Zero to Mastery
Microsoft Visual in C++

Zero to Mastery
Microsoft Visual in C++

Dr. RK Jain

* Shadab Saifi (Illustrator) * Ayaz Uddin (Editor)

An ISO 9001:2008 Certified Company

Vayu Education of India

2/25, Ansari Road, Darya Ganj, New Delhi-110 002

Copyright © Vayu Education of India

First Edition: 2022

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

DISCLAIMER
Errors, if any, are purely unintentional and readers are requested to communicate such errors to
the publisher to avoid discrepancies in future.

Published by:
AN IS0 9001:2008 CERTIFIED COMPANY

VAYU EDUCATION OF INDIA

2/25, ANSARIROAD, DARYA GANJ, NEW DELHI-110 002
PH.: 011-41564440, MOB. 09910115201

Preface

Microsoft Visual C++ (often abbreviated as MSVC) is a commercial Integrated Development
Environment (IDE) product engineered by Microsoft for the C, C++, and C++/CLI programming
languages. It has tools for developing and debugging C++ code, especially code written for the
Microsoft Windows API, the DirectX API, and the Microsoft NET Framework.

Microsoft Visual C++ has always been one of the most comprehensive and sophisticated
software development environments available. It has consistently provided a high level of
programming power and convenience, while offering a diverse set of tools designed to suit almost
every programming style. And Visual C++ version 6 adds significantly to the already impressive
array of features. New features include easier application coding, building, and debugging; greater
support for ActiveX and Internet technologies; additional database development options; and new
application architectures and user-interface elements, such as Microsoft Internet Explorer 4 style
controls.

Book is designed to cover the fundamental aspects of Visual C++ and thus covers the aspects
in easy to understand language. Diagrammatic approach is being used to explain the concepts
wherever possible. The books include significant number of multiple choice questions. You need
not to know any programming language in order to use this book; it teaches you the basics of C++
followed by fundamentals of VC++.

Chapter 1 gives an introduction about Microsoft Visual C++. It talks about what is all included in
VC++, its development environment.

Chapter 2 introduces class in C++ covering the fundamental features in C++, concept of
constructors & destructors, THIS keyword, static members, inline functions etc.

Chapter 3 covers the concept of overloading in C++ including function and operator overloading.
Chapter 4 is about inheritance, polymorphism and virtual functions.

Chapter S you start using VC++ IDE where you learn the various options in the IDE including
how to compile, debug and run the programs.

6 Preface

Chapter 6 you start using the GUI based development environment to make the programs.
It teaches how the VC++ program works.

Chapter 7 covers the windows, dialog boxes and controls.

Chapter 8 covers Dialogs and Property Sheets in Visual C++.

Contents

1. INTRODUCTION TO VCH+ ... e e e e e e 1
1.1 WHATIS MICROSOFT VISUAL CH+7? ... 1
1.1.1 Windows Programs are Event-Drivencccccceiiiiiiiiiiiiiiiininnnn, 2

112 TREMEC e e e e e e e e e e 2

1.1.3 Visual C++ is Object Orientedccccceiiiiiiiiiiiieee e 2

1.2 WHATSINCLUDED INVISUALCH+? ..o, 2
1.2.1 VC++ Developer Studiocccueiiiiiiiiiiiiecee e 2

1.2.2 VC++ Runtime Librariesoooovviviiiiiiiiiiiieei e, 3

1.2.3 VC++ MFC and Template Libraries ..o 3

124 VCH+ BUIId TOOIS ..oeveeeeeeeei it a e e e 3

T.2.5 ACHVEX oottt a e e e e e e e e aanane 3

T.2.6 Data ACCESS ... 4

1.2.7 ENterprise TOOISooiiiiiiii e 4

T1.2.8 GraphiCs .couuu i 4

T.2.9 TOOIS e 4

1.3 THE VISUAL C++ DEVELOPMENT ENVIRONMENTcccoooiiiiiiiiinnn. 5
1.3.1 The WOIrKSPACEuuiieiiieee e 5

1.3.2 The OUIPULPANeccoomm e 6

1.3.3 TheEditorArea ..o 6

1.3:4 MENUBAIS ..ot 6

8 Contents
1.3.5 Rearranging the Developer Studio Environmentc.ccevvvvnne 6

1.3.6 Starting Your First Projectoouviviiiiiiiiiiiie e 7

1.3.7 Creating the Project WOorksSpaceccoeeeeeeiiiiiiiiiiiiiiiiiie e 8

1.3.8 Using the Application Wizard to Create the Application Shell 9

1.3.9 Designing Your Application WindOwccccccoeeeiiiiiiiiiiicieeeeie 12
1.3.10 Adding Code to Your Applicationcooeiiiiiiiiiieinieee e 15

2. CLASS IN CH+.....oeiiriccccrreesrsrrss s s e s s s s e n s s e 19
2.1 FUNDAMENTALS ... 19
200 ClBSS ittt 19

212 OBt e 20

213 INSEANCE .. 20

214 MethO ..o 20

215 MeSSage PasSiNgcccoiieiiiiiiiiiiiiiii e 20

216 INNEMIANCE ..o 21

21.7 Multiple INheritance ... 21

2.1.8 ADSIracCtionouuieeiie e 21

2.1.9 ENCApSUIationuiiiiiiii e 22
2110 POolymOrphiSm ..o 22

2200 T TR B = To 011][Vo PSP 23
2.1.12 Dynamic Binding of Function Callsccoovviiiiiiiciiiiiiiiniee e, 23

2.2 CLASSDEFINITION.....citttiiiieiiiiieiiiee s e s s ne e e e ae e e e e e aaaaaaaaaaaaes 23
2.3 CONSTRUCTORSAND DESTRUCTORSccoiiiiiiiieiiiieeeeeeeeeeeeee 27
2.3.1 Overloading ConstruCtorsoiiiiiiiiiiiei e 30

2.3.2 Default ConStrUCIOruviiiiiiiiiiiiee e 31

2.3.3 CopY CONSIIUCIOISuiiiieieiee e e e e e e e e e e e e eeeeaeeees 32

24 POINTERS TO CLASSESoooeeeeee e a e e 35
25 CLASSESDEFINEDWITHSTRUCTANDUNION..........cceeeveiieen. 37
26 THEKEYWORD THISoooiiiiiiiei e e e e e e e e e e e 37
2.7 STATICMEMBERS ... 38
2.8 INLINEFUNCTIONS ... e e e 39
2.9 ACCESS SPECIFIERSooiiiiiiii e 42

Visual C++ 9

3. OVERLOADING IN CH+oeriiiiiiiiiiirrrnnssssssssssns s sssennnnns 43
3.1 FUNCTION OVERLOADING ..ottt 43
3.2 OPERATOR OVERLOADINGooiiiiiiiieieeiiiee et 47

4. INHERITANCE, POLYMORPHISM & VIRTUAL

FUNCTIONS. ...t rre e re e s e s e e e 60
4.1 WHATISINHERITANCE? ... 60
42 WHATISINHERITED FROMTHE BASE CLASS?.......cceeeeiiiieieee 63
4.3 FEATURES ORADVANTAGES OF INHERITANCEccoovvinnnnn.... 65
44 TYPESOFINHERITANCE ... 68
441 Single INhEritanCecoooiiiee e 70

4.4.2 Multiple INheritancCe ... 71

4.4.3 Multilevel Inheritance ..o 73

45 C++ POLYMORPHISMccoooiiiiiee e 80
T W0t I [011 o Yo [F o3 1o] o ISP 80

452 Features and Advantages of the Concept of Polymorphism 81

453 Types of PolymorphisSmoooriiiiiiiiiiiiee e 82

4.6 VIRTUALFUNCTIONootiiiiiiieece et 82
4.6.1 Whatis a Virtual FUNCHON?oeiiiiiiiiiiiee s 82

4.6.2 Whatis Binding?cccooeiiiiiieeee e 83

46.3 Howdoes a Virtual Function Work?ccoooiviiiiiiiiiiie e, 83

4.6.4 Virtual Constructors and Destructors............cccceeevveiiiiviieeeieiiiiiins 84

4.6.5 C++ Virtual function - Call Mechanismccccooeveiiiiiiiiiiiiiicieeens 86

4.6.6 PureVirtual FUNCHONccciiiiiiiii e 92

5. GETTING STARTED WITH VISUAL C++ 6........cecevivrreenniinnns 97
51 GETTING STARTEDccooiiiiieeeeeeeee s 98
52 LEARNABOUT PROJECTS AND WORKSPACEScccccceeeeeeeees 98
521 Projects in Visual CH+ 6ueieiiiiiiiiiiiiiiiiieiiieeee e 99

53 COMPILINGWITHVISUALCH+6coooviiiiiiiiiieiicee e 99
54 DEBUG OR RELEASE PROJECTS? ..euoiiiiiiiiiieeeeeeeeeeee e 100

5.5 CONFIGURING THE SETTINGSDIALOGSccooiiiiiiieiiiiieeeeee 101

10

7.

Contents

56 HOW TO DEBUG YOUR VISUAL C++APPLICATIONS.................... 102
5.7 MANIPULATING DSP AND DSW FILES DIRECTLYuceeiiiiiieeeeenn. 104
571 DSP and DSW Filesc.uuuiiiiiieiiiiiiieie e 104
5.7.2 Copying DSP and DSW Filesccoovviiiiiiiiccieeieee e, 105
GENERATING A WINDOWS GUI PROGRAM..........ccceeuvnnnneee 106
6.1 PROGRAMMING FORTHEWINDOWS GUIccooeeiiiiiiiiiiiieeeeees 106
6.2 CREATINGAND BUILDING THE PROGRAMcvuiiiiiiiaiiiiieeeeenn. 107
6.2.1 Generating the Source Codeoooiviiiiiiiiiiiiicccceee e, 107
6.2.2 Modifying the Source Codecooviiiiiiiiiiiiiccce e, 110
6.2.3 Building and Running the Program...........cccouuuiiiiiiiiiiie 112
6.3 THE PROGRAM CLASSESANDFILES........cccovviieieieeeeee, 113
6.4 HOW THE PROGRAMWORKScootiiiiiiieieiii e 129
WINDOWS, DIALOG BOXES AND CONTROLS................... 135
7.1 THEWINDOW HIERARCHYooiiiiiiiiieeeeeet e 135
7.2 WINDOW MANAGEMENTooiiiiiiiiiiieeeeeee e 137
7.2.1 The RegisterClass Function and the WNDCLASS Structure 138
7.2.2 Creating a Window through CreateWindowccccccceeviiineenn. 140
7.2.3 Extended Styles and the CreateWindowEx Function..................... 141
7.3 PAINTING WINDOW CONTENTScoiiiiiiiiiiiiiieiiie e 142
7.3.1 The WM_PAINT MESSAJEeveiiiiiiieiiiiiiiiiiiieie et 142
7.3.2 Repainting a Window by Invalidating its Contents 143
7.4 WINDOW MANAGEMENT MESSAGESoouviiiiiieeeie e, 143
7.5 WINDOW CLASSES ... e 145
751 The WIndow Procedure ... 145
7.5.2 SUDCIASSINGcoeiiiiiiiie e 146
7.5.3 Global SUDCIASSINGccoiuuviiiieiiiiiieee e 149
A T S 10T o 1= o F= E=1=3 1 o 152
7.6 DIALOGBOXES ..ot a e e e eenes 154
7.6.1 MoOdal DIi@logs ...cvvvveniieiee et 154

7.6.2 Modeless Dialogscoooiiiiiaiiiiii e 155

Visual C++ 11
7.6.3 MeSSAE BOXES ...evvuviiiciii i 155

7.6.4 Dialog TeMPIAteSuuvuiiiiieii e 156

7.6.5 The Dialog Box Procedureccoooiiiiiiiiiiiiiiiiiei e 156

7.7 COMMONDIALOGSo e a e 156
7.7.1 The Open and Save As Dialogscccuviiiiiiiiiiianiniiieee. 157

7.7.2 The Choose Color Dialogccccovvviiiiiiiieeiee e, 158

7.7.3 The Font Selection Dialogccovviviiiiiiiiiceee e, 159

7.7.4 Dialogs for Printing and Print Setupccccciiiiiiiiiee 160

7.7.5 Text Find and Replace Dialogs...........covvviiiiiiiiiiiiiiiiiiiieee e 161

7.7.6 Common Dialogs Examplecooorriiiiiiiiiiiccccce e, 162

7.7.7 OLE Common Dialogsccooeeeiiiiiieeeeeee e 165

7.8 CONTROLS ... e 165
7.8.1 Static CONMrolS ...cooeiiii e 166

T7.8.2 BUHONS .o 166

7.8.3 Edit CONrOIS .ooeiiieiei i e e e e e e e 166

T7.8.4 LiSt BOXES .ciiiiiiiiiiiii e 167

7.8.5 COMDO BOXES....cciiiiiiiiiiititiie ettt 167

T7.8.6 SCrOlDAIS ...coeiiiiiiiii e 167

7.8.7 Tab CoNtrolscoooiiiiii e 167

7.8.8 Tre@ CONMrOlS ..ccooeiiiiiiie e 167

7.8.9 List CONMrOIS ...ccooeiiiiiiie e 167
7.8.10 Slider CONtrolueeieiiiiieee e 168
7.8. 11 Progress Bars ... 168
7.812 SPINBULIONSoeiiiiiiiiiiii e 168
7.8.13 Rich-text Edit CONtrol.............uuceiiiiiiiiiii e 168
7.8.14 HotKey Controlooeiiiiiiiiie e 168

8. DIALOGS AND PROPERTY SHEETS.......cccccoiimiiiirreceeeees 171
8.1 CONSTRUCTING DIALOGS ..o 171
8.1.1 Adding a Dialog Templateccooiiiiiiiiiiiii e 172

8.1.2 Constructing the Dialog Classccoooiiiiiiiiiiiiiiieeeeeee e 173

8.8.3 Adding Member Variablesccooviiiiiiiiiiiccee e, 175

8.1.4 Class Wizard ReESUISoeene e, 176

12 Contents

8.1.5 InvokiNgthe Dialogcccooeeiiiiiiiiiecieee e 178

8.1.6 Modeless Dialogseiiiiiiiiiieieeeeee e 179

8.2 MORE ON DIALOG DATAEXCHANGE ..., 182
8.2.1 Dialog Data EXChangec.coooiiiiiiiiiiieis e, 182

8.2.2 Dialog Data Validationccoooiiiiiiiiieieeeerre e 182

8.2.3 UsiNg SIMPIE TYPES ...t 183

8.2.4 Using Control Data TYPESeeeeeiieiiieieaiiiiiiiiiieiiiee e 184

8.2.5 Implementing Custom Data TYPesScovvvvverviriiiiiiiiiiciieeeeeeeeee, 184

8.3 DIALOGS AND MESSAGE HANDLINGcovviiiiiiiiicaeeeee e 184

8.4 PROPERTY SHEETS ... 185
8.4.1 Constructing Property Pagesooovvviiieiiiiiiiiiieie e 186

8.4.2 Adding a Property Sheet Objectooooiiiiiiiiiii, 190

8.4.3 CPropertyPage Member Functionsccccoiiiiiiiniiiiis 191

8.4.4 Modeless Property Sheets ... 191

9. MULTIPLE CHOICE QUESTIONS........ccoi e rrea s 197
10. APPENDIX - 1 (EXCEPTION HANDLING)cceeeeiiiirrnnrannnn. 216
11. APPENDIX - Il (C++ TEMPLATES) ...cooeeeciiiirreeeceeeeeeeeeannan 233

13. INDEX ..o s 255

SPECIAL BONUS!

Want These 3 Bonus Books for free?

B " "‘. & g
INTRODUCTION TO 4 S B INTRDDUCTIDN TO

OF THINGS |

*BLOCKCHAIN L0 / ,|NTERNET

(

Get FREE, unlimited access to these
and all of our new books by joining
our community!

SCAN w/ your camera TO JOIN!

®#:@)] or visit

— [

freebie.kartbucket.com

CHAPTER

INTRODUCTION TO
VC++

1.1 WHAT IS MICROSOFT VISUAL C++?

Microsoft Visual C++ (often abbreviated as MSVC) is a commercial integrated
development environment (IDE) product engineered by Microsoft for the C, C++,
and C++/CLI programming languages. It has tools for developing and debugging
C++ code, especially code written for the Microsoft Windows API, the DirectX API,
and the Microsoft .NET Framework.

Visual C++ is one of the most widespread and important languages available today
for developing applications for the Windows operating system. Developed and sold
by Microsoft, Visual C++ is actually an entire development environment.

What this means is that Microsoft first took C++, which is a common, powerful
programming language that can be used to write any kind of application for any kind
of operating system.

They then devised a set of functions written in C++ that allow a programmer to
control the Windows environment. For example, one function might draw a window
on the screen while another might print text in that window. This set of functions is
called the MFC, or Microsoft Foundation Class. (For the more advanced out there,
the MFC functions wrap the Windows API functions, and hence make them easier to
use and object-oriented as well).

Finally, they developed an application that allows a programmer to easily create code
using these MFC functions. This application is what you actually buy and install on
your computer.

ﬁ Zero to Mastery Microsoft Visual in C++

Visual C++ is more complicated than programming in C++ on a text based system for
three main reasons:

1.1.1 Windows Programs are Event-Driven

If you’re used to programming in C++ on a Unix system, for instance, you’re used to
writing a “Main” function that controls the execution of your program. The main
function starts at the top and moves to the bottom, executing each line of code in turn.
This makes program execution very easy to follow.

Windows programs, on the other hand, are driven by events. If the user clicks the
mouse in a certain place or selects a certain menu option, the program performs a
certain task, etc. You can visualize an event-driven program as a collection of functions
that exist in no particular order, and each function is executed by a particular event.
This is incredibly confusing and frustrating because you don’t know where a program
starts or ends.

1.1.2 The MFC

The MFC is extremely complicated and large. Every little thing you do in Windows,
like printing text, displaying an icon etc. requires you to research and learn obscure
functions. Be prepared to use online help extensively.

1.1.3 Visual C++ is Object Oriented

If you’re already a C++ programmer, you’re used to object - oriented programming,
but if you’re a C programmer you may not be. Object orientation means that every
function and variable in a program exist as part of organizational units called objects.
For instance, a database program might contain an object called Record. The Record
object might contain three variables called Name, Address and Phone Number, and a
bunch of functions that allow users to enter and change these pieces of information.
Each time a user adds a new record, a new instance of the record object is created. An
object can contain child objects, which inherit all the properties of the parent object
and add their own as well.

1.2 WHAT’S INCLUDED IN VISUAL C++?

1.2.1 VC++ Developer Studio

The Developer Studio is the core of the Visual C++ product. Itis an integrated application
that provides a complete set of programming tools. The Developer Studio includes a
project manager for keeping track of your program source files and build options, a
text editor for entering program source code and a set of resource editors for designing
program resources, such as menus, dialog boxes, and icons. It also provides

Introduction to VC++ -

programming wizards (AppWizard and ClassWizard), which help you to generate the
basic source code for your programs, define C++ classes, handle Windows messages,
and perform other tasks. You can build and execute your programs from within the
Developer Studio, which automatically runs the optimizing compiler, the incremental
linker, and any other required build tools. You can also debug programs using the
integrated debugger, and you can view and manage program symbols and C++ classes
using the ClassView window.

1.2.2 VC++ Runtime Libraries

The Visual C++ runtime libraries provide standard functions such as strcpy and sprintf,
which you can call from either C or C++ programs. If you perform a custom installation
of Visual C++, the Setup program lets you select the specific library version or versions
that you want to copy to your hard disk (static, shared, or single-threaded). You can
also opt to copy the runtime library source code.

1.2.3 VC++ MFC and Template Libraries

The Microsoft Foundation Classes (the MFC) is an extensive C++ class library designed
for creating Windows GUI (graphical user interface) programs. The MFC simplifies
writing these programs, and it provides many high-level features that can save you
considerable coding effort. Although you can build Windows GUI programs in C or
C++ without using the MFC.

You can also install the Microsoft Active Template Library (ATL), which is a set of
template-based C++ classes that facilitate creating ActiveX controls and other types
of COM (Component Object Model) objects. The ATL provides an alternative to
using the MFC to create COM objects. Objects created using the ATL tend to be
smaller and faster than those created using the MFC. However, the ATL doesn’t
provide the extensive set of built-in features or the ease of programming that the MFC
offers.

1.2.4 VC++ Build Tools

This component of Visual C++ consists of the optimizing C/C++ compiler, the
incremental linker, the resource compiler (for preparing program resources such
as menus and dialog boxes), and the other tools required to generate 32-bit
Windows programs. You generally run these tools through the Microsoft
Developer Studio.

1.2.5 ActiveX

This component installs ActiveX controls that you can add to the Windows programs
you create using the Microsoft Foundation Classes library. ActiveX controls are reusable
software components that can perform a wide variety of tasks.

ﬁ Zero to Mastery Microsoft Visual in C++

1.2.6 Data Access

The Data Access component includes database drivers, controls, and other tools that
are used by Visual C++, and that allow you to develop Windows database programs.
Although database programming isn’t covered in this book, you must select those
Data Access subcomponents that are initially selected because they form an essential
part of Visual C++ (if you deselect any of them, Setup displays a warning).

1.2.7 Enterprise Tools
This component consists of the following enterprise tools:
* Microsoft Visual SourceSafe 6.0 Client
* Application Performance Explorer
* Repository
* Visual Component Manager
» Self-installing .exe Redistributable Files
* Visual Basic Enterprise Components
e VC++ Enterprise Tools
* Microsoft Visual Modeler

e Visual Studio Analyzer

1.2.8 Graphics

This component consists of graphics elements (metafiles, bitmaps, cursors and icons)
as well as video clips that you can add to your programs.

1.2.9 Tools

The tools component of Visual C++ comprises the following supplemental development
tools:

* API Text Viewer

* MS Info

* MFC Trace Utility

* Spy++

* Win 32 SDK Tools

* OLE/Com Object Viewer

* ActiveX Control Test Container
e VC Error Lookup

Introduction to VC++ n’

1.3 THE VISUAL C++ DEVELOPMENT ENVIRONMENT

Before you begin your quick tour around the Visual C++ development environment,
you should start Visual C++ on your computer so that you can see firsthand how each
of the areas are arranged and how you can change and alter that arrangement yourself.

After Developer Studio (the Microsoft Visual development environment) starts, you
see a window that looks like Figure 1.1. Each of the areas has a specific purpose in the
Developer Studio environment. You can rearrange these areas to customize the
Developer Studio environment so that it suits your particular development needs.

1.3.1 The Workspace

When you start Visual C++ for the first time, an area on the left side of Developer
Studio looks like it is taking up a lot of real estate and providing little to show for it.
This area is known as the workspace, and it is your key to navigating the various
pieces and parts of your development projects. The workspace allows you to view the
parts of your application in three different ways:

¢ Class View allows you to navigate and manipulate your source code on a C++
class level.

* Resource View allows you to find and edit each of the various resources in your
application, including dialog window designs, icons and menus.

« File View allows you to view and navigate all the files that make up your appli-
cation.

e [W= o e vl [ods 'wied= kb

f r nEF & 2000000 Flm

| || o | 1 i
mE

ml ak

T -~ i F L N o

Hidady

Figure 1.1: The visual C++ opening screen

ﬁ Zero to Mastery Microsoft Visual in C++

1.3.2 The Output Pane

The Output pane might not be visible when you start Visual C++ for the first time.
After you compile your first application, it appears at the bottom of the Developer
Studio environment and remains open until you choose to close it. The Output pane is
where Developer Studio provides any information that it needs to give you; where
you see all the compiler progress statements, warnings, and error messages; and where
the Visual C++ debugger displays all the variables with their current values as you
step through your code. After you close the Output pane, it reopens itself when Visual
C++ has any message that it needs to display for you.

1.3.3 The Editor Area

The area on the right side of the Developer Studio environment is the editor area.
This is the area where you perform all your editing when using Visual C++, where the
code editor windows display when you edit C++ source code, and where the window
painter displays when you design a dialog box. The editor area is even where the icon
painter displays when you design the icons for use in your applications. The editor
area is basically the entire Developer Studio area that is not otherwise occupied by
panes, menus or toolbars.

1.3.4 Menu Bars

The first time you run Visual C++, three toolbars display just below the menu bar.
Many other toolbars are available in Visual C++, and you can customize and create
your own toolbars to accommodate how you best work. The three toolbars that are
initially open are the following:

¢ The Standard toolbar contains most of the standard tools for opening and saving
files, cutting, copying, pasting, and a variety of other commands that you are
likely to find useful.

¢ The WizardBar toolbar enables you to perform a number of Class Wizard actions
without opening the Class Wizard.

¢ The Build minibar provides you with the build and run commands that you are
most likely to use as you develop and test your applications. The full Build
toolbar also lets you switch between multiple build configurations (such as
between the Debug and Release build configurations).

1.3.5 Rearranging the Developer Studio Environment

The Developer Studio provides two easy ways Lo rearrange your development
environment. The first is by right-clicking your mouse over the toolbar area. This
action opens the pop-up menu shown in Figure 1.2, allowing you to turn on and off
various toolbars and panes.

Introduction to VC++ -

[v Standard
Build

[v Build MiniBar
ATL
Resounce
Edit
Debug
Browse

[w WizardBar

Customize...

Figure 1.2: Toolbar on and off menu

Another way that you can easily rearrange your development environment is to grab
the double bars at the left end of any of the toolbars or panes with the mouse. You can
drag the toolbars away from where they are currently docked, making them floating
toolbars, as in Figure 1.3. You can drag these toolbars (and panes) to any other edge
of the Developer Studio to dock them in a new spot. Even when the toolbars are
docked, you can use the double bars to drag the toolbar left and right to place the
toolbar where you want it to be located.

Figure 1.3: Example of a floating minibar

Note: On the workspace and Output panes, the double bars that you can use to drag the pane
around the Developer Studio environment might appear on the top of the pane or on the left
side, depending on how and where the pane is docked.

1.3.6 Starting Your First Project

For your first Visual C++ application, you are going to create a simple application
that presents the user with two buttons as in Figure 1.4. The first button will present
the user with a simple greeting message, shown in Figure 1.5, and the second button
will close the application. In building this application, you will need to do the following
things:

ﬁ Zero to Mastery Microsoft Visual in C++

1. Create a new project workspace.

Use the Application Wizard to create the application framework.

. Rearrange the dialog that is automatically created by the Application Wizard to

resemble how you want the application to look.

Add the C++ code to show the greeting to the user.

. Create a new icon for the application.

Close |

Figure 1.4: Your first Visual C++ application

Hello. This iz my first Yisual C++ Apphcabaon

Figure 1.5: If the user clicks the first button, a simple greeting is shown

1.3.7 Creating the Project Workspace

Every application development project needs its own project workspace in Visual
C++. The workspace includes the directories where the application source code is
kept, as well as the directories where the various build configuration files are located.
You can create a new project workspace by following these steps:

1. Select File | New. This opens the New Wizard shown in Figure 1.6.

2. On the Projects tab, select MFC AppWizard (exe).

3.

4. Click OK. This causes the New Wizard to do two things:Create a project directory

Type a name for your project, such as Hello, in the Project Name field.

(specified in the Location field) and then start the AppWizard.

Introduction to VC++ n’

Fiez Pmoects |W|:rlc=:|u: | 8=t Documents I

TYATL COM Appiizard Phoject perme
e st S phw 23 |

CiewStudio Add-r Wioard

P Exlercled Slorsd Precedaie App'veand Lizalicn

154F1 Extersion Wizard |DAMTVS MY P ciects® _'_'.J
f W sk
WL Aehwe Coninatay ead
i) MFC Apphofizard [dl] ' Cleae new woksnace
SR i Apptaimars [mea] £ B dd e oaurey slann
T Ltisky Fropect e o
L@ |"WinAZ? Appbcatinn
| l

| |Win32 Canscle Applcation
&) Win3? Dynamc-Link Libeany
E'w’n&? Stakez Librany

Figure 1.6: The New Wizard

1.3.8 Using the Application Wizard to Create the Application Shell

The AppWizard asks you a series of questions about what type of application you are
building and what features and functionality you need. It uses this information to
create a shell of an application that you can immediately compile and run. This shell
provides you with the basic infrastructure that you need to build your application
around. You will see how this works as you follow these steps:

1. In Step 1 of the AppWizard, specify that you want to create a Dialog-based
application. Click Next at the bottom of the wizard.

2. In Step 2 of the AppWizard, the wizard asks you about a number of features that
you can include in your application. You can uncheck the option for including
support for ActiveX controls il you will not be using any ActiveX controls in
your application. Because you won’t be using any ActiveX controls in today’s
application, go ahead and uncheck this box.

3. In the field near the bottom of the wizard, delete the project name (Hello) and
type in the title that you want to appear in the title bar of the main application
window, such as My First Visual C++ Application. Click Next at the bottom of
the wizard.

ﬁ Zero to Mastery Microsoft Visual in C++

4. In Step 3 of the AppWizard, leave the defaults for including source file comments
and using the MFC library as a DLL. Click Next at the bottom of the wizard to
proceed to the final AppWizard step.

. The final step of the AppWizard shows you the C++ classes that the AppWizard
will create for your application. Click Finish to let AppWizard generate your
application shell.

. Before AppWizard creates your application shell, it presents you with a list of
what it is going to put into the application shell, as shown in Figure 1.7, based
on the options you selected when going through the AppWizard. Click OK and

AppWizard generates your application.

Hew Project Information

Appwzard wil craate a new skelston project with the following speciications:

E|

Applcation type of Dapl:
Disbog-8ased Application targeting
Win32

Clazzes to be created:
Application: CDayl App in Dayl.h and Dayl.cpp
Diglog: CO&Y100g in DaylDig.h and Day1DIg cpp

Features:
+ About boxt on system merw
+ 30 Condrols
+ Uzes shared DLL mplementation [MFC42.DLL)
+ Localzable text
English [Urited 5tates]

Project Dinectony:
D:AMSVS\MyProsects\Day

Figure 1.7: The New Project Information screen

7. After the AppWizard generates your application shell, you are returned to the

Developer Studio environment. You will notice that the workspace pane now
presents you with a tree view of the classes in your application shell, as in
Figure 1.8. You might also be presented with the main dialog window in the
editor area of the Developer Studio area.

Introduction to VC++ ﬁ

8. Select Build | Build Hello.exe to compile your application.

9. As the Visual C++ compiler builds your application, you see progress and other
compiler messages scroll by in the output pane. After your application is built,
the output pane should display a message telling you that there were no errors or
warnings, as in Figure 1.9.

« Doyl - Micssalt Viessl Los

||Ee G Yew frem Bremct Qud Laou Teok Window koo
(2 sE@|: e 2. = [nEE @l ™
[T=% o s L T ;|3-| N o
* 0wt domees]
F = Ih B
Ao)
Mo
3
8 o |
= H
F m
4P
=l N
=H
ah
=
82 b | G o] 5] Fifom] H.
E s ol [e e
L -
|
J:mwﬁi—n-—--m ! N o
L FrEe BT A

Figure 1.8: Your workspace with a tree view of the project’s classes

| e Edh vaw et et foké Laros Took imdew bip
(& zmals me - 2 mEE Gl E1E"
| ElEcam el Z][& thariDl A - [
E
1t EX Dyl classes
[T — -]
: L]
& m
i L5
=8
2 Ol 5] Fsouacevion | =) Fiiow | gm
- =
[T Ea s === = cE
g]’.ulluns :I

0 arror{s). 0 warning(o)

[80 G Ox0 [FEAD 4

Figure 1.9: The output pane displays any compiler errors

n Zero to Mastery Microsoft Visual in C++

10. Select Build | Execute Hello.exe to run your application.

11. Your application presents a dialog with a TODO message and OK and Cancel
buttons, as shown in Figure 1.10. You can click either button to close the
application.

{:_ My First Visual C++ Application

TODD: Place dialog controls hete.

Figure 1.10: The unmodified application shell

1.3.9 Designing Your Application Window

Now that you have a running application shell, you need to turn your focus to the
window layout of your application. Even though the main dialog window may already
be available for painting in the editor area, you should still navigate to find the dialog
window in the workspace so that you can easily find the window in subsequent develop-
ment efforts. To redesign the layout of your application dialog, follow these steps:

1. Select the Resource View tab in the workspace pane, as in Figure 1.11.

o Dawl - Mecsozoll Yisual L+

|Fm Bt Naw b Froect Beld Iook windie Hew

& | Bl - EEE S = 'ﬂ!.
T | T =l & el - |-=_ L
O IR 0o o - 10D DAYT_DIALOG (Db

1 1 Doy i | . PRI TR Lon

TORE Pt dhabg corio b

-gm.lgmm.lgFm.ul
Lass

Y FAFR FEHL|=L 2
Hllinkicg -
- lnkip =]

Dyl . ane 0 arror{e). 0 varning(e)

1 Fuild o Dabup b Fhied i Fikes 8 3 Fidin Films 2 [0] | l]j
Pieady

Figure 1.11: The resource view tab in the workspace pane

Introduction to VC++ ﬁ

2. Expand the resources tree to display the available dialogs. At this point, you can
double click the IDD_DAY1_DIALOG dialog to open the window in the
Developer Studio editor area.

3. Select the text displayed in the dialog and delete it using the Delete key.

4. Select the Cancel button, drag it down to the bottom of the dialog and resize it
so that it is the full width of the layout area of the window, as in Figure 1.12.

My First Visual C++ Application]|

Figure 1.12: Positioning the Cancel button

5. Right-click the mouse over the Cancel button, opening the pop-up menu in
Figure 1.13. Select Properties from the menu, and the properties dialog in Figure
1.14 opens.

to Daw] - Mgiosol Visual Les
|fie Bt am b Poest Bub Lok To Wirdas e
& FES Ene 2.0 O R 2
[CDenCi | [=][Em_CLCREL = R [EE
e L BE= [hast i - 1DD_DAT1_DIALDE [Dialog] -
£ i Day] eanamees * =
100 SROLTROX
B Shrmg Takie o =
) Viersiony gm
w E
: B
- -
. Cancel Ll ==
B3 Capw
== Clanaien: | [Hnﬂuwph- dk;‘hhﬂ: L
8015 s 2 B |=ne |':=E| Cie fo Cordert
ST akins B chepn il e
5 g Ts P

Deyl.sws - 0 ervor{s). 0 varzisgis) T Cueck M
Mnemanicy

D, 5o | Fiohg i s 03, P i 4| *:ﬂﬂ“‘*'
5P o Bopeste

Figure 1.13: Right-clicking the mouse to open a pop-up menu

ﬁ Zero to Mastery Microsoft Visual in C++

Puzh Button Propedties

A R General | Styles | Etended Styes |

1D: m vI LCaphar; {I:ancel
B Vigible ™ Group [Help D
[Disgbled ¥ Tabstop [%

Figure 1.14: The Cancel button properties dialog

6. Change the value in the Caption field to &Close. Close the properties dialog by
clicking the Close icon in the upper-right corner of the dialog.

7. Move and resize the OK button to around the middle of the window, as in

Figure 1.15.

My First Visual C++ Application x]|

naom
e
i m |

Cloze

Figure 1.15: Positioning the OK button
8. On the OK button properties dialog, change the ID value to IDHELLO and the
caption to &Hello.

9. Now when you compile and run your application, it will look like what you’ve
just designed, as shown in Figure 1.16.

£‘_ My First Visual C++ Application

Close |

Figure 1.16: Running your redesigned application

Introduction to VC++ nf

Note: If you play with your application, you will notice that the Close button still closes the
application. However, the Hello button no longer does anything because you changed the ID of
the button. MFC applications contain a series of macros in the source code that determine which
functions to call based on the ID and event message of each control in the application. Because
you changed the ID of the Hello button, these macros no longer know which function to call
when the button is clicked.

1.3.10 Adding Code to Your Application

You can attach code to your dialog through the Visual C++ Class Wizard. You can
use the Class Wizard to build the table of Windows messages that the application
might receive, including the functions they should be passed to for processing, that
the MFC macros use for attaching functionality to window controls. You can attach
the functionality for this first application by following these steps:

1. To attach some functionality to the Hello button, right-click over the button and
select Class Wizard from the pop-up menu.

2. If you had the Hello button selected when you opened the Class Wizard, it is
already selected in the list of available Object IDs, as in Figure 1.17.

Message Maps | Menbervariabies | aumation | ActivsxEvente | Clessinfo |
Prajeck: Class pame: Add Claes.. ~ |
| |CCaviDio = .
Deh. ADaw D aw10ligh, DA \Day1 \D a1 0ig.epp 4|
Cibyerct e Marsages 2 L I I
Loy 10g Bt_CLICKED

DCANCEL BM_DOUBLECLICEED £X8 Fode
Weerber U tions: :

¥ DoDaeEschanoe -

W DrlritDicleg DM_WM_INITDVALDG

W DnPahi DM WwH_PAINT

W Onlduzndliaglcon i _LIJERYUHALILOMN

W OnZe:Cormmand O 'l S S COMBAND LI

Desscrption:

(1] 4 Cancel

Figure 1.17: The Class Wizard

Zero to Mastery Microsoft Visual in C++

3

. With IDHELLO selected in the Object ID list, select BN_CLICKED in the list
of messages and click Add Function. This opens the Add Member Function
dialog shown in Figure 1.18. This dialog contains a suggestion for the function
name. Click OK to create the function and add it to the message map.

Add Member Function EHE|

Member function pame: 0K
0 G

Messane: BM_CLICKED
Dbgect ID: IDHELLD

Cancel

4

Figure 1.18: The Class Wizard Add Member Function dialog

. After the function is added for the click message on the Hello button, select the
OnHello function in the list of available functions, as in Figure 1.19. Click the
Edit Code button so that your cursor is positioned in the source code for the
function, right at the position where you should add your functionality.

Metsage aps | Merbervariables | automatior: | Activs<Events | Clessinto |

Droject:

Class pame:

[Day1

Db A0y WDaw1Dlgb, DA D) D ay 1 Dbg cpp
Martagas

Oibyert iz

[= |

LDy 10ig
IDICERCE] Br_DOLBLECLICEED

Mermher JUnslinng:

¥ DoDaeEschange

] 07 IDHELLO:BM_CLICKED

"W OrlritDiglog Do Wl _IMITDOALD G

W OnPanl DN WH_PAINT

W OnBusmlyaccor 0w QUEFYDRAGICON d
Deserplion; Indicales the weer clicked a bukon

ok | Cancel

Figure 1.19: The list of available functions in the Class Wizard

Introduction to VC++ ﬁ

5. Add the code in Listing 1.1 just below the TODO comment line, as shown in
Figure 1.20.

- Dayl - Hiesssal Visssl Ced - [Dey1Dkgepp]
_Emummmniﬂmmuub e
[gE@ |t me o - DEE Gl =l
[Tl =] b e = o i :I].'i TR B N
ECTESO0R Clhayllily: Onlusrylcasiconmil b j
=y iray| resouwDEs wegrn CHEOESOEY w klocs
- i Dl t
DAl _aie | TR
a AR P ChawiDig: OnHelic
ik] bace i
v | Eineg Nase
- L] Vemon
-
lqﬂm—|ﬂnmw|_grwrnl Lald ¥
ﬂ Fioking = E_
Dawl cxn 0 exzrar(al. § varmiag(a)
i
h B TR g, P T 1, Pind et T 4| i [
Rosds AT [P [e
W | B R AN | @lFobig Feyred | Bt PO e i [e M vie EL

Figure 1.20: Source code view where you insert Listing 1.1

1: Void CHelloDlg::OnHello()
2:{
3: // TODO: Add your control notification handler code here

U
// MY CODE STARTS HERE
M

R AN U

/I Say hello to the user
10: MessageBox(“Hello. This is my first Visual C++ Application!”);

ﬁ Zero to Mastery Microsoft Visual in C++

11:

2. Jhiiiiin

13: // MY CODE ENDS HERE
4: [

15:}

6. When you compile and run your application, the Hello button should display the
message shown in Figure 1.21.

Hello, Thiz iz my frst Visual Ce+ Apphcation|

Figure 1.21: Now your application will say hello to you

REVIEW EXERCISE

How one can change the caption of a button?
What can to do with C++ AppWizard?

What all events can be associated with a button?

What exactly is Microsoft Visual C++ all about?
What are MFCs?

Visual C++ is object oriented. Comment.

What is included in Visual C++?

Describe the workspace in Visual C++.

A A O e

Write a simple application that displays a message box on the screen.

CHAPTER

CLASS IN C++

2.1 FUNDAMENTALS

2.1.1 Class

Object-oriented programming (OOPS) is a programming paradigm that uses ‘objects’
and their interactions to design applications and computer programs. Programming
techniques may include features such as encapsulation, modularity, polymorphism,
and inheritance. It was not commonly used in mainstream software application
development until the early 1990s. Many modern programming languages now support
OOPS.

Following are the fundamental concepts in OOPS:

Defines the abstract characteristics of a thing (object), including the thing’s
characteristics (its attributes, fields or properties) and the thing’s behaviors (the things
it can do, or methods, operations or features). One might say that a class is a blueprint
or factory that describes the nature of something. For example, the class Dog would
consist of traits shared by all dogs, such as breed and fur color (characteristics), and
the ability to bark and sit (behaviors). Classes provide modularity and structure in an
object-oriented computer program. A class should typically be recognizable to a non-
programmer familiar with the problem domain, meaning that the characteristics of
the class should make sense in context. Also, the code for a class should be relatively
self-contained (generally using encapsulation). Collectively, the properties and methods
defined by a class are called members.

ﬁ Zero to Mastery Microsoft Visual in C++

2.1.2 Object

An object doesn’t exist until an instance of the class has been created; the class is just
a definition. When the object is physically created, space for that object is allocated in
RAM. Itis possible to have multiple objects created from one class. It can be considered
as a pattern (exemplar) of a class. The class of Dog defines all possible dogs by listing
the characteristics and behaviour they can have; the object Lassie is one particular
dog, with particular versions of the characteristics. A Dog has fur; Lassie has brown-
and-white fur.

2.1.3 Instance

2.1.4 Method

One can have an instance of a class or a particular object. The instance is the actual
object created at runtime. In programmer jargon, the Lassie object is an instance of
the Dog class. The set of values of the attributes of a particular object is called its
state. The object consists of state and the behaviour that’s defined in the object’s class.

In language, methods (sometimes referred to as ‘functions’) are verbs. Lassie, being
a Dog, has the ability to bark. So bark() is one of Lassie’s methods. She may have
other methods as well, for example sit() or eat() or walk() or save_timmy(). Within
the program, using a method usually affects only one particular object; all Dogs can
bark, but you need only one particular dog to do the barking.

2.1.5 Message Passing

“The process by which an object sends data to another object or asks the other object
to invoke a method.” Also known to some programming languages as interfacing. For
example, the object called Breeder may tell the Lassie object to sit by passing a ‘sit’
message which invokes Lassie’s ‘sit” method.

In the terminology of object-oriented programming languages, a message is the single
means to pass control to an object. If the object ‘responds’ to the message, it has a
method for that message. In pure object-oriented programming, message passing is
performed exclusively through a dynamic dispatch strategy. Sending the same message
to an object twice will usually result in the object applying the method twice. Two
messages are considered to be the same message type, if the name and the arguments
of the message are identical. Objects can send messages to other objects {rom within
their method bodies. Message passing enables extreme late binding in systems.

Alan Kay has argued that message passing is a concept more important than objects in
his view of object-oriented programming, however people often miss the point and
place too much emphasis on objects themselves and not enough on the messages being

sent between them. The syntax varies between languages, for example, In Java code-
level message passing corresponds to “method calling”. Some dynamic languages use
double-dispatch or multi-dispatch to find and pass messages.

2.1.6 Inheritance

Inheritance is the mechanism whereby specific classes are made from more general
ones. The child or derived class inherits all the features of its parent or base class, and
is free to add features of its own. In addition, this derived class may be used as the
base class of an even more specialized class. Inheritance, or derivation, provides a
clean mechanism whereby common classes can share their common features, rather
than having to rewrite them. For example, consider a graph class which is represented
by edges and vertices and some (abstract) method of traversal. Next, consider a tree
class which is a special form of a graph. We can simply derive tree from graph and the
tree class automatically inherits the concept of edges, vertices and traversal {from the
graph class. We can then restrict how edges and vertices are connected within the tree
class so that it represents the true nature of a tree. Inheritance is supported in C++ by
placing the name of the base class after the name of the derived class when the derived
class is declared. It should be noted that a standard conversion occurs in C++ when a
pointer or reference to a base class is assigned a pointer or reference to a derived class.

2.1.7 Multiple Inheritance

Itis a type of inheritance from more than one ancestor class, neither of these ancestors
being an ancestor of the other. For example, independent classes could define Dogs
and Cats, and a Chimera object could be created {rom these two which inherits all the
(multiple) behavior of cats and dogs. This is not always supported, as it can be hard
both to implement and to use well.

2.1.8 Abstraction

Abstraction is simplifying complex reality by modeling classes appropriate to the
problem, and working at the most appropriate level of inheritance for a given aspect
of the problem. For example, Lassie the Dog may be treated as a Dog much of the
time, a Collie when necessary to access Collie-specific attributes or behaviors, and as
an Animal (perhaps the parent class of Dog) when counting Timmy’s pets.

Abstraction is also achieved through Composition. For example, a class Car would be
made up of an Engine, Gearbox, Steering objects, and many more components. To
build the Car class, one does not need to know how the different components work
internally, but only how to interface with them, i.e., send messages to them, receive
messages from them, and perhaps make the different objects composing the class
interact with each other.

ﬁ Zero to Mastery Microsoft Visual in C++

2.1.9 Encapsulation

Data encapsulation, sometimes referred to as data hiding, is the mechanism whereby
the implementation details of a class are kept hidden from the user. The user can only
perform a restricted set of operations on the hidden members of the class by executing
special functions commonly called methods. The actions performed by the methods
are determined by the designer of the class, who must be careful not to make the
methods either overly flexible or too restrictive. This idea of hiding the details away
from the user and providing a restricted, clearly defined interface is the underlying
theme behind the concept of an abstract data type.

The advantage of using data encapsulation comes when the implementation of the
class changes but the inferface remains the same. For example, to create a stack class
which can contain integers, the designer may choose to implement it with an array,
which is hidden from the user of the class. The designer then writes the push() and
pop() methods which puts integers into the array and removes them from the array
respectively. These methods are made accessible to the user. Should an attempt be
made by the user to access the array directly, a compile time error will result. Now,
should the designer decide to change the stack’s implementation to a linked list, the
array can simply be replaced with a linked list and the push() and pop() methods
rewritten so that they manipulate the linked list instead of the array. The code which
the user has written to manipulate the stack is still valid because it was not given direct
access to the array to begin with.

The concept of data encapsulation is supported in C++ through the use of the public,
protected and private keywords which are placed in the declaration of the class. Anything
in the class placed after the public keyword is accessible to all the users of the class;
elements placed after the protected keyword are accessible only to the methods of the
class or classes derived from that class; elements placed after the private keyword are
accessible only to the methods of the class.

2.1.10 Polymorphism

Polymorphism allows the programmer to treat derived class members just like their
parent class’ members. More precisely, Polymorphism in object-oriented programming
is the ability of objects belonging to different data types to respond to method calls of
methods of the same name, each one according to an appropriate type-specific behavior.
One method, or an operator such as +, -, or *, can be abstractly applied in many
different situations. If a Dog is commanded to speak(), this may elicit a bark(). However,
if a Pig is commanded to speak(), this may elicit an oink(). They both inherit speak()
from Animal, but their derived class methods override the methods of the parent
class; this is Overriding Polymorphism. Overloading Polymorphism is the use of one
method signature, or one operator such as ‘+’, to perform several different functions
depending on the implementation. The ‘+” operator, for example, may be used to
perform integer addition, float addition, list concatenation, or string concatenation.

Any two subclasses of Number, such as Integer and Double, are expected to add
together properly in an OOPS language. The language must therefore overload the
addition operator, ‘+’, to work this way. This helps improve code readability. How
this is implemented varies from language to language, but most OOPS languages
support at least some level of overloading polymorphism. Many OOPS languages also
support Parametric Polymorphism, where code is written without mention of any
specific type and thus can be used transparently with any number of new types. Pointers
are an example of a simple polymorphic routine that can be used with many different
types of objects.

2.1.11 Decoupling

Decoupling allows for the separation of object interactions from classes and inheritance
into distinct layers of abstraction. A common use of decoupling is to polymorphically
decouple the encapsulation, which is the practice of using reusable code to prevent
discrete code modules from interacting with each other. Not all of the above concepts
are to be found in all object-oriented programming languages, and so object-oriented
programming that uses classes is called sometimes class-based programming. In
particular, prototype-based programming does not typically use classes. As a result, a
significantly different yet analogous terminology is used to define the concepts of
object and instance.

2.1.12 Dynamic Binding of Function Calls

Dynamic binding is one of the main features of polymorphism. Quite often when
using inheritance, one will discover that a series of classes share a common behaviour,
but how that behaviour is implemented is different from class to class. Such a situation
is a prime candidate for the use of dynamic or runtime binding which is also referred
to as polymorphism.

2.2 CLASS DEFINITION

A class is an expanded concept of a data structure: Instead of holding only data, it can
hold both data and functions. An object is an instantiation of a class. In terms of
variables, a class would be the type, and an object would be the variable. A class is a
definition of an object. I’s a type just like int. A class resembles a struct with just one
difference: all struct members are public by default. All class members are private.

Remember: A class is a type, and an object of this class is just a variable. Before we
can use an object, it must be created. The simplest definition of a class is

class name {

// members

}

ﬁ Zero to Mastery Microsoft Visual in C++

Classes are generally declared using the keyword class, with the following format:

class class_name {
access_specifier_1:
memberl;
access_specifier_2:
member?2;

} object_names;

Where class_name is a valid identifier for the class, object_names is an optional list of
names for objects of this class. The body of the declaration can contain members that
can be either data or function declarations, and optionally access specifiers.

All is very similar to the declaration on data structures, except that we can now
include also functions and members, but also this new thing called access specifier.
An access specifier is one of the following three keywords: private, public or protected.
These specifiers modify the access rights that the members following them acquire:

¢ Private members of a class are accessible only from within other members of the
same class or from their friends.

¢ Protected members are accessible from members of their same class and from
their friends, but also from members of their derived classes.

¢ Finally, public members are accessible from anywhere where the object s visible.

By default, all members of a class declared with the class keyword have private access
for all its members. Therefore, any member that is declared before one other class
specifier automatically has private access. For example:
class CRectangle {
int X, y;
public:
void set_values (int,int);
int area (void);
} rect;
Declares a class (i.e., a type) called CRectangle and an object (i.e., a variable) of this
class called rect. This class contains four members: two data members of type int
(member x and member y) with private access (because private is the default access
level) and two member functions with public access: set_values() and area(), of which
for now we have only included their declaration, not their definition. Notice the
difference between the class name and the object name: In the previous example,
CRectangle was the class name (i.e., the type), whereas rect was an object of type

CRectangle. It is the same relationship int and a have in the following declaration:
int a;

where int is the type name (the class) and a is the variable name (the object).

After the previous declarations of CRectangle and rect, we can refer within the body
of the program to any of the public members of the object rect as if they were normal
functions or normal variables, just by putting the object’s name followed by a dot (.)
and then the name of the member. All very similar to what we did with plain data
structures before. For example:

rect.set_values (3,4);

myarea = rect.area();
The only members of rect that we cannot access from the body of our program outside

the class are x and y, since they have private access and they can only be referred from
within other members of that same class.

Here is the complete example of class CRectangle:

/ classes example area: 12
#include <iostream>

using namespace std;

class CRectangle {
int x, y;
public:
void set_values (int,int);

int area () {return (x*y);}

|

void CRectangle::set_values (int a, int b) {
X =a;
y = b

1

int main () {
CRectangle rect;
rect.set_values (3,4);
cout << “area: “ << rect.area();

return O;
!

The most important new thing in this code is the operator of scope (::, two colons)
included in the definition of set_values(). It is used to define a member of a class from
outside the class definition itself.

ﬁ Zero to Mastery Microsoft Visual in C++

You may notice that the definition of the member function area() has been included
directly within the definition of the CRectangle class given its extreme simplicity,
whereas set_values() has only its prototype declared within the class, butits definition
is outside it. In this outside declaration, we must use the operator of scope (::) to
specify that we are defining a function that is a member of the class CRectangle and
not a regular global function.

The specifies the class to which the member being declared belongs, granting exactly
the same scope properties as if this function definition was directly included within
the class definition. For example, in the function set_values() of the previous code,
we have been able to use the variables x and y, which are private members of class
CRectangle, which means they are only accessible from other members of their class.

The only difference between defining a class member function completely within its
class or to include only the prototype and later its definition, is that in the first case the
function will automatically be considered an inline member function by the compiler,
while in the second it will be a normal (not-inline) class member function, which in
fact supposes no difference in behavior.

Members x and y have private access (remember that if nothing else is said, all members
of a class defined with keyword class have private access). By declaring them private
we deny access to them from anywhere outside the class. This makes sense, since we
have already defined a member function to set values for those members within the
object: the member function set_values(). Therefore, the rest of the program does not
need to have direct access to them. Perhaps in a so simple example as this, it is
difficult to see an utility in protecting those two variables, but in greater projects it
may be very important that values cannot be modified in an unexpected way (unexpected
from the point of view of the object).

One of the greater advantages of a class is that, as any other type, we can declare
several objects of it. For example, following with the previous example of class
CRectangle, we could have declared the object rectb in addition to the object rect:

/I example: one class, two objects rect area: 12

#include <iostream> rectb area: 30

using namespace std;

class CRectangle {
int X, y;
public:
void set_values (int,int);
int area () {return (x*y);}
3

void CRectangle::set_values (int a, int b) {

int main () {
CRectangle rect, rectb; rect.set_values (3,4);
rectb.set_values (5,6);
cout << “rect area: ““ << rect.area() << endl;
cout << “rectb area: “ << rectb.area() << endl,
return O;

}

In this concrete case, the class (type of the objects) to which we are talking about is
CRectangle, of which there are two instances or objects: rect and rectb. Each one of
them has its own member variables and member functions.

Notice that the call to rect.area() does not give the same result as the call to rectb.area().
This is because each object of class CRectangle has its own variables x and y, as they,
in some way, have also their own function members set_value() and area() that each
uses its object’s own variables to operate.

That is the basic concept of object-oriented programming: Data and functions are
both members of the object. We no longer use sets of global variables that we pass
from one function to another as parameters, but instead we handle objects that have
their own data and functions embedded as members. Notice that we have not had to
give any parameters in any of the calls to rect.area or rectb.area. Those member
functions directly used the data members of their respective objects rect and rectb.

Classes vs. Structures

Classes and structures are syntactically similar. In C++, the role of the structure was
expanded, making it an alternative way to specify a class. In C, the structures include
data members, in C++ they are expanded to have function members as well. This
makes structures in C++ and classes to be virtually same. The only difference between
a C++ struct and a class is that, by default all the struct members are public while by
default class members are private.

2..3 CONSTRUCTORS AND DESTRUCTORS

Objects generally need to initialize variables or assign dynamic memory during their
process of creation to become operative and to avoid returning unexpected values
during their execution. For example, what would happen if in the previous example
we called the member function area() before having called function set_values()?

ﬁ Zero to Mastery Microsoft Visual in C++

Probably we would have gotten an undetermined result since the members x and y
would have never been assigned a value.

In order to avoid that, a class can include a special function called constructor, which
is automatically called whenever a new object of this class is created. This constructor
function must have the same name as the class, and cannot have any return type; not
even void.

We are going to implement CRectangle including a constructor:

/I example: class constructor rect area: 12
#include <iostream> rectb area: 30
using namespace std;
class CRectangle {
int width, height;
public:
CRectangle (int,int);
int area () {return (width*height);}
|
CRectangle::CRectangle (int a, int b) {
width = a;
height = b;
}
int main () {
CRectangle rect (3,4);
CRectangle rectb (5,6);
cout << “rect area: ““ << rect.area() << endl;
cout << “rectb area: “ << rectb.area() << endl;
return 0;

}

As you can see, the result of this example is identical to the previous one. But now we
have removed the member function set_values(), and have included instead a
constructor that performs a similar action: it initializes the values of x and y with the
parameters that are passed to it.

Notice how these arguments are passed to the constructor at the moment at which the
objects of this class are created:

CRectangle rect (3,4);
CRectangle rectb (5,6);

Constructors cannot be called explicitly as if they were regular member functions.
They are only executed when a new object of that class is created.

You can also see how neither the constructor prototype declaration (within the class)
nor the latter constructor definition includes a return value; not even void.

The destructor fulfills the opposite functionality. It is automatically called when an
object is destroyed, either because its scope of existence has finished (for example, if
it was defined as a local object within a function and the function ends) or because it
is an object dynamically assigned and it is released using the operator delete.

The destructor must have the same name as the class, but preceded with a tilde sign
(~) and it must also return no value.

The use of destructors is especially suitable when an object assigns dynamic memory
during its lifetime and at the moment of being destroyed we want to release the
memory that the object was allocated.
/! example on constructors and destructors rect area: 12
#include <iostream> rectb area: 30

using namespace std;

class CRectangle {
int *width, *height;
public:
CRectangle (int,int);
~CRectangle ();
int area () {return (*width * *height);}
3
CRectangle::CRectangle (int a, int b) {
width = new int;
height = new int;
*width = a;
*height = b;
}
CRectangle::~CRectangle () {
delete width;
delete height;
}
int main () {
CRectangle rect (3,4), rectb (5,6);

ﬁ Zero to Mastery Microsoft Visual in C++

cout << “rect area: “ << rect.area() << endl;

cout << “rectb area: “ << rectb.area() << endl;

return 0;

}

2.3.1 Overloading Constructors

Like any other function, a constructor can also be overloaded with more than one
function that have the same name but different types or number of parameters.
Remember that for overloaded functions the compiler will call the one whose parameters
match the arguments used in the function call. In the case of constructors, which are
automatically called when an object is created, the one executed is the one that matches
the arguments passed on the object declaration:
/I overloading class constructors rect area: 12
#include <iostream> rectb area: 25
using namespace std;
class CRectangle {
int width, height;
public:
CRectangle ();
CRectangle (int,int);
int area (void) {return (width*height);}
3
CRectangle::CRectangle () {
width = 5;
height = 5;
}
CRectangle::CRectangle (int a, int b) {
width = a;
height = b;
}
int main () {
CRectangle rect (3,4);
CRectangle rectb;
cout << “rect area: “ << rect.area() << endl;
cout << “rectb area: “ << rectb.area() << endl;
return O;

In this case, rectb was declared without any arguments, so it has been initialized with
the constructor that has no parameters, which initializes both width and height with a
value of 5.

Important: Notice how if we declare a new object and we want to use its default
constructor (the one without parameters), we do not include parentheses ():

CRectangle rectb; // right
CRectangle rectb(); // wrong!

2.3.2 Default Constructor

If you do not declare any constructors in a class definition, the compiler assumes the
class to have a default constructor with no arguments. Therefore, after declaring a
class like this one:

class CExample {
public:
int a,b,c;
void multiply (int n, int m) { a=n; b=m; c=a*b; };
3
The compiler assumes that CExample has a default constructor, so you can declare
objects of this class by simply declaring them without any arguments:

CExample ex;

But as soon as you declare your own constructor for a class, the compiler no longer
provides an implicit default constructor. So you have to declare all objects of that
class according to the constructor prototypes you defined for the class:

class CExample {
public:
int a,b,c;
CExample (int n, int m) { a=n; b=m; };
void multiply () { c=a*b; };
b
Here we have declared a constructor that takes two parameters of type int. Therefore
the following object declaration would be correct:

CExample ex (2,3);
But,

CExample ex;

ﬁ Zero to Mastery Microsoft Visual in C++

Would not be correct, since we have declared the class to have an explicit constructor,
thus replacing the default constructor.

But the compiler not only creates a default constructor for you if you do not specify
your own. It provides three special member functions in total that are implicitly
declared if you do not declare your own. These are the copy constructor, the copy
assignment operator, and the default destructor.

The copy constructor and the copy assignment operator copy all the data contained in
another object to the data members of the current object. For CExample, the copy
constructor implicitly declared by the compiler would be something similar to:
CExample::CExample (const CExample& rv) {
a=rv.a; b=rv.b; c=rv.c;

}

Therefore, the two following object declarations would be correct:
CExample ex (2,3);

CExample ex2 (ex); // copy constructor (data copied from ex)

2.3.3 Copy Constructors

Copy constructor is

¢ a constructor function with the same name as the class
« used to make deep copy of objects.

There are 3 important places where a copy constructor is called.

1. When an object is created {rom another object of the same type.
2. When an object is passed by value as a parameter to a function.
3. When an object is returned from a function.

If a copy constructor is not defined in a class, the compiler itself defines one. This
will ensure a shallow copy. If the class does not have pointer variables with dynamically
allocated memory, then one need not worry about defining a copy constructor. It can
be left to the compiler’s discretion. But if the class has pointer variables and has some
dynamic memory allocations, then it is a must to have a copy constructor.

For example:

class A //Without copy constructor
{

private:

int x;

public:

AQ {A =103}
~AQ {}
}
class B //With copy constructor
{
private:
char *name;
public:
B0
{
name = new char[20];
}
~B()
{
delete name[];
}
/I[Copy constructor
B(const B &b)
{
name = new char[20];
strcpy(name, b.name);
}
IS
Let us imagine if you don’t have a copy constructor for the class B. At the first place,
if an object is created from some existing object, we cannot be sure that the memory

is allocated. Also, if the memory is deleted in destructor, the delete operator might be
called twice for the same memory location.

This is a major risk. One happy thing is, if the class is not so complex this will come
to the fore during development itself. But if the class is very complicated, then these
kind of errors will be difficult to track.

When Copies of Objects are Made

A copy constructor is called whenever a new variable is created from an object. This
happens in the following cases (but not in assignment).

* A variable is declared which is initialized from another object, e.g.,

e Person q(“Mickey”); // constructor is used to build q.

ﬁ Zero to Mastery Microsoft Visual in C++

 Person r(p); /I copy constructor is used to build r.
e Personp=q; /I copy constructor is used to initialize in declaration.
P=q; // Assignment operator, no constructor or copy constructor.

e A value parameter is initialized from its corresponding argument.
f(p); /I copy constructor initializes formal value parameter.
¢ An object is returned by a function.

C++ calls a copy constructor to make a copy of an object in each of the above cases.
If there is no copy constructor defined for the class, C++ uses the default copy
constructor which copies each field, i.e., makes a shallow copy.

Don’t Write a Copy Constructor if Shallow Copies are Ok

If the object has no pointers to dynamically allocated memory, a shallow copy is
probably sufficient. Therefore the default copy constructor, default assignment operator,
and default destructor are ok and you don’t need to write your own.

If you need a copy constructor, you also need a destructor and operator=

If you need a copy constructor, it’s because you need something like a deep copy, or
some other management of resources. Thus, it is almost certain that you will need a
destructor and override the assignment operator.

Copy constructor syntax

The copy constructor takes a reference to a const parameter. It is const to guarantee
that the copy constructor doesn’t change it and it is a reference because a value
parameter would require making a copy, which would invoke the copy constructor,
which would make a copy of its parameter, which would invoke the copy constructor,
which...

Here is an example of a copy constructor for the Point class, which doesn’t really
need one because the default copy constructor’s action of copying fields would work
fine, but it shows how it works.

/I=== file Point.h
class Point {

public:

Point(const Point& p); // copy constructor

/I=== file Point.cpp

Point::Point(const Point& p) {
X = P.X;

y=pY;

/I=== file my_program.cpp

Point p; // calls default constructor

Point s = p; // calls copy constructor.
p=s; // assignment, not copy constructor.

Difference between copy constructor and assignment

A copy constructor is used to initialize a newly declared variable from an existing
variable. This makes a deep copy like assignment, but it is somewhat simpler:

1. There is no need to test to see if it is being initialized from itself.
2. There is no need to clean up (e.g., delete) an existing value (there is none).

3. A reference to itself is not returned.

2.4 POINTERS TO CLASSES

It is perfectly valid to create pointers that point to classes. We simply have to consider
that once declared, a class becomes a valid type, so we can use the class name as the
type for the pointer. For example,

CRectangle * prect;
is a pointer to an object of class CRectangle.
As it happened with data structures, in order to refer directly to a member of an object
pointed by a pointer we can use the arrow operator (->) of indirection. Here is an
example with some possible combinations:

// pointer to classes example

#include <iostream>

using namespace std;

class CRectangle {
int width, height;
public:

void set_values (int, int);

ﬁ Zero to Mastery Microsoft Visual in C++

int area (void) {return (width * height);}

|

void CRectangle::set_values (int a, int b) {
width = a;
height = b;

}

int main () {
CRectangle a, *b, *c;
CRectangle * d = new CRectangle[2];
b= new CRectangle;
c= &a;
a.set_values (1,2);
b->set_values (3,4);
d->set_values (5,6);
d[1].set_values (7,8);
cout << “a area: “ << a.area() << endl;
cout << “*b area: “ << b->area() << endl;
cout << “*c area: ““ << c->area() << endl,
cout << “d[0] area: “ << d[0].area() << endl;
cout << “d[1] area: “ << d[1].area() << endl;
delete[] d;
delete b;
return 0;

}

Next you have a summary on how can you read some pointer and class operators
(*, &, ., ->, []) that appear in the previous example:

expression can be read as

*X pointed by x
&x address of x
X.y member y of object x

X->y member y of object pointed by x

(*x).y member y of object pointed by x (equivalent to the previous one)
x[0] first object pointed by x

x[1] second object pointed by x

x[n] (n+1)th object pointed by x

Be sure that you understand the logic under all of these expressions before proceeding
with the next sections. If you have doubts, read again this section and/or consult the
previous sections about pointers and data structures.

2.5 CLASSES DEFINED WITH STRUCT AND UNION

Classes can be defined not only with keyword class, but also with keywords struct and
union. The concepts of class and data structure are so similar that both keywords
(struct and class) can be used in C++ to declare classes (i.e., structs can also have
function members in C++, not only data members). The only difference between both
is that members of classes declared with the keyword struct have public access by
default, while members of classes declared with the keyword class have private access.
For all other purposes both keywords are equivalent. The concept of unions is different
from that of classes declared with struct and class, since unions only store one data
member at a time, but nevertheless they are also classes and can thus also hold function
members. The default access in union classes is public.

2.6 THE KEYWORD THIS

The keyword this represents a pointer to the object whose member [unction is being
executed. It is a pointer to the object itself.

One of its uses can be to check if a parameter passed to a member function is the
object itself. For example,

// this yes, &ais b

#include <iostream>

using namespace std;

class CDummy {

public:

int isitme (CDummy& param);

b
int CDummy::isitme (CDummyé& param)
{

if (¶m == this) return true;

else return false;
}
int main () {

CDummy a;

ﬁ Zero to Mastery Microsoft Visual in C++

CDummy* b = &a;
if (b->isitme(a))

cout << “yes, &a is b”;
return 0;

}

Itis also frequently used in operator= member functions that return objects by reference
(avoiding the use of temporary objects). Following with the vector’s examples seen
before we could have written an operator= function similar to this one:

CVector& CVector::operator= (const CVector& param)

{

X=param.x;
y=param.y;
return *this;

}

In fact, this function is very similar to the code that the compiler generates implicitly
for this class if we do not include an operator= member function to copy objects of
this class.

2.7 STATIC MEMBERS

A class can contain static members, either data or functions. Static data members of
a class are also known as “class variables”, because there is only one unique value for
all the objects of that same class. Their content is not different from one object of this
class to another. For example, it may be used for a variable within a class that can
contain a counter with the number of objects of that class that are currently allocated,
as in the following example:

/I static members in classes

#include <iostream> 6

using namespace std;

class CDummy {
public:
static int n;
CDummy () { n++; };
~CDummy () { n—; };

int CDummy::n=0;
int main () {
CDummy a;
CDummy b[5];
CDummy * ¢ = new CDummy;
cout << a.n << endl;
delete c;
cout << CDummy::n << endl;
return O;

}

In fact, static members have the same properties as global variables but they enjoy
class scope. For that reason, and to avoid them to be declared several times, we can
only include the prototype (its declaration) in the class declaration but not its definition
(its initialization). In order to initialize a static data-member we must include a formal
definition outside the class, in the global scope, as in the previous example:

int CDummy::n=0;

Because it is a unique variable value for all the objects of the same class, it can be
referred to as a member of any object of that class or even directly by the class name
(of course this is only valid for static members):

cout << a.n;
cout << CDummy::n;

These two calls included in the previous example are referring to the same variable:
the static variable n within class CDummy shared by all objects of this class.

Once again, I remind you that in fact it is a global variable. The only difference is its
name and possible access restrictions outside its class.

Just as we may include static data within a class, we can also include static functions.
They represent the same: they are global functions that are called as if they were
object members of a given class. They can only refer to static data, in no case to non-
static members of the class, as well as they do not allow the use of the keyword this,
since it makes reference to an object pointer and these functions in fact are not members
of any object but direct members of the class.

2.8 INLINE FUNCTIONS

What is Inline Function?

Inline functions are functions where the call is made to inline functions. The actual
code then gets placed in the calling program.

ﬁ Zero to Mastery Microsoft Visual in C++

Reason for the need of Inline Function

Normally, a function call transfers the control from the calling program to the function
and after the execution of the program returns the control back to the calling program
after the function call. These concepts of function saved program space and memory
space are used because the function is stored only in one place and is only executed
when it is called. This concept of function execution may be time consuming since the
registers and other processes must be saved before the function gets called.

The extra time needed and the process of saving is valid for larger functions. If the
function is short, the programmer may wish to place the code of the function in the
calling program in order for it to be executed. This type of function is best handled by
the inline function. In this situation, the programmer may be wondering “why not
write the short code repeatedly inside the program wherever needed instead of going
for inline function?” Although this could accomplish the task, the problem lies in the
loss of clarity of the program. If the programmer repeats the same code many times,
there will be a loss of clarity in the program. The alternative approach is to allow
inline functions to achieve the same purpose, with the concept of functions.

What happens when an inline function is written?

The inline function takes the format as a normal function but when it is compiled it is
compiled as inline code. The function is placed separately as inline function, thus
adding readability to the source program. When the program is compiled, the code
present in function body is replaced in the place of function call.

General Format of inline Function

Example:

The general format of inline function is as follows:
inline datatype function_name(arguments)

The keyword inline specified in the above example, designates the function as inline
function. For example, if a programmer wishes to have a function named demo with
return value as integer and with no arguments as inline it is written as follows:

inline int demo()

The concept of inline functions:
#include <iostream.h>
int demo(int);
void main()

{

int x;

cout << “\n Enter the Input Value: *;
cin>>x;
cout<<“\n The Output is: “ << demo(x);

}

inline int demo(int x1)

{

return 5*x1;

}

The output of the above program is:
Enter the Input Value: 10
The Output is: 50

The output would be the same even when the inline function is written solely as a
function. The concept, however, is different. When the program is compiled, the
code present in the inline function demo() is replaced in the place of function call in
the calling program. The concept of inline function is used in this example because
the function is a small line of code.

The above example, when compiled, would have the structure as follows:

#include <iostream.h>
int demo(int);
void main()
{
int x;
cout << “\n Enter the Input Value: *;
cin>>x;
/IThe demo(x) gets replaced with code return 5*x1;

cout<<*\n The Output is: “ << demo(x);
}

When the above program is written as normal function the compiled code would look
like below:

#include <iostream.h>

int demo(int);

void main()

{

ﬁ Zero to Mastery Microsoft Visual in C++

int x;

cout << “\n Enter the Input Value:”;
cin>>x;

//Call is made to the function demo
cout<<“An The Output is:” << demo(x);
}

int demo(int x1){

return 5*x1;

}

2.9 ACCESS SPECIFIERS

There are three access specifiers as given by C++.

Private: If data are declared as private in a class then it is accessible by the member
functions of the class where they are declared. The private member functions can be
accessed only by the members of the class. By default, any member of the class is
considered as private by the C++ compiler, if no specifier is declared for the member.

Public: The member functions with public access specifier can be accessed outside of
the class. This kind of members is accessed by creating instance of the class.

Protected: Protected members are accessible by the class itself and it’s sub-classes.
The members with protected specifier act exactly like private as long as they are
referenced within the class or from the instance of the class. This specifier specially
used when you need to use inheritance facility of C++. The protected members become
private of a child class in case of private inheritance, public in case of public inheritance,
and stay protected in case of protected inheritance.

With the proper use of access specifier the data can be hidden from unauthorized
access.

REVIEW EXERCISE

AW N =

9]

Discuss classes and object along with their significance in OOPs.
Discuss the role of constructors in C++ classes.
Discuss the types of Constructors in C++.

Design a EMP class with three functions: Get_Details, Calculate_Salary, Show_Details. Make use
of default and parameterized constructors.

Design a class with an offline function that finds the average of N given numbers.

6. How constructors can be overloaded. Show via an example.

CHAPTER

OVERLOADINGIN
C++

C++ allows both functions and operators to be overloaded and hence it includes function
and operator overloading.

3.1 FUNCTION OVERLOADING

C++ enables several functions of the same name to be defined, as long as these functions
have different sets of parameters (at least as far as their types are concerned). This
capability is called function overloading. When an overloaded function is called, the
C++ compiler selects the proper function by examining the number, types and order
of the arguments in the call. Function overloading is commonly used to create several
functions of the same name that perform similar tasks but on different data types.

/loverloaded function

#include

void sum(int a,int b)

{

cout<<A+B<<ENDL;

}

void sum(int a,int b,int ¢)

{

cout<<A+B+C<<ENDL;

}

ﬁ Zero to Mastery Microsoft Visual in C++

void sum(int a,int b,int c,int d)

{

cout<<A+B+C+D<<ENDL;

}

void sum(int a,int b,int c,int d,int ¢)
{

cout<<A+B+C+D+E<<ENDL;

}

void main()

{

cout<<“using overloaded function\n”;

sum(10,20);//two arguments
sum(10,20,30);//three arguments
sum(10,20,30,40);//four arguments
sum(10,20,30,40,50);//five arguments
}

In C++ two different functions can have the same name if their parameter types or
number are different. That means that you can give the same name to more than one
function if they have cither a different number of parameters or different types in
their parameters. For example:
/! overloaded function
#include <iostream>
using namespace std;
int operate (int a, int b)
{
return (a*b);
}
float operate (float a, float b)
{
return (a/b);
}
int main ()
{
int x=5,y=2;
float n=5.0,m=2.0;

Overloading in C++ n’

cout << operate (x,y);
cout << “\n”’;

cout << operate (n,m);
cout << “\n”’;

return O;

}

In this case we have defined two functions with the same name, operate, but one of
them accepts two parameters of type int and the other one accepts them of type float.
The compiler knows which one to call in each case by examining the types passed as
arguments when the function is called. If it is called with two ints as its arguments it
calls to the function that has two int parameters in its prototype and if it is called with
two floats it will call to the one which has two float parameters in its prototype.

In the first call to operate the two arguments passed are of type int, therefore, the
function with the first prototype is called; This function returns the result of multiplying
both parameters. While the second call passes two arguments of type float, so the
function with the second prototype is called. This one has a different behavior: it
divides one parameter by the other. So the behavior of a call to operate depends on the
type of the arguments passed because the function has been overloaded.

Notice that a function cannot be overloaded only by its return type. At least one of its
parameters must have a different type.

Example 1: Overloading Functions that differ in terms of NUMBER OF PARAMETERS

//Example Program in C++
#include<iostream.h>

//[FUNCTION PROTOTYPES

int func(int i);

int func(int i, int j);

void main(void)

{

cout<<func(10);//func (int i)is called\
cout<<func(10,10);//func(int i, int j) is called
}

int func(int i)

{

return i;

}

int func(int i, int j)

ﬁ Zero to Mastery Microsoft Visual in C++

{
return i+j;

}

Example 2: Overloading Functions that differ in terms of TYPE OF PARAMETERS
//Example Program in C++
#include<iostream.h>
//[FUNCTION PROTOTYPES
int func(int i);
double func(double i);
void main(void)

{

cout<<func(10);/func(int i)is called
cout<<func(10.201);//func(double i) is called
}

int func(int i)

{

return i;

}

double func(double i)

{

return i;

}

Example 3: Is the program below, valid?
//Example Program in C++
#include<iostream.h>
//[FUNCTION PROTOTYPES
int func(int i);
double func(int i);
void main(void)
{
cout<<func(10);
cout<<func(10.201);

}

Overloading in C++ -

int func(int i)

{

return i;

}

double func(int i)

{

return i;
}

No, because you can’t overload functions if they differ only in terms of the data type
they return.

3.2 OPERATOR OVERLOADING

It allows existing C++ operators to be redefined so that they work on objects of user-
defined classes. Overloaded operators are syntactic sugar for equivalent function calls.
They form a pleasant facade that doesn’t add anything fundamental to the language
(but they can improve understandability and reduce maintenance costs).

In computer programming, operator overloading (less commonly known as operator
ad-hoc polymorphism) is a specific case of polymorphism in which some or all of
operators like +, =, or == have different implementations depending on the types of
their arguments. Sometimes the overloadings are defined by the language; sometimes
the programmer can implement support for new types.

Operator overloading is useful because it allows the developer to program using notation
closer to the target domain and allows user types to look like types built into the
language. It can easily be emulated using function calls.

C++ incorporates the option to use standard operators to perform operations with
classes in addition to with fundamental types. For example,

inta, b, c;
a=b+c;
This is obviously valid code in C++, since the different variables of the addition are

all fundamental types. Nevertheless, it is not so obvious that we could perform an
operation similar to the following one:

struct {
string product;
float price;
} a, b, c;
a=b+c;

Zero to Mastery Microsoft Visual in C++

In fact, this will cause a compilation error, since we have not defined the behavior our
class should have with addition operations. However, thanks to the C++ feature to
overload operators, we can design classes able to perform operations using standard
operators. Here is a list of all the operators that can be overloaded:

Overloadable operators

+ - F = < > 4= = s =< >
<<= >>= == = <= >= ++ — 9% & N | |
~ &= "= = && I %= [1 O , ->* > new

delete new|[] delete[]

To overload an operator in order to use it with classes we declare operator functions,
which are regular functions whose names are the operator keyword followed by the
operator sign that we want to overload. The format is:

Type operator sign (parameters) { /*...*/ }

Here you have an example that overloads the addition operator (+). We are going to
create a class to store bidimensional vectors and then we are going to add two of them:
a(3,1) and b(1,2). The addition of two bidimensional vectors is an operation as simple
as adding the two x coordinates to obtain the resulting x coordinate and adding the
two y coordinates to obtain the resulting y. In this case the result will be (3+1,1+2) =
(4,3).
/I vectors: overloading operators example
#include <iostream>
using namespace std;
class CVector {
public:
int X,y;
CVector () {};
CVector (int,int);
CVector operator + (CVector);

|

CVector::CVector (int a, int b){
X = a;
y=b;

}

CVector CVector::operator+ (CVector param) {
CVector temp;

Overloading in C++ n’

temp.x = X + param.x;
temp.y =y + param.y;
return (temp);

}

int main () {
CVector a (3,1);
CVector b (1,2);
CVector c;
c=a+b;

TR

cout << ¢.x << “ << ¢.y;

return 0;
}

It may be a little confusing to see so many times the CVector identifier. But, consider
that some of them refer to the class name (type) CVector and some others are functions
with that name (constructors must have the same name as the class). Do not confuse
them:

CVector (int, int); // function name CVector (constructor)

CVector operator+ (CVector); // function returns a CVector

The function operator + of class CVector is the one that is in charge of overloading
the addition operator (+). This function can be called either implicitly using the
operator, or explicitly using the function name:

c=a+b;
¢ = a.operator+ (b);
Both expressions are equivalent.

Notice also that we have included the empty constructor (without parameters) and we
have defined it with an empty block:

CVector () { };
This is necessary, since we have explicitly declared another constructor:
CVector (int, int);

And when we explicitly declare any constructor, with any number of parameters, the
default constructor with no parameters that the compiler can declare automatically is
not declared, so we need to declare it ourselves in order to be able to construct objects
of this type without parameters. Otherwise, the declaration:

CVector c;

included in main() would not have been valid.

ﬁ Zero to Mastery Microsoft Visual in C++

Anyway, I have to warn you that an empty block is a bad implementation for a
constructor, since it does not fulfill the minimum functionality that is generally expected
from a constructor, which is the initialization of all the member variables in its class.
In our case, this constructor leaves the variables x and y undefined. Therefore, a more
advisable definition would have been something similar to this:

CVector () { x=0; y=0; };

which in order to simplify and show only the point of the code I have not included in
the example.

As well as a class includes a default constructor and a copy constructor even if they
are not declared, it also includes a default definition for the assignment operator (=)
with the class itself as parameter. The behavior which is defined by default is to copy
the whole content of the data members of the object passed as argument (the one at the
right side of the sign) to the one at the left side:

CVector d (2,3);
CVector e;

e=d; /l copy assignment operator

The copy assignment operator function is the only operator member function
implemented by default. Of course, you can redefine it to any other functionality that
you want, like for example, copy only certain class members or perform additional
initialization procedures.

The overload of operators does not force its operation to bear a relation to the mathematical
or usual meaning of the operator, although it is recommended. For example, the code
may not be very intuitive if you use operator + to subtract two classes or operator== (o
fill with zeros a class, although it is perfectly possible to do so.

Although the prototype of a function operator+ can seem obvious since it takes what
is at the right side of the operator as the parameter for the operator member function
of the object at its left side, other operators may not be so obvious. Here you have a
table with a summary on how the different operator functions have to be declared
(replace @ by the operator in each case):

Expression Operator Member function Global function
@a +-F& !~ — A::operator@() operator@(A)
a@ ++ — A::operator @ (int) operator @ (A,int)
a@b +-F /PN &l<>===<=>=<<>>&&l, | A::operator@ (B) operator@(A,B)
a@b =4=-=*=[= Y= "= &= |= <<=>>=[] A::operator@ (B) -

a(b, c...) 0 A::operator() (B, C...) | -
a->x > A::operator->() -

Overloading in C++ n’

Where a is an object of class A, b is an object of class B and c is an object of class C.

You can see in this panel that there are two ways to overload some class operators: as
a member function and as a global function. Its use is indistinct, nevertheless I remind
you that functions that are not members of a class cannot access the private or protected
members of that class unless the global function is its friend (friendship is explained
later).

EXAMPLES OF OPERATOR OVERLOADING

Example 1: overloading ‘+’ Operator
#include <iostream.h>
class myclass

{
int subl, sub2;

public:
/! default constructor
myclass(){}
// main constructor
myclass(int x, int y){subl=x;sub2=y;}
/I notice the declaration
myclass operator +(myclass);
void show(){cout<<subl<<endl<<sub2;}

IS

// returns data of type myclass

myclass myclass::operator +(myclass ob)

{
myclass temp;
// add the data of the object
// that generated the call
/I with the data of the object
// passed to it and store in temp
temp.subl=subl + ob.subl;
temp.sub2=sub2 + ob.sub2;
return temp;

}

ﬁ Zero to Mastery Microsoft Visual in C++

void main()

{
myclass ob1(10,90);
myclass 0b2(90,10);
// this is valid
obl=o0bl+0b2;
obl.show();

}

Example 2 : // Another example illustrates overloading the plus (+) operator.
#include <iostream>
using namespace std;

class complx

{
double real,
imag;
public:
complx(double real = 0., double imag = 0.); // constructor
complx operator+(const complx&) const; /1 operator+()
)

// define constructor
complx::complx(double r, double i)
{
real =r; imag = i;
1
/! define overloaded + (plus) operator
complx complx::operator+ (const complx& c¢) const
{
complx result;
result.real = (this->real + c.real);
result.imag = (this->imag + c.imag);

return result;

Overloading in C++ -

int main()
{
complx x(4,4);
complx y(6,6);
complx z = x + y; // calls complx::operator+()

}

Example 3: Overloading Extraction Operator
Suppose you declared the following class:

class student
{
private:
string name;
string department;
public:

@

student(string n = “”, string dep = 0)
: name(n), department(dep) {}
string get_name() const { return name; }
string get_department () const { return department; }
void set_name(const string& n) { name=n; }
void set_department (const string& d) {department=d;}
|
And you want to be able to use it in a cout statement as follows:
student st(“Bill Jones”, “Zoology”); // create instance

cout<<st; // display student’s details

First, you need to overload the operator << of class ostream (note that cout is an
instance of ostream). The canonical form of such an overloaded << is this:

ostreamé& operator << (ostream& os, const student& s);

The overloaded << returns a reference to an ostream object and takes two parameters
by reference: an ostream object and a user-defined type. The user-defined type is
passed as a const parameter because the output operation doesn’t modify it. The body
of the overloaded << inserts members of the user-defined object into the ostream
object:

os<<s.get_name()<<‘\t’<<st.get_department()<<end]l;

ﬁ Zero to Mastery Microsoft Visual in C++

Make sure that the members inserted are separated by a tab, newline or space so that
they appear as if they were concatenated when displayed on the screen. Remember
also to place the endl manipulator at the end of the insertion chain to force a buffer
flush. Finally, the overloaded operator should return the ostream object after the
members have been inserted to it. This will enable you to chain several objects in a
single cout statement:

student s1, s2;
cout<<s1<<s2; // chaining multiple objects

The insertion operations and the return statement can be accomplished in a single
statement:

ostream& operator << (ostream& os, const student& s)
{
return os<<s.get_name()<<‘\t’<<s.get_department()<<endl;
}
Now you can use the overloaded <<in your code:
int main()
{
student st(“Bill Jones”, “Zoology™);
cout<<st;

}
As expected, this program displays:

Bill Jones Zoology

Example 4: Overloading the ! Operator:
#include <iostream>
using namespace std;
struct X { };
void operator!(X) {
cout << “void operator!(X)” << endl;
}
struct Y {
void operator!() {

cout << “void Y::operator!()” << endl;

Overloading in C++ n’

}
3
struct Z { };
int main() {
X ox; Y oy; Z oz;
lox;
loy;
/1l loz;

}

The following is the output of the above example:
void operator!(X)
void Y::operator!()
The operator function call lox is interpreted as operator!(x). The call !oy is interpreted

as y.operator!(). (The compiler would not allow !oz because the ! operator has not
been defined for class Z.)

Example 5: Overloading Increment and Decrement

You overload the prefix increment operator ++ with either a non-member function
operator that has one argument of class type or a reference to class type, or with a
member function operator that has no arguments.

In the following example, the increment operator is overloaded in both ways:

class X {
public:
// member prefix ++x
void operator++() { }
)
class Y { };
// non-member prefix ++y
void operator++(Y&) { }
int main() {
X x;
Yy;
/1 calls x.operator++()
++X;
/I explicit call, like ++x

ﬁ Zero to Mastery Microsoft Visual in C++

x.operator++();

/I calls operator++(y)
ty;

/l explicit call, like ++y
operator++(y);

}

The postfix increment operator ++ can be overloaded for a class type by declaring a
non-member function operator operator++() with two arguments, the first having
class type and the second having type int. Alternatively, you can declare a member
function operator operator++() with one argument having type int. The compiler uses
the int argument to distinguish between the prefix and postfix increment operators.
For implicit calls, the default value is zero.

For example:

class X {
public:
// member postfix x++
void operator++(int) { };
)
class Y { };
// non-member postfix y++
void operator++(Y&, int) { };
int main() {
X x;
Yy;
// calls x.operator++(0)
/I default argument of zero is supplied by compiler
X++;
/1 explicit call to member postfix x++
x.operator++(0);
/I calls operator++(y, 0)
y++;
/I explicit call to non-member postfix y++
operator++(y, 0);
}

The prefix and postfix decrement operators follow the same rules as their increment
counterparts.

Overloading in C++ -

Example 6: Overloading Assighment Operator

You overload the assignment operator, operator=, with a nonstatic member function
that has only one parameter. You cannot declare an overloaded assignment operator
that is a non-member function. The following example shows how you can overload
the assignment operator for a particular class:
struct X {
int data;
X& operator=(X& a) { return a; }
X& operator=(int a) {
data = a;
return *this;
}
)
int main() {
X x1, x2;
x1 = x2; // call x1.operator=(x2)
xl =5; // call x1.operator=(5)

}

The assignment x1 = x2 calls the copy assignment operator X& X::operator=(X&).
The assignment x1 =5 calls the copy assignment operator X& X::operator=(int). The
compiler implicitly declares a copy assignment operator for a class if you do not
define one yourself. Consequently, the copy assignment operator (operator=) of a
derived class hides the copy assignment operator of its base class.

However, you can declare any copy assignment operator as virtual. The following
example demonstrates this:
#include <iostream>
using namespace std;
struct A {
A& operator=(char) {
cout << “A& A::operator=(char)” << endl;
return *this;
}
virtual A& operator=(const A&) {
cout << “A& A::operator=(const A&)” << endl;
return *this;

ﬁ Zero to Mastery Microsoft Visual in C++

}
3
struct B : A {
B& operator=(char) {
cout << “B& B::operator=(char)” << endl;
return *this;
}
virtual B& operator=(const A&) {
cout << “B& B::operator=(const A&)” << end],;
return *this;
}
|5
struct C: B { };
int main() {
Bbl;
B b2;
A* apl = &bl;
A*ap2 = &bl;
*apl = ‘2,
*ap2 = b2;
Cecl;
/Il cl=°2";
}

The following is the output of the above example:

A& A::operator=(char)
B& B::operator=(const A&)

The assignment *apl = ‘7’ calls A& A::operator=(char). Because this operator has
not been declared virtual, the compiler chooses the function based on the type of the
pointer apl. The assignment *ap2 = b2 calls B& B::operator=(const &A). Because
this operator has been declared virtual, the compiler chooses the function based on the
type of the object that the pointer apl points to. The compiler would not allow the
assignment ¢l = ‘2z’ because the implicitly declared copy assignment operator declared
in class C hides B& B::operator=(char).

Overloading in C++ nf

REVIEW EXERCISE

1. How one can overload ‘++’operator to increment an object?

N

A A

Overload a function called DRAW that can find area of a rectangle, triangle, circle, square and
sphere.

Which of the operators cannot be overloaded?

What are the benefits of using overloading?

How the concept of polymorphism is associated with overloading?
Overload “=" operator to see if two objects are exactly same.

Overload ComputeSalary function that computes the salary of regular, visiting and part-time
employees.

CHAPTER

INHERITANCE,
POLYMORPHISM &
VIRTUAL FUNCTIONS

4.1 WHAT IS INHERITANCE?

A key feature of C++ classes is inheritance. Inheritance allows to create classes which
are derived from other classes, so that they automatically include some of its “parent’s”
members, plus its own. Inheritance is the process by which new classes called derived
classes are created from existing classes called base classes. The derived classes have
all the features of the base class and the programmer can choose to add new features

specific to the newly created derived class.

For example, a programmer can create a base class named fruit and define derived
classes as mango, orange, banana, etc. Each of these derived classes, (mango, orange,
banana, etc.) has all the features of the base class (fruit) with additional attributes or
features specific to these newly created derived classes. Mango would have its own
defined features, orange would have its own defined features, banana would have its
own defined features, etc.

Classes that are derived from others inherit all the accessible members of the base
class. That means that if a base class includes a member A and we derive it to another
class with another member called B, the derived class will contain both members A
and B.

In order to derive a class from another, we use a colon (:) in the declaration of the
derived class using the following format:

class derived_class_name: public base_class_name

TR

Inheritance, Polymorphism & Virtual Functions n’

Where derived_class_name is the name of the derived class and base_class_name is
the name of the class on which it is based. The public access specifier may be replaced
by any one of the other access specifiers protected and private. This access specifier
limits the most accessible level for the members inherited from the base class. The
members with a more accessible level are inherited with this level instead, while the
members with an equal or more restrictive access level keep their restrictive level in
the derived class.

This concept of Inheritance leads to the concept of polymorphism. Inheritance is what
separates abstract data type (ADT) programming from OO programming.

For example, we are going to suppose that we want to declare a series of classes that
describe polygons like our CRectangle, or like CTriangle. They have certain common
properties, such as both can be described by means of only two sides: height and base.

This could be represented in the world of classes with a class CPolygon from which
we would derive the two other ones: CRectangle and CTriangle.

: CPobygon

CRectangl
FrEanaE CTriangle

Figure 4.1

The class CPolygon would contain members that are common for both types of polygon.
In our case, width and height. And CRectangle and CTriangle would be its derived
classes, with specific features that are different from one type of polygon to the other.
// derived classes
#include <iostream>

using namespace std;

class CPolygon {
protected:
int width, height;
public:
void set_values (int a, int b)
{ width=a; height=b;}

ﬁ Zero to Mastery Microsoft Visual in C++

3
class CRectangle: public CPolygon {

public:
int area ()
{ return (width * height); }
3
class CTriangle: public CPolygon {
public:
int area ()
{ return (width * height / 2); }
)
int main () {
CRectangle rect;
CTriangle trgl;
rect.set_values (4,5);
trgl.set_values (4,5);
cout << rect.area() << endl;
cout << trgl.area() << endl;

return 0;
}

The objects of the classes CRectangle and CTriangle each contain members inherited
from CPolygon. These are: width, height and set_values().

The protected access specifier is similar to private. Its only difference occurs in fact
with inheritance. When a class inherits from another one, the members of the derived
class can access the protected members inherited from the base class, but not its private
members.

Since we wanted width and height to be accessible from members of the derived
classes CRectangle and CTriangle and not only by members of CPolygon, we have
used protected access instead of private.

We can summarize the different access types according to who can access them in the
following way:

Access public protected | private
members of the same class yes yes yes
members of derived classes yes yes no
not members yes no no

Inheritance, Polymorphism & Virtual Functions -

Where “not members” represent any access from outside the class, such as from main(),
from another class or from a function.

In our example, the members inherited by CRectangle and CTriangle have the same
access permissions as they had in their base class CPolygon:

CPolygon::width // protected access
CRectangle::width // protected access

CPolygon::set_values() // public access

CRectangle::set_values() // public access

This is because we have used the public keyword to define the inheritance relationship
on each of the derived classes.

class CRectangle: public CPolygon { ... }

This public keyword after the colon (:) denotes the most accessible level the members
inherited from the class that follows it (in this case CPolygon) will have. Since public
is the most accessible level, by specifying this keyword the derived class will inherit
all the members with the same levels they had in the base class.

If we specify a more restrictive access level like protected, all public members of the
base class are inherited as protected in the derived class. Whereas if we specify the
most restricting of all access levels: private, all the base class members are inherited as
private.

For example, if daughter was a class derived from mother that we defined as:
class daughter: protected mother;

This would set protected as the maximum access level for the members of daughter
that it inherited from mother. That is, all members that were public in mother would
become protected in daughter. Of course, this would not restrict daughter to declare
its own public members. That maximum access level is only set for the members
inherited from mother.

If we do not explicitly specify any access level for the inheritance, the compiler
assumes private for classes declared with class keyword and public for those declared
with struct.

4.2 WHAT IS INHERITED FROM THE BASE CLASS?

In principle, a derived class inherits every member of a base class except:

* its constructor and its destructor
* its operator=() members
¢ its friends

ﬁ Zero to Mastery Microsoft Visual in C++

Although the constructors and destructors of the base class are not inherited themselves,
its default constructor (i.e., its constructor with no parameters) and its destructor are
always called when a new object of a derived class is created or destroyed.

If the base class has no default constructor or you want that an overloaded constructor
is called when a new derived object is created, you can specify it in each constructor
definition of the derived class:

derived_constructor_name (parameters) : base_constructor_name (parameters) {...}
For example:
// constructors and derived classes

#include <iostream>

using namespace std;

class mother {
public:
mother ()
{ cout << “mother: no parameters\n”’; }
mother (int a)
{ cout << “mother: int parameter\n”; }
b
class daughter : public mother {
public:
daughter (int a)
{ cout << “daughter: int parameter\n\n”; }
b
class son : public mother {
public:
son (int a) : mother (a)
{ cout << “son: int parameter\n\n”; }
b
int main () {
daughter cynthia (0);
son daniel(0);

return 0;

Inheritance, Polymorphism & Virtual Functions n’

4.3

Notice the difference between which mother’s constructor is called when a new daughter
object is created and which when it is a son object. The difference is because the
constructor declaration of daughter and son:

daughter (int a) // nothing specified: call default

son (int a) : mother (a) // constructor specified: call this

FEATURES OR ADVANTAGES OF INHERITANCE

Reusability: Inheritance helps the code to be reused in many situations. The base
class is defined and once it is compiled, it need not be reworked. Using the concept of
inheritance, the programmer can create as many derived classes from the base class as
needed while adding specific features to each derived class as needed.

Saves Time and Effort: The above concept of reusability achieved by inheritance
saves the programmer time and effort. Since the main code written can be reused in
various situations as needed.

Increases Program Structure which Results in Greater Reliability

For example, if the base class is sample and the derived class is sample it is specified
as:

class sample: public sample
The above makes sample have access to both public and protected variables of base
class sample.
Reminder about public, private and protected access specifiers:
* If a member or variables defined in a class is private, then they are accessible by
members of the same class only and cannot be accessed from outside the class.
* Public members and variables are accessible from outside the class.

* Protected access specifier is a stage between private and public. If a member
functions or variables defined in a class are protected, then they cannot be accessed
from outside the class but can be accessed from the derived class.

C++ inheritance is very similar to a parent-child relationship. When a class is inherited
all the functions and data member are inherited, although not all of them will be
accessible by the member functions of the derived class. But there are some exceptions
to it too. Some of the exceptions to be noted in C++ inheritance are as follows.

¢ The constructor and destructor of a base class are not inherited.

* The assignment operator is not inherited.

¢ The friend functions and friend classes of the base class are also not inherited.

ﬁ Zero to Mastery Microsoft Visual in C++

There are some points to be remembered about C++ inheritance. The protected and
public variables or members of the base class are all accessible in the derived class.
But a private member variable not accessible by a derived class. It is a well known
fact that the private and protected members are not accessible outside the class. But a
derived class is given access to protected members of the base class.

Let us see a piece of sample code for C++ inheritance. The sample code considers a
class named vehicle with two properties to it, namely color and the number of wheels.
A vehicle is a generic term and it can later be extended to any moving vehicles like
car, bike, bus etc.

class vehicle /Sample base class for c++ inheritance

{

protected:
char colorname[20];
int number_of wheels;

public:
vehicle();
~vehicle();
void start();
void stop();

3

class Car: public vehicle //Sample derived class for C++ inheritance

{

protected:
char type_of_fuel,
public:
Car();
)
The derived class Car will have access to the protected members of the base class. It
can also use the functions start, stop and run provided the functionalities remain the
same. In case the derived class needs some different functionalities for the same

functions start, stop and run, then the base class should implement the concept of
virtual functions.

Inheritance Example:

class sample

{
public:

Inheritance, Polymorphism & Virtual Functions -

sample(void) { x=0; }
void f(int n1)

{

x=nl*5;

!

void output(void) { cout<<x; }
private:

int x;

1

class sample: public sample
{

public:

sample(void) { s1=0; }
void f1(int n1)

{

s1=n1*10;

1

void output(void)

{

sample::output();
cout << s1;

1

private:

int s1;

1

int main(void)

{

sample s;

s.f(10);

s.output();

s.f1(20);

s.output();

!

The output of the above program is

5 0
200

4.4 TYPES

Zero to Mastery Microsoft Visual in C++

In the above example, the derived class is sample and the base class is sample. The
derived class defined above has access to all public and private variables. Derived
classes cannot have access to base class constructors and destructors. The derived class
would be able to add new member functions, or variables, or new constructors or new
destructors. In the above example, the derived class sample has new member function
f1() added in it. The line:

sample s;

creates a derived class object named as s. When this is created, space is allocated for
the data members inherited from the base class sample and space is additionally allocated
for the data members defined in the derived class sample.

The base class constructor sample is used to initialize the base class data members and
the derived class constructor sample is used to initialize the data members defined in
derived class.

The access specifier specified in the line:
class sample: public sample

Public indicates that the public data members which are inherited from the base class
by the derived class sample remains public in the derived class.

OF INHERITANCE

C++ distinguishes two types of inheritance: public and private. As a default, classes
are privately derived from each other. Consequently, we must explicitly tell the compiler
to use public inheritance.

The type of inheritance influences the access rights to elements of the various
superclasses. Using public inheritance, everything which is declared private in a
superclass remains private in the subclass. Similarly, everything which is public remains
public. When using private inheritance the things are quite different as is shown in
table below.

Table 4.1: Access rights and inheritance

Type of Inheritance
Private Public
Private Private Private
Protected Private Protected
Public Private Public

The leftmost column lists possible access rights for elements of classes. It also includes
a third type protected. This type is used for elements which should be directly usable

Inheritance, Polymorphism & Virtual Functions n’

in subclasses but which should not be accessible from the outside. Thus, one could say
elements of this type are between private and public elements in that they can be used
within the class hierarchy rooted by the corresponding class.

Inheritance in C++ can also be classified as Single, Multiple, multilevel, Hierarchical,
multipath and Hybrid.

A & B A
1 L 1 1 1
A A i T ¥
r i I I 1 | "'-..-.- r H:“'
C B L O

L | L | L I L Il L
(&) Singla Inheritance (k) Multipfe Inheritance [c) Hierarchical Inherifance

r 1 r

A A - A |

L | L 1 L |

' 1. + ' T | T |
B B C B : o

L | L L | L | . L 4
: A b A
c] C

L | L i L 1

{a) Mulli-level Inheritance {b) Hybrid Inheritance () Multipath Inheritance

Figure 4.2: Different forms of Inheritance

Inheritance comes in two forms, depending on number of parents a subclass has

1. Single Inheritance (SI)

Only one parent per derived class

Form an inheritance tree

SIrequires a small amount of run-time overhead when used with dynamic binding

e.g., Smalltalk, Simula, Object Pascal
2. Multiple Inheritance (MI)

More than one parent per derived class

Forms an inheritance Directed Acyclic Graph (DAG)

Compared with SI, MI adds additional run-time overhead (also involving dynamic
binding)
e.g., C++, Eiffel, Flavors (a LISP dialect)

ﬁ Zero to Mastery Microsoft Visual in C++

4.4.1 Single Inheritance

In “single inheritance,” a common form of inheritance, classes have only one base
class. Consider the relationship illustrated in the following figure.

Simple Single-Inheritance Graph

Printed Document |

!

Book

!

Paperback Book

Note the progression from general to specific in the figure. Another common attribute
found in the design of most class hierarchies is that the derived class has a “kind of”
relationship with the base class. In the figure, a Book is a kind of a PrintedDocument,
and a PaperbackBook is a kind of a book.

class abc // example of single inheritance
{

protected:

int x;

inty;

|

class def:abc

{

private:

int z;

public:

void display()
{

x=10;

y=20;

7Z=X+Y;
cout<<z<<™

”,
s

}s

Inheritance, Polymorphism & Virtual Functions -

void main()

{

class def o;

o.display();
getch();
}

4.4.2 Multiple Inheritance

Multiple inheritance refers to a feature of some object-oriented programming languages
in which a class can inherit behaviors and features from more than one superclass.
This contrasts with single inheritance, where a class may inherit from at most one
superclass.

Multiple inheritance allows a class to take on functionality from multiple other classes,
such as allowing a class named StudentMusician to inherit from a class named Person,
a class named Musician, and a class named Worker. This can be abbreviated
StudentMusician : Person, Musician, Worker.

Ambiguities arise in multiple inheritance, as in the example above, if for instance the
class Musician inherited from Person and Worker and the class Worker inherited
from Person. This is referred to as the Diamond problem. There would then be the
following rules:

Worker : Person

Musician : Person, Worker

StudentMusician : Person, Musician, Worker

If a compiler is looking at the class StudentMusician it needs to know whether it
should join identical features together, or whether they should be separate features.
For instance, it would make sense to join the “Age” features of Person together for
StudentMusician. A person’s age doesn’t change if you consider them a Person, a
Worker, or a Musician. It would, however, make sense to separate the feature “Name”
in Person and Musician if they use a different stage name than their given name. The
options of joining and separating are both valid in their own context and only the
programmer knows which option is correct for the class they are designing.

An Example

class computer_screen {

public:

computer_screen(char *, long, int, int);
void show_screen(void);

private:

ﬁ Zero to Mastery Microsoft Visual in C++

char type[32];

long colors;

int x_resolution;

int y_resolution;

b

class mother_board {
public:

mother_board(int, int, int);

void show_mother_board(void);

private:

int processor;
int speed;

int RAM;

b

class computer: public computer_screen, public mother_board

{
public:\

computer(char *, int, float,

char*, long, int,
int, int, int, int);

void show_computer(void);

private:
char name[64];

int hard_disk; //size of

float floppy;
3

Hiding Inherited Classes

Public Derivation
(e.g., public box)

Protected Derivation
(e.g., protected box)

Private Derivation
(e.g., private box)

Public Member
Function

Remains public

Remains protected

Remains private

Protected Member
Function

Becomes protected

Remains protected

Remains private

Private Member
Function

Becomes private
(to derived)

Becomes private
(to derived)

Remains private

Inheritance, Polymorphism & Virtual Functions -

4.4.3 Multilevel Inheritance

Here the inheritance is extended beyond one level. For example, class A is inherited
by say class B and further class C inherits class B. This is an example of multilevel
inheritance.
frEkskkkx IMPLEMENTATION OF MULTILEVEL INHERITANCE ##%#%k%3%/

#include< iostream.h>

#include< conio.h>

class student // Base Class

{

protected:

int rollno;

char *name;

public:

void getdata(int b,char *n)

{

rollno = b;

name = n;

}

void putdata

(void)

{

cout< < “ The Name Of Student \t:” < < name< < endl;

cout< < “ The Roll No. Is \t:” < < rollno< < endl;

}

|

class test:public student // Derieved Class 1
{

protected:

float m1,m2;

public:

void gettest(float b,float ¢)
{

ml =b;

m2 =c¢;

}

ﬁ Zero to Mastery Microsoft Visual in C++

void puttest(void)

{

cout< < “Marks In CP Is \t:” < < ml< < endl;
cout< < “ Marks In Drawing Is \t:” < < m2< < endl;

}

|

class result:public test // Derieved Class 2
{

protected:

float total;

public:

void displayresult(void)

{

total = m1 + m2;

putdata();

puttest();

cout< < *“ Total Of The Two \t: “< < total< < endl,
}

|

void main()

{

clrscr();

int x;

float y,z;

char n[20];

cout< < “Enter Your Name:”;
cin>>n;

cout< < “Enter The Roll Number:”;
cin>>x;

result rl;

rl.getdata(x,n);

cout< < “ENTER COMPUTER PROGRAMMING MARKS:”;

cin>>y;
cout< < “ENTER DRAWING MARKS:”;
cin>>z;

>

Inheritance, Polymorphism & Virtual Functions -

rl.gettest(y,z);
cout< < endl< < endl < Rk REQTT ok skttt o

endl;

rl.displayresult();

cout<s < “**>k>1<>i<*****************************”< < endl-
getch();

Enter Your Name:Lionel

Enter The Roll Number:44

ENTER COMPUTER PROGRAMMING MARKS:95
ENTER DRAWING MARKS:90

The Name Of Student : Lionel

The Roll No. Is : 44

Marks In CP Is : 95

Marks In Drawing Is : 90

Total Of The Two : 185

sesksgofsk ook ok ook sk otok sk ok ook ok kR skofok ok ok ok

#

Another Example of Inheritance
#define male ‘m’
#define female ‘f
#include <iostream>
#include <cstdlib>
#include <ctime>
#include <string>
using namespace std;
class person
{
public:

person(int,char,string);
person();
int id();

ﬁ Zero to Mastery Microsoft Visual in C++

char sex();
string name();
int changename(string);
static int reset_count();
protected:
int person_id;
char person_sex;
string person_name;
static int count;
|
class student: public person
{
public:
student (string,char);
student (string,char,char);
int number();
char specialization();
protected:
int student_number;
char student_specialization;
|
class employee: public person
{
public:
employee (int,char);
employee (string,char,char);
int number ();
char working ();
protected:
int employee_number;
char employee_working;
b
int person::count;
int person::reset_count() {

person::count=0;

Inheritance, Polymorphism & Virtual Functions -

return (person::count);
person::person(int a, char b, string c¢)
person_id=person::count;
person::count++;
person_sex=b;
person_name=c;
person::person()
person_id=person::count;
person::count++;
char this_persons_sex;
int random=rand()%?2;
if (random==0) this_persons_sex="m’;
else this_persons_sex="f";
person_sex=this_persons_sex;

2999,

person_name="";

}
int person::id()
{
return (person_id);
}
char person::sex()
{
return (person_sex);
}
string person::name()
{
return (person_name);
}
int person::changename(string a)
{

person_name=a;

ﬁ Zero to Mastery Microsoft Visual in C++

return O;

1

student::student(string a, char b)

{
student_number=person_id;
person_name=a;
student_specialization=b;

!

student::student(string a, char b, char ¢)

{
person_name=a;
student_number=person_id;
student_specialization=Db;
person_sex=c;

}

int student::number()

{

return (student_number);

}

char student::specialization()
{

return (student_specialization);
}
employee::employee(int a, char b)
{

employee_number=a;

employee_working=b;

employee::employee(string a, char b, char ¢)
{
person_name=a;
employee_number=person_id;
person_sex=b;
employee_working=c;

Inheritance, Polymorphism & Virtual Functions

}
int employee::number()
{
return (employee_number);
}
char employee::working()
{
return (employee_working);
}
int main()
{

person::reset_count();

srand(time(NULL));

employee ** emp;

student ** stu;

char tmpsex;

string tmpname;

string junk;

char tmpspec;

emp=new employee*[10];

stu=new student*[10];

cout<<“students:”’<<endl;

for (int i=0;i<10;i++)

{
cout<<“name:”;
getline(cin,tmpname);\
cout<<“specialization: *;
cin >> tmpspec;
cout<<““sex:”;

cin >> tmpsex;

getline(cin,junk); // clear input buffer from junk cin leaves there

stu[i]=new student(tmpname,tmpspec,tmpsex);

}

cout<<“employees:”<<end];

for (int i=0;i<10;i++)

Zero to Mastery Microsoft Visual in C++

cout<<‘“name:”;
getline(cin,tmpname);
cout<<““sex:”;
cin>> tmpsex;
cout << “Working?:”;
cin >> tmpspec;
getline(cin,junk);
empli]=new employee(tmpname,tmpsex,tmpspec);
}

cout << “Student Data:\nid\tname\tsex\tspecialization\n”;
"<<endl;

cout<<®
for (int i =0; i<10;++i)
{
cout<<stu[i]->id()<<“\t”<<stu[i]->name()<<“\t’<<stu[i]->sex ()<< “\t"<<stuli]
>specialization()<<endl;
}

cout<<*
cout << “\nEmployee Data:\nid\tname\tsex\tworking\n”;

"<<endl;

"<<endl;

cout<<*
for (int i =0; i<10;++i)

{

cout<<empl[i]->id()<<“\A’<<empli]->name()<<*“\t”<<empli]
>sex()<<“\t"<<empli]->working()<<endl;

}
cout<<*
cout<<‘“\n\nPress <ENTER> to Exit.”;

cin.get();

"<<endl;

return 0;

}
4.5 C++ POLYMORPHISM

4.5.1 Introduction

Polymorphism is the ability to use an operator or function in different ways.
Polymorphism gives different meanings or functions to the operators or functions.

Inheritance, Polymorphism & Virtual Functions n’

Poly, referring to many, signifies the many uses of these operators and functions. A
single function usage or an operator functioning in many ways can be called
polymorphism. Polymorphism refers to codes, operations or objects that behave
differently in different contexts.

Polymorphism is a powerful feature of the object oriented programming language
C++. A single operator + behaves differently in different contexts such as integer,
float or strings referring the concept of polymorphism. The above concept leads to
operator overloading. The concept of overloading is also a branch of polymorphism.
When the exiting operator or function operates on new data type it is overloaded. This
feature of polymorphism leads to the concept of virtual methods.

Polymorphism refers to the ability to call different functions by using only one type
of function call. Suppose a programmer wants to code vehicles of different shapes
such as circles, squares, rectangles, etc. One way to define each of these classes is to
have a member function for each that makes vehicles of each shape. Another convenient
approach the programmer can take is to define a base class named Shape and then
create an instance of that class. The programmer can have array that hold pointers to
all different objects of the vehicle followed by a simple loop structure to make the
vehicle, as per the shape desired, by inserting pointers into the defined array. This
approach leads to different functions executed by the same function call. Polymorphism
is used to give different meanings to the same concept. This is the basis for Virrual
function implementation.

In polymorphism, a single function or an operator functioning in many ways depends
upon the usage to function properly. In order for this to occur, the following conditions
must apply:

¢ All different classes must be derived from a single base class. In the above
example, the shapes of vehicles (circle, triangle, rectangle) are from the single
base class called Shape.

¢ The member function must be declared virtual in the base class. In the above
example, the member function for making the vehicle should be made as virtual
to the base class.

4.5.2 Features and Advantages of the Concept of Polymorphism

Applications are easily extendable: Once an application is written using the concept
of polymorphism, it can easily be extended, providing new objects that conform to
the original interface. It is unnecessary to recompile original programs by adding new
types. Only re-linking is necessary to exhibit the new changes along with the old
application. This is the greatest achievement of C++ object-oriented programming. In
programming language, there has always been a need for adding and customizing. By
utilizing the concept of polymorphism, time and work effort is reduced in addition to
making future maintenance easier.

ﬁ Zero to Mastery Microsoft Visual in C++

« Helps in reusability of code.

¢ Provides easier maintenance of applications.

¢ Helps in achieving robustness in applications.

4.5.3 Types of Polymorphism
C++ provides three different types of polymorphism.

 Virtual functions

¢ Function name overloading

¢ Operator overloading
We have already covered the basics of Function and Operator overloading in previous
chapter.
In addition to the above three types of polymorphism, there exist other kinds of
polymorphism:

* run-time

e compile-time

¢ ad-hoc polymorphism

¢ parametric polymorphism
Other types of polymorphism defined:

Run-time: The run-time polymorphism is implemented with inheritance and virtual
functions.

Compile-time: The compile-time polymorphism is implemented with templates.

Ad-hoc polymorphism: If the range of actual types that can be used is finite and the
combinations must be individually specified prior to use, this is called ad-hoc
polymorphism.

Parametric polymorphism: If all code is written without mention of any specific
type and thus can be used transparently with any number of new types it is called
parametric polymorphism.

4.6 VIRTUAL FUNCTION

4.6.1 Whatis a Virtual Function?

A virtual function is a member function of a class, whose functionality can be over-
ridden in its derived classes. It is one that is declared as virtual in the base class using
the virtual keyword. The virtual nature is inherited in the subsequent derived classes
and the virtual keyword need not be re-stated there. The whole function body can be
replaced with a new set of implementation in the derived class.

Inheritance, Polymorphism & Virtual Functions -

4.6.2 What is Binding?

Binding refers to the act of associating an object or a class with its member. If we can
call a method fn() on an object o of a class ¢, we say that the object o is binded with
the method [n(). This happens at compile time and is known as static or compile -
time binding. The calls to the virtual member functions are resolved during run-time.
This mechanism is known as dynamic binding. The most prominent reason why a
virtual function will be used is to have a different functionality in the derived class.
The difference between a non-virtual member function and a virtual member function
is, the non-virtual member functions are resolved at compile time.

4.6.3 How does a Virtual Function Work?

Whenever a program has a virtual function declared, a v - table is constructed for the
class. The v-table consists of addresses to the virtual functions for classes that contain
one or more virtual functions. The object of the class containing the virtual function
contains a virtual pointer that points to the base address of the virtual table in memory.
Whenever there is a virtual function call, the v-table is used to resolve to the function
address. An object of the class that contains one or more virtual functions contains a
virtual pointer called the vptr at the very beginning of the object in the memory.
Hence the size of the object in this case increases by the size of the pointer. This vptr
contains the base address of the virtual table in memory. Note that virtual tables are
class specific, i.e., there is only one virtual table for a class irrespective of the number
of virtual functions it contains. This virtual table in turn contains the base addresses of
one or more virtual functions of the class. At the time when a virtual function is called
on an object, the vptr of that object provides the base address of the virtual table for
that class in memory. This table is used to resolve the function call as it contains the
addresses of all the virtual functions of that class. This is how dynamic binding is
resolved during a virtual function call.

The following code shows how we can write a virtual function in C++ and then use
the same to achieve dynamic or runtime polymorphism.

#include <iostream.h>

class base

{

public:

virtual void display()

{

cout<<‘“\nBase”;
1
1

class derived : public base

Zero to Mastery Microsoft Visual in C++

{
public:
void display()
{
cout<<“\nDerived”;
}
|5
void main()
{
base *ptr = new derived();
ptr->display();
}

In the above example, the pointer is of type base but it points to the derived class
object. The method display() is virtual in nature. Hence in order to resolve the virtual
method call, the context of the pointer is considered, i.e., the display method of the
derived class is called and not that of the base. If the method was non virtual in nature,
the display() method of the base class would have been called.

4.6.4 Virtual Constructors and Destructors

A constructor cannot be virtual because at the time when the constructor is invoked
the virtual table would not be available in the memory. Hence we cannot have a
virtual constructor.

A virtual destructor is one that is declared as virtual in the base class and is used to
ensure that destructors are called in the proper order. It is to be remembered that
destructors are called in the reverse order of inheritance. If a base class pointer points
to a derived class object and we some time later use the delete operator to delete the
object, then the derived class destructor is not called. Refer to the code that follows:
#include <iostream.h>
class base
{
public:
~base()
{
}
b

class derived : public base

Inheritance, Polymorphism & Virtual Functions n’
{

public:
~derived()
{

}

IS

void main()

{
base *ptr = new derived();
// some code
delete ptr;

}

In this case the type of the pointer would be considered. Hence as the pointer is of
type base, the base class destructor would be called but the derived class destructor
would not be called at all. The result is memory leak. In order to avoid this, we have
to make the destructor virtual in the base class. This is shown in the example below:

#include <iostream.h>
class base
{
public:
virtual ~base()
{
!
s
class derived : public base
{
public:
~derived()
{
1
1
void main()
{
base *ptr = new derived();
// some code
delete ptr;

}

Zero to Mastery Microsoft Visual in C++

Example: C++ Virtual Function

class Window // Base class for C++ virtual function example
{
public:
virtual void Create() // virtual function for C++ virtual function example

{

cout <<“Base class Window” ’<<end]l;

)
class CommandButton : public Window
{
public:
void Create()
{
cout<<*“Derived class Command Button - Overridden C++ virtual
function”<<endl;
}
3
void main()
{
Window *x, *y;
x = new Window();
x->Create();
y = new CommandButton();
y->Create();
}
The output of the above program will be,
Base class Window
Derived class Command Button

If the function had not been declared virtual, then the base class function would have
been called all the times. Because, the function address would have been statically
bound during compile time. But now, as the function is declared virtual it is a candidate
for run-time linking and the derived class function is being invoked.

4.6.5 C++ Virtual function - Call Mechanism

Whenever a program has a C++ virtual function declared, a v-table is constructed for
the class. The v-table consists of addresses to the virtual functions for classes and

Inheritance, Polymorphism & Virtual Functions -

pointers to the functions from each of the objects of the derived class. Whenever there
is a function call made to the C++ virtual function, the v-table is used to resolve to the
function address. This is how the Dynamic binding happens during a virtual function
call.

Example of Virtual Function

#include <string.h>
#include <assert.h>
#include <iostream.h>
typedef double Coord;
%
The type of X/Y points on the screen.
*/
enum Color {Co_red, Co_green, Co_blue};
/*®
Colors.
*/
/I abstract base class for all shape types
class Shape {
protected:
Coord xorig; // X origin
Coord yorig; // 'Y origin
Color co; // color
/*
These are protected so that they can be accessed by derived classes. Private wouldn’t
allow this.
These data members are common to all shape types.
*/
public:
Shape(Coord x, Coord y, Color ¢) :
xorig(x), yorig(y), co(c) {} // constructor
/%
Constructor to initialize data members common to all shape types.
*/
virtual ~Shape() {} // virtual destructor
/>2<

Zero to Mastery Microsoft Visual in C++

Destructor for Shape. It’s a virtual function.
Destructors in derived classes are virtual also because this one is declared so.
*/
virtual void draw() = 0; // pure virtual draw() function
Similarly for the draw() function. It’s a pure virtual and is not called directly.
*/
1
// line with X,Y destination
class Line : public Shape {
/>I<
Line is derived from Shape, and picks up its data members.
*/
Coord xdest; // X destination
Coord ydest; /'Y destination
/>I<

Additional data members needed only for Lines.

*/
public:
Line(Coord x, Coord y, Color ¢, Coord xd, Coord yd) :
xdest(xd), ydest(yd),
Shape(x, y, ¢) {} // constructor with base initialization
/*

Construct a Line, calling the Shape constructor as well to initialize data members of
the base class.
*/
~Line() {cout << “~Line\n”;} // virtual destructor
/>I<
Destructor.
*/

Inheritance, Polymorphism & Virtual Functions n’

void draw() // virtual draw function

cout << “Line” << “(";
cout << xorig << “,” << yorig << “,” << int(co);
cout << “,” << xdest << “,” << ydest;
cout << “N\n”;
/>l<
Draw a line.
*/
1

// circle with radius
class Circle : public Shape {
Coord rad; // radius of circle

Radius of circle.
*/
public:
Circle(Coord x, Coord y, Color ¢, Coord 1) : rad(r),
Shape(x, y, ¢) {} // constructor with base initialization
~Circle() {cout << “~Circle\n;} // virtual destructor
void draw() // virtual draw function
{
cout << “Circle” << “(*
cout << xorig << “,” << yorig << “,” << int(co);
cout << “,” << rad;
cout << “Wn”;
}
B

// text with characters given
class Text : public Shape {
char* str; // copy of string
public:
Text(Coord x, Coord y, Color ¢, const char* s) :

Shape(x, y, ¢) // constructor with base initialization

ﬁ Zero to Mastery Microsoft Visual in C++

{

str = new char[strlen(s) + 1];

assert(str);
strepy(str, s);
/>!<
Copy out text string. Note that this would be done differently if we were taking
advantage of some newer C++ features like exceptions and strings.

*/
1
~Text() {delete [] str; cout << “~Text\n”;} // virtual dtor
Vi
Destructor; delete text string.
*/
void draw() // virtual draw function
{
cout << “Text” << “(”;
cout << xorig << “,” << yorig << “,” << int(co);
cout << “,” << str;
cout << “Wn”;
}
|5
int main()
{
const int N = 5;
int i;
Shape* sptrs[N];
Vi

Pointer to vector of Shape* pointers. Pointers to classes derived from Shape can be
assigned to Shape* pointers.
*/
// initialize set of Shape object pointers
sptrs[0] = new Line(0.1, 0.1, Co_blue, 0.4, 0.5);
sptrs[1] = new Line(0.3, 0.2, Co_red, 0.9, 0.75);
sptrs[2] = new Circle(0.5, 0.5, Co_green, 0.3);

Inheritance, Polymorphism & Virtual Functions n’

sptrs[3] = new Text(0.7, 0.4, Co_blue, “Howdy!™);
sptrs[4] = new Circle(0.3, 0.3, Co_red, 0.1);

Create some shape objects.
*/
// draw set of shape objects
for (i=0;i<N;i++)
sptrs[i]->draw();
/>!<

Draw them using virtual functions to pick up the
right draw() function based on the actual object

type being pointed at.

*/

/I cleanup

for (i=0;i<N;i++)

delete sptrs[i];

/>!<
Clean up the objects using virtual destructors.
*/

return 0;
}

When we run this program, the output is:
Line(0.1, 0.1, 2, 0.4, 0.5)
Line(0.3, 0.2, 0, 0.9, 0.75)
Circle(0.5, 0.5, 1, 0.3)
Text(0.7, 0.4, 2, Howdy!)
Circle(0.3, 0.3, 0, 0.1)
~Line
~Line
~Circle
~Text
~Circle

with enum color values represented by small integers.

ﬁ Zero to Mastery Microsoft Visual in C++

A few additional comments. Virtual functions typically are implemented by placing a
pointer to a jump table in each object instance. This table pointer represents the “real”
type of the object, even though the object is being manipulated through a base class
pointer.

Because virtual functions usually need to have their function address taken, to store in
a table, declaring them inline as the above example does is often a waste of time. They
will be laid down as static copies per object file. There are some advanced techniques
for optimizing virtual functions, but you can’t count on these being available.

Note that we declared the Shape destructor virtual (there are no virtual constructors).
If we had not done this, then when we iterated over the vector of Shape* pointers,
deleting each object in turn, the destructors for the actual object types derived from
Shape would not have been called, and in the case above this would result in a memory
leak in the Text class.

Shape is an example of an abstract class, whose purpose is to serve as a base for
derived classes that actually do the work. It is not possible to create an actual object
instance of Shape, because it contains at least one pure virtual function.

4.6.6 Pure Virtual Function
What is Pure Virtual Function?
Pure Virtual Function is a Virtual function with no body.
Declaration of Pure Virtual Function:

Since pure virtual function has no body, the programmer must add the notation =0 for
declaration of the pure virtual function in the base class.

General Syntax of Pure Virtual Function takes the form:

class classname //This denotes the base class of C++ virtual function

{

public:

virtual void virtualfunctioname() = 0 //This denotes the pure virtual function in C++
1

The other concept of pure virtual function remains the same as described in the previous

section of virtual function. To understand the declaration and usage of Pure Virtual
Function, refer to this example:

class Exforsys

{
public:

Inheritance, Polymorphism & Virtual Functions -

virtual void example()=0; //Denotes pure virtual Function Definition
|

class Exf1:public Exforsys
{

public:

void example()

{

cout<<“Welcome™;

}

1

class Exf2:public Exforsys
{

public:

void example()

{

cout<<“To Training”;

1

1

void main()

{

Exforsys* arra[2];

Exf1 el;

Exf2 e2;

arra[0]=⪙
arra[1]=&e2;
arra[0]->example();

arra[1]->example();

}

Since the above example has no body, the pure virtual function example() is declared
with notation =0 in the base class Exforsys. The two derived class named Exf1 and
Exf2 are derived from the base class Exforsys. The pure virtual function example()
takes up new definition. In the main function, a list of pointers is defined to the base
class.

Two objects named el and e2 are defined for derived classes Exf1 and Exf2. The
address of the objects el and e2 are stored in the array pointers which are then used
for accessing the pure virtual function example() belonging to both the derived class
EXf1 and EXf2 and thus, the output is as in the above example.

ﬁ Zero to Mastery Microsoft Visual in C++

The programmer must clearly understand the concept of pure virtual functions having
no body in the base class and the notation =0 is independent of value assignment. The
notation =0 simply indicates the Virtual function is a pure virtual function as it has no
body.

Some programmers might want to remove this pure virtual function from the base
class as it has no body but this would result in an error. Without the declaration of the
pure virtual function in the base class, accessing statements of the pure virtual function
such as, arra[0]->example() and arra[1]->example() would result in an error. The
pointers should point to the base class Exforsys. Special care must be taken not to
remove the statement of declaration of the pure virtual function in the base class.

Virtual Base Class

Exforsys

raiming
In the above example, there are two derived classes Exf1 and Exf2 from the base class
Exforsys. As shown in the above diagram, the Training class is derived from both of
the derived classes Exf1 and Ex{2. In this scenario, if a user has a member function in
the class Training where the user wants to access the data or member functions of the
class Exforsys it would result in error if it is performed like this:

class Exforsys

{

protected:

int x;

b

class Exf1:public Exforsys

{h

class Exf2:public Exforsys

{h

class Training:public Exf1,public Exf2
{

Inheritance, Polymorphism & Virtual Functions n’

public:
int example()

{

return Xx;

}

IS
The above program results in a compile time error as the member function example()
of class Training tries to access member data x of class Exforsys. This results in an

error because the derived classes Exf1 and Exf2 (derived from base class Exforsys)
create copies of Exforsys called subobjects.

This means that each of the subobjects have Exforsys member data and member
functions and each have one copy of member data x. When the member function of
the class Training tries to access member data x, confusion arises as to which of the
two copies it must access since it derived from both derived classes, resulting in a
compile time error.

When this occurs, Virtual base class is used. Both of the derived classes Exf1 and
Exf2 are created as virtual base classes, meaning they should share a common subobject
in their base class.

For Example:

class Exforsys

{

protected:

int x;

class Exfl:virtual public Exforsys
{}h

class Exf2:virtual public Exforsys
{h

class Training:public Exf1,public Exf2
{

public:

int example()

{

return X;

}

3

In the above example, both Exf1 and Exf2 are created as Virtual base class

ﬁ Zero to Mastery Microsoft Visual in C++
REVIEW EXERCISE

What is the significance of Inheritance in object oriented programming?

2. Describe the types of inheritance in C++.

3. Prepare a class EMP that has a function to accept the personal details of an employee. Design a

NS,k

derived class which has a function that accepts the salary details of an employee and a function that
calculates the Net pay of the employee.

What is the concept of polymorphism and discuss its types and significance.
What are abstract classes?
How polymorphism can be implemented?

What are virtual functions?

GETTING STARTED

CHAPTER

WITH VISUAL C++ 6

This chapter will teach you how to create a project in version six of Visual C++. This
version of Microsoft’s C++ IDE has probably helped millions of developers in their
C++ Programming over the last 8 years. Microsoft Visual C++ has existed in many
versions for over 13 years on the Win 32 platform. Version 6 is the last non .NET
version and probably the most popular. It’s been around since 1999 and has had six

service packs.

In this chapter, you’ll learn how to create a Command Line project, add some source

code and then make it.

MIFT Actrenls’ Coroba’omd

W WP agphe'caid |
M gt b

i B [

Fis Pasjads | Wokmpacer | Otes Documenis |
(D ATL COM Appwiawd) [P Y —
I-..-.—.L-...—-I.;--.--J

st dgpie aed

[0 st Froopest

A D Ao Wiz and

B et Tohoemnd Pron o'

.ﬂ. 5P E sternar wioad

i b e

Z

= Cpaaie rver seorb Ipacs

Flarigm:
wian

Cawsl

Figure 5.1

Zero to Mastery Microsoft Visual in C++

Before you start

Make sure your version has been updated with Service Pack 6. You can do this from
the Microsoft website.

5.1 GETTING STARTED

We’ll begin by creating a new Project. Visual C++ includes the AppWizard. This is a
Wizard that does all the donkey-work of creating project files for you. You should get
in the habit of using this as it saves a lot of time.

After starting the IDE, From the File menu click New and the New Dialog will
popup. Select “Win 32 Console Application” (Red Circle 1 in the image), then enter
a Project name (Red Circle 2 in the image) like Examplel. Now select somewhere for
the project files by clicking the location selector to the right of the Location: edit box
and Press OK.

5.2 LEARN ABOUT PROJECTS AND WORKSPACES

Win32 Console Application - Step 1 of 1

What lund ol Conaole Applcaton do you
wiard bo create™

* A “Hello, Wodd™ spphcahon
A appicishion thad tupponts ME)

Figure 5.2

Click the third radio button which says A “Hello, World” application, then click the
Finish button. Press Ok on the next page and your workspace panel will now show
Example 1 Files, with folders for Source Files, Header Files, and Resource files
(There will be none) and a ReadMe.txt with a summary of the project files.

Getting Started with Visual C++ 6 m

5.2.1 Projects in Visual C++ 6

Projects in Visual C++ 6 are organised in Workspaces; an application will normally
have one workspace. Each workspace can hold one or more projects. In practice this
means one project for each exe or dlIl.

If you look in the Win 32 folder where you created the project you’ll see a number of
files. There’s the Source Files either ¢ or cpp files (source code), at least one header
file (stdafx.h) plus a .dsp file that holds the project details and a .dsw file that holds
the workspace details.

Other files include the .plg which is created when you compile. It’s a html file which
holds the log of the compilation. Double click it and your default browser will open
and display it.

The .ncb and .opt files holds information about the settings and log of Visual Studio-
both are binary files so of no further interest to us.

5.3 COMPILING WITH VISUAL C++ 6

i DaCE BN 3'.[..r|' 1 sl)

Figure 5.3

Compiling the Hello World Application
This is what the generated examplel.cpp looks like.
/I ex1.cpp : Defines the entry point for the Command Line application.
/1
#include “stdafx.h”

m Zero to Mastery Microsoft Visual in C++

int main(int argc, char* argv[])

{
printf(“Hello World'\n”) ;

return 0;
}

This is standard C++ file. In fact it’s also a standard C as well though it defaults to
cpp- You can mix cpp and c files but don’t give them the same name as the compiler
will expect to compile both examplel.c and examplel.cpp into examplel.obj and it
will object to having two files generate the same object file.

To remove files from the Project, just select each in the tree and press delete. To add
a file right click on “Source Files” (for .cpp, or .c) or “Header Files” for .h and click
“add files to Folder”. This will open a window so you can browse to your file, select
and add it.

Click on the Project name in the Workspace tree and press the F7 key. That will Make
the Hello World application. You can run it by pressing F5 but you won’t see much,
as it’s a console application and the window will open and close very quickly.

You need to get to the command line (Click the Start button, then click Run, type cmd
and press enter) and navigate to the folder where the project files are located. After
compiling, a debug folder is created there and this contains the debug executable
which you can run.

5.4 DEBUG OR RELEASE PROJECTS?

Set Active Project Configuration

Bobd srkgmre

2 - 'Win32 Aelease

aﬂ.—arr-;:lez -'winiZ Debug Cancel]

Figure 5.4

Getting Started with Visual C++ 6 ﬁ

When developing a program, it’s obviously important to be able to debug it. However
for release you want to provide as small an executable as possible, unbloated by debug
code. Here’s how to do that.

Click “Build” on the main Menu, then “Set Active Configuration” on the drop-down
menu. This opens a dialog that shows you all possible build configurations. Just switch
to the “Release” configuration (that’s the selected configuration in the picture), press
Ok and then do another build. This creates a release folder containing the release
executable. For a simple “Hello World” Application, the debug executable is 169 KB
in size. The release exe is 40KB.

You aren’t just limited to these two configurations either. Click “Build” on the main
menu then “Configurations”. This is where you add extra configurations. For example,
a project for one customer may include additional functionality, perhaps implemented
in an extra dll. This is where you create that configuration. You can then customize it
in the Settings dialog. (Click “Project” on the Main menu then “Settings” on the drop-
down).

5.5 CONFIGURING THE SETTINGS DIALOGS

Project Settings

Sl Fal | win] Pslegcs - Terrwe I Dalngg LCLee | Lk I Aancuics | |¢-

! Caecery EET I

- 'l Famare Fil z)

ﬂ ";:—'h“' os i feend Chptwrag liewn

" _.|-|-|:,t-u»-. Lirval] . S Mt Sged X

d FAlezinace Fies ' A -
TR 8 L e gl Erowass HRD
!Flrp’ﬂrll‘
Datrsg i

Blre -

Fragwige o Srirdaors

WA I MOEBUG,_ CONSOLE_mBC?
Fromec! [ibers
naloge AR AT G AT D WANDTT D -
Wil BiG™ A COMSOLE™ D~ MBS
¥ o Flsibgn s eninpie pob S thdkabs b -
Coes
Figure 5.5

Settings

This dialog is probably the most complex in Visual C++ 6. The defaults are good
enough for many applications but there will come a time when you have to modify it.
Here is few examples. For example ALT-F7 is the keyboard shortcut to open the
Settings dialog.

ﬁ Zero to Mastery Microsoft Visual in C++

The settings tree control lets you create settings for different configurations. Choose
a Configuration in the Combo. If you have common folders for resources then Choose
“All Configurations” and click the “Resources Tab”. Add one or more paths, separated
by semi-colons to the Additional resource include directories.

The Project Options at the bottom of the first four settings tabs (C/C++, Link, Resources,
Browse Info) show a summary of the options set by the controls on that tab. You can
edit these directly or select the tab controls. For example Select the Link tab and
scroll down the Project Options until you see /out “Debug/examplel.exe” at the
bottom line. Now select the p in example and delete it. You’ll see the output file name
edit box update to reflect this.

Most of the time you don’t need to change the settings. Those that you are most likely
to do will be specifying extra paths for include files (Select Preprocessor on the
category combo on the C/C++ tab) and Resources as described above. For the rest, if
you don’t need to change them, don’t!

5.6 HOW TO DEBUG YOUR VISUAL C++ APPLICATIONS

i o pos pore B (e aE Sras SN -
£ FEE Wmr D OE W Gy e I & M FEa
' i = | i A &5 R
=

t .

i =

e -

TR

e e . s

o ¥ - | ™ =

ol), ey (Frmr V| | FrieFin ¥ | Mardie | B feeagry | 8

Figure 5.6

Getting Started with Visual C++ 6 ﬁ

Visual C++ has a powerful debugger that’s very easy to use. Let’s step through our
example program. To make it more interesting we’ll add an int variable and watch it
in a for loop.

Before the line ‘std::cout’, add the following two lines of code.
for (int i=0;i < 5; i++)
std::cout << “1 =" << 1 << “\n\n”’;

Select the first line (for int i...) and press F9. This puts a breakpoint there- a red circle
in the margin. Now press F5 to start the debugging. You can exit the debugger at any
time by pressing Shift + F5.

Without the breakpoint, the program would immediately run to completion and stop.
Alternatively you can start a program by pressing either F10 or F11.

You should see the three windows numbered 1-3, in the picture above. 1 Shows local
variables, 2 shows the calling stack (for functions) and 3 shows variables you decide
to watch. If you can’t see these windows, Click “View” on the Menu then “Debug
Windows” and then “Watch”, “Calling Stack™ or “variables” on the sub-menu.

When the program breaks at the for (int i =0;... line, the variables windows shows
that i has a nonsense value, like -858993460. This has just picked up whatever was in
RAM at the address of i. As soon as the loop starts executing, i takes the value 0. Press
F10 to step through execution line by line.

Stepping Through Program Execution

+ enmmple £ - Microsolt Vieual Ce « | break] - [example /. .cpp|
Bloe ci gow fest pope Debag Jooh window peb -
G - & m DT Ga8usneDisect
[Minbats = |18 gotad it v || gy main
% i —"
fincluds “sidalx. k"
it mainiint argc, char® arge(])
e
L3 printi(“Hello World!«n")

return 0

Figure 5.7

ﬁ Zero to Mastery Microsoft Visual in C++

F10 and F11

Both of these step the program forward by one line. The current line is highlighted by
the yellow arrow in the picture. The red spot is a breakpoint.

The difference between F10 and F11 is how functions are dealt with. F10 will call the
function and move on to the next line, whereas F11 will step into it.

When the cursor is on either of the std::cout lines, pressing F11 will enter Ostream,
the library that implements cout. You should avoid system files until you are more
proficient and comfortable with templates. Remember when you don’t want to step
into a function press F10.

If you do step into a function by mistake, don’t panic. Just press Shift+F11, to take
you to the end of the function.

The Debugger Windows

The “variables” window shows all the local variables. When stepping through the
main function, you’ll also see argc and argv which are command line parameters
passed into an application.

The “Calling Stack” shows which function called which. When you are many levels
deep this can be a life saver. Press F11 on a cout statement to see this. As the debugger
enters the function code, another level is added to the “Calling Stack” window.

The “watch” windows lets you watch variables, useful when those variables are no
longer visible in the “variables” window. You can type or cut and paste the variable
name into the window.

5.7 MANIPULATING DSP AND DSW FILES DIRECTLY

5.7.1 DSP and DSW Files

All Project settings are kept in a .dsp project file. This includes all configuration
information and it’s quite readable. Ignore the 3rd line # ** DO NOT EDIT **”, but
please do take care. Always close the workspace in Visual C++ and make a backup
copy before editing the .dsp file.

You can edit a project file using notepad or any text editor and it can be faster to make
changes than by using the Settings dialog. For instance you can see where the Debug
and Release Directories are defined, and changing those is easy. Adding extra source
or header files is not a hard task. Just add these three lines below to the .dsp to add
newfile.cpp to your Source Files folder.

Begin Source File
SOURCE=.\newfile.cpp
End Source File

Getting Started with Visual C++ 6 m

5.7.2 Copying DSP and DSW Files

It’s easy to copy .dsp and .dsw files into a new folder. If you are keeping the same
project name then there’s no need to edit the .dsw file.

If the project has another name, you’ll need to edit the .dsp and change all instances of
the old name to the new. Also I’ve found that the Precompiled headers setting can
cause problems. You need to load the project, and change the “precompiled headers”
setting on the C/C++ tab (choose “Precompiled Headers” on the category Combo) to
Create Precompiled header file the first time you build a project. After that change it
to “use precompiled header file” (.pch).

REVIEW EXERCISE

What are the various types of projects provided in VC++.

How to create a new project in VC++.

Projects in Visual C++ 6 are organized in Workspaces. Comment
Differentiate between .EXE and .DLL project types.

How one can run a VC++ program from command line.

S m kW bh =

What is the procedure to debug a VC++ application.

CHAPTER

GENERATING AWINDOWS
GUI PROGRAM

6.1 PROGRAMMING FOR THE WINDOWS GUI

Microsoft Visual C++ provides several different pathways for writing Windows GUI
programs. First, you can write GUI programs in C or C++ by directly calling the
functions provided by the underlying Win32 application program interface (API).

Using this approach, however, you must write many lines of routine code before you
can begin to focus on the tasks specific to your application. Second, you can write
Windows GUI programs in C++ using the Microsoft Foundation Classes. The MFC
provides a large collection of prewritten classes, as well as supporting code, which
can handle many standard Windows programming tasks, such as creating windows
and processing messages. You can also use the MFC to quickly add sophisticated
features to your programs, such as toolbars, split window views, and OLE support.
And you can use it to create ActiveX controls, which are reusable software components
that can be displayed in Web browsers and other container applications. The MFC can
simplify your GUI programs and make your programming job considerably easier.
Note that the MFC functions internally call Win32 API functions. The MFC is thus
said to “wrap” the Win32 API, providing a higher-level, more portable programming
interface. (In MFC programs, you’re also free to directly call Win32 API functions,
so you don’t lose their capabilities by choosing to use the MFC.)

Third, you can write Windows GUI programs in C++ using both the MFC and the
Microsoft Wizards. You can use AppWizard to generate the basic source files for a

Generating a Windows GUI Program -

variety of different types of GUI programs. You can then use the ClassWizard tool to
generate much of the routine code required to derive classes, to define member functions
for processing messages or customizing the behavior of the MFC, to manage dialog
boxes, and to accomplish other tasks. The code generated by the Wizards makes full
use of the MFC.

Note that the Wizards aren’t limited to generating simple program shells, but rather
can be used to produce programs containing extensive collections of advanced features,
including toolbars, status windows, context-sensitive online help, OLE support, database
access, and complete menus with partially or fully functional commands for opening
and saving files, printing, print previewing, and performing other tasks. Once you’ve
used the Wizards to generate the basic program source code, you can immediately
begin adding code specific to the logic of your program. Using this third approach,
you benefit not only from the prewritten code in the MFC, but also from the generated
source code that uses the MFC and handles many routine programming tasks. The
MFC and the Wizards free you from much of the effort required in creating your
program’s visual interface, and also help ensure that this interface conforms to
Microsoft’s guidelines.

6.2 CREATING AND BUILDING THE PROGRAM

In this section you’ll create a program named WinGreet, which is an example of the
simplest type of program that you can generate using AppWizard. You’ll first generate
the program source code, then make several modifications to the generated code, and
finally build and run the program.

6.2.1 Generating the Source Code

To generate a program with AppWizard, you create a new project of the appropriate
type, and then specify the desired program features in a series of dialog boxes that
AppWizard displays. Begin by running the Microsoft Developer Studio, and then
proceed as follows:

1. Choose the File -> New... menu command in Developer Studio or simply press
Ctrl+N. The New dialog box will appear.

2. Open the Projects tab (if it’s not already open) so that you can create a new
project.

3. In the list of project types, select the “MFC AppWizard (exe)” item. Choosing
this project type will cause AppWizard to prompt you for further information
and then to generate the basic C++ code for a Windows GUI program that uses
the MFC. (To create a dynamic link library with AppWizard, you would choose
the “MFC AppWizard (dll)” project type. Creating dynamic link libraries isn’t
covered in this book.

Zero to Mastery Microsoft Visual in C++

4. Type the name WinGreet into the Project Name: text box. This will cause
Visual C++ to assign the name WinGreet to the new project (as well as to the
project workspace that contains this project).

5. In the Location: text box, specify the path of the folder to contain the project
files (that is, the project folder). If you wish, you can simply accept the default
folder that is initially contained in this box (the default folder is given the same
name as the project workspace, WinGreet). Click the button with the ellipsis
(...) if you want to search for a different location. If the specified project folder
doesn’t exist, the Developer Studio will create it (it will also create the -Res
subfolder within the project folder to store several resource files, in addition to
one or more output subfolders).

6. To complete the Projects tab of the New dialog box, make sure that the Win32
item is checked in the Platforms: area. Unless you’ve installed a cross-development
edition of Visual C++, Win32 will be the only option in this area.

7. Click the OK button in the New dialog box. The first of the AppWizard dialog
boxes, which is labeled “MFC AppWizard - Step 1,” will now be displayed. In
the following descriptions of the AppWizard options that need to be selected,
the expression “(default)” follows the description of each option initially selected.
For these options, you need only make sure that you don’t change them.

8. In the Step 1 dialog box, select the Single Document application type, make
sure the Document/View Architecture Support option (default) is checked, and
select the English language (default).

Choosing the Single Document application type causes AppWizard to generate a
single document interface (SDI) application, which is designed to display only
one document at a time. The Document/View Architecture Support option causes
AppWizard to generate separate classes for storing and for viewing your program’s
data, as well as to provide code for reading and writing the data from disk.
Finally, AppWizard will use the selected language for the program menu captions
and for the standard messages that the program displays. Click the Next > button
to display the Step 2 dialog box.

9. In the Step 2 dialog box, select the None item (default) to exclude database
support from the program.

Note that in any of the AppWizard dialog boxes (from Step 2 on) you can click
the < Back button to return to a previous step to review and possibly revise your
choices. Also, you can click the Finish button to skip the remaining dialog boxes
and immediately generate the program source code using the default values for
all choices in the remaining dialog boxes (don’t click this button for the current
exercise). And finally, you can click the button in the upper-right corner and
then click a control in the dialog box to obtain information on the related option.

Click the Next > button to reveal the Step 3 dialog box.

Generating a Windows GUI Program m,

10.

1.

12.

13.

14.

In the Step 3 dialog box, select the None item (default) to exclude compound
document support from the program, make sure that the Automation option
isn’t checked to eliminate automation support, and remove the check from the
ActiveX Controls option since you won’t be adding any ActiveX controls to the
program. Click the Next > button to display the Step 4 dialog box.

In the Step 4 dialog box, remove the check from each of the application features
except “3D Controls” (default) and leave the value 4 (default) as the number of
files you want to use in the “recent file list.” You don’t need to click the
Advanced... button to select advanced options; rather, you’ll accept the default
values for these options.

The File menu of the generated program will list the most recently opened
documents; the number that you specify for the “recent file list” is the maximum
number of documents that will be listed. Click the Next > button to display the
Step 5 dialog box.

In the Step 5 dialog box, select the MFC Standard project-style option (default)
to generate the traditional MFC user interface for your program (the Windows
Explorer option implements the application as a workbook-like container). Select
the “Yes, Please” option (default) to have AppWizard include comments within
the source files it generates. The comments help clarify the code and clearly
indicate the places where you need to insert your own code. And finally, choose
the As Statically Linked Library option for the MFC library that’s used. With
the As A Statically Linked Library option, the MFC code is bound directly into
your program’s executable file. With the alternative option, As A Shared DLL,
your program accesses MFC code contained in a separate dynamic link library
(DLL), which can be shared by several applications (note that you’ll have to
select this option if you have the Standard Edition of Visual C++, which doesn’t
provide static MFC linking). The DLL option reduces the size of your program’s
executable file but requires you to distribute a separate DLL file together with
your program file (as you must when you distribute a Visual Basic program).
Click the Next > button to display the Step 6 dialog box.

The Step 6 dialog box displays information on each of the four main classes that
AppWizard defines for your program.. Don’t change any of this information
because the remainder of the exercise assumes that you’ve accepted all the default
values. This is the final AppWizard dialog box for collecting information; you
should now click the Finish button to display the New Project Information
dialog box.

The New Project Information dialog box, summarizes many of the program
features that you chose in the previous dialog boxes. (If you want to change any
feature, you can click the Cancel button and then go back to the appropriate
dialog box to adjust the information.) Click the OK button in the New Project
Information dialog box, and AppWizard will create the project folder that you
specified (if necessary), generate the program source files, and open the newly
created project, WinGreet.

ﬁ Zero to Mastery Microsoft Visual in C++

6.2.2 Modifying the Source Code

The source files generated by AppWizard are sufficient for building a functional
program. In other words, immediately after generating the source files with AppWizard,
you could build and run the program (although it wouldn’t do very much). Before
building the program, however, you normally use the various Visual C++ development
tools to add to the code features specific to your application.

To provide you with some practice in working with the source files, this section
describes how to add code that displays the string “Greetings!” centered within the
program window (if the generated code is unaltered, the program simply displays a
blank window). To do this, proceed as follows:

1. Open the source file WinGreetDoc.h. The easiest way to open a source file
belonging to the current project is to double-click the file name within the File
View graph. WinGreetDoc.h is the header file for the program’s document class,
which is named CWinGreetDoc and is derived from the MFC class CDocument.
The document class is responsible for reading, writing, and storing the program
data. In this trivial example program, the document class simply stores the fixed
message string (“Greetings!”), which constitutes the program data.

2. In the CWinGreetDoc class definition you’ll add the protected data member
m_Message, which stores a pointer to the message string, and you’ll add the
public member function GetMessage, which returns a pointer to this string. To
do this, enter the lines marked in bold within the following code:

class CWinGreetDoc : public CDocument
{

protected:

char *m_Message;

public:

char *GetMessage ()

{

return meessage;

}

protected: // create from serialization only
CWinGreetDoc();
DECLARE_DYNCREATE(CWinGreetDoc)

// remainder of CWinGreetDoc definition ...

Generating a Windows GUI Program n’

The code excerpt above shows the beginning of the CWinGreetDoc class
definition, and includes the code that was generated by AppWizard, as well as
the lines of code that you manually add, which are marked in bold. In the
instructions given in this part of the book, all lines of code that you manually
add or modify are marked in bold. Although you add or modify only the bold
lines, the book typically shows a larger block of code to help you find the
correct position within the generated source file to make your additions or
modifications.

. Open the file WinGreetDoc.cpp, which is the implementation file for the program’s
document class, CWinGreetDoc. Within the CWinGreetDoc class constructor,
add the statement that’s marked in bold in the following code:

Y
// CWinGreetDoc construction/destruction

CWinGreetDoc::CWinGreetDoc()
{

// TODO: add one-time construction code here
m_Message = “Greetings!”;

}

As a result of adding this line, the data member m_Message will automatically
be assigned the address of the string “Greetings!” when an instance of the
CWinGreetDoc class is created.

. Open the file WinGreetView.cpp, which is the implementation file for the
program’s view class; this class is named CWinGreetView and is derived from
the MFC class CView. As you’ll see later, the view class is responsible for
processing input from the user and for managing the view window, which is
used for displaying the program data.

. In the file WinGreetView.cpp, add the statements marked in bold to the
CWinGreetView member function OnDraw:

T T T
i

/I CWinGreetView drawing

void CWinGreetView::OnDraw(CDC* pDC)

{

CWinGreetDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);

// TODO: add draw code for native data here

ﬁ Zero to Mastery Microsoft Visual in C++

RECT ClientRect;

GetClientRect (&ClientRect);

pDC->DrawText

(pDoc->GetMessage (), // obtain the string

-1,

&ClientRect,

DT_CENTER | DT_VCENTER | DT_SINGLELINE);

}

The MFC calls the OnDraw member function of the program’s view class whenever
the program window needs drawing or redrawing (for example, when the window is
first created, when its size is changed, or when it’s uncovered after being hidden by
another window). The code you added to OnDraw displays the string that’s stored in
the document class (“Greetings!”). OnDraw obtains a pointer to the program’s document
class by calling the CView member function GetDocument. It then uses this pointer to
call the CWinGreetDoc member function GetMessage (which you added to the code
in step 2) to obtain the message string. Although this is an elaborate method for
getting a simple string, it’s used here because it illustrates the typical way that the
view class obtains program data from the document class, so that it can display this
data. OnDraw is passed a pointer to a device context object that is an instance of the
MEC class CDC. A device context object is associated with a specific device (in
WinGreet it’s associated with the view window), and it provides a set of member
functions for displaying output on that device. OnDraw uses the CDC member function
DrawText to display the message string. To center the string within the view window,
it calls the CWnd member function GetClientRect to obtain the current dimensions of
the view window, and then supplies these dimensions (in a RECT structure) to
DrawText, together with a set of flags that cause DrawText to center the string
horizontally and vertically within the specified dimensions (DT_CENTER and
DT_VCENTER). In a full-featured application, you would of course make many
more changes to the source code generated by AppWizard, typically using a variety of
tools, including the resource editors and ClassWizard.

6.2.3 Building and Running the Program

To build the program, choose the Build -> Build WinGreet.exe menu command on
the Build menu, or press F7, or click the Build button on the Build toolbar or Build
MiniBar:

If the build process completes without error, you can run the program by choosing the
Build -> Execute

WinGreet.exe menu command, or by pressing Ctrl+F5, or by clicking the Execute
Program button.

Generating a Windows GUI Program m,

When you run the program, notice that AppWizard has created code for displaying a
complete menu. The Exit command on the File menu and the About command on the
Help menu are fully functional; that is, AppWizard has generated all the code needed
to implement these commands. The commands on the Edit menu are nonfunctional;
thatis, AppWizard hasn’t supplied any of the code for implementing these commands,
and therefore they’re disabled.

The commands on the File menu (other than Exit) are partially functional. That is,
AppWizard has generated some of the code needed to implement the commands. If
you select the Open... command, the program displays the standard Open dialog box.
If you select a file in this dialog box and click OK, the name of the file is displayed in
the window title bar (replacing the name “Untitled” that’s displayed when the program
first starts), but the contents of the file aren’t actually read or displayed. If you then
choose the New command, the program again displays the name “Untitled” in the title
bar, but it doesn’t actually initialize a new document

Finally, if you choose the Save As... command (or the Save command with an “Untitled”
document), the AppWizard code will display the Save As dialog box. If you specify a
file name and click OK, the program will create an empty file having the specified
name, but won’t write any data to this file.

If you “open” several files using the Open... command, you’ll notice that the File
menu displays a list of the most recently “opened” files (it will list up to four files).
When you quit the program, the AppWizard code saves this list in the Windows
Registry so that it can restore the list the next time you run the program.

6.3 THE PROGRAM CLASSES AND FILES

The WinGreet program is known as a single document interface (or SDI) application,
meaning that it displays only one document at a time. When AppWizard generates an
SDI application, it derives four main classes:

¢ The document class.

* The view class.

* The main frame window class.

¢ The application class.
The primary program tasks are divided among these four main classes, and AppWizard
creates separate source files for each class. By default, it derives the names of both the
classes and the class source files from the name of the project (though, as mentioned
previously, you can specify alternative names when using AppWizard to generate the
program). The WinGreet document class is named CWinGreetDoc and is derived

from the MFC class CDocument. The CWinGreetDoc header file is named
WinGreetDoc.h and the implementation file is named WinGreetDoc.cpp.

ﬁ Zero to Mastery Microsoft Visual in C++

The document class is responsible for storing the program data as well as for reading
and writing this data to disk files. The WinGreet document class stores only a single
message string and doesn’t perform disk I/O.

The WinGreet view class is named CWinGreetView and is derived from the MFC
class CView. The CWinGreetView header file is named WinGreetView.h, and the
implementation file is named WinGreetView.cpp. The view class is responsible for
displaying the program data (on the screen, printer, or other device) and for processing
input from the user. This class manages the view window, which is used for displaying
program data on the screen. The WinGreet view class merely displays the message
string within The WinGreet main frame window class is named CMainFrame and is
derived from the MFC class CFrameWnd.

The CMainFrame header file is named MainFrm.h, and the implementation file is
named MainFrm.cpp. The main frame window class manages the main program
window, which is a frame window that contains a window frame, a title bar, a menu
bar, and a system menu. The frame window also contains Minimize, Maximize, and
Close boxes, and sometimes other user interface elements such as a toolbar or a status
bar.

Note that the view window—managed by the view class—occupies the empty portion
of the main frame window inside these interface elements (which is known as the
client area of the main frame window). The view window has no visible elements
except the text and graphics that the view class explicitly displays (such as the string
“Greetings!” displayed by WinGreet). The view window is a child of the main frame
window, which means—among other things—that it’s always displayed on top of and
within the boundaries of the client area of the main frame window.

Finally, the application class is named CWinGreetApp and is derived from the MFC
class CWinApp. The CWinGreetApp header file is named WinGreet.h, and the
implementation file is named WinGreet.cpp. The application class manages the program
as a whole; that is, it performs general tasks that don’t fall within the province of any
of the other three classes, such as initializing the program and performing the final
program cleanup. Every MFC Windows program must create exactly one instance of
a class derived from CWinApp.

The four main classes communicate with each other and exchange data by calling
each other’s public member functions and by sending messages

AppWizard and the Developer Studio create several source and settings files in addition
to the source files for the four main classes

The following listings provide the complete text of the header and implementation
files for the four main program classes. These listings contain the code that was
generated by AppWizard, plus the manual code additions.

Generating a Windows GUI Program m,

Listing 1

// WinGreet.h : main header file for the WINGREET application
/1

#if

'defined(AFX_WINGREET H__E7D60DA4 9891_11D1_80FC_00COF6A83B7F__INCLUDED)
#define
AFX_WINGREET_H__E7D60DA4_9891_11D1_80FC_00COF6A83B7F__INCLUDED_
#if _MSC_VER > 1000

#pragma once

#endif // _MSC_VER > 1000

#ifndef __ AFXWIN_H__

#error include ‘stdafx.h’ before including this file for PCH

#endif

#include “resource.h” // main symbols
o

/I CWinGreetApp:

/1 See WinGreet.cpp for the implementation of this class

Title

/!

class CWinGreetApp : public CWinApp

{

public:

CWinGreetApp();

/I Overrides

/1 ClassWizard generated virtual function overrides
IH{{AFX_VIRTUAL(CWinGreetApp)

public:

virtual BOOL InitInstance();

/11 YAFX_VIRTUAL

/I Tmplementation

I{{AFX_MSG(CWinGreetApp)

afx_msg void OnAppAbout();

// NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code !

ﬁ Zero to Mastery Microsoft Visual in C++

/11 }AFX_MSG

DECLARE_MESSAGE_MAP()

3

T T T
/{{AFX_INSERT_LOCATION}}

// Microsoft Visual C++ will insert additional declarations immediately before

/l the previous line.
#endif

/ /
'defined AFX_WINGREET H__E7D60DA4 9891_11D1_80RC_00COF6AS83B7F__INCLUDED.)

Listing 2
/1 WinGreet.cpp : Defines the class behaviors for the application.
1/
#include “stdafx.h”
#include “WinGreet.h”
#include “MainFrm.h”
#include “WinGreetDoc.h”
#include “WinGreetView.h”
#tifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = _ FILE__;
#endif
s
// CWinGreetApp
BEGIN_MESSAGE_MAP(CWinGreetApp, CWinApp)
H{{AFX_MSG_MAP(CWinGreetApp)
ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!
/IYYAFX_MSG_MAP
/1 Standard file based document commands
ON_COMMANDID_FILE_NEW, CWinApp::OnFileNew)
ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)

Generating a Windows GUI Program 117

END_MESSAGE_MAP()
i s

/I CWinGreetApp construction

CWinGreetApp::CWinGreetApp()

{

// TODO: add construction code here,

/I Place all significant initialization in InitInstance

}

T T T

// The one and only CWinGreetApp object

CWinGreetApp theApp;
T T T

/I CWinGreetApp initialization

BOOL CWinGreetApp::InitInstance()

{

// Standard initialization

/{ If you are not using these features and wish to reduce the size

/1 of your final executable, you should remove from the following

/ the specific initialization routines you do not need.

#ifdef _AFXDLL

Enable3dControls(); // Call this when using MFC in a shared DLL
#else

Enable3dControlsStatic(); // Call this when linking to MFC statically
#endif

// Change the registry key under which our settings are stored.

// You should modify this string to be something appropriate

/l such as the name of your company or organization.
SetRegistryKey(_T(“Local AppWizard-Generated Applications”));
LoadStdProfileSettings(); // Load standard INI file options (including MRU)
/] Register the application’s document templates. Document templates
// serve as the connection between documents, frame windows and views.
CSingleDocTemplate* pDocTemplate;

pDocTemplate = new CSingleDocTemplate(

IDR_MAINFRAME,

RUNTIME_CLASS(CWinGreetDoc),

ﬁ Zero to Mastery Microsoft Visual in C++

RUNTIME_CLASS(CMainFrame), // main SDI frame window
RUNTIME_CLASS(CWinGreetView));
AddDocTemplate(pDocTemplate);

// Parse command line for standard shell commands, DDE, file open
CCommandLinelnfo cmdInfo;

ParseCommandLine(cmdInfo);

/I Dispatch commands specified on the command line

if (!ProcessShellCommand(cmdInfo))

return FALSE;

// The one and only window has been initialized, so show and update it.
m_pMainWnd->ShowWindow(SW_SHOW);
m_pMainWnd->UpdateWindow();

return TRUE;

}

i

// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog

{

public:

CAboutDIg();

// Dialog Data

T{{AFX_DATA(CAboutDlg)

enum { IDD = IDD_ABOUTBOX };

1} YAFX_DATA

/1 ClassWizard generated virtual function overrides
HT{{AFX_VIRTUAL(CAboutDlg)

protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
/1Y YAFX_VIRTUAL

// Implementation

protected:

/I{{AFX_MSG(CAboutDlg)

// No message handlers

1} YAFX_MSG

DECLARE_MESSAGE_MAP()

Generating a Windows GUI Program m,
3

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{

{{AFX_DATA_INIT(CAboutDlg)
/1}YAFX_DATA_INIT

}
void CAboutDlg::DoDataExchange(CDataExchange* pDX)

{

CDialog::DoDataExchange(pDX);
IT{{AFX_DATA_MAP(CAboutDlg)
/I1YAFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
IT{{AFX_MSG_MAP(CAboutDlg)

/ No message handlers

/11 }AFX_MSG_MAP

END_MESSAGE_MAP()

// App command to run the dialog

void CWinGreetApp::OnAppAbout()

{

CAboutDlg aboutDlg;

aboutDlg.DoModal();

}
T T T
// CWinGreetApp commands

Listing 3
/1 WinGreetDoc.h : interface of the CWinGreetDoc class
/!
T T
#if
Idefined AFX_WINGREETDOC_H__ E7TDEODAA_9891_11D1_80RC_00COFGAS3B7F_INCLUDED)
#define
AFX_WINGREETDOC_H__E7D60DAA_9891_11D1_80FC_00COF6A83B7F__INCLLUDED_
#if _MSC_VER > 1000

ﬁ Zero to Mastery Microsoft Visual in C++

#pragma once
#endif // _MSC_VER > 1000
Title

class CWinGreetDoc : public CDocument

{

protected:

char *m_Message;

public:

char *GetMessage ()

{

return m_Message;

}

protected: // create from serialization only
CWinGreetDoc();

DECLARE_DYNCREATE(CWinGreetDoc)

/I Attributes

public:

/I Operations

public:

/I Overrides

// ClassWizard generated virtual function overrides
H{{AFX_VIRTUAL(CWinGreetDoc)

public:

virtual BOOL OnNewDocument();

virtual void Serialize(CArchive& ar);

/11 }AFX_VIRTUAL

// Implementation

public:

virtual ~CWinGreetDoc();

#ifdef _DEBUG

virtual void AssertValid() const;

virtual void Dump(CDumpContext& dc) const;
#endif

protected:

Generating a Windows GUI Program m,

Listing 4

/1 Generated message map functions

protected:

H{{AFX_MSG(CWinGreetDoc)

// NOTE - the ClassWizard will add and remove member functions here.

// DO NOT EDIT what you see in these blocks of generated code !

1} YAFX_MSG

DECLARE_MESSAGE_MAP()

)

T T T
HT{{AFX_INSERT_LOCATION}}

/l Microsoft Visual C++ will insert additional declarations immediately before
// the previous line.

#endif

/!

'defined(AFX_ WINGREETDOC _H__ E7/DAODAA._9891_11D1_80RC_00C0F6AS83B7F_INCLUDED)

// WinGreetDoc.cpp : implementation of the CWinGreetDoc class
/1

#include “stdafx.h”

#include “WinGreet.h”

#include “WinGreetDoc.h”

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif

T T T

/I CWinGreetDoc

IMPLEMENT_DYNCREATE(CWinGreetDoc, CDocument)
BEGIN_MESSAGE_MAP(CWinGreetDoc, CDocument)
I{{AFX_MSG_MAP(CWinGreetDoc)

// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!
/I1YAFX_MSG_MAP

ﬁ Zero to Mastery Microsoft Visual in C++

END_MESSAGE_MAP()
i
/I CWinGreetDoc construction/destruction
CWinGreetDoc::CWinGreetDoc()

{

// TODO: add one-time construction code here
m_Message = “Greetings!”;

}

CWinGreetDoc::~CWinGreetDoc()

{

}

BOOL CWinGreetDoc::OnNewDocument()

{

if (!CDocument::OnNewDocument())

return FALSE;

// TODO: add reinitialization code here

/1 (SDI documents will reuse this document)
return TRUE;

}
i
// CWinGreetDoc serialization

void CWinGreetDoc::Serialize(CArchive& ar)

{
if (ar.IsStoring())

{
// TODO: add storing code here

}

else

{
// TODO: add loading code here
}

}
T T

// CWinGreetDoc diagnostics
#ifdel _DEBUG

Generating a Windows GUI Program m,

Listing 5

void CWinGreetDoc::AssertValid() const

{
CDocument::AssertValid();

}
void CWinGreetDoc::Dump(CDumpContext& dc) const

{
CDocument::Dump(dc);

}

#endif //_DEBUG

T T
/I CWinGreetDoc commands

// MainFrm.h : interface of the CMainFrame class

#if

'defined AFX_ MAINFRM_H__E7D60DBB_9891_11D1_80FC_00COF6A83B7F__INCLUDED_)
#define
AFX_MAINFRM_H__E7D60DBB_9891_11D1_80FC_00COF6A83B7F__INCLUDED_
#if _MSC_VER > 1000

#pragma once

#endif // _MSC_VER > 1000

class CMainFrame : public CFrameWnd

{

protected: // create from serialization only

CMainFrame();

DECLARE_DYNCREATE(CMainFrame)

/I Attributes

public:

// Operations

public:

/I Overrides

/1 ClassWizard generated virtual function overrides
/1{{AFX_VIRTUAL(CMainFrame)

virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
/11}AFX_VIRTUAL

ﬁ Zero to Mastery Microsoft Visual in C++

/{ Implementation

public:

virtual ~CMainFrame();

#tifdef _DEBUG

virtual void AssertValid() const;

virtual void Dump(CDumpContext& dc) const;

#endil

/! Generated message map functions

protected:

H{{AFX_MSG(CMainFrame)

/I NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code!

/11 YAFX_MSG

DECLARE_MESSAGE_MAP()

3

T T T
/T{{AFX_INSERT_LOCATION}}

// Microsoft Visual C++ will insert additional declarations immediately before
/l the previous line.

#endif

/M'defined(AFX_MAINFRM_H__E7D60DBB_9891_11D1_
80FC_00COF6A83B7F__INCLUDED_)

Listing 6
/{ MainFrm.cpp : implementation of the CMainFrame class
1/
#include “stdafx.h”
#include “WinGreet.h”
#include “MainFrm.h”
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
i

Generating a Windows GUI Program m,
/{ CMainFrame

IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd)
BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
IT{{AFX_MSG_MAP(CMainFrame)

// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code !
/11 }AFX_MSG_MAP

END_MESSAGE_MAP()
i

// CMainFrame construction/destruction
CMainFrame::CMainFrame()

{

/{ TODO: add member initialization code here

}

CMainFrame::~CMainFrame()

{

}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{

if(!CFrameWnd::PreCreateWindow(cs))

return FALSE;

// TODO: Modify the Window class or styles here by modifying
/I the CREATESTRUCT cs

return TRUE;

}

T T

// CMainFrame diagnostics

#ifdef _DEBUG

void CMainFrame::AssertValid() const

{
CFrameWnd::AssertValid();

}
void CMainFrame::Dump(CDumpContext& dc) const

{
CFrameWnd::Dump(dc);

ﬁ Zero to Mastery Microsoft Visual in C++

Listing 7

}
#endif /_DEBUG
T T

// CMainFrame message handlers

/I WinGreetView.h : interface of the CWinGreetView class

/!

T T T

#if

'defined(AFX_WINGREETVIEW_H__E7DGODAC 9891_11D1_80FC_00C0RAZB7F_INCLUDED)
#define

AFX_WINGREETVIEW_H__E7D60DAC _9891_11D1_80FC_00COF6A83B7F__INCLUDED_
#if _MSC_VER > 1000

#pragma once

#tendif // _MSC_VER > 1000

class CWinGreetView : public CView

{

protected: // create from serialization only

CWinGreetView();

DECLARE_DYNCREATE(CWinGreetView)

/1 Attributes

public:

CWinGreetDoc* GetDocument();

// Operations

public:

/I Overrides

/1 ClassWizard generated virtual function overrides
HH{{AFX_VIRTUAL(CWinGreetView)

public:

virtual void OnDraw(CDC* pDC); // overridden to draw this view
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
protected:

/1}YAFX_VIRTUAL

/I Tmplementation

Generating a Windows GUI Program 127

public:

Title

virtual ~CWinGreetView();

#ifdef _DEBUG

virtual void AssertValid() const;

virtual void Dump(CDumpContext& dc) const;

#endif

protected:

/! Generated message map functions

protected:

II{{AFX_MSG(CWinGreetView)\

/I NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code !

/11 }AFX_MSG

DECLARE_MESSAGE_MAP()

3

#ifndef _DEBUG // debug version in WinGreetView.cpp

inline CWinGreetDoc* CWinGreetView::GetDocument()

{ return (CWinGreetDoc*)m_pDocument; }

#endif

i s
/{{AFX_INSERT_LOCATION}}

// Microsoft Visual C++ will insert additional declarations immediately before
/ the previous line.

#endif

'defined AFX_WINGREETVIEW_H__E7D60DAC_9891_11D1_80FC_00COF6A83B7F_INCLUDED.)

Listing 8
// WinGreetView.cpp : implementation of the CWinGreetView class
/!
#include “stdafx.h”
#include “WinGreet.h”
#include “WinGreetDoc.h”
#include “WinGreetView.h”

ﬁ Zero to Mastery Microsoft Visual in C++

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = _ FILE__;

#endif

T T

/I CWinGreetView
IMPLEMENT_DYNCREATE(CWinGreetView, CView)
BEGIN_MESSAGE_MAP(CWinGreetView, CView)
H{{AFX_MSG_MAP(CWinGreetView)

/I NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!
/1}YAFX_MSG_MAP

END_MESSAGE_MAP()
i

/I CWinGreetView construction/destruction
CWinGreetView::CWinGreetView()

{
// TODO: add construction code here

}

CWinGreetView::~CWinGreetView()

{

}

BOOL CWinGreetView::PreCreateWindow(CREATESTRUCT& cs)
{

// TODO: Modify the Window class or styles here by modifying
/I the CREATESTRUCT cs

return CView::PreCreateWindow(cs);

1

T T

// CWinGreetView drawing

void CWinGreetView::OnDraw(CDC* pDC)

{

CWinGreetDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);

Generating a Windows GUI Program m,

// TODO: add draw code for native data here

RECT ClientRect;

GetClientRect (&ClientRect);

pDC->DrawText

(pDoc->GetMessage (), // obtain the string

-1,

&ClientRect,

DT_CENTER | DT_VCENTER | DT_SINGLELINE);
}
i
// CWinGreetView diagnostics

#ifdef _DEBUG

void CWinGreetView::AssertValid() const

{
CView::AssertValid();

}
void CWinGreetView::Dump(CDumpContext& dc) const

{

CView::Dump(dc);

}

CWinGreetDoc* CWinGreetView::GetDocument() // non-debug version is inline
{
ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CWinGreetDoc)));
return (CWinGreetDoc*)m_pDocument;

1

#endif //_DEBUG

i

// CWinGreetView message handlers

6.4 HOW THE PROGRAM WORKS

If you’re accustomed to procedural programming for MS-DOS or Unix, or even if
you’re familiar with conventional Windows GUI programming, you might be
wondering how the WinGreet program works—where it first receives control, what it
does next, where it exits, and so on. This section briefly describes the overall flow of
control of the program, and then discusses the tasks performed by the application
initialization function, InitInstance.

ﬁ Zero to Mastery Microsoft Visual in C++

The following is a list of some of the significant events that occur, when you run the
WinGreet program. These five events were selected from the many program actions
that take place, because they best help you understand how the WinGreet program
works and they illustrate the purpose of the different parts of the source code:

1. The CWinApp class constructor is called.

2. The program entry function, WinMain, receives control.
3. WinMain calls the program’s Initlnstance function.

4. WinMain enters a loop for processing messages.

5. WinMain exits and the program terminates.

1. The CWinApp Constructor Is Called: As mentioned previously, an MFC
application must define exactly one instance of its application class. The file
WinGreet.cpp defines an instance of the WinGreet application class, CWinGreetApp,
in the following global definition:

T T
/l The one and only CWinGreetApp object
CWinGreetApp theApp;

Because the CWinGreetApp object is defined globally, the class constructor is called
before the program entry function, WinMain, receives control. The CWinGreetApp
constructor generated by AppWizard (also in WinGreet.cpp) does nothing:

U T T
CWinGreetApp construction
CWinGreetApp::CWinGreetApp()

{

// TODO: add construction code here,

/1 Place all significant initialization in InitInstance
}

Such a do-nothing constructor causes the compiler to invoke the default constructor
of the base class, which is CWinApp. The CWinApp constructor (supplied by the
MEC) performs the following two important tasks:

It makes sure that the program declares only one application object (that is, only
one object belonging to CWinApp or to a class derived from it).

* It saves the address of the program’s CWinGreetApp object in a global pointer
declared by the MFC. It saves this address so that the MFC code can later call
the WinGreetApp member functions. Calling these member functions will be
described under step 3.

Generating a Windows GUI Program m,

2. WinMain Receives Control: After all global objects have been created, the program
entry function, WinMain, receives control. This function is defined within the MFC
code; it’s linked to the WinGreet program when the executable file is built. The
WinMain function performs many tasks. The following steps describe the tasks that
are the most important for understanding how the WinGreet program works.

3. WinMain Calls InitInstance: Shortly after it receives control, WinMain calls the
InitInstance member function of the CWinGreetApp class. It calls this function by
using the object address that the CWinApp constructor saved in step 1. InitInstance
serves to initialize the application.

4. WinMain Processes Messages: After completing its initialization tasks, WinMain
enters a loop that calls the Windows system to obtain and dispatch all messages sent to
objects within the WinGreet program (this loop is actually contained in a CWinApp
member function named Run that’s called from WinMain). Control remains within
this loop during the remaining time that the application runs. Under Windows 95
(and later) and Windows NT, however, preemptive multitasking allows other programs
to run at the same time.

5. WinMain Exits and the Program Terminates: When the user of the WinGreet
program chooses the Exit command on the File menu or the Close command on the
system menu, or clicks the Close box, the MFC code destroys the program window
and calls the Win32 API function: PostQuitMessage, which causes the message loop
to exit. The WinMain function subsequently returns, causing the application to
terminate.

The Initinstance Function

InitInstance is a member function of the application class, CWinGreetApp, and it’s
defined in the source file WinGreet.cpp. The MFEC calls this function from WinMain,
and its job is to initialize the application.

At the time InitInstance is called, a more traditional Windows GUI application would
simply create a main program window because of the view-document programming
model used by the MFC. However, the AppWizard code does something a bit more
complex. It creates a document template, which stores information about the program’s
document class, its main frame window class, and its view class. The document template
also stores the identifier of the program resources used in displaying and managing a
document (the menu, icon, and so on). When the program first begins running and it
creates a new document, it uses the document template to create an object of the
document class for storing the document, an object of the view class for creating a
view window to display the document, and an object of the main frame window class
to provide a main program window for framing the view window. A document template
is a C++ object; for an SDI application such as WinGreet, it’s an instance of the
CSingleDocTemplate MFC class. The following code in InitInstance creates the
document template and stores it within the application object:

ﬁ Zero to Mastery Microsoft Visual in C++

/I Register the application’s document templates. Document

// templates serve as the connection between documents, frame
// windows, and views.

CSingleDocTemplate* pDocTemplate;

pDocTemplate = new CSingleDocTemplate(
IDR_MAINFRAME,

RUNTIME_CLASS(CWinGreetDoc),
RUNTIME_CLASS(CMainFrame), // main SDI frame window
RUNTIME_CLASS(CWinGreetView));
AddDocTemplate(pDocTemplate);

This code works as follows:

« It defines a pointer to a document template object, pPDocTemplate.

¢ It uses the new operator to dynamically create a document template object (that
is, an instance of the CSingleDocTemplate class), assigning the object’s address
to pDocTemplate.

¢ It passes four parameters to the CSingleDocTemplate constructor. The first parameter
is the identifier of the program resources used in displaying and managing a document
(namely, the accelerator table, the icon, the menu, and a descriptive string).

¢ The next three parameters supply information on the document class, the main
frame window class, and the view class. Information on each class is obtained
by calling the MFC macro RUNTIME_CLASS (which supplies a pointer to a
CRuntimeClass object). This information allows the program to dynamically
create an object of each class when a new document is first created.

* The template object pointer is passed to the CWinApp member function
AddDocTemplate, which stores the document template within the application
object so that the template will be available.

After creating the document template, InitInstance extracts the command line—if
any—that was passed to the program when it was run, by calling the CWinApp member
function ParseCommandLine:

// Parse command line for standard shell commands, DDE, file open
CCommandLinelnfo cmdInfo;
ParseCommandLine(cmdInfo);

It then calls the CWinApp member function ProcessShellCommand to process the
command line:

// Dispatch commands specified on the command line

if (!ProcessShellCommand(cmdInfo))

return FALSE;

If the command line contains a file name, ProcessShellCommand attempts to open the file.
The WinGreet program, however, doesn’t fully implement the code for opening a file.

Generating a Windows GUI Program m,

Normally, however, when you run WinGreet (for example, through the Developer
Studio), the command line is empty. In this case ProcessShellCommand calls the
CWinApp member function OnFileNew to create a new, empty document. When
OnFileNew is called, the program uses the document template to create a
CWinGreetDoc object, a CMainFrame object, a CWinGreetView object, and the
associated main frame window and view window. The resources used for the main
frame window (the menu, icon, and so on) are those identified by the resource identifier
stored in the document template. Because these objects and windows are created
internally by OnFileNew, you don’t see within the WinGreet code explicit definitions
of the objects, nor do you see function calls for creating windows. Finally, InitInstance
calls the ShowWindow and UpdateWindow member functions of the main frame
window object to make the main frame window visible on the screen and to cause the
window contents to be displayed. It calls these functions by using the pointer to the
main frame window object that’s stored in the CWinGreetApp object’s m_pMainWnd
data member (which it inherits from CWinThread):

// The one and only window has been initialized, so show and
// update it.

m_pMainWnd->ShowWindow(SW_SHOW);
m_pMainWnd->UpdateWindow();

Other Code in InitInstance

InitInstance calls CWinApp::Enable3dControlsStatic (or Enable3dControls if you
choose the shared MFC DLL, as described previously in the chapter) to cause Windows
to display controls (such as check boxes) that have a

// Standard initialization
/1 If you are not using these features and wish to reduce the
/I size of your final executable, you should remove from the
// following the specific initialization routines you do not
// need.
#ifdef _AFXDLL
Enable3dControls(); // Call this when using MFC in a
// shared DLL
#else
Enable3dControlsStatic(); // Call this when linking to MFC
/1 statically
#endif
InitInstance also calls the CWinApp member function SetRegistryKey, which causes

the program settings to be stored in the Windows Registry (rather than in an .ini file)
and specifies the name of the key under which these settings are stored:

ﬁ Zero to Mastery Microsoft Visual in C++

// Change the Registry key under which our settings are stored.

// You should modify this string to be something appropriate

/l such as the name of your company or organization.

SetRegistryKey(_T(“Local AppWizard-Generated Applications™));
To customize the name of the key under which the program settings are stored (for
example, to set it to your company name), simply replace the string passed to
SetRegistryKey. (Note that the macro _T converts the string to Unicode format, which

SetRegistryKey requires. This format stores each character as a 16-bit value, and can
be used to encode the characters in any language.)

The primary setting stored in the Registry is the list of most recently opened documents
that’s displayed on the program’s File menu (which is also known as the MRU, or Most
Recently Used, file list). InitInstance loads this document list, as well as any other program
settings stored in the Registry, by calling the CWinApp::LoadStdProfileSettings function:

LoadStdProfileSettings(); // Load standard INT file options
/I (including MRU)

If you need to perform any other application initialization tasks, the InitInstance
function is the place to add the code.

REVIEW EXERCISE

1. What is application program interface (API)?
2. What is the use of MFC classes?
3. Write short notes on:

(a) Active-X Control

(b) OLE

(¢) Reusable Software Components.
(d) dynamic link library (DLL)

(e) Single document interface

(f) Multiple document interface
4. Give the use of AppWizard in VC++?

5. When AppWizard generates an SDI application, it derives four main classes: namely

e The document class

¢ The view class

¢ The main frame window class

* The application class

Describe each of them

6. How a VC++ program works?

CHAPTER

WINDOWS, DIALOG
BOXES AND CONTROLS

A window in Windows can be defined as a rectangular area on the screen. However,
this definition, in all its simplicity, hides the volumes of functionality behind the
abstract idea of a window as the primary unit through which a user and a Windows
application interact.

A window is not only an area through which an application can present its output; it
is also a target of events, a target of messages within the Windows environment.
Although the window concept in Windows predates the use of object oriented languages
on the PC by several years, the terminology is more than appropriate here: the properties
of a window determine its appearance, while its methods determine how it responds to
user input.

A window is identified by a window handle. This handle (usually a variable of type
HWND) uniquely identifies each window in the system. The list includes the “obvious”
application windows and dialog boxes as well as the less obvious ones such as the
desktop, certain icons, or buttons. User-interface events are packaged into Windows
messages with the appropriate window handle attached and then sent, or queued, to
the application (or thread, to be more precise) that owns that window.

Needless to say, Windows offers a lot of functionality covering the creation and
management of windows.

7.1 THE WINDOW HIERARCHY

Windows maintains its windows in a hierarchical organization. Each window has a
parent and zero or more siblings. At the root of all windows is the desktop window,

ﬁ Zero to Mastery Microsoft Visual in C++

created by Windows at startup time. The parent window for fop-level windows is the
desktop window; the parent window for child windows is either a top-level window or
another child window higher up in the hierarchy. Figure 7.1 demonstrates this hierarchy
by dissecting a typical Windows screen.

D wap WY ke

Drzd
Papeg,
;| Sinling
Ppales bz W dEs = Diimiag Besi | papap)
{oear ppad]
oy i ¥ P

1_1""" g g

Claea W iadave (child)

Figure 7.1: The window hierarchy

Actually, the situation under Windows NT is somewhat more complex. Unlike its
simpler cousins, Windows NT has the capability to maintain multiple desktops
simultaneously. In fact, Windows NT normally maintains three desktops: one for the
Winlogon screen, one for user applications, and one for the screen saver.

The visual window hierarchy normally reflects the logical hierarchy. That is, windows
at the same hierarchy level are normally displayed in the Z-order, which is essentially
the order in which siblings appear. However, this order can be changed for top-level
windows. Top-level windows with the extended window style WM_EX_TOPMOST
appear on top of any non-topmost top-level windows.

Another relationship exists between top-level windows. A top-level window may
have an owner, which is another top-level window. An owned window always appears
on top of its owner and disappears if its owner is minimized. A typical case of a top-
level window owned by another occurs when an application displays a dialog box.
The dialog box is not a child window (it is not confined to the client area of the
application’s main window), but it remains owned by the application window.

Several functions enable applications to traverse the window hierarchy and find a
specific window. Here’s a review of a few of the more frequently used functions:

Windows Dialog Boxes and Controls -

GetDesktop Window. Through the GetDesktopWindow function, an application can
retrieve the handle of the current desktop window.

EnumWindows. The EnumWindows function enumerates all top-level windows. A
user-defined callback function, the address of which is supplied in the call to
EnumWindows, is called once for every top-level window. EnumWindows does not
enumerate top-level windows that are created after the function has been called, even
if it has not yet completed the enumeration when the new window is created.

EnumChildWindows. The EnumChildWindows function enumerates all child windows
of a given window, identified by a handle that is supplied in the call to
EnumChildWindows. The enumeration is accomplished by a user-defined callback
function, the address of which is also supplied in the call to EnumChildWindows.
This function also enumerates descendant windows; that is, child windows that are
themselves children (or descendants) of child windows of the window specified in the
call to EnumChildWindows.

Child windows that are destroyed before they are enumerated, or child windows that
are created after the enumeration process started, will not be enumerated.

EnumThreadWindows. The EnumThreadWindows function enumerates all windows
owned by a specific thread by calling a user-supplied callback function once for every
such window. The handle to the thread and the address of the callback function are
supplied by the application in the call to EnumThreadWindows. The enumeration
includes top-level windows, child windows, and descendants of child windows.

Windows that are created after the enumeration process began are not enumerated by
EnumThreadWindows.

FindWindow. The FindWindow function can be used to find a top-level window by
its window class name or window title.

GetParent. The GetParent function identifies the parent window of the specified
window.

GetWindow. The GetWindow function offers the most flexible way for manipulating
the window hierarchy. Depending on its second parameter, uCmd, this function can
be used to retrieve the handle to a window’s parent, owner, sibling, or child windows.

7.2 WINDOW MANAGEMENT

Typically, an application creates a window in two steps. First, the window class is
registered; next, the window itself is created through the CreateWindow function.
The window class determines the overall behavior of the new window type, including
most notably the address of the new window procedure. Through CreateWindow the
application controls minor aspects of the new window, such as its size, position, and
appearance.

ﬁ Zero to Mastery Microsoft Visual in C++

7.2.1 The RegisterClass Function and the WNDCLASS Structure
A new window class is registered when an application calls the following function:

ATOM RegisterClass(CONST WNDCLASS *Ipwc);

The single parameter of this function, Ipwc, points to a structure of type WNDCLASS
describing the new window type. The return value is a Windows atom, a 16-bit value
identifying a unique character string in a table maintained by Windows.

The WNDCLASS structure is defined as follows:
typedef struct _-WNDCLASS {
UINT style;
WNDPROC IpfnWndProc;
int cbClsExtra;
int c¢cbWndExtra;
HANDLE hlInstance;
HICON hlcon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPCTSTR lpszMenuName;
LPCTSTR IpszClassName;
} WNDCLASS;

The meaning of some of these parameters is fairly straightforward. For example,
hlcon is a handle to the icon used to represent minimized windows of this class;
hCursor is a handle to the standard mouse cursor that is used when the mouse enters
the window rectangle; hbrBackground is a handle to the GDI brush that is used to
draw the window’s background. The string pointed to by IpszMenuName identifies
the menu resource (by name or, through the MAKEINTRESOURCE macro, by an
integer identifier) that is used as the standard menu for this class; IpszClassName is
the name of the window class.

The parameters cbClsExtra and cbWndExtra can be used to allocate extra memory for
the window class or for individual windows. Applications can use this extra memory
to store application-specific information pertaining to the window class or individual
windows.

The parameter IpfnWndProc specifies the address of the window procedure function.
This function is responsible for handling any messages the window receives. It can
either handle those messages itself, or invoke the default window procedure,

Windows Dialog Boxes and Controls m,

DefWindowProc. The messages can be anything: window sizing and moving, mouse
events, keyboard events, commands, repaint requests, timer and other hardware-related
events, and so on.

A typical window procedure contains a large switch statement block. Inside, case
blocks exist for every message the application is interested in. Messages that the
application does not handle are passed to DefWindowProc through the default block.
The skeleton of such a window procedure is shown in Listing 9.1.

Listing 7.1 Window Procedure Skeleton
LRESULT CALLBACK WndProc(HWND hwnd, UINT uMsg,

WPARAM wParam, LPARAM IParam)

switch(uMsg)

{
case WM_DESTROY:

PostQuitMessage(0);

break;
/l Other case blocks come here
default:

return DefWindowProc(hwnd, uMsg, wParam, 1Param);

}

return 0;

}

Certain global characteristics of the window class are controlled through the class
style parameter, style. This parameter may be set to a combination of values (using
the bitwise OR operator, I). For example, CS_BYTEALIGNCLIENT specifies that
the window’s client area is always to be positioned on a byte boundary in the screen
display’s bitmap to enhance graphics performance (a very useful thing to remember
when writing performance-intensive applications intended to run on lower-end graphics
hardware). The value CS_DBLCLKS specifies that Windows should generate double-
click mouse messages when the user double-clicks the mouse within the window. The
pair of values CS_HREDRAW and CS_VREDRAW specify that the window be
redrawn in its entirety every time its horizontal or vertical size changes. Or the value
CS_SAVEBITS specifies that Windows should allocate what UNIX and X programmers
often refer to as backing store; a copy of the window bitmap in memory, so that it can

ﬁ Zero to Mastery Microsoft Visual in C++

automatically redraw the window when parts of it become unobscured. (This should
be used with caution; the large amounts of memory required for this may cause a
significant performance hit.)

Note: In 16-bit Windows, it was possible to register an application global class through the style
CS_GLOBALCLASS. An application global class was accessible from all other applications
and DLLs. This is not true in Win32. In order for an application global class to work as intended,
it must be registered from a DLL that is loaded by every application. Such a DLL can be defined
through the Registry.

7.2.2 Creating a Window through CreateWindow

Registering a new window class is the first step in window creation. Next, applications
must actually create a window through the CreateWindow function:

HWND CreateWindow(

LPCTSTR IpClassName,

LPCTSTR IpWindowName,

DWORD dwStyle,

int x,

int y,

int nWidth,

int nHeight,

HWND hWndParent,

HMENU hMenu,

HANDLE hlnstance,

LPVOID IpParam
);
The first parameter, IpClassName, defines the name of the class that this window
inherits its behavior form. The class must either be registered through RegisterClass
or be one of the predefined control classes. The predefined classes include the
BUTTON, COMBOBOX, EDIT, \, SCROLLBAR, and STATIC classes. There are
also some window classes that are mostly used internally by Windows and are referenced

only through integer identifiers; these include classes for menus, the desktop window,
and icon titles, to name but a few.

The dwStyle parameter specifies the window’s style. This parameter should not be
confused with the class style, passed to RegisterClass through the WNDCLASS structure
when the new window class is registered. While the class style determines some of the

Windows Dialog Boxes and Controls m,

permanent properties of windows belonging to that class, the window style passed to
CreateWindow is used to initialize the more transient properties of the window. For
example, dwStyle can be used to determine the window’s initial appearance (minimized,
maximized, visible or hidden). As is the case with the class style, the window style is
also typically a combination of values (combined with the bitwise OR operator). In
addition to the generic style values that are common to all types of windows, some
values are specific to the predefined window classes; for example, the
BS_PUSHBUTTON style can be used for windows of the BUTTON class that are to
send WM_COMMAND messages to their parents when clicked.

Some dwStyle values are important enough to deserve a closer look.

The WS_POPUP and WS_OVERLAPPED styles specify top-level windows. The
basic difference is that a WS_OVERLAPPED window always has a caption, while a
WS_POPUP window does not need to have one. Overlapped windows are typically
used as the main window of applications, while popup windows are used for dialog
boxes.

When a top-level window is created, the calling application sets its owner window
through the hwndParent parameter. The parent window of a top-level window is the
desktop window.

Child windows are created with the WS_CHILD style. The major difference between
a child window and a top-level window is that a child window is confined to the client
area of its parent.

Windows defines some combinations of styles that are most useful when creating
“typical” windows. The WS_OVERLAPPEDWINDOW style setting combines the
WS_OVERLAPPED style with the WS_CAPTION, WS_SYSMENU,
WS_THICKFRAME, WS_MINIMIZEBOX, and WS_MAXIMIZEBOX styles to
create a typical top-level application window. The WS_POPUPWINDOW style setting
combines WS_POPUP with the WS_BORDER and WS_SYSMENU styles to create
a typical dialog box.

7.2.3 Extended Styles and the CreateWindowEx Function

The CreateWindowEx function, while otherwise identical to the CreateWindow
function, enables you to specify a combination of extended window styles. Extended
window styles provide finer control over certain aspects of a window’s appearance or
the way it functions.

For example, through the WS_EX_TOPMOST style applications can make a window
a topmost window; that is, a top-level window that is not obscured by other top-level
windows. A window created with the WS_EX_TRANSPARENT style does not obscure
other windows and only receives a WM_PAINT message when all windows under it
have been updated.

ﬁ Zero to Mastery Microsoft Visual in C++

Other extended window styles are specific to Windows 95 and versions of Windows
NT later than 3.51; for example, Windows NT 3.51 with the beta version of the
Windows 95 style shell installed. For example, the WS_EX_TOOLWINDOW style
can be used to create a tool window. A tool window is a window with a smaller than
usual title bar and other properties that make it useful as a floating toolbar window.

Yet another set of Windows 95 specific extended styles specifies the window’s behavior
with respect to the selected shell language. For example, the WS_EX_RIGHT,
WS_EX_RTLREADING, and WS_EX_LEFTSCROLLBAR extended styles can be
used in conjunction with a right-to-left shell language selection such as Hebrew or
Arabic.

7.3 PAINTING WINDOW CONTENTS

Painting in a window is performed through the normal set of GDI drawing functions.
Applications usually obtain a handle to the display device context through a function
such as GetDC, and then call GDI functions such as LineTo, Rectangle, or TextOut.

But even more typically, window painting occurs in response to a specific message,
WM_PAINT.
7.3.1 The WM_PAINT Message

The WM_PAINT message is sent to a window when parts of it require redrawing by
the application and no other message is pending in the message queue of the thread
that owns the window. Applications typically respond to this with a set of drawing
instructions enclosed between calls to the BeginPaint and EndPaint functions.

The BeginPaint function retrieves a set of parameters that are stored in a
PAINTSTRUCT structure:

typedef struct tagPAINTSTRUCT ({
HDC hdc;
BOOL fErase;
RECT rcPaint;
BOOL f{Restore;
BOOL fIncUpdate;
BYTE rgbReserved[32];
} PAINTSTRUCT;

BeginPaint also takes care of erasing the background, if necessary, by sending the
application a WM_ERASEBKGND message.

Windows Dialog Boxes and Controls m,

I Note: The BeginPaint function should only be called in response to a WM_PAINT message. I

Each call to BeginPaint must be accompanied by a subsequent call to the EndPaint function.

Applications can use the hDC member of the structure to draw into the client area of
the window. The rcPaint member represents the smallest rectangle that encloses all
arcas of the window that require updating. By limiting their activities to this rectangular
region, applications can speed up the painting process.

7.3.2 Repainting a Window by Invalidating its Contents

The functions InvalidateRect and InvalidateRgn can be used to invalidate all or parts
of a window. Windows sends a WM_PAINT message to a window if its update
region, that is, the union of all update regions specified in prior calls to InvalidateRect
and InvalidateRgn, is not empty and the thread that owns the window has no more
messages in its message queue.

This behavior suggests a very efficient mechanism for applications that need to update
parts of their window. Instead of updating the window immediately, they can schedule
the update by invalidating the appropriate region. When they process WM_PAINT
messages, they can examine the update region (the rcPaint member of the
PAINTSTRUCT structure) and update only those elements in the window that fall
into this region. Alternatively (or in addition to this), applications can maintain private
variables in which they store hints; that is, information that assists the window updating
procedure in determining the most efficient way of updating the window.

The use of such hints to assist in efficiently updating a window is present throughout
the Microsoft Foundation Classes.

7.4 WINDOW MANAGEMENT MESSAGES

A typical window responds to many other messages in addition to WM_PAINT
messages. Some of the more frequently processed messages are reviewed in this section.

WM_CREATE. The first message that the window procedure of a newly created
window receives is the WM_CREATE message. This message is sent before the window
is made visible and before the CreateWindow or CreateWindowEx function returns.

In response to this message, applications can perform initialization functions that are
necessary before the window is made visible.

WM_DESTROY. The WM_DESTROY message is sent to the window procedure of
a window that has already been removed from the screen and is about to be destroyed.

WM_CLOSE. The WM_CLOSE message is sent to a window indicating that the
window should be closed. The default implementation in DefWindowProc calls
DestroyWindow when this message is received. Applications can, for example, display

ﬁ Zero to Mastery Microsoft Visual in C++

a confirmation dialog and call DestroyWindow only if the user confirms closing the
window.

WM_QUIT. The WM_QUIT message is usually the last message an application’s
main window receives. Receiving this message causes GetMessage Lo return zero,
which terminates the message loop of most applications.

This message indicates a request to terminate the application. Itis generated in response
to a call to PostQuitMessage.

WM_QUERYENDSESSION. The WM_QUERYENDSESSION notifies the
application that the Windows session is about to be ended. An application may return
FALSE in response to this message to prevent the shutdown of Windows. After
processing the WM_QUERYENDSESSION message, Windows sends all applications
a WM_ENDSESSION message with the results of the WM_QUERYENDSESSION
processing.

WM_ENDSESSION. The WM_ENDSESSION message is sent to applications after
the WM_QUERYENDSESSION message has been processed. It indicates whether
Windows is about to shut down or whether the shutdown has been aborted.

If an imminent shutdown is indicated, the Windows session may end at any time after
the WM_ENDSESSION message has been processed by all applications. It is important,
therefore, that applications perform all tasks pertaining to safe termination.

WM_ACTIVATE. The WM_ACTIVATE message indicates when a top-level window
is about to be activated or deactivated. The message is first sent to the window that is
about to be deactivated, then to the window that is about to be activated.

WM_SHOWWINDOW. The WM_SHOWWINDOW message indicates when a
window is about to be hidden or shown. A window can be hidden as a result of a call
to the ShowWindow function, or as a result of another window being maximized.

WM_ENABLE. The WM_ENABLE message is sent to a window when it is enabled
or disabled. A window can be enabled or disabled through a call to the EnableWindow
function. A window that is disabled cannot receive mouse or keyboard input.

WM_MOVE. The WM_MOVE message indicates that the window’s position has
been changed.

WM_SIZE. The WM_SIZE message indicates that the window’s size has been changed.

WM_SETFOCUS. The WM_SETFOCUS message indicates that the window has
gained keyboard focus. An application may, for example, display the caret in response
to this message.

WM_KILLFOCUS. The WM_KILLFOCUS message indicates that the window is
about to lose keyboard focus. If the application displays a caret, the caret should be
destroyed in response to this message.

Windows Dialog Boxes and Controls m,

WM_GETTEXT. The WM_GETTEXT message is sent to a window requesting that
the window text be copied to a buffer. For most windows, the window text is the
window title. For controls like buttons, edit controls, static controls, or combo boxes,
the window text is the text displayed in the control. This message is usually handled
by the DefWindowProc function.

WM_SETTEXT. The WM_SETTEXT message requests that the window text be set
to the contents of a buffer. The DefWindowProc function sets the window text and
displays it in response to this message.

Several messages concern the nonclient area of a window; that is, its title bar, border,
menu, and other areas that are typically not updated by the application program. An
application can intercept these messages to create a window frame with a customized
appearance or behavior.

WM_NCPAINT. The WM_NCPAINT message indicates that the nonclient area of a
window (the window frame) needs to be repainted. The DefWindowProc function
handles this message by repainting the window frame.

WM_NCCREATE. Before the WM_CREATE message is sent to a window, it also
receives a WM_NCCREATE message. Applications may intercept this message to
perform initializations specific to the nonclient area of the window.

WM_NCDESTROY. The WM_NCDESTROY message indicates that a window’s
nonclient area is about to be destroyed. This message is sent to a window after the
WM_DESTROY message.

WM_NCACTIVATE. The WM_NCACTIVATE message is sent to a window to indicate
that its nonclient area has been activated or deactivated. The DefWindowProc function
changes the color of the window title bar to indicate an active or inactive state in
response to this message.

7.5 WINDOW CLASSES

Every window is associated with a window class. A window class is either a class
provided by Windows, or a user-defined window class registered through the
RegisterClass function.

7.5.1 The Window Procedure

The purpose of a window class is to define the characteristics and behavior of a set of
related windows. Perhaps the most notable, but by far not the only property of a
window class, is the window procedure.

The window procedure is called every time a message is sent to the window through
the SendMessage function, and every time a posted message is dispatched through the
DispatchMessage function. The role of the window procedure is to process messages

ﬁ Zero to Mastery Microsoft Visual in C++

sent or posted to that window. In doing so, it can rely on the default window procedure
(DefWindowProc, or in the case of dialog boxes, DefDIgProc) for the processing of
unwanted messages.

It is through the window procedure that the behavior of a window is implemented. By
responding to various messages, the window procedure determines how the window
reacts to mouse and cursor events and how its appearance changes in reaction to those
events. For example, in the case of a button, the window procedure may respond to
WM_LBUTTONDOWN messages by repainting the window indicating that the button
is pressed. Or in the case of an edit control, the window procedure may respond to a
WM_SETFOCUS message by displaying the caret.

Windows supplies two default window procedures: DefWindowProc and DefDlIgProc.
The DefWindowProc function implements the default behavior for typical top-level
windows. It processes nonclient area messages and manages the window frame. It also
implements some other aspects of top-level window behavior, such as responding to
keyboard events; for example, responding to the Alt key by highlighting the first item
in the window’s menu bar.

The DefDlgProc function is for the use of dialog boxes. In addition to the default top-
level window behavior, it also manages the focus within a dialog box. It implements
the behavior of dialogs whereby the focus jumps from one dialog control to the next
when the user presses the Tab key.

In addition to the default window procedures, Windows also supplies a set of window
classes. These implement the behavior of dialog box controls, such as buttons, edit
fields, list and combo boxes, and static text fields. The name for these classes is system
global class, which is a leftover from the days of 16-bit Windows. In Win32 these
classes are no longer global. That is, a change that affects a system global class will
only affect windows of that class within the same application and have no effect on
windows in another application because Win32 applications run in separate address
spaces, and thus they are shielded from one another.

Whether it is a Windows-supplied class, or a class defined by the application, an
application can use an existing window class from which to derive a new class and
implement new or modified behavior. The mechanisms for accomplishing this are
called subclassing and superclassing.

Warning: An application should not attempt to subclass or superclass a window that belongs to
another process.

7.5.2 Subclassing

Subclassing means substituting the window procedure for a window class with another.
This is accomplished by calling the SetWindowLong or SetClassLong function.

Windows Dialog Boxes and Controls -

Calling SetWindowLong with the GWL_WNDPROC index value substitutes the
window procedure for a specific window. In contrast, calling SetClassL.ong with the
GCL_WNDPROC index value substitutes the window procedure for all windows of
that class that are created after the call to SetClassLong.

Consider the simple example shown in Listing 7.2. (You can compile this code from
the command line by typing cl subclass.c user32.1ib.) This example displays the “Hello,
World!” message. In a somewhat unorthodox fashion, it uses the BUTTON system
class for this purpose. However, it subclasses the BUTTON class by providing a
replacement window procedure. This replacement procedure implements special
behavior when a WM_LBUTTONUP message is received; it destroys the window,
effectively ending the application. To ensure proper termination, the WM_DESTROY
message also receives special handling: a WM_QUIT message is posted through a call
to PostQuitMessage.

Listing 7.2 Subclassing the BUTTON Class
#include <windows.h>
WNDPROC OldWndProc;
LRESULT CALLBACK WndProc(HWND hwnd, UINT uMsg,
WPARAM wParam, LPARAM I[Param)

switch(uMsg)
{
case WM_LBUTTONUP:
DestroyWindow(hwnd);
break;
case WM_DESTROY:
PostQuitMessage(0);
break;
default:
return CallWindowProc(OldWndProc,
hwnd, uMsg, wParam, [Param);

}

return 0;

Zero to Mastery Microsoft Visual in C++

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE d2,
LPSTR d3, int d4)

MSG msg;
HWND hwnd;
hwnd = CreateWindow(“BUTTON”, “Hello, World!”,
WS_VISIBLE | BS_CENTER, 100, 100, 100, 80,
NULL, NULL, hlnstance, NULL);
OldWndProc =
(WNDPROC)SetWindowLong(hwnd, GWL_WNDPROC, (LONG)WndProc);
while (GetMessage(&msg, NULL, 0, 0))
DispatchMessage(&msg);
return msg.wParam;

}

I would like to call your attention to the mechanism used in the new window procedure,
WndProc, to reference the old window procedure for the default processing of messages.
The old procedure is called through the Win32 function CallWindowProc. In 16-bit
Windows, it was possible to call the address obtained by the call to SetWindowLong
directly; this was always the address of the old window procedure. In Win32, this is
not necessarily so; the value may instead be a handle to the window procedure.

In this example, I performed the subclassing through SetWindowlLong, meaning that
it only affected the single button window for which SetWindowLong was called. If I
had called SetClassLong instead, I would have altered the behavior of all buttons
created subsequently. Consider the example program in Listing 7.3 (to compile this
program from the command line, type cl subclass.c user32.1ib).

Listing 7.3 Subclassing the BUTTON Class

#include <windows.h>

WNDPROC OldWndProc;

LRESULT CALLBACK WndProc(HWND hwnd, UINT uMsg,
WPARAM wParam, LPARAM IParam)

switch(uMsg)

Windows Dialog Boxes and Controls

)

case WM_LBUTTONDOWN:
MessageBeep(OxFFFFFFFF);
default:
return CallWindowProc(OldWndProc,
hwnd, uMsg, wParam, [Param);
}
return 0;
}
int WINAPI WinMain(HINSTANCE hlnstance,
HINSTANCE d2, LPSTR d3, int d4)

{
HWND hwnd;
hwnd = CreateWindow(“BUTTON”, “ ”,
0,0,0,0,0,
NULL, NULL, hlnstance, NULL);
OldWndProc =
(WNDPROC)SetClassLong(hwnd, GCL_WNDPROC, (LONG)WndProc);
DestroyWindow(hwnd);
MessageBox(NULL, “Hello, World!”, “”, MB_OK);
}

This example creates a button control but never makes it visible; the sole purpose of
this control’s existence is so that through its handle, the class behavior can be modified.
Immediately after the call to SetClassLong, the button control is actually destroyed.

But the effects of SetClassLong linger on! The subsequently displayed message box
contains an OK button; and the behavior of this button (namely that when it is clicked
by the left mouse button, the PC speaker emits a short beep) reflects the new window
procedure. Similarly, if the program displayed other dialogs or message boxes, indeed
anything that had button controls in it, all the newly created buttons would exhibit the
modified behavior.

7.5.3 Global Subclassing

In 16-bit Windows, a subclassing mechanism similar to that presented in the previous
section was often used to change the system-wide behavior of certain types of windows

ﬁ Zero to Mastery Microsoft Visual in C++

such as dialog controls. (This is how the 3-D control library CTL3D.DLL was
implemented.) Subclassing the window class affected all newly created windows of
that class, regardless of the application that created them. Unfortunately, in Win32
this is no longer the case; only windows of the same application are affected by such
a change.

So how can developers influence the global behavior of certain types of windows?
The answer is, you have to use a DLL and ensure that it is loaded into every application’s
address space.

Under Windows NT, this can be accomplished easily by creating a setting in the
registry. The following registry value needs to be modified:

\HKEY _LOCAL_MACHINE\Software\Microsoft\Windows
NT\CurrentVersion\Windows\APPINIT_DLLS

DLLs that are listed under this registry key are loaded into the address space of every
newly created process. If you wish to add several DLLs, separate the pathnames by
spaces.

Listing 9.4 shows a DLL that subclasses the BUTTON class just like the example

shown in Listing 9.3. If you add the full pathname of this DLL to the above-mentioned

registry key, every time a button control is clicked, a short beep will be heard.
Listing 7.4 Subclassing in a DLL

#include <windows.h>

WNDPROC OldWndProc;

LRESULT CALLBACK WndProc(HWND hwnd, UINT uMsg,

WPARAM wParam, LPARAM I[Param)

switch(uMsg)
{
case WM_LBUTTONDOWN:
MessageBeep(OxFFFFFFFF);
default:
return CallWindowProc(OldWndProc,
hwnd, uMsg, wParam, [Param);
}

return 0;

Windows Dialog Boxes and Controls m,

}
BOOL WINAPI DIIMain (HANDLE hModule, DWORD dwReason,

LPVOID IpReserved)

HWND hwnd;
switch(dwReason)
{
case DLL_PROCESS_ATTACH:
hwnd = CreateWindow(“BUTTON”, “”,
0,0,0,0,0,
NULL, NULL, hModule, NULL);
OldWndProc = (WNDPROC)SetClassLong(hwnd, GCL_WNDPROC,
(LONG)WndProc);
DestroyWindow(hwnd);

}
return TRUE;

}

To compile this DLL from the command line, use cl /LD beepbtn.c user32.lib. The /
LD command line flag instructs the compiler to create a DLL instead of an executable
file.

Warning: Be careful to only add a fully tested DLL to the Registry. A faulty DLL may render
your system unstable or may prevent it from starting altogether. If that happens, a quick-and-
dirty remedy is to boot into MS-DOS and rename the DLL file to prevent it from being loaded.
Obviously, if your DLL file sits on an NTES partition, this may not be so easy to do.

Adding your DLL’s pathname to the APPINIT_DLLS Registry key is perhaps the
simplest, but certainly not the only technique to inject your DLL’s code into another
application’s address space. Another drawback of this technique includes the fact that
a DLL specified this way is loaded into the address space of every application—or, to
be more precise, every GUI application that links with USER32.DLL. Even the slightest
bug in your DLL may seriously affect the stability of the entire system.

Fortunately, there are other techniques available that enable you to inject your DLL
into the address space of another process.

ﬁ Zero to Mastery Microsoft Visual in C++

The first such technique requires the use of a Windows hook function. By using the
SetWindowsHookEx function, it is possible to install a hook function into the another
application’s address space. Through this mechanism, you can add a new window
function to a window class owned by another application.

The second technique relies on the CreateRemoteThread function and its ability to
create a thread that runs in the context of another process.

7.5.4 Superclassing

Superclassing means creating a new class based on the behavior of an existing class.
An application that wishes to superclass an existing class can use the GetClassInfo
function to obtain a WNDCLASS structure describing that class. After this structure
has been suitably modified, it can be used in a call to the RegisterClass function that
registers the new class for use.

The example shown in Listing 9.5 demonstrates the technique of superclassing. In
this example, a new window class, BEEPBUTTON, is created, its behavior based on
the default BUTTON class. This new class is then used to display a simple message.
To compile this program from the command line, type cl supercls.c user32.lib.

Listing 7.5 Superclassing the BUTTON Class

#include <windows.h>

WNDPROC OldWndProc;

LRESULT CALLBACK WndProc(HWND hwnd, UINT uMsg,
WPARAM wParam, LPARAM I[Param)

switch(uMsg)
{
case WM_LBUTTONDOWN:
MessageBeep(OxFFFFFFFF);
default:
return CallWindowProc(OldWndProc,
hwnd, uMsg, wParam, [Param);

}

return 0;

Windows Dialog Boxes and Controls m,

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE d2,
LPSTR d3, int d4)

MSG msg;
HWND hwnd;
WNDCLASS wndClass;
GetClassInfo(hlnstance, “BUTTON”, &wndClass);
wndClass.hInstance = hlnstance;
wndClass.lpszClassName = “BEEPBUTTON”;
OldWndProc = wndClass.lpfnWndProc;
wndClass.lpfnWndProc = WndProc;
RegisterClass(&wndClass);
hwnd = CreateWindow(“BEEPBUTTON”, “Hello, World!”,
WS_VISIBLE | BS_CENTER, 100, 100, 100, 80,
NULL, NULL, hlnstance, NULL);

while (GetMessage(&msg, NULL, 0, 0))
{

if (msg.message == WM_LBUTTONUP)

{

DestroyWindow(hwnd);
PostQuitMessage(0);

}

DispatchMessage(&msg);
}
return msg.wParam;

}

We have looked at the difference between the two techniques, subclassing and
superclassing, in terms of their implementation. But what is the difference between
them in terms of their utility? In other words, when would you use subclassing, and
when would you use superclassing?

ﬁ Zero to Mastery Microsoft Visual in C++

The difference is simple. Subclassing modifies the behavior of an existing class;
superclassing creates a new class based on the behavior of an existing class. In other
words, if you use subclassing, you implicitly alter the behavior of every feature in
your application that relies on the class that you subclass. In contrast, superclassing
only affects windows that are based explicitly on the new class; windows based on the
original class are not be affected.

7.6 DIALOG BOXES

In addition to its main application window with its title and menu bar and application-
defined contents, an application most commonly uses dialogs to exchange information
with the user. Typically, the application’s main window exists throughout the life of
the application, while its dialogs are more transient in nature, popping up only for the
duration of a brief exchange of data; but this is not the key distinguishing characteristics
of a main window and a dialog. Indeed, there are applications that use a dialog box as
their main window; in other applications, a dialog may remain visible for most of the
application’s lifetime.

A dialog box usually contains a set of dialog controls, themselves child windows,
through which the user and the application exchange data. There are several Win32
functions that assist in constructing, displaying, and managing the contents of a dialog
box. Applications developers usually need not be concerned about painting a dialog’s
controls or handling user-interface events; instead, they can focus on the actual exchange
of data between the dialog’s controls and the application.

Dialogs represent a versatile capability in Windows. To facilitate their efficient use,
Windows provides two types of dialog boxes: modeless and modal.

7.6.1 Modal Dialogs

When an application displays a modal dialog box, the window that owns the dialog
box is disabled, effectively suspending the application. The user must complete
interaction with the modal dialog before the application can continue.

A modal dialog is usually created and activated through the DialogBox function. This
function creates the dialog window from a dialog template resource and displays the
dialog as a modal dialog. The application that calls the DialogBox function supplies
the address of a callback function; DialogBox does not return until the dialog box is
dismissed through a call to EndDialog made from this callback function (possibly in
response to a user-interface event, such as a click on the OK button).

Although it is possible to create a modal dialog with no owner, it is not usually
recommended. If such a dialog box is used, several issues must be taken into account.
As the application’s main window is not disabled, steps must be taken to ensure that
messages sent or posted to it continue to be processed. Windows does not destroy or
hide an ownerless dialog when other windows of the application are destroyed.

Windows Dialog Boxes and Controls m,

7.6.2 Modeless Dialogs

In contrast to modal dialogs, presenting a modeless dialog does not suspend execution
of the application by disabling the owner window of the dialog box. However, modeless
dialogs remain on top of their owner window even when the owner window gains
focus. Modeless dialogs represent an effective way of continuously displaying relevant
information to the user.

A modeless dialog is typically created through the CreateDialog function. As there is
no equivalent of the DialogBox function for modeless dialogs, applications are
responsible for retrieving and dispatching messages for the modeless dialog. Most
applications do this in their main message loop; however, to ensure that the dialog
responds to keyboard events as expected and enables the user to move between controls
using keyboard shortcuts, the application must call the IsDialogMessage function.

A modeless dialog does not return a value to its owner. However, the modeless dialog
and its owner can communicate using SendMessage calls.

The dialog box procedure for a modeless dialog must not call the EndDialog function.
The dialog is normally destroyed by a call to DestroyWindow. This function can be
called in response to a user-interface event from the dialog box procedure.

Applications are responsible for destroying all modeless dialog boxes before
terminating.

7.6.3 Message Boxes

Message boxes are special dialogs that display a user-defined message, a title, and a
combination of predefined buttons and icons. Their intended use is to display brief
informational messages to the user and present the user with a limited set of choices.
For example, message boxes can be used to notify the user of an error condition and
request instructions whether to retry or cancel the operation.

A message box is created and displayed through the MessageBox function. The
application that calls this function specifies the text string that is to be displayed and
a set of flags indicating the type and appearance of the message box.

In addition to the default application modal behavior of a message box, application
can specify two other modes of behavior: task modal and system modal. Use a task
modal message box if you wish to disable interaction with all top-level windows of
the application, not just the owner window of the message box. A system modal
message box should be used in extreme cases, warning the user of a potential disaster
that requires immediate attention. System modal message boxes disable interaction
with all other applications until the user deals with the message box.

Note: System modal message boxes should be used very carefully. Few things are more annoying
than a misbehaving application that displays a system modal message box repeatedly in a loop
(perhaps due to a programming error), effectively rendering the entire system useless.

ﬁ Zero to Mastery Microsoft Visual in C++

7.6.4 Dialog Templates

Although it is possible to create a dialog in memory, most applications rely on a
dialog template resource to determine the type and appearance of controls within a
dialog.

Dialog templates are typically created as part of the application’s resource file. They
can be created manually as a set of instructions in the resource file, or they can be
created through a visual resource file editor, such as the resource editor of the Developer
Studio.

The dialog template defines the style, position, and size of the dialog and lists all
controls within it. The style, position, and appearance of controls are also defined as
part of the dialog template. The various dialog box functions draw the entire dialog
based on the dialog template, except for controls that are marked as owner-drawn.

7.6.5 The Dialog Box Procedure

Dialog box procedure is just another name for the window procedure of a dialog box.
There is no fundamental difference between a dialog box procedure and a window
procedure, except perhaps the fact that a dialog procedure relies on DefDIgProc,
rather than DefWindowProc, for default processing of messages.

A typical dialog box procedure responds to WM_INITDIALOG and WM_COMMAND
messages but little else. In response to WM_INITDIALOG, the dialog box procedure
initializes the controls in the dialog. Windows does not send a WM_CREATE message
to a dialog box procedure; instead, the WM_INITDIALOG message is sent, but only
after all the controls within the dialog have been created, just before the dialog is
displayed. This enables the dialog box procedure to properly initialize controls before
they are seen by the user.

Most controls send WM_COMMAND messages to their owner window (that is, the
dialog box itself). To carry out the function represented by a control, the dialog box
procedure responds to WM_COMMAND messages by identifying the control and
performing the appropriate action.

7.7 COMMON DIALOGS

Win32 implements a series of commonly used dialogs, freeing the programmer from
the need to implement these for every application. These common dialogs are well
known to every Windows user. They include dialogs for opening and saving files,
selecting a color or a font, printing and setting up the printer, selecting a page size,
and searching and replacing text.

Common dialogs can be used in two ways. Applications can utilize the common
dialog “as is” by calling one of the common dialog functions that are part of the

Windows Dialog Boxes and Controls -

Win32 API. Alternatively, applications can customize common dialogs by
implementing a special hook function and supplying a custom dialog template.

Windows 95 has introduced several changes to the common dialogs that were known
to Windows 3.1 and Windows NT programmers. However, most of these changes are
cosmetic, and do not affect typical usage of the dialogs. Where the differences are
significant.

Note: The appearance of all common dialog boxes has changed substantially in Windows 95.
Applications that supply their own dialog templates must take this fact into account in order to
present a visual appearance that is consistent with the rest of the operating system.

When a common dialog function encounters an error, the CommDIgExtendedError
function can often be used to obtain additional information about the cause and nature
of the problem.

7.7.1 The Open and Save As Dialogs

The File Open and File Save As dialogs are perhaps the most often seen common
dialogs. The purpose of these dialogs is to enable the user to browse the file system
and select a file to be opened for reading or writing.

The File Open dialog is displayed when the application calls the GetOpenFileName
function. The function’s single parameter is a pointer to an OPENFILENAME structure.
Members of this structure provide initialization values for the dialog box, and,
optionally, the address of a hook function and the name of a custom dialog template,
which are used for customizing the dialog. When the dialog is dismissed, applications
can obtain the user’s selection from this structure. A typical File Open dialog is
shown in Figure 7.2.

Lookjn: | 23 Deskiop o | x| gl

Marme i Sizsl Type I Moadified |
El System Folder
hibsor System Folder

File name: | Open I
Files of type: | 5 Cancel |

[™ Dpen as jead-only

Figure 7.2: The File Open dialog (Explorer-style)

ﬁ Zero to Mastery Microsoft Visual in C++

The File Save As dialog is displayed in response to a call to GetSaveFileName. This
function also takes a pointer to an OPENFILENAME structure as its single parameter.
An example for the File Save As dialog is shown in Figure 7.3.

Save As E

Save |g Desklop ;} i3] gl
Name | Size | Type | Modified |
gh’ly Computer § System Folder
{%‘g Metwork Meghbor . Systemn Folder
File name: | Save
Save a3 lype! | j Cancel
[Open as (sad-orly

Figure 7.3: The File Save As dialog (Explorer-style)

For those familiar with the Windows 3.1 look of the common file dialogs, the difference
between that and the new Windows 95 look is striking. Applications that wish to use
the new look (and take advantage of the new Explorer-related functionality) must
specify the style OFN_EXPLORER in the Flags member of the OPENFILENAME
structure.

The Windows 95 versions of the common file dialogs have another new feature.
When a file dialog is customized, it is no longer necessary to reproduce the entire
dialog template before adding your modifications. Instead, it is possible to create a
dialog template containing only the controls you wish to add to the dialog and an
optional special field, labeled with the ID stc32, indicating where the standard
components of the dialog should be placed.

7.7.2 The Choose Color Dialog

The Choose Color dialog box is used when the user is requested to select a color. The
dialog can be used to select a color from the system palette, or to specify a custom
color.

The Choose Color dialog, shown in Figure 7.4, is presented in response to a call to the
Choose Color function. Applications can control the initialization values of this dialog
through the pointer to a CHOOSECOLOR structure, passed to the ChooseColor
function as its single parameter. Through this structure, applications can also customize

Windows Dialog Boxes and Controls ﬁ

the dialog’s behavior by supplying a hook function and the name of a custom dialog
template. When the dialog is dismissed, the new color selection is available as the
rgbResult member of the CHOOSE COLOR structure.

Color HE

 Inimicial 1.0 |
Claiad 1 17 1
e T
LT
it

LCugtom colors:

EEEEEEEE '

Hue: [Téﬁ' Red: rﬁ_-
snnnmnns [CC
Drefine{astom (Sl ore & I ColortSglid Lum: rlr' Blue: lr

Cancel | Add to Custom Colors |

Figure 7.4: The Choose Color dialog

4

7.7.3 The Font Selection Dialog

Another of the more frequently seen common dialogs is the font selection dialog.
Through this dialog, the user can select a typeface, a font style, font size, special
effects, text color, and, in the case of Windows 95, a script. The font selection dialog
is shown in Figure 7.5.

Font
Font: Font style:
|Hnglas
B AbadiMT Condensed L=
Algerian Italic
I Anal Bold
T Arial Marrow Bold ltalic
1 Arial Rounded MT Bold
T Book Antiqua
I Bookman Old Style =] =
- Effects 1 Sample]
™ Stikeout
™ Underline
Color:
|- Black -] Seipt
| &

Figure 7.5: The Font Selection dialog

ﬁ Zero to Mastery Microsoft Visual in C++

The font selection dialog is initialized through the CHOOSEFONT structure. This
structure can also be used to specify a custom hook function and the name of a custom
dialog template. The IpLogFont member of this structure points to a LOGFONT
structure that can be used to initialize the dialog and receives information about the
newly selected font when the dialog is dismissed. This structure can be used in a call
to the GDI function CreateFontIndirect to actually create the font for use.

7.7.4 Dialogs for Printing and Print Setup

Print HE

Priritar

HMame:

Statug; Default printer; Ready

Tupe: HP DeskJet 500

Where: LPTT:

Comment: ™ Print to file

— Frint range — Copie:

= al Number of copies: |l 32
" Page _.-.;,,_l-. o I =015, L 5
~ . 1l | 2| | 3
Selection
oK I Cancel

Figure 7.6: The Print dialog

To use the Print dialog, applications s HE|
must first prepare the contents of a
PRINTDLG structure, then call the
PrintDlg function with a pointer to
this structure as the function’s only
parameter.

The Page Setup dialog is displayed

when applications call the - Paper

PageSetupDlg function. The Sige: |Letierg 17211 =l
function’s only parameter is a pointer BRI . oot oeder =
to a PAGESETUPDLG structure. _

Through this structure, applications ~ Drientation—— -~ Margins (inches)]

can control the fields of the dialog and & Porsit Lt [omew [T
possibly specify customization. When o I [

the dialog is dismissed, the user’s
selections are available in this
structure.

Figure 7.7: The Page Setup dialog

Windows Dialog Boxes and Controls m,

7.7.5 Text Find and Replace Dialogs

The Find and Find and Replace dialogs present an interface where the user can enter
a text search string and, optionally, a replacement string. These dialogs differ
fundamentally from the other common dialogs in that they are modeless dialogs; the
other common dialogs all operate as modal dialogs. Therefore, the application that
creates them is responsible for providing the message loop and dispatching dialog
messages through the IsDialogMessage function.

The Find dialog, shown in Figure 7.8, is displayed in response to a call to the Find Text
function. The function returns a dialog handle that can be used in the application’s message
loop in a call to IsDialogMessage. The dialog is initialized through a FINDREPLACE
structure, which also receives any values the user may enter in the dialog.

The dialog communicates with its owner window through a series of messages. Before
calling FindText, applications should register the message string “FINDMSGSTRING”
through a call to the RegisterWindowMessage function. The Find dialog will send
this message to the application whenever the user enters a new search value.

Find what: | e T st I
Direction Carcel |

& Up © Down

[Match whale word only

[~ Match case

Figure 7.8: The Find Text dialog

The Replace dialog (Figure 7.9) is a close cousin to the Find dialog and is initialized
through an identical FINDREPLACE structure. This dialog is displayed in response
to a call to the ReplaceText function.

Replace EE

Find what |
Replace with: |

[T Match whole word anly

[T Match case

Figure 7.9: The Replace dialog

ﬁ Zero to Mastery Microsoft Visual in C++

When the application receives a message from a Find or Replace dialog, it can check
the Flags member of the FINDREPLACE structure to determine what action was
requested by the user.

Note: The Find and Replace dialogs are not destroyed when the FindText or ReplaceText
functions return. For this reason, an application would normally allocate the FINDREPLACE
structure in global memory. If memory allocated for the FINDREPLACE structure is deallocated
before the Find or Replace dialogs are destroyed, the application will fail.

7.7.6 Common Dialogs Example
The example program shown in Listing 7.6 creates and displays each of the common
dialogs in sequence. This example has little practical value; it simply demonstrates,
with a minimum amount of code, how these dialogs can be created and displayed.
This sample can be compiled from the command line with ¢l commdIlgs.c comdlg32.lib
user32.1ib.

Listing 7.6 Common Dialogs
#include <windows.h>
LRESULT CALLBACK WndProc(cHWND hwnd, UINT uMsg,

WPARAM wParam, LPARAM IParam)

switch(uMsg)
{
case WM_DESTROY:
PostQuitMessage(0);
break;
default:
return DefWindowProc(hwnd, uMsg, wParam, 1Param);
1
return O;
1
int WINAPI WinMain(HINSTANCE hlnstance, HINSTANCE hPrevInstance,
LPSTR d3, int nCmdShow)

Windows Dialog Boxes and Controls

/A

MSG msg;

HWND hwnd;

WNDCLASS wndClass;

OPENFILENAME ofn;

CHOOSECOLOR cc;

CHOOSEFONT cf;

PRINTDLG pd;

PAGESETUPDLG psd;

FINDREPLACE fr;

COLORREEF crCustColors[16];

LOGFONT If;

char szFindWhat[80];

char szReplaceWith[80];

HWND hdlgFt, hdlgFr;

if (hPrevInstance == NULL)

{
memset(&wndClass, 0, sizeof(wndClass));
wndClass.style = CS_HREDRAW | CS_VREDRAW;
wndClass.lpfnWndProc = WndProc;
wndClass.hInstance = hlnstance;

wndClass.hCursor = LoadCursor(NULL, IDC_ARROW);

wndClass.hbrBackground = (HBRUSH)(COLOR_APPWORKSPACE + 1);

wndClass.IpszClassName = “COMMDLGS”;
il ('RegisterClass(&wndClass)) return FALSE,;

}

hwnd = CreateWindow(“COMMDLGS”, “Common Dialogs Demonstration”,

WS_OVERLAPPEDWINDOW,

CW_USEDEFAULT, 0, CW_USEDEFAULT, 0,

NULL, NULL, hlnstance, NULL);

ﬁ Zero to Mastery Microsoft Visual in C++

ShowWindow(hwnd, nCmdShow);
UpdateWindow(hwnd);

memset(&ofn, 0, sizeof(ofn));

ofn.1StructSize = sizeof(OPENFILENAME);
GetOpenFileName(&ofn);

memset(&ofn, 0, sizeof(ofn));

ofn.IStructSize = sizeof(OPENFILENAME);
GetSaveFileName(&ofn);

memset(&cc, 0, sizeof(cc));
memset(crCustColors, 0, sizeof(crCustColors));
cc.StructSize = sizeof(cc);

cc.IpCustColors = crCustColors;
ChooseColor(&cc);

memset(&ecf, 0, sizeof(cf));

memset(&If, 0, sizeof(If));

cf.IStructSize = sizeof(cf);

cf.lpLogFont = &If;

cl.Flags = CF_SCREENFONTS | CF_EFFECTS;
ChooseFont(&cf);

memset(&pd, 0, sizeof(pd));

pd.1StructSize = sizeof(pd);

PrintDlg(&pd);

memset(&psd, 0, sizeof(psd));

psd.IStructSize = sizeofl(psd);
PageSetupDlg(&psd);

memset(&fr, 0, sizeof(fr));
memset(szFindWhat, 0, sizeof(szFindWhat));
memset(szReplaceWith, 0, sizeof(szReplaceWith));

fr.IStructSize = sizeof(fr);

Windows Dialog Boxes and Controls

)

fr.hwndOwner = hwnd;
fr.IpstrFindWhat = szFindWhat;
fr.lpstrReplaceWith = szReplaceWith;
fr.wFindWhatLen = sizeof(szFindWhat);
fr.wReplaceWithLen = sizeof(szReplaceWith);
hdlgFt = FindText(&fr);
hdigFr = ReplaceText(&fT);
while (GetMessage(&msg, NULL, 0, 0))
if(!IsDialogMessage(hdlgFt, &msg))
if(!IsDialogMessage(hdigFr, &msg))
DispatchMessage(&msg);
return msg.wParam;

}

7.7.7 OLE Common Dialogs

As part of the OLE 2 implementation, the system provides common dialogs for the
following set of functions: Insert Object, Paste Special, Change Source, Edit Links,
Update Links, Object Properties, Convert, and Change Icon. Most applications do not
invoke these dialogs directly, but use the Microsoft Foundation Classes (and, in
particular, the wrapper classes for these dialogs) to implement OLE functionality.

7.8 CONTROLS

A control is a special window that typically enables the user to perform a simple
function and sends messages to this effect to its owner window. For example, a
pushbutton control has one simple function, namely that the user can click on it; when
that happens, the pushbutton sends a WM_COMMAND message to the window
(typically a dialog) that owns it.

Windows offers several built-in control classes for the most commonly used controls.
A dialog with a sample collection of these controls is shown in Figure 7.10.

Windows 95 introduced a set of new control classes, collectively referred to as Windows
95 Common Controls. This name is slightly misleading as the new control classes are
now also available in Windows NT 3.51 and Win32s 1.3.

Applications can also create their own controls. These can be derived from the standard
control classes, or they can be built independently.

ﬁ Zero to Mastery Microsoft Visual in C++

Static IIZM'nh-:lE:a:-: j
|Ed|t | |
Listbos
Button Sample

[T L

Figure 7.10: A collection of standard controls

The control class and the control style (which defines variations of behavior within a
button class) are usually both defined in an application’s resource file. Alternatively,
applications that create controls programmatically select the button class and specify
the button style as parameters to the CreateWindow function.

7.8.1 Static Controls

Static controls are perhaps the simplest of all control types. The sole purpose of their
existence is to display a piece of text, such as a label for another control. Static
controls do not respond to user-interface events and do not send messages to their
owner window.

7.8.2 Buttons

Buttons, as their name implies, are controls that respond to simple mouse clicks.
There are several button types. A pushbutton is a button that posts a WM_COMMAND
message to its owner window when it is clicked. A check box indicates one of two
states, selected and not selected. A variant of the check box, the three-state check box,
adds a third, disabled state to the other two. A radio button is a control that is typically
used in groups, indicating a set of mutually exclusive choices.

There are variants to these control styles that define secondary aspects of their behavior.

7.8.3 Edit Controls

An edit control is a rectangular area where the user can enter unformatted text. The
text can be a few characters—such as the name of a file—or an entire text file; for

Windows Dialog Boxes and Controls -

example, the client area of the Windows Notepad application is one large edit control.
Applications typically communicate with the edit control through a series of messages
that are used to set or retrieve text from the control.

7.8.4 List Boxes

A list box contains a collection of values arranged in rows. Users can use the mouse
cursor to select the desired value from the list. If the list box contains more values than
can be displayed at ones, a vertical scrollbar is also displayed as part of the list box.

7.8.5 Combo Boxes

A combo box combines the functionality of a list box and an edit control. Users can
enter a value in the edit control part of the combo box. Alternatively, they can click
the down arrow next to the edit control to display the list box part, where a value can
be selected.

7.8.6 Scrollbars

A scrollbar control consists of a rectangular area with two arrows at the end and a
sliding pointer. A scrollbar can be vertical or horizontal. Scrollbars are typically used
to indicate the position of the visible portion within a larger area. Applications also
used scrollbars to implement the functionality of a slide control; however, as one of
the new Windows 95 common controls is a slider control, using scrollbars for this
purpose is no longer necessary.

7.8.7 Tab Controls

Tab controls help in implementing multipage dialogs, also known as tabbed dialogs
or property sheets. A tab control provides a user-interface where the user can select
the dialog page (property page) by clicking on a little tab. The tab gives the visual
appearance of several sheets organized on top of each other and clicking on the tab
gives the visual impression of bringing the selected sheet to front.

7.8.8 Tree Controls

Tree controls present a list of items in a hierarchical organization. Tree controls are
ideal for displaying hierarchical lists, such as a list of directories on disk. Tree controls
provide an efficient mechanism for displaying a large number of items by providing
the ability to expand and collapse higher-level items.

7.8.9 List Controls

List controls expand the functionality of a list box by providing a means to display a
list of items in one of several formats. In a typical list control, items have an icon and
some text; the control can display these items in a variety of formats as icons, or as list
items arranged in rows.

Zero to Mastery Microsoft Visual in C++

7.8.10 Slider Control

A slider control provides the functionality similar to the sliding volume control on
many stereo systems. The user can position the sliding tab with the mouse to set a
specific position in the slider control. Slider controls are ideal in multimedia applications
as volume or picture controls, or controls through which the user can set the position
during playback of a multimedia data source.

7.8.11 Progress Bars

Progress bars are used to indicate the progress of a lengthy process. Progress bars do
not accept user input; they are used for informational purposes only.

7.8.12 Spin Buttons

Spin buttons are used to increment or decrement the value of an associated control,
usually an edit control.

7.8.13 Rich-text Edit Control

The rich-text edit control expands the functionality of the Windows 3.1 edit control
by enabling the editing of Microsoft RTF (Rich Text Format) files. Rich-text controls
encapsulate the capability of a reasonably sophisticated word processor.

7.8.14 Hot Key Control

A hotkey control accepts a keystroke combination from the user, which the application
can use to set up a hot key through the WM_SETHOTKEY message.

Other Windows common controls include the animation control, header control, status
bar, toolbar control, and tooltip control.

Figure 7.11 presents a collection of Windows 95 common controls in a dialog.

Dialog []

= |T°b2 I TehﬂLJ_'I Espanded Node =
=1 Expanded Node
Leaf
Leat
+ Collapsed Node =

Figure 7.11: Some Windows 95 common controls

Windows Dialog Boxes and Controls m,

Summary

A window is a rectangular area on the screen through which applications and the user
communicate. Applications draw into the window to display information for the user.
Applications receive messages on user-interface events through a handle to the window.

Windows are arranged hierarchically. At top is the desktop window. Top-level windows
are those whose parent is the desktop window—or those that have no parent window.
Child windows are those whose parent is a top-level window or another child window.
Windows sharing the same parent are siblings; the order in which sibling windows are
displayed is called the Z-order. A special category of windows contains top-level
windows that have the topmost attribute; these windows always precede non-topmost
windows in the Z-order, even when a non-topmost window is the active window.

A top-level window may have an owner window that is different from its parent
window.

Typical windows that users normally interact with include overlapped windows (normal
application windows); popup windows (dialog boxes); and controls.

Window messages are handled in the window procedure. A window procedure and
other window attributes are associated with the window class from which windows
are derived. In addition to the capability of defining their own window classes,
applications can also superclass and subclass existing window classes. Subclassing
means modifying the behavior of an existing window class; superclassing means creating
a new window class based on the behavior of an existing class.

Part of the Win32 API is a set of functions that assist in creating, displaying, and
managing dialogs. Windows distinguishes between modal dialogs and modeless dialogs.
A modal dialog disables its owner window while it is displayed and does not return
control to the application until the user dismisses the dialog. In contrast, modeless
dialogs are displayed without disabling their owner window. Applications must provide
message loop functionality and dispatch dialog messages through the IsDialogMessage
function for modeless dialogs.

Windows also provides a set of common dialogs for common tasks. These include
dialogs for opening and saving a file, printer and page setup, color and font selection,
and text find and replace functions. In addition, a set of common dialogs is available
to implement OLE-related functionality.

Controls include buttons, static text, edit boxes, list boxes, combo boxes, and scrollbars.
Applications can also implement new control types. In addition, Windows 95 defines
a set of new common controls: list views, tree views, tab controls, hot key controls,
sliders, progress bars, spin buttons, and rich-text edit controls.

Controls are usually defined through dialog box templates in the application’s resource
file. Controls communicate with the application by sending messages (such as
WM_COMMAND messages) to their owner window, that is, the dialog box.

ﬁ Zero to Mastery Microsoft Visual in C++
REVIEW EXERCISE

Define window in VC++ environment?

A window is identified by a window handle. Comment.
What are the steps in® creating windows?
How Painting in a window is performed?

What is the purpose of a window class?

AU S e

An application should not attempt to subclass or superclass a window that belongs to another
process. Comment.

7. What is Subclassing?

CHAPTER

DIALOGS AND
PROPERTY SHEETS

Applications use dialogs in many situations. The MFC Library supports dialogs through
the CDialog class and derived classes.

A CDialog object corresponds to a dialog window, the content of which is based on a
dialog template resource. The dialog template resource can be edited using any dialog
editor; typically, however, you would use the dialog editor that is part of the Developer
Studio for this purpose.

Perhaps the most important feature of CDialog is its support for Dialog Data Exchange,
a mechanism that facilitates the easy and efficient exchange of data between controls
in a dialog and member variables in the dialog class.

The CDialog class is derived from CWnd; thus, you can use many CWnd member
functions to enhance your dialog. Furthermore, your dialog classes can have message
maps; indeed, except for the most simple dialogs, it is often necessary to add message
map entries to handle specific control messages.

Newer applications often support tabbed dialogs, or property sheets. A property sheet
is really several dialogs merged into one; the user uses tab controls to pick any one of
the property pages that comprise a property sheet.

8.1 CONSTRUCTING DIALOGS

The basic steps in constructing a dialog and making it part of your application include
creating the dialog template resource, creating a CDialog-derived class that corresponds
to this resource, and constructing an object of this class at the appropriate location in
your application.

ﬁ Zero to Mastery Microsoft Visual in C++

For our experiments with dialogs, we use a simple AppWizard-created SDI application
named DLG. Other than selecting the Single document application type, this application
should be created with AppWizard’s defaults.

The next section shows you how to create a simple dialog that has an editable text
field and make it part of the DLG application by connecting it to a new menu item,
View Dialog. The dialog, as displayed by DLG, is shown in Figure 8.1.

gH

Enter your test here:

Default sting

Figure 8.1: Asimple dialog

8.1.1 Adding a Dialog Template

The first step in constructing a dialog is to create the dialog template resource. This
resource can be built using the integrated dialog editor that is part of the Developer
Studio. Figure 8.2 shows the dialog under construction. The OK and Cancel buttons
are supplied by the dialog editor when a blank dialog is created; to that, we should add
a static control and an edit control. The edit control will have the identifier IDC_EDIT;
the dialog itself will be identified as IDD_DIALOG.

§§# DLG.1c - IDD_DIALDG [Dialog)

Figure 8.2: Constructing a simple dialog

Dialogs and Property Sheets ﬁ

While the dialog template is open for editing in the dialog editor, you can directly
invoke the ClassWizard to construct the dialog class corresponding to this template.

8.1.2 Constructing the Dialog Class

Although it is possible to create a dialog class by hand, in many cases it is easier to
rely on the ClassWizard for this purpose. To create a dialog class corresponding to the
dialog shown in Figure 8.2, use the right mouse button anywhere in the dialog editor
window to bring up a popup menu; from this popup menu, select the ClassWizard
command.

The ClassWizard, after detecting that it has been invoked for a newly constructed
resource, presents the Adding a Class dialog that is shown in Figure 8.3. Select the
Create a new class radio button and click OK.

h# DLG.ic - IDD_DIALOG [Dialog)

MFC ClassWizard Ei

Message Maps] Member Vaisbles | OLE Automation | OLE Events | Classinfo |

joLG 5 |coLcview -
GADIg DL GY e Fgmatmioin Sl 0 LT
Object 1D Adding a Class

COLGYigw IDD_DIALOG is a new resource. Since itis a

lg—ﬁ ol dialog resource you probahly warnt to create 3 Lo EdtCode |

ey class for it You can alsa import a class from
:E EOIT. EB?V disk ox select an exising class. _J':“"“'
D EDIT_PASTE _ tep |
ID EDIT_UNDO o ey e
resle a new

Member functions; "l; """"""" 5

——————— (" |mport an existing class.

¥ OnBegnPmrd i

W OrDraw 7 Select an existing class

¥ OnEndPrirtine J

¥ OnPrepaePnnting

W PreCreate's/indow =
Desciption:

Project Clacs pame: _J Add Class.. = |

ok | cConcel | Hep

Figure 8.3: The adding a class dialog

At this time, the ClassWizard displays the Create New Class dialog. Here, you can
enter the dialog’s name and set other options, such as the filename, the resource
identifier, or OLE automation settings. You can also add this class to the Component
Gallery for later reuse in other applications.

Zero to Mastery Microsoft Visual in C++

o DLG.re - IDD_DIALOG [Dialog)

MEC ClassWizard [, FRRTArSEERA

Message Maps] | Mame: |CMyDisiod L |

Eroject Baseclss |CDislog | Add Class.._~ |
DLG

GADIGADLGiewh, G | File

Dbiect ID=: MyDialog cpp Change... 0 rien |
COLGView

ID_APP ABOUT | [Resouces EdtCode |
IE-?E'}E,}:%LY Dialog ID: |IoD_DisLoG =l

ID_EDIT_CUT

ID_EDIT_FASTE

ID_EDIT_UNDO S T

Member funchions: &+ None

¥ OrBegrPrnting | © &utomation

Y OrDraw £ Nireeteetie By hipe |G I.'*'_I': My DIALDG

¥ OrEndFrirting

V¥ OnPreparePnrtit

¥ FreCreate'w/indc Lompanent Galey

™ Add to Component Galery

Croate | Cancel | Hep | hes Help

Dezcriplion:

Figure 8.4: The create new class dialog

Add a suitable name for the new class, for example, CMyDialog. It may also be a
good idea to uncheck the Add to Component Gallery check box; after all, it is not
necessary to clutter the component gallery with code that is used for demonstration
purposes only.

Should you change the filenames that the ClassWizard suggests for your new class’s
header and implementation files? Should you use a separate header and implementation
file for every new dialog you create? This is an interesting question. At the surface,
the answer would appear to be a yes; then again, even the AppWizard itself violates
this “rule” when it places both the declaration and implementation of your application’s
about dialog into the application object’s implementation file. Thus, I believe that in
the end, it is best left to the judgment of the programmer. I often grouped dialog
classes together if they were small, simple, and related. Leaving them in separate files
tended to clutter the application workspace. However, this is less of a concern with
Visual C++ where you no longer have to use File View to access your source code;
also, using separate files makes it easier to use the Component Gallery.

Dialogs and Property Sheets 175

For now, leave the filenames at the ClassWizard-generated defaults: MyDialog.h and
MyDialog.cpp. Clicking on the Create button actually creates the new class and leaves
the ClassWizard main dialog open.

The next step is to add a member variable that corresponds to the edit field in the
dialog template.

8.1.3 Adding Member Variables

To add a new member variable, select the Member Variables tab in ClassWizard
(Figure 8.5).

MFC ClazsWizard E3

MesssgeMaps MemberVarisbles | OLE Automation | OLE Events | Classinfo |

Project: Class name: Add Class.. = I
OLG - ChduDigho b

I . : J] - _} Add Yariable..
G:ADig\MyDialog b, G:ADig\MyDislog.cpp

Contral 1D Typs Member Delate ' ariable

1D EDIT
IDCANCE
1DDK

Description; CSkring vath length walidation

M aximum Characters:

L - 1 prlate et |
el |

[ok | coel | Heb |

Figure 8.5. Member variables in ClassWizard.

The member variable for the IDC_EDIT control can be added by double-clicking this
identifier in the Control IDs column. This invokes yet another dialog, shown in Figure
8.6. Type in the new variable’s name (m_sEdit) and click on the OK button. Once the
member variable has been added, you can dismiss the ClassWizard altogether by
clicking on the OK button in the ClassWizard dialog.

Zero to Mastery Microsoft Visual in C++

[b= DLG.1c - IDD_DIALDG [Dialog)

MFC ClassWizard | X]

Message Maps Member Vasisbles | OLE Automation | OLE Events | ClassInfo |

oot i |
IDLE

Member vanable name: Add Vanishle .
G:ADIg\MyDislog h, G Ima sEdiﬂ'.rarna n 0k I Add Varishle. I
Coritrol |Dis: = el I Delete anable
Category:

U Gl Ete i

IDCAMCEL 3 elp _
IDDE, |Vahie H 2 T

"..r‘au'd:hgq:x T

| CSting =l

Description:
Description: CStm CSting with length validation
Magimum Characters:

[ok] cancel | He

Figure 8.6: The add member variable dialog
If you still have the dialog template resource open for editing, dismiss that window as
well. In a moment, we’ll begin creating the code that will invoke our new dialog.
Before we do that, however, take a look at the code that the ClassWizard has generated
for us so far.

8.1.4 Class Wizard Results

The declaration of CMyDialog (in MyDialog.h) is shown in Listing shown below.
Part of the class declaration is the declaration of IDD, which identifies the dialog
template. The class declaration also contains the member variable m_sEdit, which we
created through ClassWizard.

Listing 8.1 CMyDialog Class Declaration

class CMyDialog : public CDialog
{

// Construction
public:

Dialogs and Property Sheets 177

CMyDialog(CWnd* pParent = NULL); // standard constructor
// Dialog Data
II{{AFX_DATA(CMyDialog)
enum { IDD = IDD_DIALOG };
CString m_sEdit;
/IYYAFX_DATA
/I Overrides
/1 ClassWizard generated virtual function overrides
{{AFX_VIRTUAL(CMyDialog)
protected:
virtual void DoDataExchange(CDataExchange* pDX);
/1}}AFX_VIRTUAL
// Implementation
protected:
/! Generated message map functions
I{{AFX_MSG(CMyDialog)
/I NOTE: the ClassWizard will add member functions here
/1Y YAFX_MSG
DECLARE_MESSAGE_MAP()
)
Declarations for the constructor function and an override for the DoDataExchange
member function are also provided here.

These two functions are defined in MyDialog.cpp (Listing 8.2). Notice that the
ClassWizard inserted code into both of them; the member variable m_sEdit is initialized
in the constructor and also referred to in DoDataExchange.

Listing 8.2 CMyDialog Member Functions
CMyDialog::CMyDialog(CWnd* pParent /*=NULL*/)
: CDialog(CMyDialog::IDD, pParent)

//{{ AFX_DATA_INIT(CMyDialog)
m_sEdit = _T(*”);
//}}AFX_DATA_INIT

}
void CMyDialog::DoDataExchange(CDataExchange* pDX)

ﬁ Zero to Mastery Microsoft Visual in C++

{
CDialog::DoDataExchange(pDX);
I{{AFX_DATA_MAP(CMyDialog)
DDX_Text(pDX, IDC_EDIT, m_sEdit);
/1Y YAFX_DATA_MAP
}
BEGIN_MESSAGE_MAP(CMyDialog, CDialog)
IH{{AFX_MSG_MAP(CMyDialog)
// NOTE: the ClassWizard will add message map macros here
/1Y YAFX_MSG_MAP
END_MESSAGE_MAP()

DoDataExchange is the function that facilitates data exchange between member
variables and dialog controls. It is invoked both when the dialog is constructed and
when it is dismissed. The macros inserted by ClassWizard (such as the DDX_Text
macro) facilitate data exchange in both directions; the direction is determined by the
m_bSaveAndValidate member of the CDataExchange object, pointed to by the pDX
parameter. We revisit this function and the various data exchange helper macros shortly.

8.1.5 Invoking the Dialog

Construction of our dialog object is now complete. How are we going to invoke this
dialog from our DLG application?

First, we must make a “design decision,” if it can be dignified with that phrase: The
new dialog will be invoked when the user selects a new menu item, Dialog, from the
View menu.

This menu item must first be added to the application’s menu using the resource
editor (see Figure 8.7).

4 DLG_1c - IDR_MAINFRAME [Menu)

Figure 8.7: Adding the view dialog menu item

Dialogs and Property Sheets 179

To add code that handles the new menu item, invoke the ClassWizard, and add a
command handler function for ID_VIEW_DIALOG to the CMainFrame class. (Why
CMainFrame? Displaying this dialog has nothing to do with a specific document or
any of its views, so CMainFrame appears to be the most logical choice.) This is
accomplished most easily by right-clicking on the new Dialog menu item to invoke
the ClassWizard, selecting ClassWizard’s Message tab, selecting the
ID_VIEW_DIALOG identifier, and using the Add Function button.

The implementation of CMainFrame::OnViewDialog is shown in Listing 8.3. After
constructing the dialog object, we assign an initial value to the member variable
m_sEdit. Next, we invoke the dialog via the DoModal function. After the dialog is
dismissed by the user, we examine the new value of m_sEdit by simply displaying it
in a message box.

Listing 8.3 The CMainFrame::OnViewDialog Member Function.
void CMainFrame::OnViewDialog()

{
// TODO: Add your command handler code here

CMyDialog myDialog;
myDialog.m_sEdit = “Default string”;
myDialog.DoModal();
MessageBox(myDialog.m_sEdit);

}

Note that in order to be able to declare an object of type CMyDialog in
CMainFrame::OnViewDialog, it is necessary to include the MyDialog.h header file in
MainFrm.cpp.

That’s it. The application is ready to be recompiled and run.

8.1.6 Modeless Dialogs

Invoking a dialog through the DoModal member function invokes the dialog as a
modal dialog. However, sometimes applications require the use of modeless dialogs.
The steps of creating and displaying a modeless dialog are different from the steps
taken for modal dialogs.

To convert our dialog in DLG to a modeless dialog, we must first modify the dialog’s
constructor function. In the constructor, we must make a call to the Create member
function in order to construct the dialog box object. We must also call a different
version of the base class constructor, as shown in Listing 8.4.

Zero to Mastery Microsoft Visual in C++

Listing 8.4 Modeless Version of CMyDialog::CMyDialog
CMyDialog::CMyDialog(CWnd* pParent /*=NULL*/)
: CDialog()

Create(CMyDialog::IDD, pParent);
I{{AFX_DATA_INIT(CMyDialog)
m_sEdit = _T(*“”);
/1Y YAFX_DATA_INIT

}

Invocation of the dialog from CMainFrame::OnViewDialog is also different. Instead
of calling the dialog’s DoModal member function, we just construct the dialog object;
the call to Create within the constructor takes care of the rest.

Note that we can no longer construct the dialog box on the stack. Because a modeless
dialog box is long lived and continues to exist even after CMainFrame::OnViewDialog
returns, we have to allocate the CDialog object differently. This new version of
CMainFrame::OnViewDialog is shown in Listing 8.5 (MainFrm.cpp).

Listing 8.5 Constructing a modeless dialog in CMainFrame::OnViewDialog

void CMainFrame::OnViewDialog()

{
// TODO: Add your command handler code here
CMyDialog *pMyDialog;
pMyDialog = new CMyDialog;
pMyDialog->m_sEdit = “Default string”;
pMyDialog->UpdateData(FALSE);
pMyDialog->ShowWindow(SW_SHOW);

}

Why was it necessary to call UpdateData in this function? Because we set the value of
m_sEdit after the dialog box object has been constructed and initial Dialog Data
Exchange took place. By calling UpdateData, we ensure that the controls in the dialog
box object are updated to reflect the settings in the member variables of the CDialog
object. This is yet another example that should remind us that the C++ object and the
Windows object are two different entities.

We must also call the ShowWindow member function to make the new dialog visible.
Alternatively, we could have created the dialog box template resource with the
WS_VISIBLE style.

Dialogs and Property Sheets m,

How long will this dialog exist? As long as the user does not dismiss it by clicking on
the OK or Cancel button. At that time, the default implementations of CDialog::OnOK
and CDialog::OnCancel hide the dialog box but do not destroy it. Obviously, we must
override these functions to properly destroy the dialog. In both of these functions, a
call must be made to the DestroyWindow member function.

We must also override the dialog’s OnOK function to ensure that we process whatever
the user entered in the dialog. We can no longer rely on the function calling DoModal
for this purpose, for the simple reason that DoModal is never called.

Calling the DestroyWindow member function from OnOK and OnCancel ensures that
the Windows dialog box object is destroyed; but how will the C++ object be destroyed?
The answer to that question is yet another override. You must override the PostNcDestroy
member function and delete the CDialog-derived object from within it.

To override the default implementations of OnOK, OnCancel, and PostNCDestroy,
you must first add these functions to the CMyDialog class through ClassWizard. Perhaps
the simplest way to do this is to open the implementation file, MyDialog.cpp, and use
the WizardBar to add the functions.

Implementations of CMyDialog::OnOK, CMyDialog::OnCancel, and
CMyDialog::PostNcDestroy are shown in Listing 8.6 (MyDialog.cpp).

Listing 8.6 Member functions in the modeless version of CMyDialog
void CMyDialog::OnCancel()
{
/I TODO: Add extra cleanup here
CDialog::OnCancel();
DestroyWindow();
1
void CMyDialog::OnOK()
{
// TODO: Add extra validation here
MessageBox(m_sEdit);
CDialog::OnOK();
DestroyWindow();
1
void CMyDialog::PostNcDestroy()
{
// TODO: Add your specialized code here and/or call the base class
CDialog::PostNcDestroy();

ﬁ Zero to Mastery Microsoft Visual in C++

delete this;
}

If your modeless dialog must notify the frame, document, or view, it can do so by
calling a member function. The dialog class can have a member variable that stores a
pointer to the frame, document, or view object from within which the dialog has been
created. Other mechanisms for communication between the modeless dialog and other
parts of your application are also conceivable; for example, the dialog may post a
message to the application.

8.2 MORE ON DIALOG DATA EXCHANGE

In the preceding example, we have used Dialog Data Exchange to map the contents of
an edit control to the contents of a CString member variable in the dialog class. The
Dialog Data Exchange mechanism offers many other capabilities for mapping simple
variables or control objects to controls in a dialog box.

Note: Although Dialog Data Exchange and Dialog Data Validation are described in the context
of dialog boxes, they are not limited in use to dialog boxes only. The member functions discussed,
such as DoDataExchange and UpdateData, are actually member functions of CWnd, not CDialog.
Dialog Data Exchange is also used outside the context of a dialog box; CFormView and classes
derived from it are one example.

8.2.1 Dialog Data Exchange

Dialog Data Exchange takes place in the dialog class’s DoDataExchange member
function. In this function, calls are made for all member variables that are mapped to
controls. The calls that are made are to a family of MFC functions with names that
begin with DDX_. These functions are responsible for performing the actual data
exchange.

For example, to perform data exchange between an edit control and a member variable
of type CString, the following call is made:

DDX_Text(pDX, IDC_EDIT, m_sEdit);

8.2.2 Dialog Data Validation

In addition to the simple exchange of data between member variables and dialog
controls, MFC also offers a data validation mechanism. Data validation is accomplished
through calls to functions with names that begin with DDV _. These functions perform
the necessary validation and if a validation error is encountered, display a standard
error message box and raise an exception of type CUserException. They also call the
Fail member function of the CDataExchange object that is passed to DoDataExchange;
this object, in turn, sets the focus to the offending control.

Dialogs and Property Sheets

/A

An example for a data validation function is DDV_MaxChars, which is used to validate
the length of a string typed into an edit control. To validate that a string in an edit
control is no longer than 100 characters, you would make the following call:

DDV_MaxChars(pDX, m_sEdit, 100);

Data validation calls for a given control must immediately follow the data exchange
function call for the same control.

8.2.3 Using Simple Types

Dialog Data Exchange with simple types is supported for edit controls, scrollbars,

check boxes, radio buttons, list boxes, and combo boxes.

Table 8.1 summarizes the various types supported by Dialog Data Exchange for edit

controls.

Table 8.1. Dialog Data Exchange and validation for edit controls.

Control Data Type DDX function DDV function
edit control BYTE DDX_Text DDV_MinMaxByte
edit control short DDX_Text DDV_MinMaxInt
edit control int DDX_Text DDV_MinMaxInt
edit control UINT DDX_Text DDV_MinMaxUnsigned
edit control long DDX_Text DDV_MinMaxLong
edit control DWORD DDX_Text DDV_MinMaxDWord
edit control float DDX_Text DDV_MinMaxFloat
edit control double DDX_Text DDV_MinMaxDouble
edit control CString DDX_Text DDV_MaxChars
edit control COleDateTime DDX_Text
edit control COleCurrency DDX_Text
check box BOOL DDX_Check
radio button int DDX_Radio
list box int DDX_ILBIndex
list box CString DDX_LBString
list box Cstring DDX_LBStringExact
combo box int DDX_CBIndex
combo box CString DDX_CBString DDV_MaxChars
combo box Cstring DDX_CBStringExact
scrollbar int DDX_Scroll

Zero to Mastery Microsoft Visual in C++

The MFC Library provides additional versions of the DDX functions to facilitate data
exchange between a dialog box and records in a database. These functions have names
that begin with DDX_Field; for example, the database variant of DDX_Text would
be named DDX_FieldText.

8.2.4 Using Control Data Types

In addition to assigning a member variable to a control representing the control’s
value, it is also possible to assign member variables that represent the control object
itselfl. For example, it is possible to assign a variable of type CEdit to an edit control.

The Dialog Data Exchange mechanism uses the DDX_Control function to exchange
data between a dialog control and a CWnd-derived control object.

A control object can be used concurrently with a member variable representing the
control’s value. For example, it is possible to assign both a CString object representing
the control’s value and a CEdit object representing the control itself to an edit control
in a dialog.

Why would you use a control object? Through such an object, you can implement
much greater control over the appearance and behavior of dialog controls. For example,
as control objects are CWnd-derived, your application can use CWnd member functions
to change the control’s size and position. Through the control object, it is also possible
to send messages to the control.

In the case of many control types (including the new common controls) you must use
a control object for Dialog Data Exchange. The use of a simple data type is meaningless
and not supported.

8.2.5 Implementing Custom Data Types

Versatile as the Dialog Data Exchange mechanism is, it would not be sufficient in
many situations were it not for the capability to extend it for custom data types.
Fortunately, the ClassWizard offers the capability to handle custom DDX and DDV
routines.

The steps required to implement custom DDX/DDV support are time consuming and
may only be beneficial for data types that you frequently reuse. That said, it is possible
to add custom DDX/DDV support to a specific project, or to all projects, by modifying
either your project’s CLW file, or the ddx.clw file in your msdev\bin subdirectory.

8.3 DIALOGS AND MESSAGE HANDLING

CDialog-derived objects are, as you might expect from CWnd-derived objects, capable
of handling messages. In fact, in all but the simplest cases, it is necessary to add
message handlers to your CDialog-derived dialog class.

Dialogs and Property Sheets m,

Message handling in a dialog is no different from message handling in a view or
frame window. Message handler functions can be easily added to the dialog class’s
message map using ClassWizard. In the earlier examples we have already done that
when we added override versions of the OnOK and OnCancel member functions.
These member functions are handlers of WM_COMMAND messages. (The third
override function we implemented, PostNcDestroy, is not a message handler; however,
itis called from within the handler for WM_NCDESTROY messages, OnNcDestroy.)

The most frequently used message handlers in a dialog class correspond to messages
sent to the dialog window by one of its controls. These include BN_CLICKED messages
sent by a button; the variety of CBN_ messages sent by a combo box; EN_ messages
sent by an edit control; and so on. Another set of message that dialog classes often
handle consists of WM_DRAWITEM and WM_MEASUREITEM for owner-draw
controls.

Owner-draw controls bring up an interesting issue. Should you handle such a situation
from within your dialog class, or should you assign an object of a class derived from
a control class to the control and handle it there? For example, if you have an owner-
draw button, you have the choice of adding a handler for WM_DRAWITEM messages
to your dialog class, or deriving a class from CButton and overriding its Drawltem
member function.

8.4 PROPERTY SHEETS

Property sheets are several overlapping dialogs in one. The user selects one of the
dialogs, or property pages, by clicking on the corresponding tab in a tab control.

MEC supports property sheets through two classes: CPropertySheet and CPropertyPage.
CPropertySheet corresponds to the property sheet; CPropertyPage-derived classes
correspond to the individual property pages within the property sheet.

Page 1 | Page 2]

Waluel: ﬁ

0K I Cancel

Figure 8.8: A sample property sheet

Zero to Mastery Microsoft Visual in C++

Using a property sheet requires several steps. First, the property pages must be
constructed; next, the property sheet must be created.

The following simple example reviews this process. A new application, PRP, is used
to display a property sheet, as shown in Figure 8.8. Like our earlier application,
DLG, PRP is also a standard SDI application created by AppWizard.

8.4.1 Constructing Property Pages

Constructing a property page is very similar to constructing dialogs. The first step is
to construct the dialog template resource for every property page that you wish to add
to the property sheet.

There are a few special considerations when constructing a dialog template resource
for a property page object:
1. The dialog’s caption should be set to the text that you wish to see appear in the
tab corresponding to the dialog.
The dialog’s style should be set to child.
The dialog’s border style should be set to thin.
The Titlebar style should be checked.
5. The Disabled style should be checked.

Although the property pages in a property sheet will overlap, it is not necessary to
create them with the same size. The MFC Library will automatically adjust the size of
property pages to match the size of the largest property page.

Ll

In this example we construct two property pages for our application—nothing fancy,
just a simple text field in both of them. The first property page, titled “Page 1,” is
shown in Figure 8.9. To insert a blank property page template similar to the one
shown here, use the IDR_PROPPAGE_SMALL subtype of the Dialog resource type
in the Insert Resource dialog. Afterwards, you can add the controls as shown.

Figure 8.9: Constructing a property page

Dialogs and Property Sheets -

The identifier of the dialog template resource should be set to IDD_PAGET; the
identifier of the edit control should be set to IDC_EDIT1. Make sure that the dialog
template’s properties are set correctly. To set the dialog’s caption, double click on the
dialog to invoke the Dialog Properties property sheet (Figure 8.10).

Dialog Properties

4| B|| General] Styles | MoreStyles | Extended Styles |

i0: [100_PaGE 7| Caption: [Page 1
Font name: MS Sans Senil e =
Font sizec 8 I J

Fart.. HFWIU_IFW. 1['_: e I—

Figure 8.10: Property page dialog resource caption setting

To set the style, border style, and titlebar setting, select the Styles tab in the property
sheet of the dialog resource (Figure 8.11).

Dialog Properties [x|

Shyle: W T#lebar ™ Clip ziblngs
[Chid H T odenmeny T G chikien
Boeder; I~ Fimrmiee B [™ Horizontal scroll

|T|‘|i|‘| B I- e SRR |_ !aticalacmll

Figure 8.11: Property page dialog resource styles

To set the Disabled style of the dialog resource, use the More Styles tab in the dialog resource
property sheet (Figure 8.12).

Dialog Properties
43| B| Gereral | Sthes More Styles | Extended Styles |

[~ System modal ™ Set foraground I™ Conirol

™ Absolite slign ™ 30-ook ™ Centey

[[Wisible [Mo fail create [T Center mouse
v Digabled [~ Moidle message ™ Local edit

Figure 8.12: Setting the property page dialog resource to disabled

Zero to Mastery Microsoft Visual in C++

The second property page in our simple example is, for the sake of simplicity, nearly
identical to the first. In fact, you can create the dialog resource for this second property
page by simply making a copy of the first. Make sure that the identifier of the new
dialog resource is set to IDD_PAGE?2 and that the identifier of the edit control within
itis IDC_EDIT2. (It would be perfectly legal to use the same identifier for controls in
separate property pages; they act and behave like separate dialogs. Nevertheless, I
prefer to use distinct identifiers; this helps reduce the possibility for errors.)

Once both property page dialog resources have been constructed, it is time to invoke
the ClassWizard and construct classes that correspond to these property pages. To do
so, invoke the ClassWizard while the focus is on the first property page dialog resource
while it is open for editing. As with dialogs, the ClassWizard will recognize that the
dialog template has no corresponding class and offer you the opportunity to create a
new class.

In the Create New Class dialog, specify a name for the class corresponding to the
dialog template (for example, CMyPagel). More importantly, make sure that this
new class is based on CPropertyPage (and not the default CDialog). Once the correct
settings have been entered, create the class.

While in ClassWizard, you should also add a member variable that corresponds to the
edit control in the property page. Name this variable m_sEdit].

These steps should be repeated for the second property page. The class for this property
page should be named CMyPage?2, and the member variable corresponding to its edit
control should be named m_sEdit2.

Construction of our property pages is now complete. Take a brief look at the code
generated by ClassWizard. The declaration of CMyPagel is shown in Listing 8.7 (the
declaration of CMyPage? is virtually identical).

Listing 8.7 CMyPagel declaration
class CMyPagel : public CPropertyPage
{
DECLARE_DYNCREATE(CMyPagel)
/1 Construction
public:
CMyPagel();
~CMyPagel();
// Dialog Data
II{{AFX_DATA(CMyPagel)
enum { IDD = IDD_PAGE]1 };
CString m_sEdit1;

Dialogs and Property Sheets m,

/IYYAFX_DATA
/I Overrides
/l ClassWizard generate virtual function overrides
{{AFX_VIRTUAL(CMyPagel)
protected:
virtual void DoDataExchange(CDataExchange* pDX);
/1}}AFX_VIRTUAL
// Implementation
protected:
/! Generated message map functions
I{{AFX_MSG(CMyPagel)
// NOTE: the ClassWizard will add member functions here
1Y YAFX_MSG
DECLARE_MESSAGE_MAP()
3
As you can see, there is very little difference between this declaration and the
ClassWizard-generated declaration of a CDialog-derived dialog class. Most importantly,

CPropertyPage-derived classes can use Dialog Data Exchange functions just as classes
derived from CDialog.

The implementation of CMyPagel member functions (Listing 8.8) is also no different
from the implementation of similar functions in a CDialog-derived class. Perhaps the
one notable difference is that this class has been declared as dynamically creatable
with the help of the DECLARE_DYNCREATE and IMPLEMENT_DYNCREATE
macros.

Listing 8.8 CMyPagel implementation
IMPLEMENT_DYNCREATE(CMyPagel, CPropertyPage)
CMyPagel::CMyPagel() : CPropertyPage(CMyPagel::IDD)
{
II{{AFX_DATA_INIT(CMyPagel)
m_sEditl = _T(*”);
/11 }AFX_DATA_INIT

}

CMyPagel::~CMyPagel()

{

}

ﬁ Zero to Mastery Microsoft Visual in C++

void CMyPagel::DoDataExchange(CDataExchange* pDX)
{
CPropertyPage::DoDataExchange(pDX);
II{{AFX_DATA_MAP(CMyPagel)
DDX_Text(pDX, IDC_EDIT1, m_sEditl);
/1Y YAFX_DATA_MAP
}
BEGIN_MESSAGE_MAP(CMyPagel, CPropertyPage)
II{{AFX_MSG_MAP(CMyPagel)
/I NOTE: the ClassWizard will add message map macros here
/1Y YAFX_MSG_MAP
END_MESSAGE_MAP()

As its declaration, the implementation of CMyPage?2 is virtually identical to that of
CMyPagel.

8.4.2 Adding a Property Sheet Object

Now that the property pages have been constructed, the one remaining task is to create
the property sheet. Again, we need to invoke the new property sheet when the user
selects a new menu command, Property Sheet, from the application’s View menu.
Add this command to the menu using the resource editor, and invoke the ClassWizard
to add a corresponding member function, CMainFrame::OnViewPropertysheet, to the
CMainFrame class.

In this member function, we have to perform a series of tasks. First, a property sheet
object must be constructed. Next, the property pages must be added to it using the
AddPage member function; and finally, the property sheet must be invoked using the
DoModal member function.

Listing 8.9 contains the implementation of CMainFrame::OnViewPropertysheet that
performs all these tasks.

Listing 8.9 The CMainFrame::OnViewPropertysheet function

void CMainFrame::OnViewPropertysheet()
{
// TODO: Add your command handler code here
CPropertySheet myPropSheet;
CMyPagel myPagel;
CMyPage2 myPage?2;
myPagel.m_sEditl = “First”;

Dialogs and Property Sheets m,

myPage2.m_sEdit2 = “Second”;
myPropSheet. AddPage(&myPagel);
myPropSheet.AddPage(&myPage?2);
myPropSheet.DoModal();

}

Do not forget to include the header files MyPage1.h and MyPage2.h in MainFrm.cpp;
otherwise, you will not be able to declare objects of type CMyPagel or CMyPage2
and the function in Listing 8.9 will not compile.

At this time, the application is ready to be compiled and run.

Although in this example we made no use of the property page member variables
after the property sheet is dismissed, we could access them simply through the property
page objects myPagel and myPage?2.

8.4.3 CPropertyPage Member Functions

Our simple example did not utilize many of the advanced capabilities of the
CPropertyPage class.

For example, in a more realistic application, you may wish to override the
CancelToClose member function whenever a change is made to a property page. This
member [unction changes the OK button to Close and disables the Cancel button in
the property sheet. This function is best used after an irreversible change has been
made in a property page.

Another frequently used property page function is the SetModified function. This
function can be used to enable the Apply Now button in the property sheet.

Other property page overridables include OnOK (called when the OK, Apply Now, or
Close button is clicked in the property sheet), OnCancel (called when the cancel
button is clicked in the property sheet), and OnApply (called when the Apply Now
button is clicked in the property sheet).

Property sheets can also be used to implement wizard-like behavior; that is, behavior
similar to the behavior of the ubiquitous wizards that can be found in many Microsoft
applications. Wizard mode can be enabled by calling the SetWizardMode member
function of the property sheet; in the property pages, override the OnWizardBack,
OnWizardNext, and OnWizardFinish member functions.

8.4.4 Modeless Property Sheets

Using the DoModal member function of a property sheet implies modal behavior. As
is the case with dialogs, it is also possible to implement a modeless property sheet.

To accomplish this, it is first of all necessary to derive our own property sheet class.
This is important because at the very least, we must override its PostNcDestroy member

ﬁ Zero to Mastery Microsoft Visual in C++

function to ensure that objects of this class are destroyed when the modeless property

sheet is dismissed.

The new property sheet class can be created using ClassWizard. Create a new class
derived from CPropertySheet, and name it CMySheet. While in ClassWizard, add the

PostNcDestroy member function.

The declaration of CMySheet (in the file MySheet.h), as generated by ClassWizard, is

shown in Listing 8.10.

Listing 8.10 CMySheet declaration

class CMySheet : public CPropertySheet
{
DECLARE_DYNAMIC(CMySheet)
/I Construction
public:
CMySheet(UINT nIDCaption, CWnd* pParentWnd = NULL,
UINT iSelectPage = 0);
CMySheet(LPCTSTR pszCaption, CWnd* pParentWnd = NULL,
UINT iSelectPage = 0);
/I Attributes
public:
/1 Operations
public:
/I Overrides
/1 ClassWizard generated virtual function overrides
/I{{AFX_VIRTUAL(CMySheet)
protected:
virtual void PostNcDestroy();
/1}}AFX_VIRTUAL
// Implementation
public:
virtual ~CMySheet();
/! Generated message map functions
protected:
{{AFX_MSG(CMySheet)
/I NOTE - the ClassWizard will add and remove member

Dialogs and Property Sheets m,

/I functions here.

/1Y YAFX_MSG

DECLARE_MESSAGE_MAP()
)
In the implementation file, MySheet.cpp, it is necessary to modify the PostNcDestroy
member function to destroy not only the property sheet object, but also any property
pages associated with it. The implementation of this function, together with other,
ClassWizard-supplied member function implementations for the CMySheet class, is
shown in Listing 8.11.

Listing 8.11 CMySheet declaration
o,
// CMySheet
IMPLEMENT_DYNAMIC(CMySheet, CPropertySheet)
CMySheet::CMySheet(UINT nIDCaption, CWnd* pParentWnd,
UINT iSelectPage)
:CPropertySheet(nIDCaption, pParentWnd, iSelectPage)

{

}
CMySheet::CMySheet(LPCTSTR pszCaption, CWnd* pParentWnd,

UINT iSelectPage)
:CPropertySheet(pszCaption, pParentWnd, iSelectPage)
{
}
CMySheet::~CMySheet()
{

}
BEGIN_MESSAGE_MAP(CMySheet, CPropertySheet)

H{{AFX_MSG_MAP(CMySheet)
/I NOTE - the ClassWizard will add and remove mapping macros here.
/1Y YAFX_MSG_MAP
END_MESSAGE_MAP()
T T
// CMySheet message handlers
void CMySheet::PostNcDestroy()

{

ﬁ Zero to Mastery Microsoft Visual in C++

/I TODO: Add your specialized code here and/or call the base class
CPropertySheet::PostNcDestroy();
for (int i = 0; i < GetPageCount(); i++)
delete GetPage(i);
delete this;

}

A modeless property sheet does not have OK, Cancel, and Apply Now buttons by
default. If any buttons are required, these must be added by hand. We are not going to
worry about these now; the modeless property sheet can still be dismissed by closing
it through its control menu.

How is the modeless property sheet invoked? Obviously, we have to modify the
OnViewPropertysheet member function in our CMainFrame class, as using DoModal
is no longer appropriate. Nor is it appropriate to create the property sheet or any of its
property pages on the stack, as we do not want them destroyed when the
OnViewPropertysheet function returns. The new OnViewPropertysheet function is
shown in Listing 8.12.

Listing 8.12 Invoking a modeless property sheet

void CMainFrame::OnViewPropertysheet()

{
/I TODO: Add your command handler code here
CMySheet *pMyPropSheet;
CMyPagel *pMyPagel;
CMyPage2 *pMyPage?2;
pMyPropSheet = new CMySheet(*”);
pMyPagel = new CMyPagel;
pMyPage2 = new CMyPage?2;
pMyPagel->m_sEditl = “First”;
pMyPage2->m_sEdit2 = “Second”;
pMyPropSheet->AddPage(pMyPagel);
pMyPropSheet->AddPage(pMyPage2);
pMyPropSheet->Create();

}

In order for CMainFrame::OnViewPropertysheet to compile in its new form, it is
necessary to add the include file MySheet.h to MainFrm.cpp; otherwise, the attempt
to declare an object of type CMySheet will fail.

The application is now ready to be recompiled and run.

Dialogs and Property Sheets m,

Summary

In MFC, dialogs are represented by classes derived from CDialog.

The steps of constructing a dialog that is part of an MFC application are as follows:
Create the dialog template resource.
Invoke ClassWizard and create the dialog class corresponding to the resource.

Through ClassWizard, add member variables corresponding to controls.

Still using ClassWizard, add message handlers if necessary.

[I SO N S R

Add code to your application that constructs a dialog object, invokes it (through
the DoModal member function), and retrieves results.

MEFC applications can also have modeless dialogs. These dialogs are constructed
differently. The constructor function in your dialog class should call the Create member
function; it should also call the modeless version of the constructor of the CDialog
base class. The modeless dialog must also explicitly be made visible by calling the
ShowWindow member function.

Classes that correspond to modeless dialogs should override the OnOK and OnCancel
member functions and call the DestroyWindow member function from within them.
They should also override PostNcDestroy and destroy the C++ object (using delete
this, for example).

Controls in a dialog are often represented by member variables in the corresponding
dialog class. To facilitate the exchange of data between controls in the dialog box
object and member variables in the dialog class, the Dialog Data Exchange mechanism
can be used. This mechanism provides a simple method for matching member variables
to controls. Member variables can be of simple value types or can represent control
objects. It is possible to simultaneously use a member variable of a simple type to
obtain the value of a control while using a control object to manage other aspects of
the control. The Dialog Data Exchange mechanism also offers data validation
capabilities.

For frequently used nonstandard types, it is possible to extend the ClassWizard’s
ability to handle Dialog Data Exchange. New data exchange and validation routines
can be added either on a per project basis or to your overall Visual C++ configuration.

Property sheets represent several overlapping dialogs, or property pages, which the
user can choose by clicking on corresponding tabs in a tab control.

Creating a property sheet is a two-phase process. First, property pages must be created;
second, a property sheet object must be constructed, the property pages must be added
to it, and the property sheet must be displayed.

ﬁ Zero to Mastery Microsoft Visual in C++

Construction of property pages involves the same steps as construction of a dialog:

A

1.

4.

Create the dialog template resource for every property page; ensure that the
resources have the Child style, Thin border style, Titlebar style, Disabled style,
and that their caption is set to the text that is desired in the corresponding tab.

. Invoke ClassWizard and create a class derived from CPropertyPage corresponding

to every dialog template resource.

. Through ClassWizard, add member variables corresponding to controls in each

property page.
Still using ClassWizard, add message handlers if necessary.

Once the property pages have been constructed, you can proceed with the second
phase:

1.

3.
4.

Construct a CPropertySheet object or an object of a class derived from
CPropertySheet.

Construct a property page object for every property page you wish to add to the
property sheet.

Add the property pages to the property sheet by calling AddPage.
Invoke the property sheet by calling DoModal.

Itis also possible to create modeless property sheets. To implement modeless property
sheets, it is necessary to derive a class from CPropertySheet and override its
PostNcDestroy member function to delete not only the property sheet object, but also
all of its property pages. The modeless property sheet should be invoked via the
Create member function instead of DoModal.

REVIEW EXERCISE

Explain the CDialog Class in details.

What are the basic steps in constructing a dialog in VC++?
What are Modeless Dialogs?

Explain the Dialog Data Exchange mechanism.

What are Custom Data Types in VC++?

What are Property sheets in VC++? How they are constructed?

How to create modeless property sheets?

Introduction to VC++ 197

MULTIPLE CHOICE QUESTIONS C++

1. What is a Constructor?

(@) A function called when an instance of a class is initialized.
(b) A function that is called when an instance of a class is deleted.
(¢) A special function to change the value of dynamically allocated memory.

(d) A function that is called in order to change the value of a variable.

2. Aclassis__
(a) Data Type. (b) Abstract Type.
(c) User Defined Type. (d) All of these options.

3. Can two classes contain member functions with the same name?
(a) No.
(b) Yes, but only if the two classes have the same name.
(¢) Yes, but only if the main program does not declare both kinds.

(d) Yes, this is always allowed.

4. In object orientated programming a class of objects can ___ properties from another
class of objects
(@) Utilize. (b) Borrow.

(¢) Inherit. (d) Adapt.

5. Object Oriented Technology’s use of ____ facilitates the reuse of the code and architecture
and its feature provides systems with stability, as a small change in requirements does
not require massive changes in the system:

(a) Encapsulation; inheritance (b) Inheritance; polymorphism
(¢) Inheritance; encapsulation (d) Polymorphism; abstraction

6. Which of the following are class relationships?
(a) Is-a relationship. (b) Part-of relationship.
(¢) Use-a relationship. (d) All of these options.

7. Which of the following is true?
(a) Class is an object of an object. (b) Class is meta class.

(¢) Class cannot have zero instances. (d) None of these options.

8. The design of classes in a way that hides the details of implementation from the user is known as:
(@) Encapsulation. (b) Information hiding.
(c¢) Data abstraction. (d) All of these options.

9.

10.

11.

12.

13.

14.

15.

16.

Zero to Mastery Microsoft Visual in C++

Which are the main three features of OOP language?

(a) Data Encapsulation, Inheritance and Exception handling.
(b) Inheritance, Polymorphism and Exception handling.

(¢) Data Encapsulation, Inheritance and Polymorphism.

(d) Overloading, Inheritance and Polymorphism.

Can two classes contain member functions with the same name?
(a) No.

(b) Yes, but only if the two classes have the same name.

(¢) Yes, but only if the main program does not declare both kinds.
(d) Yes, this is always allowed.

Suppose that the Test class does not have an overloaded assignment operator. What happens when
an assignment a=b; is given for two Test objects a and b?
(a) The automatic assignment operator is used. (b) The copy constructor is used.

(¢) Compiler error. (d) Run-time error.

Which of the operators cannot be overloaded?

(a) ‘+° operator. (b) ‘<<’ operator.
(¢) ‘“++ operator. (d) ‘. operator.
(e) “::” operator.

Operator overloading
(a) Improves the visibility and adds simplicity. (b) Helps in encapsulation.

(¢) Helps in Polymorphism. (d) Helps in inheritance.

In function overloading, functions having the same name must differ in
(@) Return type. (b) Number of arguments.
(c) Type of arguments. (d) Any of ab,c are possible.

Which of the following can be overloaded?
(@) Functions. (b) Operators.
(¢) Constructors. (d) All of the above.

Using inheritance, which of the following is not allowed

(a) Changing implementation of operation in parent by the subclass.
(b) Using implementation of operation in parent class by the subclass.
(¢) Using attributes in parent class by the subclass.

(d) Having operations is subclass which do not exist in parent class.
(e¢) None.

Introduction to VC++ M’

17.

18.

19.

20.

21.

22.

23.

24.

Inheritance is the mechanism of class by which we can inherit properties of base class to derived
class. The different forms of inheritance are as follows:

(a) Single. (b) Multiple.
(¢) Multilevel. (d) Multipath.
(e) Hybrid. (f) Hierachica 1.
(g) All

Which of the following are class relationships?
(a) is-a relationship. (b) Part-of relationship.
(c) Use-a relationship. (d) All of these options.

What is inheritance?

(a) It is same as encapsulation. (b) Aggregation of information.
(¢) Generalization and specialization. (d) All of these options.

Object orientated programming allows for extension of an object function or of class function. This
ability within OOP is called

(a) extendibility. (b) expansion capacity.

(c¢) virtual extension. (d) scalability.

The ability to reuse objects already defined, perhaps for a different purpose, with modification
appropriate to the new purpose, is referred to as

(a) Information hiding. (b) Inheritance.
(¢) Redefinition. (d) Overloading

What is a base class?

(a) An abstract class that is at the top of the inheritance hierarchy.

(b) A class with a pure virtual function in it.

(c) A class that inherits from another class

(d) A class that is inherited by another class, and thus is included in that class.

Statement I: All the non-private members of the base class can be accessed from the derived class
as if they were members of the derived class.

Statement II: The protected data members can be accessed in the same class or in its derived class
(a) Both are true. (b) Both are false.
(c) Statement I is true, statement II is false. (d) Statement I is false, statement II is true.

A derived class

(@) Inherits data members and member functions from base class.
(b) Inherits constructors and destructor.

(¢) Object can access protected members with the dot operator.

(d) Inherits data members and member functions from base class as well as inherits constructors
and destructor.

ﬁ Zero to Mastery Microsoft Visual in C++

25. How do you define an abstract class? In other words, what makes a class abstract?

(@) The class must not have method definitions.

(b) The class must have a constructor that takes no arguments.
(¢) The class must have a function definition equal to zero.
(d) The class may only exist during the planning phase.

(e) all.

26. Interface is also known as _

(@) Virtual class. (b) Dependent class.
(¢) Pure abstract class. (d) None of these options.
1. (a) 2. (o) 3. (¢) 4. (c) 5. (¢) 6. (a) 7. (), () 8.
9. (¢) 10. (¢) 11. (b) 12. (d), (e) 13.(a),(¢) 14.(d) 15. (d) 16. (¢)
17. (g) 18. (d) 19. (¢) 20. (a) 21. (b) 22. (d) 23. (¢) 24. (d)

25. (e) 26. (¢).

MULTIPLE CHOICE QUESTIONS ON MFC

1. CFile directly supports the following type of input/output
(@) Buffered (b) Unbuffered
(¢) Both buffered and unbuffered (d) None of above

2. File input/output in text mode can be done using
(a) CFile (b) CStdioFile
(c) CMemFile (d) CArchive

3. CFile directly supports the following type of input/output
(@) Buffered (b) Unbuffered
(¢) Both buffered and unbuffered (d) None of above

4. File input/output in text mode can be done using
(a) CFile (b) CStdioFile
(c) CMemFile (d) CArchive

5. Which resource can be present only once in an MFC application
(a) Accelerator table (b) Menu
(¢) Icon (d) String table

Introduction to VC++ M’

10.

11.

12.

13.

. CRuntimeClass is a

(a) Structure (b) Union
(¢) Class (d) Macro
. An application’s EXE in debug target will be than release target
(a) Smaller (b) Bigger
(c) Same size (d) Depends upon the application

. In document/view architecture which object translates mouse and keyboard messages

(@) CWinApp (b) CFrameWnd
(¢) The class you derive from CFrameWnd (d) CView

. Which of the following class is not derived from CObject

(a) CCmdTarget (b) CRuntimeClass
(c) CWinApp (d) CView

What is the return value from AfxMessageBox when it is dismissed?
(@ 0

(b) Any negative value

(c) Any positive value

(d) Value corresponding to the ID of the button clicked by user

Arrange the following in order they are searched when a DLL is loaded memory:
(a) Process current directory
(b) Directory containing exe
(c) Windows directory
(d) Windows system directory
()C,D,A,B
(b)A,C,B,D
(¢©)B,A,C,D
(dB,A,D,C

InitInstance is a member of which class.
(@) CWinThread (b) CWinApp
(¢) CWnd (d) CObject

In an MDI application how many menu resources are there?
(a) At least One (b) At least Two
(c¢) At the most One (d) At the most Two

ﬁ Zero to Mastery Microsoft Visual in C++

14.

15.

16.

17.

18.

19.

20.

21.

Which type of dialog box overlaps all other windows, including that of other applications when
displayed?

(a) System modal (b) Modal

(¢) Modeless

You override OnlnitDialog() in your class derived from Cdialog then when should you call the
base class OnlnitDialog() inside your version?

(@) As the first statement (b) As the last statement

(¢) Anywhere (d) You don’t have to call it

A class derived directly from which of the following would not be able to receive command
messages

(a) CObject (b) CCmdTarget

(¢) CWnd (d) CDocument

For the purpose of constructing a modeless dialog box you use following constructor
(a) CDialog(LPCTSTR , CWnd* = NULL);

(b) CbDialog(UINT nIDTemplate, CWnd* pParentWnd = NULL);

(¢) CDialog();

(d) Any of the above can be used.

A modeless dialog box object should not be

(a) Created on heap (b) Created on stack

(c¢) Global (d) Static local

To replace the default message loop and provide your own customized version you override
(@) Onldle (b) PreTranslateMessage

(¢) InitInstance (d) Run

When a dll is loaded its second parameter has a value:
(a) DLL_ATTACH

(b) DLL_PROCESS_ATTACH

(¢c) DLL_ATTACH_PROCESS

(d) DLL_THREAD_ATTACH

Which of the following message will undergo command routing in document view architecture?
(@) WM_CHAR

(b)) WM_COMMAND

(¢) WM_LBUTTONDOWN

(d) WM_PAINT

Introduction to VC++ M’

22.

23.

24.

25.

26.

27.

28.

29.

30.

Worker threads are recognized by their

(a) Class (b) Function

(c) Name

Which of the following objects cannot be used for synchronization of threads across process
boundary?

(a) Semaphore (b) Mutex

(c¢) Event (d) Critical section

The third parameter that goes into CMultiDocTemplate corresponds to

(@) CMdiChildWnd (b) CMdiFrameWnd

(c) CView (d) CDocument

The first parameter that CSingleDocTemplate takes corresponds to the ID of which of the following
resources:

(@) Main menu (b) Icon

(¢) Resource string (d) All the above

Which of the following class is specially meent for text input and output?

(a) CFile (b) CMemFile

(c) CSocketFile (d) CStdioFile

Which of the following are not added to a class due to inclusion of DECLARE_ DYNCREATE
macro?

(a) CreateObject() (b) GetRuntimeClass()

(c) CRuntimeClass object (d) IsKindOf()

Which of the following is not a function of CObject class?

(@) Dump() (b) AssertValid()

(c) IsDerivedFrom() (d) CreateObject()

Which of the following classes don’t overload insertion operator?
(@) CDumpContext

(b) CArchive

(c¢) CObject

(d) CFile

To make an extension dll which macro should be used with a class.
(@) AFX_DLL_EXT (b) AFX_EXT_DLL
(¢) AFX_DLL (d) AFX_EXT

m Zero to Mastery Microsoft Visual in C++

31. Which calling convention would you used it you want to use a DLL in VB.cdecl?
(a) stdcall (b) fastcall
(¢) Any calling convention would work.

32. How many maximum rows and columns can a static splitter window contain?
(a) 3x3 b) 2x2
(c) 16 x 16 (d) There is no such limit.

33. Which class is used to have more than one view of a single document in an SDI application?
(@) CFrameWnd (b) CView
(c¢) CSplitterWnd (d) CWnd

34. Which class encapsulated individual page of a Property-Sheet?
(a) A class derived form CPropertySheet (b) A class derived form CDialog
(¢) A class derived form CWnd (d) A class derived form CPropertyPage
35. If you override OnOk () in your class derived from CDialog then when should you call the base
class OnOk() inside your version?
(@) As the first statement (b) As the last statement
(¢) Anywhere (d) You don’t have to call it

36. In an MDI application, which window owns the toolbar?
(@) CMdiFrameWnd derived window (b) CMdiChildWnd derived window
(¢) CView derived window (d) CScrollWnd derived window
37. If you want to perform certain initializations, anytime a document is created in SDI, you should put
the code for initialization in
(@) Document class constructor (b) OnOpenDocument
(¢) OnDocumentFile (d) OnNewDocument
38. On which of the following synchronization object can you call Lock() multiple times without
causing the threads to block?
(a) CEvent (b) CCriticalSection
(¢) CMutex (d) CSemaphore

39. Which of the following class does not appears in a typical dialog based application?
(a) CDialog derived (b) CFrameWnd derived
(¢) CWinApp derived (d) CDocument derived

40. A dynamic splitter window can be created using
(a) Create (b) CreateStatic
(¢) CreateDynamic (d) Any of the above

Introduction to VC++ m,

41.

42.

43.

Which class represents connection to a data source?

(a) CRecordSet (b) CDatabase

(¢) CConnection (d) CRecordView

Which of the following statement is false regarding CObject?

(@) Private constructor (b) Privately overloaded = operator
(¢) Overloaded new and delete (d) Publicly overloaded = operator
Which of the following is not a resource?

(a) Accelerator table (b) Bitmap

(c¢) Toolbar (d) File

UNSOLVED QUESTIONS

1.

The member function of a class is overriden for serialization
(@) OnSerialize() (b) OnNewDocument()
(¢) OnClose () (d) OnWrite ()

(e) None of the above.

__macro calls the function AssertValid().

(@) ASSERT_VALID () (b) TRACE2 ()
(¢) VERIFY () (d) ASSERT ()
(e) None of the above (f) aand d

. DECLARE_MESSAGE_MAP () is used in a class to

(a) Recieve and Handle messages

(b) To be able to send messages to other windows
(c) inorder for the window to be resizable

(d) None of the above

. RUNTIME_CLASS() macro is used to

(a) RTTI (b) Serialization
(c) Memory Management (d) Debug and Diagnostics
(e¢) None of the above () b and c.

. To fill the client area of the window displayed on screen on should trap the

(a) OnCreate () (b) OnCreateClient ()
(c¢) OnRun () (d) OnPaint ()

. CSingleLock utility class is used for thread synchronization

(@) For more than two threads accessing the same data

(b) For two threads accessing two sets of different data

m Zero to Mastery Microsoft Visual in C++

(¢) For multiple documents
(d) None of the above

7. DeleteContents () is a member function of
(a) CMyDocument (b) CWinThread
(¢) CDocument (d) CWinApp

8. Which function in the View is first called when the View is attached to the Document?
(a) OnUpdate () (b) UpdateAllViews ()
(¢) OnlnitialUpdate () (d) OnNewDocument ()

9. One must pass the _____ parameter to the function UpdateAllViews () in order to send
notification for all the views to be updated

(@) 1 (b) NULL
(¢) this (d) None of the above.
10. Attach () is a function which takes in a parameter
(a) Pointer to the object (b) Pointer to the Device context
(¢) Handle to a Window (d) None of the Above.

11. One should normally create an object of the CPaintDC only in

(@) OnDraw () (b) OnCreate ()
(¢) PreCreateWindow () (d) OnPaint ()
(e) None of the above.
12. The OnCreate () member function of the CFrameWnd calls function of the same class
to create the view
(a) OnCreateView () (b) OnCreateControl ()
(¢) OnCreateApplication () (d) OnCreateClient ()
(e) band c.

13. SetModified () is a member function of the class
(a) CPropertySheet (b) CDialog
(¢) CPropertyPage (d) None of the above.

14. UpdateData (TRUE) is used to transfer the values from
(a) Control to variable (b) variable to control
(¢) Variable to View (d) bandc

(e¢) None of the above

15. In order to terminate an appliction from the OnCreate () member function, one must return
(@) 0 (b) 1
(o -1 d) 2

Introduction to VC++ 207

1. (a) 2. (b) 3. (a) 4. (b) 5.(d) 6. (--) 7. (b) 8. (d)

9. (b) 10. (d) 11. (d) 12. (a) 13. (b) 14. (@) 15. (@) 16. (a)
17. (¢) 18. (b) 19. (d) 20. (b) 21. (b) 22. (b) 23. (d) 24. (a)
25. (d) 26. (d) 27. (d) 28. (¢) 29. (¢) 30. (b) 31. (b) 32. (¢)
33. (¢) 34. (d) 35. (b) 36. (a) 37. (d) 38. (d) 39. (b), (d) 40. (a)
41. (b) 42. (d) 43. (d)

FILL IN THE BLANKS

_____is the function for creating a modal dialog box on screen.

_____ function in a class derived from CDialog is modified by the class-wizard to provide
you actual data transfer functionality between any control and the corresponding member variable.

. In order to be able to receive a command message class must be derived from which

M.FE.C. given class.

__________ virtual member function in the above class do we need to override in any of its
derived classes in order to change the default command route followed in a doc-view architecture
based application.

5. function of CSplitterWnd class do we need to call in order to create a static splitter
on the mainframe window?
6. The three letters AFX in MFC means and the prefix Afx (as in AfxGetMainWnd)
to any method in MFC indicates ____ of the method.
7. To open modeless dialog window in MFC one calls ____ function.
8. ____can be used for locking on a Mutex object.
9. The pointers of the view created in a Document View Architecture are maintained by the
10. Onldle is a member function of
11. Inorder to receive any messages a class should be derived from
12. The four functionalities provided by the class CObject are , &
13. To create a modeless dialog box one should use the APL
14. Macro is used to Dump the values in the Debug pane window.
15. In order for a class to be serializable one should add in the header file of the class and
_________ in the implementation (i.e. .cpp) file.
16. should be added in the header file & ___ should be added in the .cpp i.e the
implementation file inorder to achieve Runtime Type Information.
17. m_pMainWnd originates from the ____ top most class.
18. OnUpdate() function is a member function of the class

Zero to Mastery Microsoft Visual in C++

SOLVED FILL IN THE BLANKS

19.
20.
21.
22.
23.
24.

25.
26.
27.
28.

29.
30.
31.
32.
33.
34.
35.

36.

37.

38.

39.
40.
41.
42.
43.
44.
45.
46.
47.

Afx prefixed to any method in MFC indicates global function.
For a class to receive command message it should be derived from CCmdTarget.
For a class to be support serialization it must be derived from CObject.

In Windows 32 bit O.S. every thread has a message queue.

CWinThread class in MFC represents the above O.S component.

OnCmdMsg virtual member function of CCmdTarget needs to be overridden to change the default
message route followed in doc-view architecture based application.

Run _member function of CWinThread class provides implementation of message loop.
When message queue is found empty windows call Onldle member function of CWinThread class.
CGdiObject is the base class for all the GDI objects.

RUNTIME CLASS macro can be used to get the pointer to a CRuntimeClass structure given its
class name.

Alt and F10 are the two keys that generate WM_SYSKEYUP.

DrawMenuBar function of CWnd class is used to redraw the menu bar to reflect any changes.

To open modeless dialog window in MFC on calls Create function.

The function to show modal dialog box on screen is DoModal.

CpropertySheet:: AddPage() function is used to add pages to a property sheet.

An application cannot have String table resource multiple times.

MFC uses LoadFrame function of CWnd class to load menu and other resources all in a single go
in document/view architecture.

(WM COMMAND) and (WM UI COMMAND UPDATE) macros correspond to the messages
that are subject to routing in an MFC application.

An MDI uses CMultiDocTemplate while an SDI uses CSingleDocTemplate to create a document
template.

An MDTI’s top-level window is derived from CMdiFrameWnd and its child windows are derived
from CMdiChildWnd.

A dynamic splitter window can contain a maximum of 16 rows and 16 columns.

Static splitter window is created using CreateStatic member function of CSplitterWnd class.
AfxBeginThread global function can be used for creating a thread.

CPaintDC class can be used for handling WM_PAINT message in MFC.

In a simple MFC application main thread of execution is provided by CWinApp object.

Critical Section, Event, Mutex are basically kernal objects provided by operating system.

1L.ock member function of CEvent class is called to block on an event.

Manual reset and auto reset are two types of CEvent objects.

Unlock () member function of CMutex is used to release a mutex.

Introduction to VC++ M’

48.
49.
50.
51.
52.
53.
54.

5S.
56.
57.
58.
59.

60.

61.
62.
63.
64.

65.

66.

67.

68.
69.
70.
71.

72.
73.
74.
75.

LoadAcclTable () function is used to load an accelerator table.

StretchBIt () function of CDC class can be used to increase or decrease the size of image.
DIlIMain is the entry point in the dIl.

The size of the extension dll is smaller than that of regular dll of same type.

An extension dll links statically to the code in MFC library.

CSocket class is derived from CAsyncSocket.

Accept function of CSocket is blocking in nature while that of CAsyncSocket is non-blocking in
nature.

To connect to server from a client we use Connect function of CSocket class.

To accept a connection from a client on a server we use Accept function of CSocket class.
To support serialization CFile takes the help of CArchive class.

In MFC CFile class is used to handle input/output from a file.

If the schema number of the object on the disk does not match the schema number of the class in
memory, MFC throws CArchiveException exception.

IsStoring function of CArchive class is used to determine whether the object is being stored or
retrieved.

Seek () function of CFile is used to move to a specific position within a file.
AssertValid function is available is debug mode of application development.
To have a scroll bar in the main window of your application you use CScrollView class.

When user double clicks an entry in a ListBox, (LBN DBLCLK) notification is sent to the parent
window.

The third parameter that goes into CMultiDocTemplate corresponds to the child frame of the
application.

ProcessShellCommand is used to dispatch commands specified on the command- line in the
InitInstance function.

SetModifiedFlag (TRUE) member function of CDocument is called to indicate to the view that the
document has changed.

Any time a new document is created or opened in SDI, eleteContent() function

___is called by the framework to delete previous data.
Detach() of CWnd class can be used to dissociate a menu from a CMenu object.

In a document view architecture an object of CDocument is used to store data and an object
of CView derived class is used to render the output.

Clicking a Toolbar item produces (WM COMMAND) message.
CEvent, CCriticalSection, CSemaphore and CMutex classes are all derived from CSyncObject.

Two types of CEvent objects are manual reset and auto reset.

The two functions which are used for enumerating files and folders are ::FindFirstFile and ::
FindNextFile.

ﬁ Zero to Mastery Microsoft Visual in C++
TRUE OR FALSE

All MFC classes are derived from CObject.

Toolbar is child of the view window.

An applications top level menu can be changed at runtime.

A class supporting Serialization has to use DECLARE_SERIAL and IMPLEMENT_SERIAL macros.
AfxBeginThread can create only worker threads.

OnPaint and OnDraw member functions serve the same purpose.

Runtime class information supported by CObject is same as RTTI of C++.

InitInstance is member of CWinThread class.

A A A e

DoDataExchange() of CDialog calls UpdateData() function.

-
b

To create a propertysheet on screen we need to call the CreatePropertySheet() function.

o
o

. In a document-View based SDI application which object creates the frame window object.

o)
[\

. CreateStatic is a member function of the CFrameWnd class.

-
w

. We can access the pointer of the document in the constructor of the view.

i
-

. In the view class OnDraw function is called by OnlnitialUpdate().

it
(9]

. Object of CCreateContext class is passed as parameter to PreCreateWindow.
. The VERIFY macro is available for release build of MFC.
. The CreateThread is a global function.

fk ek
[> B B

. AfxSetResourceHandle is used for message dispatching.

[
o

. MFC classes can be exported out of regular DLLs.

[
(=

. WaitForSingleObject can be used for locking on a Critical section object.

[
—

. The view is created in the OnNewDocument of Document object.

N
[}

. It’s a must to override the function Onldle.

[
w

. OnSetActive is a member function of CPropertySheet.

[\
=

. CSyncObiject is the base class for CSingleLock.

[
wn

. One can have more than one global object for the Application class in a project.

[
(=)

. The Run() function of the CWinThread class can be overriden.

[5]
3

. There can be more than one document class present in a SDI (Single Document Interface) application.

[
=]

. Is it necessary to create the view immediately after you create the static splitter window.

[3o
o

. OnDraw () is a member function also present in the CDocument class.

w
(=4

. If you want to create a set of buttons on the view, you would trap the OnCreate () function of the
class CMainFrame.

31. The code to be executed for a thread, is placed in the constructor of the class which is derived from
CWinThread.

32. afx_msgGetApp() is the API used to get a pointer to the object representing the Application.

Introduction to VC++ m’

33.

34.

3s.
36.
37.
38.
39.
40.
41.
42.
43.

44.
45.

46.
47.
48.
49.

50.
51.
52.
53.

54.
5S.

56.
57.
58.

59.
60.

If the macro DECLARE_SERIAL () is added in a class, you can also add other macros like
DECLARE_DYNAMIC () & DECLARE_DYNCREATE() in the same class.

GetDocument() is a member function, overriden in your document class which returns a pointer to
the Active Document in an SDI application.

There can be only one CWinApp object in an MFC application. [True]
Runtime class information supported by CObject is same as RTTI of C++. [False]
MEFC uses virtual functions to implement messages. [False]
All MFC classes are derived from CObject. [False]
CObject class is also available outside MFC framework. [True]
CRuntimeClass is derived from CObject. [False]
OnPaint and OnDraw functions serve the same purpose. [False]
You can’t call MessageBox() function inside InitInstance (). [True]

A window in windows application gets all the mouse messages that are generated by the user.
[False (Only command messages.)]

Drop-down menus are actually pop-up menus. [True]
If two or more items in the same menu are assigned the same shortcut key it will generate an error
when that key is pressed. [False (Focus toggles between items.)]
DoModal doesn’t returns until the dialog box is dismissed. [True]
Modeless dialog box is dismissed using EndDialog. [False (Using DestroyWindow.)]
Property sheets support DDX and DDV. [True]
In document/view architecture application object and document object can receive all types of
messages. [False (Only Command messages)]
Toolbar is a child of view window. [False. (Frame window.)]
An application top-level menu can be changed at runtime. [True]

In an MDI application we can open several different types of documents simultaneously. [True]

You can omit individual sub string in a resource document string in do document/view architecture.
[True]

In document/view architecture OnDraw has to be overridden. [True]

In an SDI for each new view, a new document object is created and attached to the view.
[False. (Views are reused.)]

A document object can process a keyboard and mouse messages. [False]
An MDI can have one or many menu resources. [False (Cannot have one menu resource)]

In an MDI application we can have different icons for mainframe window and the child form
windows. [True]

In an MDI application different child frame window can have different icons. [True]

A static splitter must have at least one sharing scroll bar. [True]

ﬁ Zero to Mastery Microsoft Visual in C++

61.

62.
63.
64.
65.
66.

67.
68.
69.
70.
71.

72.
73.

74.
75.

76.
71.

78.
79.

80.

81.
82.

83.

84.

If we have two panes in a static splitter window, housing two views of a document, then change in
the document data automatically changes the two views.
[False. (We need to do it using CDocument::UpdateAllViews)]

SDI supports only one document type. [True]
In a document/view architecture the application object is created dynamically. [True]
The drag and drop support is provide through the function RegisterShellFileTypes (). [True]
You can call AddDocTemplete multiple times in an SDI. [False]

Both Windows and MFC treat UI and worker threads differently.
[False. (Windows makes no distinction between these threads)]

Both UT and worker threads have message loops. [False. (Only UI threads)]
Two or more threads may have same thread function. [True]
A thread function is a callback function. [True]
AfxBeginThread can create only worker threads. [False]

Critical Sections can be used for synchronization within same or different process.
[False. (Only within same process.)]

Events can be used for synchronization within same or different process. [True]

When a priority is specified for a thread it is relative to all other threads in the operating system.
[False. (Only relative to the threads in the same process)]

Bitmaps can be selected in any device context. [False. (Only memory device context.)]

When a memory device context is first created its size can be anything.
[False. (Size of one monochrome pixel.)]

A file that is dynamically linked can have any extension. [True]

Global variables in a dll are same for all the processes that are linked to that dil. [False. (Private to
each process.]

DIllIMain () is called only once in the lifetime of a dll. [False. (Four times.)]

In static linking the object code of the library does not becomes part of the executable but in
dynamic linking it does. [False. (Vice-versa)]

Every dll must contain a DIIMain () provided by the user.
[False. (The framework provides a dummy DIIMain () if u don’t provide one.)]
An extension dlIl can’t be use by visual basic clients. [True]
It is necessary that a dll used by the client program must either be present in the client program’ s
directory or in the Windows’ system directory.
[False. (Can also be present in directory specified by ‘path’ environment variable or current
directory.)]
Every time you make a change to dll you have to recompile the applications using the dll.
[False. (Only if you have made changes to prototypes of exported functions.)]

CFile class directly supports both binary and text input and output.
[False. (Only binary I/O is directly supported. Its derived classes are used for text I/O.)]

Introduction to VC++ m,

8s.

86.
87.

88.

89.
90.
91.
92.

93.
94.
95.

Same CArchive object is used for both storing and loading an object during serialization throughout
the application lifetime. [False. (Each time a new object is created.)]

The CScrollView class does not support scrolling from the keyboard by default. [True]

Every MFC application that has a UI must have a class derived from CView.
[False. (Dialog based application don’t have to.)]

When loading DLL windows searches the directory defined in the path environment variable

before it searches the current directory. [False. (At the end.)]
Dialog box messages are not passed to the main window of application. [True]
A tool bar is also a window that is child of the window hosts it. [True]
The repeat count parameter for a key-up message can never be anything but one. [True]

Operating system gives higher priority to UI threads as compared to worker threads.

[False (O.S makes no distinction between UI and Worker threads. The programmer decides the
priority if required.)]

Toolbars can also contain items that do not appear in menu. [True]
Toolbars cannot have Texts. [False]

“It important to forward non-client area and system keyboard messages to base class if you process
them”. [True]

QUESTIONS

L A

SetModifiedFlag() is a member function of which class and why do we need to use it?
DeleteContents() is a member function of which class and why do we need to override it?

Which class serves as a helper class for implementing RTTI mechanism?

Write the preprocessor directive used to differentiate between the release and debug modes while
writing any M.F.C. application.

Which function can be used for getting the address of the main frame window pointer anywhere in
a M.F.C. application?

6. Write the M.F.C. given global function for creating a thread.

7. Write any two classes, which can be used for synchronizing multiple threads in M.F.C.

8. Which member function of the frame class is actually responsible for loading the resources for the

10.
11.
12.
. What does “AFX” stand for?

main frame window?

. Write the member function of the CPropertySheet class, which returns a pointer to the current

active page in it.

Which device context class can be used for handling WM_PAINT message in M.F.C?
What is the purpose of the two parameters in the BEGIN_MESSAGE_MAP (,) macro?
What does MFC do when you call the function DoModal() to open modal dialog window

ﬁ Zero to Mastery Microsoft Visual in C++

14.
15.
16.
17.
18.

19.

20.
21.

22.
23.
24.
25.
26.
27.

28.
29.
30.
31.
32.
33.
34.
3s.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.

How can we call Win32 API functions in MFC program?
In an MDI application, which window owns the toolbar?
What is the difference between “grayed” and “disabled” menu item?
Why must a serializable class have default constructor?

Write the preprocessor directive used to differentiate between debug and release modes when
writing any MFC application.

Void OnDraw (CDC *pDC) is a member of which class and on what occasions does the framework
call it?

How can we call Win32 API functions in MFC program?

Which virtual function should you override if you want to filter some messages and what is its
class?

Name the six GDI objects.

What is the purpose of ON_COMMAND_RANGE macro?

What is the purpose of resource.h file?

Why is it necessary to override OnOk and OnCancel for modeless dialog box?

How can you set the focus on a control programmatically in a dialog box?

How can on iterate through all the views associated with a document? Give the function names and
their required parameters.

Why do we need to override OnlnitialUpdate member function of CView sometimes?
In what order do application, frame widow, document and view objects get created?
Why is it not necessary to have message map entry for the “File | Save” menu item?
Why is AfxBeginThread instead of ::CreateThread recommended in MFC for creating a thread.
How can main thread and the one that it spawns communicate?

What is an import library?

Is it necessary to override InitInstance() in any window based MFC application? Why
What is the use of _T macro?

Why should you call base class Onldle version if you override it?

What is command routing?

How you can define and use your own messages?

What are owner drawn controls?

How to display text in status bar?

How to give effect of blinking to a line?

How to handle communication using MFC?

Why MFC extension DII’s are used?

How to handle application resources in DII’s?

What are accelerator keys?

Introduction to VC++ M’

46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.

63.
64.
65.
66.

67.

How to loadbitmaps on buttons using MFC?

How to draw circle using MFC?

What are different types of dialog boxes?

What is a modal dialog box?

What is a modeless dialog box and how do you create it?
What are document templates?

What code is written in InitInstance?

How we load libraries dynamically?

How one can add a addtitional toolbar?

How one can change a cursor shape?

When in WM_PAINT message issued?

Why Invalidate function of CWnd used?

How you can change the size of a window using MFC?
How you can change the application title?

How can you display an image in the MDI client window?
How can you convert a SDI application framework to a MDI appliction framework?

Will deleting a modeless dialog box without destroying it, give memory leaks? (creating on heap
& stack)

When should we use CWnd’s 'DestroyWindow’ member function?
How are memoryleaks detected in debug mode of an application?
What is the difference between internal & external make files?

Can U acccess a memeber of application class in View class?

(Ans: AfxGetApp() : returns the pointer to the application object)
Why is MFC class ‘CRecordSet” used? (aans: for database iteraction)

APPENDIX

EXCEPTION HANDLING

The Win32 API supports structured exception handling. Through this mechanism,
applications can handle various hardware- and software-related conditions. Structured
exception handling is not to be confused with the concept of exceptions in the C++
language, which is a feature of that language. The Win32 exception handling mechanism
is not dependent on its implementation in a specific language. To avoid confusion, I
decided to follow the conventions used in Microsoft documentation and use the term
“C exception” to refer to Win32 structured exceptions, and “C++ exception” to refer
to the typed exception handling mechanism of the C++ language.

Exception Handling in C and C++

C Exceptions

Microsoft provides a set of extensions to the C language, which enable C programs to
handle Win32 structured exceptions. This exception handling mechanism is markedly
different from the typed exceptions in the C++ language. This section offers a review
of both mechanisms in the context of exceptions in the Win32 environment.

What is, indeed, an exception? How do exceptions work? In order to understand the
exception handling mechanism, first take a look at the program shown in Listing 1.

Appendix I: Exception Handling 217

Listing 1 A Program that Generates an Exception
void main(void)

{

int X, y;
X =35;
y=0;
x=x1/y;

}

Needless to say, an integer division by zero is likely to cause a program to terminate
abnormally. If you compile the above program and run it under Windows 95, it
generates the dialog shown in Figure 17.1.

Thiz program has perfomed an llegal operation
and will be shut down

If thee problem persists, contact the program
serdar

Dietailss>

Figure 1: Division by zero error

What exactly happened here? Obviously, when you attempt to divide by zero, the
processor will generate an error condition (the actual mechanism is hardware dependent
and not of our concern). This error condition is detected by the operating system,
which looks for an exception handler for the specific error condition. As no such
handler was detected, the default exception handling mechanism took over, displaying
the dialog.

Using the C exception handling mechanism, it is possible for us to catch this exception
and handle the divide by zero condition gracefully. Consider the program shown in
Listing 2.

Listing 2. Handling the divide by zero exception

#include “windows.h”

ﬁ Zero to Mastery Microsoft Visual in C++

void main(void)

{
int X, y;
__try
{
x=75;
y=0;
x=x1/y;
1
__except (GetExceptionCode() == EXCEPTION_INT_DIVIDE_BY_ZERO ?
EXCEPTION_EXECUTE_HANDLER :
EXCEPTION_CONTINUE_SEARCH)
{
printf(“Divide by zero error.\n”);
1
}

Running this program no longer produces the dialog shown in Figure 1; instead, the
message “Divide by zero error.” is printed and the program terminates gracefully.

The block of statements following the __try instruction is often called a guard block.
This block of statements is executed unconditionally. When an exception is raised
within the guard block, the expression following the __except statement (often called
the filter expression) is evaluated. This expression should be an integer expression
yielding one of the following values:

Table 1: Filter expression values

Symbolic constant Value Description
EXCEPTION_CONTINUE_EXECUTION -1 Continue execution at the location where
exception was raised
EXCEPTION_CONTINUE_SEARCH 0 Pass control to next exception handler
EXCEPTION_EXECUTE_HANDLER 1 Execute exception handler

If the filter expression’s value is -1 (EXCEPTION_CONTINUE_EXECUTION),
execution continues at the location where the exception was raised. That is, at the
location, not after—which means that the offending piece of code may get executed
again. Whether it actually does get executed or not depends on the type of the exception.
For example, in the case of an integer division by zero, it does; in the case of a
floating-point division by zero, it does not. In any case, care should be taken to avoid

Appendix I: Exception Handling m,

creating an infinite loop by returning control to the point where the error occurs
without eliminating the conditions which caused the exception in the first place.

In the other two cases, the first thing that happens is that the guard block goes out of
scope. Any function calls that might have been interrupted by the exception are
terminated and the stack is unwound.

If the filter expression evaluates to 1 (EXCEPTION_EXECUTE_HANDLER), control
is transferred to the statement block following the __except statement.

The third filter value, 0 (EXCEPTION_CONTINUE_SEARCH), hints at the possibility
of nested exceptions. Indeed, consider the program shown in Listing 17.3. In this
program, two exceptions are generated, one for a floating-point division by zero, one
for an integer division by zero. The two exceptions are handled very differently.

Listing 3. Nesting exception handlers

#include <stdio.h>
#include <float.h>
#include <windows.h>
unsigned int divzerofilter(unsigned int code, int *j)
{
printf(“Inside divzerofilter\n);
if (code == EXCEPTION_INT_DIVIDE_BY_ZERO)
{
* =2,
printf(“Handling an integer division error.\n”");
return EXCEPTION_CONTINUE_EXECUTION;

1
else return EXCEPTION_CONTINUE_SEARCH;

}

void divzero()
{
double x, y;
int i, j;
__lry
{
x =10.0;
y = 0.0;
i=10;

m Zero to Mastery Microsoft Visual in C++

i=0;

i=il/j;

printf(“i = %d\n”, i);
x=x1/y;

printf(“x = %f\n”, x);

1

__except (divzerofilter(GetExceptionCode(), &j))

{

t

}
void main(void)
{

_controlfp(_EM_OVERFLOW, _MCW_EM);

__try

{

divzero();

}

__except (GetExceptionCode() == EXCEPTION_FLT_DIVIDE_BY_ZERO ?
EXCEPTION_EXECUTE_HANDLER :
EXCEPTION_CONTINUE_SEARCH)

{

printf(“Floating point divide by zero error.\n”);
}
}

When an exception is raised inside the divzero function, the filter expression is
evaluated. This results in a call to the divzerofilter function. The function checks if
the exception was an integer division by zero exception; if so, it corrects the value of
the divisor (j) and returns the EXCEPTION_CONTINUE_EXECUTION value, which
causes the exception handling mechanism to return control to the point where the
exception was raised. In the case of any other exceptions, divzerofilter returns
EXCEPTION_CONTINUE_SEARCH; this causes the exception handling mechanism
to seek another exception handler.

This other exception handler has been installed in the main function. This handler
handles floating-point division by zero exceptions. Instead of returning to the point
where execution was interrupted, it simply prints an error message.

Running this program produces the following output:

Appendix I: Exception Handling m,

Inside divzerofilter

Handling an integer division error.

i=5

Inside divzerofilter

Floating point divide by zero error.

As you can see, both times an exception is raised, the exception filter installed in the
function divzero is activated. However, in the case of the floating-point division, the
exception remains unhandled; therefore, the exception is propagated to the next level,
the exception handler installed in the main function.

NOTE: To handle floating-point exceptions, it was necessary to call the _controlfp function.
This function can be used to enable floating-point exceptions. By default, floating-point
exceptions on the Intel architecture are disabled; Instead, the floating-point library generates

IEEE-compatible infinite results.

A discussion of C exception handling would not be complete without a list of some of
the commonly occurring C exceptions. These exceptions are shown in Table 2.

Table 2. Filter expression values.

Symbolic constant

Description

EXCEPTION_ACCESS_VIOLATION

Reference to invalid memory location

EXCEPTION_PRIV_INSTRUCTION

Attempt to execute privileged instruction

EXCEPTION_STACK_OVERFLOW

Stack overflow

EXCEPTION_FLT_DIVIDE_BY_ZERO

Floating-point division

EXCEPTION_FLT_OVERFLOW

Floating point result too large

EXCEPTION_FLT_UNDERFLOW

Floating point result too small

EXCEPTION_INT_DIVIDE_BY_ZERO

Integer division

EXCEPTION_INT_OVERFLOW

Integer result too large

In addition to system-generated exceptions, applications can raise software exceptions
using the RaiseException function. Windows reserves exception values with bit 29 set

for user-defined software exceptions.

C Termination Handling

Closely related to the handling of C exceptions is the topic of C termination handling.
To better understand the problem of which termination handling provides a solution,
consider the program shown in Listing 4.

ﬁ Zero to Mastery Microsoft Visual in C++

Listing 4. Resource allocation problem.

#include <stdio.h>

#include <windows.h>

void badmem()

{
char *p;
printf(“allocating p\n”);
p = malloc(1000);
printf(“p[1000000] = %c\n”, p[1000000]);
printf(“freeing p\n”);
free(p);

}

void main(void)

{
__lry

badmem();

}

__except (GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION ?
EXCEPTION_EXECUTE_HANDLER :
EXCEPTION_CONTINUE_SEARCH)

printf(“An access violation has occurred.”);

}

In this program, the function badmem allocates the p character array. However, its
execution is interrupted when it refers to an invalid array element. Because of this, the
function never has a chance to free up the allocated array, as demonstrated by its
output:

allocating p
An access violation has occurred.

This problem can be solved by installing a termination handler in the badmem function,
as shown in Listing .5.

Appendix I: Exception Handling m’

Listing 5. A termination handler
#include <stdio.h>
#include <windows.h>

void badmem()

{
char *p;
__lry
{
printf(“allocating p\n”);
p = malloc(1000);
printf(*p[1000000] = %c\n”, p[1000000]);
1
__finally

{
printf(“freeing p\n”);
free(p);

}

void main(void)

{
__try

badmem();

1
__except (GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION ?

EXCEPTION_EXECUTE_HANDLER :
EXCEPTION_CONTINUE_SEARCH)

printf(“An access violation has occurred.”);

}

Running this program produces the desired result:

allocating p

ﬁ Zero to Mastery Microsoft Visual in C++

freeing p

An access violation has occurred.

As you can see, the instructions in the badmem function are now enclosed in a __try
block, which is now followed by the __finally keyword. The __finally keyword is
special in that the instruction block that follows it is always executed, no matter under
what circumstances the function terminates. So when badmem goes out of scope due
to the exception, the instructions in the __finally block are given a chance to clean up
any resources that might have been allocated within this function.

C++ Exception Handling

The Win32 exception handling mechanism uses the GetExceptionCode function to
determine the nature of the exception. In contrast, C++ exception handling is type-
based; the nature of the exception is determined by its type.

Most examples that demonstrate C++ exception handling do so in the context of a
class declaration. This is not necessary, and in my opinion often hides the simplicity
of C++ exception handling. Consider the simple example in Listing 17.6. (When you
compile this example or any other program that uses C++ exceptions, do not forget to
add the -GX switch to the cl command line.)

Listing 6. C++ Exception handling.

#include <iostream.h>

int divide(int x, int y)

{
if (y == 0) throw int();
return x / y;

}

void main(void)

{
int X, y;

try

Appendix I: Exception Handling m,

x = divide(x, y);
}
catch (int)
{

coul << “A division by zero was attempted.\n”;

}

In this example, the function divide raises an exception of type int when a division by
zero is attempted. This exception is caught by the exception handler in main.

Termination Handling in C++

C++ exceptions can also be used for termination handling. For termination handling,
a C++ program can wrap a block of code using a “catchall” exception handler, and
perform resource cleanup before propagating all exceptions to a higher level handler
by using throw. Consider the example in Listing 7, which is a C++ variant of the
program shown in Listing 7.

Listing 7. Termination handling with C++ exceptions
#include <stdio.h>

#include <windows.h>

void badmem()

{

char *p;

try

{
printf(“allocating p\n”);
p = (char *)malloc(1000);
printf(“p[1000000] = %c\n”, p[1000000]);

}

catch(...)

{

printf(“freeing p\n”);
free(p);

throw;

ﬁ Zero to Mastery Microsoft Visual in C++

}
}
void main(void)
{
try
{
badmem();
}
catch(...)
{
printf(“An exception was raised.”);
}
}

Running this program produces the following output:
allocating p

freeing p

An exception was raised.

The exception handler in the function badmem plays the role of the __finally block in
the C exception handling mechanism.

Although these examples demonstrate the power of C++ exception handling with C-
style code, the use of classes in exception handling has some obvious advantages. For
example, when the exception is thrown, an object of the type of the exception is
actually created; thus it is possible to provide additional information about the exception
in the form of member variables. Also, appropriate use of constructors and destructors
can replace the relatively inelegant resource cleanup mechanism shown in Listing 7.

C++ Exception Classes

Visual C++ Version 4.0 provides an implementation of the exception class hierarchy,
as put forward in the draft ANSI C++ standard. This hierarchy consists of the exception
class and derived classes representing various conditions, such as runtime errors. The
exception class and derived classes are declared in the header file stdexcpt.h. Because
these classes are based on an evolving draft standard, it is possible that they will
change with future releases of Visual C++.

Mixing C and C++ Exceptions

While the C compiler does not support C++ exceptions, the C++ compiler supports
both C++ exceptions and the Microsoft extensions for C exceptions. Sometimes it is

Appendix I: Exception Handling 227

necessary to mix these two in order to use the C++ exception syntax while catching
Win32 structured exceptions. There are basically two methods for this: You can use
an ellipsis handler, or you can use a translator function.

The Ellipsis Handler

In the termination handling example shown in Listing 7, we already made use of the
ellipsis handler. This catchall handler, which has the form

catch(...)

{
}

can be used to catch exceptions of any type, including C exceptions. This offers a
simple exception handling mechanism like the one used in Listing 7. Unfortunately,
the ellipsis handler does not have any information about the actual type of the structured
exception.

This should be easy, you say. (Well, I certainly said that when I first read about the
differences between C and C++ exception handling.) Why not just catch an exception
of type unsigned int (after all, the Microsoft Visual C++ documentation states that
this is the type of C exceptions) and examine its value? Consider the program in
Listing 8:

Listing 8. Failed attempt to catch C exceptions as C++ exceptions of type unsigned int
#include <windows.h>
#include <iostream.h>

void main(void)

{

int X, y;
try
{
X =35;
y=0;
x=x1/y;
}

catch (unsigned int e)

{
if (e == EXCEPTION_INT _DIVIDE_BY_ZERO)

ﬁ Zero to Mastery Microsoft Visual in C++

{

cout << “Division by zero.\n”;

}

else throw;

}

Alas, this elegant solution is no solution at all. C exceptions can only be caught by an
ellipsis handler. But not all is lost just yet; could we not simply use the
GetExceptionCode function in the C++ catch block and obtain the structured exception
type? For example, consider the program in Listing 9.

Listing 9. C++ exception handlers cannot call GetExceptionCode
#include <windows.h>
#include <iostream.h>
void main(void)
{
int X, y;
try
{
X =35;
y=0;
x=x1/y;
1
catch (...)
{
/! The following line results in a compiler error
if (GetExceptionCode() == EXCEPTION_INT_DIVIDE_BY_ZERO)
{

cout << “Division by zero.\n”;

}

else throw;

}

As they say, nice try but no cigar. The function GetExceptionCode is implemented as
an intrinsic function and can only be called as part of the filter expression in a C

Appendix I: Exception Handling m,

__except statement. It seems that some other mechanism is necessary to differentiate
between C exceptions in C++ code.

There is yet another possible solution. We could create a C exception handler to catch
all C exceptions and throw a C++ exception of type unsigned int with the value of the
C exception code. An example program for this is shown in Listing 10.

Listing 10. Raising C++ exceptions in a C exception filter
#include <windows.h>
#include <iostream.h>
int divide(int x, int y)

{

try
{
x=x1/y;
1
catch(unsigned int e)
{

cout << “Inside C++ exception.\n”;
if (¢ == EXCEPTION_INT_DIVIDE_BY_ZERO)
{

cout << “Division by zero.\n”;

}

else throw;

}

return Xx;

}

unsigned int catchall(unsigned int code)

{
cout << “inside catchall: “ << code << ‘\n’;
if (code != 0xE06D7363) throw (unsigned int)code;
return EXCEPTION_CONTINUE_SEARCH;

}

void main(void)

{

int X, y;

ﬁ Zero to Mastery Microsoft Visual in C++

__try

{
x =10;
y=0;

x = divide(x, y);

}
__except(catchall(GetExceptionCode())) {}

}

This approach has but one problem. When the catchall function throws a C++ exception
that is not handled by a C++ exception handler, it is treated as yet another C exception,
resulting in another call to catchall. This would go on forever, were it not for the test
for the value 0xE06D7363, which appears to be a magic value associated with C++
exceptions. But we are getting into seriously undocumented stuff here; there has to be
another solution!

At this point, you might ask the obvious question: if C++ programs can use the
Microsoft C exception handling mechanism, why go through this dance at all? Why
not just use __try and __except and get it over with? Indeed, this is a valid solution;
however, to improve code portability, you may want to use the C++ exception handling
mechanism when possible, and localize and dependence on Microsoft extensions as
much as possible.

Translating C Exceptions

Fortunately, the Win32 API provides a function that allows a much more elegant
solution for translating a C exception into a C++ exception. The name of the function
is _set_se_translator. Using this function, one can finally obtain an elegant, satisfactory
solution for translating C exceptions to C++ exceptions. An example for this is shown
in Listing 11.

Listing 11. Using _set_se_translator to translate C exceptions

#include <windows.h>
#include <iostream.h>
#include <eh.h>
int divide(int x, int y)
{

try

{

x=x/y;

Appendix I: Exception Handling m,

}

catch(unsigned int e)

{
cout << “Inside C++ exception.\n";
if (e == EXCEPTION_INT_DIVIDE_BY_ZERO)
{

cout << “Division by zero.\n”;

}

else throw;

}

return x;

}
void se_translator(unsigned int e, _EXCEPTION_POINTERS* p)

{
throw (unsigned int) ;

}

void main(void)

{
mt X, y;
_set_se_translator(se_translator);
x = 10;
y=0
x = divide(x, y);

Summary

Win32 programmers using the C++ language must face two separate, only partially
compatible exception handling mechanisms. Win32-structured exceptions are often
generated by the operating system. These exceptions are not dependent on any language-
specific implementation and are used to communicate a condition to the application’s
exception handler using a 32-bit unsigned value.

In contrast, C++ exceptions are typed expressions; the nature of the exception is often
derived {rom the type of the object that is used when the expression is thrown.

C programs can use the __try and __except keywords (which are Microsoft extensions
to the C language) to handle structured exceptions. It is possible for exception handlers

ﬁ Zero to Mastery Microsoft Visual in C++

to be nested. The type of the expression is obtained by calling the GetExceptionCode
function in the __except filter expression. Depending on the value of the filter expression,
an exception may be handled by the exception handler, execution may continue at the
point where the exception occurred, or control can be transferred to the next exception
handler. An unhandled exception causes an application error.

C programs can also use termination handlers. These handlers, installed using the
__try and __finally keywords, can ensure that a function which is abnormally terminated
by an exception is given a chance to perform cleanup.

C++ programs use the C++ try and catch keywords to handle exceptions. The type of
the exception is declared following the catch keyword. The catch keyword with an
ellipsis declaration (...) can be used to catch all exceptions; one possible use of this
construct is to act as a termination handler, analogous to the __finally block in C
exception handling.

As C++ programs can also use C exceptions, it is possible to mix the two exception
handling mechanisms. C++ programs can catch C exceptions using an ellipsis handler.
Unfortunately, this method does not allow C++ programs to obtain the exception
code. However, C++ programs can install an exception translator function, which can
be used to translate C structured exceptions into C++ typed exceptions.

APPENDIX

C++ TEMPLATES

INTRODUCTION

Many C++ programs use common data structures like stacks, queues and lists. A
program may require a queue of customers and a queue of messages. One could easily
implement a queue of customers, then take the existing code and implement a queue
of messages. The program grows, and now there is a need for a queue of orders. So
just take the queue of messages and convert that to a queue of orders (Copy, paste,
find, replace????). Need to make some changes to the queue implementation? Not a
very easy task, since the code has been duplicated in many places. Re-inventing source
code is not an intelligent approach in an object oriented environment which encourages
re-usability. It seems to make more sense to implement a queue that can contain any
arbitrary type rather than duplicating code. How does one do that? The answer is to
use type paramelterization, more commonly referred to as templates.

C++ templates allow one to implement a generic Queue<T> template that has a type
parameter T. T can be replaced with actual types, for example, Queue<Customers>,
and C++ will generate the class Queue<Customers>. Changing the implementation of
the Queue becomes relatively simple. Once the changes are implemented in the template
Queue<T>, they are immediately reflected in the classes Queue<Customers>,
Queue<Messages>, and Queue<Orders>.

Templates are very useful when implementing generic constructs like vectors, stacks,
lists, queues which can be used with any arbitrary type. C++ templates provide a way
to re-use source code as opposed to inheritance and composition which provide a way
to re-use object code.

ﬁ Zero to Mastery Microsoft Visual in C++

C++ provides two kinds of templates: class templates and function templates. Use
function templates to write generic functions that can be used with arbitrary types.
For example, one can write searching and sorting routines which can be used with any
arbitrary type. The Standard Template Library generic algorithms have been
implemented as function templates, and the containers have been implemented as
class templates.

CLASS TEMPLATES

Implementing a class template

A class template definition looks like a regular class definition, except it is prefixed
by the keyword template. For example, here is the definition of a class template for a
Stack.

template <class T>
class Stack
{
public:
Stack(int = 10) ;
~Stack() { delete [] stackPtr ; }
int push(const T&);
int pop(T&) ;
int isEmpty()const { return top ==-1; }
int isFull() const { return top ==size - 1 ; }
private:
int size ; // number of elements on Stack.
int top ;
T* stackPtr ;
)
T is a type parameter and it can be any type. For example, Stack<Token>, where
Token is a user defined class. T does not have to be a class type as implied by the

keyword class. For example, Stack<int> and Stack<Message*> are valid instantiations,
even though int and Message* are not “classes”.

Appendix Il: C++ Templates m,

Implementing Class Template Member Functions

Implementing template member functions is somewhat different compared to the
regular class member functions. The declarations and definitions of the class template
member functions should all be in the same header file. The declarations and definitions
need to be in the same header file. Consider the following.

//B Htemplate <class t>class b{public: b(); ~b();}: // B.CPP#include
“B.H”template <class t>b<t>::b(){ }template <class t>b<t>::~b(){}/ /
MAIN.CPP#include “B.H”void main(){ b<int> bi ; b <float> bf ;}

When compiling B.cpp, the compiler has both the declarations and the definitions
available. At this point the compiler does not need to generate any definitions for
template classes, since there are no instantiations. When the compiler compiles main.cpp,
there are two instantiations: template class B<int> and B<float>. At this point the
compiler has the declarations but no definitions!

While implementing class template member functions, the definitions are prefixed by
the keyword template. Here is the complete implementation of class template Stack:

/Istack.h
#pragma once
template <class T>

class Stack

{
public:
Stack(int = 10) ;
~Stack() { delete [] stackPtr ; }
int push(const T&);
int pop(T&) ; // pop an element off the stack
int isEmpty()const { return top == -1 ; }
int isFull() const { return top ==size - 1 ; }
private:
int size ; // Number of elements on Stack
int top ;
T* stackPtr ;
s

/lconstructor with the default size 10
template <class T>
Stack<T>::Stack(int s)

{

ﬁ Zero to Mastery Microsoft Visual in C++

size=8>0 && s< 1000 ?7s:10;
top = -1 ; // initialize stack

stackPtr = new T[size] ;
}
/! push an element onto the Stack
template <class T>
int Stack<T>::push(const Té& item)

{
if (lisFull())
{
stackPtr[++top] = item ;
return 1 ; // push successful
}
return O ; // push unsuccessful
}

// pop an element off the Stack
template <class T>
int Stack<T>::pop(T& popValue)

{
if (lisEmpty())
{
popValue = stackPtr[top—] ;
return 1 ; // pop successful
}
return O ; // pop unsuccessful
}

Using a Class Template

Using a class template is easy. Create the required classes by plugging in the actual
type for the type parameters. This process is commonly known as “Instantiating a
class”. Here is a sample driver class that uses the Stack class template.

#include <iostream>

#include “stack.h”

using namespace std ;

Appendix Il: C++ Templates

void main()

{

typedef Stack<float> FloatStack ;
typedef Stack<int> IntStack ;
FloatStack fs(5) ;
float f=1.1;
cout << “Pushing elements onto fs” << endl ;
while (fs.push(f))
{

cout << f<< ‘¢

f+=1.1;
}
cout << endl << “Stack Full.” << endl
<< endl << “Popping elements from fs” << endl ;
while (fs.pop(f))

cout << fe< ¢
cout << endl << “Stack Empty” << endl ;
cout << endl ;
IntStack is ;
inti =1.1;
cout << “Pushing elements onto is” << endl ;
while (is.push(i))
{

cout <<i<< ‘)

i+=1;
}
cout << endl << “Stack Full” << endl
<< endl << “Popping elements from is” << endl ;
while (is.pop(i))

cout <<i<< ‘g

cout << endl << “Stack Empty” << endl ;

237

ﬁ Zero to Mastery Microsoft Visual in C++

Program Output

Pushing elements onto fs
1.122334455

Stack Full.

Popping elements from fs
554433221.1

Stack Empty

Pushing elements onto is
12345678910
Stack Full

Popping elements from is
10987654321
Stack Empty

In the above example we defined a class template Stack. In the driver program we
instantiated a Stack of float (FloatStack) and a Stack of int(IntStack). Once the template
classes are instantiated you can instantiate objects of that type (for example, fs and is.)

A good programming practice is using typedef while instantiating template classes.
Then throughout the program, one can use the typedel name. There are two advantages:

« typedef’s are very useful when “templates of templates” come into usage. For
example, when instantiating an STL vector of int’s, you could use:
¢ typedef vector<int, allocator<int> > INTVECTOR ;

¢ If the template definition changes, simply change the typedefl definition. For
example, currently the definition of template class vector requires a second
parameter.

— typedef vector<int, allocator<int> > INTVECTOR ;
— INTVECTOR vil ;
In a future version, the second parameter may not be required, for example,
typedef vector<int> INTVECTOR ;
INTVECTOR vil ;

Imagine how many changes would be required if there was no typedef!

Function Templates

To perform identical operations for each type of data compactly and conveniently,
use function templates. You can write a single function template definition. Based on
the argument types provided in calls to the function, the compiler automatically

Appendix Il: C++ Templates m,

instantiates separate object code functions to handle each type of call appropriately.
The STL algorithms are implemented as function templates.

Implementing Template Functions

Function templates are implemented like regular functions, except they are prefixed
with the keyword template. Here is a sample with a function template.

#include <iostream>

using namespace std ;

//max returns the maximum of the two elements
template <class T>

T max(T a, T b)

{

returna>b?a:b;

}

Using Template Functions

Using function templates is very easy: just use them like regular functions. When the
compiler sees an instantiation of the function template, for example: the call max
(10, 15) in function main, the compiler generates a function max(int, int). Similarly
the compiler generates definitions for max(char, char) and max(float, float) in this
case.

#include <iostream>

using namespace std ;

//max returns the maximum of the two elements

template <class T>

T max(T a, T b)

{
returna>b?a:b;
}
void main()
{

cout <<” max(10, 15) = “ << max(10, 15) << endl ;
cout <<” max(‘k’, ‘s’) = “ << max(‘k’, ‘s’) << endl ;
cout <<” max(10.1, 15.2) = “ << max(10.1, 15.2) << endl ;

m Zero to Mastery Microsoft Visual in C++

Program Output

max(10, 15) = 15

max(‘k’, ‘s’) =s

max(10.1, 15.2) = 15.2

Template Instantiation

When the compiler generates a class, function or static data members {rom a template,
it is referred to as template instantiation.

¢ A class generated from a class template is called a generated class.

¢ A function generated from a function template is called a generated function.

¢ A static data member generated from a static data member template is called a

generated static data member.

The compiler generates a class, function or static data members from a template when
it sees an implicit instantiation or an explicit instantiation of the template.

1.

e e e e e e

—_
el

0 XNk wD

Consider the following sample. This is an example of implicit instantiation of a
class template.

template <class T>
class Z

{

public:

Z0) {1}

~20 {}

void fO{} ;

void gO{} ;

s

. int main()

A

. Z<int>zi ; //implicit instantiation generates class Z<int>

. Z<float> zf ; //implicit instantiation generates class Z<float>

. return O ;

}

. Consider the following sample. This sample uses the template class members

7Z<T>:A() and Z<T>::g().

. template <class T>

Appendix Il: C++ Templates m,

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

class Z

{

public:

0 {};
~Z0) {}
void fO{} ;
void gOf} 3
s

int main()

{

Z<int> zi ; //implicit instantiation generates class Z<int>
zi.f() ; //and generates function Z<int>::f()

Z<float> zf ; //implicit instantiation generates class Z<float>
2£.80) ; /land generates function Z<float>::g()

return O ;

}

This time in addition to the generating classes Z<int> and Z<float>, with constructors
and destructors, the compiler also generates definitions for Z<int>::f() and
Z<float>::g(). The compiler does not generate definitions for functions, nonvirtual
member functions, class or member class that does not require instantiation. In this
example, the compiler did not generate any definitions for Z<int>::g() and Z<float>::{(),
since they were not required.

37.

38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.

Consider the following sample. This is an example of explicit instantiation of a
class template.

template <class T>
class Z

{

public:

70 {};

~20) {1}

void fO){} ;

void gOf} 3

s

int main()

ﬁ Zero to Mastery Microsoft Visual in C++

49. {
50. template class Z<int> ; //explicit instantiation of class Z<int>

51. template class Z<float> ; //explicit instantiation of
52. /lclass Z<float>

53. return O ;

54. }

55. Consider the following sample. Will the compiler generate any classes in this
case? The answer is NO.

56. template <class T>

57. classZ

58. {

59. public:

60. Z0) {} ;

61. ~Z0) {};

62. void fO){} ;

63. void gO){} ;

64. };

65.

66. int main()

67. {

68. Z<int>* p_zi ; //instantiation of class Z<int> not required

69. Z<float>* p_zf ; //instantiation of class Z<float> not required

70. return O ;

71. }

This time the compiler does not generate any definitions! There is no need for any
definitions. It is similar to declaring a pointer to an undefined class or struct.

72. Consider the following sample. This is an example of implicit instantiation of a
function template.

73. //max returns the maximum of the two elements

74. template <class T>

75. T max(T a, T b)

76. {
77. returna>b ?a:b;
78. }

79. void main()

Appendix Il: C++ Templates m,

80.
81.
82.
83.
84.
85.

{

int];

I = max(10, 15) ; //implicit instantiation of max(int, int)
charc ;

¢ = max(‘k’, ‘s’) ; //implicit instantiation of max(char, char)

}

In this case the compiler generates functions max(int, int) and max(char, char). The
compiler generates definitions using the template function max.

86.

87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.

Consider the following sample. This is an example of explicit instantiation of a
function template.

template <class T>
void Test(T r_t)

{

}

int main()

{

/fexplicit instantiation of Test(int)
template void Test<int>(int) ;

return O ;

Note: Visual C++ 5.0 does not support this syntax currently. The above sample causes compiler

error C1001.

Class Template Specialization

In some cases, it is possible to override the template-generated code by providing
special definitions for specific types. This is called template specialization. The
following example defines a template class specialization for template class stream.

#include <iostream>

using namespace std ;

template <class T>

class stream

{

public:

m Zero to Mastery Microsoft Visual in C++

void f() { cout << “stream<T>::f()’<< endl ;}
}s

template <>

class stream<char>

{
public:
void () { cout << “stream<char>::f()’<< endl ;}
s
int main()
{
stream<int> si ;
stream<char> sc ;
s8i.f() ;
sc.f() ;
return O ;
}

Program Output

stream<T>::f()
stream<char>::f()

In the above example, stream<char> is used as the definition of streams of chars;
other streams will be handled by the template class generated [rom the class template.

Template Class Partial Specialization
You may want to generate a specialization of the class for just one parameter, for
example
/fbase template class
template<typename T1, typename T2>
class X
{
}s

/fpartial specialization
template<typename T1>
class X<T1, int>

Appendix Il: C++ Templates m,

{

} 5 //C2989 here
int main()

{

// generates an instantiation from the base template

X<char, char> xcc ;

/lgenerates an instantiation {rom the partial specialization
X<char, int> xii ;

return O ;

}

A partial specialization matches a given actual template argument list if the template
arguments of the partial specialization can be deduced from the actual template argument
list.

Note: Visual C++ 5.0 does not support template class partial specialization. The above sample
causes compiler error C2989: template class has already been defined as a non-template class.

Template Function Specialization

In some cases it is possible to override the template-generated code by providing
special definitions for specific types. This is called template specialization. The
following example demonstrates a situation where overriding the template generated
code would be necessary:

#include <iostream>

using namespace std ;

//max returns the maximum of the two elements of type T, where T is a

/lclass or data type for which operator> is defined.

template <class T>

T max(T a, T b)

{
returna>b?a:b;
1
int main()
{

cout << “max(10, 15) =” << max(10, 15) << endl ;
cout << “max(‘k’, ‘s’) =7 << max(‘k’, ‘s’) << endl ;
cout << “max(10.1, 15.2) =” << max(10.1, 15.2) << endl ;

ﬁ Zero to Mastery Microsoft Visual in C++

cout << “max(\”’Aladdin\”, \"Jasmine\”) = “ << max(“Aladdin”, “Jasmine”) <<
endl ;

return O ;

}

Program Output
max(10, 15) = 15

max(‘k’, ‘s’) =s
max(10.1, 15.2) = 15.2
max(“Aladdin”, “Jasmine”) = Aladdin

Not quite the expected results! Why did that happen? The function call max(“Aladdin”,
“Jasmine”) causes the compiler to generate code for max(char*, char*), which compares
the addresses of the strings! To correct special cases like these or to provide more
efficient implementations for certain types, one can use template specializations. The
above example can be rewritten with specialization as follows:

#include <iostream>
#include <cstring>
using namespace std ;
/fmax returns the maximum of the two elements
template <class T>
T max(T a, T b)
{
returna>b?a:b;
}
/1 Specialization of max for char*
template <>

char* max(char* a, char* b)

{

return stremp(a, b)) >0?a:b;
}
int main()

{

Appendix Il: C++ Templates 247

cout << “max(10, 15) = “ << max(10, 15) << endl ;
cout << “max(‘k’, s’) = “ << max(‘k’, ‘s’) << endl ;
cout << “max(10.1, 15.2) = “ << max(10.1, 15.2) << endl ;

cout << “max(\’Aladdin\”, \”Jasmine\”) = “ << max(“Aladdin”, “Jasmine”) <<
endl ;

return O ;

}

Program Output
max(10, 15) = 15
max(‘k’, ‘s’) =s
max(10.1, 15.2) = 15.2

max(“Aladdin”, “Jasmine”) = Jasmine

Template Parameters

1. C++ templates allow one to implement a generic Queue<T> template that has a
type parameter T. T can be replaced with actual types, for example,
Queue<Customers>, and C++ will generate the class Queue<Customers>. For
example,

2. template <class T>

3. class Stack

4. {

5.1

Here T is a template parameter, also referred to as type-parameter.

6. C++ allows you to specify a default template parameter, so the definition could
now look like:

7. template <class T = float, int elements = 100> Stack {} ;

Then a declaration such as

Stack<> mostRecentSalesFigures ;

would instantiate (at compile time) a 100 element Stack template class named
mostRecentSalesFigures of float values; this template class would be of type Stack<float,
100>.

Note, C++ also allows non-type template parameters. In this case, template class
Stack has an int as a non-type parameter.

Zero to Mastery Microsoft Visual in C++

If you specify a default template parameter for any formal parameter, the rules are the
same as for functions and default parameters. Once a default parameter is declared all
subsequent parameters must have defaults.

8. Default arguments cannot be specified in a declaration or a definition of a
specialization. For example,
9. template <class T, int size>
10. class Stack
11. {
12. };
13.
14. /lerror C2989: ‘Stack<int,10>’ : template class has already been
15. //defined as a non-template class
16. template <class T, int size = 10>
17. class Stack<int, 10>
18. {
19. };
20.
21. int main()
22. {
23. Stack<float,10> si ;
24. return 0 ;
25. }

26. A type-parameter defines its identifier to be a type-name in the scope of the
template declaration, and canot be re-declared within its scope (including nested
scopes). For example,

27. template <class T, int size>

28. class Stack

29. {

30. int T ; //error type-parameter re-defined.
31. void ()

32. {

33. char T ; /lerror type-parameter re-defined.
34. }

35. };

36.

37. class A {};

Appendix Il: C++ Templates m,

38.
39.

40

41.
42.

int main()

{
Stack<A,10> si ;

return O ;

}

of type-parameter as an error.

Note: VC++ 5.0 or SP1 compiles this sample without any errors. It does not flag the re-definition I

43.

44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.

61.
62.
63.
64.
65.
66.
67.
68.

The value of a non-type-parameter cannot be assigned to or have its value changed.
For example,

template <class T, int size>
class Stack

{
void ()

{
/lerror C2105: ‘44 needs l-value
size++ ; /lerror change of template argument value
}
}s

int main()

{

Stack<double, 10> si ;
return O ;

}

A template-parameter that could be interpreted as either a parameter-declaration
or a type-parameter, is taken as a type-parameter. For example,

class T {};

inti;

template <class T, T i>

void (T t)

{

T tl =i ; /template arguments T and i
=T t2=:i;//globals T and i

ﬁ Zero to Mastery Microsoft Visual in C++

69.
70.
71.
7.
73.
74.
75.
76.
77.

}

int main()

{

f(‘s’) ; //C2783 here
return O ;

}

Note: Compiling the above sample using VC++ 5.0 and SP1 causes compiler error C2783: could
not deduce template argument for ‘i’. To workaround the problem, replace the call to f(‘s’) with

f<char, ‘s’>(‘s”).

78.
79.
80.
81.
82.
83.
84.
85.

class T {};

inti;

template <class T, T i>
void (T t)
{
T tl =i ; //template arguments T and i
=T t2==:i;//globals T and i

}

int main()

{
f<char, ‘s’>(‘s’) ; //workaround
return O ;

}

A non-type template parameter cannot be of floating type. For example,
template <double d> class X ; //ferror C2079: ‘xd’ uses

/fundefined class ‘X<1.e66>’

/ftemplate <double* pd> class X ; //ok

/ftemplate <double& rd> class X ; //ok

int main()

{

Appendix Il: C++ Templates m,

86.
87.
88.

X<1.0> xd ;

return O ;

}

Static Members and Variables

1.

9.
10.
11.
12.
13.
14.

® N kW

Each template class or function generated from a template has its own copies of
any static variables or members.

Each instantiation of a function template has it’s own copy of any static variables
defined within the scope of the function. For example,

template <class T>
class X
{

public:

static T s ;

b

int main()
{
X<int> xi ;
X<char*> xc ;

}

Here X<int> has a static data member s of type int and X<char*> has a static data
member s of type char*.

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

Static members are defined as follows.
#include <iostream>

using namespace std ;

template <class T>
class X
{

public:

static T s ;

b

template <class T> T X<T>:1:s =0 ;
template <> int X<int>::s =3

ﬁ Zero to Mastery Microsoft Visual in C++

28. template <> char* X<char*>::s = “Hello” ;
29.

30. int main()

31. {

32. X<int> xi ;

33. cout << “xi.s = “ << xi.8 << endl ;

34.

35. X<char*> xc ;

36. cout << “xc.s = “ << xc.s << endl ;
37.

38. return O ;

39. }

Program Output
xi.s =10
xc.s = Hello
40. Each instantiation of a function template has it’s own copy of the static variable.
For example,
41. #include <iostream>
42. using namespace std ;
43.
44. template <class T>
45. void f(T t)

46. {

47. static Ts =0;
48. S=t;

49. cout << “s = “ << s <<endl;
50. }

51.

52. int main()

53. {

54. f(10) ;

55. f(“Hello™) ;
56.

57. return O ;
58. }

Appendix Il: C++ Templates m,

Program Output

s=10
s=Hello

Here f<int>(int) has a static variable s of type int, and f<char*>(char*) has a static
variable s of type char*.

Templates and Friends

Friendship can be established between a class template and a global function, a member
function of another class (possibly a template class), or even an entire class (possible
template class). The table below lists the results of declaring different kinds of friends
of a class.

Class
Template

Friend declaration in
class template X

Results of giving friendship

template class <T>
class X

freind void f1();

makes f1() a friend of all instantiations of
template X. For example, f1() is a friend of
X<int>, X<A>, and X<Y>.

template class <T>
class X

friend void R2(X<T>&);

For a particular type T for example, float,
makes f2(X<float>&) a friend of class X<float>
only. 2(x<float>&) cannot be a friend of class
X<A>.

template class <T>
class X

friend A::f4(); // A is a user
defined class with a member
function f4();

makes A::f4() a friend of all instantiations of
template X. For example, A::f4() is a friend of
X<int>, X<A>, and X<Y>.

template class <T>
class X

friend C<T>::f5(X<T>&);//C
is a class template with a
member function f5

For a particular type T for example, float,
makes C<float>::f5(X<float>&) a friend of
class X<float> only. C<float>::f5(x<float>&)
cannot be a friend of class X<A>.

template class <T>
class X

friend class Y;

makes every member function of class Y a
friend of every template class produced from
the class template X.

template class <T>
class X

friend class Z<T>;

when a template class is instantiated with a
particular type T, such as a float, all members
of class Z<float> become friends of template
class X<float>.

@

Abstract data type, 22
Abstraction, 21

Access specifiers, 42
Activex, 3

Activex controls, 106
Activex controls, 3,9
Ad-hoc polymorphism, 82
Appwizard, 107
Appwizard, 9

Appwizard, 98

Base class, 60
Binding, 83
Buttons, 166

©

Cdialog class, 171

Child windows, 136
Component Object Model, 3
Class, 19

Class, 23

INDEX

Class View, 5

Class Wizard, 15

Classes, 27

Classwizard, 173

Color Dialog, 158

Combo Boxes, 167
Common Dialogs, 156
Common dialogs, 156
Compilation error, 48
Component Object Model, 3
Constructor, 28
Constructor, 50
Constructors, 29

Control, 165

Control object, 184

Copy assignment operator, 50
Copy constructor, 32

Copy constructor, 33, 35

Data hiding, 22

Debugger Windows, 104
Decoupling, 23

ﬁ Zero to Mastery Microsoft Visual in C++

Default constructor, 64
Derived class, 63

Derived classes, 60
Desktop window, 135
Destructor, 29

Destructors, 84

Developer Studio, 2
Dialog Boxes, 154

Dialog Class, 173

Dialog controls, 150
Dialog Data Exchange, 182
Dialog Data Validation, 182
Dialog Templates, 156
Dlls, 150

Document class, 114
Dynamic, 23

Dynamic binding, 23
Dynamic binding, 83

@

Edit Controls, 166
Encapsulation, 22

Events, 2

Events, 2

Extended window styles, 141

File View, 5

Font Selection Dialog, 159
Function name overloading, 82

Function overloading, 43

D,

Global Subclassing, 149

GUI (graphical user interface) programs, 3

Hierarchical, 69

Hot Key Control, 168

Hybrid, 69
@

Inheritance, 21
Inheritance, 60
Inline function, 40

Inline Function, 39

Integrated development environment (IDE),

Interface, 22

Keyword, 37
List Boxes, 167
List Controls, 167

Message handling, 185
Methods, 22

MFC, 2

MEC functions, 106

MEFC Library, 171

Microsoft .NET Framework, 1

Message Boxes, 155

Microsoft Active Template Library (ATL), 3

Microsoft Developer Studio, 107
Microsoft Foundation Class, 1
Microsoft Foundation Classes, 106
Microsoft Foundation Classes (the MFC),
Microsoft Visual C++, 1

Microsoft Visual C++, 106

Microsoft Windows API, 1

3

1

Index

Microsoft Windows API, 1
Modal Dialogs, 154
Modeless Dialogs, 155
Modeless Dialogs, 179
Modeless Property Sheets, 191
Multilevel, 69
Multilevel Inheritance, 73
Multipath, 69

Multiple, 69

Multiple Inheritance, 21
Multiple Inheritance, 71
Multiple Inheritance, 69

@
Object, 20

Object - oriented programming, 2
Object-oriented programming (OOPS), 19
OLE Common Dialogs, 165

Operator of scope, 25

Operator overloading, 47

Operator overloading, 82

Overloading Constructors, 30

@

Parametric polymorphism, 82
Polymorphism, 22
Polymorphism, 23
Polymorphism, 61
Polymorphism, 80, 81
Polymorphism, 23
Private, 68

Private members, 24
Progress Bars, 168
Property page, 186
Property pages, 171

Property sheets, 171

Property sheets, 185

Protected members,

Public, 68

Public keyword, 63
Pure Virtual Function, 92

Resource View, 5
Reusability, 65
Rich-text Edit Control, 168

Runtime bindi

ng, 23

24

Y

Runtime polymorphism, 83

Scrollbars, 167

Single, 69

Single document interface (or SDI),

Single Inheritance, 69, 70
Slider Control, 168

Spin Buttons,

168

Static Controls, 166

Static controls

, 166

Static data, 39

Static members, 39

Structures, 27
Subclassing,

Superclassing,

146
152

System-wide behavior, 149

Tab Controls,

167

Text Find and Replace Dialogs,
The Dialog Box Procedure, 156

Tree Controls,

167

161

113

257

ﬁ Zero to Mastery Microsoft Visual in C++

Visual C++, 1

Visual C++ runtime libraries, 3
VC++ Build Tools, 3

View class, 111 @

Virtual Base Class, 94 Win32 APL, 137, 145, 157
Virtual Constructors, 84 Win32 API functions, 106
Virtual destructor, 84 Window handle, 135

Virtual Function, 82 .
Windows GUI, 106
Virtual function, 86

Virtual functions, 82, 92
Virtual methods, 81
Visual C++, 99

Windows GUI programming, 129
Workspace, 5
Workspace, 8

SPECIAL BONUS!

Want These 3 Bonus Books for free?

B " "‘. & g
INTRODUCTION TO 4 S B INTRDDUCTIDN TO

OF THINGS |

*BLOCKCHAIN L0 / ,|NTERNET

(

Get FREE, unlimited access to these
and all of our new books by joining
our community!

SCAN w/ your camera TO JOIN!

®#:@)] or visit

— [

freebie.kartbucket.com

 HistoryItem_V1
 Nup

 Create a new document
 Trim unused space from sheets: no
 Allow pages to be scaled: yes
 Margins and crop marks: none
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Scale by 95.00 %
 Align: centre

 D:20220228121658

 0.0000
 10.0000
 20.0000
 0
 Corners
 0.3000
 Fixed
 0
 0
 3
 6
 0.9500
 0
 0
 1
 0.0000
 1

 D:20220228121641
 841.8898
 a4
 Blank
 595.2756

 Tall
 749
 303
 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 1
 0

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0b
 Quite Imposing Plus 4
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 7.500 x 9.250 inches / 190.5 x 234.9 mm
 Shift: none
 Normalise (advanced option): 'original'
 Keep bleed margin: no

 D:20220228121721

 32

 D:20220228105011
 666.0000
 Blank
 540.0000

 Tall
 1
 0
 No
 771
 335
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 43.9200
 Bottom

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0b
 Quite Imposing Plus 4
 1

 0
 271
 270
 271

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 36.00 points
 Shift: none
 Normalise (advanced option): 'original'
 Keep bleed margin: no

 D:20220228121855

 32

 D:20220228105011
 666.0000
 Blank
 540.0000

 Tall
 1
 0
 No
 771
 335
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Smaller
 36.0000
 Bottom

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0b
 Quite Imposing Plus 4
 1

 36
 271
 270
 271

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 7.500 x 9.250 inches / 190.5 x 234.9 mm
 Shift: none
 Normalise (advanced option): 'original'
 Keep bleed margin: no

 D:20220228121905

 32

 D:20220228105011
 666.0000
 Blank
 540.0000

 Tall
 1
 0
 No
 771
 335
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 36.0000
 Bottom

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0b
 Quite Imposing Plus 4
 1

 36
 271
 270
 271

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 2
 Page size: same as page 1

 D:20220312181221

 Blanks
 Always
 2
 1
 1
 1210
 295

 0
 1
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 1

 CurrentAVDoc

 SameAsPage
 AfterCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0b
 Quite Imposing Plus 4
 1

 12
 2

 1

 HistoryList_V1
 qi2base

		2022-03-12T21:36:20+0000
	Preflight Ticket Signature

