
T E C H N O L O G Y I N A C T I O N ™

Custom Raspberry
Pi Interfaces

Design and build hardware interfaces
for the Raspberry Pi
—
Warren Gay

Custom Raspberry
Pi Interfaces

Design and build hardware
interfaces for the Raspberry Pi

Warren Gay

Custom Raspberry Pi Interfaces: Design and build hardware interfaces for the Raspberry Pi

Warren Gay
St Catharines, Ontario, Canada

ISBN-13 (pbk): 978-1-4842-2405-2 ISBN-13 (electronic): 978-1-4842-2406-9
DOI 10.1007/978-1-4842-2406-9

Library of Congress Control Number: 2017931068

Copyright © 2017 by Warren Gay

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Technical Reviewer: Massimo Nardone
Coordinating Editor: Jessica Vakili
Copy Editor: Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook
Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-2405-2.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/978-1-4842-2405-2
http://www.apress.com/source-code

iii

Contents at a Glance

About the Author �� xiii

About the Technical Reviewer ��� xv

 ■Chapter 1: Introduction �� 1

 ■Chapter 2: 3V/5V Signal Interfacing ��� 5

 ■Chapter 3: VGA LCD Monitors ��� 25

 ■Chapter 4: I2C LCD Displays ��� 35

 ■Chapter 5: MC14490 and Software Debouncing ��������������������������� 55

 ■Chapter 6: PCF8591 ADC �� 67

 ■Chapter 7: Potentiometer Input Controls �������������������������������������� 91

 ■Chapter 8: Rotary Encoders �� 103

 ■Chapter 9: More Pi Inputs with 74HC165 ����������������������������������� 129

 ■Chapter 10: More Pi Outputs with 74HC595 ������������������������������� 141

 ■Chapter 11: MCP23017 I/O Port Extender ���������������������������������� 153

 ■Chapter 12: MPD/MPC Hardware Controls ��������������������������������� 169

 ■Chapter 13: Custom Keypads ��� 191

Index �� 213

v

Contents

About the Author �� xiii

About the Technical Reviewer ��� xv

 ■Chapter 1: Introduction �� 1

Raspberry Pi 3 and Zero �� 2

Why GPIO Is Important ��� 2

What to Purchase �� 2

Software to Download ��� 4

Let’s Begin ��� 4

 ■Chapter 2: 3V/5V Signal Interfacing ��� 5

7400 Series (TTL) �� 6

3�3V Logic �� 7

Voltage Dividers �� 9

7400 Series Derivative Families �� 11

Unused CMOS Inputs ��� 12

Converting 5V to 3V Input: 74LVC245 �� 12

Converting 5V to 3V Input: 74LVC244 �� 14

CD4049/CD4050 ��� 16

Input Protection Diodes �� 16

 ■ Contents

vi

Converting 3 Volts to 5 Volts with the HCT Family ��������������������������������� 19
74HCT245 ��� 20

74HCT244 ��� 22

Switching Speed ��� 22

Summary ��� 23

Bibliography �� 24

 ■Chapter 3: VGA LCD Monitors ��� 25

VGA Converters �� 25

Resolution and Refresh Rates ��� 26

/boot/config�txt �� 27

Confirming Resolution ��� 33

Summary ��� 33

Bibliography �� 34

 ■Chapter 4: I2C LCD Displays ��� 35

LCD Module 1602A �� 35

I2C Serial Interface �� 36

I2C Module Configuration �� 37

I2C Module Output ��� 38

I2C Module Input ��� 41

PCF8574P Chip �� 42

3 Volts to 5 Volts �� 42

Attaching the I2C Serial Module �� 44

Displaying Data ��� 46

Reading from the LCD1602 ��� 48

Class LCD1602 �� 51

I2C Baud Rate �� 53

Profit and Loss �� 53

Summary ��� 54

 ■ Contents

vii

 ■Chapter 5: MC14490 and Software Debouncing ��������������������������� 55

Hardware: MC14490 �� 56

Chip Operation ��� 57

Capacitor C1 ��� 57

Experiment �� 58

More Inputs ��� 61

Software Debouncing �� 62

Experiment �� 64

Summary ��� 66

 ■Chapter 6: PCF8591 ADC �� 67

The YL-40 PCB ��� 67

Voltage Range ��� 70

I2C Bus �� 70

I2C Addresses �� 70

DAC (AOUT) �� 70

Removing YL-40 LED D1 �� 73

Hacking YL-40 I2C Address ��� 74

I2C Bus Setup �� 75

Reading from PCF8591 �� 76

Experiment ��� 76

Writing to the DAC ��� 77

Experiment ��� 77

Experiment ��� 78

Limitations ��� 79

Extending Voltage Range ��� 79

Repairing the Temp Sensor ��� 80

Conversion to Celsius �� 83

 ■ Contents

viii

Reading Temperature �� 84

Experiment ��� 84

The YL-40 LDR ��� 85

Experiment ��� 85

1N914 Experiment ��� 85

Software �� 89

Potential Experiments ��� 90

Summary ��� 90

Bibliography �� 90

 ■Chapter 7: Potentiometer Input Controls �������������������������������������� 91

Potentiometers �� 91

Voltage Dividers �� 93

ADC Circuit �� 95

Pot Resistance ��� 95

Taper ��� 96

Effect of ADC Bits �� 96

Experiment �� 97

Applying Potentiometer Controls ��� 99

Selection Resolution �� 101

Summary ��� 101

Bibliography �� 102

 ■Chapter 8: Rotary Encoders �� 103

Keyes KY-040 Rotary Encoder ��� 103

The Switch �� 105

Operation ��� 107

Voltage �� 108

 ■ Contents

ix

Evaluation Circuit �� 108

Interfacing to the Pi ��� 110

Experiment �� 112

Experiment �� 114

Sequence Errors �� 114

Experiment �� 115

FM Dial 1 ��� 116

FM Dial 2 ��� 117

Class Switch �� 119

Main Routine ��� 126

Summary ��� 127

Bibliography �� 127

 ■Chapter 9: More Pi Inputs with 74HC165 ����������������������������������� 129

74HC165 Pinout ��� 129

Function Table ��� 131

Breadboard Experiment ��� 132

Program ��� 134

Logic Analyzer View ��� 136

Profit and Loss �� 137

Even More Inputs �� 138

Other Bit Counts �� 139

Combining GPIOs ��� 139

Chip Enable ��� 139

CD4012B�� 140

Summary ��� 140

 ■ Contents

x

 ■Chapter 10: More Pi Outputs with 74HC595 ������������������������������� 141

74HC165 Pinout ��� 141

Function Table ��� 142

Breadboard Experiment ��� 143

Experiment Run ��� 146

Input and Output �� 148

Additional Outputs ��� 151

Profit and Loss �� 152

Summary ��� 152

 ■Chapter 11: MCP23017 I/O Port Extender ���������������������������������� 153

MCP23017 ��� 153

Wiring �� 155

Output GPIO Experiment �� 157

Input Experiment ��� 158

Software Operations �� 159

I2C Header Files �� 160

Opening the I2C Driver �� 161

I2C Write ��� 161

I2C Read ��� 162

Configuration �� 163

Interrupt Capability �� 164

Interrupt Profit and Loss �� 168

Summary ��� 168

 ■ Contents

xi

 ■Chapter 12: MPD/MPC Hardware Controls ��������������������������������� 169

Audio Preparation �� 169

MPD/MPD ��� 171

Hardware Setup �� 174

Test Volume Control �� 175

Test Rotary Control ��� 176

Test LCD �� 176

The mpcctl Program �� 176

Main Program ��� 177

Rotary Encoder Thread ��� 181

LCD Thread ��� 185

MPC Status Thread ��� 187

Volume Control Thread ��� 188

Program Summary ��� 189

Summary ��� 190

Bibliography �� 190

 ■Chapter 13: Custom Keypads ��� 191

Breadboard Setup ��� 191

Output Tests �� 193

Input Tests ��� 193

High-Side Driver �� 194

Low-Side Driver ��� 195

Driving an LED ��� 195

The Keypad �� 196

 ■ Contents

xii

Keypad Program �� 201

The main Program �� 202

The key_lookup Function ��� 204

The i2c_write Function ��� 205

The i2c_read Function �� 206

Combination Lock �� 207

Combination Lock �� 208

The main Program �� 209

The get_key_code Function ��� 211

Interrupts ��� 212

Summary ��� 212

Bibliography �� 212

Index �� 213

xiii

About the Author

Warren Gay started out in electronics at an early age,
dragging discarded TVs and radios home from public
school. In high school he developed a fascination for
programming the IBM 1130 computer, which resulted
in a career plan change to software development.
After attending Ryerson Polytechnical Institute, he
has enjoyed a software developer career for more
than 30 years, programming mainly in C/C++. Warren
has been programming Linux since 1994 as an open
source contributor and professionally on various Unix
platforms since 1987.

Before attending Ryerson, Warren built an Intel
8008 system from scratch before there were CP/M
systems and before computers got personal. In later
years, Warren earned an advanced amateur radio
license (call sign VE3WWG) and worked the amateur
radio satellites. A high point of his ham radio hobby

was making digital contact with the Mir space station (U2MIR) in 1991.
Warren works at Datablocks.net, an enterprise-class ad-serving software services

company. There he programs C++ server solutions on Linux back-end systems.

xv

About the Technical
Reviewer

Massimo Nardone has more than 22 years of
experience in security, web/mobile development, the
cloud, and IT architecture. His true IT passions are
security and Android.

He has been programming and teaching how to
program with Android, Perl, PHP, Java, VB, Python,
C/C++, and MySQL for more than 20 years.

He has a master’s of science degree in computing
science from the University of Salerno, Italy.

He has worked as a project manager, software
engineer, research engineer, chief security architect,
information security manager, PCI/SCADA auditor,
and senior lead IT security/cloud/SCADA architect for
many years.

His technical skills include the following: security,
Android, cloud, Java, MySQL, Drupal, Cobol, Perl, web and mobile development,
MongoDB, D3, Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS,
Jekyll, Scratch, and more.

He currently works as chief information security officer (CISO) for Cargotec Oyj.
He has worked as a visiting lecturer and supervisor for exercises at the Networking

Laboratory of the Helsinki University of Technology (Aalto University). He holds four
international patents (PKI, SIP, SAML, and proxy areas).

Massimo has reviewed more than 40 IT books for different publishing company and
is the coauthor of Pro Android Games (Apress, 2015).

1© Warren Gay 2017
W. Gay, Custom Raspberry Pi Interfaces, DOI 10.1007/978-1-4842-2406-9_1

CHAPTER 1

Introduction

These are exciting times for hobby computing! In the 1980s you had to round up chips
for the central processing unit (CPU), erasable programmable read-only memory
(EPROM), and random access memory (RAM); find some peripherals; and then wire up
the numerous address and data bus lines. After all that, you still had a pretty limited 8-bit
system with no operating system. Today, you can acquire a 64-bit ARM quad-core system
on a chip (SoC) with 1GB of memory and several built-in peripherals already assembled!
Not only that, but the system will run a Unix operating system, whether it be Linux or
some flavor of BSD, complete with a compiler and a plethora of other software tools. All of
this fits in the space of a credit card footprint.

You can purchase a number of Raspberry Pi “hats” to add hardware interfaces, but
these come at a steeper cost than doing it yourself. Adding your own hardware interfaces
is not only fairly easy to do but is incredibly fun! There are some small challenges,
however, especially when interfacing the 3-volt (3V) Raspberry Pi to a 5V world. But this
book will prepare you for that.

Chapter 2 focuses on interfacing between the 3V and 5V logic systems. While there
are an increasing number of 3V parts today, there is still a wealth of transistor-transistor
logic (TTL) parts, which are 5V, available that you might want to use. Sometimes you
are simply faced with the need to communicate with a 5V interface, like that of a liquid-
crystal display (LCD) display. Chapter 2 will step you through what you need to know.

Since the monitor is often a critical display component, Chapter 3 will examine
how you can use discarded Video Graphics Array (VGA) monitors, available almost for
free. These are perfect for embedded applications involving the Raspberry Pi Zero, for
example. Chapter 4 will examine how to use the small 16×2-character LCD screens over
the Pi’s inter-integrated circuit (I2C) bus.

Button and switch interfaces with metal contacts often require “debouncing.”
Chapter 5 explores a hardware and software solution for debouncing. Chapter 6 covers
the world of analog-to-digital (ADC) conversion and digital-to-analog (DAC) conversion.
Chapter 7 covers how to read potentiometers, further exploiting the ADC concepts.

Chapter 8 covers rotary encoders so that the interface can be used in Chapter 12 as
part of an embedded music-playing daemon (MPD) selection control. Chapters 9 and 10
demonstrate how the 74HC165 and 74HC595 can be used to add extra general-purpose
input/output (GPIO) ports. Chapter 11 explores the more powerful MCP23017 input/
output (I/O) extender chip for GPIO expansion.

http://dx.doi.org/10.1007/978-1-4842-2406-9_2
http://dx.doi.org/10.1007/978-1-4842-2406-9_2
http://dx.doi.org/10.1007/978-1-4842-2406-9_3
http://dx.doi.org/10.1007/978-1-4842-2406-9_4
http://dx.doi.org/10.1007/978-1-4842-2406-9_5
http://dx.doi.org/10.1007/978-1-4842-2406-9_6
http://dx.doi.org/10.1007/978-1-4842-2406-9_7
http://dx.doi.org/10.1007/978-1-4842-2406-9_8
http://dx.doi.org/10.1007/978-1-4842-2406-9_12
http://dx.doi.org/10.1007/978-1-4842-2406-9_9
http://dx.doi.org/10.1007/978-1-4842-2406-9_10
http://dx.doi.org/10.1007/978-1-4842-2406-9_11

Chapter 1 ■ IntroduCtIon

2

Chapter 12 brings many of the presented topics together in an embedded
application. In this project, a hardware rotary control is used in conjunction with an
MPD to select music or Internet radio stations. A potentiometer feeds volume control
information for instant digital volume adjustment. An embedded application normally
runs headless, so an economical 16×2 LCD is used to round out this demonstration.

Chapter 13 wraps up the book with one more interface—the keypad. In this chapter,
a PCF8574 in dual inline package (DIP) form is used to create a remote keypad using
the I2C bus. The software application demonstrates a combination lock. The I2C bus
permits the keypad to exist some distance away from the Raspberry Pi but using only a
four-wire ribbon cable. The ribbon cable carries two lines for power and two more for I2C
communication. This is also an ideal arrangement for robotics.

Raspberry Pi 3 and Zero
The two recent developments are the Raspberry Pi Zero and the Raspberry Pi 3. You
could say these models are at opposite ends of the spectrum. The Zero is in high demand,
mainly because of its killer price of $5. The Pi 3, on the other hand, has killer performance
for the price.

This book is generally neutral about what Pi you choose to apply. The book was
developed using a Raspberry Pi 3, but except for performance differences, all examples
should work for all models.

Why GPIO Is Important
One of the keys to the success of the Raspberry Pi is a design that offers GPIO interfaces.
In the PC era, people had to attach their home-brewed hardware through the PC’s printer
parallel interface or work with the more cumbersome RS-232 interface. With the Pi,
you have access to serial data, a clock, I2C, serial peripheral interface (SPI), pulse width
modulation (PWM), and general I/O signaling. This arrangement is far more capable and
opens a world of options to the Pi user.

What to Purchase
In addition to the basics necessary to run your Raspberry Pi, you’ll need to acquire the
following items for the chapter experiments. Also listed are the specific chapters they
apply to.

•	 Breadboard

•	 Plenty of Dupont wires (for breadboarding)

•	 Pi Cobbler (GPIO to breadboard)

•	 74LS04 (Chapter 2)

•	 74LVC244 (Chapter 2)

http://dx.doi.org/10.1007/978-1-4842-2406-9_12
http://dx.doi.org/10.1007/978-1-4842-2406-9_13
http://dx.doi.org/10.1007/978-1-4842-2406-9_2
http://dx.doi.org/10.1007/978-1-4842-2406-9_2

Chapter 1 ■ IntroduCtIon

3

•	 74LVC245 (Chapter 2)

•	 74LVC244 (Chapter 2)

•	 CD4049 or CD4050 (Chapter 2)

•	 74HCT244 (Chapter 2)

•	 74HCT245 (Chapter 2)

•	 CD4001 (Chapter 2)

•	 High-Definition Multimedia Interface (HDMI) to VGA adapter
(Chapter 3 only)

•	 LCD module 1602A (Chapters 4 and 12)

•	 I2C Serial Interface Module with PCF8574 chip, for LCD
(Chapters 4 and 12)

•	 I2C level converter (Chapters 4 and 12)

•	 MC14490 chip (Chapter 5)

•	 0.01 microfarad capacitor (Chapter 5)

•	 Push buttons (Chapter 5)

•	 YL-40 printed circuit board (PCB) using PCF8591 chip (Chapter 6)

•	 3.1 kiloohm and 15 kiloohm 1/8 watt, resistors (Chapter 6)

•	 1N914 diode (Chapter 6)

•	 3.3 kiloohm 1/8 watt resistor (Chapter 6)

•	 1 Kiloohm linear potentiometer (Chapters 7 and 12)

•	 Optional knob for potentiometer (Chapters 7 and 12)

•	 Keyes KY-040 rotary encoder (Chapters 8 and 12)

•	 Optional knob for rotary encoder (Chapters 8 and 12)

•	 2 × 170 ohm resistor (Chapter 8)

•	 2 × LEDs

•	 74HC165 (Chapter 9)

•	 74HC595 (Chapter 10)

•	 MCP23017 (Chapter 11)

•	 2 × PCF8574P (Chapter 13)

•	 Hex keypad (Chapter 13)

http://dx.doi.org/10.1007/978-1-4842-2406-9_2
http://dx.doi.org/10.1007/978-1-4842-2406-9_2
http://dx.doi.org/10.1007/978-1-4842-2406-9_2
http://dx.doi.org/10.1007/978-1-4842-2406-9_2
http://dx.doi.org/10.1007/978-1-4842-2406-9_2
http://dx.doi.org/10.1007/978-1-4842-2406-9_2
http://dx.doi.org/10.1007/978-1-4842-2406-9_3
http://dx.doi.org/10.1007/978-1-4842-2406-9_4
http://dx.doi.org/10.1007/978-1-4842-2406-9_12
http://dx.doi.org/10.1007/978-1-4842-2406-9_4
http://dx.doi.org/10.1007/978-1-4842-2406-9_12
http://dx.doi.org/10.1007/978-1-4842-2406-9_4
http://dx.doi.org/10.1007/978-1-4842-2406-9_12
http://dx.doi.org/10.1007/978-1-4842-2406-9_5
http://dx.doi.org/10.1007/978-1-4842-2406-9_5
http://dx.doi.org/10.1007/978-1-4842-2406-9_5
http://dx.doi.org/10.1007/978-1-4842-2406-9_6
http://dx.doi.org/10.1007/978-1-4842-2406-9_6
http://dx.doi.org/10.1007/978-1-4842-2406-9_6
http://dx.doi.org/10.1007/978-1-4842-2406-9_6
http://dx.doi.org/10.1007/978-1-4842-2406-9_7
http://dx.doi.org/10.1007/978-1-4842-2406-9_12
http://dx.doi.org/10.1007/978-1-4842-2406-9_7
http://dx.doi.org/10.1007/978-1-4842-2406-9_12
http://dx.doi.org/10.1007/978-1-4842-2406-9_8
http://dx.doi.org/10.1007/978-1-4842-2406-9_12
http://dx.doi.org/10.1007/978-1-4842-2406-9_8
http://dx.doi.org/10.1007/978-1-4842-2406-9_12
http://dx.doi.org/10.1007/978-1-4842-2406-9_8
http://dx.doi.org/10.1007/978-1-4842-2406-9_9
http://dx.doi.org/10.1007/978-1-4842-2406-9_10
http://dx.doi.org/10.1007/978-1-4842-2406-9_11
http://dx.doi.org/10.1007/978-1-4842-2406-9_13
http://dx.doi.org/10.1007/978-1-4842-2406-9_13

Chapter 1 ■ IntroduCtIon

4

Software to Download
For this book, you’ll need to perform two software downloads.

•	 Download the software for this book, Exploring the Raspberry Pi 2
with C++, from here:

•	 https://github.com/ve3wwg/raspberry_pi2.git

•	 Download the source code for this book from either of the
following locations:

•	 https://github.com/ve3wwg/custom_interfaces_pi.git

•	 www.apress.com/9781484217382

Once the Exploring the Raspberry Pi 2 with C++ software is downloaded, go into its
directory and install it, as shown here:

$ cd raspberry_pi2
$ make all install

This will give you access to the C++ library code that this book builds upon, as well as
the gp utility for controlling GPIO from the command line.

To build this volume’s source code, go into its subdirectory and type the following:

$ cd custom_interfaces_pi
$ make

This will compile all the programs discussed in this book, saving you from having
to do that later. The compiled executables are left in their subdirectories and are not
installed anywhere else on your Raspberry Pi.

Let’s Begin
With those formalities out of the way, you can begin your exploration of hardware
interfaces on the Pi!

Most of the chapters can be read out of sequence. This is helpful when you are
waiting for ordered components to arrive. Before attempting any interface involving
5 volts, however, I strongly recommend that you digest Chapter 2 first.

https://github.com/ve3wwg/raspberry_pi2.git
https://github.com/ve3wwg/custom_interfaces_pi.git
http://www.apress.com/9781484217382ok? I’ve removed it from above, because I don’t think the software is available from apresss.com. But this looks like the instructions for the source code. please confirm my edits are correct.
http://dx.doi.org/10.1007/978-1-4842-2406-9_2

5© Warren Gay 2017
W. Gay, Custom Raspberry Pi Interfaces, DOI 10.1007/978-1-4842-2406-9_2

CHAPTER 2

3V/5V Signal Interfacing

Looking through online forums, I often see posts from people struggling with how
to interface between 3V and 5V logic systems. Advice varies widely, ranging from
“connecting it directly seems to work for me” to other dubious methods.

The purpose of this chapter is to eliminate the guesswork. The solutions presented
here are not the only solutions available, but they are practical for those seeking answers.
I’ll focus specifically on 3.3V and 5V systems in this chapter because the Pi is a 3V system
and a great many parts still use 5 volts.

To be clear, this chapter is about signal interfacing, not driving high-powered loads.
Power introduces other factors that go beyond signal interfacing. I2C also does not
apply here because of its bidirectional nature and the use of the open collectors. Signal
interfacing does, however, apply to GPIO-, TTL-, and SPI-related circuits. Figure 2-1
illustrates some of the featured components used in this chapter.

Figure 2-1. Two useful level interfacing chips

Chapter 2 ■ 3V/5V Signal interfaCing

6

7400 Series (TTL)
The 7400 series of integrated circuit (IC) was developed in the 1960s and 1970s to be used
as building blocks for digital mainframe computers (the 5400 series is the military-grade
equivalent). This is known as transistor-to-transistor logic (TTL), which largely replaced
the earlier diode transistor logic (DTL).

TTL circuits use a 5V power supply (usually referred to as V
CC

) and use defined
voltage ranges for what is considered true (1) or false (0). Any signal that is between these
ranges is considered undefined or ambiguous.

Since these digital signal levels are measured by voltage and because the signals of
interest are input or output signals, they use the symbolic notation shown in Table 2-1.

Table 2-1. Signal Symbols

Symbol Description

V
I

Voltage of an input

V
O

Voltage of an output

Table 2-2. Input and Output Signal Symbols

Symbol Description

V
IL

Voltage of an input, at low level

V
IH

Voltage of an input, at high level

V
OL

Voltage of an output, at low level

V
OH

Voltage of an output, at high level

Table 2-3. TTL (5V) Input Logic Levels

Symbol Minimum Maximum Description

V
IL

0.0 volts 0.8 volts Logic value false (0)

V
IH

2.0 volts V
CC

Logic value true (1)

Input and output ranges are further qualified using the symbols in Table 2-2.

When we begin with logic levels, we must start with input logic levels. These levels
decide what is considered a 0 or 1 when received from the sending circuit. Thus, the signals
of primary interest are V

IL
 and V

IH
 . Look for these when examining a datasheet (you usually

can find a datasheet for a given chip by Googling <part-number> datasheet PDF).
Table 2-3 describes the TTL (5V) levels. Notice that V

IH
 is defined in terms of V

CC
 for

its highest voltage range. Remember also that V
CC

 can itself vary by up to 10 percent in
value because the power supply varies. When V

CC
 varies like this, V

IH
 can be as low as 4.5

volts or as high as 5.5 volts.

Chapter 2 ■ 3V/5V Signal interfaCing

7

It is clear from Table 2-3 that any digital signal from 0.0 volts to 0.8 volts is to be
considered a false (0) input. Signals at 2.0 volts or higher are considered true (1). Any
voltage between these levels is ambiguous and must be avoided. Ambiguous levels are
interpreted unpredictably as 0 or 1.

Generating an exact voltage level consistently and reliably is difficult, if not
impossible. For this reason, ranges of acceptable values are used. For example, if your
digital input signal is 0.125 volts, it clearly falls within the TTL logic 0 range. In another
example, a voltage input of 2.8 volts is clearly interpreted as a logic 1.

When you examine output signals, the output needs to meet the requirements of the
input ranges if the signal is to reliably transmit digital data. For example, if a hypothetical
part generates logic 1 output voltages between 3.0 volts and V

CC
, then it meets the TTL

interface requirements for logic high. This is because 3.0 volts meets and exceeds the 2V
minimum. If the same part is guaranteed to generate logic low levels between 0.1 and 0.6
volts, then this clearly falls into the TTL low range also. With these voltage ranges, this
part will successfully communicate with other TTL component inputs.

3.3V Logic
With the introduction of complementary metal-oxide semiconductor (CMOS) logic soon
after TTL, a definition for CMOS logic levels had to be agreed upon. The difficulty with
CMOS, however, was that it could operate over a range of different power supply voltages
(note that the power supply is often referred to as V

DD
 for CMOS). For this reason, CMOS

logic levels are usually defined in terms of the operating V
DD

 instead. Fractional values are
provided in [1], while the percentage references can be found in [2].

Table 2-4 lists the CMOS logic level guidelines.

Table 2-4. CMOS Logic Levels

Symbol Minimum Maximum Description

V
IL

0.0 volts 1/3 V
DD

Logic value false (0)

30% V
DD

V
IH

2/3 V
DD V

DD
Logic value true (1)

70% V
DD

The CMOS ranges provided in Table 2-4 are approximate. The final range is defined
by the device’s datasheet.

Even though the Raspberry Pi CPU is CMOS-based, the input specifications provided
by Broadcom are slightly different and documented in Table 2-5.

Table 2-5. Raspberry Pi Logic Levels

Symbol Low High Description

V
IL

0.0 volts 0.8 volts Logic value false (0)

V
IH

1.3 volts V
DD

Logic value true (1)

Chapter 2 ■ 3V/5V Signal interfaCing

8

In this chapter, you will have to pay attention to all three sets of input logic levels.
I’ve introduced several symbols and voltage levels. Figure 2-2 will help you visualize

what I am about to discuss. For now, ignore the fact that the 5V signal exceeds the supply
voltage for the 74LVC245. This will be explained later.

On the right side of Figure 2-2 is an example 5V TTL device (74LS04). In the middle
is the level shifting device. Finally, on the left is the Raspberry Pi GPIO input that I want to
feed a signal into.

Raspberry
Pi 74LVC245

VOH VOH

VIH

VIL VOL

74LS04
+5.0V

Gnd Gnd

0-
.8

V

0-
.8

V

0-
0.

2V

0
-

.5
V

2.
7

–
5V

1.
3-

3.
3V

3.
1-

3.
3V

2.
0-

3.
3V

+3.3V

VIH

VIL VOL

Figure 2-2. Example of logic level conversion

The signal starts at the output of the 74LS04. According to its datasheet, the output is
never lower than 2.7 volts when it represents logic 1 and never higher than 0.5 volts when
it represents logic 0. These are the 74LS04 device’s V

OH
 and V

OL
 output levels, respectively.

The arrows from the 74LS04 pointing left show how these voltage levels are passed into
the left device’s inputs. Whether the left device sees a logic 1 or 0 depends upon its own
input level definitions V

IH
 and V

IL
. In the Figure 2-2 example, you can see that the 74LS04

clearly exceeds the 74LVC245 input requirements.
The middle device is illustrated with these two sets of parameters:

•	 Input levels V
IL

 and V
IH

•	 Output levels V
OL

 and V
OH

When examining interfaces, you must remind yourself that the input and output
voltage levels differ. The output levels must exceed the input levels of the receiving device
(if they only just met the requirement, there would be no “noise margin” of safety).

Chapter 2 ■ 3V/5V Signal interfaCing

9

Examining the 74LVC245 device going left to the Pi, you must meet the Pi’s slightly
different input parameters. Following the arrows going left, you can see that the 74LVC245
output levels definitely exceed the Pi’s input requirements. This is the general principle of
level shifting from an output to an input.

Voltage Dividers
Converting from a higher to a lower voltage logic can sometimes be done using a pair of
resistors in a voltage divider configuration (Figure 2-3). This can be attractive when there
are only one or two signals involved. But this quickly becomes burdensome when the
number of signals increases because of the parts count.

TTL Output

3 Volt

GND

R2
R1

Figure 2-3. Voltage divider circuit

A pair of resistors wired in series can take a worst-case 5V signal and produce a
3V level by dividing the voltage. The values of the resistors are chosen from a ratio, as
shown here:

5 3

3
1

2

volts volts

volts

R

R

-
=

Chapter 2 ■ 3V/5V Signal interfaCing

10

The basic idea is that you make 3 volts appear across R
2
 but drop the remaining 2

volts across R
1
.

The first problem is that you must choose a value for R
1
 or R

2
 before the resistance can

be solved. But if you choose too high a value, then any current flowing into or out of the
midpoint junction will cause its voltage to vary (the divider is not “stiff” enough). The rule of
thumb is that the series current through R

1
 and R

2
 should be at least ten times any incoming

or outgoing current from the junction. The added current flow will stiffen the divider.
The Pi’s CMOS input requires nearly zero current. The only current that does flow

is when there is a change of state, requiring a small charge or discharge to occur. This
charge transfers to/from the stray capacitance at the chip’s pin and the CMOS gate.
Engineering students can compute this tiny charge as an exercise, but here I’ll suggest
that 1mA is plenty of “stiffness.”

Resistors come in different tolerances. You can assume the following 10 percent
resistor values for this example:

R k1 1 5= . W

R k2 2 2= . W

If you were to do all the Ohm’s law math, you’d discover that the midpoint voltage
(V

R2
) would be 2.97 volts when the TTL input is 5 volts.
Let’s test this arrangement using a Texas Instrument 74LS04 output feeding into the

voltage divider. The divider’s output will be used as an input for the Raspberry Pi. You
want to test whether this will actually work under all possible conditions.

Assume a worst-case 74LS04 output low voltage of V
OH

=0.5 volts, and assume V
OH

=2-7 volts
for output high. These represent the datasheet’s guaranteed worst-case figures. Table 2-6
summarizes how the voltage divider measures up. The column “Pi Margin” measures the
difference between the Pi’s requirement and the value appearing at that input.

Table 2-6. Voltage Divider from 74LS04 to Pi

Symbol TTL Divider Pi Margin Description

V
OL

0.4 volts 0.24 volts 0.56 volts Logic value 0: 0.56 volts under
the limit

V
OH

2.5 volts 1.49 volts 0.19 volts Logic value 1: 0.19 volts over
the minimum

From Table 2-6 you can see that V
OL

 is below the Raspberry Pi requirement of 0.8
volts by a margin of 0.56 volts. The worst case for the 74LS04 output high (V

OH
) has a lower

margin of 0.19 volts over the Pi’s minimum of 1.3 volts. It appears that you’ve met the
requirements, even though a bigger safety margin on the high side is desirable.

Is the circuit acceptable if you consider the worst-case values for the 10 percent
resistors R

1
 and R

2
? Recall that I used a parts tolerance of 10 percent. The worst case here

would be R
1
 + 10 percent and R

2
 – 10 percent because this would lower the midpoint

voltage further. Table 2-7 summarizes this result.

Chapter 2 ■ 3V/5V Signal interfaCing

11

Table 2-7. Results of Worst Case 10 Percent Resistor Error

Symbol TTL Divider Pi Margin Description

V
OL

0.4 volts 0.22 volts 0.58 volts Logic value 0: 0.58 volts under
the limit

V
OH

2.5 volts 1.36 volts 0.06 volts Logic value 1: 0.06 over the
minimum

It is clear from Table 2-7 that the V
OH

 result of 1.36 volts is dangerously close to the
absolute limit of the Raspberry Pi specification (1.3 volts). The margin of error is only 0.06
volts. This is looking shaky.

From this, you might conclude that the voltage divider is not as attractive as it might first
appear. From a hobby perspective, you can make this work by cherry-picking your resistors
carefully or by using lower-tolerance resistors. What you didn’t consider was that the power
supply can vary by another 10 percent in its supply voltage. If you were to turn this into a
product (or a kit), you’d want to improve that error margin to avoid shipping faulty units.

Finally, consider also that this analysis is sensitive to the TTL part that is being used.
If you substituted the 74LS04 for a part with poorer worst-case conditions, you may end
up generating signals that are “out of spec.”

7400 Series Derivative Families
The 74L low-power series was introduced in 1971, which was soon superseded by the
faster 74LS series. Several new series derivative families began to appear including 74H
(high speed), 74S (high speed Schottky), and so on. Finally, CMOS-compatible families
were added including HC and HCT. Currently several derivative families are available [3].

Table 2-8 lists some of the derivative families that may be of interest. We’ll focus on
the HCT series and LVC series derivative families. While other families may sometimes
work, you must also consider the speed of the device, particularly when you want to do
high-speed SPI, for example.

Table 2-8. Some 7400 Series Derivative Families [1]

74XX Series Description

HC High-speed CMOS, similar performance to LS, 12ns, 2.0–6.0 volts

HCT High-speed, compatible logic levels to bipolar parts

AHCT Advanced high-speed CMOS, three times as fast as HC, tolerant of 5.5V
on input

LVC Low voltage: 1.65–3.3V and 5V-tolerant inputs, TPD < 5.5ns at 3.3 volts,
TPD < 9ns at 2.5 volts

LVT Low-voltage: 3.3V supply, 5V-tolerant inputs, high output current < 64mA,
TPD < 3.5ns at 3.3 volts, IOFF, low noise

Chapter 2 ■ 3V/5V Signal interfaCing

12

Unused CMOS Inputs
Before I present breadboard experiments using CMOS devices, you should be aware of
the unused input quirk of CMOS devices. TTL devices can have unconnected inputs, even
though it is usually best to ground them to avoid noise. CMOS inputs, however, must be
connected.

CMOS inputs can be tied to ground or V
DD

. They simply must not be left
“floating.” Failure to observe this practice can result in unusual behavior or potential
device failure.

Converting 5V to 3V Input: 74LVC245
The LVC series derivative family can help when you want to convert a 5V signal to 3.3
volts. The first of this family that you’ll examine is the 74LVC245.

The 74LVC245 chip provides eight bidirectional buffers, with tristate capability.
For a level translator, you’re not interested in the tristate or bidirectional capabilities.
These can be hardwired to function in one direction only, and tristate can be disabled
(some users might find the tristate useful, but the direction should be hardwired).
What is of critical importance is how the configured input is transformed from the
TTL level to the Pi level.

Figure 2-4 provides an abbreviated logic diagram for the buffers A1 and B1. The
remaining seven buffers are controlled by the same DIR and OE gate inputs and are
available on the remaining device pins.

1

2

etc.

DIR

A1

B1

OE

18

19

Figure 2-4. 74LVC245 octal bus transceiver

Wiring the DIR and OE gate inputs to ground causes the data to flow from input B1 to
output A1. This configuration enables the buffer going from right to left, while disabling
the buffer going left to right.

Chapter 2 ■ 3V/5V Signal interfaCing

13

The 74LVC245 was chosen here because it can be supplied with +3.3 volts but can
accept input voltages (at B1) at voltages as high as +5 volts. This feature is critical, since
most ICs will accept only a maximum of their supply voltage (+3.3 volts) plus one diode
drop (about 0.6 volts). This is because of the way electrostatic discharge (ESD) protection
works in the device.

The 74LVC245 must operate at +3.3 V so that its output (A1) will provide a maximum
of +3.3 volts to the Raspberry Pi. It also happens to be the recommended operating
voltage for this device.

Figure 2-5 illustrates the circuit for interfacing 5V inputs (B ports) to the
Raspberry Pi (A ports). The single 7404N chip (IC2A) is shown to represent some
arbitrary TTL level signal wired to B1. Additional TTL signals can be wired to B2
through B8 in the same way.

The figure doesn’t show this, but the 74LVC245 (IC1) chip must be powered from
a +3.3V supply (Raspberry Pi supply). The TTL chip (IC2A), on the other hand, will be
powered by the 5V supply.

GPIO_INPUT IC1 7404N

IC2A

DIR
G

12182 A1 B1
B2
B3
B4
B5
B6
B7
B8

A2
A3
A4
A5
A6
A7
A8

3
4
5
6
7
8
9

1
19

17
16
15
14
13
12
11

GND

74LVC245
(/OE)

Figure 2-5. 74LVC245 as a TTL to 3V level converter

Substituting a 7400 chip quad NAND gate for IC2A in Figure 2-5, its output was fed
into the 74LVC245 (IC1) input B1 for an experiment. Table 2-9 summarizes the measured
DC voltages.

Chapter 2 ■ 3V/5V Signal interfaCing

14

From this test, it was observed that the 74LVC245 tolerated the +4.45V input and
produced a nice +3.29V output on A1. The 3V supply was not raised, which can happen
if an incorrect part is used for IC1 (because of internal protection diodes). When the TTL
input of +0.38V was provided to B1, the 74LVC245 improved the V

IL
 signal as A1=+0.009V.

The 74LVC245 performed marvelously as a 5V to 3V conversion device.

Converting 5V to 3V Input: 74LVC244
The 74LVC244 device is another member of the LVC derivative family (Figure 2-7). This
device has the advantage that it is unidirectional, making it simpler and potentially
cheaper than the 74LVC245 device. To use this device, the two OE inputs are wired to
ground to permanently enable the 3V outputs (unless, of course, you need tristate). The
inputs are 5V tolerant, making this another terrific logic level converter.

Table 2-9. Measured 74LVC245 DC Voltages

7400 VCC 7400 Inputs 7400 Output '245 VDD '245 B1 '245 A1

+4.99 volts Gnd +4.45 volts +3.29 volts +4.45 V +3.29 V

+4.99 volts +0.038 volts +0.38 V +0.009 V

Figure 2-6. Breadboard test setup

Figure 2-6 shows my breadboard setup used for the measurements in Table 2-9. The
lab unit shown on the left was a hamfest (ham radio flea market) deal that I scored one
summer day. Hamfests are great for acquiring parts and used equipment (like the used
Fluke bench DMM under the scope).

Chapter 2 ■ 3V/5V Signal interfaCing

15

1A0 1Y0 18

4

6

2

8

1

17

15

13

11

19

16

14

12

3

5

7

9

1Y1

1Y2

1Y3

2Y0

2Y1

2Y2

2Y3

2A0

2A1

2A2

1A1

1A2

1A3

1A3

1OE

2OE

Figure 2-7. 74LVC244 pinout

Table 2-10. Measured 74LVC244 DC Voltages

7400 VCC 7400 Inputs 7400 Output '244 VDD '244 B1 '244 A1

+5.02 volts Gnd +4.69 volts +3.31 volts +4.69 V +3.31V

+5.00 volts +0.035 volts +0.35 V +0.012 V

Table 2-10 summarizes the measurements taken when the 74LVC244 was used.

The experiment once again confirms that the input of the 74LVC244 was permitted
to be higher than the V

DD
 supply of +3.3 volts. Had this device not possessed this special

feature, the '244 input reading might be +0.6 volts or higher. This will be clarified when I
discuss protection diodes.

Chapter 2 ■ 3V/5V Signal interfaCing

16

CD4049/CD4050
You might use the CD4049 or CD4050 CMOS devices if you don’t need high switching
speed (these have a worst-case rise/fall time as high as 120ns). The CD4049 is a hex
inverter, while the CD4050 has six noninverting buffers. These CMOS devices can be
supplied with V

DD
=+3.3V to match the Raspberry Pi yet accept an input signal as high

as +18 volts. When operating at +3.3 V, the V
IL

 maximum is approximately 1.0 volts (30
percent V

DD
), and the V

IH
 minimum is +2.3 volts (70 percent V

DD
). Given that the 7400

datasheet lists a V
OH

 minimum of +2.7 volts, this meets the CMOS input requirements (the
V

OL
/V

IL
 parameters are also met).

Repeating the experiment using the 7400 quad NAND gate to drive a CD4050, you
get the DC readings shown in Table 2-11. The schematic is the same as Figure 2-5, except
that IC1 is the CD4050 and IC2A is one of the 7400 NAND gate outputs (with inputs wired
together, to behave as an inverter).

Table 2-11. Measured CD4050 DC Voltages

7400 VCC 7400 Inputs 7400 Output CD4050 VDD CD4050 In CD4050 Out

+5.01 volts Gnd +4.65 volts +3.30 volts +4.65 volts +3.30 volts

+5.00 volts +0.036 volts +0.036 volts +0.012 volts

Once again, you can see that the CD4050 happily accepts a high input voltage of
+4.65 volts. Had a protection (clamping) diode been involved, this voltage would be
lowered to about +3.9 volts or a little more. Because the CD4050, however, does not do
this kind of limiting, it works well as a level converter. Its main disadvantages are lower
speed and the fact that you get only six buffers instead of eight.

Input Protection Diodes
The 74LVC245 and 74LVC244 devices were special devices because they allowed a 5V
signal into an input, even when that device was operating at V

DD
=+3.3 volts. Let’s take a

moment to understand why this is special.
The CMOS gate is a metal oxide that is deposited on a thin layer above the silicon

channel where current flows. Any small voltage change exerted on that insulated gate
causes a larger change in electron flow in the channel beneath. But if the electric charge
is high enough, the metal oxide can be punctured and shorted out. This damage is
permanent and destroys Field Effect Transistor (FET) operation.

To protect the gate from static electricity, protective diodes are built into the
device. There are different ways this is accomplished, but it is frequently done as shown
in Figure 2-8. Diodes D

1
 and D

2
 are reversed biased in a way that causes them not to

interfere with normal input signals.

Chapter 2 ■ 3V/5V Signal interfaCing

17

The inverter circuit shown has the FET transistors Q1 and Q2 arranged in the typical
CMOS configuration. When one transistor is on, the complementary transistor is off. The
input is usually guarded by a low-valued resistance R

1
 to limit the current flow when a

static discharge occurs. Since the metal-oxide gates do not conduct electricity, the diodes
D

1
 or D

2
 are designed to bleed the static charge away. By bleeding the charge away, the

voltage levels are kept low enough to prevent gate puncture damage.
For the student, schematic diagrams are drawn so that diodes form an arrow of

conventional current flow. That is, the current is shown flowing from plus to minus even
though physicists have long ago proven that electrons flow from minus to plus. If you
pretend conventional flow is correct while we look at the diagram, you can visualize
the fact that no current flows from plus to minus through the diodes because they are
reversed in polarity.

If you pet a cat and then come in contact with (or close to) this gate’s input, static
electric current will flow from the input through D2 or D1, depending upon whether the
electric charge is positive or negative. I have not been able to determine which charge it
is though I have regularly snapped sparks to our cat’s ears. If you shuffle your feet on a
carpet, the generated charge may be positive or negative depending upon the materials
involved.

The protection diodes work rather well for static charges under normal handling
conditions. The problem occurs when you want to do something like feed a 5V signal
into a CMOS input when the device is operating at a supply voltage of +3.3 volts. Examine
Figure 2-9, which is rearranged slightly to illustrate the high voltage flowing into a lower-
voltage device’s input.

Input
R1

GND

Q1D1
D2

Q2

VDD

Output

Figure 2-8. Inverter equivalent circuit

Chapter 2 ■ 3V/5V Signal interfaCing

18

If the input pin of the inverter is raised to +5 volts, then the input voltage is above the
chip’s own supply V

DD
=+3.3 volts. This difference is as follows:

5 3 3 1 7volts volts volts- =. .

The voltage that develops across a silicon diode is usually about 0.6 volts, so you
need to subtract that to arrive at the voltage across R

1
.

V volts volts voltsR1 1 7 0 6 1 1= - =. . .

The resistance value isn’t normally provided in the datasheets but may be near 200
ohms [4]. This means that when the input signal is provided at +5 volts, the current flow
through R

1
 is as follows:

I
volts

mAR1

1 1

200
5 5

.
.

W
=

The difficulty is that you have no guarantee that the protection diode can sustain
5.5mA of current. The protection diodes are designed to discharge weak currents for brief
periods of time. For this reason, you shouldn’t design a circuit to rely on its use. A similar
problem exists when the input is made less than -0.6 volts (negative), causing current to
conduct through D

1
 instead.

The special feature that permits you to provide a higher-than V
DD

 input voltage is a
protection circuit that depends upon a Zener diode for D

1
, as shown in Figure 2-10.

+3.3 V

+5V Input

VD
D

D2

R1

Figure 2-9. Current through protection diode D2

Chapter 2 ■ 3V/5V Signal interfaCing

19

Diode D
2
 is no longer required because D

1
 is a Zener diode, which has a designed

breakdown voltage in the reverse direction. The exact voltage where the Zener action
occurs is not usually specified but guaranteed to occur above some absolute high value.
The Fairchild Semiconductor datasheet for the CD4049UBC or CD4050BC lists the
absolute maximum voltage for the inputs at +18 volts [5]. So, the Zener action must occur
somewhere above that.

D
1
 is a Zener diode when reversed biased. It otherwise conducts current like a

normal diode when forward biased. This means that if the input signal goes negative, the
Zener diode starts conducting at about -0.6 volts like the normal protection diode. Thus,
the single Zener diode protects against both positive and negative static charges.

From this, I hope that you can see that there is a need for this special feature. Without
this adaptation to allow an input signal to exceed the +3.3V V

DD
 level, you risk burning out

a protection diode in the chip. In the datasheet, look for special mention of the ability to
operate input signals above their supply voltage. The CMOS chips CD4049UBC (inverter)
and CD4050BC (buffer) both possess this talent, along with the previously discussed
74LVC244 and 74LVC245 devices.

Converting 3 Volts to 5 Volts with the HCT Family
Now you can turn your attention to converting a 3V signal into the higher-level 5V signal.
Here you turn to a different series family member. Previously the LVC family was used,
but here you must use an HCT family.

VDD

Q2

R1Input

BV=30V

D1

Q1

GND

Output

Figure 2-10. Inverter with Zener input protection

Chapter 2 ■ 3V/5V Signal interfaCing

20

The main reason for this is that you must power the device from 5 volts in order for
it to have an output swing from 0 to 5 volts. Its outputs must match the receiving TTL
input levels (V

IL
 of 0.8 volts maximum and V

IH
 of 2.0 volts minimum). Let’s first review the

74HCT245 device.

74HCT245
The main trick, however, is that the 74HCT245 device itself must accommodate a low
enough input V

IH
 for the driving Raspberry Pi. Normally the CMOS high level (70 percent

of 5 volts) would mean a V
IH

 of 3.5 volts. This is higher than the Pi can produce! But
because the HCT family is designed to accept TTL input levels, you can count on its V

IH
 to

be 2.0 volts instead. This is the special talent of the HCT family.
To make this easier to visualize, examine Figure 2-11. Notice that the 74HCT245 is

being supplied by 5 volts this time, allowing its output to range from 0 to 5 volts. Even
though the input to the 74HCT245 can go as high as 5 volts, the Pi will never deliver more
than +3.3 volts. This is why it is important that the V

IH
 of the 74HCT245 is as low as 2 volts.

Notice from the CMOS device on the left, sending to the '245 in the center and driving
the TTL device at the right, the signal parameters are exceeded at every turn. By having
this “noise margin,” a small noise blip on the signal won’t push it out of spec and cause
erroneous readings.

Raspberry
Pi

(CD4001)
+3.3V

Gnd Gnd

VOH

VOL

VIH

VIL

0-
.8

V

0-
.0

3V

2.
0-

3.
3V

2.
7

–
5V3.
2-

3.
3V

0
-

.5
V

0-
.8

V
2.

0-
5.

0V

VIH

VIL

VOH

VOL

+5.0V
TTL74HCT245

Figure 2-11. 3V CMOS to 5V TTL conversion

Chapter 2 ■ 3V/5V Signal interfaCing

21

A couple of notes about Figure 2-11 are in order.

•	 The V
OL

 and V
IL

 were estimated values for the CD4001 operating at
+3.3 volts (Fairchild lists only the values for 5V operation).

•	 The Raspberry Pi’s output parameters are expected to be
similar to the CD4001, though they are not actually provided by
Broadcom.

To test this in a simple manner, the circuit in Figure 2-12 was breadboarded to
illustrate the signal conversion from the Pi GPIO to the TTL signal. The output of the
two-input NOR gate (IC2A) is used to simulate the output of the Raspberry Pi in this
experiment. IC2A is supplied by a +3.3V power supply like the Pi would supply.

IC1 is the 74HCT245 device, which is powered from +5.0 volts in this circuit. This
allows the output of the device to swing between 0 volts and 5 volts to drive the TTL
device. The TTL input would be connected to the terminal “OUTPUT” in Figure 2-12.

INPUT

OUTPUT

5 Volt Signal

IC1

3 Volt Signal

74HCT245
(/OE)

GND

IC2A
3

1

2

2 A1 B1
B2
B3
B4
B5
B6
B7
B8

A2
A3
A4
A5
A6
A7
A8

3
4
5
6
7
8
9

1
19

18
17

15
14
13
12
11

16

4001N

Raspberry Pi (GPIO Out)

DIR
G

Figure 2-12. 3V to 5V conversion circuit

Table 2-12 summarizes the experimental measurements. When the CD4001 supplied
a 3V system high (+3.30 volts), the output of the 74HCT245 was +5.03 volts. When the
CD4001 supplied a logic 0, the 74HCT245 supplied a low of +0.004 volts. These represent
excellent results.

Chapter 2 ■ 3V/5V Signal interfaCing

22

Table 2-12. Measured 74HCT245 Voltages

CD4001 VDD CD4001
Inputs

CD4001
Output

74HCT245 VDD 74HCT245 In 74HCT245 Out

+3.30 volts Gnd +3.30 volts +5.03 volts +3.30 volts +5.03 volts

+5.03 volts +0.0010 volts +0.0010 volts +0.004 volts

Table 2-13. Fairchild CD4001 Datasheet

Parameter Description Value

t
PHL

Propagation delay time, high to low 250ns

t
PLH

Propagation delay time, low to high 250ns

74HCT244
The 74HCT244 is a simpler part because it is unidirectional and may be lower in cost.
Again, this part must operate from +5 volts like the 74HCT245 discussed earlier. If you’re
squeezing the last few microamps out in power savings, the '244 device is feeding fewer
transistors internally.

The pinout is the same as the LVC part shown earlier in Figure 2-7. Simply supply
your Pi inputs to the 75HCT244 inputs, and the 5V logic outputs will appear at the device
outputs. Make sure that the OE pin is grounded to enable the outputs.

Switching Speed
One parameter that I have avoided discussing is the switching speed of various devices.
For driving LEDs and motors, speed may not be critical. You might desire higher data
rates for SPI interfaces, on the other hand. The question naturally arises, how fast can my
device go?

The datasheets won’t answer this directly. They do, however, provide the following
parameters:

•	 t
PHL

: Propagation delay time, high to low

•	 t
PLH

: Propagation delay time, low to high

The Fairchild CD4001 datasheet lists these values, as shown in Table 2-13.

For this device, both parameters have the same times, but they need not be identical
(these are the values listed for 5V operation). So, the absolute maximum speed these
devices can signal from low to high and low again can be calculated as follows:

F
t t ns ns

MHz
PHL PLH

=
+

=
+

=
1 1

250 250
2

Chapter 2 ■ 3V/5V Signal interfaCing

23

But this is not all there is to it because the signal must usually hold for a time in one
state or the other. The actual rate could easily be half or less. If, for example, the high state
hold time is 50ns, the rate reduces to the following:

F
ns ns ns

MHz=
+ +

=
1

250 50 250
1 82.

The NXP 74LVC244 datasheet specifies in a small print note that “t
pd

 is the same as
t

PHL
 and t

PLH
.” They list t

pd
 with a maximum of 7.5ns for this device at 3.3 volts. So, what is

the absolute maximum frequency for this device?

F
ns ns

MHz=
+

=
1

7 5 7 5
66 7

. .
.

Notice the difference in signal rate. Again, this does not take hold times into account,
but knowing the absolute limit is helpful in planning. As Clint Eastwood said (as Harry
Callahan), “A man’s got to know his limitations.”

Summary
This chapter has been a little intense about signals, levels, voltages, and parameters.
This was designed to help you understand the critical issues involved. If you don’t yet
have a mastery of digital electronics, then you’d still be well served with the following
simple advice:

•	 When converting from 5 volts down to 3 volts, use the 74LVC244
device (or 74LVC245), powered by +3.3 volts.

•	 When converting from a 3V signal up to 5 volts, use the 74HCT244
device (or 74HCT245), powered by the 5V supply.

•	 When considering alternative devices, don’t forget to evaluate
their switching speeds. Many older devices are much slower than
today’s devices.

•	 Never connect a 5V device directly to a 3V device.

The knowledgeable electronics practitioner will know some other alternatives. But
the LVC and HCT family solutions presented are simple, economical, and reliable for the
Raspberry Pi enthusiast. For each '244 you get eight level shifters in one chip.

Chapter 2 ■ 3V/5V Signal interfaCing

24

Bibliography
 [1] “Logic Voltage Levels.” Wikipedia. Wikimedia Foundation,

n.d. Web. 17 Apr. 2016. <https://en.wikipedia.org/wiki/
Logic_level>.

 [2] Lancaster, Don, and Howard M. Berlin. CMOS Cookbook. 2nd
ed. Indianapolis, IN: Sams, 1988. Print. p19.

 [3] “7400 Series.” Wikipedia. Wikimedia Foundation, n.d. Web. 02
Apr. 2016. <https://en.wikipedia.org/wiki/7400_series>.

 [4] Lancaster, Don, and Howard M. Berlin. CMOS Cookbook. 2nd
ed. Indianapolis, IN: Sams, 1988. Print. p21.

 [5] “CD4049UBC – CD4050BC Hex Inverting Buffer – Hex
Non-Inverting Buffer.” Fairchild Semiconductor, n.d. Web. 18
Apr. 2016. <https://www.fairchildsemi.com/datasheets/
CD/CD4049UBC.pdf>.

https://en.wikipedia.org/wiki/Logic_level
https://en.wikipedia.org/wiki/Logic_level
https://en.wikipedia.org/wiki/7400_series
https://www.fairchildsemi.com/datasheets/CD/CD4049UBC.pdf
https://www.fairchildsemi.com/datasheets/CD/CD4049UBC.pdf

25© Warren Gay 2017
W. Gay, Custom Raspberry Pi Interfaces, DOI 10.1007/978-1-4842-2406-9_3

CHAPTER 3

VGA LCD Monitors

Most Raspberry Pi projects need a display of some kind, unless it is being used as an
embedded system. These days there are nice HDMI monitors and nice touch screens
available. But these displays still command a fair investment. This chapter will explore
inexpensive, used VGA monitors. With the correct type of adapter and Pi configuration,
you can repurpose some used VGA LCD screens. VGA monitors will eventually become
scarce, but while they last, they are a boon to the maker.

VGA Converters
One of the great things about the Raspberry Pi Zero is that you get a video interface for
free (or split the Zero’s price of $5 in two: $2.50 for the Broadcom video core and $2.50 for
the CPU). This is a spectacular feature that cannot be matched in the Arduino world.

Using the Pi’s video interface naturally requires a monitor. This chapter explores how
to use a VGA monitor on a Raspberry Pi using a VGA converter. VGA monitors can be a bit
finicky, however, so I’ll also discuss video settings to allow you tune your Pi to match the
monitor.

I purchased an HDMI to VGA converter on eBay for the unbelievable price of $2.80.
My own experience with it so far has been very good. There doesn’t seem to be any
manufacturer information on the outside. It is possible that it has not been tested against
the North American and European radio emissions standards, so buyer beware.

 ■ Warning When shopping on eBay, be careful not to buy a simple cable adapter. You
need more than a cable/adapter to make this work, so check the description carefully.
Usually the cable/adapter auction information will include a warning that “converter is
needed when connected to the PC and TV.”

The unit I purchased includes an electronic converter circuit, which obtains its
power from the HDMI cable. The only suitable unit that I am aware of looks like the one
in Figure 3-1.

ChaPTer 3 ■ VGa LCD MoniTors

26

I already owned several VGA monitors, but I wondered about general VGA monitor
availability. They are bound to be more plentiful presently given that everyone is
switching to HDMI monitors. A search on Kijiji quickly confirmed that they can be had
for as little as $20 (and probably less by the time you read this). For example, one $20
monitor I found being sold was a Samsung SyncMaster 193V 19-inch LCD monitor. The
native resolution was 1280×1024. Such a deal!

With a VGA converter and a cheap VGA monitor, you can strap the Pi on the back of
the monitor and have a cheap self-contained display terminal. With the Pi 3, you could
have a self-contained Linux terminal with WiFi and Bluetooth.

Resolution and Refresh Rates
Despite that the converter does the heavy lifting, you may need to make some
adjustments to the Pi’s display mode to be compatible with your VGA prize. Consider the
following monitor spec-related items:

•	 Native and supported resolutions (for example, 1280×1024)

•	 Vertical refresh rate (for example, 75Hz)

•	 Horizontal refresh rate (for example, 81kHz)

If your monitor supports 1024×768 or greater resolution, you may find that you can
use the default Pi settings. Install the adapter and boot up the Pi to see whether it works.

If not, don’t give up yet—you may be able to reconfigure the Pi for a lower resolution.
The flexibility of Broadcom VideoCore is amazing when you consider the price of the $5
Raspberry Pi Zero or other Pi model.

Figure 3-1. HDMI to VGA adapter

ChaPTer 3 ■ VGa LCD MoniTors

27

/boot/config.txt
The all-important config.txt file is located in your /boot partition. Edit that file carefully
to instruct the Pi to use different video configurations.

Some have suggested that you need to set the parameter hdmi_force_hotplug=1. I
left it commented out in my own testing and didn’t need it. However, if you get a black
screen, you may want to set it by uncommenting the parameter line to read as follows:

hdmi_force_hotplug=1

These are the parameters of main concern for your monitor:

•	 hdmi_group

•	 hdmi_mode

The hdmi_group parameter can take one of three values from Table 3-1.

The hdmi_mode parameter is much more comprehensive in the range of values
possible. Table 3-2 lists hdmi_mode values that are possible when hdmi_group=1 (CEA).

Table 3-1. hdmi_group Values

Value Description

0 Default; use the preferred group reported by the EDID

1 Consumer Electronics Association (CEA)

2 Display Monitoring Timing (DMT) standard

ChaPTer 3 ■ VGa LCD MoniTors

28

Table 3-2. CEA hdmi_mode Values [1]

hdmi_mode Resolution Refresh Modifiers and Notes

1 VGA

2 480p 60Hz

3 480p 60Hz H

4 720p 60Hz

5 1080i 60Hz

6 480i 60Hz

7 480i 60Hz H

8 240p 60Hz

9 240p 60Hz H

10 480i 60Hz 4x

11 480i 60Hz 4x H

12 240p 60Hz 4x

13 240p 60Hz 4x H

14 480p 60Hz 2x

15 480p 60Hz 2x H

16 1080p 60Hz

17 576p 50Hz

18 576p 50Hz H

19 720p 50Hz

20 1080i 50Hz

21 576i 50Hz

22 576i 50Hz H

23 288p 50Hz

24 288p 50Hz H

25 576i 50Hz 4x

26 576i 50Hz 4x H

27 288p 50Hz 4x

28 288p 50Hz 4x H

29 576p 50Hz 2x

30 576p 50Hz 2x H

31 1080p 50Hz

32 1080p 24Hz

(continued)

ChaPTer 3 ■ VGa LCD MoniTors

29

Table 3-3 lists the modifiers used in Table 3-2.

Table 3-2. (continued)

hdmi_mode Resolution Refresh Modifiers and Notes

33 1080p 25Hz

34 1080p 30Hz

35 480p 60Hz 4x

36 480p 60Hz 4xH

37 576p 50Hz 4x

38 576p 50Hz 4x H

39 1080i 50Hz Reduced blanking

40 1080i 100Hz

41 720p 100Hz

42 576p 100Hz

43 576p 100Hz H

44 576i 100Hz

45 576i 100Hz H

46 1080i 120Hz

47 720p 120Hz

48 480p 120Hz

49 480p 120Hz H

50 480i 120Hz

51 480i 120Hz H

52 576p 200Hz

53 576p 200Hz H

54 576i 200Hz

55 576i 200Hz H

56 480p 240Hz

57 480p 240Hz H

58 480i 240Hz

59 480i 240Hz H

ChaPTer 3 ■ VGa LCD MoniTors

30

Table 3-3. Modifiers Used in Table 3-2

Flag Meaning

H Means 16:9 variant of normal 4:3 mode

2x Pixels are doubled

4x Pixels are quadrupled

R Reduced blanking, resulting in lower clock rates

The hdmi_mode values listed in Table 3-4 apply when htmi_group=2 (DMT) [1].

Table 3-4. DMT hdmi_mode Values [1]

hdmi_mode Resolution Refresh Notes

1 640×350 85Hz

2 640×400 85Hz

3 720×400 85Hz

4 640×480 60Hz

5 640×480 72Hz

6 640×480 75Hz

7 640×480 85Hz

8 800×600 56Hz

9 800×600 60Hz

10 800×600 72Hz

11 800×600 75Hz

12 800×600 85Hz

13 800×600 120Hz

14 848×480 60Hz

15 1024×768 43Hz DO NOT USE

16 1024×768 60Hz

17 1024×768 70Hz

18 1024×768 75Hz

19 1024×768 85Hz

20 1024×768 120Hz

21 1152×864 75Hz

22 1280×768 Reduced blanking

(continued)

ChaPTer 3 ■ VGa LCD MoniTors

31

Table 3-4. (continued)

hdmi_mode Resolution Refresh Notes

23 1280×768 60Hz

24 1280×768 75Hz

25 1280×768 85Hz

26 1280×768 120Hz Reduced blanking

27 1280×800 Reduced blanking

28 1280×800 60Hz

29 1280×800 75Hz

30 1280×800 85Hz

31 1280×800 120Hz Reduced blanking

32 1280×960 60Hz

33 1280×960 85Hz

34 1280×960 120Hz Reduced blanking

35 1280×1024 60Hz

36 1280×1024 75Hz

37 1280×1024 85Hz

38 1280×1024 120Hz Reduced blanking

39 1360×768 60Hz

40 1360×768 120Hz Reduced blanking

41 1400×1050 Reduced blanking

42 1400×1050 60Hz

43 1400×1050 75Hz

44 1400×1050 85Hz

45 1400×1050 120Hz Reduced blanking

46 1440×900 Reduced blanking

47 1440×900 60Hz

48 1440×900 75Hz

49 1440×900 85Hz

50 1440×900 120Hz Reduced blanking

51 1600×1200 60Hz

52 1600×1200 65Hz

53 1600×1200 70Hz

54 1600×1200 75Hz

(continued)

ChaPTer 3 ■ VGa LCD MoniTors

32

Table 3-4. (continued)

hdmi_mode Resolution Refresh Notes

55 1600×1200 85Hz

56 1600×1200 120Hz Reduced blanking

57 1680×1050 Reduced blanking

58 1680×1050 60Hz

59 1680×1050 75Hz

60 1680×1050 85Hz

61 1680×1050 120Hz Reduced blanking

62 1792×1344 60Hz

63 1792×1344 75Hz

64 1792×1344 120Hz Reduced blanking

65 1856×1392 60Hz

66 1856×1392 75Hz

67 1856×1392 120Hz Reduced blanking

68 1920×1200 Reduced blanking

69 1920×1200 60Hz

70 1920×1200 75Hz

71 1920×1200 85Hz

72 1920×1200 120Hz Reduced blanking

73 1920×1440 60Hz

74 1920×1440 75Hz

75 1920×1440 120Hz Reduced blanking

76 2560×1600 Reduced blanking

77 2560×1600 60Hz

78 2560×1600 75Hz

79 2560×1600 85Hz

80 2560×1600 120Hz Reduced blanking

81 1366×768 60Hz

82 1080p 60Hz

83 1600×900 Reduced blanking

84 2048×1152 Reduced blanking

85 720p 60Hz

86 1366×768 Reduced blanking

ChaPTer 3 ■ VGa LCD MoniTors

33

There is a pixel clock limit that limits the highest resolution to 1920×1200 at 60Hz
with reduced blanking [2].

After making changes to your /boot/config.txt file, be sure to sync the file system to
flush out unwritten disk file changes (even though the system shutdown should normally
take care of this). After a reboot, you should be able to test your VGA monitor hookup.

Confirming Resolution
Sometimes after a bootup it is obvious what the new resolution is. At other times, the
change can be subtle, leaving you to wonder whether anything actually changed. So, how
do you confirm?

The frame buffer set command (fbset), when used with the -s option, can show you
information about the current display mode. The following was displayed when I attached
my Dell 1707FPT monitor and allowed the Raspberry Pi to default for the display:

$ fbset -s
mode "1280x1024"
 geometry 1280 1024 1280 1024 16
 timings 0 0 0 0 0 0 0
 rgba 5/11,6/5,5/0,0/16
endmode

When configured for low-resolution VGA, I was able to boot with this display mode
using a lesser monitor:

$ fbset -s
mode "640x480"
 geometry 640 480 640 480 16
 timings 0 0 0 0 0 0 0
 rgba 5/11,6/5,5/0,0/16
endmode

When choosing video modes for your monitor, be sure to stay within the refresh rate
limits of your monitor. They need not be exact, but vertical refresh rates should be close
to, but not exceed, the rating.

Summary
The Raspberry Pi Zero is great for its size and price. Attach a low-cost VGA monitor,
and you can create a killer project for cheap. The Zero or Pi 3 is small enough that it
might even mount the unit inside of the monitor casing. Be sure to check out your local
used market for VGA deals. You may even find friends or family willing to give you VGA
monitors, knowing that you have a use for them.

ChaPTer 3 ■ VGa LCD MoniTors

34

Bibliography
 [1] “RPiconfig.” RPiconfig. N.p., n.d. Web. 30 Jan. 2016. <http://

elinux.org/RPiconfig>.

 [2] “Raspberry Pi: Does RPi Support Resolution of 2560x1440?”
Raspberry Pi: Does RPi Support Resolution of 2560x1440?
N.p., n.d. Web. 30 Jan. 2016. <www.raspberrypi.org/phpBB3/
viewtopic.php?f=26&t=20155&p=195417&hilit=2560x1600
#p195443>.

http://elinux.org/RPiconfig
http://elinux.org/RPiconfig
http://www.raspberrypi.org/phpBB3/viewtopic.php?f=26&t=20155&p=195417&hilit=2560x1600#p195443
http://www.raspberrypi.org/phpBB3/viewtopic.php?f=26&t=20155&p=195417&hilit=2560x1600#p195443
http://www.raspberrypi.org/phpBB3/viewtopic.php?f=26&t=20155&p=195417&hilit=2560x1600#p195443

35© Warren Gay 2017
W. Gay, Custom Raspberry Pi Interfaces, DOI 10.1007/978-1-4842-2406-9_4

CHAPTER 4

I2C LCD Displays

Economical text LCD displays are ideal for embedded Raspberry Pi applications where a
full monitor is not required. The economical 16×2 LCD is popular with the Arduino crowd
but can be used on the Raspberry Pi with a little extra work. Other similar LCD units can
also be used if you need more lines or characters.

Many of these LCD modules use a parallel interface, which would require several
GPIO lines. This chapter shows how to use a I2C interface module to overcome that
disadvantage. These modules also use a 5V supply and require a 5V signal interface. This
chapter presents a solution to this challenge.

LCD Module 1602A
A search on eBay shows that the 1602A LCD module can be purchased for as little as $1.71
(the “Buy It Now” price). Figure 4-1 illustrates the topside of the unit, with its connections
along the bottom.

Figure 4-1. The top of the 1602A LCD module

Chapter 4 ■ I2C LCD DIspLays

36

Figure 4-2 shows the bottom side of the module. The bottom side shows that
connector CON1 has 16 connections. The number of connections is a nuisance from a
wiring and interfacing standpoint, but there is a solution for that.

The logic and the LCD portions of this PCB require 5 volts, which makes this a
little bit of a challenge for the Pi. But there is a solution for that too. The unit includes
backlighting, so you must add the current for the logic plus the backlighting when
planning your power requirements. The figures seem to vary depending upon the
manufacturer, but one datasheet lists the current as 150mA for the logic plus another
100mA for the backlighting. So, this unit is likely to draw about 250mA total from your Pi’s
5V supply.

The 1602A module uses eight data lines and three control lines for data transfers.
That would require 11 GPIO lines to be allocated from the Pi. However, it is possible to
operate the module in 4-bit mode instead. This still requires seven GPIO lines, which is
inconvenient.

To work around this problem, there is a nice I2C adapter module that can be
economically purchased and used.

I2C Serial Interface
The module I purchased on eBay was titled “Black Arduino 1602LCD Compatible Serial
Interface (IIC/I2C/TWI/SPI) Board Module.” The SPI in the title is bogus, since this is an
I2C module. The module is based upon the PCF8574 chip, for which you can also obtain
a datasheet.

To find the module on eBay, search for 1602 serial module. I usually check the “Buy It
Now” option so that there is no need to mess around with auctions and wait times. These
modules can be purchased for as little as $1.10. Figure 4-3 illustrates the module that I
purchased.

Figure 4-2. The bottom side of the 1602A LCD module

Chapter 4 ■ I2C LCD DIspLays

37

The module has three solderable jumpers marked A0, A1, and A2 (on the bottom
right of Figure 4-3). Since CMOS inputs must not be left floating, there are pull-up
resistors on the board. Based upon resistance readings taken, it appears that the three
surface mount resistors marked “103” are the 10kΩ pull-up resistors to each of the
address inputs. Soldering in a shorting jumper will change the address input to a logic 0.

Without any jumpers installed, this I2C PCB will respond to I2C address 27
hexadecimal (hex). With all jumpers installed, the I2C address changes to hex 20. If you
should get a unit with the PCF8574A instead, the I2C address changes to 3F hex, with no
jumpers or 38 with jumpers installed.

I have been unable to find a schematic for this exact PCB, but measuring between
the VCC connection and the SDA or SCL connections confirms a resistance of 4–7kΩ
(you can see resistors labeled “472” on the PCB). This evidence of a pull-up resistor is bad
news for 3.3V operation because VCC on the PCB will be connected to 5 volts when used
with the LCD module. The serial interface PCF8574 chip is able to operate from 3.3 volts,
however, so before you connect it to the LCD module, let’s check the I2C module to see
whether the unit is functional and usable by the Pi.

I2C Module Configuration
The PCF8574 peripheral is rather unique in that it does not require any formal configuration.
The datasheet specifies that its ports are quasi-bidirectional. So, how does this work?

To set an output, you simply write a bit pattern to the outputs over the I2C bus. Pins
written with a 1 bit turn off their pull-down transistor and cause the pull-up current
source to bring the output pin high. This pull-up current source is weak, supporting only
100μA. The NXP documentation indicates, however, that there is an accelerated strong
pull-up that is active during the high time of the I2C acknowledge clock cycle. This briefly
helps the output turn sharply high at the right time but requires only 100μA to maintain
that state after. This works fine for interfacing to CMOS input signals. But because of the
weak high-side drive, the ports cannot source current into LEDs.

Figure 4-3. The I2C Serial Interface module with the PCF8574 chip at the center. Pin 1 is at
the right side, despite the silk screen.

Chapter 4 ■ I2C LCD DIspLays

38

Output ports that are written with a 0 bit cause their pull-down transistor to activate
to conduct port current to ground level. This driven output can sink up to 25mA of
current, though the chip total must not exceed 80mA. This makes the port capable of
driving LEDs when the ports are used to sink LED current.

To be able to read an input, there is a cheat step required: the port must first be
written with a 1 bit so that its weak pull-up current source can allow the port to rise high.
Then the component driving the input can pull the voltage down to ground level when
transmitting a 0 bit to the input. When a 1 bit is transmitted to the port, the signal is
simply brought high again with some assistance from the weak pull-up current source.

If the input port was left in the output 0 bit state, the port’s output driver transistor
would keep that port grounded. To indicate a 1 bit, the component driving this input
would have to overcome this with a struggle. This could result in high currents and
potential damage.

I2C Module Output
Figure 4-4 is a generic schematic of the different I2C modules available. For this
experiment, don’t attach the LCD display yet, since the display module will not function
on 3.3 volts. But the wiring of the unit is important to note because you need to know
where the port pins appear on the edge of the PCB.

From Figure 4-4 you can see that four of the outputs go to pins 11 to 14 of the
16-pin header strip. These will be used to send four bits at a time to the LCD module.
These are port bits 4 through 7, respectively. Three of the four remaining bits go to the
LCD interface pins 4, 5, and 6 to control the information handshaking. These are pins 0
through 2, respectively, with port pin 3 left unconnected (on some LCD modules, pin 3
switches backlighting on or off).

JP
1

R1

1

1
3

GN
D

GND

2

C1

GND GND

16 VDD

IC1

P0 INT 13

15
14

1
2
3

SDA
SCL

A0
A1
A2

P1
P2
P3
P4
P5
P6
P7

VSS

PCF8574T

4
5
6
7
9

10
11
12

8

VDD

RS
B/W
E

DB4
DB5
DB6
DB7

A0

GND

VDD/VCC

SDA

SCL

A1

A2

VD
D

VO BS B/
W

E

R2 10
k

R3 10
k

R4 10
k

4.
7k

4.
7k

R5 R6

DB
4

DB
5

DB
6

DB
7

LE
D+

GN
D

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 4-4. Generic schematic of the 1602 I2C adapter PCB

Chapter 4 ■ I2C LCD DIspLays

39

Table 4-1 summarizes the port pins and the corresponding LCD pins for your
convenience.

Let’s first verify that the I2C bus is available, as shown here:

$ i2cdetect -l
i2c-1 i2c 3f804000.i2c I2C adapter

If i2cdetect is not installed, then install it now, as shown here:

$ sudo apt-get install i2c-tools

Now that you have confirmed that the I2c-1 bus is available, attach the serial
module (without the LCD connected). Connect the V

CC
 to the Pi’s 3.3V supply and GND

to the Pi’s ground. Finally, connect SDA and SCL to the Pi’s SDA and SCL connections,
respectively (the T-Cobbler silk screen should identify these plainly).

With this wired up, start your Pi and perform the following scan of I2C bus 1, as
shown here:

$ i2cdetect -y 1
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- 27 -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

Table 4-1. Port Locations on the 16×1 LCD Header Strip

Port 16×1 Pin Description

P0 4 LCD RS

P1 5 LCD R/W

P2 6 LCD E

P3 Internal Backlighting switch, when supported by I2C module

P4 11 LCD DB4

P5 12 LCD DB5

P6 13 LCD DB6

P7 14 LCD DB7

Chapter 4 ■ I2C LCD DIspLays

40

The session output confirms that the I2C device is seen as address 27 (hex). This is a
good sign that the device is working. If you have a different model of the PCB, you may find
the unit at a different address, perhaps 3F. Substitute your address in the tests that follow.

Change to the subdirectory pcf8574 in the supplied source code. Perform a make
command (if not already performed), which should leave you with an executable named
i2cio. The command takes optional arguments, which are explained with the use of the
help (-h) option.

$./i2cio -h
./i2cio [-a address] [-i pins] [-h] [out_value1...]
where:
 -a address Specify I2C address
 -i 0xHex Specify input port pins (0=none=default)
 -h Help

If your unit was found at a different address than the default hexadecimal address of
27, then you will need to supply that in the commands afterward with the option -a.

I recommend doing this experiment with Dupont wires only since it is easy to cause
a short circuit and ruin something. Either place the PCB module on the breadboard and
connect to it through the breadboard or locate some male/female Dupont wires to safely
attach your connections.

Connect the negative lead of your voltmeter/DMM to the ground of the Pi. Using the
plus lead of the DMM, measure the voltage present at pin 14 of the 16×1 header strip. You
should measure either 3.3 volts or 0 volts. Now run the following command (substituting
for the I2C address if necessary). Do not omit 0x where it appears, as this specifies that
the number is in hexadecimal notation.

$./i2cio -a0x27 0x80
I2C Wrote: 0x80

This command writes the hex value 80 to the I2C port at address 27. After this runs,
you should measure approximately 3.3 volts at pin 14. If you don’t get that, then check
that you have the correct pin. My PCB unit marks pin 16 with a square, suggesting it is pin
1, but this is actually pin 16.

To confirm the port’s operation, let’s now write a 0 out.

$./i2cio -a0x27 0
I2C Wrote: 0x00

After the message I2C Wrote: 0x00, you should immediately see the voltage go to 0
on pin 14. This confirms the following:

•	 That the unit is operating and responding to the I2C address you
specified

•	 That port bit 7 corresponds to connection 14 on the header strip

•	 That you know which end of the header strip is pin 1

Chapter 4 ■ I2C LCD DIspLays

41

This last item is important since it is easy to get this wrong. Cheap clones of the
original board are being made all the time, and important matters like this are often
incorrect or mislabeled.

Now check bit 4, using the value 0x10, followed by setting it to 0. Did pin 11 on
the PCB module obey? Finally, using the value 0x01, does the RS signal (header pin 4)
measure the correct changes?

 ■ Note If you are having trouble locating pin 1 on the I2C module, one way to confirm
this is to measure the resistance of V0 pin 3, which is attached to the potentiometer.

Measure the resistance between pin 3 and the GND pin (the first pin on the end nearest
the pin being tested). slowly rotate the potentiometer slightly and watch for a resistance
change. a change of reading will confirm pin 3.

I2C Module Input
Having succeeded in performing I2C output to the module, it is now time to try input.
Connect a Dupont wire to header pin 14 (DB7) and the other end to your breadboard. Just
leave it unconnected for the moment and perform this test:

$./i2cio -a0x27 -i0x80
I2C Read: 0x80 (Inputs: 80)

By adding the option -i0x80, you have made bit 7 an input. This was done by first
setting the output bit to a 1 so that inputs could be performed on it. The command then
performs a read and reports what it read. In this case, only the high bit is significant, and
since 0x80 indicates a high value, you know the input bit was a 1.

If you don’t want to see the other bits, you can force the others to 0 by doing an
output first and then repeating the following:

$./i2cio -a0x27 0
I2C Wrote: 0x00
$./i2cio -a0x27 -i0x80
I2C Read: 0x80 (Inputs: 80)

After setting all output bits to 0, only the input should ever show up as a 1 bit.
Before running the command again, connect your input Dupont wire to ground.

When you perform the read test this time, the reading should change, as shown here:

$./i2cio -a0x27 -i0x80
I2C Read: 0x00 (Inputs: 80)

Again, only the high bit (7) is significant since that is the only input you’re polling.
You can see from the value reported that the grounding of that pin caused the command
to read 0. Unground the Dupont wire and repeat. Did the read value change back to 0x80?

Chapter 4 ■ I2C LCD DIspLays

42

PCF8574P Chip
From the preceding experiments you can see that this module can be used as a cheap and
nearly configuration-free I2C GPIO extender. The main issue is that the PCB is designed to
work with the 1602A LCD. This might mean that only seven of the eight GPIOs are brought
out to the header strip (the blanking bit may be supported, however, to make eight).

The PCF8574P chip is available in the plastic DIP form from various sources
including eBay, for as little as $0.66. Since this chip will operate at 3.3 volts, it is a good
trick to keep in your back pocket when adding GPIOs to the Raspberry Pi. With no
complicated software configuration required, it is quite easy to use. Just keep in mind that
when driving a current load (like an LED), always arrange the port to sink the current.

3 Volts to 5 Volts
The LCD module must operate at 5 volts. So, now you must cross that digital divide from
the 3.3V realm to the 5V TTL world. Note that Chapter 2’s techniques do not apply to
the I2C bus, so you must find another way to do this. Figure 4-5 shows a tiny little level
converter with the header strips installed. On eBay, you can purchase these for a “Buy It
Now” price of $0.99.

Figure 4-5. Topside of I2C level converter with header strips installed

http://dx.doi.org/10.1007/978-1-4842-2406-9_2

Chapter 4 ■ I2C LCD DIspLays

43

Figure 4-6 shows the bottom-side silk screen. There is a 3V output derived from the 5V
input, shown on the top right of the figure. But I recommend you use that as a last resort.
Use the Pi’s 3.3V power instead because I have found that this connection can be higher
than it should be. If you do use it, the silk screen indicates that it is limited to 150mA.

There are four remaining pins on the left and right sides. The idea is that on one side
you have your 5V signals and on the right are the 3.3V signals. This device is bidirectional,
using MOSFET transistors to do the level conversions. For these purposes, you need the
I2C SDA and SCL lines converted.

To keep the various systems in perspective, Figure 4-7 illustrates the signal realms
involved, including the Raspberry Pi on the left, the level converter at the center, and the
5V I2C serial module for the LCD on the right.

Figure 4-6. Bottom side of I2C level converter

Chapter 4 ■ I2C LCD DIspLays

44

The dashed lines of Figure 4-7 illustrate the I2C signals as they progress from the Pi
to the I2C serial module at the right. Except for the fact that this level conversion adds
another module to the mix, the circuit remains otherwise simple. The two I2C signals
SDA and SCL are all that are required to communicate with the LCD module.

Attaching the I2C Serial Module
Take a good look at Figures 4-2 and 4-3. Note particularly where pin 1 of CON1 is shown
in Figure 4-2. This pin is near the mounting hole in the upper right of the photo. This is
where pin 1 of the I2C serial adapter needs to go.

On my serial adapter, the silk-screen square is shown at the top left. This is incorrect!
Using a DMM, I was able to confirm that V0, which is pin 3, is actually the third pin
from the top right of Figure 4-3. I seem to have a clone of the original design where they
botched the silk screening. The PCB square should have been at the top right instead. I
mention this to save you a lot of agony. Once the PCB is soldered to the LCD module, it is
difficult to separate them. Take your time getting the orientation correct before you plug
in that soldering iron.

Figure 4-8 shows the I2C module installed on the LCD module. The power and the
two I2C connectors should be located at the upper right. I put a piece of electrical tape
underneath the I2C module before soldering it in place. This will keep bare connections
from bumping into connections on the LCD module.

VCC

5 V

SDA

3.3 V
3.3 V

Pi SCL

GND

5 V

5 V

5 V

5 V

GND

3.3 Volt
Regulator

I2C
Level
Converter

I2C
Serial
Module

1602 LCD
Module

Figure 4-7. Block diagram of Raspberry Pi, I2C level converter, and I2C serial module

Chapter 4 ■ I2C LCD DIspLays

45

I like to test things as I go since this saves a lot of troubleshooting effort when things
go wrong and provides a confidence boost when things are going right. The best way
to do this is to yank the microSD card out of the Pi so that it doesn’t boot. That way, if
something goes wrong, you can yank the power without having to worry about corrupting
the microSD card. It also saves you from having to do a formal shutdown when you’re
done testing.

As part of this test, adjust the potentiometer so that you start to see the character
cells in the display. You’ll likely readjust again, once text is shown on the display later.
My LCD module initialized such that one line of cells was showing. Yours may show
a different pattern. Even if you get no pattern at all, don’t panic about it until you try
sending data to it under software control.

If you want to take a current reading, this is a good time to do it. While my LCD was
operating under test in Figure 4-9, I measured about 87mA of current. On the I2C module,
there is a jumper at one end. Removing it turns off the backlighting for the module by
disconnecting the power for it. Once I did this, the current dropped to about 6mA. If you
have a battery-operated system, you could save power this way.

Figure 4-8. I2C module attached to LCD module

Chapter 4 ■ I2C LCD DIspLays

46

The next step is to hook up the I2C level converter. Wire the Pi’s +5 volt to the level
converter’s 5V input and its ground to ground. Also connect the serial module SDA and
SCL lines to the 5V side of the level converter, but save the 3.3V SDA and SCL for later.
Leave those unconnected. Using your voltmeter/DMM, measure the 3.3V SDA and SCL
pins on the level converter when powered. You should get a reading near 3.3 volts. If
you read something else, you need to investigate. If the voltage reads higher than +3.6
volts, then don’t go any further since hookup could damage your Pi’s GPIO ports. Once
you have good readings, you are clear to connect the Pi’s SDA and SCL ports to the level
converter’s 3.3V side.

Displaying Data
Once everything is wired, you are ready to display some data on the LCD. Figure 4-10
illustrates the LCD connected to the Pi with some text displayed. In the subdirectory
pcf8574, there is a program named lcd.cpp that should have been built as executable
lcd. If the executable does not yet exist, type the make command now to build it.

Invoke the command simply as follows:

$./lcd

Figure 4-9. The LCD powered from the Pi’s 5V supply, supplied through the I2C module on
the back

Chapter 4 ■ I2C LCD DIspLays

47

If all went well, you should see the same text as displayed in Figure 4-10. The trickiest
part is getting the LCD module to initialize, partly because you must operate in the LCD
controller’s 4-bit mode.

The initialization procedure for 4-bit operation is a little strange. The HD44780
controller chip used by the display always powers on in the 8-bit communication mode.
Because you are going through the PCF8574 and using four of those bits for controlling
the signal handshaking, only the upper four data bits are being seen by the controller
when you write to it.

Inside the class method LCD1602::initialize(), the following is done to coax the
LCD controller into using 4-bit mode. The reusable source files are lcd1602.cpp and
lcd1602.hpp, should you want to use it in your own code.

165 usleep(20000); // 20 ms
166 lcd_write4(0x30); // 8-bit mode initialize
167 usleep(10000); // 10 ms
168 lcd_write4(0x30);
169 usleep(1000); // 1 ms
170 lcd_write4(0x30);
171 usleep(1000); // 1 ms
172 lcd_write4(0x20); // 4-bit mode initialize
173 usleep(1000); // 1 ms

Figure 4-10. Final hookup with I2C level converter

Chapter 4 ■ I2C LCD DIspLays

48

Line 165 just begins with a delay in case there was recent activity with the display.
Line 166 calls upon internal class method lcd_write4() to write out the 8-bit command
3X, where X represents garbage (likely seen as 3F by the controller). You do this three
times and then finally set the mode you really want in line 172. This sets the controller
into 4-bit mode.

After this point, all 8 bits of a command or data byte are sent as two back-to-back
4-bit writes (using the method lcd_cmd() or lcd_data()). Each write is preceded by a
busy check, by reading from the controller. When it reads that bit 7 is no longer a 1, it
then knows that it is safe to write into the controller again. This is performed in method
lcd_ready() for the curious.

Reading from the LCD1602
Except for the initialization sequence, the code driving the LCD does not use delays. This
has the benefit of increasing the data rate to almost as fast as the device will accept it. The
initialization sequence, however, requires the use of delays since the controller does not
provide any busy status during that time. Once initialized, there is a busy status flag that
can be read.

Reading the status from the LCD controller is tricky when conversing through
the PCF8574 in 4-bit nibbles. Recall that to read an input from the PCF8574, you must
first write a 1 bit to the pin first. Since the status is available immediately after an LCD
command write, you have to be careful in how you perform this.

Steps 1 through 4 are all that are required to send an 8-bit command to the LCD
controller through the PCF8574 chip (Table 4-2). Some LCD commands, however, such as
“clear screen,” require extra time to complete. If you sent another command byte during
this busy period, the command would be ignored. You could use a programmed delay,
but different LCD commands take different amounts of time. It is best to have the LCD
controller tell you when it is no longer busy.

Before you look at the read cycle, I’ll explain what happened during the write steps.
Step 1 sets the BL bit to 1 if you want to keep the backlighting enabled. This bit is ignored
if the I2C adapter doesn’t support this feature. The RS=0 bit indicates that a command
byte is being sent. Bit RW=0 indicates to the LCD controller that a write operation is being
performed. Finally, E=1 prepares the LCD controller to receive 4 bits of data on bits 7, 6, 5,
and 4. In 4-bit handshaking, the remaining bits of the data bus are ignored. Keep in mind
that these bits are being written over the I2C bus into the PCF8574 chip and appearing at
the chip’s own GPIO pins, which are interfaced to the LCD module (review Figure 4-7).

No data is captured in the LCD controller yet, until step 2. In this step, the signal E=0
is established (by another I2C write operation). The transition from E=1 to E=0 clocks the
data into the controller (the high nibble). Steps 3 and 4 repeat steps 1 and 2, except that
the low-order nibble is transmitted. Once step 4 has completed, the LCD controller has
received eight bits of command data and begins to carry it out.

To know when it is safe to send another command (or data), you must ask the LCD
controller for the BF (busy flag) status bit. To prepare for a read from the PCF8574, you
must first write 1 bits to bits 7, 6, 5, and 4, where you expect data. Additionally, RW=1 is
established to warn the LCD controller that you will be performing a read operation. This
is what step 5 is all about.

Chapter 4 ■ I2C LCD DIspLays

49

Table 4-2. Steps Used to Write One 8-Bit Command and Read the BF Status Flag

Step Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Read/Write Description

D7/3 D6/2 D5/1 D4/0 BL E RW RS

1 bit 7 bit 6 bit 5 bit 4 bl 1 0 0 Write Enable
write
of high
command
nibble.

2 bit 7 bit 6 bit 5 bit 4 bl 0 0 0 Write Clock in
the high
command
nibble.

3 bit 3 bit 2 bit 1 bit 0 bl 1 0 0 Write Enable
write
of low
command
nibble.

4 bit 3 bit 2 bit 1 bit 0 bl 0 0 0 Write Clock in
the low
command
nibble.

5 1 1 1 1 bl 0 1 0 Write Prepare
to read
(RW=1)
and set
bits 7, 6, 5,
and 4 to 1
so that you
can read
from those
ports.

6 1 1 1 1 bl 1 1 0 Write Prepare
LCD to
present
status.

(continued)

Nothing happens on the LCD controller until it sees the E signal change from 0 to
1 in step 6. At this transition, the controller puts the status byte out to its data lines. At
this point, the controller is driving bits 7, 6, 5, and 4 of the PCF8574 pins. Step 7 tells
the PCF8574 chip to take a reading and send it back to the Pi on the I2C bus. Table 4-2
has an X marked in the remaining positions as “don’t care.” You are only receiving data
transferred in the upper nibble of this byte read.

Chapter 4 ■ I2C LCD DIspLays

50

Steps 8 through 10 repeat steps 5 through 7, except this time the lower nibble of data
is transferred. Step 11 ends the read cycle and informs the LCD controller you are done.

Now the BF flag is examined. When BF=1, the LCD controller is still busy carrying out
the last command. The Pi program then repeats again starting from step 6. This repeats
until the controller finally returns BF=0, indicating “ready.”

How long does all of this take? With I2C operating at 100kHz, each byte takes
approximately the following amount of time:

t x

sec

byte = + +()

=

1

100000
1 8 1

100m

Table 4-2. (continued)

Step Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Read/Write Description

D7/3 D6/2 D5/1 D4/0 BL E RW RS

7 BF AC6 AC5 AC4 X X X X Read Read
upper
status
nibble.

8 1 1 1 1 bl 0 1 0 Write Complete
the upper
nibble
read.

9 1 1 1 1 bl 1 1 0 Write Prepare
LCD to
present
lower
nibble.

10 AC3 AC2 AC1 AC0 X X X X Read Read
lower
status
nibble.

11 1 1 1 1 bl 0 1 0 Write End read
cycle.

12 Repeat,
starting
at step
6 when
BF=1,
until
BF=0
(ready)

Chapter 4 ■ I2C LCD DIspLays

51

There is a start bit, eight data bits, and one stop bit for each I2C byte written to the
PCF8574. So, assuming you don’t receive BF=1, the write followed by a status read should
take approximately this long:

t sec x steps sec mscommand = = ()100 11 1100 1 1m m .

This means you can issue approximately 909 LCD commands per second, ignoring
busy wait times. From my own testing, I found that most commands do not incur any busy
time because of the time involved in the I2C traffic. The only instance I encountered where
BF=1 was in clearing the screen. Given that it takes seven I2C cycles to read the LCD status,
this results in a delay of 100 × 7 = 700μsec of time. Most LCD commands complete in much
shorter times (consult the HD44780 controller datasheet for actual times).

Given these facts, it is tempting to program delays instead. But it is best to consult
the BF status flag because if the LCD controller should miss a command or data byte, you
would have no knowledge of it in your program. The display would continue in a messed-
up state until it was reset by your code.

Class LCD1602
I2C programming is covered in Chapter 11, so I won’t repeat that here. However, the
source code includes the following two files in the pcf8574 subdirectory:

•	 lcd1602.hpp

•	 lcd1602.cpp

Include the class definition in your program with the following:

#include "lcd1602.hpp"

Then you can make use of the LCD1602 class to interact with your display. To instantiate
the class, you code it with the optional I2C address and bus number, as shown here:

LCD1602 lcd(0x27,1); // I2C address and bus number

After this, you need to initialize it only once, as shown here:

if (!lcd.initialize()) {
 fprintf(stderr,
 "%s: Initializing LCD1602 at I2C bus %s, address 0x%02X\n",
 strerror(errno),
 lcd.get_busdev(),
 lcd.get_address());
 exit(1);
}

http://dx.doi.org/10.1007/978-1-4842-2406-9_11

Chapter 4 ■ I2C LCD DIspLays

52

From that point on, in your own code you can invoke the public functions such as
lcd.clear() and lcd.putstr(). The following is a summary of the public members of
the LCD1602 class:

class LCD1602 {
 ...
public: LCD1602(unsigned i2c_addr=0x27,unsigned bus=1);
 ~LCD1602();

 const char *get_busdev() const { return busdev.c_str(); };
 unsigned get_bus() const { return i2c_bus; }
 unsigned get_address() const { return i2c_addr; }

 bool initialize(); // Initialize the LCD
 bool lcd_ready();

 bool lcd_cmd(uint8_t byte) { return lcd_write(byte,true); }
 bool lcd_data(uint8_t byte) { return lcd_write(byte,false); }

 bool clear();
 bool home();
 bool moveto(unsigned y,unsigned x);

 bool putstr(const char *str);

 bool set_display(bool on=true);
 bool set_blink(bool on=true);
 bool set_backlight(bool on=true);
 bool set_cursor(bool on=true);

 bool get_display() const { return display; };
 bool get_blink() const { return blink; };
 bool get_backlight() const { return backlight; };
 bool get_cursor() const { return cursor; };
};

If you want to learn more about the features of the LCD module, locate the HD44780
controller’s datasheet in PDF form. That document will describe all the commands and
features supported by the controller.

I2C Baud Rate
Throughout this book, the default system I2C baud rate is used. You can discover what
that rate is with the following command:

$ dmesg | grep -i i2c
[5.102698] bcm2708_i2c 3f804000.i2c: \
 BSC1 Controller at 0x3f804000 (irq 83) (baudrate 100000)

Chapter 4 ■ I2C LCD DIspLays

53

From this you can see that the I2C driver initialized with the baud rate of 100kHz
(100,000). This is not particularly fast but is considered reliable. The I2C level shifter used in
this chapter also limits the reliability of the connection and probably shouldn’t be pushed
much higher. Despite the I2C bus operating at 100kHz and using 4-bit I/O transfers, you’ll
still find that the display is responsive. A simple LCD command structure and the fact that
the display holds only 32 characters means that the I/O system is not unduly taxed.

Profit and Loss
In this chapter’s project, you used a level translator and a PCF8574 I2C extender on a PCB
to communicate with the 1602 LCD module. Let’s review some of the pros and cons of
doing this.

Here are the pros:

•	 Only two lines are needed for communicating to the LCD from
the Pi.

•	 I2C allows a few meters of distance between the Pi and LCD.

•	 Only two GPIOs are required from the Pi side.

•	 The PCF8574 I2C module might provide backlighting control.

•	 The 1602 LCD, PCF8574 PCB, and level translator are all
inexpensive.

Here are the cons:

•	 The method requires commanding the LCD module in 4-bit
mode.

•	 The PCF8574 I2C module is slower driving the LCD.

•	 The LCD module is 5 volts, requiring a level translator.

•	 Configuration of the LCD is limited.

Certainly there is some complexity involved with the added components, but the
overall cost is low. Because communication occurs over the I2C bus, the LCD can be a few
meters away from the Pi itself.

The one negative I saw was that there seems to be no way to configure the LCD
module for other modes of operation in 4-bit data transfer mode. The command 0x20 is
used to put the LCD controller into 4-bit mode (note that this is sent in 8-bit mode). This
works because the 2 in 20 is in the upper nibble that the controller can see. But the lower
nibble of that “function set” command consists of the N and F bits that allow two-line
(N=1) or one-line (N=0) displays and a 5 × 10 dots (F=1) or 5 × 10 dots (F=0) font.

In my own experiments, the configuration always went to N=1, leaving F to be
ignored (the LCD won’t do two-line displays with the larger font). I suspect that this
is the result of the low nibble signals being pulled high by the LCD module (these
are unconnected). This results in the controller seeing N=1. This is not too much of a
hardship given that most people will want the two-line display more than the larger font
in one line.

Chapter 4 ■ I2C LCD DIspLays

54

Summary
This chapter covered a lot of ground, partly because of the challenges faced by using a
5V I2C part. Additionally, the PCF8574 GPIO extender was applied to reduce the number
of lines required to drive the display. By using the I2C communication bus, it becomes
possible for your LCD display to be a few meters away from the Pi. The best part is that
the LCD display is cheap, is readily available, and requires only power and two lines of
communication.

55© Warren Gay 2017
W. Gay, Custom Raspberry Pi Interfaces, DOI 10.1007/978-1-4842-2406-9_5

CHAPTER 5

MC14490 and Software
Debouncing

This chapter examines input devices with mechanical contacts. Switches, buttons, relays,
and rotary controls all have contacts that cause trouble for electronic circuits; electronic
circuits are so fast that they see contacts make and break thousands of times per second.
If you ignore this aspect of input controls in your design, you could wind up with
dysfunctional custom controls for your Pi.

This chapter looks at two major approaches to this problem. The first approach
applies hardware, while the second is related to software. Figure 5-1 illustrates the
hardware solution. Either of these methods can be successfully applied to your own
Raspberry Pi custom controls.

Figure 5-1. The MC14490 dual inline package (DIP) chip

Chapter 5 ■ MC14490 and Software debounCing

56

Hardware: MC14490
Several potential hardware solutions are possible, but one of the best approaches uses a
low-cost IC designed for the purpose. While the part is now considered obsolete, it is still
available from various suppliers including eBay ($1.12 with free shipping). Keep in mind that
this 16-pin DIP provides debouncing for six inputs. At 17 cents per input, the price is right!

The MC14490 is a CMOS device and can operate from 3 volts up to 18 volts. This
makes it an easy sell for Pi projects using the +3.3V power supply. Finally, only one
external component is required, making this an easy chip to wire up or breadboard. Be
sure to take this chip for a test run.

Figure 5-2 shows the basic circuit with the debounced outputs AOUT through FOUT
available for reading directly into Pi GPIO input ports. Also shown in the diagram is the +3.3V
regulated Pi power to pin 16 (V

DD
) and the power grounded at pin 8 (V

SS
). In normal operation,

the chip requires much less than 1mA and will not stress your Pi’s supply in the least.
Two switches (or buttons) are shown in the figure, with S1 connected to signal

AIN and S2 connected to FIN. These are the inputs to AOUT and FOUT, respectively.
An additional four inputs could be added to the unused pins. Normally CMOS requires
that every input be connected so that it is not left floating in voltage. The MC14490 chip
is designed, however, with a built-in pull-up resistor for every input. This makes the
addition of resistors to the circuit unnecessary. This also allows the unused inputs to be
left unconnected. Input pin 7 will have a capacitor attached to it.

+3.3V

S1

IC1

AIN
BIN
CIN
DIN
EIN
FIN

AO 15
16

8MC14490

2
13
4
11

OSCIN

FO
UT

AO
UT

OSCOUT

6

BO
CO
DO
EO
FO

1
14
3

12
5

10

7

9

S2

C1

GND

Figure 5-2. MC14490 circuit with up to six inputs and debounced outputs

Chapter 5 ■ MC14490 and Software debounCing

57

Chip Operation
The MC14490 chip is marvelously simple in operation yet very effective. The datasheet for

the device illustrates a block diagram consisting mainly of a 4-bit shift register, a 1

2
-bit

delay, and a clock circuit. Each of the six input lanes consists of the same logic.
The operation of the device can be understood more easily in simpler human terms.

At each device clock pulse, the current input is compared against the last shifted in input
value. If the values differ, the shift register is cleared, and the process starts over. In this
way, any bouncing of the contacts will keep clearing the shift register, and no change at
the output will occur.

However, if after multiple clock pulses there is no change seen in the input value, the

input level bits eventually make it out of the 4
1

2
-bit shift register. Once this happens, the

debounced output appears on the output pin. That is the procedure in a nutshell.
In reality, the operation is a little more complicated because the shift register

clear is actually implemented as a “load” operation. It must set bits all to 0s or all to 1s,
depending upon the current state of the output. By doing this, the debounce process
works for a signal going high and for one going low.

Capacitor C1

The frequency of the clock is determined by the value chosen for C
1
. The ON

Semiconductor datasheet lists formulas to use for various voltages. The lowest voltage
formula given is for 5V operation, as shown here, where the value of C

1
 is given in

microfarads (μF):

f
C

HzOSC =
1 5

1

.

I tried to estimate it for 3.3 volts, but the relationship is not linear across voltages.
So, I tried some sample capacitors and hooked up the chip’s pin 9 (OSC

out
) to a frequency

counter (Figure 5-3). Using the results in Table 5-1, you won’t need to do the same.

Table 5-1. Experimental Frequency Readings for C
1
 at 3.3 Volts

C1 Frequency Computed K Debounce Period

0.02μF 20Hz 0.40 225ms

0.01μF 44Hz 0.44 102ms

0.00056μF 797Hz 0.44 5.65ms

0.00022μF 1916Hz 0.42 2.35ms

0.00015μF 2798Hz 0.42 1.61ms

Chapter 5 ■ MC14490 and Software debounCing

58

The factor is computed by rearranging the equation given by the datasheet, as shown
here:

K C fOSC= ´1

So, the factor is determined by simple multiplication. When the factor K is computed
for each Table 5-1 row, it seems a value between 0.42 and 0.44 works. The fact that
they tend to be all about the same value suggests that there is a solution. Now you can
compute the approximate frequency for a 3.3V operation with K=0.42, as shown here:

f
COSC =
0 42

1

.

The datasheet tells you that a stable debounced output occurs in 4
1

2
-bit shifts. If you

used a C
1
 value of 0.00022μF, then your clock frequency is rather high at about 1916Hz.

For a frequency of 1916Hz, each cycle takes the following:

1

1916
522@ m sec

Multiplying that figure by 4.5 times gives you about 2.35ms. That is a rather short
debouncing period. Scratchy contacts can require up to 50ms of settling time. Using a
value of 0.01μF reduces the clock frequency to 44Hz, which provides a debounce period
of 102ms. That should more than suffice for the scratchiest of metal contacts.

Experiment
Wire up your Raspberry Pi using a breadboard and the MC14490 chip according to
Figure 5-4, except leave the connection between AO on the chip disconnected from
the Pi GPIO#16. Attach a Dupont wire to the Pi’s GPIO#16, while leaving the other end
unconnected. You’re going to play with that wire.

Figure 5-3. An old Fluke 1953A frequency counter used to determine the 3.3V formula for
C

1
, by measuring frequency

Chapter 5 ■ MC14490 and Software debounCing

59

Choose a suitable capacitor C
1
. I recommend you use 0.01μF or slightly less. This

value should be fairly responsive and yet immune to bouncing contacts.

Using the gp command, which was installed as part of the software in Chapter 1,
monitor the GPIO input pin 16. Select GPIO#16 (-g16), configure it for input (-i), enable
the pull-up resistor (-pu), and monitor that pin forever (-m0), until you hit Control-C.

$ gp -g16 -i -pu -m0
Monitoring..
000000 GPIO 16 = 1
000001 GPIO 16 = 0
000002 GPIO 16 = 1
000003 GPIO 16 = 0
000004 GPIO 16 = 1

Once the gp command is monitoring, the session output shows the result of
scratching your GPIO#16 wire to ground. You might see several hundred changes in the
output. This is what your software would see if you placed a scratchy metal contact button
on that input. Now let’s let the MC14490 work its magic.

 ■ Note while it is safest to make circuit changes when your raspberry pi is shut down
and off, this is time-consuming and inconvenient. with care, some circuit changes can be
performed while the power is applied and the pi is running. however, applying or removing
power to breadboarded chips is asking for trouble. it is recommended therefore to wire
power connections when the pi is shut down and off.

+3.3V

S1

IC1

AIN
BIN
CIN
DIN
EIN
FIN

AO 15
16

8MC14490

2
13
4
11

OSCIN

OSCOUT

6

BO
CO
DO
EO
FO

1
14

3
12

5
10

7

9
C1

GND

Figure 5-4. One debounced input hooked up to the Raspberry Pi on GPIO#16

http://dx.doi.org/10.1007/978-1-4842-2406-9_1

Chapter 5 ■ MC14490 and Software debounCing

60

Connect the GPIO#16 to the AO output of the MC14490 (pin 15). Next attach another
Dupont wire to the MC14490 AIN input. Now try scratching that wire to ground, off and
on. Do you get nice clean 1 and 0 outputs?

If you don’t see it working, then check that the capacitor is properly wired in. Don’t
use extremely high-valued capacitors like 1 or more μF (in fact, high-valued capacitors
may ruin the chip at power off/on). If your oscillator is operating at a very low frequency,
you may have to hold the change for a long time to see the output change. On the
other hand, if your changes are occurring immediately, then perhaps the oscillating
frequency is too high, providing very short debouncing periods. If still no joy and you
lack an oscilloscope or logic analyzer, try the PiSpy program from the book Exploring the
Raspberry Pi 2 with C++ (Apress, 2016).

With the circuit performing correctly, you can hook up a push button like the one
illustrated in Figure 5-5. This is a simple button that I found to be bad for bouncing
contacts. Attached directly to the GPIO input without debouncing, this button is simply
unusable.

Attach one wire of the push button to ground and the remaining one to the
debouncing input AIN (pin 1). Keep the gp command monitoring (or restart it), and now
when you press and release the button, you should get clean, distinct 1 and 0 events.
Make sure you push the button with enough force if you don’t see any events. Sometimes
these cheaply made buttons don’t function well.

Figure 5-5. A cheap scratchy push button, with two wires soldered to it

Chapter 5 ■ MC14490 and Software debounCing

61

More Inputs
You can’t have too many inputs, and clearly six are not always enough. For the price of
another MC14490 chip, you can easily add six more debounced inputs. You don’t even
need the extra capacitor.

The schematic in Figure 5-6 illustrates how IC1’s oscillator output can be shared with
IC2. Both debouncing chips will run at the same frequency and reduce the number of
capacitors needed.

The schematic can be wired up on your breadboard and tested. Here you move the
push button to IC2’s AIN and connect the Pi’s GPIO#16 to IC2’s debounced output on pin
15. Wire it up and test it as before to satisfy yourself that this works.

Figure 5-7 shows the two ICs connected to share one oscillator. The scratchy push
button was moved to IC2 to prove that it too operates correctly.

If you download and read the ON Semiconductor datasheet, you’ll find that it
is possible to do some other tricks with the MC14490. For example, if you use two
debouncers and a NOR gate, you can have one input produce a pulse when the button is
pressed. This is useful when you need a pulse, even when the end user holds the button
down without releasing it.

+3.3V

IC1

IC2

1 AIN
BIN
CIN
DIN
EIN
FIN

OSCIN

OSCOUT

MC14490

AO
BO
CO
DO
EO
FO

AIN
BIN
CIN
DIN
EIN
FIN

OSCIN

OSCOUT

AO
BO
CO
DO
EO
FO

14
3

12
5

10

15
2
13
4
11
6

15
2
13 GP

IO
#1

6

4
11
6

8

MC14490 8

16

16

7
C1

S1
GND

GND

9

1
14

3
12

5
10

7

9

Figure 5-6. Two MC14490 chips sharing one oscillator

Chapter 5 ■ MC14490 and Software debounCing

62

Software Debouncing
I’ve discussed one hardware solution in this chapter, but if you don’t mind expending
some CPU cycles, you can do the same work in software. Here is one fairly simple
approach for software:

 1. Clear your program state by reading the GPIO input (as v) and
then doing one of the following:

 a. Set shiftr to 0 if the input v is a 0 bit.

 b. Set shiftr to all 1 bits when the input v is a 1 bit.

 2. At the top of the loop, read the GPIO pin (again) into variable b.

 3. Shift shiftr left one bit, and set shiftr.bit_0=b.

 4. Examine the lower four bits of shiftr.

 a. Are they all 0 bits? Set s=0.

 b. Are they all 1 bits? Set s=1.

 c. If they’re neither all 0 bits or all 1 bits, repeat the exercise
starting with step 2.

 5. If s = v, then there is no change. Repeat the exercise starting
with step 2.

 6. If s ≠ v, then you have a debounced change in signal. Continue
with step 7.

Figure 5-7. Two MC14490 chips sharing one oscillator, interfacing with GPIO#16

Chapter 5 ■ MC14490 and Software debounCing

63

 7. Now set the debounced signal as v = s.

 8. Repeat the loop with step 2.

The idea is that you keep shifting bits into a shift register (shiftr) at regular
intervals. When the input stays high or stays low, the bits shifted into the register will all
be the same.

Let’s use a concrete example, using eight bits to hold shiftr to illustrate the
procedure.

 1. 00000000: This is the initial value of shiftr. You also assume
that the debounced state is 0.

 2. 00000001: The bit shifted in from the right indicates that the
input line went high.

 3. 00000010: Because of bouncing contacts, you shifted in the
next read value, which is low.

 4. 00000101: Because of bouncing, the next read value was a
high value.

 5. 00001011: Read another high value.

Steps 2 through 4 have sampled the input line four times now. But the low-order bit
pattern is currently 1011, which is neither all 1 bits nor all 0s. So, you don’t register any
debounced change in value.

 6. 00010111: Read another 1 bit (line still high). The low-order
bits are 0111, which still does not represent a debounced
change.

 7. 00101111: Read another 1 bit (line still high). Now when you
look at the low-order bits, you see 1111. Because the saved
state is 0, this represents a change to the 1 state. You now can
set the debounced state to 1.

From the concrete example, you see that nothing changes until the requisite four
lower bits are all 1s. Now as long as you keep reading 1 bits on the line or even mostly 1
bits, the state will never leave the debounced state of 1.

After a while, the user is going to flip the switch to the opposite state (in this case,
grounding the input).

 8. 01011110: Read a 0 bit (the line has gone low).

 9. 10111101: Read a 1 bit because of bouncing contacts.

 10. 01111010: Read a 0 bit (the line has gone low again).

 11. 11110100: Read another 0 bit. The lower four bits are 0100,
which is nothing special.

 12. 11101000: Read another 0 bit. There’s still nothing special
about the lower four bits.

 13. 11010000 Read another 0-bit. Now the low-order four bits are
0000. This indicates a debounced zero level.

Chapter 5 ■ MC14490 and Software debounCing

64

Now you have reached the debounced state for zero.
Whenever the signal waffles between 0 and 1, it pollutes the bit pattern in the shift

register so that no action is taken. However, when the signal stabilizes, the bit pattern
will be either 0000 or 1111. If the state differs from the pattern, you know that you have a
debounced transition.

In this example, I am assuming that you needed four bits. This was arbitrary and
inspired by the MC14490 design. I have used three, four, or even five bits depending upon
the sampling period and the response time required for various projects.

Experiment
To perform the software signal debouncing experiment, wire up a scratchy push button to
your Raspberry Pi, as shown in Figure 5-8.

Change to the debounce subdirectory and type make if the software has not yet been
compiled yet. This will create the executable program debounce. Run it as follows, once
you have the push button wired up:

$./debounce
Now debouncing gpio_pin = 16. ^C to exit.
State changed: 1
State changed: 0
State changed: 1
State changed: 0
State changed: 1
State changed: 0
State changed: 1
^C

This session shows several push button presses and releases. Did your scratching
push button work like a good one?

Listing 5-1 shows the software listing for debounce.cpp. Lines 016 to 027 of the main
program configures GPIO#16 as an input, with the pull-up resistor applied. The pull-
up resistor is necessary so that when the push button is not pressed, the open circuit
allows the resistor to pull the GPIO line high. Otherwise, the GPIO line would float and
sometimes read high and sometimes low. Not a happy situation!

S1

GND

Figure 5-8. Software push button debouncing experiment

Chapter 5 ■ MC14490 and Software debounCing

65

Line 031 initializes the state variables. The value of state just tracks whether the
debounced output is high or low. Variable shiftr is the shift register, loading the most
recently read bit into the variable from the right (bit 0). Value b is the most recently read
bit from GPIO#16.

Line 036 shifts the most recently read bit from the GPIO into the shift register. Old
bits are simply shifted out of the register. Line 037 is where the value of m is assigned the
lowest four bits from the shift register.

Things get interesting in line 039 where m is tested to see whether the bit pattern is
0000 or 1111. If one of those patterns applies, line 040 tests to see whether the low-order bit
matches the current state. A state change occurs only if the line value differs from what you
already have established. If there is indeed a change of state, execution proceeds to line
041 where the new state is saved and a message is printed, for demonstration purposes.

Listing 5-1. The debounce.cpp Software Debouncing Program

001 // debounce.cpp
002
003 #include <stdio.h>
004 #include <unistd.h>
005 #include <stdlib.h>
006 #include <string.h>
007 #include <errno.h>
008
009 #include "gpio.hpp"
010
011 static int gpio_pin = 16; // Input
012
013 static GPIO gpio;
014
015 int
016 main(int argc,char **argv) {
017 int rc;
018
019 if ((rc = gpio.get_error()) != 0) {
020 fprintf(stderr,"%s: starting gpio (sudo?)\n",strerror(rc));
021 exit(1);
022 }
023
024 gpio.configure(gpio_pin,GPIO::Input);
025 assert(!gpio.get_error());
026 gpio.configure(gpio_pin,GPIO::Up);
027 assert(!gpio.get_error());
028
029 printf("Now debouncing gpio_pin = %d. ^C to exit.\n",gpio_pin);
030
031 int state = 0, shiftr = 0, m, b;
032
033 for (;;) {

Chapter 5 ■ MC14490 and Software debounCing

66

034 b = gpio.read(gpio_pin); // Read bit
035
036 shiftr = (shiftr << 1) | (b & 1);
037 m = shiftr & 0b00001111; // Mask out low order bits
038
039 if (m == 0b00001111 || m == 0b00000000) {
040 if ((shiftr & 1) != state) {
041 state = shiftr & 1;
042 printf("State changed: %d\n",state);
043 }
044 }
045 usleep(10000);
046 }
047
048 return 0;
049 }

Before the loop repeats, you pause the program’s execution in line 045, with a delay
of 10,000μsec (10ms). This step is necessary for two reasons.

•	 Without the delay, the CPU would be consumed in a tight
execution loop. This is not only wasteful but will cause your Pi
to consume more power and get warmer (did you purchase a
heatsink for your Pi 3?).

•	 You look only at the four lower bits in the shift register (shiftr). If
you want to debounce about 40ms of contact bounce and perform
this in four samples, then you need to sample about 10ms apart.

So if you want more samples, or quicker response, play with the number of bits and
the delay time.

Summary
The MC14490 is a great little chip when you need a hardware solution to debouncing
input contacts. These contacts could come from switches, buttons, relays, or reed relay
contacts. With the information provided, you will be able to apply this chip at 3.3 volts to
the Raspberry Pi and pick the correct capacitor for the type of response you need.

If, however, you decide upon a software solution for debouncing, then the code in
this chapter provides a working solution for you.

67© Warren Gay 2017
W. Gay, Custom Raspberry Pi Interfaces, DOI 10.1007/978-1-4842-2406-9_6

CHAPTER 6

PCF8591 ADC

One of the peripherals missing in the Raspberry Pi is an analog-to-digital converter
(ADC). One low-cost solution is an 8-bit ADC peripheral based upon the PCF8591 chip.
You can purchase the bare chip on eBay for about $1.50, but for about 10 cents more, you
can get the assembled YL-40 PCB.

This chapter will explore the PCF8591 ADC and the Linux I2C device driver for it.
While the driver source code exists in the kernel source tree, it is not likely compiled into
your Raspbian release. Even when installed, there are a few simple things you need to do
to get the driver operating. Using the Linux driver support, it will be a snap to take ADC
readings using a shell script or a Python program.

The YL-40 PCB
This chapter explores the YL-40 PCB, which is about 1 inch by 1.5 inches in size. You
might use a different PCB, using the same PCF8591 chip. The YL-40 comes preassembled
with header strips and extras that make it easy to use. In addition to the PCF8591 chip’s
ability to convert an analog signal into a digital value, it has one digital-to-analog
converter (DAC) output channel, which you’ll explore later. Figure 6-1 illustrates the
topside of the YL-40 PCB.

Chapter 6 ■ pCF8591 aDC

68

Figure 6-1. The YL-40 PCF8591 PCB

Header strip P2 (left) consists of these analog inputs and outputs:

•	 AOUT (DAC), output

•	 AIN0 (ADC), input 0

•	 AIN1 (ADC), input 1

•	 AIN2 (ADC), input 2

•	 AIN3 (ADC), input 3

The power is applied on the right through P3 connector pins V
CC

 and GND (shown
on the right of Figure 6-1). Additionally, the I2C signals for SDA and SCL are found at P3.
One of the advantages of the PCF8591 chip is that it will operate from 3.3 volts, interfacing
nicely with the Raspberry Pi. Figure 6-2 is a schematic of the YL-40 PCB.

Chapter 6 ■ pCF8591 aDC

69

Three jumpers come installed on the YL-40 that enable or disable extra features.

•	 Jumper P4, when installed, enables a temperature-sensitive
resistance sensor (R

6
). On my PCB, this didn’t seem to work (on

two PCBs that I purchased). Later in this chapter, I’ll show you
how to fix that.

•	 Jumper P5 enables the light-dependent resistor (LDR) and
connects it to AIN0. This jumper can be removed when you want
to provide your own analog input to AIN0.

•	 Jumper P6 connects the wiper arm of potentiometer R
3
 to

AIN3. Using a small screwdriver, you can turn R
3
 clockwise or

counterclockwise to cause an analog reading to change. This is
extremely useful during initial testing. You can, of course, remove
the jumper on P

6
 and use AIN3 for any other purpose. Turning

R
3
 fully clockwise grounds AIN3, while counterclockwise brings

AIN3 to V
CC

 potential.

AIN2 has no jumper and is available at header strip P2. No other component on the
PCB is attached to it.

AIN1

AIN0

DAC

YL-40

PWR

AIN3

AIN3
AOUT

AIN2
AIN1
AIN0

Note: Some pcbs label
AIN0..AIN3 backwards!

SCL
P3

C1 R8

R1
R6 Te

m
p

R7 LD
R

R2

10
K

1K

1K R3

R4 R51K
D1 D2

1K

1K

10
K

R9

100nF

YCC

GND

OSC

IC1
11

9
10

5
6
7

12

1
2
3
4

SDA
SCL

A0
A1
A2 YREF

EXT

AIN0
AIN1
AIN2
AIN3

PCF8591P

AOUT

AGND

YSS

GND

GND

P2
1
2
3
4
5

YDD
16

14

15

13

8

1
2

1
2

1
2

1
2

3
4

P4

P5

P6

GND
YCC

SDA

Figure 6-2. Schematic of the YL-40 PCB

Chapter 6 ■ pCF8591 aDC

70

Voltage Range
Because the PCF8591 (YL-40 PCB) is powered from the Raspberry Pi’s 3.3V supply, the
analog input voltages must be kept between 0 volts and 3.3 volts. The V

REF
 is taken from

the power supply on the YL-40 PCB. If you’re wiring this up yourself, you have the option
of using a lower V

REF
 voltage, but the maximum voltage should not exceed V

DD
 (on the

YL-40 PCB, this is also known as V
CC

). The datasheet lists any input voltage V
I
 as V

DD
 +0.5V

(3.3 + 0.5 volts) as the absolute maximum. The lowest voltage for any input is listed as
-0.5 volts.

You can find further technical details by Googling PCF8591 datasheet PDF.

I2C Bus
The PCF8591 uses the I2C bus to communicate. As an I2C slave peripheral, the YL-40
PCB provides two weak pull-up resistors, R

8
 and R

9
, which are 10kΩ each. The Raspberry

Pi will already have its own pull-up resistors on these lines (1.8K each). If you are rolling
your own circuit, you may want to install these 10kΩ pullup resistors also, though they are
not strictly necessary.

I2C Addresses
The PCF8591 chip possesses three address pins, A0 to A2, allowing you to choose one of
eight possible peripheral addresses from 0x48 to 0x4F. The YL-40 PCB, however, connects
all three of these pins to ground, restricting the address to 0x48 (jumpers would have
been nice). Unmodified, only one YL-40 PCB can be attached to a given I2C bus. Later in
the chapter, you’ll see how the PCB can be modified to overcome this limitation.

DAC (AOUT)
With the Linux device driver operating, you can write a value from 0 to 255 to have the
DAC output (AOUT) establish an output voltage. The driver input value, however, must
be multiplied by ten. Assuming that you have exactly 3.3 volts powering the PCF8591 (and
thus V

REF
 = 3.3 volts), a value of 255 should establish a voltage very near that. A value of

zero establishes a ground value instead. A midpoint value of 128 should generate a value
near half of 3.3 volts (1.65). When multiplied by 10 for the driver, the values used are 2550,
0, and 1280, respectively.

The YL-40 PCB, however, has a yellow LED D
1
 through a R

4
=1 kΩ resistor is

connected in series to AOUT (shown up close in Figure 6-3). With the DAC set to produce
maximum output, the yellow D1 should light up. But this turns out to be less brilliant than
the red power LED D

2
 beside it. When I measured the voltage, AOUT was only 2.89 volts,

which is well short of the expected 3.3 volts. After I removed the LED (D
1
), the voltage

came up to a respectable 3.29 volts and begs the question: just how much current can the
DAC drive?

Chapter 6 ■ pCF8591 aDC

71

A careful look at the NXP datasheet under the heading “14.2 D/A characteristics”
lists these parameters:

Symbol Parameter Conditions Min Typical Max Unit

V
oa

Analog output voltage No resistive load V
ss

V
DD

V

R
L
 = 10kΩ V

ss
0.9 × V

DD
V

The upper line where the conditions state “no resistive load” confirms that the
maximum output reading should be V

DD
 (a supply voltage of 3.3 volts). What is

interesting is that when a 10 kΩ load is attached, the voltage drops to 0.9 × V
DD

, or 2.97
volts (0.9 × 3.3 volts).

If you treat the DAC output like a battery, you can determine what the source
resistance R

S
 is. A practical battery can be modeled as an ideal battery with a source

resistor in series with it. Knowing the source resistance allows you to predict its output
voltage for any given current flow (or load resistance). Figure 6-4 illustrates the idea in
schematic form.

Figure 6-3. DAC LED D
1
 between D

2
 and C

1

Chapter 6 ■ pCF8591 aDC

72

In Figure 6-4, the ideal battery (V
DD

) represents the 3.3 volts provided to the PCF8591
chip. The unknown source resistance (R

S
) is connected to AOUT feeding the load (R

L
).

You know the following from the datasheet:

When R
L
 = 10kΩ, the voltage V(R

L
) is 0.9 × V

DD
, which in this

case is 2.97 volts.

Armed with this information, you can apply Ohm’s law to determine the resistance of
R

S
. Because of this information:

•	 V
total

 = V(R
S
) + V(R

L
)

•	 V(R
S
) = V

total
 – V(R

L
)

•	 V(R
S
) = 3.3 volts – 2.97 volts, which is 0.33 volts

you also know the following:

•	 V(R
L
) = 2.97 volts

•	 I R
V R

R

volts

k
mAL

L

L

() = ()
= =
2 97

0 297
10

.
.

W

This now allows you to calculate R
S
. Because I(R

S
) = I(R

L
) in the series circuit,

you get this:

•	 R
V R

I R

volts

mA
kS

S

S

=
()
()

= =
0 33

0 287
1 1

.

.
. W

From this you can conclude that the series resistance is about 1.1 kΩ. Let’s now apply
this information.

RS

GND

VD
D

10
K RL

AOUT

Figure 6-4. Equivalent circuit for DAC output AOUT

Chapter 6 ■ pCF8591 aDC

73

If you consider the LED (D
1
) and its resistor together as R

L
 (the load), using Ohm’s law

you can now compute the current flow through the LED (and thus coming out of AOUT).

•	 V(R
S
) = V

DD
 – V(R

L
), = 3.3 volts – 2.89 volts = 0.41 volts

•	 I R I R
V R

R

volts

k
mAL S

S

S

() = () = ()
= =
0 41

1 1
0 372

.

.
.

W

With an LED current flow of 0.372mA, it is no wonder that the LED is weakly lit! LEDs
often require 3mA or more for proper illumination.

All of this highlights the fact that the DAC output at AOUT is not suitable for driving
loads requiring current. It does provide a controllable output voltage, however, but it is not
capable of any substantial current drive. Use a voltage-to-current driver, when required. This
further supports my suggestion for removing or disabling the output LED on the YL-40 PCB.

Removing YL-40 LED D1
Because the YL-40 PCB connects a resistor (R

4
=1kΩ) and yellow LED to the AOUT circuit,

the output accuracy of the DAC is compromised. For this reason, remove D
1
 if you care

about output accuracy. Figure 6-3 illustrates the location of D1 on the YL-40 PCB between
the power LED (D2) and capacitor C1. Carefully apply a soldering iron to both ends of D1
to remove it. Make certain that no solder blobs remain to short things out.

Figure 6-5 illustrates the PCB area with D
1
 removed. On mine, there was a little white

triangle underneath showing the direction for LED current flow. The bottom pad (D
1

cathode) connects to ground, while the upper pad (D
1
 anode) connects to R

4
, which is

then connected to AOUT. Measuring resistance from the upper pad (anode) to ground
should show a near-infinite resistance after LED removal. Measuring from the same
upper pad to AOUT should read about 1 kΩ (the value of R

4
). If you read something else,

check for a solder short.

Figure 6-5. LED D
1
 removed

Chapter 6 ■ pCF8591 aDC

74

Hacking YL-40 I2C Address
If you want to use more than one YL-40 module, you’ll need to hack the I2C address for
each of the additional modules. Figure 6-6 illustrates the lifting of pin 6 to solder a small
wire to it. The other end of the wire is soldered to V

DD
 (pin 16) where the +3.3V supply

is connected. In this way, address bit A1 becomes a 1 bit instead of a 0 bit. This change
results in the I2C address of 0x4A. The wire I used was solid 30-gauge wire-wrap wire.

Figure 6-6. Changing I2C address by lifting pin 6

These pins are small and difficult to work with. With patience and a small prying tool
like an eyeglass screwdriver, you may be able to pry up a leg without using a soldering iron.
Don’t overdo it or the leg may break off. Once separated from the PCB pad, use a small,
tipped soldering iron to apply just enough solder to attach the wire to the pried-up leg.

The PCF8591 address pins are as follows:

Pin No. Label Description

5 A0 Least significant address bit

6 A1 Middle address bit

7 A2 Most significant address bit

The YL-40 PCB has all three pins soldered to ground, resulting in an I2C address of
0x48. By lifting address pins and connecting them to +3.3 volts, additional addresses are
possible. Table 6-1 summarizes the extra I2C addresses.

Chapter 6 ■ pCF8591 aDC

75

It is important that the lifted pins be connected to +3.3 volts. Otherwise, static
electricity will collect on the pins causing the address to change sporadically.

I2C Bus Setup
If you haven’t already done so, install i2c-tools, as shown here:

$ sudo apt-get install i2c-tools

Once installed, then list your I2C buses, as shown here:

$ i2cdetect -l

If nothing is displayed, then you need to change the configuration so that the I2C
drivers get loaded at boot time. The new kernels use the /boot/config.txt file to enable
I2C support. Edit the file so that the i2c_arm=on line is uncommented, as shown here:

Uncomment some or all of these to enable the optional hardware interfaces
dtparam=i2c_arm=on
#dtparam=i2s=on
#dtparam=spi=on

Save your changes and reboot.

sudo /sbin/shutdown -r now

After the reboot, try listing the I2C buses again, as shown here:

$ i2cdetect -l
i2c-1 i2c 3f804000.i2c I2C adapter

From this session output, you now see i2c-1 is available as expected.

Table 6-1. Addresses: Lifted Pins Are 1 Bits, While Soldered Pins Are 0 Bits

A2 A1 A0 I2C Address

0 0 1 0x49

0 1 0 0x4A

0 1 1 0x4B

1 0 0 0x4C

1 0 1 0x4D

1 1 0 0x4E

1 1 1 0x4F

Chapter 6 ■ pCF8591 aDC

76

Reading from PCF8591
If you are using the YL-40 PCB, you can read the built-in potentiometer using the
in3_input (to change the potentiometer, turn the white control with a small screwdriver).
If you built your own PCF8591 circuit, then attach a potentiometer (R

3
), as shown in the

schematic (Figure 6-2). Turning R
3
 full-clockwise should cause a reading of AIN3 of near

0. Turning R
3
 full counterclockwise should cause it to read 255.

In subdirectory pcf8591 are a few programs, including readadc (run make if that
has not already been done). Invoke the program with option -h to display some usage
information, as shown here:

$./readadc -h
./readadc [-a address] [-i input] [-h]
where:
 -a address Specify I2C address
 -i input Specify AINx (AIN3 is default)
 -d Enable and leave DAC enabled
 -h Help

By default, the readadc program assumes I2C address 0x48. To specify a different
address, use the -a option and the new address. If the address is prefixed with 0x, the
address will be interpreted as hexadecimal. For example, the following will use the I2C
address of 4A in hex:

$./readadc -a 0x4A

The -i option for readadc defaults to 3 for accessing the chip input channel AIN3.
Specifying a different number allows you to read other channels. For example, the
following reads from AIN1 with the I2C address of 4A in hex:

$./readadc -a 0x4A -i1

Finally, the -d option just enables the DAC output (I’ll discuss this more later).

Experiment
Using the YL-40 PCB, adjust the potentiometer fully clockwise. After doing so, let’s take an
ADC reading, as shown here:

$./readadc
0

Now turn that potentiometer fully counterclockwise and repeat, as shown here:

$./readadc
255

Chapter 6 ■ pCF8591 aDC

77

Don’t worry if the value doesn’t read exactly 255. In some cases, you might read
254. This is a good sign that the ADC is working. Now turn the potentiometer to exactly
midway between the two extremes.

$./readadc
137

If you did better than I did, you might get 127 or 128. With an 8-bit ADC, your range
of values are from 0 to 255.

Writing to the DAC
In the same pcf8591 subdirectory is a program named writedac. It accepts nearly the
same command-line options, while the trailing arguments are expected to be values to be
written to the DAC.

$./writedac -h
./writedac [-a address] [-h] values to write...
where:
 -a address Specify I2C address
 -h Help

To write the value 128 to the DAC, use the following command:

$./writedac 128

or the following:

$./writedac 0x80

If multiple values are listed, they are all written to the DAC in sequence before the
command exits.

Experiment
You need a voltmeter or DMM for this experiment. Attach the negative lead of the DMM
to the ground of the Pi (or PCF8591 module). Set the meter on volts and attach the red
lead to the DAC output. This is labeled AOUT on the YL-40 PCB.

With the meter leads attached, you should read about half of 3.3 volts after
performing this command:

$./writedac 128

This assumes that you have removed the yellow LED, as shown earlier. If you left the
LED in, you may see a lower voltage, but it should be well above 0. Now let’s set the DAC to 0:

$./writedac 0

Chapter 6 ■ pCF8591 aDC

78

Immediately, your meter should read near 0 volts. Finally, set the DAC to its
maximum value.

$./writedac 255

Your meter should now report nearly 3.3 volts (mine read 3.25 volts).
Try the DAC at 25 percent and 75 percent of its maximum value and verify the voltages.

Experiment
If you lack a means of measuring your DAC voltage, you can use the ADC input to
measure the DAC. You want to use the AIN2 channel since it is not connected to any extra
components. So, attach a Dupont wire from AIN2 to the AOUT terminal.

There are two things tricky about this experiment:

•	 You must specify the -i2 option on the readadc command to read
AIN2.

•	 You must specify the -d option to keep the DAC enabled.

The following session first establishes the output voltage of the DAC at 255 and then
reads AIN2 twice:

$./writedac 255
$./readadc -i2 -d
255
$./readadc -i2 -d
254

From this you have confirmed the DAC output setting. Successive reads can
sometimes wander somewhat, so expect that. The -d option of the readadc command
is required to keep the DAC enabled because by default the command turns it off. If you
can’t repeat the readings of this experiment, this is the first thing to check.

Now change the DAC to 128 and read it back.

$./writedac 128
$./readadc -i2 -d
177
$./readadc -i2 -d
127
$./readadc -i2 -d
127

On my unit, the change in DAC output seemed to take a little extra time. Notice that
the first read returned 177 and then afterward 127.

Chapter 6 ■ pCF8591 aDC

79

Limitations
The PCF8591 chip has some limitations.

•	 Its maximum sampling rate is f
s
=11.1kHz, making it unsuitable for

most audio.

•	 ADC returns the prior result and the current value (further
reducing the effective sample rate).

•	 The ADC value is 8-bit resolution.

Despite the limitations, the PCF8591 has some advantages.

•	 3.3V-compatible with the Raspberry Pi

•	 I2C enabled

•	 Economically priced

•	 Built-in Linux driver support

Extending Voltage Range
You’ve already seen the device do direct voltage measurements. But how do you measure
voltages greater than 3.3 volts? Use a voltage divider, as shown in Figure 6-7.

AGND

R1
R2

Input

AINx

Gnd

Figure 6-7. Using a voltage divider

Chapter 6 ■ pCF8591 aDC

80

The object of the voltage divider is to put the input voltage into a reduced range for
the ADC input. Since the ADC is powered from the Raspberry Pi 3.3V supply, the ADC
input range is limited to a maximum of 3.3 volts. To extend the range to, say, 16 volts for
automotive measurement, you can compute the values of R

1
 and R

2
 in Figure 6-7.

The simplified design procedure is as follows:

 1. Arriving at a current flow through R
2
 of about 1mA, producing

3.3 volts requires that R
2
 be about 3300Ω:

3 3

0 0001
3300

.

.

volts

Amps
= W

 2. 16 volts minus 3.3 volts means you want a minimum voltage
drop across R

1
 of about 12.7 volts.

 3. To compute R
2
, use this: R

volts

Amps
k2

12 7

0 001
12 7= =

.

.
. W

 4. The next 10 percent tolerance resistor value greater than or
equal to 12.7kΩ is 15kΩ.

With R
1
 = 3.1kΩ and R

2
=15kΩ, let’s check the actual input voltage range achieved.

To get a full reading of 3.3 volts across R
2
, you require 1mA of current. R

1
 will have

the same current flow as R
2
 since it is in series. So if 1mA is flowing through R

1
, you know

that it would have a voltage drop of I × R = 1mA × 15000 Ω = 15 volts. Therefore, the total
voltage that the divider pair can handle is as follows:

3.3 volts + 15 volts = 18.3 volts
What is the resolution of this range using the 8-bit ADC? An 8-bit resolution means

you have a total of 256 steps (28 = 256). Consequently, the resolution is as follows:

18 3

256

0 071

256

0 071. . .volts

steps

volts

steps

volts

step
= =

The conclusion is that the 8-bit ADC can measure 0 to 18.3 volts in 0.071V increments.

Repairing the Temp Sensor
With the jumper installed in P4, you can read the current temperature sensed by
thermistor R

6
, which changes in resistance with temperature. The thermistor is in series

with the R
1
=1kΩ resistor, and thus it divides the 3.3V supply. The AIN1 input measures the

midpoint voltage of the divide, between the top of R
6
 and ground.

But there is a problem—the YL-40 module’s PCB didn’t ground the lower leg of R
6-

 It
is in fact unconnected. This results in reading the highest value, 255, because the AIN1
input is effectively attached only to the +3.3V supply. With a bit of Googling, you’ll find
that others have also experienced this problem.

Chapter 6 ■ pCF8591 aDC

81

Fortunately, the solution is not difficult to correct if you have a soldering iron.
Figure 6-8 shows how to locate the supposed-to-be-grounded end of R

6
. Use your DMM

to check to see whether that leg and ground shows 0Ω. If it does not, a fix is needed
(if your ADC reading is 255, this is already a strong indication that the repair is needed).

Figure 6-8. Location of ground end of thermistor R
6

Figure 6-9 illustrates the underneath side of R
6
. Since there are no inner PCB layers,

this connection is quite visibly unconnected.

Chapter 6 ■ pCF8591 aDC

82

Based on Figure 6-9, you could run a small wire from R
6
 to the ground post just above

and to the right. I believed that to be too risky for short circuits and chose to solder a wire
to a ground point shown in the bottom left of Figure 6-10 instead.

Figure 6-9. Bottom view of R
6
 ungrounded leg

Figure 6-10. R6 grounded to point, bottom left

Chapter 6 ■ pCF8591 aDC

83

Check with the DMM to see that the R
6
 leg is indeed grounded after soldering. After

the repair, you should get a reading from AIN1 near 231 when at room temperature. The
reading should definitely be less than the value 255 that was obtained before the repair.

Conversion to Celsius
Reading the temperature of R

6
 requires some calculation after taking a reading from AIN1.

You’ll be using the simplified calculation [1] because you don’t know all of the parameters
for the thermistor part. The calculation requires these four steps:

 1. Read AIN1 to get an ADC reading of the voltage at R
6
 (you’ll

assume 234 for this example).

 2. Compute the resistance of R
6
 based upon the ADC reading.

 3. Compute the temperature in degrees K.

 4. Convert degrees K to degrees Celsius.

To calculate the current resistance of R
6
, the ADC reading “a” is plugged into the

following formula:

R
R a

a6
1

256
=

´
-

The 256 in the previous formula comes from the fact that the ADC has a resolution
of 8 bits (256 steps). Assuming that the reading from the ADC is 234, you plug in the
following for variable “a”:

R6

1000 234

256 234
10 636 36=

´
-

= , .

Now that you know the resistance of R
6
, you can compute the temperature in degrees

Kelvin.

1 1 1

0

6

0T T B

R

R
= + ´

æ

è
ç

ö

ø
÷ln

In that formula, the values are as follows:

•	 T is the computed temperature in degrees Kelvin.

•	 T
0
 is the room temperature in degrees Kelvin (25°C is 298.15°K).

•	 B is the coefficient of the thermistor (adafruit.com claimed 3950).

•	 R
0
 is the resistance at room temperature (adafruit.com claimed

10kΩ).

Chapter 6 ■ pCF8591 aDC

84

Plugging everything in, you get the following:

1 1

298 15

1

3950

10636 36

10000
0 003369

T
= + ´ æ

è
ç

ö
ø
÷ =.

.
.ln

1

0 003369
296 8

.
.= °K

To convert to degrees Celsius, you use this:

296 8 273 15 23 65. . .- = °C

Compare your reading with another thermometer in the room. You may want to add
or subtract a small calibration offset for your project.

Reading Temperature
To read the temperature-sensitive device (R

6
) attached to input channel AIN1, you can

apply the program readtemp in the pcf8591 subdirectory to read it. This program is
almost the same as readadc, except that it defaults to -i1 and performs the somewhat
nasty Celsius calculation for you.

$./readtemp -h
./readtemp [-a address] [-h]

where:

 -a address Specify I2C address
 -i input Specify AINx (AIN1 is default)
 -h Help

The default options for readtemp are -a0x48 -i1.

Experiment
To read the temperature, simply invoke the following command:

$./readtemp
ADC=228, R6 = 8142.9 ohms, T=302.846 deg K, 29.696 deg C

The health monitor in my room reported 28°C, confirming that this is close. The
value ADC=228 shows what the ADC peripheral read. R

6
=8142.9 is the computed

resistance of R
6
. The value T=302.846 is the computed temperature in degrees Kelvin.

Finally, the calculated Celsius temperature is reported.

Chapter 6 ■ pCF8591 aDC

85

The YL-40 LDR
The YL-40 PCB includes a light-dependent resistor (LDR), which is R

7
 on the schematic

(shown earlier in Figure 6-2). The nature of the LDR is that it has high resistance in the
dark and low resistance in light. The change in resistance is relatively slow, making it
unsuitable for audio reception, yet it is fast enough for control applications. The YL-40
connects this device to AIN0 when the jumper P5 is installed.

The LDR can be made of various materials and consequently has varying responses
to light and wavelengths. Without knowing the exact part and parameters for the one
included on the YL-40, you can make only general assumptions about the device used.
The tolerances for the part also vary as much as 30 percent [2].

The resistance of the LDR (R
7
) can be calculated in the same way that you did for the

thermistor R
6
.

R
R a

a7
2

256
=

´
-

Experiment
In low ambient light conditions, try reading the LDR (R

7
) on your YL-40 PCB from input

channel AIN0. Here I have turned my desk lamp off in the evening:

$./readadc -i0
238

The reading of 238 is fairly high. Turning the desk lamp on, the reading drops, as
shown here:

$./readadc -i0
160

Now if I shine a small LED flashlight directly on the LDR, I get an even lower reading.

$./readadc -i0
50

How low does it get in direct sunlight?

1N914 Experiment
The 1N914 is a small glass-encased signal diode, shown up close in Figure 6-11. The
cathode (negative) end of the diode is marked with a black band around it. The other
end (anode) is positive for forward conduction, according to the conventional flow of
electricity. This experiment will measure the voltage-to-current relationship of this diode,
using forward current flow.

Chapter 6 ■ pCF8591 aDC

86

You’ll take advantage of the fact that you can establish a small current source from
the DAC output AOUT. If the diode being tested were to act as a short circuit, you would
want to limit the current to about 1mA for this experiment. You know that full voltage will
be near 3.3 volts, so using Ohm’s law, you can calculate the series resistance needed.

R
V

A
= = =
0 001

3 3

0 001
3300

.

.

.
W

The breadboard circuit is wired according to Figure 6-12, with R
1
=3.3kΩ in series

with the 1N914 diode D
1
. The voltage will be applied out of the DAC to the series resistor

R
1
, while you take voltage readings at the top of diode D

1
, into AIN0. The DAC will

perform a slow sweep from 0 volts to the maximum. By measuring the voltage at the
junction of R

1
 and D

1
, you’ll be able to calculate the current in D

1
 using Ohm’s law.

Figure 6-11. 1N914 diode to be tested

Chapter 6 ■ pCF8591 aDC

87

You also measure the voltage provided by the DAC itself using ADC input AIN1. This
is done because the drive capability of the DAC is limited in current, causing its output
voltage to droop. When the DAC output sags in voltage, you can use the AIN1 reading to
more accurately assess the current actually flowing.

The program diode.cpp sets a test DAC voltage and then reads AIN0 and AIN1 to
plot the readings. This experiment will use gnuplot-x11 to plot the results, so if you don’t
have it installed yet, do the following:

sudo apt-get install gnuplot-x11

If you ssh’ed into your Pi, make sure you enable X11 Window tunneling with
the -X option.

$ ssh -X pi@pi

Further, if you expect gnuplot to open on your remote machine (like your Mac OS X
laptop), you need to set up permissions or simply do the following on the display server:

$ xhost +

If you’re using a keyboard and monitor attached to the Pi itself, you can ignore this.

GND

D1
3.

3K

R1 AIN0 (ADC)

1N
91

4

AIN1 (ADC)

AOUT (DAC)

Figure 6-12. 1N914 diode circuit

Chapter 6 ■ pCF8591 aDC

88

Running the diode program requires no command-line options, unless you need to
specify the I2C address.

$./diode -h
./diode [-a address] [-h]
where:
 -a address Specify I2C address
 -h Help

Once your breadboard circuit is ready, run the diode program.

$./diode
DAC 0, AIN0 1, AIN1 1, VD1=0.0, VR=0.0, I=0.0000
DAC 1, AIN0 1, AIN1 1, VD1=0.0, VR=0.0, I=0.0000
DAC 2, AIN0 2, AIN1 2, VD1=0.0, VR=0.0, I=0.0000
DAC 3, AIN0 3, AIN1 3, VD1=0.0, VR=0.0, I=0.0000
DAC 4, AIN0 4, AIN1 4, VD1=0.1, VR=0.0, I=0.0000
DAC 5, AIN0 5, AIN1 5, VD1=0.1, VR=0.0, I=0.0000
DAC 6, AIN0 6, AIN1 6, VD1=0.1, VR=0.0, I=0.0000
DAC 7, AIN0 6, AIN1 7, VD1=0.1, VR=0.0, I=0.0000
DAC 8, AIN0 7, AIN1 7, VD1=0.1, VR=0.0, I=0.0000
DAC 9, AIN0 8, AIN1 8, VD1=0.1, VR=0.0, I=0.0000
DAC 10, AIN0 9, AIN1 9, VD1=0.1, VR=0.0, I=0.0000
DAC 11, AIN0 10, AIN1 10, VD1=0.1, VR=0.0, I=0.0000
...

The program reports several lines to the terminal, which can be helpful in
debugging your experiment. The DAC, AIN0, and AIN1 values are reported on each line.
Additionally, the calculated V

D1
, V

R
, and I are displayed. V

D1
 and I are written to the file

diode.dat. The diode program also writes out the file gnuplot.cmd that you can use to
plot the results.

gnuplot -p gnuplot.cmd

If all went well with gnuplot, you should have a plot displaying the results, as shown
in Figure 6-13. If you chose not to remove the LED (D1) from the DAC circuit, you might
not reach as high a current as shown, but you should get similar results. If gnuplot is not
cooperating, check that your environment variable DISPLAY is set and exported.

Chapter 6 ■ pCF8591 aDC

89

The plotted results show you that your diode reached a maximum of about
0.0007A in current (0.7mA) when the voltage reached or exceeded 0.6 volts. The curve
demonstrates that the diode’s response is exponential in nature, becoming almost linear
after the 0.6V level was reached. This is the general characteristic for silicon diodes.

What happens if you try an LED instead? Does color make a difference? Also, try a
germanium diode (1N34A).

Software
In this chapter you used the I2C bus driver in Linux to communicate to the PCF8591
device using the provided C++ programs. These are found in the pcf8591 subdirectory
and can be cloned and modified for your own purposes. The basics of I2C programming
will be discussed in Chapter 11.

Figure 6-13. gnuplot of diode test

http://dx.doi.org/10.1007/978-1-4842-2406-9_11

Chapter 6 ■ pCF8591 aDC

90

Potential Experiments
The following are potential experiment ideas that you can perform using the PCF8591
with any Raspberry Pi:

 1. Measure the voltage of a 1.5V dry cell (of your choice) wired
to a flashlight bulb. Measure the voltage over time, measuring
the lifetime of the cell. Repeat with different brands, noting
the cost of each cell. Construct a chart of the most economical
batteries based upon brand, cost, and lifetime.

 2. Repeat experiment 1 for rechargeable cells. How do they
compare?

 3. Using the YL-40 LDR, record the moonlight level for a week or
more and use gnuplot to plot it.

 4. Place your Pi in the refrigerator and track the light-on time to
measure door open times.

 5. Use the DAC to produce a low-frequency sine wave. Produce a
triangle, saw, and square waves.

Summary
This chapter showed the versatility of the economical PCF8591 ADC/DAC chip. You
also saw the variety of experiments that the YL-40 PCB offers after certain adjustments
are made. Despite the limitations of 8-bit resolution, the response of a signal diode was
measured and plotted. At the low price of a PCF8591, how can you argue with the geek
fun that it provides?

Bibliography
 [1] “Thermistor.” Using a Thermistor. Adafruit.com, n.d. Web.

30 Jan. 2016. <https://learn.adafruit.com/thermistor/
using-a-thermistor>.

 [2] “Measuring Nocturnal Light.” Measuring Nocturnal Light.
N.p., n.d. Web. 30 Jan. 2016. <http://home.earthlink.
net/~nevadabat/Moonlight/MoonLight.html>.

https://learn.adafruit.com/thermistor/using-a-thermistor
https://learn.adafruit.com/thermistor/using-a-thermistor
http://home.earthlink.net/~nevadabat/Moonlight/MoonLight.html
http://home.earthlink.net/~nevadabat/Moonlight/MoonLight.html

91© Warren Gay 2017
W. Gay, Custom Raspberry Pi Interfaces, DOI 10.1007/978-1-4842-2406-9_7

CHAPTER 7

Potentiometer Input
Controls

Everyone who has operated a stereo or radio is familiar with the volume control. Besides
the tuning knob, this is probably the most used control. The technical name for it is the
potentiometer. Because of its lengthy name, it is often referred to simply as the pot.

Because of the hardware access that the Raspberry Pi provides through its GPIO, I2C,
and SPI ports, the potentiometer is potentially very useful. This chapter will explore its
application.

Potentiometers
Figure 7-1 illustrates a small collection of single-turn potentiometer types. Two old knobs
for the shafted pot types are shown at the top of the photo. The bottom of the photo presents
some small “trimmer” pots. These are known as trimmers because they are used in circuit
boards to trim the resistance needed. These are not normally used for user controls.

The row above the trimmers shows examples of three PCB mount pots on the left and
one panel mount pot (with solder lugs) on the right. These will be the primary focus of this
chapter because they are the kind that get fitted with knobs for users to twiddle with.

Chapter 7 ■ potentiometer input Controls

92

To see how they work, the back protective cover can be removed, as done in Figure 7-2.
The protective cover comes off easily with four tabs bent back for removal. On the end of the
shaft is a round piece of plastic holding wiper contacts. You can see the fingers of the main
wiper contact at 11 o’clock. The other sliding contact is under the middle near the shaft,
connecting the wiper arm to the center connection.

The three fingers are designed to reduce the scratching that might otherwise be
noticeable when the shaft is rotated. While the wiper is moving, the metal contacts
bounce a little, but with three contacts, usually one or more remain in contact with the
resistive material.

The range of motion is usually 270°, or approximately three-fourths of full rotation
[1]. The wiper moves across the resistive material from about 8 o’clock to about 4 o’clock.
The resistive material is made out of some carbon composite material. The resistance
between the two outer connections of the pot is fixed in value. But as the wiper moves
from one end to the other, the resistance is divided between the two ends. Apply a voltage
across the outer connections, and the center connection becomes a voltage divider.

Figure 7-1. A small collection of different potentiometers

Chapter 7 ■ potentiometer input Controls

93

Voltage Dividers
This section is for students who have not studied electronics. Here I’ll explain in layman’s
terms how a potentiometer operates as a voltage divider. This concept is important for
applying potentiometers with ADC conversion.

Figure 7-3 illustrates the schematic view of a potentiometer. The upper end of the
potentiometer is connected to the power supply (in this example), while the bottom end
is connected to ground. In between the two ends is the carbon composite resistance that
the wiper glides across. This material is shown as a squiggly line using the US schematic
convention. The center connection (at right) has an arrow pointing to the resistive
material (to the left). This arrow represents the wiper arm for that connection.

Figure 7-2. The revealed innards of a PCB potentiometer

Chapter 7 ■ potentiometer input Controls

94

Some schematics may also show an extra arrow. This schematic has this arrow
pointing upward. This means that the wiper arm goes up when rotated fully clockwise [2].

Looking at Figure 7-3, imagine that the wiper arm is 50 percent of the way between
the two extremes. This divides the voltage +3.3V (from the top) by half. So, you would
expect to measure the following at the center connection:

3 3

2
1 65

.
.

volts
volts=

If you rotated the potentiometer fully clockwise, the center connection would
measure 3.3 volts (or very close to it), assuming the negative lead of the DMM was
connected to ground. This occurs because the wiper arm is virtually in contact with the
+3.3V connection of the pot. This is the meaning of that second arrow—it tells you which
end of the pot is connected when cranked fully clockwise.

Rotating the pot fully counterclockwise moves the wiper arm toward the grounded
end. In this case, you would measure 0 volts (or very nearly). Sometimes there is a small
residual amount of resistance involved at either end of the pot, affecting the readings at
the rotational extremes.

You should now begin to see the pattern here. If you move the pot to 10 percent
above its fully counterclockwise position, you should read 10 percent of the 3.3 volts. That
10 percent of 3.3 volts is 0.33 volts.

The voltage is divided across both halves of the potentiometer. When the pot is
positioned at 10 percent (from counterclockwise), you expect 10 percent of the voltage
from the wiper to ground. There is also 90 percent of the supply voltage appearing
between the supply side and the wiper in the middle. Both will add up to 100 percent,
which is why it’s called divided.

This also means that if you measure 0.33 volts between the wiper and ground, there
is the following between the supply side and the wiper arm:

3 3 0 33 2 97. . .volts volts volts- =

GND

R1

+3.3 V

Figure 7-3. Schematic representation of a potentiometer

Chapter 7 ■ potentiometer input Controls

95

ADC Circuit
Figure 7-4 shows the basic potentiometer-based control circuit. The idea is that the pot
will divide the voltage between the supply voltage and ground. The ADC device will take
a voltage reading from the divider and thus determine the position of the potentiometer.
When the potentiometer is fully clockwise, the ADC will read maximum voltage; when
fully counterclockwise, it will read minimum voltage; and so on.

Pot Resistance
As mentioned, the resistance between the two ends of the carbon composite material
is fixed. You get variability by moving the wiper across it in a sweeping arc, but the total
resistance is fixed. But when you go to select a potentiometer, how do you choose what
resistance to order?

It depends upon the input impedance of the ADC device you are interfacing it to.
Unfortunately, the PCF8591, for example, doesn’t publish this information. The general
principle is that you want to have the potentiometer present much less impedance than
the input impedance of the ADC device. This is critical at higher sampling rates. But the
rate of change for a human-operated control is rather low, so you can sidestep that issue.

A potentiometer of 1kΩ consumes the following amount of current:

V

R

volts
mA=

W
=

3 3

1000
3 3

.
.

If the rather small 3.3mA of current doesn’t put you over your current budget, I
recommend that you use a 1kΩ pot. Even a 2kΩ to 5kΩ potentiometer would likely be fine
for the PCF8591 if you wanted to save current for battery operation.

If you know the input impedance of your ADC device, then you can confidently
use a higher pot resistance when it is well under. For example, let’s say the ADC input
impedance is known to be 100kΩ. The “ten times less” rule would suggest that your input
pot resistance should be 10kΩ or less.

GND

R1

+3.3 V

ADC

Analog
In

Digital
Out

Figure 7-4. The basic potentiometer-based ADC circuit

Chapter 7 ■ potentiometer input Controls

96

Avoid using lower than 1kΩ potentiometers because this results in wasted current.
For example, if you used a 100Ω pot, you would be consuming a steady current of
3.3 / 100 = 33mA, which is too much.

Taper
You should be aware that potentiometers come in different tapers. In this chapter, you’re
interested in linear taper potentiometers, where the change in resistance follows knob
rotation in a linear fashion. With linear changes in voltage, you can easily predict the
rotation of the knob in the software from an ADC read.

In audio applications, the logarithmic taper is often used because of the way the ear
responds to loudness. At low volumes, the ear is sensitive and responds to small changes
more than in louder sounds. To make the volume control more natural to use, the low
volume part of the pot responds differently than the louder part.

Other types of tapers are possible, such as the “anti-log” taper. These are much less
common.

Potentiometers are normally marked with a prefix or suffix letter that indicate their
taper. There are different markings in use, but the most common convention is the Asia
method. Table 7-1 lists the various marking codes.

When ordering your potentiometer, make sure you are buying a linear unit. This
usually means that the unit is prefixed with a B. An example of a linear 10kΩ pot would be
marked “B10K.”

Effect of ADC Bits
The PCF8591 ADC chip performs a conversion from analog to 8-bit digital. But what does
this mean as far as the user control knob? What’s the resolution of this?

Since 8-bit samples range in value from 0 to 28–1, you know that a maximum of 256
(28) steps can be measured. In terms of degrees then, your resolution is computed as
follows:

r
d degrees

stepb
=
2

Table 7-1. Marking Codes for Potentiometer Taper [3]

Taper String Asia (common) Europe America Vishay

Linear LIN B A B A

Log/Audio LOG A C A L

Anti-log F C F

Chapter 7 ■ potentiometer input Controls

97

where:

•	 d is the range of motion, in degrees.

•	 b is the digital sample size, in bits.

If you assume a typical potentiometer with 270 degrees of motion and assume an
8-bit ADC will be used, then you can compute the following:

r
degrees

step
= =
270

256
1 05.

The 8-bit ADC will report a maximum of 256 steps as the control is rotated from
counterclockwise to fully clockwise. As a result of that calculation, you now know that
each of those steps requires 1.05 degrees of knob rotation. If you had a 10-bit ADC
available, the steps become much finer and resolve to about 0.264 degrees per step.

Experiment
This experiment requires that you use the following:

•	 YL-40 PCB (PCF8591) ADC (8-bits) or equivalent

•	 A linear 1kΩ potentiometer (or higher)

Higher-valued pots should function OK, but try to stay under the 10kΩ limit. Above
that, your results may be poor.

Plug your YL-40 (PCF8591) ADC into your breadboard, wire it up to the I2C bus, and
start your Pi (with the YL-40 jumpers installed). Review Chapter 6 if necessary. Change
to the subdirectory pcf8591 and run the following command (change the I2C address for
the -a option if necessary for your unit):

$./readadc -a 0x48 -i3

Now turn the YL-40’s white trim pot (marked “103”) counterclockwise. Repeat the
read command, and you should read something like this:

$./readadc -a 0x48 -i3
247

I purposely didn’t crank mine fully, but it appears that the way the pot is wired on
the YL-40 PCB, that counterclockwise will read maximum voltage. Crank the trim pot
clockwise and take another reading.

$./readadc -a 0x48 -i3
0

http://dx.doi.org/10.1007/978-1-4842-2406-9_6

Chapter 7 ■ potentiometer input Controls

98

You should see a low reading, depending upon how cranked your trim pot was. If you
see these results, you can be confident that your ADC framework is working. Now let’s
“get off the pot” and use a real control.

Shut down your Pi and turn off the power. Using Figure 7-4, wire one of the ends of
the pot to the +3.3V Pi supply. The opposite end should be wired to ground. The middle
leg of the pot is the wiper. Attach that to your YL-40 AIN3 input, and remove the PCB
jumpers (or just P6). This now connects your pot to the ADC peripheral. Adjust your pot
to about midway in its travel.

Figure 7-5 shows my breadboard experiment. I found an old pot and soldered three
“bus wires” on each lug so that I could plug it into the breadboard. This was about a 2.5kΩ
linear pot. The left leg is Dupont wired (white) to ground, while the right wire (orange)
goes to the Pi’s +3.3V supply. The center dark blue wire goes over to the YL-40’s AIN3
connector, seen just above the PCB trim pot. A nice old chicken knob was attached to the
pot for good measure.

When you conduct this experiment with the YL-40, make certain you remove the
onboard jumpers (or at least jumper P6). Otherwise, the onboard trim pot will interfere.

After applying power and starting up your Pi again, enter the pcf8591 subdirectory
where your readadc executable is. Run the program with the knob twisted to known
positions like counterclockwise, 50 percent, and clockwise. If you wired it as I did, you
should get a near 0, 128, and 255, respectively.

If your readings are the opposite of these, then try reversing the wiring of the outer
legs of the pot (but leave the middle wiper connection where it is). After repeating the
experiment, the readings will agree.

Figure 7-5. My pot experiment using the YL-40 module

Chapter 7 ■ potentiometer input Controls

99

At this point you should celebrate because you now have a position encoder. A
program can read the ADC input and determine how much the knob is rotated. This has
practical uses in the Pi.

Applying Potentiometer Controls
You obviously want to capitalize on what you just performed in the experiment. For
example, a pot can be used as a selector, to choose from a menu. A simple selection would
simply be to choose one number from 1 to 10. To do this, you need to perform some
mapping of your ADC input values. You know that with an 8-bit ADC, your readings will
vary between 0 and 255 and will need to be divided into 10 distinct ranges. Each selection
will cover the following:

256

10
25 6= . steps

Given that the ranges are not evenly divisible, you’ll need to settle for an
approximation, as illustrated in Table 7-2.

In software, you can compute the “number” from the ADC reading using the
following approximation:

n
ADC ADC

= + =
´

+
25 6

1
10

256
1

.

If you don’t mind your program doing floating-point calculations, the divide by
25.6 rounded to an integer is fine. If you want to stay within integer calculations, you can
multiply the ADC reading by 10 and then divide by 256. Note that you add one in the
calculation to arrive at a number starting from 1 rather than 0.

To test this idea, run the program selten as shown here (the options -a and -i are
optional and otherwise the same as used by readadc):

$./selten -a 0x48 -i3
The selection is 7 (byte = 204)
The selection is 6 (byte = 179)
The selection is 5 (byte = 153)

Table 7-2. Reading Approximations

ADC Range Number

0–25 1

26–51 2

…

229–255 10

Chapter 7 ■ potentiometer input Controls

100

The selection is 6 (byte = 154)
The selection is 5 (byte = 153)
The selection is 4 (byte = 127)
The selection is 5 (byte = 128)
The selection is 4 (byte = 127)
The selection is 3 (byte = 102)
The selection is 2 (byte = 76)
The selection is 3 (byte = 77)
The selection is 2 (byte = 76)
The selection is 1 (byte = 51)
The selection is 0 (byte = 25)
The selection is 1 (byte = 26)
The selection is 2 (byte = 52)
The selection is 1 (byte = 51)
The selection is 2 (byte = 52)
The selection is 3 (byte = 77)
The selection is 2 (byte = 76)
The selection is 3 (byte = 77)
The selection is 2 (byte = 76)
The selection is 3 (byte = 77)
The selection is 4 (byte = 103)
The selection is 5 (byte = 128)
The selection is 4 (byte = 127)
The selection is 5 (byte = 128)
The selection is 4 (byte = 127)
The selection is 5 (byte = 128)
The selection is 6 (byte = 154)
^C

This program will run until you interrupt it with Control-C. As you rotate the knob
and a new number is “selected,” it will be displayed on the console. The program also
reports the ADC value (as byte) for demonstration purposes.

Listing 7-1 shows the loop that performs the selection calculation.

Listing 7-1. The Potentiometer Read Loop and Selection Calculation

085 int last = -1, s;
086
087 for (;;) {
088 rc = i2c_read(i2c_addr,i2c_ainx|enable_dac,rbyte);
089 if (rc == -1) {
090 fprintf(stderr,"%s: reading %s device at 0x%02X\n",
091 strerror(errno),
092 i2c_device,
093 i2c_addr);
094 exit(1);
095 }
096

Chapter 7 ■ potentiometer input Controls

101

097 s = int(rbyte) * 10 / 256;
098 if (s != last) {
099 printf("The selection is %d (byte = %d)\n",
100 s,rbyte);
101 last = s;
102 } else {
103 usleep(1000);
104 }
105 }

The variable last is used to keep track of the last ADC value read, which can never
be negative. This forces the first value to be printed in line 099 no matter what the current
reading is. The ADC value is read in line 088, which will be a value from 0 to 255 (variable
rbyte). Note that rbyte is passed by reference in the call, so it is updated by the function
i2c_read. To compute a selection from 1 to 10, the calculation in line 097 is used. This is
done entirely in integer arithmetic. The value 256 used in this calculation is 25.6 × 10, not
the ADC width 28.

If the computed value s is the same as last, then the program just goes to sleep for
1ms (line 103). This keeps the CPU from being wasted and keeps the I2C bus available for
other I/O operations. But if the value has changed, no sleep is performed in case the value
might still be changing.

Selection Resolution
It might be tempting to think that a selection of 1 of 256 possibilities with an 8-bit DAC is
feasible. But this is not practical because the ADC is not as precise as you need it to be.
Factor in the fuzziness of your potentiometer and you’ll soon discover that some of those
selections are not that selectable. Finally, a given selection may drift into a neighboring
selection as temperature changes affect the ADC readings. These are all practical reasons
to downgrade your ADC resolution when turning your pot into a selection mechanism.

The other aspect of control resolution is the amount of movement necessary to
achieve a selection. With a 270-degree range of motion and using an 8-bit ADC, each step
requires a little more than one degree of movement. Thus, having a user make a selection
on that fine a motion is impractical.

Pots make good selection mechanisms, however, if you downgrade their precision.
In the selten experiment, it was easy to achieve specific settings because each selection
required about 10.5 degrees of motion. The setting can be ±5.25 degrees from the center
point and be valid for the selection.

Summary
This chapter explored the application of using potentiometers as an analog input control
in combination with ADC. As an analog value, many applications are possible including
the typical volume control variety.

Chapter 7 ■ potentiometer input Controls

102

As you have seen, potentiometers can also be used as selectors, when the design
is right. When the number of selections is within reasonable limits, the pot makes an
effective selection control. Because many ADCs have multiple analog inputs, it can be
cost effective to sense multiple potentiometers.

Bibliography
 [1] “Potentiometer > Resistor Guide.” Potentiometer > Resistor

Guide. N.p., n.d. Web. 17 Sept. 2016. <www.resistorguide.
com/potentiometer/>.

 [2] “Linear Power-supply Potentiometer Feedback (17/05/16).”
Linear Power-supply Potentiometer Feedback. N.p.,
n.d. Web. 17 Sept. 2016. <http://imajeenyus.com/
electronics/20160517_potentiometer_feedback/index.
shtml>.

 [3] “Potentiometer Taper - Audio Taper > Resistor Guide.”
Potentiometer Taper - Audio Taper > Resistor Guide.
Accessed September 20, 2016. <www.resistorguide.com/
potentiometer-taper/#What_is_potentiometer_taper>.

http://www.resistorguide.com/potentiometer/
http://www.resistorguide.com/potentiometer/
http://imajeenyus.com/electronics/20160517_potentiometer_feedback/index.shtml
http://imajeenyus.com/electronics/20160517_potentiometer_feedback/index.shtml
http://imajeenyus.com/electronics/20160517_potentiometer_feedback/index.shtml
http://www.resistorguide.com/potentiometer-taper/#What_is_potentiometer_taper
http://www.resistorguide.com/potentiometer-taper/#What_is_potentiometer_taper

103© Warren Gay 2017
W. Gay, Custom Raspberry Pi Interfaces, DOI 10.1007/978-1-4842-2406-9_8

CHAPTER 8

Rotary Encoders

Rotary encoders are useful for conveying position input and adjustments. For example, as
a tuning knob for software-defined radio (SDR), the rotary control can indicate two things
related to frequency tuning.

•	 When a step has occurred

•	 The direction of that step

Determining these two things, the rotary encoder can adjust the tuning in the
frequency band in discrete steps higher or lower. This chapter will examine the rotary
encoder with the help of the economical Keyes KY-040 device and the software behind it.

Keyes KY-040 Rotary Encoder
While the device is labeled an “Arduino Rotary Encoder,” it is also quite usable in non-
Arduino contexts. A search on eBay for KY-040 shows that a PCB and switch can be
purchased (assembled) from eBay for about $1.28. Figure 8-1 shows both sides of the PCB
unit I purchased.

Chapter 8 ■ rotary enCoders

104

It is also possible to buy the encoder switch by itself on eBay, but I don’t recommend
it. The PCB adds considerable convenience for pennies more than the cost of the switch.
But the main reason to buy the assembled PCB unit is to get a working switch. I have
given up on buying good rotary switches by themselves from eBay. I suspect that many
eBay rotary switch offerings, if not all, are factory rejects and floor sweepings.

Figure 8-1. The Keyes YL-040 rotary encoder

Chapter 8 ■ rotary enCoders

105

The Switch
To help convince you of the need for buying quality, let’s take an inside look at how
switches are constructed. Figure 8-2 illustrates the contact side of a switch assembly that I
did an autopsy on.

Figure 8-2 shows that there is a contact pad (lower left) for the wiper arm. The top
portion (right side of the figure) shows the other contact points. The smear seen there is
some conductive grease. Figure 8-3 illustrates the wiper half of the assembly.

Figure 8-2. Contact side of the rotary encoder

Chapter 8 ■ rotary enCoders

106

The photos illustrate the cheap nature of the rotary encoders’ construction. They
must go through some sort of quality control at the factory, but it wouldn’t take much
more than a bent wiper arm to render one faulty.

Figure 8-4 shows the KY-040 schematic without the optional push button switch. The
units with the optional push switch have another connection labeled “SW” on the PCB.
The return side of that switch connects to ground (GND).

The schematic shown focuses on the rotary switches that connect switches A and
B to the common point C. The KY-040 PCB includes two 10kΩ pull-up resistors so that
when either switch is open, the host will read a high (1 bit). When the A or B switch is
closed, this brings the signal level low (0 bit). Finally, note that the KY-040 PCB labels the
connections as CLK and DT. According to reference [1], switch A is the CLK connection,
while B is the DT connection. These specifics are unimportant to its operation.

Figure 8-3. The wiper assembly of the rotary encoder

Chapter 8 ■ rotary enCoders

107

Operation
The rotary encoder opens and closes switches A and B as you rotate the knob. As the shaft
is turns, both switches alternate between on and off at the detents. The magic occurs in
between the detents, however, allowing you to determine the direction of travel. Figure 8-5
illustrates this effect.

B

(+)

A

VCC

R1

R2

10K SW1ENCODER
A

C

GND

B10K

Figure 8-4. The KY-040 schematic (excluding optional push switch)

1

1

0

00

11 11 11 10

00 01

B to C

A to C

0

detents

Figure 8-5. Rotary encoder signals

Chapter 8 ■ rotary enCoders

108

Starting from the first detent shown in Figure 8-5, switches A and B are open, reading
11 in bits (both read high). As the shaft is rotated toward the next detent, switches A and
B become both closed (reading as 00). In between the detents however, you can see that
switch A closes first (reading as 01), followed by switch B later (now reading 00). The
timing of these changes allows you to determine the direction of travel. Had the shaft
rotated in the reverse direction, switch B would close first (reading as 10), followed by A.

Voltage
As soon as you see the word Arduino, you should question whether the device is a 5V
device because many Arduinos are 5V-based. For the KY-040 PCB, it doesn’t matter. Even
though the reference [1] indicates that the supply voltage is 5 volts, it can be supplied the
Raspberry Pi level of 3.3 volts instead. The rotary encoder is simply a pair of mechanical
switches and has no voltage requirement.

Evaluation Circuit
The evaluation circuit can serve as an educational experiment and double as a test of the
component. It is simple to wire up on a breadboard, and if the unit is working correctly,
you will get a visual confirmation from the LEDs. Figure 8-6 illustrates the full circuit. The
added components are shown at the left, consisting of resistors R

3
, R

4
 and the pair of LEDs.

The dropping resistors R
3
 and R

4
 are designed to limit the current flowing through

the LEDs. Depending upon the LEDs you use, these should work fine at 3.3 or 5 volts.
Assuming a forward voltage of about 1.8 volts for red LEDs and the circuit powered from
3.3 volts, this should result in approximately:

AB

(+)
VCC

R1

R3

LE
D1

LE
D2

R4

17
0

17
0

R2
A

B
C

10K SW1ENCODER

GND

10K

Figure 8-6. KY-040 evaluation circuit

Chapter 8 ■ rotary enCoders

109

3 3 1 8

170

1 5

170
8 8

. . .
.

-
= =

volts
mA

W

If you want to use less current for smaller LEDs, adjust the resistor higher than 170Ω.
Figure 8-7 illustrates my own simple breadboard test setup. You can see the dropping

resistors R
3
 and R

4
 hiding behind the yellow LEDs that I had on hand at the moment. This

test was performed using a power supply of 3.3 volts. The photo was taken with the shaft
resting at a detent, which had both switches A and B closed, illuminating both LEDs.

When rotating the shaft, be sure to hold the shaft (a knob is recommended) securely
so that you can see the individual LEDs turn on and off before the shaft snaps to the next
detent. You should be able to see individual LED switching as you rotate.

If you see “skips” of LED on/off behavior for LED 1 and/or 2, this may indicate that
you have a faulty switch. The only thing you can do for it is to replace it. But do check your
wiring and connections carefully before you conclude that.

Figure 8-7. Evaluation test of the rotary encoder

Chapter 8 ■ rotary enCoders

110

Interfacing to the Pi
Now it is time to interface this to the Raspberry Pi. Since the KY-040 PCB already provides
the pull-up resistors, you only need to connect the + terminal to the Pi’s 3.3V supply and
wire the A/CLK and B/DT connections to GPIO inputs. Don’t forget to connect GND to
the Pi’s ground.

But before doing so, consider this: what kind of port are the GPIO pins you have
selected at boot time? That is, what is their default configuration? If a particular GPIO is
an output at boot time and if one or both of the rotary switches are closed, then you are
short-circuiting the output until the port is reconfigured as an input. Given the amount of
boot time, this could result in a damaged GPIO port.

Before hooking up GPIO ports to switches, you should do one of two things:

•	 Use GPIOs that are known to be inputs at boot time (and stay
that way).

•	 Use isolation resistors to avoid damage when the GPIOs are
outputs (best).

Using isolation resistors is highly recommended. By doing this, it won’t matter if the
port is initially (or subsequently) configured as an output port. If your isolation resistor
is chosen as 1kΩ (for example), the maximum output current will be limited to 3.3mA,
which is too low to cause damage. Figure 8-8 illustrates the Pi hookup, using isolation
resistors.

The schematic uses 10kΩ isolation resistors to hook up the rotary encoder to the Pi.
If the selected GPIOs should ever be configured as outputs, the current will be limited to
0.33mA. Once the GPIOs are reconfigured by your application to be inputs, the readings
will occur as if the resistors were not there. This happens because the CMOS inputs are
driven mainly by voltage. The miniscule amount of current involved results in almost no
voltage drop across the resistors.

A

(+)

Pi_3.3V

GPIO_A

GPIO_B

Pi_GND

B

SW1ENCODER

VCC

R1

R2

R3

R4

10K
A

B
C

GND

GND

10K

10K

10K

Figure 8-8. Safe hookup of the rotary switch to the Raspberry Pi

Chapter 8 ■ rotary enCoders

111

Figure 8-9 shows a photo of the breadboard setup. An old knob was put onto the rotary
controller to make it easier to rotate. In this experiment, the following GPIOs were used:

•	 GPIO#20 was wired to CLK (via 10kΩ resistor)

•	 GPIO#21 was wired to DT (via 10kΩ resistor)

Figure 8-9. YL-040 rotary encoder hooked up to Raspberry Pi 3

To verify that things are connected correctly, you can use the gp command to verify
operation. Here you are testing GPIO #20 to see that it switches on and off:

$ gp -g20 -i -pu -m0
Monitoring..
000000 GPIO 20 = 1
000001 GPIO 20 = 0
000002 GPIO 20 = 1
000003 GPIO 20 = 0
000004 GPIO 20 = 1
000005 GPIO 20 = 0
...

Chapter 8 ■ rotary enCoders

112

Repeat the same test for GPIO #21.

$ gp -g21 -i -pu -m0
Monitoring..
000000 GPIO 21 = 0
000001 GPIO 21 = 1
000002 GPIO 21 = 0
000003 GPIO 21 = 1
000004 GPIO 21 = 0
000005 GPIO 21 = 1
000006 GPIO 21 = 0

Observe that the switch seems to change cleanly between 1 and 0 without any
contact bounce. That may not always happen, however.

Experiment
As a simple programmed experiment, change to the software subdirectory YL-040. If you
don’t see the executable yl040a, then type the make command to compile it now. With the
circuit wired as in Figure 8-8, run the program yl040a and watch the session output as
you turn the knob clockwise. Use Control-C to exit the program.

$./yl040a
00
10
11
01
00
^C

You should observe the general pattern shown in Table 8-1, perhaps starting at a
different point. You should observe this sequence repeating as you rotate the control
clockwise. If not, try counterclockwise. If the pattern shown here occurs in the reverse
direction, simply exchange the connections for GPIO #20 and GPIO #21.

Table 8-1. Pattern Observed from Program ./yl040a Run

GPIO #20 GPIO #21 Remarks

0 0 Both switches closed (detent)

1 0 CLK switch opened, DT switch still closed

1 1 Both switches open (detent)

0 1 CLK switch still closed, DT switch opened

0 0 Both switches closed (detent), pattern repeating

Chapter 8 ■ rotary enCoders

113

Note that the 00 and 11 patterns occur at the detents. The 10 and 01 patterns occur as
you rotate from one detent position to the next. Rotating the knob in the reverse direction
should yield a pattern like this:

$./yl040a
00
01
11
10
00
01
^C

Don’t worry if you see some upset in the sequence runs. There is likely to be some
contact bounce that your next program will have to mitigate. The pattern however, should
generally show what Table 8-2 illustrates.

From this, you see that rotation in one direction closes or opens a switch ahead of the
other, offering information about rotational direction. There is still the problem of contact
bounce, which you might have observed from your experiments. The next program will
apply debouncing.

Experiment
Chapter 5 showed how software debouncing could be done. You’re going to apply that
same technique in program yl040b for this experiment. Run the program and rotate the
knob clockwise.

$./yl040b
00
10
11
01
00
10

Table 8-2. Counterclockwise Rotation Run of the ./yl040a Program

GPIO # 20 GPIO # 21 Remarks

0 0 Both switches closed (detent)

0 1 CLK switch still closed, DT switch opened

1 1 Both switches open (detent)

1 0 CLK switch still open, DT switch closed

0 0 Both switches closed (detent), pattern repeating

http://dx.doi.org/10.1007/978-1-4842-2406-9_5

Chapter 8 ■ rotary enCoders

114

11
01
00
10
11
01
00
10
11
01
00
10
11
^C

In this output, you can see the debounced sequence is faithful until the end.
Despite this, it is possible that if you rotated the knob fast enough, there may have been
discontinuities in the expected sequence. You’ll need to address this in the software.

Sequence Errors
Error handling in device driver software can be tricky. Let’s begin by looking at what can
go wrong. Then let’s decide on an error recovery strategy. Here are events that could go
astray:

•	 Debouncing was not effective enough, returning erratic events.

•	 The control was rotated faster than can be read and debounced.

•	 The control became defective or a connection was lost.

You’ll look at code at the end of the chapter, but program yl040b uses 4 bits of shift
register to debounce the rotary input. Switch events from a rotary control can occur more
rapidly than a push button, so a short debounce period is used, lasting about 68 μsec ×
4 = 272 μsec. If you take too long, the control can advance to the next point before you
stabilize a reading.

When the control is rotated rapidly, you can lose switch events because the Pi was
too busy or because the events occurred too quickly. When this happens, you can have
readings appear out of sequence. If you read 00 immediately followed by 11, you do not
know the direction of the travel. Lost or mangled events also occur when the control
becomes faulty.

So, what do you do when an event occurs out of sequence? Do you:

•	 Ignore the error and wait for the control to reach one of the
expected two states?

•	 Reset your state to the currently read one?

Chapter 8 ■ rotary enCoders

115

The class RotarySwitch defined in files rotary.hpp and rotary.cpp has taken the
first approach. If it encounters an invalid state, it simply returns a “no change” event.
Eventually when the control is rotated far enough, it will match one of the two expected
next states. The second approach would avoid further lost events but may register events
in the wrong direction occasionally.

Experiment
Program yl040c was written to allow you to test-drive the rotary control with a counter.
Run the program with the control ready.

$./yl040c
Monitoring rotary control:
Step +1, Count 1
Step +1, Count 2
Step +1, Count 3
Step +1, Count 4
Step +1, Count 5
Step -1, Count 4
Step -1, Count 3
Step -1, Count 2
Step -1, Count 1
Step -1, Count 0
Step -1, Count -1
Step -1, Count -2
Step -1, Count -3
Step +1, Count -2
Step +1, Count -1
Step +1, Count 0
^C

The program clearly states the direction of the step as clockwise (+1) or
counterclockwise (-1) and reports the affected counter. The counter is taken up to 5 by a
clockwise motion and taken back to -3 in a counterclockwise motion and then clockwise
again to return to 0. When your control is working properly, this will be an effortless exercise.

FM Dial 1
While your rotary control seems to work nicely, it may not be convenient enough in its
current form. To illustrate this, let’s simulate the FM stereo tuner knob with the rotary
control. Run the program fm1 with the control ready. Try tuning from end to end of the
FM dial (the program starts you in the middle).

$./fm1
FM Dial with NO Flywheel Effect.
100.0 MHz

Chapter 8 ■ rotary enCoders

116

100.1 MHz
100.2 MHz
100.3 MHz
100.4 MHz
100.5 MHz
100.6 MHz
100.7 MHz
100.8 MHz
100.9 MHz
101.0 MHz
101.1 MHz
101.2 MHz
101.3 MHz
101.2 MHz
101.1 MHz
101.0 MHz
100.9 MHz
100.8 MHz
100.7 MHz
100.6 MHz
100.5 MHz
100.4 MHz
100.3 MHz
100.2 MHz
100.1 MHz
100.0 MHz
 99.9 MHz
 99.8 MHz
 99.7 MHz
 99.6 MHz
 99.5 MHz
 99.4 MHz
 99.3 MHz
 99.2 MHz
 99.1 MHz
 99.0 MHz
 99.1 MHz
^C

How convenient was it to go from 100.0MHz down to 99.1MHz? Did you have to twist
the knob a lot? To save rotational effort, many electronic controls simulate a “flywheel effect.”

The program fm1 uses the RotarySwitch class, which responds in a simple linear
fashion to the rotary encoder. If the control clicks once to the right, it responds by
incrementing the count by 1. If it clicks counterclockwise, the counter is decremented by
1 instead. You’ll look at code for this at the end of this chapter.

Chapter 8 ■ rotary enCoders

117

Spin a bicycle wheel, and it continues to rotate after you stop and watch. Friction
causes the rotation to slow and eventually stop. This is flywheel action, and it is
convenient to duplicate this in a control. Some high-end stereo and ham radio gear have
heavy knobs in place so that they continue to rotate if you spin them fast enough.

FM Dial 2
Let’s repeat the last experiment with the program fm2. In the following example, the dial
was turned clockwise slowly at first. Then a more rapid twist was given, and the dial shot
up to about 102.0MHz. One more rapid counterclockwise twist took the frequency down
to 98.8MHz.

$./fm2
FM Dial with Flywheel Effect.
100.0 MHz
100.1 MHz
100.2 MHz
100.3 MHz
100.4 MHz
100.5 MHz
100.6 MHz
100.8 MHz
101.0 MHz
101.2 MHz
101.4 MHz
101.6 MHz
101.7 MHz
101.8 MHz
101.9 MHz
102.0 MHz
101.9 MHz
101.8 MHz
101.7 MHz
101.6 MHz
101.5 MHz
101.3 MHz
101.0 MHz
100.8 MHz
100.6 MHz
100.2 MHz
 99.8 MHz
 99.5 MHz
 99.3 MHz
 99.1 MHz

Chapter 8 ■ rotary enCoders

118

 98.9 MHz
 98.8 MHz
 98.7 MHz
 98.6 MHz
 98.7 MHz
 98.8 MHz
 98.9 MHz
 99.0 MHz

With a more vigorous twist of the knob, you can quickly go from one end of the
dial to the other. Yet, when rotation speeds are reduced, you have full control with fine
adjustments. It is important to retain this later quality.

The following session output demonstrates some vigorous tuning changes:

$./fm2
FM Dial with Flywheel Effect.
100.0 MHz
100.1 MHz
100.2 MHz
100.3 MHz
100.4 MHz
100.5 MHz
100.8 MHz
101.4 MHz
102.3 MHz
103.4 MHz
104.6 MHz
105.8 MHz
107.2 MHz
107.9 MHz
107.9 MHz
107.9 MHz
107.9 MHz
107.9 MHz
107.9 MHz
107.8 MHz
107.7 MHz
107.6 MHz
107.5 MHz
107.4 MHz
107.2 MHz
106.7 MHz
105.8 MHz
104.3 MHz
102.2 MHz
 99.8 MHz
 97.2 MHz
 94.6 MHz

Chapter 8 ■ rotary enCoders

119

 91.9 MHz
 89.2 MHz
 88.1 MHz
 88.1 MHz
 88.1 MHz
 88.1 MHz

Class Switch
To keep the programs simple, I’ve built up the programs using C++ classes. The GPIO class
is from the librpi2 library, which you should have installed already (see Chapter 1). This
gives you convenient direct access to the GPIO ports.

Listing 8-1 illustrates the Switch class definition. This functions well as the contract
between the end user and the implementation of the class. Aside from instantiating the
Switch class in the user program, the only method call that is of interest is the read()
method, which reads from the GPIO port and debounces the signal.

Listing 8-1. The Switch Class for Handling Rotary Encoder Contacts and Debouncing in
switch.hpp

009 /*
010 * Class for a single switch
011 */
012 class Switch {
013 GPIO& gpio; // GPIO Access
014 int gport; // GPIO Port #
015 unsigned mask; // Debounce mask
016 unsigned shiftr; // Debouncing shift register
017 unsigned state; // Current debounced state
018
019 public: Switch(GPIO& gpio,int port,unsigned mask=0xF);
020 unsigned read(); // Read debounced
021 };

Listing 8-2 shows the constructor for this class. The reference (argument agpio) to the
caller’s instance of the GPIO class is saved in the Switch class for later use in line 010 (as
gpio). The GPIO port chosen for this switch is indicated in aport and saved in gport. The
value of amask defaults to the value of 0x0F, which specifies that 4 bits are to be used for
debouncing. You can reduce the number of bits to 3 bits by specifying the value of 0x07.

Listing 8-2. The Switch Class Constructor Code in switch.cpp

006 /*
007 * Single switch class, with debounce:
008 */
009 Switch::Switch(GPIO& agpio,int aport,unsigned amask)
010 : gpio(agpio), gport(aport), mask(amask) {
011

http://dx.doi.org/10.1007/978-1-4842-2406-9_1

Chapter 8 ■ rotary enCoders

120

012 shiftr = 0;
013 state = 0;
014
015 // Configure GPIO port as input
016 gpio.configure(gport,GPIO::Input);
017 assert(!gpio.get_error());
018
019 // Configure GPIO port with pull-up
020 gpio.configure(gport,GPIO::Up);
021 assert(!gpio.get_error());
022 }

The shift register for debouncing (shiftr) is initialized to 0 in line 012, and the
variable state is initialized to 0 also. Line 016 configures the specified GPIO port as an
input and activates its pull-up resistor in line 020.

The assert() macros used will cause an abort if the expressions provided ever
evaluate as false. These give the programmer the assurance that nothing unexpected has
happened. They can be disabled by defining the macro NDEBUG at compile time, if you
like. The cost of these is low, so I usually leave them compiled in.

Listing 8-3 illustrates the code for reading the switch and debouncing the contacts.
The algorithm used is the same procedure as described in Chapter 5.

Listing 8-3. The Switch::read() Method for Debouncing Contacts in switch.cpp

024 /*
025 * Read debounced switch state:
026 */
027 unsigned
028 Switch::read() {
029 unsigned b = gpio.read(gport);
030 unsigned s;
031
032 shiftr = (shiftr << 1) | (b & 1);
033 s = shiftr & mask;
034
035 if (s != mask && s != 0x00)
036 return state; // Bouncing: return state
037 if (s == state)
038 return state; // No change
039 state = shiftr & 1; // Set new state
040 return state;
041 }

The Switch class provides input and debouncing for only one contact. To make a
rotary control, you need to debounce two switches. For that, you define the RotarySwitch
class shown in Listing 8-4.

http://dx.doi.org/10.1007/978-1-4842-2406-9_5

Chapter 8 ■ rotary enCoders

121

Listing 8-4. The RotarySwitch Class for Debouncing and Reading in rotary.hpp

008 /*
009 * Class for a (pair) rotary switch:
010 */
011 class RotarySwitch {
012 Switch clk; // CLK pin
013 Switch dt; // DT pin
014 unsigned index; // Index into states[]
015 protected:
016 unsigned read_pair(); // Read (CLK << 1) | DT
017
018 public: RotarySwitch(GPIO& gpio,int clk,int dt,unsigned mask=0xF);
019 int read(); // Returns +1, 0 or -1
020 };

In the RotarySwitch class, notice how the two switch contacts are handled by two
Switch class instances named clk and dt (lines 012 and 013). Line 014 declares a variable
index, which will be described shortly. The class method read_pair() is declared in the
protected region so that when using class inheritance, you will have access to it (line 016).
The constructor in line 018 is almost the same as Switch, except that you have two GPIO
numbers provided for clk and dt.

Listing 8-5 shows the read_pair() method code. It reads a bit from switches clk and
dt and returns them as a pair of bits for convenience. Lumping them together in this way
provides some programming convenience.

Listing 8-5. RotarySwitch::read_pair() Method in rotary.cpp

029 /*
030 * Protected: Read switch pair
031 */
032 unsigned
033 RotarySwitch::read_pair() {
034 return (clk.read() << 1) | dt.read();
035 }

Listing 8-6 shows the more interesting code. To read the encoder, a small table is
used, declared in lines 008 and 009. These identify the next bit pairs expected when
rotation is progressing clockwise.

Listing 8-6. The RotarySwitch::read() Method for Interpreting the Rotary Encoder in
rotary.cpp

05 /*
006 * State array for CLK & DT switch settings:
007 */
008 static unsigned states[4] =
009 { 0b00, 0b10, 0b11, 0b01 };
010
...

Chapter 8 ■ rotary enCoders

122

038 /*
039 * Read rotary switch:
040 *
041 * RETURNS:
042 * +1 Rotated clockwise
043 * 0 No change
044 * -1 Rotated counter-clockwise
045 */
046 int
047 RotarySwitch::read() {
048 unsigned pair = read_pair();
049 unsigned cw = (index + 1) % 4;
050 unsigned ccw = (index + 3) % 4;
051
052 if (pair != states[index]) {
053 // State has changed
054 if (pair == states[cw]) {
055 index = cw;
056 return (pair == 0b11 || pair == 0b00) ? +1 : 0;
057 } else if (pair == states[ccw]) {
058 index = ccw;
059 return (pair == 0b11 || pair == 0b00) ? -1 : 0;
060 }
061 }
062
063 return 0; // No change
064 }

As the comments document (lines 041 to 044), the RotarySwitch::read() method
returns a signed value.

•	 +1 when the control has rotated clockwise

•	 -1 if in the reverse

•	 0 if there was no event to report

The first operation is to read from the pair of switches (line 048). This bit pair is
debounced thanks to the work of the Switch class that was used to manage them. The
values cw and ccw are the computed next index values into array states for clockwise and
counterclockwise (lines 049 and 050).

Line 052 checks to see whether the value read (variable pair) has changed from
the last time. If so, an event has happened, and line 054 tests to see whether you went
clockwise. If so, the value of index is updated in line 055 and a +1 or 0 is returned. The +1
is returned, however, only if the control is now at one of the detent positions where pair
reads as 0b00 or 0b11. Otherwise, you pretend that nothing happened by returning 0.
Lines 057 to 059 perform the same function for counterclockwise. Failing all else, line 063
returns 0 to indicate that nothing interesting happened.

Chapter 8 ■ rotary enCoders

123

Listing 8-7 shows how the class Flywheel inherits from class RotarySwitch. This
allows you to leverage what you’ve already built, while adding the flywheel effect on top.
The constructor in line 019 for Flywheel is the same as for RotarySwitch. Like before, the
Flywheel::read() method returns the same values.

Listing 8-7. Class Flywheel for Rotary Control with Flywheel Effect, in flywheel.hpp

011 /*
012 * Class for a (pair) Rotary switch:
013 */
014 class Flywheel : public RotarySwitch {
015 timespec t0; // Time of last motion
016 double ival; // Last interval time
017 int lastr; // Last returned value r
018
019 public: Flywheel(GPIO& gpio,int clk,int dt,unsigned mask=0xF);
020 int read(); // Returns +1, 0 or -1
021 };

To implement the Flywheel class, you need a fine set of timing functions. Listing 8-8
shows some local functions that are used by the class. The function get_time() is used
to get time with nanosecond precision. It should be understood, however, that the time
returned in the structure timespec may not be that accurate but is provided in seconds
(member tv_sec) and nanoseconds (member tv_nsec).

Listing 8-8. The Local Static Functions Used by the Flywheel Implementation, in
flywheel.cpp

009 static inline void
010 get_time(timespec& tv) {
011 int rc = clock_gettime(CLOCK_MONOTONIC,&tv);
012 assert(!rc);
013 }
014
015 static inline double
016 as_double(const timespec& tv) {
017 return double(tv.tv_sec) + double(tv.tv_nsec) / 1000000000.0;
018 }
019
020 static inline double
021 timediff(const timespec& t0,const timespec& t1) {
022 double d0 = as_double(t0), d1 = as_double(t1);
023
024 return d1 - d0;
025 }
026

Chapter 8 ■ rotary enCoders

124

027 Flywheel::Flywheel(GPIO& agpio,int aclk,int adt,unsigned amask)
028 : RotarySwitch(agpio,aclk,adt,amask) {
029
030 get_time(t0);
031 lastr = 0;
032 };

The function as_double() in lines 015 to 018 convert the timespec value into a
double value, which is more convenient to compute with. The routine timediff() in lines
020 to 025 compute the time difference in seconds.

The constructor in lines 027 to 032 initializes the inherited RotarySwitch class (line
028) and initializes t0 with a start time.

Listing 8-9 is the main star of this chapter, illustrating the extra code used to
implement the flywheel effect. Line 035 replaces the RotarySwitch::read() method for
this class with new code and tricks.

Listing 8-9. The Meat of the Flywheel Class in flywheel.cpp

034 int
035 Flywheel::read() {
036 static const double speed = 15.0; // Lower values change faster
037 timespec t1; // Time now
038 double diff, rate; // Difference, rate
039 int r, m = 1; // Return r, m multiple
040
041 r = RotarySwitch::read(); // Get reading (debounced)
042 get_time(t1); // Now
043 diff = timediff(t0,t1); // Diff in seconds
044
045 if (r != 0) { // Got a click event
046 lastr = r; // Save the event type
047 ival = (ival * 0.75 + diff * 1.25) / 2.0 * 1.10;
048 if (ival < 1.0 && ival > 0.00001) {
049 rate = 1.0 / ival;
050 } else rate = 0.0;
051 t0 = t1;
052 if (speed > 0.0)
053 m = rate / speed;
054 } else if (diff > ival && ival >= 0.000001) {
055 rate = 1.0 / ival; // Compute a rate
056 if (rate > 15.0) {
057 if (speed > 0.0)
058 m = rate / speed;
059 ival *= 1.2; // Increase interval
060 t0 = t1;
061 r = lastr; // Return last r
062 }
063 }

Chapter 8 ■ rotary enCoders

125

064
065 return m > 0 ? r * m : r;
066 }

Line 041 uses the original RotarySwitch::read() call to read the value of +1, 0, or
-1 depending upon the rotary control. But the Flywheel version of read() will perform
some additional processing.

Line 042 assigns the current time in nanoseconds to t1. Using the start time t0, the
elapsed time from the last event is computed in line 043 (variable diff). This difference
in time is a floating-point value in seconds but includes the fractional difference in
nanoseconds. If the control has been sitting idle for a long time, this difference may be
very long for the first time (perhaps minutes or hours). However, successive events will
have time differences of perhaps of 10 milliseconds.

Line 045 tests to see whether you got an event in variable r. If there was rotation, r
will be nonzero. The rotation event is recorded for later use in line 046 (variable lastr).
Then a weighted average is computed from the prior interval and current difference
in line 047 (stored in variable ival). An additional 10 percent is added to the value by
multiplying by 1.10. The rationale for this adjustment will be revealed shortly, including
why lines 048 to 053 compute a rate value and a multiple m.

Lines 045 to 053 just described operate when there is a rotational event—either the
control has clicked over, clockwise or clockwise. But what happens after quickly rotating
the knob and releasing it? Or slowing down?

When there is no rotational event in line 045, control passes to line 054 to test
whether the current time difference (diff) is greater than the last computed interval
ival. Recall that the weighted value of ival had 10 percent added to it (at the end
of line 047). As the rotational rate increases, the time difference between events gets
smaller (diff). So, as long as this time interval decreases or remains about the same, the
generated flywheel events are suppressed. In fact, the rate of rotation would have to drop
below 10 percent of the current weighted average before the flywheeling applies. By doing
this, expected events that occur on time are handled normally. Only when expected next
events are late do you consider synthesizing events in the flywheeling code.

Line 054 also insists that the last weighted interval time (ival) is greater than
0.000001. This is a rate-limiting action on the flywheeling effect. Line 055 computes a rate,
which is the inverse of time interval (ival). Only when the rate rises above 15.0 do you
synthesize more flywheel events (line 056). The variable speed is hard-coded with the value
15.0 (line 036). It is used to compute the multiple m from the rate using division (lines 053
and 058). If you change the value of speed to zero, there will be no multiplying effect.

The effect of the multiple of m is to increase the value returned from a simple +1 to,
say, a +8, when the rotational rate is high. This applies to line 065. When the rotational
rate slows, the multiple has less effect, and the control responds in smaller increments.

In the flywheeling section in line 059, you compute a next interval time (ival). Here
the interval time has 20 percent added to it so that it slows and becomes less likely to
synthesize another event. This reduces the next rate calculation in line 056. As ival is
increased, eventually the rate value drops below 15.0 and then ceases to synthesize
any more events. Lines 060 and 061 reset the timer t0 and set the returned r to the lastr
value saved. Line 065 brings it all together by applying multiple m and r.

Chapter 8 ■ rotary enCoders

126

Main Routine
To knit this all together, let’s review the main program for fm2.cpp, which uses the
Flywheel class. Because the tricky stuff is located inside the class implementation code,
the main programs used in this chapter are essentially the same. Listing 8-10 presents
fm2.cpp.

Listing 8-10. The Main Program for fm2.cpp

012 #include "flywheel.hpp"
013
014 /*
015 * Main test program:
016 */
017 int
018 main(int argc,char **argv) {
019 GPIO gpio; // GPIO access object
020 int rc, counter = 1000;
021
022 // Check initialization of GPIO class:
023 if ((rc = gpio.get_error()) != 0) {
024 fprintf(stderr,"%s: starting gpio (sudo?)\n",strerror(rc));
025 exit(1);
026 }
027
028 puts("FM Dial with Flywheel Effect.");
029 printf("%5.1lf MHz\n",double(counter)/10.0);
030
031 // Instantiate our rotary switch:
032 Flywheel rsw(gpio,20,21);
033
034 // Loop reading rotary switch for changes:
035 for (;;) {
036 rc = rsw.read();
037 if (rc != 0) {
038 // Position changed:
039 counter += rc;
040 if (counter < 881)
041 counter = 881;
042 else if (counter > 1079)
043 counter = 1079;
044 printf("%5.1lf MHz\n",double(counter)/10.0);
045 } else {
046 // No position change
047 usleep(1);
048 }
049 }

Chapter 8 ■ rotary enCoders

127

050
051 return 0;
052 }

The GPIO class is instantiated as gpio in line 019, and errors are checked in lines 023
to 026. The Flywheel class is instantiated in line 032, with the gpio class passed in as part
of the constructor.

The main loop consists of lines 035 to 049. If you read a rotational event, then lines
038 to 044 are executed. Otherwise, a delay of usleep(1) is performed in line 047. On
the Raspberry Pi 3 this takes about 68μsec and serves only to pass control to some other
process needing the CPU. According to htop(1), this uses about 27 percent of one core.
You can increase the sleep time to something above 68μsec to reduce this overhead. But if
you overdo the delay, the control will become less responsive.

Summary
In this chapter you discovered rotary encoders and applied the principles of contact
debouncing to a reliable read position. From this foundation, you saw code to sense
rotary motion and apply flywheeling to make the control more effective. This refashions
the humble rotary control as a powerful user input for the Raspberry Pi.

Bibliography
 [1] “Keyes KY-040 Arduino Rotary Encoder User Manual.”

Henrys Bench. 2015. Accessed August 13, 2016. <http://
henrysbench.capnfatz.com/henrys-bench/arduino-
sensors-and-input/keyes-ky-040-arduino-rotary-
encoder-user-manual/>.

http://henrysbench.capnfatz.com/henrys-bench/arduino-sensors-and-input/keyes-ky-040-arduino-rotary-encoder-user-manual/
http://henrysbench.capnfatz.com/henrys-bench/arduino-sensors-and-input/keyes-ky-040-arduino-rotary-encoder-user-manual/
http://henrysbench.capnfatz.com/henrys-bench/arduino-sensors-and-input/keyes-ky-040-arduino-rotary-encoder-user-manual/
http://henrysbench.capnfatz.com/henrys-bench/arduino-sensors-and-input/keyes-ky-040-arduino-rotary-encoder-user-manual/

129© Warren Gay 2017
W. Gay, Custom Raspberry Pi Interfaces, DOI 10.1007/978-1-4842-2406-9_9

CHAPTER 9

More Pi Inputs with 74HC165

When you consider how many GPIO pins have special functions, you might find that
there aren’t always enough inputs to choose from. This can be an issue when many of the
alternate functions are being used (SPI, I2C, UART, PWM, and so on). One way to cost
effectively expand the number of Pi inputs is to attach one or more 74HC165 CMOS chips.
These are available from digikey.com for as little as a dollar. Figure 9-1 illustrates an
example of the 16-pin dual inline package (DIP) chip.

74HC165 Pinout
The 74HC165 is a CMOS device that will operate nicely with the Pi’s 3.3V system. When
ordering, make sure that the part number includes the logic family “HC” designation in it.
The plain 74165 part, for example, is a 5V part, which will not work at 3.3 volts. Still other

Figure 9-1. The 74HC165 16-pin DIP

Chapter 9 ■ More pi inputs with 74hC165

130

logic families will be unsuitable for other reasons. You should also be aware that you want
to order the DIP form of the chip (shown in Figure 9-1). Otherwise, your chip will not fit
your breadboard and be too small for soldering.

Figure 9-2 illustrates the schematic pinout of the device. Different manufacturers
label the pins differently even though the pins serve the same purpose. The labels used by
NXP have been added around the outside of the chip in the figure, which correspond with
the ones I chose to use in this chapter.

Table 9-1 summarizes the functions of the pins for this device (additional input pins
D1 through D6 have been omitted).

Q7
DS
D0
D1
D2
D3
D4
D5
D6
D7

CP
/CE
/PL

74HCl65

/Q7

9
10
11
12
13
14

3
4
5
6

2
15

1

QH
SER

IC1

A
B
C
D
E
F
G
H

CLK
INH

7QH

SH/LD

Figure 9-2. 74HC165 pinout

Table 9-1. Summary of Pin Functions

Pin NXP Label Other Designations Description

15 /CE INH Chip enable (inhibit)

1 /PL SH/LD Parallel load (shift/load)

2 CP CLK Clock pulse

9 Q7 QH High bit (noninverted)

7 /Q7 QH High bit (inverted)

10 DS SER Serial input data

11 D0 A Least significant parallel input bit

6 D7 H Most significant parallel input bit

Chapter 9 ■ More pi inputs with 74hC165

131

For your benefit, realize that /CE indicates the same thing as CE— . The leading slash
or the overhead bar indicates that the signal is “active low.” The CE— (chip enable) input
is active when it is low. The same pin is labeled by other manufacturers (like Fairchild
Semiconductor, for example) as the INH (inhibit). Since the INH is active high (no bar
overhead), the end result is the same; that is, the chip is not enabled when the INH signal
is in the high state. These are just two different sides of the same logic function.

Some chips are sufficiently complex that they need a function table to clarify the
interaction of the various inputs and outputs. The following section includes a function
table adapted from the Fairchild datasheet.

Function Table
Table 9-2 helps you view the behavior of functions at a glance. When looking at this
for the first time, you should study it long enough to understand it. These charts are
invaluable and will save you time in the future.

The first obvious characteristic of this table is that symbols like L, H, and X are used.
Table 9-3 summarizes the meaning of these symbols. These are fairly self-explanatory,
but I’ll describe them in detail.

Table 9-2. 74HC165 Function Table

Inputs Internal Outputs Output

/PL /CE CP DS Parallel Q
H

A…H Q
A

Q
B

L X X X a…h a b h

H L L X X Q
A0

Q
B0

Q
H0

H L � H X H Q
AN

Q
GN

H L � L X L Q
AN

Q
GN

H H X X X Q
A0

Q
B0

Q
H0

Table 9-3. Legend for Table 9-2

Symbol Meaning

H High level, steady state

L Low level, steady state

X Irrelevant (don’t care)

� Signal transition from low to high level

Q
A0

, Q
B0

, Q
H0

The level of Q
A
, Q

B
 or Q

H
, respectively, before the indicated steady-state

input conditions were established

Q
AN

, Q
GN

The level of Q
A
 or Q

G
 before the most recent � transition of the clock,

indicating a 1-bit shift

Chapter 9 ■ More pi inputs with 74hC165

132

The first row of Table 9-2 shows the state of input pin /PL as being “L” (low). The
remaining inputs /CE, CP, and DS are shown as an X. This means that while /PL is active
(low), these other inputs have no effect (are irrelevant). Under the “Parallel” column,
you see that inputs “a” through “h” modify the internal state of internal latches Q

A
 and Q

B

(and implied Q
C
 to Q

H
). Here I adopted the Fairchild convention for the input labels for

association with the outputs (these are D0 through D7 inputs using NXP labels). Finally,
note that Q

H
 is actually an output pin. This is the highest-order bit in the shift register that

is made available externally to the chip. So, whenever /PL is applied, the data presented
at H (D0) will appear at pin Q

H
. None of the other inputs participates in this operation

(including the chip enable).
For the remaining rows of the function table, the state of /PL is high. Except for the

last row, you see rows 2, 3, and 4 have /CE as enabled (L). When the clock (CP) is low (L),
you see that the state of the DS shift input pin is marked as an X and thus has no relevance
in this state. The output pin Q

H
 shows Q

H0
 in the table, which simply means that it retains

the last latched value.
The third and fourth rows of the function table show an up arrow for the clock (CP).

This means that when the clock signal goes from a low state (L) to high (H), the transition
causes the shift register to shift. The state of the input pin DS is copied to the first shift
register latch Q

A
, while the other values from Q

A
 to Q

G
 get copied to the next bit position.

The prior value of Q
H

 is lost in this operation (shifted out).
The last row of the function table is also important. When the /PL signal and the /CE

are inactive (not L), you see that the remaining inputs are marked with X. In this state, the
CP, DS, and inputs D0 (A) through D7 (H) have no effect on the state of the chip.

Breadboard Experiment
Figure 9-3 illustrates the circuit for wiring up to your Raspberry Pi. You can safely use the
Pi’s 3.3V power since the CMOS chip uses very little current (much less than 1mA). Don’t
forget to connect the Pi’s ground to pin 8 of the chip to complete the power circuit.

Note that the unused input SER is connected to ground. You could alternatively
connect this to the supply, but it must be connected. CMOS inputs should always be
established, whether low or high, and never left “floating.”

To use the supplied software (in the hc165 subdirectory) without modification, use
the GPIO connections shown. If you’re willing to modify the C++ code, then you can
use different GPIO pins. The connections to inputs D0 through D7 in the schematic are
completely arbitrary. The schematic is wired to cause the value of 0x82 to be received by
the test program. Bits D1 (B) and D7 (H) are connected to the +3.3V supply so that those
bits will be read as 1 bits, while all the remaining pins will read as 0. Attach buttons or
switches or change the wiring if you like after you have proven that it works.

Chapter 9 ■ More pi inputs with 74hC165

133

Figure 9-4 illustrates my wired breadboard using Dupont wires. The wiring looks
like a rat’s nest only because all data inputs of a CMOS device need to be wired to either
ground or the supply. Most of the wires are connecting the parallel inputs to ground. One
can never have too many Dupont wires!

QH
SER

IC1

A
B
C
D
E
F
G
H

CLK

GND

GND

INH

Q7

16

+3.3V

8
74HC165

CP
/CE

GPIO#23

GPIO#5

Inputs D0..D7

GPIO#6

GPIO#16
/PL

9

7

10
11
12
13
14

3
4
5
6

2
15

1

QH

SH/LD

Figure 9-3. Breadboard schematic

Chapter 9 ■ More pi inputs with 74hC165

134

Program
The program found in the hc165 subdirectory is a little illustration program that can be
used to test your breadboard setup, partially illustrated in Listing 9-1. Lines 010 through
013 can be changed to match the GPIO pins that you have chosen to use. Line 015 sets
the usleep(3) sleep time to 1μsec. In practice, it will take considerably longer, requiring
about 65μsec on the Pi 3 (70μsec on Pi 2). This is because of the overhead of entering the
kernel and returning.

You can take advantage of the librpi2 library to save time and effort. The main
program for hc165.cpp configures the GPIOs as inputs and outputs, as required (not
shown here).

Figure 9-4. Breadboard wiring

Chapter 9 ■ More pi inputs with 74hC165

135

Listing 9-1. Partial Rendering of hc165.cpp

010 static int hc165_pl = 16; // Outputs
011 static int hc165_ce = 6;
012 static int hc165_cp = 5;
013 static int hc165_q7 = 23; // Input
014
015 static unsigned usecs = 1;
016 static GPIO gpio;
017
018 static void
019 nap() {
020 usleep(usecs);
021 }
022
023 static void
024 strobe(int pin) {
025 nap();
026 gpio.write(hc165_pl,0); // Load parallel
027 nap();
028 gpio.write(hc165_pl,1); // Loaded
029 nap();
030 }
031
032 static unsigned
033 hc165_read() {
034 unsigned byte = 0;
035
036 strobe(hc165_pl); // Load parallel
037 gpio.write(hc165_cp,0); // CP = low
038 gpio.write(hc165_ce,0); // /CE = low
039 nap();
040
041 for (int x=0; x<8; ++x) {
042 byte <<= 1;
043 byte |= !!gpio.read(hc165_q7); // Read Q7
044 gpio.write(hc165_cp,1); // Shift
045 nap();
046 gpio.write(hc165_cp,0); // Complete clock pulse
047 nap();
048 }
049 gpio.write(hc165_ce,1);
050 return byte;
051 }

Lines 023 to 030 show the strobe() function. All it does is set the /PL line low and
then high again with some nap times in between. If the signals change too quickly, the
CMOS chip will be unable to keep up.

Chapter 9 ■ More pi inputs with 74hC165

136

The hc165_read() function returns an unsigned value representing the shifted-out
inputs from the 74HC165. The first operation is to strobe the input data into the chip
using the strobe() function. Then the clock signal is set to low in preparation of the shift
to come. The /CE is also set low to enable the chip’s operation.

The loop in lines 041 through 048 successively reads the bit from Q7 and shifts it into
the value byte. Once this has been done eight times, the /CE is set high again, and the
value is returned.

Use the make command to compile the code.

pi@rpi3:~/src/hc165 $ make
g++ hc165.o -o ./hc165 -L/home/pi/rpi2016/hc165/..//lib -lrpi2 -lrt -lm
sudo chown root ./hc165
sudo chmod u+s ./hc165

Since direct use of the GPIO ports requires root access, the make procedure gives the
executable hc165 root setuid access. This saves you from having to use sudo in order to
run the program.

After your breadboard is ready, run the program, as follows:

pi@rpi3:~/src/hc165 $./hc165
byte = 82
pi@rpi3:~/src/hc165 $

If you wired your breadboard as shown in Figure 9-3, you should see the program
report “byte = 82” (hex). Otherwise, other values will reflect the state of your shift register
inputs.

Logic Analyzer View
Figure 9-5 shows a logic analyzer capture of an input operation. From this you can
visualize the /PL going low to clock the data into the shift register. You see /CE go low to
activate the chip, and on the rising edge of the clock (CP), you can see data changes in
Q7. The highest bit b7 is shifted out first, ending with least significant bit b0. When all is
complete, the /CE goes high again.

The actual bit read operation in line 043 of the program occurs just before the clock
(CP) goes high. This leaves plenty of time for the shift register data output to stabilize.

Chapter 9 ■ More pi inputs with 74hC165

137

You have used the call usleep(3) with an argument of 1 to cause the program to
give up the CPU and come back as early as the kernel can (the call indicates to sleep for
1μsec). However, there is overhead just going into the kernel so that by the time it has
done so, it is time to return. The time of each usleep(3) call amounted to about 65μsec.

Profit and Loss
Let’s take a moment to take stock of what you gained and lost using the 74HC165 chip. To
gain eight more input pins, you had to allocate three output and one input GPIOs. This is
an improvement of 50 percent. But what did you lose? More time is involved.

Referring to Figure 9-5, you can see that there is about 10 time periods involved in
reading in the 8 inputs. The program used a usleep(3) call for 1μsec, but that turned into
about 65μsec because of kernel overhead. If you assume those numbers, you then require
the following:

10 65 650´ = usec

This means each read of eight bits requires about 0.7ms. By computing the inverse of
this, you can determine the maximum number of reads per second, as follows:

1000

0 65

1 538ms

ms

reads

second.

,
=

For many applications like reading a switch or a push button, this is quite acceptable.
But other applications may need a higher sampling rate.

Figure 9-5. Logic analyzer capture

Chapter 9 ■ More pi inputs with 74hC165

138

Even More Inputs
What if you need more than eight additional inputs? This is easily accomplished by adding
another 74HC165, without requiring additional GPIOs. The schematic in Figure 9-6 shows
how this can be wired to accomplish this.

You can see that the /CP, /CE, and /PL connections are simply parallel-connected
to the same pins of IC2. The only thing new is that the Q7 (QH) output from IC2 now
connects to IC1’s SER input (pin 10). This allows the data shifted out of IC2 to shift into
IC1, as the bits are being read by the Pi. Performing 16 shifts instead of 8, the Pi will be
able to read all 16. How does this impact your read times?

The bit periods involved will be approximately 10+8, or 18 periods.

18 65 1 170´ =usec ms.

For about 80 percent more time, you get eight more bits of data. This arrangement
will allow you to do about 855 reads per second.

The code change required is minor; you simply change the loop in line 041 to loop
for 16 times instead of 8. See Listing 9-2 for the change.

QH
SER

IC1

A
B
C
D
E
F
G
H

CLK
INH

10
11
12
13
14

3
4
5
6

2
15

1

9

7
QH

SER

IC2

A
B
C
D
E
F
G
H

CLK
INH

10
11
12
13
14

3
4
5
6

2
15

1

9

7

8
74HC165 8

16
16

Q7

More
Inputs

GPIO#5

GPIO#6

GPIO#16

GND

GND

GPIO#23

+3.3V

Inputs D0..D7

CP
/CE
/PL

QH
QH

SH/LD
SH/LD

Figure 9-6. Expanding the use of 74HC165 to 16 inputs

Chapter 9 ■ More pi inputs with 74hC165

139

Listing 9-2. Change Required to Read 16 Bits

041 for (int x=0; x<16; ++x) {
042 byte <<= 1;
043 byte |= !!gpio.read(hc165_q7); // Read Q7
044 gpio.write(hc165_cp,1); // Shift
045 nap();
046 gpio.write(hc165_cp,0); // Complete clock pulse
047 nap();
048 }

Other Bit Counts
There is no law that says that you must read a multiple of eight bits of input data. For
example, using one 74HC165 chip, your application might require only six inputs. In this
case, line 041 of Listing 9-2 could be changed to loop only six times instead of eight. Let’s
calculate the impact of that change.

2 6 8+ = timeperiods

Assuming 65μsec for each time period, this results in a read time as follows:

8 65 0 520´ = . ms

This translates to the following:

1000

0 52

1 923ms

ms

reads

second.

,
=

By customizing your I/O to match your data needs, you can improve the I/O
bandwidth of your interface.

Combining GPIOs
Sometimes you can economize your GPIO usage when combining with other peripherals.
Chapter 10 looks at adding outputs with the use of the 74HC595 chip. It too will require a
/CE (chip enable), a clock pulse (CP), and a data latching signal (/PL). If you share the
/CE, CP, and /PL GPIO signals with both your input and output devices, you would need
only one more GPIO to send data out. The input and output bits can be handled at the
same time (on separate GPIOs) so that your I/O transfer rate is not affected. This topic
will be explored further in Chapter 10.

http://dx.doi.org/10.1007/978-1-4842-2406-9_10
http://dx.doi.org/10.1007/978-1-4842-2406-9_10

Chapter 9 ■ More pi inputs with 74hC165

140

Chip Enable
If the GPIOs are dedicated only to your 74HC165 chip, you can make a further
optimization: simply ground the /CE input. Referring to Table 9-2, notice that the parallel
load (/PL) signal operates regardless of the state of the /CE input. If you ground the /CE
signal going into the 74HC165, the chip is always enabled. This allows you to reduce the
required GPIO signals to just /PL, CP, and the Q7 lines. If, on the other hand, you share
these GPIOs with multiple devices, then the /CE signal remains necessary to select the
chip to activate.

As an experiment, disconnect GPIO #6 from pin 15 (/CE). Then connect pin 15 (/CE)
to ground. When you run the ./hc165 program (unmodified), it should still function as
before. This will prove that the /PL input is independent of the /CE input.

As a further experiment, comment out all of the /CE (GPIO #6) references in the
program and try again. If the modifications are correct, you should be able to repeat the
read of the device successfully with only three GPIO signals.

CD4012B
The 74HC165 is not the only chip available. There is also the CMOS CD4012B device,
which can run from 3.3V and requires very little current. The pinout differs, but the
operation is similar.

Summary
This chapter has demonstrated that for as little as a dollar you can exchange four GPIOs
for eight inputs. If you need even more inputs, you can obtain eight more for a dollar
more. You learned about datasheet “function tables” and became familiar with the signals
that drive the 74HC165 shift register. The next chapter will introduce the 74HC595 chip
for adding GPIO outputs to your Pi.

141© Warren Gay 2017
W. Gay, Custom Raspberry Pi Interfaces, DOI 10.1007/978-1-4842-2406-9_10

CHAPTER 10

More Pi Outputs with
74HC595

Like input GPIOs in Chapter 9, the application designer may require more GPIO outputs.
Because this 74HC595 part is a member of the “HC” logic family, it is able to operate with
a V

CC
 ranging from 2.0 to 6.0 volts. This is perfect for operating under the 3.3V Raspberry

Pi and costs less than a dollar at digikey.com. Figure 10-1 illustrates a chip that I’ve used.

Note that the HCT family is designed for TTL input levels. I focus on the HC devices
in this chapter because the device must interface to the CMOS-based Raspberry Pi.

74HC165 Pinout
Figure 10-2 provides a schematic pinout for the 74HC595 chip. Once again, different
manufacturers use different labels for the various pins.

Figure 10-1. 74HC595 serial in, parallel out shift register

http://dx.doi.org/10.1007/978-1-4842-2406-9_9

Chapter 10 ■ More pi outputs with 74hC595

142

Table 10-1 documents the pins, the schematic labels, the NXP labels (not shown in
Figure 10-2), and the pin functions for this chip.

Function Table
Table 10-2 is an adaptation of the NXP-provided table, except that it uses the labels
provided by the EAGLE software in Figure 10-2. In addition to the legend provided in
Chapter 9’s Figure 9-3, there are two new symbols: NC, which means “No Change,” and Z,
which means “high impedance” (essentially disconnected from the circuit).

74HC595

Q7S
SCLK
LATCH

SDA

IC1

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7

11
12

14

10
13

15

9

1
2
3
4
5
6
7

RST
OE

Figure 10-2. 74HC595 pinout

Table 10-1. 74HC595 Pins and Functions

Pin Schematic Label NXP Label Function

11 SCLK SHCP Shift clock

14 SDA DS Shift (in) data

12 LATCH STCP Latch (clock pulse)

10 RST MR (Master) reset

13 OE OE Output enable

15 Q0 Q0 Output Q0 (least significant bit)

7 Q7 Q7 Output Q7 (most significant bit)

9 Q7S Q7S Serial data output (for chaining)

http://dx.doi.org/10.1007/978-1-4842-2406-9_9

Chapter 10 ■ More pi outputs with 74hC595

143

When the MR (reset) signal goes low (in the first line of the table), you can see that
there are no changes on the outputs (Qn = NC), but it does clear the internal shift register.
This is true whether the OE (output enable) signal is active or not (lines 2 and 3).

Line 3 shows you, however, that when the OE signal is inactive (high), the shift
register outputs Q0 through Q7 (Qn) go into a high impedance (Z) state. In other words,
these outputs become disconnected from the circuit that they are wired to.

Line 4 applies when MR is inactive (H), OE is active (L), and the signal SCLK (�) goes
from low to high. Here I used “D” to indicate a data bit is copied into the shift register bit
Q0 (as ON Semiconductor does). The remaining shift registers’ cells are shifted to the next
position. This results in the Q7 bit being replaced with the prior state of Q6. Note that the
parallel latched outputs Q0 through Q7 remain unchanged (NC).

While OE remains active (L) in line 5, the rising signal STCP (�) causes the shift
register bits to appear externally at Q0 through Q7. This latching operation has no effect
on the internal shift register contents, which is why output Q7S shows no change (NC).

The last line of the function table indicates that you can shift a data bit into the
internal shift register and simultaneously latch that result so that it is externally visible.
This can save a little bit of time in the output cycle.

Breadboard Experiment
Figure 10-3 illustrates the breadboard circuit for the 74HC595 chip. In this arrangement,
you hardwire the OE pin to ground. This means that the outputs Q0 through Q7 will
always be enabled. The clock pulses are wired to GPIO#5 as in the previous chapter. The
LATCH signal is active when there is a low to high transition.

You can take advantage of the /PL line as used in Chapter 9. Sharing that GPIO
is possible because the input 74HC165 loads data while this line is low. The output
74HC595 will latch its outputs when the signal goes from low to high. You can, of course,
use a different GPIO for this purpose if your application demands it. I’ll discuss GPIO
sharing in more detail later.

Finally, you need GPIO #24 for passing data into the 74HC595 shift register from the
Pi. You can use different GPIO assignments, but this is what the supplied source code will
use for this experiment.

Table 10-2. Function Table for 74HC595

Controls Input Output

SCLK STCP OE MR DS Q7S Qn

X X L L L L NC

X � L L L L L

X X H L L L Z

� X L H D Q6S NC

X � L X X NC QnS

� � L X X Q6S Qns

http://dx.doi.org/10.1007/978-1-4842-2406-9_9

Chapter 10 ■ More pi outputs with 74hC595

144

Lastly, this experiment ties the RST input to the +3.3V supply. This reset input is
active low, so you tie it high so that it doesn’t become active for this experiment.

Unlike the 74HC165 input chip, you have no remaining inputs to wire to ground or
the supply. CMOS outputs can be left without connections.

In the subdirectory hc595, you will find the Makefile and program hc595.cpp.
Change to that directory and type make.

$ cd ./hc595
$ make
g++ -c -std=c++11 -Wall -Wno-deprecated -Wno-narrowing -I. -I/usr/local/
include/librpi2 -g -O0 hc595.cpp -o hc595.o
g++ hc595.o -o ./hc595 -L/home/pi/rpi2016/hc595/..//lib -lrpi2 -lrt -lm
sudo chown root ./hc595
sudo chmod u+s ./hc595

Once again, note that the program hc595 has been given setuid permission so
that you won’t need to run it with sudo. Root permission is required to access the GPIO
registers directly. Listing 10-1 shows the program area of interest.

Listing 10-1. Program hc595.cpp

008 #include "gpio.hpp"
009
010 static int hc595_latch = 16; // Outputs
011 static int hc595_sclk = 5;

GPIO#5

GPIO#16

GPIO#24

74HC595 8

16

VCC

IC1

Q7S 9

15
1
2
3
4
5
6
7

Q0
SCLK
LATCH

SDA
Q1
Q2
Q3
Q4
Q5
Q6
Q7

GND

11
12

14

10
13

RST
OE

Figure 10-3. Breadboard circuit for 74HC595 output

Chapter 10 ■ More pi outputs with 74hC595

145

012 static int hc595_sda = 24;
013
014 static unsigned usecs = 1;
015 static GPIO gpio;
016
017 static void
018 nap() {
019 usleep(usecs);
020 }
021
022 static void
023 hc595_write(unsigned data) {
024 unsigned b, temp = data;
025
026 gpio.write(hc595_sclk,0); // SCLK = low
027 gpio.write(hc595_latch,0); // LATCH = low
028 nap();
029
030 for (int x=0; x<8; ++x) {
031 b = !!(temp & 0x80); // b = d7 (msb first)
032 temp <<= 1;
033 gpio.write(hc595_sda,b); // SDA = data bit
034 nap(); // Wait
035 gpio.write(hc595_sclk,1); // SCLK low -> high
036 nap();
037 gpio.write(hc595_sclk,0); // Complete clock pulse
038 nap();
039 }
040 gpio.write(hc595_latch,1); // Latch data to outputs
041 nap();
042 printf("Wrote %02X to 74HC595\n",data);
043 }

The main program (not shown) configures the GPIOs as outputs. If no command-
line arguments are given, a call is made to hc595_write(0xD5) to transmit that bit pattern
to the output chip. If other command-line parameters are provided, those values are
written instead.

The hc595_write() routine starts by making sure that the SCK and LATCH signals
are set to the low level (lines 026 and 027), followed by a delay. Line 024 has copied the
data value into variable temp for use in the loop.

In the for loop of lines 030 to 039, this temp value is sampled at bit 7 and stored in
variable b. The double !! operator just converts a nonzero result (in b) into the value 1
and otherwise to the value 0. Then line 032 shifts the variable temp one position to the left
for the next loop iteration.

Line 033 writes the data bit value in b out to GPIO hc595_sda (GPIO #24). This
establishes the high or low value to be shifted into the output register. Line 034 delays
so that the signal transitions don’t happen too fast for the chip. Line 035 raises the clock
signal (SCLK) from low to high. This will clock the data bit into the output chip. Line 037
returns the clock signal low again after a delay.

Chapter 10 ■ More pi outputs with 74hC595

146

After all eight bits of data are shifted into the output chip, the LATCH signal is
activated in line 040. Recall that it is the transition from low to high that makes the shift
register chip’s output available on the chip output pins (Q0 through Q7). There is one
more delay following this operation so that if the output routine gets called back to back,
sufficient time will exist between signal changes.

Experiment Run
The schematic in Figure 10-3 did not have anything shown connected to the outputs Q0
through Q7. The experiment can be run without any connections if you have a DMM to
measure the output levels with. Simply take a meter reading, and if the value is a high
level, note a 1 bit.

If you want a visual indication, you can attach LEDs with a dropping resistor in
series. Depending upon the manufacturer, the absolute maximum output of each pin is
25mA (Fairchild). The chip is further limited by its maximum power dissipation, when
every output is driving full current. The Fairchild datasheet indicates 600mW as the
absolute maximum power dissipation. If you limit each output to a maximum of 22mA,
you just fit within that parameter.

22 8 3 3 580mAx pinsx volts mW. =

Most LEDs will light with considerably less than this. Google LED voltage drop and
you will find that many red LEDs will require about 1.8 volts. Taking this into account, you
can compute the dropping resistor required.

R
V V

ILED
CC LED

LED

=
-

Assuming a modest current of 10mA for the LED and substituting allows you to
compute the series dropping resistor.

R
V V

mALED =
-

= W
3 3 1 8

10
150

. .

Figure 10-4 illustrates, in schematic form, the circuit necessary to attach to the
output pins for Q0 through Q7. If you don’t mind moving the Dupont wires around, you
can get by with just one LED.

Chapter 10 ■ More pi outputs with 74hC595

147

Running the program with no command-line arguments will output the hexadecimal
value of D5.

$./hc595
Wrote D5 to 74HC595

The hc595 program reports the value written to the 74HC595 chip. With this hex
value (11010101 in binary), you should observe the following parallel data output:

•	 Q7 is high.

•	 Q6 is high.

•	 Q5 is low.

•	 Q4 is high.

•	 Q3 is low.

•	 Q2 is high.

•	 Q1 is low.

•	 Q0 is high.

Obviously, if you measure something else, then something is incorrect.

Qn R1

150

GND
LE

D1

Figure 10-4. LED hookup with series dropping resistor

Chapter 10 ■ More pi outputs with 74hC595

148

Input and Output
Let’s now look at combining the output 74HC595 with the input 74HC165 chips, using
shared GPIO lines. Figure 10-5 illustrates the schematic circuit. IC1 is the 74HC595
that I’ve been discussing in this chapter, while IC2 is the added 74HC165 chip that was
examined in Chapter 9.

In this experiment, you’ve connected the outputs Q0 through Q7 to the inputs A
through H of the 74HC165 chip. By doing this, your software should be able to output a
value and then read it back as verification. The chip enable (INH) of IC2 has been wired
to ground, since there is no need to select a chip. As before, the unused input SER of IC2
has also been tied to ground to eliminate any floating inputs.

The circuit shares GPIO #5 and GPIO #16 with both chips. GPIO #5 supplies the clock
pulse, while GPIO #16 supplies the LD signal for IC2 and the LATCH symbol for IC1. The
unshared GPIOs include #23 used for reading data, while GPIO #24 is used to supply data
to IC1.

Listing 10-2 shows the interesting aspects of the code. Lines 010 to 013 allocate the
GPIOs being used. Pin gpio_qh is the serial data in from the 74HC165, while gpio_sda is
the serial data going out to the 74HC595. The gpio_latch and gpio_sclk lines are shared
between the two chips.

74HC595

74HC165

VCC

GND

IC1
IC2

Q7S

Q0
SCLK SER

QHA
B
C
D
E
F
G
H

CLK
INH

LATCH

SDA
Q1

11
12

14

10
13

Q2
Q3
Q4
Q5
Q6
Q7

RST
OE

9
10
11
12
13
14
3
4
5
6

2
15
1

9

7

15
1
2
3
4
5
6
7

8

16
16

8

GPIO#5

GPIO#23

GPIO#16

GPIO#24

SH/LD

QH

Figure 10-5. Combined output with input breadboard circuit

http://dx.doi.org/10.1007/978-1-4842-2406-9_9

Chapter 10 ■ More pi outputs with 74hC595

149

Listing 10-2. Program hc165_595.cpp

010 static int gpio_qh = 23; // Input
011 static int gpio_latch = 16; // Outputs
012 static int gpio_sclk = 5;
013 static int gpio_sda = 24;
014
015 static unsigned usecs = 1;
016 static GPIO gpio;
017
018 static void
019 nap() {
020 usleep(usecs);
021 }
022
023 static unsigned
024 io(unsigned data) {
025 unsigned b, ib, temp = data;
026 unsigned idata = 0u;
027
028 gpio.write(gpio_sclk,0); // SCLK = low
029 nap();
030
031 for (int x=0; x<8; ++x) {
032 ib = gpio.read(gpio_qh); // Read 74HC165 QH output
033 idata = (idata << 1) | ib; // Collect input bits
034
035 b = !!(temp & 0x80); // Set b to output data bit
036 temp <<= 1;
037
038 gpio.write(gpio_sda,b); // write data bit
039 nap(); // Wait
040 gpio.write(gpio_sclk,1); // SCLK low -> high (shift data)
041 nap();
042 gpio.write(gpio_sclk,0); // Complete clock pulse
043 nap();
044 }
045 gpio.write(gpio_latch,0); // Set new inputs
046 nap();
047 gpio.write(gpio_latch,1); // Latch data to outputs
048 nap();
049 printf("Read %02X, Wrote %02X\n",idata,data);
050
051 return idata;
052 }

Chapter 10 ■ More pi outputs with 74hC595

150

The function io() has been written to send and receive data. The data sent out is
manipulated in temporary variable temp in lines 035 and 036. The data being read is
accumulated in temporary variable idata in lines 032 and 033. At the conclusion, the
values read and written are reported in line 049.

The main program invokes io() with values ranging from 0x00 through 0xFF and
then the two additional values 0x00 and 0x01.

$./hc165_595
Read 01, Wrote 00
Read 02, Wrote 01
Read 00, Wrote 02
Read 01, Wrote 03
Read 02, Wrote 04
Read 03, Wrote 05
Read 04, Wrote 06
...snip...
Read FB, Wrote FD
Read FC, Wrote FE
Read FD, Wrote FF
Read FE, Wrote 00
Read FF, Wrote 01

The first value read (and reported) should be disregarded. It is reporting the current
value in the shift register, which may be garbage the first time around. The second value
also should be disregarded since this will represent the uninitialized value of the output
register, as you will see.

Looking at the general pattern, you can see that the input values are two cycles
behind what was last written. Here’s an example:

Read FC, Wrote FE

Here you can observe that the read value was hexadecimal FC, while the currently
written value is FE. The reason for this is subtle. Let’s break down the operations involved.

 1. The LD signal of the 74HC165 goes low to capture its inputs,
which is wired to the 74HC595 outputs Q0 through Q7.

 2. When the LD signal returns high, the 74HC165 shift register
holds 0xFC to send back to the Pi (this was the current
74HC595 output value).

 3. However, in step 2, a low to high transition clocks in the new
outputs for the 74HC595 outputs (which the 74HC165 chip
has not yet seen).

 4. The clock line shifts in eight more bits to the output IC1 chip,
while the Pi reads the captured data in IC2.

Consequently, the Pi will read 0xFC, while just having written out 0xFE. The output
value 0xFE will not be seen on the IC1 outputs until the next cycle’s step 2. These details
can get confusing. Figure 10-6 illustrates my own breadboard experiment.

Chapter 10 ■ More pi outputs with 74hC595

151

Additional Outputs
Additional outputs can be had by adding another 74HC595 chip. Figure 10-7 shows the
schematic for doing so. The SDA and LATCH signals are attached in parallel, and IC2’s
data input comes from IC1’s output Q7S (pin 9).

Figure 10-6. 74HC595 and 74HC165 breadboard experiment

IC1

VCC

GND

Q7S

Q0
SCLK
LATCH

SDA
Q1
Q2
Q3
Q4
Q5
Q6
Q7

RST
OE

IC2

Q7S

Q0
SCLK
LATCH

SDA
Q1
Q2
Q3
Q4
Q5
Q6
Q7

RST
OE

11
12

14

10
13

11
12

14

10
13

9

15
1
2
3
4
5
6
7

9

15
1
2
3
4
5
6
7

74HC595 74HC595

16 16

88

GPIO#5

GPIO#16

GPIO#24

Figure 10-7. Two 74HC595 chips used for 16-bit output

Chapter 10 ■ More pi outputs with 74hC595

152

Profit and Loss
The breadboard experiment in Figure 10-5 was a demonstration of eight outputs
and eight inputs. These required four GPIO pins to manage it. This is a 400 percent
improvement in GPIO ports. The cost, however, is the extra time required to shift in/
out the data. The Figure 10-5 experiment illustrated that the total time was reduced by
performing input and output simultaneously.

Summary
This chapter demonstrated how you can easily add GPIO outputs to your Pi for the cost of
about $1. Even more outputs can be had with additional chips. Finally, you exercised both
input and output chips simultaneously to gain 16 I/O pins using only four allocated GPIO
ports.

Beyond the Pi’s GPIO ports used, the 74HC165 and 74HC595 chips required no
software configuration, making them simple to use. The next chapter will introduce
another way to add I/O pins to your Pi. But this will require software configuration.

153© Warren Gay 2017
W. Gay, Custom Raspberry Pi Interfaces, DOI 10.1007/978-1-4842-2406-9_11

CHAPTER 11

MCP23017 I/O Port Extender

While it is possible to add input and output ports with various CMOS chips, sometimes
more flexibility is required. The pin functions of chips like the 74HC165 and 74HC595
are fixed as input or output. Sometimes it is desirable to be able to configure them as
required like the Raspberry Pi’s own GPIO ports. This chapter will examine the Microchip
MCP23017 peripheral chip, which can offer any combination of 16 GPIO ports (in DIP
form), each of which can be individually configured as input or output. Figure 11-1
illustrates the chip sitting on a breadboard.

Figure 11-1. An MCP23017 chip on the breadboard

MCP23017
Microchip’s MCP23017 can be purchased for as little as $1.99; it communicates with the Pi
over the I2C bus. Because the I2C bus requires only two power lines and two data lines, it
needs only a four-conductor ribbon cable and thus can cover some distance. Figure 11-2
shows the schematic pinout.

Chapter 11 ■ MCp23017 I/O pOrt extender

154

The active low RESET pin can be tied to the supply if not required, since a software
reset is still possible. The signal forces a chip reset like the name implies.

The SCL and SDA are the two I2C communication connections. Chip inputs A0
through A2 allow you to configure the I2C address for the chip. Grounding them gives the
chip address 0x20. Table 11-1 summarizes the addresses.

+3.3 V

IC1

VDD9

18

20
19

12
13

15
16
17

10

GND

MCP23017SP

INTA
INTB

SCL
SDA

A0
A1
A2

VSS

GPA0 21
22
23
24
25
26
27
28

1
2
3
4
5
6
7
8

GPA1
GPA2
GPA3
GPA4
GPA5
GPA6
GPA7

GPB0
GPB1
GPB2
GPB3
GPB4
GPB5
GPB6
GPB7

RESET

Figure 11-2. MCP23017 pinout

Table 11-1. MCP23017 I2C Addresses

A2 A1 A0 Address (Hex)

0 0 0 0x20

0 0 1 0x21

0 1 0 0x22

0 1 1 0x23

1 0 0 0x24

1 0 1 0x25

1 1 0 0x26

1 1 1 0x27

Chapter 11 ■ MCp23017 I/O pOrt extender

155

The INTA and INTB output pins are optional signals that can provide interrupt
notification to the Raspberry Pi over one or two GPIO ports. The remaining pins GPA0
through GPA7 and GPB0 through GPB7 provide 16 more GPIO ports, which are under
software configuration control.

Wiring
Figure 11-3 shows the wiring necessary to attach the MCP23017 to the Raspberry Pi. On
the breadboard, simply wire the T-Cobbler connections marked SCL and SDA to pins 12
and 13, respectively.

+3.3 V

Pi
SCL

SDA

IC1
VDD9

18

20
19

12
13

15
16
17

10

GND

MCP23017SP

INTA
INTB

SCL
SDA

A0
A1
A2

VSS

GPA0 21
22
23
24
25
26
27
28

1
2
3
4
5
6
7
8

GPA1
GPA2
GPA3
GPA4
GPA5
GPA6
GPA7

GPB0
GPB1
GPB2
GPB3
GPB4
GPB5
GPB6
GPB7

RESET

Figure 11-3. MCP2301 wired to the Raspberry Pi

Make certain that the RESET pin is also wired to the supply so that it doesn’t become
active. For simplicity and agreement with the provided software, connect inputs A0
through A2 to ground. This configures the chip to respond to I2C address 0x20. Signals
INTA and INTB are outputs and can be ignored for the moment.

After reset, the MCP23017 chip automatically configures all the GPAx and GPBx pins
as inputs, without a pull-up resistor. This is not ideal because this leaves the CMOS inputs
floating. But for this initial experiment, the chip should tolerate it.

Chapter 11 ■ MCp23017 I/O pOrt extender

156

If you haven’t already done so, install i2c-tools.

$ sudo apt-get install i2c-tools

Once installed, then list your I2C buses.

$ i2cdetect -l

If nothing is displayed, then you need to make sure that the I2C drivers get loaded.
The new kernels now use the /boot/config.txt file to enable I2C support. Edit the file so
that the i2c line is uncommented as follows:

Uncomment some or all of these to enable the optional hardware interfaces
dtparam=i2c_arm=on
#dtparam=i2s=on
#dtparam=spi=on

Save your changes and reboot to try again.

sudo /sbin/shutdown -r now

After the reboot, list the I2C buses again.

$ i2cdetect -l
i2c-1 i2c 3f804000.i2c I2C adapter

From this, you now see i2c-1 is available as expected. Now probe for your MCP23017
device. The command-line argument 1 shown next indicates to scan bus i2c-1.

$ i2cdetect -y 1
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: 20 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

If all was successful, you should see a “20” listed among the hyphens. This tells you
that the device is reachable on the i2c-1 bus.

Chapter 11 ■ MCp23017 I/O pOrt extender

157

Output GPIO Experiment
With your breadboard wired according to Figure 11-3, you can perform a GPIO output
test. Enter the subdirectory mcp23017 in the source code and type make to build the
programs there. Once that is done, you can run the output test.

$./mcp_out
GPIOA = 0x0B
GPIOB = 0xC1

This program will write the hexadecimal value 0x0B to GPIO port A and 0xC1 to
GPIO port B. You’ll examine the source code later.

With your DMM or an LED and dropping resistor (refer to Figure 10-4 in Chapter 10),
probe the MCP23017 GPIO output pins. With this program run, you should observe the
values listed in Table 11-2. Pay special attention to the chip pin numbers when wiring or
taking readings. The pins for GPIOA and GPIOB are physically laid out in reverse order
from each other.

Table 11-2. Output Readings of the MCP23017 After Running mcp_out

GPIO A Pin Port Result GPIO B Pin Port Result

28 GPA7 Low 8 GPB7 High

27 GPA6 Low 7 GPB6 High

26 GPA5 Low 6 GPB5 Low

25 GPA4 Low 5 GPB4 Low

24 GPA3 High 4 GPB3 Low

23 GPA2 High 3 GPB2 Low

22 GPA1 Low 2 GPB1 Low

21 GPA0 High 1 GPB0 High

Figure 11-4 illustrates my breadboard setup. One nice aspect of I2C is the wiring
simplicity. The plastic DIP (PDIP) form of the chip consists of 28 pins. The pin
arrangement is somewhat unusual in that the V

DD
 (+3.3V) goes to pin 9, while pin 10 (V

SS
)

is the ground connection. Be sure that the RESET pin is wired high or it will sporadically
reset or stay in reset mode. The remaining white wires shown in Figure 11-4 ground A0
through A2 so that the I2C address is established as hex 0x20.

http://dx.doi.org/10.1007/978-1-4842-2406-9_10

Chapter 11 ■ MCp23017 I/O pOrt extender

158

Input Experiment
With no change to the breadboard circuit, you can now run an input experiment. This is
one area that the I2C peripheral excels: it can software reconfigure the 16 GPIO pins as
outputs or inputs. With the program compiled earlier (in the mcp23017 subdirectory), you
can just invoke mcp_in.

$./mcp_in
GPIOA = 0xFF, GPIOB = 0xFF
GPIOA = 0xBF, GPIOB = 0xFF
GPIOA = 0xFF, GPIOB = 0xFF
GPIOA = 0xDF, GPIOB = 0xFF
GPIOA = 0xFF, GPIOB = 0xFF
GPIOA = 0xDF, GPIOB = 0xFF
GPIOA = 0xFF, GPIOB = 0xFF
GPIOA = 0xFF, GPIOB = 0xFD
GPIOA = 0xFF, GPIOB = 0xFF
GPIOA = 0xFF, GPIOB = 0xFD
GPIOA = 0xFF, GPIOB = 0xFF
GPIOA = 0xFF, GPIOB = 0xFD
GPIOA = 0xFF, GPIOB = 0xFF
GPIOA = 0xFF, GPIOB = 0xFD

Figure 11-4. MCP23017 breadboard setup

Chapter 11 ■ MCp23017 I/O pOrt extender

159

Initially, you will see only the following line:

GPIOA = 0xFF, GPIOB = 0xFF

After you see this initial report, ground one end of a Dupont wire (to the Pi). With the
other end of the wire, touch or insert the wire in various places for GPIO A or GPIO B. Be
careful not to touch any other pins, however. As you do this, changes in the input port (or
ports) will be reported on your console session. Sometimes there will be “stutter” output.
This is because of the speed of the Pi and the contact bouncing or scratching that occurs.

When the joy of the experiment diminishes, press ^C (Control-C) to end the
program.

Software Operations
The flexibility of the MCP23017 GPIO peripheral requires extra responsibility on the
software side. To complicate things further, Microchip provides two methods for
addressing registers within its chip. This is configured by the IOCON.BANK bit. This chapter
assumes IOCON.BANK=0, including the software provided. This results in the registers
being laid out as in Table 11-3.

Table 11-3. MCP23017 Register Addresses

Register Name Hexadecimal Address Register Description

IODIRA 00 I/O Direction for GPIO A

IODIRB 01 I/O Direction for GPIO B

IPOLA 02 Input Polarity for GPIO A

IPOLB 03 Input Polarity for GPIO B

GPINTENA 04 Interrupt on Change for GPIO A

GPINTENB 05 Interrupt on Change for GPIO B

DEFVALA 06 Default Compare for Interrupt GPIO A

DEFVALB 07 Default Compare for Interrupt GPIO B

INTCONA 08 Interrupt on Change Control GPIO A

INTCONB 09 Interrupt on Change Control GPIO B

IOCON 0A Configuration Control

IOCON 0B

GPPUA 0C Pull-up Resistor for GPIO A

GPPUB 0D Pull-up Resistor for GPIO B

INTFA 0E Interrupt Flags for GPIO A

(continued)

Chapter 11 ■ MCp23017 I/O pOrt extender

160

In this discussion, please keep in mind that the I2C and register addresses are two
different entities. The register address allows you to access registers within the peripheral,
while the I2C address allows you to select the peripheral device.

Essentially, Table 11-3 shows that the least significant bit in this mode selects GPIO A
or B, with the register selection shifted left one bit. Hence, within the program, you make
use of the following macros:

#define IODIR 0
#define IPOL 1
#define GPINTEN 2
#define DEFVAL 3
#define INTCON 4
#define IOCON 5
#define GPPU 6
#define INTF 7
#define INTCAP 8
#define GPIO 9
#define OLAT 10

#define GPIOA 0
#define GPIOB 1

#define MCP_REGISTER(r,g) (((r)<<1)|(g))

Using these macros, you can select register IODIR for GPIOB using
MCP_REGISTER(IODIR,GPIOB) in the code.

I2C Header Files
Under Raspbian Linux, you need certain header files for performing I2C I/O.

#include <sys/ioctl.h>
#include <linux/i2c.h>
#include <linux/i2c-dev.h>

Register Name Hexadecimal Address Register Description

INTFB 0F Interrupt Flags for GPIO B

INTCAPA 10 Interrupt Capture for GPIO A

INTCAPB 11 Interrupt Capture for GPIO B

GPIOA 12 GPIO A

GPIOB 13 GPIO B

OLATA 14 Output Latch for GPIO A

OLATB 15 Output Latch for GPIO B

Table 11-3. (continued)

Chapter 11 ■ MCp23017 I/O pOrt extender

161

These provide structure definitions and macros necessary to issue your I2C I/O
operations.

Opening the I2C Driver
When the i2cdetect -l command was run, you saw that the i2c-1 bus was available.
You access this bus driver with the path /dev/i2c-1. Consequently, you use the open(2)
system call to gain access to the driver. Listing 11-1 is a code snippet from mcp_out.cpp
showing the open call.

Listing 11-1. Opening the I2C Bus

036 static const char *i2c_device = "/dev/i2c-1";
037 static int i2c_fd = -1;

093 int
094 main(int argc,char **argv) {
095 int rc;
096
097 i2c_fd = open(i2c_device,O_RDWR);
098 if (i2c_fd == -1) {
099 fprintf(stderr,"%s: opening %s\n",
100 strerror(errno),
101 i2c_device);
102 exit(1);
103 }

Line 036 defines the character string i2c_device path to be opened. The opened file
descriptor is returned in variable i2c_fd if successful, or the value –1 is returned if there
is a failure. The file descriptor acts as a handle to the Linux driver. Lines 098 through 103
report the error, if the open is unsuccessful.

I2C Write
Writing to an I2C device under Linux is fairly straightforward, once you’ve seen how it is
done. Listing 11-2 shows the function i2c_write, which is used to write 1 to 2 bytes to the
MCP23017 peripheral chip.

Listing 11-2. The I2C Write Routine

062 static int
063 i2c_write(int addr,int reg,int ab,uint8_t byte) {
064 struct i2c_rdwr_ioctl_data msgset;
065 struct i2c_msg iomsgs[1];
066 uint8_t reg_addr = MCP_REGISTER(reg,ab);
067 uint8_t buf[2];
068 int rc;

Chapter 11 ■ MCp23017 I/O pOrt extender

162

069
070 buf[0] = reg_addr;
071 buf[1] = byte;
072
073 iomsgs[0].addr = unsigned(addr);
074 iomsgs[0].flags = 0;
075 iomsgs[0].buf = buf;
076 iomsgs[0].len = 2;
077
078 msgset.msgs = iomsgs;
079 msgset.nmsgs = 1;
080
081 rc = ioctl(i2c_fd,I2C_RDWR,&msgset);
082 return rc < 0 ? -1 : 0;
083 }

The argument addr is the I2C address of the MCP23017 (in this case 0x20). The
argument reg selects the MCP23017 register that you want to target, while ab selects
GPIO A or GPIO B. The value to be written is provided in argument byte.

The Linux structure i2c_rdwr_ioctl_data is used to pass your request to the driver.
The array of i2c_msg structures allows you to define the I2C operations required. In this
case, you want to perform only one write, so the array consists of a single structure.

Line 066 computes the peripheral register address using the MCP_REGISTER
macro. The data for the I2C message is created in lines 070 and 071. The message is
the MCP23017 register you want to change (buf[0]) and then the value to assign to it
(buf[1]).

Lines 073 to 076 describe the I2C operation. Line 073 tells the I2C driver the
peripheral’s I2C address (0x20). Line 074 indicates that this is a write operation because it
is missing the flag I2C_M_RD, which is defined as a Linux macro. The data buffer address
is provided in line 075, while the length of the data in bytes is described in line 076. These
lines describe everything necessary for one I2C write message.

Because there can be several I2C messages performed at once, lines 078 and 079 are
necessary. Line 078 describes how to locate the first I2C operation (described by struct
i2c_msg). Line 079 in this case will inform the driver that only one I2C message is to be
processed.

Line 081 is where you pass this assembled request to the kernel driver. If the
operation fails for any reason, the return code rc will have the value –1 assigned to it.
The first argument is the open file descriptor acting as a handle to the driver. The second
argument, I2C_RDWR, indicates that you want to perform an I2C I/O operation. The last
argument is a pointer to the “message set” to be performed.

I2C Read
Reading from an I2C device is almost the same as writing, but many devices need to know
which peripheral register to read from. For this reason, you use a write and then read with
the MCP23017 chip. Listing 11-3 shows the read routine used in the program mcp_in.cpp.

Chapter 11 ■ MCp23017 I/O pOrt extender

163

Listing 11-3. I2C Read Routine

062 int
063 i2c_read_data(int addr,int ab,uint8_t& byte) {
064 struct i2c_rdwr_ioctl_data msgset;
065 struct i2c_msg iomsgs[2];
066 uint8_t txbuf[1];
067 int rc;
068
069 txbuf[0] = MCP_REGISTER(GPIO,ab);
070
071 iomsgs[0].addr = iomsgs[1].addr = unsigned(addr);
072 iomsgs[0].flags = 0; // Write
073 iomsgs[0].buf = txbuf;
074 iomsgs[0].len = 1;
075
076 iomsgs[1].flags = I2C_M_RD; // Read
077 iomsgs[1].buf = &byte; // Pass back data byte
078 iomsgs[1].len = 1;
079
080 msgset.msgs = iomsgs;
081 msgset.nmsgs = 2;
082
083 rc = ioctl(i2c_fd,I2C_RDWR,&msgset);
084 return rc < 0 ? -1 : 0;
085 }

In this routine you see that the setup of the message structures is almost the same.
Line 062, however, declares an array of two i2c_msg structures, because you need to
perform two operations.

Lines 070 through 074 set up a write of 1 byte, which simply contains the peripheral
register that you want to read (define in line 069). This write operation will simply write
the register to be selected to the MCP23017 device prior to the read operation.

Lines 076 through 078 set up a read of 1 byte into the variable byte. Here the value
byte is passed using a C++ reference type. This allows the changed value to be passed
back to the caller as a read byte.

Line 081 informs the driver that there are two I/O operations and ties everything
together in the variable msgset. If the call to ioctl(2) in line 083 is successful, the
peripheral register will be written to the device followed by a read. The sequence causes
the indicated peripheral register to be read and returned.

Configuration
The programs mcp_out.cpp and mcp_in.cpp configure the MCP23017 peripheral through
a series of I2C writes in the main program. Listing 11-4 shows a code snippet from the
main program mcp_in.cpp.

Chapter 11 ■ MCp23017 I/O pOrt extender

164

Listing 11-4. Main Program Configuration in mcp_in.cpp

129 rc = i2c_write_both(i2c_addr,IOCON,0b01000100); // MIRROR=1,ODR=1
130 assert(!rc);
131
132 rc = i2c_write_both(i2c_addr,GPINTEN,0x00); // No interrupts enabled
133 assert(!rc);
134
135 rc = i2c_write_both(i2c_addr,DEFVAL,0x00); // Clear default value
136 assert(!rc);
137
138 rc = i2c_write_both(i2c_addr,OLAT,0x00); // OLATx=0
139 assert(!rc);
140
141 rc = i2c_write_both(i2c_addr,IPOL,0b00000000); // No inverted polarity
142 assert(!rc);
143
144 rc = i2c_write_both(i2c_addr,GPPU,0b11111111); // Enable all pull-ups
145 assert(!rc);
146
147 rc = i2c_write_both(i2c_addr,IODIR,0b11111111); // All are inputs
148 assert(!rc);

Each of these writes uses a routine called i2c_write_both. This convenience routine
simply performs a call to i2c_write of the same values, for GPIO A and GPIO B, reducing
the amount of code. Line 147, for example, configures the MCP23017 register IODIR.
When the bits in this register are written as 1, they configure the corresponding GPIO
pin as an input. You can find more information about configuration in the Microchip
datasheet (you can Google MCP23017 datasheet to find it).

Interrupt Capability
Earlier you saw a demonstration of reading MCP23017 GPIO inputs. But if the inputs are
attached to push buttons, for example, how does your program stay informed without
constantly polling the peripheral? You could continuously perform I2C read operations as
the mcp_in.cpp program does, but this keeps the I2C bus very busy.

Microchip provides a feature in the MCP23017 peripheral to provide one or two
interrupt signals for input signal changes. You may configure it for separate GPIO A and
B interrupts, or you may configure it to use one pin for both. Pins 19 and 20 of the chip
provide the interrupt signals.

The next demonstration will use one pin (INTA pin 20) to signal a change of
GPIO input, whether for GPIO A or B. To do this, you must the set the peripheral’s
configuration.

•	 IOCON.MIRROR = 1 (INTA represents both GPIO A and B).

•	 IOCON.ODR = 0 (when true, the INTA is in “open drain”
configuration)

Chapter 11 ■ MCp23017 I/O pOrt extender

165

•	 IOCON.INTPOL = 0 (you’re going to make the INTA pin active low;
this applies only when ODR=0).

•	 GPINTEN.BPINTx bits 0 through 7 enable interrupts for each pin
(1=enabled)

•	 INTCON.IOCx bits 0 through 7 are either:

•	 Compared to the DEFVAL register (when set to 1)

•	 Compared to self (when set to 0)

•	 DEFVAL.DEFx bits 0 through 7 set the compare value for interrupts
(optionally)

The DEFVAL settings apply only if you enable DEFVAL in IOCON.IOCx. For example, if
IOCON.IOC2 for GPIOB is set to 1, then DEFVAL.DEF2 is used to compare against the GPIO
B input 2. If the values differ, an interrupt is generated.

You’re going to use INTCON.IOCx=0 so that the interrupt occurs on any change in the
input signal. In this configuration, the DEFVAL bit setting has no influence. You can think
of this configuration as comparing the input against its last known value.

The program being used for this experiment is named mcp_int.cpp. By default, this
program assumes you have connected GPIO#5 to the MCP23017 INTA pin 20. If you need
to change this to something else, then this is the line you need to edit:

041 static int gpio_inta = 5; // GPIO for INTA signal

The main routine configures the peripheral for interrupts as described earlier. This is
illustrated in Listing 11-5.

Listing 11-5. MCP23017 Interrupt Configuration

144 rc = i2c_write_both(i2c_addr,IOCON,0b01000000); // MIRROR=1,
ODR=0,INTPOL=0

145 assert(!rc);
146
147 rc = i2c_write_both(i2c_addr,IODIR,0xFF); // All are inputs
148 assert(!rc);
149
150 rc = i2c_write_both(i2c_addr,INTCON,0x00); // Interrupts compare to self
151 assert(!rc);
152
153 rc = i2c_write_both(i2c_addr,GPINTEN,0xFF); // All interrupts enabled
154 assert(!rc);
155
156 rc = i2c_write_both(i2c_addr,IPOL,0x00); // No inverted input polarity
157 assert(!rc);
158
159 rc = i2c_write_both(i2c_addr,GPPU,0xFF); // Enable all pull-ups
160 assert(!rc);

Chapter 11 ■ MCp23017 I/O pOrt extender

166

The comments indicate the configuration values being set. For simplicity, mcp_int.
cpp sets all GPIO pins as inputs. Once all the configuration is performed, the main
program enters its main loop, shown in Listing 11-6.

Listing 11-6. Main Loop for Interrupt Processing

162 {
163 uint8_t gpioa, gpiob, inta, intf_a = 0, intf_b = 0;
164
165 rc = i2c_read_data(i2c_addr,GPIOA,GPIO_,gpioa);
166 assert(!rc);
167
168 rc = i2c_read_data(i2c_addr,GPIOB,GPIO_,gpiob);
169 assert(!rc);
170
171 printf("GPIOA 0x%02X INTFA 0x%02X, GPIOB 0x%02X INTFB 0x%02X\n",
172 gpioa, intf_a,
173 gpiob, intf_b);
174
175 for (;;) {
176 inta = gpio.read(gpio_inta);
177 if (inta != 0) {
178 // No interrupt
179 usleep(1);
180 continue;
181 }
182
183 // Process interrupt
184
185 rc = i2c_read_data(i2c_addr,GPIOA,INTF,intf_a);
186 assert(!rc);
187
188 rc = i2c_read_data(i2c_addr,GPIOB,INTF,intf_b);
189 assert(!rc);
190
191 rc = i2c_read_data(i2c_addr,GPIOA,INTCAP,gpioa);
192 assert(!rc);
193
194 rc = i2c_read_data(i2c_addr,GPIOB,INTCAP,gpiob);
195 assert(!rc);
196
197 printf("GPIOA 0x%02X INTFA 0x%02X, GPIOB 0x%02X INTFB

0x%02X\n",
198 gpioa, intf_a,
199 gpiob, intf_b);
200 }
201 }

Chapter 11 ■ MCp23017 I/O pOrt extender

167

Lines 165 to 173 simply report the current state of the MCP23017 inputs prior to
entering the loop. The loop, starting in line 175, polls Raspberry Pi GPIO (#5) to see
whether the chip is reporting an interrupt. If the INTA line is high, there is no interrupt
being reported, so a short sleep is performed and the loop is restarted (lines 177 to 181).

If the Raspberry Pi GPIO (#5) is low, this indicates that one or both of the MPC23017
ports has registered a change on an input pin. Lines 185 to 189 read the INTF register for
GPIO A and GPIO B. This register sets a 1 bit where an input value has changed. Lines
191 to 195 read the interrupt capture register for GPIO A and B. These registers reflect the
input line states at the time of the interrupt. Lines 197 to 199 simply report the changes.

Figure 11-5 shows how to wire the circuit for the interrupt test. The only new
connection is the connection going from the Raspberry Pi’s GPIO #5 to the INTA pin 20 of
the peripheral.

+3.3 V

Pi
SCL

GPIO#5

SDA

IC1

VDD9

18

20
19

12
13

15
16
17

10

GND

MCP23017SP

SCL
SDA

A0
A1
A2

VSS

GPA0 21
22
23
24
25
26
27
28

1
2
3
4
5
6
7
8

GPA1
GPA2
GPA3
GPA4
GPA5
GPA6
GPA7

GPB0
GPB1
GPB2
GPB3
GPB4
GPB5
GPB6
GPB7

RESET

INTA
INTB

Figure 11-5. MCP23017 wired for interrupt signaling

After wiring according to Figure 11-5, run the program mcp_int. All chip pins are
configured as input with a pull-up resistor so that they will read high with no connections
to them. While the program was running in the following session, I touched a ground wire
to GPA5 (bit 5 of GPIOA on pin 28) in the example session shown here:

$./mcp_int
GPIOA 0xFF INTFA 0x00, GPIOB 0xFF INTFB 0x00
GPIOA 0xDF INTFA 0x20, GPIOB 0xFF INTFB 0x00
GPIOA 0xFF INTFA 0x20, GPIOB 0xFF INTFB 0x00
GPIOA 0xFF INTFA 0x20, GPIOB 0xFF INTFB 0x00
GPIOA 0xFF INTFA 0x20, GPIOB 0xFF INTFB 0x00

Chapter 11 ■ MCp23017 I/O pOrt extender

168

The first line is simply the initial reported setting. The program will wait there
until you do something (like grounding an input). The second line reports that GPIOA
captured the hex value DF as part of the change (in the first line reported as FF). The
INTFA register reports 20, indicating the bit that changed (bit 5). This confirms that the
GPA5 went from a 1 bit to a 0 bit.

Because of the rate of changes, sometimes you will register changes but not see
them in the capture register. In the example session, INTFA continues to register the fact
that bit 5 changed but showed no change in the captured value (FF). Because of contact
bouncing (of my Dupont wire), the chip registered a change, but the state of the input
changed back to a 1 bit by the time the capture was made.

Interrupt Profit and Loss
What did you gain from the use of the INTA pin? This pin is intended by Microchip for
use as a real interrupt signal for a microcomputer. Here you attached it to the Pi’s GPIO #5
and polled that signal for changes. So, what did you gain?

While you still utilized polling, you polled a single Pi GPIO, which is far cheaper than
continuously sending I2C read commands to the bus. By polling a Pi GPIO, you freed up
available bandwidth on the I2C bus, which might be used for other devices. The I2C bus
was used only when needed.

Summary
While the 74HC165 and 74HC595 parts were easy to use, they were not reconfigurable.
The MCP23017, however, offers 16 fully software configurable GPIO pins. The price of this
is the additional software complexity. The chip also provides additional interrupt input
processing that is absent in the simpler 74HC165 and 74HC595 parts. Finally, the ability
to connect several devices to the I2C bus makes the MCP23017 a flexible peripheral,
whether the device is local or remote to the Raspberry Pi.

169© Warren Gay 2017
W. Gay, Custom Raspberry Pi Interfaces, DOI 10.1007/978-1-4842-2406-9_12

CHAPTER 12

MPD/MPC Hardware Controls

Raspberry Pi computers are attractive for embedded styled solutions due to their small
size and low cost. This chapter will draw on earlier chapters to allow you to build a stand-
alone embedded music player box.

To expedite the software effort, the MPD/MPC software will be used, which is easily
installed on your Pi. The Music Player Daemon (MPD) component is the process that runs
in the background to stream the music. The companion command-line control program
mpc gives you control of it. Using this combined with a small LCD display, rotary control,
and a digital volume control, you can build a small embedded music playing box. The
rotary control will choose music selections (or Internet radio stations), the LCD will display
the selections chosen, and the volume control sets the volume at the twist of a knob.

Audio Preparation
If you’re already a user of MPD/MPC on your Raspberry Pi, you can skip this section.
Otherwise, let’s take a moment to prepare for and install some software.

Raspbian Linux is always being improved upon and updated. If you haven’t done
this in a while, it is probably useful to do some updating and upgrade now.

$ sudo apt-get update

This will update a number of packages that are currently installed. You may also
want to upgrade Raspbian with this:

$ sudo apt-get upgrade

If you choose to skip the upgrade step but run into problems with the MPD/MPC
software later, then you might want to try again after upgrading.

The next step is to install the MPD software.

$ sudo apt-get install mpd mpc

The MPD package is the daemon that runs in the background and actually performs
the streaming of music files or Internet radio stations. The MPD package contains
the command-line program mpc, which allows you to control MPD through various

Chapter 12 ■ MpD/MpC harDware Controls

170

command-line options. There will be a number of package dependencies, which will
automatically install as part of this. This process is fairly painless.

Next you need to make some decisions about where your sound will be coming out
of. I am using the audio output jack of the Pi 3, but others may prefer to play audio to their
HDMI device instead (which is the default). Depending upon what you decide, you may
have to configure your audio system to get it operational.

There are a couple of helpful commands available to aid you in testing your audio
output. One is the aplay command. If you use the find command as follows, you can find
several WAV files to try:

$ find /usr/share -name '*.wav'

Or you could just try to play the file shown next using the aplay command (see the
following text about alsa-utils if aplay is not installed):

$ aplay /usr/share/scratch/Media/Sounds/Electronic/ComputerBeeps1.wav

If everything is working, you should be able to hear audio. If you don’t hear anything
yet, don’t panic. It might be working but is muted or at a low volume setting. The easiest
way to check this is by using the alsamixer command.

$ alsamixer

If it isn’t already installed, you may need to install it with this:

$ sudo apt-get install alsa-utils

This will bring up a screen that will allow you to view the available sound controls
and change the volume. Figure 12-1 shows my Pi’s simple setup.

Chapter 12 ■ MpD/MpC harDware Controls

171

In Figure 12-1, I have only one sound device, labeled “PCM.” The volume shown is 57
percent, and it can be increased by pressing the up arrow key. To exit the program, press
the Escape key.

Some Raspberry Pi owners have more discriminating tastes in their audio fidelity
and may use devices like the HiFiBerry DAC+ or similar. Because of the broad scope of
configuration for audio devices for the Pi, you may have to reach out to forums or seek
help through Google.

MPD/MPD
Once you have your audio functional, it is time to try out MPD/MPC. After installing
MPD, you should have the file /etc/mpd.conf, which can be tailored to your needs. If
you’re running a simple setup like mine, you may want to edit it so that you have an audio
device like this:

audio_output {
 type "alsa"
 name "My ALSA Device"
 device "hw:0,0" # optional
}

After making MPD configuration changes, you should restart the daemon.

$ sudo service mpd restart

Figure 12-1. The alsamixer command screen

Chapter 12 ■ MpD/MpC harDware Controls

172

This should get your earphone jack working as a sound source. There is some
additional Pi-specific help at [2]. The configuration for MPD can be quite involved, but
fortunately the help available on the Internet is plentiful.

Make sure that the daemon is running, either automatically started or manually
started. To check that it is running, you can do this:

$ ps aux | grep mpd
mpd 530 0.0 2.6 138076 25020 ? Ssl 18:24 0:00 /usr/bin/mpd --no-daemon

If you don’t see it running, you can manually start it with this:

$ sudo service mpd start

The next step is to make sure you have media that can be played. For demonstration
purposes, I uploaded a few Mark Knopfler MP3 files to my Pi (a good place for them is
in your ~pi/Music directory). Once you have some music media, you need a playlist. To
check your current playlist, use the mpc command.

$ mpc playlist

When you’re setting this up for the first time, the playlist will be empty. I will be using
MP3 music files for this chapter, but you can use streaming Internet services as well. But
for simplicity, I advise that you use MP3 files initially.

 ■ Note mpc help will list helpful information for all of the mpc subcommand options.

If you have a playlist already and you want to start over, you can issue the mpc
command.

$ mpc clear

This will clear your playlist, which can be verified with the following:

$ mpc playlist

The general way that you add a resource to your playlist is with the following
command:

$ mpc add URI

There seems to be no wildcard way to add several MP3 files, so you must use the
shell to help.

$ for f in ~/Music/*.mp3 ; do mpc add "file://$f" ; done

Chapter 12 ■ MpD/MpC harDware Controls

173

This causes the bash shell to loop over all MP3 files in the ~/Music directory, issuing
the mpc add command for each file (note the added "file://" in front of the $f variable).
The text "file://$f" should always be in double quotes so that spaces in the file name
do not cause problems.

Once you have done this, you should be able to display your playlist.

$ mpc playlist
Mark Knopfler - 5.15 A.M.
Mark Knopfler - All That Matters
...
Mark Knopfler - Postcards from Paraguay
Dire Straits & Mark Knopfler - Sailing To Philadelphia
Mark Knopfler - Song for Sonny Liston
Mark Knopfler - Stand Up Guy
Mark Knopfler - Sucker Row
Dire Straits & Mark Knopfler - The Long Road (Theme From ''Cal'')
Mark Knopfler - The Trawlerman's Song
Dire Straits & Mark Knopfler - What It Is
Mark Knopfler - Whoop De Doo
Dire Straits & Mark Knopfler - Why Aye Man

Make sure your volume is established at some reasonable level. This can be
controlled through the mpc command, which you will leverage in the demonstration
program.

$ mpc volume
volume: 81%
$ mpc volume 85
volume: 85% repeat: on random: off single: off consume: off

The first command just queries the current volume setting, while the second sets the
volume to 85 percent.

To start a particular selection playing, you can indicate the track using a 1-based
selection number. The following command starts the fifth playlist item:

$ mpc play 5
Mark Knopfler - Boom, Like That
[playing] #5/23 0:00/5:49 (0%)
volume: 85% repeat: on random: off single: off consume: off

The status of the MPD daemon can be displayed with the status subcommand
(which you’ll also use in the demonstration program).

$ mpc status
Mark Knopfler - Boom, Like That
[playing] #5/23 1:23/5:49 (23%)
volume: 80% repeat: on random: off single: off consume: off

Chapter 12 ■ MpD/MpC harDware Controls

174

Finally, the MPD daemon can be told to stop.

$ mpc stop

Many more subcommands and options are available, which can be viewed
with the mpc help command. I’ve listed only the bare essentials as they apply to the
demonstration program.

Hardware Setup
Before the demonstration C++ code is presented, let’s look at the hardware setup and
test each of the components involved. For this project, you have the following hardware
elements connected to the Pi 3:

•	 16×2 LCD from Chapter 4

•	 Rotary control from Chapter 8

•	 Potentiometer from Chapters 6 and 7

These controls are allocated to the following mpd functions:

•	 The LCD shows the current selection playing, as well as the
selection being chosen when the rotary control is moved.

•	 The rotary control allows you to select any selection from your
playlist. Choosing selection 0 causes the mpd daemon to stop
playing.

•	 The potentiometer is used to set the MPD volume control, from 0
to 100 percent volume.

Figure 12-2 shows my own breadboard setup. The rotary control in the center has the
round knob, while the volume control is to the right and can be seen with a chicken-head
knob. The ADC PCB for the volume control is at the upper near right of the breadboard
in the figure. The PCB to the right of that is the 3V to 5V level converter for the I2C
connection to the LCD.

http://dx.doi.org/10.1007/978-1-4842-2406-9_4
http://dx.doi.org/10.1007/978-1-4842-2406-9_8
http://dx.doi.org/10.1007/978-1-4842-2406-9_6
http://dx.doi.org/10.1007/978-1-4842-2406-9_7

Chapter 12 ■ MpD/MpC harDware Controls

175

While there is much more you could add to this arrangement like a pause push
button, and so on, this example was kept basic to make the code simpler to explain.
This also leaves an opportunity for you to expand this, adding fast-forward and reverse
controls, for example.

The rotary control was wired as used in Chapter 8. Likewise, the LCD wiring was
the same as in Chapter 4. Finally, the ADC is wired as presented in Chapter 6. The
potentiometer is wired so that the wiper arm goes to the ADC input AIN3 (don’t forget to
remove the jumper P6). The other ends of the potentiometer are wired to +3.3 volts and
ground (review Chapter 7’s Figure 7-4).

Test Volume Control
The volume control is perhaps the simplest to test first, so wire that up and test it with the
readadc program presented in Chapter 6.

$ cd ./pcf8591
$./readadc
230

Adjust the knob and check for a change in successive readings. If the control seems
backward, reverse the outer +3.3V and ground connections to the potentiometer.

Figure 12-2. MPC hardware setup: LCD, rotary control, and volume control (with
chicken-head knob)

http://dx.doi.org/10.1007/978-1-4842-2406-9_8
http://dx.doi.org/10.1007/978-1-4842-2406-9_4
http://dx.doi.org/10.1007/978-1-4842-2406-9_6
http://dx.doi.org/10.1007/978-1-4842-2406-9_7
http://dx.doi.org/10.1007/978-1-4842-2406-9_6

Chapter 12 ■ MpD/MpC harDware Controls

176

Test Rotary Control
To make sure you have the rotary control wired up correctly, check it with the yl040c
program presented in Chapter 8.

$ cd ./YL-040
$./yl040c
Monitoring rotary control:
Step +1, Count 1
Step +1, Count 2
Step +1, Count 3
Step +1, Count 4
Step -1, Count 3
Step -1, Count 2
Step -1, Count 1
Step -1, Count 0
Step -1, Count -1
^C

If you see event messages like these as you rotate the control, then it is operational.

Test LCD
Finally, make sure the 16×2 device is operational. Use the lcd program presented in
Chapter 4.

$ cd ./pcf8574
$./lcd

If the display is operational, you should see the display shown in Figure 4-10.

 ■ Caution Don’t rush the hookup of the lCD device because 5V levels are involved.
Make sure the level converter is properly connected before wiring up the pi’s I2C signals
sDa and sCl.

The mpcctl Program
Now that you know the hardware controls are working, you can now compile and run the
mpcctl demonstration program. If the program is not yet compiled, do so now.

$ cd ./mpd
$ make

http://dx.doi.org/10.1007/978-1-4842-2406-9_8
http://dx.doi.org/10.1007/978-1-4842-2406-9_4

Chapter 12 ■ MpD/MpC harDware Controls

177

If you had to choose different GPIO ports and/or I2C addresses for your hardware,
you must customize these in the source code mpcctl.cpp. If, for example, your volume
control requires changes, edit the following lines:

023 static const char *i2c_device = "/dev/i2c-1";
...
025 static uint8_t adc_i2c_addr = 0x48; // I2C Addr for pcf8591 ADC
026 static uint8_t adc_i2c_ainx = 3; // Default to AIN3

If your rotary control used different GPIO numbers than the ones I’ve used, edit the
following line, changing the values 20 and 21:

305 Flywheel rsw(*gpio,20,21); // Flywheeling control

Finally, if your LCD I2C address is different, then edit the value 0x27 in the following
line:

408 LCD1602 lcd(0x27); // LCD class

Main Program
This application is written in C++ to take advantage of its library resources (STL) but
using only the most basic C++ features to keep the program smaller. The mpcctl program
is organized using the following threads of control:

•	 The main program

•	 Thread 1, the rotary control

•	 Thread 2, mpd status update

•	 Thread 3, LCD display

•	 Thread 4, volume control

It is possible to poll all of these controls in one thread, but the code becomes more
difficult from a design and readability standpoint. There are also some operations such as
loading a playlist that can be time-consuming and can make the controls unresponsive.
Having each control managed by its own thread makes the software design simpler.
However, the inter-thread interaction requires some special care. As so often is the case,
there are many trade-offs.

The STL makes the creation of a thread simple, as you’ll see in Listing 12-1. It
requires only that you include the STL thread header file and use the std::thread type.

Chapter 12 ■ MpD/MpC harDware Controls

178

Listing 12-1. The mpcctl Main Program

016 #include <thread>
...
243 static void
244 update_status() {
...
269 }
...
276 static void
277 lcd_thread(LCD1602 *plcd) {
...
297 }
...

303 static void
304 rotary_control(GPIO *gpio) {
...
372 }
...
378 static void
379 vol_control() {
...
399 }
...
405 int
406 main(int argc,char **argv) {
407 GPIO gpio; // GPIO access object
408 LCD1602 lcd(0x27); // LCD class
409 int rc;
410
411 // Check initialization of GPIO class:
412 if ((rc = gpio.get_error()) != 0) {
413 fprintf(stderr,"%s: starting gpio (sudo?)\n",strerror(rc));
414 exit(1);
415 }
416
417 // Initialize LCD
418 if (!lcd.initialize()) {
419 fprintf(stderr,
 "%s: Initializing LCD1602 at I2C bus %s, address 0x%02X\n",
420 strerror(errno),
421 lcd.get_busdev(),
422 lcd.get_address());
423 exit(1);
424 }
425
426 i2c_fd = open(i2c_device,O_RDWR);

Chapter 12 ■ MpD/MpC harDware Controls

179

427 if (i2c_fd == -1) {
428 fprintf(stderr,"Warning, %s: opening %s\n",
429 strerror(errno),
430 i2c_device);
431 }
432
433 lcd.clear();
434 puts("MPC with Custom Controls");
435 lcd.set_cursor(false);
436
437 std::thread thread1(rotary_control,&gpio);
438 std::thread thread2(update_status);
439 std::thread thread3(lcd_thread,&lcd);
440 std::thread thread4(vol_control);
441
442 thread1.join();
443 thread2.join();
444 thread3.join();
445 thread4.join();
446
447 return 0;
448 }

The first thing the main program does is to instantiate the GPIO class (gpio). In the
constructor, some code runs that requires root access (hence the need to run the program
as setuid).

406 main(int argc,char **argv) {
407 GPIO gpio; // GPIO access object

To check on the success of the constructor, you must check for it later with a call to
the GPIO::get_error method.

411 // Check initialization of GPIO class:
412 if ((rc = gpio.get_error()) != 0) {

Line 412 checks to make sure that the GPIO access was granted. Otherwise, the
rotary control will not function.

Immediately after instantiating the GPIO class in line 407, the LCD1602 class is
instantiated as lcd with I2C address 0x27. Line 418 checks that the lcd object initialized
successfully.

408 LCD1602 lcd(0x27); // LCD class
...
418 if (!lcd.initialize()) {

Chapter 12 ■ MpD/MpC harDware Controls

180

For the benefit of the volume control, the I2C bus defined at line 023 is opened and
saved as i2c_fd in line 024.

023 static const char *i2c_device = "/dev/i2c-1";
024 static int i2c_fd = -1;
...
426 i2c_fd = open(i2c_device,O_RDWR);
427 if (i2c_fd == -1) {

The volume control has been coded as an optional device. A warning is issued if the
PCF8591 ADC is not found.

433 lcd.clear();
434 puts("MPC with Custom Controls");
435 lcd.set_cursor(false);

These lines simply clear the LCD and turn off the LCD cursor.
The main program then creates four threads of control.

437 std::thread thread1(rotary_control,&gpio);
438 std::thread thread2(update_status);
439 std::thread thread3(lcd_thread,&lcd);
440 std::thread thread4(vol_control);

The function rotary_control is passed the address of the instantiated GPIO object,
since it will need it to read two inputs. Likewise, function lcd_thread also receives a
pointer to the instantiated LCD1602 object. The other two threads, update_status and
vol_control, receive no arguments.

At this point, these four thread functions run in parallel within the same process
memory space. Since the Pi 2 and 3 have four cores, it is possible that these functions
truly execute simultaneously at times. An htop display in Figure 12-3 illustrates the
executing threads and their CPU utilization.

Figure 12-3. Sample htop display of the mpcctl program executing

Chapter 12 ■ MpD/MpC harDware Controls

181

Modifying the usleep(3) calls in the code will increase or decrease the CPU
utilization. With increased sleep times, the CPU overhead decreases but normally at the
cost of responsiveness of the controls.

The remainder of the main program is a series of joins.

442 thread1.join();
443 thread2.join();
444 thread3.join();
445 thread4.join();

These block the main thread from continuing until those threads terminate. With
the mpcctl.cpp code as written, this never happens. This program could be enhanced to
set a shutdown flag for all the threads and have them terminate. Then the main program
would successfully join and exit. That is left as an exercise for you.

When you want the program to exit, just press Control-C. This will kill all threads and
the main program simultaneously.

Rotary Encoder Thread
Listing 12-2 shows the rotary encoder thread. The pointer to the main program’s GPIO
object is passed into the thread by a pointer gpio.

Listing 12-2. The Rotary Encoder Thread

303 static void
304 rotary_control(GPIO *gpio) {
305 Flywheel rsw(*gpio,20,21); // Flywheeling control
306 std::string title; // Current playing title
307 time_t last_update, last_sel;
308 std::vector<std::string> playlist;
309 int pos = 0, of = -1, last_play = -1;
310 int rc;
311
312 // Initialize:
313 load(playlist);
314 get_mpc_status(title,pos,of);
315 if (pos >= 0)
316 last_play = pos;
317 last_update = last_sel = time(0);
318
319 for (;;) {
320 rc = rsw.read(); // Read rotary switch
321 if (rc != 0) { // Movement?
322 // Position changed:
323

Chapter 12 ■ MpD/MpC harDware Controls

182

324 if (current_pos > -1) {
325 pos = current_pos; // Now playing a different tune
326 current_pos = -1;
327 }
328
329 if (playlist.size() < 1) {
330 put_msg("(empty playlist)");
331 } else {
332 pos = (pos + rc);
333 if (pos < 0)
334 pos = -1;
335
336 if (pos >= int(playlist.size()))
337 pos = playlist.size() - 1;
338
339 if (pos >= 0) {
340 std::stringstream ss;
341 ss << (pos+1) << '>'
 << song_title(playlist[pos].c_str());
342 std::string text = ss.str();
343
344 put_msg(text.c_str());
345 } else {
346 put_msg("(Stop)");
347 }
348 last_sel = time(0);
349 }
350 } else {
351 // No position change
352
353 time_t now = time(0);
354 if (now - last_update > 60) {
355 // Everything 60 seconds, update the
356 // playlist in case it has been changed
357 // externally
358 load(playlist);
359 last_update = now;
360 } else if (now - last_sel > 1) {
361 // Start playing new selection
362 if (last_play != pos) {
363 mpc_play(title,pos,of);
364 last_play = pos;
365 }
366 last_sel = time(0);
367 }
368

Chapter 12 ■ MpD/MpC harDware Controls

183

369 usleep(200); // Don't eat the CPU
370 }
371 }
372 }

The Flywheel class is instantiated in line 305, using GPIO pins #20 and #21.

305 Flywheel rsw(*gpio,20,21); // Flywheeling control

As part of the thread initialization, it performs the function load() to load the playlist
into the std::vector<std::string> container named playlist. Then the current title
(if any), position (pos), and number of playlist entries (of) are returned through pass-by-
reference arguments to the call to get_mpc_status(). All of this information comes from
executing the mpc command using a pipe (more about this later).

313 load(playlist);
314 get_mpc_status(title,pos,of);

The main loop of this thread begins here:

319 for (;;) {
320 rc = rsw.read(); // Read rotary switch
321 if (rc != 0) { // Movement?
322 // Position changed:

Here you read the rotary switch in line 320 and check to see whether there were any
rotation events (variable rc). If so, you enter the block of code starting with line 322.

There is a somewhat difficult interaction between what is playing now and the rotary
control. If the control has not been touched for one or more tracks, you could be at a
selection point beyond what you last recorded in the local variable pos. So, you share the
variable current_pos between the thread update_status() and the rotary_control()
threads.

029 static volatile int current_pos = -1; // Last song playing status

Note the volatile attribute for current_pos. Without this attribute, compiler
optimization in one thread may not see a change made by another thread because of
holding the value in a register. In this program, you don’t use a mutex for this value, since
the read or write of an int value is atomic on this platform. Otherwise, this is considered
bad practice and would not be permitted in mission-critical software. In this program,
you want to avoid threads interlocking more than is necessary because that affects the
responsiveness of the controls.

With that background, you arrive at the following code:

324 if (current_pos > -1) {
325 pos = current_pos; // Now playing a different tune
326 current_pos = -1;
327 }

Chapter 12 ■ MpD/MpC harDware Controls

184

The thread examines current_pos, and if it’s found to be greater than or equal to
zero, it knows that a new selection has been established by the other thread. When this
happens, you reset the local variable pos to that value and perform the rotary adjustment
based upon that. Otherwise, line 332 just adjusts the selection as per usual.

332 pos = (pos + rc);

With the rotary adjustment made, you update the LCD display.

341 ss << (pos+1) << '>'
 << song_title(playlist[pos].c_str());
342 std::string text = ss.str();
343
344 put_msg(text.c_str());

The 16×2 LCD is rather limited for space, and the rotary control thread shares the
display with the update_status() thread. That thread shows the current title playing. In
the display, the > is used for rotary control updates.

18>Sucker Row

The now-playing display uses a colon (:).

18:Sucker Row

When there is no rotary control movement, the else block starting at line 350 is
performed. The code updates its playlist every minute with the code in lines 354 to 359.
The main drawback to this is that this can cause a pregnant pause in reaction to rotary
control movement, should that begin during this load. If you have no plans to update the
playlist external to mpcctl, then this code block can be commented out.

The next block checks to see whether the position has changed. If so, it tells the MPD
to start playing a new selection (line 363). This is tricky because you don’t want to issue
play commands while the control is still rotating. So, the code checks to see whether at
least one second has passed in line 360, without further rotary events.

360 } else if (now - last_sel > 1) {
361 // Start playing new selection
362 if (last_play != pos) {
363 mpc_play(title,pos,of);
364 last_play = pos;
365 }
366 last_sel = time(0);
367 }

Finally, at the end of the rotary control thread, you give up the CPU for a short period
of time (200μsec) to allow other processes to run.

369 usleep(200); // Don't eat the CPU

Chapter 12 ■ MpD/MpC harDware Controls

185

Lowering this value increases the rotary control responsiveness but eats more CPU
cycles. Lowering this time reduces CPU overhead, but the flywheeling effect is usually the
first casualty.

LCD Thread
The purpose of this thread is to update the LCD display. It must arbitrate the requests of
different threads wanting to display. The LCD thread operates in a lazy loop, as shown in
Listing 12-3.

Listing 12-3. The Lazy LCD Thread

276 static void
277 lcd_thread(LCD1602 *plcd) {
278 LCD1602& lcd = *plcd; // Ref to LCD class
279 std::string local_title;
280 bool chgf;
281
282 for (;;) {
283 mutex.lock();
284 if (disp_changed) {
285 disp_changed = false;
286 chgf = local_title != disp_title;
287 local_title = disp_title;
288 } else {
289 chgf = false;
290 }
291 mutex.unlock();
292
293 if (chgf) // Did info change?
294 display(lcd,local_title.c_str());
295 else usleep(50000);
296 }
297 }

This thread is passed a pointer to the LCD1602 class through argument plcd. This
is then assigned to the reference variable in line 278 so that access is as if the class was
declared locally as lcd. This isn’t required but is more convenient than working with a
pointer.

The lazy loop starts in line 282. For safe access to the title to be displayed, a mutex
named aptly as mutex is locked in line 283.

031 static std::mutex mutex; // Thread lock
032 static volatile bool disp_changed = false; // True if display changed
033 static std::string disp_title; // Displayed title
...
282 for (;;) {
283 mutex.lock();

Chapter 12 ■ MpD/MpC harDware Controls

186

284 if (disp_changed) {
285 disp_changed = false;
286 chgf = local_title != disp_title;
287 local_title = disp_title;
288 } else {
289 chgf = false;
290 }
291 mutex.unlock();

Since disp_title is an object of type std::string, you must use a mutex for
multithreaded access to it. The std::string object will be calling upon malloc(3) and
realloc(3) for buffer management, so this is not something that should be interrupted.

So, line 283 blocks until exclusive access is granted to the calling thread. Then the
Boolean value disp_changed is checked, and when true, the new disp_title value is
copied to local variable local_title. The local variable chgf is also set to true in this case
(line 286). Otherwise, chgf is set to false (line 289). At the end of the block, the mutex is
unlocked so that other threads can acquire the lock (line 291).

When the flag chgf is true, you then update the LCD display using a helper function
named display() in line 294. Otherwise, the thread sleeps for 50ms.

293 if (chgf) // Did info change?
294 display(lcd,local_title.c_str());
295 else usleep(50000);

Listing 12-4 shows the helper display routine.

Listing 12-4. The Helper Function display()

221 static void
222 display(LCD1602& lcd,const char *msg) {
223 char line1[17], line2[17];
224
225 puts(msg);
226
227 strncpy(line1,msg,16)[16] = 0;
228 lcd.clear();
229 lcd.set_cursor(false);
230 lcd.putstr(line1);
231
232 if (strlen(msg) > 16) {
233 strncpy(line2,msg+16,16)[16] = 0;
234 lcd.moveto(2,0);
235 lcd.putstr(line2);
236 }
237 }

Chapter 12 ■ MpD/MpC harDware Controls

187

The purpose of this routine is to split the text supplied in msg into two 16-character
segments in buffers line1 and line2. Line 225 just copies msg to standard output as is.
But lines 227 to 230 extract line1 for the LCD display.

If there is a line 2, lines 232 to 236 are performed to display it.

MPC Status Thread
Another of the executing threads is the one that checks the currently playing track. It is
presented in Listing 12-5.

Listing 12-5. The Update Now Playing Status Thread

243 static void
244 update_status() {
245 time_t now;
246 std::string title;
247 int cpos = 0, epos = -1;
248
249 for (;;) {
250 now = time(nullptr);
251
252 // While status info is stale
253 while (now - changed > 1) {
254 changed = now;
255
256 if (get_mpc_status(title,cpos,epos)) {
257 if (cpos >= 0) {
258 std::stringstream ss;
259
260 ss << (cpos+1) << ':' << song_title(title.c_str());
261 put_msg(ss.str().c_str());
262 } else {
263 put_msg(title.c_str());
264 }
265 }
266 }
267 usleep(10000);
268 }
269 }

This thread executes a loop starting in line 249. It checks the current time in line 250
and then determines how many seconds have elapsed since the last change (variable
changed in line 253). If there has been at least one second elapsed since the last change,
the helper routine get_mpc_status() is called in line 256. Arguments title, cpos, and
epos are passed by reference and are updated by the function call. If a non-negative cpos
value is returned, you send a “now playing” message to the LCD by calling put_msg(). If
the value of cpos is negative, it is a message like “Stopped” and is displayed in line 263.

Chapter 12 ■ MpD/MpC harDware Controls

188

The helper routine put_msg() is used to provide the message to the display thread safely.

090 static void
091 put_msg(const char *msg) {
092
093 mutex.lock(); // Lock mutex
094 if (strcmp(msg,disp_title.c_str()) != 0) {
095 disp_title = msg; // Save new message
096 disp_changed = true; // Mark it as changed
097 }
098 changed = time(0); // Hold off status update
099 mutex.unlock();
100 }

The mutex is locked in line 093, and a check is made in line 094 to see whether the
message is any different than the one you have already. If it differs, then disp_title is set
to the new message and the value disp_changed is set to true. The time held in variable
changed is updated to the current time.

Volume Control Thread
The last main component is the volume control thread. This is another lazy thread,
which quietly determines whether the potentiometer has changed in value. The thread is
presented in Listing 12-6.

Listing 12-6. Volume Control Thread Within mpcctl.cpp

378 static void
379 vol_control() {
380 int pct, last_pct = -1;
381
382 for (;;) {
383 pct = read_volume();
384 if (pct != last_pct) {
385 std::stringstream ss;
386
387 ss << "mpc volume " << pct << " 2>/dev/null 0</dev/null";
388 FILE *pfile = popen(ss.str().c_str(),"r");
389 char buf[2048];
390
391 while (fgets(buf,sizeof buf,pfile))
392 ; // Read and discard output, if any
393 pclose(pfile);
394 last_pct = pct;

Chapter 12 ■ MpD/MpC harDware Controls

189

395 } else {
396 usleep(50000); // usec
397 }
398 }
399 }

The main loop starts in line 382, checking the potentiometer reading. The value
returned is in percent (variable pct). If this value has changed, then the code in lines 385
to 394 are performed to change the mpd volume. The string stream ss (line 385) is used to
construct a command of the following format:

mpc volume <pct> 2>/dev/null 0</dev/null

where the percentage value is supplied in place of <pct> in the previous line. A read
pipe is opened in line 388.

388 FILE *pfile = popen(ss.str().c_str(),"r");

For non-C++ folks, the ss.str() converts the string stream to a std::string. The
appended method .c_str() converts that to a C string that popen(3) can use. The second
argument indicates that you will read ("r") from the command pipe. While there is no
data of interest in this case, you read and discard any lines of data in lines 391 and 392. If
you were to prematurely close the pipe, this might kill the mpc command that you started
with a SIGPIPE signal.

Finally, line 393 closes the pipe using pclose(3). Don’t make the mistake of using
fclose(3) for an open pipe. Since popen(3) performs a fork(2) to create a new process
(the mpc command), one of the wait system calls must be called to clean up the process
status held by the kernel. The pclose(3) performs this necessary housekeeping. Failure
to do this will result in zombie processes.

Program Summary
Much effort was put into keeping this demonstration program small, but you can see how
complexity collects like a magnet. Yet, by breaking the process into four threads, some of
the complexity is reduced, with the individual functions becoming four relatively simple
threads. The alternative would be a complicated state machine.

Let’s summarize how mpcctl.cpp controls the Music Player Daemon using the mpc
command and the popen(3) library function (for lines not shown earlier, view the source
file mpcctl.cpp):

•	 mpc volume <pct> (line 388), set volume

•	 mpc status (line 159), query status and “now playing”

•	 mpc playlist (line 173), load the playlist into mpcctl

•	 mpc play <selection> (line 205), start the playing of a selection

•	 mpc stop (line 206), stop playing

Chapter 12 ■ MpD/MpC harDware Controls

190

The alternative to using the mpc command, which communicates with the mpd
daemon process, is to use the libmpd library. But the investment in code development for
that approach is much higher.

Summary
This chapter presented an embedded Raspbian application involving a hardware rotary
selection control, a small dedicated LCD, and a volume control. This is just the beginning
of what is possible. For example, you could add a pause push button and fast-forward/
backward controls. The latter could be accomplished with another rotary control that
includes a push button. Push to pause or rotate to go forward/backward in a given track.

For an application like this, it is easy to see how custom hardware controls are far
superior to using a standard computer keyboard and mouse. Your largest challenge may
lie in knowing when to stop adding to the custom controls design.

Bibliography
 [1] “Music Player Daemon.” Atom News. N.p., n.d. Web. 29 Oct.

2016. <https://www.musicpd.org/>.

 [2] “Rpi Music Player Daemon.” ELinux.org. N.p., n.d. Web. 31
Oct. 2016. <http://elinux.org/Rpi_Music_Player_Daemon>.

https://www.musicpd.org/
http://elinux.org/Rpi_Music_Player_Daemon

191© Warren Gay 2017
W. Gay, Custom Raspberry Pi Interfaces, DOI 10.1007/978-1-4842-2406-9_13

CHAPTER 13

Custom Keypads

One embedded system hardware device that has not been covered yet is the keypad.
Applications for it range from specialized calculators, combination locks, or simple data
input keypads. Normally these have their buttons arranged in rows and columns so that
they can be scanned by the host computer, reducing the number of I/O ports necessary.
You’ll do the same in this chapter but using the DIP form of the PCF8574 I/O chip to avoid
using up precious GPIO ports.

You have seen this chip before as part of the PCB adapter to the LCD in Chapter 4.
The project presented here will make use of the dual inline package (DIP) form of the I2C
I/O extender and operate it from the Pi’s 3.3V supply instead. As a 16-pin chip, it is easy
to wire up on a breadboard. Using the I2C bus permits the possibility of a keypad at some
distance from the Pi using only power and two I2C lines.

Breadboard Setup
The best place to start is the wiring of the pair of PCF8574P chips on the breadboard, as
shown in Figure 13-1 (the second chip is optional). Do this with the Pi powered off and
leave out the keypad for now.

 ■ Caution Use the +3.3V Raspberry Pi power for this project. Nothing in this experiment
uses the +5V supply.

Figure 13-1 shows two PCF8574P chips wired up to the I2C bus. The second chip is
optional but recommended. This second chip will be used to drive an LED indicator. Note
that IC2’s A0 is connected to the +3.3V supply so that its I2C address will be 0x21. IC1 will
have address 0x20 because its inputs are all tied to ground.

http://dx.doi.org/10.1007/978-1-4842-2406-9_4

ChaPteR 13 ■ CUstom KeyPads

192

With the wiring done and the Pi booted up, you should now be able to perform some
simple tests on it. Let’s check to see whether the two chips are detected on the bus.

$ i2cdetect -y 1
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: 20 21 -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

If all went well, the i2cdetect command should find addresses 20 and 21
(hexadecimal) as shown. The 1 on the i2cdetect command line specifies I2C bus 1.

Raspberry Pi

SDA

IC1
16

16
IC2

8
SCL

VCC

13

1
2
3

14
15

8

13

1
2
3

14
15

4P0/INT

/INT

A0
A1
A2

A0
A1
A2

SCL
SDA

SCL
SDA

P1
P2
P3
P4
P5
P6
P7

5
6
7
9
10
11
12

4P0
P1
P2
P3
P4
P5
P6
P7

5
6
7
9
10
11
12

PCF8574P

PCF8574P

GND

Figure 13-1. The PCF8574P wiring to the Raspberry Pi’s I2C bus (VCC=+3.3 volts)

ChaPteR 13 ■ CUstom KeyPads

193

If you see zero or one addresses, check that you’ve wired the A0, A1, and A2 pins
of IC1 and IC2 correctly. If you wired them both in the same way, both chips will try to
respond to the same address. Alternatively, this could result in neither being seen. These
addresses must be unique on the bus. You can use different addresses than the ones I
chose, but the software presented later will expect addresses 0x20 and 0x21.

Output Tests
The supplied I2C utilities allow you to try these chips without writing any code. Let’s write
the value 0xFF to IC1 to set all outputs high.

$ i2cset -y -r 1 0x20 0xFF
Value 0xff written, readback matched

This command example skips interactive mode (-y) and reads back from the chip
(-r) as verification. The fact that the command responded with “readback matched” gives
you confidence that this write was successful. Otherwise, you can drop the -r option.

$ i2cset -y 1 0x20 0xFF

Some of you might be grabbing some LEDs now to hook one up. Hold off on that
since there are some specifics about this chip that must be taken into account (hint:
you must sink the LED current rather than source it). This will be discussed later in this
chapter. But do go and get your DMM so that you can take some voltage readings.

With your DMM, you can check the outputs of IC1. Outputs P0 through P7 should all
measure high (+3.3 volts). Now let’s set P0 to 0, while leaving all other outputs high.

$ i2cset -y 1 0x20 0xFE

Now measure P0 on IC1 (pin 4). Does it read low? All other pins P1 through P7
should remain high. If so, congratulations! Now repeat the experiment with address 0x21
for IC2. You should be able to repeat the results.

 ■ Note all PCF8574 outputs are initialized high at power on reset.

Input Tests
The datasheet for the PCF8574 describes this chip as a quasi-bidirectional I/O port. What
on Earth does that mean?

ChaPteR 13 ■ CUstom KeyPads

194

One of the great things about this chip is that there is virtually no configuration involved.
If you want to output a bit pattern, you simply write to that I/O port like you did with the
i2cset command (or using a system call in C/C++). Reading an input value, however,
requires one little setup step. You must first write 1 bits to each position that you want to read
from and then perform the read. The write operation needs to be performed only once—you
can consider that the configuration step. That’s why I said “virtually” no configuration.

Once a bit position has a 1 bit written to it, you can read from it. Let’s set all IC1
outputs to 1s again so that all eight bits are inputs.

$ i2cset -y 1 0x20 0xFF

If you now took the time to measure P0 through P7 with your DMM on IC1, they
would all show as high again. However, in this state, the designers of the chip have
effectively just enabled a resistor internally to the supply side. This causes the ports to
measure high by your DMM. However, since these are all basically linked to the supply
by internal resistance, you can pull these down to force a 0 (low) on those pins without
causing damage.

To test this, pick a pin, say P3, which is pin 7 of IC1. Attach a Dupont wire from pin 8
(IC1’s ground) to pin 7. Then let’s read the port.

$ i2cget -y 1 0x20
0xf7

The hex value of F7 indicates that bit 3 has been read low while all other bits have
remained high. If you now remove that Dupont wire, you should read a high in bit 3 again.

$ i2cget -y 1 0x20
0xff

Confirmed. In this case, without the grounding of P3, the output driver internal to
the chip is pulling it high once again. Hence, when you read it back, it has returned to a 1
bit. Grounding P3, on the other hand, forced it to read low even though there was a slight
tug to the positive side internally. There is a small tug of war going on in there, but this
one is designed to be safe.

High-Side Driver
Let’s expand on this high-side driver concept a bit more. The TI datasheet shows that
when the output port is driven high, a 100μA constant current source is activated. If you
short that output to ground, as you did when supplying a 0 bit to the input port, you are
actually causing 100μA to flow from the supply to ground. This is not a large amount
of current, so it remains safe to do. Applying Ohm’s law, you can calculate the effective
resistance, which amounts to the following:

R
V

I

volts

A
k= = = W

3 3

100
33

.

m

ChaPteR 13 ■ CUstom KeyPads

195

So, while the internal resistance is not actually a resistor, it behaves as if there was a
33kΩ resistor tied to the supply side.

People working with the Raspberry Pi or Arduino devices will often wire up an LED,
which is turned on when the output port is set high. This is known as sourcing the current
through the LED since the current comes from the port (indirectly the supply rail). This is
perfectly acceptable when the output port supports this. But the PCF8574 will not source
more than 100μA of current. Most LEDs require about 2mA or more before it will emit any
light.

While 100μA is not a lot of drive current, it is perfectly adequate for driving high
inputs of other CMOS inputs. But driving an LED with the PCF8574, however, requires
that you to sink the current instead.

Low-Side Driver
The low-side output driver of the PCF8574 can handle up to 25mA maximum (TI). When
you write a 0 bit to the output, that output transistor will conduct up to 25mA of current
from that pin (Px) to ground. Because the current is going to ground, this is known as
sinking the current.

It is at this point where you interrupt this program to warn about a tug of war that can
be fatal. Say you have an external circuit sending its output to your PCF8574 input. If your
port has been set to a 0 bit, perhaps because of a software bug, then a high amount of
current will flow from that external circuit into the PCF8574’s sinking transistor, when the
external circuit’s level is high. This is effectively a short circuit, which left unremedied can
mean failure. This is why the PCF8574 powers on in the high state, which is always safe.

If this tug of war possibility exists in your design, you can protect the external circuit
and the PCF8574 by wiring them through a 1kΩ resistor. This limits the short-circuit
current to a safe level of 1mA and does not interfere with the transmission of the signal.

Driving an LED
Figure 13-2 shows the two different ways that an LED can be driven from an output port.
The left side shows an LED being sourced with current from Px, using R1 as a current-
limiting resistor. When the output port is set to a 1 bit (active high), the LED is expected to
light. This will not work for the PCF8574, since the high-side driver will not supply more
than 100μA.

The right side of Figure 13-2 shows the correct way to drive an LED from the
PCF8574. Using this circuit, the current is sourced by the power supply, and the current is
sinked by the output port Px. In this case, the LED is lit when the output is written as a 0
bit (active low). Up to a maximum of 25mA can be driven this way by the PCF8574.

ChaPteR 13 ■ CUstom KeyPads

196

The Keypad
Figure 13-3 illustrates the top side of the keypad I am going to use for this experiment. I
chose this format because it is arranged as a 4×4 matrix of buttons and is cheap on eBay
($1.25). If you look carefully at the copper traces of Figure 13-3 and the bottom side of
Figure 13-4, you can see how the buttons are wired in four rows and four columns. This
will allow you to sense the keypad with four outputs and four inputs.

In rummaging through my junk parts, I came across some old calculator keypads
that I have saved since the early 1980s (Figure 13-5). These were purchased by mail order
catalog and are still like new. These keypads occasionally show up on eBay, though
usually at a higher price ($7). But before you purchase these for a project, realize that
these are not always organized in a matrix. My Figure 13-5 keypads have 12 connections
and a ground. In other words, all 12 keys are arranged in one electrical row.

Looking at the bottom side of the hex keypad in Figure 13-4, make note of where
pin 1 is. It is the square pad shown at the bottom right of the figure. This pin appears on
the top side of the board nearest S13 on the silk screening (Figure 13-3). If you are using
the same keypad and have the pin 1 located, you should be able to reproduce the same
results developed in this chapter. You can of course use a different keypad, but you’ll have
to make the appropriate adjustments.

Sourcing current
(Wrong)

+3.3 V

Px

Px

Sinking current
(Correct)

GND

LE
D1

LE
D2

R2

R1

Figure 13-2. PCF8574 sourcing (incorrect) and sinking (correct) of current

ChaPteR 13 ■ CUstom KeyPads

197

Figure 13-3. Keypad with 16 buttons. Note the copper traces on the top side going to the
edge connector.

ChaPteR 13 ■ CUstom KeyPads

198

From a breadboard perspective, the header strip on the keypad is inconvenient. To
bring the keypad interface onto the breadboard, you may want to use some female-to-
male Dupont wires. Ideally a pair of four-conductor cables would work best. I had to use
four two-conductor wires instead. Arrange these cables to bring the eight connections
from the keypad to the breadboard for ease of wiring.

Figure 13-4. Bottom view of the keypad. Note the copper traces going to the edge connector
and where pin 1 is, with the square pad.

ChaPteR 13 ■ CUstom KeyPads

199

Figure 13-6 illustrates the connections inside the keypad, as well as their terminal
connections T1 through T8. These are wired on the breadboard to IC1’s Px, as shown in
brackets. With no keys pressed, you can see that there are no connections between any
of the T1 through T4 rows to any of the columns T5 through T8. But when button SW7 is
pressed, a connection is made between row T3 to column T7.

After making the connections between the keypad and IC1, as shown in Figure 13-6,
you can manually run some experiments using the I2C tool commands. First, let’s configure
the left four bits as 0 bits and the right four bits as 1 bits so you can read from them.

$ i2cset -y 1 0x20 0x0F

Now using the bash shell, let’s enter a loop that will slowly read IC1 for any changes.

$ while true; do i2cget -y 1 0x20; sleep 1; done

This loop will do an i2cget read in a loop, with a one-second delay between each
read. Use Control-C to stop it later. With the command running, you will initially see this:

0x0f

Figure 13-5. Some oldies but goodies from the 1980s

ChaPteR 13 ■ CUstom KeyPads

200

This is to be expected since you wrote that pattern out to the port. While that
continues to run, successively press S1 through S4. Do you see this?

$ while true; do i2cget -y 1 0x20; sleep 1; done
0x0f
0x0e
0x0f
0x0d
0x0f
0x0b
0x0f
0x07
0x0f
^C

Once again, the first 0x0f is the port-configured value. However, when I pressed button
S1 (and waited), 0x0e was returned. After releasing S1, the next reading was 0x0f again.
Pressing S2 returned 0x0d, S3 returned 0x0b, and S4 returned 0x07. This demonstrates that
you were able to read rows T1 through T4 as bits 3 through 0 of IC1’s port.

Now repeat the experiment with buttons S5 through S8, S9 through S12, and S13
through S16. You should get the same results. These all return button presses because you
have all rows T1 through T4 set low. Let’s now make the reading more specific. Set row T3
to low, while T1, T2, and T4 are high with the hex value 0xDF (the bits used are 11011111,
specifying only bit 5 as zero).

(P7)

(P5)

(P0)

(P6)

(P4)

(P1) (P2) (P3)

T5

P$1 P$2

SW13

SW14

SW15

SW16

SW9

SW10

SW11

SW12

SW5

SW6

SW7

SW8

SW1

SW2

SW3

SW4

P$1 P$2 P$1 P$2 P$1 P$2

P$1 P$2 P$1 P$2 P$1 P$2 P$1 P$2

P$1 P$2 P$1 P$2 P$1 P$2 P$1 P$2

P$1 P$2 P$1 P$2 P$1 P$2 P$1 P$2

T4

T6 T7 T8

T3
T2

T1

Figure 13-6. Keypad connections diagram

ChaPteR 13 ■ CUstom KeyPads

201

$ i2cset -y 1 0x20 0xDF

With only bit 5 set low, only button presses in column T7 will ever read a low
(buttons S5 through S8). By scanning T1 through T4, you can detect columns that have
button presses.

Before presenting C++ code to scan the keypad, let’s do one more manual
experiment. With the output still set to 0xDF, what happens if you simultaneously press
S5, S6, S7, and S8?

$ while true; do i2cget -y 1 0x20; sleep 1; done
0xdf
0xd5
0xdd
0xdf
0xd8
0xd0
0xdf
^C

It was a bit of a struggle for me to get all the buttons simultaneously pushed down
in that row, but eventually I succeeded (the value reported was 0xd0). This illustrates the
fact that the program scanning the keyboard must be prepared to filter these events out
or return them as a keycode of some sort. This is similar to the kind of thing that your PC
keyboard must do when it sees the Microsoft-made-famous Control-Alt-Delete.

Keypad Program
In your source directory, change to the keypad subdirectory and type make, if you haven’t
already compiled the code.

$ cd keypad
$ make

With the executable keypad built, run it and press some buttons. In the session
shown, I pressed S1, S6, S11, and S16 in a diagonal.

$./keypad
keypress: EE (S1)
release: EE (S1)

keypress: DD (S6)
release: DD (S6)

keypress: BB (S11)
release: BB (S11)

keypress: 77 (S16)
release: 77 (S16)

ChaPteR 13 ■ CUstom KeyPads

202

The two-digit hexadecimal number shown is effectively the “scan code” that you saw
previously using the i2cget utility. Recall that the left four bits select a row, and the right
four represent the column selected. The program then looks up the scan code to translate
that into a “key name,” like S1.

The main Program
Listing 13-1 shows the source code for the main program. Lines 113 to 119 open the I2C
bus driver, saving the file descriptor i2c_fd. This file descriptor provides you with a
handle to the driver.

Listing 13-1. The main Program of keypad.cpp

108 int
109 main(int argc,char **argv) {
110 uint8_t keypad, row, col;
111
112 // Open the I2C bus
113 i2c_fd = open(i2c_device,O_RDWR);
114 if (i2c_fd == -1) {
115 fprintf(stderr,"%s: opening %s\n",
116 strerror(errno),
117 i2c_device);
118 exit(1);
119 }
120
121 for (;;) {
122 // Scan each keypad row:
123 for (row=0x10; row != 0; row <<= 1) {
124 // Drive the row select
125 i2c_write(i2c_keypad_addr,~row);
126
127 // Read the column inputs
128 keypad = i2c_read(i2c_keypad_addr);
129 col = keypad & 0x0F;
130
131 if (col != 0x0F) {
132 // Keypress event
133 printf("keypress: %02X (%s)\n",
134 keypad,
135 key_lookup(keypad));
136
137 while ((i2c_read(i2c_keypad_addr) & 0x0F) == col)
138 usleep(50000);
139
140 printf("release: %02X (%s)\n\n",
141 keypad,

ChaPteR 13 ■ CUstom KeyPads

203

142 key_lookup(keypad));
143 }
144 usleep(50000);
145 }
146 }
147
148 return 0;
149 }

The remainder of the main program starting with the for loop in line 121 is the
keypad-reading loop. This loop will execute until your Control-C to interrupt the
program.

Inside the outer loop, there is an inner for loop starting in line 123. According to
the loop construction, the value row starts with 0x10, continues as long as the value row
is nonzero, and is shifted left one bit at the end of each loop. For the nonveteran C/C++
programmers, let’s summarize the values involved in Table 13-1.

Recall that the column bits are input ports, requiring 1 bits to be written to the lower
four bits. Further, to select a row of buttons, you need to set the bit low for the row so that
a button can be sensed. So, the loop starts the first iteration with row set to 0x10. When
inverted, this sets bit 4 low and the remaining bits high (hex value 0xEF). This is the value
you write to the PCF8574 port in line 125 (note that ~row is the value of row with the bits
inverted).

At the end of the loop, you need to scan the next row. Using the noninverted row
value permits you to test after the shift left operation when the last bit was shifted out,
which will result in zero. This provides a convenient for loop variable, even though it is
the inverted value that you need for the I2C device.

After priming the I2C port with a write in line 125, you then read back from the same
port in line 128. If no key has been pressed, you will simply read back the same value
that was just written. But when a key is pressed, one of the buttons connected to the row
will cause a zero bit to appear in the lower four bits of the value read. You test for this
condition in lines 129 and 131.

Table 13-1. The for Loop Iteration Values for the Variable row

Iteration Row (Hex) Row (Bits) ~Row (Hex) ~Row (Bits) Description

0 0x10 0b00010000 0xEF 0b11101111 Row 0
selected

1 0x20 0b00100000 0xDF 0b11011111 Row 1
selected

2 0x40 0b01000000 0xBF 0b10111111 Row 2
selected

3 0x80 0b10000000 0x7F 0b01111111 Row 3
selected

4 0x00 0b00000000 0xFF 0b11111111 No rows
selected

ChaPteR 13 ■ CUstom KeyPads

204

When a keypress has occurred, you report this using printf in line 133 (you’ll
examine the function key_lookup later). Lines 137 and 138 wait for the key press to be
released. Any change in the pressed key state causes the while loop to exit. The usleep
releases the CPU briefly to allow other processes to run. Finally, after the key has been
released, printf in line 140 announces this to stdout.

The bottom of the scan loop also calls usleep so that the CPU utilization isn’t
squandered (line 144).

The key_lookup Function
Depending upon your application, using the scan codes may be sufficient. In many cases,
however, some kind of translation between the scan code and the key symbol is required.
Listing 13-2 shows the key_lookup function that was used in the keypad.cpp program.

Listing 13-2. The key_lookup Function

024 static std::unordered_map<uint8_t,std::string> keymap({
025 { 0xEE, "S1" }, { 0xED, "S2" }, { 0xEB, "S3" },
026 { 0xE7, "S4" }, { 0xDE, "S5" }, { 0xDD, "S6" },
027 { 0xDB, "S7" }, { 0xD7, "S8" }, { 0xBE, "S9" },
028 { 0xBD, "S10" }, { 0xBB, "S11" }, { 0xB7, "S12" },
029 { 0x7E, "S13" }, { 0x7D, "S14" }, { 0x7B, "S15" },
030 { 0x77, "S16" }
031 });
...
095 const char *
096 key_lookup(uint8_t scancode) {
097
098 auto it = keymap.find(scancode);
099 if (it != keymap.end())
100 return it->second.c_str();
101 return "???"; // Multiple keys pressed
102 }

Lines 024 to 031 at the top of the source module declare and initialize an unordered
map named keymap. This map is designed to accept a scan code of type uint8_t and
return an associated string name for it. So, if 0xED is queried, the value "S2" is returned.
Note that keymap is created and initialized before main begins to execute.

The function key_lookup accepts the scan code as its input argument (line 096).
Line 098 performs the keymap lookup based on it. If the value is known, the iterator value
it will have a value that differs from keymap.end() in line 099. In this case, you returned
the key’s string value. Note here that it->second is C++ type std::string. To return a
C-styled string, you convert that by invoking the method c_str(). This pointer value
remains valid as long as the values in keymap are left unmodified.

Line 101 is in place for scan codes that you don’t have defined in keymap. You might
think that you have them all covered, but if you press more than one key simultaneously,
other scan codes are possible. For example, the scan code 0xE6 is returned if you
simultaneously press S1 and S4.

ChaPteR 13 ■ CUstom KeyPads

205

The i2c_write Function
Listing 13-3 shows the i2c_write function. This function is used to write one byte of
information to the PCF8574 peripheral chip.

Listing 13-3. The i2c_write Function

037 void
038 i2c_write(int addr,uint8_t byte) {
039 struct i2c_rdwr_ioctl_data msgset;
040 struct i2c_msg iomsgs[1];
041 int rc;
042
043 iomsgs[0].addr = unsigned(addr);// Address
044 iomsgs[0].flags = 0; // Write
045 iomsgs[0].buf = &byte; // Buffer
046 iomsgs[0].len = 1; // 1 byte
047
048 msgset.msgs = iomsgs; // The message
049 msgset.nmsgs = 1; // 1 message
050
051 rc = ioctl(i2c_fd,I2C_RDWR,&msgset);
052 if (rc == -1) {
053 fprintf(stderr,
054 "%s: writing to I2C address 0x%02X\n",
055 strerror(errno),
056 i2c_keypad_addr);
057 exit(1);
058 }
059 }

The Linux I2C driver requires you to use two structures.

•	 struct i2c_rdwr_ioctl_data

•	 struct i2c_msg

The first structure is a header record that describes aspects of the transfer that apply
to the entire transaction. You see this in lines 048 and 049, where you save the pointer
to the first transaction (line 048) and then the number of consecutive transactions to be
performed (line 049).

The i2c_msg structure defines the aspects of each I/O transfer to be performed. In
the listing, line 043 first defines the I2C address involved. Line 044 defines this operation
as a write operation (this is because of the lack of the I2C_M_RD flag, which will be seen
in the i2c_read function later). Line 045 defines where the buffer is located (the variable
byte). Finally, the transfer will involve one byte (line 046).

With the structures fully populated, the communication with the driver occurs through
the ioctl(2) system call in line 051. The following are the arguments involved in the call:

•	 The driver’s file descriptor (i2c_fd)

ChaPteR 13 ■ CUstom KeyPads

206

•	 The ioctl(2) command value (I2C_RDWR macro)

•	 Pointer to the associated data for this operation (address of
msgset)

The system call returns -1 if the operation failed for any reason, leaving the error
code in the thread-safe value of errno. Line 052 checks the status returned and reports
the error in lines 053 to 056 if it fails and then exits the program in line 057. If the
operation succeeds, you simply return from the function as “mission accomplished.”

The i2c_read Function
A companion to the i2c_write function is the i2c_read function. In this application
program, its mission is to simply read one byte of data (from the PCF8574 peripheral).
Listing 13-4 shows the code for this function.

Listing 13-4. The i2c_read Function

065 uint8_t
066 i2c_read(int addr) {
067 struct i2c_rdwr_ioctl_data msgset;
068 struct i2c_msg iomsgs[1];
069 uint8_t byte;
070 int rc;
071
072 iomsgs[0].addr = unsigned(addr);// I2C Address
073 iomsgs[0].flags = I2C_M_RD; // Read
074 iomsgs[0].buf = &byte; // buffer
075 iomsgs[0].len = 1; // 1 byte
076
077 msgset.msgs = iomsgs; // The message
078 msgset.nmsgs = 1; // 1 message
079
080 rc = ioctl(i2c_fd,I2C_RDWR,&msgset);
081 if (rc == -1) {
082 fprintf(stderr,
083 "%s: reading I2C address 0x%02X\n",
084 strerror(errno),
085 i2c_keypad_addr);
086 exit(1);
087 }
088 return byte; // Return read byte
089 }

The operation of the i2c_read function is nearly identical to the i2c_write function.
The one difference is that the flag I2C_M_RD is provided in line 073 to indicate that this
will be a read operation. The only other difference is that the data byte is transferred from
the peripheral to the local variable byte. The operation is initiated in line 080, checked in
lines 081 to 086. When the operation is successful, the value byte is returned in line 088.

ChaPteR 13 ■ CUstom KeyPads

207

Combination Lock
To finish off this chapter, let’s create a practical keypad application—the combination
lock. For this project, let’s add two more components to the breadboard.

•	 A green LED to indicate unlock success

•	 A red LED to indicate that the attempted combination has failed

For the LEDs, refer to Figure 13-2, using the circuit shown on the right (the LED
being sinked). Connect the green LED to the second PCF8574 (IC2) port P0 and the red
LED to IC2’s P1. The only thing left is to determine the resistors needed.

The voltage drop V
F
 of an LED varies with the color of the device [1]. A green LED is

listed between 1.9 and 4 volts, while a red LED is 1.6 to 2 volts. Since you’re using a +3.3V
supply, this means you only have a difference of V

CC
 – V

F
 = 3.3 – 1.9 = 1.4 Volts for green

LEDs and 3.3 – 1.6 = 1.7 Volts for red. The dropping resistor you need can be determined
with the following:

R
V V

I
CC F

LED

=
-

Many LEDs will use about 10mA, which is well within the PCF8574 sinking
capability. So, calculate the following:

R =
-

= W
3 3 1 4

0 010
190

. .

.

The closest E12 resistance value to this is 180Ω. If you have trouble finding of that
value, you can safely go up to 200Ω or even go lower.

With R2 of Figure 13-2 set to a value of 180Ω, the resistor wired to the +3.3V side, and
the other end wired to the LED, connect the green LED cathode to IC2’s P0. Do the same
for the red LED, except that the LED cathode goes to P1. Before you present the software,
let’s prove that the hardware is good. Turn on the green LED (note that the I2C address is
0x21 this time for IC2).

$ i2cset -y 1 0x21 0xFE

If everything is wired correctly, the green LED should light, and the red one should
remain dark. Now enable the red LED.

$ i2cset -y 1 0x21 0xFD

The red LED should light, and the green one should be dark. Finally, let’s light both.

$ i2cset -y 1 0x21 0xFC

To turn them both off again, write the value 0xFF to the port. Note that only the last
two bits actually matter here as far as the LEDs are concerned.

ChaPteR 13 ■ CUstom KeyPads

208

Combination Lock
With the LEDs installed and tested, you can turn your attention to the combination lock
software. The program must implement a state machine based upon key press events.
The state machine you’re going to use is as follows:

 1. The initial state is that no keys have pressed yet. Clear the
buffer of key codes.

 2. Wait for a key press. Proceed to the next step when it arrives.

 3. Add a key code to the buffer.

 4. Have four keys been pressed? If not, go to back to step 2.

 5. If four keys have been pressed, is the combination correct? If
not, light the red LED and go to step 1.

 6. The combination is correct: light the green LED to announce
the unlocking of the device.

 7. Has a key been pressed? If so, turn off the green LED and
return to step 1. Otherwise, continue to wait.

The program combo.cpp located in the ./keypad subdirectory implements this
overall procedure, except that it checks the combination code as the keys are entered.
You’ll examine that later.

Figure 13-7 illustrates my breadboard arrangement. Don’t be intimidated by the
number of wires. Most of the wires (most of them white) are wires to ground for the
PCF8574 address pins. The remaining white wires take connections from the keypad to IC1.

Figure 13-7. A breadboarded circuit for the keypad.cpp and combo.cpp programs

ChaPteR 13 ■ CUstom KeyPads

209

With the hardware ready, run the program combo, as shown here:

$./combo
*** LOCKED ***
code[0] = 7D (S14)
code[1] = BB (S11)
code[2] = DD (S6)
code[3] = ED (S2)
*** FAILED ***
*** LOCKED ***
code[0] = BE (S9)
code[1] = D7 (S8)
code[2] = DD (S6)
code[3] = DB (S7)
*** UNLOCKED ***
*** LOCKED ***
^C

The session output helps display state information as the code runs. A full
implementation would provide some kind of feedback for each key as it is entered. You
could, for example, use the remaining ports of IC2 to light an LED for each of the four
codes. This is left as an exercise for you.

Initially, the session reports that the lock is “locked.” As each key is pressed, the scan
code and the key name are displayed (for demonstration purposes). At the end of four
codes, the lock either fails to unlock (red LED) or becomes unlocked (green LED).

The first attempt shown in the session output has an entry of S14, S11, S6, and S2
before the red LED comes on and the session reports “failed.” At this point, the state
machine restarts, allowing entry of a new code.

The red LED is permitted to stay on until the entry of the first key code. You’ll see that
in the code later in this chapter. In the second attempt, keys S9, S8, S6, and S7 are pressed
to successfully unlock the device. The green LED will remain lit until another (any) key
is pressed. At that point, the green LED is turned off, and the device enters a locked state
once again.

The main Program
The main program has changed to implement a key press state machine. This is presented
in Listing 13-5.

Listing 13-5. The combo.cpp Main Program

140 int
141 main(int argc,char **argv) {
142 static uint8_t code[4] = {
143 // 9, 8, 6 7:
144 0xBE, 0xD7, 0xDD, 0xDB
145 };
146 uint8_t keypad, kx;

ChaPteR 13 ■ CUstom KeyPads

210

147 bool matched;
148
149 // Open the I2C bus
150 i2c_fd = open(i2c_device,O_RDWR);
151 if (i2c_fd == -1) {
152 fprintf(stderr,"%s: opening %s\n",
153 strerror(errno),
154 i2c_device);
155 exit(1);
156 }
157
158 i2c_write(i2c_led_addr,0xFF); // Both LEDs off
159
160 for (;;) {
161 puts("*** LOCKED ***");
162
163 // Wait for entry of all four codes:
164 matched = true;
165 for (kx=0; kx<4; ++kx) {
166 keypad = get_key_code();
167 printf("code[%u] = %02X (%s)\n",
168 kx,keypad,
169 key_lookup(keypad));
170 if (keypad != code[kx])
171 matched = false;
172 if (kx == 0) {
173 // All LEDs off
174 i2c_write(i2c_led_addr,0xFF);
175 }
176 }
177 if (!matched) {
178 // Failed: Red LED + start over
179 i2c_write(i2c_led_addr,~red_led);
180 puts("*** FAILED ***");
181 continue;
182 }
183 // Code matched: unlock
184 i2c_write(i2c_led_addr,~green_led);
185
186 // Wait for any key code to lock
187 // and restart
188 puts("*** UNLOCKED ***");
189 get_key_code();
190 i2c_write(i2c_led_addr,0xFF);
191 }
192
193 return 0;
194 }

ChaPteR 13 ■ CUstom KeyPads

211

Lines 142 to 145 define the secret passcode to unlock this device. These are scan
codes representing S9, S8, S6, and S7. Line 158 initializes the LEDs to the off state.

The main loop begins in line 160, repeating forever until the program is cancelled
with Control-C. Line 161 announces the locked state to the session output and initializes
the bool variable matched to true. As each key code is entered, if there is any mismatch,
then this variable will be set to false.

Lines 165 to 176 accept input key codes. The code is accepted in line 166 and
checked against the passcode in line 170. The variable kx tracks the key number from 0 to
3. If there is a mismatch between any of the codes, the matched variable is set to false in
line 171. By the time the end of the loop is reached (line 177), this will tell you whether the
code was correct.

If the code didn’t match, you activate the red LED in line 179. Note the inverted
value of ~red_led. The LED is lit when the red LED bit is set to 0. The continue statement
returns control to the top of the main loop for another attempt. The red LED is allowed to
remain lit while this loop restarts. However, lines 172 to 175 force all LEDs off, once the
first key press is received.

When the correct code is entered, control passes to line 184 to light the green LED.
The lock is announced unlocked at line 188, and the code waits for a key press (of any
key) at line 189. Once a key is pressed, the lock is relocked again, and the green LED is
extinguished in line 190.

The get_key_code Function
The remainder of the combo.cpp source code remains the same as the keypad.cpp program.
The exception to this is that what was the main loop in keypad.cpp has been moved into a
function in combo.cpp. Listing 13-6 illustrates the function named get_key_code.

Listing 13-6. Function get_key_code

111 uint8_t
112 get_key_code() {
113 uint8_t keypad, row;
114
115 // Wait for key release:
116 while ((i2c_read(i2c_keypad_addr) & 0x0F) != 0x0F)
117 usleep(20000);
118
119 // Wait for key press:
120 for (;;) {
121 // Scan each keypad row:
122 for (row=0x10; row != 0; row <<= 1) {
123 // Drive the row select
124 i2c_write(i2c_keypad_addr,~row);
125
126 // Read the column inputs
127 keypad = i2c_read(i2c_keypad_addr);
128
129 if ((keypad & 0x0F) != 0x0F)

ChaPteR 13 ■ CUstom KeyPads

212

130 return keypad;
131 usleep(20000);
132 }
133 }
134 }

This code is almost unchanged from what was presented earlier. However, there is
one major change to be explained.

In the keypad.cpp program, once you had a keypress, you remained in a loop waiting
for the key to be released. In combo.cpp, you want the lock to unlock the very moment
the last correct key code is pressed. So, you return the keycode immediately at line 130.
However, this necessitates that you wait for a key release when the function is called later
(lines 116 to 117).

While this change isn’t absolutely essential, most people expect an action to occur
at the moment of the key being pressed. For a lock, you could choose to do this when the
key is released instead.

Interrupts
One concept that I didn’t have the space to explore was the concept of the interrupt
(/INT) pin on the PCF8574. With the current programs, it must continually poll the
PCF8574 chips to see whether there is a key press. The interrupt pin of the PCF8574 chip
can signal a data change to a Pi GPIO input. A poll of the GPIO pin is quick and cheap and
leaves the I2C bus available for other traffic.

Additionally, each /INT output is driven by an open collector transistor. This permits
two or more /INT signals to be wired together so that only one interrupt signal line is
required. This requires only one pull-up resistor on the line. I encourage you to read the
datasheets and explore this important functionality.

Summary
You’ve reached the end of this book; all good things must come to an end. I hope that
this book has inspired you to try some hardware attached to the Raspberry Pi and come
up with ideas of your own. A hobbyist can have fun just reproducing “how to” articles,
attaching Pi hats, and so on. But the real fun is in taking an idea and designing the
interfaces yourself!

Bibliography
 [1] Poole, By Ian. “LED Characteristics & Colours.” LED

Characteristics and Colours. Accessed November 05, 2016.
<www.radio-electronics.com/info/data/semicond/leds-
light-emitting-diodes/characteristics.php>.

http://www.radio-electronics.com/info/data/semicond/leds-light-emitting-diodes/characteristics.php
http://www.radio-electronics.com/info/data/semicond/leds-light-emitting-diodes/characteristics.php

213© Warren Gay 2017
W. Gay, Custom Raspberry Pi Interfaces, DOI 10.1007/978-1-4842-2406-9

��������� A
Acknowledge clock cycle, 37
alsamixer, 170, 171
alsa-utils, 170
Analog to digital (ADC)

extended voltage range, 79–80
sampling rate, 79
V

OA
, 71

aplay, 170

��������� B
Backlighting, 36, 38, 39, 45, 48, 53
Battery, 45, 71, 72, 95
Blanking

reduced, 29–33
Breadboard, 2, 12, 14, 21, 40, 41, 56, 58, 59,

61, 86, 88, 97, 98, 108, 109, 111,
130, 132–134, 136, 143–146, 148,
150–153, 155, 157, 158, 174,
191–193, 198, 199, 207, 208

Buttons, 55, 56, 66, 132, 164, 191, 196, 197,
200, 201, 203

��������� C
Capacitor, 56–61, 66, 73
CD4001, 21, 22
CD4049, 16
CD4050, 16
CD4012B, 140
CD4050BC, 19
CD4049UBC, 19
Chip enable, 130–132, 139, 140, 148
Complementary metal oxide

semiconductor (CMOS)

BroadCom, 7
floating, 12, 37, 56
gate, 10, 16
high level, 7, 20
logic levels, 7
low level, 7
unused inputs, 12

config.txt file, 27, 33, 75, 156
Consumer Electronics

Association (CEA), 27–29
Conventional current flow, 17

��������� D
Debouncing

buttons, 56, 59–61, 64, 66
hardware, 55, 56, 62, 66
MC14490, 55, 56,

58–62, 64, 66
relays, 55, 66
software, 62–66
switches, 55, 56, 66

Digital multi-meter (DMM), 14, 40, 44, 46,
77, 81, 83, 94, 146, 157, 193, 194

Digital to analog converter (DAC)
AOUT, 68, 70–73, 77, 78, 86

Diodes
1N914, 85–89
protection, 16–19
zener, 18–19

Diode transistor logic (DTL), 6
Display Monitoring Timing (DMT)

standard, 27, 30–32
Dual inline package (DIP), 2, 42, 55, 56,

129, 130, 153, 157, 191
Dupont wires, 2, 40, 41, 58, 60, 78, 98,

133, 146, 159, 168, 194, 198

Index

■ INDEX

214

��������� E
Embedded system

Raspberry Pi, 25, 35, 169
Extended display identification data

(EDID), 27

��������� F
fbset, 33
Field effect transistor (FET)

gate, 16
oxide, 16, 17

Flea market
hamfest, 14

��������� G
General purpose input/output (GPIO)

expansion, 1
gnuplot, 87–90

��������� H
Hamfest

flea market, 14
74HC165, 1, 129–144, 148, 150–153, 168
74HC595, 1, 139–153, 168
74HCT244, 22, 23
74HCT245, 20–23
hdmi_force_hotplug, 27
hdmi_group, 27
hdmi_mode, 27–32
High-definition multimedia interface

(HDMI), 25, 26, 170
High powered loads, 5
htop, 180

��������� I
I2C

adapter, 36, 38, 39, 44, 48, 75, 156
address, 37, 40, 51, 70, 74–76, 88, 97,

154, 155, 157, 160, 162, 177, 191,
205, 207

baud rate, 52–53
bus, 1, 2, 37, 39, 42, 48, 49, 53, 70, 75,

89, 97, 101, 153, 156, 161, 164,
168, 180, 191, 192, 202, 212

IIC, 36
interface module, 35, 37
level converter, 42–44, 46, 47

Pi, 35–37, 39, 40, 42–46, 49, 50, 53, 54
SCL, 37, 39, 43, 44, 46
SDA, 37, 39, 43, 44, 46
TWI, 36

i2cdetect, 39, 192
i2cget, 199, 202
i2cset, 194
i2c-tools, 75, 156
Interface

I2C serial, 36–37
parallel, 2, 35
RS232, 2
video, 25

Interfacing
signal, 5–23

Inverter, 16–19

��������� J
Jumpers, 37, 69, 70, 89, 97

��������� K
Keypad

hex, 196
KY-040

detents, 107–109, 112, 113, 122
flywheel effect, 116, 123, 124
isolation resistors, 110
push switch, 106, 107
rotary encoder, 103–105
sequence errors, 114–115

��������� L
LCD 1602A module, 35–36
Light emitting diode (LED), 38, 42, 70, 71,

73, 77, 85, 88, 89, 109, 146, 147, 157,
191, 193, 195–196, 207–209, 211

Liquid crystal display (LCD)
1602A-1, 35–36, 42
BF flag, 50
4-bit mode, 36, 47, 48, 53
controller, 47–51, 53
HD44780, 47, 51, 52
LCD1602 class, 51–52
16x2 LCD, 1, 2, 35, 174, 176, 184

Logic level conversion, 8
74LS04, 8, 10, 11
74LVC244, 14–16, 19, 23
74LVC245, 8, 9, 12–16, 19, 23

■ INDEX

215

��������� M
MC14490, 55–66

4-bit shift register, 57
clock frequency, 58
oscillator, 61, 62

MCP23017
configuration, 163–166
INTA interrupt pin, 155, 164, 165, 167
INTB interrupt pin, 155
interrupt capability, 164–168

Music playing command (MPC)
add, 172, 173, 175, 190
clear, 172
play, 170, 184
playlist, 172, 173, 177, 183, 184, 189
status, 173, 187–189
stop, 174, 189
volume, 169–171, 173, 189

Music playing daemon (MPD), 1, 2, 169–190

��������� N
NAND gate, 13, 16
1N914 diode, 85–89
Noise margin, 8, 20

��������� O
Octal bus transceiver, 12
Ohm's law, 10, 72, 73, 86, 194
Open collector, 5, 212

��������� P
Parallel interface, 2, 35
PCF8574, 2, 36, 37, 40, 42, 46–49, 51, 53,

54, 191–193, 195, 196, 203,
205–208, 212

PCF8591, 67–90, 95–98, 180
PCF8574P, 42, 191, 192
Pinout, 15, 22, 129–131, 140–142, 153, 154
Pi T-Cobbler breakout, 39
Pixel clock, 33
Potentiometer

ADC bits, 96–97
input controls, 91–102
PCB mount, 91
range of motion, 92, 97, 101
resistance, 91–96
steps, 96, 97

taper, 96
trimmers, 91
voltage divider, 92–94
wiper arm, 92–94

Propagation delay
t

PHL
 (high to low), 22, 23

t
PLH

 (low to high), 22, 23
Pull-up resistors, 37, 56, 59, 64, 70, 106,

110, 120, 155, 159, 167, 212
Pulse width modulation (PWM), 2, 129

��������� Q
7400 quad NAND gate, 16
Quasi-bidirectional, 37, 193

��������� R
Range of motion

potentiometer, 92, 97, 101
Raspberry

Pi 2, 4, 60
Pi 3, 2, 111, 127, 134, 170, 174
Zero, 1, 2, 25, 26, 33

Refresh rates, 26, 33
Resistor

tolerances, 11, 80
Resolution, 26, 28–33, 79, 80, 83, 90, 96, 101
Rotary encoder

detents, 107–109, 112, 113, 122
flywheel effect, 116, 123, 124
isolation resistors, 110
sequence errors, 114–115

RS232 interface, 2

��������� S
Serial peripheral interface (SPI), 2, 5, 11,

22, 36, 91, 129
Shift register, 57, 63–66, 114, 120, 132, 136,

140–143, 146, 150
Sink, 38, 42, 193, 195
Sinking current, 195, 196
Source, 4, 37, 38, 40, 42, 47, 51, 67, 71, 72,

86, 143, 157, 172, 177, 189,
193–195, 201, 202, 204

Source resistance
ideal battery, 71, 72

Sourcing current, 195, 196
Static electricity, 16, 75
Switching speed, 16, 22–23

■ INDEX

216

��������� T
Thread, 177, 180–189
Transistor transistor logic (TTL)

input levels, 20, 141
5400 series, 6
7400 series

series derivative families, 11

��������� U
usleep, 204

��������� V
V

CC
, 6, 7, 39, 68–70, 141

V
DD

, 7, 12, 15, 16, 18, 19, 56, 70–72, 74, 157
VGA monitors, 1, 25–33
Video graphics array (VGA), 26, 28–29, 33
V

IH
, 6–8, 16, 20

V
OH

, 6, 8, 10, 11, 16
3 Volt

Raspberry Pi, 1
5 Volt, 4–23
Voltage

dividers, 9–11, 79, 80, 92–94
high level, 6

input, 13, 16, 18, 70, 80
logic levels, 6
low level, 6
output, 6–8, 70,

71, 73, 78, 87
ranges, 6, 7, 70, 80
3.3 volt logic, 7–9

��������� W, X
4-wire ribbon cable, 98

��������� Y, Z
YL-40

conversion
to Celsius, 83–84

I2C address, 74–75
jumpers, 69, 85, 97
LDR (light dependent

resistor), 69, 85, 90
1N914 experiment, 85–89
PCF8591, 67, 68, 70, 72, 74, 76–77, 79,

84, 89, 90
R

6
, 82

temperator
sensor, 80–83

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction
	Raspberry Pi 3 and Zero
	Why GPIO Is Important
	What to Purchase
	Software to Download
	Let’s Begin

	Chapter 2: 3V/5V Signal Interfacing
	7400 Series (TTL)
	3.3V Logic
	Voltage Dividers
	7400 Series Derivative Families
	Unused CMOS Inputs
	Converting 5V to 3V Input: 74LVC245
	Converting 5V to 3V Input: 74LVC244
	CD4049/CD4050
	Input Protection Diodes

	Converting 3 Volts to 5 Volts with the HCT Family
	74HCT245
	74HCT244

	Switching Speed
	Summary
	Bibliography

	Chapter 3: VGA LCD Monitors
	VGA Converters
	Resolution and Refresh Rates
	/boot/config.txt
	Confirming Resolution
	Summary
	Bibliography

	Chapter 4: I2C LCD Displays
	LCD Module 1602A
	I2C Serial Interface
	I2C Module Configuration
	I2C Module Output
	I2C Module Input
	PCF8574P Chip
	3 Volts to 5 Volts
	Attaching the I2C Serial Module
	Displaying Data
	Reading from the LCD1602
	Class LCD1602
	I2C Baud Rate
	Profit and Loss
	Summary

	Chapter 5: MC14490 and Software Debouncing
	Hardware: MC14490
	Chip Operation
	Capacitor C1
	Experiment
	More Inputs
	Software Debouncing
	Experiment
	Summary

	Chapter 6: PCF8591 ADC
	The YL-40 PCB
	Voltage Range
	I2C Bus
	I2C Addresses
	DAC (AOUT)
	Removing YL-40 LED D1
	Hacking YL-40 I2C Address
	I2C Bus Setup
	Reading from PCF8591
	Experiment

	Writing to the DAC
	Experiment
	Experiment

	Limitations
	Extending Voltage Range
	Repairing the Temp Sensor
	Conversion to Celsius
	Reading Temperature
	Experiment

	The YL-40 LDR
	Experiment

	1N914 Experiment
	Software
	Potential Experiments
	Summary
	Bibliography

	Chapter 7: Potentiometer Input Controls
	Potentiometers
	Voltage Dividers
	ADC Circuit
	Pot Resistance
	Taper
	Effect of ADC Bits
	Experiment
	Applying Potentiometer Controls
	Selection Resolution
	Summary
	Bibliography

	Chapter 8: Rotary Encoders
	Keyes KY-040 Rotary Encoder
	The Switch
	Operation
	Voltage
	Evaluation Circuit
	Interfacing to the Pi
	Experiment
	Experiment
	Sequence Errors
	Experiment
	FM Dial 1
	FM Dial 2
	Class Switch
	Main Routine
	Summary
	Bibliography

	Chapter 9: More Pi Inputs with 74HC165
	74HC165 Pinout
	Function Table
	Breadboard Experiment
	Program
	Logic Analyzer View
	Profit and Loss
	Even More Inputs
	Other Bit Counts
	Combining GPIOs
	Chip Enable
	CD4012B
	Summary

	Chapter 10: More Pi Outputs with 74HC595
	74HC165 Pinout
	Function Table
	Breadboard Experiment
	Experiment Run
	Input and Output
	Additional Outputs
	Profit and Loss
	Summary

	Chapter 11: MCP23017 I/O Port Extender
	MCP23017
	Wiring
	Output GPIO Experiment
	Input Experiment
	Software Operations
	I2C Header Files
	Opening the I2C Driver
	I2C Write
	I2C Read
	Configuration

	Interrupt Capability
	Interrupt Profit and Loss
	Summary

	Chapter 12: MPD/MPC Hardware Controls
	Audio Preparation
	MPD/MPD

	Hardware Setup
	Test Volume Control
	Test Rotary Control
	Test LCD

	The mpcctl Program
	Main Program
	Rotary Encoder Thread
	LCD Thread
	MPC Status Thread
	Volume Control Thread
	Program Summary

	Summary
	Bibliography

	Chapter 13: Custom Keypads
	Breadboard Setup
	Output Tests
	Input Tests
	High-Side Driver
	Low-Side Driver
	Driving an LED
	The Keypad
	Keypad Program
	The main Program
	The key_lookup Function
	The i2c_write Function
	The i2c_read Function

	Combination Lock
	Combination Lock
	The main Program
	The get_key_code Function

	Interrupts
	Summary
	Bibliography

	Index

