier)

Single-layer neural networks

With the help of the following written Python script, we will create

a single-layer neural network. This single-layer NN consists of

independent neurons acting on input data to produce the output.

We are using the text file named NN_single.txt as our input

whose first two columns are features and the last two columns

are labels.

#Importing the required python packages:

import numpy as np

import matplotlib.pyplot as plt

import neurolab as nl

#Loading the dataset from saved text file in local directory:

data_input = np.loadtxt("{Your Directory Path}/NN_single.txt")

#Separating the four columns of input data into 2 data columns

and 2 labels

data = data_input[:, 0:2]

labels = data_input[:, 2:]

#Plotting the input data:

plt.figure()

plt.scatter(data[:,0], data[:,1])

plt.xlabel('Dimension_1')

plt.ylabel('Dimension_2')

plt.title('Input-Data')

#Defining the minimum as well as maximum values for each

dimension

dimension1_min, dimension1_max = data[:,0].min(), data[:,0].max()

dimension2_min, dimension2_max = data[:,1].min(), data[:,1].max()

#Defining the number of neurons in the output layer

nn_output_layer = labels.shape[1]

#Defining a single-layer NN

dim1 = [dimension1_min, dimension1_max]

dim2 = [dimension2_min, dimension2_max]

neural_net = nl.net.newp([dim1, dim2], nn_output_layer)

#Training the NN with number of epochs and learning rate

error = neural_net.train(data, labels, epochs=100, show=10, lr=0.01)

#Visualizing and plotting the training progress

plt.figure()

plt.plot(error)

plt.xlabel('Number of epochs')

plt.ylabel('Training error')

plt.title('Training error progress')

plt.grid()

plt.show()

#Using the test data-points to test the classifier

print('\nThe Test Results are:')

data_test = [[2.5, 4.5], [2.9, 3.8], [3.6, 4.7],[4.5, 7.8]]

for item in data_test:

print(item, '-->', neural_net.sim([item])[0])

The output of the preceding Python script is given as follow:

Epoch: 10; Error: 8.0;

Epoch: 20; Error: 4.0;

Epoch: 30; Error: 4.0;

Epoch: 40; Error: 4.0;

Epoch: 50; Error: 4.0;

Epoch: 60; Error: 4.0;

Epoch: 70; Error: 4.0;

Epoch: 80; Error: 4.0;

Epoch: 90; Error: 4.0;

Epoch: 100; Error: 4.0;

The maximum number of train epochs is reached

Figure 8.10: Input data (single-layer neural network)

Figure 8.11: Training error versus number of epochs (single-layer neural

network)

The Test Results are:

[2.5, 4.5] --> [1. 1.]

[2.9, 3.8] --> [1. 1.]

[3.6, 4.7] --> [1. 1.]

[4.5, 7.8] --> [1. 1.]

Multi-layer neural networks

With the help of the following written Python script, we will create

a multi-layer neural network. This multi-layer NN, which works like

a regressor, consists of more than one layer to extract the

underlying patterns in the training data. We will generate the data

points based on the equation:.

#Importing the required python packages:

import numpy as np

import matplotlib.pyplot as plt

import neurolab as nl

#Generating some data point based on the equation: y= 2X^2+8.

minimum_val = -35

maximum_val = 35

num_points = 160

x = np.linspace(minimum_val, maximum_val, num_points)

y = 2 * np.square(x) + 8

y /= np.linalg.norm(y)

#Reshape the input dataset

data = x.reshape(num_points, 1)

labels = y.reshape(num_points, 1)

#Visualizing and plotting the input dataset

plt.figure()

plt.scatter(data, labels)

plt.xlabel('Dimension_1')

plt.ylabel('Dimension_2')

plt.title('Data_points')

#Creating the NN having two hidden layers-10 neurons in the first

hidden layer and 6 in the second hidden layer. The output layer

consists of 1 neuron.

NN = nl.net.newff([[min_val, max_val]], [10, 6, 1])

#Using the gradient-descend training algorithm to train the NN

NN.trainf = nl.train.train_gd

#Training the NN on previously generated data

error = NN.train(data, labels, epochs=100, show=10, goal=0.01)

#Running the NN on the training data-points

output = NN.sim(data)

y_pred = output.reshape(num_points)

#Plotting and visualizing

plt.figure()

plt.plot(error)

plt.xlabel('Number of epochs')

plt.ylabel('Error')

plt.title('Training error progress')

#Plotting visualizing the actual versus predicted output

x_dense = np.linspace(min_val, max_val, num_points * 2)

y_dense_pred=NN.sim(x_dense.reshape(x_dense.size,1)).reshape(x_de

nse.size)

plt.figure()

plt.plot(x_dense, y_dense_pred, '-', x, y, '.', x, y_pred, 'p')

plt.title('Actual versus predicted')

plt.show()

Output:

Epoch: 10; Error: 15.477455279786286;

Epoch: 20; Error: 13.528289284270963;

Epoch: 30; Error: 0.7008856414498756;

Epoch: 40; Error: 2.5499794643999127;

Epoch: 50; Error: 0.609645167038151;

Epoch: 60; Error: 1.4625867712043874;

Epoch: 70; Error: 0.12571106553919292;

Epoch: 80; Error: 0.22895324068235945;

Epoch: 90; Error: 0.5779960386023401;

Epoch: 100; Error: 0.4679757574525619;

The maximum number of train epochs is reached

Figure 8.12: Input data (multi-layer neural network)

Figure 8.13: Training error versus number of epochs (multi-layer neural

network)

Figure 8.14: Actual versus predicted output (multi-layer neural

network)

Vector quantization

Vector quantization, an N-dimensional version of rounding off, is

commonly used in Natural Language Processing Computer Vision

and Machine Learning We can use neural networks to create a

vector quantizer. The following Python script will be implemented

using the NeuroLab library:

#Importing required Python packages

import numpy as np

import neurolab as nl

import matplotlib.pyplot as plt

#Creating the train samples

input_data = np.array([[-3, 0], [-2, 1], [-2, -1], [0, 2], [0, 1], [0, -1],

[0, -2], [2, 1], [2, -1], [3, 0]])

labels = np.array([[1, 0], [1, 0], [1, 0], [0, 1], [0, 1], [0, 1], [0, 1], [1,

0], [1, 0], [1, 0]])

Creating NN with 2 layers (4 neurons in input layer and 2

neurons in output layer)

NN = nl.net.newlvq(nl.tool.minmax(input_data), 4, [.5, .5])

Training the neural network

error = NN.train(input_data, labels, epochs=500, goal=-1)

Plotting and visualizing the result

xx, yy = np.meshgrid(np.arange(-3, 3.4, 0.2), np.arange(-3, 3.4, 0.2))

xx.shape = xx.size, 1

yy.shape = yy.size, 1

i = np.concatenate((xx, yy), axis=1)

o = net.sim(i)

grid1 = i[o[:, 0]>0]

grid2 = i[o[:, 1]>0]

class1 = input_data[target[:, 0]>0]

class2 = input_data[target[:, 1]>0]

plt.plot(class1[:,0], class1[:,1], 'cs', class2[:,0], class2[:,1], 'ko')

plt.plot(grid1[:,0], grid1[:,1], 'b.', grid2[:,0], grid2[:,1], 'gx')

plt.axis([-3.3, 3.3, -3, 3])

plt.xlabel('Input_data[:, 0]')

plt.ylabel('Input_data[:, 1]')

plt.legend(['class 1', 'class 2', 'detected class 1', 'detected class 2'])

plt.title('Vector quantization using neural networks')

plt.show()

Output:

Epoch: 100; Error: 0.0;

Epoch: 200; Error: 0.0;

Epoch: 300; Error: 0.0;

Epoch: 400; Error: 0.0;

Epoch: 500; Error: 0.0;

The maximum number of train epochs is reached

Figure 8.15: Vector quantization using neural networks

Conclusion

In this chapter, we learned about the basics of Artificial Neural

Networks and build some neural networks in the Python

programming language. We got to know that the ANNs, also

termed as Artificial Neural Systems and Parallel Distributed

Processing Systems, are those computational models that are

inspired by the way the human brain processes information using

the biological nervous system. We also discussed the working of

the biological neuron so that we can understand how our brain

works.

From the implementation perspective, we learned how we can

build some neural networks, namely, Perceptron-based classifier,

single-layer neural network, multi-layer neural network, and vector

quantization in the Python programming language by using the

NeuroLab library.

In the next chapter, you will learn about the basic concepts of

reinforcement learning along with its implementation in the Python

programming language.

Questions

How does the biological neuron work?

What is Artificial Neural Network (ANN) and how does it work?

What are the various types of ANN? Explain.

What is an activation function? Explain various types of activation

functions.

How to build a Perceptron-based classifier in the Python

programming language?

How can you create a single-layer neural network using the Python

programming language?

How can you create a multi-layer neural network using the Python

programming language?

How to build a vector quantizer using the Python programming

language?

CHAPTER 9

Implementing Reinforcement Learning with Python

Introduction

Machine Learning is a large field of study that focuses on

learning, that is, acquiring skills or knowledge from experience. As

a practitioner in the field of ML, you may encounter different

types of learning. Among them, one is reinforcement learning, the

coolest branch of Artificial Intelligence which has already proven

its prowess by beating the world champions in games of Chess,

Go, and even DotA 2.

We humans went through the learning enforcement when we were

children. In childhood, when we started crawling and tried to get

up, we fell over and over, but our parents or elders were there to

lift us and teach us. Reinforcement Learning is a teaching based

on experience, that is, the machine must deal with what went

wrong before and look for the correct outlook. In simple words,

reinforcement learning is the concept where machines can teach

themselves based on the results of their own actions.

In this chapter, we will learn about reinforcement learning and its

building blocks, namely, environment and agent. With the help of

some examples, we will understand how to construct an

environment and an agent using the Python programming

language.

Structure

This chapter is structured as follows:

Understanding reinforcement learning

Markov Decision Process (MDP)

Building blocks of reinforcement learning

Environment

Agent

Constructing an environment using Python

Constructing an agent using Python

Objective

After studying this chapter, the reader will be able to construct a

reinforcement learning environment and agent in the Python

programming language. The reader will also be able to install and

use OpenAI Gym, an open-source Python library, to develop,

compare, and construct reinforcement learning algorithms.

Understanding reinforcement learning

Reinforcement learning methods are a bit different from

supervised, unsupervised, and semi-supervised learning methods.

In these kinds of learning algorithms, a trained agent interacts

with a specific environment. The job of the agent is to interact

with the environment and once observed, it takes actions

regarding the current state of that environment.

Workflow of reinforcement learning

The workflow of reinforcement learning is as follows (refer figure

Figure 9.1: Reinforcement learning workflow

Let’s understand the working of reinforcement learning methods in

the following steps:

Prepare an agent with some set of strategies.

Observe the environment’s current state.

Regarding the current state of the environment, select the optimal

policy and perform suitable action accordingly.

Agent gets reward or penalty based on the action it took

according to the current state of the environment.

If needed update the set of strategies.

Repeat the process until the agent learns and adopts the optimal

policy.

Markov Decision Process (MDP)

Let’s understand the basic elements of a reinforcement learning

problem:

The learner in reinforcement learning is called an agent. It is the

sole decision-maker.

It represents a physical world where an agent learns. It also

decides what actions are to be performed by an agent.

It consists of a list of actions that can be performed by an agent.

It represents the current situation of the agent.

It is the feedback given by the environment for every selected

action by the agent. It is a scalar value.

As the name implies, it is the strategy that the agent prepares to

map situations to actions.

Value It is the value of the state, that is, the current situation of

the agent. It shows up the rewards achieved by the agent from

starting of the state until the policy/strategy is executed.

The following figure depicts the terminologies used in

reinforcement learning:

Figure 9.2: Terminologies used in reinforcement learning

Markov Decision Process may be defined as the mathematical

framework to describe an environment in RL. The following

diagram depicts the interaction between agent and environment in

MDP:

Figure 9.3: Basic diagram of reinforcement learning

As shown previously, an MDP model contains the following:

A set of possible world states denoted by

A set of possible actions denoted by

A set of models.

A reward function denoted by R(s,

Working of Markov Decision Process (MDP)

First, at each discrete time step t = 0, 1, 2, 3, 4,…, the agent and

the environment interact with each other. Next, at each time step,

the agent gets the information about the environment state and

based on that state it will choose an action Based on the actions,

the agent will also get a numerical reward signal say In this way,

we will get the sequence like and so on.

The random variables and have a well-defined discrete probability

distributions, which by the virtue of Markov property, are

dependent only on the preceding state. Assume and R as the sets

of states, actions, and rewards, then the following is given the

probability that the values of and are taking values of and a along

with the previous state:

p(S',r|s,a) = = s, a}

Here p is the function that controls the dynamics of the process.

Difference between reinforcement learning and supervised learning

The following table shows the main differences between

reinforcement learning and supervised learning:

learning: learning:

learning: learning: learning: learning: learning: learning: learning:

learning: learning: learning: learning: learning: learning: learning:

learning: learning: learning: learning: learning: learning: learning:

learning: learning: learning: learning:

learning: learning: learning: learning: learning: learning: learning:

learning: learning: learning: learning: learning: learning: learning:

learning:

learning: learning: learning: learning:

learning: learning: learning: learning: learning: learning: learning:

learning: learning: learning: learning: learning: learning: learning:

learning:

learning: learning:

Table 9.1: Reinforcement Learning versus Supervised Learning

Implementing reinforcement learning algorithms

The following are the three approaches to implement

reinforcement learning algorithms:

Value-based This approach is all about finding the optimal value

function, i.e., the maximum value at a state under any policy.

That’s the reason, in this approach, the agent expects the long-

term return at any state(s) under policy

Policy-based This approach is all about finding the optimal policy

for the maximum future rewards. Opposite to the value-based

approach, it does not use the value function. There are mainly

two types of policies in the policy-based approach:

As the name implies, in deterministic policy, the same action is

produced by policy X at any state.

As the name implies, in stochastic policy, the action is determined

by probability.

Model-based In the model-based approach, to make the agent

learn, a virtual model is created for the environment. As the

model representation is different for each environment, there will

be no specific solution or algorithm for a model-based approach.

Reinforcement learning algorithms

Reinforcement learning algorithms are mainly used in AI and

gaming applications. Some of the mainly used reinforcement

learning algorithms are given as follows:

It is a value-based off-policy reinforcement learning algorithm for

supplying information to intimate which action an agent should

perform. Q-learning algorithm learns the value function Q(S, This

value function means how good to act a at a specific state

The working of the Q-learning algorithm is explained in the

following flowchart in figure

Figure 9.4: Working of Q-learning

State Action Reward State Action It is an on-policy reinforcement

learning algorithm that selects the action for each state while

learning using a specific policy. In SARSA, unlike Q-learning, the

maximum reward for the next state is not required for updating

the Q-value in the table. In other words, new actions and rewards

are selected using the same policy that determined the original

action.

It is named SARSA because it uses Q(s, a,r, s’, a’) quintuple as

described here:

s: Original state.

a: Original action.

r: Reward that is observed while following the state(s).

New state.

New action.

Deep Q Neural Network DQN, as the name implies, is a Q-

learning algorithm using neural networks. The use of DQN is for

a big state environment where updating a Q-table is a challenging

and complex task. In such cases, instead of updating the Q-table,

the neural network approximates the Q-value for every action and

state.

Types of reinforcement learning

The following are the two types of reinforcement learning:

Positive It may be defined as an event that occurs due to a

specific behavior and has a positive effect on that behavior. In

other words, it increases the strength and the frequency of that

behavior.

The advantage of positive reinforcement is that it maximizes the

performance as well as sustains the change for a long period of

time. On the other hand, the disadvantage of positive

reinforcement is that it can lead to the overload of states, which

can diminish the results.

Negative It is opposite to positive reinforcement learning as it

strengthens the specific behavior by avoiding the negative

condition.

The advantage of negative reinforcement is that it increases the

behavior as well as provides a decent to a minimum standard of

performance. On the other hand, the disadvantage of negative

reinforcement is that it only provides enough to meet up a

minimum behavior.

Benefits of reinforcement learning

Reinforcement learning, which applies to complex problems that

cannot be tackled with other ML algorithms, is closer to Artificial

General Intelligence RL explores various possibilities autonomously

as well as seeks long-term goals. Various benefits of RL include:

Focuses on the whole problem rather than dividing it into

Reinforcement learning, rather than dividing the problem into

subproblems, focuses on the whole problem to maximize the long-

term reward. RL understands the final goal and is capable of

trading off short-term rewards for long-term rewards.

No need to perform the data collection In reinforcement learning,

instead of a separate collection of data for the algorithms, training

data is obtained via the direct interaction of the agent with the

environment. In other words, training data is the experience of a

learning agent. Therefore, in RL, there is no need to perform the

data collection step.

Reinforcement learning algorithms are innovative because they can

come up with completely new solutions that were never even

considered by human beings.

Resistant to As we know that supervised learning algorithms will

pick up the bias, if there is any in the way data is labeled. But

on the other hand, reinforcement learning is resistant to bias and

gives us solutions that are free from bias or discrimination.

RL is adaptable, that is, it adapts to new environments

automatically hence does not require retraining and redeployment

to accomplish.

Challenges with reinforcement learning

Despite being successful in solving complex problems in diverse

simulated environments, the adoption of reinforcement learning in

the real world is slow. The following are the various challenges

that have made the uptake of RL difficult:

RL agent’s As discussed, training data is obtained via the direct

interaction of the agent with the environment, that is, training

data is the experience of the learning agent. Therefore, the rate of

data collection is limited by the dynamics of the environment. For

example, the environment having high latency will slow down the

learning curve. On the other hand, the environment having high-

dimensional state spaces will need extensive exploration for a

good solution.

Delay in The foundation principle of reinforcement learning is that

the agent can trade off short-term rewards for long-term gains.

This principle makes RL useful. But on the other hand, this

principle makes it difficult for the agent to find the optimal policy.

It is true in the case of those environments where the outcome is

unknown until many sequential actions are taken. For example, in

the game of chess, the outcome is unknown until both the

players have finished all their moves.

Inadequacy of The RL agent, deployed in the environment, takes

actions based on its experience. Due to the lack of interpretability,

the external observer sometimes cannot understand the reasons

for those actions taken by the agent. In such a scenario, it is

difficult to develop trust between the agent and the external

observer.

Building blocks of reinforcement learning

There are two building blocks of reinforcement learning: agent and

environment. Let’s understand them in detail, as follows:

Agent

The learner in reinforcement learning is called an agent. It uses

sensors and effectors for learning. Through sensors, it can

perceive the environment, whereas through effectors it can act

upon that environment. Following are some of the agents:

Human As the name implies, here the learners are human beings.

The eyes, ears, nose, skin, and tongue play the role of sensors to

perceive its environment. Other organs, such as hands, mouth,

and legs play the role of effectors for acting upon the

environment.

Robotic As the name implies, here the learners are robots. Camera

and IR range finders play the role of sensors to perceive its

environment. Other instruments such as motors and actuators

play the role of effectors for acting upon the environment.

Software As the name implies, here the learners are software

programs. For sensors and effectors, it has encoded bit strings.

Agent terminology

The following are some of the agent terminologies:

Performance The performance measure of an agent is the criteria

that determines how successful that agent is.

The behavior of an agent is the action performed by any agent

after any given sequence of percepts.

Percept is the perceptual inputs of agents.

Percept It represents the history of all perceptual inputs that have

been received by an agent.

Agent It may be defined as the map from the percept sequence

to an action taken by the agent.

Environment

It represents a physical world where an agent learns. It also

decides what actions to be performed by an agent. In simple

words, the environment is the whole world for the agent where it

lives as well as interacts. The agent interacts with its environment

by means of some action, but is confined to the rules of that

environment and cannot influence those rules by its actions.

Environment action space

Action space, as the name implies, is a set of actions that are

allowed to be an agent in each environment. There are two types

of environment action space as follows:

Discrete action In discrete action space, as the name implies, all

the actions are discrete in nature. For example, the Atari Wall

Breaker game has a discrete action space of [Left, Right], whereas

the Pac-Man game has a discrete action space of [Left, Right, Up,

Down].

Continuous action In continuous action space, as the name

implies, all the actions are continuous in nature. For example, the

environment of the self-driving car has a continuous action space

of [steering wheel rotation, velocity].

Types of environments

Different types of environments can be categorized as follows:

Deterministic versus stochastic In deterministic environments, the

next state of that environment can always be determined by the

current state and the actions of an agent. For example, while

driving a car if the agent performs an action of steering right, the

car will move right only.

On the other hand, in a stochastic environment, the next state of

that environment cannot always be determined by the current state

and the actions of the agent. For example, in case the agent’s

world of driving a car is not perfect and the agent tries to

accelerate the car, then there is a small probability that the car

may just stop.

Episodic versus sequential In episodic environments, the actions of

agents do not depend upon any previous action. The actions are

limited to the specific episode only. For example, in the game of

archery, the action of the agent is independent of its previous

attempts.

On the other hand, in sequential environments, the actions of

agents depend upon the previous actions. For example, in the

game of chess, all the future actions will be dependent on its

previous actions, that is, the history of sequences.

Fully observable versus partially observable In fully observable

environments, as the name implies, the agent is always aware of

the complete state of the environment at any point in time. For

example, the game of chess is fully observable because at any

given time the agent can always see the position of itself as well

as its opponent.

On the other hand, in partially observable environments, as the

name implies, the agent cannot be aware of the complete state of

the environment at any point in time. For example, the game of

poker is partially observable because at any given time the agent

cannot see the hands of its opponent.

Single-agent versus multi-agent In single-agent environments, as

the name implies, there is only one agent that interacts with that

environment. For example, only one person driving a car from one

point to another.

On the other hand, in multi-agent environments, as the name

implies, there is more than one agent that interacts with that

environment. For example, multiple cars are controlled by different

agents.

Discrete versus continuous In discrete environments, there is a

limited number of distinct and clearly defined states. For example,

the game of chess.

On the other hand, in continuous environments, the action space

of the environment is continuous in nature. For example, self-

driving cars.

Constructing an environment using Python

For constructing reinforcement learning environments, we will be

using an open-source library called OpenAI Gym. We can use the

following command to install it:

pip install gym

Once installed we can access various environments, such as and

so on. You can learn more about OpenAI Gym at

Env interface

The Env interface is used to create an environment. It provides

make() method, which can be used to create an environment, as

shown in the following Python script:

import gym

#creating cartpole-v0 environment

env = gym.make('CartPole-v0')

#intializing the environment

env.reset()

for _ in range(1000):

env.render()#render the environment for visual representation

env.step(env.action_space.sample())

env.close()#closing the environment for necessary cleanup

After running the preceding Python script, we will get a window

showing a cartpole moving to the right. The initial position of the

cartpole is depicted in the following figure:

Figure 9.5: CartPole environment-screenshot1

Next, we will see the cartpole moving. This is depicted in the

following figure:

Figure 9.6: CartPole environment-screenshot2

In the end, we will see the cartpole going out of the window.

This is depicted in the following figure:

Figure 9.7: CartPole environment-screenshot3

Constructing an agent using Python

For constructing reinforcement learning agents, we will use the

open-source library called OpenAI Gym as we did in the previous

section:

import gym

#Creating cartpole-v0 environment

env = gym.make('CartPole-v0')

for _ in range(20):

obs = env.reset()

for i in range(100):

env.render()

print(obs)

action = env.action_space.sample()

obs, reward, done, info = env.step(action)

if done:

print("Episode finished after {} timesteps".format(i+1))

break

When we run the preceding Python script, we will observe that

the cartpole balances itself. The following figure depicts it:

Figure 9.8: Creating an agent-screenshot1

If we let the script run for few seconds, we will see that the

cartpole is still standing in balance. The following figure depicts it:

Figure 9.9: Creating an agent-screenshot2

Conclusion

In this chapter, we learned about the basics of reinforcement

learning and construct its two building blocks, agent and

environment, in the Python programming language. We got to

know that in reinforcement learning methods, which are a bit

different from supervised, unsupervised, and semi-supervised

learning methods, a trained agent interacts with a specific

environment. The job of the agent is to interact with the

environment and once observed, it takes actions regarding the

current state of that environment.

From the implementation perspective, we learned how to build the

CartPole-v0 environment and a learning agent for this environment

that balance the cartpole in the Python programming language by

using the OpenAI Gym package. In the next chapter, you will

learn about the basic concept of Convolutional Neural Network

along with its implementation in the Python programming

language.

Questions

What is reinforcement learning? How does it work?

What are the various reinforcement learning algorithms? Explain

them in detail.

How reinforcement learning is different from supervised learning?

What is the role of the environment in reinforcement learning?

What are the various types of environments?

What is the role of an agent in reinforcement learning? Explain in

detail.

How to build a reinforcement learning environment in the Python

programming language?

How can you create a reinforcement learning agent in the Python

programming language?

CHAPTER 10

Implementing Deep Learning and Convolutional Neural Network

Introduction

Over the past decade, without any doubt, we have noticed a

quantum jump in the quality of a wide range of everyday

technologies. Let’s have a look at the applications around us like

self-driving cars, speech-enabled personal assistants, Gmail’s smart

reply, image recognition, chatbots, humanoid robots. All of these

applications get the power from Deep Learning Apart from these

applications, DL also powers some of the other interesting

applications in the world like Amazon Go, Kitty Hawk’s Cora, and

Google Tulip. The ability of deep learning to handle a large

amount of data makes it possible.

In this chapter, we will learn about deep learning and also how it

is different from machine learning. We will also learn about

Convolutional Neural Network which is one of the most popular

deep neural networks. We will understand how to construct an

image classifier using CNN in the Python programming language.

Structure

This chapter is structured as follows:

Understanding deep learning

Machine learning versus deep learning

Elucidation of convolutional neural networks

Architecture of convolutional neural networks

Localization and object detection with deep learning

Image classification using CNN in Python.

Objective

After studying this chapter, the reader will be able to construct an

image classifier using convolutional neural networks in the Python

programming language. The reader will also be able to install and

use Keras – a deep learning API written in python for developing

and evaluating deep learning models.

Understanding Deep Learning

Deep learning sets to be the most transformative technology

existing over the next decade. It is a subset of Machine Learning

which on the other hand is a subset of Artificial Intelligence

These three are a set of tracking dolls nested within each other

as shown in the following figure:

Figure 10.1: AI, ML, and DL

AI is a technique that enables machines to mimic human

intelligence. Whereas ML represents a set of algorithms that learn

from data and make all this possible. On the other hand, DL is a

type of ML inspired by the structure and function of the human

brain. Deep learning uses a multi-layered structure of algorithms

called Artificial Neural Network to draw similar conclusions as

human beings.

We have already discussed ANN and its implementation in the

Python programming language in chapter Just to recall, the basic

structure of ANN is shown here:

Figure 10.2: Basic structure of ANN

Machine learning versus deep learning

Although there are many differences between machine learning and

deep learning, the following table gives five most important

differences between these two subsets of AI:

AI: AI:

AI: AI: AI: AI: AI: AI: AI: AI: AI: AI: AI:

AI: AI: AI: AI: AI: AI: AI: AI: AI: AI: AI: AI: AI: AI: AI:

AI: AI: AI: AI: AI: AI: AI: AI: AI: AI: AI: AI: AI:

AI: AI: AI: AI: AI: AI: AI: AI: AI: AI: AI: AI: AI: AI:

AI: AI: AI: AI: AI: AI: AI: AI: AI: AI: AI: AI: AI: AI: AI: AI: AI:

Table 10.1: Machine Learning versus Deep Learning

Elucidation of Convolutional Neural Networks

Convolutional Neural Networks and ordinary neural networks are

similar to each other in the manner that they both are made up

of neurons having weights and biases. If we talk about the

working of ordinary neural networks, each neuron receives one or

more inputs, does the sum of the weights, and passes that

weighted sum through an activation function to produce the final

output. Here the question arises that if CNNs and ordinary NNs

are so much similar then what makes them different?

The difference between CNNs and ordinary NNs is in the types of

layers along with how they both treat the input data. As we know

that ordinary NNs ignore the structure of the input data and

convert all the input data into one-dimensional data before feeding

it into the network for final processing. Whereas, while processing,

CNN architecture considers the two-dimensional structure of

images. It can also take any other two-dimensional input such as

speech signals. The CNN architecture is designed in such a way

that it extracts the properties specific to images.

In contrast to standard multilayer neural networks, CNNs have

one or more convolutional layers and pooling layers followed by

one or more fully connected layers. That’s the reason we can

think of CNN as a special case of fully connected networks. Isn’t

it interesting?

The Architecture of Convolutional Neural Network

CNN is a list of layers that transforms the 3-dimensional (image

having a width, height, and depth) image volume into a 3-

dimensional output volume. The working seems similar as we

overlay an filter on the input image because each neuron in the

current layer of CNN is connected to a small patch of the output

from the previous layer. It uses M filters, that is, feature extractors

to get all the details like edges, corners, and so on. Before deep

diving into the architecture of CNN, let’s understand the layers

[INPUT-CONV-RELU-POOL-FC] used to construct CNNs, which is

given as follows:

INPUT The input layer holds the raw pixel values of an input

image. By raw pixel values, we mean the data of the image as it

is. For example, INPUT [6×6×3] means the array of matrix of

RGB; here 3 refers to RGB values. Whereas INPUT [4×4×1] means

the array of matrix of grayscale image; here 1 refers to grayscale

values.

Convolution Layer It is the first layer and most of the

computation i.e., convolutions between neurons and various

patches in the input is done in this layer. We can consider it as a

mathematical operation that takes an image matrix and a filter

(kernel) as two inputs.

An image matrix (h × w × d)

A filter or kernel of dimension × × d)

The output will be a volume of dimension +1) × (w- +1) × 1

For example, we can get the convolved feature map from 5 × 5

image matrix and 3 × 3 filter matrices by multiplying them as

follows:

follows:

follows:

follows:

follows:

follows:

follows:

follows:

follows:

Table 10.2: Image matrix: 5×5 and filter or kernel matrix: 3×3

The convolved feature map (3 × 3 output matrix) will be as

follows:

follows:

follows:

follows:

Table 10.3: Feature map

By applying various kinds of filters (kernels) in images, we can

perform operations such as identity, Edge detection, Sharpen, Box

Blur, Gaussian Blur, and so on.

The following are the two configuration hyperparameters, namely,

Stride and Padding, used in the Convolution layer:

The filter is moved across the input image from top to bottom

and left to right. While doing a horizontal movement, it observes

one-pixel column change. On the other hand, while doing a

vertical movement, it observes the one-pixel row change. The

amount of movement is called stride. The stride is almost always

symmetrical in width and height dimensions. The default stride in

2-D is (1, 1), which can also be changed to (2, 2). The change of

stride will change the size of the resulting feature map.

It may be defined as the addition of the pixels to the edge of the

input image. There are two options for padding:

Zero As the name implies, zero padding is the technique to pad

the input image with zeros.

Valid As the name implies, valid padding is the technique to keep

only the valid part of the input image. It will drop that part of

the image where the filter (kernel) does not fit.

Non-Linearity It is called a rectified linear unit layer. Its function is

to introduce non-linearity in the convolutional network. It basically

applies an activation function to the output of the previous layer.

The output of ReLU function is f(x) = max(0, x). We can also use

two other non-linear functions, namely, tanh or sigmoid but the

performance of ReLU is much better than these two.

Pooling Layer The pooling layer, another building block of CNN,

reduces the number of parameters in a case when images are too

large. Its main task is down-sampling or subsampling by reducing

the dimensionality of each map but retains important information.

It is called spatial pooling because it operates independently on

every slice of the input and resizes it spatially. Spatial pooling can

be of the following three types:

Max It involves taking the largest element from the rectified

feature map.

Average It involves taking the average for each part of the feature

map.

Sum It involves taking the sum of all elements in the feature

map.

Fully Connected Layer (FC We flatten our matrix into a vector and

feed it into the fully connected layer (FC layer) or more

specifically called the output layer. The output class score will also

be computed in this layer.

The typical architecture of CNN is shown here:

Figure 10.3: Architecture of CNN

Localization and object recognition with deep learning

Object recognition may be defined as the general term to describe

a collection of computer-related vision tasks – image classification,

object localization, and object detection – that involve identifying

objects mainly in digital images.

First, let’s understand these three computer vision tasks:

Image As the name implies, it involves predicting the class of an

object in a digital image. The input for image classification would

be an image with a single object and the output would be a class

label.

Object It refers to locating the presence of one or more objects

and drawing a bounding box to show their location. The input for

object localization would be an image with one or more objects

and the output would be one or more bounding boxes depending

on the number of objects in an image.

Object You can say it is the combination of image classification

and object localization because it refers to locating the presence

of one or more objects and drawing a bounding box to show

their location along with predicting the classes of the located

objects in an image. The input for object detection would be an

image with one or more objects and the output would be one or

more bounding boxes along with a class label for each bounding

box.

Object It is another extension to the breakdown of computer

vision tasks. In this, the instances of recognized objects, instead

of indicating by a coarse bounding box, are indicated by

highlighting the specific pixels of the object.

The following figure gives an overview of the object recognition

computer vision tasks:

Figure 10.4: Object recognition computer vision tasks

We got most of the recent innovations in image recognition from

ImageNet Large Scale Visual Recognition Challenge which is an

annual academic competition with a separate challenge for

previously defined problems. Let’s see an example of comparing

single-object localization (a simpler version of the more broadly

defined object localization) and object detection taken from the

ILSVRC review (refer figure

Figure 10.5: Comparison between single-object localization and object

detection

Deep learning models

As we are now familiar with the problem of image classification,

object localization, object detection, and object segmentation, next

we will understand some top-performing deep learning models.

R-CNN Model family

R-CNN family of methods was developed by Ross Girshick, et al.

It may stand for Regions with CNN Features or Region-Based

Convolutional Neural R-CNN model family includes three

techniques, namely, R-CNN, Fast R-CNN, and Faster-RCNN. Let’s

have a look at all of them:

The R-CNN, one of the first large and successful applications of

CNN to the problem of object detection, object localization, and

object segmentation, was described in the by Ross Girshick, et al.

Their proposed R-CNN model is having the following given

modules:

Region This is the first module, and it generates and extracts

category-independent region proposals. Example: candidate

bounding boxes.

Feature This is the second module and as the name implies, it

extracts features from each candidate region. Example: Using a

deep CNN.

This is the third module, and as the name implies, it classifies

features as one of the known classes. Example: Linear Support

Vector Machine Classifier model.

The architecture of the model, taken from the previously

mentioned paper, is summarized as follows:

Figure 10.6: R-CNN model architecture

Fast The Fast R-CNN is proposed by Ross Girshick in a 2015

titled Fast R-CNN as an extension to address the following given

limitations of R-CNN:

R-CNN involves the preparation and operation of three separate

models, hence the training process in this technique is a multi-

stage pipeline.

The training in R-CNN is expensive because training a deep

convolutional neural network on so many region proposals per

image is very slow.

Object detection in R-CNN is slow because making a prediction

using a deep convolutional neural network on so many region

proposals is very slow.

The architecture of the model, taken from the previously

mentioned paper, is summarized as follows:

Figure 10.7: Fast R-CNN model architecture

As we can see in the architecture of the Fast R-CNN image, the

model takes the photograph of a set of region proposals as input.

This set of region proposals then passed through a deep CNN

and here a pre-trained CNN (such as a VGG-16) is used for

extracting features. The end of this deep CNN is a custom layer

extracting feature specific for a given input candidate region. This

custom layer is called Region-of-Interest Pooling. After this, the

fully connected layer interprets the output of the CNN and

bifurcates it into two outputs. One output will be used for class

prediction via a SoftMax layer and the other output will be used

with a linear output for the bounding box. The whole process is

repeated many times for each region of interest in a given

photograph.

Faster The Faster R-CNN is proposed by Shaoqing Ren et. al in a

2016 titled “Faster R-CNN: Towards Real-Time Object Detection

with Region Proposal Networks” with both improved speed of

training and detection. Their proposed Faster R-CNN model has

the following given modules:

Region Proposal This is the first module, and it consists of CNN

for proposing regions and the type of object to consider in the

region as well.

Fast This is the second module and as the name implies, it uses

CNN to extract features from the proposed regions and can

output the bounding box along with class labels.

The first module, that is the region proposal network, acts as an

attention mechanism for the second module, that is the fast R-

CNN network. The architecture of the model, taken from the

previously mentioned paper, is summarized as follows:

Figure 10.8: Faster R-CNN model architecture

YOLO model family

YOLO family of methods, another popular family of object

recognition model, was developed by Joseph Redmon, et al. It

stands for You Only Look YOLO family of models achieve object

detection in real time and hence are much faster than R-CNN

models. YOLO model family includes techniques, namely, YOLO,

YOLOv2, and YOLOv3. Let’s have a look at all of them:

YOLO: The YOLO model, one of the fastest and successful

applications of CNN to the problem of object detection, was

described in the by Joseph Redmon, et al. The YOLO approach

single NN trained end-to-end. The trained NN takes the

photograph as input and predicts both bounding boxes and their

class labels directly. This technique is relatively fast as it operates

at 45 frames per second and up to 155 frames per second. One

of the disadvantages of this technique, as compared with R-CNN,

is that it offers lower predictive errors that is, having more

localization errors.

The working of YOLO model starts by splitting the input image

into a grid of cells. Each cell is responsible for predicting a

bounding box and its class labels. This prediction is done if the

center of a bounding box falls within the cell. For example, an

image may be divided into 7× 7 grids. If each cell in the grid

may predict 2 bounding boxes, the output will be 94 proposed

bounding box predictions. The summary of predictions made by

YOLO model, taken from the previously mentioned paper, is

summarized as follows:

Figure 10.9: Summary of predictions made by YOLO

YOLOv2 and To further improve the YOLO model performance,

the YOLOv2 model was purposed by Joseph Redmon and Ali

Farhadi in their titled YOLO9000: Better, Faster, This model is

referred to as YOLOv2 but as it was trained on two object

recognition datasets in parallel and capable of predicting 9000

object classes, it is given the name YOLO9000. It uses batch

normalization, high-resolution input images, anchor boxes (as used

in faster R-CNN), and pre-defined bounding boxes with useful

shapes and sizes.

The following is the example, taken from the previously mentioned

paper, of the representation chosen while predicting the bounding

box position and shape:

Figure 10.10: Example of the representation chosen while predicting

bounding box position and shape

YOLOv3 model is having some reasonably minor improvements. It

was proposed by Joseph Redmon and Ali Farhadi in their titled

YOLOv3: An Incremental

Image classification using CNN in Python

Here, we are going to create an image classifier using CNN in

the Python programming language. The image classifier

distinguishes which category or class the input image belongs to.

For this, we will use Keras deep learning library, a high-level

neural networks API, written in Python and capable of running on

top of TensorFlow, CNTK, or Theno. You can learn more about

Keras at To install Keras on your computer system, use the

following commands:

pip install keras

To install it using the command would be as follows:

conda install –c conda-forge keras

For training and testing the dataset of images, we will use the

dataset of cats and dogs, which you can download from the link

Importing the required libraries and packages.

from keras.models import Sequential

from keras.layers import Conv2D

from keras.layers import MaxPooling2D

from keras.layers import Flatten

from keras.layers import Dense

from keras.layers import Activation

Initializing the CNN by using the Sequential Class from keras.

Image_Classifier = Sequential()

Adding the first convolutional layer.

Image_Classifier.add(Conv2D(filters=32,kernel_size=(3, 3),

input_shape = (64, 64, 3), activation = 'relu'))

Let’s understand the working of arguments we passed previously

in the Convolutional layer:

It denotes the number of feature detectors.

It denotes the shape of feature detector. For example, (3, 3)

represents a matrix.

It will standardize the size of the input image.

It represents the activation function to introduce non-linearity. Here

we will use the ReLU activation function.

#Adding a pooling layer.

Image_classifier.add(MaxPooling2D(pool_size = (2, 2)))

The argument pool_size is representing the shape of the pooling

window:

Adding the flatten layer that will convert the data into a 1-

Dimensional array.

Image_classifier.add(Flatten())

Adding Full-Connection layers consisting of two layers, Hidden

layer and Output layer.

Img_classifier.add(Dense(units = 128, activation = 'relu'))

Img_classifier.add(Dense(units = 1, activation = 'sigmoid'))

The argument units are representing the number of nodes in the

layer:

#Compiling our classifier.

Image_classifier.compile(optimizer = 'adam', loss =

'binary_crossentropy', metrics = ['accuracy'])

The details of arguments are given as follows:

It is used to reduce the cost calculated by cross-entropy, which is

a measure of the difference between two probability distributions

for random variables.

It is used to calculate the error.

It is used to represent the efficiency of the model.

Rescaling the images by using ImageDataGenerator.

from keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(rescale = 1./255,shear_range =

0.2, zoom_range = 0.2,horizontal_flip = True)

test_datagen = ImageDataGenerator(rescale = 1./255)

The details of arguments are described as follows:

It represents a rescaling factor. The default value of rescale

argument is none. If the value is none or there will be no

rescaling else the data will be multiplied by the value provided in

the argument.

It represents the sheer intensity.

It represents the range for random zooming of the input image.

Now fit the CNN to the images that lets the classifier directly

identify the labels form the name of the directories where images

lie in.

training_set =

train_datagen.flow_from_directory('D:/Dataset/train',target_size =

(64, 64),batch_size = 32,class_mode = 'binary')

test_set =

test_datagen.flow_from_directory('D:/Dataset/test',target_size = (64,

64),batch_size =32,class_mode = 'binary')

The details of arguments are described as follows:

It gives the location of the training_set and test_set both.

It represents the dimension to which all input images will be

resized.

It represents the size of the batches of data. Its default value is

This argument will determine the type of label arrays that are

returned.

Training and evaluating our classifier.

Image_classifier.fit_generator(training_set,steps_per_epoch =

4000,epochs = 15,validation_data = test_set,validation_steps = 10)

The details of arguments are given as follows:

As the name implies, it represents the sequence used to train the

neural network.

This argument represents the total number of steps.

It represents one complete cycle of predictions of the neural

network.

As the name implies, this argument represents the sequence used

to test the neural network.

As the name implies, this argument represents the total number

of steps to yield from

#Making new predictions by providing test image to our classifier.

import numpy as np

from keras.preprocessing import image

test_image = image.load_img('{File file path to image}', target_size

= (64, 64))

test_image = image.img_to_array(test_image)

test_image = np.expand_dims(test_image, axis = 0)

result = Image_classifier.predict(test_image)

training_set.class_indices

if result[0][0] == 1:

prediction = 'dog'

else:

prediction = 'cat'

print(prediction)

Conclusion

In this chapter, we learned about the basics of deep learning and

convolutional neural network, which is one of the most popular

deep neural networks. We also constructed an image classifier

using CNN in the Python programming language.

We got to know that the difference between CNNs and ordinary

NNs is in the types of layers along with how they both treat the

input data. Ordinary NNs ignore the structure of the input data

and convert all the input data into one-dimensional data before

feeding it into the network for final processing. Whereas, while

processing, CNN architecture considers the two-dimensional

structure of images. The CNN architecture is designed in such a

way that it extracts the properties specific to images. We also

learned about the architecture of CNN and its layers. From the

implementation perspective, we learned how to build an image

classifier in the Python programming language by using CNN.

Questions

What is deep learning? How is it different from machine learning?

What are Convolutional Neural Networks (CNN)? Explain in detail.

What are various layers used in the architecture of CNN?

What is the role of the convolutional layer in CNN? Also, explain

the role of stride and padding.

Which activation function is used to add non-linearity in CNN?

How does it work?

How to build an image classifier using CNN in the Python

programming language?

1 https://arxiv.org/abs/1409.0575

2 https://arxiv.org/abs/1311.2524

3 https://arxiv.org/abs/1504.08083

4 https://arxiv.org/abs/1506.01497

5 https://arxiv.org/abs/1506.02640

6 https://arxiv.org/abs/1612.08242

7 https://arxiv.org/abs/1804.02767

Index

A

acoustic modeling 169

activation function

about 185

Leaky ReLU activation function 188

linear activation function 185

nonlinear activation function 186

Adaptive Moment Estimation (Adam)

about 193

advantages 193

disadvantages 194

adaptive weight neural networks 190

adjusted R-squared (R2) 90

agent

about 216

constructing, with Python 220

types 13

agent environment

about 16

complete, versus incomplete 17

deterministic, versus stochastic 17

discrete, versus continuous 17

fully observable, versus partially observable 17

single-agent, versus multi-agent 18

static, versus dynamic 17

agent terminology 216

agglomerative hierarchical algorithms 107

agglomerative hierarchical clustering

dendrograms role 108

AI agent

about 10

structure 12

AI applications

building, with Python

AI applications, libraries

Caffe 19

Keras 19

Matplotlib 19

NLTK 19

Pandas 19

Scikit-learn 19

TensorFlow 19

AI environment 10

ANN framework

hidden layer 190

input layer 189

output layer 190

application industries, Artificial Intelligence (AI)

automobiles 8

digital marketing 8

e-commerce 8

education 7

healthcare 7

Artificial General Intelligence (AGI)

about 214

benefits 215

Artificial Intelligence (AI)

about 169

application industries 7

concept 4

learning 9

need for 3

study fields 6

types 4

Artificial Neural Network (ANN)

about 224

basic structure 189

biological neuron 182

Python package, installing 195

types 190

working 185

Artificial Neural Systems 182

Augmented Reality (AR) 7

B

back-end processing 169

Bag-of-Words (BoW) model 145

Balanced Iterative Reducing Clustering using Hierarchies (BIRCH)

95

Bernoulli Naïve Bayes 51

binary labels

used, for implementing Naïve Bayes classifier 53

biological neuron

about 182

axon 183

dendrites 183

soma 183

synapse 183

Biological Neuron Network (BNN) 188

BoW algorithm

implementing, with Python 148

need for

C

cab-service ride-sharing feature 9

CentOS

Python3, installing on 23

chunking 143

class conditional independence 51

classification

classifier

accuracy, evaluating 80

building, with Python 76

dataset, importing

data-training, organizing 78

ML library, importing 76

ML model, creating 79

ML model, training 79

testing set 78

test set result, predicting 79

clustering 94

Clustering in Quest (CLIQUE) 96

Clustering Large Applications based upon Randomized Search

(CLARANS) 96

Clustering using Representatives (CURE) 95

cluster methods

about 95

density-base method 95

grid method 96

hierarchical-based method 95

mean-shift clustering algorithm 104

partitioning method 96

CNN layers

convolution layer (CONV) 227

fully connected layer (FC layer) 229

input layer 227

non-linearity (ReLU) 228

pooling layer (POOL) 228

Complexity term 194

components, Machine Learning (ML) algorithm

experience 30

performance 30

task 30

Computer Algebra System (CAS) 119

Computer Vision (CV) 203

Computer Vision (CV) tasks

image classification 230

object detection 230

object localization 230

object segmentation 230

constituency grammar 143

Convolutional Neural Networks (CNN)

about 226

architecture 226

used, for image classification in Python

convolution layer (CONV)

padding 228

stride 228

count vectorization 151

D

Davies-Bouldin index 113

decision tree algorithm

about 44

implementing, in Python 47

deep learning

about 224

versus Machine Learning (ML) 225

deep learning models

about 231

R-CNN model family 231

YOLO model family 234

Deep Q Neural Network (DQN) 213

Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) 95

density-base method 95

divisive hierarchical algorithms 107

document

categorizing 157

Don’t Repeat Yourself (DRY) 18

dropout regularization 195

Dunn index 114

Dynamic Bayesian Network (DBN) 169

dynamic neural networks 191

E

eager learning

versus lazy learning 80

elbow method

for k evaluation, in k-means clustering algorithm 101

environment

constructing, with Python 219

environment rules

continuous action space 217

discrete action space 217

environment action space 216

environment types 218

Euclidean distance 64

excitatory synapse 183

Expected Time of Arrivals (ETAs) 9

F

Faster R-CNN 233

Faster R-CNN modules

Fast R-CNN 234

region proposal network 234

Fast R-CNN 233

feature extraction techniques

linear predictive cepstral coefficient (LPCC) 166

mel frequency cepstral coefficient (MFCC) 168

perceptual linear prediction (PLP) 168

Fedora

Python3, installing on 23

Feedforward Neural Networks (FNNs) 190

fixed weight neural networks 190

front-end processing, techniques

feature extraction 166

preprocessing 166

fully connected layer (FC layer) 229

G

Gaussian Naïve Bayes 51

gender finding 158

General Motors (GM) 8

goal-based agent 15

Google-Speech-API 178

gradient descent

about 191

advantages 191

disadvantages 192

Graph Neural Networks (GNN) 9

grid method 96

H

Hamming distance 64

Hidden Markov Model (HMM) 169

hierarchical-based method 95

hierarchical clustering algorithm

about 107

advantages 112

agglomerative hierarchical algorithms 107

dendrograms role 109

disadvantages 112

divisive hierarchical algorithms 107

implementing, in Python 110

human agent 10

humanoid 9

I

identity activation function 185

image classification

with CNN, in Python

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 231

inhibitory synapse 183

Inverse Document Frequency (IDF)

K

Kanren 119

Keras

reference link 236

Kernel SVM

about 60

implementing, in Python

k-means clustering

about 96

implementing, in Python 68

k-means clustering algorithm

about 97

advantages 104

disadvantages 104

elbow method, for k evaluation 101

implementing, in Python 100

k-Nearest Neighbor (kNN) 226

KNN Classifier

implementing, in Python 66

KNN regressor

implementing, in Python 68

Knowledge Representation (KR) 7

L

L1 regularization 194

L2 regularization 194

LancasterStemmer 138

language modeling 169

language modeling, approach

grammar-based approach 169

stochastic approach 169

lazy learners 80

lazy learning

versus eager learning 80

Leaky ReLU activation function 188

learning styles, Machine Learning (ML) algorithm

supervised learning 31

lemmatization

about 141

versus stemming 142

linear activation function 185

linear predictive cepstral coefficient (LPCC) 166

linear regression 34

linear regression, types

Multiple Linear Regression (MLR) 39

Simple Linear Regression (SLR) 35

Linux

Python3, installing on 22

Linux Mint

Python3, installing on 23

localization

with deep learning 229

logic programming 118

building blocks 119

Python packages 119

logic programming examples

implementing 119

prime members, generating 120

prime numbers, checking 120

puzzles, solving

logistic regression

M

Machine Learning (ML)

about 204

versus deep learning 225

Machine Learning (ML) algorithm

about 34

components 29

decision tree algorithm 44

k-Nearest Neighbor (kNN) 63

learning styles 30

linear regression 34

logistic regression

Naïve Bayes algorithm 51

random forest algorithm 48

reinforcement learning 34

semi-supervised learning 33

Support Vector Machine (SVM) 55

Machine Learning (ML), types

reinforcement learning 10

supervised learning 10

unsupervised learning 10

macOS

Python3, installing on 25

Mac OS

Python’s NLTK Package, installing 131

Mac OS X

Python3, installing on 25

Manhattan distance 65

maps and directions 9

Markov Decision Process (MDP)

about 210

working 211

Maximum Marginal Hyperplane (MMH) 56

Mean Absolute Error (MAE) 88

Mean Absolute Error (MAE), characteristics

linear score 88

robust to outliers 88

mean-shift clustering algorithm

about 104

advantages 106

disadvantages 107

implementing, in Python 106

working 104

Mean Squared Error (MSE) 88

Mini-Batch gradient descent

about 192

advantages 192

disadvantages 192

ML clustering algorithms

about 96

k-means clustering algorithm 97

model-based approach 212

model-based reflex agent 14

Momentum

using, in Stochastic Gradient Descent (SGD) 193

morphological analysis 130

multi-layer neural networks 200

multi-layer NNs 190

Multinomial Naïve Bayes 51

multiple labels

used, for implementing Naïve Bayes classifier

Multiple Linear Regression (MLR)

about 84

implementing, in Python 40

N

Naïve Bayes algorithm 51

Naïve Bayes classifier

building, with Naïve Bayes models in Python 51

implementing, with binary labels 53

implementing, with multiple labels

Naïve Bayes models

Bernoulli Naïve Bayes 51

Gaussian Naïve Bayes 51

Multinomial Naïve Bayes 51

used, for building Naïve Bayes classifier in Python 51

Natural Language Processing (NLP)

about 203

implementing 130

logical steps 129

phases 129

working 129

negative reinforcement 214

neural network, optimizers

Adaptive Moment Estimation (Adam) 193

for training 191

gradient descent 191

Mini-Batch gradient descent 192

SGD with Momentum 193

Stochastic Gradient Descent (SGD) 192

neural networks, build examples

about 195

multi-layer neural networks 200

perceptron-based classifier 196

single-layer neural networks 199

vector quantization 204

N-Grams 152

NLTK corpus

downloading 133

nltk.tokenize package

RegexpTokenizer 136

tokenizing paragraphs 137

tokenizing sentences 134

TreebankWordTokenizer 135

WordPunctTokenizer 136

nonlinear activation function

about 186

Rectified Linear Unit (RELU) 188

Sigmoid (logistic) 186

Tangent hyperbolic (Tanh) 187

non-linearity (ReLU) 228

non-parametric algorithm 104

noun-phrase chunking

implementing, in Python 144

O

object recognition

about 229

with deep learning 229

OpenAI Gym 218

Ordering Points to Identify Clustering Structure (OPTICS) 95

P

padding, options

valid padding 228

zero padding 228

Parallel Distributed Processing Systems 182

partial parsing 142

partitioning method 96

P.E.A.S representation

about 13

self-diving vehicles 13

vacuum cleaner 13

perceptron-based classifier 196

performance metrics for classification

about 81

accuracy 82

confusion matrix 81

F1 score 84

precision 83

recall 83

specificity 83

performance metrics for clustering

about 113

Davies–Bouldin index 113

Dunn index 114

performance metrics for regression

about 88

adjusted R-squared (R2) 90

Mean Absolute Error (MAE) 88

Mean Squared Error (MSE) 88

R-squared (R2) 89

phases, Natural Language Processing (NLP)

morphological analysis 130

pragmatic analysis 130

semantic analysis 130

syntactic analysis/parsing 130

policy-based approach

about 212

stochastic 212

policy-based approach, policies

deterministic 212

pooling layer (POOL) 228

PorterStemmer 138

positive reinforcement 214

pragmatic analysis 130

Principal Component Analysis (PCA) 33

PyAudio package 177

Python

decision tree algorithm, implementing 47

hierarchical clustering algorithm, implementing 110

image classification, with CNN

Kernel SVM, implementing

k-means clustering algorithm, implementing 100

k-means clustering, implementing 68

KNN Classifier, implementing 66

KNN regressor, implementing 68

mean-shift clustering algorithm, implementing 106

Multiple Linear Regression (MLR), implementing 40

Naïve Bayes models, for building Naïve Bayes classifier 51

noun-phrase chunking, implementing 144

random forest algorithm, implementing 50

Simple Linear Regression (SLR), implementing

SVM algorithm, implementing 57

used, for building classifier 76

used, for building regressor 85

used, for constructing agent 220

used, for constructing environment 219

used, for implementing BoW algorithm 148

Python3

about 18

compiling, from source

installing 20

installing, from source

installing, on CentOS 23

installing, on Fedora 23

installing, on Linux 22

installing, on Linux Mint 23

installing, on macOS 25

installing, on Mac OS X 25

installing, on Ubuntu 22

installing, on Windows 21

setting up 20

used, for building AI applications

Python package

for logic programming 119

Google-Speech-API package 178

installing, for ANN 195

PyAudio package 177

SpeechRecognition package 178

Python’s NLTK Package

installing 130

installing, on Mac OS 131

installing, on operating system 131

installing, on Unix OS 131

installing, on Windows OS 131

installing, through Anaconda distribution installer 132

Q

Q-learning 213

R

Radial Basis Function (RBF) 60

random forest algorithm

about 48

implementing, in Python 50

Rapid Application Development (RAD) 18

rationality 12

R-CNN 232

R-CNN model family

about 231

Faster R-CNN 233

Fast R-CNN 233

R-CNN 232

R-CNN modules

classifier 232

feature extractor 232

region proposal 232

rectified linear unit layer 228

Rectified Linear Unit (RELU) 188

Recurrent Neural Networks (RNNs) 190

RegexpStemmer 139

Region-of-Interest (RoI) 233

regression 84

regressor

building, with Python 85

data, organizing into testing set 86

data, organizing into training set 86

dataset, importing 85

ML library, importing 85

ML model, creating 86

model, training 86

regression line, plotting 86

variance, calculating 87

regularization 194

regularization techniques

about 194

dropout regularization 195

L1 regularization 194

L2 regularization 194

Regularization term 194

reinforcement learning algorithms

about 212

Deep Q Neural Network (DQN) 213

implementing 212

Q-learning 213

State Action Reward State Action (SARSA) 213

reinforcement learning algorithms, approach

model-based approach 212

policy-based approach 212

value-based approach 212

reinforcement learning (RL)

about 208

benefits 214

challenges 215

reinforcement learning algorithms, implementing 212

versus supervised learning 211

workflow 209

reinforcement learning (RL), building blocks

about 215

agent 216

agent terminology 216

environment 216

reinforcement learning (RL), types

about 214

negative reinforcement 214

positive reinforcement 214

robotic agent 10

R-Squared (R2) 89

S

semantic analysis 130

semi-supervised learning

about 33

approach-I 33

approach-II 33

SGD with Momentum

about 193

advantages 193

disadvantages 193

Sigmoid (logistic) 186

Silhouette analysis 113

Simple Linear Regression (SLR)

about 84

implementing, in Python

simple reflex agent 14

single-layer neural networks 199

single-layer NNs 190

SnowballStemmer 139

software agent 11

spatial pooling, types

average pooling 229

max pooling 229

sum pooling 229

speech recognition

audio signal, characterization 172

audio signal, visualization 171

basics 164

building 169

feature extraction 176

monotone audio signal generation 174

spoken words, recognizing 177

SpeechRecognition package 178

speech recognition system

back-end processing 169

front-end processing 165

problems 170

working 165

Speech-to-Noise Ratio (SNR) 166

State Action Reward State Action (SARSA) 213

static neural networks 191

Statistical Information Grid (STING) 96

stemming

about 137

versus lemmatization 142

stemming algorithms 138

Stochastic Gradient Descent (SGD)

about 192

advantages 192

disadvantages 192

stop words

about 149

removing 149

removing, with NLTK library 149

study fields, Artificial Intelligence (AI)

Deep Learning (DL) 6

Knowledge Representation (KR) 7

Logic 6

Machine Learning (ML) 6

supervised learning

about 31

versus reinforcement learning (RL) 211

supervised learning, features

anomaly detection 33

association 33

clustering 32

dimensionality reduction 33

input variable 32

supervised learning methods

about 31

classification 31

regression 31

Support Vector Machine (SVM)

about 55

Hyperplane 56

Margin 56

Support Vectors 56

SVM algorithm

implementing, in Python 57

working 55

SymPy 119

synapse

about 183

excitatory synapse 183

inhibitory synapse 183

syntactic analysis 130

syntactic parsing 130

T

Tangent hyperbolic (Tanh) 187

Term Frequency–Inverse Document Frequency (TF–IDF) 152

Term Frequency (TF) 152

tokenization 134

transformers 155

types, Artificial Intelligence (AI)

bodily kinesthetic intelligence 5

inter-personal intelligence 5

intra-personal intelligence 5

linguistic-verbal intelligence 4

logical-mathematical intelligence 4

musical intelligence 4

naturalistic intelligence 6

visual-spatial intelligence 5

U

Ubuntu

Python3, installing on 22

Unix OS

Python’s NLTK Package, installing 131

unsupervised learning 32

utility-based agent 16

V

valid padding 228

value-based approach 212

vectorization 150

vectorization techniques

about 150

count vectorization 151

N-Grams 152

Term Frequency–Inverse Document Frequency (TF–IDF) 152

vector quantization 204

video games 9

Virtual Personal Assistants (VPAs) 8

Virtual Reality (VR) 7

W

Windows

Python3, installing on 21

Windows OS

Python’s NLTK Package, installing 131

Y

YOLO model family

about 234

YOLO model 235

YOLOv2 model 235

YOLOv3 model 236

Z

zero padding 228

	Start

