

C++ PROGRAMMING:
FROM PROBLEM ANALYSIS TO PROGRAM DESIGN

SIXTH EDITION

D.S. MALIK

Australia � Brazil � Japan � Korea � Mexico � Singapore � Spain � United Kingdom � United States

 This is an electronic version of the print textbook. Due to electronic rights restrictions,

some third party content may be suppressed. Editorial review has deemed that any suppressed

content does not materially affect the overall learning experience. The publisher reserves the right

to remove content from this title at any time if subsequent rights restrictions require it. For

valuable information on pricing, previous editions, changes to current editions, and alternate

formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for

materials in your areas of interest.

C++ Programming: From Problem Analysis
to Program Design, Sixth Edition

D.S. Malik

Executive Editor: Marie Lee

Acquisitions Editor: Brandi Shailer

Senior Product Manager: Alyssa Pratt

Associate Product Manager: Stephanie
Lorenz

Content Project Manager: Matthew
Hutchinson

Art Director: Faith Brosnan

Print Buyer: Julio Esperas

Cover Designer: Roycroft Design/
www.roycroftdesign.com

Cover Photo: ª Masterfile Royalty Free

Proofreader: Andrea Schein

Indexer: Elizabeth Cunningham

Compositor: Integra Software Services

ª Cengage Learning

ALL RIGHTS RESERVED. No part of this work
covered by the copyright herein may be
reproduced, transmitted, stored or used in any
form or by any means graphic, electronic, or
mechanical, including but not limited to
photocopying, recording, scanning, digitizing,
taping, Web distribution, information
networks, or information storage and retrieval
systems, except as permitted under Section

or of the United States Copyright
Act, without the prior written permission of
the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support,

www.cengage.com/support
For permission to use material from this text or product,

submit all requests online at www.cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

Library of Congress Control Number:

ISBN- : - - - -

Cengage Learning
Channel Center Street

Boston, MA
USA

Some of the product names and company names used in this
book have been used for identification purposes only and may
be trademarks or registered trademarks of their respective
manufacturers and sellers.

Any fictional data related to persons or companies or URLs used
throughout this book is intended for instructional purposes only.
At the time this book was printed, any such data was fictional
and not belonging to any real persons or companies.

Cengage Learning reserves the right to revise this publication
and make changes from time to time in its content without
notice.

The programs in this book are for instructional purposes only.
They have been tested with care, but are not guaranteed
for any particular intent beyond educational purposes. The
author and the publisher do not offer any warranties or
representations, nor do they accept any liabilities with respect
to the programs.

Cengage Learning is a leading provider of customized
learning solutions with office locations around the globe,
including Singapore, the United Kingdom, Australia, Mexico,
Brazil and Japan. Locate your local office at:
www.cengage.com/global

Cengage Learning products are represented in Canada
by Nelson Education, Ltd.

To learn more about Cengage Learning, visit
www.cengage.com

Purchase any of our products at your local college store or at
our preferred online store www.CengageBrain.com

Printed in the United States of America

1 2 3 4 5 6 7 16 17 16 15 14 13 12

TO

My Daughter

Shelly Malik

This page intentionally left blank

PREFACE xxix

1. An Overview of Computers and Programming Languages 1

2. Basic Elements of C++ 27

3. Input/Output 121

4. Control Structures I (Selection) 183

5. Control Structures II (Repetition) 259

6. User-Defined Functions 335

7. User-Defined Simple Data Types, Namespaces,

and the string Type 451

8. Arrays and Strings 505

9. Records (structs) 591

10. Classes and Data Abstraction 629

11. Inheritance and Composition 709

12. Pointers, Classes, Virtual Functions, and Abstract Classes 781

13. Overloading and Templates 853

14. Exception Handling 943

15. Recursion 985

16. Searching, Sorting, and the vector Type 1015

17. Linked Lists 1057

18. Stacks and Queues 1149

BRIEF CONTENTS

APPENDIX A Reserved Words 1249

APPENDIX B Operator Precedence 1251

APPENDIX C Character Sets 1253

APPENDIX D Operator Overloading 1257

APPENDIX E Additional C++ Topics 1259

APPENDIX F Header Files 1281

APPENDIX G Memory Size on a System and Random

Number Generator 1291

APPENDIX H Standard Template Library (STL) 1293

APPENDIX I Answers to Odd-Numbered Exercises 1335

INDEX 1371

vi | C++ Programming: From Problem Analysis to Program Design, Sixth Edition

TABLE OF CONTENTS

Preface xxix

AN OVERVIEW OF COMPUTERS AND PROGRAMMING

LANGUAGES 1

Introduction 2

A Brief Overview of the History of Computers 2

Elements of a Computer System 3

Hardware 4

Central Processing Unit and Main Memory 4

Input /Output Devices 5

Software 6

The Language of a Computer 6

The Evolution of Programming Languages 8

Processing a C++ Program 10

Programming with the Problem

Analysis–Coding–Execution Cycle 12

Programming Methodologies 20

Structured Programming 20

Object-Oriented Programming 20

ANSI/ISO Standard C++ 22

Quick Review 22

Exercises 24

1

BASIC ELEMENTS OF C++ 27

A Quick Look at a C++ Program 28

The Basics of a C++ Program 34

Comments 34

Special Symbols 35

Reserved Words (Keywords) 36

Identifiers 36

Whitespaces 37

Data Types 37

Simple Data Types 38

Floating-Point Data Types 41

Data Types and Variables 42

Arithmetic Operators, Operator Precedence,

and Expressions 43

Order of Precedence 46

Expressions 48

Mixed Expressions 49

Type Conversion (Casting) 51

string Type 53

Variables, Assignment Statements, and Input

Statements 54

Allocating Memory with Constants and Variables 54

Putting Data into Variables 57

Assignment Statement 57

Saving and Using the Value of an Expression 61

Declaring and Initializing Variables 62

Input (Read) Statement 63

Variable Initialization 66

Increment and Decrement Operators 70

Output 72

Preprocessor Directives 79

namespace and Using cin and cout in a Program 80

Using the string Data Type in a Program 81

2

viii | C++ Programming: From Problem Analysis to Program Design, Sixth Edition

Creating a C++ Program 81

Debugging: Understanding and Fixing Syntax Errors 85

Program Style and Form 89

Syntax 89

Use of Blanks 90

Use of Semicolons, Brackets, and Commas 90

Semantics 90

Naming Identifiers 90

Prompt Lines 91

Documentation 92

Form and Style 92

More on Assignment Statements 94

Programming Example: Convert Length 96

Programming Example: Make Change 99

Quick Review 103

Exercises 105

Programming Exercises 114

INPUT/OUTPUT 121

I/O Streams and Standard I/O Devices 122

cin and the Extraction Operator >> 123

Using Predefined Functions in a Program 128

cin and the get Function 131

cin and the ignore Function 133

The putback and peek Functions 134

The Dot Notation between I/O Stream Variables and I/O

Functions: A Precaution 137

Input Failure 138

The clear Function 140

3

Table of Contents | ix

Output and Formatting Output 142

setprecision Manipulator 142

fixed Manipulator 143

showpoint Manipulator 144

setw 147

Additional Output Formatting Tools 149

setfill Manipulator 149

left and right Manipulators 151

Input/Output and the string Type 153

Debugging: Understanding Logic Errors and Debugging

with cout Statements 154

File Input/Output 157

Programming Example: Movie Tickets Sale and

Donation to Charity 161

Programming Example: Student Grade 167

Quick Review 170

Exercises 171

Programming Exercises 177

CONTROL STRUCTURES I (SELECTION) 183

Control Structures 184

Relational Operators 185

Relational Operators and Simple Data Types 186

Comparing Characters 187

Relational Operators and the string Type 188

Logical (Boolean) Operators and Logical Expressions 190

Order of Precedence 192

int Data Type and Logical (Boolean) Expressions 195

bool Data Type and Logical (Boolean) Expressions 196

Selection: if and if...else 196

One-Way Selection 197

Two-Way Selection 200

4

x | C++ Programming: From Problem Analysis to Program Design, Sixth Edition

Compound (Block of) Statements 203

Multiple Selections: Nested if 204

Comparing if...else Statements with a Series of if

Statements 206

Short-Circuit Evaluation 207

Comparing Floating-Point Numbers for Equality:

A Precaution 208

Associativity of Relational Operators: A Precaution 209

Avoiding Bugs by Avoiding Partially Understood Concepts

and Techniques 211

Input Failure and the if Statement 214

Confusion between the Equality Operator (==) and the

Assignment Operator (=) 217

Conditional Operator (?:) 219

Program Style and Form (Revisited): Indentation 219

Using Pseudocode to Develop, Test, and Debug

a Program 220

switch Structures 223

Avoiding Bugs by Avoiding Partially Understood Concepts

and Techniques (Revisited) 229

Terminating a Program with the assert Function 231

Programming Example: Cable Company Billing 233

Quick Review 239

Exercises 240

Programming Exercises 251

CONTROL STRUCTURES II (REPETITION) 259

Why Is Repetition Needed? 260

while Looping (Repetition) Structure 261

Designing while Loops 263

Case 1: Counter-Controlled while Loops 264

Case 2: Sentinel-Controlled while Loops 268

Telephone Digits 271

5

Table of Contents | xi

Case 3: Flag-Controlled while Loops 273

Number Guessing Game 274

Case 4: EOF-Controlled while Loops 277

eof Function 277

More on Expressions in while Statements 282

Programming Example: Fibonacci Number 283

for Looping (Repetition) Structure 287

Programming Example: Classifying Numbers 295

do...while Looping (Repetition) Structure 298

Divisibility Test by 3 and 9 301

Choosing the Right Looping Structure 303

break and continue Statements 303

Nested Control Structures 305

Avoiding Bugs by Avoiding Patches 310

Debugging Loops 313

Quick Review 314

Exercises 315

Programming Exercises 328

USER-DEFINED FUNCTIONS 335

Predefined Functions 336

User-Defined Functions 340

Value-Returning Functions 341

Syntax: Value-Returning function 343

Syntax: Formal Parameter List 343

Function Call 343

Syntax: Actual Parameter List 344

return Statement 344

Syntax: return Statement 344

Function Prototype 348

Syntax: Function Prototype 349

6

xii | C++ Programming: From Problem Analysis to Program Design, Sixth Edition

Value-Returning Functions: Some Peculiarities 350

More Examples of Value-Returning Functions 352

Flow of Execution 361

Void Functions 364

Value Parameters 370

Reference Variables as Parameters 371

Calculate Grade 372

Value and Reference Parameters and Memory Allocation 376

Reference Parameters and Value-Returning Functions 386

Scope of an Identifier 386

Global Variables, Named Constants, and Side Effects 390

Static and Automatic Variables 395

Debugging: Using Drivers and Stubs 396

Function Overloading: An Introduction 399

Functions with Default Parameters 400

Programming Example: Classify Numbers 403

Programming Example: Data Comparison 408

Quick Review 418

Exercises 422

Programming Exercises 436

USER-DEFINED SIMPLE DATA TYPES,

NAMESPACES, AND THE STRING TYPE 451

Enumeration Type 452

Declaring Variables 454

Assignment 454

Operations on Enumeration Types 455

Relational Operators 455

Input /Output of Enumeration Types 456

7

Table of Contents | xiii

Functions and Enumeration Types 459

Declaring Variables When Defining the Enumeration Type 460

Anonymous Data Types 461

typedef Statement 461

Programming Example: The Game of Rock, Paper,

and Scissors 463

Namespaces 471

string Type 476

Additional string Operations 480

Programming Example: Pig Latin Strings 490

Quick Review 494

Exercises 496

Programming Exercises 501

ARRAYS AND STRINGS 505

Arrays 507

Accessing Array Components 509

Processing One-Dimensional Arrays 511

Array Index Out of Bounds 515

Array Initialization During Declaration 516

Partial Initialization of Arrays During Declaration 516

Some Restrictions on Array Processing 517

Arrays as Parameters to Functions 518

Constant Arrays as Formal Parameters 519

Base Address of an Array and Array in Computer Memory 521

Functions Cannot Return a Value of the Type Array 524

Integral Data Type and Array Indices 526

Other Ways to Declare Arrays 527

Searching an Array for a Specific Item 527

Selection Sort 530

C-Strings (Character Arrays) 535

String Comparison 537

Reading and Writing Strings 539

8

xiv | C++ Programming: From Problem Analysis to Program Design, Sixth Edition

String Input 539

String Output 540

Specifying Input/Output Files at Execution Time 541

string Type and Input/Output Files 541

Parallel Arrays 542

Two- and Multidimensional Arrays 543

Accessing Array Components 545

Two-Dimensional Array Initialization During Declaration 546

Two-Dimensional Arrays and Enumeration Types 546

Initialization 549

Print 550

Input 550

Sum by Row 550

Sum by Column 551

Largest Element in Each Row and Each Column 551

Passing Two-Dimensional Arrays as Parameters to Functions 552

Arrays of Strings 555

Arrays of Strings and the string Type 555

Arrays of Strings and C-Strings (Character Arrays) 555

Another Way to Declare a Two-Dimensional Array 556

Multidimensional Arrays 557

Programming Example: Code Detection 559

Programming Example: Text Processing 565

Quick Review 572

Exercises 573

Programming Exercises 584

RECORDS (STRUCTS) 591

Records (structs) 592

Accessing struct Members 594

Assignment 596

Comparison (Relational Operators) 597

Input /Output 598

9

Table of Contents | xv

struct Variables and Functions 598

Arrays versus structs 599

Arrays in structs 600

structs in Arrays 602

structs within a struct 604

Programming Example: Sales Data Analysis 608

Quick Review 622

Exercises 622

Programming Exercises 626

CLASSES AND DATA ABSTRACTION 629

Classes 630

Unified Modeling Language Class Diagrams 634

Variable (Object) Declaration 634

Accessing Class Members 635

Built-in Operations on Classes 636

Assignment Operator and Classes 637

Class Scope 637

Functions and Classes 638

Reference Parameters and Class Objects (Variables) 638

Implementation of Member Functions 639

Accessor and Mutator Functions 644

Order of public and private Members of a Class 647

Constructors 649

Invoking a Constructor 651

Invoking the Default Constructor 651

Invoking a Constructor with Parameters 651

Constructors and Default Parameters 654

Classes and Constructors: A Precaution 654

Arrays of Class Objects (Variables) and Constructors 655

Destructors 657

Data Abstraction, Classes, and Abstract Data Types 658

A struct Versus a class 660

10

xvi | C++ Programming: From Problem Analysis to Program Design, Sixth Edition

Information Hiding 661

Executable Code 665

More Examples of Classes 667

Static Members of a Class 673

Programming Example: Juice Machine 679

Quick Review 693

Exercises 695

Programming Exercises 703

INHERITANCE AND COMPOSITION 709

Inheritance 710

Redefining (Overriding) Member Functions

of the Base Class 713

Constructors of Derived and Base Classes 720

Destructors in a Derived Class 729

Multiple Inclusions of a Header File 730

C++ Stream Classes 731

Protected Members of a Class 733

Inheritance as public, protected, or private 733

(Accessing protected Members in the Derived Class) 734

Composition (Aggregation) 737

Object-Oriented Design (OOD) and Object-Oriented

Programming (OOP) 742

Identifying Classes, Objects, and Operations 744

Programming Example: Grade Report 745

Quick Review 766

Exercises 767

Programming Exercises 776

11

Table of Contents | xvii

POINTERS, CLASSES, VIRTUAL FUNCTIONS,

AND ABSTRACT CLASSES 781

Pointer Data Type and Pointer Variables 782

Declaring Pointer Variables 782

Address of Operator (&) 783

Dereferencing Operator (*) 784

Classes, Structs, and Pointer Variables 789

Initializing Pointer Variables 792

Dynamic Variables 792

Operator new 793

Operator delete 794

Operations on Pointer Variables 798

Dynamic Arrays 800

Functions and Pointers 803

Pointers and Function Return Values 803

Dynamic Two-Dimensional Arrays 804

Shallow versus Deep Copy and Pointers 807

Classes and Pointers: Some Peculiarities 809

Destructor 809

Assignment Operator 811

Copy Constructor 812

Inheritance, Pointers, and Virtual Functions 819

Classes and Virtual Destructors 826

Abstract Classes and Pure Virtual Functions 826

Address of Operator and Classes 835

Quick Review 837

Exercises 840

Programming Exercises 849

12

xviii | C++ Programming: From Problem Analysis to Program Design, Sixth Edition

OVERLOADING AND TEMPLATES 853

Why Operator Overloading Is Needed 854

Operator Overloading 855

Syntax for Operator Functions 856

Overloading an Operator: Some Restrictions 856

Pointer this 857

Friend Functions of Classes 861

Operator Functions as Member Functions and Nonmember

Functions 864

Overloading Binary Operators 867

Overloading the Stream Insertion (<<) and Extraction (>>)

Operators 873

Overloading the Assignment Operator (=) 878

Overloading Unary Operators 886

Operator Overloading: Member versus Nonmember 892

Classes and Pointer Member Variables (Revisited) 893

Operator Overloading: One Final Word 893

Programming Example: clockType 893

Programming Example: Complex Numbers 902

Overloading the Array Index (Subscript) Operator ([]) 907

Programming Example: newString 909

Function Overloading 915

Templates 916

Function Templates 916

Class Templates 918

Quick Review 926

Exercises 928

Programming Exercises 934

13

Table of Contents | xix

EXCEPTION HANDLING 943

Handling Exceptions within a Program 944

C++ Mechanisms of Exception Handling 948

try/catch Block 948

Using C++ Exception Classes 955

Creating Your Own Exception Classes 959

Rethrowing and Throwing an Exception 968

Exception-Handling Techniques 972

Terminate the Program 972

Fix the Error and Continue 972

Log the Error and Continue 974

Stack Unwinding 974

Quick Review 978

Exercises 980

Programming Exercises 984

RECURSION 985

Recursive Definitions 986

Direct and Indirect Recursion 988

Infinite Recursion 988

Problem Solving Using Recursion 989

Tower of Hanoi: Analysis 999

Recursion or Iteration? 999

Programming Example: Converting a Number from

Binary to Decimal 1001

Programming Example: Converting a Number from

Decimal to Binary 1005

Quick Review 1008

Exercises 1009

Programming Exercises 1012

14

15

xx | C++ Programming: From Problem Analysis to Program Design, Sixth Edition

SEARCHING, SORTING, AND THE VECTOR TYPE 1015

List Processing 1016

Searching 1016

Bubble Sort 1017

Insertion Sort 1021

Binary Search 1025

Performance of Binary Search 1028

vector Type (class) 1029

Programming Example: Election Results 1034

Quick Review 1049

Exercises 1050

Programming Exercises 1053

LINKED LISTS 1057

Linked Lists 1058

Linked Lists: Some Properties 1059

Deletion 1065

Building a Linked List 1066

Linked List as an ADT 1071

Structure of Linked List Nodes 1072

Member Variables of the class linkedListType 1072

Linked List Iterators 1073

Print the List 1079

Length of a List 1079

Retrieve the Data of the First Node 1080

Retrieve the Data of the Last Node 1080

Begin and End 1080

Copy the List 1081

Destructor 1082

Copy Constructor 1082

Overloading the Assignment Operator 1083

16

17

Table of Contents | xxi

Unordered Linked Lists 1083

Search the List 1084

Insert the First Node 1085

Insert the Last Node 1086

Header File of the Unordered Linked List 1091

Ordered Linked Lists 1092

Search the List 1093

Insert a Node 1094

Insert First and Insert Last 1098

Delete a Node 1099

Header File of the Ordered Linked List 1100

Print a Linked List in Reverse Order

(Recursion Revisited) 1103

printListReverse 1105

Doubly Linked Lists 1106

Default Constructor 1109

isEmptyList 1109

Destroy the List 1109

Initialize the List 1110

Length of the List 1110

Print the List 1110

Reverse Print the List 1110

Search the List 1111

First and Last Elements 1111

Circular Linked Lists 1117

Programming Example: DVD Store 1118

Quick Review 1138

Exercises 1138

Programming Exercises 1144

xxii | C++ Programming: From Problem Analysis to Program Design, Sixth Edition

STACKS AND QUEUES 1149

Stacks 1150

Stack Operations 1152

Implementation of Stacks as Arrays 1154

Initialize Stack 1157

Empty Stack 1158

Full Stack 1158

Push 1158

Return the Top Element 1160

Pop 1160

Copy Stack 1162

Constructor and Destructor 1162

Copy Constructor 1163

Overloading the Assignment Operator (=) 1163

Stack Header File 1164

Programming Example: Highest GPA 1168

Linked Implementation of Stacks 1172

Default Constructor 1175

Empty Stack and Full Stack 1175

Initialize Stack 1176

Push 1176

Return the Top Element 1178

Pop 1178

Copy Stack 1180

Constructors and Destructors 1181

Overloading the Assignment Operator (=) 1181

Stack as Derived from the class unorderedLinkedList 1184

Application of Stacks: Postfix Expressions Calculator 1185

Main Algorithm 1188

Function evaluateExpression 1188

Function evaluateOpr 1190

Function discardExp 1192

Function printResult 1192

18

Table of Contents | xxiii

Removing Recursion: Nonrecursive Algorithm to

Print a Linked List Backward 1195

Queues 1199

Queue Operations 1200

Implementation of Queues as Arrays 1202

Linked Implementation of Queues 1211

Queue Derived from the

class unorderedLinkedListType 1216

Application of Queues: Simulation 1217

Designing a Queuing System 1218

Customer 1219

Server 1222

Server List 1225

Waiting Customers Queue 1230

Main Program 1232

Quick Review 1237

Exercises 1238

Programming Exercises 1245

APPENDIX A: RESERVED WORDS 1249

APPENDIX B: OPERATOR PRECEDENCE 1251

APPENDIX C: CHARACTER SETS 1253

ASCII (American Standard Code for Information

Interchange) 1253

EBCDIC (Extended Binary Coded Decimal

Interchange Code) 1254

APPENDIX D: OPERATOR OVERLOADING 1257

xxiv | C++ Programming: From Problem Analysis to Program Design, Sixth Edition

APPENDIX E: ADDITIONAL C++ TOPICS 1259

Binary (Base 2) Representation of a Nonnegative

Integer 1259

Converting a Base 10 Number to a Binary Number

(Base 2) 1259

Converting a Binary Number (Base 2) to Base 10 1261

Converting a Binary Number (Base 2) to Octal (Base 8)

and Hexadecimal (Base 16) 1262

More on File Input/Output 1264

Binary Files 1264

Random File Access 1270

Naming Conventions of Header Files in ANSI/ISO

Standard C++ and Standard C++ 1278

APPENDIX F: HEADER FILES 1281

Header File cassert (assert.h) 1281

Header File cctype (ctype.h) 1282

Header File cfloat (float.h) 1283

Header File climits (limits.h) 1284

Header File cmath (math.h) 1286

Header File cstddef (stddef.h) 1287

Header File cstring (string.h) 1287

APPENDIX G: MEMORY SIZE ON A SYSTEM AND

RANDOM NUMBER GENERATOR 1291

Random Number Generator 1292

APPENDIX H: STANDARD TEMPLATE LIBRARY (STL) 1293

Components of the STL 1293

Container Types 1294

Sequence Containers 1294

Sequence Container: Vectors 1294

Table of Contents | xxv

Member Functions Common to All Containers 1303

Member Functions Common to Sequence Containers 1305

copy Algorithm 1306

Sequence Container: deque 1310

Sequence Container: list 1313

Iterators 1318

IOStream Iterators 1319

Container Adapters 1319

Algorithms 1323

STL Algorithm Classification 1323

STL Algorithms 1326

Functions fill and fill_n 1326

Functions find and find_if 1328

Functions remove and replace 1329

Functions search, sort, and binary_search 1331

APPENDIX I: ANSWERS TO ODD-NUMBERED

EXERCISES 1335

Chapter 1 1335

Chapter 2 1338

Chapter 3 1340

Chapter 4 1341

Chapter 5 1344

Chapter 6 1347

Chapter 7 1350

Chapter 8 1351

Chapter 9 1353

Chapter 10 1354

Chapter 11 1358

Chapter 12 1360

xxvi | C++ Programming: From Problem Analysis to Program Design, Sixth Edition

Chapter 13 1361

Chapter 14 1362

Chapter 15 1364

Chapter 16 1364

Chapter 17 1366

Chapter 18 1367

INDEX 1371

Table of Contents | xxvii

This page intentionally left blank

WELCOME TO THE SIXTH EDITION OF C++ Programming: From Problem Analysis to Program

Design. Designed for a first Computer Science (CS1) C++ course, this text provides a

breath of fresh air to you and your students. The CS1 course serves as the cornerstone of

the Computer Science curriculum. My primary goal is to motivate and excite all CS1

students, regardless of their level. Motivation breeds excitement for learning. Motivation

and excitement are critical factors that lead to the success of the programming student. This

text is a culmination and development of my classroom notes throughout more than fifty

semesters of teaching successful programming to Computer Science students.

C++ Programming: From Problem Analysis to Program Design started as a collection of brief

examples, exercises, and lengthy programming examples to supplement the books that were

in use at our university. It soon turned into a collection large enough to develop into a text.

The approach taken in this book is, in fact, driven by the students’ demand for clarity and readability.

The material was written and rewritten until the students felt comfortable with it. Most of the

examples in this book resulted from student interaction in the classroom.

As with any profession, practice is essential. Cooking students practice their recipes.

Budding violinists practice their scales. New programmers must practice solving

problems and writing code. This is not a C++ cookbook. We do not simply list the

C++ syntax followed by an example; we dissect the ‘‘why’’ behind all the concepts. The

crucial question of ‘‘why?’’ is answered for every topic when first introduced. This

technique offers a bridge to learning C++. Students must understand the ‘‘why?’’ in

order to be motivated to learn.

Traditionally, a C++ programming neophyte needed a working knowledge of another

programming language. This book assumes no prior programming experience. However,

some adequate mathematics background, such as college algebra, is required.

PREFACE

Warning: This text can be expected to create a serious reduction in the demand for

programming help during your office hours. Other side effects include significantly

diminished student dependency on others while learning to program.

Changes in the Sixth Edition
The sixth edition contains 200 new exercises, and more than 25 new programming exercises.

Earlier editions contain two chapters on user-defined functions. In this edition, without

sacrificing the rigor, these chapters are combined into one chapter so that user-defined functions

can be learned without interruption. Since Chapters 6 and 7 of earlier editions have been

combined into one chapter, the sixth edition contains one less chapter than the earlier editions.

The first part of Chapter 2 is rewritten and reorganized. Chapter 10, on searching and sorting

algorithms and the class vector is now Chapter 16. However, the selection sorting algorithm is

moved from Chapter 10 to Chapter 8 (arrays and string). So in addition to learning about array

and strings, the reader can also study a sequential search algorithm and a selection sort algorithm.

Even though additional searching and sorting algorithms are covered in Chapter 16, Chapter 16

can be studied right after studying Chapter 8. This edition also includes various new examples,

such as Examples 3-4, 3-8, 3-9, 4-8, 5-3, 5-4, 6-1, 8-4, 10-8, 11-2, 12-5, and 14-14.

Approach
The programming language C++, which evolved from C, is no longer considered an

industry-only language. Numerous colleges and universities use C++ for their first program-

ming language course. C++ is a combination of structured programming and object-oriented

programming, and this book addresses both types.

This book can be easily divided into two parts: structured programming and object-oriented

programming. The first 9 chapters form the structured programming part; Chapters 10

through 14, 17, and 18 form the object-oriented part. However, only the first six chapters

are essential to move on to the object-oriented portion.

In July 1998, ANSI/ISO Standard C++ was officially approved. This book focuses on ANSI/

ISO Standard C++. Even though the syntax of Standard C++ and ANSI/ISO Standard C++

is very similar, Chapter 7 discusses some of the features of ANSI/ISO Standard C++ that are

not available in Standard C++.

Chapter 1 briefly reviews the history of computers and programming languages. The reader can

quickly skim through this chapter and become familiar with some of the hardware components

and the software parts of the computer. This chapter contains a section on processing a C++

program. This chapter also describes structured and object-oriented programming.

Chapter 2 discusses the basic elements of C++. After completing this chapter, students

become familiar with the basics of C++ and are ready to write programs that are complicated

enough to do some computations. Input/output is fundamental to any programming

language. It is introduced early, in Chapter 3, and is covered in detail.

Chapters 4 and 5 introduce control structures to alter the sequential flow of execution.

Chapter 6 studies user-defined functions. It is recommended that readers with no prior

programming background spend extra time on Chapter 6. Several examples are provided to

help readers understand the concepts of parameter passing and the scope of an identifier.

xxx | C++ Programming: From Problem Analysis to Program Design, Sixth Edition

Chapter 7 discusses the user-defined simple data type (enumeration type), the namespace
mechanism of ANSI/ISO Standard C++, and the string type. The earlier versions of C did

not include the enumeration type. Enumeration types have very limited use; their main

purpose is to make the program readable. This book is organized such that readers can skip

the section on enumeration types during the first reading without experiencing any disconti-

nuity, and then later go through this section.

Chapter 8 discusses arrays in detail. This chapter also discusses a sequential search algorithm

and a selection sort algorithm. Chapter 9 introduces records (structs). The introduction of

structs in this book is similar to C structs. This chapter is optional; it is not a prerequisite
for any of the remaining chapters.

Chapter 10 begins the study of object-oriented programming (OOP) and introduces classes.

The first half of this chapter shows how classes are defined and used in a program. The second

half of the chapter introduces abstract data types (ADTs). This chapter shows how classes in

C++ are a natural way to implement ADTs. Chapter 11 continues with the fundamentals of

object-oriented design (OOD) and OOP and discusses inheritance and composition. It

explains how classes in C++ provide a natural mechanism for OOD and how C++ supports

OOP. Chapter 11 also discusses how to find the objects in a given problem.

Chapter 12 studies pointers in detail. After introducing pointers and how to use them in a

program, this chapter highlights the peculiarities of classes with pointer data members and

how to avoid them. Moreover, this chapter also discusses how to create and work with

dynamic two-dimensional arrays. Chapter 12 also discusses abstract classes and a type of

polymorphism accomplished via virtual functions.

Chapter 13 continues the study of OOD andOOP. In particular, it studies polymorphism in C++.

The chapter specifically discusses two types of polymorphism—overloading and templates.

Chapter 14 discusses exception handling in detail. Chapter 15 introduces and discusses recursion.

Moreover, this is a stand-alone chapter, so it can be studied anytime after Chapter 9. Chapter 16

describes various searching and sorting algorithms as well as an introduction to the vector class.

Chapters 17 and 18 are devoted to the study of data structures. Discussed in detail are linked

lists in Chapter 17 and stacks and queues in Chapter 18. The programming code developed in

these chapters is generic. These chapters effectively use the fundamentals of OOD.

Appendix A lists the reserved words in C++. Appendix B shows the precedence and

associativity of the C++ operators. Appendix C lists the ASCII (American Standard Code

for Information Interchange) and EBCDIC (Extended Binary Coded Decimal Interchange

Code) character sets. Appendix D lists the C++ operators that can be overloaded.

Appendix E has three objectives. First, we discuss how to convert a number from decimal to

binary and binary to decimal. We then discuss binary and random access files in detail.

Finally, we describe the naming conventions of the header files in both ANSI/ISO Standard

C++ and Standard C++. Appendix F discusses some of the most widely used library

routines, and includes the names of the standard C++ header files. The programs in

Appendix G show how to print the memory size for the built-in data types on your system

as well as how to use a random number generator. Appendix H gives an introduction to

Preface | xxxi

the Standard Template Library, and Appendix I provides the answers to odd-numbered

exercises in the book.

How to Use the Book
This book can be used in various ways. Figure 1 shows the dependency of the chapters.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7 Chapter 8*

Chapter 16 Chapter 9 Chapter 10

Chapter 11 Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 17

Chapter 18

FIGURE 1 Chapter dependency diagram

xxxii | C++ Programming: From Problem Analysis to Program Design, Sixth Edition

In Figure 1, dotted lines mean that the preceding chapter is used in one of the sections of the

chapter and is not necessarily a prerequisite for the next chapter. For example, Chapter 8

covers arrays in detail. In Chapters 9 and 10, we show the relationship between arrays and

structs and arrays and classes, respectively. However, if Chapter 10 is studied before

Chapter 8, then the section dealing with arrays in Chapter 10 can be skipped without any

discontinuation. This particular section can be studied after studying Chapter 8.

It is recommended that the first six chapters be covered sequentially. After covering the first

six chapters, if the reader is interested in learning OOD and OOP early, then Chapter 10 can

be studied right after Chapter 6. Chapter 7 can be studied anytime after Chapter 6.

After studying the first six chapters in sequence, some of the approaches are:

1. Study chapters in the sequence: 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18.

2. Study chapters in the sequence: 8, 10, 12, 13, 11, 15, 17, 18, 16, 15.

3. Study chapters in the sequence: 10, 8, 16, 12, 13, 11, 15, 17, 18, 14.

4. Study chapters in the sequence: 10, 8, 12, 13, 11, 15, 17, 18, 16, 14.

Preface | xxxiii

FEATURES OF THE BOOK

One video is

available for each

chapter on the

optional

CourseMate that

accompanies this

text. Each video is

designed to

explain how a

program works.

Four-color interior

design shows

accurate C++

code and related

comments.

More than 300

visual diagrams,

both extensive

and exhaustive,

illustrate difficult

concepts.

Numbered Examples

illustrate the key

concepts with their

relevant code. The

programming code in

these examples is

followed by a Sample

Run. An explanation

then follows that

describes what each

line in the code does.

Notes highlight

important facts

about the concepts

introduced in the

chapter.

Programming Examples are

where everything in the

chapter comes together.

These examples teach

problem-solving skills and

include the concrete stages

of input, output, problem

analysis and algorithm

design, class design, and

a program listing. All

programs are designed to

be methodical, consistent,

and user-friendly. Each

Programming Example

starts with a problem

analysis that is followed

by the algorithm design

and/or class design, and

every step of the algorithm

is coded in C++. In

addition to helping

students learn problem-

solving techniques, these

detailed programs show

the student how to

implement concepts in

an actual C++ program.

We strongly recommend

that students study the

Programming Examples

carefully in order to learn

C++ effectively. Students

typically learn much from

completely worked-out

programs. Further,

programming examples considerably reduce the students’ need for help outside the classroom and bolster the

students’ self-confidence.

Exercises further

reinforce learning

and ensure that

students have, in

fact, mastered the

material.

Programming

Exercises challenge

students to write

C++ programs with

a specified

outcome.

CourseMate
Make the most of your study time with everything you need to succeed in one place. Read

your textbook, highlight and take notes, review flashcards, watch videos, and take practice

quizzes online. Learn more at www.cengage.com/coursemate.

The C++ Programming CourseMate includes the following features:

• Videos step you through programs in each chapter, while integrated quizzes provide

immediate feedback to gauge your understanding.

• Lab Manual lets you apply material with a wealth of practical, hands-on exercises.

• Interactive Quizzes and Study Games drill key chapter concepts, while open-

ended Assignments develop critical thinking skills.

• Interactive eBook, flashcards, and more!

Instructors may add CourseMate to the textbook package, or students may purchase

CourseMate directly through www.cengagebrain.com.

Source Code
The source code, in ANSI/ISO Standard C++, is available for students to download at

www.cengagebrain.com and through the CourseMate available for this text. These files are also

available to instructors on the Instructor Resources CD and at login.cengage.com. The input

files needed to run some of the programs are also included with the source code.

Instructor Resources
The following supplemental materials are available when this book is used in a classroom

setting. All instructor teaching tools are available with this book on a single CD-ROM. Many

are also available for download at login.cengage.com.

SUPPLEMENTAL

RESOURCES

Electronic Instructor’s Manual
The Instructor’s Manual follows the text chapter-by-chapter and includes material to assist in

planning and organizing an effective, engaging course.

The Manual includes Overviews, Chapter Objectives, Teaching Tips, Quick Quizzes, Class

Discussion Topics, Additional Projects, Additional Resources, and Key Terms. A Sample

Syllabus is also available.

ExamView�

This textbook is accompanied by ExamView, a powerful testing software package that allows

instructors to create and administer printed, computer (LAN-based), and Internet exams.

ExamView includes hundreds of questions that correspond to the topics covered in this

text, enabling students to generate detailed study guides that include page references for

further review. These computer-based and Internet testing components allow students to

take exams at their computers, and save the instructor time because each exam is graded

automatically. The test banks are also available in Blackboard, WebCT, and Angel

compatible formats.

PowerPoint Presentations
This book comes with PowerPoint slides to accompany each chapter. Slides may be used to

guide classroom presentation, to make available to students for chapter review, or to print as

classroom handouts. Instructors can add their own slides for additional topics that they

introduce to the class, as well as customize the slides with the complete Figure Files from

the text.

Solution Files
The solution files for all Programming Exercises, in ANSI/ISO C++, are available at

login.cengage.com, and are also available on the Instructor Resources CD-ROM. The input files

needed to run some of the Programming Exercises are also included with the solution files.

Supplemental Resources | xli

There are many people that I must thank who, one way or another, contributed to the success

of this book. First, I would like to thank all the students who, during the preparation, were

spontaneous in telling me if certain portions needed to be reworded for better understanding

and clearer reading. Next, I would like to thank those who e-mailed numerous comments to

help improve upon the next edition. I am thankful to Professors S.C. Cheng and Randall

Crist for constantly supporting this project. I am also very grateful to the reviewers who

reviewed earlier versions of this book and offered many critical suggestions on how to

improve it.

I owe a great deal to the following reviewers who made helpful, critical suggestions for

improving this edition of the text: Gary Bricher, Lane Community College; Cliff Brozo,

Monroe College; and Marie Pullan, Farmingdale State College.

Next, I express thanks to Brandi Shailer, Acquisition Editor, for recognizing the importance

and uniqueness of this project. All this would not have been possible without the careful

planning of Senior Product Manager, Alyssa Pratt. I extend my sincere thanks to Alyssa, as

well as to Content Project Manager, Mathew Hutchinson. My special thanks are to Stephanie

Lorenz for using her expertise in carefully editing the videos. I also thank Sreemannarayana

Reddy of Integra Software Services for assisting us in keeping the project on schedule.

I would like to thank Chris Scriver and Serge Palladino of the QA department at Cengage

Learning for patiently and carefully testing the code and discovering typos and errors.

I am thankful to my parents for their blessings.

Finally, I am thankful for the support of my wife Sadhana and especially my daughter, Shelly,

to whom this book is dedicated. They cheered me up whenever I was overwhelmed during

the writing of this book.

I welcome any comments concerning the text. Comments may be forwarded to the following

e-mail address: malik@creighton.edu

D. S. Malik

ACKNOWLEDGMENTS

AN OVERVIEW OF

COMPUTERS AND

PROGRAMMING

LANGUAGES
IN THIS CHAPTER , YOU WILL :

. Learn about different types of computers

. Explore the hardware and software components of a computer system

. Learn about the language of a computer

. Learn about the evolution of programming languages

. Examine high-level programming languages

. Discover what a compiler is and what it does

. Examine a C++ program

. Explore how a C++ program is processed

. Learn what an algorithm is and explore problem-solving techniques

. Become aware of structured design and object-oriented design programming methodologies

. Become aware of Standard C++ and ANSI/ISO Standard C++

1C H A P T E R

Introduction
Terms such as ‘‘the Internet,’’ which were unfamiliar just 20 years ago are now common.
Students in elementary school regularly ‘‘surf ’’ the Internet and use computers to design their
classroom projects. Many people use the Internet to look for information and to commu-
nicate with others. This is all made possible by the availability of different software, also
known as computer programs. Without software, a computer is useless. Software is devel-
oped by using programming languages. The programming language C++ is especially well
suited for developing software to accomplish specific tasks. Our main objective is to help you
learn how to write programs in the C++ programming language. Before you begin
programming, it is useful to understand some of the basic terminology and different
components of a computer. We begin with an overview of the history of computers.

A Brief Overview of the History of Computers
The first device known to carry out calculations was the abacus. The abacus was invented in
Asia but was used in ancient Babylon, China, and throughout Europe until the late middle
ages. The abacus uses a system of sliding beads in a rack for addition and subtraction. In 1642,
the French philosopher and mathematician Blaise Pascal invented the calculating device
called the Pascaline. It had eight movable dials on wheels and could calculate sums up to
eight figures long. Both the abacus and Pascaline could perform only addition and subtrac-
tion operations. Later in the 17th century, Gottfried von Leibniz invented a device that was
able to add, subtract, multiply, and divide. In 1819, Joseph Jacquard, a French weaver,
discovered that the weaving instructions for his looms could be stored on cards with holes
punched in them. While the cards moved through the loom in sequence, needles passed
through the holes and picked up threads of the correct color and texture. A weaver could
rearrange the cards and change the pattern being woven. In essence, the cards programmed a
loom to produce patterns in cloth. The weaving industry may seem to have little in common
with the computer industry. However, the idea of storing information by punching holes on
a card proved to be of great importance in the later development of computers.

In the early and mid-1800s, Charles Babbage, an English mathematician and physical
scientist, designed two calculating machines: the difference engine and the analytical
engine. The difference engine could perform complex operations such as squaring numbers
automatically. Babbage built a prototype of the difference engine, but did not build the
actual device. The first complete difference engine was completed in London in 2002,
153 years after it was designed. It consists of 8,000 parts, weighs five tons, and measures 11
feet long. A replica of the difference engine was completed in 2008 and is on display at the
Computer History Museum in Mountain View, California (http://www.computerhistory.org/
babbage/). Most of Babbage’s work is known through the writings of his colleague Ada
Augusta, Countess of Lovelace. Augusta is considered the first computer programmer.

At the end of the 19th century, U.S. Census officials needed help in accurately tabulating
the census data. Herman Hollerith invented a calculating machine that ran on electricity
and used punched cards to store data. Hollerith’s machine was immensely successful.

2 | Chapter 1: An Overview of Computers and Programming Languages

Hollerith founded the Tabulating Machine Company, which later became the computer
and technology corporation known as IBM.

The first computer-like machine was the Mark I. It was built, in 1944, jointly by IBM and
Harvard University under the leadership of Howard Aiken. Punched cards were used to feed
data into the machine. TheMark I was 52 feet long, weighed 50 tons, and had 750,000 parts.
In 1946, the ENIAC (Electronic Numerical Integrator and Calculator) was built at the
University of Pennsylvania. It contained 18,000 vacuum tubes and weighed some 30 tons.

The computers that we know today use the design rules given by John von Neumann in
the late 1940s. His design included components such as an arithmetic logic unit, a control
unit, memory, and input/output devices. These components are described in the next
section. Von Neumann’s computer design makes it possible to store the programming
instructions and the data in the same memory space. In 1951, the UNIVAC (Universal
Automatic Computer) was built and sold to the U.S. Census Bureau.

In 1956, the invention of transistors resulted in smaller, faster, more reliable, and more
energy-efficient computers. This era also saw the emergence of the software development
industry, with the introduction of FORTRAN and COBOL, two early programming
languages. In the next major technological advancement, transistors were replaced by tiny
integrated circuits, or ‘‘chips.’’ Chips are smaller and cheaper than transistors and can contain
thousands of circuits on a single chip. They give computers tremendous processing speed.

In 1970, the microprocessor, an entire CPU on a single chip, was invented. In 1977,
Stephen Wozniak and Steven Jobs designed and built the first Apple computer in their
garage. In 1981, IBM introduced its personal computer (PC). In the 1980s, clones of the
IBM PC made the personal computer even more affordable. By the mid-1990s, people
from many walks of life were able to afford them. Computers continue to become faster
and less expensive as technology advances.

Modern-day computers are powerful, reliable, and easy to use. They can accept spoken-word
instructions and imitate human reasoning through artificial intelligence. Expert systems assist
doctors in making diagnoses. Mobile computing applications are growing significantly. Using
hand-held devices, delivery drivers can access global positioning satellites (GPS) to verify
customer locations for pickups and deliveries. Cell phones permit you to check your e-mail,
make airline reservations, see how stocks are performing, and access your bank accounts.

Although there are several categories of computers, such as mainframe, midsize, and
micro, all computers share some basic elements, described in the next section.

Elements of a Computer System
A computer is an electronic device capable of performing commands. The basic commands
that a computer performs are input (get data), output (display result), storage, and perfor-
mance of arithmetic and logical operations. There are two main components of a computer
system: hardware and software. In the next few sections, we give a brief overview of these
components. Let’s look at hardware first.

1

Elements of a Computer System | 3

Hardware
Major hardware components include the central processing unit (CPU); main memory
(MM), also called random access memory (RAM); input/output devices; and secondary
storage. Some examples of input devices are the keyboard, mouse, and secondary storage.
Examples of output devices are the screen, printer, and secondary storage. Let’s look at
each of these components in greater detail.

Central Processing Unit and Main Memory
The central processing unit is the ‘‘brain’’ of the computer and the single most expensive
piece of hardware in a computer. The more powerful the CPU, the faster the computer.
Arithmetic and logical operations are carried out inside the CPU. Figure 1-1(a) shows some
hardware components.

Main memory, or random access memory, is connected directly to the CPU. All
programs must be loaded into main memory before they can be executed. Similarly, all
data must be brought into main memory before a program can manipulate it. When the
computer is turned off, everything in main memory is lost.

Main memory is an ordered sequence of cells, called memory cells. Each cell has a
unique location in main memory, called the address of the cell. These addresses help
you access the information stored in the cell. Figure 1-1(b) shows main memory with
some data.

Central

Processing

Unit (CPU)

Main Memory

Secondary Storage

Input

Device

Output

Device

(b)(a)

2001

2000

1001

1000 54

A
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Main Memory

FIGURE 1-1 Hardware components of a computer and main memory

4 | Chapter 1: An Overview of Computers and Programming Languages

Today’s computers come with main memory consisting of millions to billions of cells.
Although Figure 1-1(b) shows data stored in cells, the content of a cell can be either a
programming instruction or data. Moreover, this figure shows the data as numbers and
letters. However, as explained later in this chapter, main memory stores everything as
sequences of 0s and 1s. The memory addresses are also expressed as sequences of 0s and 1s.

SECONDARY STORAGE

Because programs and data must be stored in main memory before processing and
because everything in main memory is lost when the computer is turned off, information
stored in main memory must be transferred to some other device for permanent storage.
The device that stores information permanently (unless the device becomes unusable or
you change the information by rewriting it) is called secondary storage. To be able to
transfer information from main memory to secondary storage, these components must
be directly connected to each other. Examples of secondary storage are hard disks, flash
drives, floppy disks, ZIP disks, CD-ROMs, and tapes.

Input /Output Devices
For a computer to perform a useful task, it must be able to take in data and programs and
display the results of calculations. The devices that feed data and programs into computers
are called input devices. The keyboard, mouse, and secondary storage are examples of
input devices. The devices that the computer uses to display results are called output

devices. A monitor, printer, and secondary storage are examples of output devices.
Figure 1-2 shows some input and output devices.

1

Input devices Output devices

FIGURE 1-2 Some input and output devices

Elements of a Computer System | 5

Software
Software are programs written to perform specific tasks. For example, word processors
are programs that you use to write letters, papers, and even books. All software is written
in programming languages. There are two types of programs: system programs and
application programs.

System programs control the computer. The system program that loads first when you
turn on your PC is called the operating system. Without an operating system, the
computer is useless. The operating system monitors the overall activity of the computer
and provides services. Some of these services include memory management, input/output
activities, and storage management. The operating system has a special program that
organizes secondary storage so that you can conveniently access information.

Application programs perform a specific task. Word processors, spreadsheets, and
games are examples of application programs. The operating system is the program that
runs application programs.

The Language of a Computer
When you press A on your keyboard, the computer displays A on the screen. But what is
actually stored inside the computer’s main memory? What is the language of the
computer? How does it store whatever you type on the keyboard?

Remember that a computer is an electronic device. Electrical signals are used inside the
computer to process information. There are two types of electrical signals: analog and
digital. Analog signals are continuous wave forms used to represent such things as
sound. Audio tapes, for example, store data in analog signals. Digital signals represent
information with a sequence of 0s and 1s. A 0 represents a low voltage, and a 1

represents a high voltage. Digital signals are more reliable carriers of information than
analog signals and can be copied from one device to another with exact precision. You
might have noticed that when you make a copy of an audio tape, the sound quality of
the copy is not as good as the original tape. On the other hand, when you copy a CD,
the copy is as good as the original. Computers use digital signals.

Because digital signals are processed inside a computer, the language of a computer, called
machine language, is a sequence of 0s and 1s. The digit 0 or 1 is called a binary digit,
or bit. Sometimes a sequence of 0s and 1s is referred to as a binary code or a binary
number.

Bit: A binary digit 0 or 1.

A sequence of eight bits is called a byte. Moreover, 210 bytes = 1024 bytes is called
a kilobyte (KB). Table 1-1 summarizes the terms used to describe various numbers
of bytes.

6 | Chapter 1: An Overview of Computers and Programming Languages

Every letter, number, or special symbol (such as * or {) on your keyboard is encoded as a
sequence of bits, each having a unique representation. The most commonly used
encoding scheme on personal computers is the seven-bit American Standard Code

for Information Interchange (ASCII). The ASCII data set consists of 128 characters
numbered 0 through 127. That is, in the ASCII data set, the position of the first character
is 0, the position of the second character is 1, and so on. In this scheme, A is encoded as
the binary number 1000001. In fact, A is the 66th character in the ASCII character code,
but its position is 65 because the position of the first character is 0. Furthermore, the
binary number 1000001 is the binary representation of 65. The character 3 is encoded as
0110011. Note that in the ASCII character set, the position of the character 3 is 51, so
the character 3 is the 52nd character in the ASCII set. It also follows that 0110011 is the
binary representation of 51. For a complete list of the printable ASCII character set, refer
to Appendix C.

The number system that we use in our daily life is called the decimal system, or base 10.

Because everything inside a computer is represented as a sequence of 0s and 1s, that is,

binary numbers, the number system that a computer uses is called binary, or base 2. We

indicated in the preceding paragraph that the number 1000001 is the binary representation

of 65. Appendix E describes how to convert a number from base 10 to base 2 and vice versa.

1
TABLE 1-1 Binary Units

Unit Symbol Bits/Bytes

Byte 8 bits

Kilobyte KB 210 bytes ¼ 1024 bytes

Megabyte MB 1024 KB ¼ 210 KB ¼ 220 bytes ¼ 1,048,576 bytes

Gigabyte GB 1024MB¼ 210MB¼ 230 bytes¼ 1,073,741,824 bytes

Terabyte TB
1024 GB ¼ 210 GB ¼ 240 bytes ¼
1,099,511,627,776 bytes

Petabyte PB
1024 TB ¼ 210 TB ¼ 250 bytes ¼
1,125,899,906,842,624 bytes

Exabyte EB
1024 PB ¼ 210 PB ¼ 260 bytes ¼
1,152,921,504,606,846,976 bytes

Zettabyte ZB
1024 EB ¼ 210 EB ¼ 270 bytes ¼
1,180,591,620,717,411,303,424 bytes

The Language of a Computer | 7

Inside the computer, every character is represented as a sequence of eight bits, that is, as
a byte. Now the eight-bit binary representation of 65 is 01000001. Note that we added 0

to the left of the seven-bit representation of 65 to convert it to an eight-bit representa-
tion. Similarly, the eight-bit binary representation of 51 is 00110011.

ASCII is a seven-bit code. Therefore, to represent each ASCII character inside the
computer, you must convert the seven-bit binary representation of an ASCII character
to an eight-bit binary representation. This is accomplished by adding 0 to the left of the
seven-bit ASCII encoding of a character. Hence, inside the computer, the character
A is represented as 01000001, and the character 3 is represented as 00110011.

There are other encoding schemes, such as EBCDIC (used by IBM) and Unicode,
which is a more recent development. EBCDIC consists of 256 characters; Unicode
consists of 65,536 characters. To store a character belonging to Unicode, you need
two bytes.

The Evolution of Programming Languages
The most basic language of a computer, the machine language, provides program
instructions in bits. Even though most computers perform the same kinds of operations,
the designers of the computer may have chosen different sets of binary codes to perform
the operations. Therefore, the machine language of one machine is not necessarily the
same as the machine language of another machine. The only consistency among com-
puters is that in any modern computer, all data is stored and manipulated as binary codes.

Early computers were programmed in machine language. To see how instructions are
written in machine language, suppose you want to use the equation:

wages = rate � hours

to calculate weekly wages. Further, suppose that the binary code 100100 stands for load,
100110 stands for multiplication, and 100010 stands for store. In machine language, you
might need the following sequence of instructions to calculate weekly wages:

100100 010001
100110 010010
100010 010011

To represent the weekly wages equation in machine language, the programmer had to
remember the machine language codes for various operations. Also, to manipulate
data, the programmer had to remember the locations of the data in the main memory.
This need to remember specific codes made programming not only very difficult, but also
error prone.

Assembly languages were developed to make the programmer’s job easier. In assembly
language, an instruction is an easy-to-remember form called a mnemonic. Table 1-2
shows some examples of instructions in assembly language and their corresponding
machine language code.

8 | Chapter 1: An Overview of Computers and Programming Languages

1

Using assembly language instructions, you can write the equation to calculate the weekly
wages as follows:

LOAD rate
MULT hours
STOR wages

As you can see, it is much easier to write instructions in assembly language. However,
a computer cannot execute assembly language instructions directly. The instructions first
have to be translated into machine language. A program called an assembler translates
the assembly language instructions into machine language.

Assembler: A program that translates a program written in assembly language into an

equivalent program in machine language.

Moving from machine language to assembly language made programming easier, but
a programmer was still forced to think in terms of individual machine instructions. The
next step toward making programming easier was to devise high-level languages that
were closer to natural languages, such as English, French, German, and Spanish. Basic,
FORTRAN, COBOL, Pascal, C, C++, C#, and Java are all high-level languages. You
will learn the high-level language C++ in this book.

In C++, you write the weekly wages equation as follows:

wages = rate * hours;

The instruction written in C++ is much easier to understand and is self-explanatory
to a novice user who is familiar with basic arithmetic. As in the case of assembly language,
however, the computer cannot directly execute instructions written in a high-level
language. To run on a computer, these C++ instructions first need to be translated into
machine language. A program called a compiler translates instructions written in high-
level languages into machine code.

Compiler: A program that translates instructions written in a high-level language into the

equivalent machine language.

TABLE 1-2 Examples of Instructions in Assembly Language and Machine Language

Assembly Language Machine Language

LOAD 100100

STOR 100010

MULT 100110

ADD 100101

SUB 100011

The Evolution of Programming Languages | 9

Processing a C++ Program
In the previous sections, we discussed machine language and high-level languages and
showed a C++ program. Because a computer can understand only machine language,
you are ready to review the steps required to process a program written in C++.

Consider the following C++ program:

#include <iostream>

using namespace std;

int main()
{

cout << "My first C++ program." << endl;

return 0;
}

At this point, you need not be too concerned with the details of this program. However,
if you run (execute) this program, it will display the following line on the screen:

My first C++ program.

Recall that a computer can understand only machine language. Therefore, in order to run
this program successfully, the code must first be translated into machine language. In this
section, we review the steps required to execute programs written in C++.

The following steps, as shown in Figure 1-3, are necessary to process a C++ program.

1. You use a text editor to create a C++ program following the rules, or

syntax, of the high-level language. This program is called the source

code, or source program. The program must be saved in a text file

that has the extension .cpp. For example, if you saved the preceding

program in the file named FirstCPPProgram, then its complete name

is FirstCPPProgram.cpp.

Source program: A program written in a high-level language.

2. The C++ program given in the preceding section contains the statement

#include <iostream>. In a C++ program, statements that begin with

the symbol # are called preprocessor directives. These statements are pro-

cessed by a program called preprocessor.

3. After processing preprocessor directives, the next step is to verify that the

program obeys the rules of the programming language—that is, the program

is syntactically correct—and translate the program into the equivalent

machine language. The compiler checks the source program for syntax errors

and, if no error is found, translates the program into the equivalent machine

language. The equivalent machine language program is called an object

program.

10 | Chapter 1: An Overview of Computers and Programming Languages

Object program: The machine language version of the high-level language

program.

4. The programs that you write in a high-level language are developed using

an integrated development environment (IDE). The IDE contains many

programs that are useful in creating your program. For example, it contains

the necessary code (program) to display the results of the program and

several mathematical functions to make the programmer’s job somewhat

easier. Therefore, if certain code is already available, you can use this code

rather than writing your own code. Once the program is developed and

successfully compiled, you must still bring the code for the resources used

from the IDE into your program to produce a final program that the

computer can execute. This prewritten code (program) resides in a place

called the library. A program called a linker combines the object program

with the programs from libraries.

Linker: A program that combines the object program with other programs

in the library and is used in the program to create the executable code.

5. You must next load the executable program into main memory for execu-

tion. A program called a loader accomplishes this task.

Loader: A program that loads an executable program into main memory.

6. The final step is to execute the program.

Figure 1-3 shows how a typical C++ program is processed.

As a programmer, you need to be concerned only with Step 1. That is, you must learn,
understand, and master the rules of the programming language to create source programs.

1

Editor

Preprocessor

Compiler

Linker

Loader

Execution

Library

C++ Program

Syntax
Error

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

FIGURE 1-3 Processing a C++ program

Processing a C++ Program | 11

As noted earlier, programs are developed using an IDE. Well-known IDEs used to create
programs in the high-level language C++ include Visual C++ 2008 Express, Visual C++
2010 Express, Visual Studio 2010 (from Microsoft), and C++ Builder (from Borland). You
can also use Dev-C++ IDE from Bloodshed Software to create and test C++ programs.
These IDEs contain a text editor to create the source program, a compiler to check the
source program for syntax errors, a program to link the object code with the IDE resources,
and a program to execute the program.

These IDEs are quite user friendly. When you compile your program, the compiler not
only identifies the syntax errors, but also typically suggests how to correct them. More-
over, with just a simple command, the object code is linked with the resources used from
the IDE. For example, the command that does the linking on Visual C++ 2008 Express,
Visual C++ 2010 Express, and Visual Studio 2010 is Build or Rebuild. (For further
clarification regarding the use of these commands, check the documentation of these IDEs.)
If the program is not yet compiled, each of these commands first compiles the program and
then links and produces the executable code.

The Web site http://msdn.microsoft.com/en-us/beginner/bb964629.aspx contains a video that
explains how to use Visual C++ 2008 Express to write C++ programs.

Programming with the Problem
Analysis–Coding–Execution Cycle
Programming is a process of problem solving. Different people use different techniques to
solve problems. Some techniques are nicely outlined and easy to follow. They not
only solve the problem, but also give insight into how the solution was reached.
These problem-solving techniques can be easily modified if the domain of the
problem changes.

To be a good problem solver and a good programmer, you must follow good problem-
solving techniques. One common problem-solving technique includes analyzing a pro-
blem, outlining the problem requirements, and designing steps, called an algorithm, to
solve the problem.

Algorithm: A step-by-step problem-solving process in which a solution is arrived at in a

finite amount of time.

In a programming environment, the problem-solving process requires the following three steps:

1. Analyze the problem, outline the problem and its solution requirements,

and design an algorithm to solve the problem.

2. Implement the algorithm in a programming language, such as C++, and

verify that the algorithm works.

3. Maintain the program by using andmodifying it if the problem domain changes.

Figure 1-4 summarizes this three-step programming process.

12 | Chapter 1: An Overview of Computers and Programming Languages

To develop a program to solve a problem, you start by analyzing the problem. You then
design the algorithm; write the program instructions in a high-level language, or code the
program; and enter the program into a computer system.

Analyzing the problem is the first and most important step. This step requires you to do
the following:

1. Thoroughly understand the problem.

2. Understand the problem requirements. Requirements can include whether

the program requires interaction with the user, whether it manipulates data,

1

Results

Problem

Analysis

Algorithm
Design

Coding

Linker

Library

Loader

Compiler

No Error

Error

ErrorExecution

No Error

Preprocessor

FIGURE 1-4 Problem analysis–coding–execution cycle

Programming with the Problem Analysis–Coding–Execution Cycle | 13

whether it produces output, and what the output looks like. If the program

manipulates data, the programmer must know what the data is and how it is

represented. That is, you need to look at sample data. If the program produces

output, you should know how the results should be generated and formatted.

3. If the problem is complex, divide the problem into subproblems and repeat

Steps 1 and 2. That is, for complex problems, you need to analyze each

subproblem and understand each subproblem’s requirements.

After you carefully analyze the problem, the next step is to design an algorithm to solve the
problem. If you broke the problem into subproblems, you need to design an algorithm for
each subproblem. Once you design an algorithm, you need to check it for correctness. You
can sometimes test an algorithm’s correctness by using sample data. At other times, you
might need to perform some mathematical analysis to test the algorithm’s correctness.

Once you have designed the algorithm and verified its correctness, the next step is to
convert it into an equivalent programming code. You then use a text editor to enter the
programming code or the program into a computer. Next, you must make sure that the
program follows the language’s syntax. To verify the correctness of the syntax, you run
the code through a compiler. If the compiler generates error messages, you must identify
the errors in the code, remove them, and then run the code through the compiler again.
When all the syntax errors are removed, the compiler generates the equivalent machine
code, the linker links the machine code with the system’s resources, and the loader places
the program into main memory so that it can be executed.

The final step is to execute the program. The compiler guarantees only that the program
follows the language’s syntax. It does not guarantee that the program will run correctly.
During execution, the program might terminate abnormally due to logical errors, such as
division by zero. Even if the program terminates normally, it may still generate erroneous
results. Under these circumstances, you may have to reexamine the code, the algorithm,
or even the problem analysis.

Your overall programming experience will be successful if you spend enough time to
complete the problem analysis before attempting to write the programming instructions.
Usually, you do this work on paper using a pen or pencil. Taking this careful approach to
programming has a number of advantages. It is much easier to discover errors in a program
that is well analyzed and well designed. Furthermore, a carefully analyzed and designed
program is much easier to follow and modify. Even the most experienced programmers
spend a considerable amount of time analyzing a problem and designing an algorithm.

Throughout this book, you will not only learn the rules of writing programs in C++, but you
will also learn problem-solving techniques. Most of the chapters contain programming exam-
ples that discuss programming problems. These programming examples teach techniques of
how to analyze and solve problems, design algorithms, code the algorithms into C++, and also
help you understand the concepts discussed in the chapter. To gain the full benefit of this book,
we recommend that you work through these programming examples.

Next, we provide examples of various problem-analysis and algorithm-design techniques.

14 | Chapter 1: An Overview of Computers and Programming Languages

EXAMPLE 1-1

In this example, we design an algorithm to find the perimeter and area of a rectangle.

To find the perimeter and area of a rectangle, you need to know the rectangle’s length and

width.

The perimeter and area of the rectangle are then given by the following formulas:

perimeter = 2 � (length + width)
area = length � width

The algorithm to find the perimeter and area of the rectangle is:

1. Get the length of the rectangle.

2. Get the width of the rectangle.

3. Find the perimeter using the following equation:

perimeter = 2 � (length + width)

4. Find the area using the following equation:

area = length � width

EXAMPLE 1-2

In this example, we design an algorithm that calculates the sales tax and the price of an item

sold in a particular state.

The sales tax is calculated as follows: The state’s portion of the sales tax is 4%, and the city’s

portion of the sales tax is 1.5%. If the item is a luxury item, such as a car more than $50,000,

then there is a 10% luxury tax.

To calculate the price of the item, we need to calculate the state’s portion of the sales

tax, the city’s portion of the sales tax, and, if it is a luxury item, the luxury tax.

Suppose salePrice denotes the selling price of the item, stateSalesTax denotes

the state’s sales tax, citySalesTax denotes the city’s sales tax, luxuryTax denotes

the luxury tax, salesTax denotes the total sales tax, and amountDue denotes the final price

of the item.

To calculate the sales tax, we must know the selling price of the item and whether the item is

a luxury item.

The stateSalesTax and citySalesTax can be calculated using the following formulas:

stateSalesTax = salePrice � 0.04
citySalesTax = salePrice � 0.015

1

Programming with the Problem Analysis–Coding–Execution Cycle | 15

Next, you can determine luxuryTax as follows:

if (item is a luxury item)
luxuryTax = salePrice � 0.1

otherwise
luxuryTax = 0

Next, you can determine salesTax as follows:

salesTax = stateSalesTax + citySalesTax + luxuryTax

Finally, you can calculate amountDue as follows:

amountDue = salePrice + salesTax

The algorithm to determine salesTax and amountDue is, therefore:

1. Get the selling price of the item.

2. Determine whether the item is a luxury item.

3. Find the state’s portion of the sales tax using the formula:

stateSalesTax = salePrice � 0.04

4. Find the city’s portion of the sales tax using the formula:

citySalesTax = salePrice � 0.015

5. Find the luxury tax using the following formula:

if (item is a luxury item)
luxuryTax = salePrice � 0.1

otherwise
luxuryTax = 0

6. Find salesTax using the formula:

salesTax = stateSalesTax + citySalesTax + luxuryTax

7. Find amountDue using the formula:

amountDue = salePrice + salesTax

EXAMPLE 1-3

In this example, we design an algorithm that calculates the monthly paycheck of a salesperson

at a local department store.

Every salesperson has a base salary. The salesperson also receives a bonus at the end of each

month, based on the following criteria: If the salesperson has been with the store for five years

or less, the bonus is $10 for each year that he or she has worked there. If the salesperson has

been with the store for more than five years, the bonus is $20 for each year that he or she has

worked there. The salesperson can earn an additional bonus as follows: If the total sales made

Watch

the Video

16 | Chapter 1: An Overview of Computers and Programming Languages

1
by the salesperson for the month are at least $5,000 but less than $10,000, he or she receives a

3% commission on the sale. If the total sales made by the salesperson for the month are at least

$10,000, he or she receives a 6% commission on the sale.

To calculate a salesperson’s monthly paycheck, you need to know the base salary, the number of

years that the salesperson has been with the company, and the total sales made by the sales-

person for that month. Suppose baseSalary denotes the base salary, noOfServiceYears

denotes the number of years that the salesperson has been with the store, bonus denotes

the bonus, totalSales denotes the total sales made by the salesperson for the month, and

additionalBonus denotes the additional bonus.

You can determine the bonus as follows:

if (noOfServiceYears is less than or equal to five)
bonus = 10 � noOfServiceYears

otherwise
bonus = 20 � noOfServiceYears

Next, you can determine the additional bonus of the salesperson as follows:

if (totalSales is less than 5000)
additionalBonus = 0

otherwise
if (totalSales is greater than or equal to 5000 and

totalSales is less than 10000)
additionalBonus = totalSales � (0.03)

otherwise
additionalBonus = totalSales � (0.06)

Following the above discussion, you can now design the algorithm to calculate a salesperson’s

monthly paycheck:

1. Get baseSalary.

2. Get noOfServiceYears.

3. Calculate bonus using the following formula:

if (noOfServiceYears is less than or equal to five)
bonus = 10 � noOfServiceYears

otherwise

bonus = 20 � noOfServiceYears

4. Get totalSales.

5. Calculate additionalBonus using the following formula:

if (totalSales is less than 5000)
additionalBonus = 0

otherwise
if (totalSales is greater than or equal to 5000 and

totalSales is less than 10000)
additionalBonus = totalSales � (0.03)

otherwise
additionalBonus = totalSales � (0.06)

Programming with the Problem Analysis–Coding–Execution Cycle | 17

6. Calculate payCheck using the equation:

payCheck = baseSalary + bonus + additionalBonus

EXAMPLE 1-4

In this example, we design an algorithm to play a number-guessing game.

The objective is to randomly generate an integer greater than or equal to 0 and less than 100.

Then prompt the player (user) to guess the number. If the player guesses the number

correctly, output an appropriate message. Otherwise, check whether the guessed number is

less than the random number. If the guessed number is less than the random number

generated, output the message, ‘‘Your guess is lower than the number. Guess again!’’;

otherwise, output the message, ‘‘Your guess is higher than the number. Guess again!’’. Then

prompt the player to enter another number. The player is prompted to guess the random

number until the player enters the correct number.

The first step is to generate a random number, as described above. C++ provides the means to

do so, which is discussed in Chapter 5. Suppose num stands for the random number and

guess stands for the number guessed by the player.

After the player enters the guess, you can compare the guesswith the random number as follows:

if (guess is equal to num)
Print "You guessed the correct number."

otherwise
if guess is less than num

Print "Your guess is lower than the number. Guess again!"
otherwise

Print "Your guess is higher than the number. Guess again!"

You can now design an algorithm as follows:

1. Generate a random number and call it num.

2. Repeat the following steps until the player has guessed the correct number:

a. Prompt the player to enter guess.

b.

if (guess is equal to num)
Print "You guessed the correct number."

otherwise
if guess is less than num

Print "Your guess is lower than the number. Guess again!"
otherwise

Print "Your guess is higher than the number. Guess again!"

In Chapter 5, we use this algorithm to write a C++ program to play the guessing the number

game.

18 | Chapter 1: An Overview of Computers and Programming Languages

EXAMPLE 1-5

There are 10 students in a class. Each student has taken five tests, and each test is worth 100

points. We want to design an algorithm to calculate the grade for each student, as well as the

class average. The grade is assigned as follows: If the average test score is greater than or equal

to 90, the grade is A; if the average test score is greater than or equal to 80 and less than 90,

the grade is B; if the average test score is greater than or equal to 70 and less than 80, the grade

is C; if the average test score is greater than or equal to 60 and less than 70, the grade is D;

otherwise, the grade is F. Note that the data consists of students’ names and their test scores.

This is a problem that can be divided into subproblems as follows: There are five tests, so you

design an algorithm to find the average test score. Next, you design an algorithm to determine the

grade. The two subproblems are to determine the average test score and to determine the grade.

Let us first design an algorithm to determine the average test score. To find the average test

score, add the five test scores and then divide the sum by 5. Therefore, the algorithm is the

following:

1. Get the five test scores.

2. Add the five test scores. Suppose sum stands for the sum of the test scores.

3. Suppose average stands for the average test score. Then

average = sum / 5;

Next, you design an algorithm to determine the grade. Suppose grade stands for the grade

assigned to a student. The following algorithm determines the grade:

if average is greater than or equal to 90
grade = A

otherwise
if average is greater than or equal to 80 and less than 90

grade = B
otherwise

if average is greater than or equal to 70 and less than 80
grade = C

otherwise
if average is greater than or equal to 60 and less than 70

grade = D
otherwise

grade = F

You can use the solutions to these subproblems to design the main algorithm as follows:
(Suppose totalAverage stands for the sum of the averages of each student’s test average.)

1. totalAverage = 0;

2. Repeat the following steps for each student in the class:

a. Get student’s name.

b. Use the algorithm as discussed above to find the average test score.

1

Programming with the Problem Analysis–Coding–Execution Cycle | 19

c. Use the algorithm as discussed above to find the grade.

d. Update totalAverage by adding the current student’s average test score.

3. Determine the class average as follows:

classAverage = totalAverage / 10

A programming exercise in Chapter 8 asks you to write a C++ program to determine the

average test score and grade for each student in a class.

Programming Methodologies
Two popular approaches to programming design are the structured approach and the
object-oriented approach, which are outlined below.

Structured Programming
Dividing a problem into smaller subproblems is called structured design. Each subproblem
is then analyzed, and a solution is obtained to solve the subproblem. The solutions to all of
the subproblems are then combined to solve the overall problem. This process of imple-
menting a structured design is called structured programming. The structured-design
approach is also known as top-down design, bottom-up design, stepwise refinement,
and modular programming.

Object-Oriented Programming
Object-oriented design (OOD) is a widely used programmingmethodology. InOOD, the
first step in the problem-solving process is to identify the components called objects, which
form the basis of the solution, and to determine how these objects interact with one another.
For example, suppose you want to write a program that automates the video rental process for
a local video store. The two main objects in this problem are the video and the customer.

After identifying the objects, the next step is to specify for each object the relevant data
and possible operations to be performed on that data. For example, for a video object, the
data might include:

• movie name

• starring actors

• producer

• production company

• number of copies in stock

Some of the operations on a video object might include:

• checking the name of the movie

• reducing the number of copies in stock by one after a copy is rented

• incrementing the number of copies in stock by one after a customer returns a

particular video

20 | Chapter 1: An Overview of Computers and Programming Languages

This illustrates that each object consists of data and operations on that data. An object
combines data and operations on the data into a single unit. In OOD, the final program is
a collection of interacting objects. A programming language that implements OOD is
called an object-oriented programming (OOP) language. You will learn about the
many advantages of OOD in later chapters.

Because an object consists of data and operations on that data, before you can design and
use objects, you need to learn how to represent data in computer memory, how to
manipulate data, and how to implement operations. In Chapter 2, you will learn the basic
data types of C++ and discover how to represent and manipulate data in computer
memory. Chapter 3 discusses how to input data into a C++ program and output the
results generated by a C++ program.

To create operations, you write algorithms and implement them in a programming
language. Because a data element in a complex program usually has many operations,
to separate operations from each other and to use them effectively and in a convenient
manner, you use functions to implement algorithms. After a brief introduction in
Chapters 2 and 3, you will learn the details of functions in Chapter 6. Certain algorithms
require that a program make decisions, a process called selection. Other algorithms might
require certain statements to be repeated until certain conditions are met, a process called
repetition. Still other algorithms might require both selection and repetition. You will
learn about selection and repetition mechanisms, called control structures, in Chapters 4
and 5. Also, in Chapter 8, using a mechanism called an array, you will learn how to
manipulate data when data items are of the same type, such as items in a list of
sales figures.

Finally, to work with objects, you need to know how to combine data and operations on
the data into a single unit. In C++, the mechanism that allows you to combine data and
operations on the data into a single unit is called a class. You will learn how classes work,
how to work with classes, and how to create classes in the chapter Classes and Data
Abstraction (later in this book).

As you can see, you need to learn quite a few things before working with the OOD
methodology. To make this learning easier and more effective, this book purposely
divides control structures into two chapters (4 and 5).

For some problems, the structured approach to program design will be very effective.
Other problems will be better addressed by OOD. For example, if a problem requires
manipulating sets of numbers with mathematical functions, you might use the struc-
tured design approach and outline the steps required to obtain the solution. The C++
library supplies a wealth of functions that you can use effectively to manipulate
numbers. On the other hand, if you want to write a program that would make a
candy machine operational, the OOD approach is more effective. C++ was designed
especially to implement OOD. Furthermore, OOD works well and is used in conjunction

with structured design.

1

Programming Methodologies | 21

Both the structured design and OOD approaches require that you master the basic compo-
nents of a programming language to be an effective programmer. In Chapters 2 to 8, you will
learn the basic components of C++, such as data types, input/output, control structures,
user-defined functions, and arrays, required by either type of programming. We illustrate
how these concepts work using the structured programming approach. Starting with the
chapter Classes and Data Abstraction, we use the OOD approach.

ANSI/ISO Standard C++
The programming language C++ evolved from C and was designed by Bjarne
Stroustrup at Bell Laboratories in the early 1980s. From the early 1980s through the
early 1990s, several C++ compilers were available. Even though the fundamental
features of C++ in all compilers were mostly the same, the C++ language, referred
to in this book as Standard C++, was evolving in slightly different ways in different
compilers. As a consequence, C++ programs were not always portable from one
compiler to another.

To address this problem, in the early 1990s, a joint committee of the American National
Standard Institution (ANSI) and International Standard Organization (ISO) was established
to standardize the syntax of C++. In mid-1998, ANSI/ISO C++ language standards were
approved. Most of today’s compilers comply with these new standards. Over the last several
years, the C++ committee met several times to further standardize the syntax of C++. In
mid-2010, the second standard of C++ was voted on and approved. The main objective of
this standard, referred to as C++0X, or tentatively as C++11, is to make the C++ code
cleaner andmore effective. For example, the new standard introduces the data type long long
to deal with large integers, auto declaration of variables using initialization statements,
enhancing the functionality of for loops to effectively work with arrays and containers,
and new algorithms. However, not all new features of this new standard have been
implemented by all the compilers currently available. In this book, we introduce the new
C++ features that we know have been implemented by the well-known compilers and also
comment on the ones that will be implemented in the future.

This book focuses on the syntax of C++ as approved by ANSI/ISO, referred to as ANSI/
ISO Standard C++.

QUICK REVIEW

1. A computer is an electronic device capable of performing arithmetic and

logical operations.

2. A computer system has two components: hardware and software.

3. The central processing unit (CPU) and the main memory are examples of

hardware components.

4. All programs must be brought into main memory before they can be executed.

5. When the power is switched off, everything in main memory is lost.

22 | Chapter 1: An Overview of Computers and Programming Languages

6. Secondary storage provides permanent storage for information. Hard disks,

flash drives, floppy disks, ZIP disks, CD-ROMs, and tapes are examples of

secondary storage.

7. Input to the computer is done via an input device. Two common input devices

are the keyboard and the mouse.

8. The computer sends its output to an output device, such as the computer screen.

9. Software are programs run by the computer.

10. The operating system monitors the overall activity of the computer and

provides services.

11. The most basic language of a computer is a sequence of 0s and 1s called machine

language. Every computer directly understands its own machine language.

12. A bit is a binary digit, 0 or 1.

13. A byte is a sequence of eight bits.

14. A sequence of 0s and 1s is referred to as a binary code or a binary number.

15. One kilobyte (KB) is 210 ¼ 1024 bytes; one megabyte (MB) is 220 ¼ 1,048,576

bytes; one gigabyte (GB) is 230 ¼ 1,073,741,824 bytes; one terabyte (TB) is

240¼ 1,099,511,627,776 bytes; one petabyte (PB) is 250¼ 1,125,899,906,842,624

bytes; one exabyte (EB) is 260 ¼ 1,152,921,504,606,846,976 bytes; and one

zettabyte (ZB) is 270 ¼ 1,180,591,620,717,411,303,424 bytes.

16. Assembly language uses easy-to-remember instructions called mnemonics.

17. Assemblers are programs that translate a program written in assembly language

into machine language.

18. Compilers are programs that translate a program written in a high-level

language into machine code, called object code.

19. A linker links the object code with other programs provided by the integrated

development environment (IDE) and used in the program to produce execu-

table code.

20. Typically, six steps are needed to execute a C++ program: edit, preprocess,

compile, link, load, and execute.

21. A loader transfers executable code into main memory.

22. An algorithm is a step-by-step problem-solving process in which a solution is

arrived at in a finite amount of time.

23. The problem-solving process has three steps: analyze the problem and design

an algorithm, implement the algorithm in a programming language, and

maintain the program.

24. Programs written using the structured design approach are easier to understand,

easier to test and debug, and easier to modify.

25. In structured design, a problem is divided into smaller subproblems. Each

subproblem is solved, and the solutions to all of the subproblems are then

combined to solve the problem.

1

Quick Review | 23

26. In object-oriented design (OOD), a program is a collection of interacting objects.

27. An object consists of data and operations on that data.

28. The ANSI/ISO Standard C++ syntax was approved in mid-1998.

EXERCISES

1. Mark the following statements as true or false.

a. The first device known to carry out calculations was the Pascaline.

b. Modern-day computers can accept spoken-word instructions but cannot

imitate human reasoning.

c. In ASCII coding, every character is coded as a sequence of 8 bits.

d. A compiler translates a high-level program into assembly language.

e. The arithmetic operations are performed inside the CPU, and if an error is

found, it outputs the logical errors.

f. A sequence of 0s and 1s is called a decimal code.

g. A linker links and loads the object code from main memory into the CPU

for execution.

h. Development of a C++ program includes six steps.

i. A program written in a high-level programming language is called a source

program.

j. ZB stands for zero byte.

k. The first step in the problem-solving process is to analyze the problem.

l. In object-oriented design, a program is a collection of interacting functions.

2. What are the basic commands performed by a computer?

3. Name three hardware components.

4. Why is secondary storage needed?

5. What is the function of an operating system?

6. What are the two types of programs?

7. What are the differences between machine languages and high-level languages?

8. What is a source program?

9. Why do you need a compiler?

10. What kind of errors are reported by a compiler?

11. Why do you need to translate a program written in a high-level language into machine

language?

12. Why would you prefer to write a program in a high-level language rather than a

machine language?

13. What is linking?

24 | Chapter 1: An Overview of Computers and Programming Languages

14. What are the advantages of problem analysis and algorithm design over directly writing a

program in a high-level language?

15. Design an algorithm to find the weighted average of four test scores. The four

test scores and their respective weights are given in the following format:

testScore1 weightTestScore1
...

For example, sample data is as follows:

75 0.20
95 0.35
85 0.15
65 0.30

16. Design an algorithm to convert the change given in quarters, dimes, nickels,

and pennies into pennies.

17. Given the radius, in inches, and price of a pizza, design an algorithm to find the

price of the pizza per square inch.

18. To make a profit, the prices of the items sold in a furniture store are marked up

by 80%. After marking up the prices each item is put on sale at a discount of

10%. Design an algorithm to find the selling price of an item sold at the

furniture store. What information do you need to find the selling price?

19. Suppose a, b, and c denote the lengths of the sides of a triangle. Then the area of

the triangle can be calculated using the formula:

ffi

sðs� aÞðs� bÞðs� cÞ
p

;

where s = (1/2)(a + b + c). Design an algorithm that uses this formula to find

the area of a triangle. What information do you need to find the area?

20. Jason typically uses the Internet to buy various items. If the total cost of the

items ordered, at one time, is $200 or more, then the shipping and handling is

free; otherwise, the shipping and handling is $10 per item. Design an algorithm

that prompts Jason to enter the number of items ordered and the price of each

item. The algorithm then outputs the total billing amount. Your algorithm

must use a loop (repetition structure) to get the price of each item. (For

simplicity, you may assume that Jason orders no more than five items at a time.)

21. Suppose that the cost of sending an international fax is calculated as follows:

The service charge is $3.00, $.20 per page for the first 10 pages, and $0.10 for

each additional page. Design an algorithm that asks the user to enter the

number of pages to be faxed. The algorithm then uses the number of pages

to be faxed to calculate the amount due.

22. An ATM allows a customer to withdraw a maximum of $500 per day. If a

customer withdraws more than $300, the service charge is 4% of the amount

over $300. If the customer does not have sufficient money in the account, the

ATM informs the customer about the insufficient funds and gives the customer

1

Exercises | 25

the option to withdraw the money for a service charge of $25.00. If there is no

money in the account or if the account balance is negative, the ATM does not

allow the customer to withdraw any money. If the amount to be withdrawn is

greater than $500, the ATM informs the customer about the maximum amount

that can be withdrawn. Write an algorithm that allows the customer to enter

the amount to be withdrawn. The algorithm then checks the total amount

in the account, dispenses the money to the customer, and debits the

account by the amount withdrawn and the service charges, if any.

23. You are given a list of students’ names and their test scores. Design an algorithm

that does the following:

a. Calculates the average test scores.

b. Determines and prints the names of all the students whose test scores are

below the average test score.

c. Determines the highest test score.

d. Prints the names of all the students whose test scores are the same as the

highest test score.

(You must divide this problem into subproblems as follows: The first subproblem
determines the average test score. The second subproblem determines and prints the
names of all the students whose test scores are below the average test score. The third
subproblem determines the highest test score. The fourth subproblem prints the names
of all the students whose test scores are the same as the highest test score. The main
algorithm combines the solutions of the subproblems.)

26 | Chapter 1: An Overview of Computers and Programming Languages

BASIC ELEMENTS OF C++
IN THIS CHAPTER , YOU WILL :

. Become familiar with the basic components of a C++ program, including functions, special
symbols, and identifiers

. Explore simple data types

. Discover how to use arithmetic operators

. Examine how a program evaluates arithmetic expressions

. Learn what an assignment statement is and what it does

. Become familiar with the string data type

. Discover how to input data into memory using input statements

. Become familiar with the use of increment and decrement operators

. Examine ways to output results using output statements

. Learn how to use preprocessor directives and why they are necessary

. Learn how to debug syntax errors

. Explore how to properly structure a program, including using comments to document a program

. Learn how to write a C++ program

2C H A P T E R

In this chapter, you will learn the basics of C++. As your objective is to learn the C++
programming language, two questions naturally arise. First, what is a computer program?
Second, what is programming? A computer program, or a program, is a sequence of
statements whose objective is to accomplish a task. Programming is a process of
planning and creating a program. These two definitions tell the truth, but not the whole
truth, about programming. It may very well take an entire book to give a good and
satisfactory definition of programming. You might gain a better grasp of the nature of
programming from an analogy, so let us turn to a topic about which almost everyone has
some knowledge—cooking. A recipe is also a program, and everyone with some cooking
experience can agree on the following:

1. It is usually easier to follow a recipe than to create one.

2. There are good recipes and there are bad recipes.

3. Some recipes are easy to follow and some are not easy to follow.

4. Some recipes produce reliable results and some do not.

5. You must have some knowledge of how to use cooking tools to follow
a recipe to completion.

6. To create good new recipes, you must have a lot of knowledge and a
good understanding of cooking.

These same six points are also true about programming. Let us take the cooking analogy
one step further. Suppose you need to teach someone how to become a chef. How
would you go about it? Would you first introduce the person to good food, hoping that a
taste for good food develops? Would you have the person follow recipe after recipe in the
hope that some of it rubs off? Or would you first teach the use of tools and the nature of
ingredients, the foods and spices, and explain how they fit together? Just as there is
disagreement about how to teach cooking, there is disagreement about how to teach
programming.

Learning a programming language is like learning to become a chef or learning to play a
musical instrument. All three require direct interaction with the tools. You cannot
become a good chef or even a poor chef just by reading recipes. Similarly, you cannot
become a player by reading books about musical instruments. The same is true of
programming. You must have a fundamental knowledge of the language, and you must
test your programs on the computer to make sure that each program does what it is
supposed to do.

A Quick Look at a C++ Program
In this chapter, you will learn the basic elements and concepts of the C++ programming
language to create C++ programs. In addition to giving examples to illustrate various
concepts, we will also show C++ programs to clarify these concepts. In this section, we
provide an example of a C++ program that computes the perimeter and area of a

28 | Chapter 2: Basic Elements of C++

rectangle. At this point you need not be too concerned with the details of this program.
You only need to know the effect of an output statement, which is introduced in this
program.

In Example 1-1 (Chapter 1), we designed an algorithm to find the perimeter and area of a
rectangle. Given the length and width of a rectangle, the C++ program, in Example 2-1,
computes and displays the perimeter and area.

EXAMPLE 2-1

//**
// Given the length and width of a rectangle, this C++ program
// computes and outputs the perimeter and area of the rectangle.
//**

#include <iostream>

using namespace std;

int main()
{

double length;
double width;
double area;
double perimeter;

cout << "Program to compute and output the perimeter and "
<< "area of a rectangle." << endl;

length = 6.0;
width = 4.0;
perimeter = 2 * (length + width);
area = length * width;

cout << "Length = " << length << endl;
cout << "Width = " << width << endl;
cout << "Perimeter = " << perimeter << endl;
cout << "Area = " << area << endl;

return 0;
}

Sample Run: (When you compile and execute this program, the following five lines are
displayed on the screen.)

Program to compute and output the perimeter and area of a rectangle.
Length = 6
Width = 4
Perimeter = 20
Area = 24

2

A Quick Look at a C++ Program | 29

These lines are displayed by the execution of the following statements:

cout << "Program to compute and output the perimeter and "
<< "area of a rectangle." << endl;

cout << "Length = " << length << endl;
cout << "Width = " << width << endl;
cout << "Perimeter = " << perimeter << endl;
cout << "Area = " << area << endl;

Next we explain how this happens. Let us first consider the following statement:

cout << "Program to compute and output the perimeter and "
<< "area of a rectangle." << endl;

This is an example of a C++ output statement. It causes the computer to evaluate the
expression after the pair of symbols << and display the result on the screen.

Usually, a C++ program contains various types of expressions such as arithmetic and
strings. For example, length + width is an arithmetic expression. Anything in double
quotes is a string. For example, "Program to compute and output the perimeter

and " is a string. Similarly, "area of a rectangle." is also a string. Typically, a string
evaluates to itself. Arithmetic expressions are evaluated according to rules of arithmetic
operations, which you typically learn in an algebra course. Later in this chapter, we will
explain how arithmetic expressions and strings are formed and evaluated.

Also note that in an output statement, endl causes the insertion point to move to the beginning

of the next line. (Note that in endl, the last letter is lowercase el. Also, on the screen, the
insertion point is where the cursor is.) Therefore, the preceding statement causes the
system to display the following line on the screen.

Program to compute and output the area and perimeter of a rectangle.

Let us now consider the following statement:

cout << "Length = " << length << endl;

This output statement consists of two expressions. The first expression, (after the first <<),
is "Length = " and the second expression, (after the second <<), consists of the identifier
length. The expression "Length = " is a string and evaluates to itself. (Notice the space
after =.) The second expression, which consists of the identifier length, evaluates to
whatever the value of length is. Because the value assigned to length is 6.0, length
evaluates to 6.0. Therefore, the output of the preceding statement is:

Length = 6

Note that the value of length is output as 6 not as 6.0. We will explain in the next
chapter how to force the program to output the value of length as 6.0. The meaning of
the remaining output statements is similar.

30 | Chapter 2: Basic Elements of C++

The last statement, that is,

return 0;

returns the value 0 to the operating system when the program terminates. We will
elaborate on this statement later in this chapter.

Before we identify various parts of a C++ program, let’s look at one more output
statement. Consider the following statement:

cout << "7 + 8 = " << 7 + 8 << endl;

In this output statement, the expression "7 + 8 = ", which is a string, evaluates to itself.
Let us consider the second expression, 7 + 8. This expression consists of the numbers
7 and 8, and the C++ arithmetic operator +. Therefore, the result of the expression 7 + 8

is the sum of 7 and 8, which is 15. Thus, the output of the preceding statement is:

7 + 8 = 15

In the next chapter, until we explain how to properly construct a C++ program, we will
be using output statements such as the preceding ones to explain various concepts. After
finishing Chapter 2, you should be able to write C++ programs well enough to do some
computations and show results.

Next, let us note the following about the previous C++ program. A C++ program is a
collection of functions, one of which is the function main. Roughly speaking, a function is
a set of statements whose objective is to accomplish something. The preceding program
consists of only the function main; all C++ programs require a function main.

The first four lines of the program begins with the pair of symbols // (shown in
green), which are comments. Comments are for the user; they typically explain the
purpose of the programs, that is, the meaning of the statements. (We will elaborate
on how to include comments in a program later in this chapter.) The next line of the
program, that is,

#include <iostream>

allows us to use the (predefined object) cout to generate output and the (manipulator)
endl. The statement

using namespace std;

allows you to use cout and endl without the prefix std::. It means that if you do not
include this statement, then cout should be used as std::cout and endl should be used
as std::endl. We will elaborate on this later in this chapter.

Next consider the following line:

int main()

2

A Quick Look at a C++ Program | 31

This is the heading of the function main. The next line consists of a left brace. This
marks the beginning of the (body) of the function main. The right brace (at the last
line of the program) matches this left brace and marks the end of the body of the
function main. We will explain the meaning of the other terms, such as the ones shown
in blue, later in this book. Note that in C++, << is an operator, called the stream

insertion operator.

Before ending this section, let us identify certain parts of the C++ program in Figure 2-1.

Comments

Variable declarations. A statement such as
double length;

instructs the system to allocate memory
space and name it length.

Assignment statement. This statement instructs the system
to store 6.0 in the memory space length.

Assignment statement.
This statement instructs the system to evaluate
the expression length * width and store
the result in the memory space area.

Output statements. An
output statement
instructs the system to
display results.

//**

// Given the length and width of a rectangle, this C++ program

// computes and outputs the perimeter and area of the rectangle.

//**

#include <iostream>

using namespace std;

int main()

{

 double length;

 double width;

 double area;

 double perimeter;

 cout << "Program to compute and output the perimeter and "

 << "area of a rectangle." << endl;

 length = 6.0;

 width = 4.0;

 perimeter = 2 * (length + width);

 area = length * width;

 cout << "Length = " << length << endl;

 cout << "Width = " << width << endl;

 cout << "Perimeter = " << perimeter << endl;

 cout << "Area = " << area << endl;

 return 0;

}

FIGURE 2-1 Various parts of a C++ program

32 | Chapter 2: Basic Elements of C++

One of the terms that you will encounter throughout the text and that is also identified in
Figure 2-1 is variable. Therefore, we introduce this term in this section. Recall from
Chapter 1 that all data must be loaded into main memory before it can be manipulated.
For example, given the length and width, the program in Figure 2-1 computes and
outputs the area and perimeter of a rectangle. This means that the values of length and
width must be stored in main memory. Also, recall from Chapter 1 that main memory is
an ordered sequence of cells and every cell has an address. Inside the computer, the
address of a memory cell is in binary. Once we store the values of length and width, and
because these values might be needed in more than one place in a program, we would
like to know the locations where these values are stored and how to access those memory
locations. C++ makes it easy for a programmer to specify the locations because the
programmer can supply an alphabetic name for each of those locations. Of course, we
must follow the rules to specify the names. For example, in the program in Figure 2-1,
we are telling the system to allocate four memory spaces and name them length, width,
area, and perimeter, respectively. (We will explain the meaning of the word double,
shown in blue later in this chapter.) Essentially, a variable is a memory location whose
contents can be changed. So length, width, area, and perimeter are variables. Also
during program execution, the system will allocate four memory locations large enough
to store decimal numbers and those memory locations will be named length, width,
area, and perimeter, respectively, see Figure 2-2.

The statement length = 6.0; will cause the system to store 6.0 in the memory
location length, see Figure 2-3. Examples 2-14 and 2-19 further illustrate how data
is manipulated in variables.

As we proceed through this chapter, we will explain the meaning of the remaining parts
identified in Figure 2-1.

2

length width area perimeter

FIGURE 2-2 Memory allocation

6.0

length width area perimeter

FIGURE 2-3 Memory spaces after the statement length = 6.0; executes

A Quick Look at a C++ Program | 33

The Basics of a C++ Program
In the previous section, we gave an example of a C++ program and also identified certain
parts of the program. In general, a C++ program is a collection of one or more
subprograms, called functions. Roughly speaking, a subprogram or a function is a
collection of statements, and when it is activated, or executed, it accomplishes something.
Some functions, called predefined or standard functions, are already written and are
provided as part of the system. But to accomplish most tasks, programmers must learn to
write their own functions.

Every C++ program has a function called main. Thus, if a C++ program has only one
function, it must be the function main. Until Chapter 6, other than using some of the
predefined functions, you will mainly deal with the function main. By the end of this
chapter, you will have learned how to write the function main.

If you have never seen a program written in a programming language, the C++ program in
Example 2-1 may look like a foreign language. To make meaningful sentences in a foreign
language, you must learn its alphabet, words, and grammar. The same is true of a program-
ming language. To write meaningful programs, you must learn the programming language’s
special symbols, words, and syntax rules. The syntax rules tell you which statements
(instructions) are legal or valid, that is, which are accepted by the programming language
and which are not. You must also learn semantic rules, which determine the meaning of
the instructions. The programming language’s rules, symbols, and special words enable you
to write programs to solve problems.

Programming language: A set of rules, symbols, and special words.

In the remainder of this section, you will learn about some of the special symbols of a
C++ program. Additional special symbols are introduced as other concepts are encoun-
tered in later chapters. Similarly, syntax and semantic rules are introduced and discussed
throughout the book.

Comments
The program that you write should be clear not only to you, but also to the reader of
your program. Part of good programming is the inclusion of comments in the program.
Typically, comments can be used to identify the authors of the program, give the date
when the program is written or modified, give a brief explanation of the program, and
explain the meaning of key statements in a program. In the programming examples, for
the programs that we write, we will not include the date when the program is written,
consistent with the standard convention for writing such books.

Comments are for the reader, not for the compiler. So when a compiler compiles a
program to check for the syntax errors, it completely ignores comments. Throughout this
book, comments are shown in green.

34 | Chapter 2: Basic Elements of C++

The program in Example 2-1 contains the following comments:

//**
// Given the length and width of a rectangle, this C++ program
// computes and outputs the perimeter and area of the rectangle.
//**

There are two common types of comments in a C++ program—single-line comments
and multiple-line comments.

Single-line comments begin with // and can be placed anywhere in the line. Everything
encountered in that line after // is ignored by the compiler. For example, consider the
following statement:

cout << "7 + 8 = " << 7 + 8 << endl;

You can put comments at the end of this line as follows:

cout << "7 + 8 = " << 7 + 8 << endl; //prints: 7 + 8 = 15

This comment could be meaningful for a beginning programmer.

Multiple-line comments are enclosed between /* and */. The compiler ignores anything
that appears between /* and */. For example, the following is an example of a multiple-line
comment:

/*
You can include comments that can
occupy several lines.

*/

In multiple-line comments, many programmers use single-line comments on every line
to make the comments stand out more to the reader (as was done in the program in
Example 2-1.)

Special Symbols
The smallest individual unit of a program written in any language is called a token.
C++’s tokens are divided into special symbols, word symbols, and identifiers.

Following are some of the special symbols:

+ - * /
. ; ? ,
<= != == >=

The first row includes mathematical symbols for addition, subtraction, multiplication, and
division. The second row consists of punctuation marks taken from English grammar.
Note that the comma is also a special symbol. In C++, commas are used to separate items
in a list. Semicolons are also special symbols and are used to end a C++ statement. Note
that a blank, which is not shown above, is also a special symbol. You create a blank
symbol by pressing the space bar (only once) on the keyboard. The third row consists of

2

The Basics of a C++ Program | 35

tokens made up of two characters that are regarded as a single symbol. No character can
come between the two characters in the token, not even a blank.

Reserved Words (Keywords)
A second category of tokens is reserved word symbols. Some of the reserved word symbols
include the following:

int, float, double, char, const, void, return

Reserved words are also called keywords. The letters that make up a reserved word are
always lowercase. Like the special symbols, each is considered to be a single symbol.
Furthermore, word symbols cannot be redefined within any program; that is, they cannot
be used for anything other than their intended use. For a complete list of reserved words,
see Appendix A.

Throughout this book, reserved words are shown in blue.

Identifiers
A third category of tokens is identifiers. Identifiers are names of things that appear in
programs, such as variables, constants, and functions. All identifiers must obey C++’s
rules for identifiers.

Identifier: A C++ identifier consists of letters, digits, and the underscore character (_)
and must begin with a letter or underscore.

Some identifiers are predefined; others are defined by the user. In the C++ program in
Example 2-1, cout is a predefined identifier and length is a user-defined identifier. Two
predefined identifiers that you will encounter frequently are cout and cin. You have
already seen the effect of cout. Later in this chapter, you will learn how cin, which is
used to input data, works. Unlike reserved words, predefined identifiers can be redefined,
but it would not be wise to do so.

Identifiers can be made of only letters, digits, and the underscore character; no other
symbols are permitted to form an identifier.

C++ is case sensitive—uppercase and lowercase letters are considered different. Thus,

the identifier NUMBER is not the same as the identifier number. Similarly, the identifiers

X and x are different.

36 | Chapter 2: Basic Elements of C++

2

In C++, identifiers can be of any length.

EXAMPLE 2-2

The following are legal identifiers in C++:

first
conversion
payRate
counter1

Table 2-1 shows some illegal identifiers and explains why they are illegal.

Compiler vendors usually begin certain identifiers with an underscore (_).

When the linker links the object program with the system resources provided by

the integrated development environment (IDE), certain errors could occur. Therefore, it

is advisable that you should not begin identifiers in your program with an underscore (_).

Whitespaces
Every C++ program contains whitespaces. Whitespaces include blanks, tabs, and newline
characters. In a C++ program, whitespaces are used to separate special symbols, reserved
words, and identifiers. Whitespaces are nonprintable in the sense that when they are
printed on a white sheet of paper, the space between special symbols, reserved words, and
identifiers is white. Proper utilization of whitespaces in a program is important. They can
be used to make the program more readable.

Data Types
The objective of a C++ program is to manipulate data. Different programs manipulate
different data. A program designed to calculate an employee’s paycheck will add, subtract,
multiply, and divide numbers, and some of the numbers might represent hours worked and
pay rate. Similarly, a program designed to alphabetize a class list will manipulate names. You
wouldn’t use a cherry pie recipe to help you bake cookies. Similarly, you wouldn’t use a

TABLE 2-1 Examples of Illegal Identifiers

Illegal Identifier Description

employee Salary There can be no space between employee and Salary.

Hello! The exclamation mark cannot be used in an identifier.

one+two The symbol + cannot be used in an identifier.

2nd An identifier cannot begin with a digit.

Data Types | 37

program designed to perform arithmetic calculations to manipulate alphabetic characters.
Furthermore, you wouldn’t multiply or subtract names. Reflecting these kinds of underlying
differences, C++ categorizes data into different types, and only certain operations can be
performed on particular types of data. Although at first it may seem confusing, by being so
type conscious, C++ has built-in checks to guard against errors.

Data type: A set of values together with a set of operations.

C++ data types fall into the following three categories:

• Simple data type

• Structured data type

• Pointers

For the next few chapters, you will be concerned only with simple data types.

Simple Data Types
The simple data type is the fundamental data type in C++ because it becomes a building
block for the structured data type, which you will start learning about in Chapter 8.
There are three categories of simple data:

• Integral, which is a data type that deals with integers, or numbers
without a decimal part

• Floating-point, which is a data type that deals with decimal numbers

• Enumeration, which is a user-defined data type

The enumeration type is C++’s method for allowing programmers to create their own

simple data types. This data type will be discussed in Chapter 7.

Integral data types are further classified into the following nine categories: char, short,
int, long, bool, unsigned char, unsigned short, unsigned int, and
unsigned long.

Why are there so many categories of the same data type? Every data type has a different set
of values associated with it. For example, the char data type is used to represent integers
between –128 and 127. The int data type is used to represent integers between
–2147483648 and 2147483647, and the data type short is used to represent integers
between –32768 and 32767.

Which data type you use depends on how big a number your program needs to deal with.
In the early days of programming, computers and main memory were very expensive.
Only a small amount of memory was available to execute programs and manipulate the
data. As a result, programmers had to optimize the use of memory. Because writing a
program and making it work is already a complicated process, not having to worry about

38 | Chapter 2: Basic Elements of C++

the size of memory makes for one less thing to think about. To effectively use memory, a
programmer can look at the type of data to be used by a program and thereby figure out
which data type to use. (Memory constraints may still be a concern for programs written
for applications such as a wristwatch.)

Newer programming languages have only five categories of simple data types: integer,
real, char, bool, and the enumeration type. The integral data types that are used in this
book are int, bool, and char.

Table 2-2 gives the range of possible values associated with these three data types and the
size of memory allocated to manipulate these values.

Use this table only as a guide. Different compilers may allow different ranges of

values. Check your compiler’s documentation. To find the exact size of the

integral data types on a particular system, you can run a program given in

Appendix G (Memory Size of a System). Furthermore, to find the maximum and

minimum values of these data types, you can run another program given in

Appendix F (Header File climits).

To deal with large integers, the new standard of C++ introduces the data type long
long. The memory space for a long long data value is 64 bytes and the range of

values belonging to this data type is –9223372036854775808 (–263) to

9223372036854775807 (263 – 1).

int DATA TYPE

This section describes the int data type. This discussion also applies to other integral data
types.

Integers in C++, as in mathematics, are numbers such as the following:

-6728, -67, 0, 78, 36782, +763

2

TABLE 2-2 Values and Memory Allocation for Three Simple Data Types

Data Type Values Storage (in bytes)

int -2147483648 to 2147483647 4

bool true and false 1

char -128 to 127 1

Data Types | 39

Note the following two rules from these examples:

1. Positive integers do not need a + sign in front of them.

2. No commas are used within an integer. Recall that in C++, commas
are used to separate items in a list. So 36,782 would be interpreted as
two integers: 36 and 782.

bool DATA TYPE

The data type bool has only two values: true and false. Also, true and false are called
the logical (Boolean) values. The central purpose of this data type is to manipulate logical
(Boolean) expressions. Logical (Boolean) expressions will be formally defined and discussed
in detail in Chapter 4. In C++, bool, true, and false are reserved words.

char DATA TYPE

The data type char is the smallest integral data type. It is mainly used to represent single
characters—that is, letters, digits, and special symbols. Thus, the char data type can
represent every key on your keyboard. When using the char data type, you enclose each
character represented within single quotation marks. Examples of values belonging to the
char data type include the following:

'A', 'a', '0', '*', '+', '$', '&', ' '

Note that a blank space is a character and is written as ' ', with a space between the single
quotation marks.

The data type char allows only one symbol to be placed between the single quotation
marks. Thus, the value 'abc' is not of the type char. Furthermore, even though '!='and
similar special symbols are considered to be one symbol, they are not regarded as possible
values of the data type char. All the individual symbols located on the keyboard that are
printable may be considered as possible values of the char data type.

Several different character data sets are currently in use. The most common are the
American Standard Code for Information Interchange (ASCII) and Extended Binary-
Coded Decimal Interchange Code (EBCDIC). The ASCII character set has 128 values.
The EBCDIC character set has 256 values and was created by IBM. Both character sets
are described in Appendix C.

Each of the 128 values of the ASCII character set represents a different character. For
example, the value 65 represents 'A', and the value 43 represents '+'. Thus, each
character has a predefined ordering represented by the numeric value associated with
the character. This ordering is called a collating sequence, in the set. The collating
sequence is used when you compare characters. For example, the value representing 'B'

is 66, so 'A' is smaller than 'B'. Similarly, '+' is smaller than 'A' because 43 is smaller
than 65.

The 14th character in the ASCII character set is called the newline character and is
represented as '\n'. (Note that the position of the newline character in the ASCII

40 | Chapter 2: Basic Elements of C++

character set is 13 because the position of the first character is 0.) Even though the newline
character is a combination of two characters, it is treated as one character. Similarly, the
horizontal tab character is represented in C++ as '\t' and the null character is repre-
sented as '\0' (backslash followed by zero). Furthermore, the first 32 characters in the
ASCII character set are nonprintable. (See Appendix C for a description of these
characters.)

Floating-Point Data Types
To deal with decimal numbers, C++ provides the floating-point data type, which we
discuss in this section. To facilitate the discussion, let us review a concept from a high
school or college algebra course.

You may be familiar with scientific notation. For example:

43872918 = 4.3872918 * 107 {10 to the power of seven}
.0000265 = 2.65 * 10-5 {10 to the power of minus five}
47.9832 = 4.79832 * 101 {10 to the power of one}

To represent decimal numbers, C++ uses a form of scientific notation called floating-

point notation. Table 2-3 shows how C++ might print a set of decimal numbers using
one machine’s interpretation of floating-point notation. In the C++ floating-point
notation, the letter E stands for the exponent.

C++ provides three data types to manipulate decimal numbers: float, double, and
long double. As in the case of integral data types, the data types float, double, and
long double differ in the set of values.

On most newer compilers, the data types double and long double are the same.

Therefore, only the data types float and double are described here.

2

TABLE 2-3 Examples of Decimal Numbers in Scientific and C++ Floating-Point Notations

Decimal Number Scientific Notation C++ Floating-Point Notation

75.924 7.5924 * 101 7.592400E1

0.18 1.8 * 10-1 1.800000E-1

0.0000453 4.53 * 10-5 4.530000E-5

-1.482 -1.482 * 100 -1.482000E0

7800.0 7.8 * 103 7.800000E3

Data Types | 41

float: The data type float is used in C++ to represent any decimal number between
-3.4 *1038 and 3.4 *1038. The memory allocated for a value of the float data type is
four bytes.

double: The data type double is used in C++ to represent any decimal number
between -1.7 *10308 and 1.7 *10308. The memory allocated for a value of the double
data type is eight bytes.

The maximum and minimum values of the data types float and double are system
dependent. To find these values on a particular system, you can check your compiler’s
documentation or, alternatively, you can run a program given in Appendix F (Header
File cfloat).

Other than the set of values, there is one more difference between the data types float
and double. The maximum number of significant digits—that is, the number of decimal
places—in float values is six or seven. The maximum number of significant digits in
values belonging to the double type is 15.

For values of the double type, for better precision, some compilers might give more

than 15 significant digits. Check your compiler’s documentation.

The maximum number of significant digits is called the precision. Sometimes float values
are called single precision, and values of type double are called double precision. If you
are dealing with decimal numbers, for the most part you need only the float type; if you
need accuracy to more than six or seven decimal places, you can use the double type.

In C++, by default, floating-point numbers are considered type double. Therefore, if
you use the data type float to manipulate floating-point numbers in a program,

certain compilers might give you a warning message, such as ‘‘truncation from double

to float.’’ To avoid such warning messages, you should use the double data type.

For illustration purposes and to avoid such warning messages in programming

examples, this book mostly uses the data type double to manipulate floating-point

numbers.

Data Types and Variables
Now that we know how to define an identifier, what a data type is, and the term variable,
we can show how to declare a variable. When we declare a variable, not only do we
specify the name of the variable, we also specify what type of data a variable can store. A
syntax rule to declare a variable is:

dataType identifier;

42 | Chapter 2: Basic Elements of C++

For example, consider the following statements:

int counter;
double interestRate;
char grade;

In the first statement, we are telling the system to allocate a memory space large enough
to store an int value and name that memory space counter. That is, counter is a
variable that can store an int value. Similarly, interestRate is a variable that can store
a value of type double; and grade is a variable that can store a value of type char.

Arithmetic Operators, Operator Precedence,
and Expressions
One of the most important uses of a computer is its ability to calculate. You can use the
standard arithmetic operators to manipulate integral and floating-point data types. There
are five arithmetic operators:

Arithmetic Operators: + (addition),� (subtraction or negation), *(multiplication), /
(division), % (mod, (modulus or remainder))

These operators work as follows:

• You can use the operators +, -, *, and / with both integral and floating-
point data types.

• The operators +, -, *, and / work with floating-point data types
(decimal numbers), the same way you learned in a college algebra
course.

• The operators +, -, *, and / work with integral data types the same
way you learned in a college algebra course.

• You use % with only the integral data type, to find the remainder in
ordinary division.

• When you use / with the integral data type, it gives the quotient in
ordinary division. That is, integral division truncates any fractional part;
there is no rounding.

2

Arithmetic Operators, Operator Precedence, and Expressions | 43

Example 2-3 shows how the operators / and % work with the integral data types.

EXAMPLE 2-3

In the following example, we illustrate how to use the operators / and % with integral
data types.

EXAMPLE 2-4

Given length in inches, we write a program that determines and outputs the equivalent
length in feet and (remaining) inches. Now there are 12 inches in a foot. Therefore, 100
inches equals 8 feet and 4 inches; similarly, 55 inches equals 4 feet and 7 inches. Note
that 100 / 12 = 8 and 100 % 12 = 4; similarly, 55 / 12 = 4 and 55 % 12 = 7. From these
examples, it follows that we can effectively use the operators / and % to accomplish our
task. The desired program is as follows:

// Given length in inches, this program outputs the equivalent
// length in feet and remaining inch(es).

#include <iostream>

using namespace std;

int main()
{

int inches; //variable to store total inches

inches = 100; //store 100 in the variable inches

cout << inches << " inch(es) = "; //output the value of
//inches and the equal sign

cout << inches / 12 << " feet (foot) and "; //output maximum
//number of feet (foot)

Arithmetic

Expression
Result Description

5 / 2 2
In the division 5 / 2, the quotient is 2 and the remainder
is 1. Therefore, 5 / 2 with the integral operands evaluates to
the quotient, which is 2.

14 / 7 2 In the division 14 / 7, the quotient is 2.

34 % 5 4
In the division 34 / 5, the quotient is 6 and the remainder
is 4. Therefore, 34 % 5 evaluates to the remainder,
which is 4.

4 % 6 4
In the division 4 / 6, the quotient is 0 and the remainder is
4. Therefore, 4 % 6 evaluates to the remainder, which is 4.

44 | Chapter 2: Basic Elements of C++

2

cout << inches % 12 << " inch(es)" << endl; //output
//remaining inches

return 0;
}

Sample run:

100 inch(es) = 8 feet (foot) and 4 inch(es)

Note that each time you run this program, it will output the value of 100 inches. To convert
some other value of inches, you need to edit this program and store a different value in the
variable inches, which is not very convenient. Later in this chapter we will illustrate how to
include statements in a program that will instruct the user to enter different values. However,
if you are curious to know at this point, then replace the statement

inches = 100; //store 100 in the variable inches

with the following statements and rerun the program:

cout << "Enter total inches and press Enter: "; //prompt
//the user to enter total inches

cin >> inches; //store the value entered by the user
//into the variable inches

cout << endl;

The modified program is available at the Web site accompanying this book and is named
Example2_4_Modified.cpp.

Consider the following expressions, which you have been accustomed to working with
since high school: -5, 8 – 7, 3 + 4, 2 + 3 * 5, 5.6 + 6.2 * 3, and x + 2 * 5 + 6 / y, where x
and y are unknown numbers. These are examples of arithmetic expressions. The
numbers appearing in the expressions are called operands. The numbers that are used
to evaluate an operator are called the operands for that operator.

In expression -5, the symbol – specifies that the number 5 is negative. In this expression,
– has only one operand. Operators that have only one operand are called unary operators.

In expression 8 – 7, the symbol – is used to subtract 7 from 8. In this expression, – has
two operands, 8 and 7. Operators that have two operands are called binary operators.

Unary operator: An operator that has only one operand.

Binary operator: An operator that has two operands.

In expression 3 + 4, 3 and 4 are the operands for the operator +. In this expression, the
operator + has two operands and is a binary operator. Moreover, in the expression +27,
the operator + indicates that the number 27 is positive. Here, + has only one operand and
so acts as a unary operator.

From the preceding discussion, it follows that – and + are both unary and binary
arithmetic operators. However, as arithmetic operators, *, /, and % are binary and so
must have two operands.

Arithmetic Operators, Operator Precedence, and Expressions | 45

Order of Precedence
When more than one arithmetic operator is used in an expression, C++ uses the operator
precedence rules to evaluate the expression. According to the order of precedence rules
for arithmetic operators,

*, /, %

are at a higher level of precedence than

+, -

Note that the operators *, /, and % have the same level of precedence. Similarly, the
operators + and - have the same level of precedence.

When operators have the same level of precedence, the operations are performed from
left to right. To avoid confusion, you can use parentheses to group arithmetic expressions.
For example, using the order of precedence rules,

3 * 7 - 6 + 2 * 5 / 4 + 6

means the following:

(((3 * 7) - 6) + ((2 * 5) / 4)) + 6
= ((21 - 6) + (10 / 4)) + 6 (Evaluate *)
= ((21 - 6) + 2) + 6 (Evaluate /. Note that this is an integer division.)
= (15 + 2) + 6 (Evaluate -)
= 17 + 6 (Evaluate first +)
= 23 (Evaluate +)

Note that the use of parentheses in the second example clarifies the order of precedence.
You can also use parentheses to override the order of precedence rules.

Because arithmetic operators, using the precedence rules, are evaluated from left to right,
unless parentheses are present, the associativity of the arithmetic operators is said to be
from left to right.

(Character Arithmetic) Because the char data type is also an integral data type, C++

allows you to perform arithmetic operations on char data. However, you should use this

ability carefully. There is a difference between the character '8' and the integer 8. The

integer value of 8 is 8. The integer value of '8' is 56, which is the ASCII collating

sequence of the character '8'.

When evaluating arithmetic expressions, 8 + 7 = 15; '8' + '7' = 56 + 55, which yields

111; and '8' + 7 = 56 + 7, which yields 63. Furthermore, because '8' * '7' = 56 *

55 = 3080 and the ASCII character set has only 128 values, '8' * '7' is undefined in

the ASCII character data set.

These examples illustrate that many things can go wrong when you are performing

character arithmetic. If you must employ them, use arithmetic operations on the char data

type with caution.

46 | Chapter 2: Basic Elements of C++

2

The following example shows how arithmetic operators work.

EXAMPLE 2-5

// This program illustrates how arithmetic operators work.

#include <iostream>

using namespace std;

int main()
{

cout << "2 + 5 = " << 2 + 5 << endl;
cout << "13 + 89 = " << 13 + 89 << endl;
cout << "34 - 20 = " << 34 - 20 << endl;
cout << "45 - 90 = " << 45 - 90 << endl;
cout << "2 * 7 = " << 2 * 7 << endl;
cout << "5 / 2 = " << 5 / 2 << endl;
cout << "14 / 7 = " << 14 / 7 << endl;
cout << "34 % 5 = " << 34 % 5 << endl;
cout << "4 % 6 = " << 4 % 6 << endl << endl;

cout << "5.0 + 3.5 = " << 5.0 + 3.5 << endl;
cout << "3.0 + 9.4 = " << 3.0 + 9.4 << endl;
cout << "16.3 - 5.2 = " << 16.3 - 5.2 << endl;
cout << "4.2 * 2.5 = " << 4.2 * 2.5 << endl;
cout << "5.0 / 2.0 = " << 5.0 / 2.0 << endl;
cout << "34.5 / 6.0 = " << 34.5 / 6.0 << endl;
cout << "34.5 / 6.5 = " << 34.5 / 6.5 << endl;

return 0;
}

Sample Run:

2 + 5 = 7
13 + 89 = 102
34 - 20 = 14
45 - 90 = -45
2 * 7 = 14
5 / 2 = 2
14 / 7 = 2
34 % 5 = 4
4 % 6 = 4

5.0 + 3.5 = 8.5
3.0 + 9.4 = 12.4
16.3 - 5.2 = 11.1
4.2 * 2.5 = 10.5
5.0 / 2.0 = 2.5
34.5 / 6.0 = 5.75
34.5 / 6.5 = 5.30769

Arithmetic Operators, Operator Precedence, and Expressions | 47

You should be careful when evaluating the mod operator with negative integer operands.

You might not get the answer you expect. For example, -34 % 5 = -4, because in the

division –34 / 5, the quotient is –6 and the remainder is -4. Similarly, 34 % -5 = 4,

because in the division 34 / –5, the quotient is –6 and the remainder is 4. Also -34 % -5

= -4, because in the division –34 / –5, the quotient is 6 and the remainder is –4.

Expressions
There are three types of arithmetic expressions in C++:

• Integral expressions—all operands in the expression are integers. An
integral expression yields an integral result.

• Floating-point (decimal) expressions—all operands in the expression
are floating-points (decimal numbers). A floating-point expression yields
a floating-point result.

• Mixed expressions—the expression contains both integers and decimal
numbers.

Looking at some examples will help clarify these definitions.

EXAMPLE 2-6

Consider the following C++ integral expressions:

2 + 3 * 5
3 + x - y / 7
x + 2 * (y - z) + 18

In these expressions, x, y, and z represent variables of the integral type; that is, they can
hold integer values.

EXAMPLE 2-7

Consider the following C++ floating-point expressions:

12.8 * 17.5 - 34.50
x * 10.5 + y - 16.2

Here, x and y represent variables of the floating-point type; that is, they can hold
floating-point values.

48 | Chapter 2: Basic Elements of C++

Evaluating an integral or a floating-point expression is straightforward. As before, when
operators have the same precedence, the expression is evaluated from left to right. You
can always use parentheses to group operands and operators to avoid confusion.

Next, we discuss mixed expressions.

Mixed Expressions
An expression that has operands of different data types is called a mixed expression. A
mixed expression contains both integers and floating-point numbers. The following
expressions are examples of mixed expressions:

2 + 3.5
6 / 4 + 3.9
5.4 * 2 - 13.6 + 18 / 2

In the first expression, the operand + has one integer operand and one floating-point
operand. In the second expression, both operands for the operator / are integers, the first
operand of + is the result of 6 / 4, and the second operand of + is a floating-point
number. The third example is an even more complicated mix of integers and floating-
point numbers. The obvious question is: How does C++ evaluate mixed expressions?

Two rules apply when evaluating a mixed expression:

1. When evaluating an operator in a mixed expression:

a. If the operator has the same types of operands (that is, either both
integers or both floating-point numbers), the operator is evaluated
according to the type of the operands. Integer operands thus yield an
integer result; floating-point numbers yield a floating-point number.

b. If the operator has both types of operands (that is, one is an integer and
the other is a floating-point number), then during calculation, the
integer is changed to a floating-point number with the decimal part of
zeroand theoperator is evaluated.Theresult is a floating-pointnumber.

2. The entire expression is evaluated according to the precedence rules;
the multiplication, division, and modulus operators are evaluated
before the addition and subtraction operators. Operators having the
same level of precedence are evaluated from left to right. Grouping
using parentheses is allowed for clarity.

From these rules, it follows that when evaluating a mixed expression, you concentrate on
one operator at a time, using the rules of precedence. If the operator to be evaluated has
operands of the same data type, evaluate the operator using Rule 1(a). That is, an operator
with integer operands will yield an integer result, and an operator with floating-point
operands will yield a floating-point result. If the operator to be evaluated has one integer
operand and one floating-point operand, before evaluating this operator, convert the
integer operand to a floating-point number with the decimal part of 0. The following
examples show how to evaluate mixed expressions.

2

Arithmetic Operators, Operator Precedence, and Expressions | 49

EXAMPLE 2-8

Mixed Expression Evaluation Rule Applied

3/2+5.5 =1+5.5
=6.5

3/2=1 (integer division; Rule 1(a))
(1+5.5
=1.0+5.5 (Rule 1(b))
=6.5)

15.6/2+5 =7.8+5

=12.8

15.6/2
= 15.6/2.0 (Rule 1(b))
=7.8
7.8+5
=7.8+5.0 (Rule1(b))
=12.8

4+5/2.0 =4+2.5

=6.5

5/2.0=5.0/2.0 (Rule1(b))
=2.5
4+2.5=4.0+2.5 (Rule1(b))
=6.5

4*3+7/5–25.5 =12+7/5–25.5
=12+1–25.5
=13–25.5
=-12.5

4*3=12 (Rule 1(a))
7/5=1 (integer division; Rule 1(a))
12+1=13 (Rule 1(a))
13–25.5=13.0–25.5 (Rule 1(b))
=-12.5

The following C++ program evaluates the preceding expressions:

// This program illustrates how mixed expressions are evaluated.

#include <iostream>

using namespace std;

int main()
{

cout << "3 / 2 + 5.5 = " << 3 / 2 + 5.5 << endl;
cout << "15.6 / 2 + 5 = " << 15.6 / 2 + 5 << endl;
cout << "4 + 5 / 2.0 = " << 4 + 5 / 2.0 << endl;
cout << "4 * 3 + 7 / 5 - 25.5 = "

<< 4 * 3 + 7 / 5 - 25.5
<< endl;

return 0;
}

Sample Run:

3 / 2 + 5.5 = 6.5
15.6 / 2 + 5 = 12.8
4 + 5 / 2.0 = 6.5
4 * 3 + 7 / 5 - 25.5 = -12.5

50 | Chapter 2: Basic Elements of C++

These examples illustrate that an integer is not converted to a floating-point number
unless the operator to be evaluated has one integer and one floating-point operand.

Type Conversion (Casting)
In the previous section, you learned that when evaluating an arithmetic expression, if the
operator has mixed operands, the integer value is changed to a floating-point value with
the zero decimal part. When a value of one data type is automatically changed to another
data type, an implicit type coercion is said to have occurred. As the examples in the
preceding section illustrate, if you are not careful about data types, implicit type coercion
can generate unexpected results.

To avoid implicit type coercion, C++ provides for explicit type conversion through the
use of a cast operator. The cast operator, also called type conversion or type casting,
takes the following form:

static_cast<dataTypeName>(expression)

First, the expression is evaluated. Its value is then converted to a value of the type
specified by dataTypeName. In C++, static_cast is a reserved word.

When converting a floating-point (decimal) number to an integer using the cast operator,
you simply drop the decimal part of the floating-point number. That is, the floating-point
number is truncated. Example 2-9 shows how cast operators work. Be sure you under-
stand why the last two expressions evaluate as they do.

EXAMPLE 2-9

Expression Evaluates to

static_cast<int>(7.9) 7
static_cast<int>(3.3) 3
static_cast<double>(25) 25.0
static_cast<double>(5+3) =static_cast<double>(8)=8.0
static_cast<double>(15)/2 =15.0/2

(because static_cast<double> (15)=15.0)
=15.0/2.0=7.5

static_cast<double>(15/2) = static_cast<double>(7) (because 15/2=7)
= 7.0

static_cast<int>(7.8 +
static_cast<double>(15)/2) = static_cast<int>(7.8+7.5)

= static_cast<int>(15.3)
= 15

static_cast<int>(7.8 +
static_cast<double>(15/2)) = static_cast<int>(7.8 + 7.0)

= static_cast<int>(14.8)
= 14

2

Type Conversion (Casting) | 51

The following C++ program evaluates the preceding expressions:

// This program illustrates how explicit type conversion works.

#include <iostream>

using namespace std;

int main()
{

cout << "static_cast<int>(7.9) = "
<< static_cast<int>(7.9)
<< endl;

cout << "static_cast<int>(3.3) = "
<< static_cast<int>(3.3)
<< endl;

cout << "static_cast<double>(25) = "
<< static_cast<double>(25)
<< endl;

cout << "static_cast<double>(5 + 3) = "
<< static_cast<double>(5 + 3)
<< endl;

cout << "static_cast<double>(15) / 2 = "
<< static_cast<double>(15) / 2
<< endl;

cout << "static_cast<double>(15 / 2) = "
<< static_cast<double>(15 / 2)
<< endl;

cout << "static_cast<int>(7.8 + static_cast<double>(15) / 2) = "
<< static_cast<int>(7.8 + static_cast<double>(15) / 2)
<< endl;

cout << "static_cast<int>(7.8 + static_cast<double>(15 / 2)) = "
<< static_cast<int>(7.8 + static_cast<double>(15 / 2))
<< endl;

return 0;
}

Sample Run:

static_cast<int>(7.9) = 7
static_cast<int>(3.3) = 3
static_cast<double>(25) = 25
static_cast<double>(5 + 3) = 8
static_cast<double>(15) / 2 = 7.5
static_cast<double>(15 / 2) = 7
static_cast<int>(7.8 + static_cast<double>(15) / 2) = 15
static_cast<int>(7.8 + static_cast<double>(15 / 2)) = 14

Note that the value of the expression static_cast<double>(25) is 25.0. However, it
is output as 25 rather than 25.0. This is because we have not yet discussed how to output
decimal numbers with 0 decimal parts to show the decimal point and the trailing zeros.
Chapter 3 explains how to output decimal numbers in a desired format. Similarly, the
output of other decimal numbers with zero decimal parts is without the decimal point
and the 0 decimal part.

52 | Chapter 2: Basic Elements of C++

2

In C++, the cast operator can also take the form dataType(expression). This form

is called C-like casting. For example, double(5) = 5.0 and int(17.6) = 17.

However, static_cast is more stable than C-like casting.

You can also use cast operators to explicitly convert char data values into int data values
and int data values into char data values. To convert char data values into int data
values, you use a collating sequence. For example, in the ASCII character
set, static_cast<int>('A') is 65 and static_cast<int>('8') is 56.
Similarly, static_cast<char>(65) is 'A' and static_cast<char>(56) is '8'.

Earlier in this chapter, you learned how arithmetic expressions are formed and evaluated
in C++. If you want to use the value of one expression in another expression, first you
must save the value of the expression. There are many reasons to save the value of an
expression. Some expressions are complex and may require a considerable amount of
computer time to evaluate. By calculating the values once and saving them for further
use, you not only save computer time and create a program that executes more quickly,
you also avoid possible typographical errors. In C++, expressions are evaluated, and if
the value is not saved, it is lost. That is, unless it is saved, the value of an expression
cannot be used in later calculations. Later in this chapter, you will learn how to save the
value of an expression and use it in subsequent calculations.

Before leaving the discussion of data types, let us discuss one more data type—string.

string Type
The data type string is a programmer-defined data type. It is not directly available for
use in a program like the simple data types discussed earlier. To use this data type, you
need to access program components from the library, which will be discussed later in this
chapter. The data type string is a feature of ANSI/ISO Standard C++.

Prior to the ANSI/ISO C++ language standard, the standard C++ library did not provide a

string data type. Compiler vendors often supplied their own programmer-defined string

type, and the syntax and semantics of string operations often varied from vendor to vendor.

A string is a sequence of zero or more characters. Strings in C++ are enclosed in double
quotation marks. A string containing no characters is called a null or empty string. The
following are examples of strings. Note that "" is the empty string.

"William Jacob"
"Mickey"
""

Every character in a string has a relative position in the string. The position of the first
character is 0, the position of the second character is 1, and so on. The length of a string is
the number of characters in it.

string Type | 53

EXAMPLE 2-10

String Position of a Character in the String Length of the String

"William Jacob" Position of 'W' is 0.
Position of the first 'i' is 1.
Position of ' ' (the space) is 7.
Position of 'J' is 8.
Position of 'b' is 12.

13

"Mickey" Position of 'M' is 0.
Position of 'i' is 1.
Position of 'c' is 2.
Position of 'k' is 3.
Position of 'e' is 4.
Position of 'y' is 5.

6

When determining the length of a string, you must also count any spaces in the string.
For example, the length of the following string is 22.

"It is a beautiful day."

The string type is very powerful and more complex than simple data types. It provides
many operations to manipulate strings. For example, it provides operations to find the
length of a string, extract part of a string, and compare strings. You will learn about this
data over the next few chapters.

Variables, Assignment Statements,
and Input Statements
As noted earlier, the main objective of a C++ program is to perform calculations and
manipulate data. Recall that data must be loaded into main memory before it can be
manipulated. In this section, you will learn how to put data into the computer’s memory.
Storing data in the computer’s memory is a two-step process:

1. Instruct the computer to allocate memory.

2. Include statements in the program to put data into the allocated memory.

Allocating Memory with Constants and Variables
When you instruct the computer to allocate memory, you tell it not only what names to
use for each memory location, but also what type of data to store in those memory
locations. Knowing the location of data is essential, because data stored in one memory
location might be needed at several places in the program. As you saw earlier, knowing
what data type you have is crucial for performing accurate calculations. It is also critical to

54 | Chapter 2: Basic Elements of C++

know whether your data needs to remain fixed throughout program execution or
whether it should change.

NAMED CONSTANTS

Some data must stay the same throughout a program. For example, the pay rate is usually
the same for all part-time employees. A conversion formula that converts inches into
centimeters is fixed, because 1 inch is always equal to 2.54 centimeters. When stored
in memory, this type of data needs to be protected from accidental changes during
program execution. In C++, you can use a named constant to instruct a program to
mark those memory locations in which data is fixed throughout program execution.

Named constant: A memory location whose content is not allowed to change during
program execution.

To allocate memory, we use C++’s declaration statements. The syntax to declare a
named constant is:

const dataType identifier = value;

In C++, const is a reserved word.

EXAMPLE 2-11

Consider the following C++ statements:

const double CONVERSION = 2.54;
const int NO_OF_STUDENTS = 20;
const char BLANK = ' ';

The first statement tells the compiler to allocate memory (eight bytes) to store a value
of type double, call this memory space CONVERSION, and store the value 2.54 in it.
Throughout a program that uses this statement, whenever the conversion formula is
needed, the memory space CONVERSION can be accessed. The meaning of the other
statements is similar.

Note that the identifier for a named constant is in uppercase letters. Even though
there are no written rules, C++ programmers typically prefer to use uppercase letters
to name a named constant. Moreover, if the name of a named constant is a combina-
tion of more than one word, called a run-together word, then the words are separated
using an underscore. For example, in the preceding example, NO_OF_STUDENTS is a
run-together word. (Also see the section Program Style and Form, later in this
chapter, to properly structure a program.)

2

Variables, Assignment Statements, and Input Statements | 55

As noted earlier, the default type of floating-point numbers is double. Therefore, if
you declare a named constant of type float, then you must specify that the value is

of type float as follows:

const float CONVERSION = 2.54f;

Otherwise, the compiler will generate a warning message. Notice that 2.54f says that it is

a float value. Recall that the memory size for float values is four bytes; for double
values, eight bytes. Because memory size is of little concern these days, as indicated earlier,

we will mostly use the type double to work with floating-point values.

Using a named constant to store fixed data, rather than using the data value itself, has
one major advantage. If the fixed data changes, you do not need to edit the entire
program and change the old value to the new value wherever the old value is used.
(For example, in the program that computes the sales tax, the sales tax rate may
change.) Instead, you can make the change at just one place, recompile the program,
and execute it using the new value throughout. In addition, by storing a value and
referring to that memory location whenever the value is needed, you avoid typing
the same value again and again and prevent accidental typos. If you misspell the name
of the constant value’s location, the computer will warn you through an error
message, but it will not warn you if the value is mistyped.

VARIABLES

Earlier in this chapter, we introduced the term variable and how to declare it. We now
review this concept and also give the general syntax to declare variables.

In some programs, data needs to be modified during program execution. For example, after
each test, the average test score and the number of tests taken changes. Similarly, after each
pay increase, the employee’s salary changes. This type of data must be stored in those memory
cells whose contents can be modified during program execution. In C++, memory cells
whose contents can be modified during program execution are called variables.

Variable: A memory location whose content may change during program execution.

The syntax for declaring one variable or multiple variables is:

dataType identifier, identifier, . . .;

EXAMPLE 2-12

Consider the following statements:

double amountDue;
int counter;
char ch;
int x, y;
string name;

56 | Chapter 2: Basic Elements of C++

The first statement tells the compiler to allocate enough memory to store a value of
the type double and call it amountDue. The second and third statements have similar
conventions. The fourth statement tells the compiler to allocate two different mem-
ory spaces, each large enough to store a value of the type int; name the first memory
space x; and name the second memory space y. The fifth statement tells the compiler
to allocate memory space to store a string and call it name.

As in the case of naming named constants, there are no written rules for naming variables.
However, C++ programmers typically use lowercase letters to declare variables. If a
variable name is a combination of more than one word, then the first letter of each word,
except the first word, is uppercase. (For example, see the variable amountDue in the
preceding example.)

From now on, when we say ‘‘variable,’’ we mean a variable memory location.

In C++, you must declare all identifiers before you can use them. If you refer to an

identifier without declaring it, the compiler will generate an error message (syntax error),

indicating that the identifier is not declared. Therefore, to use either a named constant or

a variable, you must first declare it.

Now that data types, variables, and constants have been defined and discussed, it is
possible to offer a formal definition of simple data types. A data type is called simple if
the variable or named constant of that type can store only one value at a time. For
example, if x is an int variable, at a given time, only one value can be stored in x.

Putting Data into Variables
Now that you know how to declare variables, the next question is: How do you put data
into those variables? In C++, you can place data into a variable in two ways:

1. Use C++’s assignment statement.

2. Use input (read) statements.

Assignment Statement
The assignment statement takes the following form:

variable = expression;

In an assignment statement, the value of the expression should match the data type of
the variable. The expression on the right side is evaluated, and its value is assigned to
the variable (and thus to a memory location) on the left side.

2

Variables, Assignment Statements, and Input Statements | 57

A variable is said to be initialized the first time a value is placed in the variable.

In C++, = is called the assignment operator.

EXAMPLE 2-13

Suppose you have the following variable declarations:

int num1, num2;
double sale;
char first;
string str;

Now consider the following assignment statements:

num1 = 4;
num2 = 4 * 5 - 11;
sale = 0.02 * 1000;
first = 'D';
str = "It is a sunny day.";

For each of these statements, the computer first evaluates the expression on the right and
then stores that value in a memory location named by the identifier on the left. The first
statement stores the value 4 in num1, the second statement stores 9 in num2, the third
statement stores 20.00 in sale, and the fourth statement stores the character D in first.
The fifth statement stores the string "It is a sunny day." in the variable str.

The following C++ program shows the effect of the preceding statements:

// This program illustrates how data in the variables are
// manipulated.

#include <iostream>
#include <string>

using namespace std;

int main()
{

int num1, num2;
double sale;
char first;
string str;

num1 = 4;
cout << "num1 = " << num1 << endl;

num2 = 4 * 5 - 11;
cout << "num2 = " << num2 << endl;

sale = 0.02 * 1000;
cout << "sale = " << sale << endl;

58 | Chapter 2: Basic Elements of C++

2

first = 'D';
cout << "first = " << first << endl;

str = "It is a sunny day.";
cout << "str = " << str << endl;

return 0;
}

Sample Run:

num1 = 4
num2 = 9
sale = 20
first = D
str = It is a sunny day.

For the most part, the preceding program is straightforward. Let us take a look at the
output statement:

cout << " num1 = " << num1 << endl;

This output statement consists of the string " num1 = ", the operator <<, and the variable
num1. Here, first the value of the string " num1 = " is output, and then the value of the
variable num1 is output. The meaning of the other output statements is similar.

A C++ statement such as

num ¼ num + 2;

means ‘‘evaluate whatever is in num, add 2 to it, and assign the new value to the memory
location num.’’ The expression on the right side must be evaluated first; that value is then
assigned to the memory location specified by the variable on the left side. Thus, the
sequence of C++ statements:

num = 6;
num = num + 2;

and the statement:

num = 8;

both assign 8 to num. Note that if num has not been initialized, the statement num = num + 2

might give unexpected results and/or the complier might generate a warning message
indicating that the variable has not been initialized.

The statement num = 5; is read as ‘‘num becomes 5’’ or ‘‘num gets 5’’ or ‘‘num is assigned the
value 5.’’ Reading the statement as ‘‘num equals 5’’ is incorrect, especially for statements such
as num = num + 2;. Each time a new value is assigned to num, the old value is overwritten.
(Recall that the equal sign in these statements is the assignment operator, not an indication of
equality.)

Variables, Assignment Statements, and Input Statements | 59

EXAMPLE 2-14

Suppose that num1, num2, and num3 are int variables and the following statements are
executed in sequence.

1. num1 = 18;

2. num1 = num1 + 27;

3. num2 = num1;

4. num3 = num2 / 5;

5. num3 = num3 / 4;

The following table shows the values of the variables after the execution of each
statement. (A ? indicates that the value is unknown. The orange color in a box shows
that the value of that variable is changed.)

Values of the Variables Explanation

Before Statement 1 ?

num1 num3num2

? ?

After Statement 1

num3num2num1

18 ? ?

After Statement 2

num3num2num1

45 ? ?
nnum1 + 27 = 18 + 27 = 45.
This value is assigned to num1, which
replaces the old value of num1.

After Statement 3

num3num2num1

45 45 ? Copy the value of nnum1 into num2.

After Statement 4

num3num2num1

45 45 9
nnum2 / 5 = 45 / 5 = 9. This
value is assigned to num3. So num3
= 9.

After Statement 5

num3num2num1

45 45 2
nnum3 / 4 = 9 / 4 = 2. This
value is assigned to num3, which
replaces the old value of num3.

Thus, after the execution of the statement in Line 5, num1 = 45, num2 = 45, and num3 = 2.

Tracing values through a sequence, called a walk-through, is a valuable tool to learn and
practice. Try it in the sequence above. You will learn more about how to walk through a
sequence of C++ statements later in this chapter.

60 | Chapter 2: Basic Elements of C++

2

Suppose that x, y, and z are int variables. The following is a legal statement in C++:

x = y = z;

In this statement, first the value of z is assigned to y, and then the new value of y is

assigned to x. Because the assignment operator, =, is evaluated from right to left, the

associativity of the assignment operator is said to be from right to left.

Saving and Using the Value of an Expression
Now that you know how to declare variables and put data into them, you can learn
how to save the value of an expression. You can then use this value in a later
expression without using the expression itself, thereby answering the question raised
earlier in this chapter. To save the value of an expression and use it in a later
expression, do the following:

1. Declare a variable of the appropriate data type. For example, if the
result of the expression is an integer, declare an int variable.

2. Assign the value of the expression to the variable that was declared,
using the assignment statement. This action saves the value of the
expression into the variable.

3. Wherever the value of the expression is needed, use the variable holding
the value. The following example further illustrates this concept.

EXAMPLE 2-15

Suppose that you have the following declaration:

int a, b, c, d;
int x, y;

Further suppose that you want to evaluate the expressions –b + (b2 – 4ac) and
–b –(b2 – 4ac) and assign the values of these expressions to x and y, respectively.
Because the expression b2 – 4ac appears in both expressions, you can first calculate
the value of this expression and save its value in d. You can then use the value of d
to evaluate the expressions, as shown by the following statements:

d = b * b - 4 * a * c;
x = -b + d;
y = -b - d;

Earlier, you learned that if a variable is used in an expression, the expression would
yield a meaningful value only if the variable has first been initialized. You also learned
that after declaring a variable, you can use an assignment statement to initialize it. It is
possible to initialize and declare variables at the same time. Before we discuss how to
use an input (read) statement, we address this important issue.

Variables, Assignment Statements, and Input Statements | 61

Declaring and Initializing Variables
When a variable is declared, C++ may not automatically put a meaningful value in it. In
other words, C++ may not automatically initialize variables. For example, the int and
double variables may not be initialized to 0, as happens in some programming languages.
This does not mean, however, that there is no value in a variable after its declaration.
When a variable is declared, memory is allocated for it.

Recall from Chapter 1 that main memory is an ordered sequence of cells, and each cell is
capable of storing a value. Also, recall that the machine language is a sequence of 0s and
1s, or bits. Therefore, data in a memory cell is a sequence of bits. These bits are nothing
but electrical signals, so when the computer is turned on, some of the bits are 1 and some
are 0. The state of these bits depends on how the system functions. However, when you
instruct the computer to store a particular value in a memory cell, the bits are set
according to the data being stored.

During data manipulation, the computer takes the value stored in particular cells and
performs a calculation. If you declare a variable and do not store a value in it, the memory
cell still has a value—usually the value of the setting of the bits from their last use—and
you have no way to know what this value is.

If you only declare a variable and do not instruct the computer to put data into the variable,
the value of that variable is garbage. However, the computer does not warn us, regards
whatever values are in memory as legitimate, and performs calculations using those values
in memory. Using a variable in an expression without initializing it produces erroneous
results. To avoid these pitfalls, C++ allows you to initialize variables while they are being
declared. For example, consider the following C++ statements in which variables are first
declared and then initialized:

int first, second;
char ch;
double x;

first = 13;
second = 10;
ch = ' ';
x = 12.6;

You can declare and initialize these variables at the same time using the following C++
statements:

int first = 13, second = 10;
char ch = ' ';
double x = 12.6;

The first C++ statement declares two int variables, first and second, and stores 13 in
first and 10 in second. The meaning of the other statements is similar.

62 | Chapter 2: Basic Elements of C++

2

In reality, not all variables are initialized during declaration. It is the nature of the
program or the programmer’s choice that dictates which variables should be initi-
alized during declaration. The key point is that all variables must be initialized before
they are used.

Input (Read) Statement
Previously, you learned how to put data into variables using the assignment statement. In
this section, you will learn how to put data into variables from the standard input device,
using C++’s input (or read) statements.

In most cases, the standard input device is the keyboard.

When the computer gets the data from the keyboard, the user is said to be acting interactively.

Putting data into variables from the standard input device is accomplished via the use of
cin and the operator >>. The syntax of cin together with >> is:

cin >> variable >> variable ...;

This is called an input (read) statement. In C++, >> is called the stream extraction

operator.

In a syntax, the shading indicates the part of the definition that is optional. Furthermore,

throughout this book, the syntax is enclosed in yellow boxes.

EXAMPLE 2-16

Suppose that miles is a variable of type double. Further suppose that the input is
73.65. Consider the following statement:

cin >> miles;

This statement causes the computer to get the input, which is 73.65, from the standard
input device and stores it in the variable miles. That is, after this statement executes, the
value of the variable miles is 73.65.

Variables, Assignment Statements, and Input Statements | 63

Example 2-17 further explains how to input numeric data into a program.

EXAMPLE 2-17

Suppose we have the following statements:

int feet;
int inches;

Suppose the input is:

23 7

Next, consider the following statement:

cin >> feet >> inches;

This statement first stores the number 23 into the variable feet and then the number 7
into the variable inches. Notice that when these numbers are entered via the keyboard,
they are separated with a blank. In fact, they can be separated with one or more blanks or
lines or even the tab character.

The following C++ program shows the effect of the preceding input statements:

// This program illustrates how input statements work.

#include <iostream>

using namespace std;

int main()
{

int feet;
int inches;

cout << "Enter two integers separated by one or more spaces: ";
cin >> feet >> inches;
cout << endl;

cout << "Feet = " << feet << endl;
cout << "Inches = " << inches << endl;

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Enter two integers separated by one or more spaces: 23 7

Feet = 23
Inches = 7

64 | Chapter 2: Basic Elements of C++

The C++ program in Example 2-18 illustrates how to read strings and numeric data.

EXAMPLE 2-18

// This program illustrates how to read strings and numeric data.

#include <iostream>
#include <string>

using namespace std;

int main()
{

string firstName; //Line 1
string lastName; //Line 2
int age; //Line 3
double weight; //Line 4

cout << "Enter first name, last name, age, "
<< "and weight, separated by spaces."
<< endl; //Line 5

cin >> firstName >> lastName; //Line 6
cin >> age >> weight; //Line 7

cout << "Name: " << firstName << " "
<< lastName << endl; //Line 8

cout << "Age: " << age << endl; //Line 9
cout << "Weight: " << weight << endl; //Line 10

return 0; //Line 11
}

Sample Run: In this sample run, the user input is shaded.

Enter first name, last name, age, and weight, separated by spaces.
Sheila Mann 23 120.5
Name: Sheila Mann
Age: 23
Weight: 120.5

The preceding program works as follows: The statements in Lines 1 to 4 declare the
variables firstName and lastName of type string, age of type int, and weight of
type double. The statement in Line 5 is an output statement and tells the user what to
do. (Such output statements are called prompt lines.) As shown in the sample run, the
input to the program is:

Sheila Mann 23 120.5

2

Variables, Assignment Statements, and Input Statements | 65

The statement in Line 6 first reads and stores the string Sheila into the variable
firstName and then skips the space after Sheila and reads and stores the string Mann

into the variable lastName. Next, the statement in Line 7 first skips the blank after
Mann and reads and stores 23 into the variable age and then skips the blank after 23

and reads and stores 120.5 into the variable weight.

The statements in Lines 8, 9, and 10 produce the third, fourth, and fifth lines of the
sample run.

During programming execution, if more than one value is entered in a line, these values must

be separated by at least one blank or tab. Alternately, one value per line can be entered.

Variable Initialization
Remember, there are two ways to initialize a variable: by using the assignment statement
and by using a read statement. Consider the following declaration:

int feet;
int inches;

Consider the following two sets of code:

(a) feet = 35; (b) cout << "Enter feet: ";

inches = 6; cin >> feet;

cout << "Total inches = " cout << endl;
<< 12 * feet + inches; cout << "Enter inches: ";

cin >> inches;

cout << endl;

cout << "Total inches = "

<< 12 * feet + inches;

In (a), feet and inches are initialized using assignment statements, and in (b), these
variables are initialized using input statements. However, each time the code in (a)
executes, feet and inches are initialized to the same value unless you edit the source
code, change the value, recompile, and run. On the other hand, in (b), each time the
program runs, you are prompted to enter values for feet and inches. Therefore, a read
statement is much more versatile than an assignment statement.

Sometimes it is necessary to initialize a variable by using an assignment statement. This is
especially true if the variable is used only for internal calculation and not for reading and
storing data.

Recall that C++ does not automatically initialize variables when they are declared. Some
variables can be initialized when they are declared, whereas others must be initialized
using either an assignment statement or a read statement.

66 | Chapter 2: Basic Elements of C++

2

When the program is compiled, some of the newer IDEs might give warning messages

if the program uses the value of a variable without first properly initializing that variable.

In this case, if you ignore the warning and execute the program, the program might

terminate abnormally with an error message.

Suppose you want to store a character into a char variable using an input statement.

During program execution, when you enter the character, you do not include the single

quotes. For example, suppose that ch is a char variable. Consider the following input

statement:

cin >> ch;

If you want to store K into ch using this statement, during program execution, you

only enter K. Similarly, if you want to store a string into a string variable using an

input statement, during program execution, you enter only the string without the

double quotes.

EXAMPLE 2-19

This example further illustrates how assignment statements and input statements manip-
ulate variables. Consider the following declarations:

int firstNum, secondNum;
double z;
char ch;
string name;

Also, suppose that the following statements execute in the order given:

1. firstNum = 4;

2. secondNum = 2 *firstNum + 6;

3. z = (firstNum + 1) / 2.0;

4. ch = 'A';

5. cin >> secondNum;

6. cin >> z;

7. firstNum = 2 *secondNum + static_cast<int>(z);

8. cin >> name;

9. secondNum = secondNum + 1;

10. cin >> ch;

11. firstNum = firstNum + static_cast<int>(ch);

12. z = firstNum - z;

Variables, Assignment Statements, and Input Statements | 67

In addition, suppose the input is:

8 16.3 Jenny D

This line has four values, 8, 16.3, Jenny, and D, and each value is separated from the
others by a blank.

Let’s now determine the values of the declared variables after the last statement
executes. To explicitly show how a particular statement changes the value of a
variable, the values of the variables after each statement executes are shown. (In
the following figures, a question mark [?] in a box indicates that the value in the box
is unknown.)

Before statement 1 executes, all variables are uninitialized, as shown in Figure 2-4.

Next, we show the values of the variables after the execution of each statement.

?

firstNum

?

secondNum

?

z

?

ch

?

name

FIGURE 2-4 Variables before statement 1 executes

After

St.
Values of the Variables Explanation

1 4

firstNum

?

secondNum

?

z

?

ch

?

name

Store 44 into firstNum.

2 4

firstNum

14

secondNum

?

z

?

ch

?

name

22 * firstNum + 6 = 2 * 4
+ 6 = 14.
Store 14 into secondNum.

3 4

firstNum

14

secondNum

2.5

z

?

ch

?

name

((firstNum + 1) / 2.0
= (4 + 1) / 2.0 = 5 / 2.0
= 2.5. Store 2.5 into z.

4 4

firstNum

14

secondNum

2.5

z

A

ch

?

name

Store ''A' into ch.

5 4

firstNum

8

secondNum

2.5

z

A

ch

?

name

Read a number from the
keyboard (which is 88) and store it
into secondNum. This statement
replaces the old value of
secondNum with this new
value.

68 | Chapter 2: Basic Elements of C++

After
St.

Values of the Variables Explanation

6 4

firstNum

8

secondNum

16.3

z

A

ch

?

name

Read a number from the
keyboard (which is 116.3)
and store this number into z.
This statement replaces the old
value of z with this new value.

7 32

firstNum

8

secondNum

16.3

z

A

ch

?

name

22 * secondNum +
static_cast<int>(z) =
2 * 8 þ
static_cast<int> (16.3)
=16 þ 16 = 32. Store 32 into
firstNum. This statement
replaces the old value of
firstNum with this new value.

8 32

firstNum

8

secondNum

16.3

z

A

ch

Jenny

name

Read the next input, JJenny,
from the keyboard and store it
into name.

9 32

firstNum

9

secondNum

16.3

z

A

ch

Jenny

name

ssecondNum + 1 = 8 + 1 = 9.
Store 9 into secondNum.

10 32

firstNum

9

secondNum

16.3

z

D

ch

Jenny

name

Read the next input from the
keyboard (which is DD) and store it
into ch. This statement replaces
the old value of ch with the new
value.

11 100

firstNum

9

secondNum

16.3

z

D

ch

Jenny

name

ffirstNum +
static_cast<int>(ch) =
32 + static_cast<int>
('D') = 32 + 68 = 100.
Store 100 into firstNum.

12 100

firstNum

9

secondNum

83.7

z

D

ch

Jenny

name

ffirstNum – z = 100 – 16.3 =
100.0 – 16.3 = 83.7. Store
83.7 into z.

When something goes wrong in a program and the results it generates are not

what you expected, you should do a walk-through of the statements that assign

values to your variables. Example 2-19 illustrates how to do a walk-through

of your program. This is a very effective debugging technique. The Web site

accompanying this book contains a C++ program that shows the effect of the

12 statements listed at the beginning of Example 2-19. The program is named

Example 2_19.cpp.

2

Variables, Assignment Statements, and Input Statements | 69

If you assign the value of an expression that evaluates to a floating-point value—without using

the cast operator—to a variable of type int, the fractional part is dropped. In this case, the

compiler most likely will issue a warning message about the implicit type conversion.

Increment and Decrement Operators
Now that you know how to declare a variable and enter data into a variable, in this section,
you will learn about twomore operators: the increment and decrement operators. These
operators are used frequently by C++ programmers and are useful programming tools.

Suppose count is an int variable. The statement:

count = count + 1;

increments the value of count by 1. To execute this assignment statement, the computer
first evaluates the expression on the right, which is count + 1. It then assigns this value to
the variable on the left, which is count.

As you will see in later chapters, such statements are frequently used to keep track of how
many times certain things have happened. To expedite the execution of such statements,
C++ provides the increment operator, ++, which increases the value of a variable by
1, and the decrement operator, ––, which decreases the value of a variable by 1.
Increment and decrement operators each have two forms, pre and post. The syntax of the
increment operator is:

Pre-increment: ++variable

Post-increment: variable++

The syntax of the decrement operator is:

Pre-decrement: ––variable

Post-decrement: variable––

Let’s look at some examples. The statement:

++count;

or:

count++;

increments the value of count by 1. Similarly, the statement:

––count;

or:

count––;

decrements the value of count by 1.

70 | Chapter 2: Basic Elements of C++

Because both the increment and decrement operators are built into C++, the value of the
variable is quickly incremented or decremented without having to use the form of an
assignment statement.

Now, both the pre- and post-increment operators increment the value of the variable by 1.
Similarly, the pre- and post-decrement operators decrement the value of the variable by 1.
What is the difference between the pre and post forms of these operators? The difference
becomes apparent when the variable using these operators is employed in an expression.

Suppose that x is an int variable. If ++x is used in an expression, first the value of x is
incremented by 1, and then the new value of x is used to evaluate the expression. On the
other hand, if x++ is used in an expression, first the current value of x is used in the
expression, and then the value of x is incremented by 1. The following example clarifies
the difference between the pre- and post-increment operators.

Suppose that x and y are int variables. Consider the following statements:

x = 5;
y = ++x;

The first statement assigns the value 5 to x. To evaluate the second statement, which uses
the pre-increment operator, first the value of x is incremented to 6, and then this value,
6, is assigned to y. After the second statement executes, both x and y have the value 6.

Now, consider the following statements:

x = 5;
y = x++;

As before, the first statement assigns 5 to x. In the second statement, the post-increment
operator is applied to x. To execute the second statement, first the value of x, which is 5,
is used to evaluate the expression, and then the value of x is incremented to 6. Finally, the
value of the expression, which is 5, is stored in y. After the second statement executes,
the value of x is 6, and the value of y is 5.

The following example further illustrates how the pre and post forms of the increment
operator work.

EXAMPLE 2-20

Suppose a and b are int variables and

a = 5;
b = 2 + (++a);

The first statement assigns 5 to a. To execute the second statement, first the expression
2 +(++a) is evaluated. Because the pre-increment operator is applied to a, first the value
of a is incremented to 6. Then 2 is added to 6 to get 8, which is then assigned to b.
Therefore, after the second statement executes, a is 6 and b is 8.

2

Increment and Decrement Operators | 71

On the other hand, after the execution of the following statements:

a = 5;
b = 2 + (a++);

the value of a is 6 while the value of b is 7.

This book will most often use the increment and decrement operators with a variable in a
stand-alone statement. That is, the variable using the increment or decrement operator
will not be part of any expression.

Output
In the preceding sections, you have seen how to put data into the computer’s memory
and how to manipulate that data. We also used certain output statements to show the
results on the standard output device. This section explains in some detail how to further use
output statements to generate the desired results.

The standard output device is usually the screen.

In C++, output on the standard output device is accomplished via the use of cout and
the operator <<. The general syntax of cout together with << is:

cout << expression or manipulator << expression or manipulator...;

This is called an output statement. In C++, << is called the stream insertion

operator. Generating output with cout follows two rules:

1. The expression is evaluated, and its value is printed at the current
insertion point on the output device.

2. A manipulator is used to format the output. The simplest manipulator
is endl (the last character is the letter el), which causes the insertion
point to move to the beginning of the next line.

On the screen, the insertion point is where the cursor is.

The next example illustrates how an output statement works. In an output statement, a
string or an expression involving only one variable or a single value evaluates to itself.

72 | Chapter 2: Basic Elements of C++

When an output statement outputs char values, it outputs only the character without the

single quotes (unless the single quotes are part of the output statement).

For example, suppose ch is a char variable and ch = 'A';. The statement:

cout << ch;

or:

cout << 'A';

outputs:

A

Similarly, when an output statement outputs the value of a string, it outputs only the

string without the double quotes (unless you include double quotes as part of the output).

EXAMPLE 2-21

Consider the following statements. The output is shown to the right of each statement.

Statement Output

1 cout << 29 / 4 << endl; 7
2 cout << "Hello there." << endl; Hello there.
3 cout << 12 << endl; 12
4 cout << "4 + 7" << endl; 4 + 7
5 cout << 4 + 7 << endl; 11
6 cout << 'A' << endl; A
7 cout << "4 + 7 = " << 4 + 7 << endl; 4 + 7 = 11
8 cout << 2 + 3 * 5 << endl; 17
9 cout << "Hello \nthere." << endl; Hello

there.

Look at the output of statement 9. Recall that in C++, the newline character is '\n'; it
causes the insertion point to move to the beginning of the next line before printing there.
Therefore, when \n appears in a string in an output statement, it causes the insertion
point to move to the beginning of the next line on the output device. This fact explains
why Hello and there. are printed on separate lines.

In C++, \ is called the escape character and \n is called the newline escape sequence.

2

Output | 73

Recall that all variables must be properly initialized; otherwise, the value stored in them
may not make much sense. Also recall that C++ does not automatically initialize variables.

If num is an int variable, then the output of the C++ statement:

cout << num << endl;

is meaningful provided that num has been given a value. For example, the sequence of
C++ statements:

num = 45;
cout << num << endl;

will produce the output 45.

EXAMPLE 2-22

Consider the following C++ program:

// This program illustrates how output statements work.

#include <iostream>

using namespace std;

int main()
{

int a, b;

a = 65; //Line 1
b = 78; //Line 2

cout << 29 / 4 << endl; //Line 3
cout << 3.0 / 2 << endl; //Line 4
cout << "Hello there.\n"; //Line 5
cout << 7 << endl; //Line 6
cout << 3 + 5 << endl; //Line 7
cout << "3 + 5"; //Line 8
cout << " **"; //Line 9
cout << endl; //Line 10
cout << 2 + 3 * 6 << endl; //Line 11
cout << "a" << endl; //Line 12
cout << a << endl; //Line 13
cout << b << endl; //Line 14

return 0;
}

In the following output, the column marked ‘‘Output of Statement at’’ and the line
numbers are not part of the output. The line numbers are shown in this column to make
it easy to see which output corresponds to which statement.

74 | Chapter 2: Basic Elements of C++

2

Output of Statement at

7 Line 3
1.5 Line 4
Hello there. Line 5
7 Line 6
8 Line 7
3 + 5 ** Lines 8 and 9
20 Line 11
a Line 12
65 Line 13
78 Line 14

For the most part, the output is straightforward. Look at the output of the statements in
Lines 7, 8, 9, and 10. The statement in Line 7 outputs the result of 3 + 5, which is 8, and
moves the insertion point to the beginning of the next line. The statement in Line 8
outputs the string 3 + 5. Note that the statement in Line 8 consists only of the string 3 + 5.
Therefore, after printing 3 + 5, the insertion point stays positioned after 5; it does not
move to the beginning of the next line. Next the output of the statement in Line 9
outputs space and ** at the insertion point, which was positioned after 5.

The output statement in Line 10 contains only the manipulator endl, which moves
the insertion point to the beginning of the next line. Therefore, when the statement
in Line 11 executes, the output starts at the beginning of the line. Note that in
this output, the column ‘‘Output of Statement at’’ does not contain Line 10. This
is due to the fact that the statement in Line 10 does not produce any printable output.
It simply moves the insertion point to the beginning of the next line. Next, the statement
in Line 11 outputs the value of 2 + 3 * 6, which is 20. The manipulator endl then moves
the insertion point to the beginning of the next line.

Outputting or accessing the value of a variable in an expression does not destroy or modify

the contents of the variable.

Let us now take a close look at the newline character, '\n'. Consider the following C++
statements:

cout << "Hello there.";
cout << "My name is James.";

If these statements are executed in sequence, the output is:

Hello there.My name is James.

Now consider the following C++ statements:

cout << "Hello there.\n";
cout << "My name is James.";

Output | 75

The output of these C++ statements is:

Hello there.
My name is James.

When \n is encountered in the string, the insertion point is positioned at the beginning
of the next line. Note also that \n may appear anywhere in the string. For example, the
output of the statement:

cout << "Hello \nthere. \nMy name is James.";

is:

Hello
there.
My name is James.

Also, note that the output of the statement:

cout << '\n';

is the same as the output of the statement:

cout << "\n";

which is equivalent to the output of the statement:

cout << endl;

Thus, the output of the sequence of statements:

cout << "Hello there.\n";
cout << "My name is James.";

is equivalent to the output of the sequence of statements:

cout << "Hello there." << endl;
cout << "My name is James.";

EXAMPLE 2-23

Consider the following C++ statements:

cout << "Hello there.\nMy name is James.";

or:

cout << "Hello there.";
cout << "\nMy name is James.";

or:

cout << "Hello there.";
cout << endl << "My name is James.";

76 | Chapter 2: Basic Elements of C++

2

In each case, the output of the statements is:

Hello there.
My name is James.

EXAMPLE 2-24

The output of the C++ statements:

cout << "Count...\n....1\n.....2\n......3";

or:

cout << "Count..." << endl << "....1" << endl
<< ".....2" << endl << "......3";

is:

Count...
....1
.....2
......3

EXAMPLE 2-25

Suppose that you want to output the following sentence in one line as part of a message:

It is sunny, warm, and not a windy day. We can go golfing.

Obviously, you will use an output statement to produce this output. However, in the
programming code, this statement may not fit in one line as part of the output statement.
Of course, you can use multiple output statements as follows:

cout << "It is sunny, warm, and not a windy day. ";
cout << "We can go golfing." << endl;

Note the semicolon at the end of the first statement and the identifier cout at the beginning
of the second statement. Also, note that there is no manipulator endl at the end of the first
statement. Here, two output statements are used to output the sentence in one line.
Equivalently, you can use the following output statement to output this sentence:

cout << "It is sunny, warm, and not a windy day. "
<< "We can go golfing." << endl;

In this statement, note that there is no semicolon at the end of the first line, and the identifier
cout does not appear at the beginning of the second line. Because there is no semicolon at
the end of the first line, this output statement continues at the second line. Also, note the
double quotation marks at the beginning and end of the sentences on each line. The string is
broken into two strings, but both strings are part of the same output statement.

Output | 77

If a string appearing in an output statement is long and you want to output the string in
one line, you can break the string by using either of the previous two methods. However,
the following statement would be incorrect:

cout << "It is sunny, warm, and not a windy day.
We can go golfing." << endl; //illegal

In other words, the return (or Enter) key on your keyboard cannot be part of the string.
That is, in programming code, a string cannot be broken into more than one line by using
the return (Enter) key on your keyboard.

Recall that the newline character is \n, which causes the insertion point to move to the
beginning of the next line. There are many escape sequences in C++, which allow you
to control the output. Table 2-4 lists some of the commonly used escape sequences.

The following example shows the effect of some of these escape sequences.

EXAMPLE 2-26

The output of the statement:

cout << "The newline escape sequence is \\n" << endl;

is:

The newline escape sequence is \n

TABLE 2-4 Commonly Used Escape Sequences

Escape

Sequence
Description

\n Newline Cursor moves to the beginning of the next line

\t Tab Cursor moves to the next tab stop

\b Backspace Cursor moves one space to the left

\r Return
Cursor moves to the beginning of the current line (not

the next line)

\\ Backslash Backslash is printed

\' Single quotation Single quotation mark is printed

\" Double quotation Double quotation mark is printed

78 | Chapter 2: Basic Elements of C++

The output of the statement:

cout << "The tab character is represented as \'\\t\'" << endl;

is:

The tab character is represented as '\t'

Note that the single quote can also be printed without using the escape sequence.
Therefore, the preceding statement is equivalent to the following output statement:

cout << "The tab character is represented as '\\t'" << endl;

The output of the statement:

cout << "The string \"Sunny\" contains five characters." << endl;

is:

The string "Sunny" contains five characters.

The Web site accompanying this text contains the C++ program that shows

the effect of the statements in Example 2-26. The program is named

Example2_26.cpp.

To use cin and cout in a program, you must include a certain header file. The next section
explains what this header file is, how to include a header file in a program, and why you need
header files in a program. Chapter 3 will provide a detailed explanation of cin and cout.

Preprocessor Directives
Only a small number of operations, such as arithmetic and assignment operations, are
explicitly defined in C++. Many of the functions and symbols needed to run a C++
program are provided as a collection of libraries. Every library has a name and is referred
to by a header file. For example, the descriptions of the functions needed to perform
input/output (I/O) are contained in the header file iostream. Similarly, the descriptions
of some very useful mathematical functions, such as power, absolute, and sine, are
contained in the header file cmath. If you want to use I/O or math functions, you need
to tell the computer where to find the necessary code. You use preprocessor directives
and the names of header files to tell the computer the locations of the code provided in
libraries. Preprocessor directives are processed by a program called a preprocessor.

2

Preprocessor Directives | 79

Preprocessor directives are commands supplied to the preprocessor that cause the pre-
processor to modify the text of a C++ program before it is compiled. All preprocessor
commands begin with #. There are no semicolons at the end of preprocessor commands
because they are not C++ statements. To use a header file in a C++ program, use the
preprocessor directive include.

The general syntax to include a header file (provided by the IDE) in a C++ program is:

#include <headerFileName>

For example, the following statement includes the header file iostream in a C++ program:

#include <iostream>

Preprocessor directives to include header files are placed as the first line of a program so
that the identifiers declared in those header files can be used throughout the program.
(Recall that in C++, identifiers must be declared before they can be used.)

Certain header files are provided as part of C++. Appendix F describes some of the
commonly used header files. Individual programmers can also create their own header
files, which is discussed in the chapter Classes and Data Abstraction, later in this book.

Note that the preprocessor commands are processed by the preprocessor before the
program goes through the compiler.

From Figure 1-3 (Chapter 1), we can conclude that a C++ system has three basic
components: the program development environment, the C++ language, and the C++
library. All three components are integral parts of the C++ system. The program
development environment consists of the six steps shown in Figure 1-3. As you learn
the C++ language throughout the book, we will discuss components of the C++ library
as we need them.

namespace and Using cin and cout in a Program
Earlier, you learned that both cin and cout are predefined identifiers. In ANSI/ISO
Standard C++, these identifiers are declared in the header file iostream, but within
a namespace. The name of this namespace is std. (The namespace mechanism will
be formally defined and discussed in detail in Chapter 7. For now, you need to know
only how to use cin and cout and, in fact, any other identifier from the header file
iostream.)

There are several ways you can use an identifier declared in the namespace std. Oneway to use
cin and cout is to refer to them as std::cin and std::cout throughout the program.

Another option is to include the following statement in your program:

using namespace std;

80 | Chapter 2: Basic Elements of C++

2

This statement should appear after the statement #include <iostream>. You can then
refer to cin and cout without using the prefix std::. To simplify the use of cin and
cout, this book uses the second form. That is, to use cin and cout in a program, the
programs will contain the following two statements:

#include <iostream>

using namespace std;

In C++, namespace and using are reserved words.

The namespace mechanism is a feature of ANSI/ISO Standard C++. As you learn more
C++ programming, you will become aware of other header files. For example, the
header file cmath contains the specifications of many useful mathematical functions.
Similarly, the header file iomanip contains the specifications of many useful functions
and manipulators that help you format your output in a specific manner. However, just
like the identifiers in the header file iostream, the identifiers in ANSI/ISO Standard
C++ header files are declared within a namespace.

The name of the namespace in each of these header files is std. Therefore, whenever
certain features of a header file in ANSI/ISO Standard C++ are discussed, this book will
refer to the identifiers without the prefix std::. Moreover, to simplify the accessing of
identifiers in programs, the statement using namespace std; will be included. Also, if
a program uses multiple header files, only one using statement is needed. This using
statement typically appears after all the header files.

Using the string Data Type in a Program
Recall that the string data type is a programmer-defined data type and is not directly
available for use in a program. To use the string data type, you need to access its
definition from the header file string. Therefore, to use the string data type in a
program, you must include the following preprocessor directive:

#include <string>

Creating a C++ Program
In previous sections, you learned enough C++ concepts to write meaningful programs.
You are now ready to create a complete C++ program.

A C++ program is a collection of functions, one of which is the function main.
Therefore, if a C++ program consists of only one function, then it must be the function
main. Moreover, a function is a set of instructions designed to accomplish a specific task.
Until Chapter 6, you will deal mainly with the function main.

The statements to declare variables, the statements to manipulate data (such as assignments),
and the statements to input and output data are placed within the function main. The
statements to declare named constants are usually placed outside of the function main.

Creating a C++ Program | 81

The syntax of the function main used throughout this book has the following form:

int main()
{

statement_1
.
.
.

statement_n

return 0;
}

In the syntax of the function main, each statement (statement_1, . . . , statement_n) is
usually either a declarative statement or an executable statement. The statement return 0;

must be included in the function main and must be the last statement. If the statement
return 0; is misplaced in the body of the function main, the results generated by the
program may not be to your liking. The full meaning of the statement return 0; will be
discussed in Chapter 6. For now, think of this statement as the end-of-program statement.
In C++, return is a reserved word.

A C++ program might use the resources provided by the IDE, such as the necessary code
to input the data, which would require your program to include certain header files. You
can, therefore, divide a C++ program into two parts: preprocessor directives and the
program. The preprocessor directives tell the compiler which header files to include in
the program. The program contains statements that accomplish meaningful results. Taken
together, the preprocessor directives and the program statements constitute the C++
source code. Recall that to be useful, source code must be saved in a file with the file
extension .cpp. For example, if the source code is saved in the file firstProgram, then
the complete name of this file is firstProgram.cpp. The file containing the source
code is called the source code file or source file.

When the program is compiled, the compiler generates the object code, which is saved in
a file with the file extension .obj. When the object code is linked with the system
resources, the executable code is produced and saved in a file with the file extension
.exe. Typically, the name of the file containing the object code and the name of the file
containing the executable code are the same as the name of the file containing the source
code. For example, if the source code is located in a file named firstProg.cpp, the
name of the file containing the object code is firstProg.obj, and the name of the file
containing the executable code is firstProg.exe.

The extensions as given in the preceding paragraph—that is, .cpp, .obj, and .exe—are
system dependent. Moreover, some IDEs maintain programs in the form of projects. The
name of the project and the name of the source file need not be the same. It is possible
that the name of the executable file is the name of the project, with the extension .exe.
To be certain, check your system or IDE documentation.

Because the programming instructions are placed in the function main, let us elaborate on
this function.

82 | Chapter 2: Basic Elements of C++

The basic parts of the function main are the heading and the body. The first line of the
function main, that is:

int main()

is called the heading of the function main.

The statements enclosed between the curly braces ({and }) form the body of the
function main. The body of the function main contains two types of statements:

• Declaration statements

• Executable statements

Declaration statements are used to declare things, such as variables.

In C++, identifiers, such as variables, can be declared anywhere in the program, but they
must be declared before they can be used.

EXAMPLE 2-27

The following statements are examples of variable declarations:

int a, b, c;
double x, y;

Executable statements perform calculations, manipulate data, create output, accept
input, and so on.

Some executable statements that you have encountered so far are the assignment, input,
and output statements.

EXAMPLE 2-28

The following statements are examples of executable statements:

a = 4; //assignment statement
cin >> b; //input statement
cout << a << " " << b << endl; //output statement

In skeleton form, a C++ program looks like the following:

//comments, if needed

preprocessor directives to include header files

using statement

named constants, if necessary

2

Creating a C++ Program | 83

int main()
{

statement_1
.
.
.

statement_n

return 0;
}

The C++ program in Example 2-29 shows where include statements, declaration state-
ments, executable statements, and so on typically appear in the program.

EXAMPLE 2-29

//***
// Author: D.S. Malik
//
// This program shows where the include statements, using
// statement, named constants, variable declarations, assignment
// statements, and input and output statements typically appear.
//***

#include <iostream> //Line 1

using namespace std; //Line 2

const int NUMBER = 12; //Line 3

int main() //Line 4
{ //Line 5

int firstNum; //Line 6
int secondNum; //Line 7

firstNum = 18; //Line 8
cout << "Line 9: firstNum = " << firstNum

<< endl; //Line 9

cout << "Line 10: Enter an integer: "; //Line 10
cin >> secondNum; //Line 11
cout << endl; //Line 12

cout << "Line 13: secondNum = " << secondNum
<< endl; //Line 13

firstNum = firstNum + NUMBER + 2 * secondNum; //Line 14

cout << "Line 15: The new value of "
<< "firstNum = " << firstNum << endl; //Line 15

return 0; //Line 16
} //Line 17

84 | Chapter 2: Basic Elements of C++

Sample Run: In this sample run, the user input is shaded.

Line 9: firstNum = 18
Line 10: Enter an integer: 15

Line 13: secondNum = 15
Line 15: The new value of firstNum = 60

The preceding program works as follows: The statement in Line 1 includes the
header file iostream so that program can perform input/output. The statement in
Line 2 uses the using namespace statement so that identifiers declared in the
header file iostream, such as cin, cout, and endl, can be used without using
the prefix std::. The statement in Line 3 declares the named constant NUMBER and
sets its value to 12. The statement in Line 4 contains the heading of the function
main, and the left brace in Line 5 marks the beginning of the function main. The
statements in Lines 6 and 7 declare the variables firstNum and secondNum.

The statement in Line 8 sets the value of firstNum to 18, and the statement in Line 9
outputs the value of firstNum. Next, the statement in Line 10 prompts the user to
enter an integer. The statement in Line 11 reads and stores the integer into the variable
secondNum, which is 15 in the sample run. The statement in Line 12 positions the
cursor on the screen at the beginning of the next line. The statement in Line 13
outputs the value of secondNum. The statement in Line 14 evaluates the expression:

firstNum + NUMBER + 2 * secondNum

and assigns the value of this expression to the variable firstNum, which is 60 in the
sample run. The statement in Line 15 outputs the new value of firstNum. The statement
in Line 16 contains the return statement, which is the last executable statement. The
right brace in Line 17 marks the end of the function main.

Debugging: Understanding and Fixing
Syntax Errors
The previous sections of this chapter described the basic components of a C++ program.
When you type a program, typos and unintentional syntax errors are likely to occur.
Therefore, when you compile a program, the compiler will identify the syntax error. In
this section, we show how to identify and fix syntax errors.

Consider the following C++ program:

1. #include <iostream>

2.

3. using namespace std;

4.

5. int main()

2

Debugging: Understanding and Fixing Syntax Errors | 85

6. {

7. int num

8.

9. num = 18;

10.

11. tempNum = 2 * num;

12.

13. cout << "Num = " << num << ", tempNum = " < tempNum << endl;

14.

15. return ;

16. }

(Note that the numbers 1 to 16 on the left side are not part of the program. We have
numbered the statements for easy reference.) This program contains syntax errors. When
you compile this program, the compiler produces the following errors. (This program is
compiled using Microsoft Visual Studio 2010.)

ExampleCh2_Syntax_Errors.cpp

c:\examplech2_syntax_errors.cpp(9): error C2146: syntax error : missing ';'

before identifier 'num'

c:\examplech2_syntax_errors.cpp(11): error C2065: 'tempNum' : undeclared identifier

c:\examplech2_syntax_errors.cpp(13): error C2065: 'tempNum' : undeclared identifier

c:\examplech2_syntax_errors.cpp(13): error C2563: mismatch in formal parameter list

c:\examplech2_syntax_errors.cpp(13): error C2568: '<<' : unable to resolve

function overload

c:\program files\microsoft visual studio

10.0\vc\include\ostream(1021): could be 'std::basic_ostream<_Elem,_Traits>

&std::endl(std::basic_ostream<_Elem,_Traits> &)'

with

[

_Elem=unsigned short,

_Traits=std::char_traits<unsigned short>

]

c:\program files\microsoft visual studio

10.0\vc\include\ostream(1011): or 'std::basic_ostream<_Elem,_Traits>

&std::endl(std::basic_ostream<_Elem,_Traits> &)'

with

[

_Elem=wchar_t,

_Traits=std::char_traits<wchar_t>

]

c:\program files\microsoft visual studio

10.0\vc\include\ostream(1003): or 'std::basic_ostream<_Elem,_Traits>

&std::endl(std::basic_ostream<_Elem,_Traits> &)'

with

[

_Elem=char,

_Traits=std::char_traits<char>

]

86 | Chapter 2: Basic Elements of C++

2

c:\program files\microsoft visual studio 10.0\vc\include\ostream(977):

or 'std::basic_ostream<_Elem,_Traits>

&std::endl(std::basic_ostream<_Elem,_Traits> &)'

c\examplech2_syntax_errors.cpp(15): error C2561: 'main' : function must return a

value

c:\examplech2_syntax_errors.cpp(5) : see declaration of 'main'

It is best to try to correct the errors in top-down fashion because the first error may
confuse the compiler and cause it to flag multiple subsequent errors when actually there
was only one error on an earlier line. So, let’s first consider the following error:

c:\examplech2_syntax_errors.cpp(9): error C2146: syntax error : missing ';'

before identifier 'num'

The expression examplech2_syntax_errors.cpp(9) indicates that there is an error in
Line 9. The remaining part of this error specifies that there is a missing ; before the
identifier num. If we look at Line 7, we find that there is a missing semicolon at the end of
the statement int num. Therefore, we must insert ; at the end of the statement in Line 7.

Next, consider the second error:

c:\examplech2_syntax_errors.cpp(11): error C2065: 'tempNum' : undeclared identifier

This error occurs in Line 11, and it specifies that the identifier tempNum is undeclared.
When we look at the code, we find that this identifier has not been declared. So we must
declare tempNum as an int variable.

The error:

c:\examplech2_syntax_errors.cpp(11): error C2065: 'tempNum' : undeclared identifier

occurs in Line 13, and it specifies that the identifier tempNum is undeclared. As in the
previous error, we must declare tempNum. Note that once we declare tempNum and
recompile, this and the previous error will disappear.

The next error is:

c:\examplech2_syntax_errors.cpp(13): error C2563: mismatch in formal parameter list

This error occurs in Line 13, and it indicates that some formal parameter list is mis-
matched. For a beginner, this error is somewhat hard to understand. (In Chapter 13, we
will explain the formal parameter list of the operator <<.) However, as you practice, you
will learn how to interpret and correct syntax errors. This error becomes clear if you look
at the next error, the part of which is:

c:\examplech2_syntax_errors.cpp(13): error C2568: '<<' : unable to resolve

function overload

It tells us that this error has something to do with the operator <<. When we carefully
look at the statement in Line 13, which is:

cout << "Num = " << num << ", tempNum = " < tempNum << endl;

we find that in the expression < tempNum, we have unintentionally used < in place of <<.
So we must correct this error.

Debugging: Understanding and Fixing Syntax Errors | 87

Let us look at the last error, which is:

c\examplech2_syntax_errors.cpp(15): error C2561: 'main' : function must return a value

c:\examplech2_syntax_errors.cpp(5) : see declaration of 'main'

This error occurs in Line 15. However, at this point, the explanation given,
especially for a beginner, is somewhat unclear. However, if you look at the statement
return ; in Line 15 and remember the syntax of the function main as well as all the
programs given in this book, we find that the number 0 is missing, that is, this statement
must be return 0;

From the errors reported by the compiler, we see that the compiler not only identifies the
errors, but it also specifies the line numbers where the errors occur and the types of the
errors. We can effectively use this information to fix syntax errors.

After correcting all of the syntax errors, a correct program is:

#include <iostream>

using namespace std;

int main()
{

int num;
int tempNum;

num = 18;

tempNum = 2 * num;

cout << "Num = " << num << ", tempNum = " << tempNum << endl;

return 0;
}

The output is:

Num = 18, tempNum = 36

As you learn C++ and practice writing and executing programs, you will learn how to
spot and fix syntax errors. It is possible that the list of errors reported by the compiler is
longer than the program itself. This is because, as indicated above, a syntax error in one
line can cause syntax errors in subsequent lines. In situations like this, correct the syntax
errors in the order they are listed and compile your program, if necessary, after each
correction. You will see how quickly the syntax errors list shrinks. The important thing is
not to panic.

In the next section, we describe some simple rules that you can follow so that your
program is properly structured.

88 | Chapter 2: Basic Elements of C++

Program Style and Form
In previous sections, you learned enough C++ concepts to write meaningful programs.
Before beginning to write programs, however, you need to learn their proper structure,
among other things. Using the proper structure for a C++ program makes it easier to
understand and subsequently modify the program. There is nothing more frustrating
than trying to follow and perhaps modify a program that is syntactically correct but has no
structure.

In addition, every C++ program must satisfy certain rules of the language. A C++
program must contain the function main. It must also follow the syntax rules, which, like
grammar rules, tell what is right and what is wrong and what is legal and what is illegal in
the language. Other rules serve the purpose of giving precise meaning to the language;
that is, they support the language’s semantics.

The following sections are designed to help you learn how to use the C++ programming
elements you have learned so far to create a functioning program. These sections cover the
syntax; the use of blanks; the use of semicolons, brackets, and commas; semantics; naming
identifiers; prompt lines; documentation, including comments; and form and style.

Syntax
The syntax rules of a language tell what is legal and what is not legal. Errors in syntax are
detected during compilation. For example, consider the following C++ statements:

int x; //Line 1
int y //Line 2
double z; //Line 3

y = w + x; //Line 4

When these statements are compiled, a compilation error will occur at Line 2 because the
semicolon is missing after the declaration of the variable y. A second compilation error
will occur at Line 4 because the identifier w is used but has not been declared.

As discussed in Chapter 1, you enter a program into the computer by using a text editor.
When the program is typed, errors are almost unavoidable. Therefore, when the program is
compiled, you are most likely to see syntax errors. It is quite possible that a syntax error at a
particular place might lead to syntax errors in several subsequent statements. It is very
common for the omission of a single character to cause four or five error messages.
However, when the first syntax error is removed and the program is recompiled, sub-
sequent syntax errors caused by this syntax error may disappear. Therefore, you should
correct syntax errors in the order in which the compiler lists them. As you become more
familiar and experienced with C++, you will learn how to quickly spot and fix syntax
errors. Also, compilers not only discover syntax errors, but also hint and sometimes tell the
user where the syntax errors are and how to fix them.

2

Program Style and Form | 89

Use of Blanks
In C++, you use one or more blanks to separate numbers when data is input. Blanks are
also used to separate reserved words and identifiers from each other and from other
symbols. Blanks must never appear within a reserved word or identifier.

Use of Semicolons, Brackets, and Commas
All C++ statements must end with a semicolon. The semicolon is also called a statement

terminator.

Note that curly braces, { and }, are not C++ statements in and of themselves, even
though they often appear on a line with no other code. You might regard brackets as
delimiters, because they enclose the body of a function and set it off from other parts of
the program. Brackets have other uses, which will be explained in Chapter 4.

Recall that commas are used to separate items in a list. For example, you use commas
when you declare more than one variable following a data type.

Semantics
The set of rules that gives meaning to a language is called semantics. For example, the
order-of-precedence rules for arithmetic operators are semantic rules.

If a program contains syntax errors, the compiler will warn you. What happens when a
program contains semantic errors? It is quite possible to eradicate all syntax errors in a
program and still not have it run. And if it runs, it may not do what you meant it to do.
For example, the following two lines of code are both syntactically correct expressions,
but they have different meanings:

2 + 3 * 5

and:

(2 + 3) * 5

If you substitute one of these lines of code for the other in a program, you will not get the
same results—even though the numbers are the same, the semantics are different. You
will learn about semantics throughout this book.

Naming Identifiers
Consider the following two sets of statements:

const double A = 2.54; //conversion constant
double x; //variable to hold centimeters
double y; //variable to hold inches

x = y * a;

90 | Chapter 2: Basic Elements of C++

and

const double CENTIMETERS_PER_INCH = 2.54;
double centimeters;
double inches;

centimeters = inches * CENTIMETERS_PER_INCH;

The identifiers in the second set of statements, such as CENTIMETERS_PER_INCH, are
usually called self-documenting identifiers. As you can see, self-documenting identifiers
can make comments less necessary.

Consider the self-documenting identifier annualsale. This identifier is called a run-

together word. In using self-documenting identifiers, you may inadvertently include
run-together words, which may lessen the clarity of your documentation. You can make
run-together words easier to understand by either capitalizing the beginning of each new
word or by inserting an underscore just before a new word. For example, you could use
either annualSale or annual_sale to create an identifier that is more clear.

Recall that earlier in this chapter, we specified the general rules for naming named
constants and variables. For example, an identifier used to name a named constant is
all uppercase. If this identifier is a run-together word, then the words are separated
with the underscore character.

Prompt Lines
Part of good documentation is the use of clearly written prompts so that users will
know what to do when they interact with a program. There is nothing more
frustrating than sitting in front of a running program and not having the foggiest
notion of whether to enter something or what to enter. Prompt lines are executable
statements that inform the user what to do. For example, consider the following
C++ statements, in which num is an int variable:

cout << "Please enter a number between 1 and 10 and "
<< "press the return key" << endl;

cin >> num;

When these two statements execute in the order given, first the output statement causes
the following line of text to appear on the screen:

Please enter a number between 1 and 10 and press the return key

After seeing this line, users know that they must enter a number and press the return key.
If the program contained only the second statement, users would have no idea that they
must enter a number, and the computer would wait forever for the input. The preceding
output statement is an example of a prompt line.

In a program, whenever input is needed from users, you must include the necessary
prompt lines. Furthermore, these prompt lines should include as much information as
possible about what input is acceptable. For example, the preceding prompt line not

2

Program Style and Form | 91

only tells the user to input a number, but also informs the user that the number
should be between 1 and 10.

Documentation
The programs that you write should be clear not only to you, but also to anyone
else. Therefore, you must properly document your programs. A well-documented
program is easier to understand and modify, even a long time after you originally
wrote it. You use comments to document programs. Comments should appear in a
program to explain the purpose of the program, identify who wrote it, and explain
the purpose of particular statements.

Form and Style
You might be thinking that C++ has too many rules. However, in practice, the rules give
C++ a great degree of freedom. For example, consider the following two ways of
declaring variables:

int feet, inch;
double x, y;

and

int feet,inches;double x,y;

The computer would have no difficulty understanding either of these formats, but the
first form is easier to read and follow. Of course, the omission of a single comma or
semicolon in either format may lead to all sorts of strange error messages.

What about blank spaces? Where are they significant and where are they meaningless?
Consider the following two statements:

int a,b,c;

and

int a, b, c;

Both of these declarations mean the same thing. Here, the blanks between the identifiers
in the second statement are meaningless. On the other hand, consider the following
statement:

inta,b,c;

This statement contains a syntax error. The lack of a blank between int and the
identifier a changes the reserved word int and the identifier a into a new identifier,
inta.

The clarity of the rules of syntax and semantics frees you to adopt formats that are pleasing
to you and easier to understand.

92 | Chapter 2: Basic Elements of C++

The following example further elaborates on this.

EXAMPLE 2-30

Consider the following C++ program:

//An improperly formatted C++ program.

#include <iostream>
#include <string>
using namespace std;

int main()
{
int num; double height;
string name;
cout << "Enter an integer: "; cin >> num; cout << endl;

cout<<"num: "<<num<<endl;
cout<<"Enter the first name: "; cin>>name;

cout<<endl; cout <<"Enter the height: ";
cin>>height; cout<<endl;

cout<<"Name: "<<name<<endl;cout<<"Height: "
<<height; cout <<endl;return 0;
}

This program is syntactically correct; the C++ compiler would have no difficulty reading
and compiling this program. However, this program is very hard to read. The program
that you write should be properly indented and formatted. Note the difference when the
program is reformatted:

//A properly formatted C++ program.

#include <iostream>
#include <string>

using namespace std;

int main()
{

int num;
double height;
string name;

cout << "Enter an integer: ";
cin >> num;
cout << endl;

2

Program Style and Form | 93

cout << "num: " << num << endl;

cout << "Enter the first name: ";
cin >> name;
cout << endl;
cout << "Enter the height: ";
cin >> height;
cout << endl;

cout << "Name: " << name << endl;
cout << "Height: " << height << endl;

return 0;
}

As you can see, this program is easier to read. Your programs should be properly
indented and formatted. To document the variables, programmers typically declare
one variable per line. Also, always put a space before and after an operator. When
you type your program using an IDE, typically, your program is automatically
indented.

More on Assignment Statements
The assignment statements you have seen so far are called simple assignment

statements. In certain cases, you can use special assignment statements called
compound assignment statements to write simple assignment statements in a
more concise notation.

Corresponding to the five arithmetic operators +, -, *, /, and %, C++ provides five
compound operators: +=, -=, *=, /=, and %=, respectively. Consider the following simple
assignment statement, in which x and y are int variables:

x = x * y;

Using the compound operator *=, this statement can be written as:

x *= y;

In general, using the compound operator *=, you can rewrite the simple assignment
statement:

variable = variable * (expression);

as:

variable *= expression;

94 | Chapter 2: Basic Elements of C++

The other arithmetic compound operators have similar conventions. For example, using
the compound operator +=, you can rewrite the simple assignment statement:

variable = variable + (expression);

as:

variable += expression;

The compound assignment statement allows you to write simple assignment statements
in a concise fashion by combining an arithmetic operator with the assignment operator.

EXAMPLE 2-31

This example shows several compound assignment statements that are equivalent to
simple assignment statements.

Simple Assignment Statement Compound Assignment Statement

i = i + 5; i += 5;
counter = counter + 1; counter += 1;
sum = sum + number; sum += number;
amount = amount * (interest + 1); amount *= interest + 1;
x = x / (y + 5); x /= y + 5;

Any compound assignment statement can be converted into a simple assignment statement.

However, a simple assignment statement may not be (easily) converted to a compound

assignment statement. For example, consider the following simple assignment statement:

x = x * y + z – 5;

To write this statement as a compound assignment statement, the variable x must be a

common factor in the right side, which is not the case. Therefore, you cannot immediately

convert this statement into a compound assignment statement. In fact, the equivalent

compound assignment statement is:

x *= y + (z – 5)/x;

which is more complicated than the simple assignment statement. Furthermore, in the

preceding compound statement, x cannot be 0. We recommend avoiding such compound

expressions.

In programming code, this book typically uses only the compound operator +=. So

statements such as a = a + b; are written as a += b;.

2

More on Assignment Statements | 95

PROGRAMMING EXAMPLE: Convert Length
Write a program that takes as input given lengths expressed in feet and inches. The
program should then convert and output the lengths in centimeters. Assume that the
given lengths in feet and inches are integers.

Input Length in feet and inches.

Output Equivalent length in centimeters.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

The lengths are given in feet and inches, and you need to find the equivalent length
in centimeters. One inch is equal to 2.54 centimeters. The first thing the program
needs to do is convert the length given in feet and inches to all inches. Then, you can
use the conversion formula, 1 inch = 2.54 centimeters, to find the equivalent length
in centimeters. To convert the length from feet and inches to inches, you multiply
the number of feet by 12, as 1 foot is equal to 12 inches, and add the given inches.

For example, suppose the input is 5 feet and 7 inches. You then find the total inches
as follows:

totalInches = (12 * feet) + inches
= 12 * 5 + 7
= 67

You can then apply the conversion formula, 1 inch = 2.54 centimeters, to find the
length in centimeters.

centimeters = totalInches * 2.54
= 67 * 2.54
= 170.18

Based on this analysis of the problem, you can design an algorithm as follows:

1. Get the length in feet and inches.

2. Convert the length into total inches.

3. Convert total inches into centimeters.

4. Output centimeters.

Variables The input for the program is two numbers: one for feet and one for inches. Thus,
you need two variables: one to store feet and the other to store inches. Because the
program will first convert the given length into inches, you need another variable to
store the total inches. You also need a variable to store the equivalent length in
centimeters. In summary, you need the following variables:

int feet; //variable to hold given feet
int inches; //variable to hold given inches
int totalInches; //variable to hold total inches
double centimeters; //variable to hold length in centimeters

Watch

the Video

96 | Chapter 2: Basic Elements of C++

2

Named

Constants

To calculate the equivalent length in centimeters, you need to multiply the total
inches by 2.54. Instead of using the value 2.54 directly in the program, you will
declare this value as a named constant. Similarly, to find the total inches, you need to
multiply the feet by 12 and add the inches. Instead of using 12 directly in the
program, you will also declare this value as a named constant. Using a named
constant makes it easier to modify the program later.

const double CENTIMETERS_PER_INCH = 2.54;
const int INCHES_PER_FOOT = 12;

MAIN

ALGORITHM

In the preceding sections, we analyzed the problem and determined the formulas to do
the calculations. We also determined the necessary variables and named constants. We
can now expand the algorithm given in the section Problem Analysis and Algorithm
Design to solve the problem given at the beginning of this programming example.

1. Prompt the user for the input. (Without a prompt line, the user
will be staring at a blank screen and will not know what to do.)

2. Get the data.

3. Echo the input—that is, output what the program read as input.
(Without this step, after the program has executed, you will not
know what the input was.)

4. Find the length in inches.

5. Output the length in inches.

6. Convert the length to centimeters.

7. Output the length in centimeters.

Putting It

Together

Now that the problem has been analyzed and the algorithm has been designed, the
next step is to translate the algorithm into C++ code. Because this is the first
complete C++ program you are writing, let’s review the necessary steps in sequence.

The program will begin with comments that document its purpose and functionality.
As there is both input to this program (the length in feet and inches) and output (the
equivalent length in centimeters), you will be using system resources for input/output.
In other words, the program will use input statements to get data into the program and
output statements to print the results. Because the data will be entered from the
keyboard and the output will be displayed on the screen, the program must include the
header file iostream. Thus, the first statement of the program, after the comments as
described above, will be the preprocessor directive to include this header file.

This program requires two types of memory locations for data manipulation: named
constants and variables. Typically, named constants hold special data, such as
CENTIMETERS_PER_INCH. Depending on the nature of a named constant, it can be
placed before the function main or within the function main. If a named constant is to be

Programming Example: Convert Length | 97

used throughout the program, then it is typically placed before the function main.Wewill
comment further on where to put named constants within a program in Chapter 6, when
we discuss user-defined functions in general. Until then, usually, we will place named
constants before the function main so that they can be used throughout the program.

This program has only one function, the function main, which will contain all of the
programming instructions in its body. In addition, the program needs variables to
manipulate data, and these variables will be declared in the body of the function
main. The reasons for declaring variables in the body of the function main are
explained in Chapter 6. The body of the function main will also contain the C++
statements that implement the algorithm. Therefore, the body of the function main

has the following form:

int main()
{

declare variables

statements

return 0;
}

To write the complete length conversion program, follow these steps:

1. Begin the program with comments for documentation.

2. Include header files, if any are used in the program.

3. Declare named constants, if any.

4. Write the definition of the function main.

COMPLETE PROGRAM LISTING

//**
// Author: D. S. Malik
//
// Program Convert Measurements: This program converts
// measurements in feet and inches into centimeters using
// the formula that 1 inch is equal to 2.54 centimeters.
//**

//Header file
#include <iostream>

using namespace std;

//Named constants
const double CENTIMETERS_PER_INCH = 2.54;
const int INCHES_PER_FOOT = 12;

98 | Chapter 2: Basic Elements of C++

2

int main ()
{

//Declare variables
int feet, inches;
int totalInches;
double centimeter;

//Statements: Step 1 - Step 7
cout << "Enter two integers, one for feet and "

<< "one for inches: "; //Step 1
cin >> feet >> inches; //Step 2
cout << endl;
cout << "The numbers you entered are " << feet

<< " for feet and " << inches
<< " for inches. " << endl; //Step 3

totalInches = INCHES_PER_FOOT * feet + inches; //Step 4

cout << "The total number of inches = "
<< totalInches << endl; //Step 5

centimeter = CENTIMETERS_PER_INCH * totalInches; //Step 6

cout << "The number of centimeters = "
<< centimeter << endl; //Step 7

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Enter two integers, one for feet, one for inches: 15 7

The numbers you entered are 15 for feet and 7 for inches.
The total number of inches = 187
The number of centimeters = 474.98

PROGRAMMING EXAMPLE: Make Change
Write a program that takes as input any change expressed in cents. It should then
compute the number of half-dollars, quarters, dimes, nickels, and pennies to be
returned, returning as many half-dollars as possible, then quarters, dimes, nickels,
and pennies, in that order. For example, 483 cents should be returned as 9 half-
dollars, 1 quarter, 1 nickel, and 3 pennies.

Input Change in cents.

Output Equivalent change in half-dollars, quarters, dimes, nickels, and pennies.

Programming Example: Make Change | 99

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

Suppose the given change is 646 cents. To find the number of half-dollars, you
divide 646 by 50, the value of a half-dollar, and find the quotient, which is 12, and
the remainder, which is 46. The quotient, 12, is the number of half-dollars, and the
remainder, 46, is the remaining change.

Next, divide the remaining change by 25 to find the number of quarters. Since the
remaining change is 46, division by 25 gives the quotient 1, which is the number of
quarters, and a remainder of 21, which is the remaining change. This process
continues for dimes and nickels. To calculate the remainder in an integer division,
you use the mod operator, %.

Applying this discussion to 646 cents yields the following calculations:

1. Change = 646

2. Number of half-dollars = 646 / 50 = 12

3. Remaining change = 646 % 50 = 46

4. Number of quarters = 46 / 25 = 1

5. Remaining change = 46 % 25 = 21

6. Number of dimes = 21 / 10 = 2

7. Remaining change = 21 % 10 = 1

8. Number of nickels = 1 / 5 = 0

9. Number of pennies = remaining change = 1 % 5 = 1

This discussion translates into the following algorithm:

1. Get the change in cents.

2. Find the number of half-dollars.

3. Calculate the remaining change.

4. Find the number of quarters.

5. Calculate the remaining change.

6. Find the number of dimes.

7. Calculate the remaining change.

8. Find the number of nickels.

9. Calculate the remaining change, which is the number of pennies.

Variables From the previous discussion and algorithm, it appears that the program will need
variables to hold the number of half-dollars, quarters, and so on. However, the numbers
of half-dollars, quarters, and so on are not used in later calculations, so the program can
simply output these values without saving each of them in a variable. The only thing that
keeps changing is the change, so the program actually needs only one variable:

int change;

100 | Chapter 2: Basic Elements of C++

2

Named

Constants

To calculate the equivalent change, the program performs calculations using the
values of a half-dollar, which is 50; a quarter, which is 25; a dime, which is 10; and a
nickel, which is 5. Because these data are special and the program uses these values
more than once, it makes sense to declare them as named constants. Using named
constants also simplifies later modification of the program:

const int HALF_DOLLAR = 50;
const int QUARTER = 25;
const int DIME = 10;
const int NICKEL = 5;

MAIN

ALGORITHM

1. Prompt the user for input.

2. Get input.

3. Echo the input by displaying the entered change on the screen.

4. Compute and print the number of half-dollars.

5. Calculate the remaining change.

6. Compute and print the number of quarters.

7. Calculate the remaining change.

8. Compute and print the number of dimes.

9. Calculate the remaining change.

10. Compute and print the number of nickels.

11. Calculate the remaining change.

12. Print the remaining change.

COMPLETE PROGRAM LISTING

//**
// Author: D. S. Malik
//
// Program Make Change: Given any amount of change expressed
// in cents, this program computes the number of half-dollars,
// quarters, dimes, nickels, and pennies to be returned,
// returning as many half-dollars as possible, then quarters,
// dimes, nickels, and pennies in that order.
//**

//Header file
#include <iostream>

using namespace std;

//Named constants
const int HALF_DOLLAR = 50;
const int QUARTER = 25;
const int DIME = 10;
const int NICKEL = 5;

Programming Example: Make Change | 101

int main()
{

//Declare variable
int change;

//Statements: Step 1 – Step 12
cout << "Enter change in cents: "; //Step 1
cin >> change; //Step 2
cout << endl;

cout << "The change you entered is " << change
<< endl; //Step 3

cout << "The number of half-dollars to be returned "
<< "is " << change / HALF_DOLLAR
<< endl; //Step 4

change = change % HALF_DOLLAR; //Step 5

cout << "The number of quarters to be returned is "
<< change / QUARTER << endl; //Step 6

change = change % QUARTER; //Step 7

cout << "The number of dimes to be returned is "
<< change / DIME << endl; //Step 8

change = change % DIME; //Step 9

cout << "The number of nickels to be returned is "
<< change / NICKEL << endl; //Step 10

change = change % NICKEL; //Step 11

cout << "The number of pennies to be returned is "
<< change << endl; //Step 12

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Enter change in cents: 583

The change you entered is 583
The number of half-dollars to be returned is 11
The number of quarters to be returned is 1
The number of dimes to be returned is 0
The number of nickels to be returned is 1
The number of pennies to be returned is 3

102 | Chapter 2: Basic Elements of C++

QUICK REVIEW

1. A C++ program is a collection of functions.

2. Every C++ program has a function called main.

3. A single-line comment starts with the pair of symbols //anywhere in the
line.

4. Multiline comments are enclosed between /* and */.

5. The compiler skips comments.

6. Reserved words cannot be used as identifiers in a program.

7. All reserved words in C++ consist of lowercase letters (see Appendix A).

8. In C++, identifiers are names of things.

9. A C++ identifier consists of letters, digits, and underscores and must begin
with a letter or underscore.

10. Whitespaces include blanks, tabs, and newline characters.

11. A data type is a set of values together with a set of operations.

12. C++ data types fall into the following three categories: simple, structured,
and pointers.

13. There are three categories of simple data: integral, floating-point, and
enumeration.

14. Integral data types are classified into nine categories: char, short, int,
long, bool, unsigned char, unsigned short, unsigned int, and
unsigned long.

15. The values belonging to int data type are �2147483648 (¼ �231) to
2147483647 (¼ 231 � 1).

16. The data type bool has only two values: true and false.

17. The most common character sets are ASCII, which has 128 values, and
EBCDIC, which has 256 values.

18. The collating sequence of a character is its preset number in the character
data set.

19. C++ provides three data types to manipulate decimal numbers: float,
double, and long double.

20. The data type float is used in C++ to represent any real number between
-3.4 * 1038 and 3.4 * 1038. The memory allocated for a value of the
float data type is four bytes.

21. The data type double is used in C++ to represent any real number
between -1.7 * 10308 and 1.7 * 10308. The memory allocated for a value
of the double data type is eight bytes.

22. The arithmetic operators in C++ are addition (+), subtraction (-), multi-
plication (*), division (/), and modulus (%).

2

Quick Review | 103

23. The modulus operator, %, takes only integer operands.

24. Arithmetic expressions are evaluated using the precedence rules and the
associativity of the arithmetic operators.

25. All operands in an integral expression, or integer expression, are integers,
and all operands in a floating-point expression are decimal numbers.

26. A mixed expression is an expression that consists of both integers and
decimal numbers.

27. When evaluating an operator in an expression, an integer is converted to a
floating-point number, with a decimal part of 0, only if the operator has
mixed operands.

28. You can use the cast operator to explicitly convert values from one data
type to another.

29. A string is a sequence of zero or more characters.

30. Strings in C++ are enclosed in double quotation marks.

31. A string containing no characters is called a null or empty string.

32. Every character in a string has a relative position in the string. The position of
the first character is 0, the position of the second character is 1, and so on.

33. The length of a string is the number of characters in it.

34. During program execution, the contents of a named constant cannot be
changed.

35. A named constant is declared by using the reserved word const.

36. A named constant is initialized when it is declared.

37. All variables must be declared before they can be used.

38. C++ does not automatically initialize variables.

39. Every variable has a name, a value, a data type, and a size.

40. When a new value is assigned to a variable, the old value is lost.

41. Only an assignment statement or an input (read) statement can change the
value of a variable.

42. In C++, >> is called the stream extraction operator.

43. Input from the standard input device is accomplished by using cin and the
stream extraction operator >>.

44. When data is input in a program, the data items, such as numbers, are
usually separated by blanks, lines, or tabs.

45. In C++, << is called the stream insertion operator.

46. Output of the program to the standard output device is accomplished by
using cout and the stream insertion operator <<.

47. The manipulator endl positions the insertion point at the beginning of the
next line on an output device.

104 | Chapter 2: Basic Elements of C++

48. Outputting or accessing the value of a variable in an expression does not
destroy or modify the contents of the variable.

49. The character \ is called the escape character.

50. The sequence \n is called the newline escape sequence.

51. All preprocessor commands start with the symbol #.

52. The preprocessor commands are processed by the preprocessor before the
program goes through the compiler.

53. The preprocessor command #include <iostream> instructs the prepro-
cessor to include the header file iostream in the program.

54. To use cin and cout, the program must include the header file iostream

and either include the statement using namespace std; or refer to these
identifiers as std::cin and std::cout.

55. All C++ statements end with a semicolon. The semicolon in C++ is called
the statement terminator.

56. A C++ system has three components: environment, language, and the
standard libraries.

57. Standard libraries are not part of the C++ language. They contain functions
to perform operations, such as mathematical operations.

58. A file containing a C++ program usually ends with the extension .cpp.

59. Prompt lines are executable statements that tell the user what to do.

60. Corresponding to the five arithmetic operators +, -, *, /, and %,
C++ provides five compound operators: +=, -=, *=, /=, and %=, respectively.

EXERCISES

1. Mark the following statements as true or false.

a. An identifier can be any sequence of digits and letters.

b. In C++, there is no difference between a reserved word and a pre-
defined identifier.

c. A C++ identifier can start with a digit.

d. The operands of the modulus operator must be integers.

e. If a = 4; and b = 3;, then after the statement a = b; the value of b is still 3.

f. In the statement cin >> y;, y can only be an int or a double variable.

g. In an output statement, the newline character may be a part of the string.

h. The following is a legal C++ program:

int main()
{

return 0;
}

2

Exercises | 105

i. In a mixed expression, all the operands are converted to floating-point
numbers.

j. Suppose x = 5. After the statement y = x++; executes, y is 5 and
x is 6.

k. Suppose a = 5. After the statement ++a; executes, the value of a is still
5 because the value of the expression is not saved in another variable.

2. Which of the following are valid C++ identifiers?

a. firstCPPProject b. POP_QUIZ c. C++Program2 d. quiz7

e. ProgrammingLecture2 f. 3feetIn1Yard

g. Mike'sFirstAttempt h. Update Grade i. 4th

j. New_Student

3. Which of the following is a reserved word in C++?

a. Const b. include c. Char d. void e. int f. Return

4. What is the difference between a keyword and a user-defined identifier?

5. Are the identifiers firstName and FirstName the same?

6. Evaluate the following expressions:

a. 36 / 5 b. 18 - 32 / 6 * 3 c. 80 % 11 d. 6 - 8 % 11

e. 22.0 / 5 f. 27 - 12 / 8.0 g. 25 - 7 % 3 + 8 / 3

h. 18.0 + 5.0 * 3.0 / 4.0

7. If x = 5, y = 6, z = 4, and w = 3.5, evaluate each of the following statements,
if possible. If it is not possible, state the reason.

a. (x + z) % y b. (x + y) % w c. (y + w) % x d. (x + y) *w

e. (x % y) % z f. (y % z) % x g. (x *z) % y h. ((x *y) *w) *z

8. Given:

int num1, num2, newNum;
double x, y;

Which of the following assignments are valid? If an assignment is not valid, state the
reason.

When not given, assume that each variable is declared.

a. num1 = 35;

b. newNum = num1 – num2;

c. num1 = 5; num2 = 2 + num1; num1 = num2 / 3;

d. num1 * num2 = newNum;

e. x = 12 * num1 - 15.3;

f. num1 * 2 = newNum + num2;

g. x / y = x * y;

106 | Chapter 2: Basic Elements of C++

h. num2 = num1 % 2.0;

i. newNum = static_cast<int> (x) % 5;

j. x = x + y - 5;

k. newNum = num1 + static_cast<int> (4.6 / 2);

9. Do a walk-through to find the value assigned to e. Assume that all variables
are properly declared.

a = 3;
b = 4;
c = (a % b) * 6;
d = c / b;
e = (a + b + c + d) / 4;

10. Which of the following variable declarations are correct? If a variable
declaration is not correct, give the reason(s) and provide the correct
variable declaration.

55 = age; //Line 1
char letter = ' '; //Line 2
string message = 'First test is on Monday' //Line 3
int one = 5; //Line 4
int prime; //Line 5
double x, y, z; //Line 6

11. Which of the following are valid C++ assignment statements? Assume that
i, x, and percent are double variables.

a. i = i + 5; b. x + 2 = x; c. x = 2.5 *x; d. percent = 10%;

12. Write C++ statement(s) that accomplish the following:

a. Declare int variables x and y. Initialize x to 25 and y to 18.

b. Declare and initialize an int variable temp to 10 and a char variable
ch to 'A'.

c. Update the value of an int variable x by adding 5 to it.

d. Declare and initialize a double variable payRate to 12.50.

e. Copy the value of an int variable firstNum into an int variable
tempNum.

f. Swap the contents of the int variables x and y. (Declare additional
variables, if necessary.)

g. Suppose x and y are double variables. Output the contents of x, y,
and the expression x + 12 / y - 18.

h. Declare a char variable grade and set the value of grade to 'A'.

i. Declare int variables to store four integers.

j. Copy the value of a double variable z to the nearest integer into an
int variable x.

2

Exercises | 107

13. Write each of the following as a C++ expression:

a. 32 times a plus b

b. The character that represents 8

c. The string that represents the name Julie Nelson.

d. (b2 - 4ac) / 2a

e. (a + b)/c(ef)-gh

f. (-b + (b2 - 4ac)) / 2a

14. Suppose x, y, z, and w are int variables. What value is assigned to each of
these variables after the last statement executes?

x = 4; y = 11;
z = y - 2 * x;
x = z + y;
y = x + 5 * z;
w = x - y + 2 * z;
x = y + w - x;
–w;

15. Suppose x, y, and z are int variables and w and t are double variables.
What value is assigned to each of these variables after the last statement
executes?

x = 23;
y = 35;
x = x + y / 4 - 3;
z = x % 3;
w = 28 / 3 + 6.5 * 2;
t = x / 4.0 + 15 % 4 - 3.5;

16. Suppose x, y, and z are int variables and x = 2, y = 5, and z = 6. What is
the output of each of the following statements?

a. cout << "x = " << x << ", y = " << y << ", z = " << z << endl;

b. cout << "x + y = " << x + y << endl;

c. cout << "Sum of " << x << " and " << z << " is " << x + z << endl;

d. cout << "z / x = " << z / x << endl;

e. cout << "2 times " << x << " = " << 2 *x << endl;

17. What is the output of the following statements? Suppose a and b are int
variables, c is a double variable, and a = 13, b = 5, and c = 17.5.

a. cout << a + b – c << endl;

b. cout << 15 / 2 + c << endl;

c. cout << a / static_cast<double>(b) + 2 * c
<< endl;

d. cout << 14 % 3 + 6.3 + b / a << endl;

e. cout << static_cast<int>(c) % 5 + a – b
<< endl;

f. cout << 13.5 / 2 + 4.0 * 3.5 + 18 << endl;

108 | Chapter 2: Basic Elements of C++

2

18. Write C++ statements that accomplish the following:

a. Output the newline character.

b. Output the tab character.

c. Output double quotation mark.

19. Which of the following are correct C++ statements?

a. cout << "Hello There!" << endl;

b. cout << "Hello";

<< " There!" << endl;

c. cout << "Hello"

<< " There!" << endl;

d. cout << 'Hello There!' << endl;

20. Give meaningful identifiers for the following variables:

a. A variable to store the first name of a student.

b. A variable to store the discounted price of an item.

c. A variable to store the number of juice bottles.

d. A variable to store the number of miles traveled.

e. A variable to store the highest test score.

21. Write C++ statements to do the following:

a. Declare int variable num1 and num2.

b. Prompt the user to input two numbers.

c. Input the first number in num1 and the second number in num2.

d. Output num1, num2, and 2 times num1 minus num2. Your output must
identify each number and the expression.

22. The following program has syntax errors. Correct them. On each successive
line, assume that any preceding error has been corrected.

#include <io_stream>

const int TOP_NUM = 753,409;
const PAY_RATE = 18.35

main() int
{

int testScore, projectScore;
double temp;
double payCheck

testScore = 88;
projectScore = 22;

cout << testScore << " " << projectScore << endl;

Exercises | 109

temp = 82;
newTemp = testScore + 2 * projectScore;

first = 2 * TOP_NUM;
TOP _NUM = TOP _NUM - 919;

cout << first << " " TOP_NUM << endl;

paycheck = hoursWorked * PAY_RATE

cout << "Wages = " << paycheck << endl;

return 0;
}

23. The following program has syntax mistakes. Correct them. On each
successive line, assume that any preceding error has been corrected.

const char = STAR = '*'
const int PRIME = 71;

int main
{

int count, sum;
double x;

count = 1;
sum = count + PRIME;
x := 25.67;
newNum = count * ONE + 2;
sum + count = sum;
x = x + sum * COUNT;
cout << " count = " << count << ", sum = " << sum

<< ", PRIME = " << Prime << endl;
}

24. The following program has syntax errors. Correct them. On each successive
line, assume that any preceding error has been corrected.

#include <iostream>

using namespace std;

int main()
{

int temp;
string first;

cout << "Enter first name: ;
cin >> first
cout << endl;

cout << "Enter last name: ;
cin >> last;
cout << endl;

110 | Chapter 2: Basic Elements of C++

cout << "Enter today's temperature: ";
cin >> temperature;
cout << endl;

cout << first << " " << last << today's temperature is: ";
<< temperature << endl;

return 0;
}

25. What action must be taken before a variable can be used in a program?

26. Preprocessor directives begin with which of the following symbols:

a. * b. # c. $ d. ! e. None of these.

27. Write equivalent compound statements if possible.

a. x = 2 *x b. x = x + y - 2; c. sum = sum + num;

d. z = z *x + 2 *z; e. y = y / (x + 5);

28. Write the following compound statements as equivalent simple statements.

a. x += 5 - z; b. y *= 2 *x + 5 - z; c. w += 2 *z + 4;

d. x -= z + y - t; e. sum += num;

29. Suppose a, b, and c are int variables and a = 5 and b = 6. What value is
assigned to each variable after each statement executes? If a variable is
undefined at a particular statement, report UND (undefined).

a b c
a = (b++) + 3; __ __ __
c = 2 * a + (++b); __ __ __
b = 2 * (++c) - (a++); __ __ __

30. Suppose a, b, and sum are int variables and c is a double variable. What
value is assigned to each variable after each statement executes? Suppose a = 3,
b = 5, and c = 14.1.

a b c sum
sum = a + b + c; ___ ___ ___ ___
c /= a; ___ ___ ___ ___
b += c - a; ___ ___ ___ ___
a *= 2 * b + c; ___ ___ ___ ___

31. What is printed by the following program? Suppose the input is:

20 15

#include <iostream>

using namespace std;

const int NUM = 10;
const double X = 20.5;

2

Exercises | 111

int main()
{

int a, b;
double z;
char grade;

a = 25;

cout << "a = " << a << endl;

cout << "Enter two integers: ";
cin >> a >> b;
cout << endl;

cout << "The numbers you entered are "
<< a << " and " << b << endl;

z = X + 2 * a - b;
cout << "z = " << z << endl;

grade = 'A';
cout << "Your grade is " << grade << endl;

a = 2 * NUM + z;
cout << "The value of a = " << a << endl;

return 0;
}

32. What is printed by the following program? Suppose the input is:

Miller
34
340

#include <iostream>
#include <string>

using namespace std;

const int PRIME_NUM = 11;

int main()
{

const int SECRET = 17;

string name;
int id;
int num;
int mysteryNum;

cout << "Enter last name: ";
cin >> name;
cout << endl;

112 | Chapter 2: Basic Elements of C++

cout << "Enter a two digit number: ";
cin >> num;
cout << endl;

id = 100 * num + SECRET;

cout << "Enter a positive integer less than 1000: ";
cin >> num;
cout << endl;

mysteryNum = num * PRIME_NUM - 3 * SECRET;

cout << "Name: " << name << endl;
cout << "Id: " << id << endl;
cout << "Mystery number: " << mysteryNum << endl;

return 0;
}

33. Rewrite the following program so that it is properly formatted.

#include <iostream>
#include <string>
using namespace std;
const double X = 13.45; const int Y=34;
const char BLANK= ' ';
int main()
{string firstName,lastName;int num;
double salary;
cout<<"Enter first name: "; cin>> firstName; cout<<endl;
cout<<"Enter last name: "; cin
>>lastName;cout<<endl;

cout<<"Enter a positive integer less than 70:";
cin>>num;cout<<endl; salary=num*X;
cout<<"Name: "<<firstName<<BLANK<<lastName<<endl;cout

<<"Wages: $"<<salary<<endl; cout<<"X = "<<X<<endl;
cout<<"X+Y = " << X+Y << endl; return 0;
}

34. What type of input does the following program require, and in what order
does the input need to be provided?

#include <iostream>

using namespace std;

int main()
{

int invoiceNumber;
double salesTaxRate;
double productPrice;
string productName;

2

Exercises | 113

cin >> productName;
cin >> salesTaxRate >> productPrice;
cin >> invoiceNumber;

return 0;
}

PROGRAMMING EXERCISES

1. Write a program that produces the following output:

* Programming Assignment 1 *
* Computer Programming I *
* Author: ??? *
* Due Date: Thursday, Jan. 24 *

In your program, substitute ??? with your own name. If necessary, adjust the
positions and the number of the stars to produce a rectangle.

2. Write a program that produces the following output:

CCCCCCCCC ++ ++
CC ++ ++
CC ++++++++++++++ +++++++++++++++
CC ++++++++++++++ +++++++++++++++
CC ++ ++
CCCCCCCCC ++ ++

3. Consider the following program segment

//include statement(s)
//using namespace statement

int main()
{

//variable declaration

//executable statements

//return statement
}

a. Write C++ statements that include the header files iostream.

b. Write a C++ statement that allows you to use cin, cout, and endl

without the prefix std::.

c. Write C++ statements that declare the following variables: num1, num2,
num3, and average of type int.

114 | Chapter 2: Basic Elements of C++

d. Write C++ statements that store 125 into num1, 28 into num2, and
-25 into num3.

e. Write a C++ statement that stores the average of num1, num2, and
num3, into average.

f. Write C++ statements that output the values of num1, num2, num3,
and average.

g. Compile and run your program.

4. Repeat Exercise 3 by declaring num1, num2, and num3, and average of
type double. Store 75.35 into num1, -35.56 into num2, and 15.76

into num3.

5. Consider the following C++ program in which the statements are in the
incorrect order. Rearrange the statements so that it prompts the user to
input the radius of a circle and outputs the area and circumference of
the circle.

#include <iostream>
{

int main()

cout << "Enter the radius: ";
cin >> radius;
cout << endl;

double radius;
double area;

using namespace std;

return 0;

cout << "Area = " << area << endl;

area = PI * radius * radius;

circumference = 2 * PI * radius;

cout << "Circumference = " << circumference << endl;

const double PI = 3.14;

double circumference;
}

2

Programming Exercises | 115

6. Consider the following program segment:

//include statement(s)
//using namespace statement

int main()
{

//variable declaration

//executable statements

//return statement
}

a. Write C++ statements that include the header files iostream and
string.

b. Write a C++ statement that allows you to use cin, cout, and endl

without the prefix std::.

c. Write C++ statements that declare the following variables: name of type
string and studyHours of type double.

d. Write C++ statements that prompt and input a string into name and a
double value into studyHours.

e. Write a C++ statement that outputs the values of name and studyHours

with the appropriate text. For example, if the value of name is "Donald"
and the value of studyHours is 4.5, the output is:

Hello, Donald! on Saturday, you need to study 4.5 hours for the exam.

f. Compile and run your program.

7. Write a program that prompts the user to input a decimal number and
outputs the number rounded to the nearest integer.

8. Consider the following program segment:

//include statement(s)
//using namespace statement

int main()
{

//variable declaration

//executable statements

//return statement
}

a. Write C++ statements that include the header files iostream and
string.

b. Write a C++ statement that allows you to use cin, cout, and endl

without the prefix std::.

116 | Chapter 2: Basic Elements of C++

c. Write C++ statements that declare and initialize the following named
constants: SECRET of type int initialized to 11 and RATE of type
double initialized to 12.50.

d. Write C++ statements that declare the following variables: num1, num2,
and newNum of type int; name of type string; and hoursWorked and
wages of type double.

e. Write C++ statements that prompt the user to input two integers and
store the first number in num1 and the second number in num2.

f. Write a C++ statement(s) that outputs the values of num1 and num2,
indicating which is num1 and which is num2. For example, if num1 is 8
and num2 is 5, then the output is:

The value of num1 = 8 and the value of num2 = 5.

g. Write a C++ statement that multiplies the value of num1 by 2, adds the
value of num2 to it, and then stores the result in newNum. Then, write a
C++ statement that outputs the value of newNum.

h. Write a C++ statement that updates the value of newNum by adding
the value of the named constant SECRET. Then, write a C++
statement that outputs the value of newNum with an appropriate
message.

i. Write C++ statements that prompt the user to enter a person’s last name
and then store the last name into the variable name.

j. Write C++ statements that prompt the user to enter a decimal number
between 0 and 70 and then store the number entered into hoursWorked.

k. Write a C++ statement that multiplies the value of the named constant
RATE with the value of hoursWorked and then stores the result into the
variable wages.

l. Write C++ statements that produce the following output:

Name: //output the value of the variable name
Pay Rate: $ //output the value of the variable rate
Hours Worked: //output the value of the variable

//hoursWorked
Salary: $ //output the value of the variable wages

For example, if the value of name is "Rainbow" and hoursWorked is
45.50, then the output is:

Name: Rainbow
Pay Rate: $12.50
Hours Worked: 45.50
Salary: $568.75

2

Programming Exercises | 117

m. Write a C++ program that tests each of the C++ statements that you
wrote in parts a through l. Place the statements at the appropriate place
in the previous C++ program segment. Test run your program (twice)
on the following input data:

a. num1 = 13, num2 = 28; name = "Jacobson"; hoursWorked =

48.30.

b. num1 = 32, num2 = 15; name = "Crawford"; hoursWorked =

58.45.

9. Write a program that prompts the user to enter five test scores and then prints
the average test score. (Assume that the test scores are decimal numbers.)

10. Write a program that prompts the user to input five decimal numbers. The
program should then add the five decimal numbers, convert the sum to the
nearest integer, and print the result.

11. Write a program that does the following:

a. Prompts the user to input five decimal numbers.

b. Prints the five decimal numbers.

c. Converts each decimal number to the nearest integer.

d. Adds the five integers.

e. Prints the sum and average of the five integers.

12. Write a program that prompts the capacity, in gallons, of an automobile
fuel tank and the miles per gallon the automobile can be driven. The
program outputs the number of miles the automobile can be driven
without refueling.

13. Write a C++ program that prompts the user to input the elapsed time for
an event in seconds. The program then outputs the elapsed time in hours,
minutes, and seconds. (For example, if the elapsed time is 9630 seconds,
then the output is 2:40:30.)

14. Write a C++ program that prompts the user to input the elapsed time for
an event in hours, minutes, and seconds. The program then outputs the
elapsed time in seconds.

15. To make a profit, a local store marks up the prices of its items by a certain
percentage. Write a C++ program that reads the original price of the item
sold, the percentage of the marked-up price, and the sales tax rate. The
program then outputs the original price of the item, the percentage of the
mark-up, the store’s selling price of the item, the sales tax rate, the sales tax,
and the final price of the item. (The final price of the item is the selling
price plus the sales tax.)

16. (Hard drive storage capacity) If you buy a 40GB hard drive, then chances
are that the actual storage on the hard drive is not 40GB. This is due to the
fact that, typically, a manufacturer uses 1000 bytes as the value of 1K bytes,

118 | Chapter 2: Basic Elements of C++

1000K bytes as the value of 1MB, 1000MB as the value of 1GB. Therefore,
a 40GB byte hard drive contains 40,000,000,000 bytes. However, in
computer memory, as given in Table 1-1 (Chapter 1), 1KB is equal to
1024 bytes, and so on. So the actual storage on a 40GB hard drive is
approximately 37.25GB. (You might like to read the fine print next time
you buy a hard drive.) Write a program that prompts the user to enter the
size of the hard drive specified by the manufacturer, on the hard drive box,
and outputs the actual storage capacity of the hard drive.

17. Write a program to implement and test the algorithm that you designed for
Exercise 17 of Chapter 1. (You may assume that the value of p = 3.141593.
In your program, declare a named constant PI to store this value.)

18. A milk carton can hold 3.78 liters of milk. Each morning, a dairy farm ships
cartons of milk to a local grocery store. The cost of producing one liter of
milk is $0.38, and the profit of each carton of milk is $0.27. Write a
program that does the following:

a. Prompts the user to enter the total amount of milk produced in the
morning.

b. Outputs the number of milk cartons needed to hold milk. (Round your
answer to the nearest integer.)

c. Outputs the cost of producing milk.

d. Outputs the profit for producing milk.

19. Redo Programming Exercise 18 so that the user can also input the cost of
producing one liter of milk and the profit on each carton of milk.

20. You found an exciting summer job for five weeks. It pays, say, $15.50
per hour. Suppose that the total tax you pay on your summer job
income is 14%. After paying the taxes, you spend 10% of your net
income to buy new clothes and other accessories for the next school
year and 1% to buy school supplies. After buying clothes and school
supplies, you use 25% of the remaining money to buy savings bonds.
For each dollar you spend to buy savings bonds, your parents spend
$0.50 to buy additional savings bonds for you. Write a program that
prompts the user to enter the pay rate for an hour and the number
of hours you worked each week. The program then outputs the
following:

a. Your income before and after taxes from your summer job.

b. The money you spend on clothes and other accessories.

c. The money you spend on school supplies.

d. The money you spend to buy savings bonds.

e. The money your parents spend to buy additional savings bonds for
you.

2

Programming Exercises | 119

21. A permutation of three objects, a, b, and c, is any arrangement of these
objects in a row. For example, some of the permutations of these objects
are abc, bca, and cab. The number of permutations of three objects is six.
Suppose that these three objects are strings. Write a program that prompts
the user to enter three strings. The program then outputs the six permu-
tations of those strings.

22. Write a program that prompts the user to input a number of quarters,
dimes, and nickels. The program then outputs the total value of the coins in
pennies.

23. Newton’s law states that the force, F, between two bodies of masses M1 and
M2 is given by:

F ¼ k
M1M2

d2

� �

;

in which k is the gravitational constant and d is the distance between the
bodies. The value of k is approximately 6.67�10-8 dyn. cm2/g2. Write a
program that prompts the user to input the masses of the bodies and the
distance between the bodies. The program then outputs the force between
the bodies.

24. One metric ton is approximately 2205 pounds. Write a program that
prompts the user to input the amount of rice, in pounds, in a bag. The
program outputs the number of bags needed to store one metric ton of rice.

25. Cindy uses the services of a brokerage firm to buy and sell stocks. The firm
charges 1.5% service charges on the total amount for each transaction, buy
or sell. When Cindy sells stocks, she would like to know if she gained or
lost on a particular investment. Write a program that allows Cindy to input
the number of shares sold, the purchase price of each share, and the selling
price of each share. The program outputs the amount invested, the total
service charges, amount gained or lost, and the amount received after selling
the stock.

120 | Chapter 2: Basic Elements of C++

INPUT/OUTPUT
IN THIS CHAPTER , YOU WILL :

. Learn what a stream is and examine input and output streams

. Explore how to read data from the standard input device

. Learn how to use predefined functions in a program

. Explore how to use the input stream functions get, ignore, putback, and peek

. Become familiar with input failure

. Learn how to write data to the standard output device

. Discover how to use manipulators in a program to format output

. Learn how to perform input and output operations with the string data type

. Learn how to debug logic errors

. Become familiar with file input and output

3C H A P T E R

In Chapter 2, you were introduced to some of C++’s input/output (I/O) instructions,
which get data into a program and print the results on the screen. You used cin and
the extraction operator >> to get data from the keyboard, and cout and the insertion
operator << to send output to the screen. Because I/O operations are fundamental to
any programming language, in this chapter, you will learn about C++’s I/O operations
in more detail. First, you will learn about statements that extract input from the
standard input device and send output to the standard output device. You will then
learn how to format output using manipulators. In addition, you will learn about the
limitations of the I/O operations associated with the standard input/output devices and
learn how to extend these operations to other devices.

I/O Streams and Standard I/O Devices
A program performs three basic operations: it gets data, it manipulates the data, and it
outputs the results. In Chapter 2, you learned how to manipulate numeric data using
arithmetic operations. In later chapters, you will learn how to manipulate nonnumeric
data. Because writing programs for I/O is quite complex, C++ offers extensive support
for I/O operations by providing substantial prewritten I/O operations, some of which
you encountered in Chapter 2. In this chapter, you will learn about various I/O
operations that can greatly enhance the flexibility of your programs.

In C++, I/O is a sequence of bytes, called a stream, from the source to the
destination. The bytes are usually characters, unless the program requires other
types of information, such as a graphic image or digital speech. Therefore, a
stream is a sequence of characters from the source to the destination. There are
two types of streams:

Input stream: A sequence of characters from an input device to the computer.

Output stream: A sequence of characters from the computer to an output device.

Recall that the standard input device is usually the keyboard, and the standard
output device is usually the screen. To receive data from the keyboard and send
output to the screen, every C++ program must use the header file iostream. This
header file contains, among other things, the definitions of two data types,
istream (input stream) and ostream (output stream). The header file also contains
two variable declarations, one for cin (pronounced ‘‘see-in’’), which stands for
common input, and one for cout (pronounced ‘‘see-out’’), which stands for
common output.

These variable declarations are similar to the following C++ statements:

istream cin;
ostream cout;

To use cin and cout, every C++ program must use the preprocessor directive:

#include <iostream>

122 | Chapter 3: Input/Output

3

From Chapter 2, recall that you have been using the statement using namespace
std; in addition to including the header file iostream to use cin and cout. Without

the statement using namespace std;, you refer to these identifiers as std::cin

and std::cout. In Chapter 7, you will learn about the meaning of the statement

using namespace std; in detail.

Variables of type istream are called input stream variables; variables of type ostream

are called output stream variables. A stream variable is either an input stream
variable or an output stream variable.

Because cin and cout are already defined and have specific meanings, to avoid confu-
sion, you should never redefine them in programs.

The variable cin has access to operators and functions that can be used to extract data
from the standard input device. You have briefly used the extraction operator >> to input
data from the standard input device. The next section describes in detail how the
extraction operator >> works. In the following sections, you will learn how to use the
functions get, ignore, peek, and putback to input data in a specific manner.

cin and the Extraction Operator >>
In Chapter 2, you saw how to input data from the standard input device by using cin and
the extraction operator >>. Suppose payRate is a double variable. Consider the
following C++ statement:

cin >> payRate;

When the computer executes this statement, it inputs the next number typed on
the keyboard and stores this number in payRate. Therefore, if the user types 15.50, the
value stored in payRate is 15.50.

The extraction operator >> is binary and thus takes two operands. The left-side operand
must be an input stream variable, such as cin. Because the purpose of an input statement
is to read and store values in a memory location and because only variables refer to
memory locations, the right-side operand is a variable.

The extraction operator >> is defined only for putting data into variables of simple

data types. Therefore, the right-side operand of the extraction operator >> is a variable

of the simple data type. However, C++ allows the programmer to extend the definition

of the extraction operator >> so that data can also be put into other types of variables

by using an input statement. You will learn this mechanism in Chapter 13 later in

this book.

The syntax of an input statement using cin and the extraction operator >> is:

cin >> variable >> variable...;

I/O Streams and Standard I/O Devices | 123

As you can see in the preceding syntax, a single input statement can read more than one
data item by using the operator >> several times. Every occurrence of >> extracts the
next data item from the input stream. For example, you can read both payRate and
hoursWorked via a single input statement by using the following code:

cin >> payRate >> hoursWorked;

There is no difference between the preceding input statement and the following two
input statements. Which form you use is a matter of convenience and style.

cin >> payRate;
cin >> hoursWorked;

How does the extraction operator >> work? When scanning for the next input, >> skips
all whitespace characters. Recall that whitespace characters consist of blanks and certain
nonprintable characters, such as tabs and the newline character. Thus, whether you
separate the input data by lines or blanks, the extraction operator >> simply finds the
next input data in the input stream. For example, suppose that payRate and
hoursWorked are double variables. Consider the following input statement:

cin >> payRate >> hoursWorked;

Whether the input is:

15.50 48.30

or:

15.50 48.30

or:

15.50
48.30

the preceding input statement would store 15.50 in payRate and 48.30 in
hoursWorked. Note that the first input is separated by a blank, the second input is
separated by a tab, and the third input is separated by a line.

Now suppose that the input is 2. How does the extraction operator >> distinguish
between the character 2 and the number 2? The right-side operand of the extraction
operator >> makes this distinction. If the right-side operand is a variable of the data type
char, the input 2 is treated as the character 2 and, in this case, the ASCII value of 2 is
stored. If the right-side operand is a variable of the data type int or double, the input
2 is treated as the number 2.

Next, consider the input 25 and the statement:

cin >> a;

where a is a variable of some simple data type. If a is of the data type char, only the single
character 2 is stored in a. If a is of the data type int, 25 is stored in a. If a is of the data type

124 | Chapter 3: Input/Output

double, the input 25 is converted to the decimal number 25.0. Table 3-1 summarizes this
discussion by showing the valid input for a variable of the simple data type.

When reading data into a char variable, after skipping any leading whitespace characters,
the extraction operator >> finds and stores only the next character; reading stops after a
single character. To read data into an int or double variable, after skipping all leading
whitespace characters and reading the plus or minus sign (if any), the extraction operator
>> reads the digits of the number, including the decimal point for floating-point variables,
and stops when it finds a whitespace character or a character other than a digit.

EXAMPLE 3-1

Suppose you have the following variable declarations:

int a, b;
double z;
char ch;

The following statements show how the extraction operator >> works.

Statement Input Value Stored in Memory

1 cin >> ch; A ch = 'A'

2 cin >> ch; AB ch = 'A', 'B' is held for

later input

3 cin >> a; 48 a = 48

4 cin >> a; 46.35 a = 46, .35 is held for

later input

5 cin >> z; 74.35 z = 74.35

6 cin >> z; 39 z = 39.0

7 cin >> z >> a; 65.78 38 z = 65.78, a = 38

3

TABLE 3-1 Valid Input for a Variable of the Simple Data Type

Data Type of a Valid Input for a

char One printable character except the blank

int An integer, possibly preceded by a + or - sign

double
A decimal number, possibly preceded by a + or - sign. If the actual

data input is an integer, the input is converted to a decimal number

with the zero decimal part.

I/O Streams and Standard I/O Devices | 125

Statement Input Value Stored in Memory

8 cin >> a >> b; 4 60 a = 4, b = 60

9 cin >> a >> z; 46 32.4 68 a = 46, z = 32.4, 68 is

held for later input

EXAMPLE 3-2

Suppose you have the following variable declarations:

int a;
double z;
char ch;

The following statements show how the extraction operator >> works.

Statement Input Value Stored in Memory

1 cin >> a >> ch >> z; 57 A 26.9 a = 57, ch = 'A',
z = 26.9

2 cin >> a >> ch >> z; 57 A
26.9

a = 57, ch = 'A',
z = 26.9

3 cin >> a >> ch >> z; 57
A
26.9

a = 57, ch = 'A',
z = 26.9

4 cin >> a >> ch >> z; 57A26.9 a = 57, ch = 'A',
z = 26.9

Note that for statements 1 through 4, the input statement is the same; however, the data
is entered differently. For statement 1, data is entered on the same line separated by
blanks. For statement 2, data is entered on two lines; the first two input values are
separated by two blank spaces, and the third input is on the next line. For statement 3, all
three input values are separated by lines, and for statement 4, all three input values are on
the same line, but there is no space between them. Note that the second input is a non-
numeric character. These statements work as follows.

Statements 1, 2, and 3 are easy to follow. Let us look at statement 4.

In statement 4, first the extraction operator >> extracts 57 from the input stream and
stores it in a. Then, the extraction operator >> extracts the character 'A' from the input
stream and stores it in ch. Next, 26.9 is extracted and stored in z.

Note that statements 1, 2, and 3 illustrate that regardless of whether the input is
separated by blanks or by lines, the extraction operator >> always finds the next
input.

126 | Chapter 3: Input/Output

EXAMPLE 3-3

Suppose you have the following variable declarations:

int a, b;
double z;
char ch, ch1, ch2;

The following statements show how the extraction operator >> works.

Statement Input Value Stored in Memory

1 cin >> z >> ch >> a; 36.78B34 z = 36.78, ch = 'B',
a = 34

2 cin >> z >> ch >> a; 36.78
B34

z = 36.78, ch = 'B',
a = 34

3
cin >> a >> b >> z; 11 34 a = 11, b = 34,

computer waits for the next

number

4 cin >> a >> z; 78.49 a = 78, z = 0.49

5 cin >> ch >> a; 256 ch = '2', a = 56

6 cin >> a >> ch; 256 a = 256, computer waits for

the input value for ch

7 cin >> ch1 >> ch2; A B ch1 = 'A', ch2 = 'B'

In statement 1, because the first right-side operand of >> is z, which is a double
variable, 36.78 is extracted from the input stream, and the value 36.78 is stored in z.
Next, 'B' is extracted and stored in ch. Finally, 34 is extracted and stored in a.
Statement 2 works similarly.

In statement 3, 11 is stored in a, and 34 is stored in b, but the input stream does not have
enough input data to fill each variable. In this case, the computer waits (and waits, and
waits . . .) for the next input to be entered. The computer does not continue to execute
until the next value is entered.

In statement 4, the first right-side operand of the extraction operator >> is a variable of
the type int, and the input is 78.49. Now for int variables, after inputting the digits of
the number, the reading stops at the first whitespace character or a character other than a
digit. Therefore, the operator >> stores 78 into a. The next right-side operand of >> is
the variable z, which is of the type double. Therefore, the operator >> stores the value
.49 as 0.49 into z.

In statement 5, the first right-side operand of the extraction operator >> is a char
variable, so the first nonwhitespace character, '2', is extracted from the input stream.
The character '2' is stored in the variable ch. The next right-side operand of the
extraction operator >> is an int variable, so the next input value, 56, is extracted and
stored in a.

3

I/O Streams and Standard I/O Devices | 127

In statement 6, the first right-side operator of the extraction operator >> is an int
variable, so the first data item, 256, is extracted from the input stream and stored in a.
Now the computer waits for the next data item for the variable ch.

In statement 7, 'A' is stored into ch1. The extraction operator >> then skips the blank,
and 'B' is stored in ch2.

Recall that during program execution, when entering character data such as letters, you

do not enter the single quotes around the character.

What happens if the input stream has more data items than required by the program?
After the program terminates, any values left in the input stream are discarded. When you
enter data for processing, the data values should correspond to the data types of the
variables in the input statement. Recall that when entering a number for a double
variable, it is not necessary for the input number to have a decimal part. If the input
number is an integer and has no decimal part, it is converted to a decimal value. The
computer, however, does not tolerate any other kind of mismatch. For example, entering
a char value into an int or double variable causes serious errors, called input failure.
Input failure is discussed later in this chapter.

The extraction operator, when scanning for the next input in the input stream, skips
whitespace such as blanks and the newline character. However, there are situations when
these characters must also be stored and processed. For example, if you are processing
text in a line-by-line fashion, you must know where in the input stream the newline
character is located. Without identifying the position of the newline character, the
program would not know where one line ends and another begins. The next few sections
teach you how to input data into a program using the input functions, such as get,
ignore, putback, and peek. These functions are associated with the data type istream

and are called istream member functions. I/O functions, such as get, are typically
called stream member functions or stream functions.

Before you can learn about the input functions get, ignore, putback, peek, and other
I/O functions that are used in this chapter, you need to first understand what a function is
and how it works. You will study functions in detail and learn how to write your own
in Chapter 6.

Using Predefined Functions in a Program
As noted in Chapter 2, a function, also called a subprogram, is a set of instructions. When
a function executes, it accomplishes something. The function main, as you saw in
Chapter 2, executes automatically when you run a program. Other functions execute

128 | Chapter 3: Input/Output

3

only when they are activated—that is, called. C++ comes with a wealth of functions,
called predefined functions, that are already written. In this section, you will learn how
to use some predefined functions that are provided as part of the C++ system. Later in this
chapter, you will learn how to use stream functions to perform a specific I/O operation.

Recall from Chapter 2 that predefined functions are organized as a collection of libraries,
called header files. A particular header file may contain several functions. Therefore, to
use a particular function, you need to know the name of the function and a few other
things, which are described shortly.

A very useful function, pow, called the power function, can be used to calculate xy in a
program. That is, pow(x, y) = xy. For example, pow(2.0, 3.0) = 2.03.0 = 8.0 and
pow(4.0, 0.5) = 4.00.5 =

ffiffiffiffiffiffiffiffi

4:0
p

= 2.0. The numbers x and y that you use in the
function pow are called the arguments or parameters of the function pow. For
example, in pow(2.0, 3.0), the parameters are 2.0 and 3.0.

An expression such as pow(2.0, 3.0) is called a function call, which causes the code
attached to the predefined function pow to execute and, in this case, computes 2.03.0.
The header file cmath contains the specification of the function pow.

To use a predefined function in a program, you need to know the name of the header
file containing the specification of the function and include that header file in the
program. In addition, you need to know the name of the function, the number of
parameters the function takes, and the type of each parameter. You must also be aware
of what the function is going to do. For example, to use the function pow, you must
include the header file cmath. The function pow has two parameters, which are decimal
numbers. The function calculates the first parameter to the power of the second
parameter. (Appendix F describes some commonly used header files and predefined
functions.)

The program in the following example illustrates how to use predefined functions in a
program. More specifically, we use some math functions, from the header file cmath, and
the string function length, from the header file string. Note that the function
length determines the length of a string.

EXAMPLE 3-4

//How to use predefined functions.
//This program uses the math functions pow and sqrt to determine
//and output the volume of a sphere, the distance between two
//points, respectively, and the string function length to find
//the number of characters in a string.
//If the radius of the sphere is r, then the volume of the sphere
//is (4/3)*PI*r^3. If (x1,y1) and (x2,y2) are the coordinates of two
//points in the X-Y plane, then the distance between these points is
//sqrt((x2-x1)^2 + (y2-y1)^2).

#include <iostream>
#include <cmath>
#include <string>

Using Predefined Functions in a Program | 129

using namespace std;

const double PI = 3.1416;

int main()
{

double sphereRadius; //Line 1
double sphereVolume; //Line 2
double point1X, point1Y; //Line 3
double point2X, point2Y; //Line 4
double distance; //Line 5

string str; //Line 6

cout << "Line 7: Enter the radius of the sphere: "; //Line 7
cin >> sphereRadius; //Line 8
cout << endl; //Line 9

sphereVolume = (4 / 3) * PI * pow(sphereRadius, 3); //Line 10

cout << "Line 11: The volume of the sphere is: "
<< sphereVolume << endl << endl; //Line 11

cout << "Line 12: Enter the coordinates of two "
<< "points in the X-Y plane: "; //Line 12

cin >> point1X >> point1Y >> point2X >> point2Y; //Line 13
cout << endl; //Line 14

distance = sqrt(pow(point2X - point1X, 2)
+ pow(point2Y - point1Y, 2)); //Line 15

cout << "Line 16: The distance between the points "
<< "(" << point1X << ", " << point1Y << ") and "
<< "(" << point2X << ", " << point2Y << ") is: "
<< distance << endl << endl; //Line 16

str = "Programming with C++"; //Line 17

cout << "Line 18: The number of characters, "
<< "including blanks, in \"" << str << "\" is: "
<< str.length() << endl; //Line 18

return 0; //Line 19
}

Sample Run: In this sample run, the user input is shaded.

Line 7: Enter the radius of the sphere: 3

Line 11: The volume of the sphere is: 84.8232

Line 12: Enter the coordinates of two points in the X-Y plane: 4 7 9 -5

Line 16: The distance between the points (4, 7) and (9, -5) is: 13

Line 18: The number of characters, including blanks, in "Programming
with C++" is: 20

130 | Chapter 3: Input/Output

The preceding program works as follows. The statements in Lines 1 to 6 declare the
variables used in the program. The statement in Line 7 prompts the user to enter the
radius of the sphere, and the statement in Line 8 stores the radius in the variable
sphereRadius. The statement in Line 10 uses the function pow to compute and store
the volume of the sphere in the variable sphereVolume. The statement in Line 11
outputs the volume. The statement in Line 12 prompts the user to enter the coordinates
of two points in the X-Y plane, and the statement in Line 13 stores the coordinates in the
variables point1X, point1Y, point2X, and point2Y, respectively. The statement in
Line 15 uses the functions sqrt and pow to determine the distance between the points.
The statement in Line 16 outputs the distance between the points. The statement in Line
17 stores the string "Programming with C++" in str. The statement in Line 18 uses the
string function length to determine and output the length of str. Note how the
function length is used. Later in this chapter we will explain the meaning of expressions
such as str.length().

Because I/O is fundamental to any programming language and because writing instruc-
tions to perform a specific I/O operation is not a job for everyone, every programming
language provides a set of useful functions to perform specific I/O operations. In the
remainder of this chapter, you will learn how to use some of these functions in a
program. As a programmer, you must pay close attention to how these functions are
used so that you can get the most out of them. The first function you will learn about
here is the function get.

cin and the get Function
As you have seen, the extraction operator skips all leading whitespace characters when
scanning for the next input value. Consider the variable declarations:

char ch1, ch2;
int num;

and the input:

A 25

Now consider the following statement:

cin >> ch1 >> ch2 >> num;

When the computer executes this statement, 'A' is stored in ch1, the blank is skipped by
the extraction operator >>, the character '2' is stored in ch2, and 5 is stored in num.
However, what if you intended to store 'A' in ch1, the blank in ch2, and 25 in num? It is
clear that you cannot use the extraction operator >> to input this data.

As stated earlier, sometimes you need to process the entire input, including whitespace
characters, such as blanks and the newline character. For example, suppose you want to

3

Using Predefined Functions in a Program | 131

process the entered data on a line-by-line basis. Because the extraction operator >> skips
the newline character and unless the program captures the newline character, the
computer does not know where one line ends and the next begins.

The variable cin can access the stream function get, which is used to read character
data. The get function inputs the very next character, including whitespace characters,
from the input stream and stores it in the memory location indicated by its argument.
The function get comes in many forms. Next, we discuss the one that is used to read a
character.

The syntax of cin, together with the get function to read a character, follows:

cin.get(varChar);

In the cin.get statement, varChar is a char variable. varChar, which appears in
parentheses following the function name, is called the argument or parameter of the
function. The effect of the preceding statement would be to store the next input character
in the variable varChar.

Now consider the following input again:

A 25

To store 'A' in ch1, the blank in ch2, and 25 in num, you can effectively use the get

function as follows:

cin.get(ch1);
cin.get(ch2);
cin >> num;

Because this form of the get function has only one argument and reads only one
character and you need to read two characters from the input stream, you need to call
this function twice. Notice that you cannot use the get function to read data into the
variable num because num is an int variable. The preceding form of the get function
reads values of only the char data type.

The preceding set of cin.get statements is equivalent to the following
statements:

cin >> ch1;
cin.get(ch2);
cin >> num;

The function get has other forms, one of which you will study in Chapter 8.

For the next few chapters, you need only the form of the function get introduced

here.

132 | Chapter 3: Input/Output

3

cin and the ignore Function
When you want to process only partial data (say, within a line), you can use the stream
function ignore to discard a portion of the input. The syntax to use the function ignore is:

cin.ignore(intExp, chExp);

Here, intExp is an integer expression yielding an integer value, and chExp is a char
expression yielding a char value. In fact, the value of the expression intExp specifies the
maximum number of characters to be ignored in a line.

Suppose intExp yields a value of, say 100. This statement says to ignore the next 100
characters or ignore the input until it encounters the character specified by chExp,
whichever comes first. To be specific, consider the following statement:

cin.ignore(100, '\n');

When this statement executes, it ignores either the next 100 characters or all characters
until the newline character is found, whichever comes first. For example, if the next 120
characters do not contain the newline character, then only the first 100 characters are
discarded and the next input data is the character 101. However, if the 75th character is
the newline character, then the first 75 characters are discarded and the next input data is
the 76th character. Similarly, the execution of the statement:

cin.ignore(100, 'A');

results in ignoring the first 100 characters or all characters until the character 'A' is
found, whichever comes first.

EXAMPLE 3-5

Consider the declaration:

int a, b;

and the input:

25 67 89 43 72
12 78 34

Now consider the following statements:

cin >> a;
cin.ignore(100, '\n');
cin >> b;

The first statement, cin >> a;, stores 25 in a. The second statement,
cin.ignore(100, '\n');, discards all of the remaining numbers in the first line. The
third statement, cin >> b;, stores 12 (from the next line) in b.

Using Predefined Functions in a Program | 133

EXAMPLE 3-6

Consider the declaration:

char ch1, ch2;

and the input:

Hello there. My name is Mickey.

a. Consider the following statements:

cin >> ch1;
cin.ignore(100, '.');
cin >> ch2;

The first statement, cin >> ch1;, stores 'H' in ch1. The second statement,
cin.ignore(100, '.');, results in discarding all characters until . (period).
The third statement, cin >> ch2;, stores the character 'M' (from the same line)
in ch2. (Remember that the extraction operator >> skips all leading whitespace
characters. Thus, the extraction operator skips the space after . [period] and
stores 'M' in ch2.)

b. Suppose that we have the following statement:

cin >> ch1;
cin.ignore(5, '.');
cin >> ch2;

The first statement, cin >> ch1;, stores 'H' in ch1. The second statement,
cin.ignore(5, '.');, results in discarding the next five characters, that is, until t.
The third statement, cin >> ch2;, stores the character 't' (from the same line) in ch2.

When the function ignore is used without any arguments, then it only skips the very
next character. For example, the following statement will skip the very next character:

cin.ignore();

This statement is typically used to skip the newline character.

The putback and peek Functions
Suppose you are processing data that is a mixture of numbers and characters. Moreover, the
numbers must be read and processed as numbers. You have also looked at many sets of
sample data and cannot determine whether the next input is a character or a number. You
could read the entire data set character by character and check whether a certain character is
a digit. If a digit is found, you could then read the remaining digits of the number and
somehow convert these characters into numbers. This programming code would be
somewhat complex. Fortunately, C++ provides two very useful stream functions that
can be used effectively in these types of situations.

134 | Chapter 3: Input/Output

The stream function putback lets you put the last character extracted from the input
stream by the get function back into the input stream. The stream function peek looks
into the input stream and tells you what the next character is without removing it from
the input stream. By using these functions, after determining that the next input is a
number, you can read it as a number. You do not have to read the digits of the number as
characters and then convert these characters to that number.

The syntax to use the function putback is:

istreamVar.putback(ch);

Here, istreamVar is an input stream variable, such as cin, and ch is a char variable.

The peek function returns the next character from the input stream but does not remove the
character from that stream. In other words, the function peek looks into the input stream
and checks the identity of the next input character. Moreover, after checking the next input
character in the input stream, it can store this character in a designated memory location
without removing it from the input stream. That is, when you use the peek function, the
next input character stays the same, even though you now know what it is.

The syntax to use the function peek is:

ch = istreamVar.peek();

Here, istreamVar is an input stream variable, such as cin, and ch is a char variable.

Notice how the function peek is used. First, the function peek is used in an assignment
statement. It is not a stand-alone statement like get, ignore, and putback. Second, the
function peek has empty parentheses. Until you become comfortable with using a function
and learn how to write one, pay close attention to how to use a predefined function.

The following example illustrates how to use the peek and putback functions.

EXAMPLE 3-7

//Functions peek and putback

#include <iostream>

using namespace std;

int main()
{

char ch;

cout << "Line 1: Enter a string: "; //Line 1
cin.get(ch); //Line 2
cout << endl; //Line 3

3

Using Predefined Functions in a Program | 135

cout << "Line 4: After first cin.get(ch); "
<< "ch = " << ch << endl; //Line 4

cin.get(ch); //Line 5
cout << "Line 6: After second cin.get(ch); "

<< "ch = " << ch << endl; //Line 6

cin.putback(ch); //Line 7
cin.get(ch); //Line 8
cout << "Line 9: After putback and then "

<< "cin.get(ch); ch = " << ch << endl; //Line 9

ch = cin.peek(); //Line 10
cout << "Line 11: After cin.peek(); ch = "

<< ch << endl; //Line 11

cin.get(ch); //Line 12
cout << "Line 13: After cin.get(ch); ch = "

<< ch << endl; //Line 13

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Line 1: Enter a string: abcd

Line 4: After first cin.get(ch); ch = a
Line 6: After second cin.get(ch); ch = b
Line 9: After putback and then cin.get(ch); ch = b
Line 11: After cin.peek(); ch = c
Line 13: After cin.get(ch); ch = c

The user input, abcd, allows you to see the effect of the functions get, putback, and
peek in the preceding program. The statement in Line 1 prompts the user to enter a string.
In Line 2, the statement cin.get(ch); extracts the first character from the input stream
and stores it in the variable ch. So after Line 2 executes, the value of ch is 'a'.

The cout statement in Line 4 outputs the value of ch. The statement cin.get(ch); in
Line 5 extracts the next character from the input stream, which is 'b', and stores it in ch.
At this point, the value of ch is 'b'.

The cout statement in Line 6 outputs the value of ch. The cin.putback(ch); statement
in Line 7 puts the previous character extracted by the get function, which is 'b', back into
the input stream. Therefore, the next character to be extracted from the input stream is 'b'.

The cin.get(ch); statement in Line 8 extracts the next character from the input
stream, which is still 'b', and stores it in ch. Now the value of ch is 'b'. The cout

statement in Line 9 outputs the value of ch as 'b'.

In Line 10, the statement ch = cin.peek(); checks the next character in the input stream,
which is 'c', and stores it in ch. The value of ch is now 'c'. The cout statement in Line

136 | Chapter 3: Input/Output

3

11 outputs the value of ch. The cin.get(ch); statement in Line 12 extracts the next
character from the input stream and stores it in ch. The cout statement in Line 13 outputs
the value of ch, which is still 'c'.

Note that the statement ch = cin.peek(); in Line 10 did not remove the character 'c'
from the input stream; it only peeked into the input stream. The output of Lines 11 and
13 demonstrates this functionality.

The Dot Notation between I/O Stream Variables and I/O Functions:
A Precaution
In the preceding sections, you learned how to manipulate an input stream to get data
into a program. You also learned how to use the functions get, ignore, peek, and
putback. It is important that you use these functions exactly as shown. For example, to
use the get function, you used statements such as the following:

cin.get(ch);

Omitting the dot—that is, the period between the variable cin and the function name
get—results in a syntax error. For example, in the statement:

cin.get(ch);

cin and get are two separate identifiers separated by a dot. In the statement:

cinget(ch);

cinget becomes a new identifier. If you used cinget(ch); in a program, the compiler
would try to resolve an undeclared identifier, which would generate an error. Similarly,
missing parentheses, as in cin.getch;, result in a syntax error. Also, remember that you
must use the input functions together with an input stream variable. If you try to use any
of the input functions alone—that is, without the input stream variable—the compiler
might generate an error message such as ‘‘undeclared identifier.’’ For example, the
statement get(ch); could result in a syntax error.

As you can see, several functions are associated with an istream variable, each doing a
specific job. Recall that the functions get, ignore, and so on are members of the data type
istream. Called the dot notation, the dot separates the input stream variable name
from the member, or function, name. In fact, in C++, the dot is an operator called the
member access operator.

C++ has a special name for the data types istream and ostream. The data types

istream and ostream are called classes. The variables cin and cout also have special

names, called objects. Therefore, cin is called an istream object, and cout is called an

ostream object. In fact, stream variables are called stream objects. You will learn these

concepts in Chapter 11 later in this book.

Using Predefined Functions in a Program | 137

Input Failure
Many things can go wrong during program execution. A program that is syntactically
correct might produce incorrect results. For example, suppose that a part-time employee’s
paycheck is calculated by using the following formula:

wages = payRate * hoursWorked;

If you accidentally type + in place of *, the calculated wages would be incorrect, even
though the statement containing a + is syntactically correct.

What about an attempt to read invalid data? For example, what would happen if you tried
to input a letter into an int variable? If the input data did not match the corresponding
variables, the program would run into problems. For example, trying to read a letter into
an int or double variable would result in an input failure. Consider the following
statements:

int a, b, c;
double x;

If the input is:

W 54

then the statement:

cin >> a >> b;

would result in an input failure, because you are trying to input the character 'W' into
the int variable a. If the input were:

35 67.93 48

then the input statement:

cin >> a >> x > >b;

would result in storing 35 in a, 67.93 in x, and 48 in b.

Now consider the following read statement with the previous input (the input with three
values):

cin >> a >> b >> c;

This statement stores 35 in a and 67 in b. The reading stops at . (the decimal point).
Because the next variable c is of the data type int, the computer tries to read . into c,
which is an error. The input stream then enters a state called the fail state.

What actually happens when the input stream enters the fail state? Once an input stream
enters the fail state, all further I/O statements using that stream are ignored. Unfortu-
nately, the program quietly continues to execute with whatever values are stored in
variables and produces incorrect results. The program in Example 3-8 illustrates an input
failure. This program on your system may produce different results.

138 | Chapter 3: Input/Output

EXAMPLE 3-8

//Input Failure program

#include <iostream>
#include <string>

using namespace std;

int main()
{

string name; //Line 1
int age = 0; //Line 2
int weight = 0; //Line 3
double height = 0.0; //Line 4

cout << "Line 5: Enter name, age, weight, and "
<< "height: "; //Line 5

cin >> name >> age >> weight >> height; //Line 6
cout << endl; //Line 7

cout << "Line 8: Name: " << name << endl; //Line 8
cout << "Line 9: Age: " << age << endl; //Line 9
cout << "Line 10: Weight: " << weight << endl; //Line 10
cout << "Line 11: Height: " << height << endl; //Line 11

return 0; //Line 12
}

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1

Line 5: Enter name, age, weight, and height: Sam 35 q56 6.2

Line 8: Name: Sam
Line 9: Age: 35
Line 10: Weight: 0
Line 11: Height: 0

The statements in Lines 1, 2, 3, and 4 declare the variables name, age, weight, and
height, and also initialize the variable age, weight, and height. The statement in Line 5
prompts the user to enter a person’s name, age, weight, and height; the statement in Line 6
inputs these values into variables name, age, weight, and height, respectively.

In this sample run, the third input is q56 and the cin statement tries to input this into the
variable weight. However, the input q56 begins with the character 'q' and weight is a
variable of type int, so cin enters the fail state. Note that the printed values of the
variables weight and height are unchanged, as shown by the output of the statements in
Lines 10 and 11.

3

Input Failure | 139

Sample Run 2

Line 5: Enter name, age, weight, and height: Sam 35.0 156 6.2

Line 8: Name: Sam
Line 9: Age: 35
Line 10: Weight: 0
Line 11: Height: 0

In this sample run, after inputting Sam into name and 35 into age, the reading stops at
the decimal point for the cin statement in Line 6. Next the cin statement tries to input
the decimal point into weight, which is an int variable. So the input stream enters the
fail state and the values of weight and height are unchanged, as shown by the output of
the statements in Lines 10 and 11.

The clear Function
When an input stream enters the fail state, the system ignores all further I/O using that
stream. You can use the stream function clear to restore the input stream to a working
state.

The syntax to use the function clear is:

istreamVar.clear();

Here, istreamVar is an input stream variable, such as cin.

After using the function clear to return the input stream to a working state, you still
need to clear the rest of the garbage from the input stream. This can be accomplished by
using the function ignore. Example 3-9 illustrates this situation.

EXAMPLE 3-9

//Input failure and the clear function

#include <iostream>
#include <string>

using namespace std;

int main()
{

string name; //Line 1
int age = 0; //Line 2
int weight = 0; //Line 3
double height = 0.0; //Line 4

cout << "Line 5: Enter name, age, weight, and "
<< "height: "; //Line 5

140 | Chapter 3: Input/Output

3

cin >> name >> age >> weight >> height; //Line 6
cout << endl; //Line 7

cout << "Line 8: Name: " << name << endl; //Line 8
cout << "Line 9: Age: " << age << endl; //Line 9
cout << "Line 10: Weight: " << weight << endl; //Line 10
cout << "Line 11: Height: " << height << endl; //Line 11

cin.clear(); //Restore input stream; Line 12

cin.ignore(200,'\n'); //Clear the buffer; Line 13

cout << "\nLine 14: Enter name, age, weight, "
<< "and height: "; //Line 14

cin >> name >> age >> weight >> height; //Line 15
cout << endl; //Line 16

cout << "Line 17: Name: " << name << endl; //Line 17
cout << "Line 18: Age: " << age << endl; //Line 18
cout << "Line 19: Weight: " << weight << endl; //Line 19
cout << "Line 20: Height: " << height << endl; //Line 20

return 0; //Line 21
}

Sample Run: In this sample run, the user input is shaded.

Line 5: Enter name, age, weight, and height: Sam 35 q56 6.2

Line 8: Name: Sam
Line 9: Age: 35
Line 10: Weight: 0
Line 11: Height: 0

Line 14: Enter name, age, weight, and height: Sam 35 156 6.2

Line 17: Name: Sam
Line 18: Age: 35
Line 19: Weight: 156
Line 20: Height: 6.2

The statements in Lines 1, 2, 3, and 4 declare the variables name, age, weight, and
height, and also initialize the variable age, weight, and height. The statement in Line 5
prompts the user to enter a person’s name, age, weight, and height; the statement in Line 6
inputs these values into variables name, age, weight, and height, respectively.

As in Example 3-8, when the cin statement tries to input q56 into weight, it enters the
fail statement. The statement in Line 12 restores the input stream by using the function
clear, and the statement in Line 13 ignores the rest of the input. The statement in Line 14
again prompts the user to input a person’s name, age, weight, and height; the statement in
Line 15 stores these values in name, age, weight, and height, respectively. Next, the
statements in Lines 17 to 20 output the values of name, age, weight, and height.

Input Failure | 141

Output and Formatting Output
Other than writing efficient programs, generating the desired output is one of a pro-
grammer’s highest priorities. Chapter 2 briefly introduced the process involved in
generating output on the standard output device. More precisely, you learned how to
use the insertion operator << and the manipulator endl to display results on the standard
output device.

However, there is a lot more to output than just displaying results. Sometimes, floating-
point numbers must be output in a specific way. For example, a paycheck must be
printed to two decimal places, whereas the results of a scientific experiment might
require the output of floating-point numbers to six, seven, or perhaps even ten decimal
places. Also, you might like to align the numbers in specific columns or fill the empty
space between strings and numbers with a character other than the blank. For example,
in preparing the table of contents, the space between the section heading and the page
number might need to be filled with dots or dashes. In this section, you will learn about
various output functions and manipulators that allow you to format your output in a
desired way.

Recall that the syntax of cout when used together with the insertion operator
<< is:

cout << expression or manipulator << expression or manipulator...;

Here, expression is evaluated, its value is printed, and manipulator is used to format
the output. The simplest manipulator that you have used so far is endl, which is used to
move the insertion point to the beginning of the next line.

Other output manipulators that are of interest include setprecision, fixed, showpoint,
and setw. The next few sections describe these manipulators.

setprecision Manipulator
You use the manipulator setprecision to control the output of floating-point num-
bers. Usually, the default output of floating-point numbers is scientific notation. Some
integrated development environments (IDEs) might use a maximum of six decimal
places for the default output of floating-point numbers. However, when an employee’s
paycheck is printed, the desired output is a maximum of two decimal places. To print
floating-point output to two decimal places, you use the setprecision manipulator to
set the precision to 2.

The general syntax of the setprecision manipulator is:

setprecision(n)

where n is the number of decimal places.

142 | Chapter 3: Input/Output

You use the setprecision manipulator with cout and the insertion operator. For
example, the statement:

cout << setprecision(2);

formats the output of decimal numbers to two decimal places until a similar subsequent
statement changes the precision. Notice that the number of decimal places, or the
precision value, is passed as an argument to setprecision.

To use the manipulator setprecision, the program must include the header file
iomanip. Thus, the following include statement is required:

#include <iomanip>

fixed Manipulator
To further control the output of floating-point numbers, you can use other manipulators.
To output floating-point numbers in a fixed decimal format, you use the manipulator
fixed. The following statement sets the output of floating-point numbers in a fixed
decimal format on the standard output device:

cout << fixed;

After the preceding statement executes, all floating-point numbers are displayed in the fixed
decimal format until the manipulator fixed is disabled. You can disable the manipulator
fixed by using the stream member function unsetf. For example, to disable the mani-
pulator fixed on the standard output device, you use the following statement:

cout.unsetf(ios::fixed);

After the manipulator fixed is disabled, the output of the floating-point numbers returns
to their default settings. The manipulator scientific is used to output floating-point
numbers in scientific format.

On some compilers, the statements cin >> fixed; and cin >> scientific;might not

work. In this case, you can use cin.setf(ios::fixed); in place of cin >> fixed;

and cin.setf(ios::scientific); in place of cin >> scientific;.

The following example shows how the manipulators scientific and fixed work
without using the manipulator setprecision.

EXAMPLE 3-10

//Example: scientific and fixed

#include <iostream>

using namespace std;

3

Output and Formatting Output | 143

int main()
{

double hours = 35.45;
double rate = 15.00;
double tolerance = 0.01000;

cout << "hours = " << hours << ", rate = " << rate
<< ", pay = " << hours * rate
<< ", tolerance = " << tolerance << endl << endl;

cout << scientific;
cout << "Scientific notation: " << endl;
cout << "hours = " << hours << ", rate = " << rate

<< ", pay = " << hours * rate
<< ", tolerance = " << tolerance << endl << endl;

cout << fixed;
cout << "Fixed decimal notation: " << endl;
cout << "hours = " << hours << ", rate = " << rate

<< ", pay = " << hours * rate
<< ", tolerance = " << tolerance << endl << endl;

return 0;
}

Sample Run:

hours = 35.45, rate = 15, pay = 531.75, tolerance = 0.01

Scientific notation:

hours = 3.545000e+001, rate = 1.500000e+001, pay = 5.317500e+002, tolerance = 1

.000000e-002

Fixed decimal notation:

hours = 35.450000, rate = 15.000000, pay = 531.750000, tolerance = 0.010000

The sample run shows that when the value of rate and tolerance are printed without
setting the scientific or fixedmanipulators, the trailing zeros are not shown and, in the
case of rate, the decimal point is also not shown. After setting the manipulators, the values
are printed to six decimal places. In the next section, we describe the manipulator
showpoint to force the system to show the decimal point and trailing zeros. We will then
give an example to show how to use the manipulators setprecision, fixed, and
showpoint to get the desired output.

showpoint Manipulator
Suppose that the decimal part of a decimal number is zero. In this case, when you instruct the
computer to output the decimal number in a fixed decimal format, the output may not show
the decimal point and the decimal part. To force the output to show the decimal point and

144 | Chapter 3: Input/Output

trailing zeros, you use the manipulator showpoint. The following statement sets the output
of decimal numbers with a decimal point and trailing zeros on the standard input device:

cout << showpoint;

Of course, the following statement sets the output of a floating-point number in a fixed
decimal format with the decimal point and trailing zeros on the standard output device:

cout << fixed << showpoint;

The program in Example 3-11 illustrates how to use the manipulators setprecision,
fixed, and showpoint.

EXAMPLE 3-11

//Example: setprecision, fixed, showpoint

#include <iostream> //Line 1
#include <iomanip> //Line 2

using namespace std; //Line 3

const double PI = 3.14159265; //Line 4

int main() //Line 5
{ //Line 6

double radius = 12.67; //Line 7
double height = 12.00; //Line 8

cout << fixed << showpoint; //Line 9

cout << setprecision(2)
<< "Line 10: setprecision(2)" << endl; //Line 10

cout << "Line 11: radius = " << radius << endl; //Line 11
cout << "Line 12: height = " << height << endl; //Line 12
cout << "Line 13: volume = "

<< PI * radius * radius * height << endl; //Line 13
cout << "Line 14: PI = " << PI << endl << endl; //Line 14

cout << setprecision(3)
<< "Line 15: setprecision(3)" << endl; //Line 15

cout << "Line 16: radius = " << radius << endl; //Line 16
cout << "Line 17: height = " << height << endl; //Line 17
cout << "Line 18: volume = "

<< PI * radius * radius * height << endl; //Line 18
cout << "Line 19: PI = " << PI << endl << endl; //Line 19

cout << setprecision(4)
<< "Line 20: setprecision(4)" << endl; //Line 20

cout << "Line 21: radius = " << radius << endl; //Line 21
cout << "Line 22: height = " << height << endl; //Line 22

3

Output and Formatting Output | 145

cout << "Line 23: volume = "
<< PI * radius * radius * height << endl; //Line 23

cout << "Line 24: PI = " << PI << endl << endl; //Line 24

cout << "Line 25: "
<< setprecision(3) << radius << ", "
<< setprecision(2) << height << ", "
<< setprecision(5) << PI << endl; //Line 25

return 0; //Line 26
} //Line 27

Sample Run:

Line 10: setprecision(2)
Line 11: radius = 12.67
Line 12: height = 12.00
Line 13: volume = 6051.80
Line 14: PI = 3.14

Line 15: setprecision(3)
Line 16: radius = 12.670
Line 17: height = 12.000
Line 18: volume = 6051.797
Line 19: PI = 3.142

Line 20: setprecision(4)
Line 21: radius = 12.6700
Line 22: height = 12.0000
Line 23: volume = 6051.7969
Line 24: PI = 3.1416

Line 25: 12.670, 12.00, 3.14159

In this program, the statement in Line 2 includes the header file iomanip, and the
statement in Line 4 declares the named constant PI and sets the value to eight decimal
places. The statements in Lines 7 and 8 declare and initialize the variables radius and
height to store the radius of the base and the height of a cylinder. The statement in Line
10 sets the output of floating-point numbers in a fixed decimal format with a decimal
point and trailing zeros.

The statements in Lines 11, 12, 13, and 14 output the values of radius, height,
volume, and PI to two decimal places.

The statements in Lines 16, 17, 18, and 19 output the values of radius, height,
volume, and PI to three decimal places.

The statements in Lines 21, 22, 23, and 24 output the values of radius, height,
volume, and PI to four decimal places.

The statement in Line 25 outputs the value of radius to three decimal places, the value
of height to two decimal places, and the value of PI to five decimal places.

146 | Chapter 3: Input/Output

3

Notice how the values of radius are printed in Lines 11, 16, and 21. The value of
radius printed in Line 16 contains a trailing 0. This is because the stored value of
radius has only two decimal places; a 0 is printed at the third decimal place. In a similar
manner, the value of height is printed in Lines 12, 17, and 22.

Also, notice how the statements in Lines 13, 18, and 23 calculate and output volume to
two, three, and four decimal places.

Note that the value of PI printed in Line 24 is rounded.

The statement in Line 25 first sets the output of floating-point numbers to three decimal
places and then outputs the value of radius to three decimal places. After printing the
value of radius, the statement in Line 25 sets the output of floating-point numbers to
two decimal places and then outputs the value of height to two decimal places. Next, it
sets the output of floating-point numbers to five decimal places and then outputs the
value of PI to four decimal places.

If you omit the statement in Line 9 and recompile and run the program, you will see the
default output of the decimal numbers. More specifically, the value of the expression that
calculates the volume might be printed in the scientific notation.

setw
The manipulator setw is used to output the value of an expression in a specific number of
columns. The value of the expression can be either a string or a number. The expression
setw(n) outputs the value of the next expression in n columns. The output is right-
justified. Thus, if you specify the number of columns to be 8, for example, and the output
requires only four columns, the first four columns are left blank. Furthermore, if the
number of columns specified is less than the number of columns required by the output,
the output automatically expands to the required number of columns; the output is not
truncated. For example, if x is an int variable, the following statement outputs the value
of x in five columns on the standard output device:

cout << setw(5) << x << endl;

To use the manipulator setw, the program must include the header file iomanip. Thus,
the following include statement is required:

#include <iomanip>

Unlike setprecision, which controls the output of all floating-point numbers until it is
reset, setw controls the output of only the next expression.

EXAMPLE 3-12

//Example: setw

#include <iostream>
#include <iomanip>

Output and Formatting Output | 147

using namespace std;

int main()
{

int x = 19; //Line 1
int a = 345; //Line 2
double y = 76.384; //Line 3

cout << fixed << showpoint; //Line 4

cout << "12345678901234567890" << endl; //Line 5

cout << setw(5) << x << endl; //Line 6
cout << setw(5) << a << setw(5) << "Hi"

<< setw(5) << x << endl << endl; //Line 7

cout << setprecision(2); //Line 8
cout << setw(6) << a << setw(6) << y

<< setw(6) << x << endl; //Line 9
cout << setw(6) << x << setw(6) << a

<< setw(6) << y << endl << endl; //Line 10

cout << setw(5) << a << x << endl; //Line 11
cout << setw(2) << a << setw(4) << x << endl; //Line 12

return 0;
}

Sample Run:

12345678901234567890
19

345 Hi 19

345 76.38 19
19 345 76.38

34519
345 19

The statements in Lines 1, 2, and 3 declare the variables x, a, and y and initialize these
variables to 19, 345, and 76.384, respectively. The statement in Line 4 sets the output of
floating-point numbers in a fixed decimal format with a decimal point and trailing zeros.
The output of the statement in Line 5 shows the column positions when the specific
values are printed; it is the first line of output.

The statement in Line 6 outputs the value of x in five columns. Because x has only two
digits, only two columns are needed to output its value. Therefore, the first three columns
are left blank in the second line of output. The statement in Line 7 outputs the value of a in
the first five columns, the string "Hi" in the next five columns, and then the value of x in the
following five columns. Because the string "Hi" contains only two characters and five
columns are set to output these two characters, the first three columns are left blank. See

148 | Chapter 3: Input/Output

3

the third line of output. The fourth line of output is blank because the manipulator endl
appears twice in the statement in Line 7.

The statement in Line 8 sets the output of floating-point numbers to two decimal places.
The statement in Line 9 outputs the values of a in the first six columns, y in the next six
columns, and x in the following six columns, creating the fifth line of output. The output
of the statement in Line 10 (which is the sixth line of output) is similar to the output of
the statement in Line 9. Notice how the numbers are nicely aligned in the outputs of the
statements in Lines 9 and 10. The seventh line of output is blank because the manipulator
endl appears twice in the statement in Line 10.

The statement in Line 11 outputs first the value of a in five columns and then the value of
x. Note that the manipulator setw in the statement in Line 11 controls only the output of
a. Thus, after the value of a is printed, the value of x is printed at the current cursor
position (see the eighth line of output).

In the cout statement in Line 12, only two columns are assigned to output the value of a.
However, the value of a has three digits, so the output is expanded to three columns. The
value of x is then printed in four columns. Because the value of x contains only two digits,
only two columns are required to output the value of x. Therefore, because four columns
are allocated to output the value of x, the first two columns are left blank (see the ninth line
of output).

Additional Output Formatting Tools
In the previous section, you learned how to use the manipulators setprecision, fixed, and
showpoint to control the output of floating-point numbers and how to use the manipulator
setw to display the output in specific columns. Even though these manipulators are adequate
to produce an elegant report, in some situations, youmaywant to domore. In this section, you
will learn additional formatting tools that give you more control over your output.

setfill Manipulator
Recall that in the manipulator setw, if the number of columns specified exceeds the number
of columns required by the expression, the output of the expression is right-justified and the
unused columns to the left are filled with spaces. The output stream variables can use the
manipulator setfill to fill the unused columns with a character other than a space.

The syntax to use the manipulator setfill is:

ostreamVar << setfill(ch);

where ostreamVar is an output stream variable and ch is a character. For example, the
statement:

cout << setfill('#');

Additional Output Formatting Tools | 149

sets the fill character to '#' on the standard output device.

To use the manipulator setfill, the program must include the header file iomanip.

The program in Example 3-13 illustrates the effect of using setfill in a program.

EXAMPLE 3-13

//Example: setfill

#include <iostream>
#include <iomanip>

using namespace std;

int main()
{

int x = 15; //Line 1
int y = 7634; //Line 2

cout << "12345678901234567890" << endl; //Line 3
cout << setw(5) << x << setw(7) << y

<< setw(8) << "Warm" << endl; //Line 4

cout << setfill('*'); //Line 5
cout << setw(5) << x << setw(7) << y

<< setw(8) << "Warm" << endl; //Line 6

cout << setw(5) << x << setw(7) << setfill('#')
<< y << setw(8) << "Warm" << endl; //Line 7

cout << setw(5) << setfill('@') << x
<< setw(7) << setfill('#') << y
<< setw(8) << setfill('^') << "Warm"
<< endl; //Line 8

cout << setfill(' '); //Line 9
cout << setw(5) << x << setw(7) << y

<< setw(8) << "Warm" << endl; //Line 10

return 0;
}

Sample Run:

12345678901234567890
15 7634 Warm

157634****Warm
***15###7634####Warm
@@@15###7634^^^^Warm

15 7634 Warm

The statements in Lines 1 and 2 declare and initialize the variables x and y to 15 and 7634,
respectively. The output of the statement in Line 3—the first line of output—shows the

150 | Chapter 3: Input/Output

column position when the subsequent statements output the values of the variables. The
statement in Line 4 outputs the value of x in five columns, the value of y in seven columns,
and the string "Warm" in eight columns. In this statement, the filling character is the blank
character, as shown in the second line of output.

The statement in Line 5 sets the filling character to *. The statement in Line 6 outputs
the value of x in five columns, the value of y in seven columns, and the string "Warm"

in eight columns. Because x is a two-digit number and five columns are assigned to
output its value, the first three columns are unused by x and are, therefore, filled by the
filling character *. To print the value of y, seven columns are assigned; y is a four-digit
number, however, so the filling character fills the first three columns. Similarly, to print
the value of the string "Warm", eight columns are assigned; the string "Warm" has only
four characters, so the filling character fills the first four columns. See the third line
of output.

The output of the statement in Line 7—the fourth line of output—is similar to the output
of the statement in Line 6, except that the filling character for y and the string "Warm" is
#. In the output of the statement in Line 8 (the fifth line of output), the filling character
for x is @, the filling character for y is #, and the filling character for the string "Warm" is
^. The manipulator setfill sets these filling characters.

The statement in Line 9 sets the filling character to blank. The statement in Line 10
outputs the values of x, y, and the string "Warm" using the filling character blank, as
shown in the sixth line of output.

left and right Manipulators
Recall that if the number of columns specified in the setw manipulator exceeds the
number of columns required by the next expression, the default output is right-justified.
Sometimes, you might want the output to be left-justified. To left-justify the output, you
use the manipulator left.

The syntax to set the manipulator left is:

ostreamVar << left;

where ostreamVar is an output stream variable. For example, the following statement
sets the output to be left-justified on the standard output device:

cout << left;

You can disable the manipulator left by using the stream function unsetf. The syntax
to disable the manipulator left is:

ostreamVar.unsetf(ios::left);

3

Additional Output Formatting Tools | 151

where ostreamVar is an output stream variable. Disabling the manipulator left returns
the output to the settings of the default output format. For example, the following
statement disables the manipulator left on the standard output device:

cout.unsetf(ios::left);

The syntax to set the manipulator right is:

ostreamVar << right;

where ostreamVar is an output stream variable. For example, the following statement
sets the output to be right-justified on the standard output device:

cout << right;

On some compilers, the statements cin >> left; and cin >> right;might not work.

In this case, you can use cin.setf(ios::left); in place of cin >> left; and

cin.setf(ios::right); in place of cin >> right;.

The program in Example 3-14 illustrates the effect of the manipulators left and right.

EXAMPLE 3-14

//Example: left justification

#include <iostream>
#include <iomanip>

using namespace std;

int main()
{

int x = 15; //Line 1
int y = 7634; //Line 2

cout << left; //Line 3

cout << "12345678901234567890" << endl; //Line 4
cout << setw(5) << x << setw(7) << y

<< setw(8) << "Warm" << endl; //Line 5

cout << setfill('*'); //Line 6

cout << setw(5) << x << setw(7) << y
<< setw(8) << "Warm" << endl; //Line 7

cout << setw(5) << x << setw(7) << setfill('#')
<< y << setw(8) << "Warm" << endl; //Line 8

cout << setw(5) << setfill('@') << x
<< setw(7) << setfill('#') << y

152 | Chapter 3: Input/Output

3

<< setw(8) << setfill('^') << "Warm"
<< endl; //Line 9

cout << right; //Line 10
cout << setfill(' '); //Line 11

cout << setw(5) << x << setw(7) << y
<< setw(8) << "Warm" << endl; //Line 12

return 0;
}

Sample Run:

12345678901234567890
15 7634 Warm
15***7634***Warm****
15***7634###Warm####
15@@@7634###Warm^^^^

15 7634 Warm

The output of this program is the same as the output of Example 3-13. The only
difference here is that for the statements in Lines 4 through 9, the output is left-justified.
You are encouraged to do a walk-through of this program.

This chapter discusses several stream functions and stream manipulators. To use stream

functions such as get, ignore, fill, and clear in a program, the program must

include the header file iostream.

There are two types of manipulators: those with parameters and those without parameters.

Manipulators with parameters are called parameterized stream manipulators. For example,

manipulators such as setprecision, setw, and setfill are parameterized. On the

other hand, manipulators such as endl, fixed, scientific, showpoint, and

left do not have parameters.

To use a parameterized stream manipulator in a program, you must include the header file

iomanip. Manipulators without parameters are part of the iostream header file and,

therefore, do not require inclusion of the header file iomanip.

Input/Output and the string Type
You can use an input stream variable, such as cin, and the extraction operator >> to
read a string into a variable of the data type string. For example, if the input
is the string "Shelly", the following code stores this input into the string

variable name:

string name; //variable declaration
cin >> name; //input statement

Input/Output and the string Type | 153

Recall that the extraction operator skips any leading whitespace characters and that
reading stops at a whitespace character. As a consequence, you cannot use the extraction
operator to read strings that contain blanks. For example, suppose that the variable name

is defined as noted above. If the input is:

Alice Wonderland

then after the statement:

cin >> name;

executes, the value of the variable name is "Alice".

To read a string containing blanks, you can use the function getline.

The syntax to use the function getline is:

getline(istreamVar, strVar);

where istreamVar is an input stream variable and strVar is a string variable. The
reading is delimited by the newline character '\n'.

The function getline reads until it reaches the end of the current line. The newline
character is also read but not stored in the string variable.

Consider the following statement:

string myString;

If the input is 29 characters:

bbbbHello there. How are you?

where b represents a blank, after the statement:

getline(cin, myString);

the value of myString is:

myString = " Hello there. How are you?"

All 29 characters, including the first four blanks, are stored into myString.

Similarly, you can use an output stream variable, such as cout, and the insertion operator
<< to output the contents of a variable of the data type string.

Debugging: Understanding Logic Errors
and Debugging with cout Statements
In the debugging section of Chapter 2, we illustrated how to understand and correct syntax
errors. As we have seen, syntax errors are reported by the compiler, and the compiler not
only reports syntax errors, but also gives some explanation about the errors. On the other
hand, logic errors are typically not caught by the compiler except for the trivial ones such as
using a variable without properly initializing it. In this section, we illustrate how to spot and

154 | Chapter 3: Input/Output

3

correct logic errors using cout statements. Suppose that we want to write a program that
takes as input the temperature in Fahrenheit and outputs the equivalent temperature in
Celsius. The formula to convert the temperature is: Celsius ¼ 5 / 9 * (Fahrenheit – 32). So
consider the following program:

#include <iostream> //Line 1

using namespace std; //Line 2

int main() //Line 3
{ //Line 4

int fahrenheit; //Line 5
int celsius; //Line 6

cout << "Enter temperature in Fahrenheit: "; //Line 7
cin >> fahrenheit; //Line 8
cout << endl; //Line 9

celsius = 5 / 9 * (fahrenheit - 32); //Line 10

cout << fahrenheit << " degree F = "
<< celsius << " degree C. " << endl; //Line 11

return 0; //Line 12
} //Line 13

Sample Run 1: In this sample run, the user input is shaded.

Enter temperature in Fahrenheit: 32

32 degree F = 0 degree C.

Sample Run 2: In this sample run, the user input is shaded.

Enter temperature in Fahrenheit: 110

110 degree F = 0 degree C.

The result shown in the first calculation looks correct. However, the result in the second
calculation is clearly not correct even though the same formula is used, because 110 degree
F ¼ 43 degree C. It means the value of celsius calculated in Line 10 is incorrect. Now,
the value of celsius is given by the expression 5 / 9 * (fahrenheit - 32). So we should
look at this expression closely. To see the effect of this expression, we can separately print
the values of the two expression 5 / 9 and fahrenheit - 32. This can be accomplished by
temporarily inserting an output statement as shown in the following program:

#include <iostream> //Line 1

using namespace std; //Line 2

int main() //Line 3
{ //Line 4

int fahrenheit; //Line 5
int celsius; //Line 6

Debugging: Understanding Logic Errors and Debugging with cout Statements | 155

cout << "Enter temperature in Fahrenheit: "; //Line 7
cin >> fahrenheit; //Line 8
cout << endl; //Line 9

cout << "5 / 9 = " << 5 / 9
<< "; fahrenheit - 32 = "
<< fahrenheit - 32 << endl; //Line 9a

celsius = 5 / 9 * (fahrenheit - 32); //Line 10

cout << fahrenheit << " degree F = "
<< celsius << " degree C. " << endl; //Line 11

return 0; //Line 12
} //Line 13

Sample Run: In this sample run, the user input is shaded.

Enter temperature in Fahrenheit: 110

5 / 9 = 0; fahrenheit - 32 = 78
110 degree F = 0 degree C.

Let us look at the sample run. We see that the value of 5 / 9 = 0 and the value of
fahrenheit - 32 = 78. Because fahrenheit = 110, the value of the expression
fahrenheit - 32 is correct. Now let us look at the expression 5 / 9. The value of
this expression is 0. Because both of the operands, 5 and 9, of the operator / are integers,
using integer division, the value of the expression is 0. That is, the value of the expression
5 / 9 = 0 is also calculated correctly. So by the precedence of the operators, the value of the
expression 5 / 9 * (fahrenheit - 32) will always be 0 regardless of the value of
fahrenheit. So the problem is in the integer division. We can replace the expression
5 / 9 with 5.0 / 9. In this case, the value of the expression 5.0 / 9 * (fahrenheit - 32)

will be a decimal number. Because fahrenheit and celsius are int variables, we can use
the cast operators to convert this value to an integer, that is, we use the following expression:

celsius = static_cast<int> (5.0 / 9 * (fahrenheit - 32) + 0.5);

(Note that in the preceding expression, we added 0.5 to round the number to the nearest
integer.)

The revised program is:

#include <iostream> //Line 1

using namespace std; //Line 2

int main() //Line 3
{ //Line 4

int fahrenheit; //Line 5
int celsius; //Line 6

156 | Chapter 3: Input/Output

3

cout << "Enter temperature in Fahrenheit: "; //Line 7
cin >> fahrenheit; //Line 8
cout << endl; //Line 9

celsius = static_cast<int>
(5.0 / 9 * (fahrenheit - 32) + 0.5); //Line 10

cout << fahrenheit << " degree F = "
<< celsius << " degree C. " << endl; //Line 11

return 0; //Line 12
} //Line 13

Sample Run: In this sample run, the user input is shaded.

Enter temperature in Fahrenheit: 110

110 degree F = 43 degree C.

As we can see, using temporary cout statements, we were able to find the problem. After
correcting the problem, the temporary cout statements are removed.

The temperature conversion program contained logic errors, not syntax errors. Using
cout statements to print the values of expressions and/or variables to see the results of a
calculation is an effective way to find and correct logic errors.

File Input/Output
The previous sections discussed in some detail how to get input from the keyboard (standard
input device) and send output to the screen (standard output device). However, getting input
from the keyboard and sending output to the screen have several limitations. Inputting data in a
program from the keyboard is comfortable as long as the amount of input is very small. Sending
output to the screen works well if the amount of data is small (no larger than the size of the
screen) and you do not want to distribute the output in a printed format to others.

If the amount of input data is large, however, it is inefficient to type it at the keyboard
each time you run a program. In addition to the inconvenience of typing large amounts
of data, typing can generate errors, and unintentional typos cause erroneous results. You
must have some way to get data into the program from other sources. By using alternative
sources of data, you can prepare the data before running a program, and the program can
access the data each time it runs.

Suppose you want to present the output of a program in a meeting. Distributing printed
copies of the program output is a better approach than showing the output on a screen.
For example, you might give a printed report to each member of a committee before an
important meeting. Furthermore, output must sometimes be saved so that the output
produced by one program can be used as an input to other programs.

This section discusses how to obtain data from other input devices, such as a disk (that is,
secondary storage), and how to save the output to a disk. C++ allows a program to get

File Input/Output | 157

data directly from and save output directly to secondary storage. A program can use the file
I/O and read data from or write data to a file. Formally, a file is defined as follows:

File: An area in secondary storage used to hold information.

The standard I/O header file, iostream, contains data types and variables that are used
only for input from the standard input device and output to the standard output device.
In addition, C++ provides a header file called fstream, which is used for file I/O.
Among other things, the fstream header file contains the definitions of two data types:
ifstream, which means input file stream and is similar to istream, and ofstream,
which means output file stream and is similar to ostream.

The variables cin and cout are already defined and associated with the standard input/
output devices. In addition, >>, get, ignore, putback, peek, and so on can be used with
cin, whereas <<, setfill, and so on can be used with cout. These same operators and
functions are also available for file I/O, but the header file fstream does not declare variables
to use them. You must declare variables called file stream variables, which include
ifstream variables for input and ofstream variables for output. You then use these
variables together with >>, <<, or other functions for I/O. Remember that C++ does not
automatically initialize user-defined variables. Once you declare the fstream variables, you
must associate these file variables with the input/output sources.

File I/O is a five-step process:

1. Include the header file fstream in the program.

2. Declare file stream variables.

3. Associate the file stream variables with the input/output sources.

4. Use the file stream variables with >>, <<, or other input/output functions.

5. Close the files.

We will now describe these five steps in detail. A skeleton program then shows how the
steps might appear in a program.

Step 1 requires that the header file fstream be included in the program. The following
statement accomplishes this task:

#include <fstream>

Step 2 requires you to declare file stream variables. Consider the following statements:

ifstream inData;
ofstream outData;

The first statement declares inData to be an input file stream variable. The second
statement declares outData to be an output file stream variable.

Step 3 requires you to associate file stream variables with the input/output sources. This
step is called opening the files. The stream member function open is used to open files.
The syntax for opening a file is:

fileStreamVariable.open(sourceName);

158 | Chapter 3: Input/Output

3

Here, fileStreamVariable is a file stream variable, and sourceName is the name of the
input/output file.

Suppose you include the declaration from Step 2 in a program. Further suppose that the input
data is stored in a file called prog.dat. The following statements associate inData with
prog.dat and outData with prog.out. That is, the file prog.dat is opened for inputting
data, and the file prog.out is opened for outputting data.

inData.open("prog.dat"); //open the input file; Line 1
outData.open("prog.out"); //open the output file; Line 2

IDEs such as Visual Studio .Net manage programs in the form of projects. That is, first you

create a project, and then you add source files to the project. The statement in Line 1 assumes

that the file prog.dat is in the same directory (subdirectory) as your project. However, if this

is in a different directory (subdirectory), then you must specify the path where the file is

located, along with the name of the file. For example, suppose that the file prog.dat is on a

flash memory in drive H. Then the statement in Line 1 should be modified as follows:

inData.open("h:\\prog.dat");

Note that there are two \ after h:. Recall from Chapter 2 that in C++, \ is the escape

character. Therefore, to produce a \within a string, you need \\. (To be absolutely sure

about specifying the source where the input file is stored, such as the drive h:\\, check

your system’s documentation.)

Similar conventions for the statement in Line 2.

Suppose that a program reads data from a file. Because different computers have drives

labeled differently, for simplicity, throughout the book, we assume that the file containing

the data and the program reading data from the file are in the same directory (subdirectory).

We typically use .dat, .out, or .txt as an extension for the input and output files

and use Notepad, Wordpad, or TextPad to create and open these files. You can also use

your IDE’s editor, if any, to create .txt (text) files. (To be absolutely sure about it, check

you IDE’s documentation.)

Step 4 typically works as follows. You use the file stream variables with >>, <<, or other
input/output functions. The syntax for using >> or << with file stream variables is exactly
the same as the syntax for using cin and cout. Instead of using cin and cout, however,
you use the file stream variable names that were declared. For example, the statement:

inData >> payRate;

reads the data from the file prog.dat and stores it in the variable payRate. The statement:

outData << "The paycheck is: $" << pay << endl;

File Input/Output | 159

stores the output—The paycheck is: $565.78—in the file prog.out. This statement
assumes that the pay was calculated as 565.78.

Once the I/O is complete, Step 5 requires closing the files. Closing a file means that
the file stream variables are disassociated from the storage area and are freed. Once
these variables are freed, they can be reused for other file I/O. Moreover, closing an
output file ensures that the entire output is sent to the file; that is, the buffer is
emptied. You close files by using the stream function close. For example, assuming
the program includes the declarations listed in Steps 2 and 3, the statements for
closing the files are:

inData.close();
outData.close();

On some systems, it is not necessary to close the files. When the program terminates,

the files are closed automatically. Nevertheless, it is a good practice to close the files

yourself. Also, if you want to use the same file stream variable to open another file,

you must close the first file opened with that file stream variable.

In skeleton form, a program that uses file I/O usually takes the following form:

#include <fstream>

//Add additional header files you use

using namespace std;

int main()
{

//Declare file stream variables such as the following
ifstream inData;
ofstream outData;
.
.
.

//Open the files
inData.open("prog.dat"); //open the input file
outData.open("prog.out"); //open the output file

//Code for data manipulation

//Close files
inData.close();
outData.close();

return 0;
}

160 | Chapter 3: Input/Output

Recall that Step 3 requires the file to be opened for file I/O. Opening a file associates a
file stream variable declared in the program with a physical file at the source, such as a
disk. In the case of an input file, the file must exist before the open statement executes.
If the file does not exist, the open statement fails and the input stream enters the fail
state. An output file does not have to exist before it is opened; if the output file does not
exist, the computer prepares an empty file for output. If the designated output file
already exists, by default, the old contents are erased when the file is opened.

To add the output at the end of an existing file, you can use the option ios::app as follows.

Suppose that outData is declared as before and you want to add the output at the end

of the existing file, say, firstProg.out. The statement to open this file is:

outData.open("firstProg.out", ios::app);

If the file firstProg.out does not exist, then the system creates an empty file.

Appendix E discusses binary and random access files.

3

PROGRAMMING EXAMPLE:

Movie Tickets Sale and Donation to Charity
A movie in a local theater is in great demand. To help a local charity, the theater
owner has decided to donate to the charity a portion of the gross amount generated
from the movie. This example designs and implements a program that prompts the
user to input the movie name, adult ticket price, child ticket price, number of adult
tickets sold, number of child tickets sold, and percentage of the gross amount to be
donated to the charity. The output of the program is as follows.

-*
Movie Name: Journey to Mars
Number of Tickets Sold: 2650
Gross Amount: $ 9150.00
Percentage of Gross Amount Donated: 10.00%
Amount Donated: $ 915.00
Net Sale: $ 8235.00

Note that the strings, such as "Movie Name:" , in the first column are left-justified,
the numbers in the right column are right-justified, and the decimal numbers are
output with two decimal places.

Watch

the Video

Programming Example: Movie Tickets Sale and Donation to Charity | 161

Input The input to the program consists of the movie name, adult ticket price, child

ticket price, number of adult tickets sold, number of child tickets sold, and

percentage of the gross amount to be donated to the charity.

Output The output is as shown above.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

To calculate the amount donated to the local charity and the net sale, you first need to
determine the gross amount. To calculate the gross amount, you multiply the number
of adult tickets sold by the price of an adult ticket, multiply the number of child tickets
sold by the price of a child ticket, and then add these two numbers. That is:

grossAmount = adultTicketPrice * noOfAdultTicketsSold
+ childTicketPrice * noOfChildTicketsSold;

Next, you determine the percentage of the amount donated to the charity and then
calculate the net sale amount by subtracting the amount donated from the gross
amount. The formulas to calculate the amount donated and the net sale amount are
given below. This analysis leads to the following algorithm:

1. Get the movie name.

2. Get the price of an adult ticket.

3. Get the price of a child ticket.

4. Get the number of adult tickets sold.

5. Get the number of child tickets sold.

6. Get the percentage of the gross amount donated to the charity.

7. Calculate the gross amount using the following formula:

grossAmount = adultTicketPrice * noOfAdultTicketsSold
+ childTicketPrice * noOfChildTicketsSold;

8. Calculate the amount donated to the charity using the following formula:

amountDonated = grossAmount * percentDonation / 100;

9. Calculate the net sale amount using the following formula:

netSaleAmount = grossAmount – amountDonated;

Variables From the preceding discussion, it follows that you need variables to store the
movie name, adult ticket price, child ticket price, number of adult tickets sold,
number of child tickets sold, percentage of the gross amount donated to the
charity, gross amount, amount donated, and net sale amount. Therefore, the
following variables are needed:

string movieName;
double adultTicketPrice;
double childTicketPrice;
int noOfAdultTicketsSold;
int noOfChildTicketsSold;
double percentDonation;

162 | Chapter 3: Input/Output

3

double grossAmount;
double amountDonated;
double netSaleAmount;

Because movieName is declared as a string variable, you need to include the header
file string. Therefore, the program needs, among others, the following include
statement:

#include <string>

Formatting

Output

In the output, the first column is left-justified and the numbers in the second
column are right-justified. Therefore, when printing a value in the first column,
the manipulator left is used; before printing a value in the second column, the
manipulator right is used. The empty space between the first and second
columns is filled with dots; the program uses the manipulator setfill to
accomplish this goal. In the lines showing the gross amount, amount donated,
and net sale amount, the space between the $ sign and the number is filled with
blank spaces. Therefore, before printing the dollar sign, the program uses the
manipulator setfill to set the filling character to blank. The following state-
ments accomplish the desired output:

cout << "-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*"
<< "-*-*-*-*-*-*-*-*-*-*-*-*-*" << endl;

cout << setfill('.') << left << setw(35) << "Movie Name: "
<< right << " " << movieName << endl;

cout << left << setw(35) << "Number of Tickets Sold: "
<< setfill(' ') << right << setw(10)
<< noOfAdultTicketsSold + noOfChildTicketsSold
<< endl;

cout << setfill('.') << left << setw(35) << "Gross Amount: "
<< setfill(' ') << right << " $"
<< setw(8) << grossAmount << endl;

cout << setfill('.') << left << setw(35)
<< "Percentage of Gross Amount Donated: "
<< setfill(' ') << right
<< setw(9) << percentDonation << '%' << endl;

cout << setfill('.') << left << setw(35) << "Amount Donated: "
<< setfill(' ') << right << " $"
<< setw(8) << amountDonated << endl;

cout << setfill('.') << left << setw(35) << "Net Sale: "
<< setfill(' ') << right << " $"
<< setw(8) << netSaleAmount << endl;

MAIN

ALGORITHM

In the preceding sections, we analyzed the problem and determined the formulas to
do the calculations. We also determined the necessary variables and named constants.
We can now expand the previous algorithm to solve the problem given at the
beginning of this programming example.

Programming Example: Movie Tickets Sale and Donation to Charity | 163

1. Declare the variables.

2. Set the output of the floating-point numbers to two decimal places
in a fixed decimal format with a decimal point and trailing zeros.
Include the header file iomanip.

3. Prompt the user to enter a movie name.

4. Input (read) the movie name. Because the name of a movie might
contain more than one word (and, therefore, might contain blanks),
the program uses the function getline to input the movie name.

5. Prompt the user to enter the price of an adult ticket.

6. Input (read) the price of an adult ticket.

7. Prompt the user to enter the price of a child ticket.

8. Input (read) the price of a child ticket.

9. Prompt the user to enter the number of adult tickets sold.

10. Input (read) the number of adult tickets sold.

11. Prompt the user to enter the number of child tickets sold.

12. Input (read) the number of child tickets sold.

13. Prompt the user to enter the percentage of the gross amount donated.

14. Input (read) the percentage of the gross amount donated.

15. Calculate the gross amount.

16. Calculate the amount donated.

17. Calculate the net sale amount.

18. Output the results.

COMPLETE PROGRAM LISTING

//**
// Author: D.S. Malik
//
// Program: Movie Tickets Sale
// This program determines the money to be donated to a
// charity. It prompts the user to input the movie name, adult
// ticket price, child ticket price, number of adult tickets
// sold, number of child tickets sold, and percentage of the
// gross amount to be donated to the charity.
//**

#include <iostream>
#include <iomanip>
#include <string>

using namespace std;

164 | Chapter 3: Input/Output

3

int main()
{

//Step 1
string movieName;
double adultTicketPrice;
double childTicketPrice;
int noOfAdultTicketsSold;
int noOfChildTicketsSold;
double percentDonation;
double grossAmount;
double amountDonated;
double netSaleAmount;

cout << fixed << showpoint << setprecision(2); //Step 2

cout << "Enter the movie name: "; //Step 3
getline(cin, movieName); //Step 4
cout << endl;

cout << "Enter the price of an adult ticket: "; //Step 5
cin >> adultTicketPrice; //Step 6
cout << endl;

cout << "Enter the price of a child ticket: "; //Step 7
cin >> childTicketPrice; //Step 8
cout << endl;
cout << "Enter the number of adult tickets "

<< "sold: "; //Step 9
cin >> noOfAdultTicketsSold; //Step 10
cout << endl;

cout << "Enter the number of child tickets "
<< "sold: "; //Step 11

cin >> noOfChildTicketsSold; //Step 12
cout << endl;

cout << "Enter the percentage of donation: "; //Step 13
cin >> percentDonation; //Step 14
cout << endl << endl;

//Step 15
grossAmount = adultTicketPrice * noOfAdultTicketsSold +

childTicketPrice * noOfChildTicketsSold;

//Step 16
amountDonated = grossAmount * percentDonation / 100;

netSaleAmount = grossAmount - amountDonated; //Step 17

//Step 18: Output results
cout << "-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*"

<< "-*-*-*-*-*-*-*-*-*-*-*-*-*" << endl;

Programming Example: Movie Tickets Sale and Donation to Charity | 165

cout << setfill('.') << left << setw(35) << "Movie Name: "
<< right << " " << movieName << endl;

cout << left << setw(35) << "Number of Tickets Sold: "
<< setfill(' ') << right << setw(10)
<< noOfAdultTicketsSold + noOfChildTicketsSold
<< endl;

cout << setfill('.') << left << setw(35)
<< "Gross Amount: "
<< setfill(' ') << right << " $"
<< setw(8) << grossAmount << endl;

cout << setfill('.') << left << setw(35)
<< "Percentage of Gross Amount Donated: "
<< setfill(' ') << right
<< setw(9) << percentDonation << '%' << endl;

cout << setfill('.') << left << setw(35)
<< "Amount Donated: "
<< setfill(' ') << right << " $"
<< setw(8) << amountDonated << endl;

cout << setfill('.') << left << setw(35) << "Net Sale: "
<< setfill(' ') << right << " $"
<< setw(8) << netSaleAmount << endl;

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Enter movie name: Journey to Mars

Enter the price of an adult ticket: 4.50

Enter the price of a child ticket: 3.00

Enter number of adult tickets sold: 800

Enter number of child tickets sold: 1850

Enter the percentage of donation: 10

-*
Movie Name: Journey to Mars
Number of Tickets Sold: 2650
Gross Amount: $ 9150.00
Percentage of Gross Amount Donated: 10.00%
Amount Donated: $ 915.00
Net Sale: $ 8235.00

Note that the first six lines of output get the necessary data to generate the last six
lines of the output as required.

166 | Chapter 3: Input/Output

3

PROGRAMMING EXAMPLE: Student Grade
Write a program that reads a student name followed by five test scores. The program
should output the student name, the five test scores, and the average test score.
Output the average test score with two decimal places.

The data to be read is stored in a file called test.txt. The output should be stored
in a file called testavg.out.

Input A file containing the student name and the five test scores. A sample input is:

Andrew Miller 87.50 89 65.75 37 98.50

Output The student name, the five test scores, and the average of the five test

scores, saved to a file.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

To find the average of the five test scores, you add the five test scores and divide the
sum by 5. The input data is in the following form: the student name followed by the
five test scores. Therefore, you must read the student name first and then read the five
test scores. This problem analysis translates into the following algorithm:

1. Read the student name and the five test scores.

2. Output the student name and the five test scores.

3. Calculate the average.

4. Output the average.

You output the average test score in the fixed decimal format with two decimal places.

Variables The programneeds to read a student’s first and last name and five test scores. Therefore, you
need two variables to store the student name and five variables to store the five test scores.

To find the average, you must add the five test scores and then divide the sum by 5.
Thus, you need a variable to store the average test score. Furthermore, because the
input data is in a file, you need an ifstream variable to open the input file. Because
the program output will be stored in a file, you need an ofstream variable to open
the output file. The program, therefore, needs at least the following variables:

ifstream inFile; //input file stream variable
ofstream outFile; //output file stream variable

double test1, test2, test3, test4, test5; //variables to
//read the five test scores

double average; //variable to store the average test score
string firstName; //variable to store the first name
string lastName; //variable to store the last name

MAIN

ALGORITHM

In the preceding sections, we analyzed the problem and determined the formulas to
perform the calculations. We also determined the necessary variables and named

Programming Example: Student Grade | 167

constants. We can now expand the previous algorithm to solve the problem given at
the beginning of this programming example:

1. Declare the variables.

2. Open the input file.

3. Open the output file.

4. To output the floating-point numbers in a fixed decimal format
with a decimal point and trailing zeros, set the manipulators fixed
and showpoint. Also, to output the floating-point numbers with
two decimal places, set the precision to two decimal places.

5. Read the student name.

6. Output the student name.

7. Read the five test scores.

8. Output the five test scores.

9. Find the average test score.

10. Output the average test score.

11. Close the input and output files.

Because this program reads data from a file and outputs data to a file, it must include
the header file fstream. Because the program outputs the average test score to two decimal
places, you need to set the precision to two decimal places. Therefore, the program uses the
manipulator setprecision, which requires you to include the header file iomanip.
Because firstName and lastName are string variables, we must include the header file
string. The program also includes the header file iostream to print a message on the
screen so that you will not stare at a blank screen while the program executes.

COMPLETE PROGRAM LISTING

//**
// Author: D.S. Malik
//
// Program to calculate the average test score.
// Given a student's name and five test scores, this program
// calculates the average test score. The student's name, the
// five test scores, and the average test score are stored in
// the file testavg.out. The data is input from the file
// test.txt.
//**

#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>

using namespace std;

168 | Chapter 3: Input/Output

3

int main()
{

//Declare variables; Step 1
ifstream inFile;
ofstream outFile;

double test1, test2, test3, test4, test5;
double average;

string firstName;
string lastName;

inFile.open("test.txt"); //Step 2
outFile.open("testavg.out"); //Step 3

outFile << fixed << showpoint; //Step 4
outFile << setprecision(2); //Step 4

cout << "Processing data" << endl;

inFile >> firstName >> lastName; //Step 5
outFile << "Student name: " << firstName

<< " " << lastName << endl; //Step 6

inFile >> test1 >> test2 >> test3
>> test4 >> test5; //Step 7

outFile << "Test scores: " << setw(6) << test1
<< setw(6) << test2 << setw(6) << test3
<< setw(6) << test4 << setw(6) << test5
<< endl; //Step 8

average = (test1 + test2 + test3 + test4
+ test5) / 5.0; //Step 9

outFile << "Average test score: " << setw(6)
<< average << endl; //Step 10

inFile.close(); //Step 11
outFile.close(); //Step 11

return 0;
}

Sample Run:

Input File (contents of the file test.txt):

Andrew Miller 87.50 89 65.75 37 98.50

Output File (contents of the file testavg.out):

Student name: Andrew Miller
Test scores: 87.50 89.00 65.75 37.00 98.50
Average test score: 75.55

Programming Example: Student Grade | 169

QUICK REVIEW

1. A stream in C++ is an infinite sequence of characters from a source to a
destination.

2. An input stream is a stream from a source to a computer.

3. An output stream is a stream from a computer to a destination.

4. cin, which stands for common input, is an input stream object, typically
initialized to the standard input device, which is the keyboard.

5. cout, which stands for common output, is an output stream object,
typically initialized to the standard output device, which is the screen.

6. When the binary operator >> is usedwith an input streamobject, such ascin, it
is called the stream extraction operator. The left-side operand of >>must be an
input stream variable, such as cin; the right-side operand must be a variable.

7. When the binary operator << is used with an output stream object, such as
cout, it is called the stream insertion operator. The left-side operand of <<
must be an output stream variable, such as cout; the right-side operand of
<< must be an expression or a manipulator.

8. When inputting data into a variable, the operator >> skips all leading
whitespace characters.

9. To use cin and cout, the program must include the header file iostream.

10. The function get is used to read data on a character-by-character basis and
does not skip any whitespace characters.

11. The function ignore is used to skip data in a line.

12. The function putback puts the last character retrieved by the function get

back into the input stream.

13. The function peek returns the next character from the input stream but
does not remove the character from the input stream.

14. Attempting to read invalid data into a variable causes the input stream to
enter the fail state.

15. Once an input failure has occurred, you use the function clear to restore
the input stream to a working state.

The preceding program uses five variables—test1, test2, test3, test4,

and test5—to read the five test scores and then find the average test score.

The Web site accompanying this book contains a modified version of this program

that uses only one variable, testScore, to read the test scores and another

variable, sum, to find the sum of the test scores. The program is named

Ch3_AverageTestScoreVersion2.cpp.

170 | Chapter 3: Input/Output

16. The manipulator setprecision formats the output of floating-point
numbers to a specified number of decimal places.

17. The manipulator fixed outputs floating-point numbers in the fixed
decimal format.

18. The manipulator showpoint outputs floating-point numbers with a
decimal point and trailing zeros.

19. The manipulator setw formats the output of an expression in a specific
number of columns; the default output is right-justified.

20. If the number of columns specified in the argument of setw is less than the
number of columns needed to print the value of the expression, the output
is not truncated and the output of the expression expands to the required
number of columns.

21. The manipulator setfill is used to fill the unused columns on an output
device with a character other than a space.

22. If the number of columns specified in the setw manipulator exceeds the
number of columns required by the next expression, the output is right-
justified. To left-justify the output, you use the manipulator left.

23. To use the stream functions get, ignore, putback, peek, clear, and unsetf

for standard I/O, the program must include the header file iostream.

24. To use the manipulators setprecision, setw, and setfill, the program
must include the header file iomanip.

25. The header file fstream contains the definitions of ifstream and ofstream.

26. For file I/O, you must use the statement #include <fstream> to include the
header file fstream in the program. You must also do the following: declare
variables of type ifstream for file input and of type ofstream for file output
and use open statements to open input and output files. You can use <<, >>,
get, ignore, peek, putback, or clear with file stream variables.

27. To close a file as indicated by the ifstream variable inFile, you use the
statement inFile.close();. To close a file as indicated by the ofstream

variable outFile, you use the statement outFile.close();.

EXERCISES

1. Mark the following statements as true or false.

a. The extraction operator >> skips all leading whitespace characters when
searching for the next data in the input stream.

b. In the statement cin >> x;, x must be a variable.

c. The statement cin >> x >> y; requires the input values for x and y to
appear on the same line.

3

Exercises | 171

d. The statement cin >> num; is equivalent to the statement num >> cin;.

e. You generate the newline character by pressing the Enter (return) key
on the keyboard.

f. The function ignore is used to skip certain input in a line.

2. Suppose num1 and num2 are int variables and symbol is a char variable.
Consider the following input:

47 18 * 28 $

What value (if any) is assigned to num1, num2, and symbol after each of the
following statements executes? (Use the same input for each statement.)

a. cin >> num1 >> symbol >> num2;

b. cin >> symbol >> num1 >> num2;

c. cin >> num1;
cin.get(symbol);
cin >> num2;

d. cin >> num1 >> num2;
cin.get(symbol);

e. cin.get(symbol);
cin >> num1 >> num2;

3. Suppose x and y are int variables and z is a double variable. Assume the
following input data:

37 86.56 32

What value (if any) is assigned to x, y, and z after each of the following
statements executes? (Use the same input for each statement.)

a. cin >> x >> y >> z;

b. cin >> x >> z >> y;

c. cin >> z >> x >> y;

4. Suppose x and y are int variables and symbol is a char variable. Assume
the following input data:

38 26 * 67 33
24 $ 55 # 34
& 63 85

What value (if any) is assigned to x, y, and symbol after each of the
following statements executes? (Use the same input for each statement.)

a. cin >> x >> y;
cin.ignore(100, '\n');
cin >> symbol;

b. cin >> x;
cin.ignore(100, '*');
cin >> y;
cin.get(symbol);

172 | Chapter 3: Input/Output

c. cin >> y;
cin.ignore(100, '\n');
cin >> x >> symbol;

d. cin.get(symbol);
cin.ignore(100, '*');
cin >> x;
cin.ignore(100, '\n');
cin >> y;

e. cin.ignore(100, '\n');
cin >> x >> symbol;
cin.ignore(100, '\n');
cin.ignore(100, '&');
cin >> y;

5. Given the input:

46 A 49

and the C++ code:

int x = 10, y = 18;
char z = '*';
cin >> x >> y >> z;
cout << x << " " << y << " " << z << endl;

What is the output?

6. Suppose that x and y are int variables, z is a double variable, and ch is a
char variable. Suppose the input statement is:

cin >> x >> y >> ch >> z;

What values, if any, are stored in x, y, z, and ch if the input is:

a. 35 62.78

b. 86 32A 92.6

c. 12 .45A 32

7. Which header file must be included to use the function steprecision?

8. Which header file must be included to use the function pow?

9. Which header file must be included to use the function sqrt?

10. What is the output of the following program?

#include <iostream>
#include <cmath>
#include <string>

using namespace std;

3

Exercises | 173

int main()
{

int x, y;
string message;
double z;

x = 4;
y = 3;
z = 2.5;

cout << static_cast<int>(pow(x, 2.0)) << endl;
cout << static_cast<int>(pow(z, y)) << endl;

cout << pow(x, z) << endl;

cout << sqrt(36.0) << endl;

z = pow(9.0, 2.5);
cout << z << endl;

message = "Using C++ predefined function";

cout << "Length of message = "
<< message.length() << endl;

return 0;
}

11. To use the functions peek and putback in a program, which header file(s)
must be included in the program?

12. Suppose that num is an int variable and discard is a char variable.
Assume the following input data:
#34

What value (if any) is assigned to num and discard after each of the
following statements executes? (Use the same input for each statement.)

a. cin.get (discard);

cin >> num;

b. discard = cin.peek();

cin >> num;

c. cin.get (discard);

cin.putback (discard);

cin >> discard;

cin >> num;

13. Suppose that name is a variable of type string. Write the input statement
to read and store the input Brenda Clinton in name. (Assume that the
input is from the standard input device.)

174 | Chapter 3: Input/Output

14. Write a C++ statement that uses the manipulator setfill to output a line
containing 35 stars, as in the following line:

15. Suppose that age is an int variable and name is a string variable. What are
the values of age and name after the following input statements execute:

cin >> age;
getline(cin, name);

if the input is:

a. 23 Lance Grant

b. 23
Lance Grant

16. Suppose that age is an int variable, ch is a char variable, and name is a
string variable. What are the values of age and name after the following
input statements execute:

cin >> age;
cin.get(ch);
getline(cin, name);

if the input is:

a. 23 Lance Grant

b. 23
Lance Grant

17. The following program is supposed to read two numbers from a file named
input.dat and write the sum of the numbers to a file named output.dat.
However, it fails to do so. Rewrite the program so that it accomplishes what
it is intended to do. (Also, include statements to close the files.)

#include <iostream>
#include <fstream>
using namespace std;

int main()
{

int num1, num2;
ifstream infile;

outfile.open("output.dat");
infile >> num1 >> num2;
outfile << "Sum = " << num1 + num2 << endl;
return 0;

}

3

Exercises | 175

18. What may cause an input stream to enter the fail state? What happens when
an input stream enters the fail state?

19. Which header file needs to be included in a program that uses the data types
ifstream and ofstream?

20. Suppose that infile is an ifstream variable and employee.dat is a file
that contains employees’ information. Write the C++ statement that opens
this file using the variable infile.

21. A program reads data from a file called inputFile.dat and, after doing
some calculations, writes the results to a file called outFile.dat. Answer
the following questions:

a. After the program executes, what are the contents of the file
inputFile.dat?

b. After the program executes, what are the contents of the file outFile.dat if
this file was empty before the program executed?

c. After the program executes, what are the contents of the file outFile.dat if
this file contained 100 numbers before the program executed?

d. What would happen if the file outFile.dat did not exist before the
program executed?

22. Suppose that infile is an ifstream variable and it is associated with the
file that contains the following data: 27306 savings 7503.35. Write the
C++ statement(s) that reads and stores the first input in the int variable
acctNumber, the second input in the string variable accountType, and
the third input in the double variable balance.

23. Suppose that you have the following statements:

ofstream outfile;
double distance = 375;
double speed = 58;
double travelTime;

Write C++ statements to do the following:

a. Open the file travel.dat using the variable outfile.

b. Write the statement to format your output to two decimal places in
fixed form.

c. Write the values of the variables day, distance, and speed in the file
travel.dat.

d. Calculate and write the travelTime in the file travel.dat.

e. Which header files are needed to process the information in (a) to (d)?

176 | Chapter 3: Input/Output

PROGRAMMING EXERCISES

1. Consider the following incomplete C++ program:

#include <iostream>

int main()
{

...
}

a. Write a statement that includes the header files fstream, string, and
iomanip in this program.

b. Write statements that declare inFile to be an ifstream variable and
outFile to be an ofstream variable.

c. The program will read data from the file inData.txt and write output to
the file outData.txt. Write statements to open both of these files, associate
inFile with inData.txt, and associate outFile with outData.txt.

d. Suppose that the file inData.txt contains the following data:

10.20 5.35
15.6
Randy Gill 31
18500 3.5
A

The numbers in the first line represent the length andwidth, respectively, of
a rectangle. The number in the second line represents the radius of a circle.
The third line contains the first name, last name, and the age of a person. The
first number in the fourth line is the savings account balance at the beginning
of the month, and the second number is the interest rate per year. (Assume
that p¼ 3.1416.) The fifth line contains an uppercase letter between A and
Y (inclusive). Write statements so that after the program executes, the con-
tents of the file outData.txt are as shown below. If necessary, declare
additional variables. Your statements should be general enough so that if the
content of the input file changes and the program is run again (without
editing and recompiling), it outputs the appropriate results.

Rectangle:
Length = 10.20, width = 5.35, area = 54.57, parameter = 31.10

Circle:
Radius = 15.60, area = 764.54, circumference = 98.02

Name: Randy Gill, age: 31
Beginning balance = $18500.00, interest rate = 3.50
Balance at the end of the month = $18553.96

The character that comes after A in the ASCII set is B

3

Programming Exercises | 177

e. Write statements that close the input and output files.

f. Write a C++ program that tests the statements in parts a through e.

2. Consider the following program in which the statements are in the incorrect
order. Rearrange the statements so that the program prompts the user to input
the height and the radius of the base of a cylinder and outputs the volume and
surface area of the cylinder. Format the output to two decimal places.

#include <iomanip>
#include <cmath>

int main()
{}

double height;

cout << "Volume of the cylinder = "
<< PI * pow(radius, 2.0)* height << endl;

cout << "Enter the height of the cylinder: ";
cin >> radius;
cout << endl;

return 0;

double radius;

cout << "Surface area: "
<< 2 * PI * radius * height + 2 * PI * pow(radius, 2.0)
<< endl;

cout << fixed << showpoint << setprecision(2);

cout << "Enter the radius of the base of the cylinder: ";
cin >> height;
cout << endl;

#include <iostream>
const double PI = 3.14159;

using namespace std;

3. Write a program that prompts the user to enter the weight of a person in
kilograms and outputs the equivalent weight in pounds. Output both the
weights rounded to two decimal places. (Note that 1 kilogram ¼ 2.2
pounds.) Format your output with two decimal places.

4. During each summer, John and Jessica grow vegetables in their backyard
and buy seeds and fertilizer from a local nursery. The nursery carries
different types of vegetable fertilizers in various bag sizes. When buying a
particular fertilizer, they want to know the price of the fertilizer per pound
and the cost of fertilizing per square foot. The following program prompts

178 | Chapter 3: Input/Output

the user to enter the size of the fertilizer bag, in pounds, the cost of the bag,
and the area, in square feet, that can be covered by the bag. The program
should output the desired result. However, the program contains logic
errors. Find and correct the logic errors so that the program works properly.

//Logic errors.

#include <iostream>
#include <iomanip>

using namespace std;

int main()
{

double cost;
double area;

double bagSize;

cout << fixed << showpoint << setprecision(2);

cout << "Enter the amount of fertilizer, in pounds, "
<< "in one bag: ";

cin >> bagSize;
cout << endl;

cout << "Enter the cost of the " << bagSize
<< " pound fertilizer bag: ";

cin >> cost;
cout << endl;

cout << "Enter the area, in square feet, that can be "
<< "fertilized by one bag: ";

cin >> area;
cout << endl;

cout << "The cost of the fertilizer per pound is: $"
<< bagSize / cost << endl;

cout << "The cost of fertilizing per square foot is: $"
<< area / cost << endl;

return 0;
}

5. The manager of a football stadium wants you to write a program that
calculates the total ticket sales after each game. There are four types of
tickets—box, sideline, premium, and general admission. After each game,
data is stored in a file in the following form:

ticketPrice numberOfTicketsSold
...

3

Programming Exercises | 179

Sample data are shown below:

250 5750
100 28000
50 35750
25 18750

The first line indicates that the ticket price is $250 and that 5750 tickets were
sold at that price. Output the number of tickets sold and the total sale
amount. Format your output with two decimal places.

6. Redo Programming Exercise 21, in Chapter 2, so that each string can store
a line of text.

7. Three employees in a company are up for a special pay increase. You are
given a file, say Ch3_Ex7Data.txt, with the following data:

Miller Andrew 65789.87 5
Green Sheila 75892.56 6
Sethi Amit 74900.50 6.1

Each input line consists of an employee’s last name, first name, current salary,
and percent pay increase. For example, in the first input line, the last name of
the employee is Miller, the first name is Andrew, the current salary is
65789.87, and the pay increase is 5%. Write a program that reads data from
the specified file and stores the output in the file Ch3_Ex7Output.dat.
For each employee, the data must be output in the following form:
firstName lastName updatedSalary. Format the output of decimal
numbers to two decimal places.

8. Write a program that accepts as input the mass, in grams, and density, in
grams per cubic centimeters, and outputs the volume of the object using the
formula: volume ¼ mass / density. Format your output to two decimal places.

9. Interest on a credit card’s unpaid balance is calculated using the average daily
balance. Suppose that netBalance is the balance shown in the bill, payment is
the payment made, d1 is the number of days in the billing cycle, and d2
is the number of days payment is made before billing cycle. Then, the
average daily balance is:

averageDailyBalance ¼ ðnetBalance � d1� payment � d2Þ=d1

If the interest rate per month is, say, 0.0152, then the interest on the
unpaid balance is:

interest ¼ averageDailyBalance � 0:0152

180 | Chapter 3: Input/Output

Write a program that accepts as input netBalance, payment, d1, d2, and interest
rate per month. The program outputs the interest. Format your output to two
decimal places.

10. Linda is starting a new cosmetic and clothing business and would like to
make a net profit of approximately 10% after paying all the expenses, which
include merchandise cost, store rent, employees’ salary, and electricity cost
for the store. She would like to know how much the merchandise should
be marked up so that after paying all the expenses at the end of the year she
gets approximately 10% net profit on the merchandise cost. Note that after
marking up the price of an item she would like to put the item on 15% sale.
Write a program that prompts Linda to enter the total cost of the merchan-
dise, the salary of the employees (including her own salary), the yearly rent,
and the estimated electricity cost. The program then outputs how much the
merchandise should be marked up so that Linda gets the desired profit.

3

Programming Exercises | 181

This page intentionally left blank

CONTROL STRUCTURES I
(SELECTION)

IN THIS CHAPTER , YOU WILL :

. Learn about control structures

. Examine relational and logical operators

. Explore how to form and evaluate logical (Boolean) expressions

. Discover how to use the selection control structures if, if ...else, and switch in a program

. Learn how to avoid bugs by avoiding partially understood concepts

. Learn to use the assert function to terminate a program

4C H A P T E R

Chapter 2 defined a program as a sequence of statements whose objective is to
accomplish some task. The programs you have examined so far were simple
and straightforward. To process a program, the computer begins at the first exe-
cutable statement and executes the statements in order until it comes to the end.
In this chapter and Chapter 5, you will learn how to tell a computer that it does
not have to follow a simple sequential order of statements; it can also make
decisions and repeat certain statements over and over until certain conditions
are met.

Control Structures
A computer can process a program in one of the following ways: in sequence; selectively,
by making a choice, which is also called a branch; repetitively, by executing a statement
over and over, using a structure called a loop; or by calling a function. Figure 4-1
illustrates the first three types of program flow. (In Chapter 6, we will show how function
calls work.) The programming examples in Chapters 2 and 3 included simple sequential
programs. With such a program, the computer starts at the beginning and follows the
statements in order. No choices are made; there is no repetition. Control structures
provide alternatives to sequential program execution and are used to alter the sequential
flow of execution. The two most common control structures are selection and repetition.
In selection, the program executes particular statements depending on some condition(s).
In repetition, the program repeats particular statements a certain number of times based on
some condition(s).

statement1

statement2

statementN

statement2 statement1

false trueexpression
statement

false

trueexpression

a. Sequence b. Selection c. Repetition

FIGURE 4-1 Flow of execution

184 | Chapter 4: Control Structures I (Selection)

Before you can learn about selection and repetition, you must understand the nature
of conditional statements and how to use them. Consider the following three
statements:

1. if (score is greater than or equal to 90)

grade is A

2. if (hours worked are less than or equal to 40)

wages = rate * hours

otherwise

wages = (rate * 40) + 1.5 *(rate *(hours – 40))

3. if (temperature is greater than 70 degrees and it is not

raining)

Go golfing!

These statements are examples of conditional statements. You can see that certain
statements are to be executed only if certain conditions are met. A condition is met if
it evaluates to true. For example, in statement 1:

score is greater than or equal to 90

is true if the value of score is greater than or equal to 90; it is false otherwise. For
example, if the value of score is 95, the statement evaluates to true. Similarly, if the
value of score is 86, the statement evaluates to false.

It would be useful if the computer could recognize these types of statements to be true
for appropriate values. Furthermore, in certain situations, the truth or falsity of a
statement could depend on more than one condition. For example, in statement 3, both
temperature is greater than 70 degrees and it is not raining must be true to
recommend golfing.

As you can see, for the computer to make decisions and repeat statements, it must be able
to react to conditions that exist when the program executes. The next few sections discuss
how to represent and evaluate conditional statements in C++.

Relational Operators
To make decisions, you must be able to express conditions and make comparisons. For
example, the interest rate and service charges on a checking account might depend on the
balance at the end of the month. If the balance is less than some minimum balance, not
only is the interest rate lower, but there is also usually a service charge. Therefore, to
determine the interest rate, you must be able to state the minimum balance and compare
the account balance with the minimum balance (a condition). The premium on an
insurance policy is also determined by stating conditions and making comparisons. For
example, to determine an insurance premium, you must be able to check the smoking
status of the policyholder. Nonsmokers (the condition) receive lower premiums than
smokers. Both of these examples involve comparing items. Certain items are compared

4

Relational Operators | 185

for equality against a particular condition; others are compared for inequality (greater than
or less than) against a particular condition.

In C++, a condition is represented by a logical (Boolean) expression. An expression that
has a value of either true or false is called a logical (Boolean) expression. More-
over, true and false are logical (Boolean) values. Suppose i and j are integers.
Consider the expression:

i > j

If this expression is a logical expression, it will have the value true if the value of
i is greater than the value of j; otherwise, it will have the value false. The
symbol > is called a relational operator. A relational operator allows you to make
comparisons in a program.

C++ includes six relational operators that allow you to state conditions and make
comparisons. Table 4-1 lists the relational operators.

In C++, the symbol ==, which consists of two equal signs, is called the equality operator.

Recall that the symbol = is called the assignment operator. Remember that the equality

operator, ==, determines whether two expressions are equal, whereas the assignment

operator, =, assigns the value of an expression to a variable.

Each of the relational operators is a binary operator; that is, it requires two operands.
Because the result of a comparison is true or false, expressions using these operators
evaluate to true or false.

Relational Operators and Simple Data Types
You can use the relational operators with all three simple data types. In the following
example, the expressions use both integers and real numbers:

TABLE 4-1 Relational Operators in C++

Operator Description

== equal to

!= not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

186 | Chapter 4: Control Structures I (Selection)

4

EXAMPLE 4-1

Expression Meaning Value

8 < 15 8 is less than 15 true

6 != 6 6 is not equal to 6 false

2.5 > 5.8 2.5 is greater than 5.8 false

5.9 <= 7.5 5.9 is less than or equal to 7.5 true

Comparing Characters
For char values, whether an expression using relational operators evaluates to true or false
depends on amachine’s collating sequence. The collating sequence of some of the characters is:

ASCII ASCII ASCII ASCII

Value Char Value Char Value Char Value Char

32 ' ' 61 = 81 Q 105 i

33 ! 62 > 82 R 106 j

34 " 65 A 83 S 107 k

42 * 66 B 84 T 108 l

43 + 67 C 85 U 109 m

45 - 68 D 86 V 110 n

47 / 69 E 87 W 111 o

48 0 70 F 88 X 112 p

49 1 71 G 89 Y 113 q

50 2 72 H 90 Z 114 r

51 3 73 I 97 a 115 s

52 4 74 J 98 b 116 t

53 5 75 K 99 c 117 u

54 6 76 L 100 d 118 v

55 7 77 M 101 e 119 w

56 8 78 N 102 f 120 x

57 9 79 O 103 g 121 y

60 < 80 P 104 h 122 z

The ASCII character set is described in Appendix C.

Now, because 32 < 97, and the ASCII value of ' ' is 32 and the ASCII value of 'a' is
97, it follows that ' ' < 'a' is true. Similarly, using the previous ASCII values:

'R' > 'T' is false

'+' < '*' is false

'A' <= 'a' is true

Relational Operators | 187

note that comparing values of different data types may produce unpredictable results. For
example, the following expression compares an integer and a character:

8 < '5'

In this expression, on a particular machine, 8 would be compared with the collating
sequence of '5', which is 53. That is, 8 is compared with 53, which makes this particular
expression evaluate to true.

Expressions such as 4 < 6 and 'R' > 'T' are examples of logical (Boolean) expressions.
When C++ evaluates a logical expression, it returns an integer value of 1 if the logical
expression evaluates to true; it returns an integer value of 0 otherwise. In C++, any
nonzero value is treated as true.

Chapter 2 introduced the data type bool. Recall that the data type bool has two values,

true and false. In C++, true and false are reserved words. The identifier

true is set to 1, and the identifier false is set to 0. For readability, whenever

logical expressions are used, the identifiers true and false will be used here as the

value of the logical expression.

Relational Operators and the string Type
The relational operators can be applied to variables of type string. Variables of type
string are compared character by character, starting with the first character and using
the ASCII collating sequence. The character-by-character comparison continues until
either a mismatch is found or the last characters have been compared and are equal. The
following example shows how variables of type string are compared.

EXAMPLE 4-2

Suppose that you have the following statements:

string str1 = "Hello";
string str2 = "Hi";
string str3 = "Air";
string str4 = "Bill";
string str5 = "Big";

The following expressions show how string relational expressions evaluate.

Expression Value /Explanation

str1 < str2 true

str1 = "Hello" and str2 = "Hi". The first characters

of str1 and str2 are the same, but the second character 'e'

of str1 is less than the second character 'i' of str2.

Therefore, str1 < str2 is true.

188 | Chapter 4: Control Structures I (Selection)

4

str1 > "Hen" false

str1 = "Hello". The first two characters of str1 and
"Hen" are the same, but the third character 'l' of str1 is

less than the third character 'n' of "Hen". Therefore,
str1 > "Hen" is false.

str3 < "An" true

str3 = "Air". The first characters of str3 and "An" are

the same, but the second character 'i' of "Air" is less than

the second character 'n' of "An". Therefore, str3 < "An"

is true.

str1 == "hello" false

str1 = "Hello". The first character 'H' of str1 is less

than the first character 'h' of "hello" because the ASCII

value of 'H' is 72, and the ASCII value of 'h' is 104.

Therefore, str1 == "hello" is false.

str3 <= str4 true

str3 = "Air" and str4 = "Bill". The first character
'A' of str3 is less than the first character 'B' of str4.

Therefore, str3 <= str4 is true.

str2 > str4 true

str2 = "Hi" and str4 = "Bill". The first character
'H' of str2 is greater than the first character 'B' of str4.

Therefore, str2 > str4 is true.

If two strings of different lengths are compared and the character-by-character compar-
ison is equal until it reaches the last character of the shorter string, the shorter string is
evaluated as less than the larger string, as shown next.

Expression Value/Explanation

str4 >= "Billy" false

str4 = "Bill". It has four characters, and "Billy" has

five characters. Therefore, str4 is the shorter string. All four

characters of str4 are the same as the corresponding first

four characters of "Billy", and "Billy" is the larger

string. Therefore, str4 >= "Billy" is false.

str5 <= "Bigger" true

str5 = "Big". It has three characters, and "Bigger"

has six characters. Therefore, str5 is the shorter string.

All three characters of str5 are the same as the

corresponding first three characters of "Bigger",

and "Bigger" is the larger string. Therefore,
str5 <= "Bigger" is true.

Relational Operators | 189

The program Chapter4_StringComparisons.cpp at the Web site accompanying this
book shows the results of the previous expressions.

Logical (Boolean) Operators and Logical Expressions
This section describes how to form and evaluate logical expressions that are combi-
nations of other logical expressions. Logical (Boolean) operators enable you to
combine logical expressions. C++ has three logical (Boolean) operators, as shown in
Table 4-2.

Logical operators take only logical values as operands and yield only logical values as
results. The operator ! is unary, so it has only one operand. The operators && and || are
binary operators. Tables 4-3, 4-4, and 4-5 define these operators.

Table 4-3 defines the operator ! (not). When you use the ! operator, !true is false
and !false is true. Putting ! in front of a logical expression reverses the value of that
logical expression.

EXAMPLE 4-3

Expression Value Explanation

!('A' > 'B') true Because'A' > 'B' isfalse,!('A' > 'B') istrue.

!(6 <= 7) false Because 6 <= 7 is true, !(6 <= 7) is false.

TABLE 4-3 The ! (Not) Operator

Expression !(Expression)

true (nonzero) false (0)

false (0) true (1)

TABLE 4-2 Logical (Boolean) Operators in C++

Operator Description

! not

&& and

|| or

190 | Chapter 4: Control Structures I (Selection)

Table 4-4 defines the operator && (and). From this table, it follows that
Expression1 && Expression2 is true if and only if both Expression1 and
Expression2 are true; otherwise, Expression1 && Expression2 evaluates to
false.

EXAMPLE 4-4

Expression Value Explanation

(14 >= 5) && ('A' < 'B') true Because (14 >= 5) is true, ('A' <
'B') is true, and true && true is
true, the expression evaluates to true.

(24 >= 35) && ('A' < 'B') false Because (24 >= 35) is false, ('A'
<'B') is true, and false && true is
false, the expression evaluates to false.

Table 4-5 defines the operator || (or). From this table, it follows that
Expression1 || Expression2 is true if and only if at least one of the expressions,
Expression1orExpression2, istrue; otherwise,Expression1||Expression2 evaluates
to false.

4

TABLE 4-4 The && (And) Operator

Expression1 Expression2 Expression1 && Expression2

true (nonzero) true (nonzero) true (1)

true (nonzero) false (0) false (0)

false (0) true (nonzero) false (0)

false (0) false (0) false (0)

TABLE 4-5 The || (Or) Operator

Expression1 Expression2 Expression1 || Expression2

true (nonzero) true (nonzero) true (1)

true (nonzero) false (0) true (1)

false (0) true (nonzero) true (1)

false (0) false (0) false (0)

Logical (Boolean) Operators and Logical Expressions | 191

EXAMPLE 4-5

Expression Value Explanation

(14 >= 5) || ('A' > 'B') true Because (14 >= 5) is true, ('A' >
'B') is false, and true || false is
true, the expression evaluates to true.

(24 >= 35) || ('A' > 'B') false Because (24 >= 35) is false,('A' >
'B') is false, and false || false is
false, the expression evaluates to false.

('A' <= 'a') || (7 != 7) true Because ('A' <= 'a') is true,
(7 != 7) is false, and true || false
is true, the expression evaluates to true.

Order of Precedence
Complex logical expressions canbedifficult to evaluate.Consider the following logical expression:

11 > 5 || 6 < 15 && 7 >= 8

This logical expression yields different results, depending on whether || or && is evaluated
first. If || is evaluated first, the expression evaluates to false. If && is evaluated first, the
expression evaluates to true.

An expression might contain arithmetic, relational, and logical operators, as in the expression:

5 + 3 <= 9 && 2 > 3

To work with complex logical expressions, there must be some priority scheme for
evaluating operators. Table 4-6 shows the order of precedence of some C++ operators,
including the arithmetic, relational, and logical operators. (See Appendix B for the
precedence of all C++ operators.)

TABLE 4-6 Precedence of Operators

Operators Precedence

!, +, - (unary operators) first

*, /, % second

+, - third

<, <=, >=, > fourth

==, != fifth

&& sixth

|| seventh

= (assignment operator) last

192 | Chapter 4: Control Structures I (Selection)

4

In C++, & and | are also operators. The meaning of these operators is different from the

meaning of && and ||. Using & in place of && or | in place of ||—as might result from a

typographical error—would produce very strange results.

Using the precedence rules in an expression, relational and logical operators are evaluated
from left to right. Because relational and logical operators are evaluated from left to right, the
associativity of these operators is said to be from left to right.

Example 4-6 illustrates how logical expressions consisting of variables are evaluated.

EXAMPLE 4-6

Suppose you have the following declarations:

bool found = true;
int age = 20;
double hours = 45.30;
double overTime = 15.00;
int count = 20;
char ch = 'B';

Consider the following expressions:

Expression Value / Explanation

!found false

Because found is true, !found is false.

hours > 40.00 true

Because hours is 45.30 and 45.30 > 40.00 is
true, the expression hours > 40.00 evaluates to
true.

!age false

age is 20, which is nonzero, so age is true.
Therefore, !age is false.

!found && (age >= 18) false

!found is false; age > 18 is 20 > 18 is true.
Therefore,!found && (age >= 18) is false &&
true, which evaluates to false.

!(found && (age >= 18)) false

Now, found && (age >= 18) is true && true,
which evaluates to true. Therefore, !(found &&
(age >= 18)) is !true, which evaluates to false.

Logical (Boolean) Operators and Logical Expressions | 193

Expression Value / Explanation

hours + overTime <= 75.00 true

Because hours + overTime is 45.30 + 15.00 =
60.30 and 60.30 <= 75.00 is true, it follows that
hours + overTime <= 75.00 evaluates to true.

(count >= 0) &&
(count <= 100)

true

Now, count is 20. Because 20 >= 0 is true,
count >= 0 is true. Also, 20 <= 100 is true, so
count <= 100 is true. Therefore, (count >=
0) && (count <= 100) is true && true,
which evaluates to true.

('A' <= ch && ch <= 'Z') true

Here, ch is 'B'. Because 'A' <= 'B' is true,
'A' <= ch evaluates to true. Also, because 'B'
<= 'Z' is true, ch <= 'Z' evaluates to true.
Therefore, ('A' <= ch && ch <= 'Z') is true
&& true, which evaluates to true.

The following program evaluates and outputs the values of these logical expressions. Note
that if a logical expression evaluates to true, the corresponding output is 1; if the logical
expression evaluates to false, the corresponding output is 0, as shown in the output at the
end of the program. (Recall that if the value of a logical expression is true, it evaluates to 1,
and if the value of the logical expression is false, it evaluates to 0.)

//Chapter 4 Logical operators

#include <iostream>
#include <iomanip>

using namespace std;

int main()
{

bool found = true;
int age = 20;
double hours = 45.30;
double overTime = 15.00;
int count = 20;
char ch = 'B';

cout << fixed << showpoint << setprecision(2);
cout << "found = " << found << ", age = " << age

<< ", hours = " << hours << ", overTime = " << overTime
<< "," << endl << "count = " << count
<< ", ch = " << ch << endl << endl;

cout << "!found evaluates to " << !found << endl;
cout << "hours > 40.00 evaluates to " << (hours > 40.00) << endl;
cout << "!age evaluates to " << !age << endl;
cout << "(!found && (age >= 18)) evaluates to "

<< (!found && (age >= 18)) << endl;

194 | Chapter 4: Control Structures I (Selection)

cout << "!(found && (age >= 18)) evaluates to "
<< (!(found && (age >= 18))) << endl;

cout << "hours + overTime <= 75.00 evaluates to "
<< (hours + overTime <= 75.00) << endl;

cout << "(count >= 0) && (count <= 100) evaluates to "
<< ((count >= 0) && (count <= 100)) << endl;

cout << "('A' <= ch && ch <= 'Z') evaluates to "
<< ('A' <= ch && ch <= 'Z') << endl;

return 0;
}

Sample Run:

found = 1, age = 20, hours = 45.30, overTime = 15.00,
count = 20, ch = B

!found evaluates to 0
hours > 40.00 evaluates to 1
!age evaluates to 0
(!found && (age >= 18)) evaluates to 0
!(found && (age >= 18)) evaluates to 0
hours + overTime <= 75.00 evaluates to 1
(count >= 0) && (count <= 100) evaluates to 1
('A' <= ch && ch <= 'Z') evaluates to 1

You can insert parentheses into an expression to clarify its meaning. You can also use
parentheses to override the precedence of operators. Using the standard order of pre-
cedence, the expression:

11 > 5 || 6 < 15 && 7 >= 8

is equivalent to:

11 > 5 || (6 < 15 && 7 >= 8)

In this expression, 11 >5 is true, 6<15 is true, and 7>=8 is false. Substitute these values in
the expression 11 > 5 || (6 < 15 && 7 >= 8) to get true || (true && false) = true ||

false = true. Therefore, the expression 11 > 5 || (6 < 15 && 7 >= 8) evaluates to true.

In C++, logical (Boolean) expressions can be manipulated or processed in either of two
ways: by using int variables or by using bool variables. The following sections describe
these methods.

int Data Type and Logical (Boolean) Expressions
Earlier versions of C++ did not provide built-in data types that had logical (or Boolean)
values true and false. Because logical expressions evaluate to either 1 or 0, the value of
a logical expression was stored in a variable of the data type int. Therefore, you can use
the int data type to manipulate logical (Boolean) expressions.

4

Logical (Boolean) Operators and Logical Expressions | 195

Recall that nonzero values are treated as true. Now, consider the declarations:

int legalAge;
int age;

and the assignment statement:

legalAge = 21;

If you regard legalAge as a logical variable, the value of legalAge assigned by this
statement is true.

The assignment statement:

legalAge = (age >= 21);

assigns the value 1 to legalAge if the value of age is greater than or equal to 21. The
statement assigns the value 0 if the value of age is less than 21.

bool Data Type and Logical (Boolean) Expressions
More recent versions of C++ contain a built-in data type, bool, that has the logical
(Boolean) values true and false. Therefore, you can manipulate logical (Boolean)
expressions using the bool data type. Recall that in C++, bool, true, and false are
reserved words. In addition, the identifier true has the value 1, and the identifier false
has the value 0. Now, consider the following declaration:

bool legalAge;
int age;

The statement:

legalAge = true;

sets the value of the variable legalAge to true. The statement:

legalAge = (age >= 21);

assigns the value true to legalAge if the value of age is greater than or equal to 21. This
statement assigns the value false to legalAge if the value of age is less than 21. For
example, if the value of age is 25, the value assigned to legalAge is true—that is, 1.
Similarly, if the value of age is 16, the value assigned to legalAge is false—that is, 0.

You can use either an int variable or a bool variable to store the value of a logical

expression. For the purpose of clarity, this book uses bool variables to store the values of

logical expressions.

Selection: if and if...else
Although there are only two logical values, true and false, they turn out to be extremely
useful because they permit programs to incorporate decision making that alters the
processing flow. The remainder of this chapter discusses ways to incorporate decisions

196 | Chapter 4: Control Structures I (Selection)

into a program. In C++, there are two selections, or branch control structures: if

statements and the switch structure. This section discusses how if and if. . .else
statements can be used to create one-way selection, two-way selection, and
multiple selections. The switch structure is discussed later in this chapter.

One-Way Selection
A bank would like to send a notice to a customer if her or his checking account balance
falls below the required minimum balance. That is, if the account balance is below the
required minimum balance, it should send a notice to the customer; otherwise, it should
do nothing. Similarly, if the policyholder of an insurance policy is a nonsmoker, the
company would like to apply a 10% discount to the policy premium. Both of these
examples involve one-way selection. In C++, one-way selections are incorporated using
the if statement. The syntax of one-way selection is:

if (expression)
statement

Note the elements of this syntax. It begins with the reserved word if, followed by
an expression contained within parentheses, followed by a statement. Note that
the parentheses around the expression are part of the syntax. The expression is
sometimes called a decision maker because it decides whether to execute the
statement that follows it. The expression is usually a logical expression. If the
value of the expression is true, the statement executes. If the value is false,
the statement does not execute and the computer goes on to the next statement in
the program. The statement following the expression is sometimes called the
action statement. Figure 4-2 shows the flow of execution of the if statement
(one-way selection).

4

expression statementtrue

false

FIGURE 4-2 One-way selection

Selection: if and if...else | 197

EXAMPLE 4-7

if (score >= 60)
grade = 'P';

In this code, if the expression (score >= 60) evaluates to true, the assignment statement,
grade = 'P';, executes. If the expression evaluates to false, the statements (if any)
following the if structure execute. For example, if the value of score is 65, the value
assigned to the variable grade is 'P'.

EXAMPLE 4-8

//Program to compute and output the penalty on an unpaid
//credit card balance. The program assumes that the interest
//rate on the unpaid balance is 1.5% per month.

#include <iostream> //Line 1
#include <iomanip> //Line 2

using namespace std; //Line 3

const double INTEREST_RATE = 0.015; //Line 4

int main () //Line 5
{ //Line 6

double creditCardBalance; //Line 7
double payment; //Line 8
double balance; //Line 9
double penalty = 0.0; //Line 10

cout << fixed << showpoint << setprecision(2); //Line 11

cout << "Line 12: Enter credit card balance: "; //Line 12
cin >> creditCardBalance; //Line 13
cout << endl; //Line 14

cout << "Line 15: Enter the payment: "; //Line 15
cin >> payment; //Line 16
cout << endl; //Line 17

balance = creditCardBalance - payment; //Line 18

if (balance > 0) //Line 19
penalty = balance * INTEREST_RATE; //Line 20

cout << "Line 21: The balance is: $" << balance
<< endl; //Line 21

cout << "Line 22: The penalty to be added to your "
<< "next month bill is: $" << penalty << endl; //Line 22

return 0; //Line 23
} //Line 24

198 | Chapter 4: Control Structures I (Selection)

4

Sample Run: In this sample run, the user input is shaded.

Line 12: Enter credit card balance: 2500.00

Line 15: Enter the payment: 275.00

Line 21: The balance is: $2225.00
Line 22: The penalty to be added to your next month bill is: $33.38

The statements in Lines 7 to 10 declare the variables used in the program. The statement in
Line 12 prompts the user to enter the credit card billing amount. The statement in Line 13
inputs the amount into the variable creditCardBalance. The statement in Line 15
prompts the user to enter the payment. The statement in Line 16 inputs the payment into
the variable payment. The statement in Line 18 computes the unpaid balance. The if

statement in Line 19 determines if the unpaid balance is positive. If the unpaid balance is
positive, the statement in Line 20 computes the penalty. The statements in Lines 21 and 22
output the results. This program assumes that the interest rate on the unpaid balance is 18%
per year (that is, 1.5% per month). As you can see the interest rate on the unpaid balance
can quickly add up and ruin your credit ratings as well as put you in financial trouble.

EXAMPLE 4-9

Consider the following statement:

if score >= 60 //syntax error
grade = 'P';

This statement illustrates an incorrect version of an if statement. The parentheses around
the logical expression are missing, which is a syntax error.

Putting a semicolon after the parentheses following the expression in an if statement
(that is, before the statement) is a semantic error. If the semicolon immediately follows
the closing parenthesis, the if statement will operate on the empty statement.

EXAMPLE 4-10

Consider the following C++ statements:

if (score >= 60); //Line 1
grade = 'P'; //Line 2

Because there is a semicolon at the end of the expression (see Line 1), the if statement in
Line 1 terminates. The action of this if statement is null, and the statement in Line 2 is
not part of the if statement in Line 1. Hence, the statement in Line 2 executes regardless
of how the if statement evaluates.

Selection: if and if...else | 199

Two-Way Selection
There are many programming situations in which you must choose between two
alternatives. For example, if a part-time employee works overtime, the paycheck is
calculated using the overtime payment formula; otherwise, the paycheck is calculated
using the regular formula. This is an example of two-way selection. To choose between
two alternatives—that is, to implement two-way selections—C++ provides the if. . .
else statement. Two-way selection uses the following syntax:

if (expression)
statement1

else
statement2

Take a moment to examine this syntax. It begins with the reserved word if, followed by a
logical expression contained within parentheses, followed by a statement, followed by the
reserved word else, followed by a second statement. Statements 1 and 2 are any valid
C++ statements. In a two-way selection, if the value of the expression is true,
statement1 executes. If the value of the expression is false, statement2 executes.
Figure 4-3 shows the flow of execution of the if. . .else statement (two-way selection).

EXAMPLE 4-11

Consider the following statements:

if (hours > 40.0) //Line 1
wages = 40.0 * rate +

1.5 * rate *(hours - 40.0); //Line 2
else //Line 3

wages = hours * rate; //Line 4

expression

statement2 statement1

truefalse

FIGURE 4-3 Two-way selection

200 | Chapter 4: Control Structures I (Selection)

4

If the value of the variable hours is greater than 40.0, the wages include overtime
payment. Suppose that hours is 50. The expression in the if statement, in Line 1,
evaluates to true, so the statement in Line 2 executes. On the other hand, if hours is
30 or any number less than or equal to 40, the expression in the if statement, in Line 1,
evaluates to false. In this case, the program skips the statement in Line 2 and executes the
statement in Line 4—that is, the statement following the reserved word else executes.

In a two-way selection statement, putting a semicolon after the expression and
before statement1 creates a syntax error. If the if statement ends with a semicolon,
statement1 is no longer part of the if statement, and the else part of the
if. . .else statement stands all by itself. There is no stand-alone else statement in C++.
That is, it cannot be separated from the if statement.

EXAMPLE 4-12

The following statements show an example of a syntax error:

if (hours > 40.0); //Line 1
wages = 40.0 * rate +

1.5 * rate * (hours - 40.0); //Line 2
else //Line 3

wages = hours * rate; //Line 4

The semicolon at the end of the if statement (see Line 1) ends the if statement, so the
statement in Line 2 separates the else clause from the if statement. That is, else is all
by itself. Because there is no stand-alone else statement in C++, this code generates a
syntax error. As shown in Example 4-10, in a one-way selection, the semicolon at the
end of an if statement is a logical error, whereas as shown in this example, in a two-way
selection, it is a syntax error.

EXAMPLE 4-13

The following program determines an employee’s weekly wages. If the hours worked
exceed 40, wages include overtime payment.

//Program: Weekly wages

#include <iostream>
#include <iomanip>

using namespace std;

int main()
{

double wages, rate, hours;

Selection: if and if...else | 201

cout << fixed << showpoint << setprecision(2); //Line 1
cout << "Line 2: Enter working hours and rate: "; //Line 2
cin >> hours >> rate; //Line 3

if (hours > 40.0) //Line 4
wages = 40.0 * rate +

1.5 * rate * (hours - 40.0); //Line 5
else //Line 6

wages = hours * rate; //Line 7

cout << endl; //Line 8
cout << "Line 9: The wages are $" << wages

<< endl; //Line 9

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Line 2: Enter working hours and rate: 56.45 12.50

Line 9: The wages are $808.44

The statement in Line 1 sets the output of the floating-point numbers in a fixed decimal format,
with a decimal point, trailing zeros, and two decimal places. The statement in Line 2 prompts the
user to input the number of hours worked and the pay rate. The statement in Line 3 inputs these
values into the variables hours and rate, respectively. The statement in Line 4 checks whether
the value of the variable hours is greater than 40.0. If hours is greater than 40.0, then the
wages are calculated by the statement in Line 5, which includes overtime payment. Otherwise,
the wages are calculated by the statement in Line 7. The statement in Line 9 outputs the wages.

Let us now consider another example of an if statement and examine some of the
semantic errors that can occur.

EXAMPLE 4-14

Consider the following statements:

if (score >= 60) //Line 1
cout << "Passing" << endl; //Line 2
cout << "Failing" << endl; //Line 3

If the expression (score >= 60) evaluates to false, the output statement in Line 2 does
not execute. So the output would be Failing. That is, this set of statements performs the
same action as an if. . .else statement. It will execute the output statement in Line 3
rather than the output statement in Line 2. For example, if the value of score is 50, these
statements will output the following line:

Failing

202 | Chapter 4: Control Structures I (Selection)

4

However, if the expression (score >= 60) evaluates to true, the program will execute
both of the output statements, giving a very unsatisfactory result. For example, if the
value of score is 70, these statements will output the following lines:

Passing
Failing

The if statement controls the execution of only the statement in Line 2. The statement
in Line 3 always executes.

The correct code to print Passing or Failing, depending on the value of score, is:

if (score >= 60)
cout << "Passing" << endl;

else
cout << "Failing" << endl;

Compound (Block of) Statements
The if and if. . .else structures control only one statement at a time. Suppose, how-
ever, that you want to execute more than one statement if the expression in an if or
if. . .else statement evaluates to true. To permit more complex statements, C++
provides a structure called a compound statement or a block of statements. A
compound statement takes the following form:

{
statement_1
statement_2

.

.

.
statement_n

}

That is, a compound statement consists of a sequence of statements enclosed in curly
braces, {and }. In an if or if . . .else structure, a compound statement functions as if it
was a single statement. Thus, instead of having a simple two-way selection similar to the
following code:

if (age >= 18)
cout << "Eligible to vote." << endl;

else
cout << "Not eligible to vote." << endl;

you could include compound statements, similar to the following code:

if (age >= 18)
{

cout << "Eligible to vote." << endl;
cout << "No longer a minor." << endl;

}

Selection: if and if...else | 203

else
{

cout << "Not eligible to vote." << endl;
cout << "Still a minor." << endl;

}

The compound statement is very useful and will be used in most of the structured
statements in this chapter.

Multiple Selections: Nested if
In the previous sections, you learned how to implement one-way and two-way selections
in a program. Some problems require the implementation of more than two alternatives.
For example, suppose that if the checking account balance is more than $50,000, the
interest rate is 7%; if the balance is between $25,000 and $49,999.99, the interest rate is
5%; if the balance is between $1,000 and $24,999.99, the interest rate is 3%; otherwise,
the interest rate is 0%. This particular problem has four alternatives—that is, multiple
selection paths. You can include multiple selection paths in a program by using an
if. . .else structure if the action statement itself is an if or if. . .else statement. When
one control statement is located within another, it is said to be nested.

Example 4-15 illustrates how to incorporate multiple selections using a nested if. . .else
structure.

EXAMPLE 4-15

Suppose that balance and interestRate are variables of type double. The following
statements determine the interestRate depending on the value of the balance:

if (balance > 50000.00) //Line 1
interestRate = 0.07; //Line 2

else //Line 3
if (balance >= 25000.00) //Line 4

interestRate = 0.05; //Line 5
else //Line 6

if (balance >= 1000.00) //Line 7
interestRate = 0.03; //Line 8

else //Line 9
interestRate = 0.00; //Line 10

Anested if. . .else structure demands the answer to an important question:Howdo you know
whichelse is pairedwithwhichif?Recall that inC++, there is no stand-aloneelse statement.
Every elsemust be paired with an if. The rule to pair an else with an if is as follows:

Pairing an elsewith an if: In a nestedif statement,C++associates an elsewith themost
recent incomplete if—that is, themost recent if that has not been pairedwith an else.

Using this rule, in Example 4-15, the else in Line 3 is paired with the if in Line 1. The else
in Line 6 is paired with the if in Line 4, and the else in Line 9 is paired with the if in Line 7.

204 | Chapter 4: Control Structures I (Selection)

4

To avoid excessive indentation, the code in Example 4-15 can be rewritten as follows:

if (balance > 50000.00) //Line 1
interestRate = 0.07; //Line 2

else if (balance >= 25000.00) //Line 3
interestRate = 0.05; //Line 4

else if (balance >= 1000.00) //Line 5
interestRate = 0.03; //Line 6

else //Line 7
interestRate = 0.00; //Line 8

The following examples will help you to see the various ways in which you can use
nested if structures to implement multiple selection.

EXAMPLE 4-16

Assume that score is a variable of type int. Based on the value of score, the following
code outputs the grade:

if (score >= 90)
cout << "The grade is A." << endl;

else if (score >= 80)
cout << "The grade is B." << endl;

else if (score >= 70)
cout << "The grade is C." << endl;

else if (score >= 60)
cout << "The grade is D." << endl;

else
cout << "The grade is F." << endl;

EXAMPLE 4-17

Assume that all variables are properly declared, and consider the following statements:

if (temperature >= 50) //Line 1
if (temperature >= 80) //Line 2

cout << "Good day for swimming." << endl; //Line 3
else //Line 4

cout << "Good day for golfing." << endl; //Line 5
else //Line 6

cout << "Good day to play tennis." << endl; //Line 7

In this C++ code, the else in Line 4 is paired with the if in Line 2, and the else in Line 6
is paired with the if in Line 1. Note that the else in Line 4 cannot be paired with the if in
Line 1. If you pair the else in Line 4 with the if in Line 1, the if in Line 2 becomes the
action statement part of the if in Line 1, leaving the else in Line 6 dangling. Also, the
statements in Lines 2 though 5 form the statement part of the if in Line 1. The indentation
does not determine the pairing, but should be used to communicate the pairing.

Selection: if and if...else | 205

EXAMPLE 4-18

Assume that all variables are properly declared, and consider the following statements:

if (temperature >= 70) //Line 1
if (temperature >= 80) //Line 2

cout << "Good day for swimming." << endl; //Line 3
else //Line 4

cout << "Good day for golfing." << endl; //Line 5

In this code, the else in Line 4 is paired with the if in Line 2. Note that for the else in
Line 4, the most recent incomplete if is in Line 2. In this code, the if in Line 1 has no
else and is a one-way selection. Once again, the indentation does not determine the
pairing, but it communicates the pairing.

EXAMPLE 4-19

Assume that all variables are properly declared, and consider the following statements:

if (gender == 'M') //Line 1
if (age < 21) //Line 2

policyRate = 0.05; //Line 3
else //Line 4

policyRate = 0.035; //Line 5
else if (gender == 'F') //Line 6

if (age < 21) //Line 7
policyRate = 0.04; //Line 8

else //Line 9
policyRate = 0.03; //Line 10

In this code, the else in Line 4 is paired with the if in Line 2. Note that for the else in
Line 4, the most recent incomplete if is the if in Line 2. The else in Line 6 is paired
with the if in Line 1. The else in Line 9 is paired with the if in Line 7. Once again,
the indentation does not determine the pairing, but it communicates the pairing.

Comparing if...else Statements with a Series of if Statements
Consider the following C++ program segments, all of which accomplish the same task:

a. if (month == 1) //Line 1
cout << "January" << endl; //Line 2

else if (month == 2) //Line 3
cout << "February" << endl; //Line 4

else if (month == 3) //Line 5
cout << "March" << endl; //Line 6

else if (month == 4) //Line 7
cout << "April" << endl; //Line 8

206 | Chapter 4: Control Structures I (Selection)

4

else if (month == 5) //Line 9
cout << "May" << endl; //Line 10

else if (month == 6) //Line 11
cout << "June" << endl; //Line 12

b. if (month == 1)
cout << "January" << endl;

if (month == 2)
cout << "February" << endl;

if (month == 3)
cout << "March" << endl;

if (month == 4)
cout << "April" << endl;

if (month == 5)
cout << "May" << endl;

if (month == 6)
cout << "June" << endl;

Program segment (a) is written as a sequence of if. . .else statements; program segment
(b) is written as a series of if statements. Both program segments accomplish the same
thing. If month is 3, then both program segments output March. If month is 1, then in
program segment (a), the expression in the if statement in Line 1 evaluates to true. The
statement (in Line 2) associated with this if then executes; the rest of the structure,
which is the else of this if statement, is skipped; and the remaining if statements are
not evaluated. In program segment (b), the computer has to evaluate the expression in
each if statement because there is no else statement. As a consequence, program
segment (b) executes more slowly than does program segment (a).

Short-Circuit Evaluation
Logical expressions in C++ are evaluated using a highly efficient algorithm. This algo-
rithm is illustrated with the help of the following statements:

(x > y) || (x == 5) //Line 1
(a == b) && (x >= 7) //Line 2

In the statement in Line 1, the two operands of the operator || are the expressions
(x > y) and (x == 5). This expression evaluates to true if either the operand (x > y)

is true or the operand (x == 5) is true. With short-circuit evaluation, the computer
evaluates the logical expression from left to right. As soon as the value of the entire
logical expression is known, the evaluation stops. For example, in statement 1, if the
operand (x > y) evaluates to true, then the entire expression evaluates to true

because true || true is true and true || false is true. Therefore, the value of
the operand (x == 5) has no bearing on the final outcome.

Similarly, in the statement in Line 2, the two operands of the operator && are (a == b)

and (x >= 7). If the operand (a == b) evaluates to false, then the entire expression
evaluates to false because false && true is false and false && false is false.

Short-circuit evaluation (of a logical expression): A process in which the computer evaluates
a logical expression from left to right and stops as soon as the value of the expression is known.

Selection: if and if...else | 207

EXAMPLE 4-20

Consider the following expressions:

(age >= 21) || (x == 5) //Line 1
(grade == 'A') && (x >= 7) //Line 2

For the expression in Line 1, suppose that the value of age is 25. Because (25 >= 21) is
true and the logical operator used in the expression is ||, the expression evaluates to true.
Due to short-circuit evaluation, the computer does not evaluate the expression (x == 5).
Similarly, for the expression in Line 2, suppose that the value of grade is 'B'. Because
('B' == 'A') is false and the logical operator used in the expression is &&, the expression
evaluates to false. The computer does not evaluate (x >= 7).

Comparing Floating-Point Numbers for Equality: A Precaution
Comparison of floating-point numbers for equality may not behave as you would expect.
For example, consider the following program:

#include <iostream>
#include <iomanip>
#include <cmath>

using namespace std;

int main()
{

double x = 1.0;

double y = 3.0 / 7.0 + 2.0 / 7.0 + 2.0 / 7.0;

cout << fixed << showpoint << setprecision(17);

cout << "3.0 / 7.0 + 2.0 / 7.0 + 2.0 / 7.0 = "

<< 3.0 / 7.0 + 2.0 / 7.0 + 2.0 / 7.0 << endl;

cout << "x = " << x << endl;

cout << "y = " << y << endl;

if (x == y)

cout << "x and y are the same." << endl;

else

cout << "x and y are not the same." << endl;

if (fabs(x - y) < 0.000001)

cout << "x and y are the same within the tolerance "

<< "0.000001." << endl;

208 | Chapter 4: Control Structures I (Selection)

else

cout << " x and y are not the same within the "

<< "tolerance 0.000001." << endl;

return 0;
}

Sample Run:

3.0 / 7.0 + 2.0 / 7.0 + 2.0 / 7.0 = 0.99999999999999989
x = 1.00000000000000000
y = 0.99999999999999989
x and y are not the same.
x and y are the same within the tolerance 0.000001.

In this program, x is initialized to 1.0 and y is initialized to 3.0 / 7.0 + 2.0 / 7.0 + 2.0

/ 7.0. Now, due to rounding, as shown by the output, this expression evaluates to
0.99999999999999989. Therefore, the expression (x == y) evaluates to false. How-
ever, if you evaluate the expression 3.0 / 7.0 + 2.0 / 7.0 + 2.0 / 7.0 by hand using a
paper and a pencil, you will get 3.0 / 7.0 + 2.0 / 7.0 + 2.0 / 7.0 = (3.0 + 2.0 + 2.0) /

7.0 = 7.0 / 7.0 = 1.0. That is, the value of y should be set to 1.0.

The preceding program and its output show that you should be careful when comparing
floating-point numbers for equality. One way to check whether two floating-point
numbers are equal is to check whether the absolute value of their difference is less than
a certain tolerance. For example, suppose the tolerance is 0.000001. Then, x and y are
equal if the absolute value of (x – y) is less than 0.000001. To find the absolute value,
you can use the function fabs of the header file cmath, as shown in the program.
Therefore, the expression fabs(x – y) < 0.000001 determines whether the absolute
value of (x – y) is less than 0.000001.

Associativity of Relational Operators: A Precaution
Sometimes logical expressions do not behave as you might expect, as shown by the
following program, which determines if a number is between 0 and 10 (inclusive).

#include <iostream>

using namespace std;

int main()
{

int num;

cout << "Enter an integer: ";

cin >> num;

cout << endl;

if (0 <= num <= 10)

cout << num << " is within 0 and 10." << endl;

4

Selection: if and if...else | 209

else

cout << num << " is not within 0 and 10." << endl;

return 0;
}

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1:

Enter an integer: 5

5 is within 0 and 10.

Sample Run 2:

Enter an integer: 20

20 is within 0 and 10.

Sample Run 3:

Enter an integer: -10

-10 is within 0 and 10.

Clearly, Sample Run 1 is correct and Sample Runs 2 and 3 are incorrect. Because the if

statement determines whether an integer is between 0 and 10, the problem is in the
expression in the if statement. So, let us look at this expression, which is:

0 <= num <= 10

Although this statement is a legal C++ expression, you do not get the desired result. Let us
evaluate this expression for certain values of num. Suppose that the value of num is 5. Then:

0 <= num <= 10 = 0 <= 5 <= 10

= (0 <= 5) <= 10
(Because relational operators
are evaluated from left to right)

= 1 <= 10
(Because 0 <= 5 is true, 0 <=

5 evaluates to 1)

= 1 (true)

Now, suppose that num = 20. Then:

0 <= num <= 10 = 0 <= 20 <= 10

= (0 <= 20) <= 10
(Because relational operators are

evaluated from left to right)

= 1 <= 10
(Because 0 <= 20 is true, 0
<= 20 evaluates to 1)

= 1 (true)

210 | Chapter 4: Control Structures I (Selection)

4

Now, you can see why the expression evaluates to true when num is 20. Similarly, if
num is �10, the expression 0 <= num <= 10 evaluates to true. In fact, this expression will
always evaluate to true, no matter what num is. This is due to the fact that the expression
0 <= num evaluates to either 0 or 1, and 0 <= 10 is true and 1 <= 10 is true. So what is
wrong with the expression 0 <= num <= 10? It is missing the logical operator &&. A correct
way to write this expression in C++ is:

0 <= num && num <= 10

You must take care when formulating logical expressions. When creating a complex
logical expression, you must use the proper logical operators.

Avoiding Bugs by Avoiding Partially Understood Concepts
and Techniques
The debugging sections in Chapters 2 and 3 illustrated how to understand and fix syntax
and logic errors. In this section, we illustrate how to avoid bugs by avoiding partially
understood concepts and techniques.

The programs that you have written until now should have illustrated that a small error
such as omission of a semicolon at the end of a variable declaration or using a variable
without properly declaring it can prevent a program from successfully compiling. Simi-
larly, using a variable without properly initializing it can prevent a program from running
correctly. Recall that the condition associated with an if statement must be enclosed in
parentheses. Therefore, the following expression will result in a syntax error:

if score >= 90

Example 4-12 illustrates that an unintended semicolon following the condition of the
following if statement:

if (hours > 40.0);

can prevent successful compilation or correct execution.

The approach that you take to solve a problem must use concepts and techniques correctly;
otherwise, your solutionwill be either incorrect or deficient. If you donot understand a concept
or technique completely, don’t use it until your understanding is complete. The problem of
using partially understood concepts and techniques can be illustrated by the following program.

Suppose that we want to write a program that analyzes students’ GPA. If the GPA is
greater than or equal to 3.9, the student makes the dean’s honor list. If the GPA is less
than 2.00, the student is sent a warning letter indicating that the GPA is below the
graduation requirement. So, consider the following program:

//GPA program with bugs.

#include <iostream> //Line 1

using namespace std; //Line 2

int main() //Line 3

Selection: if and if...else | 211

{ //Line 4
double gpa; //Line 5

cout << "Enter the GPA: "; //Line 6
cin >> gpa; //Line 7
cout << endl; //Line 8

if (gpa >= 2.0) //Line 9
if (gpa >= 3.9) //Line 10

cout << "Dean\’s Honor List." << endl; //Line 11
else //Line 12

cout << "The GPA is below the graduation "
<< "requirement. \nSee your "
<< "academic advisor." << endl; //Line 13

return 0; //Line 14
} //Line 15

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1:

Enter the GPA: 3.91

Dean's Honor List.

Sample Run 2:

Enter the GPA: 3.8

The GPA is below the graduation requirement.

See your academic advisor.

Sample Run 3:

Enter the GPA: 1.95

Let us look at these sample runs. Clearly, the output in Sample Run 1 is correct. In
Sample Run 2, the input is 3.8 and the output indicates that this GPA is below the
graduation requirement. However, a student with a GPA of 3.8 would graduate with
some type of honor. So, the output in Sample Run 2 is incorrect. In Sample Run 3, the
input is 1.95, and the output does not show any warning message. Therefore, the output
in Sample Run 3 is also incorrect. It means that the if. . .else statement in Lines 9 to 13
is incorrect. Let us look at these statements, that is:

if (gpa >= 2.0) //Line 9
if (gpa >= 3.9) //Line 10

cout << "Dean\'s Honor List." << endl; //Line 11
else //Line 12

cout << "The GPA is below the graduation "
<< "requirement. \nSee your "
<< "academic advisor." << endl; //Line 13

212 | Chapter 4: Control Structures I (Selection)

4

Following the rule of pairing an else with an if, the else in Line 12 is paired with the
if in Line 10. In other words, using the correct indentation, the code is:

if (gpa >= 2.0) //Line 9
if (gpa >= 3.9) //Line 10

cout << "Dean\'s Honor List." << endl; //Line 11
else //Line 12

cout << "The GPA is below the graduation "
<< "requirement. \nSee your "
<< "academic advisor." << endl; //Line 13

Now, we can see that the if statement in Line 9 is a one-way selection. Therefore, if the
input number is less than 2.0, no action will take place, that is, no warning message will
be printed. Now, suppose the input is 3.8. Then, the expression in Line 9 evaluates to
true, so the expression in Line 10 is evaluated, which evaluates to false. This means the
output statement in Line 13 executes, resulting in an unsatisfactory result.

In fact, the program should print the warning message only if the GPA is less than 2.0, and
it should print the message:

Dean's Honor List.

if the GPA is greater than or equal to 3.9.

To achieve that result, the else in Line 12 needs to be paired with the if in Line 9. To
pair the else in Line 12 with the if in Line 9, you need to use a compound statement, as
follows:

if (gpa >= 2.0) //Line 9
{

if (gpa >= 3.9) //Line 10
cout << "Dean\'s Honor List." << endl; //Line 11

}
else //Line 12

cout << "The GPA is below the graduation "
<< "requirement. \nSee your "
<< "academic advisor." << endl; //Line 13

The correct program is as follows:

//Correct GPA program.

#include <iostream> //Line 1

using namespace std; //Line 2

int main() //Line 3
{ //Line 4

double gpa; //Line 5

cout << "Enter the GPA: "; //Line 6
cin >> gpa; //Line 7
cout << endl; //Line 8

Selection: if and if...else | 213

if (gpa >= 2.0) //Line 9
{ //Line 10

if (gpa >= 3.9) //Line 11
cout << "Dean\’s Honor List." << endl; //Line 12

} //Line 13
else //Line 14

cout << "The GPA is below the graduation "
<< "requirement. \nSee your "
<< "academic advisor." << endl; //Line 15

return 0; //Line 16
} //Line 17

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1:

Enter the GPA: 3.91

Dean’s Honor List.

Sample Run 2:

Enter the GPA: 3.8

Sample Run 3:

Enter the GPA: 1.95

The GPA is below the graduation requirement.
See your academic advisor.

In cases such as this one, the general rule is that you cannot look inside of a block (that is,
inside the braces) to pair an else with an if. The else in Line 14 cannot be paired with
the if in Line 11 because the if statement in Line 11 is enclosed within braces, and the
else in Line 14 cannot look inside those braces. Therefore, the else in Line 14 is paired
with the if in Line 9.

In this book, the C++ programming concepts and techniques are presented in a logical
order. When these concepts and techniques are learned one at a time in a logical order,
they are simple enough to be understood completely. Understanding a concept or
technique completely before using it will save you an enormous amount of debugging
time.

Input Failure and the if Statement
In Chapter 3, you saw that an attempt to read invalid data causes the input stream to enter a
fail state. Once an input stream enters a fail state, all subsequent input statements associated
with that input stream are ignored, and the computer continues to execute the program,
which produces erroneous results. You can use if statements to check the status of an input
stream variable and, if the input stream enters the fail state, include instructions that stop
program execution.

214 | Chapter 4: Control Structures I (Selection)

In addition to reading invalid data, other events can cause an input stream to enter the fail
state. Two additional common causes of input failure are the following:

• Attempting to open an input file that does not exist

• Attempting to read beyond the end of an input file

One way to address these causes of input failure is to check the status of the
input stream variable. You can check the status by using the input stream variable as the
logical expression in an if statement. If the last input succeeded, the input stream
variable evaluates to true; if the last input failed, it evaluates to false.

The statement:

if (cin)
cout << "Input is OK." << endl;

prints:

Input is OK.

if the last input from the standard input device succeeded. Similarly, if infile is an
ifstream variable, the statement:

if (!infile)
cout << "Input failed." << endl;

prints:

Input failed.

if the last input associated with the stream variable infile failed.

Suppose an input stream variable tries to open a file for inputting data into a program. If
the input file does not exist, you can use the value of the input stream variable, in
conjunction with the return statement, to terminate the program.

Recall that the last statement included in the function main is:

return 0;

This statement returns a value of 0 to the operating system when the program terminates.
A value of 0 indicates that the program terminated normally and that no error occurred
during program execution. Values of type int other than 0 can also be returned to the
operating system via the return statement. The return of any value other than 0,
however, indicates that something went wrong during program execution.

The return statement can appear anywhere in the program. Whenever a return

statement executes, it immediately exits the function in which it appears. In the case of
the function main, the program terminates when the return statement executes. You
can use these properties of the return statement to terminate the function main

whenever the input stream fails. This technique is especially useful when a program tries
to open an input file. Consider the following statements:

4

Selection: if and if...else | 215

ifstream infile;

infile.open("inputdat.dat"); //open inputdat.dat

if (!infile)
{

cout << "Cannot open the input file. "
<< "The program terminates." << endl;

return 1;
}

Suppose that the file inputdat.dat does not exist. The operation to open this file fails,
causing the input stream to enter the fail state. As a logical expression, the file stream
variable infile then evaluates to false. Because infile evaluates to false, the
expression !infile (in the if statement) evaluates to true, and the body of the if

statement executes. The message:

Cannot open the input file. The program terminates.

is printed on the screen, and the return statement terminates the program by returning a
value of 1 to the operating system.

Let’s now use the code that responds to input failure by including these features in
the Programming Example: Student Grade from Chapter 3. Recall that this program
calculates the average test score based on data from an input file and then outputs the
results to another file. The following programming code is the same as the code from
Chapter 3, except that it includes statements to exit the program if the input file does
not exist.

//Program to calculate the average test score.

#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
using namespace std;

int main()
{

ifstream inFile; //input file stream variable
ofstream outFile; //output file stream variable

double test1, test2, test3, test4, test5;
double average;

string firstName;
string lastName;

inFile.open("test.txt"); //open the input file

if (!inFile)

216 | Chapter 4: Control Structures I (Selection)

4

{
cout << "Cannot open the input file. "

<< "The program terminates." << endl;
return 1;

}

outFile.open("testavg.out"); //open the output file

outFile << fixed << showpoint;
outFile << setprecision(2);

cout << "Processing data" << endl;

inFile >> firstName >> lastName;
outFile << "Student name: " << firstName

<< " " << lastName << endl;

inFile >> test1 >> test2 >> test3
>> test4 >> test5;

outFile << "Test scores: " << setw(4) << test1
<< setw(4) << test2 << setw(4) << test3
<< setw(4) << test4 << setw(4) << test5
<< endl;

average = (test1 + test2 + test3 + test4 + test5) / 5.0;

outFile << "Average test score: " << setw(6)
<< average << endl;

inFile.close();
outFile.close();

return 0;
}

Confusion between the Equality Operator (==) and the
Assignment Operator (=)
Recall that if the decision-making expression in the if statement evaluates to true, the
statement part of the if statement executes. In addition, the expression is usually a logical
expression. However, C++ allows you to use any expression that can be evaluated to either
true or false as an expression in the if statement. Consider the following statement:

if (x = 5)
cout << "The value is five." << endl;

The expression—that is, the decision maker—in the if statement is x = 5. The
expression x = 5 is called an assignment expression because the operator = appears in
the expression and there is no semicolon at the end.

This expression is evaluated as follows. First, the right side of the operator = is evaluated,
which evaluates to 5. The value 5 is then assigned to x. Moreover, the value 5—that is, the

Selection: if and if...else | 217

new value of x—also becomes the value of the expression in the if statement—that is, the
value of the assignment expression. Because 5 is nonzero, the expression in the if statement
evaluates to true, so the statement part of the if statement outputs: The value is five.

No matter how experienced a programmer is, almost everyone makes the mistake of
using = in place of == at one time or another. One reason why these two operators are
often confused is that most programming languages use = as an equality operator. Thus,
experience with other programming languages can create confusion. Sometimes the error
is merely typographical, another reason to be careful when typing code.

Despite the fact that an assignment expression can be used as an expression, using the
assignment operator in place of the equality operator can cause serious problems in a
program. For example, suppose that the discount on a car insurance policy is based on the
insured’s driving record. A driving record of 1 means that the driver is accident-free and
receives a 25% discount on the policy. The statement:

if (drivingCode == 1)
cout << "The discount on the policy is 25%." << endl;

outputs:

The discount on the policy is 25%.

only if the value of drivingCode is 1. However, the statement:

if (drivingCode = 1)
cout << "The discount on the policy is 25%." << endl;

always outputs:

The discount on the policy is 25%.

because the right side of the assignment expression evaluates to 1, which is nonzero and so
evaluates to true. Therefore, the expression in the if statement evaluates to true,
outputting the following line of text: The discount on the policy is 25%. Also, the
value 1 is assigned to the variable drivingCode. Suppose that before the if statement
executes, the value of the variable drivingCode is 4. After the if statement executes, not
only is the output wrong, but the new value also replaces the old driving code.

The appearance of = in place of == resembles a silent killer. It is not a syntax error, so the
compiler does not warn you of an error. Rather, it is a logical error.

Using = in place of == can cause serious problems, especially if it happens in a looping

statement. Chapter 5 discusses looping structures.

The appearance of the equality operator in place of the assignment operator can also cause
errors in a program. For example, suppose x, y, and z are int variables. The statement:

x = y + z;

218 | Chapter 4: Control Structures I (Selection)

assigns the value of the expression y + z to x. The statement:

x == y + z;

compares the value of the expression y + z with the value of x; the value of x remains the
same, however. If somewhere else in the program you are counting on the value of x
being y + z, a logic error will occur, the program output will be incorrect, and you will
receive no warning of this situation from the compiler. The compiler only provides
feedback about syntax errors, not logic errors. For this reason, you must use extra care
when working with the equality operator and the assignment operator.

Conditional Operator (?:)

The reader can skip this section without any discontinuation.

Certain if. . .else statements can be written in a more concise way by using C++’s
conditional operator. The conditional operator, written as ?:, is a ternary operator,
which means that it takes three arguments. The syntax for using the conditional operator is:

expression1 ? expression2 : expression3

This type of statement is called a conditional expression. The conditional expression is
evaluated as follows: If expression1 evaluates to a nonzero integer (that is, to true), the
result of the conditional expression is expression2. Otherwise, the result of the con-
ditional expression is expression3.

Consider the following statements:

if (a >= b)
max = a;

else
max = b;

You can use the conditional operator to simplify the writing of this if. . .else statement
as follows:

max = (a >= b) ? a : b;

Program Style and Form (Revisited): Indentation
In the section ‘‘Program Style and Form’’ of Chapter 2, we specified some guidelines to
write programs. Now that we have started discussing control structures, in this section,
we give some general guidelines to properly indent your program.

As you write programs, typos and errors are unavoidable. If your program is properly
indented, you can spot and fix errors quickly, as shown by several examples in this

4

Selection: if and if...else | 219

chapter. Typically, the IDE that you use will automatically indent your program. If for
some reason your IDE does not indent your program, you can indent your program
yourself.

Proper indentation can show the natural grouping of statements. You should insert a
blank line between statements that are naturally separate. In this book, the statements
inside braces, the statements of a selection structure, and an if statement within an if

statement are all indented four spaces to the right. Throughout the book, we use four
spaces to indent statements, especially to show the levels of control structures within
other control structures. You can also use four spaces for indentation.

There are two commonly used styles for placing braces. In this book, we place braces
on a line by themselves. Also, matching left and right braces are in the same column,
that is, they are the same number of spaces away from the left side of the program.
This style of placing braces easily shows the grouping of the statements and also
matches left and right braces. You can also follow this style to place and indent
braces.

In the second style of placing braces, the left brace need not be on a line by itself.
Typically, for control structures, the left brace is placed after the last right parenthesis of
the (logical) expression, and the right brace is on a line by itself. This style might save
some space. However, sometimes this style might not immediately show the grouping or
the block of the statements.

No matter what style of indentation you use, you should be consistent within your
programs, and the indentation should show the structure of the program.

Using Pseudocode to Develop, Test,
and Debug a Program
There are several ways to develop a program. One method involves using an informal
mixture of C++ and ordinary language, called pseudocode or just pseudo. Sometimes
pseudo provides a useful means to outline and refine a program before putting it into
formal C++ code. When you are constructing programs that involve complex nested
control structures, pseudo can help you quickly develop the correct structure of the
program and avoid making common errors.

One useful program segment determines the larger of two integers. If x and y are integers,
using pseudo, you can quickly write the following:

a. if (x > y) then
x is larger

b. if (y > x) then
y is larger

220 | Chapter 4: Control Structures I (Selection)

If the statement in (a) is true, then x is larger. If the statement in (b) is true, then y is
larger. However, for this code to work in concert to determine the larger of two integers,
the computer needs to evaluate both expressions:

(x > y) and (y > x)

even if the first statement is true. Evaluating both expressions is a waste of computer
time.

Let’s rewrite this pseudo as follows:

if (x > y) then
x is larger

else
y is larger

Here, only one condition needs to be evaluated. This code looks okay, so let’s put it
into C++.

#include <iostream>

using namespace std;

int main()
{

if (x > y)

Wait . . . once you begin translating the pseudo into a C++ program, you should
immediately notice that there is no place to store the value of x or y. The variables
were not declared, which is a very common oversight, especially for new program-
mers. If you examine the pseudo, you will see that the program needs three variables,
and you might as well make them self-documenting. Let’s start the program code
again:

#include <iostream>

using namespace std;

int main()
{

int num1, num2, larger; //Line 1

if (num1 > num2); //Line 2; error
larger = num1; //Line 3

else //Line 4
larger = num2; //Line 5

return 0;
}

Compiling this program will result in the identification of a common syntax error
(in Line 2). Recall that a semicolon cannot appear after the expression in the

4

Using Pseudocode to Develop, Test, and Debug a Program | 221

if. . .else statement. However, even if you corrected this syntax error, the program still
would not give satisfactory results because it tries to use identifiers that have no values.
The variables have not been initialized, which is another common error. In addition,
because there are no output statements, you would not be able to see the results of the
program.

Because there are so many mistakes in the program, you should try a walk-through to see
whether it works at all. You should always use a wide range of values in a walk-through to
evaluate the program under as many different circumstances as possible. For example, does
this program work if one number is zero, if one number is negative and the other number is
positive, if both numbers are negative, or if both numbers are the same? Examining the
program, you can see that it does not check whether the two numbers are equal. Taking all
of these points into account, you can rewrite the program as follows:

//Program: Compare Numbers
//This program compares two integers and outputs the largest.

#include <iostream>

using namespace std;

int main()
{

int num1, num2;

cout << "Enter any two integers: ";
cin >> num1 >> num2;
cout << endl;

cout << "The two integers entered are " << num1
<< " and " << num2 << endl;

if (num1 > num2)
cout << "The larger number is " << num1 << endl;

else if (num2 > num1)
cout << "The larger number is " << num2 << endl;

else
cout << "Both numbers are equal." << endl;

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Enter any two integers: 78 90
The two integers entered are 78 and 90
The larger number is 90

One thing you can learn from the preceding program is that you must first develop a
program using paper and pencil. Although a program that is first written on a piece of

222 | Chapter 4: Control Structures I (Selection)

4

paper is not guaranteed to run successfully on the first try, this step is still a good starting
point. On paper, it is easier to spot errors and improve the program, especially with large
programs.

switch Structures
Recall that there are two selection, or branch, structures in C++. The first selection
structure, which is implemented with if and if. . .else statements, usually requires
the evaluation of a (logical) expression. The second selection structure, which does
not require the evaluation of a logical expression, is called the switch structure.
C++’s switch structure gives the computer the power to choose from among many
alternatives.

A general syntax of the switch statement is:

switch (expression)
{
case value1:

statements1
break;

case value2:
statements2
break;
.
.
.

case valuen:
statementsn
break;

default:
statements

}

In C++, switch, case, break, and default are reserved words. In a switch

structure, first the expression is evaluated. The value of the expression is then
used to perform the actions specified in the statements that follow the reserved
word case. Recall that in a syntax, shading indicates an optional part of the
definition.

Although it need not be, the expression is usually an identifier. Whether it is an
identifier or an expression, the value can be only integral. The expression is
sometimes called the selector. Its value determines which statement is selected for
execution. A particular case value should appear only once. One or more statements
may follow a case label, so you do not need to use braces to turn multiple
statements into a single compound statement. The break statement may or may
not appear after each statement. Figure 4-4 shows the flow of execution of the
switch statement.

switch Structures | 223

The switch statement executes according to the following rules:

1. When the value of the expression is matched against a case

value (also called a label), the statements execute until either a
break statement is found or the end of the switch structure is
reached.

2. If the value of the expression does not match any of the case values,
the statements following the default label execute. If the switch

structure has no default label and if the value of the expression

does not match any of the case values, the entire switch statement is
skipped.

3. A break statement causes an immediate exit from the switch structure.

expression

statements1 break

break

break

statements2

statementsn

statements

case value1

case value2

case valuen

default

false

false

false

false

true

true

true

FIGURE 4-4 switch statement

224 | Chapter 4: Control Structures I (Selection)

4

EXAMPLE 4-21

Consider the following statements, in which grade is a variable of type char:

switch (grade)
{
case 'A':

cout << "The grade point is 4.0.";
break;

case 'B':
cout << "The grade point is 3.0.";
break;

case 'C':
cout << "The grade point is 2.0.";
break;

case 'D':
cout << "The grade point is 1.0.";
break;

case 'F':
cout << "The grade point is 0.0.";
break;

default:
cout << "The grade is invalid.";

}

In this example, the expression in the switch statement is a variable identifier. The
variable grade is of type char, which is an integral type. The possible values of grade
are 'A', 'B', 'C', 'D', and 'F'. Each case label specifies a different action to take,
depending on the value of grade. If the value of grade is 'A', the output is:

The grade point is 4.0.

EXAMPLE 4-22

The following program illustrates the effect of the break statement. It asks the user to
input a number between 0 and 10.

//Program: Effect of break statements in a switch structure

#include <iostream>

using namespace std;

int main()
{

int num;

cout << "Enter an integer between 0 and 7: "; //Line 1
cin >> num; //Line 2
cout << endl; //Line 3

switch Structures | 225

cout << "The number you entered is " << num
<< endl; //Line 4

switch(num) //Line 5
{
case 0: //Line 6
case 1: //Line 7

cout << "Learning to use "; //Line 8
case 2: //Line 9

cout << "C++'s "; //Line 10
case 3: //Line 11

cout << "switch structure." << endl; //Line 12
break; //Line 13

case 4: //Line 14
break; //Line 15

case 5: //Line 16
cout << "This program shows the effect "; //Line 17

case 6: //Line 18
case 7: //Line 19

cout << "of the break statement." << endl; //Line 20
break; //Line 21

default: //Line 22
cout << "The number is out of range." << endl; //Line 23

}

cout << "Out of the switch structure." << endl; //Line 24

return 0; //Line 25
}

Sample Runs: These outputs were obtained by executing the preceding program several
times. In each of these sample runs, the user input is shaded.

Sample Run 1:

Enter an integer between 0 and 7: 0

The number you entered is 0
Learning to use C++'s switch structure.
Out of the switch structure.

Sample Run 2:

Enter an integer between 0 and 7: 2

The number you entered is 2
C++'s switch structure.
Out of the switch structure.

Sample Run 3:

Enter an integer between 0 and 7: 4

The number you entered is 4
Out of the switch structure.

226 | Chapter 4: Control Structures I (Selection)

4

Sample Run 4:

Enter an integer between 0 and 7: 5

The number you entered is 5
This program shows the effect of the break statement.
Out of the switch structure.

Sample Run 5:

Enter an integer between 0 and 7: 7

The number you entered is 7
of the break statement.
Out of the switch structure.

Sample Run 6:

Enter an integer between 0 and 7: 8

The number you entered is 8
The number is out of range.
Out of the switch structure.

A walk-through of this program, using certain values of the switch expression num,
can help you understand how the break statement functions. If the value of num is 0,
the value of the switch expression matches the case value 0. All statements following
case 0: execute until a break statement appears.

The first break statement appears in Line 13, just before the case value of 4. Even
though the value of the switch expression does not match any of the case values (that
is, 1, 2, or 3), the statements following these values execute.

When the value of the switch expression matches a case value, all statements execute
until a break is encountered, and the program skips all case labels in between. Similarly,
if the value of num is 3, it matches the case value of 3, and the statements following this
label execute until the break statement is encountered in Line 13. If the value of num is
4, it matches the case value of 4. In this situation, the action is empty because only the
break statement, in Line 15, follows the case value of 4.

EXAMPLE 4-23

Although a switch structure’s case values (labels) are limited, the switch statement
expression can be as complex as necessary. For example, consider the following
switch statement:

switch (score / 10)
{
case 0:
case 1:
case 2:
case 3:

switch Structures | 227

case 4:
case 5:

grade = 'F';
break;

case 6:
grade = 'D';
break;

case 7:
grade = 'C';
break;

case 8:
grade = 'B';
break;

case 9:
case 10:

grade = 'A';
break;

default:
cout << "Invalid test score." << endl;

}

Assume that score is an int variable with values between 0 and 100. If score is 75,
score / 10 = 75 / 10 = 7, and the grade assigned is 'C'. If the value of score is between
0 and 59, the grade is 'F'. If score is between 0 and 59, then score / 10 is 0, 1, 2, 3, 4,
or 5. Each of these values corresponds to the grade 'F'.

Therefore, in this switch structure, the action statements of case 0, case 1, case 2,
case 3, case 4, and case 5 are all the same. Rather than write the statement grade =

'F'; followed by the break statement for each of the case values of 0, 1, 2, 3, 4, and 5,
you can simplify the programming code by first specifying all of the case values (as shown
in the preceding code) and then specifying the desired action statement. The case values
of 9 and 10 follow similar conventions.

In addition to being a variable identifier or a complex expression, the switch expression
can evaluate to a logical value. Consider the following statements:

switch (age >= 18)
{
case 1:

cout << "Old enough to be drafted." << endl;
cout << "Old enough to vote." << endl;
break;

case 0:
cout << "Not old enough to be drafted." << endl;
cout << "Not old enough to vote." << endl;

}

If the value of age is 25, the expression age >= 18 evaluates to 1—that is, true. If
the expression evaluates to 1, the statements following the case label 1 execute. If the
value of age is 14, the expression age >= 18 evaluates to 0—that is, false—and the
statements following the case label 0 execute.

228 | Chapter 4: Control Structures I (Selection)

4

You can use true and false, instead of 1 and 0, respectively, in the case labels, and
rewrite the preceding switch statement as follows:

switch (age >= 18)
{
case true:

cout << "Old enough to be drafted." << endl;
cout << "Old enough to vote." << endl;
break;

case false:
cout << "Not old enough to be drafted." << endl;
cout << "Not old enough to vote." << endl;

}

As you can see from the preceding examples, the switch statement is an elegant way to
implement multiple selections. You will see the use of a switch statement in the program-
ming example at the end of this chapter. Even though no fixed rules exist that can be applied
to decide whether to use an if. . .else structure or a switch structure to implement
multiple selections, the following considerations should be remembered. If multiple selec-
tions involve a range of values, you should use either an if. . .else structure or a switch

structure, wherein you convert each range to a finite set of values.

For instance, in Example 4-23, the value of grade depends on the value of score. If
score is between 0 and 59, grade is 'F'. Because score is an int variable, 60 values
correspond to the grade of 'F'. If you list all 60 values as case values, the switch

statement could be very long. However, dividing by 10 reduces these 60 values to only 6

values: 0, 1, 2, 3, 4, and 5.

If the range of values consists of infinitely many values and you cannot reduce them to a
set containing a finite number of values, you must use the if. . .else structure. For
example, if score happens to be a double variable, the number of values between 0 and
60 is infinite. However, you can use the expression static_cast<int>(score) / 10

and still reduce this infinite number of values to just six values.

Avoiding Bugs by Avoiding Partially Understood Concepts
and Techniques (Revisited)
Earlier in this chapter, we discussed how a partial understanding of a concept or
technique can lead to errors in a program. In this section, we give another example to
illustrate the problem of using partially understood concepts and techniques. In Example
4-23, we illustrate how to assign a grade based on a test score between 0 and 100. Next,
consider the following program that assigns a grade based on a test score:

//Grade program with bugs.

#include <iostream> //Line 1

using namespace std; //Line 2

switch Structures | 229

int main() //Line 3
{ //Line 4

int testScore; //Line 5

cout << "Enter the test score: "; //Line 6
cin >> testScore; //Line 7
cout << endl; //Line 8

switch (testScore / 10) //Line 9
{ //Line 10
case 0: //Line 11
case 1: //Line 12
case 2: //Line 13
case 3: //Line 14
case 4: //Line 15
case 5: //Line 16

cout << "The grade is F." << endl; //Line 17
case 6: //Line 18

cout << "The grade is D." << endl; //Line 19
case 7: //Line 20

cout << "The grade is C." << endl; //LIne 21
case 8: //Line 22

cout << "The grade is B." << endl; //Line 23
case 9: //Line 24
case 10: //Line 25

cout << "The grade is A." << endl; //Line 26
default: //Line 27

cout << "Invalid test score." << endl; //Line 28
} //Line 29

return 0; //Line 30
} //Line 31

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1:

Enter the test score: 110

Invalid test score.

Sample Run 2:

Enter the test score: -70

Invalid test score.

Sample Run 3:

Enter the test score: 75

The grade is C.
The grade is B.
The grade is A.
Invalid test score.

230 | Chapter 4: Control Structures I (Selection)

From these sample runs, it follows that if the value of testScore is less than 0 or
greater than 100, the program produces correct results, but if the value of testScore
is between 0 and 100, say 75, the program produces incorrect results. Can you
see why?

As in Sample Run 3, suppose that the value of testScore is 75. Then, testScore % 10 = 7,
and this value matched the case label 7. So, as we indented, it should print The grade is C.
However, the output is:

The grade is C.
The grade is B.
The grade is A.
Invalid test score.

But why? Clearly only at most one cout statement is associated with each case label.
The problem is a result of having only a partial understanding of how the switch

structure works. As we can see, the switch statement does not include any break

statement. Therefore, after executing the statement(s) associated with the matching case
label, execution continues with the statement(s) associated with the next case label,
resulting in the printing of four unintended lines.

To output results correctly, the switch structure must include a break statement after
each cout statement, except the last cout statement. We leave it as an exercise for you to
modify this program so that it outputs correct results.

Once again, we can see that a partially understood concept can lead to serious errors in a
program. Therefore, taking time to understand each concept and technique completely
will save you hours of debugging time.

Terminating a Program with the assert Function
Certain types of errors that are very difficult to catch can occur in a program. For
example, division by zero can be difficult to catch using any of the programming
techniques you have examined so far. C++ includes a predefined function, assert, that
is useful in stopping program execution when certain elusive errors occur. In the case of
division by zero, you can use the assert function to ensure that a program terminates
with an appropriate error message indicating the type of error and the program location
where the error occurred.

Consider the following statements:

int numerator;
int denominator;
int quotient;
double hours;
double rate;
double wages;
char ch;

4

Terminating a Program with the assert Function | 231

1. quotient = numerator / denominator;

2. if (hours > 0 && (0 < rate && rate <= 15.50))
wages = rate * hours;

3. if ('A' <= ch && ch <= 'Z')

In the first statement, if the denominator is 0, logically you should not perform the
division. During execution, however, the computer would try to perform the division. If
the denominator is 0, the program would terminate with an error message stating that
an illegal operation has occurred.

The second statement is designed to compute wages only if hours is greater than 0 and
rate is positive and less than or equal to 15.50. The third statement is designed to
execute certain statements only if ch is an uppercase letter.

For all of these statements (for that matter, in any situation in which certain conditions
must be met), if conditions are not met, it would be useful to halt program execution
with a message indicating where in the program an error occurred. You could handle
these types of situations by including output and return statements in your program.
However, C++ provides an effective method to halt a program if required conditions are
not met through the assert function.

The syntax to use the assert function is:

assert(expression);

Here, expression is any logical expression. If expression evaluates to true, the next
statement executes. If expression evaluates to false, the program terminates and indicates
where in the program the error occurred.

The specification of the assert function is found in the header file cassert. Therefore,
for a program to use the assert function, it must include the following statement:

#include <cassert>

A statement using the assert function is sometimes called an assert statement.

Returning to the preceding statements, you can rewrite statement 1 (quotient =

numerator / denominator;) using the assert function. Because quotient should
be calculated only if denominator is nonzero, you include an assert statement before
the assignment statement as follows:

assert(denominator);
quotient = numerator / denominator;

Now, if denominator is 0, the assert statement halts the execution of the program
with an error message similar to the following:

Assertion failed: denominator, file c:\temp\assert
function\assertfunction.cpp, line 20

232 | Chapter 4: Control Structures I (Selection)

This error message indicates that the assertion of denominator failed. The error message
also gives the name of the file containing the source code and the line number where the
assertion failed.

You can also rewrite statement 2 using an assertion statement as follows:

assert(hours > 0 && (0 < rate && rate <= 15.50));
if (hours > 0 && (0 < rate && rate <= 15.50))

wages = rate * hours;

If the expression in the assert statement fails, the program terminates with an error
message similar to the following:

Assertion failed: hours > 0 && (0 < rate && rate <= 15.50), file
c:\temp\assertfunction\assertfunction.cpp, line 26

During program development and testing, the assert statement is very useful for enfor-
cing programming constraints. As you can see, the assert statement not only halts the
program, but also identifies the expression where the assertion failed, the name of the file
containing the source code, and the line number where the assertion failed.

Although assert statements are useful during program development, after a program has
been developed and put into use, if an assert statement fails for some reason, an end
user would have no idea what the error means. Therefore, after you have developed and
tested a program, you might want to remove or disable the assert statements. In a very
large program, it could be tedious, and perhaps impossible, to remove all of the assert

statements that you used during development. In addition, if you plan to modify a
program in the future, you might like to keep the assert statements. Therefore, the
logical choice is to keep these statements but to disable them. You can disable assert

statements by using the following preprocessor directive:

#define NDEBUG

This preprocessor directive #define NDEBUG must be placed before the directive
#include <cassert>.

4

PROGRAMMING EXAMPLE: Cable Company Billing
This programming example demonstrates a program that calculates a customer’s bill
for a local cable company. There are two types of customers: residential and business.
There are two rates for calculating a cable bill: one for residential customers and one
for business customers. For residential customers, the following rates apply:

• Bill processing fee: $4.50

• Basic service fee: $20.50

• Premium channels: $7.50 per channel

Watch

the Video

Programming Example: Cable Company Billing | 233

For business customers, the following rates apply:

• Bill processing fee: $15.00

• Basic service fee: $75.00 for first 10 connections, $5.00 for each
additional connection

• Premium channels: $50.00 per channel for any number of
connections

The program should ask the user for an account number (an integer) and a customer
code. Assume that R or r stands for a residential customer, and B or b stands for a
business customer

Input The customer’s account number, customer code, number of premium channels

to which the user subscribes, and, in the case of business customers, number of

basic service connections.

Output Customer’s account number and the billing amount.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

The purpose of this program is to calculate and print the billing amount. To calculate
the billing amount, you need to know the customer for whom the billing amount is
calculated (whether the customer is residential or business) and the number of
premium channels to which the customer subscribes. In the case of a business
customer, you also need to know the number of basic service connections and the
number of premium channels. Other data needed to calculate the bill, such as the bill
processing fees and the cost of a premium channel, are known quantities. The
program should print the billing amount to two decimal places, which is standard
for monetary amounts. This problem analysis translates into the following algorithm:

1. Set the precision to two decimal places.

2. Prompt the user for the account number and customer type.

3. Based on the customer type, determine the number of premium
channels and basic service connections, compute the bill, and print
the bill:

a. If the customer type is R or r,

i. Prompt the user for the number of premium channels.

ii. Compute the bill.

iii. Print the bill.

b. If the customer type is B or b,

i. Prompt the user for the number of basic service connections
and number of premium channels.

ii. Compute the bill.

iii. Print the bill.

234 | Chapter 4: Control Structures I (Selection)

4

Variables Because the program will ask the user to input the customer account number,
customer code, number of premium channels, and number of basic service
connections, you need variables to store all of this information. Also, because the
program will calculate the billing amount, you need a variable to store the billing
amount. Thus, the program needs at least the following variables to compute and
print the bill:

int accountNumber; //variable to store the customer's
//account number

char customerType; //variable to store the customer code
int numOfPremChannels; //variable to store the number

//of premium channels to which the
//customer subscribes

int numOfBasicServConn; //variable to store the
//number of basic service connections
//to which the customer subscribes

double amountDue; //variable to store the billing amount

Named

Constants

As you can see, the bill processing fees, the cost of a basic service connection, and the
cost of a premium channel are fixed, and these values are needed to compute the bill.
Although these values are constants in the program, the cable company can change
them with little warning. To simplify the process of modifying the program later,
instead of using these values directly in the program, you should declare them as
named constants. Based on the problem analysis, you need to declare the following
named constants:

//Named constants – residential customers
const double RES_BILL_PROC_FEES = 4.50;
const double RES_BASIC_SERV_COST = 20.50;
const double RES_COST_PREM_CHANNEL = 7.50;

//Named constants – business customers
const double BUS_BILL_PROC_FEES = 15.00;
const double BUS_BASIC_SERV_COST = 75.00;
const double BUS_BASIC_CONN_COST = 5.00;
const double BUS_COST_PREM_CHANNEL = 50.00;

Formulas The program uses a number of formulas to compute the billing amount. To compute
the residential bill, you need to know only the number of premium channels to
which the user subscribes. The following statement calculates the billing amount for a
residential customer:

amountDue = RES_BILL_PROC_FEES + RES_BASIC_SERV_COST
+ numOfPremChannels * RES_COST_PREM_CHANNEL;

To compute the business bill, you need to know the number of basic service
connections and the number of premium channels to which the user subscribes. If
the number of basic service connections is less than or equal to 10, the cost of the

Programming Example: Cable Company Billing | 235

basic service connections is fixed. If the number of basic service connections
exceeds 10, you must add the cost for each connection over 10. The following
statement calculates the business billing amount:

if (numOfBasicServConn <= 10)
amountDue = BUS_BILL_PROC_FEES + BUS_BASIC_SERV_COST

+ numOfPremChannels * BUS_COST_PREM_CHANNEL;
else

amountDue = BUS_BILL_PROC_FEES + BUS_BASIC_SERV_COST
+ (numOfBasicServConn - 10)

* BUS_BASIC_CONN_COST
+ numOfPremChannels * BUS_COST_PREM_CHANNEL;

MAIN

ALGORITHM

Based on the preceding discussion, you can now write the main algorithm.

1. To output floating-point numbers in a fixed decimal format with
a decimal point and trailing zeros, set the manipulators fixed and
showpoint. Also, to output floating-point numbers with two
decimal places, set the precision to two decimal places. Recall
that to use these manipulators, the program must include the
header file iomanip.

2. Prompt the user to enter the account number.

3. Get the customer account number.

4. Prompt the user to enter the customer code.

5. Get the customer code.

6. If the customer code is r or R,

a. Prompt the user to enter the number of premium channels.

b. Get the number of premium channels.

c. Calculate the billing amount.

d. Print the account number and the billing amount.

7. If the customer code is b or B,

a. Prompt the user to enter the number of basic service connections.

b. Get the number of basic service connections.

c. Prompt the user to enter the number of premium channels.

d. Get the number of premium channels.

e. Calculate the billing amount.

f. Print the account number and the billing amount.

8. If the customer code is something other than r, R, b, or B, output an
error message.

For Steps 6 and 7, the program uses a switch statement to calculate the bill for the
desired customer.

236 | Chapter 4: Control Structures I (Selection)

4

COMPLETE PROGRAM LISTING

//***
// Author: D. S. Malik
//
// Program: Cable Company Billing
// This program calculates and prints a customer's bill for
// a local cable company. The program processes two types of
// customers: residential and business.
//***

#include <iostream>
#include <iomanip>

using namespace std;

//Named constants – residential customers
const double RES_BILL_PROC_FEES = 4.50;
const double RES_BASIC_SERV_COST = 20.50;
const double RES_COST_PREM_CHANNEL = 7.50;

//Named constants – business customers
const double BUS_BILL_PROC_FEES = 15.00;
const double BUS_BASIC_SERV_COST = 75.00;
const double BUS_BASIC_CONN_COST = 5.00;
const double BUS_COST_PREM_CHANNEL = 50.00;

int main()
{

//Variable declaration
int accountNumber;
char customerType;
int numOfPremChannels;
int numOfBasicServConn;
double amountDue;

cout << fixed << showpoint; //Step 1
cout << setprecision(2); //Step 1

cout << "This program computes a cable "
<< "bill." << endl;

cout << "Enter account number (an integer): "; //Step 2
cin >> accountNumber; //Step 3
cout << endl;

cout << "Enter customer type: "
<< "R or r (Residential), "
<< "B or b (Business): "; //Step 4

cin >> customerType; //Step 5
cout << endl;

Programming Example: Cable Company Billing | 237

switch (customerType)
{
case 'r': //Step 6
case 'R':

cout << "Enter the number"
<< " of premium channels: "; //Step 6a

cin >> numOfPremChannels; //Step 6b
cout << endl;

amountDue = RES_BILL_PROC_FEES //Step 6c
+ RES_BASIC_SERV_COST
+ numOfPremChannels *

RES_COST_PREM_CHANNEL;

cout << "Account number: "
<< accountNumber
<< endl; //Step 6d

cout << "Amount due: $"
<< amountDue
<< endl; //Step 6d

break;

case 'b': //Step 7
case 'B':

cout << "Enter the number of basic "
<< "service connections: "; //Step 7a

cin >> numOfBasicServConn; //Step 7b
cout << endl;

cout << "Enter the number"
<< " of premium channels: "; //Step 7c

cin >> numOfPremChannels; //Step 7d
cout << endl;

if (numOfBasicServConn<= 10) //Step 7e
amountDue = BUS_BILL_PROC_FEES

+ BUS_BASIC_SERV_COST
+ numOfPremChannels *

BUS_COST_PREM_CHANNEL;

else
amountDue = BUS_BILL_PROC_FEES

+ BUS_BASIC_SERV_COST
+ (numOfBasicServConn - 10) *

BUS_BASIC_CONN_COST
+ numOfPremChannels *

BUS_COST_PREM_CHANNEL;

cout << "Account number: "
<< accountNumber << endl; //Step 7f

cout << "Amount due: $" << amountDue
<< endl; //Step 7f

break;

238 | Chapter 4: Control Structures I (Selection)

4

default:
cout << "Invalid customer type." << endl; //Step 8

}//end switch

return 0;
}

Sample Run: In this sample run, the user input is shaded.

This program computes a cable bill.
Enter account number (an integer): 12345

Enter customer type: R or r (Residential), B or b (Business): b

Enter the number of basic service connections: 16

Enter the number of premium channels: 8

Account number: 12345
Amount due: $520.00

QUICK REVIEW

1. Control structures alter the normal flow of control.

2. The two most common control structures are selection and repetition.

3. Selection structures incorporate decisions in a program.

4. The relational operators are == (equality), < (less than), <= (less than or equal
to), > (greater than), >= (greater than or equal to), and != (not equal to).

5. Including a space between the relational operators ==, <=, >=, and !=

creates a syntax error.

6. Characters are compared using a machine’s collating sequence.

7. Logical expressions evaluate to 1 (or a nonzero value) or 0. The logical
value 1 (or any nonzero value) is treated as true; the logical value 0 is
treated as false.

8. In C++, int variables can be used to store the value of a logical expression.

9. In C++, bool variables can be used to store the value of a logical expression.

10. In C++, the logical operators are ! (not), && (and), and || (or).

11. There are two selection structures in C++.

12. One-way selection takes the following form:

if (expression)
statement

If expression is true, the statement executes; otherwise, the computer
executes the statement following the if statement.

Quick Review | 239

13. Two-way selection takes the following form:

if (expression)
statement1

else
statement2

If expression is true, then statement1 executes; otherwise,
statement2 executes.

14. The expression in an if or if. . .else structure is usually a logical expression.

15. Including a semicolon before the statement in a one-way selection creates
a semantic error. In this case, the action of the if statement is empty.

16. Including a semicolon before statement1 in a two-way selection creates a
syntax error.

17. There is no stand-alone else statement in C++. Every else has a related if.

18. An else is paired with the most recent if that has not been paired with
any other else.

19. A sequence of statements enclosed between curly braces, {and }, is called a
compound statement or block of statements. A compound statement is
treated as a single statement.

20. You can use the input stream variable in an if statement to determine the
state of the input stream.

21. Using the assignment operator in place of the equality operator creates a
semantic error. This can cause serious errors in the program.

22. The switch structure is used to handle multiway selection.

23. The execution of a break statement in a switch statement immediately
exits the switch structure.

24. If certain conditions are not met in a program, the program can be
terminated using the assert function.

EXERCISES

1. Mark the following statements as true or false:

a. The result of a logical expression cannot be assigned to an int variable.

b. In a one-way selection, if a semicolon is placed after the expression in
an if statement, the expression in the if statement is always true.

c. Every if statement must have a corresponding else.

d. The expression in the if statement:

if (score = 30)
grade = 'A';

always evaluates to true.

240 | Chapter 4: Control Structures I (Selection)

4

e. The expression:

(ch >= 'A' && ch <= 'Z')

evaluates to false if either ch < 'A' or ch >= 'Z'.

f. Suppose the input is 5. The output of the code:

cin >> num;
if (num > 5)

cout << num;
num = 0;

else
cout << "Num is zero" << endl;

is: Num is zero

g. The expression in a switch statement should evaluate to a value of the
simple data type.

h. The expression !(x > 0) is true only if x is a negative number.

i. In C++, both ! and != are logical operators.

j. The order in which statements execute in a program is called the flow of
control.

2. Evaluate the following expressions:

a. 5 + 6 == 3 + 7

b. 2 * 6 – 4 >= 9 – 1

c. 'U' >= 't'

d. 'A' <= 'a'

e. '#' <= '+'

f. 6.28 / 3 < 3 – 1.2

3. Suppose that x, y, and z are int variables, and x = 10, y = 15, and z = 20.
Determine whether the following expressions evaluate to true or false:

a. !(x > 10)

b. x <= 5 || y < 15

c. (x != 5) && (y != z)

d. x >= z || (x + y >= z)

e. (x <= y - 2) && (y >= z) || (z - 2 != 20)

4. Suppose that str1, str2, and str3 are string variables, and str1 =

"English", str2 = "Computer Science", and str3 = "Programming".
Evaluate the following expressions:

a. str1 >= str2

b. str1 != "english"

c. str3 < str2

d. str2 >= "Chemistry"

Exercises | 241

5. Suppose that x, y, z, and w are int variables, and x = 3, y = 4, z = 7, and w = 1.
What is the output of the following statements?

a. cout << "x == y: " << (x == y) << endl;

b. cout << "x != z: " << (x != z) << endl;

c. cout << "y == z - 3: " << (y == z - 3) << endl;

d. cout << "!(z > w): " << !(z > w) << endl;

e. cout << "x + y < z: " << (x + y < z) << endl;

6. Which of the following are relational operators?

a. < b. <= c. = d. =! e. <>

7. What is the output of the following statements?

a. if ('+' < '*')
cout << "+*";

cout << "%%" << endl;

b. if (10 <= 2 * 5)
cout << "10 ";
cout << "2 * 5";

cout << endl;

c. if ('a' < 'A')
cout << 'a';
cout << 'A';

cout << endl;

d. if ("C++" >= "C--")
cout << "C++" << endl;

cout << "C--" << endl;

e. if ("Sam" <= "Tom")
cout << "Sam Tom" << endl;
cout << "Tom Sam" << endl;

f. if (6 == 2 * 4 - 2)
cout << 3 * 4 / 6 – 8 << endl;

cout << "**" << endl;

8. Which of the following are logical (Boolean) operators?

a. ! b. != c. $$

9. What is the output of the following statements?

a. if ('R' < '$' && '&' <= '#')
cout << "$#";
cout << "R&";

cout << endl;

b. if ('4' > '3' || 2 < -10)
cout << "1 2 3 4" << endl;
cout << "$$" << endl;

242 | Chapter 4: Control Structures I (Selection)

c. if ("Jack" <= "John" && "Business" >= "Accounting")
cout << "Jack Accounting" << endl;
cout << "John Business" << endl;

10. What is the output of the following code?

int num = 10; //Line 1
double temp = 4.5; //Line 2
bool found; //Line 3

found = (num == 2 * static_cast<int>(temp) + 1); //Line 4
cout << "The value of found is: " << found << endl; //Line 5

11. How does the output in Exercise 10 change if the statement in Line 4 is
replaced by the following statement?

found = (num == 2 * static_cast<int>(temp + 1)); //Line 4

12. What is the output of the following program?

#include <iostream>

using namespace std;

int main()
{

int x;
int a = 265;

cout << (x = 25) << endl;
cout << (x == 90) << endl;
cout << (x > 10) << endl;
cout << (3 * x < a) << endl;
cout << (10 * x == a - 15) << endl;

return 0;
}

13. Correct the following code so that it prints the correct message:

if (score >= 60)
cout << "You pass." << endl;

else;
cout << "You fail." << endl;

14. Write C++ statements that output Male if the gender is 'M', Female if
the gender is 'F', and invalid gender otherwise.

15. If the number of items bought is less than 5, then the shipping charges are
$5.00 for each item bought; if the number of items bought is at least 5, but
less than 10, then the shipping charges are $2.00 for each item bought; if
the number of items bought is at least 10, there are no shipping charges.
Correct the following code so that it computes the correct shipping
charges.

4

Exercises | 243

if (0 < numOfItemsBought || numOfItemsBought <> 5)
shippingCharges = 5.00 * numOfItemsBought;

else if (5 <= numOfItemsBought && numOfItemsBought < 10);
shippingCharges = 2.00 * numOfItemsBought;

else
shippingCharges = 0.00;

16. What is the output of the following C++ code?

int x = 10;
int y = 20;
if (x < 20 && y > 20)
{

x = 2 * x;
y = y / 2;
cout << x << " " << y << " " << x - y << endl;

}
else
{

x = y / x;
cout << x << " " << y << " " << x * x + y * y << endl;

}

17. What is the output of the following program?

#include <iostream>

using namespace std;

int main()
{

int myNum = 10;
int yourNum = 30;

if (yourNum % myNum == 3)
{

yourNum = 3;
myNum = 1;

}
else if (yourNum % myNum == 2)
{

yourNum = 2;
myNum = 2;

}
else
{

yourNum = 1;
myNum = 3;

}

cout << myNum << " " << yourNum << endl;

return 0;
}

244 | Chapter 4: Control Structures I (Selection)

4

18. a. What is the output of the program in Exercise 17, if myNum = 5 and
yourNum = 12?

b. What is the output of the program in Exercise 17, if myNum = 30 and
yourNum = 33?

19. Suppose that sale and bonus are double variables. Write an if. . .else
statement that assigns a value to bonus as follows: If sale is greater than
$20,000, the value assigned to bonus is 0.10; if sale is greater than
$10,000 and less than or equal to $20,000, the value assigned to bonus

is 0.05; otherwise, the value assigned to bonus is 0.

20. Suppose that overSpeed and fine are double variables. Assign the value to
fine as follows: If 0 < overSpeed <= 5, the value assigned to fine is $20.00; if
5 < overSpeed <= 10, the value assigned to fine is $75.00; if 10 < overSpeed

<= 15, the value assigned to fine is $150.00; if overSpeed > 15, the value
assigned to fine is $150.00 plus $20.00 per mile over 15.

21. Suppose that score is an int variable. Consider the following if statements:

if (score >= 90);
cout << "Discount = 10%" << endl;

a. What is the output if the value of score is 95? Justify your answer.

b. What is the output if the value of score is 85? Justify your answer.

22. Suppose that score is an int variable. Consider the following if statements:

i. if (score == 70)
cout << "Grade is C." << endl;

ii. if (score = 70)

cout << "Grade is C." << endl;

Answer the following questions:

a. What is the output in (i) and (ii) if the value of score is 70? What is
the value of score after the if statement executes?

b. What is the output in (i) and (ii) if the value of score is 80? What is
the value of score after the if statement executes?

23. Rewrite the following expressions using the conditional operator. (Assume
that all variables are declared properly.)

a. if (x >= y)
z = x - y;

else
z = y - x;

b. if (hours >= 40.0)
wages = 40 * 7.50 + 1.5 * 7.5 * (hours - 40);

else
wages = hours * 7.50;

Exercises | 245

c. if (score >= 60)
str = "Pass";

else
str = "Fail";

24. Rewrite the following expressions using an if. . .else statement. (Assume
that all variables are declared properly.)

a. (x < 5) ? y = 10 : y = 20;

b. (fuel >= 10) ? drive = 150 : drive = 30;

c. (booksBought >= 3) ? discount = 0.15 : discount = 0.0;

25. Suppose that you have the following conditional expression. (Assume that
all the variables are properly declared.)

(0 < backyard && backyard <= 5000) ? fertilizingCharges = 40.00

: fertilizingCharges = 40.00 + (backyard - 5000) * 0.01;

a. What is the value of fertilizingCharges if the value of backyard
is 3000?

b. What is the value of fertilizingCharges if the value of backyard
is 5000?

c. What is the value of fertilizingCharges if the value of backyard
is 6500?

26. State whether the following are valid switch statements. If not, explain
why. Assume that n and digit are int variables.

a. switch (n <= 2)
{
case 0:

cout << "Draw." << endl;
break;

case 1:
cout << "Win." << endl;
break;

case 2:
cout << "Lose." << endl;
break;

}

b. switch (digit / 4)
{
case 0,
case 1:

cout << "low." << endl;
break;

case 1,
case 2:

cout << "middle." << endl;
break;

case 3:
cout << "high." << endl;

}

246 | Chapter 4: Control Structures I (Selection)

4

c. switch (n % 6)
{
case 1:
case 2:
case 3:
case 4:
case 5:

cout << n;
break;

case 0:
cout << endl;
break;

}

d. switch (n % 10)
{
case 2:
case 4:
case 6:
case 8:

cout << "Even";
break;

case 1:
case 3:
case 5:
case 7:

cout << "Odd";
break;

}

27. Suppose that alpha is an int variable. Consider the following C++ code:

cin >> alpha;
switch (alpha % 6)
{
case 0:

alpha--;
break;

case 1: case 2:
alpha = alpha * 2;
break;

case 3:
break;

case 4:
alpha = alpha - 5;

case 5:
alpha++;
break;

default:
alpha = alpha / 3;

}

Exercises | 247

a. What is the output if the input is 8?

b. What is the output if the input is 3?

c. What is the output if the input is 17?

d. What is the output if the input is 24?

28. Suppose that beta is an int variable. Consider the following C++ code:

cin >> beta;
switch (beta % 7)
{
case 0:
case 1:

beta = beta * beta;
break;

case 2:
beta++;
break;

case 3:
beta = static_cast<int>(sqrt(beta * 1.0));
break;

case 4:
beta = beta + 4;

case 6:
beta = beta--;
break;

default:
beta = -10;

}

a. What is the output if the input is 11?

b. What is the output if the input is 12?

c. What is the output if the input is 0?

d. What is the output if the input is 16?

29. Suppose that num is an int variable. Consider the following C++ code:

cin >> num;
if (num >= 0)

switch (num)
{
case 0:

num = static_cast<int>(pow(num, 3.0));
break;

case 2:
num = ++num;
break;

case 4:
num = num – 4;
break;

case 5:
num = num * 4;

248 | Chapter 4: Control Structures I (Selection)

4

case 6:
num = num / 6;
break;

case 10:
num--;
break;

default:
num = -20;

}
else

num = num + 10;

a. What is the output if the input is 5?

b. What is the output if the input is 26?

c. What is the output if the input is 2?

d. What is the output if the input is -5?

30. In the following code, correct any errors that would prevent the program
from compiling or running:

include <iostream>

main ()
{

int num1, num2;
bool found;

cout << "Enter two integers: ;
cin >> num1 >> num2;
cout << endl;

if (num1 >= num2) && num2 > 0
switch (num % num2)
{
case 1

found = (num / num2) >= 6;
break;

case 2: case 3
num1 = num2 / 2;
brake;

default:
num2 = num1 * num2;

}
else
{

found = (2 * num2 < num1);
if found

cin >> num2
num 1 = num2 – num1;
temp = (num1 + num2) / 10;

Exercises | 249

if num2
{

num1 = num2;
num2 = temp;

}

cout << num1 << " " << num2 << endl;
}

After correcting the code, answer the following questions. (If needed, insert prompt
lines to inform the user for the input.)

a. What is the output if the input is 10 8 6?

b. What is the output if the input is 4 9 11?

31. The following program contains errors. Correct them so that the program
will run and output w = 21.

#include <iostream>

using namespace std;

const int SECRET = 5

main ()
{

int x, y, w, z;
z = 9;

if z > 10
x = 12; y = 5, w = x + y + SECRET;

else
x = 12; y = 4, w = x + y + SECRET;

cout << "w = " << w << endl;
}

32. Write the missing statements in the following program so that it prompts
the user to input two numbers. If one of the numbers is 0, the program
should output a message indicating that both numbers must be nonzero. If
the first number is greater than the second number, it outputs the first
number divided by the second number; if the first number is less than the
second number, it outputs the second number divided by the first number;
otherwise, it outputs the product of the numbers.

#include <iostream>
using namespace std;

int main()
{

double firstNum, secondNum;

cout << "Enter two nonzero numbers: ";

250 | Chapter 4: Control Structures I (Selection)

4

cin >> firstNum >> secondNum;
cout << endl;

//Missing statements

return 0;
}

33. Suppose that classStanding is a char variable, and gpa and dues are
double variables. Write a switch expression that assigns the dues as following:
If classStanding is 'f', the dues are $150.00; if classStanding is 's'
(if gpa is at least 3.75, the dues are $75.00; otherwise, dues are 120.00); if
classStanding is 'j' (if gpa is at least 3.75, the dues are $50.00;
otherwise, dues are $100.00); if classStanding is 'n' (if gpa is at least
3.75, the dues are $25.00; otherwise, dues are $75.00). (Note that the code
'f' stands for first year students, the code 's' stands for second year
students, the code 'j' stands for juniors, and the code 'n' stands for seniors.)

34. Suppose that billingAmount is a double variable, which denotes the
amount you need to pay to the department store. if you pay the full
amount, you get $10.00 or 1% of the billingAmount, whichever is
smaller, as a credit on your next bill; if you pay at least 50% of the
billingAmount, the penalty is 5% of the balance; if you pay at least 20%
of the billingAmount and less than 50% of the billingAmount, the
penalty is 10% of the balance; otherwise, the penalty is 20% of the balance.
Design an algorithm that prompts the user to enter the billing amount and
the desired payment. The algorithm then calculates and outputs the credit
or the remaining balance. If the amount is not paid in full, the algorithm
should also output the penalty amount.

PROGRAMMING EXERCISES

1. Write a program that prompts the user to input a number. The program
should then output the number and a message saying whether the number is
positive, negative, or zero.

2. Write a program that prompts the user to input three numbers. The
program should then output the numbers in ascending order.

3. Write a program that prompts the user to input an integer between 0 and 35. If
the number is less than or equal to 9, the program should output the number;
otherwise, it should output A for 10, B for 11, C for 12 . . . and Z for 35. (Hint:
Use the cast operator, static_cast<char>(), for numbers >= 10.)

4. The statements in the following program are in incorrect order. Rearrange
the statements so that they prompt the user to input the shape type
(rectangle, circle, or cylinder) and the appropriate dimension of

Programming Exercises | 251

the shape. The program then outputs the following information about the
shape: For a rectangle, it outputs the area and perimeter; for a circle, it
outputs the area and circumference; and for a cylinder, it outputs the
volume and surface area. After rearranging the statements, your program
should be properly indented.

using namespace std;

#include <iostream>

int main()
{

string shape;
double height;

#include <string>

cout << "Enter the shape type: (rectangle, circle, cylinder) ";
cin >> shape;
cout << endl;

if (shape == "rectangle")
{

cout << "Area of the circle = "
<< PI * pow(radius, 2.0) << endl;

cout << "Circumference of the circle: "
<< 2 * PI * radius << endl;

cout << "Enter the height of the cylinder: ";
cin >> height;
cout << endl;

cout << "Enter the width of the rectangle: ";
cin >> width;
cout << endl;

cout << "Perimeter of the rectangle = "
<< 2 * (length + width) << endl;

double width;
}

cout << "Surface area of the cylinder: "
<< 2 * PI * radius * height + 2 * PI * pow(radius, 2.0)
<< end1;

}
else if (shape == "circle")
{

cout << "Enter the radius of the circle: ";
cin >> radius;
cout << endl;

252 | Chapter 4: Control Structures I (Selection)

cout << "Volume of the cylinder = "
<< PI * pow(radius, 2.0)* height << endl;

double length;
}
return 0;
else if (shape == "cylinder")
{

double radius;

cout << "Enter the length of the rectangle: ";
cin >> length;
cout << endl;

#include <iomanip>

cout << "Enter the radius of the base of the cylinder: ";
cin >> radius;
cout << endl;

const double PI = 3.1416;
cout << "Area of the rectangle = "

<< length * width << endl;
else

cout << "The program does not handle " << shape << endl;
cout << fixed << showpoint << setprecision(2);

#include <cmath>
}

5. Write a program to implement the algorithm you designed in Exercise 21 of
Chapter 1.

6. In a right triangle, the square of the length of one side is equal to the sum
of the squares of the lengths of the other two sides. Write a program that
prompts the user to enter the lengths of three sides of a triangle and then
outputs a message indicating whether the triangle is a right triangle.

7. A box of cookies can hold 24 cookies, and a container can hold 75 boxes
of cookies. Write a program that prompts the user to enter the total
number of cookies, the number of cookies in a box, and the number of
cookie boxes in a container. The program then outputs the number of
boxes and the number of containers to ship the cookies. Note that each
box must contain the specified number of cookies, and each container
must contain the specified number of boxes. If the last box of cookies
contains less than the number of specified cookies, you can discard it and
output the number of leftover cookies. Similarly, if the last container
contains less than the number of specified boxes, you can discard it and
output the number of leftover boxes.

4

Programming Exercises | 253

8. The roots of the quadratic equation ax2 + bx + c = 0, a 6¼ 0 are given by the
following formula:

�b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

2a

In this formula, the term b2� 4ac is called the discriminant. If b2� 4ac = 0,
then the equation has a single (repeated) root. If b2� 4ac > 0, the
equation has two real roots. If b2� 4ac< 0, the equation has two
complex roots. Write a program that prompts the user to input the
value of a (the coefficient of x2), b (the coefficient of x), and c (the
constant term) and outputs the type of roots of the equation. Further-
more, if b2� 4ac� 0, the program should output the roots of the
quadratic equation. (Hint: Use the function pow from the header file
cmath to calculate the square root. Chapter 3 explains how the func-
tion pow is used.)

9. Write a program that mimics a calculator. The program should take as input
two integers and the operation to be performed. It should then output the
numbers, the operator, and the result. (For division, if the denominator is
zero, output an appropriate message.) Some sample outputs follow:

3 + 4 = 7
13 * 5 = 65

10. Redo Exercise 9 to handle floating-point numbers. (Format your output to
two decimal places.)

11. Redo Programming Exercise 20 of Chapter 2, taking into account that your
parents buy additional savings bonds for you as follows:

a. If you do not spend any money to buy savings bonds, then because you
had a summer job, your parents buy savings bonds for you in an
amount equal to 1% of the money you save after paying taxes and
buying clothes, other accessories, and school supplies.

b. If you spend up to 25% of your net income to buy savings bonds, your
parents spend $0.25 for each dollar you spend to buy savings bonds,
plus money equal to 1% of the money you save after paying taxes and
buying clothes, other accessories, and school supplies.

c. If you spend more than 25% of your net income to buy savings bonds,
your parents spend $0.40 for each dollar you spend to buy savings
bonds, plus money equal to 2% of the money you save after paying
taxes and buying clothes, other accessories, and school supplies.

12. Write a program that implements the algorithm given in Example 1-3
(Chapter 1), which determines the monthly wages of a salesperson.

254 | Chapter 4: Control Structures I (Selection)

13. Write a program that implements the algorithm that you designed in
Exercise 34 of this chapter.

14. The number of lines that can be printed on a paper depends on the paper
size, the point size of each character in a line, whether lines are double-
spaced or single-spaced, the top and bottom margin, and the left and right
margins of the paper. Assume that all characters are of the same point size,
and all lines are either single-spaced or double-spaced. Note that 1 inch =
72 points. Moreover, assume that the lines are printed along the width of
the paper. For example, if the length of the paper is 11 inches and width is
8.5 inches, then the maximum length of a line is 8.5 inches. Write a
program that calculates the number of characters in a line and the number
of lines that can be printed on a paper based on the following input from
the user:

a. The length and width, in inches, of the paper

b. The top, bottom, left, and right margins

c. The point size of a line

d. If the lines are double-spaced, then double the point size of each
character

15. Write a program that calculates and prints the bill for a cellular telephone
company. The company offers two types of service: regular and premium.
Its rates vary, depending on the type of service. The rates are computed as
follows:

Regular service: $10.00 plus first 50 minutes are free. Charges for
over 50 minutes are $0.20 per minute.

Premium service: $25.00 plus:

a. For calls made from 6:00 a.m. to 6:00 p.m., the first 75 minutes are free;
charges for more than 75 minutes are $0.10 per minute.

b. For calls made from 6:00 p.m. to 6:00 a.m., the first 100 minutes are
free; charges for more than 100 minutes are $0.05 per minute.

Your program should prompt the user to enter an account number, a
service code (type char), and the number of minutes the service was
used. A service code of r or R means regular service; a service code of
p or P means premium service. Treat any other character as an error.
Your program should output the account number, type of service,
number of minutes the telephone service was used, and the amount
due from the user.

For the premium service, the customer may be using the service during
the day and the night. Therefore, to calculate the bill, you must ask the
user to input the number of minutes the service was used during the day
and the number of minutes the service was used during the night.

4

Programming Exercises | 255

16. Write a program to implement the algorithm that you designed in Exercise
22 of Chapter 1. (Assume that the account balance is stored in the file
Ch4_Ex16_Data.txt.) Your program should output account balance before
and after withdrawal and service charges. Also save the account balance after
withdrawal in the file Ch4_Ex16_Output.txt.

17. A new author is in the process of negotiating a contract for a new romance
novel. The publisher is offering three options. In the first option, the author
is paid $5,000 upon delivery of the final manuscript and $20,000 when the
novel is published. In the second option, the author is paid 12.5% of the net
price of the novel for each copy of the novel sold. In the third option, the
author is paid 10% of the net price for the first 4000 copies sold, and 14% of
the net price for the copies sold over 4000. The author has some idea about
the number of copies that will be sold and would like to have an estimate of
the royalties generated under each option. Write a program that prompts
the author to enter the net price of each copy of the novel and the estimated
number of copies that will be sold. The program then outputs the royalties
under each option and the best option the author could choose. (Use
appropriate named constants to store the special values such as royalties
rates and fixed royalties.)

18. Samantha and Vikas are looking to buy a house in a new development.
After looking at various models, the three models they like are colonial,
split-entry, and single-story. The builder gave them the base price and
the finished area in square feet of the three models. They want to know
the model(s) with the least price per square foot. Write a program that
accepts as input the base price and the finished area in square feet of the
three models. The program outputs the model(s) with the least price per
square foot.

19. One way to determine how healthy a person is by measuring the body fat
of the person. The formulas to determine the body fat for female and male
are as follows:

Body fat formula for women:

A1 ¼ (body weight � 0.732) + 8.987

A2 ¼ wrist measurement (at fullest point) / 3.140

A3 ¼ waist measurement (at navel) � 0.157

A4 ¼ hip measurement (at fullest point) � 0.249

A5 ¼ forearm measurement (at fullest point) � 0.434

B ¼ A1 + A2 – A3 – A4 + A5

Body fat ¼ body weight – B

Body fat percentage ¼ body fat � 100 / body weight

256 | Chapter 4: Control Structures I (Selection)

Body fat formula for men:

A1 ¼ (body weight � 1.082) + 94.42

A2 ¼ wrist measurement � 4.15

B ¼ A1 – A2

Body fat ¼ body weight – B

Body fat percentage ¼ body fat � 100 / body weight

Write a program to calculate the body fat of a person.
4

Programming Exercises | 257

This page intentionally left blank

CONTROL STRUCTURES II
(REPETITION)

IN THIS CHAPTER , YOU WILL :

. Learn about repetition (looping) control structures

. Explore how to construct and use counter-controlled,
sentinel-controlled, flag-controlled, and EOF-controlled
repetition structures

. Examine break and continue statements

. Discover how to form and use nested control structures

. Learn how to avoid bugs by avoiding patches

. Learn how to debug loops

5C H A P T E R

In Chapter 4, you saw how decisions are incorporated in programs. In this chapter, you
will learn how repetitions are incorporated in programs.

Why Is Repetition Needed?
Suppose you want to add five numbers to find their average. From what you have learned
so far, you could proceed as follows (assume that all variables are properly declared):

cin >> num1 >> num2 >> num3 >> num4 >> num5; //read five numbers
sum = num1 + num2 + num3 + num4 + num5; //add the numbers
average = sum / 5; //find the average

But suppose you want to add and average 100, 1000, or more numbers. You would have
to declare that many variables and list them again in cin statements and, perhaps, again in
the output statements. This takes an exorbitant amount of space and time. Also, if you
want to run this program again with different values or with a different number of values,
you have to rewrite the program.

Suppose you want to add the following numbers:

5 3 7 9 4

Consider the following statements, in which sum and num are variables of type int:

1. sum = 0;

2. cin >> num;

3. sum = sum + num;

The first statement initializes sum to 0. Let us execute statements 2 and 3. Statement 2
stores 5 in num; statement 3 updates the value of sum by adding num to it. After statement 3,
the value of sum is 5.

Let us repeat statements 2 and 3. After statement 2 (after the programming code reads the
next number):

num = 3

After statement 3:

sum = sum + num = 5 + 3 = 8

At this point, sum contains the sum of the first two numbers. Let us again repeat statements
2 and 3 (a third time). After statement 2 (after the code reads the next number):

num = 7

After statement 3:

sum = sum + num = 8 + 7 = 15

Now, sum contains the sum of the first three numbers. If you repeat statements 2 and 3
two more times, sum will contain the sum of all five numbers.

260 | Chapter 5: Control Structures II (Repetition)

If youwant to add 10 numbers, you can repeat statements 2 and 3 ten times. And if youwant to
add100numbers, youcan repeat statements2and3onehundred times. Ineither case, youdonot
have todeclare any additional variables, as youdid in the first code.Youcanuse thisC++code to
add any set of numbers, whereas the earlier code requires you to drastically change the code.

There are many other situations in which it is necessary to repeat a set of statements. For
example, for each student in a class, the formula for determining the course grade is the same.
C++ has three repetition, or looping, structures that let you repeat statements over and over
until certain conditions are met. This chapter introduces all three looping (repetition)
structures. The next section discusses the first repetition structure, called the while loop.

while Looping (Repetition) Structure
In the previous section, you saw that sometimes it is necessary to repeat a set of statements
several times. One way to repeat a set of statements is to type the set of statements in the
program over and over. For example, if you want to repeat a set of statements 100 times,
you type the set of statements 100 times in the program. However, this solution of
repeating a set of statements is impractical, if not impossible. Fortunately, there is a better
way to repeat a set of statements. As noted earlier, C++ has three repetition, or looping,
structures that allow you to repeat a set of statements until certain conditions are met.
This section discusses the first looping structure, called a while loop.

The general form of the while statement is:

while (expression)
statement

In C++, while is a reserved word. Of course, the statement can be either a simple
or compound statement. The expression acts as a decision maker and is usually a
logical expression. The statement is called the body of the loop. Note that the
parentheses around the expression are part of the syntax. Figure 5-1 shows the flow
of execution of a while loop.

5

expression statementtrue

false

FIGURE 5-1 while loop

while Looping (Repetition) Structure | 261

The expression provides an entry condition. If it initially evaluates to true, the
statement executes. The loop condition—the expression—is then reevaluated. If it again
evaluates to true, the statement executes again. The statement (body of the loop)
continues to execute until the expression is no longer true. A loop that continues to
execute endlessly is called an infinite loop. To avoid an infinite loop, make sure that the loop’s
body contains statement(s) that assure that the exit condition—the expression in the while
statement—will eventually be false.

EXAMPLE 5-1

Consider the following C++ program segment: (Assume that i is an int variable.)

i = 0; //Line 1

while (i <= 20) //Line 2
{

cout << i << " "; //Line 3
i = i + 5; //Line 4

}

cout << endl;

Sample Run:

0 5 10 15 20

In Line 1, the variable i is set to 0. The expression in the while statement (in
Line 2), i <= 20, is evaluated. Because the expression i <= 20 evaluates to true, the
body of the while loop executes next. The body of the while loop consists of the
statements in Lines 3 and 4. The statement in Line 3 outputs the value of i, which is 0.
The statement in Line 4 changes the value of i to 5. After executing the statements in
Lines 3 and 4, the expression in the while loop (Line 2) is evaluated again. Because i
is 5, the expression i <= 20 evaluates to true and the body of the while loop executes
again. This process of evaluating the expression and executing the body of the while
loop continues until the expression, i <= 20 (in Line 2), no longer evaluates to true.

The variable i (in Line 2, Example 5-1) in the expression is called the loop control variable.

Note the following from Example 5-1:

a. Within the loop, i becomes 25 but is not printed because the entry
condition is false.

b. If you omit the statement:

i = i + 5;

from the body of the loop, you will have an infinite loop, continually
printing rows of zeros.

262 | Chapter 5: Control Structures II (Repetition)

5

c. You must initialize the loop control variable i before you execute the
loop. If the statement:

i = 0;

(in Line 1) is omitted, the loop may not execute at all. (Recall that
variables in C++ are not automatically initialized.)

d. In Example 5-1, if the two statements in the body of the loop are
interchanged, it may drastically alter the result. For example, consider
the following statements:

i = 0;

while (i <= 20)
{

i = i + 5;
cout << i << " ";

}

cout << endl;

Here, the output is:

5 10 15 20 25

Typically, this would be a semantic error because you rarely want a
condition to be true for i <= 20 and yet produce results for i > 20.

e. If you put a semicolon at the end of the while loop, (after the logical
expression), then the action of the while loop is empty or null. For
example, the action of the following while loop is empty.

i = 0;

while (i <= 20);
{

i = i + 5;
cout << i << " ";

}

cout << endl;

The statements within the braces do not form the body of the while loop.

Designing while Loops
As in Example 5-1, the body of a while executes only when the expression, in the
while statement, evaluates to true. Typically, the expression checks whether a
variable(s), called the loop control variable (LCV), satisfies certain conditions. For
example, in Example 5-1, the expression in the while statement checks whether
i <= 20. The LCV must be properly initialized before the while loop, and it should

while Looping (Repetition) Structure | 263

eventually make the expression evaluate to false. We do this by updating or
reinitializing the LCV in the body of the while loop. Therefore, typically, while loops
are written in the following form:

//initialize the loop control variable(s)

while (expression) //expression tests the LCV
{

.

.

.
//update the loop control variable(s)
.
.
.

}

For instance, in Example 5-1, the statement in Line 1 initializes the LCV i to 0. The
expression, i <= 20, in Line 2, checks whether i is less than or equal to 20, and the
statement in Line 4 updates the value of i.

EXAMPLE 5-2

Consider the following C++ program segment:

i = 20; //Line 1
while (i < 20) //Line 2
{

cout << i << " "; //Line 3
i = i + 5; //Line 4

}
cout << endl; //Line 5

It is easy to overlook the difference between this example and Example 5-1. In this example, in
Line 1, i is set to 20. Because i is 20, the expression i< 20 in the while statement (Line 2)
evaluates to false. Because initially the loop entry condition, i < 20, is false, the body of
the while loop never executes. Hence, no values are output, and the value of i remains 20.

The next few sections describe the various forms of while loops.

Case 1: Counter-Controlled while Loops
Suppose you know exactly how many times certain statements need to be executed. For
example, suppose you know exactly how many pieces of data (or entries) need to be read.
In such cases, the while loop assumes the form of a counter-controlled while loop.
Suppose that a set of statements needs to be executed N times. You can set up a counter

264 | Chapter 5: Control Structures II (Repetition)

(initialized to 0 before the while statement) to track how many items have been read.
Before executing the body of the while statement, the counter is compared with N. If
counter < N, the body of the while statement executes. The body of the loop
continues to execute until the value of counter >= N. Thus, inside the body of the
while statement, the value of counter increments after it reads a new item. In this case,
the while loop might look like the following:

counter = 0; //initialize the loop control variable

while (counter < N) //test the loop control variable
{

.

.

.
counter++; //update the loop control variable
.
.
.

}

If N represents the number of data items in a file, then the value of N can be determined
several ways. The program can prompt you to specify the number of items in the file; an
input statement can read the value; or you can specify the first item in the file as the number
of items in the file, so that you need not remember the number of input values (items). This
is useful if someone other than the programmer enters the data. Consider Example 5-3.

EXAMPLE 5-3

Students at a local middle school volunteered to sell fresh baked cookies to raise funds to
increase the number of computers for the computer lab. Each student reported the number
of boxes he/she sold. We will write a program that will output the total number of boxes of
cookies sold, the total revenue generated by selling the cookies, and the average number of
boxes sold by each student. The data provided is in the following form:

studentName numOf BoxesSold

Consider the following program:

//Program: Counter-Controlled Loop
//This program computes and outputs the total number of boxes of
//cookies sold, the total revenue, and the average number of
//boxes sold by each volunteer.

#include <iostream> //Line 1
#include <string> //Line 2
#include <iomanip> //Line 3

using namespace std; //Line 4

int main() //Line 5

5

while Looping (Repetition) Structure | 265

{ //Line 6
string name; //Line 7
int numOfVolunteers; //Line 8
int numOfBoxesSold; //Line 9
int totalNumOfBoxesSold; //Line 10
int counter; //Line 11
double costOfOneBox; //Line 12

cout << fixed << showpoint << setprecision(2); //Line 13

cout << "Line 14: Enter the number of "
<< "volunteers: "; //Line 14

cin >> numOfVolunteers; //Line 15
cout << endl; //Line 16

totalNumOfBoxesSold = 0; //Line 17
counter = 0; //Line 18

while (counter < numOfVolunteers) //Line 19
{ //Line 20

cout << "Line 21: Enter the volunteer’s name"
<< " and the number of boxes sold: "; //Line 21

cin >> name >> numOfBoxesSold; //Line 22
cout << endl; //Line 23
totalNumOfBoxesSold = totalNumOfBoxesSold

+ numOfBoxesSold; //Line 24
counter++; //Line 25

} //Line 26

cout << "Line 27: The total number of boxes sold: "
<< totalNumOfBoxesSold << endl; //Line 27

cout << "Line 28: Enter the cost of one box: "; //Line 28
cin >> costOfOneBox; //Line 29
cout << endl; //Line 30

cout << "Line 31: The total money made by selling "
<< "cookies: $"
<< totalNumOfBoxesSold * costOfOneBox << endl; //Line 31

if (counter != 0) //Line 32
cout << "Line 33: The average number of "

<< "boxes sold by each volunteer: "
<< totalNumOfBoxesSold / counter << endl; //Line 33

else //Line 34
cout << "Line 35: No input." << endl; //Line 35

return 0; //Line 36
} //Line 37

Sample Run: In this sample run, the user input is shaded.

Line 14: Enter the number of volunteers: 5

Line 21: Enter the volunteer’s name and the number of boxes sold: Sara 120

266 | Chapter 5: Control Structures II (Repetition)

5

Line 21: Enter the volunteer’s name and the number of boxes sold: Lisa 128

Line 21: Enter the volunteer’s name and the number of boxes sold: Cindy 359

Line 21: Enter the volunteer’s name and the number of boxes sold: Nicole 267

Line 21: Enter the volunteer’s name and the number of boxes sold: Blair 165

Line 27: The total number of boxes sold: 1039
Line 28: Enter the cost of one box: 3.50

Line 31: The total money made by selling cookies: $3636.50
Line 33: The average number of boxes sold by each volunteer: 207

This programworks as follows. The statements in Lines 7 to 12 declare the variables used in the
program. The statement in Line 14 prompts the user to enter the number of student volunteers.
The statement in Line 15 inputs this number into the variables numOfVolunteers. The
statements in Lines 17 and 18 initializes the variables totalNumOfBoxesSold and
counter. (The variable counter is the loop control variable.)

The while statement in Line 19 checks the value of counter to determine how
many students’ data have been read. If counter is less than numOfVolunteers, the
while loop proceeds for the next iteration. The statement in Line 21 prompts
the user to input the student’s name and the number of boxes sold by the student.
The statement in Line 22 input the student’s name in the variable name and the
number of boxes sold by the student into the variable numOfBoxesSold. The
statement in Line 24 updates the value of totalNumOfBoxesSold by adding
the value of numOfBoxesSold to the previous value and the statement in Line 25
increments the value of counter by 1. The statement in Line 27 outputs the total
number of boxes sold, the statement in Line 28 prompts the user to inputs the cost of
one box of cookies, and the statement in Line 29 inputs the cost in the variable
costOfOneBox. The statement in Line 31 outputs the total money made by selling
cookies, and the statements in Lines 32 through 35 output the average number of
boxes sold by each volunteer.

Note that totalNumOfBoxesSold is initialized to 0 in Line 17 in this program. In Line
22, after reading the number of boxes sold by a student, the program adds it to the sum of
all the boxes sold before the current number of boxes sold. The first numOfBoxesSold
read will be added to zero (because totalNumOfBoxesSold is initialized to 0), giving
the correct sum of the first number. To find the average, divide totalNumOfBoxesSold
by counter. If counter is 0, then dividing by zero will terminate the program and you
will get an error message. Therefore, before dividing totalNumOfBoxesSold by coun-

ter, you must check whether or not counter is 0.

Notice that in this program, the statement in Line 5 initializes the LCV counter to 0.
The expression counter < numOfVolunteers in Line 19 evaluates whether counter is
less than numOfVolunteers. The statement in Line 25 updates the value of counter.

while Looping (Repetition) Structure | 267

Case 2: Sentinel-Controlled while Loops
You do not always know how many pieces of data (or entries) need to be read, but you
may know that the last entry is a special value, called a sentinel. In this case, you read
the first item before the while statement. If this item does not equal the sentinel, the
body of the while statement executes. The while loop continues to execute as long as
the program has not read the sentinel. Such a while loop is called a sentinel-

controlled while loop. In this case, a while loop might look like the following:

cin >> variable; //initialize the loop control variable

while (variable != sentinel) //test the loop control variable
{

.

.

.
cin >> variable; //update the loop control variable
.
.
.

}

EXAMPLE 5-4

The program in Example 5-3 computes and outputs the total number of boxes of cookies
sold, the total money made, and the average number of boxes sold by each student.
However, the program assumes that the programmer knows the exact number of
volunteers. Now suppose that the programmer does not know the exact number of
volunteers. Once again, assume that the data is in the following form: student’s name
followed by a space and the number of boxes sold by the student. Because we do not
know the exact number of volunteers, we assume that -1 will mark the end of the data.
So consider the following program:

//Program: Sentinel-Controlled Loop
//This program computes and outputs the total number of boxes of
//cookies sold, the total revenue, and the average number of
//boxes sold by each volunteer.

#include <iostream> //Line 1
#include <string> //Line 2
#include <iomanip> //Line 3

using namespace std; //Line 4

const string SENTINEL = "-1"; //Line 5

int main() //Line 6
{ //Line 7

string name; //Line 8
int numOfVolunteers; //Line 9

268 | Chapter 5: Control Structures II (Repetition)

int numOfBoxesSold; //Line 10
int totalNumOfBoxesSold; //Line 11
double costOfOneBox; //Line 12

cout << fixed << showpoint << setprecision(2); //Line 13

cout << "Line 14: Enter volunteers data ending "
<< "with -1: " << endl; //Line 14

totalNumOfBoxesSold = 0; //Line 15
numOfVolunteers = 0; //Line 16

cin >> name; //Line 17

while (name != SENTINEL) //Line 18
{ //Line 19

cin >> numOfBoxesSold; //Line 20
totalNumOfBoxesSold = totalNumOfBoxesSold

+ numOfBoxesSold; //Line 21
numOfVolunteers++; //Line 22
cin >> name; //Line 23

} //Line 24

cout << endl; //Line 25

cout << "Line 26: The total number of boxes sold: "
<< totalNumOfBoxesSold << endl; //Line 26

cout << "Line 27: Enter the cost of one box: "; //Line 27
cin >> costOfOneBox; //Line 28
cout << endl; //Line 29

cout << "Line 30: The total money made by selling "
<< "cookies: $"
<< totalNumOfBoxesSold * costOfOneBox << endl; //Line 30

if (numOfVolunteers != 0) //Line 31
cout << "Line 32: The average number of "

<< "boxes sold by each volunteer: "
<< totalNumOfBoxesSold / numOfVolunteers
<< endl; //Line 32

else //Line 33
cout << "Line 34: No input." << endl; //Line 34

return 0; //Line 35
} //Line 36

5

while Looping (Repetition) Structure | 269

Sample Run: In this sample run, the user input is shaded.

Line 14: Enter volunteers data ending with -1:
Sara 120
Lisa 128
Cindy 359
Nicole 267
Blair 165
Abby 290
Amy 190
Megan 450
Elizabeth 280
Meredith 290
Leslie 430
Chelsea 378
-1

Line 26: The total number of boxes sold: 3347
Line 27: Enter the cost of one box: 3.50

Line 30: The total money made by selling cookies: $11714.50
Line 32: The average number of boxes sold by each volunteer: 278

This program works as follows. The statements in Lines 8 to 12 declare the variables used in
the program. The statement in Line 14 prompts the user to enter the data ending with -1.
The statements in Lines 15 and 16 initialize the variables totalNumOfBoxesSold and
numOfVolunteers. The statement in Line 17 reads the first name and stores it in name.
The while statement in Line 18 checks whether name is not equal to SENTINEL. (The
variable name is the loop control variable.) If name is not equal to SENTINEL, the body of
the while loop executes. The statement in Line 20 reads and stores the number of boxes
sold by the student in the variable numOfBoxesSold and the statement in Line 21 updates
the value of totalNumOfBoxesSold by adding numOfBoxesSold to it. The statement
in Line 22 increments the value of numOfVolunteers by 1, and the statement in Line 23
reads and stores the next name into name. The statements in Lines 20 through 23 repeat
until the program reads the SENTINEL. The statement in Line 26 outputs the total number
of boxes sold, the statement in Line 27 prompts the user to input the cost of one box of
cookies, and the statement in Line 28 inputs the cost in the variable costOfOneBox. The
statement in Line 30 outputs the total money made by selling cookies, and the statements in
Lines 31 through 34 output the average number of boxes sold by each volunteer.

Notice that the statement in Line 17 initializes the LCV name. The expression name !¼
SENTINEL in Line 18 checks whether the value of name is equal to SENTINEL. The
statement in Line 23 reinitializes the LCV name.

Next, consider another example of a sentinel-controlled while loop. In this example, the
user is prompted to enter the value to be processed. If the user wants to stop the program,
he or she can enter the sentinel.

270 | Chapter 5: Control Structures II (Repetition)

EXAMPLE 5-5

Telephone Digits

The following program reads the letter codes A to Z and prints the corresponding
telephone digit. This program uses a sentinel-controlled while loop. To stop the
program, the user is prompted for the sentinel, which is #. This is also an example of a
nested control structure, in which if. . .else, switch, and the while loop are nested.

//**
// Program: Telephone Digits
// This is an example of a sentinel-controlled loop. This
// program converts uppercase letters to their corresponding
// telephone digits.
//**

#include <iostream>

using namespace std;

int main()
{

char letter; //Line 1

cout << "Program to convert uppercase "
<< "letters to their corresponding "
<< "telephone digits." << endl; //Line 2

cout << "To stop the program enter #."
<< endl; //Line 3

cout << "Enter a letter: "; //Line 4
cin >> letter; //Line 5
cout << endl; //Line 6

while (letter != '#') //Line 7
{

cout << "The letter you entered is: "
<< letter << endl; //Line 8

cout << "The corresponding telephone "
<< "digit is: "; //Line 9

if (letter >= 'A' && letter <= 'Z') //Line 10
switch (letter) //Line 11
{
case 'A':
case 'B':
case 'C':

cout << 2 <<endl; //Line 12
break; //Line 13

5

while Looping (Repetition) Structure | 271

case 'D':
case 'E':
case 'F':

cout << 3 << endl; //Line 14
break; //Line 15

case 'G':
case 'H':
case 'I':

cout << 4 << endl; //Line 16
break; //Line 17

case 'J':
case 'K':
case 'L':

cout << 5 << endl; //Line 18
break; //Line 19

case 'M':
case 'N':
case 'O':

cout << 6 << endl; //Line 20
break; //Line 21

case 'P':
case 'Q':
case 'R':
case 'S':

cout << 7 << endl; //Line 22
break; //Line 23

case 'T':
case 'U':
case 'V':

cout << 8 << endl; //Line 24
break; //Line 25

case 'W':
case 'X':
case 'Y':
case 'Z':

cout << 9 << endl; //Line 26
}

else //Line 27
cout << "Invalid input." << endl; //Line 28

cout << "\nEnter another uppercase "
<< "letter to find its "
<< "corresponding telephone digit."
<< endl; //Line 29

cout << "To stop the program enter #."
<< endl; //Line 30

cout << "Enter a letter: "; //Line 31
cin >> letter; //Line 32
cout << endl; //Line 33

}//end while

return 0;
}

272 | Chapter 5: Control Structures II (Repetition)

5

Sample Run: In this sample run, the user input is shaded.

Program to convert uppercase letters to their corresponding telephone
digits.
To stop the program enter #.
Enter a letter: A
The letter you entered is: A
The corresponding telephone digit is: 2

Enter another uppercase letter to find its corresponding telephone digit.
To stop the program enter #.
Enter a letter: D
The letter you entered is: D
The corresponding telephone digit is: 3

Enter another uppercase letter to find its corresponding telephone digit.
To stop the program enter #.
Enter a letter: #

This program works as follows. The statements in Lines 2 and 3 tell the user what to do. The
statement in Line 4 prompts the user to input a letter; the statement in Line 5 reads and stores
that letter into the variable letter. The while loop in Line 7 checks that the letter is #. If
the letter entered by the user is not #, the body of the while loop executes. The statement in
Line 8 outputs the letter entered by the user. The if statement in Line 10 checks whether
the letter entered by the user is uppercase. The statement part of the if statement is the
switch statement (Line 11). If the letter entered by the user is uppercase, the expression
in the if statement (in Line 10) evaluates to true and the switch statement executes; if the
letter entered by the user is not uppercase, the else statement (Line 27) executes. The
statements in Lines 12 through 26 determine the corresponding telephone digit.

Once the current letter is processed, the statements in Lines 29 and 30 again inform
the user what to do next. The statement in Line 31 prompts the user to enter a letter; the
statement in Line 32 reads and stores that letter into the variable letter. (Note that the
statement in Line 29 is similar to the statement in Line 2 and that the statements in Lines
30 through 33 are the same as the statements in Lines 3 through 6.) After the statement in
Line 33 (at the end of the while loop) executes, the control goes back to the top of the while
loop and the same process begins again. When the user enters #, the program terminates.

Notice that in this program, the variable letter is the loop control variable. First, it is
initialized in Line 5 by the input statement, and then it is updated in Line 32. The
expression in Line 7 checks whether letter is #.

In the program in Example 5-5, you can write the statements between Lines 10 and 28

using a switch structure. (See Programming Exercise 3 at the end of this chapter.)

Case 3: Flag-Controlled while Loops
A flag-controlled while loop uses a bool variable to control the loop. Suppose
found is a bool variable. The flag-controlled while loop takes the following form:

while Looping (Repetition) Structure | 273

found = false; //initialize the loop control variable

while (!found) //test the loop control variable
{

.

.

.
if (expression)

found = true; //update the loop control variable
.
.
.

}

The variable found, which is used to control the execution of the while loop, is called a
flag variable.

Example 5-6 further illustrates the use of a flag-controlled while loop.

EXAMPLE 5-6

Number Guessing Game

The following program randomly generates an integer greater than or equal to 0 and less
than 100. The program then prompts the user to guess the number. If the user guesses
the number correctly, the program outputs an appropriate message. Otherwise, the
program checks whether the guessed number is less than the random number. If the
guessed number is less than the random number generated by the program, the program
outputs the message ‘‘Your guess is lower than the number. Guess again!’’; otherwise, the
program outputs the message ‘‘Your guess is higher than the number. Guess again!’’. The
program then prompts the user to enter another number. The user is prompted to guess
the random number until the user enters the correct number.

To generate a random number, you can use the function rand of the header file
cstdlib. For example, the expression rand() returns an int value between 0 and
32767. Therefore, the statement:

cout << rand() << ", " << rand() << endl;

will output two numbers that appear to be random. However, each time the program is
run, this statement will output the same random numbers. This is because the function
rand uses an algorithm that produces the same sequence of random numbers each time the
program is executed on the same system. To generate different random numbers each time
the program is executed, you also use the function srand of the header file cstdlib. The
function srand takes as input an unsigned int, which acts as the seed for the algorithm.
By specifying different seed values, each time the program is executed, the function rand

will generate a different sequence of random numbers. To specify a different seed, you can
use the function time of the header file ctime, which returns the number of seconds
elapsed since January 1, 1970. For example, consider the following statements:

274 | Chapter 5: Control Structures II (Repetition)

5

srand(time(0));
num = rand() % 100;

The first statement sets the seed, and the second statement generates a random number
greater than or equal to 0 and less than 100. Note how the function time is used. It is
used with an argument, that is, parameter, which is 0.

The program uses the bool variable isGuessed to control the loop. The bool variable
isGuessed is initialized to false. It is set to true when the user guesses the correct
number.

//Flag-controlled while loop.
//Number guessing game.

#include <iostream>
#include <cstdlib>
#include <ctime>

using namespace std;

int main()
{

//declare the variables
int num; //variable to store the random

//number
int guess; //variable to store the number

//guessed by the user
bool isGuessed; //boolean variable to control

//the loop

srand(time(0)); //Line 1
num = rand() % 100; //Line 2

isGuessed = false; //Line 3

while (!isGuessed) //Line 4
{ //Line 5

cout << "Enter an integer greater"
<< " than or equal to 0 and "
<< "less than 100: "; //Line 6

cin >> guess; //Line 7
cout << endl; //Line 8

if (guess == num) //Line 9
{ //Line 10

cout << "You guessed the correct "
<< "number." << endl; //Line 11

isGuessed = true; //Line 12
} //Line 13
else if (guess < num) //Line 14

cout << "Your guess is lower than the "
<< "number.\n Guess again!"
<< endl; //Line 15

while Looping (Repetition) Structure | 275

else //Line 16
cout << "Your guess is higher than "

<< "the number.\n Guess again!"
<< endl; //Line 17

} //end while //Line 18

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Enter an integer greater than or equal to 0 and less than 100: 45

Your guess is higher than the number.
Guess again!

Enter an integer greater than or equal to 0 and less than 100: 20

Your guess is lower than the number.
Guess again!

Enter an integer greater than or equal to 0 and less than 100: 35

Your guess is higher than the number.
Guess again!

Enter an integer greater than or equal to 0 and less than 100: 28

Your guess is lower than the number.
Guess again!

Enter an integer greater than or equal to 0 and less than 100: 32

You guessed the correct number.

The preceding program works as follows: The statement in Line 2 creates an integer
greater than or equal to 0 and less than 100 and stores this number in the variable num.
The statement in Line 3 sets the bool variable isGuessed to false. The expression in
the while loop at Line 4 evaluates the expression !isGuessed. If isGuessed is
false, then !isGuessed is true and the body of the while loop executes; if
isGuessed is true, then !isGuessed is false, so the while loop terminates.

The statement in Line 6 prompts the user to enter an integer greater than or equal to 0

and less than 100. The statement in Line 7 stores the number entered by the user in the
variable guess. The expression in the if statement in Line 9 determines whether
the value of guess is the same as num, that is, if the user guessed the number correctly.
If the value of guess is the same as num, the statement in Line 11 outputs the message:

You guessed the correct number.

The statement in Line 12 sets the variable isGuessed to true. The control then goes
back to Line 3. Because done is true, !isGuessed is false and the while loop
terminates. If the expression in Line 9 evaluates to false, then the else statement in
Line 14 determines whether the value of guess is less than or greater than num and
outputs the appropriate message.

276 | Chapter 5: Control Structures II (Repetition)

5

Case 4: EOF-Controlled while Loops
If the data file is frequently altered (for example, if data is frequently added or deleted), it’s
best not to read the data with a sentinel value. Someone might accidentally erase the sentinel
value or add data past the sentinel, especially if the programmer and the data entry person are
different people. Also, it can be difficult at times to select a good sentinel value. In such
situations, you can use an end-of-file (EOF)-controlled while loop.

Until now, we have used an input stream variable, such as cin, and the extraction
operator, >>, to read and store data into variables. However, the input stream variable
can also return a value after reading data, as follows:

1. If the program has reached the end of the input data, the input stream
variable returns the logical value false.

2. If the program reads any faulty data (such as a char value into an int
variable), the input stream enters the fail state. Once a stream enters the fail
state, any further I/O operations using that stream are considered to be null
operations; that is, they have no effect. Unfortunately, the computer does
not halt the program or give any error messages. It just continues executing
the program, silently ignoring each additional attempt to use that stream. In
this case, the input stream variable returns the value false.

3. In cases other than (1) and (2), the input stream variable returns the
logical value true.

You can use the value returned by the input stream variable to determine whether the
program has reached the end of the input data. Because the input stream variable returns the
logical value true or false, in a while loop, it can be considered a logical expression.

The following is an example of an EOF-controlled while loop:

cin >> variable; //initialize the loop control variable

while (cin) //test the loop control variable
{

.

.

.
cin >> variable; //update the loop control variable
.
.
.

}

Notice that here, the variable cin acts as the loop control variable.

eof Function

In addition to checking the value of an input stream variable, such as cin, to determine
whether the end of the file has been reached, C++ provides a function that you can use
with an input stream variable to determine the end-of-file status. This function is called

while Looping (Repetition) Structure | 277

eof. Like the I/O functions—such as get, ignore, and peek, discussed in Chapter 3—
the function eof is a member of the data type istream.

The syntax to use the function eof is:

istreamVar.eof()

in which istreamVar is an input stream variable, such as cin.

Suppose you have the declaration:

ifstream infile;

Further suppose that you opened a file using the variable infile. Consider the expression:

infile.eof()

This is a logical (Boolean) expression. The value of this expression is true if the program has
read past the end of the input file, infile; otherwise, the value of this expression is false.

This method of determining the end-of-file status (that is, using the function eof) works
best if the input is text. The earlier method of determining the end-of-file status works
best if the input consists of numeric data.

Suppose you have the declaration:

ifstream infile;
char ch;

infile.open("inputDat.dat");

The following while loop continues to execute as long as the program has not reached
the end of the file:

infile.get(ch);

while (!infile.eof())
{

cout << ch;
infile.get(ch);

}

As long as the program has not reached the end of the input file, the expression:

infile.eof()

is false and so the expression:

!infile.eof()

in the while statement is true. When the program reads past the end of the input file,
the expression:

infile.eof()

278 | Chapter 5: Control Structures II (Repetition)

5

becomes true, so the expression:

!infile.eof()

in the while statement becomes false and the loop terminates.

In the Windows console environment, the end-of-file marker is entered using Ctrl+z

(hold the Ctrl key and press z). In the UNIX environment, the end-of-file marker is

entered using Ctr+d (hold the Ctrl key and press d).

EXAMPLE 5-7

The following code uses an EOF-controlled while loop to find the sum of a set of
numbers:

int sum = 0;
int num;

cin >> num;

while (cin)
{

sum = sum + num; //Add the number to sum
cin >> num; //Get the next number

}

cout << "Sum = " << sum << endl;

EXAMPLE 5-8

Suppose we are given a file consisting of students’ names and their test scores, a number
between 0 and 100 (inclusive). Each line in the file consists of a student name followed by
the test score. We want a program that outputs each student’s name followed by the test
score followed by the grade. The program also needs to output the average test score for
the class. Consider the following program:

// This program reads data from a file consisting of students'
// names and their test scores. The program outputs each student's
// name followed by the test score followed by the grade. The
// program also outputs the average test score for all the students.

#include <iostream> //Line 1
#include <fstream> //Line 2
#include <string> //Line 3
#include <iomanip> //Line 4

using namespace std; //Line 5

while Looping (Repetition) Structure | 279

int main() //Line 6
{ //Line 7

//Declare variables to manipulate data
string firstName; //Line 8
string lastName; //Line 9
double testScore; //Line 10
char grade = ' '; //Line 11
double sum = 0; //Line 12
int count = 0; //Line 13

//Declare stream variables
ifstream inFile; //Line 14
ofstream outFile; //Line 15

//Open input file
inFile.open("Ch5_stData.txt"); //Line 16

if (!inFile) //Line 17
{ //Line 18

cout << "Cannot open input file. "
<< "Program terminates!" << endl; //Line 19

return 1; //Line 20
} //Line 21

//Open output file
outFile.open("Ch5_stData.out"); //Line 22

outFile << fixed << showpoint << setprecision(2); //Line 23

inFile >> firstName >> lastName; //read the name Line 24
inFile >> testScore; //read the test score Line 25

while (inFile) //Line 26
{ //Line 27

sum = sum + testScore; //update sum Line 28
count++; //increment count Line 29

//determine the grade
switch (static_cast<int> (testScore) / 10) //Line 30
{ //Line 31
case 0: //Line 32
case 1: //Line 33
case 2: //Line 34
case 3: //Line 35
case 4: //Line 36
case 5: //Line 37

grade = 'F'; //Line 38
break; //Line 39

case 6: //Line 40
grade = 'D'; //Line 41
break; //Line 42

case 7: //Line 43
grade = 'C'; //Line 44
break; //Line 45

280 | Chapter 5: Control Structures II (Repetition)

5

case 8: //Line 46
grade = 'B'; //Line 47
break; //Line 48

case 9: //Line 49
case 10: //Line 50

grade = 'A'; //Line 51
break; //Line 52

default: //Line 53
cout << "Invalid score." << endl; //Line 54

}//end switch //Line 55

outFile << left << setw(12) << firstName
<< setw(12) << lastName
<< right << setw(4) << testScore
<< setw(2) << grade << endl; //Line 56

inFile >> firstName >> lastName; //read the name Line 57
inFile >> testScore; //read the test score Line 58

}//end while //Line 59

outFile << endl; //Line 60

if (count != 0) //Line 61
outFile << "Class Average: " << sum / count

<<endl; //Line 62
else //Line 63

outFile << "No data." << endl; //Line 64

inFile.close(); //Line 65
outFile.close(); //Line 66

return 0; //Line 67
} //Line 68

Sample Run:

Input File:

Steve Gill 89
Rita Johnson 91.5
Randy Brown 85.5
Seema Arora 76.5
Samir Mann 73
Samantha McCoy 88.5

Output File:

Steve Gill 89.00 B
Rita Johnson 91.50 A
Randy Brown 85.50 B
Seema Arora 76.50 C
Samir Mann 73.00 C
Samantha McCoy 88.50 B

Class Average: 84.00

while Looping (Repetition) Structure | 281

The preceding program works as follows. The statements in Lines 8 to 13 declare and
initialize variables needed by the program. The statement in Lines 14 and 15 declares
inFile to be an ifstream variable and outFile to be an ofstream variable. The
statement in Line 16 opens the input file using the variable inFile. If the input file does
not exist, the statements in Lines 17 to 21 output an appropriate message and terminate
the program. The statement in Line 22 opens the output file using the variable outFile.
The statement in Line 23 sets the output of floating-point numbers to two decimal places
in a fixed form with trailing zeros.

The statements in Lines 24 and 25 and the while loop in Line 26 read each student’s first
name, last name, and test score and then output the name followed by the test score
followed by the grade. Specifically, the statement in Lines 24 and 57 reads the first and last
name; the statement in Lines 25 and 58 reads the test score. The statement in Line 28
updates the value of sum. (After reading all the data, the value of sum stores the sum of all
the test scores.) The statement in Line 29 updates the value of count. (The variable
count stores the number of students in the class.) The switch statement from Lines 30
to 55 determines the grade from testScore and stores it in the variable grade. The
statement in Line 56 outputs a student’s first name, last name, test score, and grade.

The if...else statement in Lines 61 to 64 outputs the class average and the statements
in Lines 65 and 66 close the files.

The Programming Example: Checking Account Balance, available on the Web site
accompanying this book, further illustrates how to use an EOF-controlled while loop
in a program.

More on Expressions in while Statements
In the examples of the previous sections, the expression in the while statement is quite
simple. In other words, the while loop is controlled by a single variable. However, there
are situations when the expression in the while statement may be more complex.

For example, the program in Example 5-6 uses a flag-controlled while loop to imple-
ment the Number Guessing Game. However, the program gives as many tries as the user
needs to guess the number. Suppose you want to give the user no more than five tries to
guess the number. If the user does not guess the number correctly within five tries, then
the program outputs the random number generated by the program as well as a message
that you have lost the game. In this case, you can write the while loop as follows (assume
that noOfGuesses is an int variable initialized to 0):

while ((noOfGuesses < 5) && (!isGuessed))
{

cout << "Enter an integer greater than or equal to 0 and "
<< "less than 100: ";

cin >> guess;
cout << endl;

282 | Chapter 5: Control Structures II (Repetition)

noOfGuesses++;
if (guess == num)
{

cout << "Winner!. You guessed the correct number."
<< endl;

isGuessed = true;
}
else if (guess < num)

cout << "Your guess is lower than the number.\n"
<< "Guess again!" << endl;

else
cout << "Your guess is higher than the number.\n"

<< "Guess again!" << endl;
}//end while

You also need the following code to be included after the while loop in case the user
cannot guess the correct number in five tries:

if (!isGuessed)
cout << "You lose! The correct number is " << num << endl;

Programming Exercise 16 at the end of this chapter asks you to write a complete C++
program to implement the Number Guessing Game in which the user has, at most, five
tries to guess the number.

As you can see from the preceding while loop, the expression in a while statement can
be complex. The main objective of a while loop is to repeat certain statement(s) until
certain conditions are met.

5

PROGRAMMING EXAMPLE: Fibonacci Number
So far, you have seen several examples of loops. Recall that in C++, while loops are
used when a certain statement(s) must be executed repeatedly until certain conditions are
met. Following is a C++ program that uses a while loop to find a Fibonacci number.

Consider the following sequence of numbers:

1, 1, 2, 3, 5, 8, 13, 21, 34,

This sequence is called the Fibonacci sequence. Given the first two numbers of the
sequence (say, a1 and a2), the nth number an, n >= 3, of this sequence is given by:

an ¼ an�1 þ an�2

Thus:

a3 ¼ a2 þ a1 ¼ 1þ 1 ¼ 2;
a4 ¼ a3 þ a2 ¼ 2þ 1 ¼ 3;

and so on.

Watch

the Video

Programming Example: Fibonacci Number | 283

Note that a2 = 1 and a1 = 1. However, given any first two numbers, using this
process, you can determine the nth number, an,n >= 3, of the sequence. We will
again call such a sequence a Fibonacci sequence. Suppose a2 = 6 and a1 = 3.

Then:

a3 ¼ a2 þ a1 ¼ 6þ 3 ¼ 9; a4 ¼ a3 þ a2 ¼ 9þ 6 ¼ 15

Next, we write a program that determines the nth Fibonacci number given the first
two numbers.

Input The first two Fibonacci numbers and the desired Fibonacci number.

Output The nth Fibonacci number.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

To find, say, the tenth Fibonacci number of a sequence, you must first find a9 and a8,
which requires you to find a7 and a6, and so on. Therefore, to find a10, you must first
find a3, a4, a5, . . ., a9. This discussion translates into the following algorithm:

1. Get the first two Fibonacci numbers.

2. Get the desired Fibonacci number. That is, get the position, n, of
the Fibonacci number in the sequence.

3. Calculate the next Fibonacci number by adding the previous two
elements of the Fibonacci sequence.

4. Repeat Step 3 until the nth Fibonacci number is found.

5. Output the nth Fibonacci number.

Note that the program assumes that the first number of the Fibonacci sequence is less
than or equal to the second number of the Fibonacci sequence, and both numbers are
nonnegative. Moreover, the program also assumes that the user enters a valid value
for the position of the desired number in the Fibonacci sequence; that is, it is a
positive integer. (See Programming Exercise 12 at the end of this chapter.)

Variables Because the last two numbers must be known in order to find the current
Fibonacci number, you need the following variables: two variables—say,
previous1 and previous2 to hold the previous two numbers of the Fibonacci
sequence; and one variable—say, current—to hold the current Fibonacci
number. The number of times that Step 2 of the algorithm repeats depends on
the position of the Fibonacci number you are calculating. For example, if you
want to calculate the tenth Fibonacci number, you must execute Step 3 eight
times. (Remember—the user gives the first two numbers of the Fibonacci
sequence.) Therefore, you need a variable to store the number of times Step 3
should execute. You also need a variable to track the number of times Step 3 has
executed, the loop control variable. You therefore need five variables for the data
manipulation:

int previous1; //variable to store the first Fibonacci number
int previous2; //variable to store the second Fibonacci number

284 | Chapter 5: Control Structures II (Repetition)

5

int current; //variable to store the current
//Fibonacci number

int counter; //loop control variable
int nthFibonacci; //variable to store the desired

//Fibonacci number

To calculate the third Fibonacci number, add the values of previous1 and previous2

and store the result in current. To calculate the fourth Fibonacci number, add the value
of the second Fibonacci number (that is,previous2) and the value of the third Fibonacci
number (that is, current). Thus, when the fourth Fibonacci number is calculated, you
no longer need the first Fibonacci number. Instead of declaring additional variables, which
could be too many, after calculating a Fibonacci number to determine the next Fibonacci
number, current becomes previous2 and previous2 becomes previous1.
Therefore, you can again use the variable current to store the next Fibonacci number.
This process is repeated until the desired Fibonacci number is calculated. Initially,
previous1 and previous2 are the first two elements of the sequence, supplied by the
user. From the preceding discussion, it follows that you need five variables.

MAIN

ALGORITHM

1. Prompt the user for the first two numbers—that is, previous1 and
previous2.

2. Read (input) the first two numbers into previous1 and previous2.

3. Output the first two Fibonacci numbers. (Echo input.)

4. Prompt the user for the position of the desired Fibonacci number.

5. Read the position of the desired Fibonacci number into
nthFibonacci.

6. a. if (nthFibonacci == 1)
the desired Fibonacci number is the first Fibonacci number.
Copy the value of previous1 into current.

b. else if (nthFibonacci == 2)
the desired Fibonacci number is the second Fibonacci number.
Copy the value of previous2 into current.

c. else calculate the desired Fibonacci number as follows:

Because you already know the first two Fibonacci numbers of
the sequence, start by determining the third Fibonacci number.

c.1. Initialize counter to 3 to keep track of the calculated
Fibonacci numbers.

c.2. Calculate the next Fibonacci number, as follows:

current = previous2 + previous1;

c.3. Assign the value of previous2 to previous1.

c.4. Assign the value of current to previous2.

c.5. Increment counter.

Programming Example: Fibonacci Number | 285

Repeat Steps c.2 through c.5 until the Fibonacci number youwant is calculated.

The following while loop executes Steps c.2 through c.5 and determines the
nth Fibonacci number.

while (counter <= nthFibonacci)
{

current = previous2 + previous1;
previous1 = previous2;
previous2 = current;
counter++;

}

7. Output the nthFibonacci number, which is current.

COMPLETE PROGRAM LISTING

//***
// Authors: D.S. Malik
//
// Program: nth Fibonacci number
// Given the first two numbers of a Fibonacci sequence, this
// program determines and outputs the desired number of the
// Fibonacci sequence.
//***

#include <iostream>

using namespace std;

int main()
{

//Declare variables
int previous1;
int previous2;
int current;
int counter;
int nthFibonacci;

cout << "Enter the first two Fibonacci "
<< "numbers: "; //Step 1

cin >> previous1 >> previous2; //Step 2
cout << endl;
cout << "The first two Fibonacci numbers are "

<< previous1 << " and " << previous2
<< endl; //Step 3

cout << "Enter the position of the desired "
<< "Fibonacci number: "; //Step 4

cin >> nthFibonacci; //Step 5
cout << endl;

if (nthFibonacci == 1) //Step 6.a
current = previous1;

286 | Chapter 5: Control Structures II (Repetition)

for Looping (Repetition) Structure
The while loop discussed in the previous section is general enough to implement
most forms of repetitions. The C++ for looping structure discussed here is a specialized
form of the while loop. Its primary purpose is to simplify the writing of counter-controlled
loops. For this reason, the for loop is typically called a counted or indexed for loop.

5

else if (nthFibonacci == 2) //Step 6.b
current = previous2;

else //Step 6.c
{

counter = 3; //Step 6.c.1

//Steps 6.c.2 - 6.c.5
while (counter <= nthFibonacci)
{

current = previous2 + previous1; //Step 6.c.2
previous1 = previous2; //Step 6.c.3
previous2 = current; //Step 6.c.4
counter++; //Step 6.c.5

}//end while
}//end else

cout << "The Fibonacci number at position "
<< nthFibonacci << " is " << current
<< endl; //Step 7

return 0;
}//end main

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1:

Enter the first two Fibonacci numbers: 12 16

The first two Fibonacci numbers are 12 and 16
Enter the position of the desired Fibonacci number: 10

The Fibonacci number at position 10 is 796

Sample Run 2:

Enter the first two Fibonacci numbers: 1 1

The first two Fibonacci numbers are 1 and 1
Enter the position of the desired Fibonacci number: 15

The Fibonacci number at position 15 is 610

for Looping (Repetition) Structure | 287

The general form of the for statement is:

for (initial statement; loop condition; update statement)
statement

The initial statement, loop condition, and update statement (called for
loop control statements) enclosed within the parentheses control the body (statement)
of the for statement. Figure 5-2 shows the flow of execution of a for loop.

The for loop executes as follows:

1. The initial statement executes.

2. The loop condition is evaluated. If the loop condition evaluates
to true:

i. Execute the for loop statement.

ii. Execute the update statement (the third expression in the parentheses).

3. Repeat Step 2 until the loop condition evaluates to false.

The initial statement usually initializes a variable (called the for loop control, or
for indexed, variable).

In C++, for is a reserved word.

As the name implies, the initial statement in the for loop is the first statement to

execute; it executes only once.

initial
statement

loop
condition statement

update
statement

true

false

FIGURE 5-2 for loop

288 | Chapter 5: Control Structures II (Repetition)

EXAMPLE 5-9

The following for loop prints the first 10 nonnegative integers:

for (i = 0; i < 10; i++)
cout << i << " ";

cout << endl;

The initial statement, i = 0;, initializes the int variable i to 0. Next, the loop
condition, i < 10, is evaluated. Because 0 < 10 is true, the print statement executes and
outputs 0. The update statement, i++, then executes, which sets the value of i to 1.
Once again, the loop condition is evaluated, which is still true, and so on. When i

becomes 10, the loop condition evaluates to false, the for loop terminates, and
the statement following the for loop executes.

A for loop can have either a simple or compound statement.

The following examples further illustrate how a for loop executes.

EXAMPLE 5-10

1. The following for loop outputs Hello! and a star (on separate lines)
five times:

for (i = 1; i <= 5; i++)
{

cout << "Hello!" << endl;
cout << "*" << endl;

}

2. Consider the following for loop:

for (i = 1; i <= 5; i++)
cout << "Hello!" << endl;
cout << "*" << endl;

This loop outputs Hello! five times and the star only once. Note that
the for loop controls only the first output statement because the two
output statements are not made into a compound statement. Therefore,
the first output statement executes five times because the for loop body
executes five times. After the for loop executes, the second output
statement executes only once. The indentation, which is ignored by the
compiler, is nevertheless misleading.

5

for Looping (Repetition) Structure | 289

EXAMPLE 5-11

The following for loop executes five empty statements:

for (i = 0; i < 5; i++); //Line 1
cout << "*" << endl; //Line 2

The semicolon at the end of the for statement (before the output statement, Line 1)
terminates the for loop. The action of this for loop is empty, that is, null.

The preceding examples show that care is required in getting a for loop to perform the
desired action.

The following are some comments on for loops:

• If the loop condition is initially false, the loop body does not execute.

• The update expression, when executed, changes the value of the
loop control variable (initialized by the initial expression), which even-
tually sets the value of the loop condition to false. The for loop
body executes indefinitely if the loop condition is always true.

• C++ allows you to use fractional values for loop control variables of the
double type (or any real data type). Because different computers can
give these loop control variables different results, you should avoid using
such variables.

• A semicolon at the end of the for statement (just before the body of the
loop) is a semantic error. In this case, the action of the for loop is empty.

• In the for statement, if the loop condition is omitted, it is assumed
to be true.

• In a for statement, you can omit all three statements—initial

statement, loop condition, and update statement. The follow-
ing is a legal for loop:

for (;;)
cout << "Hello" << endl;

This is an infinite for loop, continuously printing the word Hello.

Following are more examples of for loops.

EXAMPLE 5-12

You can count backward using a for loop if the for loop control expressions are set correctly.

For example, consider the following for loop:

for (i = 10; i >= 1; i--)
cout << " " << i;

cout << endl;

290 | Chapter 5: Control Structures II (Repetition)

5

The output is:

10 9 8 7 6 5 4 3 2 1

In this for loop, the variable i is initialized to 10. After each iteration of the loop, i is
decremented by 1. The loop continues to execute as long as i >= 1.

EXAMPLE 5-13

You can increment (or decrement) the loop control variable by any fixed number. In the
following for loop, the variable is initialized to 1; at the end of the for loop, i is
incremented by 2. This for loop outputs the first 10 positive odd integers.

for (i = 1; i <= 20; i = i + 2)
cout << " " << i;

cout << endl;

EXAMPLE 5-14

Suppose that i is an int variable.

1. Consider the following for loop:

for (i = 10; i <= 9; i++)
cout << i << " ";

cout << endl;

In this for loop, the initial statement sets i to 10. Because initially the loop
condition (i <= 9) is false, nothing happens.

2. Consider the following for loop:

for (i = 9; i >= 10; i--)
cout << i << " ";

cout << endl;

In this for loop, the initial statement sets i to 9. Because initially the loop condition
(i >= 10) is false, nothing happens.

3. Consider the following for loop:

for (i = 10; i <= 10; i++) //Line 1
cout << i << " "; //Line 2

cout << endl; //Line 3

In this for loop, the initial statement sets i to 10. The loop condition (i <= 10)
evaluates to true, so the output statement in Line 2 executes, which outputs 10.

for Looping (Repetition) Structure | 291

Next, the update statement increments the value of i by 1, so the value of i becomes
11. Now the loop condition evaluates to false and the for loop terminates. Note
that the output statement in Line 2 executes only once.

4. Consider the following for loop:

for (i = 1; i <= 10; i++); //Line 1
cout << i << " "; //Line 2

cout << endl; //Line 3

This for loop has no effect on the output statement in Line 2. The semicolon at the
end of the for statement terminates the for loop; the action of the for loop is thus
empty. The output statement is all by itself and executes only once.

5. Consider the following for loop:

for (i = 1; ; i++)
cout << i << " ";

cout << endl;

In this for loop, because the loop condition is omitted from the for statement,
the loop condition is always true. This is an infinite loop.

EXAMPLE 5-15

In this example, a for loop reads five numbers and finds their sum and average.
Consider the following program code, in which i, newNum, sum, and average are
int variables.

sum = 0;

for (i = 1; i <= 5; i++)
{

cin >> newNum;
sum = sum + newNum;

}

average = sum / 5;
cout << "The sum is " << sum << endl;
cout << "The average is " << average << endl;

In the preceding for loop, after reading a newNum, this value is added to the previously
calculated (partial) sum of all the numbers read before the current number. The variable
sum is initialized to 0 before the for loop. Thus, after the program reads the first
number and adds it to the value of sum, the variable sum holds the correct sum of the
first number.

292 | Chapter 5: Control Structures II (Repetition)

The syntax of the for loop, which is:

for (initial expression; logical expression; update expression)
statement

is functionally equivalent to the following while statement:

initial expression
while (expression)
{

statement
update expression

}

For example, the following for and while loops are equivalent:

for (int i = 0; i < 10; i++) int i = 0;
cout << i << " "; while (i < 10)

cout << endl; {
cout << i << " ";
i++;

}
cout << endl;

If the number of iterations of a loop is known or can be determined in advance, typically

programmers use a for loop.

EXAMPLE 5-16 (F IBONACCI NUMBER PROGRAM: REVISITED)

The Programming Example: Fibonacci Number given in the previous section uses a
while loop to determine the desired Fibonacci number. You can replace the while
loop with an equivalent for loop as follows:

for (counter = 3; counter <= nthFibonacci; counter++)
{

current = previous2 + previous1;
previous1 = previous2;
previous2 = current;
counter++;

}//end for

The complete program listing of the program that uses a for loop to determine the
desired Fibonacci number is given at the Web site accompanying this book. The program
is named Ch5_FibonacciNumberUsingAForLoop.cpp.

In the following C++ program, we recommend that you walk through each step.

5

for Looping (Repetition) Structure | 293

EXAMPLE 5-17

The following C++ program finds the sum of the first n positive integers.

//Program to determine the sum of the first n positive integers.

#include <iostream>

using namespace std;

int main()
{

int counter; //loop control variable
int sum; //variable to store the sum of numbers
int n; //variable to store the number of

//first positive integers to be added

cout << "Line 1: Enter the number of positive "
<< "integers to be added: "; //Line 1

cin >> n; //Line 2
sum = 0; //Line 3
cout << endl; //Line 4

for (counter = 1; counter <= n; counter++) //Line 5
sum = sum + counter; //Line 6

cout << "Line 7: The sum of the first " << n
<< " positive integers is " << sum
<< endl; //Line 7

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Line 1: Enter the number of positive integers to be added: 100

Line 7: The sum of the first 100 positive integers is 5050

The statement in Line 1 prompts the user to enter the number of positive integers to be added.
The statement in Line 2 stores the number entered by the user in n, and the statement in Line
3 initializes sum to 0. The for loop in Line 5 executes n times. In the for loop, counter is
initialized to 1 and is incremented by 1 after each iteration of the loop. Therefore, counter
ranges from 1 to n. Each time through the loop, the value of counter is added to sum. The
variable sum was initialized to 0, counter ranges from 1 to n, and the current value of
counter is added to the value of sum. Therefore, after the for loop executes, sum contains
the sum of the first n values, which in the sample run is 100 positive integers.

Recall that putting one control structure statement inside another is called nesting. The
following programming example demonstrates a simple instance of nesting. It also nicely
demonstrates counting.

294 | Chapter 5: Control Structures II (Repetition)

5

PROGRAMMING EXAMPLE: Classifying Numbers
This program reads a given set of integers and then prints the number of odd and
even integers. It also outputs the number of zeros.

The program reads 20 integers, but you can easily modify it to read any set of
numbers. In fact, you can modify the program so that it first prompts the user to
specify how many integers are to be read.

Input 20 integers—positive, negative, or zeros.

Output The number of zeros, even numbers, and odd numbers.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

After reading a number, you need to check whether it is even or odd. Suppose the
value is stored in number. Divide number by 2 and check the remainder. If the
remainder is 0, number is even. Increment the even count and then check whether
number is 0. If it is, increment the zero count. If the remainder is not 0, increment
the odd count.

The program uses a switch statement to decide whether number is odd or even.
Suppose that number is odd. Dividing by 2 gives the remainder 1 if number is
positive and the remainder -1 if it is negative. If number is even, dividing by 2 gives
the remainder 0 whether number is positive or negative. You can use the mod
operator, %, to find the remainder. For example:

6 % 2 = 0; -4 % 2 = 0; -7 % 2 = -1; 15 % 2 = 1

Repeat the preceding process of analyzing a number for each number in the list.

This discussion translates into the following algorithm:

1. For each number in the list:

a. Get the number.

b. Analyze the number.

c. Increment the appropriate count.

2. Print the results.

Variables Because you want to count the number of zeros, even numbers, and odd numbers,
you need three variables of type int—say, zeros, evens, and odds—to track the
counts. You also need a variable—say, number—to read and store the number to be
analyzed and another variable—say, counter—to count the numbers analyzed.
Therefore, you need the following variables in the program:

Programming Example: Classifying Numbers | 295

int counter; //loop control variable
int number; //variable to store the number read
int zeros; //variable to store the zero count
int evens; //variable to store the even count
int odds; //variable to store the odd count

Clearly, you must initialize the variables zeros, evens, and odds to zero. You can
initialize these variables when you declare them.

MAIN

ALGORITHM

1. Initialize the variables.

2. Prompt the user to enter 20 numbers.

3. For each number in the list:

a. Read the number.

b. Output the number (echo input).

c. If the number is even:

{

i. Increment the even count.

ii. If the number is zero, increment the zero count.
}
otherwise

Increment the odd count.

4. Print the results.

Before writing the C++ program, let us describe Steps 1–4 in greater detail. It will be
much easier for you to then write the instructions in C++.

1. Initialize the variables. You can initialize the variables zeros,
evens, and odds when you declare them.

2. Use an output statement to prompt the user to enter 20 numbers.

3. For Step 3, you can use a for loop to process and analyze the 20
numbers. In pseudocode, this step is written as follows:

for (counter = 1; counter <= 20; counter++)
{

read the number;
output number;

switch (number % 2) // check the remainder
{
case 0:

increment even count;
if (number == 0)

increment zero count;
break;

296 | Chapter 5: Control Structures II (Repetition)

5

case 1:
case –1:

increment odd count;
}//end switch

}//end for

4. Print the result. Output the value of the variables zeros, evens,
and odds.

COMPLETE PROGRAM LISTING

//**
// Author: D.S. Malik
//
// Program: Counts zeros, odds, and evens
// This program counts the number of odd and even numbers.
// The program also counts the number of zeros.
//**

#include <iostream>
#include <iomanip>

using namespace std;

const int N = 20;

int main()
{

//Declare variables
int counter; //loop control variable
int number; //variable to store the new number
int zeros = 0; //Step 1
int odds = 0; //Step 1
int evens = 0; //Step 1

cout << "Please enter " << N << " integers, "
<< "positive, negative, or zeros."
<< endl; //Step 2

cout << "The numbers you entered are:" << endl;

for (counter = 1; counter <= N; counter++) //Step 3
{

cin >> number; //Step 3a
cout << number << " "; //Step 3b

//Step 3c
switch (number % 2)

Programming Example: Classifying Numbers | 297

do...while Looping (Repetition) Structure
This section describes the third type of looping or repetition structure, called a do. . .while
loop. The general form of a do. . .while statement is as follows:

do
statement

while (expression);

Of course, statement can be either a simple or compound statement. If it is a
compound statement, enclose it between braces. Figure 5-3 shows the flow of execution
of a do. . .while loop.

{
case 0:

evens++;
if (number == 0)

zeros++;
break;

case 1:
case -1:

odds++;
} //end switch

} //end for loop

cout << endl;
//Step 4

cout << "There are " << evens << " evens, "
<< "which includes " << zeros << " zeros."
<< endl;

cout << "The number of odd numbers is: " << odds
<< endl;

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Please enter 20 integers, positive, negative, or zeros.
The numbers you entered are:

0 0 -2 -3 -5 6 7 8 0 3 0 -23 -8 0 2 9 0 12 67 54
0 0 -2 -3 -5 6 7 8 0 3 0 -23 -8 0 2 9 0 12 67 54
There are 13 evens, which includes 6 zeros.
The number of odd numbers is: 7

We recommend that you do a walk-through of this program using the above sample
input.

298 | Chapter 5: Control Structures II (Repetition)

5

In C++, do is a reserved word.

The statement executes first, and then the expression is evaluated. If the expression
evaluates to true, the statement executes again. As long as the expression in a
do...while statement is true, the statement executes. To avoid an infinite loop, you
must, once again, make sure that the loop body contains a statement that ultimately makes
the expression false and assures that it exits properly.

EXAMPLE 5-18

i = 0;

do
{

cout << i << " ";
i = i + 5;

}
while (i <= 20);

The output of this code is:

0 5 10 15 20

After 20 is output, the statement:

i = i + 5;

changes the value of i to 25 and so i <= 20 becomes false, which halts the loop.

statement

true

false

expression

FIGURE 5-3 do...while loop

do...while Looping (Repetition) Structure | 299

In a while and for loop, the loop condition is evaluated before executing the body of
the loop. Therefore, while and for loops are called pretest loops. On the other hand,
the loop condition in a do. . .while loop is evaluated after executing the body of the
loop. Therefore, do. . .while loops are called posttest loops.

Because the while and for loops both have entry conditions, these loops may never
activate. The do...while loop, on the other hand, has an exit condition and therefore
always executes the statement at least once.

EXAMPLE 5-19

Consider the following two loops:

a. i = 11;

while (i <= 10)

{

cout << i << " ";

i = i + 5;

}

cout << endl;

b. i = 11;

do
{

cout << i << " ";

i = i + 5;

}

while (i <= 10);

cout << endl;

In (a), the while loop produces nothing. In (b), the do...while loop outputs the
number 11 and also changes the value of i to 16.

A do...while loop can be used for input validation. Suppose that a program prompts a user
to enter a test score, which must be greater than or equal to 0 and less than or equal to 50. If
the user enters a score less than 0 or greater than 50, the user should be prompted to re-enter
the score. The following do...while loop can be used to accomplish this objective:

int score;

do
{

cout << "Enter a score between 0 and 50: ";
cin >> score;
cout << endl;

}
while (score < 0 || score > 50);

300 | Chapter 5: Control Structures II (Repetition)

5

EXAMPLE 5-20

Divisibility Test by 3 and 9

Suppose that m and n are integers and m is nonzero. Then m is called a divisor of n
if n ¼ mt for some integer t; that is, when m divides n, the remainder is 0.

Let n¼ akak-1ak-2. . .a1a0 be an integer. Let s= ak+ ak-1+ ak-2+ � � � + a1+ a0 be the sum of the
digits of n. It is known that n is divisible by 3 and 9 if s is divisible by 3 and 9. In other words,
an integer is divisible by 3 and 9 if and only if the sum of its digits is divisible by 3 and 9.

For example, suppose n = 27193257. Then s = 2 + 7 + 1 + 9 + 3 + 2 + 5 + 7 = 36. Because
36 is divisible by both 3 and 9, it follows that 27193257 is divisible by both 3 and 9.

Next, we write a program that determines whether a positive integer is divisible by 3 and 9
by first finding the sum of its digits and then checking whether the sum is divisible by 3 and 9.

To find the sum of the digits of a positive integer, we need to extract each digit of the
number. Consider the number 951372. Note that 951372 % 10 = 2, which is the last
digit of 951372. Also note that 951372 / 10 = 95137; that is, when the number is
divided by 10, it removes the last digit. Next, we repeat this process on the number
95137. Of course, we need to add the extracted digits.

Suppose that sum and num are int variables and the positive integer is stored in num. We
thus have the following algorithm to find the sum of the digits:

sum = 0;

do
{

sum = sum + num % 10; //extract the last digit
//and add it to sum

num = num / 10; //remove the last digit
}
while (num > 0);

Using this algorithm, we can write the following program that uses a do. . .while loop to
implement the preceding divisibility test algorithm.

//Program: Divisibility test by 3 and 9

#include <iostream>

using namespace std;

int main()
{

int num, temp, sum;

cout << "Enter a positive integer: ";
cin >> num;

do...while Looping (Repetition) Structure | 301

cout << endl;

temp = num;

sum = 0;

do
{

sum = sum + num % 10; //extract the last digit
//and add it to sum

num = num / 10; //remove the last digit
}
while (num > 0);

cout << "The sum of the digits = " << sum << endl;

if (sum % 3 == 0)
cout << temp << " is divisible by 3" << endl;

else
cout << temp << " is not divisible by 3" << endl;

if (sum % 9 == 0)
cout << temp << " is divisible by 9" << endl;

else
cout << temp << " is not divisible by 9" << endl;

}

Sample Run: In these sample runs, the user input is shaded.

Sample Run 1:

Enter a positive integer: 27193257

The sum of the digits = 36
27193257 is divisible by 3
27193257 is divisible by 9

Sample Run 2:

Enter a positive integer: 609321

The sum of the digits = 21
609321 is divisible by 3
609321 is not divisible by 9

Sample Run 3:

Enter a positive integer: 161905102

The sum of the digits = 25
161905102 is not divisible by 3
161905102 is not divisible by 9

302 | Chapter 5: Control Structures II (Repetition)

Choosing the Right Looping Structure
All three loops have their place in C++. If you know, or the program can determine in
advance, the number of repetitions needed, the for loop is the correct choice. If you do
not know, and the program cannot determine in advance the number of repetitions
needed, and it could be 0, the while loop is the right choice. If you do not know, and
the program cannot determine in advance the number of repetitions needed, and it is at
least 1, the do...while loop is the right choice.

break and continue Statements
The break statement, when executed in a switch structure, provides an immediate
exit from the switch structure. Similarly, you can use the break statement in
while, for, and do. . .while loops. When the break statement executes in a
repetition structure, it immediately exits from the structure. The break statement
is typically used for two purposes:

• To exit early from a loop.

• To skip the remainder of the switch structure.

After the break statement executes, the program continues to execute with the first
statement after the structure. The use of a break statement in a loop can eliminate the
use of certain (flag) variables. The following C++ code segment helps illustrate this idea.
(Assume that all variables are properly declared.)

sum = 0;
isNegative = false;

cin >> num;

while (cin && !isNegative)
{

if (num < 0) //if num is negative, terminate the loop
//after this iteration

{
cout << "Negative number found in the data." << endl;
isNegative = true;

}
else
{

sum = sum + num;
cin >> num;

}
}

This while loop is supposed to find the sum of a set of positive numbers. If the data set
contains a negative number, the loop terminates with an appropriate error message. This
while loop uses the flag variable isNegative to accomplish the desired result. The
variable isNegative is initialized to false before the while loop. Before adding num

5

break and continue Statements | 303

to sum, check whether num is negative. If num is negative, an error message appears on
the screen and isNegative is set to true. In the next iteration, when the expression in
the while statement is evaluated, it evaluates to false because !isNegative is
false. (Note that because isNegative is true, !isNegative is false.)

The following while loop is written without using the variable isNegative:

sum = 0;
cin >> num;

while (cin)
{

if (num < 0) //if num is negative, terminate the loop
{

cout << "Negative number found in the data." << endl;
break;

}

sum = sum + num;
cin >> num;

}

In this form of the while loop, when a negative number is found, the expression in the
if statement evaluates to true; after printing an appropriate message, the break
statement terminates the loop. (After executing the break statement in a loop, the
remaining statements in the loop are discarded.)

The break statement is an effective way to avoid extra variables to control a loop and

produce an elegant code. However, break statements must be used very sparingly

within a loop. An excessive use of these statements in a loop will produce spaghetti-code

(loops with many exit conditions) that can be very hard to understand and manage. You

should be extra careful in using break statements and ensure that the use of the break
statements makes the code more readable and not less readable. If you’re not sure, don’t

use break statements.

The continue statement is used in while, for, and do. . .while structures. When the
continue statement is executed in a loop, it skips the remaining statements in the loop and
proceeds with the next iteration of the loop. In a while and do. . .while structure, the
expression (that is, the loop-continue test) is evaluated immediately after the continue
statement. In a for structure, the update statement is executed after the continue
statement, and then the loop condition (that is, the loop-continue test) executes.

If the previous program segment encounters a negative number, the while loop termi-
nates. If you want to discard the negative number and read the next number rather than
terminate the loop, replace the break statement with the continue statement, as shown
in the following example:

sum = 0;
cin >> num;

304 | Chapter 5: Control Structures II (Repetition)

5

while (cin)
{

if (num < 0)
{

cout << "Negative number found in the data." << endl;
cin >> num;
continue;

}

sum = sum + num;
cin >> num;

}

It was stated earlier that all three loops have their place in C++ and that one loop can
often replace another. The execution of a continue statement, however, is where the
while and do. . .while structures differ from the for structure. When the continue
statement is executed in a while or a do. . .while loop, the update statement may not
execute. In a for structure, the update statement always executes.

Nested Control Structures
In this section, we give examples that illustrate how to use nested loops to achieve useful
results and process data.

EXAMPLE 5-21

Suppose you want to create the following pattern:

*
**

Clearly, you want to print five lines of stars. In the first line, you want to print one star, in
the second line, two stars, and so on. Because five lines will be printed, start with the
following for statement:

for (i = 1; i <= 5; i++)

The value of i in the first iteration is 1, in the second iteration it is 2, and so on. You
can use the value of i as the limiting condition in another for loop nested within this
loop to control the number of stars in a line. A little more thought produces the
following code:

for (i = 1; i <= 5; i++) //Line 1
{ //Line 2

for (j = 1; j <= i; j++) //Line 3
cout << "*"; //Line 4

cout << endl; //Line 5
} //Line 6

Nested Control Structures | 305

A walk-through of this code shows that the for loop in Line 1 starts with i = 1. When
i is 1, the inner for loop in Line 3 outputs one star and the insertion point moves to the
next line. Then i becomes 2, the inner for loop outputs two stars, and the output
statement in Line 5 moves the insertion point to the next line, and so on. This process
continues until i becomes 6 and the loop stops.

What pattern does this code produce if you replace the for statement in Line 1 with the
following?

for (i = 5; i >= 1; i--)

EXAMPLE 5-22

Suppose you want to create the following multiplication table:

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50

The multiplication table has five lines. Therefore, as in Example 5-21, we use a for
statement to output these lines as follows:

for (i = 1; i <= 5; i++)
//output a line of numbers

In the first line, we want to print the multiplication table of 1, in the second line we want
to print the multiplication table of 2, and so on. Notice that the first line starts with 1 and
when this line is printed, i is 1. Similarly, the second line starts with 2 and when this line
is printed, the value of i is 2, and so on. If i is 1, i * 1 is 1; if i is 2, i * 2 is 2; and so
on. Therefore, to print a line of numbers, we can use the value of i as the starting
number and 10 as the limiting value. That is, consider the following for loop:

for (j = 1; j <= 10; j++)
cout << setw(3) << i * j;

Let us take a look at this for loop. Suppose i is 1. Then we are printing the first line of
the multiplication table. Also, j goes from 1 to 10 and so this for loop outputs the
numbers 1 through 10, which is the first line of the multiplication table. Similarly, if i is
2, we are printing the second line of the multiplication table. Also, j goes from 1 to 10,
and so this for loop outputs the second line of the multiplication table, and so on.

A little more thought produces the following nested loops to output the desired grid:

for (i = 1; i <= 5; i++) //Line 1
{ //Line 2

for (j = 1; j <= 10; j++) //Line 3
cout << setw(3) << i * j; //Line 4

cout << endl; //Line 5
} //Line 6

306 | Chapter 5: Control Structures II (Repetition)

EXAMPLE 5-23

Consider the following data:

65 78 65 89 25 98 -999
87 34 89 99 26 78 64 34 -999
23 99 98 97 26 78 100 63 87 23 -999
62 35 78 99 12 93 19 -999

The number -999 at the end of each line acts as a sentinel and therefore is not part
of the data. Our objective is to find the sum of the numbers in each line and output
the sum. Moreover, assume that this data is to be read from a file, say,
Exp_5_23.txt. We assume that the input file has been opened using the input file
stream variable infile.

This particular data set has four lines of input. So we can use a for loop or a counter-
controlled while loop to process each line of data. Let us use a while loop to process
these four lines. It follows that the while loop takes the following form:

counter = 0; //Line 1
while (counter < 4) //Line 2
{ //Line 3

//process the line //Line 4

//output the sum
counter++;

}

Let us now concentrate on processing a line. Each line has a varying number of data
items. For example, the first line has six numbers, the second line has eight numbers, and
so on. Because each line ends with -999, we can use a sentinel-controlled while loop to
find the sum of the numbers in each line. (Remember how a sentinel-controlled loop
works.) Consider the following while loop:

sum = 0; //Line 4
infile >> num; //Line 5
while (num != -999) //Line 6
{ //Line 7

sum = sum + num; //Line 8
infile >> num; //Line 9

} //Line 10

The statement in Line 4 initializes sum to 0, and the statement in Line 5 reads and stores the
first number of the line into num. The Boolean expression num != -999 in Line 6 checks
whether the number is -999. If num is not -999, the statements in Lines 8 and 9 execute.
The statement in Line 8 updates the value of sum; the statement in Line 9 reads and stores the
next number into num. The loop continues to execute as long as num is not -999.

It now follows that the nested loop to process the data is as follows. (Assume that all
variables are properly declared.)

5

Nested Control Structures | 307

counter = 0; //Line 1
while (counter < 4) //Line 2
{ //Line 3

sum = 0; //Line 4
infile >> num; //Line 5
while (num != -999) //Line 6
{ //Line 7

sum = sum + num; //Line 8
infile >> num; //Line 9

} //Line 10

cout << "Line " << counter + 1
<< ": Sum = " << sum << endl; //Line 11

counter++; //Line 12
} //Line 13

EXAMPLE 5-24

Suppose that we want to process data similar to the data in Example 5-23, but the input
file is of an unspecified length. That is, each line contains the same data as the data in each
line in Example 5-23, but we do not know the number of input lines.

Because we do not know the number of input lines, we must use an EOF-controlled
while loop to process the data. In this case, the required code is as follows. (Assume that
all variables are properly declared and the input file has been opened using the input file
stream variable infile.)

counter = 0; //Line 1
infile >> num; //Line 2
while (infile) //Line 3
{ //Line 4

sum = 0; //Line 5
while (num != -999) //Line 6
{ //Line 7

sum = sum + num; //Line 8
infile >> num; //Line 9

} //Line 10

cout << "Line " << counter + 1
<< ": Sum = " << sum << endl; //Line 11

counter++; //Line 12
infile >> num; //Line 13

} //Line 14

Notice that we have again used the variable counter. The only reason to do so is
because we want to print the line number with the sum of each line.

308 | Chapter 5: Control Structures II (Repetition)

5

EXAMPLE 5-25

Consider the following data:

101
John Smith
65 78 65 89 25 98 -999
102
Peter Gupta
87 34 89 99 26 78 64 34 -999
103
Buddy Friend
23 99 98 97 26 78 100 63 87 23 -999
104
Doctor Miller
62 35 78 99 12 93 19 -999
...

The number -999 at the end of a line acts as a sentinel and therefore is not part of the data.

Assume that this is the data of certain candidates seeking the student council’s presidential seat.

For each candidate, the data is in the following form:

ID
Name
Votes

The objective is to find the total number of votes received by the candidate. We assume
that the data is input from the file Exp_5_25.txt of unknown size. We also assume that
the input file has been opened using the input file stream variable infile.

Because the input file is of an unspecified length, we use an EOF-controlled while loop.
For each candidate, the first data item is the ID of type int on a line by itself; the second
data item is the name, which may consist of more than one word; and the third line
contains the votes received from the various departments.

To read the ID, we use the extraction operator >>; to read the name, we use the stream
function getline. Notice that after reading the ID, the reading marker is after the ID and the
character after the ID is the newline character. Therefore, after reading the ID, the reading
marker is after the ID and before the newline character (of the line containing the ID).

The function getline reads until the end of the line. Therefore, if we read the name
immediately after reading the ID, then what is stored in the variable name is the newline
character (after the ID). It follows that to read the name, we must read and discard the
newline character after the ID, which we can accomplish using the stream function get.
Therefore, the statements to read the ID and name are as follows:

infile >> ID; //read the ID
infile.get(ch); //read the newline character after the ID
getline(infile, name); //read the name

Nested Control Structures | 309

(Assume that ch is a variable of type char.) The general loop to process the data is:

infile >> ID; //Line 1
while (infile) //Line 2
{ //Line 3

infile.get(ch); //Line 4
getline(infile, name); //Line 5

//process the numbers in each line //Line 6
//output the name and total votes
infile >> ID; //begin processing the next line

}

The code to read and sum up the voting data is:

sum = 0; //Line 6
infile >> num; //Line 7; read the first number
while (num != -999) //Line 8
{ //Line 9

sum = sum + num; //Line 10; update sum
infile >> num; //Line 11; read the next number

} //Line 12

We can now write the following nested loop to process data as follows:

infile >> ID; //Line 1
while (infile) //Line 2
{ //Line 3

infile.get(ch); //Line 4
getline(infile, name); //Line 5
sum = 0; //Line 6
infile >> num; //Line 7; read the first number
while (num != -999) //Line 8
{ //Line 9

sum = sum + num; //Line 10; update sum
infile >> num; //Line 11; read the next number

}

cout << "Name: " << name
<< ", Votes: " << sum
<< endl; //Line 12

infile >> ID; //Line 13; begin processing the next line
}

Avoiding Bugs by Avoiding Patches
Debugging sections in the previous chapters illustrated how to debug syntax and logical
errors, and how to avoid partially understood concepts. In this section, we illustrate how
to avoid a software patch to fix a code. A software patch is a piece of code written on top
of an existing piece of code intended to fix a bug in the original code.

310 | Chapter 5: Control Structures II (Repetition)

5

Suppose that the following data is in the file Ch5_LoopWithBugsData.txt.

87 78 83 94
23 89 92 70
92 78 34 56

The objective is to find the sum of the numbers in each line. For each line, output the
numbers together with their sum. Let us consider the following program:

#include <iostream>
#include <fstream>

using namespace std;

int main()
{

ifstream infile;

int i;
int j;
int sum;
int num;

infile.open("Ch5_LoopWithBugsData.txt");

for (i = 1; i <= 4; i++)
{

sum = 0;

for (j = 1; j <= 4; j++)
{

infile >> num;
cout << num << " ";
sum = sum + num;

}

cout << "sum = " << sum << endl;
}

return 0;
}

Sample Run:

87 78 83 94 sum = 342
23 89 92 70 sum = 274
92 78 34 56 sum = 260
56 56 56 56 sum = 224

The sample run shows that there is a bug in the program because the file contains three
lines of input and the output contains four lines. Also, the number 56 in the last line
repeats four times. Clearly, there is a bug in the program and we must fix the code. Some
programmers, especially some beginners, address the symptom of the problem by adding
a software patch. In this case, the output should contain only three lines of output.

Avoiding Bugs by Avoiding Patches | 311

A beginning programmer might fix the code by adding a software patch as shown in the
following modified program:

#include <iostream>
#include <fstream>

using namespace std;

int main()
{

ifstream infile;

int i;
int j;
int sum;
int num;

infile.open("Ch5_LoopWithBugsData.txt");

for (i = 1; i <= 4; i++)
{

sum = 0;

if (i != 4)
{

for (j = 1; j <= 4; j++)
{

infile >> num;
cout << num << " ";
sum = sum + num;

}

cout << "sum = " << sum << endl;
}

}

return 0;
}

Sample Run:

87 78 83 94 sum = 342
23 89 92 70 sum = 274
92 78 34 56 sum = 260

Clearly, the program is working correctly now.

As we can see, the programmer merely observed the symptom and addressed the problem by
adding a software patch. However, if you look at the code, not only does the program
execute extra statements, it is also an example of a partially understood concept. It appears that
the programmer does not have a good grasp of why the earlier program produced four lines
rather than three. Adding a patch eliminated the symptom, but it is a poor programming
practice. The programmer must resolve why the program produced four lines. Looking at the

312 | Chapter 5: Control Structures II (Repetition)

5

program closely, we can see that the four lines are produced because the outer loop executes
four times. The values assigned to loop control variable i are 1, 2, 3, and 4. This is an example
of the classic ‘‘off-by-one’’ problem. (In an ‘‘off-by-one problem,’’ either the loop executes
one too many or one too few times.) We can eliminate this problem by correctly setting the
values of the loop control variable. For example, we can rewrite the loops as follows:

for (i = 1; i <= 3; i++)
{

sum = 0;

for (j = 1; j <= 4; j++)
{

infile >> num;
cout << num << " ";;
sum = sum + num;

}

cout << "sum = " <<< sum << endl;
}

This code fixes the original problem without using a software patch. It also represents
good programming practice. The complete modified program is available at the Web site
accompanying this book and is named Ch5_LoopWithBugsCorrectedProgram.cpp.

Debugging Loops
As we have seen in the earlier debugging sections, no matter how careful a program is
designed and coded, errors are likely to occur. If there are syntax errors, the compiler will
identify them. However, if there are logical errors, we must carefully look at the code or
even maybe at the design and try to find the errors. To increase the reliability of the
program, errors must be discovered and fixed before the program is released to the users.

Once an algorithm is written, the next step is to verify that it works properly. If the algorithm
is a simple sequential flow or contains a branch, it can be hand traced or you can use the
debugger, if any, provided by the IDE. Typically, loops are harder to debug. The correctness
of a loop can be verified by using loop invariants. A loop invariant is a set of statements that
remains true each time the loop body is executed. Let p be a loop invariant and q be the
(logical) expression in a loop statement. Then p && q remains true before each iteration of the
loop and p && not(q) is true after the loop terminates. The full discussion of loop invariants is
beyond the scopeof thebook.However, you can learn about loop invariants in the book:Discrete
Mathematics: Theory and Applications (Revised Edition), D.S. Malik and M.K. Sen, Cengage
Learning Asia, Singapore, 2010. Here, we give a few tips that you can use to debug a loop.

As discussed in the previous section, the most common error associated with loops is off-
by-one. If a loop turns out to be an infinite loop, the error is most likely in the logical
expression that controls the execution of the loop. Check the logical expression carefully
and see if you have reversed an inequality, an assignment statement symbol appears in place
of the equality operator, or && appears in place of ||. If the loop changes the values of

Debugging Loops | 313

variables, you can print the values of the variables before and/or after each iteration or you
can use your IDE’s debugger, if any, and watch the values of variables during each iteration.

The debugging sections in this book are designed to help you understand the debugging
process. However, as you will realize, debugging can be a tiresome process. If your
program is very bad, do not debug. Throw it away and start over.

QUICK REVIEW

1. C++ has three looping (repetition) structures: while, for, and
do. . .while.

2. The syntax of the while statement is:

while (expression)
statement

3. In C++, while is a reserved word.

4. In the while statement, the parentheses around the expression (the
decision maker) are important; they mark the beginning and end of the
expression.

5. The statement is called the body of the loop.

6. The body of the while loop must contain a statement that eventually sets
the expression to false.

7. A counter-controlled while loop uses a counter to control the loop.

8. In a counter-controlled while loop, you must initialize the counter before
the loop, and the body of the loop must contain a statement that changes
the value of the counter variable.

9. A sentinel is a special value that marks the end of the input data. The
sentinel must be similar to, yet differ from, all the data items.

10. A sentinel-controlled while loop uses a sentinel to control the while
loop. The while loop continues to execute until the sentinel is read.

11. An EOF-controlled while loop continues to execute until the program
detects the end-of-file marker.

12. In theWindows console environment, the end-of-file marker is entered using
Ctrl+z (hold the Ctrl key and press z). In the UNIX environment, the
end-of-file marker is entered using Ctrl+d (hold the Ctrl key and press d).

13. A for loop simplifies the writing of a counter-controlled while loop.

14. In C++, for is a reserved word.

15. The syntax of the for loop is:

for (initialize statement; loop condition; update statement)
statement

statement is called the body of the for loop.

314 | Chapter 5: Control Structures II (Repetition)

5

16. Putting a semicolon at the end of the for loop (before the body of the for
loop) is a semantic error. In this case, the action of the for loop is empty.

17. The syntax of the do. . .while statement is:

do
statement

while (expression);

statement is called the body of the do. . .while loop.

18. Both while and for loops are called pretest loops. A do. . .while loop is
called a posttest loop.

19. The while and for loops may not execute at all, but the do. . .while loop
always executes at least once.

20. Executing a break statement in the body of a loop immediately terminates
the loop.

21. Executing a continue statement in the body of a loop skips the loop’s
remaining statements and proceeds with the next iteration.

22. When a continue statement executes in a while or do. . .while loop,
the expression update statement in the body of the loop may not execute.

23. After a continue statement executes in a for loop, the update statement
is the next statement executed.

EXERCISES

1. Mark the following statements as true or false.

a. In a counter-controlled while loop, it is not necessary to initialize the
loop control variable.

b. It is possible that the body of a while loop may not execute at all.

c. In an infinite while loop, the while expression (the decision maker) is
initially false, but after the first iteration it is always true.

d. The while loop:

j = 0;
while (j <= 10)

j++;

terminates if j > 10.

e. A sentinel-controlled while loop is an event-controlled while loop
whose termination depends on a special value.

f. A loop is a control structure that causes certain statements to execute
over and over.

g. To read data from a file of an unspecified length, an EOF-controlled
loop is a good choice.

Exercises | 315

h. When a while loop terminates, the control first goes back to the statement
just before the while statement, and then the control goes to the statement
immediately following the while loop.

2. What is the output of the following C++ code?

int i = 0;
int temp = 1;
while (i < 5)
{

i = i + 1;
temp = temp * i;

}
cout << "i = " << i << " and temp = " << temp << endl;

3. What is the output of the following C++ code?

int count = 10;
double sum = 0;

while (count > 8)
{

sum = sum + pow(count, 2.0);
count--;

}
cout << sum << endl;

4. What is the output of the following C++ code?

int num = 1;
while (num * num < 30)
{

cout << num << " ";
num = num + 1;

}
cout << endl;

5. When does the following while loop terminate?

ch = 'D';
while ('A' <= ch && ch <= 'Z')

ch = static_cast<char>(static_cast<int>(ch) + 1);

6. Suppose that the input is 10 30 16 25 76 -1. What is the output of the
following code?

int num = 0;
int sum;
int count = 0;

cin >> sum;

while (count < 3)
{

cin >> num;
sum = sum + num;
count++;

}
cout << "Sum = " << sum << endl;

316 | Chapter 5: Control Structures II (Repetition)

7. Suppose that the input is 25 36 18 16 -1. What is the output of the
following code?

int num;
int sum;
cin >> sum;
num = sum;

while (num != -1)
{

cin >> num;
sum = sum + num;

}
cout << "Sum = " << sum << endl;

8. Suppose that the input is 25 36 18 16 -1. What is the output of the
following code?

int num;
int sum;

cin >> num;
sum = num;

while (num != -1)
{

sum = sum + num;
cin >> num;

}
cout << "Sum = " << sum << endl;

9. Suppose that the input is 10 -6 12 -5 -4 0. What is the output of the
following code?

int num;
int sum = 0;

cin >> num;

while (num != 0)
{

if (num > 0)
sum = sum + num;

else
sum = sum - num;

cin >> num;
}
cout << "Sum = " << sum << endl;

10. Correct the following code so that it reads and finds the sum of 20 numbers:

int count = 0;
int sum = 0;

cin >> num;
while (count <= 20);

5

Exercises | 317

{
cin >> num;
count++;
sum = sum + count;

}

11. Consider the following program:

#include <iostream>

using namespace std;

int main()
{

int num1, num2;
int temp = 0;

cout << "Enter two integers: ";
cin >> num1 >> num2 ;
cout << endl ;

while (((num1 + num2) % 5) != 0)
{

temp = num1 + num2;
num1 = num2;
num2 = temp;
cout << temp << " ";

}
cout << endl;

return 0;
}

a. What is the output if the input is 13 16?

b. What is the output if the input is -4 6?

c. What is the output if the input is 3 5?

d. What is the output if the input is 1 3?

12. Suppose that the input is:

58 23 46 75 98 150 12 176 145 -999

What is the output of the following program?

#include <iostream>

using namespace std;

int main()
{

int num;

cin >> num;

318 | Chapter 5: Control Structures II (Repetition)

while (num != -999)
{

cout << num % 25 << " ";
cin >> num;

}

cout << endl;

return 0;
}

13. The following program is designed to input two numbers and output their
sum. It asks the user if he/she would like to run the program. If the answer
is Y or y, it prompts the user to enter two numbers. After adding the
numbers and displaying the results, it again asks the user if he/she would
like to add more numbers. However, the program fails to do so. Correct the
program so that it works properly.

#include <iostream>
#include <iomanip>

using namespace std;

int main()
{

char response;
double num1;
double num2;

cout << "This program adds two numbers." << endl;
cout << "Would you like to run the program: (Y/y) ";
cin >> response;
cout << endl;

cout << fixed << showpoint << setprecision(2);

while (response == 'Y' && response == 'y')
{

cout << "Enter two numbers: ";
cin >> num1 >> num2;
cout << endl;

cout << num1 << " + " << num2 << " = " << (num1 - num2)
<< endl;

cout << "Would you like to add again: (Y/y) ";
cin >> response;
cout << endl;

}

return 0;
}

5

Exercises | 319

14. What is the output of the following program segment?

int count = 0;

while (count++ < 10)
cout << "This loop can repeat statements." << endl;

15. What is the output of the following program segment?

int count = 5;

while (--count > 0)
cout << count << " ";

cout << endl;

16. What is the output of the following program segment?

int count = 5;

while (count-- > 0)
cout << count << " ";

cout << endl;

17. What is the output of the following program segment?

int count = 1;
while (count++ <= 5)

cout << count * (count - 2) << " ";

cout << endl;

18. What type of loop, such as counter-control and sentinel-control, will you
use in each of the following situations?

a. Sum the following series: 1 + (2 / 1) + (3 / 2) + (4 / 3) + (5 / 4)

+ ... + (10 / 9)

b. Sum the following numbers, except the last number: 17, 32, 62, 48, 58, -1

c. A file contains an employee’s salary. Update the employee’s salary.

19. Consider the following for loop:

int j, s;

s = 0;
for (j = 1; j <= 10; j++)

s = s + j * (j - 1);

In this for loop, identify the loop control variable, the initialization statement, the
loop condition, the update statement, and the statement that updates the value of s.

20. What is the output of the following program segment?

int num = 1;
int i;

for (i = 0; i < 5; i++)

320 | Chapter 5: Control Structures II (Repetition)

5

{
num = num * (5 - i);
cout << num << " ";

}
cout << endl;

21. What is the output of the following program segment?

int num = 0;
int count;
int y = 0;

for (count = 1; count <= 5; ++count)
{

num = 3 * (count - 1) + (y - count);
cout << num << " ";

}
cout << count << " " << endl;

22. Assume that the following code is correctly inserted into a program:

int s = 0;
int i;

for (i = 0; i < 5; i++)
{

s = 2 * s + i;
cout << s << " ";

}
cout << endl;

a. What is the final value of s?
(i) 11 (ii) 4 (iii) 26 (iv) none of these

b. If a semicolon is inserted after the right parenthesis in the for loop
statement, what is the final value of s?
(i) 0 (ii) 1 (iii) 2 (iv) 5 (v) none of these

c. If the 5 is replaced with a 0 in the for loop control expression, what is
the final value of s?
(i) 0 (ii) 1 (iii) 2 (iv) none of these

23. State what output, if any, results from each of the following statements:

a. for (i = 1; i <= 1; i++)
cout << "*";

cout << endl;

b. for (i = 2; i >= 1; i++)
cout << "*";

cout << endl;

c. for (i = 1; i <= 1; i--)
cout << "*";

cout << endl;

d. for (i = 12; i >= 9; i--)
cout << "*";

cout << endl;

Exercises | 321

e. for (i = 0; i <= 5; i++)
cout << "*";

cout << endl;

f. for (i = 1; i <= 5; i++)
{

cout << "*";
i = i + 1;

}
cout << endl;

24. Write a for statement to add all the multiples of 3 between 1 and 100.

25. What is the output of the following code? Is there a relationship between
the variables x and y? If yes, state the relationship? What is the output?

int x = 19683;
int i;
int y = 0;

for (i = x; i >= 1; i = i / 3)
y++;

cout << "x = " << x << ", y = " << y << endl;

26. Suppose that the input is 5 3 8. What is the output of the following code?
Assume all variables are properly declared.

cin >> a >> b >> c;
for (j = 1; j < a; j++)
{

d = b + c;
b = c;
c = d;
cout << c << " ";

}
cout << endl;

27. What is the output of the following C++ program segment? Assume all
variables are properly declared.

for (j = 0; j < 8; j++)
{

cout << j * 25 << " - ";

if (j != 7)
cout << (j + 1) * 25 - 1 << endl;

else
cout << (j + 1) * 25 << endl;

}

28. Suppose that the input is 3 5 7 -6 10. What is the output of the
following code?

int temp = 0;
int num;
int count;

322 | Chapter 5: Control Structures II (Repetition)

5

cin >> temp;

for (count = 0; count <= 3; count++)
{

cout << temp << " ";
cin >> num;
temp = temp + num * (count - 1);

}
cout << endl;

29. Which of the following apply to the while loop only? To the do. . .while
loop only? To both?

a. It is considered a conditional loop.

b. The body of the loop executes at least once.

c. The logical expression controlling the loop is evaluated before the loop
is entered.

d. The body of the loop may not execute at all.

30. The following program contains errors that prevent it from compiling and/
or running. Correct all such errors.

#include <iostream>

using namespace sdt;

const int SECRET = 111.25;

int main ()
{

int num1, num2:
double x, y;

cout >> "Enter two integers: ""
cin << num1 << num2;
cout >> endl;

for (count = 1 count > Secret; ++count)
{

x = (num1 + num2) / 2.0;
y = (num1 - num2) % 2.0;
num1 := num1 + num2;
num2 := num2 * (count - SECRET - 1)

}
cout << num1 << " " << num2 << " << x % 5

<< " " << (y % 7) << end;

return;
}

31. What is the difference between a pretest loop and a posttest loop?

32. How many times will each of the following loops execute? What is the
output in each case?

Exercises | 323

a. x = 5; y = 50;
do

x = x + 10;
while (x < y);
cout << x << " " << y << endl;

b. x = 5; y = 80;
do

x = x * 2;
while (x < y);
cout << x << " " << y << endl;

c. x = 5; y = 20;
do

x = x + 2;
while (x >= y);
cout << x << " " << y << endl;

d. x = 5; y = 35;
while (x < y)

x = x + 10;
cout << x << " " << y << endl;

e. x = 5; y = 30;
while (x <= y)

x = x * 2;
cout << x << " " << y << endl;

f. x = 5; y = 30;
while (x > y)

x = x + 2;
cout << x << " " << y << endl;

33. Write an input statement validation loop that prompts the user to enter a
number less than 20 or greater than 75.

34. Rewrite the following as a for loop:

int i = 0, value = 0;

while (i <= 20)
{

if (i % 2 == 0 && i <= 10)
value = value + i * i;

else if (i % 2 == 0 && i > 10)
value = value + i;

else
value = value - i;

i = i + 1;
}

cout << "value = " << value << endl;

What is the output of this loop?

35. Write the while loop of Exercise 34 as a do. . .while loop.

36. The do. . .while loop in the following program is supposed to read some
numbers until it reaches a sentinel (in this case, -1). It is supposed to add all
of the numbers except for the sentinel. If the data looks like:

324 | Chapter 5: Control Structures II (Repetition)

12 5 30 48 -1

the program does not add the numbers correctly. Correct the program so that it adds
the numbers correctly.

#include <iostream>

using namespace std;
int main()
{

int total = 0,
count = 0,
number;

do
{

cin >> number;
total = total + number;
count++;

}
while (number != -1);

cout << "The number of data read is " << count << endl;
cout << "The sum of the numbers entered is " << total

<< endl;

return 0;
}

37. Using the same data as in Exercise 36, the following loop also fails. Correct it.

cin >> number;
while (number != -1)

total = total + number;
cin >> number;
cout << endl;
cout << total << endl;

38. Using the same data as in Exercise 36, the following loop also fails. Correct it.

cin >> number;
while (number != -1)
{

cin >> number;
total = total + number;

}
cout << endl;
cout << total << endl;

39. Given the following program segment:

for (number = 1; number <= 10; number++)
cout << setw(3) << number;

write a while loop and a do. . .while loop that have the same output.

5

Exercises | 325

40. Given the following program segment:

int limit = 4;
int first = 5;
int j;

for (j = 1; j <= limit; j++)
{

cout << first * j << endl;
first = first + (j - 1);

}
cout << endl;

write a while loop and a do. . .while loop that have the same output.

41. Consider the following program:

#include <iostream>

using namespace std;

int main()
{

int num1, num2;
int temp = 0;

cout << "Enter two integers: ";
cin >> num1 >> num2;
cout << endl ;

do
{

temp = num1 + num2 ;
num1 = num2 ;
num2 = temp ;
cout << temp << " ";

}
while (((num1 + num2) % 5) != 0);

cout << endl;

return 0;
}

a. What is the output if the input is 13 16?

b. What is the output if the input is -4 6?

c. What is the output if the input is 3 5?

d. What is the output if the input is 13 15?

42. To learn how nested for loops work, do a walk-through of the following
program segments and determine, in each case, the exact output.

326 | Chapter 5: Control Structures II (Repetition)

5

a. int i, j;

for (i = 1; i <= 5; i++)
{

for (j = 1; j <= 5; j++)
cout << setw(3) << i;

cout << endl;
}

b. int i, j;
for (i = 1; i <= 5; i++)
{

for (j = (i + 1); j <= 5; j++)
cout << setw(5) << j;

cout << endl;
}

c. int i, j;
for (i = 1; i <= 5; i++)
{

for (j = 1; j <= i; j++)
cout << setw(3) << j;

cout << endl;
}

d. const int M = 10;
const int N = 10;
int i, j;

for (i = 1; i <= M; i++)
{

for (j = 1; j <= N; j++)
cout << setw(3) << M * (i - 1) + j;

cout << endl;
}

e. int i, j;

for (i = 1; i <= 9; i++)
{

for (j = 1; j <= (9 - i); j++)
cout << " ";

for (j = 1; j <= i; j++)
cout << setw(1) << j;

for (j = (i - 1); j >= 1; j--)
cout << setw(1) << j;

cout << endl;
}

43. What is the output of the following program segment?

int count = 1;
do

cout << count *(count - 2) << " ";
while (count++ <= 5);

cout << endl;

Exercises | 327

44. What is the output of the following code?

int num = 12;

while (num >= 0)
{

if (num % 5 == 0)
break;

cout << num << " ";
num = num - 2;

}

cout << endl;

45. What is the output of the following code?

int num = 12;

while (num >= 0)
{

if (num % 5 == 0)
{

num++;
continue;

}

cout << num << " ";
num = num - 2;

}
cout << endl;

46. What does a break statement do in a loop?

PROGRAMMING EXERCISES

1. Write a program that prompts the user to input an integer and then outputs
both the individual digits of the number and the sum of the digits. For
example, it should output the individual digits of 3456 as 3 4 5 6, output
the individual digits of 8030 as 8 0 3 0, output the individual digits of
2345526 as 2 3 4 5 5 2 6, output the individual digits of 4000 as 4 0 0 0,
and output the individual digits of -2345 as 2 3 4 5.

2. The value of p can be approximated by using the following series:

� ¼ 4 1� 1

3
þ 1

5
� 1

7
þ � � � þ 1

2n� 1
þ 1

2nþ 1

� �

:

The following program uses this series to find the approximate value of p. However,
the statements are in the incorrect order, and there is also a bug in this program.
Rearrange the statements and also find and remove the bug so that this program can
be used to approximate p.

328 | Chapter 5: Control Structures II (Repetition)

5

#include <iostream>
#include <iomanip>

using namespace std;

int main()
{

double pi = 0;
long i;
long n;

cin >> n;
cout << "Enter the value of n: ";
cout << endl;

if (i % 2 == 0)
pi = pi + (1 / (2 * i + 1));

else
pi = pi - (1 / (2 * i + 1));

for (i = 0; i < n; i++)
{

pi = 0;
pi = 4 * pi;

}

cout << endl << "pi = " << pi << endl;

return 0;
}

3. Rewrite the program of Example 5-5, Telephone Digits. Replace the state-
ments from Lines 10 to 28 so that the program uses only a switch structure
to find the digit that corresponds to an uppercase letter.

4. The program Telephone Digits outputs only telephone digits that corre-
spond to uppercase letters. Rewrite the program so that it processes both
uppercase and lowercase letters and outputs the corresponding telephone
digit. If the input is something other than an uppercase or lowercase letter,
the program must output an appropriate error message.

5. To make telephone numbers easier to remember, some companies use letters
to show their telephone number. For example, using letters, the telephone
number 438-5626 can be shown as GET LOAN. In some cases, to make a
telephone number meaningful, companies might use more than seven letters.
For example, 225-5466 can be displayed as CALL HOME, which uses eight
letters. Write a program that prompts the user to enter a telephone number
expressed in letters and outputs the corresponding telephone number in digits. If
the user enters more than seven letters, then process only the first seven letters.
Also output the – (hyphen) after the third digit. Allow the user to use both
uppercase and lowercase letters as well as spaces between words. Moreover, your
program should process as many telephone numbers as the user wants.

Programming Exercises | 329

6. Write a program that reads a set of integers and then finds and prints the sum
of the even and odd integers.

7. Write a program that prompts the user to input a positive integer. It should
then output a message indicating whether the number is a prime number.
(Note: An even number is prime if it is 2. An odd integer is prime if it is not
divisible by any odd integer less than or equal to the square root of the
number.)

8. Let n = akak-1ak-2. . .a1a0 be an integer and t = a0 - a1 + a2 - � � � + (-1)k ak. It
is known that n is divisible by 11 if and only if t is divisible by 11. For
example, suppose that n = 8784204. Then, t = 4 - 0 + 2 - 4 + 8 - 7 + 8 =
11. Because 11 is divisible by 11, it follows that 8784204 is divisible by 11.
If n ¼ 54063297, then t = 7 - 9 + 2 - 3 + 6 - 0 + 4 - 5 = 2. Because 2 is not
divisible by 11, 54063297 is not divisible by 11.Write a program that
prompts the user to enter a positive integer and then uses this criterion to
determine whether the number is divisible by 11.

9. Write a program that uses while loops to perform the following steps:

a. Prompt the user to input two integers: firstNum and secondNum

(firstNum must be less than secondNum).

b. Output all odd numbers between firstNum and secondNum.

c. Output the sum of all even numbers between firstNum and
secondNum.

d. Output the numbers and their squares between 1 and 10.

e. Output the sum of the square of the odd numbers between firstNum

and secondNum.

f. Output all uppercase letters.

10. Redo Programming Exercise 9 using for loops.

11. Redo Programming Exercise 9 using do. . .while loops.

12. The program in the Programming Example: Fibonacci Number does not
check whether the first number entered by the user is less than or equal to
the second number and whether both the numbers are nonnegative. Also,
the program does not check whether the user entered a valid value for the
position of the desired number in the Fibonacci sequence. Rewrite that
program so that it checks for these things.

13. The population of a town A is less than the population of town B.
However, the population of town A is growing faster than the population
of town B. Write a program that prompts the user to enter the population
and growth rate of each town. The program outputs after how many years
the population of town A will be greater than or equal to the population of
town B and the populations of both the towns at that time. (A sample input
is: Population of town A ¼ 5000, growth rate of town A ¼ 4%, population
of town B ¼ 8000, and growth rate of town B ¼ 2%.)

330 | Chapter 5: Control Structures II (Repetition)

5

14. Suppose that the first number of a sequence is x, in which x is an integer.
Define a0 ¼ x; an+1 ¼ an/2 if an is even; an+1 ¼ 3 � an + 1 if an is odd.
Then, there exists an integer k such that ak ¼ 1. Write a program that prompts
the user to input the value of x. The program output the integer k such
that ak ¼ 1 and the numbers a0, a1, a2, . . . , ak. (For example, if x ¼ 75, then
k¼ 14, and the numbers a0, a1, a2, . . ., a14, respectively, are 75, 226, 113, 340,
170, 85, 256, 128, 64, 32, 16, 8, 4, 2, 1.) Test your program for the following
values of x: 75, 111, 678, 732, 873, 2048, and 65535.

15. Enhance your program from Programming Exercise 14 by outputting the
position of the largest number and the largest number of the sequence a0, a1,
a2, . . ., ak. (For example, the largest number of the sequence 75, 226, 113, 340,
170, 85, 256, 128, 64, 32, 16, 8, 4, 2, 1 is 340, and its position is 4.) Test your
program for the following values of x: 75, 111, 678, 732, 873, 2048, and 65535.

16. The program in Example 5-6 implements the Number Guessing Game.
However, in that program, the user is given as many tries as needed to guess
the correct number. Rewrite the program so that the user has no more than
five tries to guess the correct number. Your program should print an
appropriate message, such as ‘‘You win!’’ or ‘‘You lose!’’.

17. Example 5-6 implements the Number Guessing Game program. If the
guessed number is not correct, the program outputs a message indicating
whether the guess is low or high. Modify the program as follows: Suppose
that the variables num and guess are as declared in Example 5-6 and diff

is an int variable. Let diff = the absolute value of (num – guess). If diff
is 0, then guess is correct and the program outputs a message indicating
that the user guessed the correct number. Suppose diff is not 0. Then the
program outputs the message as follows:

a. If diff is greater than or equal to 50, the program outputs the message
indicating that the guess is very high (if guess is greater than num) or
very low (if guess is less than num).

b. If diff is greater than or equal to 30 and less than 50, the program
outputs the message indicating that the guess is high (if guess is greater
than num) or low (if guess is less than num).

c. If diff is greater than or equal to 15 and less than 30, the program
outputs the message indicating that the guess is moderately high (if guess
is greater than num) or moderately low (if guess is less than num).

d. If diff is greater than 0 and less than 15, the program outputs the
message indicating that the guess is somewhat high (if guess is greater
than num) or somewhat low (if guess is less than num).

As in Programming Exercise 16, give the user no more than five tries to
guess the number. (To find the absolute value of num – guess, use the
expression abs(num – guess). The function abs is from the header file
cstdlib.)

Programming Exercises | 331

18. Write a program to implement the algorithm that you designed in Exercise
20 of Chapter 1. Your program should allow the user to buy as many items
as the user desires.

19. The program in Example 5-4 uses a sentinel control loop to process
cookies sales data. Assume that the data is provided in a file and the first
line in the file specifies the cost of one box. Modify the program so that it
uses an EOF-controlled loop to process the data.

20. Enhance the program that you wrote in Exercise 19 by modifying it as
follows: When the students started selling cookies, they were told that the
students who sell the maximum number of boxes will have 10% of the money
they generate donated to their favorite charitable organization. So, in addition
to the output your program generated in Exercise 19, your program should
output the names of all the students selling the maximum number of boxes
and the amount that will be donated to their charitable organization.

21. When you borrow money to buy a house, a car, or for some other purpose,
you repay the loan by making periodic payments over a certain period of time.
Of course, the lending company will charge interest on the loan. Every
periodic payment consists of the interest on the loan and the payment toward
the principal amount. To be specific, suppose that you borrow $1000 at the
interest rate of 7.2% per year and the payments are monthly. Suppose that your
monthly payment is $25. Now, the interest is 7.2% per year and the payments
are monthly, so the interest rate per month is 7.2/12¼ 0.6%. The first month’s
interest on $1000 is 1000 � 0.006 ¼ 6. Because the payment is $25 and
interest for the first month is $6, the payment toward the principal amount is
25 – 6 ¼ 19. This means after making the first payment, the loan amount is
1000 – 19 ¼ 981. For the second payment, the interest is calculated on $981.
So the interest for the second month is 981 � 0.006 ¼ 5.886, that is,
approximately $5.89. This implies that the payment toward the principal is
25 – 5.89¼ 19.11 and the remaining balance after the second payment is 981 –
19.11 ¼ 961.89. This process is repeated until the loan is paid. Write a
program that accepts as input the loan amount, the interest rate per year,
and the monthly payment. (Enter the interest rate as a percentage. For
example, if the interest rate is 7.2% per year, then enter 7.2.) The program
then outputs the number of months it would take to repay the loan. (Note
that if the monthly payment is less than the first month’s interest, then after
each payment, the loan amount will increase. In this case, the program
must warn the borrower that the monthly payment is too low, and with
this monthly payment, the loan amount could not be repaid.)

22. Enhance your program from Exercise 21 by first telling the user the
minimum monthly payment and then prompting the user to enter the
monthly payment. Your last payment might be more than the remaining
loan amount and interest on it. In this case, output the loan amount before
the last payment and the actual amount of the last payment. Also, output the
total interest paid.

23. Write a complete program to test the code in Example 5-21.

332 | Chapter 5: Control Structures II (Repetition)

24. Write a complete program to test the code in Example 5-22.

25. Write a complete program to test the code in Example 5-23.

26. Write a complete program to test the code in Example 5-24.

27. Write a complete program to test the code in Example 5-25.

28. (The conical paper cup problem) You have been given the contract for
making little conical cups that come with bottled water. These cups are to
be made from a circular waxed paper of 4 inches in radius by removing a
sector of length x (see Figure 5-4). By closing the remaining part of the
circle, a conical cup is made. Your objective is to remove the sector so that
the cup is of maximum volume.

Write a program that prompts the user to enter the radius of the circular
waxed paper. The program should then output the length of the removed
sector so that the resulting cup is of maximum volume. Calculate your
answer to two decimal places.

29. (Apartment problem) A real estate office handles, say, 50 apartment units.
When the rent is, say, $600 per month, all the units are occupied. However,
for each, say, $40 increase in rent, one unit becomes vacant. Moreover,
each occupied unit requires an average of $27 per month for maintenance.
How many units should be rented to maximize the profit?

Write a program that prompts the user to enter:

a. The rent to occupy all the units.

b. The increase in rent that results in a vacant unit.

c. Amount to maintain a rented unit.

The program then outputs the number of units to be rented to maximize the profit.

5

4

r

h

4

x

FIGURE 5-4 Conical paper cup

Programming Exercises | 333

This page intentionally left blank

USER-DEFINED FUNCTIONS
IN THIS CHAPTER , YOU WILL :

. Learn about standard (predefined) functions and discover how to use them in a program

. Learn about user-defined functions

. Examine value-returning functions, including actual and formal parameters

. Explore how to construct and use a value-returning, user-defined function in a program

. Learn how to construct and use void functions in a program

. Discover the difference between value and reference parameters

. Explore reference parameters and value-returning functions

. Learn about the scope of an identifier

. Examine the differences between local and global identifiers

. Discover static variables

. Learn how to debug programs using drivers and stubs

. Learn function overloading

. Explore functions with default parameters

6C H A P T E R

In Chapter 2, you learned that a C++ program is a collection of functions. One such
function is main. The programs in Chapters 1 through 5 use only the function
main; the programming instructions are packed into one function. This technique,
however, is good only for short programs. For large programs, it is not practical
(although it is possible) to put the entire programming instructions into one function,
as you will soon discover. You must learn to break the problem into manageable
pieces. This chapter first discusses the functions previously defined and then discusses
user-defined functions.

Let us imagine an automobile factory. When an automobile is manufactured, it is not
made from basic raw materials; it is put together from previously manufactured parts.
Some parts are made by the company itself; others, by different companies.

Functions are like building blocks. They let you divide complicated programs into
manageable pieces. They have other advantages, too:

• While working on one function, you can focus on just that part of the
program and construct it, debug it, and perfect it.

• Different people can work on different functions simultaneously.

• If a function is needed in more than one place in a program or in
different programs, you can write it once and use it many times.

• Using functions greatly enhances the program’s readability because it
reduces the complexity of the function main.

Functions are often called modules. They are like miniature programs; you can put
them together to form a larger program. When user-defined functions are discussed,
you will see that this is the case. This ability is less apparent with predefined functions
because their programming code is not available to us. However, because predefined
functions are already written for us, you will learn these first so that you can use them
when needed.

Predefined Functions
Before formally discussing predefined functions in C++, let us review a concept from a
college algebra course. In algebra, a function can be considered a rule or correspondence
between values, called the function’s arguments, and the unique values of the function
associated with the arguments. Thus, if f(x) = 2x + 5, then f(1) = 7, f(2) = 9, and
f(3) = 11, where 1, 2, and 3 are the arguments of f, and 7, 9, and 11 are the
corresponding values of the function f.

In C++, the concept of a function, either predefined or user-defined, is similar to that of
a function in algebra. For example, every function has a name and, depending on the
values specified by the user, it does some computation. This section discusses various
predefined functions.

336 | Chapter 6: User-Defined Functions

Some of the predefined mathematical functions are pow(x, y), sqrt(x), and
floor(x).

The power function, pow(x, y), calculates x
y; that is, the value of pow(x, y)= x

y.
For example, pow(2, 3)= 2

3
= 8.0 and pow(2.5, 3)= 2.5

3
= 15.625. Because

the value of pow(x, y) is of type double, we say that the function pow is of type
double or that the function pow returns a value of type double. Moreover, x and y

are called the parameters (or arguments) of the function pow. Function pow has two
parameters.

The square root function, sqrt(x), calculates the nonnegative square root of x for
x >= 0.0. For example, sqrt(2.25) is 1.5. The function sqrt is of type double

and has only one parameter.

The floor function, floor(x), calculates the largest whole number that is less than or
equal to x. For example, floor(48.79) is 48.0. The function floor is of type
double and has only one parameter.

In C++, predefined functions are organized into separate libraries. For example, the
header file iostream contains I/O functions, and the header file cmath contains
math functions. Table 6-1 lists some of the predefined functions, the name of the
header file in which each function’s specification can be found, the data type of the
parameters, and the function type. The function type is the data type of the final
value returned by the function. (For a list of additional predefined functions, see
Appendix F.)

6

TABLE 6-1 Predefined Functions

Function Header File Purpose
Parameter(s)

Type
Result

abs(x) <cmath>
Returns the absolute value

of its argument: abs(-7) = 7
int
(double)

int
(double)

ceil(x) <cmath>
Returns the smallest whole

number that is not less than

x: ceil(56.34) = 57.0
double double

cos(x) <cmath>
Returns the cosine of angle:

x: cos(0.0) = 1.0
double
(radians)

double

exp(x) <cmath>
Returns ex, where e = 2.718:
exp(1.0) = 2.71828

double double

fabs(x) <cmath>
Returns the absolute value

of its argument:

fabs(-5.67) = 5.67
double double

Predefined Functions | 337

To use predefined functions in a program, you must include the header file that contains
the function’s specification via the include statement. For example, to use the function
pow, the program must include:

#include <cmath>

Example 6-1 shows you how to use some of the predefined functions.

Function Header File Purpose
Parameter(s)
Type

Result

floor(x) <cmath>
Returns the largest whole

number that is not greater than

x:floor(45.67) = 45.00
double double

islower(x) <cctype>

Returns 1 (true) if x is a

lowercase letter; otherwise,

it returns 0 (false);
islower('h') is 1 (true)

int int

isupper(x) <cctype>

Returns 1 (true) if x is an

uppercase letter; otherwise,

it returns 0 (false);
isupper('K') is 1 (true)

int int

pow(x, y) <cmath>
Returns xy; if x is negative, y
must be a whole number:

pow(0.16, 0.5) = 0.4
double double

sqrt(x) <cmath>

Returns the nonnegative

square root of x; x must be

nonnegative: sqrt(4.0) =
2.0

double double

tolower(x) <cctype>
Returns the lowercase value

of x if x is uppercase;

otherwise, it returns x
int int

toupper(x) <cctype>
Returns the uppercase value

of x if x is lowercase;

otherwise, it returns x
int int

TABLE 6-1 Predefined Functions (continued)

338 | Chapter 6: User-Defined Functions

EXAMPLE 6-1

// How to use predefined functions.
#include <iostream> //Line 1
#include <cmath> //Line 2
#include <cctype> //Line 3
#include <iomanip> //Line 4

using namespace std; //Line 5

int main() //Line 6
{ //Line 7

int num; //Line 8
double firstNum, secondNum; //Line 9
char ch = 'T'; //Line 10

cout << fixed << showpoint << setprecision (2)
<< endl; //Line 11

cout << "Line 12: Is " << ch
<< " a lowercase letter? "
<< islower(ch) << endl; //Line 12

cout << "Line 13: Uppercase a is "
<< static_cast<char>(toupper('a')) << endl; //Line 13

cout << "Line 14: 4.5 to the power 6.0 = "
<< pow(4.5, 6.0) << endl; //Line 14

cout << "Line 15: Enter two decimal numbers: "; //Line 15
cin >> firstNum >> secondNum; //Line 16
cout << endl; //Line 17

cout << "Line 18: " << firstNum
<< " to the power of " << secondNum
<< " = " << pow(firstNum, secondNum) << endl; //Line 18

cout << "Line 19: 5.0 to the power of 4 = "
<< pow(5.0, 4) << endl; //Line 19

firstNum = firstNum + pow(3.5, 7.2); //Line 20
cout << "Line 21: firstNum = " << firstNum << endl; //Line 21

num = -32; //Line 22
cout << "Line 23: Absolute value of " << num

<< " = " << abs(num) << endl; //Line 23

cout << "Line 24: Square root of 28.00 = "
<< sqrt(28.00) << endl; //Line 24

return 0; //Line 25
} //Line 26

6

Predefined Functions | 339

Sample Run: In this sample run, the user input is shaded.

Line 12: Is T a lowercase letter? 0
Line 13: Uppercase a is A
Line 14: 4.5 to the power 6.0 = 8303.77
Line 15: Enter two decimal numbers: 24.7 3.8

Line 18: 24.70 to the power of 3.80 = 195996.55
Line 19: 5.0 to the power of 4 = 625.00
Line 21: firstNum = 8290.60
Line 23: Absolute value of -32 = 32
Line 24: Square root of 28.00 = 5.29

This program works as follows. The statements in Lines 1 to 4 include the header files
that are necessary to use the functions used in the program. The statements in Lines 8 to
10 declare the variables used in the program. The statement in Line 11 sets the output of
decimal numbers in fixed decimal format with two decimal places. The statement in Line
12 uses the function islower to determine and output whether ch is a lowercase letter.
The statement in Line 13 uses the function toupper to output the uppercase letter that
corresponds to 'a', which is A. Note that the function toupper returns an int value.
Therefore, the value of the expression toupper('a') is 65, which is the ASCII value of
'A'. To print A rather than 65, you need to apply the cast operator as shown in the
statement in Line 13. The statement in Line 14 uses the function pow to output 4.56.0.
In C++ terminology, it is said that the function pow is called with the parameters 4.5 and
6.0. The statements in Lines 15 to 17 prompt the user to enter two decimal numbers and
store the numbers entered by the user in the variables firstNum and secondNum. In the
statement in Line 18, the function pow is used to output firstNumsecondNum. In this case,
the function pow is called with the parameters firstNum and secondNum and the values
of firstNum and secondNum are passed to the function pow. The other statements have
similar meanings. Once again, note that the program includes the header files cctype and
cmath, because it uses the functions islower, toupper, pow, abs, and sqrt from these
header files.

User-Defined Functions
As Example 6-1 illustrates, using functions in a program greatly enhances the program’s
readability because it reduces the complexity of the function main. Also, once you write
and properly debug a function, you can use it in the program (or different programs)
again and again without having to rewrite the same code repeatedly. For instance, in
Example 6-1, the function pow is used more than once.

Because C++ does not provide every function that you will ever need and designers
cannot possibly know a user’s specific needs, you must learn to write your own
functions.

340 | Chapter 6: User-Defined Functions

User-defined functions in C++ are classified into two categories:

• Value-returning functions—functions that have a return type. These
functions return a value of a specific data type using the return

statement, which we will explain shortly.

• Void functions—functions that do not have a return type. These
functions do not use a return statement to return a value.

We will first discuss value-returning functions. Many of the concepts discussed in regard
to value-returning functions also apply to void functions.

Value-Returning Functions
The previous section introduced some predefined C++ functions such as pow, abs,
islower, and toupper. These are examples of value-returning functions. To use these
functions in your programs, you must know the name of the header file that contains the
functions’ specification. You need to include this header file in your program using the
include statement and know the following items:

1. The name of the function

2. The number of parameters, if any

3. The data type of each parameter

4. The data type of the value computed (that is, the value returned) by the
function, called the type of the function

Because the value returned by a value-returning function is unique, the natural
thing for you to do is to use the value in one of three ways:

• Save the value for further calculation. For example, x = pow(3.0, 2.5);

• Use the value in some calculation. For example,
area = PI * pow(radius, 2.0);

• Print the value. For example, cout << abs(-5) << endl;

This suggests that a value-returning function is used:

• In an assignment statement.

• As a parameter in a function call.

• In an output statement.

That is, a value-returning function is used (called) in an expression.

Before we look at the syntax of a user-defined, value-returning function, let us consider
the things associated with such functions. In addition to the four properties described
previously, one more thing is associated with functions (both value-returning and void):

5. The code required to accomplish the task

The first four properties form what is called the heading of the function (also called the
function header); the fifth property is called the body of the function. Together, these

6

Value-Returning Functions | 341

five properties form what is called the definition of the function. For example, for the
function abs, the heading might look like:

int abs(int number)

Similarly, the function abs might have the following definition:

int abs(int number)
{

if (number < 0)
number = -number;

return number;
}

The variable declared in the heading of the function abs is called the formal parameter

of the function abs. Thus, the formal parameter of abs is number.

The program in Example 6-1 contains several statements that use the function pow. That
is, in C++ terminology, the function pow is called several times. Later in this chapter, we
discuss what happens when a function is called.

Suppose that the heading of the function pow is:

double pow(double base, double exponent)

From the heading of the function pow, it follows that the formal parameters of pow are
base and exponent. Consider the following statements:

double u = 2.5;
double v = 3.0;
double x, y;

x = pow(u, v); //Line 1
y = pow(2.0, 3.2) + 5.1; //Line 2
cout << u << " to the power of 7 = " << pow(u, 7) << endl; //Line 3

In Line 1, the function pow is called with the parameters u and v. In this case, the values
of u and v are passed to the function pow. In fact, the value of u is copied into base, and
the value of v is copied into exponent. The variables u and v that appear in the call to
the function pow in Line 1 are called the actual parameters of that call. In Line 2, the
function pow is called with the parameters 2.0 and 3.2. In this call, the value 2.0 is
copied into base, and 3.2 is copied into exponent. Moreover, in this call of the
function pow, the actual parameters are 2.0 and 3.2, respectively. Similarly, in Line 3,
the actual parameters of the function pow are u and 7; the value of u is copied into base,
and 7.0 is copied into exponent.

We can now formally present two definitions:

Formal Parameter: A variable declared in the function heading.

Actual Parameter: A variable or expression listed in a call to a function.

342 | Chapter 6: User-Defined Functions

For predefined functions, you only need to be concerned with the first four properties.
Software companies, typically, do not give out the actual source code, which is the body
of the function. Otherwise, software costs would be exorbitant.

Syntax: Value-Returning function
The syntax of a value-returning function is:

functionType functionName(formal parameter list)
{

statements
}

in which statements are usually declaration statements and/or executable statements.
In this syntax, functionType is the type of the value that the function returns. The
functionType is also called the data type or the return type of the value-returning
function. Moreover, statements enclosed between curly braces form the body of the function.

Syntax: Formal Parameter List
The syntax of the formal parameter list is:

dataType identifier, dataType identifier, ...

Consider the definition of the function abs given earlier in this chapter. Figure 6-1
identifies various parts of this function.

Function Call
The syntax to call a value-returning function is:

functionName(actual parameter list)

For example, in the expression x = abs(-5);, the function abs is called.

6

Function heading int abs(int number)

{

if (number < 0)

 number = -number;

return number;

}

Function return type Function name Formal parameter

Formal parameter list

Function body

FIGURE 6-1 Various parts of the function abs

Value-Returning Functions | 343

Syntax: Actual Parameter List
The syntax of the actual parameter list is:

expression or variable, expression or variable, ...

(In this syntax, expression can be a single constant value.) Thus, to call a value-
returning function, you use its name, with the actual parameters (if any) in parentheses.

A function’s formal parameter list can be empty. However, if the formal parameter list is
empty, the parentheses are still needed. The function heading of the value-returning
function thus takes, if the formal parameter list is empty, the following form:

functionType functionName()

If the formal parameter list of a value-returning function is empty, the actual parameter is
also empty in a function call. In this case (that is, an empty formal parameter list), in a
function call, the empty parentheses are still needed. Thus, a call to a value-returning
function with an empty formal parameter list is:

functionName()

In a function call, the number of actual parameters, together with their data types, must
match with the formal parameters in the order given. That is, actual and formal para-
meters have a one-to-one correspondence. (Later in this chapter, we discuss functions
with default parameters.)

As stated previously, a value-returning function is called in an expression. The expression
can be part of either an assignment statement or an output statement, or a parameter in a
function call. A function call in a program causes the body of the called function to
execute.

return Statement
Once a value-returning function computes the value, the function returns this value via
the return statement. In other words, it passes this value outside the function via the
return statement.

Syntax: return Statement
The return statement has the following syntax:

return expr;

in which expr is a variable, constant value, or expression. The expr is evaluated, and its
value is returned. The data type of the value that expr computes must match the
function type.

344 | Chapter 6: User-Defined Functions

In C++, return is a reserved word.

When a return statement executes in a function, the function immediately terminates
and the control goes back to the caller. Moreover, the function call statement is replaced
by the value returned by the return statement. When a return statement executes in
the function main, the program terminates.

To put the ideas in this discussion to work, let us write a function that determines the
larger of two numbers. Because the function compares two numbers, it follows that this
function has two parameters and that both parameters are numbers. Let us assume that
the data type of these numbers is floating-point (decimal)—say, double. Because the
larger number is of type double, the function’s data type is also double. Let us name
this function larger. The only thing you need to complete this function is the body of
the function. Thus, following the syntax of a function, you can write this function as
follows:

double larger(double x, double y)
{

double max;

if (x >= y)
max = x;

else
max = y;

return max;
}

Note that the function larger uses an additional variable max (called a local declaration,
in which max is a variable local to the function larger). Figure 6-2 describes various parts
of the function larger.

6

{

max = x;

max = Y;

else

}

Function
return type

Function
name

Formal
parameters

Formal parameters list

Function return value

Local variable

Function
body

Function
heading

larger(x, y)double double double

max;

max;

return

double

if (x >= y)

FIGURE 6-2 Various parts of the function larger

Value-Returning Functions | 345

Suppose that num, num1, and num2 are double variables. Also suppose that num1 = 45.75

and num2 = 35.50. Figure 6-3 shows various calls to the function larger.

You can also write the definition of the function larger as follows:

double larger(double x, double y)
{

if (x >= y)
return x;

else
return y;

}

Because the execution of a return statement in a function terminates the function, the
preceding function larger can also be written (without the word else) as:

double larger(double x, double y)
{

if (x >= y)
return x;

return y;
}

Note that these forms of the function larger do not require you to declare any
local variable.

1. In the definition of the function larger, x and y are formal parameters.

2. The return statement can appear anywhere in the function. Recall that once a

return statement executes, all subsequent statements are skipped. Thus, it’s

a good idea to return the value as soon as it is computed.

num = larger(23.50, 37.80);

num = larger(num1, num2);

num = larger(34.50, num1);

Actual parameters

Actual parameters

Function call
Actual parameters

Function call

Function call

FIGURE 6-3 Function calls

346 | Chapter 6: User-Defined Functions

6

EXAMPLE 6-2

Now that the function larger is written, the following C++ code illustrates how to use it:

double one = 13.00;
double two = 36.53;
double maxNum;

Consider the following statements:

cout << "The larger of 5 and 6 is " << larger(5, 6)
<< endl; //Line 1

cout << "The larger of " << one << " and " << two
<< " is " << larger(one, two) << endl; //Line 2

cout << "The larger of " << one << " and 29 is "
<< larger(one, 29) << endl; //Line 3

maxNum = larger(38.45, 56.78); //Line 4

• The expression larger(5, 6) in Line 1 is a function call, and 5 and 6

are actual parameters. When the expression larger(5, 6) executes, 5 is
copied into x, and 6 is copied into y. Therefore, the statement in Line 1
outputs the larger of 5 and 6.

• The expression larger(one, two) in Line 2 is a function call. Here, one
and two are actual parameters. When the expression larger(one, two)

executes, the value of one is copied into x, and the value of two is copied
into y. Therefore, the statement in Line 2 outputs the larger of one and two.

• The expression larger(one, 29) in Line 3 is also a function call. When
the expression larger(one, 29) executes, the value of one is copied
into x, and 29 is copied into y. Therefore, the statement in Line 3
outputs the larger of one and 29. Note that the first parameter, one, is a
variable, while the second parameter, 29, is a constant value.

• The expression larger(38.45, 56.78) in Line 4 is a function call. In this
call, the actual parameters are 38.45 and 56.78. In this statement, the value
returned by the function larger is assigned to the variable maxNum.

In a function call, you specify only the actual parameter, not its data type. For example, in

Example 6-2, the statements in Lines 1, 2, 3, and 4 show how to call the functionlargerwith

the actual parameters. However, the following statements contain incorrect calls to the function

larger and would result in syntax errors. (Assume that all variables are properly declared.)

x = larger(int one, 29); //illegal
y = larger(int one, int 29); //illegal
cout << larger(int one, int two); //illegal

Value-Returning Functions | 347

Once a function is written, you can use it anywhere in the program. The function
larger compares two numbers and returns the larger of the two. Let us now write
another function that uses this function to determine the largest of three numbers. We
call this function compareThree.

double compareThree(double x, double y, double z)

{

return larger(x, larger(y, z));

}

In the function heading, x, y, and z are formal parameters.

Let us take a look at the expression:

larger(x, larger(y, z))

in the definition of the function compareThree. This expression has two calls to the
function larger. The actual parameters to the outer call are x and larger(y, z);
the actual parameters to the inner call are y and z. It follows that, first, the expression
larger(y, z) is evaluated; that is, the inner call executes first, which gives the larger of y
and z. Suppose that larger(y, z) evaluates to, say, t. (Notice that t is either y or z.)
Next, the outer call determines the larger of x and t. Finally, the return statement returns
the largest number. It thus follows that to execute a function call, the parameters are evaluated
first. For example, the actual parameter larger(y, z) of the outer call evaluates first.

Note that the function larger is much more general purpose than the function
compareThree. Here, we are merely illustrating that once you have written a function,
you can use it to write other functions. Later in this chapter, we will show how to use the
function larger to determine the largest number from a set of numbers.

Function Prototype
Now that you have some idea of how to write and use functions in a program, the next
question relates to the order in which user-defined functions should appear in a program.
For example, do you place the function larger before or after the function main?
Should larger be placed before compareThree or after it? Following the rule that you
must declare an identifier before you can use it and knowing that the function main uses
the identifier larger, logically you must place larger before main.

In reality, C++ programmers customarily place the function main before all other user-
defined functions. However, this organization could produce a compilation error because
functions are compiled in the order in which they appear in the program. For example, if
the function main is placed before the function larger, the identifier larger is
undefined when the function main is compiled. To work around this problem of
undeclared identifiers, we place function prototypes before any function definition
(including the definition of main).

Function Prototype: The function heading without the body of the function.

348 | Chapter 6: User-Defined Functions

Syntax: Function Prototype
The general syntax of the function prototype of a value-returning function is:

functionType functionName(parameter list);

(Note that the function prototype ends with a semicolon.)

For the function larger, the prototype is:

double larger(double x, double y); //function prototype

When writing the function prototype, you do not have to specify the variable name in the

parameter list. However, you must specify the data type of each parameter.

You can rewrite the function prototype of the function larger as follows:

double larger(double, double); //function prototype

FINAL PROGRAM

You now know enough to write the entire program, compile it, and run it. The following
program uses the functions larger, compareThree, and main to determine the larger/
largest of two or three numbers.

//Program: Largest of three numbers

#include <iostream>

using namespace std;

double larger(double x, double y);
double compareThree(double x, double y, double z);

int main()
{

double one, two; //Line 1

cout << "Line 2: The larger of 5 and 10 is "
<< larger(5, 10) << endl; //Line 2

cout << "Line 3: Enter two numbers: "; //Line 3
cin >> one >> two; //Line 4
cout << endl; //Line 5

cout << "Line 6: The larger of " << one
<< " and " << two << " is "
<< larger(one, two) << endl; //Line 6

6

Value-Returning Functions | 349

cout << "Line 7: The largest of 43.48, 34.00, "
<< "and 12.65 is "
<< compareThree(43.48, 34.00, 12.65)
<< endl; //Line 7

return 0;
}

double larger(double x, double y)
{

double max;

if (x >= y)
max = x;

else
max = y;

return max;
}

double compareThree (double x, double y, double z)
{

return larger(x, larger(y, z));
}

Sample Run: In this sample run, the user input is shaded.

Line 2: The larger of 5 and 10 is 10
Line 3: Enter two numbers: 25.6 73.85

Line 6: The larger of 25.6 and 73.85 is 73.85
Line 7: The largest of 43.48, 34.00, and 12.65 is 43.48

In the previous program, the function prototypes of the functions larger and

compareThree appear before their function definitions. Therefore, the definition of

the functions larger and compareThree can appear in any order.

Value-Returning Functions: Some Peculiarities
A value-returning function must return a value. Consider the following function, secret,
that takes as a parameter an int value. If the value of the parameter, x, is greater than 5, it
returns twice the value of x; otherwise, the value of x remains unchanged.

int secret(int x)
{

if (x > 5) //Line 1

return 2 * x; //Line 2
}

Because this is a value-returning function of type int, it must return a value of type int.
Suppose the value of x is 10. Then the expression x > 5 in Line 1 evaluates to true. So
the return statement in Line 2 returns the value 20. Now suppose that x is 3. The

350 | Chapter 6: User-Defined Functions

expression x > 5 in Line 1 now evaluates to false. The if statement therefore fails, and
the return statement in Line 2 does not execute. However, there are no more statements
to be executed in the body of the function. In this case, the function returns a strange
value. It thus follows that if the value of x is less than or equal to 5, the function does not
contain any valid return statements to return the value of x.

A correct definition of the function secret is:

int secret(int x)
{

if (x > 5) //Line 1

return 2 * x; //Line 2

return x; //Line 3
}

Here, if the value of x is less than or equal to 5, the return statement in Line 3
executes, which returns the value of x. On the other hand, if the value of x is, say
10, the return statement in Line 2 executes, which returns the value 20 and also
terminates the function.

Recall that in a value-returning function, the return statement returns the value.
Consider the following return statement:

return x, y; //only the value of y will be returned

This is a legal return statement. You might think that this return statement is returning
the values of x and y. However, this is not the case. Remember, a return statement returns
only one value, even if the return statement contains more than one expression. If a
return statement contains more than one expression, only the value of the last expression is

returned. Therefore, in the case of the above return statement, the value of y is returned.
The following program further illustrates this concept:

// This program illustrates that a value-returning function
// returns only one value, even if the return statement
// contains more than one expression. This is a legal, but not
// a recommended code.

#include <iostream>

using namespace std;

int funcRet1();
int funcRet2(int z);

int main()
{

int num = 4;

cout << "Line 1: The value returned by funcRet1: "

<< funcRet1() << endl; // Line 1

6

Value-Returning Functions | 351

cout << "Line 2: The value returned by funcRet2: "

<< funcRet2(num) << endl; // Line 2

return 0;
}

int funcRet1()
{

int x = 45;

return 23, x; //only the value of x is returned
}

int funcRet2(int z)
{

int a = 2;

int b = 3;

return 2 * a + b, z + b; //only the value of z + b is returned
}

Sample Run:

Line 1: The value returned by funcRet1: 45
Line 2: The value returned by funcRet2: 7

Even though a return statement can contain more than one expression, a return
statement in your program should contain only one expression. Having more than one
expression in a return statement may result in redundancy, wasted code, and a confusing
syntax.

More Examples of Value-Returning Functions

EXAMPLE 6-3

In this example, we write the definition of function courseGrade. This function takes as
a parameter an int value specifying the score for a course and returns the grade, a value of
type char, for the course. (We assume that the test score is a value between 0 and 100

inclusive.)

char courseGrade(int score)
{

switch (score / 10)
{
case 0:
case 1:
case 2:
case 3:

352 | Chapter 6: User-Defined Functions

case 4:
case 5:

return 'F';
case 6:

return 'D';
case 7:

return 'C';
case 8:

return 'B';
case 9:
case 10:

return 'A';
}

}

You can also write an equivalent definition of the function courseGrade that uses an
if. . .else structure to determine the course grade.

EXAMPLE 6-4 (ROLLING A PAIR OF DICE)

In this example, we write a function that rolls a pair of dice until the sum of the numbers
rolled is a specific number. We also want to know the number of times the dice are rolled
to get the desired sum.

The smallest number on each die is 1, and the largest number is 6. So the smallest sum of
the numbers rolled is 2, and the largest sum of the numbers rolled is 12. Suppose that we
have the following declarations:

int die1;
int die2;
int sum;
int rollCount = 0;

We use the random number generator, discussed in Chapter 5, to randomly generate a
number between 1 and 6. Then, the following statement randomly generates a number
between 1 and 6 and stores that number into die1, which becomes the number rolled
by die1.

die1 = rand() % 6 + 1;

Similarly, the following statement randomly generates a number between 1 and 6 and
stores that number into die2, which becomes the number rolled by die2.

die2 = rand() % 6 + 1;

The sum of the numbers rolled by two dice is:

sum = die1 + die2;

6

Value-Returning Functions | 353

Next, we determine whether sum contains the desired sum of the numbers rolled by the
dice. If sum does not contain the desired sum, then we roll the dice again. This can be
accomplished by the following do...while loop. (Assume that the int variable num
contains the desired sum to be rolled.)

do
{

die1 = rand() % 6 + 1;

die2 = rand() % 6 + 1;

sum = die1 + die2;

rollCount++;
}
while (sum != num);

We can now write the function rollDice that takes as a parameter the desired sum of
the numbers to be rolled and returns the number of times the dice are rolled to roll the
desired sum.

int rollDice(int num)
{

int die1;
int die2;
int sum;
int rollCount = 0;

srand(time(0));

do
{

die1 = rand() % 6 + 1;
die2 = rand() % 6 + 1;
sum = die1 + die2;
rollCount++;

}
while (sum != num);

return rollCount;
}

The following program shows how to use the function rollDice in a program:

//Program: Roll dice

#include <iostream>
#include <cstdlib>
#include <ctime>

using namespace std;

int rollDice(int num);

354 | Chapter 6: User-Defined Functions

6

int main()
{

cout << "The number of times the dice are rolled to "

<< "get the sum 10 = " << rollDice(10) << endl;

cout << "The number of times the dice are rolled to "

<< "get the sum 6 = " << rollDice(6) << endl;

return 0;
}

int rollDice(int num)
{

int die1;

int die2;

int sum;

int rollCount = 0;

srand(time(0));

do

{

die1 = rand() % 6 + 1;

die2 = rand() % 6 + 1;

sum = die1 + die2;

rollCount++;

}

while (sum != num);

return rollCount;
}

Sample Run:

The number of times the dice are rolled to get the sum 10 = 11
The number of times the dice are rolled to get the sum 6 = 7

We leave it as an exercise for you to modify this program so that it allows the user to enter the
desired sumof the numbers to be rolled. (See Programming Exercise 7 at the end of this chapter.)

The following is an example of a function that returns a Boolean value.

EXAMPLE 6-5 (PALINDROME)

In this example, a function, isPalindrome, is designed that returns true if a string is a
palindrome and false otherwise. A string is a palindrome if it reads forward and
backward in the same way. For example, the strings "madamimadam", "5", "434", and
"789656987" are all palindromes.

Value-Returning Functions | 355

Suppose str is a string. To determine whether str is a palindrome, first compare the first
and the last characters of str. If they are not the same, str is not a palindrome and so the
function should return false. If the first and the last characters of str are the same, then
we compare the second character with the second character from the end, and so on.

Note that if length = str.length(), the number of characters in str, then we need to
compare str[0] with str[length - 1], str[1] with str[length - 2], and in
general str[i] with str[length - 1 - i], where 0 <= i <= length / 2.

The following algorithm implements this discussion:

1. int length = str.length();

2. for (int i = 0; i < length / 2; i++)
if (str[i] != str[length - 1 - i])

return false;
return true;

The following function implements this algorithm:

bool isPalindrome(string str)
{

int length = str.length(); //Step 1

for (int i = 0; i < length / 2; i++) //Step 2
if (str[i] != str[length - 1 - i])

return false;

return true;
}

EXAMPLE 6-6 (CABLE COMPANY)

Chapter 4 contains a program to calculate the bill for a cable company. In that
program, all of the programming instructions are packed in the function main. Here,
we rewrite the same program using user-defined functions, further illustrating struc-
tured programming.

Because there are two types of customers, residential and business, the program contains two
separate functions: one to calculate the bill for residential customers and one to calculate the
bill for business customers. Both functions calculate the billing amount and then return the
billing amount to the function main. The function main prints the amount due. Let us call
the function that calculates the residential bill residential and the function that calculates
the business bill business. The formulas to calculate the bills are the same as before.

Function residential: To compute the residential bill, you need to know the number
of premium channels to which the customer subscribes. Based on the number of
premium channels, you can calculate the billing amount. After calculating the billing

356 | Chapter 6: User-Defined Functions

amount, the function returns the billing amount using the return statement. The
following four steps describe this function:

a. Prompt the user for the number of premium channels.

b. Read the number of premium channels.

c. Calculate the bill.

d. Return the amount due.

This function contains a statement to prompt the user to enter the number of premium
channels (Step a) and a statement to read the number of premium channels (Step b). Other
items needed to calculate the billing amount, such as the cost of basic service connection and
bill processing fees, are defined as named constants (before the definition of the function
main). Therefore, to calculate the billing amount, this function does not need to get any
value from the function main. This function, therefore, has no parameters.

From the previous discussion, it follows that the function residential requires variables
to store both the number of premium channels and the billing amount. This function
needs only two local variables to calculate the billing amount:

int noOfPChannels; //number of premium channels
double bAmount; //billing amount

The definition of the function residential can now be written as follows:

double residential()
{

int noOfPChannels; //number of premium channels
double bAmount; //billing amount

cout << "Enter the number of premium "
<< "channels used: ";

cin >> noOfPChannels;
cout << endl;

bAmount= RES_BILL_PROC_FEES +
RES_BASIC_SERV_COST +
noOfPChannels * RES_COST_PREM_CHANNEL;

return bAmount;
}

Function business: To compute the business bill, you need to know the number of both
the basic service connections and the premium channels to which the customer subscribes.
Then, based on these numbers, you can calculate the billing amount. The billing amount is
then returned using the return statement. The following six steps describe this function:

a. Prompt the user for the number of basic service connections.

b. Read the number of basic service connections.

c. Prompt the user for the number of premium channels.

6

Value-Returning Functions | 357

d. Read the number of premium channels.

e. Calculate the bill.

f. Return the amount due.

This function contains the statements to prompt the user to enter the number of basic
service connections and premium channels (Steps a and c). The function also contains
statements to input the number of basic service connections and premium channels
(Steps b and d). Other items needed to calculate the billing amount, such as the cost of
basic service connections and bill processing fees, are defined as named constants (before
the definition of the function main). It follows that to calculate the billing amount this
function does not need to get any values from the function main. Therefore, it has no
parameters.

From the preceding discussion, it follows that the function business requires variables to
store the number of basic service connections and the number of premium channels, as well
as the billing amount. In fact, this function needs only three local variables to calculate the
billing amount:

int noOfBasicServiceConnections;
int noOfPChannels; //number of premium channels
double bAmount; //billing amount

The definition of the function business can now be written as follows:

double business()
{

int noOfBasicServiceConnections;
int noOfPChannels; //number of premium channels
double bAmount; //billing amount

cout << "Enter the number of basic "
<< "service connections: ";

cin >> noOfBasicServiceConnections;
cout << endl;

cout << "Enter the number of premium "
<< "channels used: ";

cin >> noOfPChannels;
cout << endl;

if (noOfBasicServiceConnections <= 10)
bAmount = BUS_BILL_PROC_FEES + BUS_BASIC_SERV_COST +

noOfPChannels * BUS_COST_PREM_CHANNEL;
else

bAmount = BUS_BILL_PROC_FEES + BUS_BASIC_SERV_COST +
(noOfBasicServiceConnections - 10) *
BUS_BASIC_CONN_COST +
noOfPChannels * BUS_COST_PREM_CHANNEL;

return bAmount;
}

358 | Chapter 6: User-Defined Functions

6

The algorithm for the main program is as follows:

1. To output floating-point numbers in a fixed decimal format with the decimal
point and trailing zeros, set the manipulators fixed and showpoint.

2. To output floating-point numbers to two decimal places, set the
precision to two decimal places.

3. Prompt the user for the account number.

4. Get the account number.

5. Prompt the user to enter the customer type.

6. Get the customer type.

7. a. If the customer type is R or r,

i. Call the function residential to calculate the bill.

ii. Print the bill.

b. If the customer type is B or b,

i. Call the function business to calculate the bill.

ii. Print the bill.

c. If the customer type is other than R, r, B, or b, it is an invalid
customer type.

PROGRAM LISTING

//***
// Author: D. S. Malik
//
// Program: Cable Company Billing
// This program calculates and prints a customer's bill for
// a local cable company. The program processes two types of
// customers: residential and business.
//***

#include <iostream>
#include <iomanip>
using namespace std;

//Named constants - residential customers
const double RES_BILL_PROC_FEES = 4.50;
const double RES_BASIC_SERV_COST = 20.50;
const double RES_COST_PREM_CHANNEL = 7.50;

//Named constants - business customers
const double BUS_BILL_PROC_FEES = 15.00;
const double BUS_BASIC_SERV_COST = 75.00;

Value-Returning Functions | 359

const double BUS_BASIC_CONN_COST = 5.00;
const double BUS_COST_PREM_CHANNEL = 50.00;

double residential(); //Function prototype
double business(); //Function prototype

int main()
{

//declare variables
int accountNumber;
char customerType;
double amountDue;

cout << fixed << showpoint; //Step 1
cout << setprecision(2); //Step 2

cout << "This program computes a cable bill."
<< endl;

cout << "Enter account number: "; //Step 3
cin >> accountNumber; //Step 4
cout << endl;

cout << "Enter customer type: R, r "
<< "(Residential), B, b (Business): "; //Step 5

cin >> customerType; //Step 6
cout << endl;

switch (customerType) //Step 7
{
case 'r': //Step 7a
case 'R':

amountDue = residential(); //Step 7a.i
cout << "Account number = "

<< accountNumber << endl; //Step 7a.ii
cout << "Amount due = $"

<< amountDue << endl; //Step 7a.ii
break;

case 'b': //Step 7b
case 'B':

amountDue = business(); //Step 7b.i
cout << "Account number = "

<< accountNumber << endl; //Step 7b.ii
cout << "Amount due = $"

<< amountDue << endl; //Step 7b.ii
break;

default:
cout << "Invalid customer type."

<< endl; //Step 7c
}

return 0;
}

//Place the definitions of the functions residential and business here.

360 | Chapter 6: User-Defined Functions

Sample Run: In this sample run, the user input is shaded.

This program computes a cable bill.
Enter account number: 21341

Enter customer type: R, r (Residential), B, b (Business): B

Enter the number of basic service connections: 25

Enter the number of premium channels used: 9

Account number = 21341
Amount due = $615.00

Flow of Execution
As stated earlier, a C++ program is a collection of functions. Recall that functions
can appear in any order. The only thing that you have to remember is that you must
declare an identifier before you can use it. The program is compiled by the compiler
sequentially from beginning to end. Thus, if the function main appears before any
other user-defined functions, it is compiled first. However, if main appears at the
end (or middle) of the program, all functions whose definitions (not prototypes)
appear before the function main are compiled before the function main, in the
order they are placed.

Function prototypes appear before any function definition, so the compiler translates
these first. The compiler can then correctly translate a function call. However, when the

program executes, the first statement in the function main always executes first, regardless of

where in the program the function main is placed. Other functions execute only when
they are called.

A function call statement transfers control to the first statement in the body of the
function. In general, after the last statement of the called function executes, control is
passed back to the point immediately following the function call. A value-returning
function returns a value. Therefore, after executing the value-returning function,
when the control goes back to the caller, the value that the function returns replaces
the function call statement. The execution continues at the point immediately
following the function call.

Suppose that a program contains functions funcA and funcB, and funcA contains a
statement that calls funcB. Suppose that the program calls funcA. When the statement
that contains a call to funcB executes, funcB executes, and while funcB is executing,
the execution of the current call of funcA is on hold until funcB is done.

6

Value-Returning Functions | 361

PROGRAMMING EXAMPLE: Largest Number
In this programming example, the function larger is used to determine the largest
number from a set of numbers. For the purpose of illustration, this program deter-
mines the largest number from a set of 10 numbers. You can easily enhance this
program to accommodate any set of numbers.

Input A set of 10 numbers.

Output The largest of 10 numbers.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

Suppose that the input data is:

15 20 7 8 28 21 43 12 35 3

Read the first number of the data set. Because this is the only number read to
this point, you may assume that it is the largest number so far and call it max.
Read the second number and call it num. Now compare max and num and store
the larger number into max. Now max contains the larger of the first two
numbers. Read the third number. Compare it with max and store the larger
number into max. At this point, max contains the largest of the first three
numbers. Read the next number, compare it with max, and store the larger into
max. Repeat this process for each remaining number in the data set. Eventually,
max will contain the largest number in the data set. This discussion translates into
the following algorithm:

1. Read the first number. Because this is the only number that you
have read so far, it is the largest number so far. Save it in a variable
called max.

2. For each remaining number in the list:

a. Read the next number. Store it in a variable called num.

b. Compare num and max. If max < num, then num is the new
largest number, so update the value of max by copying num into
max. If max >= num, discard num; that is, do nothing.

3. Because max now contains the largest number, print it.

To find the larger of two numbers, the program uses the function larger.

362 | Chapter 6: User-Defined Functions

6

COMPLETE PROGRAM LISTING

//**
// Author: D.S. Malik
//
// This program finds the largest number of a set of 10
// numbers.
//**

#include <iostream>

using namespace std;

double larger(double x, double y);

int main()
{

double num; //variable to hold the current number
double max; //variable to hold the larger number
int count; //loop control variable

cout << "Enter 10 numbers." << endl;
cin >> num; //Step 1
max = num; //Step 1

for (count = 1; count < 10; count++) //Step 2
{

cin >> num; //Step 2a
max = larger(max, num); //Step 2b

}

cout << "The largest number is " << max
<< endl; //Step 3

return 0;
}//end main

double larger(double x, double y)
{

if (x >= y)

return x;

else

return y;
}

Sample Run: In this sample run, the user input is shaded.

Enter 10 numbers.
10 56 73 42 22 67 88 26 62 11
The largest number is 88

Programming Example: Largest Number | 363

Earlier in this chapter, you learned how to use value-returning functions. In this section,
you will explore user-defined functions in general and, in particular, those C++ functions
that do not have a data type, called void functions.

Void Functions
Void functions and value-returning functions have similar structures. Both have a
heading and a body. Like value-returning functions, you can place user-defined void
functions either before or after the function main. However, the program execution
always begins with the first statement in the function main. If you place user-defined
void functions after the function main, you should place the function prototype
before the function main. A void function does not have a data type. Therefore,
functionType—that is, the return type—in the heading part and the return state-
ment in the body of the void functions are meaningless. However, in a void
function, you can use the return statement without any value; it is typically used
to exit the function early. Like value-returning functions, void functions may or may
not have formal parameters.

Because void functions do not have a data type, they are not used (called) in an
expression. A call to a void function is a stand-alone statement. Thus, to call a void
function, you use the function name together with the actual parameters (if any) in a
stand-alone statement. Before giving examples of void functions, next we give the syntax
of a void function.

FUNCTION DEFINITION

The function definition of void functions with parameters has the following syntax:

void functionName(formal parameter list)
{

statements
}

in which statements are usually declaration and/or executable statements. The formal
parameter list may be empty, in which case, in the function heading, the empty parentheses
are still needed.

FORMAL PARAMETER LIST

The formal parameter list has the following syntax:

dataType& variable, dataType& variable, ...

You must specify both the data type and the variable name in the formal parameter list.
The symbol & after dataType has a special meaning; it is used only for certain formal
parameters and is discussed later in this chapter.

364 | Chapter 6: User-Defined Functions

6

FUNCTION CALL

The function call has the following syntax:

functionName(actual parameter list);

ACTUAL PARAMETER LIST

The actual parameter list has the following syntax:

expression or variable, expression or variable, ...

in which expression can consist of a single constant value. As with value-returning
functions, in a function call, the number of actual parameters together with their data
types must match the formal parameters in the order given. Actual and formal para-
meters have a one-to-one correspondence. (Functions with default parameters are
discussed at the end of this chapter.) A function call results in the execution of the
body of the called function.

Example 6-7 shows a void function with parameters.

EXAMPLE 6-7

void funexp(int a, double b, char c, int x)
{

.

.

.
}

The function funexp has four parameters.

PARAMETER TYPES

Parameters provide a communication link between the calling function (such as main)
and the called function. They enable functions to manipulate different data each time
they are called. In general, there are two types of formal parameters: value parameters

and reference parameters.

Value parameter: A formal parameter that receives a copy of the content of the
corresponding actual parameter.

Reference parameter: A formal parameter that receives the location (memory address) of
the corresponding actual parameter.

When you attach & after the dataType in the formal parameter list of a function, the
variable following that dataType becomes a reference parameter.

Void Functions | 365

Example 6-8 shows a void function with value and reference parameters.

EXAMPLE 6-8

Consider the following function definition:

void areaAndPerimeter(double length, double width,
double& area, double& perimeter)

{
area = length * width;
perimeter = 2 * (length + width);

}

The function areaAndPerimeter has four parameters: length and width are value
parameters of type double; and area and perimeter are reference parameters of
type double.

The following figure describes various parts of the function areaAndPerimeter.

EXAMPLE 6-9

Consider the following definition:

void averageAndGrade(int testScore, int progScore,
double& average, char& grade)

{
average = (testScore + progScore) / 2.0;

if (average >= 90.00)
grade = 'A';

else if (grade >= 80.00)
grade = 'B';

void areaAndPerimeter(double length, double width,

double& area, double& perimeter)

{

 area = length * width;

 perimeter = 2 * (length + width);

}

Function name Value parameters

Reference parameters Function body

Function
heading

FIGURE 6-4 Various parts of the function areaAndPerimeter

366 | Chapter 6: User-Defined Functions

else if (grade >= 70.00)
grade = 'C';

else if (grade >= 60.00)
grade = 'D';

else
grade = 'F';

}

The function averageAndGrade has four parameters: testScore and progScore are
value parameters of type int, average is a reference parameter of type double, and
grade is a reference parameter of type char.

EXAMPLE 6-10

We write a program to print a pattern (a triangle of stars) similar to the following:

*
* *

* * *
* * * *

The first line has one star with some blanks before the star, the second line has two stars,
some blanks before the stars, and a blank between the stars, and so on. Let’s write the
function printStars that has two parameters, a parameter to specify the number of
blanks before the stars in a line and a second parameter to specify the number of stars in a
line. To be specific, the definition of the function printStars is:

void printStars(int blanks, int starsInLine)
{

int count;

//print the number of blanks before the stars in a line
for (count = 1; count <= blanks; count++)

cout << ' ';

//print the number of stars with a blanks between stars
for (count = 1; count <= starsInLine; count++)

cout << " *";

cout << endl;
} //end printStars

The first parameter, blanks, determines how many blanks to print preceding the star(s);
the second parameter, starsInLine, determines how many stars to print in a line. If
the value of the parameter blanks is 30, for instance, then the first for loop in the
function printStars executes 30 times and prints 30 blanks. Also, because you want to
print a space between the stars, every iteration of the second for loop in the function
printStars prints the string " *"—a blank followed by a star.

6

Void Functions | 367

Next, consider the following statements:

int numberOfLines = 15;
int numberOfBlanks = 30;

for (counter = 1; counter <= numberOfLines; counter++)
{

printStars(numberOfBlanks, counter);
numberOfBlanks--;

}

The for loop calls the function printStars. Every iteration of this for loop specifies
the number of blanks followed by the number of stars to print in a line, using the
variables numberOfBlanks and counter. Every invocation of the function printStars

receives one fewer blank and one more star than the previous call. For example, the first
iteration of the for loop in the function main specifies 30 blanks and 1 star (which are
passed as the parameters numberOfBlanks and counter to the function printStars).
The for loop then decrements the number of blanks by 1 by executing the statement,
numberOfBlanks--;. At the end of the for loop, the number of stars is incremented by 1

for the next iteration. This is done by executing the update statement counter++ in the
for statement, which increments the value of the variable counter by 1. In other words,
the second call of the function printStars receives 29 blanks and 2 stars as parameters.
Thus, the previous statements will print a triangle of stars consisting of 15 lines.

//Program: Print a triangle of stars

#include <iostream>

using namespace std;

void printStars(int blanks, int starsInLine);

int main()
{

int noOfLines; //variable to store the number of lines
int counter; //for loop control variable
int noOfBlanks; //variable to store the number of blanks

cout << "Enter the number of star lines (1 to 20) "
<< "to be printed: "; //Line 1

cin >> noOfLines; //Line 2

while (noOfLines < 0 || noOfLines > 20) //Line 3
{

cout << "Number of star lines should be "
<< "between 1 and 20" << endl; //Line 4

cout << "Enter the number of star lines "
<< "(1 to 20) to be printed: "; //Line 5

cin >> noOfLines; //Line 6
}

368 | Chapter 6: User-Defined Functions

cout << endl << endl; //Line 7
noOfBlanks = 30; //Line 8

for (counter = 1; counter <= noOfLines; counter++) //Line 9
{

printStars(noOfBlanks, counter); //Line 10
noOfBlanks--; //Line 11

}

return 0; //Line 12
}

void printStars(int blanks, int starsInLine)
{

int count;

for (count = 1; count <= blanks; count++) //Line 13
cout << ' '; //Line 14

for (count = 1; count <= starsInLine; count++) //Line 15
cout << " *"; //Line 16

cout << endl;
}

Sample Run: In this sample run, the user input is shaded.

Enter the number of star lines (1 to 20) to be printed: 15

*
* *
* * *
* * * *
* * * * *
* * * * * *
* * * * * * *
* * * * * * * *
* * * * * * * * *
* * * * * * * * * *
* * * * * * * * * * *
* * * * * * * * * * * *
* * * * * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * * * * * * *

In the function main, the user is first asked to specify how many lines of stars to print
(Line 1). (In this program, the user is restricted to 20 lines because a triangular grid of up
to 20 lines fits nicely on the screen.) Because the program is restricted to only 20 lines, the
while loop at Lines 3 through 6 ensures that the program prints only the triangular grid
of stars if the number of lines is between 1 and 20.

6

Void Functions | 369

Value Parameters
The previous section defined two types of parameters—value parameters and reference
parameters. Example 6-10 showed a program that uses a function with parameters. Before
considering more examples of void functions with parameters, let us make the following
observation about value and reference parameters. When a function is called, the value of
the actual parameter is copied into the corresponding formal parameter. If the formal
parameter is a value parameter, then after copying the value of the actual parameter,
there is no connection between the formal parameter and actual parameter; that is, the
formal parameter has its own copy of the data. Therefore, during program execution, the
formal parameter manipulates the data stored in its own memory space. The program in
Example 6-11 further illustrates how a value parameter works.

EXAMPLE 6-11

The following program shows how a formal parameter of a simple data type works.

//Example 6-11
//Program illustrating how a value parameter works.

#include <iostream>

using namespace std;

void funcValueParam(int num);

int main()
{

int number = 6; //Line 1

cout << "Line 2: Before calling the function "
<< "funcValueParam, number = " << number
<< endl; //Line 2

funcValueParam(number); //Line 3

cout << "Line 4: After calling the function "
<< "funcValueParam, number = " << number
<< endl; //Line 4

return 0;
}

void funcValueParam(int num)
{

cout << "Line 5: In the function funcValueParam, "
<< "before changing, num = " << num
<< endl; //Line 5

num = 15; //Line 6

370 | Chapter 6: User-Defined Functions

cout << "Line 7: In the function funcValueParam, "
<< "after changing, num = " << num
<< endl; //Line 7

}

Sample Run:

Line 2: Before calling the function funcValueParam, number = 6
Line 5: In the function funcValueParam, before changing, num = 6
Line 7: In the function funcValueParam, after changing, num = 15
Line 4: After calling the function funcValueParam, number = 6

This program works as follows. The execution begins at the function main. The
statement in Line 1 declares and initializes the int variable number. The statement in
Line 2 outputs the value of number before calling the function funcValueParam; the
statement in Line 3 calls the function funcValueParam. The value of the variable
number is then passed to the formal parameter num. Control now transfers to the
function funcValueParam.

The statement in Line 5 outputs the value of num before changing its value. The
statement in Line 6 changes the value of num to 15; the statement in Line 7 outputs
the value of num. After this statement executes, the function funcValueParam exits and
control goes back to the function main.

The statement in Line 4 outputs the value of number after calling the function
funcValueParam. The sample run shows that the value of number (Lines 2 and 4)
remains the same even though the value of its corresponding formal parameter num was
changed within the function funcValueParam.

The output shows the sequence in which the statements execute.

After copying data, a value parameter has no connection with the actual parameter, so a
value parameter cannot pass any result back to the calling function. When the function
executes, any changes made to the formal parameters do not in any way affect the actual
parameters. The actual parameters have no knowledge of what is happening to the formal
parameters. Thus, value parameters cannot pass information outside of the function.
Value parameters provide only a one-way link between actual parameters and formal
parameters. Hence, functions with only value parameters have limitations.

Reference Variables as Parameters
The program in Example 6-11 illustrates how a value parameter works. On the other
hand, suppose that a formal parameter is a reference parameter. Because a reference
parameter receives the address (memory location) of the actual parameter, reference
parameters can pass one or more values from a function and can change the value of
the actual parameter.

6

Reference Variables as Parameters | 371

Reference parameters are useful in three situations:

• When the value of the actual parameter needs to be changed

• When you want to return more than one value from a function (recall
that the return statement can return only one value)

• When passing the address would save memory space and time relative to
copying a large amount of data

The first two situations are illustrated throughout this book. Chapters 8 and 10 discuss the
third situation, when arrays and classes are introduced.

Recall that when you attach & after the dataType in the formal parameter list of a
function, the variable following that dataType becomes a reference parameter.

You can declare a reference (formal) parameter as a constant by using the keyword

const. Chapters 9 and 10 discuss constant reference parameters. Until then, the

reference parameters that you use will be nonconstant as defined in this chapter. From

the definition of a reference parameter, it follows that a constant value or an expression

cannot be passed to a nonconstant reference parameter. If a formal parameter is a

nonconstant reference parameter, during a function call, its corresponding actual para-

meter must be a variable.

EXAMPLE 6-12

Calculate Grade

The following program takes a course score (a value between 0 and 100) and determines
a student’s course grade. This program has three functions: main, getScore, and
printGrade, as follows:

1. main

a. Get the course score.

b. Print the course grade.

2. getScore

a. Prompt the user for the input.

b. Get the input.

c. Print the course score.

3. printGrade

a. Calculate the course grade.

b. Print the course grade.

372 | Chapter 6: User-Defined Functions

The complete program is as follows:

//This program reads a course score and prints the
//associated course grade.

#include <iostream>
using namespace std;

void getScore(int& score);
void printGrade(int score);

int main()
{

int courseScore;

cout << "Line 1: Based on the course score, \n"
<< " this program computes the "
<< "course grade." << endl; //Line 1

getScore(courseScore); //Line 2

printGrade(courseScore); //Line 3

return 0;
}

void getScore(int& score)
{

cout << "Line 4: Enter course score: "; //Line 4
cin >> score; //Line 5
cout << endl << "Line 6: Course score is "

<< score << endl; //Line 6
}

void printGrade(int cScore)
{

cout << "Line 7: Your grade for the course is "; //Line 7

if (cScore >= 90) //Line 8
cout << "A." << endl;

else if (cScore >= 80)
cout << "B." << endl;

else if(cScore >= 70)
cout << "C." << endl;

else if (cScore >= 60)
cout << "D." << endl;

else
cout << "F." << endl;

}

6

Reference Variables as Parameters | 373

Sample Run: In this sample run, the user input is shaded.

Line 1: Based on the course score,
this program computes the course grade.

Line 4: Enter course score: 85

Line 6: Course score is 85
Line 7: Your grade for the course is B.

This program works as follows. The program starts to execute at Line 1, which prints the
first line of the output (see the sample run). The statement in Line 2 calls the function
getScore with the actual parameter courseScore (a variable declared in main). Because
the formal parameter score of the function getScore is a reference parameter, the
address (that is, the memory location of the variable courseScore) passes to score.
Thus, both score and courseScore refer to the same memory location, which is
courseScore (see Figure 6-5).

Any changes made to score immediately change the value of courseScore.

Control is then transferred to the function getScore, and the statement in Line 4
executes, printing the second line of output. This statement prompts the user to enter
the course score. The statement in Line 5 reads and stores the value entered by
the user (85 in the sample run) in score, which is actually courseScore (because
score is a reference parameter). Thus, at this point, the value of the variables score

and courseScore is 85 (see Figure 6-6).

courseScore

main getScore

85

FIGURE 6-6 Variable courseScore and the parameter score after the statement in Line 5
executes

courseScore

main

score

getScore

FIGURE 6-5 Variable courseScore and the parameter score

374 | Chapter 6: User-Defined Functions

Next, the statement in Line 6 outputs the value of score as shown by the third
line of the sample run. After Line 6 executes, control goes back to the function main

(see Figure 6-7).

The statement in Line 3 executes next. It is a function call to the function printGrade

with the actual parameter courseScore. Because the formal parameter cScore of the
function printGrade is a value parameter, the parameter cScore receives the value of
the corresponding actual parameter courseScore. Thus, the value of cScore is 85.
After copying the value of courseScore into cScore, no communication exists
between cScore and courseScore (see Figure 6-8).

The program then executes the statement in Line 7, which outputs the fourth line. The
if. . .else statement in Line 8 determines and outputs the grade for the course. Because
the output statement in Line 7 does not contain the newline character or the manipulator
endl, the output of the if. . .else statement is part of the fourth line of the output. After
the if. . .else statement executes, control goes back to the function main. Because the
next statement to execute in the function main is the last statement of the function main,
the program terminates.

In this program, the function main first calls the function getScore to obtain the course
score from the user. The function main then calls the function printGrade to calculate
and print the grade based on this course score. The course score is retrieved by the
function getScore; later, this course score is used by the function printGrade. Because
the value retrieved by the getScore function is used later in the program, the function
getScore must pass this value outside. Because getScore is written as a void function,
the formal parameter that holds this value must be a reference parameter.

6

courseScore

main

cScore

printGrade

85 85

FIGURE 6-8 Variable courseScore and the parameter cScore

courseScore

main

85

FIGURE 6-7 Variable courseScore after the statement in Line 6 is executed and control goes
back to main

Reference Variables as Parameters | 375

Value and Reference Parameters and Memory
Allocation
When a function is called, memory for its formal parameters and variables declared in the
body of the function (called local variables) is allocated in the function data area. Recall that
in the case of a value parameter, the value of the actual parameter is copied into the memory
cell of its corresponding formal parameter. In the case of a reference parameter, the address of
the actual parameter passes to the formal parameter. That is, the content of the formal
parameter is an address. During data manipulation, the content of the formal parameter
directs the computer to manipulate the data of the memory cell indicated by its content.
Thus, in the case of a reference parameter, both the actual and formal parameters refer to the
same memory location. Consequently, during program execution, changes made by the
formal parameter permanently change the value of the actual parameter.

Stream variables (for example, ifstream and ofstream) should be passed by refer-

ence to a function. After opening the input/output file or after reading and/or outputting

data, the state of the input and/or output stream can then be passed outside the function.

Because parameter passing is fundamental to any programming language, Examples 6-13
and 6-14 further illustrate this concept. Each covers a different scenario.

EXAMPLE 6-13

The following program shows how reference and value parameters work.

//Example 6-13: Reference and value parameters

#include <iostream>

using namespace std;

void funOne(int a, int& b, char v);
void funTwo(int& x, int y, char& w);

int main()
{

int num1, num2;
char ch;

num1 = 10; //Line 1
num2 = 15; //Line 2
ch = 'A'; //Line 3

cout << "Line 4: Inside main: num1 = " << num1
<< ", num2 = " << num2 << ", and ch = "
<< ch << endl; //Line 4

376 | Chapter 6: User-Defined Functions

funOne(num1, num2, ch); //Line 5

cout << "Line 6: After funOne: num1 = " << num1
<< ", num2 = " << num2 << ", and ch = "
<< ch << endl; //Line 6

funTwo(num2, 25, ch); //Line 7

cout << "Line 8: After funTwo: num1 = " << num1
<< ", num2 = " << num2 << ", and ch = "
<< ch << endl; //Line 8

return 0;
}

void funOne(int a, int& b, char v)
{

int one;

one = a; //Line 9
a++; //Line 10
b = b * 2; //Line 11
v = 'B'; //Line 12

cout << "Line 13: Inside funOne: a = " << a
<< ", b = " << b << ", v = " << v
<< ", and one = " << one << endl; //Line 13

}

void funTwo(int& x, int y, char& w)
{

x++; //Line 14
y = y * 2; //Line 15
w = 'G'; //Line 16

cout << "Line 17: Inside funTwo: x = " << x
<< ", y = " << y << ", and w = " << w
<< endl; //Line 17

}

Sample Run:

Line 4: Inside main: num1 = 10, num2 = 15, and ch = A
Line 13: Inside funOne: a = 11, b = 30, v = B, and one = 10
Line 6: After funOne: num1 = 10, num2 = 30, and ch = A
Line 17: Inside funTwo: x = 31, y = 50, and w = G
Line 8: After funTwo: num1 = 10, num2 = 31, and ch = G

Let us walk through this program. The values of the variables are shown before and/or
after each statement executes.

6

Value and Reference Parameters and Memory Allocation | 377

Just before the statement in Line 1 executes, memory is allocated only for the variables of
the function main; this memory is not initialized. After the statement in Line 3 executes,
the variables are as shown in Figure 6-9.

The statement in Line 4 produces the following output:

Line 4: Inside main: num1 = 10, num2 = 15, and ch = A

The statement in Line 5 is a function call to the function funOne. Now function
funOne has three parameters and one local variable. Memory for the parameters
and the local variable of function funOne is allocated. Because the formal parameter
b is a reference parameter, it receives the address (memory location) of the
corresponding actual parameter, which is num2. The other two formal parameters
are value parameters, so they copy the values of their corresponding actual para-
meters. Just before the statement in Line 9 executes, the variables are as shown in
Figure 6-10.

funOne

one

b

a 10

v A

main

A ch

num2 15

num1 10

FIGURE 6-10 Values of the variables just before the statement in Line 9 executes

main

A ch

num2 15

num1 10

FIGURE 6-9 Values of the variables after the statement in Line 3 executes

378 | Chapter 6: User-Defined Functions

After the statement in Line 9, one = a;, executes, the variables are as shown in
Figure 6-11.

After the statement in Line 10, a++;, executes, the variables are as shown in
Figure 6-12.

After the statement in Line 11, b = b * 2;, executes, the variables are as shown in
Figure 6-13. (Note that the variable b changed the value of num2.)

6

funOne

one

b

a 10

10

v A

main

A ch

num2 15

num1 10

FIGURE 6-11 Values of the variables after the statement in Line 9 executes

funOne

one

b

a 11

10

v A

main

A ch

num2 15

num1 10

FIGURE 6-12 Values of the variables after the statement in Line 10 executes

funOne

one

b

a 11

10

v A

main

A ch

num2 30

num1 10

FIGURE 6-13 Values of the variables after the statement in Line 11 executes

Value and Reference Parameters and Memory Allocation | 379

After the statement in Line 12, v = 'B';, executes, the variables are as shown in
Figure 6-14.

The statement in Line 13 produces the following output:

Line 13: Inside funOne: a = 11, b = 30, v = B, and one = 10

After the statement in Line 13 executes, control goes back to Line 6 and the memory
allocated for the variables of function funOne is deallocated. Figure 6-15 shows the values
of the variables of the function main.

Line 6 produces the following output:

Line 6: After funOne: num1 = 10, num2 = 30, and ch = A

The statement in Line 7 is a function call to the function funTwo. Now funTwo has three
parameters: x, y, and w. Also, x and w are reference parameters, and y is a value parameter.
Thus, x receives the address of its corresponding actual parameter, which is num2, and w

receives the address of its corresponding actual parameter, which is ch. The variable y

copies the value 25 into its memory cell. Figure 6-16 shows the values before the
statement in Line 14 executes.

funOne

one

b

a 11

10

v B

main

A ch

num2 30

num1 10

FIGURE 6-14 Values of the variables after the statement in Line 12 executes

main

A ch

num2 30

num1 10

FIGURE 6-15 Values of the variables when control goes back to Line 6

380 | Chapter 6: User-Defined Functions

After the statement in Line 14, x++;, executes, the variables are as shown in Figure 6-17.
(Note that the variable x changed the value of num2.)

After the statement in Line 15, y = y * 2;, executes, the variables are as shown in Figure 6-18.

After the statement in Line 16, w = 'G';, executes, the variables are as shown in
Figure 6-19. (Note that the variable w changed the value of ch.)

6

funTwo

y

x

w

25

main

A ch

num2 30

num1 10

FIGURE 6-16 Values of the variables before the statement in Line 14 executes

funTwo

y

x

w

25

main

A ch

num2 31

num1 10

FIGURE 6-17 Values of the variables after the statement in Line 14 executes

funTwo

y

x

w

50

main

A ch

num2 31

num1 10

FIGURE 6-18 Values of the variables after the statement in Line 15 executes

Value and Reference Parameters and Memory Allocation | 381

Line 17 produces the following output:

Line 17: Inside funTwo: x = 31, y = 50, and w = G

After the statement in Line 17 executes, control goes to Line 8. The memory allocated
for the variables of function funTwo is deallocated. The values of the variables of the
function main are as shown in Figure 6-20.

The statement in Line 8 produces the following output:

Line 8: After funTwo: num1 = 10, num2 = 31, and ch = G

After the statement in Line 8 executes, the program terminates.

EXAMPLE 6-14

This example also shows how reference parameters manipulate actual parameters.

//Example 6-14: Reference and value parameters.
//Program: Makes you think.

#include <iostream>

using namespace std;

main

G ch

num2 31

num1 10

FIGURE 6-20 Values of the variables when control goes to Line 8

funTwo

y

x

w

50

main

G ch

num2 31

num1 10

FIGURE 6-19 Values of the variables after the statement in Line 16 executes

382 | Chapter 6: User-Defined Functions

6

void addFirst(int& first, int& second);
void doubleFirst(int one, int two);
void squareFirst(int& ref, int val);

int main()
{

int num = 5;

cout << "Line 1: Inside main: num = " << num
<< endl; //Line 1

addFirst(num, num); //Line 2
cout << "Line 3: Inside main after addFirst:"

<< " num = " << num << endl; //Line 3

doubleFirst(num, num); //Line 4
cout << "Line 5: Inside main after "

<< "doubleFirst: num = " << num << endl; //Line 5

squareFirst(num, num); //Line 6
cout << "Line 7: Inside main after "

<< "squareFirst: num = " << num << endl; //Line 7

return 0;
}

void addFirst(int& first, int& second)
{

cout << "Line 8: Inside addFirst: first = "
<< first << ", second = " << second << endl; //Line 8

first = first + 2; //Line 9

cout << "Line 10: Inside addFirst: first = "
<< first << ", second = " << second << endl; //Line 10

second = second * 2; //Line 11

cout << "Line 12: Inside addFirst: first = "
<< first << ", second = " << second << endl; //Line 12

}

void doubleFirst(int one, int two)
{

cout << "Line 13: Inside doubleFirst: one = "
<< one << ", two = " << two << endl; //Line 13

one = one * 2; //Line 14

cout << "Line 15: Inside doubleFirst: one = "
<< one << ", two = " << two << endl; //Line 15

two = two + 2; //Line 16

Value and Reference Parameters and Memory Allocation | 383

cout << "Line 17: Inside doubleFirst: one = "
<< one << ", two = " << two << endl; //Line 17

}

void squareFirst(int& ref, int val)
{

cout << "Line 18: Inside squareFirst: ref = "
<< ref << ", val = " << val << endl; //Line 18

ref = ref * ref; //Line 19

cout << "Line 20: Inside squareFirst: ref = "
<< ref << ", val = " << val << endl; //Line 20

val = val + 2; //Line 21

cout << "Line 22: Inside squareFirst: ref = "
<< ref << ", val = " << val << endl; //Line 22

}

Sample Run:

Line 1: Inside main: num = 5
Line 8: Inside addFirst: first = 5, second = 5
Line 10: Inside addFirst: first = 7, second = 7
Line 12: Inside addFirst: first = 14, second = 14
Line 3: Inside main after addFirst: num = 14
Line 13: Inside doubleFirst: one = 14, two = 14
Line 15: Inside doubleFirst: one = 28, two = 14
Line 17: Inside doubleFirst: one = 28, two = 16
Line 5: Inside main after doubleFirst: num = 14
Line 18: Inside squareFirst: ref = 14, val = 14
Line 20: Inside squareFirst: ref = 196, val = 14
Line 22: Inside squareFirst: ref = 196, val = 16
Line 7: Inside main after squareFirst: num = 196

Both parameters of the function addFirst are reference parameters, and both parameters
of the function doubleFirst are value parameters. The statement:

addFirst(num, num);

in the function main (Line 2) passes the reference of num to both formal parameters
first and second of the function addFirst, because the corresponding actual
parameters for both formal parameters are the same. That is, the variables first and
second refer to the same memory location, which is num. Figure 6-21 illustrates this
situation.

384 | Chapter 6: User-Defined Functions

Any changes that first makes to its value immediately change the value of second and
num. Similarly, any changes that second makes to its value immediately change first

and num, because all three variables refer to the same memory location. (Note that num
was initialized to 5.)

The formal parameters of the function doubleFirst are value parameters. So the
statement:

doubleFirst(num, num);

in the function main (Line 4) copies the value of num into one and two because the
corresponding actual parameters for both formal parameters are the same. Figure 6-22
illustrates this scenario.

Because both one and two are value parameters, any changes that one makes to its value
do not affect the values of two and num. Similarly, any changes that two makes to its value
do not affect one and num. (Note that the value of num before the function doubleFirst

executes is 14.)

The formal parameter ref of the function squareFirst is a reference parameter,
and the formal parameter val is a value parameter. The variable ref receives the
address of its corresponding actual parameter, which is num, and the variable val

copies the value of its corresponding actual parameter, which is also num. Thus, both
num and ref refer to the same memory location, which is num. Figure 6-23 illustrates
this situation.

6

doubleFirst

one

two

main

num 14

14

14

FIGURE 6-22 Parameters of the function doubleFirst

addFirst

first

second

main

num 5

FIGURE 6-21 Parameters of the function addFirst

Value and Reference Parameters and Memory Allocation | 385

Any changes that ref makes immediately change num. Any changes made by val do not
affect num. (Note that the value of num before the function squareFirst executes is 14.)

We recommend that you walk through the program in Example 6-14. The output shows
the order in which the statements execute.

Reference Parameters and Value-Returning
Functions
Earlier in this chapter, in the discussion of value-returning functions, you learned how to use
value parameters only. You can also use reference parameters in a value-returning function,
although this approach is not recommended. By definition, a value-returning function
returns a single value; this value is returned via the return statement. If a function needs to
return more than one value, as a rule of good programming style, you should change it to a
void function and use the appropriate reference parameters to return the values.

Scope of an Identifier
The previous sections presented several examples of programs with user-defined functions.
Identifiers are declared in a function heading, within a block, or outside a block. A question
naturally arises: Are you allowed to access any identifier anywhere in the program? The
answer is no. You must follow certain rules to access an identifier. The scope of an identifier
refers to where in the program an identifier is accessible (visible). Recall that an identifier is
the name of something in C++, such as a variable or function name.

This section examines the scope of an identifier. First, we define the following two terms:

Local identifier: Identifiers declared within a function (or block).

Local identifiers are not accessible outside of the function (block).

Global identifier: Identifiers declared outside of every function definition.

Also, C++ does not allow the nesting of functions. That is, you cannot include the
definition of one function in the body of another function.

squareFirst

ref

val

main

num 14
14

FIGURE 6-23 Parameters of the function squareFirst

386 | Chapter 6: User-Defined Functions

6

In general, the following rules apply when an identifier is accessed:

1. Global identifiers (such as variables) are accessible by a function or a block if:

a. The identifier is declared before the function definition (block),

b. The function name is different than the identifier,

c. All parameters of the function have names different than the name
of the identifier, and

d. All local identifiers (such as local variables) have names different
than the name of the identifier.

2. (Nested Block) An identifier declared within a block is accessible:

a. Only within the block from the point at which it is declared until
the end of the block, and

b. By those blocks that are nested within that block if the nested block
does not have an identifier with the same name as that of the outside
block (the block that encloses the nested block).

3. The scope of a function name is similar to the scope of an identifier
declared outside any block. That is, the scope of a function name is the
same as the scope of a global variable.

Before considering an example to explain these scope rules, first note the scope of the
identifier declared in the for statement. C++ allows the programmer to declare a
variable in the initialization statement of the for statement. For example, the following
for statement:

for (int count = 1; count < 10; count++)
cout << count << endl;

declares the variable count and initializes it to 1. The scope of the variable count is
limited to only the body of the for loop.

This scope rule for the variable declared in a for statement may not apply to Standard C++.

In Standard C++, the scope of the variable declared in the initialize statement may

extend from the point at which it is declared until the end of the block that immediately

surrounds the for statement. (To be absolutely sure, check your compiler’s documentation.)

The following C++ program helps illustrate the scope rules:

#include <iostream>

using namespace std;

const double RATE = 10.50;
int z;
double t;

Scope of an Identifier | 387

void one(int x, char y);
void two(int a, int b, char x);
void three(int one, double y, int z);

int main()
{

int num, first;
double x, y, z;
char name, last;

.

.

.
return 0;

}

void one(int x, char y)
{

.

.

.
}

int w;

void two(int a, int b, char x)
{

int count;
.
.
.

}

void three(int one, double y, int z)
{

char ch;
int a;

.

.

.
//Block four
{

int x;
char a;

.

.
}//end Block four

.

.

.
}

388 | Chapter 6: User-Defined Functions

Table 6-2 summarizes the scope (visibility) of the identifiers.

6

TABLE 6-2 Scope (Visibility) of the Identifiers

Identifier

Visibility

in one
Visibility

in two
Visibility in

three

Visibility

in Block

four
Visibility

in main

RATE (before main) Y Y Y Y Y

z (before main) Y Y N N N

t (before main) Y Y Y Y Y

main Y Y Y Y Y

local variables of main N N N N Y

one (function name) Y Y N N Y

x (one’s formal parameter) Y N N N N

y (one’s formal parameter) Y N N N N

w (before function two) N Y Y Y N

two (function name) Y Y Y Y Y

a (two’s formal parameter) N Y N N N

b (two’s formal parameter) N Y N N N

x (two’s formal parameter) N Y N N N

local variables of two N Y N N N

three (function name) Y Y Y Y Y

one (three’s formal

parameter)
N N Y Y N

y (three’s formal

parameter)
N N Y Y N

z (three’s formal

parameter)
N N Y Y N

ch (three’s local variable) N N Y Y N

a (three’s local variable) N N Y N N

x (block four’s local

variable)
N N N Y N

a (block four’s local

variable)
N N N Y N

Scope of an Identifier | 389

Note that function three cannot call function one, because function three has a formal
parameter named one. Similarly, the block marked four in function three cannot use
the int variable a, which is declared in function three, because block four has an
identifier named a.

Before closing this section, let us note the following about global variables:

1. Chapter 2 stated that C++ does not automatically initialize variables.
However, some compilers initialize global variables to their default
values. For example, if a global variable is of type int, char, or double,
it is initialized to zero.

2. In C++, :: is called the scope resolution operator. By using the
scope resolution operator, a global variable declared before the definition
of a function (block) can be accessed by the function (or block) even if
the function (or block) has an identifier with the same name as the
variable. In the preceding program, by using the scope resolution
operator, the function main can refer to the global variable z as ::z.
Similarly, suppose that a global variable t is declared before the defini-
tion of the function—say, funExample. Then, funExample can access
the variable t using the scope resolution operator even if funExample
has an identifier t. Using the scope resolution operator, funExample
refers to the variable t as ::t. Also, in the preceding program, using the
scope resolution operator, function three can call function one.

3. C++ provides a way to access a global variable declared after the defini-
tion of a function. In this case, the function must not contain any
identifier with the same name as the global variable. In the preceding
program, the global variable w is declared after the definition of function
one. The function one does not contain any identifier named w; there-
fore, w can be accessed by function one only if you declare w as an
external variable inside one. To declare w as an external variable inside
function one, the function one must contain the following statement:

extern int w;

In C++, extern is a reserved word. The word extern in the
above statement announces that w is a global variable declared elsewhere.
Thus, when function one is called, no memory for w, as declared inside
one, is allocated. In C++, external declaration also has another use, but
it is not discussed in this book.

Global Variables, Named Constants,
and Side Effects
A C++ program can contain global variables and you might be tempted to make all of the
variables in a program global variables so that you do not have to worry about what a
function knows about which variable. Using global variables, however, has side effects. If

390 | Chapter 6: User-Defined Functions

6

more than one function uses the same global variable and something goes wrong, it is
difficult to discover what went wrong and where. Problems caused by global variables in one
area of a program might be misunderstood as problems caused in another area.

For example, consider the following program:

//Global variable

#include <iostream>

using namespace std;

int t;

void funOne(int& a);

int main()
{

t = 15; //Line 1

cout << "Line 2: In main: t = " << t << endl; //Line 2

funOne(t); //Line 3

cout << "Line 4: In main after funOne: "
<< " t = " << t << endl; //Line 4

return 0; //Line 5
}

void funOne(int& a)
{

cout << "Line 6: In funOne: a = " << a
<< " and t = " << t << endl; //Line 6

a = a + 12; //Line 7
cout << "Line 8: In funOne: a = " << a

<< " and t = " << t << endl; //Line 8

t = t + 13; //Line 9

cout << "Line 10: In funOne: a = " << a
<< " and t = " << t << endl; //Line 10

}

This program has a variable t that is declared before the definition of any function. Because
none of the functions has an identifier t, the variable t is accessible anywhere in the program.
Also, the program consists of a void function with a reference parameter.

In Line 3, the function main calls the function funOne, and the actual parameter passed
to funOne is t. So, a, the formal parameter of funOne, receives the address of t. Any
changes that a makes to its value immediately change t. Because t can be directly
accessed anywhere in the program, in Line 9, the function funOne changes the value of t

Global Variables, Named Constants, and Side Effects | 391

by using t itself. Thus, you can manipulate the value of t by using either a reference
parameter or t itself.

In the previous program, if the last value of t is incorrect, it would be difficult to
determine what went wrong and in which part of the program. We strongly recommend
that you do not use global variables; instead, use the appropriate parameters.

In the programs given in this book, we typically placed named constants before the function
main, outside of every function definition. That is, the named constants we used are global
named constants. Unlike global variables, global named constants have no side effects because
their values cannot be changed during program execution. Moreover, placing a named
constant in the beginning of the program can increase readability, even if it is used only in
one function. If you need to later modify the program and change the value of a named
constant, it will be easier to find if it is placed in the beginning of the program.

EXAMPLE 6-15 (MENU-DRIVEN PROGRAM)

The following is an example of a menu-driven program. When the program executes,
it gives the user a list of choices to choose from. This program further illustrates how
value and reference parameters work. It converts length from feet and inches to meters
and centimeters and vice versa. The program contains three functions: showChoices,
feetAndInchesToMetersAndCent, and metersAndCentTofeetAndInches. The func-
tion showChoices informs the user how to use the program. The user has the choice to
run the program as long as the user wishes.

//Menu-driven program.

#include <iostream>

using namespace std;

const double CONVERSION = 2.54;
const int INCHES_IN_FOOT = 12;
const int CENTIMETERS_IN_METER = 100;

void showChoices();

void feetAndInchesToMetersAndCent(int f, int in,
int& mt, int& ct);

void metersAndCentTofeetAndInches(int mt, int ct,
int& f, int& in);

int main()
{

int feet, inches;
int meters, centimeters;
int choice;

392 | Chapter 6: User-Defined Functions

6

do
{

showChoices();
cin >> choice;
cout << endl;

switch (choice)
{
case 1:

cout << "Enter feet and inches: ";
cin >> feet >> inches;
cout << endl;
feetAndInchesToMetersAndCent(feet, inches,

meters, centimeters);
cout << feet << " feet(foot), "

<< inches << " inch(es) = "
<< meters << " meter(s), "
<< centimeters << " centimeter(s)." << endl;

break;

case 2:
cout << "Enter meters and centimeters: ";
cin >> meters >> centimeters;
cout << endl;
metersAndCentTofeetAndInches(meters, centimeters,

feet, inches);
cout << meters << " meter(s), "

<< centimeters << " centimeter(s) = "
<< feet << " feet(foot), "
<< inches << " inch(es)."
<< endl;

break;

case 99:
break;

default:
cout << "Invalid input." << endl;

}
}
while (choice != 99);

return 0;
}

void showChoices()
{

cout << "Enter--" << endl;
cout << "1: To convert from feet and inches to meters "

<< "and centimeters." << endl;
cout << "2: To convert from meters and centimeters to feet "

<< "and inches." << endl;
cout << "99: To quit the program." << endl;

}

Global Variables, Named Constants, and Side Effects | 393

void feetAndInchesToMetersAndCent(int f, int in,
int& mt, int& ct)

{
int inches;

inches = f * INCHES_IN_FOOT + in;
ct = static_cast<int>(inches * CONVERSION);
mt = ct / CENTIMETERS_IN_METER;
ct = ct % CENTIMETERS_IN_METER;

}

void metersAndCentTofeetAndInches(int mt, int ct,
int& f, int& in)

{
int centimeters;

centimeters = mt * CENTIMETERS_IN_METER + ct;
in = static_cast<int>(centimeters / CONVERSION);
f = in / INCHES_IN_FOOT;
in = in % INCHES_IN_FOOT;

}

Sample Run: In this sample run, the user input is shaded.

Enter--
1: To convert from feet and inches to meters and centimeters.
2: To convert from meters and centimeters to feet and inches.
99: To quit the program.
2

Enter meters and centimeters: 4 25

4 meter(s), 25 centimeter(s) = 13 feet(foot), 11 inch(es).
Enter--
1: To convert from feet and inches to meters and centimeters.
2: To convert from meters and centimeters to feet and inches.
99: To quit the program.
1

Enter feet and inches: 15 8

15 feet(foot), 8 inch(es) = 4 meter(s), 77 centimeter(s).
Enter--
1: To convert from feet and inches to meters and centimeters.
2: To convert from meters and centimeters to feet and inches.
99: To quit the program.
99

The do. . .while loop in the function main continues to execute as long as the user has
not entered 99, which allows the user to run the program as long as the user wishes. The
preceding output is self-explanatory.

394 | Chapter 6: User-Defined Functions

6

Static and Automatic Variables
The variables discussed so far have followed two simple rules:

1. Memory for global variables remains allocated as long as the program executes.

2. Memory for a variable declared within a block is allocated at block entry
and deallocated at block exit. For example, memory for the formal
parameters and local variables of a function is allocated when the func-
tion is called and deallocated when the function exits.

A variable for which memory is allocated at block entry and deallocated at block exit is called
an automatic variable. A variable for which memory remains allocated as long as the
program executes is called a static variable. Global variables are static variables, and by default,
variables declared within a block are automatic variables. You can declare a static variable
within a block by using the reserved word static. The syntax for declaring a static variable is:

static dataType identifier;

The statement:

static int x;

declares x to be a static variable of type int.

Static variables declared within a block are local to the block, and their scope is the same
as that of any other local identifier of that block.

Most compilers initialize static variables to their default values. For example, static int

variables are initialized to 0. However, it is a good practice to initialize static variables
yourself, especially if the initial value is not the default value. In this case, static variables
are initialized when they are declared. The statement:

static int x = 0;

declares x to be a static variable of type int and initializes x to 0.

EXAMPLE 6-16

The following program shows how static and automatic variables behave.

//Program: Static and automatic variables

#include <iostream>

using namespace std;

void test();

int main()
{

int count;

Static and Automatic Variables | 395

for (count = 1; count <= 5; count++)
test();

return 0;
}

void test()
{

static int x = 0;
int y = 10;

x = x + 2;
y = y + 1;

cout << "Inside test x = " << x << " and y = "
<< y << endl;

}

Sample Run:

Inside test x = 2 and y = 11
Inside test x = 4 and y = 11
Inside test x = 6 and y = 11
Inside test x = 8 and y = 11
Inside test x = 10 and y = 11

In the function test, x is a static variable initialized to 0, and y is an automatic
variable initialized to 10. The function main calls the function test five times. Memory
for the variable y is allocated every time the function test is called and deallocated when
the function exits. Thus, every time the function test is called, it prints the same value
for y. However, because x is a static variable, memory for x remains allocated as long as
the program executes. The variable x is initialized once to 0. The subsequent calls of the
function test use the current value of x.

Because memory for static variables remains allocated between function calls, static
variables allow you to use the value of a variable from one function call to another
function call. Even though you can use global variables if you want to use certain values
from one function call to another, the local scope of a static variable prevents other
functions from manipulating its value.

Debugging: Using Drivers and Stubs
In this and the previous chapters, you learned how to write functions to divide a problem
into subproblems, solve each subproblem, and then combine the functions to form the
complete program to get a solution of the problem. A program may contain a number of
functions. In a complex program, usually, when a function is written, it is tested and
debugged alone. You can write a separate program to test the function. The program that
tests a function is called a driver program. For example, the program in Example 6-15
contains functions to convert the length from feet and inches to meters and centimeters

396 | Chapter 6: User-Defined Functions

6

and vice versa. Before writing the complete program, you could write separate driver
programs to make sure that each function is working properly.

Sometimes, the results calculated by one function are needed in another function. In that
case, the function that depends on another function cannot be tested alone. For example,
consider the following program that determines the time to fill a swimming pool.

#include <iostream>
#include <iomanip>

using namespace std;

const double GALLONS_IN_A_CUBIC_FOOT = 7.48;

double poolCapacity(double len, double wid, double dep);
void poolFillTime(double len, double wid, double dep,

double fRate, int& fTime);
void print(int fTime);

int main()
{

double length, width, depth;
double fillRate;
int fillTime;

cout << fixed << showpoint << setprecision(2);

cout << "Enter the length, width, and the depth of the "
<< "pool (in feet): ";

cin >> length >> width >> depth;
cout << endl;

cout << "Enter the rate of the water (in gallons per minute): ";
cin >> fillRate;
cout << endl;

poolFillTime(length, width, depth, fillRate, fillTime);
print(fillTime);

return 0;
}

double poolCapacity(double len, double wid, double dep)
{

double volume;
double poolWaterCapacity;

volume = len * wid * dep;
poolWaterCapacity = volume * GALLONS_IN_A_CUBIC_FOOT;

return poolWaterCapacity;
}

Debugging: Using Drivers and Stubs | 397

void poolFillTime(double len, double wid, double dep,
double fRate, int& fTime)

{
double poolWaterCapacity;

poolWaterCapacity = poolCapacity(len, wid, dep);
fTime = static_cast<int> (poolWaterCapacity / fRate + 0.5);

}

void print(int fTime)
{

cout << "The time to fill the pool is approximately: "
<< fTime / 60 << " hour(s) and " << fTime % 60
<< " minute(s)." << endl;

}

Sample Run: In this sample run, the user input is shaded.

Enter the length, width, and the depth of the pool (in feet): 30 15 10

Enter the rate of the water, (in gallons per minute): 100

The time to fill the pool is approximately: 5 hour(s) and 37 minute(s).

As you can see, the program contains the function poolCapacity to find the amount of
water needed to fill the pool, the function poolFillTime to find the time to fill the pool,
and some other functions. Now, to calculate the time to fill the pool, you must know the
amount of the water needed and the rate at which the water is released in the pool. Because
the results of the function poolCapacity are needed in the function poolFillTime, the
function poolFillTime cannot be tested alone. Does this mean that we must write the
functions in a specific order? Not necessarily, especially when different people are working
on different parts of the program. In situations such as these, we use function stubs.
A function stub is a function that is not fully coded. For a void function, a function stub
might consist of only a function header and a set of empty braces, {}, and for a value-
returning function it might contain only a return statement with a plausible return value. For
example, the function stub for the function poolCapacity can be:

double poolCapacity(double len, double wid, double dep)

{

return 1000.00;

}

This allows the function poolCapacity to be called while the program is being coded.
Ultimately, the stub for function poolCapacity is replaced with a function that properly
calculates the amount of water needed to fill the pool based on the values of the parameters.
In the meantime, the function stub allows work to continue on other parts of the program
that call the function poolCapacity.

Before we look at some programming examples, another concept about functions is
worth mentioning: function overloading.

398 | Chapter 6: User-Defined Functions

6

Function Overloading: An Introduction
In a C++ program, several functions can have the same name. This is called function

overloading, or overloading a function name. Before we state the rules to over-
loading a function, let us define the following:

Two functions are said to have different formal parameter lists if both functions have:

• A different number of formal parameters or

• If the number of formal parameters is the same, then the data type of the formal
parameters, in the order you list them, must differ in at least one position.

For example, consider the following function headings:

void functionOne(int x)
void functionTwo(int x, double y)
void functionThree(double y, int x)
int functionFour(char ch, int x, double y)
int functionFive(char ch, int x, string name)

These functions all have different formal parameter lists.

Now consider the following function headings:

void functionSix(int x, double y, char ch)
void functionSeven(int one, double u, char firstCh)

The functions functionSix and functionSeven both have three formal parameters,
and the data type of the corresponding parameters is the same. Therefore, these functions
have the same formal parameter list.

To overload a function name, any two definitions of the function must have different
formal parameter lists.

Function overloading: Creating several functions with the same name.

The signature of a function consists of the function name and its formal parameter list. Two
functions have different signatures if they have either different names or different formal para-
meter lists. (Note that the signature of a functiondoes not include the return typeof the function.)

If a function’s name is overloaded, then all of the functions in the set have the same name.
Therefore, all of the functions in the set have different signatures if they have different
formal parameter lists. Thus, the following function headings correctly overload the
function functionXYZ:

void functionXYZ()
void functionXYZ(int x, double y)
void functionXYZ(double one, int y)
void functionXYZ(int x, double y, char ch)

Consider the following function headings to overload the function functionABC:

void functionABC(int x, double y)
int functionABC(int x, double y)

Function Overloading: An Introduction | 399

Both of these function headings have the same name and same formal parameter list.
Therefore, these function headings to overload the function functionABC are incorrect.
In this case, the compiler will generate a syntax error. (Notice that the return types of
these function headings are different.)

If a function is overloaded, then in a call to that function, the signature—that is, the
formal parameter list of the function—determines which function to execute.

Some authors define the signature of a function as the formal parameter list, and some

consider the entire heading of the function as its signature. However, in this book, the

signature of a function consists of the function’s heading and its formal parameter list. If

the function’s names are different, then, of course, the compiler would have no problem

in identifying which function is called, and it will correctly translate the code. However, if

a function’s name is overloaded, then, as noted, the function’s formal parameter list

determines which function’s body executes.

Suppose you need to write a function that determines the larger of two items. Both items
can be integers, floating-point numbers, characters, or strings. You could write several
functions as follows:

int largerInt(int x, int y);
char largerChar(char first, char second);
double largerDouble(double u, double v);
string largerString(string first, string second);

The function largerInt determines the larger of two integers; the function largerChar

determines the larger of two characters, and so on. All of these functions perform similar
operations. Instead of giving different names to these functions, you can use the same
name—say, larger—for each function; that is, you can overload the function larger.
Thus, you can write the previous function prototypes simply as:

int larger(int x, int y);
char larger(char first, char second);
double larger(double u, double v);
string larger(string first, string second);

If the call is larger(5, 3), for example, the first function is executed. If the call is
larger('A', '9'), the second function is executed, and so on.

Function overloading is used when you have the same action for different sets of data. Of
course, for function overloading to work, you must give the definition of each function.

Functions with Default Parameters

This section is not needed until Chapter 10.

400 | Chapter 6: User-Defined Functions

6

This section discusses functions with default parameters. Recall that when a function is
called, the number of actual and formal parameters must be the same. C++ relaxes this
condition for functions with default parameters. You specify the value of a default
parameter when the function name appears for the first time, such as in the prototype.
In general, the following rules apply for functions with default parameters:

• If you do not specify the value of a default parameter, the default value is
used for that parameter.

• All of the default parameters must be the far-right parameters of the function.

• Suppose a function has more than one default parameter. In a function
call, if a value to a default parameter is not specified, then you must omit
all of the arguments to its right.

• Default values can be constants, global variables, or function calls.

• The caller has the option of specifying a value other than the default for
any default parameter.

• You cannot assign a constant value as a default value to a reference parameter.

Consider the following function prototype:

void funcExp(int x, int y, double t, char z = 'A', int u = 67,
char v = 'G', double w = 78.34);

The function funcExp has seven parameters. The parameters z, u, v, and w are default
parameters. If no values are specified for z, u, v, and w in a call to the function funcExp,
their default values are used.

Suppose you have the following statements:

int a, b;
char ch;
double d;

The following function calls are legal:

1. funcExp(a, b, d);

2. funcExp(a, 15, 34.6, 'B', 87, ch);

3. funcExp(b, a, 14.56, 'D');

In statement 1, the default values of z, u, v, and w are used. In statement 2, the default
value of z is replaced by 'B', the default value of u is replaced by 87, the default value of
v is replaced by the value of ch, and the default value of w is used. In statement 3, the
default value of z is replaced by 'D', and the default values of u, v, and w are used.

The following function calls are illegal:

1. funcExp(a, 15, 34.6, 46.7);

2. funcExp(b, 25, 48.76, 'D', 4567, 78.34);

In statement 1, because the value of z is omitted, all other default values must be omitted.
In statement 2, because the value of v is omitted, the value of w should be omitted, too.

Functions with Default Parameters | 401

The following are illegal function prototypes with default parameters:

1. void funcOne(int x, double z = 23.45, char ch, int u = 45);

2. int funcTwo(int length = 1, int width, int height = 1);

3. void funcThree(int x, int& y = 16, double z = 34);

In statement 1, because the second parameter z is a default parameter, all other parameters
after z must be default parameters. In statement 2, because the first parameter is a default
parameter, all parameters must be the default parameters. In statement 3, a constant value
cannot be assigned to y because y is a reference parameter.

Example 6-17 further illustrates functions with default parameters.

EXAMPLE 6-17

#include <iostream>
#include <iomanip>

using namespace std;

int volume(int l = 1, int w = 1, int h = 1);
void funcOne(int& x, double y = 12.34, char z = 'B');

int main()
{

int a = 23;
double b = 48.78;
char ch = 'M';

cout << fixed << showpoint;
cout << setprecision(2);

cout << "Line 1: a = " << a << ", b = "
<< b << ", ch = " << ch << endl; //Line 1

cout << "Line 2: Volume = " << volume()
<< endl; //Line 2

cout << "Line 3: Volume = " << volume(5, 4)
<< endl; //Line 3

cout << "Line 4: Volume = " << volume(34)
<< endl; //Line 4

cout << "Line 5: Volume = "
<< volume(6, 4, 5) << endl; //Line 5

funcOne(a); //Line 6
funcOne(a, 42.68); //Line 7
funcOne(a, 34.65, 'Q'); //Line 8

cout << "Line 9: a = " << a << ", b = "
<< b << ", ch = " << ch << endl; //Line 9

return 0;
}

402 | Chapter 6: User-Defined Functions

int volume(int l, int w, int h)
{

return l * w * h; //Line 10
}

void funcOne(int& x, double y, char z)
{

x = 2 * x; //Line 11
cout << "Line 12: x = " << x << ", y = "

<< y << ", z = " << z << endl; //Line 12
}

Sample Run:

Line 1: a = 23, b = 48.78, ch = M
Line 2: Volume = 1
Line 3: Volume = 20
Line 4: Volume = 34
Line 5: Volume = 120
Line 12: x = 46, y = 12.34, z = B
Line 12: x = 92, y = 42.68, z = B
Line 12: x = 184, y = 34.65, z = Q
Line 9: a = 184, b = 48.78, ch = M

In programs in this book, and as is recommended, the definition of the function main is

placed before the definition of any user-defined functions. You must, therefore, specify the

default value for a parameter in the function prototype and in the function prototype only, not

in the function definition because this must occur at the first appearance of the function name.

6

PROGRAMMING EXAMPLE: Classify Numbers
In this example, we use functions to rewrite the program that determines the number of
odds and evens from a given list of integers. This program was first written in Chapter 5.

The main algorithm remains the same:

1. Initialize the variables, zeros, odds, and evens to 0.

2. Read a number.

3. If the number is even, increment the even count, and if the number is also
zero, increment the zero count; otherwise, increment the odd count.

4. Repeat Steps 2 and 3 for each number in the list.

The main parts of the program are: initialize the variables, read and classify the
numbers, and then output the results. To simplify the function main and further
illustrate parameter passing, the program includes:

Programming Example: Classify Numbers | 403

• A function initialize to initialize the variables, such as zeros,
odds, and evens.

• A function getNumber to get the number.

• A function classifyNumber to determine whether the number is
odd or even (and whether it is also zero). This function also incre-
ments the appropriate count.

• A function printResults to print the results.

Let us now describe each of these functions.

initialize The function initialize initializes variables to their initial values. The variables that
we need to initialize are zeros, odds, and evens. As before, their initial values are
all zero. Clearly, this function has three parameters. Because the values of the formal
parameters initializing these variables must be passed outside of the function, these
formal parameters must be reference parameters. Essentially, this function is:

void initialize(int& zeroCount, int& oddCount, int& evenCount)
{

zeroCount = 0;
oddCount = 0;
evenCount = 0;

}

getNumber The function getNumber reads a number and then passes this number to the function
main. Because you need to pass only one number, this function has only one
parameter. The formal parameter of this (void) function must be a reference parameter
because the number read is passed outside of the function. Essentially, this function is:

void getNumber(int& num)
{

cin >> num;
}

You can also write the function getNumber as a value-returning function. See the
note at the end of this programming example.

classifyNumber The function classifyNumber determines whether the number is odd or even, and
if the number is even, it also checks whether the number is zero. It also updates the
values of some of the variables, zeros, odds, and evens. This function needs to
know the number to be analyzed; therefore, the number must be passed as a
parameter. Because this function also increments the appropriate count, the variables
(that is, zeros, odds, and evens declared in main) holding the counts must be
passed as parameters to this function. Thus, this function has four parameters.

Because the number will only be analyzed, you need to pass only its value. Thus, the
formal parameter corresponding to this variable is a value parameter. After analyzing
the number, this function increments the values of some of the variables, zeros,
odds, and evens. Therefore, the formal parameters corresponding to these variables

404 | Chapter 6: User-Defined Functions

6

must be reference parameters. The algorithm to analyze the number and increment
the appropriate count is the same as before. The definition of this function is:

void classifyNumber(int num, int& zeroCount, int& oddCount,
int& evenCount)

{
switch (num % 2)
{
case 0:

evenCount++;
if (num == 0)

zeroCount++;
break;

case 1:
case -1:

oddCount++;
} //end switch

} //end classifyNumber

printResults The function printResults prints the final results. To print the results (that is, the
number of zeros, odds, and evens), this function must have access to the values of the
variables, zeros, odds, and evens declared in the function main. Therefore,
this function has three parameters. Because this function doesn’t change the values of
the variables but only prints them, the formal parameters are value parameters. The
definition of this function is:

void printResults(int zeroCount, int oddCount, int evenCount)
{

cout << "There are " << evenCount << " evens, "
<< "which includes " << zeroCount << " zeros"
<< endl;

cout << "The number of odd numbers is: " << oddCount
<< endl;

} //end printResults

We now give the main algorithm and show how the function main calls these
functions.

MAIN

ALGORITHM

1. Call the function initialize to initialize the variables.

2. Prompt the user to enter 20 numbers.

3. For each number in the list:

a. Call the function getNumber to read a number.

b. Output the number.

c. Call the function classifyNumber to classify the number and
increment the appropriate count.

4. Call the function printResults to print the final results.

Programming Example: Classify Numbers | 405

COMPLETE PROGRAM LISTING

//***
// Author: D.S. Malik
//
// Program: Classify Numbers
// This program reads 20 numbers and outputs the number of
// zeros, odd, and even numbers.
//***

#include <iostream>
#include <iomanip>

using namespace std;

const int N = 20;

//Function prototypes
void initialize(int& zeroCount, int& oddCount, int& evenCount);
void getNumber(int& num);
void classifyNumber(int num, int& zeroCount, int& oddCount,

int& evenCount);
void printResults(int zeroCount, int oddCount, int evenCount);

int main()
{

//Variable declaration
int counter; //loop control variable
int number; //variable to store the new number
int zeros; //variable to store the number of zeros
int odds; //variable to store the number of odd integers
int evens; //variable to store the number of even integers

initialize(zeros, odds, evens); //Step 1

cout << "Please enter " << N << " integers."
<< endl; //Step 2

cout << "The numbers you entered are: "
<< endl;

for (counter = 1; counter <= N; counter++) //Step 3
{

getNumber(number); //Step 3a
cout << number << " "; //Step 3b
classifyNumber(number, zeros, odds, evens); //Step 3c

} // end for loop

cout << endl;

406 | Chapter 6: User-Defined Functions

6

printResults(zeros, odds, evens); //Step 4

return 0;
}

void initialize(int& zeroCount, int& oddCount, int& evenCount)
{

zeroCount = 0;
oddCount = 0;
evenCount = 0;

}

void getNumber(int& num)
{

cin >> num;
}

void classifyNumber(int num, int& zeroCount, int& oddCount,
int& evenCount)

{
switch (num % 2)
{
case 0:

evenCount++;
if (num == 0)

zeroCount++;
break;

case 1:
case -1:

oddCount++;
} //end switch

} //end classifyNumber

void printResults(int zeroCount, int oddCount, int evenCount)
{

cout << "There are " << evenCount << " evens, "
<< "which includes " << zeroCount << " zeros"
<< endl;

cout << "The number of odd numbers is: " << oddCount
<< endl;

} //end printResults

Sample Run: In this sample run, the user input is shaded.

Please enter 20 integers.
The numbers you entered are:
0 0 12 23 45 7 -2 -8 -3 -9 4 0 1 0 -7 23 -24 0 0 12
0 0 12 23 45 7 -2 -8 -3 -9 4 0 1 0 -7 23 -24 0 0 12
There are 12 evens, which includes 6 zeros
The number of odd numbers is: 8

Programming Example: Classify Numbers | 407

In the previous program, because the data is assumed to be input from the standard

input device (the keyboard) and the function getNumber returns only one value, you

can also write the function getNumber as a value-returning function. If written as a

value-returning function, the definition of the function getNumber is:

int getNumber()
{

int num;

cin >> num;

return num;
}

In this case, the statement (function call):

getNumber(number);

in the function main should be replaced by the statement:

number = getNumber();

Of course, you also need to change the function prototype.

PROGRAMMING EXAMPLE: Data Comparison
This programming example illustrates:

• How to read data from more than one file in the same program.

• How to send output to a file.

• How to generate bar graphs.

• With the help of functions and parameter passing, how to use the
same program segment on different (but similar) sets of data.

• How to use structured design to solve a problem and how to perform
parameter passing.

This program is broken into two parts. First, you learn how to read data from more
than one file. Second, you learn how to generate bar graphs.

Two groups of students at a local university are enrolled in certain special courses
during the summer semester. The courses are offered for the first time and are taught
by different teachers. At the end of the semester, both groups are given the same tests
for the same courses, and their scores are recorded in separate files. The data in each
file is in the following form:

Watch

the Video

408 | Chapter 6: User-Defined Functions

6

courseNo score1, score2, ..., scoreN –999
courseNo score1, score2, ..., scoreM –999
.
.
.

Let us write a program that finds the average course score for each course for each
group. The output is of the following form:

Course No Group No Course Average
CSC 1 83.71

2 80.82

ENG 1 82.00
2 78.20

.

.

.

Avg for group 1: 82.04
Avg for group 2: 82.01

Input Because the data for the two groups are recorded in separate files, the input
data appears in two separate files.

Output As shown above.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

Reading input data from both files is straightforward. Suppose the data is stored in the file
group1.txt for group 1 and file group2.txt for group 2. After processing the data for
one group, we can process the data for the second group for the same course and continue
until we run out of data. Processing data for each course is similar and is a two-step process:

1. a. Sum the scores for the course.

b. Count the number of students in the course.

c. Divide the total score by the number of students to find the
course average.

2. Output the results.

We are comparing only the averages of the corresponding courses in each group, and
the data in each file is ordered according to course ID. To ensure that only the
averages of the corresponding courses are compared, we compare the course IDs for
each group. If the corresponding course IDs are not the same, we output an error
message and terminate the program.

This discussion suggests that we should write a function, calculateAverage, to find the
course average. We should also write another function, printResult, to output the data
in the form given. By passing the appropriate parameters, we can use the same functions,
calculateAverage and printResult, to process each course’s data for both groups.
(In the second part of the program, we modify the function printResult.)

Programming Example: Data Comparison | 409

The preceding discussion translates into the following algorithm:

1. Initialize the variables.

2. Get the course IDs for group 1 and group 2.

3. If the course IDs are different, print an error message and exit the program.

4. Calculate the course averages for group 1 and group 2.

5. Print the results in the form given above.

6. Repeat Steps 2 through 5 for each course.

7. Print the final results.

Variables

(Function

main)

The preceding discussion suggests that the program needs the following variables for
data manipulation in the function main:

string courseId1; //course ID for group 1
string courseId2; //course ID for group 2
int numberOfCourses;
double avg1; //average for a course in group 1
double avg2; //average for a course in group 2
double avgGroup1; //average group 1
double avgGroup2; //average group 2
ifstream group1; //input stream variable for group 1
ifstream group2; //input stream variable for group 2

ofstream outfile; //output stream variable

Next, we discuss the functions calculateAverage and printResult. Then, we
will put the function main together.

calculate

Average

This function calculates the average for a course. Because the input is stored in a file and
the input file is opened in the function main, we must pass the ifstream variable
associated with the input file to this function. Furthermore, after calculating the course
average, this function must pass the course average to the function main. Therefore,
this function has two parameters, and both parameters must be reference parameters.

To find the course average, we must first find the sum of all scores for the course and the
number of students who took the course and then divide the sum by the number of
students. Thus, we need a variable to find the sum of the scores, a variable to count the
number of students, and a variable to read and store a score. Of course, we must initialize
the variable to find the sum and the variable to count the number of students to zero.

Local

Variables

(Function

calculate

Average)

In the previous discussion of data manipulation, we identified three variables for the
function calculateAverage:

double totalScore = 0.0;
int numberOfStudents = 0;
int score;

410 | Chapter 6: User-Defined Functions

6

The above discussion translates into the following algorithm for the function
calculateAverage:

1. Declare and initialize variables.

2. Get the (next) course score, score.

3. while the score is not -999

a. Update totalScore by adding the course score.

b. Increment numberOfStudents by 1.

c. Get the (next) course score, score.

4. courseAvg = totalScore / numberOfStudents;

We are now ready to write the definition of the function calculateAverage.

void calculateAverage(ifstream& inp, double& courseAvg)
{

double totalScore = 0.0;
int numberOfStudents = 0;
int score;

inp >> score;
while (score != -999)
{

totalScore = totalScore + score;
numberOfStudents++;
inp >> score;

} //end while

courseAvg = totalScore / numberOfStudents;
} //end calculate Average

printResult The function printResult prints the group’s course ID, group number, and
course average. The output is stored in a file. So we must pass four parameters to
this function: the ofstream variable associated with the output file, the group
number, the course ID, and the course average for the group. The ofstream

variable must be passed by reference. Because the function uses only the values of
the other variables, the remaining three parameters should be value parameters.
Also, from the output, it is clear that we print the course ID only before the group
number.

1. In pseudocode, the algorithm is:

if (group number == 1)
print course ID

else
print a blank

print group number and course average

Programming Example: Data Comparison | 411

The definition of the function printResult follows:

void printResult(ofstream& outp, string courseID, int groupNo,
double avg)

{
if (groupNo == 1)

outp << " " << courseID << " ";
else

outp << " ";

outp << setw(8) << groupNo << setw(17) << avg << endl;
} //end printResult

Now that we have designed and defined the functions calculateAverage and
printResult, we can describe the algorithm for the function main. Before out-
lining the algorithm, however, we note the following: It is quite possible that in both
input files, the data is ordered according to the course IDs, but one file might have
fewer courses than the other. We do not discover this error until after we have
processed both files and discovered that one file has unprocessed data. Make sure to
check for this error before printing the final answer—that is, the averages for group 1
and group 2.

MAIN

ALGORITHM:

Function main

1. Declare the variables (local declaration).

2. Open the input files.

3. Print a message if you are unable to open a file and terminate the
program.

4. Open the output file.

5. To output floating-point numbers in a fixed decimal format
with the decimal point and trailing zeros, set the manipulators
fixed and showpoint. Also, to output floating-point numbers to
two decimal places, set the precision to two decimal places.

6. Initialize the course average for group 1 to 0.0.

7. Initialize the course average for group 2 to 0.0.

8. Initialize the number of courses to 0.

9. Print the heading.

10. Get the course ID, courseId1, for group 1.

11. Get the course ID, courseId2, for group 2.

12. For each course in group 1 and group 2,

a. if (courseId1 != courseId2)
{

cout << "Data error: Course IDs do not match.\n";
return 1;

}

412 | Chapter 6: User-Defined Functions

6

b. else
{

i. Calculate the course average for group 1 (call the function
calculateAverage and pass the appropriate parameters).

ii. Calculate the course average for group 2 (call the function
calculateAverage and pass the appropriate parameters).

iii. Print the results for group 1 (call the function
printResult and pass the appropriate parameters).

iv. Print the results for group 2 (call the function
printResult and pass the appropriate parameters).

v. Update the average for group 1.

vi. Update the average for group 2.

vii. Increment the number of courses.

}

c. Get the course ID, courseId1, for group 1.

d. Get the course ID, courseId2, for group 2.

13. a. if not_end_of_file on group 1 and end_of_file on group 2
print ‘‘Ran out of data for group 2 before group 1’’

b. else if end_of_file on group 1 and not_end_of_file on group 2
print ‘‘Ran out of data for group 1 before group 2’’

c. else print the average of group 1 and group 2.

14. Close the input and output files.

COMPLETE PROGRAM LISTING

//**
// Author: D.S. Malik
//
// Program: Comparison of Class Averages
// This program computes and compares the class averages of
// two groups of students.
//**

#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>
using namespace std;

Programming Example: Data Comparison | 413

//Function prototypes
void calculateAverage(ifstream& inp, double& courseAvg);
void printResult(ofstream& outp, string courseId,

int groupNo, double avg);

int main()
{

//Step 1
string courseId1; //course ID for group 1
string courseId2; //course ID for group 2
int numberOfCourses;
double avg1; //average for a course in group 1
double avg2; //average for a course in group 2
double avgGroup1; //average group 1
double avgGroup2; //average group 2
ifstream group1; //input stream variable for group 1
ifstream group2; //input stream variable for group 2
ofstream outfile; //output stream variable

group1.open("group1.txt"); //Step 2
group2.open("group2.txt"); //Step 2

if (!group1 || !group2) //Step 3
{

cout << "Unable to open files." << endl;
cout << "Program terminates." << endl;
return 1;

}

outfile.open("student.out"); //Step 4
outfile << fixed << showpoint; //Step 5
outfile << setprecision(2); //Step 5

avgGroup1 = 0.0; //Step 6
avgGroup2 = 0.0; //Step 7

numberOfCourses = 0; //Step 8

outfile << "Course No Group No "
<< "Course Average" << endl; //Step 9

group1 >> courseId1; //Step 10
group2 >> courseId2; //Step 11
while (group1 && group2) //Step 12
{

if (courseId1 != courseId2) //Step 12a
{

cout << "Data error: Course IDs "
<< "do not match." << endl;

414 | Chapter 6: User-Defined Functions

6

cout << "Program terminates." << endl;
return 1;

}
else //Step 12b
{

calculateAverage(group1, avg1); //Step 12b.i
calculateAverage(group2, avg2); //Step 12b.ii
printResult(outfile, courseId1,

1, avg1); //Step 12b.iii
printResult(outfile, courseId2,

2, avg2); //Step 12b.iv
avgGroup1 = avgGroup1 + avg1; //Step 12b.v
avgGroup2 = avgGroup2 + avg2; //Step 12b.vi
outfile << endl;
numberOfCourses++; //Step 12b.vii

}

group1 >> courseId1; //Step 12c
group2 >> courseId2; //Step 12d

} //end while

if (group1 && !group2) //Step 13a
cout << "Ran out of data for group 2 "

<< "before group 1." << endl;
else if (!group1 && group2) //Step 13b

cout << "Ran out of data for group 1 "
<< "before group 2." << endl;

else //Step 13c
{

outfile << "Avg for group 1: "
<< avgGroup1 / numberOfCourses
<< endl;

outfile << "Avg for group 2: "
<< avgGroup2 / numberOfCourses
<< endl;

}

group1.close(); //Step 14
group2.close(); //Step 14
outfile.close(); //Step 14

return 0;
}

void calculateAverage(ifstream& inp, double& courseAvg)
{

double totalScore = 0.0;
int numberOfStudents = 0;
int score;

Programming Example: Data Comparison | 415

inp >> score;
while (score != -999)
{

totalScore = totalScore + score;
numberOfStudents++;
inp >> score;

}//end while

courseAvg = totalScore / numberOfStudents;
} //end calculate Average

void printResult(ofstream& outp, string courseID, int groupNo,
double avg)

{
if (groupNo == 1)

outp << " " << courseID << " ";
else

outp << " ";
outp << setw(8) << groupNo << setw(17) << avg << endl;

} //end printResult

Sample Run:

Course No Group No Course Average
CSC 1 83.71

2 80.82

ENG 1 82.00

2 78.20

HIS 1 77.69

2 84.15

MTH 1 83.57

2 84.29

PHY 1 83.22

2 82.60

Avg for group 1: 82.04

Avg for group 2: 82.01

Input Data Group 1

CSC 80 100 70 80 72 90 89 100 83 70 90 73 85 90 -999
ENG 80 90 80 94 90 74 78 63 83 80 90 -999
HIS 90 70 80 70 90 50 89 83 90 68 90 60 80 -999
MTH 74 80 75 89 90 73 90 82 74 90 84 100 90 79 -999
PHY 100 83 93 80 63 78 88 89 75 -999

416 | Chapter 6: User-Defined Functions

6

Input Data Group 2

CSC 90 75 90 75 80 89 100 60 80 70 80 -999
ENG 80 80 70 68 70 78 80 90 90 76 -999
HIS 100 80 80 70 90 76 88 90 90 75 90 85 80 -999
MTH 80 85 85 92 90 90 74 90 83 65 72 90 84 100 -999
PHY 90 93 73 85 68 75 67 100 87 88 -999

BAR

GRAPH

In the business world, company executives often like to see results in some visual
form, such as bar graphs. Many currently available software packages can analyze data
in several forms and then display the results in a visual form, such as bar graphs or pie
charts. The second part of this program aims to display the results found earlier in the
form of bar graphs, as shown below:

Course Course Average
ID 0 10 20 30 40 50 60 70 80 90 100

|....|....|....|....|....|....|....|....|....|....|
CSC ***

##
ENG ***

#######################################
.
.
.

Group 1 -- ****
Group 2 -- ####

Avg for group 1: 82.04
Avg for group 2: 82.01

Each symbol (* or #) in the bar graph represents two points. If a course average is less
than 2, no symbol is printed.

Because the output is in the form of a bar graph, we need to modify the function
printResult.

Print Bars The function printResult prints the course ID and the bar graph representing the
average for a course. The output is stored in a file. So we must pass four parameters to
this function: the ofstream variable associated with the output file, the group
number (to print * or #), the course ID, and the course average for the department.
To print the bar graph, we can use a loop to print a symbol for each two points. If the
average is 78.45, for example, we must print 39 symbols to represent this average.
To find the number of symbols to print, we can use integer division as follows:

numberOfSymbols = static_cast<int>(average) / 2;

For example, static_cast<int>(78.45) / 2 = 78 / 2 = 39.

Following this discussion, the definition of the function printResult is:

Programming Example: Data Comparison | 417

QUICK REVIEW

1. Functions are like miniature programs and are called modules.

2. Functions enable you to divide a program into manageable tasks.

3. The C++ system provides the standard (predefined) functions.

void printResult(ofstream& outp, string courseID,
int groupNo, double avg)

{
int noOfSymbols;
int count;

if (groupNo == 1)
outp << setw(4) << courseID << " ";

else
outp << " ";

noOfSymbols = static_cast<int>(avg)/2;

if (groupNo == 1)
for (count = 1; count <= noOfSymbols; count++)

outp << '*';
else

for (count = 1; count <= noOfSymbols; count++)
outp << '#';

outp << endl;
}//end printResult

We also include a function printHeading to print the first two lines of the output.
The definition of this function is:

void printHeading(ofstream& outp)
{

outp << "Course Course Average" << endl;
outp << " ID 0 10 20 30 40 50 60 70"

<< " 80 90 100" << endl;
outp << " |....|....|....|....|....|....|....|"

<< "....|....|....|" << endl;
}//end printHeading

Replace the function printResult in the preceding program, include the function
printHeading, include the statements to output — Group 1 -- **** and Group 2

-- #### — , and rerun the program. Your program should generate a bar graph
similar to the bar graph shown earlier. (The complete program listing is available on
the Web site accompanying this book.)

418 | Chapter 6: User-Defined Functions

4. To use a standard function, you must:

i. Know the name of the header file that contains the function’s specification,

ii. Include that header file in the program, and

iii. Know the name and type of the function and number and types of the
parameters (arguments).

5. There are two types of user-defined functions: value-returning functions
and void functions.

6. Variables defined in a function heading are called formal parameters.

7. Expressions, variables, or constant values used in a function call are called
actual parameters.

8. In a function call, the number of actual parameters and their types must
match with the formal parameters in the order given.

9. To call a function, use its name together with the actual parameter list.

10. A value-returning function returns a value. Therefore, a value-returning
function is used (called) in either an expression or an output statement or as
a parameter in a function call.

11. The general syntax of a user-defined function is:

functionType functionName(formal parameter list)
{

statements
}

12. The line functionType functionName(formal parameter list) is
called the function heading (or function header). Statements enclosed
between braces ({ and }) are called the body of the function.

13. The function heading and the body of the function are called the definition
of the function.

14. If a function has no parameters, you still need the empty parentheses in
both the function heading and the function call.

15. A value-returning function returns its value via the return statement.

16. A function can have more than one return statement. However, when-
ever a return statement executes in a function, the remaining statements
are skipped and the function exits.

17. A return statement returns only one value.

18. A function prototype is the function heading without the body of the
function; the function prototype ends with the semicolon.

19. A function prototype announces the function type, as well as the type and
number of parameters, used in the function.

20. In a function prototype, the names of the variables in the formal parameter
list are optional.

6

Quick Review | 419

21. Function prototypes help the compiler correctly translate each function call.

22. In a program, function prototypes are placed before every function defini-
tion, including the definition of the function main.

23. When you use function prototypes, user-defined functions can appear in
any order in the program.

24. When the program executes, the execution always begins with the first
statement in the function main.

25. User-defined functions execute only when they are called.

26. A call to a function transfers control from the caller to the called
function.

27. In a function call statement, you specify only the actual parameters, not
their data type or the function type.

28. When a function exits, the control goes back to the caller.

29. A function that does not have a data type is called a void function.

30. A return statement without any value can be used in a void function. If a
return statement is used in a void function, it is typically used to exit the
function early.

31. The heading of a void function starts with the word void.

32. In C++, void is a reserved word.

33. A void function may or may not have parameters.

34. A call to a void function is a stand-alone statement.

35. To call a void function, you use the function name together with the actual
parameters in a stand-alone statement.

36. There are two types of formal parameters: value parameters and reference
parameters.

37. A value parameter receives a copy of its corresponding actual parameter.

38. A reference parameter receives the address (memory location) of its corres-
ponding actual parameter.

39. The corresponding actual parameter of a value parameter is an expression, a
variable, or a constant value.

40. A constant value cannot be passed to a reference parameter.

41. The corresponding actual parameter of a reference parameter must be a
variable.

42. When you include & after the data type of a formal parameter, the formal
parameter becomes a reference parameter.

43. The stream variables should be passed by reference to a function.

44. If a formal parameter needs to change the value of an actual parameter, in
the function heading, you must declare this formal parameter as a reference
parameter.

420 | Chapter 6: User-Defined Functions

45. The scope of an identifier refers to those parts of the program where it is
accessible.

46. Variables declared within a function (or block) are called local variables.

47. Variables declared outside of every function definition (and block) are
called global variables.

48. The scope of a function name is the same as the scope of an identifier
declared outside of any block.

49. See the scope rules in this chapter (section, Scope of an Identifier).

50. C++ does not allow the nesting of function definitions.

51. An automatic variable is a variable for which memory is allocated on function
(or block) entry and deallocated on function (or block) exit.

52. A static variable is a variable for which memory remains allocated through-
out the execution of the program.

53. By default, global variables are static variables.

54. In C++, a function can be overloaded.

55. Two functions are said to have different formal parameter lists if both
functions have:

• A different number of formal parameters, or

• If the number of formal parameters is the same, then the data type
of the formal parameters, in the order you list them, must differ in
at least one position.

56. The signature of a function consists of the function name and its formal
parameter list. Two functions have different signatures if they have either
different names or different formal parameter lists.

57. If a function is overloaded, then in a call to that function, the signature—
that is, the formal parameter list of the function—determines which
function to execute.

58. C++ allows functions to have default parameters.

59. If you do not specify the value of a default parameter, the default value is
used for that parameter.

60. All of the default parameters must be the far-right parameters of the function.

61. Suppose a function has more than one default parameter. In a function call,
if a value to a default parameter is not specified, then you must omit all
arguments to its right.

62. Default values can be constants, global variables, or function calls.

63. The calling function has the option of specifying a value other than the
default for any default parameter.

64. You cannot assign a constant value as a default value to a reference
parameter.

6

Quick Review | 421

EXERCISES

1. Mark the following statements as true or false:

a. To use a predefined function in a program, you need to know only the
name of the function and how to use it.

b. A value-returning function returns only one value.

c. Parameters allow you to use different values each time the function is called.

d. When a return statement executes in a user-defined function, the
function immediately exits.

e. A value-returning function returns only integer values.

f. A function that changes the value of a reference parameter also changes
the value of the actual parameter.

g. A variable name cannot be passed to a value parameter.

h. If a C++ function does not use parameters, parentheses around the
empty parameter list are still required.

i. In C++, the names of the corresponding formal and actual parameters
must be the same.

j. Whenever the value of a reference parameter changes, the value of the
actual parameter changes.

k. In C++, function definitions can be nested; that is, the definition of
one function can be enclosed in the body of another function.

l. Using global variables in a program is a better programming style than
using local variables, because extra variables can be avoided.

m. In a program, global constants are as dangerous as global variables.

n. The memory for a static variable remains allocated between function calls.

2. Determine the value of each of the following expressions:

a. static_cast<char>(toupper('$'))

b. static_cast<char>(toupper('3'))

c. static_cast<char>(toupper('#'))

d. static_cast<char>(toupper('d'))

e. static_cast<char>(tolower('+'))

f. static_cast<char>(tolower('?'))

g. static_cast<char>(tolower('H'))

h. static_cast<char>(tolower('%'))

3. Determine the value of each of the following expressions:

a. abs(12) b. fabs(23.45) c. fabs(-7.8) d. pow(4.8, 2)

e. pow(4.0, 2.5) f. sqrt(49.0) g. sqrt(7.29)

h. pow(6.0, 3.0) / abs(-36) i. floor(36.27) j. ceil(18.3)

422 | Chapter 6: User-Defined Functions

4. Using the functions described in Table 6-1, write each of the following as a C++
expression. (The expression in (e) denotes the absolute value of x + 2y � 3.)

a. 3.756.8 b.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� 2y
p

c. wt/3
d.

�bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

2a
e. xþ 2y� 3j j

5. Consider the following function definition:

int func(int x, double y, char u, string name)
{

//function body
}

Which of the following are correct function prototypes of the function func?

a. int func(x, y, u, name);

b. int func(int s, double k, char ch, string name);

c. int func(int, double, char, string);

d. func(int, double, char, string)

6. Consider the following program:

#include <iostream>
#include <cmath>

using namespace std;

int main()
{

int num1;
int num2;

cout << "Enter two integers: ";
cin >> num1 >> num2;
cout << endl;

if (num1 != 0 && num2 != 0)
cout << sqrt(fabs(num1 + num2 + 0.0)) << endl;

else if (num1 != 0)
cout << floor(num1 + 0.0) << endl;

else if (num2 != 0)
cout << ceil(num2 + 0.0) << endl;

else
cout << 0 << endl;

return 0;
}

a. What is the output if the input is 12 4?

b. What is the output if the input is 3 27?

c. What is the output if the input is 25 0?

d. What is the output if the input is 0 49?

6

Exercises | 423

7. Consider the following statements:

int num1, num2, num3;
double length, width, height;
double volume;
num1 = 6; num2 = 7; num3 = 4;
length = 6.2; width = 2.3; height = 3.4

and the function prototype:

double box(double, double, double);

Which of the following statements are valid? If they are invalid,
explain why.

a. volume = box(length, width, height);

b. volume = box(length, 3.8, height);

c. cout << box(num1, num3, num2) << endl;

d. cout << box(length, width, 7.0) << endl;

e. volume = box(length, num1, height);

f. cout << box(6.2, , height) << endl;

g. volume = box(length + width, height);

h. volume = box(num1, num2 + num3);

8. Consider the following functions:

int find(int num)
{

int first, second;

first = num * num;
second = first + num;

if (second > 100)
num = first / 10;

else
num = first / 20;

return num + 2;
}

int discover(int one, int two)
{

int secret = 0;

for (int i = one; i < two; i++)
secret = secret + i * i;

return secret;
}

424 | Chapter 6: User-Defined Functions

What is the output of each of the following program segments?

a. cout << find(15) << endl;

b. cout << discover(3, 9) << endl;

c. cout << find(10) << " " << discover(10, find(10)) << endl;

d. x = 12; y = 8;

cout << discover(y, x) << endl;

9. Consider the following function prototypes:

int func1(int, double);
double func2(string, int, double);
char func3(int, int, double, char);
string join(string, string);

Answer the following questions:

a. How many parameters does the function func1 have? What is the type
of the function func1?

b. How many parameters does function func2 have? What is the type of
function func2?

c. How many parameters does function func3 have? What is the type of
function func3?

d. How many parameters does function join have? What is the type of
function join?

e. How many actual parameters are needed to call the function func1?
What is the type of each actual parameter, and in what order should
you use these parameters in a call to the function func1?

f. Write a C++ statement that prints the value returned by the function
func1 with the actual parameters 3 and 8.5.

g. Write a C++ statement that prints the value returned by function joinwith
the actual parameters "John" and "Project Manager", respectively.

h. Write a C++ statement that prints the next character returned by
function func3. (Use your own actual parameters.)

10. Why do you need to include function prototypes in a program that contains
user-defined functions?

11. Write the definition of a function that takes as input a char value and
returns true if the character is uppercase; otherwise, it returns false.

12. Consider the following function:

int mystery(int x, double y, char ch)
{

if (x == 0 && ch > 'A')
return(static_cast<int>(pow(y, 2)) + static_cast<int>(ch));

else if (x > 0)
return(x + static_cast<int>(sqrt(y)) - static_cast<int>(ch));

6

Exercises | 425

else
return(2 * x + static_cast<int>(y) - static_cast<int>(ch));

}

What is the output of the following C++ statements?

a. cout << mystery(0, 6.5, 'K') << endl;

b. cout << mystery(4, 16.0, '#') << endl;

c. cout << 2 * mystery(-11, 13.8, '8') << endl;

13. Consider the following function:

int secret(int m, int n)
{

int temp = 0;

for (int i = 1; i < abs(n); i++)
temp = temp + i * m;

return temp;
}

a. What is the output of the following C++ statements?

i. cout << secret(3, 6) << endl;

ii. cout << secret(5, -4) << endl;

b. What does the function secret do?

14. Write the definition of a function that takes as input the three numbers.
The function returns true if the first number to the power of the second
number equals the third number; otherwise, it returns false. (Assume that
the three numbers are of type double.)

15. Consider the following C++ program:

#include <iostream>
#include <cmath>

using namespace std;

int main()
{

int temp = 0;

for (int counter = 1; counter <= 100; counter++)
if (pow(floor(sqrt(counter / 1.0)), 2.0) == counter)

temp = temp + counter;

cout << temp << endl;

return 0;
}

a. What is the output of this program?

b. What does this program do?

426 | Chapter 6: User-Defined Functions

16. What is the output of the following program?

#include <iostream>

using namespace std;

int mystery(int x, int y, int z);

int main()
{

cout << mystery(7, 8, 3) << endl;
cout << mystery(10, 5, 30) << endl;
cout << mystery(9, 12, 11) << endl;
cout << mystery(5, 5, 8) << endl;
cout << mystery(10, 10, 10) << endl;

return 0;
}

int mystery(int x, int y, int z)
{

if (x <= y && x <= z)
return (y + z - x);

else if (y <= z && y <= x)
return (z + x - y);

else
return (x + y - z);

}

17. Write the definition of a function that takes as input three decimal numbers
and returns the first number multiplied by the second number to the power
of the third number.

18. Consider the following C++ function:

int mystery(int num)
{

int y = 1;

if (num == 0)
return 1;

else if (num < 0)
return -1;

else
for (int count = 1; count < num; count++)

y = y * (num - count);

return y;
}

What is the output of the following statements?

a. cout << mystery(6) << endl;

b. cout << mystery(0) << endl;

6

Exercises | 427

c. cout << mystery(-5) << endl;

d. cout << mystery(10) << endl;

19. a. How would you use a return statement in a void function?

b. Why would you want to use a return statement in a void function?

20. Identify the following items in the programming code shown below:

a. Function prototype, function heading, function body, and function
definitions.

b. Function call statements, formal parameters, and actual parameters.

c. Value parameters and reference parameters.

d. Local variables and global variables.

e. Named constants.

#include <iostream> //Line 1

using namespace std; //Line 2

const double NUM = 3.5; //Line 3

int temp; //Line 4

void func(int, double&, char); //Line 5

int main() //Line 6
{ //Line 7

int num; //Line 8
double one; //Line 9
char ch; //Line 10

func(num, one, ch); //Line 11
cout << num << " " << one << " " << ch << endl; //Line 12
func(16, one, '%'); //Line 13
cout << num << " " << one << " " << ch << endl; //Line 14

return 0; //Line 15
} //Line 16

void func(int first, double& second, char ch) //Line 17
{ //Line 18

int num; //Line 19
double y; //Line 20
int u; //Line 21

num = 2 * first; //Line 22
y = second * first; //Line 23
u = static_cast<int> (ch); //Line 24
second = num + y * u; //Line 25

} //Line 26

428 | Chapter 6: User-Defined Functions

21. a. Explain the difference between an actual and a formal parameter.

b. Explain the difference between a value and a reference parameter.

c. Explain the difference between a local and a global variable.

22. What is the output of the following program?

#include <iostream>
using namespace std;

void func1();
void func2();

int main()
{

int num;

cout << "Enter 1 or 2: ";
cin >> num;
cout << endl;

cout << "Take ";

if (num == 1)
func1();

else if (num == 2)
func2();

else
cout << "Invalid input. You must enter a 1 or 2" << endl;

return 0;
}

void func1()
{

cout << "Programming I." <<endl;
}

void func2()
{

cout << "Programming II." << endl;
}

a. What is the output if the input is 1?

b. What is the output if the input is 2?

c. What is the output if the input is 3?

d. What is the output if the input is -1?

23. Write the definition of a void function that takes as input a decimal number
and outputs 3 times the value of the decimal number. Format your output to
two decimal places.

6

Exercises | 429

24. Write the definition of a void function that takes as input two decimal
numbers. If the first number is nonzero, it outputs the second number divided
by the first number; otherwise, it outputs a message indicating that the second
number cannot be divided by the first number because the first number is 0.

25. Write the definition of a void function with three reference parameters of type
int, double, and string. The function sets the values of the int and double

variables to 0 and the value of the string variable to the empty string.

26. Write the definition of a void function that takes as input two parameters
of type int, say sum and testScore. The function updates the value of
sum by adding the value of testScore. The new value of sum is reflected
in the calling environment.

27. What is the output of the following program?

#include <iostream>
using namespace std;

void find(int a, int& b, int& c);

int main()
{

int one, two, three;

one = 5;
two = 10;
three = 15;

find(one, two, three);
cout << one << ", " << two << ", " << three << endl;

find(two, one, three);
cout << one << ", " << two << ", " << three << endl;

find(three, two, one);
cout << one << ", " << two << ", " << three << endl;

find(two, three, one);
cout << one << ", " << two << ", " << three << endl;

return 0;
}

void find(int a, int& b, int& c)
{

int temp;

c = a + b;
temp = a;
a = b;
b = 2 * temp;

}

430 | Chapter 6: User-Defined Functions

28. What is the output of the following program?

#include <iostream>
using namespace std;

int x;

void summer(int&, int);
void fall(int, int&);

int main()
{

int intNum1 = 2;
int intNum2 = 5;
x = 6;

summer(intNum1, intNum2);
cout << intNum1 << " " << intNum2 << " " << x << endl;

fall(intNum1, intNum2);
cout << intNum1 << " " << intNum2 << " " << x << endl;
return 0;

}

void summer(int& a, int b)
{

int intNum1;
intNum1 = b + 12;
a = 2 * b + 5;
b = intNum1 + 4;

}

void fall(int u, int& v)
{

int intNum2;
intNum2= x;
v = intNum2 * 4;
x = u - v;

}

29. In the following program, number the marked statements to show the order
in which they will execute (the logical order of execution). Also, what is
the output if the input is 10?

#include <iostream>

using namespace std;

int secret(int, int);

void func(int x, int& y);

6

Exercises | 431

int main()
{

int num1, num2;

num1 = 6;

cout << "Enter a positive integer: ";
cin >> num2;
cout << endl;
cout << secret(num1, num2) << endl;
num2 = num2 - num1;
cout << num1 << " " << num2 << endl;
func(num2, num1);
cout << num1 << " " << num2 << endl;

return 0;
}

int secret(int a, int b)
{

int d;

d = a + b;
b = a * d;

return b;
}

void func (int x, int& y)
{

int val1, val2;

val1 = x + y;
val2 = x * y;
y = val1 + val2;
cout << val1 << " " << val2 << endl;

}

30. Consider the following program:

#include <iostream>
#include <cmath>
#include <iomanip>

using namespace std;

void traceMe(double x, double y);

int main()
{

double one, two;

cout << "Enter two numbers: ";
cin >> one >> two;
cout << endl;

432 | Chapter 6: User-Defined Functions

traceMe(one, two);
traceMe(two, one);

return 0;
}

void traceMe(double x, double y)
{

double z;

if (x != 0)
z = sqrt(y) / x;

else
{

cout << "Enter a nonzero number: ";
cin >> x;
cout << endl;
z = floor(pow(y, x));

}

cout << fixed << showpoint << setprecision(2);
cout << x << ", " << y << ", " << z << endl;

}

a. What is the output if the input is 3 625?

b. What is the output if the input is 24 1024?

c. What is the output if the input is 0 196?

31. The function traceMe in Exercise 30 outputs the values of x, y, and z.
Modify the definition of this function so that rather than print these values,
it sends the values back to the calling environment and the calling environ-
ment prints these values.

32. In Exercise 30, determine the scope of each identifier.

33. What is the output of the following code fragment? (Note: alpha and beta

are int variables.)

alpha = 5;
beta = 10;

if (beta >= 10)
{

int alpha = 10;
beta = beta + alpha;
cout << alpha << ' ' << beta << endl;

}
cout << alpha << ' ' << beta << endl;

6

Exercises | 433

34. Consider the following program. What is its exact output? Show the values
of the variables after each line executes, as in Example 6-13.

#include <iostream>

using namespace std;

void funOne(int& a);

int main()
{

int num1, num2;

num1 = 10; //Line 1

num2 = 20; //Line 2

cout << "Line 3: In main: num1 = " << num1
<< ", num2 = " << num2 << endl; //Line 3

funOne(num1); //Line 4
cout << "Line 5: In main after funOne: num1 = "

<< num1 << ", num2 = " << num2 << endl; //Line 5

return 0; //Line 6
}

void funOne(int& a)
{

int x = 12;
int z;

z = a + x; //Line 7

cout << "Line 8: In funOne: a = " << a
<< ", x = " << x
<< ", and z = " << z << endl; //Line 8

x = x + 5; //Line 9

cout << "Line 10: In funOne: a = " << a
<< ", x = " << x
<< ", and z = " << z << endl; //Line 10

a = a + 8; //Line 11

cout << "Line 12: In funOne: a = " << a
<< ", x = " << x
<< ", and z = " << z << endl; //Line 12

}

434 | Chapter 6: User-Defined Functions

35. What is the output of the following program?

#include <iostream>
using namespace std;

void tryMe(int& v);

int main()
{

int x = 8;

for (int count = 1; count < 5; count++)
tryMe(x);

return 0;
}

void tryMe(int& v)
{

static int num = 2;

if (v % 2 == 0)
{

num++;
v = v + 3;

}
else
{

num--;
v = v + 5;

}
cout << v << ", " << num << endl;

}

36. What is the signature of a function?

37. Consider the following function prototype:

void funcDefaultParam(double x = 7.3, int y = 4, char z = '*');

Which of the following function calls is correct?

a. funcDefaultParam();

b. funcDefaultParam(2.8);

c. funcDefaultParam(3.2, 0, 'h');

d. funcDefaultParam(9.2, '*');

e. funcDefaultParam(7, 3);

6

Exercises | 435

38. Consider the following function definition:

void defaultParam(int num1, int num2 = 7, double z = 2.5)
{

int num3;

num1 = num1 + static_cast<int>(z);
z = num2 + num1 * z;
num3 = num2 - num1;
cout << "num3 = " << num3 << endl;

}

What is the output of the following function calls?

a. defaultParam(7);

b. defaultParam(8, 2);

c. defaultParam(0, 1, 7.5);

d. defaultParam(1, 2, 3.0);

PROGRAMMING EXERCISES

1. Write a program that uses the function isPalindrome given in Example 6-5
(Palindrome). Test your program on the following strings: "madam",
"abba", "22", "67876", "444244", and "trymeuemyrt".

2. Write a value-returning function, isVowel, that returns the value true if a
given character is a vowel and otherwise returns false.

3. Write a program that prompts the user to input a sequence of characters and
outputs the number of vowels. (Use the function isVowel written in
Programming Exercise 2.)

4. Write a program that defines the named constant PI, const double

PI = 3.1419;, which stores the value of p. The program should use PI

and the functions listed in Table 6-1 to accomplish the following:

a. Output the value of
ffiffiffi

p

p
.

b. Prompt the user to input the value of a double variable r, which stores
the radius of a sphere. The program then outputs the following:

i. The value of 4pr2, which is the surface area of the sphere.

ii. The value of (4/3)pr3, which is the volume of the sphere.

5. The following program is designed to find the area of a rectangle, the area of
a circle, or the volume of a cylinder. However, (a) the statements are in the
incorrect order; (b) the function calls are incorrect; (c) the logical expression
in the while loop is incorrect; and (d) the function definitions are incorrect.
Rewrite the program so that it works correctly. Your program must be
properly indented. (Note that the program is menu driven and allows the
user to run the program as long as the user wishes.)

436 | Chapter 6: User-Defined Functions

#include <iostream>

using namespace std;

const double PI = 3.1419;

double rectangle(double l, double w);

#include <iomanip>

int main()
{

double radius;
double height;

cout << fixed << showpoint << setprecision(2) << endl;
cout << "This program can calculate the area of a rectangle, "

<< "the area of a circle, or volume of a cylinder." << endl;
cout << "To run the program enter: " << endl;
cout << "1: To find the area of rectangle." << endl;
cout << "2: To find the area of a circle." << endl;
cout << "3: To find the volume of a cylinder." << endl;
cout << "-1: To terminate the program." << endl;
cin >> choice;
cout << endl;

int choice;

while (choice == -1)
{

{
case 1:

cout << "Enter the radius of the base and the "
<< "height of the cylinder: ";

cin >> radius >> height;
cout << endl;

cout << "Area = " << circle(length, height) << endl;
break;

case 3:
double length, width;
cout << "Enter the radius of the circle: ";
cin >> radius;
cout << endl;

cout << "Area = " << rectangle(radius)
<< endl;

break;

6

Programming Exercises | 437

case 2:
cout << "Enter the length and the width "

<< "of the rectangle: ";
cin >> length >> width;
cout << endl;

cout << "Volume = " << cylinder(radius, height)
<< endl;

break;
default:

cout << "Invalid choice!" << endl;
}
switch (choice)

}

double circle(double r)
double cylinder(double bR, double h);

cout << "To run the program enter: " << endl;
cout << "2: To find the area of a circle." << endl;
cout << "1: To find the area of rectangle." << endl;
cout << "3: To find the volume of a cylinder." << endl;
cout << "-1: To terminate the program." << endl;
cin >> choice;
cout << endl;

return 0;
}

double rectangle(double l, double w)
{

return l * r;
}

double circle(double r)
{

return PI * r * w;
}

double cylinder(double bR, double h)
{

return PI * bR * bR * l;
}

6. Write a function, reverseDigit, that takes an integer as a parameter and
returns the number with its digits reversed. For example, the value of
reverseDigit(12345) is 54321; the value of reverseDigit(5600)

is 65; the value of reverseDigit(7008) is 8007; and the value of
reverseDigit(-532) is -235.

7. Modify the roll dice program, Example 6-4, so that it allows the user to enter
the desired sum of the numbers to be rolled. Also allow the user to call the
rollDice function as many times as the user desires.

438 | Chapter 6: User-Defined Functions

8. The following formula gives the distance between two points, (x1, y1) and
(x2, y2) in the Cartesian plane:

ffi

ðx2 � x1Þ2 þ ðy2 � y1Þ2
q

Given the center and a point on the circle, you can use this formula to find
the radius of the circle. Write a program that prompts the user to enter the
center and a point on the circle. The program should then output the
circle’s radius, diameter, circumference, and area. Your program must have
at least the following functions:

a. distance: This function takes as its parameters four numbers that
represent two points in the plane and returns the distance between them.

b. radius: This function takes as its parameters four numbers that repre-
sent the center and a point on the circle, calls the function distance

to find the radius of the circle, and returns the circle’s radius.

c. circumference: This function takes as its parameter a number that
represents the radius of the circle and returns the circle’s circumference.
(If r is the radius, the circumference is 2pr.)

d. area: This function takes as its parameter a number that represents the radius
of the circle and returns the circle’s area. (If r is the radius, the area is pr2.)

Assume that p = 3.1416.

9. Rewrite the program in Programming Exercise 15 of Chapter 4 (cell phone
company) so that it uses the following functions to calculate the billing
amount. (In this programming exercise, do not output the number of
minutes during which the service is used.)

a. regularBill: This function calculates and returns the billing amount
for regular service.

b. premiumBill: This function calculates and returns the billing amount
for premium service.

10. Write a program that takes as input five numbers and outputs the mean
(average) and standard deviation of the numbers. If the numbers are x1, x2,
x3, x4, and x5, then the mean is x ¼ (x1 + x2 + x3 + x4 + x5)/5 and the
standard deviation is:

s ¼

ffi

ðx1 � xÞ2 þ ðx2 � xÞ2 þ ðx3 � xÞ2 þ ðx4 � xÞ2 þ ðx5 � xÞ2
5

s

Your program must contain at least the following functions: a function that
calculates and returns the mean and a function that calculates the standard
deviation.

6

Programming Exercises | 439

11. When you borrow money to buy a house, a car, or for some other purposes,
then you typically repay it by making periodic payments. Suppose that the
loan amount is L, r is the interest rate per year, m is the number of payments
in a year, and the loan is for t years. Suppose that i ¼ (r / m) and r is in
decimal. Then the periodic payment is:

R ¼ Li

1� ð1þ iÞ�mt ;

You can also calculate the unpaid loan balance after making certain payments.
For example, the unpaid balance after making k payments is:

L0 ¼ R
1� ð1þ iÞ�ðmt�kÞ

i

" #

;

where R is the periodic payment. (Note that if the payments are monthly, then
m ¼ 12.)

Write a program that prompts the user to input the values of L, r, m, t, and k.
The program then outputs the apropriate values. Your program must contain
at least two functions, with appropriate parameters, to calculate the periodic
payments and the unpaid balance after certain payments. Make the program
menu driven and use a loop so that the user can repeat the program for
different values.

12. During the tax season, every Friday, the J&J accounting firm provides assistance
to people who prepare their own tax returns. Their charges are as follows:

a. If a person has low income (<¼ 25,000) and the consulting time is less
than or equal to 30 minutes, there are no charges; otherwise, the service
charges are 40% of the regular hourly rate for the time over 30 minutes.

b. For others, if the consulting time is less than or equal to 20 minutes, there
are no service charges; otherwise, service charges are 70% of the regular
hourly rate for the time over 20 minutes.

(For example, suppose that a person has low income and spent 1 hour and 15 minutes,
and the hourly rate is $70.00. Then the billing amount is 70.00 � 0.40 � (45 / 60) ¼
$21.00.)

Write a program that prompts the user to enter the hourly rate, the total consulting
time, and whether the person has low income. The program should output the billing
amount. Your program must contain a function that takes as input the hourly rate, the
total consulting time, and a value indicating whether the person has low income. The
function should return the billing amount. Your program may prompt the user to enter
the consulting time in minutes.

440 | Chapter 6: User-Defined Functions

13. During winter when it is very cold, typically, everyone would like to know
the windchill factor, especially, before going out. Meteorologists use the
following formula to compute the windchill factor, W:

W = 35.74 + 0.6215 * T �35.75 * V 0.16 + 0.4275 * T * V 0.16,

where V is the wind speed in miles per hour and T is the temperature in
degrees Fahrenheit. Write a program that prompts the user to input the
wind speed, in miles per hour, and the temperature in degrees Fahrenheit.
The program then outputs the windchill factor. Your program must contain
at least two functions: one to get the user input and the other to determine
the windchill factor.

14. Consider the definition of the function main:

int main()
{

int x, y;
char z;
double rate, hours;
double amount;

.

.

.
}

The variables x, y, z, rate, and hours referred to in items a through f below
are the variables of the function main. Each of the functions described must
have the appropriate parameters to access these variables. Write the following
definitions:

a. Write the definition of the function initialize that initializes x and
y to 0 and z to the blank character.

b. Write the definition of the function getHoursRate that prompts the
user to input the hours worked and rate per hour to initialize the
variables hours and rate of the function main.

c. Write the definition of the value-returning function payCheck that calculates
and returns the amount to be paid to an employee based on the hoursworked
and rate per hour. The hours worked and rate per hour are stored in the
variables hours and rate, respectively, of the function main. The formula
for calculating the amount to be paid is as follows: For the first 40 hours, the
rate is the given rate; for hours over 40, the rate is 1.5 times the given rate.

d. Write the definition of the function printCheck that prints the hours
worked, rate per hour, and the salary.

e. Write the definition of the function funcOne that prompts the user to
input a number. The function then changes the value of x by assigning
the value of the expression 2 times the (old) value of x plus the value of
y minus the value entered by the user.

6

Programming Exercises | 441

f. Write the definition of the function nextChar that sets the value of z
to the next character stored in z.

g. Write the definition of a function main that tests each of these functions.

15. Consider the following C++ code:

#include <iostream>
#include <cmath>
#include <iomanip>

using namespace std;

void func1();
void func2(/*formal parameters*/);

int main()
{

int num1, num2;
double num3;

int choice;

cout << fixed << showpoint << setprecision(2);

do
{

func1();
cin >> choice;
cout << endl;

if (choice == 1)
{

func2(num1, num2, num3);
cout << num1 << ", " << num2 << ", " << num3 << endl;

}
}
while (choice != 99);

return 0;
}

void func1()
{

cout << "To run the program, enter 1." << endl;
cout << "To exit the pogram, enter 99." << endl;
cout << "Enter 1 or 99: ";

}

void func2(/*formal parameters*/)
{

//Write the body of func2.
}

442 | Chapter 6: User-Defined Functions

6

The function func2 has three parameters of type int, int, and double, say
a, b, and c, respectively. Write the definition of func2 so that its action is as follows:

a. Prompt the user to input two integers and store the numbers in a and b,
respectively.

b. If both of the numbers are nonzero:

i. If a >= b, the value assigned to c is a to the power b, that is, ab.

ii. If a < b, the value assigned to c is b to the power a, that is, ba.

c. If a is nonzero and b is zero, the value assigned to c is the square root of
the absolute value of a.

d. If b is nonzero and a is zero, the value assigned to c is the square root of
the absolute value of b.

e. Otherwise, the value assigned to c is 0.

The values of a, b, and c are passed back to the calling environment.

After completing the definition of the func2 and writing its function
prototype, test run your program.

16. The statements in the following program are not in the correct order. Rear-
range the statements so that the program outputs the total time an employee
spent on the job each day. The program asks the user to enter the employee’s
name, the arrival time (arrival hour, arrival minute, AM or PM), and departure
time (departure hour, departure minute, AM or PM). The program also allows
the user to run the program as long as the user wishes. After rearranging the
statements, your program must be properly indented.

#include <iostream>
#include <string>

using namespace std;

int main()
{

string employeeName;
int arrivalHr;

int departureHr;
int departureMin;
bool departureAM;

char response;
char discard;
char isAM;

cout << "This program calculates the total time spent by an "
<< "employee on the job." << endl;

cout << "To run the program, enter (y/Y): ";
cin >> response;
cout << endl;
cin.get(discard);

Programming Exercises | 443

while (response == 'y' || response == 'Y')
{

cout << "Enter employee's name: ";
getline(cin, employeeName);
cout << endl;

if (isAM == 'y' || isAM == 'Y')
arrivalAM = true;

else
arrivalAM = false;

cout << "Enter departure hour: ";
cin >> departureHr;
cout << endl;
cout << "Enter departure minute: ";
cin >> departureMin;
cout << endl;
cout << "Enter (y/Y) if departure is before 12:00PM: ";
cin >> isAM;
cout << endl;

if (isAM == 'y' || isAM == 'Y')
departureAM = true;

else
departureAM = false;

cout << employeeName << endl;
timeOnJob(arrivalHr, arrivalMin, arrivalAM,

departureHr, departureMin, departureAM);

cout << "Enter arrival hour: ";
cin >> arrivalHr;
cout << endl;
cout << "Enter arrival minute: ";
cin >> arrivalMin;
cout << endl;
cout << "Enter (y/Y) if arrival is before 12:00PM: ";
cin >> isAM;
cout << endl;

int arrivalMin;
bool arrivalAM;
cout << "Run program again (y/Y): ";
cin >> response;
cout << endl;
cin.get(discard);

}

return 0;
}

444 | Chapter 6: User-Defined Functions

void timeOnJob(int arvHr, int arvMin, bool arvIsAM,
int depHr, int depMin, bool depIsAM)

{
int arvTimeInMin;
int depTimeInMin;
int timeOnJobInMin;

else if (arvIsAM == true && depIsAM == false)
{

arvTimeInMin = arvHr * 60 + arvMin;
depTimeInMin = depHr * 60 + depMin;

timeOnJobInMin = (720 - arvTimeInMin) + depTimeInMin;
cout << "Time spent of job: "

<< timeOnJobInMin / 60 << " hour(s) and "
<< timeOnJobInMin % 60 << " minutes." << endl;

}

else
if (arvTimeInMin <= depTimeInMin)
{

timeOnJobInMin = depTimeInMin - arvTimeInMin;
cout << "Time spent of job: "

<< timeOnJobInMin / 60 << " hour(s) and "
<< timeOnJobInMin % 60 << " minutes." << endl;

}
else

cout << "Invalid input." << endl;
if ((arvIsAM == true && depIsAM == true)

|| (arvIsAM == false && depIsAM == false))
{

cout << "Invalid input." << endl;
}

void timeOnJob(int arvHr, int arvMin, bool arvIsAM,
int depHr, int depMin, bool depIsAM);

}

17. The function printGrade in Example 6-12 is written as a void function
to compute and output the course grade. The course score is passed as
a parameter to the function printGrade. Rewrite the function
printGrade as a value-returning function so that it computes and returns
the course grade. (The course grade must be output in the function main.)
Also, change the name of the function to calculateGrade.

18. In this exercise, you are to modify the Classify Numbers programming
example in this chapter. As written, the program inputs the data from the
standard input device (keyboard) and outputs the results on the standard

6

Programming Exercises | 445

output device (screen). The program can process only 20 numbers. Rewrite
the program to incorporate the following requirements:

a. Data to the program is input from a file of an unspecified length; that is,
the program does not know in advance how many numbers are in the file.

b. Save the output of the program in a file.

c. Modify the function getNumber so that it reads a number from the
input file (opened in the function main), outputs the number to the
output file (opened in the function main), and sends the number read
to the function main. Print only 10 numbers per line.

d. Have the program find the sum and average of the numbers.

e. Modify the function printResult so that it outputs the final results to
the output file (opened in the function main). Other than outputting the
appropriate counts, this new definition of the function printResult

should also output the sum and average of the numbers.

19. Write a program that prints the day number of the year, given the date in
the form month-day-year. For example, if the input is 1-1-2006, the day
number is 1; if the input is 12-25-2006, the day number is 359. The
program should check for a leap year. A year is a leap year if it is divisible
by 4, but not divisible by 100. For example, 1992 and 2008 are divisible by
4, but not by 100. A year that is divisible by 100 is a leap year if it is also
divisible by 400. For example, 1600 and 2000 are divisible by 400. How-
ever, 1800 is not a leap year because 1800 is not divisible by 400.

20. Write a progam that reads a string and outputs the number of times each
lowercase vowel appears in it. Your program must contain a function with one
of its parameters as a string variable and return the number of times each
lowercase vowel appears in it. Also write a program to test your function. (Note
that if str is a variable of type string, then str.at(i) returns the character
at the ith position. The position of the first character is 0. Also, str.length()
returns the length of the str, that is, the number of characters in str.)

21. Redo Programming Exercise 20 as follows. Write a progam that reads a string
and outputs the number of times each lowercase vowel appears in it. Your
program must contain a function with one of its parameters as a char

variable, and if the character is a vowel, it increments that vowel’s count.

22. Write a function that takes as a parameter an integer (as a long value) and
returns the number of odd, even, and zero digits. Also write a program to
test your function.

23. The cost to become a member of a fitness center is as follows: (a) the senior
citizens discount is 30%; (b) if the membership is bought and paid for 12 or
more months, the discount is 15%; and (c) if more than five personal training
sessions are bought and paid for, the discount on each session is 20%. Write
a menu-driven program that determines the cost of a new membership.

446 | Chapter 6: User-Defined Functions

Your program must contain a function that displays the general information
about the fitness center and its charges, a function to get all of the necessary
information to determine the membership cost, and a function to determine
the membership cost. Use appropriate parameters to pass information in and
out of a function. (Do not use any global variables.)

24. Write a program that outputs inflation rates for two successive years and
whether the inflation is increasing or decreasing. Ask the user to input the
current price of an item and its price one year and two years ago. To
calculate the inflation rate for a year, subtract the price of the item for that
year from the price of the item one year ago and then divide the result by
the price a year ago. Your program must contain at least the following
functions: a function to get the input, a function to calculate the results, and
a function to output the results. Use appropriate parameters to pass the
information in and out of the function. Do not use any global variables.

25. Write a program to convert the time from 24-hour notation to 12-hour
notation and vice versa. Your program must be menu driven, giving the user
the choice of converting the time between the two notations. Furthermore,
your programmust contain at least the following functions: a function to convert
the time from 24-hour notation to 12-hour notation, a function to convert the
time from 12-hour notation to 24-hour notation, a function to display the
choices, function(s) to get the input, and function(s) to display the results. (For
12-hour time notation, your program must display AM or PM.)

26. Jason opened a coffee shop at the beach and sells coffee in three sizes: small
(9oz), medium (12oz), and large (15oz). The cost of one small cup is $1.75,
one medium cup is $1.90, and one large cup is $2.00. Write a menu-driven
program that will make the coffee shop operational. Your program should
allow the user to do the following:

a. Buy coffee in any size and in any number of cups.

b. At any time show the total number of cups of each size sold.

c. At any time show the total amount of coffee sold.

d. At any time show the total money made.

Your program should consist of at least the following functions: a function to
show the user how to use the program, a function to sell coffee, a function to
show the number of cups of each size sold, a function to show the total
amount of coffee sold, and a function to show the total money made. Your
program should not use any global variables and special values such as coffee
cup sizes and cost of a coffee cup must be declared as named constants.

27. (The box problem) You have been given a flat cardboard of area, say, 70
square inches to make an open box by cutting a square from each corner and
folding the sides (see Figure 6-24). Your objective is to determine the dimen-
sions, that is, the length and width, and the side of the square to be cut from the
corners so that the resulting box is of maximum length.

6

Programming Exercises | 447

Write a program that prompts the user to enter the area of the flat cardboard.
The program then outputs the length and width of the cardboard and the
length of the side of the square to be cut from the corner so that the resulting
box is of maximum volume. Calculate your answer to three decimal places.
Your programmust contain a function that takes as input the length and width
of the cardboard and returns the side of the square that should be cut to
maximize the volume. The function also returns the maximum volume.

28. (The power station problem) A power station is on one side of a river
that is one-half mile wide, and a factory is eight miles downstream on the
other side of the river (see Figure 6-25). It costs $7 per foot to run power
lines over land and $9 per foot to run them under water. Your objective is
to determine the most economical path to lay the power line. That is,
determine how long the power line should run under water and how long
it should run over land to achieve the minimum total cost of laying the
power line.

1/2 mile

8 miles
x miles

y miles

FIGURE 6-25 Power station, river, and factory

x

y

z

y

x

z

x

y

z

FIGURE 6-24 Cardboard box

448 | Chapter 6: User-Defined Functions

Write a program that prompts the user to enter:

a. The width of the river

b. The distance of the factory downstream on the other side of the river

c. The cost of laying the power line under water

d. The cost of laying the power line over land

The program then outputs the length of the power line that should run
under water and the length that should run over land so the cost of
constructing the power line is at the minimum. The program should also
output the total cost of constructing the power line.

29. (Pipe problem, requires trigonometry) A pipe is to be carried around
the right-angled corner of two intersecting corridors. Suppose that the
widths of the two intersecting corridors are 5 feet and 8 feet (see Figure
6-26). Your objective is to find the length of the longest pipe, rounded to
the nearest foot, that can be carried level around the right-angled corner.

Write a program that prompts the user to input the widths of both of the
hallways. The program then outputs the length of the longest pipe, rounded to
the nearest foot, that can be carried level around the right-angled corner. (Note
that the length of the pipe is given by l = AB + BC = 8 / sin y + 5 / cos y,
where 0 < y < p/2.)

6

5

8

A

B
θ

C

l

FIGURE 6-26 Pipe problem

Programming Exercises | 449

This page intentionally left blank

USER-DEFINED SIMPLE DATA

TYPES, NAMESPACES, AND

THE string TYPE
IN THIS CHAPTER , YOU WILL :

. Learn how to create and manipulate your own simple data type called the enumeration type

. Become familiar with the typedef statement

. Learn about the namespace mechanism

. Explore the string data type and learn how to use the various string functions to manipulate
strings

7C H A P T E R

In Chapter 2, you learned that C++’s simple data type is divided into three categories:
integral, floating-point, and enum. In subsequent chapters, you worked mainly with
integral and floating-point data types. In this chapter, you will learn about the enum
type. Moreover, the statement using namespace std; (discussed in Chapter 2) is used
in every C++ program that uses ANSI/ISO Standard C++ style header files. The second
half of this chapter examines the purpose of this statement. In fact, you will learn what the
namespace mechanism is. You will also learn about the string type and many useful
functions that you can use to effectively manipulate strings.

Enumeration Type

This section may be skipped without any loss of continuity.

Chapter 2 defined a data type as a set of values together with a set of operations on them.
For example, the int data type consists of integers from -2,147,483,648 to
2,147,483,647 and the set of operations on these numbers—namely, the arithmetic
operations (+, -, *, /, and %). Because the main objective of a program is to manipulate
data, the concept of a data type becomes fundamental to any programming language. By
providing data types, you specify what values are legal and tell the user what kinds of
operations are allowed on those values. The system thus provides you with built-in
checks against errors.

The data types that you have worked with until now were mostly int, bool, char, and
double. Even though these data types are sufficient to solve just about any problem,
situations occur when these data types are not adequate to solve a particular problem.
C++ provides a mechanism for users to create their own data types, which greatly
enhances the flexibility of the programming language.

In this section, you will learn how to create your own simple data types, known as the
enumeration types. In ensuing chapters, you will learn more advanced techniques to
create complex data types.

To define an enumeration type, you need the following items:

• A name for the data type

• A set of values for the data type

• A set of operations on the values

C++ lets you define a new simple data type wherein you specify its name and values, but
not the operations. Preventing users from creating their own operations helps to avoid
potential system failures.

The values that you specify for the data type must be identifiers.

452 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

The syntax for enumeration type is:

enum typeName {value1, value2, ...};

in which value1, value2, ... are identifiers called enumerators. In C++, enum is a
reserved word.

By listing all of the values between the braces, you also specify an ordering between
the values. That is, value1 < value2 < value3 <.... Thus, the enumeration
type is an ordered set of values. Moreover, the default value assigned to these
enumerators starts at 0. That is, the default value assigned to value1 is 0,
the default value assigned to value2 is 1, and so on. (You can assign different
values—other than the default values—for the enumerators when you define the
enumeration type.) Also notice that the enumerators value1, value2, ... are not

variables.

EXAMPLE 7-1

The statement:

enum colors {BROWN, BLUE, RED, GREEN, YELLOW};

defines a new data type called colors, and the values belonging to this data type are
BROWN, BLUE, RED, GREEN, and YELLOW.

EXAMPLE 7-2

The statement:

enum standing {FRESHMAN, SOPHOMORE, JUNIOR, SENIOR};

defines standing to be an enumeration type. The values belonging to standing are
FRESHMAN, SOPHOMORE, JUNIOR, and SENIOR.

EXAMPLE 7-3

Consider the following statements:

enum grades {'A', 'B', 'C', 'D', 'F'}; //illegal enumeration type
enum places {1ST, 2ND, 3RD, 4TH}; //illegal enumeration type

7

Enumeration Type | 453

These are illegal enumeration types because none of the values is an identifier. The
following, however, are legal enumeration types:

enum grades {A, B, C, D, F};
enum places {FIRST, SECOND, THIRD, FOURTH};

If a value has already been used in one enumeration type, it cannot be used by any other
enumeration type in the same block. The same rules apply to enumeration types declared
outside of any blocks. Example 7-4 illustrates this concept.

EXAMPLE 7-4

Consider the following statements:

enum mathStudent {JOHN, BILL, CINDY, LISA, RON};
enum compStudent {SUSAN, CATHY, JOHN, WILLIAM}; //illegal

Suppose that these statements are in the same program in the same block. The second
enumeration type, compStudent, is not allowed because the value JOHN was used in the
previous enumeration type mathStudent.

Declaring Variables
Once a data type is defined, you can declare variables of that type. The syntax for
declaring variables of an enum type is the same as before:

dataType identifier, identifier,...;

The statement:

enum sports {BASKETBALL, FOOTBALL, HOCKEY, BASEBALL, SOCCER,
VOLLEYBALL};

defines an enumeration type called sports. The statement:

sports popularSport, mySport;

declares popularSport and mySport to be variables of type sports.

Assignment
Once a variable is declared, you can store values in it. Assuming the previous declaration,
the statement:

popularSport = FOOTBALL;

454 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

stores FOOTBALL in popularSport. The statement:

mySport = popularSport;

copies the value of popularSport into mySport.

Operations on Enumeration Types
No arithmetic operations are allowed on the enumeration type. So the following state-
ments are illegal:

mySport = popularSport + 2; //illegal
popularSport = FOOTBALL + SOCCER; //illegal
popularSport = popularSport * 2; //illegal

Also, the increment and decrement operations are not allowed on enumeration types. So
the following statements are illegal:

popularSport++; //illegal
popularSport––; //illegal

Suppose you want to increment the value of popularSport by 1. You can use the cast
operator as follows:

popularSport = static_cast<sports>(popularSport + 1);

When the type name is used, the compiler assumes that the user understands what he or
she is doing. Thus, the preceding statement is compiled, and during execution, it advances
the value of popularSport to the next value in the list. Consider the following
statements:

popularSport = FOOTBALL;
popularSport = static_cast<sports>(popularSport + 1);

After the second statement, the value of popularSport is HOCKEY. Similarly, the
statements:

popularSport = FOOTBALL;
popularSport = static_cast<sports>(popularSport - 1);

result in storing BASKETBALL in popularSport.

Relational Operators
Because an enumeration is an ordered set of values, the relational operators can be used
with the enumeration type. Once again, suppose you have the enumeration type sports
and the variables popularSport and mySport as defined earlier. Then:

FOOTBALL <= SOCCER is true
HOCKEY > BASKETBALL is true
BASEBALL < FOOTBALL is false

7

Enumeration Type | 455

Suppose that:

popularSport = SOCCER;
mySport = VOLLEYBALL;

Then:

popularSport < mySport is true

ENUMERATION TYPES AND LOOPS

Recall that the enumeration type is an integral type and that, using the cast operator (that
is, type name), you can increment, decrement, and compare the values of the enumera-
tion type. Therefore, you can use these enumeration types in loops. Suppose mySport is
a variable as declared earlier. Consider the following for loop:

for (mySport = BASKETBALL; mySport <= SOCCER;
mySport = static_cast<sports>(mySport + 1))

.

.

.

This for loop has five iterations.

Using enumeration types in loops increases the readability of the program.

Input /Output of Enumeration Types
Because input and output are defined only for built-in data types such as int, char,
double, and so on, the enumeration type can be neither input nor output (directly).
However, you can input and output enumeration indirectly. Example 7-5 illustrates this
concept.

EXAMPLE 7-5

Suppose you have the following statements:

enum courses {ALGEBRA, BASIC, PASCAL, CPP, PHILOSOPHY, ANALYSIS,
CHEMISTRY, HISTORY};

courses registered;

The first statement defines an enumeration type, courses; the second declares a variable
registered of type courses. You can read (that is, input) the enumeration type with
the help of the char data type. Note that you can distinguish between some of the values
in the enumeration type courses just by reading the first character and others by reading
the first two characters. For example, you can distinguish between ALGEBRA and BASIC

just by reading the first character; you can distinguish between ALGEBRA and ANALYSIS

by reading the first two characters. To read these values from, say, the keyboard, you read
two characters and then use a selection structure to assign the value to the variable
registered. Thus, you need to declare two variables of type char.

456 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

7

char ch1, ch2;
cin >> ch1 >> ch2; //Read two characters

The following switch statement assigns the appropriate value to the variable registered:

switch (ch1)
{

case 'a':
case 'A':

if (ch2 == 'l' || ch2 == 'L')
registered = ALGEBRA;

else
registered = ANALYSIS;

break;
case 'b':
case 'B':

registered = BASIC;
break;

case 'c':
case 'C':

if (ch2 == 'h' || ch2 == 'H')
registered = CHEMISTRY;

else
registered = CPP;

break;
case 'h':
case 'H':

registered = HISTORY;
break;

case 'p':
case 'P':

if (ch2 == 'a' || ch2 == 'A')
registered = PASCAL;

else
registered = PHILOSOPHY;

break;
default:

cout << "Illegal input." << endl;
}

You can also use the string type to input value in the variable registered. For
example, the following code accomplishes this:

string course;
cin >> course;
if (course == "algebra")

registered = ALGEBRA;
else if (course == "analysis")

registered = ANALYSIS;
else if (course == "basic")

registered = BASIC;
else if (course == "chemistry")

registered = CHEMISTRY;
else if (course == "cpp")

registered = CPP;

Enumeration Type | 457

else if (course == "history")
registered = HISTORY;

else if (course == "pascal")
registered = PASCAL;

else if (course == "Philosophy")
registered = PHILOSOPHY;

else
cout << "Illegal input." << endl;

Similarly, you can output the enumeration type indirectly:

switch (registered)
{

case ALGEBRA:
cout << "Algebra";
break;

case ANALYSIS:
cout << "Analysis";
break;

case BASIC:
cout << "Basic";
break;

case CHEMISTRY:
cout << "Chemistry";
break;

case CPP:
cout << "CPP";
break;

case HISTORY:
cout << "History";
break;

case PASCAL:
cout << "Pascal";
break;

case PHILOSOPHY:
cout << "Philosophy";

}

If you try to output the value of an enumerator directly, the computer will output the value

assigned to the enumerator. For example, suppose that registered = ALGEBRA;.

The following statement will output the value 0 because the (default) value assigned to

ALGEBRA is 0:

cout << registered << endl;

Similarly, the following statement will output 4:

cout << PHILOSOPHY << endl;

458 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

Functions and Enumeration Types
You can pass the enumeration type as a parameter to functions just like any other simple
data type—that is, by either value or reference. Also, just like any other simple data type,
a function can return a value of the enumeration type. Using this facility, you can use
functions to input and output enumeration types.

The following function inputs data from the keyboard and returns a value of the
enumeration type. Assume that the enumeration type courses is defined as before:

courses readCourses()
{

courses registered;
char ch1, ch2;

cout << "Enter the first two letters of the course: "
<< endl;

cin >> ch1 >> ch2;

switch (ch1)
{

case 'a':
case 'A':

if (ch2 == 'l' || ch2 == 'L')
registered = ALGEBRA;

else
registered = ANALYSIS;

break;
case 'b':
case 'B':

registered = BASIC;
break;

case 'c':
case 'C':

if (ch2 == 'h' || ch2 == 'H')
registered = CHEMISTRY;

else
registered = CPP;

break;
case 'h':
case 'H':

registered = HISTORY;
break;

case 'p':
case 'P':

if (ch2 == 'a' || ch2 == 'A')
registered = PASCAL;

else
registered = PHILOSOPHY;

break;

7

Enumeration Type | 459

default:
cout << "Illegal input." << endl;

}

return registered;
} //end readCourses

As shown previously, you can also use the string type in the function readCourses to
input a value in a variable of type courses. We leave the details as an exercise.

The following function outputs an enumeration type value:

void printEnum(courses registered)
{

switch (registered)
{

case ALGEBRA:
cout << "Algebra";
break;

case ANALYSIS:
cout << "Analysis";
break;

case BASIC:
cout << "Basic";
break;

case CHEMISTRY:
cout << "Chemistry";
break;

case CPP:
cout << "CPP";
break;

case HISTORY:
cout << "History";
break;

case PASCAL:
cout << "Pascal";
break;

case PHILOSOPHY:
cout << "Philosophy";

}//end switch
}//end printEnum

Declaring Variables When Defining the Enumeration Type
In previous sections, you first defined an enumeration type and then declared variables of that
type. C++ allows you to combine these two steps into one. That is, you can declare variables
of an enumeration type when you define an enumeration type. For example, the statement:

enum grades {A, B, C, D, F} courseGrade;

defines an enumeration type, grades, and declares a variable courseGrade of type
grades.

460 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

Similarly, the statement:

enum coins {PENNY, NICKEL, DIME, HALFDOLLAR, DOLLAR} change, usCoins;

defines an enumeration type, coins, and declares two variables, change and usCoins,
of type coins.

Anonymous Data Types
A data type wherein you directly specify values in the variable declaration with no type
name is called an anonymous type. The following statement creates an anonymous type:

enum {BASKETBALL, FOOTBALL, BASEBALL, HOCKEY} mySport;

This statement specifies the values and declares a variable mySport, but no name is given
to the data type.

Creating an anonymous type, however, has drawbacks. First, because there is no name for
the type, you cannot pass an anonymous type as a parameter to a function, and a function
cannot return an anonymous type value. Second, values used in one anonymous type can
be used in another anonymous type, but variables of those types are treated differently.
Consider the following statements:

enum {ENGLISH, FRENCH, SPANISH, GERMAN, RUSSIAN} languages;
enum {ENGLISH, FRENCH, SPANISH, GERMAN, RUSSIAN} foreignLanguages;

Even though the variables languages and foreignLanguages have the same values,
the compiler treats them as variables of different types. The following statement is,
therefore, illegal:

languages = foreignLanguages; //illegal

Even though these facilities are available, use them with care. To avoid confusion, first
define an enumeration type and then declare the variables.

We now describe the typedef statement in C++.

typedef Statement
In C++, you can create synonyms or aliases to a previously defined data type by using the
typedef statement. The general syntax of the typedef statement is:

typedef existingTypeName newTypeName;

In C++, typedef is a reserved word. Note that the typedef statement does not create
any new data type; it only creates an alias to an existing data type.

7

Enumeration Type | 461

EXAMPLE 7-6

The statement:

typedef int integer;

creates an alias, integer, for the data type int. Similarly, the statement:

typedef double real;

creates an alias, real, for the data type double. The statement:

typedef double decimal;

creates an alias, decimal, for the data type double.

Using the typedef statement, you can create your own Boolean data type, as shown in
Example 7-7.

EXAMPLE 7-7

From Chapter 4, recall that logical (Boolean) expressions in C++ evaluate to 1 or 0,
which are, in fact, int values. As a logical value, 1 represents true and 0 represents
false. Consider the following statements:

typedef int Boolean; //Line 1
const Boolean TRUE = 1; //Line 2
const Boolean FALSE = 0; //Line 3
Boolean flag; //Line 4

The statement in Line 1 creates an alias, Boolean, for the data type int. The
statements in Lines 2 and 3 declare the named constants TRUE and FALSE and initialize
them to 1 and 0, respectively. The statement in Line 4 declares flag to be a variable of
type Boolean. Because flag is a variable of type Boolean, the following statement is
legal:

flag = TRUE;

462 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

7

PROGRAMMING EXAMPLE: The Game of Rock, Paper, and Scissors
Children often play the game of rock, paper, and scissors. This game has two players,
each of whom chooses one of the three objects: rock, paper, or scissors. If player 1
chooses rock and player 2 chooses paper, player 2 wins the game because paper
covers the rock. The game is played according to the following rules:

• If both players choose the same object, this play is a tie.

• If one player chooses rock and the other chooses scissors, the player
choosing the rock wins this play because the rock breaks the scissors.

• If one player chooses rock and the other chooses paper, the player
choosing the paper wins this play because the paper covers the rock.

• If one player chooses scissors and the other chooses paper, the player
choosing the scissors wins this play because the scissors cut the paper.

Write an interactive program that allows two people to play this game.

Input This program has two types of input:

• The users’ responses when asked to play the game.

• The players’ choices.

Output The players’ choices and the winner of each play. After the game is over,
the total number of plays and the number of times that each player won
should be output as well.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

Two players play this game. Players enter their choices via the keyboard. Each
player enters R or r for Rock, P or p for Paper, or S or s for Scissors. While the
first player enters a choice, the second player looks elsewhere. Once both entries
are in, if the entries are valid, the program outputs the players’ choices and declares
the winner of the play. The game continues until one of the players decides to quit
the game. After the game ends, the program outputs the total number of plays and
the number of times that each player won. This discussion translates into the
following algorithm:

1. Provide a brief explanation of the game and how it is played.

2. Ask the users if they want to play the game.

3. Get plays for both players.

4. If the plays are valid, output the plays and the winner.

5. Update the total game count and winner count.

6. Repeat Steps 2 through 5 while the users agree to play the game.

7. Output the number of plays and times that each player won.

We will use the enumeration type to describe the objects.

enum objectType {ROCK, PAPER, SCISSORS};

Watch

the Video

Programming Example: The Game of Rock, Paper, and Scissors | 463

Variables

(Function main)

It is clear that you need the following variables in the function main:

int gameCount; //variable to store the number of
//games played

int winCount1; //variable to store the number of games
//won by player 1

int winCount2; //variable to store the number of games
//won by player 2

int gamewinner;
char response; //variable to get the user's response to

//play the game
char selection1;
char selection2;
objectType play1; //player1's selection
objectType play2; //player2's selection

This program is divided into the following functions, which the ensuing sections
describe in detail.

• displayRules: This function displays some brief information about the
game and its rules.

• validSelection: This function checks whether a player’s selection is valid.
The only valid selections are R, r, P, p, S, and s.

• retrievePlay: Because enumeration types cannot be read directly, this func-
tion converts the entered choice (R, r, P, p, S, or s) and returns the
appropriate object type.

• gameResult: This function outputs the players’ choices and the winner of
the game.

• convertEnum: This function is called by the function gameResult to
output the enumeration type values.

• winningObject: This function determines and returns the winning
object.

• displayResults: After the game is over, this function displays the final
results.

Function

displayRules

This function has no parameters. It consists only of output statements to explain the
game and rules of play. Essentially, this function’s definition is:

void displayRules()
{

cout << " Welcome to the game of Rock, Paper, "
<< "and Scissors." << endl;

cout << " This is a game for two players. For each "
<< "game, each" << endl;

464 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

7

cout << " player selects one of the objects Rock, "
<< "Paper, or Scissors." << endl;

cout << " The rules for winning the game are: " << endl;
cout << "1. If both players select the same object, it "

<< "is a tie." << endl;
cout << "2. Rock breaks Scissors: So player who selects "

<< "Rock wins." << endl;
cout << "3. Paper covers Rock: So player who selects "

<< "Paper wins." << endl;
cout << "4. Scissors cuts Paper: So player who selects "

<< "Scissors wins." << endl << endl;
cout << "Enter R or r to select Rock, P or p to select "

<< "Paper, and S or s to select Scissors." << endl;
}

Function

validSelection

This function checks whether a player’s selection is valid.

if selection is 'R' or 'r' or 'S' or 's' or 'P' or 'p', then
it is a valid selection;

otherwise the selection is invalid.

Let’s use a switch statement to check for the valid selection. The definition of this
function is:

bool validSelection(char selection)
{

switch (selection)
{

case 'R':
case 'r':
case 'P':
case 'p':
case 'S':
case 's':

return true;
default:

return false;
}

}

Function

retrievePlay

Because the enumeration type cannot be read directly, this function converts the entered
choice (R, r, P, p, S, or s) and returns the appropriate object type. This function thus has
one parameter, of type char. It is a value-returning function, and it returns a value of
type objectType. In pseudocode, the algorithm of this function is:

if selection is 'R' or 'r'
return ROCK;

if selection is 'P' or 'p'
return PAPER;

if selection is 'S' or 's'
return SCISSORS;

Programming Example: The Game of Rock, Paper, and Scissors | 465

The definition of the function retrievePlay is:

objectType retrievePlay(char selection)
{

objectType object;

switch (selection)
{

case 'R':
case 'r':

object = ROCK;
break;

case 'P':
case 'p':

object = PAPER;
break;

case 'S':
case 's':

object = SCISSORS;
}

return object;
}

Function

gameResult

This function decides whether a game is a tie or which player is the winner. It
outputs the players’ selections and the winner of the game. Clearly, this function has
three parameters: player 1’s choice, player 2’s choice, and a parameter to return the
winner. In pseudocode, this function is:

a. if player1 and player2 have the same selection, then
this is a tie game.

b. else
{

1. Determine the winning object. (Call function winningObject)
2. Output each player's choice.
3. Determine the winning player.
4. Return the winning player via a reference parameter to the

function main so that the function main can update the
winning player's win count.

}

The definition of this function is:

void gameResult(objectType play1, objectType play2,
int& winner)

{

objectType winnerObject;

if (play1 == play2)
{

winner = 0;
cout << "Both players selected ";

466 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

7

convertEnum(play1);
cout << ". This game is a tie." << endl;

}

else
{

winnerObject = winningObject(play1, play2);

//Output each player's choice
cout << "Player 1 selected ";
convertEnum(play1);
cout << " and player 2 selected ";
convertEnum(play2);
cout << ". ";

//Decide the winner
if (play1 == winnerObject)

winner = 1;
else if (play2 == winnerObject)

winner = 2;

//Output the winner
cout << "Player " << winner << " wins this game."

<< endl;
}

}

Function

convertEnum

Because enumeration types cannot be output directly, let’s write the function
convertEnum to output objects of the enum type objectType. This function
has one parameter, of type objectType. It outputs the string that corresponds to the
objectType. In pseudocode, this function is:

if object is ROCK
output "Rock"

if object is PAPER
output "Paper"

if object is SCISSORS
output "Scissors"

The definition of the function convertEnum is:

void convertEnum(objectType object)
{

switch (object)
{

case ROCK:
cout << "Rock";
break;

case PAPER:
cout << "Paper";
break;

Programming Example: The Game of Rock, Paper, and Scissors | 467

case SCISSORS:
cout << "Scissors";

}

}

Function

winningObject

To decide the winner of the game, you look at the players’ selections and then at the
rules of the game. For example, if one player chooses ROCK and another chooses
PAPER, the player who chose PAPER wins. In other words, the winning object is
PAPER. The function winningObject, given two objects, decides and returns the
winning object. Clearly, this function has two parameters of type objectType, and
the value returned by this function is also of type objectType. The definition of
this function is:

objectType winningObject(objectType play1, objectType play2)
{

if ((play1 == ROCK && play2 == SCISSORS)
|| (play2 == ROCK && play1 == SCISSORS))

return ROCK;
else if ((play1 == ROCK && play2 == PAPER)

|| (play2 == ROCK && play1 == PAPER))
return PAPER;

else
return SCISSORS;

}

Function

displayResults

After the game is over, this function outputs the final results—that is, the total
number of plays and the number of plays won by each player. The total number of
plays is stored in the variable gameCount, the number of plays won by player 1 is
stored in the variable winCount1, and the number of plays won by player 2 is stored
in the variable winCount2. This function has three parameters corresponding to
these three variables. Essentially, the definition of this function is:

void displayResults(int gCount, int wCount1, int wCount2)
{

cout << "The total number of plays: " << gCount
<< endl;

cout << "The number of plays won by player 1: "
<< wCount1 << endl;

cout << "The number of plays won by player 2: "
<< wCount2 << endl;

}

We are now ready to write the algorithm for the function main.

MAIN

ALGORITHM

1. Declare the variables.

2. Initialize the variables.

3. Display the rules.

4. Prompt the users to play the game.

468 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

7

5. Get the users’ responses to play the game.

6. while (response is yes)

{

a. Prompt player 1 to make a selection.

b. Get the play for player 1.

c. Prompt player 2 to make a selection.

d. Get the play for player 2.

e. If both plays are legal:

{

i. Increment the total game count.

ii. Declare the winner of the game.

iii. Increment the winner’s game win count by 1.

}

f. Prompt the users to determine whether they want to play again.

g. Get the players’ responses.

}

7. Output the game results.

PROGRAM LISTING

//***
// Author: D.S. Malik
//
// Program: Rock, Paper, and Scissors
// This program plays the game of rock, paper, and scissors.
//***

#include <iostream>

using namespace std;

enum objectType {ROCK, PAPER, SCISSORS};

//Function prototypes
void displayRules();
objectType retrievePlay(char selection);
bool validSelection(char selection);
void convertEnum(objectType object);
objectType winningObject(objectType play1, objectType play2);
void gameResult(objectType play1, objectType play2, int& winner);
void displayResults(int gCount, int wCount1, int wCount2);

Programming Example: The Game of Rock, Paper, and Scissors | 469

int main()
{

//Step 1
int gameCount; //variable to store the number of

//games played
int winCount1; //variable to store the number of games

//won by player 1
int winCount2; //variable to store the number of games

//won by player 2
int gamewinner;
char response; //variable to get the user's response to

//play the game
char selection1;
char selection2;
objectType play1; //player1's selection
objectType play2; //player2's selection

//Initialize variables; Step 2
gameCount = 0;
winCount1 = 0;
winCount2 = 0;

displayRules(); //Step 3

cout << "Enter Y/y to play the game: "; //Step 4
cin >> response; //Step 5
cout << endl;
while (response == 'Y' || response == 'y') //Step 6
{

cout << "Player 1 enter your choice: "; //Step 6a
cin >> selection1; //Step 6b
cout << endl;

cout << "Player 2 enter your choice: "; //Step 6c
cin >> selection2; //Step 6d
cout << endl;

//Step 6e
if (validSelection(selection1)

&& validSelection(selection2))
{

play1 = retrievePlay(selection1);
play2 = retrievePlay(selection2);
gameCount++; //Step 6e.i
gameResult(play1, play2, gamewinner); //Step 6e.ii

if (gamewinner == 1) //Step 6e.iii
winCount1++;

else if (gamewinner == 2)
winCount2++;

}//end if

470 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

7

Namespaces
In July 1998, ANSI/ISO Standard C++ was officially approved. Most recent compilers
are also compatible with ANSI/ISO Standard C++. (To be absolutely sure, check your
compiler’s documentation.) The two standards, Standard C++ and ANSI/ISO Standard
C++, are virtually the same. The ANSI/ISO Standard C++ language has some features
that are not available in Standard C++, which the remainder of this chapter addresses.
In subsequent chapters, unless specified otherwise, the C++ syntax applies to both
standards. First, we discuss the namespace mechanism of the ANSI/ISO Standard
C++, which was introduced in Chapter 2.

When a header file, such as iostream, is included in a program, the global identifiers in the
header file also become the global identifiers in the program. Therefore, if a global identifier
in a program has the same name as one of the global identifiers in the header file, the
compiler generates a syntax error (such as ‘‘identifier redefined’’). The same problem can
occur if a program uses third-party libraries. To overcome this problem, third-party vendors
begin their global identifiers with a special symbol. In Chapter 2, you learned that because
compiler vendors begin their global identifier names with an underscore (_), to avoid linking
errors, you should not begin identifier names in your program with an underscore (_).

ANSI/ISO Standard C++ tries to solve this problem of overlapping global identifier
names with the namespace mechanism.

The general syntax of the statement namespace is:

namespace namespace_name
{

members
}

where members is usually named constants, variable declarations, functions, or another
namespace. Note that namespace_name is a C++ identifier.

cout << "Enter Y/y to play the game: "; //Step 6f
cin >> response; //Step 6g
cout << endl;

}//end while

displayResults(gameCount, winCount1,
winCount2); //Step 7

return 0;
}//end main

//Place the definitions of the functions displayRules,
//validSelection, retrievePlay, convertEnum, winningObject,
//gameResult, and displayResults as described previously here.

Namespaces | 471

In C++, namespace is a reserved word.

EXAMPLE 7-8

The statement:

namespace globalType
{

const int N = 10;
const double RATE = 7.50;
int count = 0;
void printResult();

}

defines globalType to be a namespace with four members: named constants N and
RATE, the variable count, and the function printResult.

The scope of a namespace member is local to the namespace. You can usually
access a namespace member outside the namespace in one of two ways, as described
below.

The general syntax for accessing a namespace member is:

namespace_name::identifier

Recall that in C++, :: is called the scope resolution operator.

To access the member RATE of the namespace globalType, the following statement is
required:

globalType::RATE

To access the member printResult (which is a function), the following statement is
required:

globalType::printResult();

Thus, to access a member of a namespace, you use the namespace_name, followed by
the scope resolution operator, followed by the member name.

To simplify the accessing of a namespace member, ANSI/ISO Standard C++ provides
the use of the statement using. The syntax to use the statement using is as follows:

a. To simplify the accessing of all namespace members:

using namespace namespace_name;

b. To simplify the accessing of a specific namespace member:

using namespace_name::identifier;

472 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

7

For example, the using statement:

using namespace globalType;

simplifies the accessing of all members of the namespace globalType. The statement:

using globalType::RATE;

simplifies the accessing of the member RATE of the namespace globalType.

In C++, using is a reserved word.

You typically put the using statement after the namespace declaration. For the
namespace globalType, for example, you usually write the code as follows:

namespace globalType
{

const int N = 10;
const double RATE = 7.50;
int count = 0;
void printResult();

}

using namespace globalType;

After the using statement, to access a namespace member, you do not have to put the
namespace_name and the scope resolution operator before the namespace member.
However, if a namespace member and a global identifier in a program have the same
name, to access this namespace member in the program, the namespace_name and
the scope resolution operator must precede the namespace member. Similarly, if a
namespace member and an identifier in a block have the same name, to access this
namespace member in the block, the namespace_name and the scope resolution
operator must precede the namespace member.

Examples 7-9 through 7-12 help clarify the use of the namespace mechanism.

EXAMPLE 7-9

Consider the following C++ code:

#include <iostream>

using namespace std;
.
.
.
int main()
{

.

.

.
}

.

.

.

Namespaces | 473

In this example, you can refer to the global identifiers of the header file iostream, such
as cin, cout, and endl, without using the prefix std:: before the identifier name. The
obvious restriction is that the block (or function) that refers to the global identifier (of the
header file iostream) must not contain any identifier with the same name as this global
identifier.

EXAMPLE 7-10

Consider the following C++ code:

#include <cmath>

int main()
{

double x = 15.3;
double y;

y = std::pow(x, 2);
.
.
.

}

This example accesses the function pow of the header file cmath.

EXAMPLE 7-11

Consider the following C++ code:

#include <iostream>
.
.
.
int main()
{

using namespace std;
.
.
.

}

.

.

.

In this example, the function main can refer to the global identifiers of the header file
iostream without using the prefix std:: before the identifier name. The using

474 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

statement appears inside the function main. Therefore, other functions (if any) should use
the prefix std:: before the name of the global identifier of the header file iostream

unless the function has a similar using statement.

EXAMPLE 7-12

Consider the following C++ code:

#include <iostream>

using namespace std; //Line 1

int t; //Line 2
double u; //Line 3

namespace expN
{

int x; //Line 4
char t; //Line 5
double u; //Line 6
void printResult(); //Line 7

}

using namespace expN;

int main()
{

int one; //Line 8
double t; //Line 9
double three; //Line 10

.

.

.
}

void expN::printResult() //Definition of the function printResult
{

.

.

.
}

In this C++ program:

1. To refer to the variable t in Line 2 in main, use the scope resolution

operator, which is :: (that is, refer to t as ::t), because the function
main has a variable named t (declared in Line 9). For example, to copy
the value of x into t, you can use the statement ::t = x;.

7

Namespaces | 475

2. To refer to the member t (declared in Line 5) of the namespace expN

in main, use the prefix expN:: with t (that is, refer to t as expN::t)
because there is a global variable named t (declared in Line 2) and a
variable named t in main.

3. To refer to the member u (declared in Line 6) of the namespace expN

in main, use the prefix expN:: with u (that is, refer to u as expN::u)
because there is a global variable named u (declared in Line 3).

4. You can reference the member x (declared in Line 4) of the namespace
expN in main as either x or expN::x because there is no global
identifier named x and the function main does not contain any identifier
named x.

5. The definition of a function that is a member of a namespace, such
as printResult, is usually written outside the namespace as in
the preceding program. To write the definition of the function
printResult, the name of the function in the function heading
can be either printResult or expN::printResult (because no
other global identifier is named printResult).

The identifiers in the system-provided header files, such as iostream, cmath, and

iomanip, are defined in the namespace std. For this reason, to simplify the

accessing of identifiers from these header files, we have been using the following

statement in the programs that we write:

using namespace std;

string Type

In Chapter 2, you were introduced to the data type string. Recall that prior to the
ANSI/ISO C++ language standard, the Standard C++ library did not provide a string
data type. Compiler vendors often supplied their own programmer-defined string

type, and the syntax and semantics of string operations often varied from vendor to
vendor.

The data type string is a programmer-defined type and is not part of the C++
language; the C++ standard library supplies it. Before using the data type string, the
program must include the header file string, as follows:

#include <string>

Recall that in C++, a string is a sequence of zero or more characters, and strings are
enclosed in double quotation marks.

476 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

The statement:

string name = "William Jacob";

declares name to be a string variable and initializes name to "William Jacob".
The position of the first character, W, in name is 0; the position of the second character,
i, is 1; and so on. That is, the position of the first character in a string variable starts
with 0, not 1.

The variable name can store (just about) any size string.

Chapter 3 discussed I/O operations on the string type; Chapter 4 explained relational
operations on the string type. We recommend that you revisit Chapters 3 and 4 and
review the I/O and relational operations on the string type.

Other operators, such as the binary operator + (to allow the string concatenation
operation) and the array index (subscript) operator [], have also been defined for the
data type string. Let’s see how these operators work on the string data type.

Suppose you have the following declarations:

string str1, str2, str3;

The statement:

str1 = "Hello There";

stores the string "Hello There" in str1. The statement:

str2 = str1;

copies the value of str1 into str2.

If str1 = "Sunny", the statement:

str2 = str1 + " Day";

stores the string "Sunny Day" into str2.

Suppose str1 = "Hello" and str2 = "There". The statement:

str3 = str1 + " " + str2;

stores "Hello There" into str3. This statement is equivalent to the statement:

str3 = str1 + ' ' + str2;

Also, the statement:

str1 = str1 + " Mickey";

updates the value of str1 by appending the string " Mickey" to its old value. Therefore,
the new value of str1 is "Hello Mickey".

7

string Type | 477

For the operator + to work with the string data type, one of the operands of +must be a

string variable. For example, the following statements will not work:

str1 = "Hello " + "there!"; //illegal
str2 = "Sunny Day" + '!'; //illegal

If str1 = "Hello there", the statement:

str1[6] = 'T';

replaces the character t with the character T. Recall that the position of the first character
in a string variable is 0. Therefore, because t is the seventh character in str1, its
position is 6.

In C++, [] is called the array subscript operator.

As illustrated previously, using the array subscript operator together with the position of
the character, you can access an individual character within a string.

EXAMPLE 7-13

The following program shows the effect of the preceding statements.

//Example string operations

#include <iostream>
#include <string>

using namespace std;

int main()
{

string name = "William Jacob"; //Line 1
string str1, str2, str3, str4; //Line 2

cout << "Line 3: Name = " << name << endl; //Line 3

str1 = "Hello There"; //Line 4
cout << "Line 5: str1 = " << str1 << endl; //Line 5

str2 = str1; //Line 6
cout << "Line 7: str2 = " << str2 << endl; //Line 7

str1 = "Sunny"; //Line 8
str2 = str1 + " Day"; //Line 9
cout << "Line 10: str2 = " << str2 << endl; //Line 10

str1 = "Hello"; //Line 11
str2 = "There"; //Line 12
str3 = str1 + " " + str2; //Line 13
cout << "Line 14: str3 = " << str3 << endl; //Line 14

478 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

7

str3 = str1 + ' ' + str2; //Line 15
cout << "Line 16: str3 = " << str3 << endl; //Line 16

str1 = str1 + " Mickey"; //Line 17
cout << "Line 18: str1 = " << str1 << endl; //Line 18

str1 = "Hello there"; //Line 19
cout << "Line 20: str1[6] = " << str1[6]

<< endl; //Line 20

str1[6] = 'T'; //Line 21
cout << "Line 22: str1 = " << str1 << endl; //Line 22

//String input operations
cout << "Line 23: Enter a string with "

<< "no blanks: "; //Line 23
cin >> str1; //Line 24

char ch; //Line 25
cin.get(ch); //Read the newline character; Line 26
cout << endl; //Line 27

cout << "Line 28: The string you entered = "
<< str1 << endl; //Line 28

cout << "Line 29: Enter a sentence: "; //Line 29
getline(cin, str2); //Line 30
cout << endl; //Line 31

cout << "Line 32: The sentence is: " << str2
<< endl; //Line 32

return 0;
}

Sample Run: In the following sample run, the user input is shaded.

Line 3: Name = William Jacob
Line 5: str1 = Hello There
Line 7: str2 = Hello There
Line 10: str2 = Sunny Day
Line 14: str3 = Hello There
Line 16: str3 = Hello There
Line 18: str1 = Hello Mickey
Line 20: str1[6] = t
Line 22: str1 = Hello There
Line 23: Enter a string with no blanks: Programming

Line 28: The string you entered = Programming
Line 29: Enter a sentence: Testing string operations

Line 32: The sentence is: Testing string operations

The preceding output is self-explanatory, and its unraveling is left as an exercise for you.

string Type | 479

Additional string Operations
The data type string has a data type, string::size_type, and a named constant,
string::npos, defined as follows:

The data type string contains several other functions for string manipulation. The
following table describes some these functions. In this table, we assume that strVar is a
string variable and str is a string variable, a string constant, or a character array.
(Arrays are disussed in Chapter 8.)

TABLE 7-1 Some string functions

Expression Effect

strVar.at(index)
Returns the element at the position specified by

index.

strVar[index]
Returns the element at the position specified by

index.

strVar.append(n, ch)
Appends n copies of ch to strVar, in which

ch is a char variable or a char constant.

strVar.append(str) Appends str to strVar.

strVar.clear() Deletes all the characters in strVar.

strVar.compare(str)
Returns 1 if strVar > str; returns 0
if strVar == str; returns -1
if strVar < str.

strVar.empty()
Returns true if strVar is empty; otherwise,

it returns false.

strVar.erase() Deletes all the characters in strVar.

strVar.erase(pos, n)
Deletes n characters from strVar starting at

position pos.

string::size_type An unsigned integer (data) type

string::npos The maximum value of the (data) type string::size_type,
a number such as 4294967295 on many machines

480 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

7

Expression Effect

strVar.find(str)
Returns the index of the first occurrence of str
in strVar. If str is not found, the special

value string::npos is returned.

strVar.find(str, pos)
Returns the index of the first occurrence at or

after pos where str is found in strVar.

strVar.find_first_of
(str, pos)

Returns the index of the first occurrence of any

character of strVar in str. The search starts

at pos.

strVar.find_first_not_of
(str, pos)

Returns the index of the first occurrence of any

character of str not in strVar. The search

starts at pos.

strVar.insert(pos, n, ch);
Inserts n occurrences of the character ch at

index pos into strVar; pos and n are of type

string::size_type; ch is a character.

strVar.insert(pos, str);
Inserts all the characters of str at index pos
into strVar.

strVar.length()
Returns a value of type string::size_type
giving the number of characters strVar.

strVar.replace(pos, n,
str);

Starting at index pos, replaces the next n
characters of strVar with all the characters of

str. If n > length of strVar, then all the

characters until the end of strVar are

replaced.

strVar.substr(pos, len)

Returns a string that is a substring of strVar
starting at pos. The length of the substring is at

most len characters. If len is too large, it

means ‘‘to the end‘‘ of the string in strVar.

strVar.size()
Returns a value of type string::size_type
giving the number of characters strVar.

strVar.swap(str1);
Swaps the contents of strVar and str1.
str1 is a string variable.

TABLE 7-1 Some string functions (continued)

string Type | 481

Next, we show how some of these functions work.

EXAMPLE 7-14 (clear, empty, erase, length, AND size FUNCTIONS)

Consider the following statements:

string firstName = "Elizabeth";
string name = firstName + " Jones";
string str1 = "It is sunny.";
string str2 = "";
string str3 = "computer science";
string str4 = "C++ programming.";
string str5 = firstName + " is taking " + str4;

string::size_type len;

Next, we show the effect of clear, empty, erase, length, and size functions.

The following program illustrates the use of the length function.

//Example: clear, empty, erase, length, and size functions

#include <iostream>
#include <string>

using namespace std;

int main()
{

string firstName = "Elizabeth"; //Line 1
string name = firstName + " Jones"; //Line 2
string str1 = "It is sunny."; //Line 3
string str2 = ""; //Line 4
string str3 = "computer science"; //Line 5
string str4 = "C++ programming."; //Line 6
string str5 = firstName + " is taking " + str4; //Line 7

Statement Effect

str3.clear(); str3 ¼ "";

str1.empty(); Returns false;

str2.empty(); Returns true;

str4.erase(11, 4); str4 ¼ "C++ program.";

cout << firstName.length() << endl; Outputs 9

cout << name.length() << endl; Outputs 15

cout << str1.length() << endl; Outputs 12

cout << str5.size() << endl; Outputs 36

len = name.length(); The value of len is 15

482 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

string::size_type len; //Line 8

cout << "Line 9: str3: " << str3 << endl; //Line 9
str3.clear(); //Line 10
cout << "Line 11: After clear, str3: " << str3

<< endl; //Line 11

cout << "Line 12: str1.empty(): " << str1.empty()
<< endl; //Line 12

cout << "Line 13: str2.empty(): " << str2.empty()
<< endl; //Line 13

cout << "Line 14: str4: " << str4 << endl; //Line 14
str4.erase(11, 4); //Line 15
cout << "Line 16: After erase(11, 4), str4: "

<< str4 << endl; //Line 16

cout << "Line 17: Length of \"" << firstName << "\" = "
<< static_cast<unsigned int> (firstName.length())
<< endl; //Line 17

cout << "Line 18: Length of \"" << name << "\" = "
<< static_cast<unsigned int> (name.length())
<< endl; //Line 18

cout << "Line 19: Length of \"" << str1 << "\" = "
<< static_cast<unsigned int> (str1.length())
<< endl; //Line 19

cout << "Line 20: Size of \"" << str5 << "\" = "
<< static_cast<unsigned int> (str5.size())
<< endl; //Line 20

len = name.length(); //Line 21
cout << "Line 22: len = "

<< static_cast<unsigned int> (len) << endl; //Line 22

return 0; //Line 23
}

Sample Run:

Line 9: str3: computer science
Line 11: After clear, str3:
Line 12: str1.empty(): 0
Line 13: str2.empty(): 1
Line 14: str4: C++ programming.
Line 16: After erase(11, 4), str4: C++ program.
Line 17: Length of "Elizabeth" = 9
Line 18: Length of "Elizabeth Jones" = 15
Line 19: Length of "It is sunny." = 12
Line 20: Size of "Elizabeth is taking C++ programming." = 36
Line 22: len = 15

The output of this program is self-explanatory. The details are left as an exercise for you.
Notice that this program uses the static cast operator to output the value returned by the

7

string Type | 483

function length. This is because the function length returns a value of the type
string::size_type. Without the cast operator, some compilers might give the
following warning message:

conversion from 'size_t' to 'unsigned int', possible loss of data

EXAMPLE 7-15 (find FUNCTION)

Suppose str1 and str2 are of type string. The following are valid calls to the
function find:

str1.find(str2)
str1.find("the")
str1.find('a')
str1.find(str2 + "xyz")
str1.find(str2 + 'b')

Consider the following statements:

string sentence = "Outside it is cloudy and warm.";
string str = "cloudy";

string::size_type position;

Next, we show the effect of the find function.

Note that the search is case sensitive. Therefore, the position of o (lowercase o) in the
string sentence is 16.

The following program evaluates the previous statements.

//Example: find function

#include <iostream>
#include <string>

using namespace std;

Statement Effect

cout << sentence.find("is") << endl; Outputs 11

cout << sentence.find('s') << endl; Outputs 3

cout << sentence.find(str) << endl; Outputs 14

cout << sentence.find("the") << endl; Outputs the value of string::npos

cout << sentence.find('i', 6) << endl; Outputs 8

position = sentence.find("warm"); Assigns 25 to position

484 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

int main()
{

string sentence = "Outside it is cloudy and warm."; //Line 1
string str = "cloudy"; //Line 2

string::size_type position; //Line 3

cout << "Line 4: sentence = \"" << sentence
<< "\"" << endl; //Line 4

cout << "Line 5: The position of \"is\" in sentence = "
<< static_cast<unsigned int> (sentence.find("is"))
<< endl; //Line 5

cout << "Line 6: The position of 's' in sentence = "
<< static_cast<unsigned int> (sentence.find('s'))
<< endl; //Line 6

cout << "Line 7: The position of \"" << str
<< "\" in sentence = "
<< static_cast<unsigned int> (sentence.find(str))
<< endl; //Line 7

cout << "Line 8: The position of \"the\" in sentence = "
<< static_cast<unsigned int> (sentence.find("the"))
<< endl; //Line 8

cout << "Line 9: The first occurrence of \'i\' in "
<< "sentence \n after position 6 = "
<< static_cast<unsigned int> (sentence.find('i', 6))
<< endl; //Line 9

position = sentence.find("warm"); //Line 10
cout << "Line 11: " << "Position = "

<< position << endl; //Line 11

return 0; //Line 12
}

Sample Run:

Line 4: sentence = "Outside it is cloudy and warm."
Line 5: The position of "is" in sentence = 11
Line 6: The position of 's' in sentence = 3
Line 7: The position of "cloudy" in sentence = 14
Line 8: The position of "the" in sentence = 4294967295
Line 9: The first occurrence of 'i' in sentence

after position 6 = 8
Line 11: Position = 25

7

string Type | 485

The output of this program is self-explanatory. The details are left as an exercise for you.
Notice that this program uses the static cast operator to output the value returned by
the function find. This is because the function find returns a value of the type
string::size_type. Without the cast operator, some compilers might give the
following warning message:

conversion from 'size_t' to 'unsigned int', possible loss of data

EXAMPLE 7-16 (insert AND replace FUNCTIONS)

Suppose that you have the following statements:

string firstString = "Cloudy and warm.";
string secondString ="Hello there";
string thirdString = "Henry is taking programming I.";
string str1 = " very ";
string str2 = "Lisa";

Next, we show the effect of insert and replace functions.

The following program evaluates the previous statements.

//Example: insert and replace functions

#include <iostream>
#include <string>

using namespace std;

int main()
{

string firstString = "Cloudy and warm."; //Line 1
string secondString = "Hello there"; //Line 2
string thirdString = "Henry is taking programming I."; //Line 3

Statement Effect

firstString.insert(10, str1); firstString = "Cloudy and very
warm."

secondString.insert(11, 5, '!'); secondString = "Hello there!!!!!"

thirdString.replace(0, 5, str2); thirdString = "Lisa is taking
programming I."

486 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

string str1 = " very "; //Line 4
string str2 = "Lisa"; //Line 5

cout << "Line 6: firstString = " << firstString
<< endl; //Line 6

firstString.insert(10, str1); //Line 7
cout << "Line 8: After insert; firstString = "

<< firstString << endl; //Line 8

cout << "Line 9: secondString = " << secondString
<< endl; //Line 9

secondString.insert(11, 5, '!'); //Line 10
cout << "Line 11: After insert; secondString = "

<< secondString << endl; //Line 11

cout << "Line 12: thirdString = " << thirdString
<< endl; //Line 12

thirdString.replace(0, 5, str2); //Line 13
cout << "Line 14: After replace, thirdString = "

<< thirdString << endl; //Line 14

return 0; //Line 15
}

Sample Run:

Line 6: firstString = Cloudy and warm.
Line 8: After insert; firstString = Cloudy and very warm.
Line 9: secondString = Hello there
Line 11: After insert; secondString = Hello there!!!!!
Line 12: thirdString = Henry is taking programming I.
Line 14: After replace, thirdString = Lisa is taking programming I.

The output of this program is self-explanatory. The details are left as an exercise
for you.

EXAMPLE 7-17 (substr FUNCTION)

Consider the following statements:

string sentence;
string str;

sentence = "It is cloudy and warm.";

7

string Type | 487

Next, we show the effect of the substr function.

The following program illustrates how to use the string function substr.

//Example: substr function

#include <iostream>
#include <string>

using namespace std;

int main()
{

string sentence; //Line 1
string str; //Line 2

sentence = "It is cloudy and warm."; //Line 3

cout << "Line 4: substr(0, 5) in \""
<< sentence << "\" = \""
<< sentence.substr(0, 5) << "\"" << endl; //Line 4

cout << "Line 5: substr(6, 6) in \""
<< sentence << "\" = \""
<< sentence.substr(6, 6) << "\"" << endl; //Line 5

cout << "Line 6: substr(6, 16) in \""
<< sentence << "\" = " << endl
<< " \"" << sentence.substr(6, 16)
<< "\"" << endl; //Line 6

cout << "Line 7: substr(17, 10) in \""
<< sentence << "\" = \""
<< sentence.substr(17, 10) << "\"" << endl; //Line 7

cout << "Line 8: substr(3, 6) in \""
<< sentence << "\" = \""
<< sentence.substr(3, 6) << "\"" << endl; //Line 8

Statement Effect

cout << sentence.substr(0, 5) << endl; Outputs: It is

cout << sentence.substr(6, 6) << endl; Outputs: cloudy

cout << sentence.substr(6, 16) << endl; Outputs: cloudy and warm.

cout << sentence.substr(17, 10) << endl; Outputs: warm.

cout << sentence.substr(3, 6) << endl; Outputs: is clo

str = sentence.substr(0, 8); str = "It is cl"

str = sentence.substr(2, 10); str = " is cloudy"

488 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

str = sentence.substr(0, 8); //Line 9
cout << "Line 10: " << "str = \"" << str

<< "\"" << endl; //Line 10

str = sentence.substr(2, 10); //Line 11
cout << "Line 12: " << "str = \"" << str

<< "\"" << endl; //Line 12

return 0;
}

Sample Run:

Line 4: substr(0, 5) in "It is cloudy and warm." = "It is"
Line 5: substr(6, 6) in "It is cloudy and warm." = "cloudy"
Line 6: substr(6, 16) in "It is cloudy and warm." =

"cloudy and warm."
Line 7: substr(17, 10) in "It is cloudy and warm." = "warm."
Line 8: substr(3, 6) in "It is cloudy and warm." = "is clo"
Line 10: str = "It is cl"
Line 12: str = " is cloudy"

The output of this program is self-explanatory. The details are left as an exercise for you.

EXAMPLE 7-18 (swap FUNCTION)

The swap function is used to swap—that is, interchange—the contents of two string
variables.

Suppose you have the following statements:

string str1 = "Warm";
string str2 = "Cold";

After the following statement executes, the value of str1 is "Cold" and the value of
str2 is "Warm".

str1.swap(str2);

Additional string functions are described in Appendix F (Header File string).

7

string Type | 489

PROGRAMMING EXAMPLE: Pig Latin Strings
In this programming example, we write a program that prompts the user to input a
string and then outputs the string in the pig Latin form. The rules for converting a
string into pig Latin form are as follows:

1. If the string begins with a vowel, add the string "-way" at the end
of the string. For example, the pig Latin form of the string "eye" is
"eye-way".

2. If the string does not begin with a vowel, first add "-" at the end of
the string. Then rotate the string one character at a time; that is,
move the first character of the string to the end of the string until the
first character of the string becomes a vowel. Then add the string
"ay" at the end. For example, the pig Latin form of the string
"There" is "ere-Thay".

3. Strings such as "by" contain no vowels. In cases like this, the letter
y can be considered a vowel. So, for this program, the vowels are
a, e, i, o, u, y, A, E, I, O, U, and Y. Therefore, the pig Latin form
of "by" is "y-bay".

4. Strings such as "1234" contain no vowels. The pig Latin form
of the string "1234" is "1234-way". That is, the pig Latin form
of a string that has no vowels in it is the string followed by the
string "-way".

Input Input to the program is a string.

Output Output of the program is the string in the pig Latin form.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

Suppose that str denotes a string. To convert str into pig Latin, check the first
character, str[0], of str. If str[0] is a vowel, add "-way" at the end of str—
that is, str = str + "-way".

Suppose that the first character of str, str[0], is not a vowel. First, add "-" at the
end of the string. Then, remove the first character of str from str and put it at the
end of str. Now, the second character of str becomes the first character of str.
This process of checking the first character of str and moving it to the end of str if
the first character of str is not a vowel is repeated until either the first character of
str is a vowel or all the characters of str are processed, in which case str does not
contain any vowels.

In this program, we write a function isVowel to determine whether a character is a
vowel, a function rotate to move the first character of str to the end of str, and

490 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

7

a function pigLatinString to find the pig Latin form of str. The previous
discussion translates into the following algorithm:

1. Get str.

2. Find the pig Latin formofstr by using the functionpigLatinString.

3. Output the pig Latin form of str.

Before writing the main algorithm, each of these functions is described in detail.

Function

isVowel

This function takes a character as a parameter and returns true if the character is
a vowel and false otherwise. The definition of the function isVowel is:

bool isVowel(char ch)
{

switch (ch)
{

case 'A':
case 'E':
case 'I':
case 'O':
case 'U':
case 'Y':
case 'a':
case 'e':
case 'i':
case 'o':
case 'u':
case 'y':

return true;
default:

return false;
}

}

Function

rotate

This function takes a string as a parameter, removes the first character of the string,
and places it at the end of the string. This is done by extracting the substring, starting
at position 1 (which is the second character) until the end of the string, and then
adding the first character of the string. The new string is returned as the value of this
function. Essentially, the definition of the function rotate is:

string rotate(string pStr)
{

string::size_type len = pStr.length();

string rStr;

rStr = pStr.substr(1, len - 1) + pStr[0];

return rStr;
}

Programming Example: Pig Latin Strings | 491

Function

pigLatinString

This function takes a string, pStr, as a parameter and returns the pig Latin form
of pStr. Suppose pStr denotes the string to be converted to its pig Latin form.
There are three possible cases: pStr[0] is a vowel, pStr contains a vowel and the
first character of pStr is not a vowel, or pStr contains no vowels. Suppose that
pStr[0] is not a vowel. Move the first character of pStr to the end of pStr. This
process is repeated until either the first character of pStr has become a vowel or all
the characters of pStr are checked, in which case pStr does not contain any vowels.
This discussion translates into the following algorithm:

1. If pStr[0] is a vowel, add "-way" at the end of pStr.

2. Suppose pStr[0] is not a vowel.

3. Move the first character of pStr to the end of pStr. The second
character of pStr becomes the first character of pStr. Now pStrmay
or may not contain a vowel. We use a bool variable, foundVowel,
which is set to true if pStr contains a vowel and false otherwise.

a. Suppose that len denotes the length of pStr.

b. Initialize foundVowel to false.

c. If pStr[0] is not a vowel, move pStr[0] to the end of pStr
by calling the function rotate.

d. Repeat Step b until either the first character of pStr becomes a
vowel or all the characters of pStr have been checked.

4. Convert pStr into the pig Latin form.

5. Return pStr.

The definition of the function pigLatinString is:

string pigLatinString(string pStr)
{

string::size_type len;

bool foundVowel;

string::size_type counter;

if (isVowel(pStr[0])) //Step 1
pStr = pStr + "-way";

else //Step 2
{

pStr = pStr + '-';
pStr = rotate(pStr); //Step 3

len = pStr.length(); //Step 3.a
foundVowel = false; //Step 3.b

492 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

7

for (counter = 1; counter < len - 1;
counter++) //Step 3.d

if (isVowel(pStr[0]))
{

foundVowel = true;
break;

}

else //Step 3.c
pStr = rotate(pStr);

if (!foundVowel) //Step 4
pStr = pStr.substr(1, len) + "-way";

else
pStr = pStr + "ay";

}

return pStr; //Step 5
}

MAIN

ALGORITHM

1. Get the string.

2. Call the function pigLatinString to find the pig Latin form of
the string.

3. Output the pig Latin form of the string.

PROGRAM LISTING

//***
// Author: D.S. Malik
//
// Program: Pig Latin Strings
// This program reads a string and outputs the pig Latin form
// of the string.
//***

#include <iostream>
#include <string>

using namespace std;

bool isVowel(char ch);
string rotate(string pStr);
string pigLatinString(string pStr);

int main()
{

string str;

cout << "Enter a string: ";
cin >> str;

Programming Example: Pig Latin Strings | 493

QUICK REVIEW

1. An enumeration type is a set of ordered values.

2. C++’s reserved word enum is used to create an enumeration type.

3. The syntax of enum is:

enum typeName {value1, value2,...};

in which value1, value2,. . . are identifiers, and value1 < value2 <

4. No arithmetic operations are allowed on the enumeration type.

cout << endl;

cout << "The pig Latin form of " << str << " is: "
<< pigLatinString(str) << endl;

return 0;
}

//Place the definitions of the functions isVowel, rotate, and
//pigLatinString and as described previously here.

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1:

Enter a string: eye

The pig Latin form of eye is: eye-way

Sample Run 2:

Enter a string: There

The pig Latin form of There is: ere-Thay

Sample Run 3:

Enter a string: why

The pig Latin form of why is: y-whay

Sample Run 4:

Enter a string: 123456

The pig Latin form of 123456 is: 123456-way

494 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

7

5. Relational operators can be used with enum values.

6. Enumeration type values cannot be input or output directly.

7. Enumeration types can be passed as parameters to functions either by value
or by reference.

8. A function can return a value of the enumeration type.

9. An anonymous type is one in which a variable’s values are specified without
any type name.

10. C++’s reserved word typedef is used to create synonyms or aliases to
previously defined data types.

11. Anonymous types cannot be passed as parameters to functions.

12. The namespace mechanism is a feature of ANSI/ISO Standard C++.

13. A namespace member is usually a named constant, variable, function, or
another namespace.

14. The scope of a namespace member is local to the namespace.

15. One way to access a namespace member outside the namespace is to
precede the namespace member name with the namespace name and
scope resolution operator.

16. In C++, namespace is a reserved word.

17. To use the namespace mechanism, the program must include the ANSI/
ISO Standard C++ header files—that is, the header files without the
extension h.

18. The using statement simplifies the accessing of namespace members.

19. In C++, using is a reserved word.

20. The keyword namespace must appear in the using statement.

21. When accessing a namespace member without the using statement, the
namespace name and the scope resolution operator must precede the
name of the namespace member.

22. To use an identifier declared in the standard header files without the
namespace name, after including all the necessary header files, the follow-
ing statement must appear in the program:

using namespace std;

23. A string is a sequence of zero or more characters.

24. Strings in C++ are enclosed in double quotation marks.

25. To use the type string, the program must include the header file
string. The other header files used in the program should be ANSI/
ISO Standard C++ style header files.

26. The assignment operator can be used with the string type.

27. The operator + can be used to concatenate two values of the type string.
For the operator + to work with the string data type, one of the operands
of + must be a string variable.

Quick Review | 495

28. Relational operators, discussed in Chapter 4, can be applied to the string

type.

29. In a string, the position of the first character is 0, the position of the second
character is 1, and so on.

30. The length of a string is the number of characters in the string.

31. In C++, [] is called the array subscript operator.

32. To access an individual character within a string, use the array subscript
operator together with the position of the character.

33. The string type contains functions such as at, append, clear, compare,
erase, find, find_first_of, find_first_not_of, insert, length,
replace, size, substr, and swap to manipulate strings. These functions
are describe in Table 7-1.

EXERCISES

1. Mark the following statements as true or false.

a. The following is a valid C++ enumeration type:

enum romanNumerals {I, V, X, L, C, D, M};

b. Given the declaration:

enum cars {FORD, GM, TOYOTA, HONDA};
cars domesticCars = FORD;

the statement:

domesticCars = domesticCars + 1;

sets the value of domesticCars to GM.

c. A function can return a value of an enumeration type.

d. You can input the value of an enumeration type directly from a standard
input device.

e. The only arithmetic operations allowed on the enumeration type are
increment and decrement.

f. The values in the domain of an enumeration type are called enumerators.

g. The following are legal C++ statements in the same block of a C++
program:

enum mathStudent {BILL, JOHN, LISA, RON, CINDY, SHELLY};
enum historyStudent {AMANDA, BOB, JACK, TOM, SUSAN};

h. The following statement creates an anonymous type:

enum {A, B, C, D, F} studentGrade;

i. You can use the namespace mechanism with header files with the
extension h.

496 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

j. Suppose str = "ABCD";. After the statement str[1] = 'a';, the value
of str is "aBCD".

k. Suppose str = "abcd". After the statement:

str = str + "ABCD";

the value of str is "ABCD".

2. Write C++ statements that do the following:

a. Define an enum type, courseType, with the values ALGEBRA,
BEGINNING_SPANISH, ASTRONOMY, GENERAL_CHEMISTRY, PHYSICS,
and LOGIC.

b. Declare a variable newClass of the type courseType.

c. Assign ASTRONOMY to the variable newClass.

d. Advance newClass to the next value in the list.

e. Output the value of the variable newClass.

f. Input value in the variable newClass.

3. Given:

enum currencyType {DOLLAR, POUND, FRANK, LIRA, MARK};
currencyType currency;

which of the following statements are valid?

a. currency = DOLLAR;

b. cin >> currency;

c. currency = static_cast<currencyType>(currency + 1);

d. for (currency = DOLLAR; currency <= MARK; currency++)

cout << "*";

4. Consider the following declaration:

enum seasonType {FALL, WINTER, SPRING, SUMMER, RAINY};
seasonType season;

Answer the following questions:

a. What is the value of static_cast<int>(SPRING)?

b. What is the value, if any, of the following expression?
static_cast<seasonType>(static_cast<int>(RAINY) - 1)

c. What is the value, if any, of the following expression?
static_cast<seasonType>(static_cast<int>(WINTER) + 2)

d. What is the value, if any, of the expression: WINTER <¼ SUMMER

e. What is the output, if any, of the following code?

for (season = FALL; season < SUMMER; season++)
cout << "$";

cout << endl;

7

Exercises | 497

5. Suppose that the enum courseType is as defined in Exercise 2. Write
a C++ function that can be used to input a value in a variable of type
courseType.

6. Suppose that the enum courseType is as defined in Exercise 2. Write a
C++ function that can be used to ouput the value of a variable of type
courseType.

7. What are some of the drawbacks of an anonymous type?

8. Define an enumeration type triangleType with values EQUILATERAL,
RIGHT, ISOSCELES, and SCALENE. Also declare the variable triangle of
type triangleType while defining this type.

9. What is wrong with the following program?

#include <iostream> //Line 1

namespace std; //Line 2

int main() //Line 3
{ //Line 4

cout << "*$*" << endl; //Line 5

return 0; //Line 6
} //Line 7

10. What is wrong with the following program?

#include <iostream.h> //Line 1

int main() //Line 2
{ //Line 3

int num = 5; //Line 4
std::cout << "num = " << num << endl; //Line 5
return 0; //Line 6

} //Line 7

11. What is wrong with the following program?

#include <iostream> //Line 1

using namespace sdt; //Line 2

int main() //Line 3
{ //Line 4

int x; //Line 5

std::cin >> x; //Line 6
cout << "x = " << x << endl; //Line 7

return 0; //Line 8
} //Line 9

498 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

7

12. What is wrong with the following program?

#include <iostream> //Line 1

namespace mySpace //Line 2
{ //Line 3

const double RATE = 15.35; //Line 4
int a; //Line 5

} //Line 6

using namespace std; //Line 7

int main() //Line 8
{ //Line 9

int b; //Line 10

cin >> b; //Line 11
a = b; //Line 12
cout << RATE << " " << a + 2 << " " << b

<< endl; //Line 13

return 0; //Line 14
} //Line 15

13. What is wrong with the following program?

#include <iostream> //Line 1

namespace aaa //Line 2
{

const int X = 0; //Line 3
double y; //Line 4

}

using namespace std; //Line 5

int main() //Line 6
{

y = 34.50; //Line 7
cout << "X = " << X << ", y = " << y

<< endl; //Line 8
return 0; //Line 9

}

14. What is wrong with the following program?

#include <iostream> //Line 1
#include <cmath> //Line 2

using std; //Line 3

int main() //Line 4
{ //Line 5

std::cout << pow(3, 4.0) << endl; //Line 6
return 0; //Line 7

} //Line 8

Exercises | 499

15. Consider the following C++ code:

string str1;
string str2;
char ch;
int index;

cin >> str1;
cin >> str2;
cin >> index;

ch = str1[index];
str1[index] = str2[index];
str2[index] = ch;

cout << str1 << " " << str2 << endl;

Answer the following questions:

a. What is the output if the input is Hello There 2?

b. What is the output if the input is Diamond Gold 0?

c. What is the output if the input is C++ Java 1?

16. Suppose that you have the following statements:

string str1, str2;

cin >> str1 >> str2;

if (str1 == str2)
cout << str1 + '!' << endl;

else if (str1 > str2)
cout << str1 + " > " + str2 << endl;

else
cout << str1 + " < " + str2 << endl;

Answer the following questions:

a. What is the output if the input is Programming Project?

b. What is the output if the input is Summer Trip?

c. What is the output if the input is Winter Cold?

17. What is the output of the following program?

#include <iostream>
#include <string>

using namespace std;

int main()
{

string str1 = "Trip to Hawaii";
string str2 = "Summer or Fall";
string newStr;

newStr = str2 + ' ' + str1;

500 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

cout << newStr << endl;
cout << str1 + " in " + str2 << endl;
cout << newStr.length() << endl;
cout << str1.find('H') << endl;
cout << str2.find("or") << endl;
cout << newStr.substr(10, 19) << endl;
cout << newStr.replace(23, 6, "******") << endl;

string str = "C++ Programming";
cout << str << endl;
cout << str.length() << endl;

str[0] = 'J';
str[2] = '$';

cout << str << endl;

return 0;
}

18. Consider the following statement:

string str = "Now is the time for the party!";

What is the output of the following statements? (Assume that all parts are
independent of each other.)

a. cout << str.size() << endl;

b. cout << str.substr(7, 8) << endl;

c. string::size_type ind = str.find('f');
string s = str.substr(ind + 4, 9);
cout << s << endl;

d. cout << str.insert(11, "best ") << endl;

e. str.erase(16, 14);
str.insert(16, "to study for the exam?");
cout << str << endl;

PROGRAMMING EXERCISES

1. a. Define an enumeration type, triangleType, that has the values
scalene, isosceles, equilateral, and noTriangle.

b. Write a function, triangleShape, that takes as parameters three num-
bers, each of which represents the length of a side of the triangle. The
function should return the shape of the triangle. (Note: In a triangle, the sum
of the lengths of any two sides is greater than the length of the third side.)

c. Write a program that prompts the user to input the length of the sides of
a triangle and outputs the shape of the triangle.

7

Programming Exercises | 501

2. Redo Programming Exercise 15 of Chapter 4 (cell phone company) so that
all of the named constants are defined in a namespace.

3. The Programming Example: Pig Latin Strings converts a string into the pig
Latin form, but it processes only one word. Rewrite the program so that it
can be used to process a text of an unspecified length. If a word ends with a
punctuation mark, in the pig Latin form, put the punctuation at the end of
the string. For example, the pig Latin form of Hello! is ello-Hay!.
Assume that the text contains the following punctuation marks: , (comma),
. (period), ? (question mark), ; (semicolon), and : (colon). (Your program
may store the output in a file.)

4. Write a program that prompts the user to input a string. The program then uses
the function substr to remove all the vowels from the string. For example, if
str = "There", then after removing all the vowels, str = "Thr". After
removing all the vowels, output the string. Your program must contain a
function to remove all the vowels and a function to determine whether a
character is a vowel.

5. Write a program that can be used to calculate the federal tax. The tax is
calculated as follows: For single people, the standard exemption is $4,000; for
married people, the standard exemption is $7,000. A person can also put up
to 6% of his or her gross income in a pension plan. The tax rates are as
follows: If the taxable income is:

• Between $0 and $15,000, the tax rate is 15%.

• Between $15,001 and $40,000, the tax is $2,250 plus 25% of the taxable
income over $15,000.

• Over $40,000, the tax is $8,460 plus 35% of the taxable income over
$40,000.

Prompt the user to enter the following information:

• Marital status

• If the marital status is ‘‘married,’’ ask for the number of children under
the age of 14

• Gross salary (If the marital status is ‘‘married’’ and both spouses have
income, enter the combined salary.)

• Percentage of gross income contributed to a pension fund

Your program must consist of at least the following functions:

a. Function getData: This function asks the user to enter the relevant data.

b. Function taxAmount: This function computes and returns the tax owed.

To calculate the taxable income, subtract the sum of the standard exemption,
the amount contributed to a pension plan, and the personal exemption,
which is $1,500 per person. (Note that if a married couple has two children
under the age of 14, then the personal exemption is $1,500 * 4 = $6,000.)

502 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

6. Write a program that uses a random number generator to generate a two
digit positive integer and allows the user to perform one or more of the
following operations:

a. Double the number.

b. Reverse the digits of the number.

c. Raise the number to the power of 2, 3, or 4.

d. Sum the digits of the number.

e. If the number is a two digit number, then raise the first digit to the
power of the second digit.

f. If the number is a three digit number and the last digit is less than or
equal to 4, then raise the first two digits to the power of the last digit.

After performing an operation if the number is less than 10, add 10 to the
number. Also, after each operation determine if the number is prime.

Each successive operation should be performed on the number generated by
the last operation. Your program should not contain any global variables and
each of these operations must be implemented by a separate function. Also,
your program should be menu driven.

7. (Fraction calculator) Write a program that lets the user perform arithmetic
operations on fractions. Fractions are of the form a/b, in which a and b are
integers and b 6¼ 0. Your program must be menu driven, allowing the user to
select the operation (+, -, *, or /) and input the numerator and denominator
of each fraction. Furthermore, your program must consist of at least the
following functions:

a. Function menu: This function informs the user about the program’s
purpose, explains how to enter data, and allows the user to select the
operation.

b. Function addFractions: This function takes as input four integers
representing the numerators and denominators of two fractions, adds the
fractions, and returns the numerator and denominator of the result.
(Notice that this function has a total of six parameters.)

c. Function subtractFractions: This function takes as input four
integers representing the numerators and denominators of two fractions,
subtracts the fractions, and returns the numerator and denominator of
the result. (Notice that this function has a total of six parameters.)

d. Function multiplyFractions: This function takes as input four
integers representing the numerators and denominators of two fractions,
multiplies the fractions, and returns the numerators and denominators of
the result. (Notice that this function has a total of six parameters.)

7

Programming Exercises | 503

e. Function divideFractions: This function takes as input four integers
representing the numerators and denominators of two fractions, divides
the fractions, and returns the numerator and denominator of the result.
(Notice that this function has a total of six parameters.)

Some sample outputs are:

3 / 4 + 2 / 5 = 23 / 20
2 / 3 * 3 / 5 = 6 / 15

Your answer need not be in the lowest terms.

8. Write a program that reads in a line consisting of a student’s name, Social
Security number, user ID, and password. The program outputs the string in
which all the digits of the Social Security number, and all the characters in
the password are replaced by x. (The Social Security number is in the form
000-00-0000, and the user ID and the password do not contain any
spaces.) Your program should not use the operator [] to access a string
element. Use the appropriate functions described in Table 7-1.

9. You are given a file consisting of students’ names in the following form:
lastName, firstName middleName. (Note that a student may not have a
middle name.) Write a program that converts each name to the following
form: firstName middleName lastName. Your program must read each
student’s entire name in a variable and must consist of a function that takes as
input a string, consists of a student’s name, and returns the string consisting of
the altered name. Use the string function find to find the index of ,; the
function length to find the length of the string; and the function substr

to extract the firstName, middleName, and lastName.

504 | Chapter 7: User-Defined Simple Data Types, Namespaces, and the string Type

ARRAYS AND STRINGS
IN THIS CHAPTER , YOU WILL :

. Learn about arrays

. Explore how to declare and manipulate data into arrays

. Learn about ‘‘array index out of bounds’’

. Become familiar with the restrictions on array processing

. Discover how to pass an array as a parameter to a function

. Learn how to search an array

. Learn how to sort an array

. Learn about C-strings

. Examine the use of string functions to process C-strings

. Discover how to input data into—and output data from—a C-string

. Learn about parallel arrays

. Discover how to manipulate data in a two-dimensional array

. Learn about multidimensional arrays

8C H A P T E R

In previous chapters, you worked with simple data types. In Chapter 2, you learned that
C++ data types fall into three categories. One of these categories is the structured data
type. This chapter and the next few chapters focus on structured data types.

Recall that a data type is called simple if variables of that type can store only one value at a
time. In contrast, in a structured data type, each data item is a collection of other data items.
Simple data types are building blocks of structured data types. The first structured data type that
we will discuss is an array. In Chapters 9 and 10, we will discuss other structured data types.

Before formally defining an array, let us consider the following problem. We want to write a
C++ program that reads five numbers, finds their sum, and prints the numbers in reverse order.

In Chapter 5, you learned how to read numbers, print them, and find the sum and
average. Suppose that you are given five test scores and you are asked to write a program
that finds the average test score and output all the test scores that are less than the average
test score. (For simplicity, we are considering only five test scores. After introducing
arrays, we will show how to effectively process more than five test scores.)

//Program to find the average test score and output the average
//test score and all the test scores that are less than
//the average test score.

#include <iostream>
#include <iomanip>

using namespace std;

int main()
{

int test0, test1, test2, test3, test4;
double average;

cout << fixed << showpoint << setprecision(2);

cout << "Enter five test scores: ";
cin >> test0 >> test1 >> test2 >> test3 >> test4;
cout << endl;

average = (test0 + test1 + test2 + test3 + test4) / 5.0;

cout << "The average test score = " << average << endl;

if (test0 < average)
cout << test0 << " is less than the average test score." << endl;

if (test1 < average)
cout << test1 << " is less than the average test score." << endl;

if (test2 < average)
cout << test2 << " is less than the average test score." << endl;

if (test3 < average)
cout << test3 << " is less than the average test score." << endl;

506 | Chapter 8: Arrays and Strings

if (test4 < average)
cout << test4 << " is less than the average test score." << endl;

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Enter five test scores: 85 62 94 56 71

The average test score = 73.60
62 is less than the average test score.
56 is less than the average test score.
71 is less than the average test score.

This program works fine. However, if you need to read and process 100 (or more) test
scores, you would have to declare 100 variables and write many cin, cout, and if

statements. Thus, for large amounts of data, this type of program is not desirable.

Note the following in the previous program:

1. Five variables must be declared because test scores less than the average
test scores need to be printed.

2. All test scores are of type int—that is, of the same data type.

3. The way in which these variables are declared indicates that the variables
to store these numbers all have the same name—except the last char-
acter, which is a number.

4. All the if statements are similar, except the name of the variables to
store the test scores.

Statement 1 tells you that you have to declare five variables. Statements 3 and 4 tell you
that it would be convenient if you could somehow put the last character, which is a
number, into a counter variable and use one for loop to count from 0 to 4 for reading
and another for loop to process the if statements. Finally, because all variables are of the
same type, you should be able to specify how many variables must be declared—and their
data type—with a simpler statement than the one we used earlier.

The data structure that lets you do all of these things in C++ is called an array.

Arrays
An array is a collection of a fixed number of components all of the same data type. A
one-dimensional array is an array in which the components are arranged in a list form.
This section discusses only one-dimensional arrays. Arrays of two dimensions or more are
discussed later in this chapter.

The general form for declaring a one-dimensional array is:

dataType arrayName[intExp];

8

Arrays | 507

in which intExp is any constant expression that evaluates to a positive integer. Also,
intExp specifies the number of components in the array.

EXAMPLE 8-1

The statement:

int num[5];

declares an array num of five components. Each component is of type int. The components
are num[0], num[1], num[2], num[3], and num[4]. Figure 8-1 illustrates the array num.

To save space, we also draw an array, as shown in Figure 8-2(a) or 8-2(b).

num[0]

num[1]

num[2]

num[3]

num[4]

FIGURE 8-1 Array num

num[0] num[1] num[2] num[3] num[4]

num

[0] [1] [2] [3] [4]

num

(a)

(b)

FIGURE 8-2 Array num

508 | Chapter 8: Arrays and Strings

Accessing Array Components
The general form (syntax) used for accessing an array component is:

arrayName[indexExp]

in which indexExp, called the index, is any expression whose value is a nonnegative
integer. The index value specifies the position of the component in the array.

In C++, [] is an operator called the array subscripting operator. Moreover, in C++,
the array index starts at 0.

Consider the following statement:

int list[10];

This statement declares an array list of 10 components. The components are
list[0], list[1], ..., list[9]. In other words, we have declared 10 variables
(see Figure 8-3).

The assignment statement:

list[5] = 34;

stores 34 in list[5], which is the sixth component of the array list (see Figure 8-4).

Suppose i is an int variable. Then, the assignment statement:

list[3] = 63;

is equivalent to the assignment statements:

i = 3;
list[i] = 63;

8

[0]

list

[1] [3] [6] [8] [9][7][2] [4] [5]

FIGURE 8-3 Array list

[0]

list

[1] [3]

34

[6] [8] [9][7][2] [4] [5]

FIGURE 8-4 Array list after execution of the statement list[5]= 34;

Arrays | 509

If i is 4, then the assignment statement:

list[2 * i - 3] = 58;

stores 58 in list[5] because 2 * i - 3 evaluates to 5. The index expression is evaluated
first, giving the position of the component in the array.

Next, consider the following statements:

list[3] = 10;
list[6] = 35;
list[5] = list[3] + list[6];

The first statement stores 10 in list[3], the second statement stores 35 in list[6],
and the third statement adds the contents of list[3] and list[6] and stores the result
in list[5] (see Figure 8-5).

EXAMPLE 8-2

You can also declare arrays as follows:

const int ARRAY_SIZE = 10;
int list[ARRAY_SIZE];

That is, you can first declare a named constant and then use the value of the named
constant to declare an array and specify its size.

[0]

list

[1] [2] [3] [4] [5]

45

[6] [8]

10 35

[9][7]

FIGURE 8-5 Array list after execution of the statements list[3]= 10;, list[6]= 35;, and
list[5] = list[3] + list[6];

510 | Chapter 8: Arrays and Strings

When you declare an array, its size must be known. For example, you cannot do the

following:

int arraySize; //Line 1

cout << "Enter the size of the array: "; //Line 2
cin >> arraySize; //Line 3
cout << endl; //Line 4

int list[arraySize]; //Line 5; not allowed

The statement in Line 2 asks the user to enter the size of the array when the program

executes. The statement in Line 3 inputs the size of the array into arraySize. When the

compiler compiles Line 1, the value of the variable arraySize is unknown. Thus, when

the compiler compiles Line 5, the size of the array is unknown and the compiler will not

know how much memory space to allocate for the array. In Chapter 12, you will learn how to

specify the size of an array during program execution and then declare an array of that size

using pointers. Arrays that are created by using pointers during program execution are

called dynamic arrays. For now, whenever you declare an array, its size must be known.

Processing One-Dimensional Arrays
Some of the basic operations performed on a one-dimensional array are initializing,
inputting data, outputting data stored in an array, and finding the largest and/or smallest
element. Moreover, if the data is numeric, some other basic operations are finding the
sum and average of the elements of the array. Each of these operations requires the
ability to step through the elements of the array. This is easily accomplished using a loop.
For example, suppose that we have the following statements:

int list[100]; //list is an array of size 100
int i;

The following for loop steps through each element of the array list, starting at the first
element of list:

for (i = 0; i < 100; i++) //Line 1
//process list[i] //Line 2

If processing the list requires inputting data into list, the statement in Line 2 takes the
form of an input statement, such as the cin statement. For example, the following
statements read 100 numbers from the keyboard and store the numbers in list:

for (i = 0; i < 100; i++) //Line 1
cin >> list[i]; //Line 2

Similarly, if processing list requires outputting the data, then the statement in Line 2
takes the form of an output statement. Example 8-3 further illustrates how to process
one-dimensional arrays.

8

Arrays | 511

EXAMPLE 8-3

This example shows how loops are used to process arrays. The following declaration is
used throughout this example:

double sales[10];
int index;
double largestSale, sum, average;

The first statement declares an array sales of 10 components, with each component
being of type double. The meaning of the other statements is clear.

a. Initializing an array: The following loop initializes every compo-
nent of the array sales to 0.0.

for (index = 0; index < 10; index++)
sales[index] = 0.0;

b. Reading data into an array: The following loop inputs the data
into the array sales. For simplicity, we assume that the data is
entered from the keyboard.

for (index = 0; index < 10; index++)
cin >> sales[index];

c. Printing an array: The following loop outputs the array sales.
For simplicity, we assume that the output goes to the screen.

for (index = 0; index < 10; index++)
cout << sales[index] << " ";

d. Finding the sum and average of an array: Because the array
sales, as its name implies, represents certain sales data, it is natural to find
the total sale and average sale amounts. The followingC++code finds the
sum of the elements of the array sales and the average sale amount:

sum = 0;
for (index = 0; index < 10; index++)

sum = sum + sales[index];

average = sum / 10;

e. Largest element in the array: We now discuss the algorithm to
find the first occurrence of the largest element in an array—that is, the
first array component with the largest value. However, in general, the
user is more interested in determining the location of the largest
element in the array. Of course, if you know the location (that is,
the index of the largest element in the array), you can easily determine
the value of the largest element in the array. So let us describe the
algorithm to determine the index of the first occurrence of the largest
element in an array—in particular, the index of the largest sale amount
in the array sales. We will use the index of the first occurrence of the
largest element in the array to find the largest sale.

512 | Chapter 8: Arrays and Strings

8

We assume that maxIndex will contain the index of the first occur-
ence of the largest element in the array sales. The general algorithm
is straightforward. Initially, we assume that the first element in the list is
the largest element, so maxIndex is initialized to 0. We then compare
the element pointed to by maxIndex with every subsequent element
in the list. Whenever we find an element in the array larger than the
element pointed to by maxIndex, we update maxIndex so that it
points to the new larger element. The algorithm is as follows:

maxIndex = 0;
for (index = 1; index < 10; index++)

if (sales[maxIndex] < sales[index])
maxIndex = index;

largestSale = sales[maxIndex];

Let us demonstrate how this algorithm works with an example. Suppose the array sales

is as given in Figure 8-6.

Here, we determine the largest element in the array sales. Before the for loop begins,
maxIndex is initialized to 0, and the for loop initializes index to 1. In the following,
we show the values of maxIndex, index, and certain array elements during each
iteration of the for loop.

index maxIndex

sales

[maxIndex]

sales

[index]

sales[maxIndex] <

sales[index]

1 0 12.50 8.35 12.50 < 8.35 is false
2 0 12.50 19.60 12.50 < 19.60 is true;

maxIndex = 2

3 2 19.60 25.00 19.60 < 25.00 is true;
maxIndex = 3

4 3 25.00 14.00 25.00 < 14.00 is false
5 3 25.00 39.43 25.00 < 39.43 is true;

maxIndex = 5

6 5 39.43 35.90 39.43 < 35.90 is false
7 5 39.43 98.23 39.43 < 98.23 is true;

maxIndex = 7

8 7 98.23 66.65 98.23 < 66.65 is false
9 7 98.23 35.64 98.23 < 35.64 is false

After the for loop executes, maxIndex = 7, giving the index of the largest element in
the array sales. Thus, largestSale = sales[maxIndex] = 98.23.

sales

[0]

12.50 8.35 19.60 25.00 14.00 39.43 35.90 98.23 66.65 35.64

[1] [2] [3] [4] [5] [6] [7] [8] [9]

FIGURE 8-6 Array sales

Arrays | 513

You can write an algorithm to find the smallest element in the array that is similar to the

algorithm for finding the largest element in an array. (See Programming Exercise 2 at the

end of this chapter.)

Now that we know how to declare and process arrays, let us rewrite the program that we
discussed in the beginning of this chapter. Recall that this program reads five test scores, finds
the average test score, and outputs all the test scores that are less than the average test score.

EXAMPLE 8-4

//Program to find the average test score and output the average
//test score and all the test scores that are less than the
//average test score.

#include <iostream>
#include <iomanip>

using namespace std;

int main()
{

int test[5];
int sum = 0;
double average;
int index;

cout << fixed << showpoint << setprecision(2);

cout << "Enter five test scores: ";

for (index = 0; index < 5; index++)
{

cin >> test[index];
sum = sum + test[index];

}

cout << endl;

average = sum / 5.0;

cout << "The average test score = " << average << endl;

for (index = 0; index < 5; index++)
if (test[index] < average)

cout << test[index]
<< " is less than the average test score." << endl;

return 0;
}

514 | Chapter 8: Arrays and Strings

Sample Run: In this sample run, the user input is shaded.

Enter five test scores: 85 62 94 56 71

The average test score = 73.60
62 is less than the average test score.
56 is less than the average test score.
71 is less than the average test score.

C++0X introduces the range-based for statement to work with arrays. For example,

consider the following statements:

int list[10];

for (int &x : list)
cout << x << endl;

The variable x ranges over the elements of list. However, at the time of the writing of this

book, the compilers that we used have not implemented it. Once it is implemented, it should

simplify the processing of list elements. In fact, C++0X also introduces auto declaration of

elements, which allows a programmer to declare and initialize a variable without specifying

its type. For example, the following statement declares the variable num and stores 15 in it.

auto num = 15;

Because the initializer, which is 15, is an int value, the type of num will be int.

However, at the time of the writing of this book, the compilers that we used have not

implemented it. Once these new features are implemented, we can use the auto

declaration in the range-based for statement without knowing the type of an array.

Array Index Out of Bounds
Consider the following declaration:

double num[10];
int i;

The component num[i] is valid, that is, i is a valid index if i = 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.

The index—say, index—of an array is in bounds if index >= 0 and index <=

ARRAY_SIZE � 1. If either index < 0 or index > ARRAY_SIZE � 1, then we say
that the index is out of bounds.

Unfortunately, in C++, there is no guard against out-of-bound indices. Thus, C++
does not check whether the index value is within range—that is, between 0 and
ARRAY_SIZE � 1. If the index goes out of bounds and the program tries to access
the component specified by the index, then whatever memory location is indicated by
the index that location is accessed. This situation can result in altering or accessing the
data of a memory location that you never intended to modify or access. Consequently,
several strange things can happen if the index goes out of bounds during execution. It is
solely the programmer’s responsibility to make sure that the index is within bounds.

8

Arrays | 515

A loop such as the following can set the index out of bounds:

for (i = 0; i <= 10; i++)
list[i] = 0;

Here, we assume that list is an array of 10 components. When i becomes 10, the loop
test condition i <= 10 evaluates to true and the body of the loop executes, which results
in storing 0 in list[10]. Logically, list[10] does not exist.

On some new compilers, if an array index goes out of bounds in a progam, it is possible

that the program terminates with an error message. For example, see the programs

Example_ArrayIndexOutOfBoundsA.cpp and

Example_ArrayIndexOutOfBoundsB.cpp at theWeb site accompanying this book.

Array Initialization During Declaration
Like any other simple variable, an array can be initialized while it is being declared. For
example, the following C++ statement declares an array, sales, of five components and
initializes these components.

double sales[5] = {12.25, 32.50, 16.90, 23, 45.68};

The values are placed between curly braces and separated by commas—here,
sales[0] = 12.25, sales[1] = 32.50, sales[2] = 16.90, sales[3] = 23.00,
and sales[4] = 45.68.

When initializing arrays as they are declared, it is not necessary to specify the size of the array.
The size is determined by the number of initial values in the braces. However, youmust include
the brackets following the array name. The previous statement is, therefore, equivalent to:

double sales[] = {12.25, 32.50, 16.90, 23, 45.68};

Although it is not necessary to specify the size of the array if it is initialized during
declaration, it is a good practice to do so.

Partial Initialization of Arrays During Declaration
When you declare and initialize an array simultaneously, you do not need to initialize all
components of the array. This procedure is called partial initialization of an array

during declaration. However, if you partially initialize an array during declaration, you
must exercise some caution. The following examples help to explain what happens when
you declare and partially initialize an array.

The statement:

int list[10] = {0};

declares list to be an array of 10 components and initializes all of the components to 0.
The statement:

int list[10] = {8, 5, 12};

516 | Chapter 8: Arrays and Strings

declares list to be an array of 10 components and initializes list[0] to 8, list[1]
to 5, list[2] to 12, and all other components to 0. Thus, if all of the values are not
specified in the initialization statement, the array components for which the values are not
specified are initialized to 0. Note that, here, the size of the array in the declaration
statement does matter. For example, the statement:

int list[] = {5, 6, 3};

declares list to be an array of three components and initializes list[0] to 5,
list[1] to 6, and list[2] to 3. In contrast, the statement:

int list[25] = {4, 7};

declares list to be an array of 25 components. The first two components are initialized
to 4 and 7, respectively, and all other components are initialized to 0.

When you partially initialize an array, then all of the elements that follow the last uninitialized
elements must be uninitialized. Therefore, the following statement will result in a syntax error:

int list[10] = {2, 5, 6, , 8}; //illegal

In this initialization, because the fourth element is uninitialized, all elements that follow
the fourth element must be left unintialized.

Some Restrictions on Array Processing
Consider the following statements:

int myList[5] = {0, 4, 8, 12, 16}; //Line 1
int yourList[5]; //Line 2

The statement in Line 1 declares and initializes the array myList, and the statement in Line 2
declares the array yourList. Note that these arrays are of the same type and have the same
number of components. Suppose that you want to copy the elements of myList into the
corresponding elements of yourList. The following statement is illegal:

yourList = myList; //illegal

In fact, this statement will generate a syntax error. C++ does not allow aggregate
operations on an array. An aggregate operation on an array is any operation that
manipulates the entire array as a single unit.

To copy one array into another array, you must copy it component-wise—that is, one
component at a time. This can be done using a loop, such as the following:

for (int index = 0; index < 5; index ++)
yourList[index] = myList[index];

Next, suppose that you want to read data into the array yourList. The following
statement is illegal and, in fact, would generate a syntax error:

cin >> yourList; //illegal

8

Arrays | 517

To read data into yourList, you must read one component at a time, using a loop such
as the following:

for (int index = 0; index < 5; index ++)
cin >> yourList[index];

Similarly, determining whether two arrays have the same elements and printing the
contents of an array must be done component-wise. Note that the following statements
are illegal in the sense that they do not generate a syntax error; however, they do not give
the desired results.

cout << yourList;

if (myList <= yourList)
.
.
.

We will comment on these statements in the section Base Address of an Array and Array
in Computer Memory later in this chapter.

Arrays as Parameters to Functions
Now that you have seen how to work with arrays, a question naturally arises: How are
arrays passed as parameters to functions?

By reference only: In C++, arrays are passed by reference only.

Because arrays are passed by reference only, you do not use the symbol & when declaring
an array as a formal parameter.

When declaring a one-dimensional array as a formal parameter, the size of the array is
usually omitted. If you specify the size of a one-dimensional array when it is declared as a
formal parameter, the size is ignored by the compiler.

EXAMPLE 8-5

Consider the following function:

void funcArrayAsParam(int listOne[], double listTwo[])
{

.

.

.
}

The function funcArrayAsParam has two formal parameters: (1) listOne, a one-
dimensional array of type int (that is, the component type is int) and (2) listTwo, a one-
dimensional array of type double. In this declaration, the size of both arrays is unspecified.

518 | Chapter 8: Arrays and Strings

Sometimes, the number of elements in the array might be less than the size of the
array. For example, the number of elements in an array storing student data might
increase or decrease as students drop or add courses. In such situations, we want to
process only the components of the array that hold actual data. To write a function to
process such arrays, in addition to declaring an array as a formal parameter, we declare
another formal parameter specifying the number of elements in the array, as in the
following function:

void initialize(int list[], int listSize)
{

int count;

for (count = 0; count < listSize; count++)
list[count] = 0;

}

The first parameter of the function initialize is an int array of any size. When the
function initialize is called, the size of the actual array is passed as the second
parameter of the function initialize.

Constant Arrays as Formal Parameters
Recall that when a formal parameter is a reference parameter, then whenever the formal
parameter changes, the actual parameter changes as well. However, even though an array
is always passed by reference, you can still prevent the function from changing the actual
parameter. You do so by using the reserved word const in the declaration of the formal
parameter. Consider the following function:

void example(int x[], const int y[], int sizeX, int sizeY)
{

.

.

.
}

Here, the function example can modify the array x, but not the array y. Any attempt to
change y results in a compile-time error. It is a good programming practice to declare an
array to be constant as a formal parameter if you do not want the function to modify the
array.

EXAMPLE 8-6

This example shows how to write functions for array processing and declare an array as a
formal parameter.

//Function to initialize an int array to 0.
//The array to be initialized and its size are passed
//as parameters. The parameter listSize specifies the
//number of elements to be initialized.

void initializeArray(int list[], int listSize)

8

Arrays | 519

{

int index;

for (index = 0; index < listSize; index++)
list[index] = 0;

}

//Function to read and store the data into an int array.
//The array to store the data and its size are passed as
//parameters. The parameter listSize specifies the number
//of elements to be read.

void fillArray(int list[], int listSize)
{

int index;

for (index = 0; index < listSize; index++)
cin >> list[index];

}

//Function to print the elements of an int array.
//The array to be printed and the number of elements
//are passed as parameters. The parameter listSize
//specifies the number of elements to be printed.

void printArray(const int list[], int listSize)
{

int index;

for (index = 0; index < listSize; index++)
cout << list[index] << " ";

}

//Function to find and return the sum of the
//elements of an int array. The parameter listSize
//specifies the number of elements to be added.

int sumArray(const int list[], int listSize)
{

int index;
int sum = 0;

for (index = 0; index < listSize; index++)
sum = sum + list[index];

return sum;
}

//Function to find and return the index of the first
//largest element in an int array. The parameter listSize
//specifies the number of elements in the array.

int indexLargestElement(const int list[], int listSize)
{

int index;
int maxIndex = 0; //assume the first element is the largest

520 | Chapter 8: Arrays and Strings

for (index = 1; index < listSize; index++)
if (list[maxIndex] < list[index])

maxIndex = index;

return maxIndex;
}

//Function to copy some or all of the elements of one array
//into another array. Starting at the position specified
//by src, the elements of list1 are copied into list2
//starting at the position specified by tar. The parameter
//numOfElements specifies the number of elements of list1 to
//be copied into list2. Starting at the position specified
//by tar, the list2 must have enough components to copy the
//elements of list1. The following call copies all of the
//elements of list1 into the corresponding positions in
//list2: copyArray(list1, 0, list2, 0, numOfElements);

void copyArray(int list1[], int src, int list2[],
int tar, int numOfElements)

{

for (int index = src; index < src + numOfElements; index++)
{

list2[index] = list1[tar];
tar++;

}

}

Example 8-7 will illustrate how to use some of these functions in a program.

Base Address of an Array and Array in Computer Memory
The base address of an array is the address (that is, the memory location) of the first array
component. For example, if list is a one-dimensional array, then the base address of
list is the address of the component list[0].

Consider the following statements:

int myList[5]; //Line 1

This statement declares myList to be an array of five components of type int. The
components are myList[0], myList[1], myList[2], myList[3], and myList[4].
The computer allocates five memory spaces, each large enough to store an int value, for
these components. Moreover, the five memory spaces are contiguous.

The base address of the array myList is the address of the component myList[0].
Suppose that the base address of the array myList is 1000. Then, the address of the
component myList[0] is 1000. Typically, the memory allocated for an int variable is
four bytes. Recall from Chapter 1 that main memory is an ordered sequence of cells, and
each cell has a unique address. Typically, each cell is one byte. Therefore, to store a value
into myList[0], starting at the address 1000, the next four bytes are allocated for

8

Arrays | 521

myList[0]. It follows that the starting address of myList[1] is 1004, the starting
address of myList[2] is 1008, and so on (see Figure 8-7).

Now myList is the name of an array. There is also a memory space associated with the
identifier myList, and the base address of the array is stored in that memory space.
Consider the following statement:

cout << myList << endl; //Line 2

Earlier, we said that this statement will not give the desired result. That is, this statement
will not output the values of the components of myList. In fact, the statement outputs the
value of myList, which is the base address of the array. This is why the statement will
not generate a syntax error.

Suppose that you also have the following statement:

int yourList[5];

myList [0]

myList [1]

myList [3]

myList [2]

myList [4]

Memory
addresses

1000
1001
1002
1003
1004
1005
1006
1007
1008

.

.

.

.

.

.

1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019

Address of
myList [0]

Address of
myList [1]

Address of
myList [2]

Address of
myList [3]

Address of
myList [4]

FIGURE 8-7 Array myList and the addresses of its components

522 | Chapter 8: Arrays and Strings

8

Then, in the statement:

if (myList <= yourList) //Line 3
.
.
.

the expression myList <= yourList evaluates to true if the base address of the array
myList is less than the base address of the array yourList; and evaluates to false

otherwise. It does not determine whether the elements of myList are less than or equal to
the corresponding elements of yourList.

The Web site accompanying this book contains the program

BaseAddressOfAnArray.cpp, which clarifies statements such as those in

Lines 2 and 3.

You might be wondering why the base address of an array is so important. The reason is
that when you declare an array, the only things about the array that the computer
remembers are the name of the array, its base address, the data type of each component,
and (possibly) the number of components. Using the base address of the array and the
index of an array component, the computer determines the address of a particular
component. For example, suppose you want to access the value of myList[3].
Now, the base address of myList is 1000. Each component of myList is of type
int, so it uses four bytes to store a value, and the index is 3. To access the value of
myList[3], the computer calculates the address 1000 + 4 * 3 = 1000 + 12 = 1012.
That is, this is the starting address of myList[3]. So, starting at 1012, the computer
accesses the next four bytes.

When you pass an array as a parameter, the base address of the actual array is passed to the
formal parameter. For example, suppose that you have the following function:

void arrayAsParameter(int list[], int size)
{

.

.

.

list[2] = 28; //Line 4

.

.

.
}

Also, suppose that you have the following call to this function:

arrayAsParameter(myList, 5); //Line 5

In this statement, the base address of myList is passed to the formal parameter list.
Therefore, the base address of list is 1000. The definition of the function contains
the statement list[2] = 28;. This statement stores 28 into list[2]. To access
list[2], the computer calculates the address as follows: 1000 + 4 * 2 = 1008. So,

Arrays | 523

starting at the address 1008, the computer accesses the next four bytes and stores 28.
Note that, in fact, 1008 is the address of myList[2] (see Figure 8-7). It follows that
during the execution of the statement in Line 5, the statement in Line 4 stores the value
28 into myList[2]. It also follows that during the execution of the function call
statement in Line 5, list[index] and myList[index] refer to the same memory
space, where 0 <= index and index < 5.

If C++ allowed arrays to be passed by value, the computer would have to allocate memory

for the components of the formal parameter and copy the contents of the actual array into

the corresponding formal parameter when the function is called. If the array size was

large, this process would waste memory as well as the computer time needed for copying

the data. That is why in C++ arrays are always passed by reference.

Functions Cannot Return a Value of the Type Array
C++ does not allow functions to return a value of the type array. Note that the functions
sumArray and indexLargestElement described earlier return values of type int.

EXAMPLE 8-7

The following program illustrates how arrays are passed as actual parameters in a function
call. (Note that this program uses the functions written in Example 8-6).

//Arrays as parameters to functions

#include <iostream>

using namespace std;

const int ARRAY_SIZE = 10;

void initializeArray(int x[],int sizeX);
void fillArray(int x[],int sizeX);
void printArray(const int x[],int sizeX);
int sumArray(const int x[],int sizeX);
int indexLargestElement(const int x[],int sizeX);
void copyArray(int list1[], int src, int list2[],

int tar, int numOfElements);
int main()
{

int listA[ARRAY_SIZE] = {0}; //Declare the array listA
//of 10 components and
//initialize each component
//to 0.

int listB[ARRAY_SIZE]; //Declare the array listB
//of 10 components.

524 | Chapter 8: Arrays and Strings

8

cout << "Line 1: listA elements: "; //Line 1

//Output the elements of listA using
//the function printArray

printArray(listA, ARRAY_SIZE); //Line 2
cout << endl; //Line 3

//Initialize listB using the function
//initializeArray

initializeArray(listB, ARRAY_SIZE); //Line 4

cout << "Line 5: listB elements: "; //Line 5

//Output the elements of listB
printArray(listB, ARRAY_SIZE); //Line 6
cout << endl << endl; //Line 7

cout << "Line 8: Enter " << ARRAY_SIZE
<< " integers: "; //Line 8

//Input data into listA using the
//function fillArray

fillArray(listA, ARRAY_SIZE); //Line 9
cout << endl; //Line 10

cout << "Line 11: After filling listA, "
<< "the elements are:" << endl; //Line 11

//Output the elements of listA
printArray(listA, ARRAY_SIZE); //Line 12
cout << endl << endl; //Line 13

//Find and output the sum of the elements
//of listA

cout << "Line 14: The sum of the elements of "
<< "listA is: "
<< sumArray(listA, ARRAY_SIZE) << endl
<< endl; //Line 14

//Find and output the position of the largest
//element in listA

cout << "Line 15: The position of the largest "
<< "element in listA is: "
<< indexLargestElement(listA, ARRAY_SIZE)
<< endl; //Line 15

//Find and output the largest element
//in listA

cout << "Line 16: The largest element in "
<< "listA is: "
<< listA[indexLargestElement(listA, ARRAY_SIZE)]
<< endl << endl; //Line 16

Arrays | 525

//Copy the elements of listA into listB using the
//function copyArray

copyArray(listA, 0, listB, 0, ARRAY_SIZE); //Line 17

cout << "Line 18: After copying the elements "
<< "of listA into listB," << endl
<< " listB elements are: "; //Line 18

//Output the elements of listB
printArray(listB, ARRAY_SIZE); //Line 19
cout << endl; //Line 20

return 0;
}

//Place the definitions of the functions initializeArray,
//fillArray, and so on here. Example 8-6 gives the definitions
//of these functions.

Sample Run: In this sample run, the user input is shaded.

Line 1: listA elements: 0 0 0 0 0 0 0 0 0 0
Line 5: ListB elements: 0 0 0 0 0 0 0 0 0 0

Line 8: Enter 10 integers: 33 77 25 63 56 48 98 39 5 12

Line 11: After filling listA, the elements are:
33 77 25 63 56 48 98 39 5 12

Line 14: The sum of the elements of listA is: 456

Line 15: The position of the largest element in listA is: 6
Line 16: The largest element in listA is: 98

Line 18: After copying the elements of listA into listB,
listB elements are: 33 77 25 63 56 48 98 39 5 12

The output of this program is straightforward. First, we declare the array listA of 10
components and initialize each component of listA to 0. Then, we declare the array
listB of 10 components. The statement in Line 2 calls the function printArray and
outputs the values stored in listA. The statement in Line 9 calls the function fillArray

to input the data into listA. The statement in Line 14 calls the function sumArray and
outputs the sum of all of the elements of listA. Similarly, the statement in Line 16 outputs
the value of the largest element in listA.

Integral Data Type and Array Indices

The sections ‘‘Enumeration Type’’ and ‘‘typedef Statement’’ from Chapter 7 are

required to understand this section.

526 | Chapter 8: Arrays and Strings

8

Other than integers, C++ allows any integral type to be used as an array index. This
feature can greatly enhance a program’s readability. Consider the following statements:

enum paintType {GREEN, RED, BLUE, BROWN, WHITE, ORANGE, YELLOW};
double paintSale[7];
paintType paint;

The following loop initializes each component of the array paintSale to 0:

for (paint = GREEN; paint <= YELLOW;
paint = static_cast<paintType>(paint + 1))

paintSale[paint] = 0.0;

The following statement updates the sale amount of RED paint:

paintSale[RED] = paintSale[RED] + 75.69;

As you can see, the above code is much easier to follow than the code that used integers for the
index. For this reason, you should use the enumeration type for the array index or other
integral data types wherever possible. Note that when using the enumeration type for array
indices, use the default values of the identifiers in the enumeration type. That is, the value of
the first identifier must be 0, and so on. (Recall from Chapter 7 that the default values of
identifiers in an enumeration type start at 0; however, the identifiers can be set to other values.)

Other Ways to Declare Arrays
Suppose that a class has 20 students and you need to keep track of their scores. Because
the number of students can change from semester to semester, instead of specifying the
size of the array while declaring it, you can declare the array as follows:

const int NO_OF_STUDENTS = 20;
int testScores[NO_OF_STUDENTS];

Other forms used to declare arrays are:

const int SIZE = 50; //Line 1
typedef double list[SIZE]; //Line 2

list yourList; //Line 3
list myList; //Line 4

The statement in Line 2 defines a data type list, which is an array of 50 components of type
double. The statements in Lines 3 and 4 declare two variables, yourList and myList. Both
are arrays of 50 components of type double. Of course, these statements are equivalent to:

double yourList[50];
double myList[50];

Searching an Array for a Specific Item
Searching a list for a given item is one of the most common operations performed on a
list. The search algorithm we describe is called the sequential search or linear search.
As the name implies, you search the array sequentially, starting from the first array

Searching an Array for a Specific Item | 527

element. You compare searchItem with the elements in the array (the list) and continue
the search until either you find the item or no more data is left in the list to compare
with searchItem.

Consider the list of seven elements shown in Figure 8-8.

Suppose that you want to determine whether 27 is in the list. A sequential search works
as follows: First, you compare 27 with list[0], that is, compare 27 with 35. Because
list[0] 6¼ 27, you then compare 27 with list[1], that is, with 12, the second item in
the list. Because list[1] 6¼ 27, you compare 27 with the next element in the list, that is,
compare 27with list[2]. Because list[2] = 27, the search stops. This search is successful.

Let us now search for 10. As before, the search starts at the first element in the list, that is,
at list[0]. Proceeding as before, we see that, this time, the search item, which is 10, is
compared with every item in the list. Eventually, no more data is left in the list to
compare with the search item. This is an unsuccessful search.

It now follows that, as soon as you find an element in the list that is equal to the search
item, you must stop the search and report success. (In this case, you usually also report the
location in the list where the search item was found.) Otherwise, after the search item is
unsuccessfully compared with every element in the list, you must stop the search and
report failure.

Suppose that the name of the array containing the list elements is list. The previous
discussion translates into the following algorithm for the sequential search:

found is set to false
loc = 0;

while (loc < listLength and not found)
if (list[loc] is equal to searchItem)

found is set to true
else

increment loc

if (found)
return loc;

else
return -1;

35

[0] [1] [3][2] [4] [5] [6]

12 27 18 45 16 38list

FIGURE 8-8 List of seven elements

528 | Chapter 8: Arrays and Strings

8

The following function performs a sequential search on a list. To be specific, and for
illustration purposes, we assume that the list elements are of type int.

int seqSearch(const int list[], int listLength, int searchItem)
{

int loc;
bool found = false;

loc = 0;

while (loc < listLength && !found)
if (list[loc] == searchItem)

found = true;
else

loc++;

if (found)
return loc;

else
return -1;

}

If the function seqSearch returns a value greater than or equal to 0, it is a successful
search; otherwise, it is an unsuccessful search.

As you can see from this code, you start the search by comparing searchItem with the
first element in the list. If searchItem is equal to the first element in the list, you
exit the loop; otherwise, loc is incremented by 1 to point to the next element in the
list. You then compare searchItem with the next element in the list, and so on.

EXAMPLE 8-8

// This program illustrates how to use a sequential search in a
// program.

#include <iostream> //Line 1

using namespace std; //Line 2

const int ARRAY_SIZE = 10; //Line 3

int seqSearch(const int list[], int listLength,
int searchItem); //Line 4

int main() //Line 5
{ //Line 6

int intList[ARRAY_SIZE]; //Line 7
int number; //Line 8

cout << "Line 9: Enter " << ARRAY_SIZE
<< " integers." << endl; //Line 9

Searching an Array for a Specific Item | 529

for (int index = 0; index < ARRAY_SIZE; index++) //Line 10
cin >> intList[index]; //Line 11

cout << endl; //Line 12

cout << "Line 13: Enter the number to be "
<< "searched: "; //Line 13

cin >> number; //Line 14
cout << endl; //Line 15

int pos = seqSearch(intList, ARRAY_SIZE, number); //Line 16

if (pos!= -1) //Line 17
cout <<"Line 18: " << number

<< " is found at position " << pos
<< endl; //Line 18

else //Line 19
cout << "Line 20: " << number

<< " is not in the list." << endl; //Line 20

return 0; //Line 21
} //Line 22

//Place the definition of the function seqSearch
//given previously here.

Sample Run 1: In this sample run, the user input is shaded.

Line 9: Enter 10 integers.
2 56 34 25 73 46 89 10 5 16

Line 13: Enter the number to be searched: 25

Line 18: 25 is found at position 3

Sample Run 2:

Line 9: Enter 10 integers.
2 56 34 25 73 46 89 10 5 16

Line 13: Enter the number to be searched: 38

Line 20: 38 is not in the list.

Selection Sort
The previous section discussed a searching algorithm. In this section, we discuss how to
sort an array using the algorithm, called selection sort. Additional searching and
sorting algorithms are discussed in Chapter 16.

As the name implies, in the selection sort algorithm, we rearrange the list by selecting an
element in the list and moving it to its proper position. This algorithm finds the location

530 | Chapter 8: Arrays and Strings

of the smallest element in the unsorted portion of the list and moves it to the top of the
unsorted portion of the list. The first time, we locate the smallest item in the entire list.
The second time, we locate the smallest item in the list starting from the second element
in the list, and so on.

Suppose you have the list shown in Figure 8-9.

Figure 8-10 shows the elements of list in the first iteration.

Initially, the entire list is unsorted. So, we find the smallest item in the list. The smallest
item is at position 6, as shown in Figure 8-10(a). Because this is the smallest item, it must
be moved to position 0. So, we swap 16 (that is, list[0]) with 5 (that is, list[6]), as
shown in Figure 8-10(b). After swapping these elements, the resulting list is as shown in
Figure 8-10(c).

8

16

]6[]7[]5[]4[]2[]3[]1[]0[

30 24 7 62 45 5 55list

FIGURE 8-9 List of eight elements

16[0]

[1]

[3]

[2]

[4]

[5]

[7]

[6]

30

24

7

62

45

5

55 smallest

unsorted

list

list

16

30

24

7

62

45

5

55

swap

5

30

24

7

62

45

16

55

unsorted

list

(a) (b) (c)

FIGURE 8-10 Elements of list during the first iteration

Searching an Array for a Specific Item | 531

Figure 8-11 shows the elements of list during the second iteration.

Now the unsorted list is list[1]...list[7]. So, we find the smallest element in the
unsorted list. The smallest element is at position 3, as shown in Figure 8-11(a). Because the
smallest element in the unsorted list is at position 3, it must be moved to position 1. So, we
swap 7 (that is, list[3]) with 30 (that is, list[1]), as shown in Figure 8-11(b). After
swapping list[1] with list[3], the resulting list is as shown in Figure 8-11(c).

Now, the unsorted list is list[2]...list[7]. So, we repeat the preceding process of
finding the (position of the) smallest element in the unsorted portion of the list and
moving it to the beginning of the unsorted portion of the list. Selection sort thus involves
the following steps.

In the unsorted portion of the list:

a. Find the location of the smallest element.

b. Move the smallest element to the beginning of the unsorted list.

Initially, the entire list (that is, list[0]...list[length - 1]) is the unsorted list. After
executing Steps a and b once, the unsorted list is list[1]... list[length - 1]. After
executing Steps a and b a second time, the unsorted list is list[2]...list[length - 1],
and so on. In this way, we can keep track of the unsorted portion of the list and repeat Steps a
and b with the help of a for loop, as shown in the following pseudocode:

for (index = 0; index < length - 1; index++)
{

a. Find the location, smallestIndex, of the smallest element in
list[index]...list[length - 1].

b. Swap the smallest element with list[index]. That is, swap
list[smallestIndex] with list[index].

}

[0]

[1]

[3]

[2]

[4]

[5]

[7]

[6]

smallest

list

5

30

24

7

62

45

16

55

unsorted

list

(a) (b) (c)

5

30

24

7

62

45

16

55

swap

5

7

24

30

62

45

16

55

unsorted

list

FIGURE 8-11 Elements of list during the second iteration

532 | Chapter 8: Arrays and Strings

The first time through the loop, we locate the smallest element in list[0]...

list[length - 1] and swap the smallest element with list[0]. The second time
through the loop, we locate the smallest element in list[1]...list[length - 1] and
swap the smallest element with list[1], and so on.

Step a is similar to the algorithm for finding the index of the largest item in the list, as
discussed earlier in this chapter. (Also see Programming Exercise 2 at the end of this chapter.)
Here, we find the index of the smallest item in the list. The general form of Step a is:

smallestIndex = index; //assume first element is the smallest

for (location = index + 1; location < length; location++)
if (list[location] < list[smallestIndex])

smallestIndex = location; //current element in the list
//is smaller than the smallest so
//far, so update smallestIndex

Step b swaps the contents of list[smallestIndex] with list[index]. The following
statements accomplish this task:

temp = list[smallestIndex];
list[smallestIndex] = list[index];
list[index] = temp;

It follows that to swap the values, three item assignments are needed. The following
function, selectionSort, implements the selection sort algorithm:

void selectionSort(int list[], int length)
{

int index;
int smallestIndex;
int location;
int temp;

for (index = 0; index < length - 1; index++)
{

//Step a
smallestIndex = index;

for (location = index + 1; location < length; location++)
if (list[location] < list[smallestIndex])

smallestIndex = location;

//Step b
temp = list[smallestIndex];
list[smallestIndex] = list[index];
list[index] = temp;

}

}

8

Searching an Array for a Specific Item | 533

The program in Example 8-9 illustrates how to use the selection sort algorithm in a program.

EXAMPLE 8-9

//Selection sort

#include <iostream>

using namespace std;

void selectionSort(int list[], int length);

int main()
{

int list[]= {2, 56, 34, 25, 73, 46, 89, 10, 5, 16}; //Line 1
int i; //Line 2

selectionSort(list, 10); //Line 3

cout << "After sorting, the list elements are:"
<< endl; //Line 4

for (i = 0; i < 10; i++) //Line 5
cout << list[i] << " "; //Line 6

cout << endl; //Line 7

return 0; //Line 8
}

//Place the definition of the function selectionSort given
//previously here.

Sample Run:

After sorting, the list elements are:
2 5 10 16 25 34 46 56 73 89

The statement in Line 1 declares and initializes list to be an array of 10 components of
type int. The statement in Line 3 uses the function selectionSort to sort list.
Notice that both list and its length (the number of elements in it, which is 10) are
passed as parameters to the function selectionSort. The for loop in Lines 5 and 6
outputs the elements of list.

To illustrate the selection sort algorithm in this program, we declared and initialized the
array list. However, you can also prompt the user to input the data during program
execution.

534 | Chapter 8: Arrays and Strings

For a list of length n, selection sort makes exactly
nðn� 1Þ

2
key comparisons and 3(n � 1) item

assignments. Therefore, if n = 1000, then to sort the list, selection sort makes about 500,000
key comparisons and about 3000 item assignments. The next section presents the insertion
sort algorithm that reduces the number of comparisons.

C-Strings (Character Arrays)
Until now, we have avoided discussing character arrays for a simple reason: Character
arrays are of special interest, and you process them differently than you process
other arrays. C++ provides many (predefined) functions that you can use with
character arrays.

Character array: An array whose components are of type char.

Recall that the most widely used character sets are ASCII and EBCDIC. The first character
in the ASCII character set is the null character, which is nonprintable. Also, recall that in
C++, the null character is represented as '\0', a backslash followed by a zero.

The statement:

ch = '\0';

stores the null character in ch, wherein ch is a char variable.

As you will see, the null character plays an important role in processing character arrays.
Because the collating sequence of the null character is 0, the null character is less than any
other character in the char data set.

The most commonly used term for character arrays is C-strings. However, there is a
subtle difference between character arrays and C-strings. Recall that a string is a sequence
of zero or more characters, and strings are enclosed in double quotation marks. In C++,
C-strings are null terminated; that is, the last character in a C-string is always the null
character. A character array might not contain the null character, but the last character in
a C-string is always the null character. As you will see, the null character should not
appear anywhere in the C-string except the last position. Also, C-strings are stored in
(one-dimensional) character arrays.

The following are examples of C-strings:

"John L. Johnson"
"Hello there."

From the definition of C-strings, it is clear that there is a difference between 'A' and
"A". The first one is character A; the second is C-string A. Because C-strings are null
terminated, "A" represents two characters: 'A' and '\0'. Similarly, the C-string
"Hello" represents six characters: 'H', 'e', 'l', 'l', 'o', and '\0'. To store
'A', we need only one memory cell of type char; to store "A", we need two memory

8

C-Strings (Character Arrays) | 535

cells of type char—one for 'A' and one for '\0'. Similarly, to store the C-string
"Hello" in computer memory, we need six memory cells of type char.

Consider the following statement:

char name[16];

This statement declares an array name of 16 components of type char. Because C-strings
are null terminated and name has 16 components, the largest string that can be stored in
name is of length 15. If you store a C-string of length 10 in name, the first 11

components of name are used and the last 5 are left unused.

The statement:

char name[16] = {'J', 'o', 'h', 'n', '\0'};

declares an array name containing 16 components of type char and stores the C-
string "John" in it. During char array variable declaration, C++ allows the C-string
notation to be used in the initialization statement. The above statement is, therefore,
equivalent to:

char name[16] = "John"; //Line A

Recall that the size of an array can be omitted if the array is initialized during the
declaration.

The statement:

char name[] = "John"; //Line B

declares a C-string variable name of a length large enough—in this case, 5—and stores
"John" in it. There is a difference between the last two statements: Both statements store
"John" in name, but the size of name in the statement in Line A is 16, and the size of
name in the statement in Line B is 5.

Most rules that apply to other arrays also apply to character arrays. Consider the following
statement:

char studentName[26];

Suppose you want to store "Lisa L. Johnson" in studentName. Because aggregate
operations, such as assignment and comparison, are not allowed on arrays, the following
statement is not legal:

studentName = "Lisa L. Johnson"; //illegal

C++ provides a set of functions that can be used for C-string manipulation. The header
file cstring describes these functions. We often use three of these functions: strcpy
(string copy, to copy a C-string into a C-string variable—that is, assignment); strcmp

536 | Chapter 8: Arrays and Strings

(string comparison, to compare C-strings); and strlen (string length, to find the length
of a C-string). Table 8-1 summarizes these functions.

To use these functions, the program must include the header file cstring via the
include statement. That is, the following statement must be included in the program:

#include <cstring>

String Comparison
In C++, C-strings are compared character by character using the system’s collating
sequence. Let us assume that you use the ASCII character set.

1. The C-string "Air" is less than the C-string "Boat" because the first
character of "Air" is less than the first character of "Boat".

2. The C-string "Air" is less than the C-string "An" because the first
characters of both strings are the same, but the second character 'i'

of "Air" is less than the second character 'n' of "An".

3. The C-string "Bill" is less than the C-string "Billy" because the first
four characters of "Bill" and "Billy" are the same, but the fifth
character of "Bill", which is '\0' (the null character), is less than the
fifth character of "Billy", which is 'y'. (Recall that C-strings in C++
are null terminated.)

4. The C-string "Hello" is less than "hello" because the first character
'H' of the C-string "Hello" is less than the first character 'h' of the
C-string "hello".

8

TABLE 8-1 strcpy, strcmp, and strlen Functions

Function Effect

strcpy(s1, s2)
Copies the string s2 into the string variable s1

The length of s1 should be at least as large as s2

strcmp(s1, s2)

Returns a value < 0 if s1 is less than s2

Returns 0 if s1 and s2 are the same

Returns a value > 0 if s1 is greater than s2

strlen(s)
Returns the length of the string s, excluding the null
character

C-Strings (Character Arrays) | 537

As you can see, the function strcmp compares its first C-string argument with its second
C-string argument character by character.

EXAMPLE 8-10

Suppose you have the following statements:

char studentName[21];
char myname[16];
char yourname[16];

The following statements show how string functions work:

Statement Effect

strcpy(myname, "John Robinson"); myname = "John Robinson"

strlen("John Robinson"); Returns 13, the length of the string

"John Robinson"

int len;
len = strlen("Sunny Day"); Stores 9 into len

strcpy(yourname, "Lisa Miller");
strcpy(studentName, yourname);

yourname = "Lisa Miller"
studentName = "Lisa Miller"

strcmp("Bill", "Lisa"); Returns a value < 0

strcpy(yourname, "Kathy Brown");
strcpy(myname, "Mark G. Clark");
strcmp(myname, yourname);

yourname = "Kathy Brown"
myname = "Mark G. Clark"
Returns a value > 0

In this chapter, we defined a C-string to be a sequence of zero or more characters.

C-strings are enclosed in double quotation marks. We also said that C-strings are null

terminated, so the C-string "Hello" has six characters even though only five are

enclosed in double quotation marks. Therefore, to store the C-string "Hello" in

computer memory, you must use a character array of size 6. The length of a C-string is the

number of actual characters enclosed in double quotation marks; for example, the length

of the C-string "Hello" is 5. Thus, in a logical sense, a C-string is a sequence of zero or

more characters, but in the physical sense (that is, to store the C-string in computer

memory), a C-string has at least one character. Because the length of the C-string is the

actual number of characters enclosed in double quotation marks, we defined a C-string to

be a sequence of zero or more characters. However, you must remember that the null

character stored in computer memory at the end of the C-string plays a key role when we

compare C-strings, especially C-strings such as "Bill" and "Billy".

538 | Chapter 8: Arrays and Strings

Reading and Writing Strings
As mentioned earlier, most rules that apply to arrays apply to C-strings as well. Aggregate
operations, such as assignment and comparison, are not allowed on arrays. Even the input/
output of arrays is done component-wise. However, the one place where C++ allows
aggregate operations on arrays is the input and output of C-strings (that is, character arrays).

We will use the following declaration for our discussion:

char name[31];

String Input
Because aggregate operations are allowed for C-string input, the statement:

cin >> name;

stores the next input C-string into name. The length of the input C-string must be less
than or equal to 30. If the length of the input string is 4, the computer stores the four
characters that are input and the null character '\0'. If the length of the input C-string is
more than 30, then because there is no check on the array index bounds, the computer
continues storing the string in whatever memory cells follow name. This process can
cause serious problems, because data in the adjacent memory cells will be corrupted.

When you input a C-string using an input device, such as the keyboard, you do not include

the double quotes around it unless the double quotes are part of the string. For example,

the C-string "Hello" is entered as Hello.

Recall that the extraction operator, >>, skips all leading whitespace characters and stops
reading data into the current variable as soon as it finds the first whitespace character or
invalid data. As a result, C-strings that contain blanks cannot be read using the extraction
operator, >>. For example, if a first name and last name are separated by blanks, they
cannot be read into name.

How do you input C-strings with blanks into a character array? Once again, the function get

comes to our rescue. Recall that the function get is used to read character data. Until now,
the form of the function get that you have used (Chapter 3) read only a single character.
However, the function get can also be used to read strings. To read C-strings, you use the
form of the function get that has two parameters. The first parameter is a C-string variable;
the second parameter specifies how many characters to read into the string variable.

To read C-strings, the general form (syntax) of the get function, together with an input
stream variable such as cin, is:

cin.get(str, m + 1);

This statement stores the next m characters, or all characters until the newline character
'\n' is found, into str. The newline character is not stored in str. If the input C-string
has fewer than m characters, then the reading stops at the newline character.

8

C-Strings (Character Arrays) | 539

Consider the following statements:

char str[31];
cin.get(str, 31);

If the input is:

William T. Johnson

then "William T. Johnson" is stored in str. Suppose that the input is:

Hello there. My name is Mickey Blair.

Then, because str can store, at most, 30 characters, the C-string "Hello there. My

name is Mickey" is stored in str.

Now, suppose that we have the statements:

char str1[26];
char str2[26];
char discard;

and the two lines of input:

Summer is warm.
Winter will be cold.

Further, suppose that we want to store the first C-string in str1 and the second C-string in
str2. Both str1 and str2 can store C-strings that are up to 25 characters in length. Because
the number of characters in the first line is 15, the reading stops at '\n'. You must read and
discard the newline character at the end of the first line to store the second line into str2. The
following sequence of statements stores the first line into str1 and the second line into str2:

cin.get(str1, 26);
cin.get(discard);
cin.get(str2, 26);

To read and store a line of input, including whitespace characters, you can also use the
stream function getline. Suppose that you have the following declaration:

char textLine[100];

The following statement will read and store the next 99 characters, or until the newline
character, into textLine. The null character will be automatically appended as the last
character of textLine.

cin.getline(textLine, 100);

String Output
The output of C-strings is another place where aggregate operations on arrays are allowed.
You can output C-strings by using an output stream variable, such as cout, together with
the insertion operator, <<. For example, the statement:

cout << name;

outputs the contents of name on the screen. The insertion operator, <<, continues to
write the contents of name until it finds the null character. Thus, if the length of name is
4, the above statement outputs only four characters. If name does not contain the null

540 | Chapter 8: Arrays and Strings

8

character, then you will see strange output because the insertion operator continues to
output data from memory adjacent to name until '\0' is found.

Specifying Input/Output Files at Execution Time
In Chapter 3, you learned how to read data from a file. In subsequent chapters, the name of
the input file was included in the open statement. By doing so, the program always received
data from the same input file. In real-world applications, the data may actually be collected at
several locations and stored in separate files. Also, for comparison purposes, someone might
want to process each file separately and then store the output in separate files. To accomplish
this task efficiently, the user would prefer to specify the name of the input and/or output file
at execution time rather than in the programming code. C++ allows the user to do so.

Consider the following statements:

ifstream infile;
ofstream outfile;

char fileName[51]; //assume that the file name is at most
//50 characters long

The following statements prompt and allow the user to specify the input and output files
at execution time:

cout << "Enter the input file name: ";
cin >> fileName;

infile.open(fileName); //open the input file
.
.
.

cout << "Enter the output file name: ";
cin >> fileName;

outfile.open(fileName); //open the output file

The Programming Example: Code Detection, given later in this chapter, further illus-
trates how to specify the names of input and output files during program execution.

string Type and Input/Output Files
In Chapter 7, we discussed the data type string. We nowwant to point out that values (that
is, strings) of type string are not null terminated. Variables of type string can also be used
to read and store the names of input/output files. However, the argument to the function
open must be a null-terminated string—that is, a C-string. Therefore, if we use a variable of
type string to read the name of an input/output file and then use this variable to open a file,
the value of the variablemust (first) be converted to a C-string (that is, a null-terminated string).
The header file string contains the function c_str, which converts a value of type string
to a null-terminated character array (that is, C-string). The syntax to use the function c_str is:

strVar.c_str()

in which strVar is a variable of type string.

C-Strings (Character Arrays) | 541

The following statements illustrate how to use variables of type string to read the
names of the input/output files during program execution and open those files:

ifstream infile;
string fileName;

cout << "Enter the input file name: ";
cin >> fileName;

infile.open(fileName.c_str()); //open the input file

Of course, you must also include the header file string in the program. The output file
has similar conventions.

Parallel Arrays
Two (or more) arrays are called parallel if their corresponding components hold related
information.

Suppose you need to keep track of students’ course grades, together with their ID numbers, so
that their grades can be posted at the end of the semester. Further, suppose that there is a
maximum of 50 students in a class and their IDs are 5 digits long. Because there may be 50

students, you need 50 variables to store the students’ IDs and 50 variables to store their grades.
You can declare two arrays: studentId of type int and courseGrade of type char. Each
array has 50 components. Furthermore, studentId[0] and courseGrade[0] will store
the ID and course grade of the first student, studentId[1] and courseGrade[1] will
store the ID and course grade of the second student, and so on.

The statements:

int studentId[50];
char courseGrade[50];

declare these two arrays.

Suppose you need to input data into these arrays, and the data is provided in a file in the
following form:

studentId courseGrade

For example, a sample data set is:

23456 A
86723 B
22356 C
92733 B
11892 D
.
.
.

Suppose that the input file is opened using the ifstream variable infile. Because the
size of each array is 50, a maximum of 50 elements can be stored into each array.
Moreover, it is possible that there may be fewer than 50 students in the class. Therefore,

542 | Chapter 8: Arrays and Strings

while reading the data, we also count the number of students and ensure that the array
indices do not go out of bounds. The following loop reads the data into the parallel arrays
studentId and courseGrade:

int noOfStudents = 0;

infile >> studentId[noOfStudents] >> courseGrade[noOfStudents];

while (infile && noOfStudents < 50)
{

noOfStudents++;
infile >> studentId[noOfStudents]

>> courseGrade[noOfStudents];
}

Note that, in general, when swapping values in one array, the corresponding values in
parallel arrays must also be swapped.

Two- and Multidimensional Arrays
The remainder of this chapter discusses two-dimensional arrays and ways to work with
multidimensional arrays.

In the previous section, you learned how to use one-dimensional arrays to manipulate
data. If the data is provided in a list form, you can use one-dimensional arrays. However,
sometimes data is provided in a table form. For example, suppose that you want to track
the number of cars in a particular color that are in stock at a local dealership. The
dealership sells six types of cars in five different colors. Figure 8-12 shows sample data.

You can see that the data is in a table format. The table has 30 entries, and every entry is an
integer. Because the table entries are all of the same type, you can declare a one-dimensional
array of 30 components of type int. The first five components of the one-dimensional array

8

10

18

12

16

10

9

7

11

10

6

7

4

12

15

9

13

12

7

10

17

5

8

6

12

4

10

12

3

4

11

inStock

[GM]

[FORD]

[TOYOTA]

[BMW]

[NISSAN]

[VOLVO]

[RED] [BROWN] [BLACK] [WHITE] [GRAY]

FIGURE 8-12 Table inStock

Two- and Multidimensional Arrays | 543

can store the data of the first row of the table, the next five components of the one-
dimensional array can store the data of the second row of the table, and so on. In other
words, you can simulate the data given in a table format in a one-dimensional array.

If you do so, the algorithms to manipulate the data in the one-dimensional array will be
somewhat complicated, because you must know where one row ends and another begins.
You must also correctly compute the index of a particular element. C++ simplifies the
processing of manipulating data in a table form with the use of two-dimensional arrays.
This section first discusses how to declare two-dimensional arrays and then looks at ways
to manipulate data in a two-dimensional array.

Two-dimensional array: A collection of a fixed number of components arranged in rows
and columns (that is, in two dimensions), wherein all components are of the same type.

The syntax for declaring a two-dimensional array is:

dataType arrayName[intExp1][intExp2];

wherein intExp1 and intExp2 are constant expressions yielding positive integer values.
The two expressions, intExp1 and intExp2, specify the number of rows and the
number of columns, respectively, in the array.

The statement:

double sales[10][5];

declares a two-dimensional array sales of 10 rows and 5 columns, in which every
component is of type double. As in the case of a one-dimensional array, the rows are
numbered 0...9 and the columns are numbered 0...4 (see Figure 8-13).

sales

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[6]

[7]

[8]

[9]

FIGURE 8-13 Two-dimensional array sales

544 | Chapter 8: Arrays and Strings

Accessing Array Components
To access the components of a two-dimensional array, you need a pair of indices: one for
the row position and one for the column position.

The syntax to access a component of a two-dimensional array is:

arrayName[indexExp1][indexExp2]

wherein indexExp1 and indexExp2 are expressions yielding nonnegative integer
values. indexExp1 specifies the row position; indexExp2 specifies the column
position.

The statement:

sales[5][3] = 25.75;

stores 25.75 into row number 5 and column number 3 (that is, the sixth row and the
fourth column) of the array sales (see Figure 8-14).

Suppose that:

int i = 5;
int j = 3;

Then, the previous statement:

sales[5][3] = 25.75;

is equivalent to:

sales[i][j] = 25.75;

So the indices can also be variables.

8

sales

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

25.75

[4]

[4]

sales [5] [3]

[5]

[6]

[7]

[8]

[9]

FIGURE 8-14 sales[5][3]

Two- and Multidimensional Arrays | 545

Two-Dimensional Array Initialization During Declaration
Like one-dimensional arrays, two-dimensional arrays can be initialized when they are declared.
The following example helps illustrate this concept. Consider the following statement:

int board[4][3] = {{2, 3, 1},
{15, 25, 13},
{20, 4, 7},
{11, 18, 14}};

This statement declares board to be a two-dimensional array of four rows and three

columns. The components of the first row are 2, 3, and 1; the components of the second row
are 15, 25, and 13; the components of the third row are 20, 4, and 7; and the components of
the fourth row are 11, 18, and 14, respectively. Figure 8-15 shows the array board.

To initialize a two-dimensional array when it is declared:

1. The elements of each row are enclosed within curly braces and separated
by commas.

2. All rows are enclosed within curly braces.

3. For number arrays, if all components of a row are not specified, the
unspecified components are initialized to 0. In this case, at least one of
the values must be given to initialize all the components of a row.

Two-Dimensional Arrays and Enumeration Types

The section ‘‘Enumeration Type’’ in Chapter 7 is required to understand this section.

You can also use the enumeration type for array indices. Consider the following statements:

const int NUMBER_OF_ROWS = 6;
const int NUMBER_OF_COLUMNS = 5;
enum carType {GM, FORD, TOYOTA, BMW, NISSAN, VOLVO};
enum colorType {RED, BROWN, BLACK, WHITE, GRAY};

int inStock[NUMBER_OF_ROWS][NUMBER_OF_COLUMNS];

[0]

board [0]

2 3

15 25

20 4

11 18 14

7

13

1

[1]

[1]

[2]

[2]

[3]

FIGURE 8-15 Two-dimensional array board

546 | Chapter 8: Arrays and Strings

These statements define the carType and colorType enumeration types and define
inStock as a two-dimensional array of six rows and five columns. Suppose that each
row in inStock corresponds to a car type, and each column in inStock corresponds to
a color type. That is, the first row corresponds to the car type GM, the second row
corresponds to the car type FORD, and so on. Similarly, the first column corresponds to
the color type RED, the second column corresponds to the color type BROWN, and so on.
Suppose further that each entry in inStock represents the number of cars of a particular
type and color (see Figure 8-16).

The statement:

inStock[1][3] = 15;

is equivalent to the following statement (see Figure 8-17):

inStock[FORD][WHITE] = 15;

8

inStock

[GM]

[FORD]

[TOYOTA]

[BMW]

[NISSAN]

[VOLVO]

[RED] [BROWN] [BLACK] [WHITE] [GRAY]

FIGURE 8-16 Two-dimensional array inStock

inStock

[GM]

[FORD]

[TOYOTA]

[BMW]

[NISSAN]

[VOLVO]

[RED] [BROWN] [BLACK] [WHITE]

inStock [FORD] [WHITE]

15

[GRAY]

FIGURE 8-17 inStock[FORD][WHITE]

Two- and Multidimensional Arrays | 547

The second statement easily conveys the message—that is, set the number of WHITE

FORD cars to 15. This example illustrates that enumeration types can be used effectively
to make the program readable and easy to manage.

PROCESSING TWO-DIMENSIONAL ARRAYS

A two-dimensional array can be processed in three ways:

1. Process the entire array.

2. Process a particular row of the array, called row processing.

3. Process a particular column of the array, called column processing.

Initializing and printing the array are examples of processing the entire two-dimensional
array. Finding the largest element in a row (column) or finding the sum of a row
(column) are examples of row (column) processing. We will use the following declaration
for our discussion:

const int NUMBER_OF_ROWS = 7; //This can be set to any number.
const int NUMBER_OF_COLUMNS = 6; //This can be set to any number.

int matrix[NUMBER_OF_ROWS][NUMBER_OF_COLUMNS];
int row;
int col;
int sum;
int largest;
int temp;

Figure 8-18 shows the array matrix.

Because the components of a two-dimensional array are of the same type, the
components of any row or column are of the same type. This means that each
row and each column of a two-dimensional array is a one-dimensional array. There-
fore, when processing a particular row or column of a two-dimensional array, we use

matrix

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4] [5]

[5]

[6]

FIGURE 8-18 Two-dimensional array matrix

548 | Chapter 8: Arrays and Strings

algorithms similar to those that process one-dimensional arrays. We further explain this
concept with the help of the two-dimensional array matrix, as declared previously.

Suppose that we want to process row number 5 of matrix (that is, the sixth row of
matrix). The components of row number 5 of matrix are:

matrix[5][0], matrix[5][1], matrix[5][2], matrix[5][3], matrix[5][4],
matrix[5][5]

We see that in these components, the first index (the row position) is fixed at 5. The
second index (the column position) ranges from 0 to 5. Therefore, we can use the
following for loop to process row number 5:

for (col = 0; col < NUMBER_OF_COLUMNS; col++)
process matrix[5][col]

Clearly, this for loop is equivalent to the following for loop:

row = 5;
for (col = 0; col < NUMBER_OF_COLUMNS; col++)

process matrix[row][col]

Similarly, suppose that we want to process column number 2 of matrix, that is, the third
column of matrix. The components of this column are:

matrix[0][2], matrix[1][2], matrix[2][2], matrix[3][2], matrix[4][2],
matrix[5][2], matrix[6][2]

Here, the second index (that is, the column position) is fixed at 2. The first index (that is,
the row position) ranges from 0 to 6. In this case, we can use the following for loop to
process column 2 of matrix:

for (row = 0; row < NUMBER_OF_ROWS; row++)
process matrix[row][2]

Clearly, this for loop is equivalent to the following for loop:

col = 2;
for (row = 0; row < NUMBER_OF_ROWS; row++)

process matrix[row][col]

Next, we discuss specific processing algorithms.

Initialization
Suppose that you want to initialize row number 4, that is, the fifth row, to 0. As
explained earlier, the following for loop does this:

row = 4;
for (col = 0; col < NUMBER_OF_COLUMNS; col++)

matrix[row][col] = 0;

If you want to initialize the entire matrix to 0, you can also put the first index, that is,
the row position, in a loop. By using the following nested for loops, we can initialize
each component of matrix to 0:

8

Two- and Multidimensional Arrays | 549

for (row = 0; row < NUMBER_OF_ROWS; row++)
for (col = 0; col < NUMBER_OF_COLUMNS; col++)

matrix[row][col] = 0;

Print
By using a nested for loop, you can output the components of matrix. The following
nested for loops print the components of matrix, one row per line:

for (row = 0; row < NUMBER_OF_ROWS; row++)
{

for (col = 0; col < NUMBER_OF_COLUMNS; col++)
cout << setw(5) << matrix[row][col] << " ";

cout << endl;
}

Input
The following for loop inputs the data into row number 4, that is, the fifth row of matrix:

row = 4;

for (col = 0; col < NUMBER_OF_COLUMNS; col++)
cin >> matrix[row][col];

As before, by putting the row number in a loop, you can input data into each component
of matrix. The following for loop inputs data into each component of matrix:

for (row = 0; row < NUMBER_OF_ROWS; row++)
for (col = 0; col < NUMBER_OF_COLUMNS; col++)

cin >> matrix[row][col];

Sum by Row
The following for loop finds the sum of row number 4 of matrix; that is, it adds the
components of row number 4:

sum = 0;
row = 4;
for (col = 0; col < NUMBER_OF_COLUMNS; col++)

sum = sum + matrix[row][col];

Once again, by putting the row number in a loop, we can find the sum of each row
separately. The following is the C++ code to find the sum of each individual row:

//Sum of each individual row
for (row = 0; row < NUMBER_OF_ROWS; row++)
{

sum = 0;
for (col = 0; col < NUMBER_OF_COLUMNS; col++)

sum = sum + matrix[row][col];

cout << "Sum of row " << row + 1 << " = " << sum << endl;
}

550 | Chapter 8: Arrays and Strings

8

Sum by Column
As in the case of sum by row, the following nested for loop finds the sum of each
individual column:

//Sum of each individual column
for (col = 0; col < NUMBER_OF_COLUMNS; col++)
{

sum = 0;
for (row = 0; row < NUMBER_OF_ROWS; row++)

sum = sum + matrix[row][col];

cout << "Sum of column " << col + 1 << " = " << sum
<< endl;

}

Largest Element in Each Row and Each Column
As stated earlier, two other operations on a two-dimensional array are finding the largest
element in each row and each column and finding the sum of both diagonals. Next, we
give the C++ code to perform these operations.

The following for loop determines the largest element in row number 4:

row = 4;
largest = matrix[row][0]; //Assume that the first element of

//the row is the largest.
for (col = 1; col < NUMBER_OF_COLUMNS; col++)

if (largest < matrix[row][col])
largest = matrix[row][col];

The following C++ code determines the largest element in each row and each column:

//Largest element in each row
for (row = 0; row < NUMBER_OF_ROWS; row++)
{

largest = matrix[row][0]; //Assume that the first element
//of the row is the largest.

for (col = 1; col < NUMBER_OF_COLUMNS; col++)
if (largest < matrix[row][col])

largest = matrix[row][col];

cout << "The largest element in row " << row + 1 << " = "
<< largest << endl;

}

//Largest element in each column
for (col = 0; col < NUMBER_OF_COLUMNS; col++)
{

largest = matrix[0][col]; //Assume that the first element
//of the column is the largest.

for (row = 1; row < NUMBER_OF_ROWS; row++)
if (largest < matrix[row][col])

largest = matrix[row][col];

cout << "The largest element in column " << col + 1
<< " = " << largest << endl;

}

Two- and Multidimensional Arrays | 551

Passing Two-Dimensional Arrays as Parameters to Functions
Two-dimensional arrays can be passed as parameters to a function, and they are passed by
reference. The base address (that is, the address of the first component of the actual
parameter) is passed to the formal parameter. If matrix is the name of a two-dimensional
array, then matrix[0][0] is the first component of matrix.

When storing a two-dimensional array in the computer’s memory, C++ uses the row

order form. That is, the first row is stored first, followed by the second row, followed by
the third row, and so on.

In the case of a one-dimensional array, when declaring it as a formal parameter, we
usually omit the size of the array. Because C++ stores two-dimensional arrays in row
order form, to compute the address of a component correctly, the compiler must know
where one row ends and the next row begins. Thus, when declaring a two-dimensional
array as a formal parameter, you can omit the size of the first dimension, but not the
second; that is, you must specify the number of columns.

Suppose we have the following declaration:

const int NUMBER_OF_ROWS = 6;
const int NUMBER_OF_COLUMNS = 5;

Consider the following definition of the function printMatrix:

void printMatrix(int matrix[][NUMBER_OF_COLUMNS],
int noOfRows)

{
int row, col;

for (row = 0; row < noOfRows; row++)
{

for (col = 0; col < NUMBER_OF_COLUMNS; col++)
cout << setw(5) << matrix[row][col] << " ";

cout << endl;
}

}

This function takes as a parameter a two-dimensional array of an unspecified number of
rows and five columns, and outputs the content of the two-dimensional array. During
the function call, the number of columns of the actual parameter must match the number
of columns of the formal parameter.

Similarly, the following function outputs the sum of the elements of each row of a two-
dimensional array whose elements are of type int:

void sumRows(int matrix[][NUMBER_OF_COLUMNS], int noOfRows)
{

int row, col;
int sum;

//Sum of each individual row
for (row = 0; row < noOfRows; row++)

552 | Chapter 8: Arrays and Strings

8

{
sum = 0;

for (col = 0; col < NUMBER_OF_COLUMNS; col++)
sum = sum + matrix[row][col];

cout << "Sum of row " << (row + 1) << " = " << sum
<< endl;

}
}

The following function determines the largest element in each row:

void largestInRows(int matrix[][NUMBER_OF_COLUMNS],
int noOfRows)

{
int row, col;
int largest;

//Largest element in each row
for (row = 0; row < noOfRows; row++)
{

largest = matrix[row][0]; //Assume that the first element
//of the row is the largest.

for (col = 1; col < NUMBER_OF_COLUMNS; col++)
if (largest < matrix[row][col])

largest = matrix[row][col];

cout << "The largest element of row " << (row + 1)
<< " = " << largest << endl;

}
}

Likewise, you can write a function to find the sum of the elements of each column, read
the data into a two-dimensional array, find the largest and/or smallest element in each
row or column, and so on.

Example 8-11 shows how the functions printMatrix, sumRows, and largestInRows

are used in a program.

EXAMPLE 8-11

The following program illustrates how two-dimensional arrays are passed as parameters to
functions.

// Two-dimensional arrays as parameters to functions.

#include <iostream>
#include <iomanip>

using namespace std;

const int NUMBER_OF_ROWS = 6;
const int NUMBER_OF_COLUMNS = 5;

Two- and Multidimensional Arrays | 553

void printMatrix(int matrix[][NUMBER_OF_COLUMNS],
int NUMBER_OF_ROWS);

void sumRows(int matrix[][NUMBER_OF_COLUMNS],
int NUMBER_OF_ROWS);

void largestInRows(int matrix[][NUMBER_OF_COLUMNS],
int NUMBER_OF_ROWS);

int main()
{

int board[NUMBER_OF_ROWS][NUMBER_OF_COLUMNS]
= {{23, 5, 6, 15, 18},

{4, 16, 24, 67, 10},
{12, 54, 23, 76, 11},
{1, 12, 34, 22, 8},
{81, 54, 32, 67, 33},
{12, 34, 76, 78, 9}}; //Line 1

printMatrix(board, NUMBER_OF_ROWS); //Line 2
cout << endl; //Line 3
sumRows(board, NUMBER_OF_ROWS); //Line 4
cout << endl; //Line 5
largestInRows(board, NUMBER_OF_ROWS); //Line 6

return 0;
}

//Place the definitions of the functions printMatrix,
//sumRows, and largestInRows as described previously here.

Sample Run:

23 5 6 15 18
4 16 24 67 10

12 54 23 76 11
1 12 34 22 8

81 54 32 67 33
12 34 76 78 9

Sum of row 1 = 67
Sum of row 2 = 121
Sum of row 3 = 176
Sum of row 4 = 77
Sum of row 5 = 267
Sum of row 6 = 209

The largest element in row 1 = 23
The largest element in row 2 = 67
The largest element in row 3 = 76
The largest element in row 4 = 34
The largest element in row 5 = 81
The largest element in row 6 = 78

In this program, the statement in Line 1 declares and initializes board to be a two-
dimensional array of six rows and five columns. The statement in Line 2 uses the

554 | Chapter 8: Arrays and Strings

function printMatrix to output the elements of board (see the first six lines of the
Sample Run). The statement in Line 4 uses the function sumRows to calculate and print
the sum of each row. The statement in Line 6 uses the function largestInRows to find
and print the largest element in each row.

Arrays of Strings
Suppose that you need to perform an operation, such as alphabetizing a list of names. Because
every name is a string, a convenient way to store the list of names is to use an array. Strings in
C++ can bemanipulated using either the data typestring or character arrays (C-strings). Also,
on some compilers, the data type stringmay not be available in Standard C++ (that is, non-
ANSI/ISO Standard C++). This section illustrates both ways to manipulate a list of strings.

Arrays of Strings and the string Type
Processing a list of strings using the data type string is straightforward. Suppose that the
list consists of a maximum of 100 names. You can declare an array of 100 components of
type string as follows:

string list[100];

Basic operations, such as assignment, comparison, and input/output, can be performed on
values of the string type. Therefore, the data in list can be processed just like any
one-dimensional array discussed in the first part of this chapter.

Arrays of Strings and C-Strings (Character Arrays)
Suppose that the largest string (for example, name) in your list is 15 characters long and
your list has 100 strings. You can declare a two-dimensional array of characters of
100 rows and 16 columns as follows (see Figure 8-19):

char list[100][16];

8

list

list[0]

list[1]

list[2]

list[3]

list[40]

. . .

. . .

list[41]

list[98]

list[99]

FIGURE 8-19 Array list of strings

Two- and Multidimensional Arrays | 555

Now list[j] for each j, 0 <= j <= 99, is a string of at most 15 characters in length.
The following statement stores "Snow White" in list[1] (see Figure 8-20):

strcpy(list[1], "Snow White");

Suppose that you want to read and store data in list and that there is one entry per line.
The following for loop accomplishes this task:

for (j = 0; j < 100; j++)
cin.get(list[j], 16);

The following for loop outputs the string in each row:

for (j = 0; j < 100; j++)
cout << list[j] << endl;

You can also use other string functions (such as strcmp and strlen) and for loops to
manipulate list.

The data type string has operations such as assignment, concatenation, and relational

operations defined for it. If you use Standard C++ header files and the data type string

is available on your compiler, we recommend that you use the data type string to

manipulate lists of strings.

Another Way to Declare a Two-Dimensional Array

This section may be skipped without any loss of continuity.

list

S n o w W h i t e \0

list[0]

list[1]

list[2]

list[3]

list[40]

. . .

. . .

list[41]

list[98]

list[99]

FIGURE 8-20 Array list, showing list[1]

556 | Chapter 8: Arrays and Strings

If you know the size of the tables with which the program will be working, then you can
use typedef to first define a two-dimensional array data type and then declare variables
of that type.

For example, consider the following:

const int NUMBER_OF_ROWS = 20;
const int NUMBER_OF_COLUMNS = 10;

typedef int tableType[NUMBER_OF_ROWS][NUMBER_OF_COLUMNS];

The previous statement defines a two-dimensional array data type tableType. Now we
can declare variables of this type. So:

tableType matrix;

declares a two-dimensional array matrix of 20 rows and 10 columns.

You can also use this data type when declaring formal parameters, as shown in the
following code:

void initialize(tableType table)
{

int row;
int col;

for (row = 0; row < NUMBER_OF_ROWS; row++)
for (col = 0; col < NUMBER_OF_COLUMNS; col++)

table[row][col] = 0;
}

This function takes as an argument any variable of type tableType, which is a two-
dimensional array, and initializes the array to 0.

By first defining a data type, you do not need to keep checking the exact number of
columns when you declare a two-dimensional array as a variable or formal parameter, or
when you pass an array as a parameter during a function call.

Multidimensional Arrays
In this chapter, we defined an array as a collection of a fixed number of elements (called
components) of the same type. A one-dimensional array is an array in which the
elements are arranged in a list form; in a two-dimensional array, the elements are
arranged in a table form. We can also define three-dimensional or larger arrays. In
C++, there is no limit on the dimension of arrays. Following is the general definition of
an array.

n-dimensional array: A collection of a fixed number of elements (called components)
arranged in n dimensions (n>¼ 1).

8

Two- and Multidimensional Arrays | 557

The general syntax for declaring an n-dimensional array is:

dataType arrayName[intExp1][intExp2] ... [intExpn];

where intExp1, intExp2, ... , and intExpn are constant expressions yielding
positive integer values.

The syntax to access a component of an n-dimensional array is:

arrayName[indexExp1][indexExp2] ... [indexExpn]

where indexExp1,indexExp2, ..., and indexExpn are expressions yielding non
negative integer values. indexExpi gives the position of the array component in the ith
dimension.

For example, the statement:

double carDealers[10][5][7];

declares carDealers to be a three-dimensional array. The size of the first dimen-
sion is 10, the size of the second dimension is 5, and the size of the third
dimension is 7. The first dimension ranges from 0 to 9, the second dimension
ranges from 0 to 4, and the third dimension ranges from 0 to 6. The base address
of the array carDealers is the address of the first array component—that is, the
address of carDealers[0][0][0]. The total number of components in the array
carDealers is 10 * 5 * 7 = 350.

The statement:

carDealers[5][3][2] = 15564.75;

sets the value of the component carDealers[5][3][2] to 15564.75.

You can use loops to process multidimensional arrays. For example, the nested for

loops:

for (i = 0; i < 10; i++)
for (j = 0; j < 5; j++)

for (k = 0; k < 7; k++)
carDealers[i][j][k] = 0.0;

initialize the entire array to 0.0.

When declaring a multidimensional array as a formal parameter in a function, you can
omit the size of the first dimension but not the other dimensions. As parameters, multi-
dimensional arrays are passed by reference only, and a function cannot return a value of
the array type. There is no check to determine whether the array indices are within
bounds.

558 | Chapter 8: Arrays and Strings

8

PROGRAMMING EXAMPLE: Code Detection
When a message is transmitted in secret code over a transmission channel, it is
usually sent as a sequence of bits, that is, 0s and 1s. Due to noise in the
transmission channel, the transmitted message may become corrupted. That is,
the message received at the destination is not the same as the message transmitted;
some of the bits may have been changed. There are several techniques to check
the validity of the transmitted message at the destination. One technique is to
transmit the same message twice. At the destination, both copies of the message are
compared bit by bit. If the corresponding bits are the same, the message received is
error-free.

Let’s write a program to check whether the message received at the destination is
error-free. For simplicity, assume that the secret code representing the message is a
sequence of digits (0 to 9) and the maximum length of the message is 250 digits.
Also, the first number in the message is the length of the message. For example, if the
secret code is:

7 9 2 7 8 3 5 6

then the actual message is 7 digits long, and it is transmitted twice.

The above message is transmitted as:

7 9 2 7 8 3 5 6 7 9 2 7 8 3 5 6

Input A file containing the secret code and its copy

Output The secret code, its copy, and a message—if the received code is error-free—in
the following form:

Code Digit Code Digit Copy
9 9
2 2
7 7
8 8
3 3
5 5
6 6

Message transmitted OK.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

Because we have to compare the corresponding digits of the secret code and its copy, we
first read the secret code and store it in an array. Then we read the first digit of the copy
and compare it with the first digit of the secret code, and so on. If any of the
corresponding digits are not the same, we indicate this fact by printing a message next
to the digits. Because the maximum length of the message is 250, we use an array of 250
components. The first number in the secret code, and in the copy of the secret code,
indicates the length of the code. This discussion translates into the following algorithm:

Programming Example: Code Detection | 559

1. Open the input and output files.

2. If the input file does not exist, exit the program.

3. Read the length of the secret code.

4. If the length of the secret code is greater than 250, terminate the
program because the maximum length of the code in this program is 250.

5. Read and store the secret code into an array.

6. Read the length of the copy.

7. If the length of the secret code and its copy are the same, compare
the codes. Otherwise, print an error message.

To simplify the function main, let us write a function, readCode, to read the secret
code and another function, compareCode, to compare the codes.

readCode This function first reads the length of the secret code. If the length of the
secret code is greater than 250, a bool variable lenCodeOk, which is a
reference parameter, is set to false and the function terminates. The value of
lenCodeOk is passed to the calling function to indicate whether the secret code
was read successfully. If the length of the code is less than 250, the readCode

function reads and stores the secret code into an array. Because the input is stored
into a file and the file was opened in the function main, the input stream variable
corresponding to the input file must be passed as a parameter to this function.
Furthermore, after reading the length of the secret code and the code itself, the
readCode function must pass these values to the function main. Therefore, this
function has four parameters: an input file stream variable, an array to store the
secret code, the length of the code, and the bool parameter lenCodeOk. The
definition of the function readCode is as follows:

void readCode(ifstream& infile, int list[], int& length,
bool& lenCodeOk)

{

int count;

lenCodeOk = true;

infile >> length; //get the length of the secret code

if (length > MAX_CODE_SIZE)
{

lenCodeOk = false;
return;

}

//Get the secret code.
for (count = 0; count < length; count++)

infile >> list[count];
}

560 | Chapter 8: Arrays and Strings

8

compareCode This function compares the secret code with its copy. Therefore, it must have access
to the array containing the secret code and the length of the secret code. The copy of
the secret code and its length are stored in the input file. Thus, the input stream
variable corresponding to the input file must be passed as a parameter to this function.
Also, the compareCode function compares the secret code with the copy and prints
an appropriate message. Because the output will be stored in a file, the output stream
variable corresponding to the output file must also be passed as a parameter to this
function. Therefore, the function has four parameters: an input file stream variable,
an output file stream variable, the array containing the secret code, and the length of
the secret code. This discussion translates into the following algorithm for the
function compareCode:

a. Declare the variables.

b. Set a bool variable codeOk to true.

c. Read the length of the copy of the secret code.

d. If the length of the secret code and its copy are not the same, output
an appropriate error message and terminate the function.

e. For each digit in the input file:

e.1. Read the next digit of the copy of the secret code.

e.2. Output the corresponding digits from the secret code and its copy.

e.3. If the corresponding digits are not the same, output an error
message and set the bool variable codeOk to false.

f. If the bool variable codeOk is true

Output a message indicating that the secret code was transmitted
correctly.

else

Output an error message.

Following this algorithm, the definition of the function compareCode is:

void compareCode(ifstream& infile, ofstream& outfile,
const int list[], int length)

{

//Step a
int length2;
int digit;
bool codeOk;
int count;

codeOk = true; //Step b

infile >> length2; //Step c

Programming Example: Code Detection | 561

if (length != length2) //Step d
{

cout << "The original code and its copy "
<< "are not of the same length."
<< endl;

return;
}

outfile << "Code Digit Code Digit Copy"
<< endl;

for (count = 0; count < length; count++) //Step e
{

infile >> digit; //Step e.1
outfile << setw(5) << list[count]

<< setw(17) << digit; //Step e.2

if (digit != list[count]) //Step e.3
{

outfile << " code digits are not the same"
<< endl;

codeOk = false;
}

else
outfile << endl;

}

if (codeOk) //Step f
outfile << "Message transmitted OK."

<< endl;
else

outfile << "Error in transmission. "
<< "Retransmit!!" << endl;

}

The following is the algorithm for the function main:

Main

Algorithm

1. Declare the variables.

2. Open the files.

3. Call the function readCode to read the secret code.

4. if (length of the secret code <= 250)

Call the function compareCode to compare the codes.

else

Output an appropriate error message.

562 | Chapter 8: Arrays and Strings

8

COMPLETE PROGRAM LISTING

//**
// Author: D.S. Malik
//
// Program: Check Code
// This program determines whether a code is transmitted
// correctly.
//**

#include <iostream>
#include <fstream>
#include <iomanip>

using namespace std;

const int MAX_CODE_SIZE = 250;

void readCode(ifstream& infile, int list[],
int& length, bool& lenCodeOk);

void compareCode(ifstream& infile, ofstream& outfile,
const int list[], int length);

int main()
{

//Step 1
int codeArray[MAX_CODE_SIZE]; //array to store the secret

//code
int codeLength; //variable to store the

//length of the secret code
bool lengthCodeOk; //variable to indicate if the length

//of the secret code is less than or
//equal to 250

ifstream incode; //input file stream variable
ofstream outcode; //output file stream variable

char inputFile[51]; //variable to store the name of the
//input file

char outputFile[51]; //variable to store the name of
//the output file

cout << "Enter the input file name: ";
cin >> inputFile;
cout << endl;

//Step 2
incode.open(inputFile);
if (!incode)
{

cout << "Cannot open the input file." << endl;
return 1;

}

Programming Example: Code Detection | 563

cout << "Enter the output file name: ";
cin >> outputFile;
cout << endl;

outcode.open(outputFile);

readCode(incode, codeArray, codeLength,
lengthCodeOk); //Step 3

if (lengthCodeOk) //Step 4
compareCode(incode, outcode, codeArray,

codeLength);
else

cout << "Length of the secret code "
<< "must be <= " << MAX_CODE_SIZE
<< endl; //Step 5

incode.close();
outcode.close();

return 0;
}

//Place the definitions of the functions readCode and
//compareCode, as described previously, here.

Sample Run: In this sample run, the user input is shaded.

Enter the input file name: Ch8_SecretCodeData.txt

Enter the output file name: Ch8_SecretCodeOut.txt

Input File Data: (Ch8_SecretCodeData.txt)

7 9 2 7 8 3 5 6 7 9 2 7 8 3 5 6

Output File Data: (Ch8_SecretCodeOut.txt)

Code Digit Code Digit Copy
9 9
2 2
7 7
8 8
3 3
5 5
6 6

Message transmitted OK.

564 | Chapter 8: Arrays and Strings

8

PROGRAMMING EXAMPLE: Text Processing
(Line and letter count) Let us now write a program that reads a given text, outputs
the text as is, and also prints the number of lines and the number of times each letter
appears in the text. An uppercase letter and a lowercase letter are treated as being the
same; that is, they are tallied together.

Because there are 26 letters, we use an array of 26 components to perform the letter
count. We also need a variable to store the line count.

The text is stored in a file, which we will call textin.txt. The output will be
stored in a file, which we will call textout.out.

Input A file containing the text to be processed.

Output A file containing the text, number of lines, and the number of times a
letter appears in the text.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

Based on the desired output, it is clear that we must output the text as is. That is, if the
text contains any whitespace characters, they must be output as well. Furthermore, we
must count the number of lines in the text. Therefore, we must know where the line
ends, which means that we must trap the newline character. This requirement suggests
that we cannot use the extraction operator to process the input file. Because we also
need to perform the letter count, we use the get function to read the text.

Let us first describe the variables that are necessary to develop the program. This will
simplify the discussion that follows.

Variables We need to store the line count and the letter count. Therefore, we need a variable
to store the line count and 26 variables to perform the letter count. We will use an
array of 26 components to perform the letter count. We also need a variable to read
and store each character in turn, because the input file is to be read character by
character. Because data is to be read from an input file and output is to be saved in a
file, we need an input stream variable to open the input file and an output stream
variable to open the output file. These statements indicate that the function main

needs (at least) the following variables:

int lineCount; //variable to store the line count
int letterCount[26]; //array to store the letter count
char ch; //variable to store a character
ifstream infile; //input file stream variable
ofstream outfile; //output file stream variable

In this declaration, letterCount[0] stores the A count, letterCount[1]

stores the B count, and so on. Clearly, the variable lineCount and the array
letterCount must be initialized to 0.

Watch

the Video

Programming Example: Text Processing | 565

The algorithm for the program is:

1. Declare the variables.

2. Open the input and output files.

3. Initialize the variables.

4. While there is more data in the input file:

4.1. For each character in a line:

4.1.1. Read and write the character.

4.1.2. Increment the appropriate letter count.

4.2. Increment the line count.

5. Output the line count and letter counts.

6. Close the files.

To simplify the function main, we divide it into four functions:

• Function initialize

• Function copyText

• Function characterCount

• Function writeTotal

The following sections describe each of these functions in detail. Then, with the help
of these functions, we describe the algorithm for the function main.

initialize This function initializes the variable lineCount and the array letterCount to 0. It,
therefore, has two parameters: one corresponding to the variable lineCount and one
corresponding to the array letterCount. Clearly, the parameter corresponding to
lineCount must be a reference parameter. The definition of this function is:

void initialize(int& lc, int list[])
{

int j;
lc = 0;

for (j = 0; j < 26; j++)
list[j] = 0;

} //end initialize

copyText This function reads a line and outputs the line. After reading a character, it calls the
function characterCount to update the letter count. Clearly, this function has
four parameters: an input file stream variable, an output file stream variable, a char

variable, and the array to update the letter count.

Note that the copyText function does not perform the letter count, but we still pass the
array letterCount to it. We take this step because this function calls the function
characterCount, which needs the array letterCount to update the appropriate

566 | Chapter 8: Arrays and Strings

8

letter count. Therefore, we must pass the array letterCount to the copyText

function so that it can pass the array to the function characterCount.

void copyText(ifstream& intext, ofstream& outtext, char& ch,
int list[])

{

while (ch != '\n') //process the entire line
{

outtext << ch; //output the character
characterCount(ch, list); //call the function

//character count
intext.get(ch); //read the next character

}

outtext << ch; //output the newline character
} //end copyText

characterCount This function increments the letter count. To increment the appropriate letter count,
it must know what the letter is. Therefore, the characterCount function has two
parameters: a char variable and the array to update the letter count. In pseudocode,
this function is:

a. Convert the letter to uppercase.

b. Find the index of the array corresponding to this letter.

c. If the index is valid, increment the appropriate count. At this
step, we must ensure that the character is a letter. We are
counting only letters, so other characters—such as commas,
hyphens, and periods—are ignored.

Following this algorithm, the definition of this function is:

void characterCount(char ch, int list[])
{

int index;

ch = toupper(ch); //Step a

index = static_cast<int>(ch)
- static_cast<int>('A'); //Step b

if (0 <= index && index < 26) //Step c
list[index]++;

} //end characterCount

writeTotal This function outputs the line count and the letter count. It has three parameters: the
output file stream variable, the line count, and the array to output the letter count.
The definition of this function is:

Programming Example: Text Processing | 567

void writeTotal(ofstream& outtext, int lc, int list[])
{

int index;

outtext << endl << endl;
outtext << "The number of lines = " << lc << endl;

for (index = 0; index < 26; index++)
outtext << static_cast<char>(index

+ static_cast<int>('A'))
<< " count = " << list[index] << endl;

} //end writeTotal

We now describe the algorithm for the function main.

MAIN

ALGORITHM

1. Declare the variables.

2. Open the input file.

3. If the input file does not exist, exit the program.

4. Open the output file.

5. Initialize the variables, such as lineCount and the array
letterCount.

6. Read the first character.

7. While (not end of input file):

7.1. Process the next line; call the function copyText.

7.2. Increment the line count. (Increment the variable lineCount.)

7.3. Read the next character.

8. Output the line count and letter counts. Call the function
writeTotal.

9. Close the files.

COMPLETE PROGRAM LISTING

//***
// Author: D.S. Malik
//
// Program: Line and Letter Count
// This programs reads a text, outputs the text as is, and also
// prints the number of lines and the number of times each
// letter appears in the text. An uppercase letter and a
// lowercase letter are treated as being the same; that is,
// they are tallied together.
//***

568 | Chapter 8: Arrays and Strings

8

#include <iostream>
#include <fstream>
#include <cctype>

using namespace std;

void initialize(int& lc, int list[]);
void copyText(ifstream& intext, ofstream& outtext, char& ch,

int list[]);
void characterCount(char ch, int list[]);
void writeTotal(ofstream& outtext, int lc, int list[]);

int main()
{

//Step 1; Declare variables
int lineCount;
int letterCount[26];
char ch;
ifstream infile;
ofstream outfile;

infile.open("textin.txt"); //Step 2

if (!infile) //Step 3
{

cout << "Cannot open the input file."
<< endl;

return 1;
}

outfile.open("textout.out"); //Step 4

initialize(lineCount, letterCount); //Step 5

infile.get(ch); //Step 6

while (infile) //Step 7
{

copyText(infile, outfile, ch, letterCount); //Step 7.1
lineCount++; //Step 7.2
infile.get(ch); //Step 7.3

}

writeTotal(outfile, lineCount, letterCount); //Step 8

infile.close(); //Step 9
outfile.close(); //Step 9

return 0;
}

Programming Example: Text Processing | 569

void initialize(int& lc, int list[])
{

int j;
lc = 0;

for (j = 0; j < 26; j++)
list[j] = 0;

} //end initialize

void copyText(ifstream& intext, ofstream& outtext, char& ch,
int list[])

{

while (ch != '\n') //process the entire line

{

outtext << ch; //output the character

characterCount(ch, list); //call the function
//character count

intext.get(ch); //read the next character
}

outtext << ch; //output the newline character
} //end copyText

void characterCount(char ch, int list[])
{

int index;

ch = toupper(ch); //Step a

index = static_cast<int>(ch)
- static_cast<int>('A'); //Step b

if (0 <= index & index < 26) //Step c
list[index]++;

} //end characterCount

void writeTotal(ofstream& outtext, int lc, int list[])
{

int index;

outtext << endl << endl;
outtext << "The number of lines = " << lc << endl;

for (index = 0; index < 26; index++)
outtext << static_cast<char>(index

+ static_cast<int>('A'))
<< " count = " << list[index] << endl;

} //end writeTotal

570 | Chapter 8: Arrays and Strings

8

Sample Run (textout.out):

Today we live in an era where information is processed almost at the

speed of light. Through computers, the technological revolution is

drastically changing the way we live and communicate with one

another. Terms such as "the Internet," which were unfamiliar just

a few years ago, are very common today. With the help of computers you

can send letters to, and receive letters from, loved ones within

seconds. You no longer need to send a résumé by mail to apply for a

job; in many cases you can simply submit your job application via

the Internet. You can watch how stocks perform in real time, and

instantly buy and sell them. Students regularly "surf" the Internet

and use computers to design their classroom projects. They also use

powerful word-processing software to complete their term papers.

Many people maintain and balance their checkbooks on computers.

The number of lines = 15
A count = 53
B count = 7
C count = 30
D count = 19
E count = 81
F count = 11
G count = 10
H count = 29
I count = 41
J count = 4
K count = 3
L count = 31
M count = 26
N count = 50
O count = 59
P count = 21
Q count = 0
R count = 45
S count = 48
T count = 62
U count = 24
V count = 7
W count = 15
X count = 0
Y count = 20
Z count = 0

Programming Example: Text Processing | 571

QUICK REVIEW

1. A data type is simple if variables of that type can hold only one value at a time.

2. In a structured data type, each data item is a collection of other data items.

3. An array is a structured data type with a fixed number of components.
Every component is of the same type, and components are accessed using
their relative positions in the array.

4. Elements of a one-dimensional array are arranged in the form of a list.

5. There is no check on whether an array index is out of bounds.

6. In C++, an array index starts with 0.

7. An array index can be any expression that evaluates to a nonnegative integer.
The value of the index must always be less than the size of the array.

8. There are no aggregate operations on arrays, except for the input/output of
character arrays (C-strings).

9. Arrays can be initialized during their declaration. If there are fewer initial
values than the array size, the remaining elements are initialized to 0.

10. The base address of an array is the address of the first array component. For
example, if list is a one-dimensional array, the base address of list is the
address of list[0].

11. When declaring a one-dimensional array as a formal parameter, you usually
omit the array size. If you specify the size of a one-dimensional array in the
formal parameter declaration, the compiler will ignore the size.

12. In a function call statement, when passing an array as an actual parameter,
you use only its name.

13. As parameters to functions, arrays are passed by reference only.

14. Because as parameters, arrays are passed by reference only, when declaring an
array as a formal parameter, you do not use the symbol & after the data type.

15. A function cannot return a value of type array.

16. Although as parameters, arrays are passed by reference, when declaring an
array as a formal parameter, using the reserved word const before the data
type prevents the function from modifying the array.

17. Individual array components can be passed as parameters to functions.

18. The sequential search algorithm searches a list for a given item, starting with
the first element in the list. It continues to compare the search item with
the other elements in the list until either the item is found or the list has no
more elements left to be compared with the search item.

19. Selection sort sorts the list by finding the smallest (or equivalently largest)
element in the list and moving it to the beginning (or end) of the list.

20. For a list of length n, selection sort makes exactly
nðn� 1Þ

2
key compar-

isons and 3(n�1) item assignments.

572 | Chapter 8: Arrays and Strings

8

21. In C++, a string is any sequence of characters enclosed between double
quotation marks.

22. In C++, C-strings are null terminated.

23. In C++, the null character is represented as '\0'.

24. In the ASCII character set, the collating sequence of the null character is 0.

25. C-strings are stored in character arrays.

26. Character arrays can be initialized during declaration using string notation.

27. Input and output of C-strings is the only place where C++ allows aggregate
operations.

28. The header file cstring contains the specifications of the functions that
can be used for C-string manipulation.

29. Commonly used C-string manipulation functions include strcpy (string
copy), strcmp (string comparison), and strlen (string length).

30. C-strings are compared character by character.

31. Because C-strings are stored in arrays, individual characters in the C-string
can be accessed using the array component access notation.

32. Parallel arrays are used to hold related information.

33. In a two-dimensional array, the elements are arranged in a table form.

34. To access an element of a two-dimensional array, you need a pair of
indices: one for the row position and one for the column position.

35. In a two-dimensional array, the rows are numbered 0 to ROW_SIZE � 1

and the columns are numbered 0 to COLUMN_SIZE � 1.

36. If matrix is a two-dimensional array, then the base address of matrix is
the address of the array component matrix[0][0].

37. In row processing, a two-dimensional array is processed one row at a time.

38. In columnprocessing, a two-dimensional array is processed one column at a time.

39. When declaring a two-dimensional array as a formal parameter, you can
omit the size of the first dimension but not the second.

40. When a two-dimensional array is passed as an actual parameter, the number
of columns of the actual and formal arrays must match.

41. C++ stores, in computermemory, two-dimensional arrays in a roworder form.

EXERCISES

1. Mark the following statements as true or false.

a. A double type is an example of a simple data type.

b. A one-dimensional array is an example of a structured data type.

c. Arrays can be passed as parameters to a function either by value or by reference.

d. A function can return a value of type array.

e. The size of an array is determined at compile time.

Exercises | 573

f. The only aggregate operations allowable on int arrays are the increment
and decrement operations.

g. Given the declaration:

int list[10];

the statement:

list[5] = list[3] + list[2];

updates the content of the fifth component of the array list.

h. If an array index goes out of bounds, the program always terminates in
an error.

i. In C++, some aggregate operations are allowed for strings.

j. The declaration:

char name[16] = "John K. Miller";

declares name to be an array of 15 characters because the string "John K.

Miller" has only 14 characters.

k. The declaration:

char str = "Sunny Day";

declares str to be a string of an unspecified length.

l. As parameters, two-dimensional arrays are passed either by value or by
reference.

2. Consider the following declaration:

double passwords[100];

In this declaration, identify the following:

a. The array name.

b. The array size.

c. The data type of each array component.

d. The range of values for the index of the array.

3. Identify error(s), if any, in the following array declarations. If a statement is
incorrect, provide the correct statement.

a. double weights[100];

b. int age[0..80];

c. string students[101];

d. int100 list[];

e. double[50] salaries;

f. const double LENGTH = 30.00;

double list[LENGTH];

g. const int SIZE = 100;

int list[SIZE - 1];

574 | Chapter 8: Arrays and Strings

4. Determine whether the following array declarations are valid. If a declaration
is invalid, explain why.

a. string employees[82];

b. int myArray[50;

c. int SIZE;

double list[SIZE];

d. int X = 50;

double list[X - 60];

e. int ids[-30];

f. names string[10];

5. What would be a valid range for the index of an array of size 64?

6. Write C++ statements to do the following:

a. Declare an array beta of 20 components of type double.

b. Initialize each component of the array beta to 0.

c. Output the value of the fifth component of the array beta.

d. Set the value of the ninth component of the array beta to 70.50.

e. Set the value of the twelth component of beta to four times the value
of the eighth component of beta minus 15.

f. Use a for loop to output the value of a component of beta if its index
is a multiple of 3.

g. Output the value of the last component of beta.

h. Output the value of beta so that ten components per line are
printed.

7. What is the output of the following program segment?

double temp[5];

for (int i = 0; i < 5; i++)
temp[i] = pow(i, 2.0) + 2;

for (int i = 0; i < 5; i++)

cout << temp[i] << " ";

cout << endl;

temp[0] = pow(temp[1], 3);

temp[1] = temp[4] - temp[2];

temp[2] = temp[0] - 5;

for (int i = 0; i < 5; i++)

cout << temp[i] << " ";

cout << endl;

8

Exercises | 575

8. What is stored in list after the following C++ code executes?

int list[10];

for (int i = 0; i < 5; i++)

{

list[i] = i * i - 5;

if (i % 3 == 0)

list[i] = list[i] + i;

else
list[i] = list[i] - i;

}

9. What is stored in list after the following C++ code executes?

int list[10];

list[0] = 2;

list[1] = 3;

for (int i = 2; i < 10; i++)

{

list[i] = list[i - 1] + list[i - 2];

if (i > 7)

list[i] = 2 * list[i] - list[i - 2];

}

10. What is stored in myList after the following C++ code executes?

double myList[5];

myList[0] = 3.0;

myList[1] = 4.0;

for (int i = 2; i < 5; i++)

{

myList[i] = myList[i - 1] * myList[i - 2];

if (i > 3)

myList[i] = myList[i] / 4;

}

11. Correct the following code so that it correctly sets the value of each
element of myList to the index of the element.

int myList[10];

for (int i = 1; i <= 10; i--)

myList[i] = [i];

12. Correct the following code so that it correctly initializes and outputs the
elements of the array myList.

int myList[10];

for (int i = 1; i <= 10; i++)

cin >> myList;

576 | Chapter 8: Arrays and Strings

8

for (int i = 1; i <= 10; i++)

cout << myList[i] << " ";

cout << endl;

13. What is array index out of bounds? Does C++ check for array indices
within bounds?

14. Suppose that scores is an array of 10 components of type double, and:

scores = {2.5, 3.9, 4.8, 6.2, 6.2, 7.4, 7.9, 8.5, 8.5, 9.9}

The following is supposed to ensure that the elements of scores are in
nondecreasing order. However, there are errors in the code. Find and correct
the errors.

for (int i = 1; i <= 10; i++)
if (scores[i] >= scores[i + 1])

cout << i << " and " << (i + 1)
<< " elements of scores are out of order." << endl;

15. Write C++ statements to define and initialize the following arrays.

a. Array heights of 10 components of type double. Initialize this array
to the following values: 5.2, 6.3, 5.8, 4.9, 5.2, 5.7, 6.7, 7.1, 5.10, 6.0.

b. Array weights of 7 components of type int. Initialize this array to the
following values: 120, 125, 137, 140, 150, 180, 210.

c. Array specialSymbols of type char. Initialize this array to the
following values: '$', '#', '%', '@', '&', '! ', '^'.

d. Array seasons of 4 components of type string. Initialize this array to
the following values: "fall", "winter", "spring", "summer".

16. Determine whether the following array declarations are valid. If a
declaration is valid, determine the size of the array.

a. int list[] = {18, 13, 14, 16};

b. int x[10] = {1, 7, 5, 3, 2, 8};

c. double y[4] = {2.0, 5.0, 8.0, 11.0, 14.0};

d. double lengths[] = {8.2, 3.9, 6.4, 5.7, 7.3};

e. int list[7] = {12, 13, , 14, 16, , 8};

f. string names[8] = {"John","Lisa", "Chris", "Katie"};

17. Suppose that you have the following declaration:

int list[7] = {6, 10, 14, 18, 22};

If this declaration is valid, what is stored in each components of list.

18. Consider the following declaration:

int list[] = {3, 8, 10, 13, 6, 11};

a. Write a C++ code that will output the value stored in each component of list.

b. Write a C++ code that will set the values of the first five components of
list as follows: The value of the ith component is the value of the ith
component minus three times the value of the (i+1)th component.

Exercises | 577

19. What is the output of the following C++ code?

#include <iostream>

using namespace std;

int main()
{

int beta[7] = {3, 5};

for (int i = 2; i < 7; i++)

{

beta[i] = 3 * i + 2;

beta[i - 1] = beta[i - 1] + beta[i];

beta[i - 2] = beta[i - 2] + beta [i - 1];

}

for (int i = 0; i < 7; i++)

cout << beta[i] << " ";

cout << endl;

return 0;
}

20. What is the output of the following C++ code?

#include <iostream>

using namespace std;

int main()
{

int list1[5];

int list2[15];

for (int i = 0; i < 5; i++)

list1[i] = i * i - 2;

cout << "list1: ";

for (int i = 0; i < 5; i++)

cout << list1[i] << " ";

cout << endl;

for (int i = 0; i < 5; i++)

{

list2[i] = list1[i] * i;

list2[i + 5] = list1[4 - i] + i;

list2[i + 10] = list2[9 - i] + list2[i];

}

cout << "list2: ";

for (int i = 0; i < 7; i++)

cout << list2[i] << " ";

cout << endl;

return 0;
}

578 | Chapter 8: Arrays and Strings

21. Consider the following function heading:

void tryMe(int x[], int size);

and the declarations:

int list[100];
int score[50];
double gpas[50];

Which of the following function calls is valid?

a. tryMe(list, 100);

b. tryMe(list, 75);

c. tryMe(score, 100);

d. tryMe(score, 49);

e. tryMe(gpas, 50);

22. Suppose that you have the following function definition:

void sum(int x, int y, int& z)
{

z = x + y;
}

Consider the following declarations:

int list1[10], list2[10], list3[10];
int a, b, c;

Which of the following function calls is valid?

a. sum(a, b, c);

b. sum(list1[0], list2[0], a);

c. sum(list1, list2, c);

d. for (int i = 1; i <= 10; i++)

sum(list1[i], list2[i], list3[i]);

23. What is the output of the following C++ code?

double salary[5] = {25000, 36500, 85000, 62500, 97000};
double raise = 0.03;

cout << fixed << showpoint << setprecision(2);

for (int i = 0; i < 5; i++)
cout << (i + 1) << " " << salary[i] << " "

<< salary[i] * raise << endl;

24. A car dealer has 10 salespersons. Each salesperson keeps track of the number
of cars sold each month and reports it to the management at the end of the
month. The management keeps the data in a file and assigns a number, 1 to
10, to each salesperson. The following statement declares an array, cars, of

8

Exercises | 579

10 components of type int to store the number of cars sold by each
salesperson:

int cars[10];

Write the code to store the number of cars sold by each salesperson in the
array cars, output the total numbers of cars sold at the end of each month,
and output the salesperson number selling the maximum number of cars.
(Assume that data is in the file cars.dat, and that this file has been opened
using the ifstream variable inFile.)

25. What is the output of the following program?

#include <iostream>

using namespace std;

int main()
{

int count;
int alpha[5];

alpha[0] = 5;
for (count = 1; count < 5; count++)
{

alpha[count] = 5 * count + 10;
alpha[count - 1] = alpha[count] - 4;

}

cout << "List elements: ";
for (count = 0; count < 5; count++)

cout << alpha[count] << " ";
cout << endl;

return 0;
}

26. What is the output of the following program?

#include <iostream>

using namespace std;

int main()
{

int j;
int one[5];
int two[10];

for (j = 0; j < 5; j++)
one[j] = 5 * j + 3;

cout << "One contains: ";
for (j = 0; j < 5; j++)

cout << one[j] << " ";

580 | Chapter 8: Arrays and Strings

cout << endl;
for (j = 0; j < 5; j++)
{

two[j] = 2 * one[j] - 1;
two[j + 5] = one[4 - j] + two[j];

}

cout << "Two contains: ";
for (j = 0; j < 10; j++)

cout << two[j] << " ";
cout << endl;

return 0;
}

27. What is the output of the following C++ code?

const double PI = 3.14159;
double cylinderRadii[5] = {3.5, 7.2, 10.5, 9.8, 6.5};
double cylinderHeights[5] = {10.7, 6.5, 12.0, 10.5, 8.0};
double cylinderVolumes[5];

cout << fixed << showpoint << setprecision(2);

for (int i = 0; i < 5; i++)
cylinderVolumes[i] = 2 * PI * cylinderRadii[i]

* cylinderHeights[i];

for (int i = 0; i < 5; i++)
cout << (i + 1) << " " << cylinderRadii[i] << " "

<< cylinderHeights[i] << " " << cylinderVolumes[i] << endl;

28. When an array is passed as an actual parameter to a function, what is actually
being passed?

29. In C++, as an actual parameter, can an array be passed by value?

30. Sort the following list using the selection sort algorithm as discussed in this
chapter. Show the list after each iteration of the outer for loop.

6, 45, 10, 25, 58, 2, 50, 30, 86

31. Sort the following list using the selection sort algorithm as discussed in this
chapter. Show the list after each iteration of the outer for loop.

36, 55, 17, 35, 63, 85, 12, 48, 3, 66

32. Given the declaration:

char string15[16];

Mark the following statements as valid or invalid. If a statement is invalid, explain why.

a. strcpy(string15, "Hello there");

b. strlen(string15);

c. string15 = "Jacksonville";

8

Exercises | 581

d. cin >> string15;

e. cout << string15;

f. if (string15 >= "Nice day")
cout << string15;

g. string15[6] = 't';

33. Given the declaration:

char str1[15];
char str2[15] = "Good day";

Mark the following statements as valid or invalid. If a statement is invalid, explain
why.

a. str1 = str2;

b. if (str1 == str2)
cout << " Both strings are of the same length." << endl;

c. if (strlen(str1) >= strlen(str2))
str1 = str2;

d. if (strcmp(str1, str2) < 0)
cout << "str1 is less that str2." << endl;

34. Given the declaration:

char name[8] = "Shelly";

Mark the following statements as ‘‘Yes’’ if they output Shelly. Otherwise, mark
the statement as ‘‘No’’ and explain why it does not output Shelly.

a. cout << name;

b. for (int j = 0; j < 6; j++)
cout << name[j];

c. int j = 0;
while (name[j] != '\0')

cout << name[j++];

d. int j = 0;
while (j < 8)

cout << name[j++];

35. Given the declaration:

char str1[21];
char str2[21];

a. Write a C++ statement that stores "Sunny Day" in str1.

b. Write a C++ statement that stores the length of str1 into the int

variable length.

c. Write a C++ statement that copies the value of name into str2.

d. Write C++ code that outputs str1 if str1 is less than or equal to
str2, and otherwise outputs str2.

582 | Chapter 8: Arrays and Strings

36. Assume the following declarations:

char name[21];
char yourName[21];
char studentName[31];

Mark the following statements as valid or invalid. If a statement is invalid, explain why.

a. cin >> name;

b. cout << studentName;

c. yourName[0] = '\0';

d. yourName = studentName;

e. if (yourName == name)
studentName = name;

f. int x = strcmp(yourName, studentName);

g. strcpy(studentName, name);

h. for (int j = 0; j < 21; j++)
cout << name[j];

37. Define a two-dimensional array named temp of three rows and four columns
of type int such that the first row is initialized to 6, 8, 12, 9; the second row is
initialized to 17, 5, 10, 6; and the third row is initialized to 14, 13, 16, 20.

38. Suppose that array temp is as defined in Exercise 37. Write C++ statements
to accomplish the following:

a. Output the contents of the first row and first column element of temp.

b. Output the contents of the first row and last column element of temp.

c. Output the contents of the last row and first column element of temp.

d. Output the contents of the last row and last column element of temp.

39. Consider the following declarations:

const int CAR_TYPES = 5;
const int COLOR_TYPES = 6;

double sales[CAR_TYPES][COLOR_TYPES];

a. How many components does the array sales have?

b. What is the number of rows in the array sales?

c. What is the number of columns in the array sales?

d. To sum the sales by CAR_TYPES, what kind of processing is required?

e. To sum the sales by COLOR_TYPES, what kind of processing is required?

40. Write C++ statements that do the following:

a. Declare an array alpha of 10 rows and 20 columns of type int.

b. Initialize the array alpha to 0.

c. Store 1 in the first row and 2 in the remaining rows.

8

Exercises | 583

d. Store 5 in the first column, and make sure that the value in each
subsequent column is twice the value in the previous column.

e. Print the array alpha one row per line.

f. Print the array alpha one column per line.

41. Consider the following declaration:

int beta[3][3];

What is stored in beta after each of the following statements executes?

a. for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

beta[i][j] = 0;

b. for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

beta[i][j] = i + j;

c. for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

beta[i][j] = i * j;

d. for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

beta[i][j] = 2 * (i + j) % 4;

42. Suppose that you have the following declarations:

int times[30][7];
int speed[15][7];
int trees[100][7];
int students[50][7];

a. Write the definition of the function print that can be used to output
the contents of these arrays.

b. Write the C++ statements that calls the function print to output the
contents of the arrays times, speed, trees, and students.

PROGRAMMING EXERCISES

1. Write a C++ program that declares an array alpha of 50 components of type
double. Initialize the array so that the first 25 components are equal to the
square of the index variable, and the last 25 components are equal to three times
the index variable. Output the array so that 10 elements per line are printed.

2. Write a C++ function, smallestIndex, that takes as parameters an int

array and its size and returns the index of the first occurrence of the smallest
element in the array. Also, write a program to test your function.

3. Write a C++ function, lastLargestIndex, that takes as parameters an
int array and its size and returns the index of the last occurrence of the
largest element in the array. Also, write a program to test your function.

584 | Chapter 8: Arrays and Strings

4. Write a program that reads a file consisting of students’ test scores in the
range 0–200. It should then determine the number of students having
scores in each of the following ranges: 0–24, 25–49, 50–74, 75–99,
100–124, 125–149, 150–174, and 175–200. Output the score ranges
and the number of students. (Run your program with the following input
data: 76, 89, 150, 135, 200, 76, 12, 100, 150, 28, 178, 189, 167, 200,
175, 150, 87, 99, 129, 149, 176, 200, 87, 35, 157, 189.)

5. Write a program that prompts the user to input a string and outputs the
string in uppercase letters. (Use a character array to store the string.)

6. The history teacher at your school needs help in grading a True/False test.
The students’ IDs and test answers are stored in a file. The first entry in the
file contains answers to the test in the form:

TFFTFFTTTTFFTFTFTFTT

Every other entry in the file is the student ID, followed by a blank, followed
by the student’s responses. For example, the entry:

ABC54301 TFTFTFTT TFTFTFFTTFT

indicates that the student ID is ABC54301 and the answer to question 1 is
True, the answer to question 2 is False, and so on. This student did not
answer question 9. The exam has 20 questions, and the class has more than
150 students. Each correct answer is awarded two points, each wrong answer
gets one point deducted, and no answer gets zero points. Write a program
that processes the test data. The output should be the student’s ID, followed
by the answers, followed by the test score, followed by the test grade.
Assume the following grade scale: 90%–100%, A; 80%–89.99%, B;
70%–79.99%, C; 60%–69.99%, D; and 0%–59.99%, F.

7. Write a program that allows the user to enter the last names of five candidates
in a local election and the number of votes received by each candidate. The
program should then output each candidate’s name, the number of votes
received, and the percentage of the total votes received by the candidate.
Your program should also output the winner of the election. A sample
output is:

Candidate Votes Received % of Total Votes

Johnson 5000 25.91

Miller 4000 20.73

Duffy 6000 31.09

Robinson 2500 12.95

Ashtony 1800 9.33

Total 19300

The Winner of the Election is Duffy.

8

Programming Exercises | 585

8. Consider the following function main:

int main()
{

int inStock[10][4];
int alpha[20];
int beta[20];
int gamma[4] = {11, 13, 15, 17};
int delta[10] = {3, 5, 2, 6, 10, 9, 7, 11, 1, 8};

.

.

.
}

a. Write the definition of the function setZero that initializes any one-
dimensional array of type int to 0.

b. Write the definition of the function inputArray that prompts the user
to input 20 numbers and stores the numbers into alpha.

c. Write the definition of the function doubleArray that initializes the ele-
ments of beta to two times the corresponding elements in alpha. Make
sure that you prevent the function from modifying the elements of alpha.

d. Write the definition of the function copyGamma that sets the elements
of the first row of inStock to gamma and the remaining rows of
inStock to three times the previous row of inStock. Make sure that
you prevent the function from modifying the elements of gamma.

e. Write the definition of the function copyAlphaBeta that stores alpha
into the first five rows of inStock and beta into the last five rows of
inStock. Make sure that you prevent the function from modifying the
elements of alpha and beta.

f. Write the definition of the function printArray that prints any one-
dimensional array of type int. Print 15 elements per line.

g. Write the definition of the function setInStock that prompts the user
to input the elements for the first column of inStock. The function
should then set the elements in the remaining columns to two times the
corresponding element in the previous column, minus the correspond-
ing element in delta.

h. Write C++ statements that call each of the functions in parts a through g.

i. Write a C++ program that tests the function main and the functions
discussed in parts a through g. (Add additional functions, such as printing
a two-dimensional array, as needed.)

9. Write a program that uses a two-dimensional array to store the highest and
lowest temperatures for each month of the year. The program should output
the average high, average low, and the highest and lowest temperatures for
the year. Your program must consist of the following functions:

586 | Chapter 8: Arrays and Strings

a. Function getData: This function reads and stores data in the two-
dimensional array.

b. Function averageHigh: This function calculates and returns the
average high temperature for the year.

c. Function averageLow: This function calculates and returns the aver-
age low temperature for the year.

d. Function indexHighTemp: This function returns the index of the
highest high temperature in the array.

e. Function indexLowTemp: This function returns the index of the
lowest low temperature in the array.

(These functions must all have the appropriate parameters.)

10. Programming Exercise 10 in Chapter 6 asks you find the mean and standard
deviation of five numbers. Extend this programming exercise to find the
mean and standard deviation of up to 100 numbers. Suppose that the mean
(average) of n numbers x1, x2, . . ., xn is x. Then, the standard deviation of
these numbers is:

s ¼

ffi

ðx1 � xÞ2 þ ðx2 � xÞ2 þ � � � þ ðxi � xÞ2 þ � � � þ ðxn � xÞ2
n

s

11. (Adding Large Integers) In C++, the largest int value is 2147483647.
So, an integer larger than this cannot be stored and processed as an integer.
Similarly, if the sum or product of two positive integers is greater than
2147483647, the result will be incorrect. One way to store and manipulate
large integers is to store each individual digit of the number in an array.
Write a program that inputs two positive integers of, at most, 20 digits and
outputs the sum of the numbers. If the sum of the numbers has more than
20 digits, output the sum with an appropriate message. Your program must,
at least, contain a function to read and store a number into an array and
another function to output the sum of the numbers. (Hint: Read numbers as
strings and store the digits of the number in the reverse order.)

12. Jason, Samantha, Ravi, Sheila, and Ankit are preparing for an upcoming
marathon. Each day of the week, they run a certain number of miles and
write them into a notebook. At the end of the week, they would like to
know the number of miles run each day, the total miles for the week, and
average miles run each day. Write a program to help them analyze their
data. Your program must contain parallel arrays: an array to store the names
of the runners and a two-dimensional array of five rows and seven columns
to store the number of miles run by each runner each day. Furthermore,
your program must contain at least the following functions: a function to
read and store the runners’ names and the numbers of miles run each day; a
function to find the total miles run by each runner and the average number

8

Programming Exercises | 587

of miles run each day; and a function to output the results. (You may
assume that the input data is stored in a file and each line of data is in the
following form: runnerName milesDay1 milesDay2 milesDay3

milesDay4 milesDay5 milesDay6 milesDay7.)

13. Write a program to calculate students’ average test scores and their grades.
You may assume the following input data:

Johnson 85 83 77 91 76
Aniston 80 90 95 93 48
Cooper 78 81 11 90 73
Gupta 92 83 30 69 87
Blair 23 45 96 38 59
Clark 60 85 45 39 67
Kennedy 77 31 52 74 83
Bronson 93 94 89 77 97
Sunny 79 85 28 93 82
Smith 85 72 49 75 63

Use three arrays: a one-dimensional array to store the students’ names, a
(parallel) two-dimensional array to store the test scores, and a parallel one-
dimensional array to store grades. Your program must contain at least the
following functions: a function to read and store data into two arrays, a
function to calculate the average test score and grade, and a function to
output the results. Have your program also output the class average.

14. A company hired 10 temporary workers who are paid hourly and you are
given a data file that contains the last name of the employees, the number of
hours each employee worked in a week, and the hourly pay rate of each
employee. You are asked to write a program that computes each employ-
ee’s weekly pay and the average salary of all the workers. The program then
outputs the weekly pay of each employee, the average weekly pay, and the
names of all the employees whose pay is greater than or equal to the average
pay. If the number of hours worked in a week is more than 40 hours, then
the pay rate for the hours over 40 is 1.5 times the regular hourly rate. Use
two parallel arrays: a one-dimensional array to store the names of all the
employees, and a two-dimensional array of 10 rows and 3 columns to store
the number of hours an employee worked in a week, the hourly pay rate,
and the weekly pay. Your program must contain at least the following
functions—a function to read the data from the file into the arrays, a
function to determine the weekly pay, a function to output the names of
all the employees whose pay is greater than or equal to the average weekly
pay, and a function to output each employee’s data.

15. Children often play a memory game in which a deck of cards containing
matching pairs is used. The cards are shuffled and placed face down on a
table. The players then take turns and select two cards at a time. If both
cards match, they are left face up; otherwise, the cards are placed face down
at the same positions. Once the players see the selected pair of cards and if

588 | Chapter 8: Arrays and Strings

the cards do not match, then they can memorize the cards and use their
memory to select the next pair of cards. The game continues until all the
cards are face up. Write a program to play the memory game. Use a two-
dimensional array of 4 rows and 4 columns to use a deck of 16 cards with 8
matching pairs and you can use numbers 1 to 8 to mark the cards. (If you
use a 6 by 6 array, then you will need 18 matching pairs, and so on.) Use
random number generators to randomly store the pairs in the array. Use
appropriate functions in your program, and the main program should be
merely a call to functions.

16. (Airplane Seating Assignment) Write a program that can be used to
assign seats for a commercial airplane. The airplane has 13 rows, with six
seats in each row. Rows 1 and 2 are first class, rows 3 through 7 are business
class, and rows 8 through 13 are economy class. Your program must prompt
the user to enter the following information:

a. Ticket type (first class, business class, or economy class)

b. Desired seat

Output the seating plan in the following form:

Here, * indicates that the seat is available; X indicates that the seat is
occupied. Make this a menu-driven program; show the user’s choices and
allow the user to make the appropriate choices.

8

A B C D E F

Row 1 * * X * X X

Row 2 * X * X * X

Row 3 * * X X * X

Row 4 X * X * X X

Row 5 * X * X * *

Row 6 * X * * * X

Row 7 X * * * X X

Row 8 * X * X X *

Row 9 X * X X * X

Row 10 * X * X X X

Row 11 * * X * X *

Row 12 * * X X * X

Row 13 * * * * X *

Programming Exercises | 589

This page intentionally left blank

RECORDS (structs)
IN THIS CHAPTER , YOU WILL :

. Learn about records (structs)

. Examine various operations on a struct

. Explore ways to manipulate data using a struct

. Learn about the relationship between a struct and functions

. Discover how arrays are used in a struct

. Learn how to create an array of struct items

9C H A P T E R

In Chapter 8, you learned how to group values of the same type by using arrays. You also
learned how to process data stored in an array and how to perform list operations, such as
searching and sorting.

This chapter may be skipped without experiencing any discontinuation.

In this chapter, you will learn how to group related values that are of different types. C++
provides another structured data type, called a struct (some languages use the term
‘‘record’’), to group related items of different types. An array is a homogeneous data structure;
a struct is typically a heterogeneous data structure. The treatment of a struct in this chapter
is similar to the treatment of a struct in C. A struct in this chapter, therefore, is a C-like
struct. Chapter 10 introduces and discusses another structured data type, called a class.

Records (structs)
Suppose that you want to write a program to process student data. A student record
consists of, among other things, the student’s name, student ID, GPA, courses taken,
and course grades. Thus, various components are associated with a student. However,
these components are all of different types. For example, the student’s name is a string,
and the GPA is a floating-point number. Because these components are of different
types, you cannot use an array to group all of the items associated with a student. C++
provides a structured data type called struct to group items of different types.
Grouping components that are related but of different types offers several advantages.
For example, a single variable can pass all the components as parameters to a function.

struct: A collection of a fixed number of components in which the components are
accessed by name. The components may be of different types.

The components of a struct are called the members of the struct. The general syntax
of a struct in C++ is:

struct structName
{

dataType1 identifier1;
dataType2 identifier2;

.

.

.
dataTypen identifiern;

};

In C++, struct is a reserved word. The members of a struct, even though they
are enclosed in braces (that is, they form a block), are not considered to form a
compound statement. Thus, a semicolon (after the right brace) is essential to end the

592 | Chapter 9: Records (structs)

struct statement. A semicolon at the end of the struct definition is, therefore, a
part of the syntax.

The statement:

struct houseType
{

string style;
int numOfBedrooms;
int numOfBathrooms;
int numOfCarsGarage;
int yearBuilt;
int finishedSquareFootage;
double price;
double tax;

};

defines a struct houseType with 8 members. The member style is of type string,
the members numOfBedrooms, numOfBathrooms, numOfCarsGarage, yearBuilt, and
finishedSquareFootage are of type int, and the members price and tax are of type
double.

Like any type definition, a struct is a definition, not a declaration. That is, it defines
only a data type; no memory is allocated.

Once a data type is defined, you can declare variables of that type.

For example, the following statement defines newHouse to be a struct variable of type
houseType:

//variable declaration
houseType newHouse;

The memory allocated is large enough to store style, numOfBedrooms,
numOfBathrooms, numOfCarsGarage, yearBuilt, finishedSquareFootage,
price, and tax (see Figure 9-1).

9

style

numOfBedrooms

newHouse

numOfBathrooms

numOfCarsGarage

yearBuilt

finishedSquareFootage

yearBuilt

price

tax

FIGURE 9-1 struct newHouse

Records (structs) | 593

You can also declare struct variables when you define the struct. For example,

consider the following statements:

struct houseType
{

string style;
int numOfBedrooms;
int numOfBathrooms;
int numOfCarsGarage;
int yearBuilt;
int finishedSquareFootage;
double price;
double tax;

} tempHouse;

These statements define the struct houseType and also declare tempHouse to be a

variable of type houseType.

Typically, in a program, a struct is defined before the definitions of all the functions in

the program, so that the struct can be used throughout the program. Therefore, if you

define a struct and also simultaneously declare a struct variable (as in the preceding

statements), then that struct variable becomes a global variable and thus can be

accessed anywhere in the program. Keeping in mind the side effects of global variables,

you should first only define a struct and then declare the struct variables.

Accessing struct Members
In arrays, you access a component by using the array name together with the relative
position (index) of the component. The array name and index are separated using square
brackets. To access a structure member (component), you use the struct variable name
together with the member name; these names are separated by a dot (period). The syntax
for accessing a struct member is:

structVariableName.memberName

The structVariableName.memberName is just like any other variable. For example,
newStudent.courseGrade is a variable of type char, newStudent.firstName is a
string variable, and so on. As a result, you can do just about anything with struct

members that you normally do with variables. You can, for example, use them in assign-
ment statements or input/output (where permitted) statements.

In C++, the dot (.) is an operator called the member access operator.

Consider the following statements:

struct studentType
{

string firstName;
string lastName;
char courseGrade;

594 | Chapter 9: Records (structs)

int testScore;
int programmingScore;
double GPA;

};

//variables
studentType newStudent;
studentType student;

Suppose you want to initialize the member GPA of newStudent to 0.0. The following
statement accomplishes this task:

newStudent.GPA = 0.0;

Similarly, the statements:

newStudent.firstName = "John";
newStudent.lastName = "Brown";

store "John" in the member firstName and "Brown" in the member lastName of
newStudent.

After the preceding three assignment statements execute, newStudent is as shown in
Figure 9-2.

The statement:

cin >> newStudent.firstName;

9

newStudent

firstName

lastName

courseGrade

testScore

programmingScore

GPA 0.0

Brown

John

FIGURE 9-2 struct newStudent

Records (structs) | 595

reads the next string from the standard input device and stores it in:

newStudent.firstName

The statement:

cin >> newStudent.testScore >> newStudent.programmingScore;

reads two integer values from the keyboard and stores them in newStudent.testScore

and newStudent.programmingScore, respectively.

Suppose that score is a variable of type int. The statement:

score = (newStudent.testScore + newStudent.programmingScore) / 2;

assigns the average of newStudent.testScore and newStudent.programmingScore

to score.

The following statement determines the course grade and stores it in
newStudent.courseGrade:

if (score >= 90)
newStudent.courseGrade = 'A';

else if (score >= 80)
newStudent.courseGrade = 'B';

else if (score >= 70)
newStudent.courseGrade = 'C';

else if (score >= 60)
newStudent.courseGrade = 'D';

else
newStudent.courseGrade = 'F';

Assignment
We can assign the value of one struct variable to another struct variable of the same type
by using an assignment statement. Suppose that newStudent is as shown in Figure 9-3.

newStudent

firstName

lastName

courseGrade

testScore

programmingScore

GPA 3.9

Robinson

A

95

98

Lisa

FIGURE 9-3 struct newStudent

596 | Chapter 9: Records (structs)

The statement:

student = newStudent;

copies the contents of newStudent into student. After this assignment statement
executes, the values of student are as shown in Figure 9-4.

In fact, the assignment statement:

student = newStudent;

is equivalent to the following statements:

student.firstName = newStudent.firstName;
student.lastName = newStudent.lastName;
student.courseGrade = newStudent.courseGrade;
student.testScore = newStudent.testScore;
student.programmingScore = newStudent.programmingScore;
student.GPA = newStudent.GPA;

Comparison (Relational Operators)
To compare struct variables, you compare them member-wise. As with an array, no
aggregate relational operations are performed on a struct. For example, suppose that
newStudent and student are declared as shown earlier. Furthermore, suppose that
you want to see whether student and newStudent refer to the same student. Now
newStudent and student refer to the same student if they have the same first name
and the same last name. To compare the values of student and newStudent, you must
compare them member-wise, as follows:

9

student

firstName

lastName

courseGrade

testScore

programmingScore

GPA 3.9

Robinson

A

95

98

Lisa

FIGURE 9-4 student after student = newStudent

Records (structs) | 597

if (student.firstName == newStudent.firstName &&
student.lastName == newStudent.lastName)

.

.

.

Although you can use an assignment statement to copy the contents of one struct into
another struct of the same type, you cannot use relational operators on struct

variables. Therefore, the following would be illegal:

if (student == newStudent) //illegal
.
.
.

Input /Output
No aggregate input/output operations are allowed on a struct variable. Data in a
struct variable must be read one member at a time. Similarly, the contents of a struct

variable must be written one member at a time.

We have seen how to read data into a struct variable. Let us now see how to output a
struct variable. The statement:

cout << newStudent.firstName << " " << newStudent.lastName
<< " " << newStudent.courseGrade
<< " " << newStudent.testScore
<< " " << newStudent.programmingScore
<< " " << newStudent.GPA << endl;

outputs the contents of the struct variable newStudent.

struct Variables and Functions
Recall that arrays are passed by reference only, and a function cannot return a value of
type array. However:

• A struct variable can be passed as a parameter either by value or by reference, and

• A function can return a value of type struct.

The following function reads and stores a student’s first name, last name, test score,
programming score, and GPA. It also determines the student’s course grade and stores it
in the member courseGrade.

void readIn(studentType& student)
{

int score;

cin >> student.firstName >> student.lastName;
cin >> student.testScore >> student.programmingScore;
cin >> student.GPA;

score = (newStudent.testScore + newStudent.programmingScore) / 2;

598 | Chapter 9: Records (structs)

if (score >= 90)
student.courseGrade = 'A';

else if (score >= 80)
student.courseGrade = 'B';

else if (score >= 70)
student.courseGrade = 'C';

else if (score >= 60)
student.courseGrade = 'D';

else
student.courseGrade = 'F';

}

The statement:

readIn(newStudent);

calls the function readIn. The function readIn stores the appropriate information in
the variable newStudent.

Similarly, we can write a function that will print the contents of a struct variable. For
example, the following function outputs the contents of a struct variable of type
studentType on the screen:

void printStudent(studentType student)
{

cout << student.firstName << " " << student.lastName
<< " " << student.courseGrade
<< " " << student.testScore
<< " " << student.programmingScore
<< " " << student.GPA << endl;

}

Arrays versus structs
The previous discussion showed us that a struct and an array have similarities as well as
differences.Table 9-1 summarizes this discussion. 9

TABLE 9-1 Arrays vs. structs

Aggregate Operation Array struct

Arithmetic No No

Assignment No Yes

Input/output No (except strings) No

Comparison No No

Parameter passing By reference only By value or by reference

Function returning a value No Yes

Records (structs) | 599

Arrays in structs
A list is a set of elements of the same type. Thus, a list has two things associated with it:
the values (that is, elements) and the length. Because the values and the length are both
related to a list, we can define a struct containing both items.

const int ARRAY_SIZE = 1000;

struct listType
{

int listElem[ARRAY_SIZE]; //array containing the list
int listLength; //length of the list

};

The following statement declares intList to be a struct variable of type listType

(see Figure 9-5):

listType intList;

The variable intList has two members: listElem, an array of 1000 components of
type int, and listLength, of type int. Moreover, intList.listElem accesses the
member listElem, and intList.listLength accesses the member listLength.

Consider the following statements:

intList.listLength = 0; //Line 1
intList.listElem[0] = 12; //Line 2
intList.listLength++; //Line 3
intList.listElem[1] = 37; //Line 4
intList.listLength++; //Line 5

The statement in Line 1 sets the value of the member listLength to 0. The statement
in Line 2 stores 12 in the first component of the array listElem. The statement in Line
3 increments the value of listLength by 1. The meaning of the other statements is
similar. After these statements execute, intList is as shown in Figure 9-6.

.

.

.

listElem[0]

listLength

listElem[1]

listElem[999]

intList

listElem

listElem[2]

FIGURE 9-5 struct variable intList

600 | Chapter 9: Records (structs)

Next, we write the sequential search algorithm to determine whether a given item is in
the list. If searchItem is found in the list, then the function returns its location in the
list; otherwise, the function returns -1.

int seqSearch(const listType& list, int searchItem)
{

int loc;

bool found = false;

for (loc = 0; loc < list.listLength; loc++)
if (list.listElem[loc] == searchItem)
{

found = true;
break;

}

if (found)
return loc;

else
return -1;

}

In this function, because listLength is a member of list, we access this by
list.listLength. Similarly, we can access an element of list via
list.listElem[loc].

Notice that the formal parameter list of the function seqSearch is declared as
a constant reference parameter. This means that list receives the address of the
corresponding actual parameter, but list cannot modify the actual parameter.

Recall that when a variable is passed by value, the formal parameter copies the value of
the actual parameter. Therefore, if the formal parameter modifies the data, the modifica-
tion has no effect on the data of the actual parameter.

9

37

12

.

.

.

2

listElem[0]

listLength

listElem[1]

listElem[999]

intList

listElem

listElem[2]

FIGURE 9-6 intList after the statements in Lines 1 through 5 execute

Records (structs) | 601

Suppose that a struct has several data members requiring a large amount of memory to
store the data, and you need to pass a variable of that struct type by value. The
corresponding formal parameter then receives a copy of the data of the variable. The
compiler must then allocate memory for the formal parameter in order to copy the value
of the actual parameter. This operation might require, in addition to a large amount of
storage space, a considerable amount of computer time to copy the value of the actual
parameter into the formal parameter.

On the other hand, if a variable is passed by reference, the formal parameter receives only
the address of the actual parameter. Therefore, an efficient way to pass a variable as a
parameter is by reference. If a variable is passed by reference, then when the formal
parameter changes, the actual parameter also changes. Sometimes, however, you do not
want the function to be able to change the values of the actual parameter. In C++, you
can pass a variable by reference and still prevent the function from changing its value.
This is done by using the keyword const in the formal parameter declaration, as shown
in the definition of the function seqSearch.

Likewise, we can also rewrite the sorting, binary search, and other list-processing functions.

structs in Arrays
Suppose a company has 50 full-time employees. We need to print their monthly
paychecks and keep track of how much money has been paid to each employee in the
year-to-date. First, let’s define an employee’s record:

struct employeeType
{

string firstName;
string lastName;
int personID;
string deptID;
double yearlySalary;
double monthlySalary;
double yearToDatePaid;
double monthlyBonus;

};

Each employee has the following members (components): first name, last name, personal
ID, department ID, yearly salary, monthly salary, year-to-date paid, and monthly bonus.

Because we have 50 employees and the data type of each employee is the same, we can
use an array of 50 components to process the employees’ data.

employeeType employees[50];

This statement declares the array employees of 50 components of type employeeType (see
Figure 9-7). Every element of employees is a struct. For example, Figure 9-7 also shows
employees[2].

602 | Chapter 9: Records (structs)

Suppose we also have the following declaration:

int counter;

Further, suppose that every employee’s initial data—first name, last name, personal ID,
department ID, and yearly salary—are provided in a file. For our discussion, we
assume that each employee’s data is stored in a file, say, employee.dat. The following
C++ code loads the data into the employees’ array. We assume that, initially,
yearToDatePaid is 0 and that the monthly bonus is determined each month based
on performance.

ifstream infile; //input stream variable
//assume that the file employee.dat has been opened

for (counter = 0; counter < 50; counter++)
{

infile >> employees[counter].firstName
>> employees[counter].lastName
>> employees[counter].personID
>> employees[counter].deptID
>> employees[counter].yearlySalary;

employees[counter].monthlySalary =
employees[counter].yearlySalary / 12;

employees[counter].yearToDatePaid = 0.0;
employees[counter].monthlyBonus = 0.0;

}

Suppose that for a given month, the monthly bonuses are already stored in each employee’s
record, and we need to calculate the monthly paycheck and update the yearToDatePaid
amount. The following loop computes and prints the employee’s paycheck for the month:

double payCheck; //variable to calculate the paycheck

for (counter = 0; counter < 50; counter++)

9

[49]

.

.

.

[0]

[1]

employees

[2]
firstName

lastName

personID

deptID

yearlySalary

monthlySalary

yearToDatePaid

monthlyBonus

employees[2]

FIGURE 9-7 Array of employees

Records (structs) | 603

{

cout << employees[counter].firstName << " "
<< employees[counter].lastName << " ";

payCheck = employees[counter].monthlySalary +
employees[counter].monthlyBonus;

employees[counter].yearToDatePaid =
employees[counter].yearToDatePaid +
payCheck;

cout << setprecision(2) << payCheck << endl;
}

structs within a struct
You have seen how the struct and array data structures can be combined to organize
information. You also saw examples wherein a member of a struct is an array, and the
array type is a struct. In this section, you will learn about situations for which it is
beneficial to organize data in a struct by using another struct.

Let us consider the following employee record:

struct employeeType
{

string firstname;
string middlename;
string lastname;
string empID;
string address1;
string address2;
string city;
string state;
string zip;
int hiremonth;
int hireday;
int hireyear;
int quitmonth;
int quitday;
int quityear;
string phone;
string cellphone;
string fax;
string pager;
string email;
string deptID;
double salary;

};

As you can see, a lot of information is packed into one struct. This struct has 22
members. Some members of this struct will be accessed more frequently than others,
and some members are more closely related than others. Moreover, some members will

604 | Chapter 9: Records (structs)

9

have the same underlying structure. For example, the hire date and the quit date are of
the date type int. Let us reorganize this struct as follows:

struct nameType
{

string first;
string middle;
string last;

};

struct addressType
{

string address1;
string address2;
string city;
string state;
string zip;

};

struct dateType
{

int month;
int day;
int year;

};

struct contactType
{

string phone;
string cellphone;
string fax;
string pager;
string email;

};

We have separated the employee’s name, address, and contact type into subcategories.
Furthermore, we have defined a struct dateType. Let us rebuild the employee’s
record as follows:

struct employeeType
{

nameType name;
string empID;
addressType address;
dateType hireDate;
dateType quitDate;
contactType contact;
string deptID;
double salary;

};

The information in this employee’s struct is easier to manage than the previous one.
Some of this struct can be reused to build another struct. For example, suppose that
you want to define a customer’s record. Every customer has a first name, last name, and

Records (structs) | 605

middle name, as well as an address and a way to be contacted. You can, therefore, quickly
put together a customer’s record by using the structs nameType, addressType,
contactType, and the members specific to the customer.

Next, let us declare a variable of type employeeType and discuss how to access its members.

Consider the following statement:

employeeType newEmployee;

This statement declares newEmployee to be a struct variable of type employeeType

(see Figure 9-8).

newEmployee

name first

middle

last

address 1

address 2

city

state

zip

phone

cellphone

fax

pager

email

month

day

year

month

day

year

empID

address

hireDate

quitDate

contact

deptID

salary

FIGURE 9-8 struct variable newEmployee

606 | Chapter 9: Records (structs)

The statement:

newEmployee.salary = 45678.00;

sets the salary of newEmployee to 45678.00. The statements:

newEmployee.name.first = "Mary";
newEmployee.name.middle = "Beth";
newEmployee.name.last = "Simmons";

set the first, middle, and last name of newEmployee to "Mary", "Beth", and
"Simmons", respectively. Note that newEmployee has a member called name. We
access this member via newEmployee.name. Note also that newEmployee.name is a
struct and has three members. We apply the member access criteria to access the
member first of the struct newEmployee.name. So, newEmployee.name.first
is the member where we store the first name.

The statement:

cin >> newEmployee.name.first;

reads and stores a string into newEmployee.name.first. The statement:

newEmployee.salary = newEmployee.salary * 1.05;

updates the salary of newEmployee.

The following statement declares employees to be an array of 100 components,
wherein each component is of type employeeType:

employeeType employees[100];

The for loop:

for (int j = 0; j < 100; j++)
cin >> employees[j].name.first >> employees[j].name.middle

>> employees[j].name.last;

reads and stores the names of 100 employees in the array employees. Because employees
is an array, to access a component, we use the index. For example, employees[50] is the
51st component of the array employees (recall that an array index starts with 0). Because
employees[50] is a struct, we apply the member access criteria to select a particular
member.

9

Records (structs) | 607

PROGRAMMING EXAMPLE: Sales Data Analysis
A company has six salespeople. Every month, they go on road trips to sell the
company’s product. At the end of each month, the total sales for each salesperson,
together with that salesperson’s ID and the month, is recorded in a file. At the end of
each year, the manager of the company wants to see this report in this following
tabular format:

----------- Annual Sales Report -----------

ID QT1 QT2 QT3 QT4 Total

12345 1892.00 0.00 494.00 322.00 2708.00

32214 343.00 892.00 9023.00 0.00 10258.00

23422 1395.00 1901.00 0.00 0.00 3296.00

57373 893.00 892.00 8834.00 0.00 10619.00

35864 2882.00 1221.00 0.00 1223.00 5326.00

54654 893.00 0.00 392.00 3420.00 4705.00

Total 8298.00 4906.00 18743.00 4965.00

Max Sale by SalesPerson: ID = 57373, Amount = $10619.00
Max Sale by Quarter: Quarter = 3, Amount = $18743.00

In this report, QT1 stands for quarter 1 (months 1 to 3), QT2 for quarter 2 (months 4
to 6), QT3 for quarter 3 (months 7 to 9), and QT4 for quarter 4 (months 10 to 12).

The salespeople’s IDs are stored in one file; the sales data is stored in another file. The
sales data is in the following form:

salesPersonID month saleAmount
.
.
.

Furthermore, the sales data is in no particular order; it is not ordered by ID.

A sample sales data is:

12345 1 893
32214 1 343
23422 3 903
57373 2 893
.
.
.

608 | Chapter 9: Records (structs)

9

Let us write a program that produces the output in the specified format.

Input One file containing each salesperson’s ID and a second file containing
the sales data.

Output A file containing the annual sales report in the above format.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

Based on the problem’s requirements, it is clear that the main components for each
salesperson are the salesperson’s ID, quarterly sales amount, and total annual sales
amount. Because the components are of different types, we can group them with the
help of a struct, defined as follows:

struct salesPersonRec
{

string ID; //salesperson's ID
double saleByQuarter[4]; //array to store the total

//sales for each quarter
double totalSale; //salesperson's yearly sales amount

};

Because there are six salespeople, we use an array of six components, wherein each
component is of type salesPersonRec, defined as follows:

salesPersonRec salesPersonList[NO_OF_SALES_PERSON];

wherein the value of NO_OF_SALES_PERSON is 6.

Because the program requires us to find the company’s total sales for each quarter, we
need an array of four components to store the data. Note that this data will be used to
determine the quarter in which the maximum sales were made. Therefore, the
program also needs the following array:

double totalSaleByQuarter[4];

Recall that in C++, the array index starts with 0. Therefore,
totalSaleByQuarter[0] stores data for quarter 1, totalSaleByQuarter[1]

stores data for quarter 2, and so on.

We will refer to these variables throughout the discussion.

The array salesPersonList is as shown in Figure 9-9.

Programming Example: Sales Data Analysis | 609

The first step of the program is to read the salespeople’s IDs into the array
salesPersonList and initialize the quarterly sales and total sales for each salesperson
to 0. After this step, the array salesPersonList is as shown in Figure 9-10.

salesPersonList[0]

salesPersonList ID saleByQuarter totalSale

salesPersonList[1]

salesPersonList[2]

salesPersonList[3]

salesPersonList[4]

salesPersonList[5]

FIGURE 9-9 Array salesPersonList

salesPersonList[0]

salesPersonList ID

12345 0.0 0.0 0.0 0.0 0.0

32214 0.0 0.0 0.0 0.0 0.0

23422 0.0 0.0 0.0 0.0 0.0

57373 0.0 0.0 0.0 0.0 0.0

35864 0.0 0.0 0.0 0.0 0.0

54654 0.0 0.0 0.0 0.0 0.0

saleByQuarter totalSale

salesPersonList[1]

salesPersonList[2]

salesPersonList[3]

salesPersonList[4]

salesPersonList[5]

FIGURE 9-10 Array salesPersonList after initialization

610 | Chapter 9: Records (structs)

9

The next step is to process the sales data. Processing the sales data is quite straightfor-
ward. For each entry in the file containing the sales data:

1. Read the salesperson’s ID, month, and sale amount for the month.

2. Search the array salesPersonList to locate the component
corresponding to this salesperson.

3. Determine the quarter corresponding to the month.

4. Update the sales for the quarter by adding the sale amount for themonth.

Once the sales data file is processed:

1. Calculate the total sales by salesperson.

2. Calculate the total sales by quarter.

3. Print the report.

This discussion translates into the following algorithm:

1. Initialize the array salesPersonList.

2. Process the sales data.

3. Calculate the total sales by quarter.

4. Calculate the total sales by salesperson.

5. Print the report.

6. Calculate and print the maximum sales by salesperson.

7. Calculate and print the maximum sales by quarter.

To reduce the complexity of the main program, let us write a separate function for
each of these seven steps.

Function

initialize

This function reads the salesperson’s ID from the input file and stores the salesperson’s ID
in the array salesPersonList. It also initializes the quarterly sales amount and the
total sales amount for each salesperson to 0. The definition of this function is:

void initialize(ifstream& indata, salesPersonRec list[],
int listSize)

{

int index;
int quarter;

for (index = 0; index < listSize; index++)
{

indata >> list[index].ID; //get salesperson's ID

for (quarter = 0; quarter < 4; quarter++)
list[index].saleByQuarter[quarter] = 0.0;

list[index].totalSale = 0.0;
}

} //end initialize

Programming Example: Sales Data Analysis | 611

Function

getData

This function reads the sales data from the input file and stores the appropriate
information in the array salesPersonList. The algorithm for this function is:

1. Read the salesperson’s ID, month, and sales amount for the month.

2. Search the array salesPersonList to locate the component
corresponding to the salesperson. (Because the salespeople’s IDs
are not sorted, we will use a sequential search to search the array.)

3. Determine the quarter corresponding to the month.

4. Update the sales for the quarter by adding the sales amount for the
month.

Suppose that the entry read is:

57373 2 350

Here, the salesperson’s ID is 57373, the month is 2, and the sale amount is 350.
Suppose that the array salesPersonList is as shown in Figure 9-11.

Now, ID 57373 corresponds to the array component salesPersonList[3], and
month 2 corresponds to quarter 1. Therefore, you add 350 to 354.80 to get the
new amount, 704.80. After processing this entry, the array salesPersonList is
as shown in Figure 9-12.

salesPersonList[0]

salesPersonList ID

12345 150.80 0.0 0.0 654.92 0.0

32214 0.0 439.90 0.0 0.0 0.0

23422 0.0 0.0 0.0 564.76 0.0

57373 354.80 0.0 0.0 0.0 0.0

35864 0.0 0.0 763.90 0.0 0.0

54654 783.45 0.0 0.0 563.80 0.0

saleByQuarter totalSale

salesPersonList[1]

salesPersonList[2]

salesPersonList[3]

salesPersonList[4]

salesPersonList[5]

FIGURE 9-11 Array salesPersonList

612 | Chapter 9: Records (structs)

9

The definition of the function getData is:

void getData(ifstream& infile, salesPersonRec list[],
int listSize)

{

int index;
int quarter;
string sID;
int month;
double amount;

infile >> sID; //get salesperson’s ID

while (infile)
{

infile >> month >> amount; //get the sale month and
//the sale amount

for (index = 0; index < listSize; index++)
if (sID == list[index].ID)

break;

salesPersonList[0]

salesPersonList ID

ID = 57373

month = 2

12345 150.80 0.0 0.0 654.92 0.0

32214 0.0 439.90 0.0 0.0 0.0

23422 0.0 0.0 0.0 564.76 0.0

57373 704.80 0.0 0.0 0.0 0.0

35864 0.0 0.0 763.90 0.0 0.0

54654 783.45 0.0 0.0 563.80 0.0

saleByQuarter totalSale

salesPersonList[1]

salesPersonList[2]

salesPersonList[3]

salesPersonList[4]

salesPersonList[5]

FIGURE 9-12 Array salesPersonList after processing entry 57373 2 350

Programming Example: Sales Data Analysis | 613

if (1 <= month && month <= 3)
quarter = 0;

else if (4 <= month && month <= 6)
quarter = 1;

else if (7 <= month && month <= 9)
quarter = 2;

else
quarter = 3;

if (index < listSize)
list[index].saleByQuarter[quarter] += amount;

else
cout << "Invalid salesperson's ID." << endl;

infile >> sID;
} //end while

} //end getData

Function

saleByQuarter

This function finds the company’s total sales for each quarter. To find the total sales for
each quarter, we add the sales amount of each salesperson for that quarter. Clearly, this
function must have access to the array salesPersonList and the array
totalSaleByQuarter. This function also needs to know the number of rows in
each array. Thus, this function has three parameters. The definition of this function is:

void saleByQuarter(salesPersonRec list[], int listSize,
double totalByQuarter[])

{

int quarter;
int index;

for (quarter = 0; quarter < 4; quarter++)
totalByQuarter[quarter] = 0.0;

for (quarter = 0; quarter < 4; quarter++)
for (index = 0; index < listSize; index++)

totalByQuarter[quarter] +=
list[index].saleByQuarter[quarter];

} //end saleByQuarter

Function

totalSaleBy

Person

This function finds each salesperson’s yearly sales amount. To find an employee’s yearly
sales amount, we add that employee’s sales amount for the four quarters. Clearly, this
function must have access to the array salesPersonList. This function also needs to
know the size of the array. Thus, this function has two parameters.

The definition of this function is:

void totalSaleByPerson(salesPersonRec list[], int listSize)
{

int index;
int quarter;

614 | Chapter 9: Records (structs)

9

for (index = 0; index < listSize; index++)
for (quarter = 0; quarter < 4; quarter++)

list[index].totalSale +=
list[index].saleByQuarter[quarter];

} //end totalSaleByPerson

Function

printReport

This function prints the annual report in the specified format. The algorithm in
pseudocode is:

1. Print the heading—that is, the first three lines of output.

2. Print the data for each salesperson.

3. Print the last line of the table.

Note that the next two functions will produce the final two lines of output.

Clearly, the printReport function must have access to the array salesPersonList

and the arraytotalSaleByQuarter. Also, because the outputwill be stored in a file, this
function must have access to the ofstream variable associated with the output file. Thus,
this function has four parameters: a parameter corresponding to the array
salesPersonList, a parameter corresponding to the array totalSaleByQuarter, a
parameter specifying the size of the array, and a parameter corresponding to the ofstream
variable. The definition of this function is:

void printReport(ofstream& outfile, salesPersonRec list[],
int listSize, double saleByQuarter[])

{

int index;
int quarter;

outfile << "––––––––––– Annual Sales Report –––––––––"
<< "––––" << endl;

outfile << endl;
outfile << " ID QT1 QT2 QT3 "

<< "QT4 Total" << endl;
outfile << "___"

<< "_________________" << endl;

for (index = 0; index < listSize; index++)
{

outfile << list[index].ID << " ";

for (quarter = 0; quarter < 4; quarter++)
outfile << setw(10)

<< list[index].saleByQuarter[quarter];

outfile << setw(10) << list[index].totalSale << endl;
}

outfile << "Total ";

Programming Example: Sales Data Analysis | 615

for (quarter = 0; quarter < 4; quarter++)
outfile << setw(10)<< saleByQuarter[quarter];

outfile << endl << endl;
} //end printReport

Function

maxSaleBy

Person

This function prints the name of the salesperson who produces the maximum sales
amount. To identify this salesperson, we look at the sales total for each salesperson
and find the largest sales amount. Because each employee’s sales total is maintained
in the array salesPersonList, this function must have access to the array
salesPersonList. Also, because the output will be stored in a file, this function
must have access to the ofstream variable associated with the output file.
Therefore, this function has three parameters: a parameter corresponding to the
array salesPersonList, a parameter specifying the size of this array, and a
parameter corresponding to the output file.

The algorithm to find the largest sales amount is similar to the algorithm to find the
largest element in an array (discussed in Chapter 8). The definition of this function is:

void maxSaleByPerson(ofstream& outData, salesPersonRec list[],
int listSize)

{

int maxIndex = 0;
int index;

for (index = 1; index <listSize; index++)
if (list[maxIndex].totalSale <list[index].totalSale)

maxIndex = index;

outData << "Max Sale by SalesPerson: ID = "
<< list[maxIndex].ID
<< ", Amount = $" << list[maxIndex].totalSale
<< endl;

} //end maxSaleByPerson

Function

maxSaleBy

Quarter

This function prints the quarter in which the maximum sales were made. To identify
this quarter, we look at the total sales for each quarter and find the largest sales amount.
Because the sales total for each quarter is in the array totalSaleByQuarter, this
function must have access to the array totalSaleByQuarter. Also, because the
output will be stored in a file, this function must have access to the ofstream variable
associated with the output file. Therefore, this function has two parameters: a para-
meter corresponding to the array totalSaleByQuarter and a parameter corre-
sponding to the output file.

The algorithm to find the largest sales amount is the same as the algorithm to find the
largest element in an array (discussed in Chapter 8). The definition of this function is:

void maxSaleByQuarter(ofstream& outData,
double saleByQuarter[])

616 | Chapter 9: Records (structs)

9

{

int quarter;
int maxIndex = 0;

for (quarter = 0; quarter < 4; quarter++)
if (saleByQuarter[maxIndex] < saleByQuarter[quarter])

maxIndex = quarter;

outData << "Max Sale by Quarter: Quarter = "
<< maxIndex + 1
<< ", Amount = $" << saleByQuarter[maxIndex]
<< endl;

} //end maxSaleByQuarter

To make the program more flexible, we will prompt the user to specify the input and
output files during its execution.

We are now ready to write the algorithm for the function main.

Main

Algorithm

1. Declare the variables.

2. Prompt the user to enter the name of the file containing the
salesperson’s ID data.

3. Read the name of the input file.

4. Open the input file.

5. If the input file does not exist, exit the program.

6. Initialize the array salesPersonList. Call the function
initialize.

7. Close the input file containing the salesperson’s ID data and clear
the input stream.

8. Prompt the user to enter the name of the file containing the sales
data.

9. Read the name of the input file.

10. Open the input file.

11. If the input file does not exist, exit the program.

12. Prompt the user to enter the name of the output file.

13. Read the name of the output file.

14. Open the output file.

15. To output floating-point numbers in a fixed decimal format with
the decimal point and trailing zeroes, set the manipulators fixed
and showpoint. Also, to output floating-point numbers to two
decimal places, set the precision to two decimal places.

Programming Example: Sales Data Analysis | 617

16. Process the sales data. Call the function getData.

17. Calculate the total sales by quarter. Call the functionsaleByQuarter.

18. Calculate the total sales for each salesperson. Call the function
totalSaleByPerson.

19. Print the report in a tabular format. Call the function printReport.

20. Find and print the salesperson who produces the maximum sales
for the year. Call the function maxSaleByPerson.

21. Find and print the quarter that produces the maximum sales for the
year. Call the function maxSaleByQuarter.

22. Close the files.

PROGRAM LISTING

//***
// Author: D.S. Malik
//
// Program: Sales Data Analysis
// This program processes sales data for a company. For each
// salesperson, it outputs the ID, the total sales by each
// quarter, and the total sales for the year. It also outputs
// the salesperson's ID generating the maximum sale for the
// year and the sales amount. The quarter generating the
// maximum sale and the sales amount is also output.
//***

#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>

using namespace std;

const int NO_OF_SALES_PERSON = 6;

struct salesPersonRec
{

string ID; //salesperson's ID
double saleByQuarter[4]; //array to store the total

//sales for each quarter
double totalSale; //salesperson's yearly sales amount

};

void initialize(ifstream& indata, salesPersonRec list[],
int listSize);

618 | Chapter 9: Records (structs)

9

void getData(ifstream& infile, salesPersonRec list[],
int listSize);

void saleByQuarter(salesPersonRec list[], int listSize,
double totalByQuarter[]);

void totalSaleByPerson(salesPersonRec list[], int listSize);
void printReport(ofstream& outfile, salesPersonRec list[],

int listSize, double saleByQuarter[]);
void maxSaleByPerson(ofstream& outData, salesPersonRec list[],

int listSize);
void maxSaleByQuarter(ofstream& outData, double saleByQuarter[]);

int main()
{

//Step 1
ifstream infile; //input file stream variable
ofstream outfile; //output file stream variable

string inputFile; //variable to hold the input file name
string outputFile; //variable to hold the output file name

double totalSaleByQuarter[4]; //array to hold the
//sale by quarter

salesPersonRec salesPersonList[NO_OF_SALES_PERSON]; //array
//to hold the salesperson's data

cout << "Enter the salesPerson ID file name: "; //Step 2
cin >> inputFile; //Step 3
cout << endl;

infile.open(inputFile.c_str()); //Step 4

if (!infile) //Step 5
{

cout << "Cannot open the input file."
<< endl;

return 1;
}

initialize(infile, salesPersonList,
NO_OF_SALES_PERSON); //Step 6

infile.close(); //Step 7
infile.clear(); //Step 7

cout << "Enter the sales data file name: "; //Step 8
cin >> inputFile; //Step 9
cout << endl;

infile.open(inputFile.c_str()); //Step 10

Programming Example: Sales Data Analysis | 619

if (!infile) //Step 11
{

cout << "Cannot open the input file."
<< endl;

return 1;
}

cout << "Enter the output file name: "; //Step 12
cin >> outputFile; //Step 13
cout << endl;

outfile.open(outputFile.c_str()); //Step 14
outfile << fixed << showpoint

<< setprecision(2); //Step 15

getData(infile, salesPersonList,
NO_OF_SALES_PERSON); //Step 16

saleByQuarter(salesPersonList,
NO_OF_SALES_PERSON,
totalSaleByQuarter); //Step 17

totalSaleByPerson(salesPersonList,
NO_OF_SALES_PERSON); //Step 18

printReport(outfile, salesPersonList,
NO_OF_SALES_PERSON,
totalSaleByQuarter); //Step 19

maxSaleByPerson(outfile, salesPersonList,
NO_OF_SALES_PERSON); //Step 20

maxSaleByQuarter(outfile, totalSaleByQuarter); //Step 21

infile.close(); //Step 22
outfile.close(); //Step 22

return 0;
}

//Place the definitions of the functions initialize,
//getData, saleByQuarter, totalSaleByPerson,
//printReport, maxSaleByPerson, and maxSaleByQuarter here.

Sample Run: In this sample run, the user input is shaded.

Enter the salesPerson ID file name: Ch9_SalesManID.txt

Enter the sales data file name: Ch9_SalesData.txt

Enter the output file name: Ch9_SalesDataAnalysis.txt

620 | Chapter 9: Records (structs)

9

Input File: Salespeople’s IDs

12345
32214
23422
57373
35864
54654

Input File: Salespeople’s Data

12345 1 893
32214 1 343
23422 3 903
57373 2 893
35864 5 329
54654 9 392
12345 2 999
32214 4 892
23422 4 895
23422 2 492
57373 6 892
35864 10 1223
54654 11 3420
12345 12 322
35864 5 892
54654 3 893
12345 8 494
32214 8 9023
23422 6 223
23422 4 783
57373 8 8834
35864 3 2882

Sample Run:

–––––––––––– Annual Sales Report ––––––––––––

ID QT1 QT2 QT3 QT4 Total

12345 1892.00 0.00 494.00 322.00 2708.00
32214 343.00 892.00 9023.00 0.00 10258.00
23422 1395.00 1901.00 0.00 0.00 3296.00
57373 893.00 892.00 8834.00 0.00 10619.00
35864 2882.00 1221.00 0.00 1223.00 5326.00
54654 893.00 0.00 392.00 3420.00 4705.00
Total 8298.00 4906.00 18743.00 4965.00

Max Sale by SalesPerson: ID = 57373, Amount = $10619.00
Max Sale by Quarter: Quarter = 3, Amount = $18743.00

Programming Example: Sales Data Analysis | 621

QUICK REVIEW

1. A struct is a collection of a fixed number of components.

2. Components of a struct can be of different types.

3. The syntax to define a struct is:

struct structName
{

dataType1 identifier1;
dataType2 identifier2;

.

.

.
dataTypen identifiern;

};

4. In C++, struct is a reserved word.

5. In C++, struct is a definition; no memory is allocated. Memory is
allocated for the struct variables only when you declare them.

6. Components of a struct are called members of the struct.

7. Components of a struct are accessed by name.

8. In C++, the dot (.) operator is called the member access operator.

9. Members of a struct are accessed by using the dot (.) operator. For
example, if employeeType is a struct, employee is a variable of type
employeeType, and name is a member of employee, then the expression
employee.name accesses the member name. That is, employee.name is
a variable and can be manipulated like other variables.

10. The only built-in operations on a struct are the assignment and member
access operations.

11. Neither arithmetic nor relational operations are allowed on struct(s).

12. As a parameter to a function, a struct can be passed either by value or by
reference.

13. A function can return a value of type struct.

14. A struct can be a member of another struct.

EXERCISES

1. Mark the following statements as true or false.

a. All members of a struct must be of different types.

b. A function cannot return a value of type struct.

c. A member of a struct can be another struct.

d. The only allowable operations on a struct are assignment and mem-
ber selection.

622 | Chapter 9: Records (structs)

e. An array can be a member of a struct.

f. In C++, some aggregate operations are allowed on a struct.

g. Because a struct has a finite number of components, relational opera-
tions are allowed on a struct.

2. Define a struct, carType, to store the following data about a car: Manu-
facturer (string), model (string), model type (string), color (string),
number of doors (int), miles per gallon in city (int), miles per gallon on
highway (int), year when the car was built (int), and the price (double).

3. Assume the definition of Exercise 2. Declare a carType variable and write
C++ statements to store the following information: Manufacturer—GMT,
model—Cyclone, type—sedan, color—blue, number of doors—4, miles
per gallon in city—28, miles per gallon on highway—32, year when the car
was built—2006, and the price—25000.00.

4. Define a struct, fruitType, to store the following data about a fruit: Fruit
name (string), color (string), fat (int), sugar (int), and carbohydrate (int).

5. Assume the definition of Exercise 4. Declare a variable of type fruitType

to store the following data: Fruit name—banana, color—yellow, fat—1,
sugar—15, carbohydrate—22.

6. Consider the following statements:

struct nameType struct courseType struct studentType
{ { {

string first; string name; nameType name;
string last; int callNum; double gpa;

}; int credits; courseType course;
char grade; };

};

studentType student;
studentType classList[100];
courseType course;
nameType name;

Mark the following statements as valid or invalid. If a statement is invalid, explain why.

a. student.course.callNum = "CSC230";

b. cin >> student.name;

c. classList[0] = name;

d. classList[1].gpa = 3.45;

e. name = classList[15].name;

f. student.name = name;

g. cout << classList[10] << endl;

h. for (int j = 0; j < 100; j++)

classList[j].name = name;

9

Exercises | 623

i. classList.course.credits = 3;

j. course = studentType.course;

7. Assume the declarations of Exercise 6. Write C++ statements to store the
following information in student:

name: Linda Brown
gpa: 3.78
course name: Calculus
course call number: 23827
course credits: 4
course grade: A

8. Assume the declarations of Exercise 6. Write C++ statements that do the
following:

a. Store the following information in course:

name: Programming I
callNum: 13452
credits: 3
grade: ""

b. In the array classList, initialize each gpa to 0.0.

c. Copy the information of the thirty-first component of the array
classList into student.

d. Update the gpa of the tenth student in the array classList by adding
0.75 to its previous value.

9. Consider the following statements (nameType is as defined in Exercise 6):

struct employeeType
{

nameType name;
int performanceRating;
int pID;
string dept;
double salary;

};
employeeType employees[100];
employeeType newEmployee;

Mark the following statements as valid or invalid. If a statement is invalid, explain
why.

a. newEmployee.name = "John Smith";

b. cout << newEmployee.name;

c. employees[35] = newEmployee;

d. if (employees[45].pID == 555334444)
employees[45].performanceRating = 1;

e. employees.salary = 0;

624 | Chapter 9: Records (structs)

9

10. Assume the declarations of Exercises 6 and 9. Write C++ statements that do
the following:

a. Store the following information in newEmployee:

name: Mickey Doe
pID: 111111111
performanceRating: 2
dept: ACCT
salary: 34567.78

b. In the array employees, initialize each performanceRating to 0.

c. Copy the information of the 20th component of the array employees

into newEmployee.

d. Update the salary of the 50th employee in the array employees by
adding 5735.87 to its previous value.

11. Assume that you have the following definition of a struct:

struct partsType
{ string partName;

int partNum;
double price;
int quantitiesInStock;

};

Declare an array, inventory, of 100 components of type partsType.

12. Assume the definition of Exercise 11.

a. Write a C++ code to initialize each component of inventory as
follows: partName to null string, partNum to -1, price to 0.0, and
quantitiesInStock to 0.

b. Write a C++ code that uses a loop to output the data stored in
inventory. Assume that the variable length indicates the number
of elements in inventory.

13. Assume the definition and declaration of Exercise 11. Write the definition of a
void function that can be used to input data in a variable of type partsType.
Also write a C++ code that uses your function to input data in inventory.

14. Suppose that you have the following definitions:

struct timeType struct tourType
{ {

int hr; string cityName;
double min; int distance;
int sec; timeType travelTime;

}; };

a. Declare the variable destination of type tourType.

b. Write C++ statements to store the following data in destination:
cityName—Chicago, distance—550 miles, travelTime—9 hours
and 30 minutes.

Exercises | 625

c. Write the definition of a function to output the data stored in a variable
of type tourType.

d. Write the definition of a value-returning function that inputs data into
a variable of type tourType.

e. Write the definition of a void function with a reference parameter of
type tourType to input data in a variable of type tourType.

PROGRAMMING EXERCISES

1. Assume the definition of Exercise 4, which defines the struct fruitType.
Write a program that declares a variable of type fruitType, prompts the
user to input data about a fruit, and outputs the fruit data.

2. Write a program that reads students’ names followed by their test scores. The
program should output each student’s name followed by the test scores and
the relevant grade. It should also find and print the highest test score and the
name of the students having the highest test score.

Student data should be stored in a struct variable of type studentType,
which has four components: studentFName and studentLName of type
string, testScore of type int (testScore is between 0 and 100), and
grade of type char. Suppose that the class has 20 students. Use an array of 20
components of type studentType.

Your program must contain at least the following functions:

a. A function to read the students’ data into the array.

b. A function to assign the relevant grade to each student.

c. A function to find the highest test score.

d. A function to print the names of the students having the highest test
score.

Your program must output each student’s name in this form: last name
followed by a comma, followed by a space, followed by the first name; the
name must be left justified. Moreover, other than declaring the variables and
opening the input and output files, the function main should only be a
collection of function calls.

3. Define a struct, menuItemType, with two components: menuItem of
type string and menuPrice of type double.

4. Write a program to help a local restaurant automate its breakfast billing
system. The program should do the following:

a. Show the customer the different breakfast items offered by the restaurant.

b. Allow the customer to select more than one item from the menu.

626 | Chapter 9: Records (structs)

c. Calculate and print the bill.
Assume that the restaurant offers the following breakfast items (the
price of each item is shown to the right of the item):

Plain Egg $1.45
Bacon and Egg $2.45
Muffin $0.99
French Toast $1.99
Fruit Basket $2.49
Cereal $0.69
Coffee $0.50
Tea $0.75

Use an array, menuList, of the struct menuItemType, as defined in
Programming Exercise 3. Your program must contain at least the
following functions:

• Function getData: This function loads the data into the array
menuList.

• Function showMenu: This function shows the different items
offered by the restaurant and tells the user how to select the items.

• Function printCheck: This function calculates and prints the check.
(Note that the billing amount should include a 5% tax.)

A sample output is:

Welcome to Johnny's Restaurant
Bacon and Egg $2.45
Muffin $0.99
Coffee $0.50
Tax $0.20
Amount Due $4.14

Format your output with two decimal places. The name of each item in the
output must be left justified. You may assume that the user selects only one
item of a particular type.

5. Redo Exercise 4 so that the customer can select multiple items of a particular
type. A sample output in this case is:

Welcome to Johnny's Restaurant
1 Bacon and Egg $2.45
2 Muffin $1.98
1 Coffee $0.50

Tax $0.25
Amount Due $5.18

6. Write a program whose main function is merely a collection of variable
declarations and function calls. This program reads a text and outputs the
letters, together with their counts, as explained below in the function

9

Programming Exercises | 627

printResult. (There can be no global variables! All information must be
passed in and out of the functions. Use a structure to store the information.)
Your program must consist of at least the following functions:

• Function openFile: Opens the input and output files. You must pass the
file streams as parameters (by reference, of course). If the file does not
exist, the program should print an appropriate message and exit. The
program must ask the user for the names of the input and output files.

• Function count: Counts every occurrence of capital letters A-Z and
small letters a-z in the text file opened in the function openFile. This
information must go into an array of structures. The array must be passed
as a parameter, and the file identifier must also be passed as a parameter.

• Function printResult: Prints the number of capital letters and small
letters, as well as the percentage of capital letters for every letter A-Z and
the percentage of small letters for every letter a-z. The percentages
should look like this: ‘‘25%’’. This information must come from an array
of structures, and this array must be passed as a parameter.

7. Write a program that declares a struct to store the data of a football player
(player’s name, player’s position, number of touchdowns, number of catches,
number of passing yards, number of receiving yards, and the number of
rushing yards). Declare an array of 10 components to store the data of 10
football players. Your program must contain a function to input data and a
function to output data. Add functions to search the array to find the index
of a specific player, and update the data of a player. (You may assume that
input data is stored in a file.) Before the program terminates, give the user the
option to save data in a file. Your program should be menu driven, giving
the user various choices.

628 | Chapter 9: Records (structs)

CLASSES AND DATA

ABSTRACTION
IN THIS CHAPTER , YOU WILL :

. Learn about classes

. Learn about private, protected, and public members of a class

. Explore how classes are implemented

. Examine constructors and destructors

. Learn about the abstract data type (ADT)

. Explore how classes are used to implement ADTs

. Learn about information hiding

. Explore how information hiding is implemented in C++

. Learn about the static members of a class

10C H A P T E R

In Chapter 9, you learned how to group data items that are of different types by using a
struct. The definition of a struct given in Chapter 9 is similar to the definition of a
C-struct. However, the members of a C++ struct can be data items as well as functions.
C++ provides another structured data type, called a class, which is specifically designed to
group data and functions. This chapter first introduces classes and explains how to use them
and then discusses the similarities and differences between a struct and a class.

Chapter 9 is not a prerequisite for this chapter. In fact, a struct and a class have similar

capabilities, as discussed in the section ‘‘A struct versus a class’’ in this chapter.

Classes
Chapter 1 introduced the problem-solving methodology called object-oriented design

(OOD). In OOD, the first step is to identify the components, called objects. An object
combines data and the operations on that data in a single unit. In C++, the mechanism
that allows you to combine data and the operations on that data in a single unit is called a
class. Now that you know how to store and manipulate data in computer memory and
how to construct your own functions, you are ready to learn how objects are constructed.
This and subsequent chapters develop and implement programs using OOD. This chapter
first explains how to define a class and use it in a program.

A class is a collection of a fixed number of components. The components of a class are
called the members of the class.

The general syntax for defining a class is:

class classIdentifier
{

classMembersList
};

in which classMembersList consists of variable declarations and/or functions. That is,
a member of a class can be either a variable (to store data) or a function.

• If a member of a class is a variable, you declare it just like any other
variable. Also, in the definition of the class, you cannot initialize a
variable when you declare it.

• If a member of a class is a function, you typically use the function
prototype to declare that member.

• If a member of a class is a function, it can (directly) access anymember of the
class—member variables and member functions. That is, when you write
the definition of a member function, you can directly access any member
variable of the class without passing it as a parameter. The only obvious
condition is that you must declare an identifier before you can use it.

630 | Chapter 10: Classes and Data Abstraction

In C++, class is a reserved word, and it defines only a data type; no memory is
allocated. It announces the declaration of a class. Moreover, note the semicolon (;) after
the right brace. The semicolon is part of the syntax. A missing semicolon, therefore, will
result in a syntax error.

The members of a class are classified into three categories: private, public, and
protected. This chapter mainly discusses the first two types, private and public.

In C++, private, protected, and public are reserved words and are called member
access specifiers.

Following are some facts about public and private members of a class:

• By default, all members of a class are private.

• If a member of a class is private, you cannot access it outside of the
class. (Example 10-1 illustrates this concept.)

• A public member is accessible outside of the class. (Example 10-1
illustrates this concept.)

• To make a member of a class public, you use the member access
specifier public with a colon, :.

Suppose that we want to define a class to implement the time of day in a program.
Because a clock gives the time of day, let us call this class clockType. Furthermore, to
represent time in computer memory, we use three int variables: one to represent the
hours, one to represent the minutes, and one to represent the seconds.

Suppose these three variables are:

int hr;
int min;
int sec;

We also want to perform the following operations on the time:

1. Set the time.

2. Retrieve the time.

3. Print the time.

4. Increment the time by one second.

5. Increment the time by one minute.

6. Increment the time by one hour.

7. Compare the two times for equality.

To implement these seven operations, we will write seven functions—setTime, getTime,
printTime, incrementSeconds, incrementMinutes, incrementHours, and
equalTime.

From this discussion, it is clear that the class clockType has 10 members: three
member variables and seven member functions.

1

0

Classes | 631

Some members of the class clockType will be private; others will be public.
Deciding which member to make public and which to make private depends on the
nature of the member. The general rule is that any member that needs to be accessed
outside of the class is declared public; any member that should not be accessed directly
by the user should be declared private. For example, the user should be able to set the
time and print the time. Therefore, the members that set the time and print the time
should be declared public.

Similarly, the members to increment the time and compare the time for equality should
be declared public. On the other hand, to prevent the direct manipulation of the
member variables hr, min, and sec, we will declare them private. Furthermore, note
that if the user has direct access to the member variables, member functions such as
setTime are not needed. The second part of this chapter (beginning with the section
‘‘Information Hiding’’) explains why some members need to be public and others
should be private.

The following statements define the class clockType:

class clockType
{

public:
void setTime(int, int, int);
void getTime(int&, int&, int&) const;
void printTime() const;
void incrementSeconds();
void incrementMinutes();
void incrementHours();
bool equalTime(const clockType&) const;

private:
int hr;
int min;
int sec;

};

In this definition:

• The class clockType has seven member functions: setTime,
getTime, printTime, incrementSeconds, incrementMinutes,
incrementHours, and equalTime. It has three member variables: hr,
min, and sec.

• The three member variables—hr, min, and sec—are private to the
class and cannot be accessed outside of the class. (Example 10-1 illustrates
this concept.)

• The seven member functions—setTime, getTime, printTime,
incrementSeconds, incrementMinutes, incrementHours, and
equalTime—can directly access the member variables (hr, min, and
sec). In other words, when we write the definitions of these functions,

632 | Chapter 10: Classes and Data Abstraction

we do not pass these member variables as parameters to the member
functions.

• In the function equalTime, the formal parameter is a constant
reference parameter. That is, in a call to the function equalTime,
the formal parameter receives the address of the actual parameter, but
the formal parameter cannot modify the value of the actual parameter.
You could have declared the formal parameter as a value parameter,
but that would require the formal parameter to copy the value of the
actual parameter, which could result in poor performance. (See the
section ‘‘Reference Parameters and Class Objects (Variables)’’ in this
chapter for an explanation.)

• The word const at the end of the member functions getTime,
printTime, and equalTime specifies that these functions cannot
modify the member variables of a variable of type clockType.

The private and public members can appear in any order. If you want, you

can declare the private members first and then declare the public ones. The

section ‘‘Order of public and private Members of a Class’’ in this chapter

discusses this issue.

In the definition of the class clockType, all member variables are private

and all member functions are public. However, a member function can also be

private. For example, if a member function is used only to implement other

member functions of the class and the user does not need to access this

function, you make it private. Similarly, a member variable of a class can also

be public.

Note that we have not yet written the definitions of the member functions of the class.
You will learn how to write them shortly.

The function setTime sets the three member variables—hr, min, and sec—to a given
value. The given values are passed as parameters to the function setTime. The function
printTime prints the time, that is, the values of hr, min, and sec. The function
incrementSeconds increments the time by one second, the function increment-

Minutes increments the time by one minute, the function incrementHours incre-
ments the time by one hour, and the function equalTime compares two times for
equality.

Note that the function equalTime has only one parameter, although you need two
things to make a comparison. We will explain this point with the help of an example in
the section ‘‘Implementation of Member Functions,’’ later in this chapter.

1

0

Classes | 633

Unified Modeling Language Class Diagrams
A class and its members can be described graphically using a notation known as the
Unified Modeling Language (UML) notation. For example, Figure 10-1 shows the
UML class diagram of the class clockType.

The top box contains the name of the class. The middle box contains the member variables
and their data types. The last box contains the member function name, parameter list, and the
return type of the function. A + (plus) sign in front of a member name indicates that this
member is a publicmember; a - (minus) sign indicates that this is a privatemember. The
symbol # before the member name indicates that the member is a protected member.

Variable (Object) Declaration
Once a class is defined, you can declare variables of that type. In C++ terminology, a class
variable is called a class object or class instance. To help you become familiar with this
terminology, from now on we will use the term class object, or simply object, for a class
variable.

The syntax for declaring a class object is the same as that for declaring any other variable.
The following statements declare two objects of type clockType:

clockType myClock;
clockType yourClock;

Each object has 10 members: seven member functions and three member variables. Each
object has separate memory allocated for hr, min, and sec.

In actuality, memory is allocated only for the member variables of each class object. The C++
compiler generates only one physical copy of a member function of a class, and each class
object executes the same copy of the member function. Therefore, whenever we draw the

clockType

-hr: int

-min: int

-sec: int

+setTime(int, int, int): void

+getTime(int&, int&, int&) const: void

+printTime() const: void

+incrementSeconds(): int

+incrementMinutes(): int

+incrementHours(): int

+equalTime(const clockType&) const: bool

FIGURE 10-1 UML class diagram of the class clockType

634 | Chapter 10: Classes and Data Abstraction

figure of a class object, we will show only the member variables. As an example, Figure 10-2
shows the objects myClock and yourClock with values in their member variables.

Accessing Class Members
Once an object of a class is declared, it can access the members of the class. The general
syntax for an object to access a member of a class is:

classObjectName.memberName

The class members that a class object can access depend on where the object is declared.

• If the object is declared in the definition of a member function of the
class, then the object can access both the public and privatemembers.
(We will elaborate on this when we write the definition of the member
function equalTime of the class clockType in the section ‘‘Imple-
mentation of Member Functions,’’ later in this chapter.)

• If the object is declared elsewhere (for example, in a user’s program),
then the object can access only the public members of the class.

Recall that in C++, the dot, . (period), is an operator called themember access operator.

Example 10-1 illustrates how to access the members of a class.

EXAMPLE 10-1

Suppose we have the following declaration (say, in a user’s program):

clockType myClock;
clockType yourClock;

Consider the following statements:

myClock.setTime(5, 2, 30);
myClock.printTime();
yourClock.setTime(x, y, z); //assume x, y, and z are

//variables of type int

1

0

hr 12

min 35

sec 45

yourClock
hr 8

min 12

sec 30

myClock

FIGURE 10-2 Objects myClock and yourClock

Classes | 635

if (myClock.equalTime(yourClock))
.
.
.

These statements are legal; that is, they are syntactically correct.

In the first statement, myClock.setTime(5, 2, 30);, the member function
setTime is executed. The values 5, 2, and 30 are passed as parameters to the
function setTime, and the function uses these values to set the values of the three
member variables hr, min, and sec of myClock to 5, 2, and 30, respectively.
Similarly, the second statement executes the member function printTime and
outputs the contents of the three member variables of myClock. In the third
statement, the values of the variables x, y, and z are used to set the values of the
three member variables of yourClock.

In the fourth statement, the member function equalTime executes and compares
the three member variables of myClock to the corresponding member variables of
yourClock. Because in this statement equalTime is a member of the object
myClock, it has direct access to the three member variables of myClock. So it
needs one more object, which in this case is yourClock, to compare. This explains
why the function equalTime has only one parameter.

The objects myClock and yourClock can access only public members of the class.
Thus, the following statements are illegal because hr and min are declared as private
members of the class clockType and, therefore, cannot be accessed by the objects
myClock and yourClock:

myClock.hr = 10; //illegal
myClock.min = yourClock.min; //illegal

Built-in Operations on Classes
Most of C++’s built-in operations do not apply to classes. You cannot use arithmetic
operators to perform arithmetic operations on class objects (unless they are overloaded;
see Chapter 13). For example, you cannot use the operator + to add two class objects
of, say, type clockType. Also, you cannot use relational operators to compare two
class objects for equality (unless they are overloaded; see Chapter 13).

The two built-in operations that are valid for class objects are member access (.) and
assignment (=). You have seen how to access an individual member of a class by using the
name of the class object, then a dot, and then the member name. (For example, if
myClock is a clockType object, in the statement myClock.incrementSeconds();,
myClock accesses the member incrementSeconds.)

We now show how an assignment statement works with the help of an example.

636 | Chapter 10: Classes and Data Abstraction

Assignment Operator and Classes
Suppose that myClock and yourClock are clockType objects, as defined previously.
Furthermore, suppose that the values of myClock and yourClock are as shown in
Figure 10-3(a).

The statement:

myClock = yourClock; //Line 1

copies the value of yourClock into myClock. That is,

• the value of yourClock.hr is copied into myClock.hr,

• the value of yourClock.min is copied into myClock.min, and

• the value of yourClock.sec is copied into myClock.sec.

In other words, the values of the three member variables of yourClock are copied into
the corresponding member variables of myClock. Therefore, an assignment statement
performs a member-wise copy. After the statement in Line 1 executes, the values of
myClock and yourClock are as shown in Figure 10-3(b).

Class Scope
A class object can be either automatic (that is, created each time the control reaches
its declaration and destroyed when the control exits the surrounding block) or static
(that is, created once, when the control reaches its declaration, and destroyed when the
program terminates). Also, you can declare an array of class objects. A class object
has the same scope as other variables. A member of a class has the same scope as a
member of a struct. That is, a member of a class is local to the class. You access
a class member outside of the class by using the class object name and the
member access operator (.).

1

0

hr 14

min 39

sec 28

yourClock

hr 2

min 26

sec 47

myClock

hr 14

min 39

sec 28

yourClock

hr 14

min 39

sec 28

myClock

(a) myClock and yourClock before

executing myClock = yourClock;

(b) myClock and yourClock after

executing myClock = yourClock;

FIGURE 10-3 myClock and yourClock before and after executing the statement myClock =
yourClock;

Classes | 637

Functions and Classes
The following rules describe the relationship between functions and classes:

• Class objects can be passed as parameters to functions and returned as
function values.

• As parameters to functions, class objects can be passed either by value or
by reference.

• If a class object is passed by value, the contents of the member variables of
the actual parameter are copied into the corresponding member variables
of the formal parameter.

Reference Parameters and Class Objects (Variables)
Recall that when a variable is passed by value, the formal parameter copies the value of
the actual parameter. That is, memory space to copy the value of the actual parameter is
allocated for the formal parameter. As a parameter, a class object can be passed by value.

Suppose that a class has several member variables requiring a large amount of memory to store
data, and you need to pass a variable by value. The corresponding formal parameter then
receives a copy of the data of the variable. That is, the compiler must allocate memory for the
formal parameter, so as to copy the value of the member variables of the actual parameter.
This operation might require, in addition to a large amount of storage space, a considerable
amount of computer time to copy the value of the actual parameter into the formal parameter.

On the other hand, if a variable is passed by reference, the formal parameter receives only the
address of the actual parameter. Therefore, an efficient way to pass a variable as a parameter is
by reference. If a variable is passed by reference, then when the formal parameter changes, the
actual parameter also changes. Sometimes, however, you do not want the function to be able
to change the values of the member variables. In C++, you can pass a variable by reference
and still prevent the function from changing its value by using the keyword const in the
formal parameter declaration. As an example, consider the following function definition:

void testTime(const clockType& otherClock)
{

clockType dClock;
.
.
.

}

The function testTime contains a reference parameter, otherClock. The parameter
otherClock is declared using the keyword const. Thus, in a call to the function
testTime, the formal parameter otherClock receives the address of the actual para-
meter, but otherClock cannot modify the contents of the actual parameter. For example,
after the following statement executes, the value of myClock will not be altered:

testTime(myClock);

638 | Chapter 10: Classes and Data Abstraction

Generally, if you want to declare a class object as a value parameter, you declare it as a
reference parameter using the keyword const, as described previously.

Recall that if a formal parameter is a value parameter, within the function definition,
you can change the value of the formal parameter. That is, you can use an assignment
statement to change the value of the formal parameter (which, of course, would have
no effect on the actual parameter). However, if a formal parameter is a constant
reference parameter, you cannot use an assignment statement to change its value
within the function, nor can you use any other function to change its value. Therefore,
within the definition of the function testTime, you cannot alter the value of
otherClock. For example, the following would be illegal in the definition of the
function testTime:

otherClock.setTime(5, 34, 56); //illegal
otherClock = dClock; //illegal

Implementation of Member Functions
When we defined the class clockType, we included only the function prototype
for the member functions. For these functions to work properly, we must write the
related algorithms. One way to implement these functions is to provide the function
definition rather than the function prototype in the class itself. Unfortunately, the
class definition would then be very long and difficult to comprehend. Another reason
for providing function prototypes instead of function definitions relates to informa-
tion hiding; that is, we want to hide the details of the operations on the data. We
will discuss this issue later in this chapter, in the section ‘‘Information Hiding.’’

Next, let us write the definitions of the member functions of the class clockType.
That is, we will write the definitions of the functions setTime, getTime, printTime,
incrementSeconds, equalTime, and so on. Because the identifiers setTime,
printTime, and so forth are local to the class, we cannot reference them (directly) outside
of the class. In order to reference these identifiers, we use the scope resolution operator, ::
(double colon). In the function definition’s heading, the name of the function is the name of
the class, followed by the scope resolution operator, followed by the function name. For
example, the definition of the function setTime is as follows:

void clockType::setTime(int hours, int minutes, int seconds)
{

if (0 <= hours && hours < 24)
hr = hours;

else
hr = 0;

if (0 <= minutes && minutes < 60)
min = minutes;

else
min = 0;

1

0

Classes | 639

if (0 <= seconds && seconds < 60)
sec = seconds;

else
sec = 0;

}

Note that the definition of the function setTime checks for the valid values of hours,
minutes, and seconds. If these values are out of range, the member variables hr, min,
and sec are initialized to 0. Let us now explain how the member function setTime

works when accessed by an object of type clockType.

The member function setTime is a void function and has three parameters.
Therefore:

• A call to this function is a stand-alone statement.

• We must use three parameters in a call to this function.

Furthermore, recall that because setTime is a member of the class clockType, it can
directly access the member variables hr, min, and sec, as shown in the definition of
setTime.

Suppose that myClock is an object of type clockType (as declared previously). The
object myClock has three member variables, as shown in Figure 10-4(a).

Consider the following statement:

myClock.setTime(3, 48, 52);

In the statement myClock.setTime(3, 48, 52);, setTime is accessed by the object
myClock. Therefore, the three variables—hr, min, and sec—referred to in the body of
the function setTime are the three member variables of myClock. Thus, the values 3,
48, and 52, which are passed as parameters in the preceding statement, are assigned to the
three member variables of myClock by the function setTime (see the body of the
function setTime). After the previous statement executes, the object myClock is as
shown in Figure 10-4(b).

hr

min

sec

myClock

hr 3

min 48

sec 52

myClock

(a) myClock before executing
myClock.setTime(3, 48, 52);

(b) myClock after executing
myClock.setTime(3, 48, 52);

FIGURE 10-4 myClock before and after executing the statement myClock.setTime(3, 48, 52);

640 | Chapter 10: Classes and Data Abstraction

1

0

Next, let us give the definitions of the other member functions of the class clockType.
The definitions of these functions are simple and easy to follow:

void clockType::getTime(int& hours, int& minutes,
int& seconds) const

{

hours = hr;
minutes = min;
seconds = sec;

}

void clockType::printTime() const
{

if (hr < 10)
cout << "0";

cout << hr << ":";

if (min < 10)
cout << "0";

cout << min << ":";

if (sec < 10)
cout << "0";

cout << sec;
}

void clockType::incrementHours()
{

hr++;
if (hr > 23)

hr = 0;
}

void clockType::incrementMinutes()
{

min++;
if (min > 59)
{

min = 0;
incrementHours(); //increment hours

}

}

void clockType::incrementSeconds()
{

sec++;

if (sec > 59)
{

sec = 0;
incrementMinutes(); //increment minutes

}

}

Classes | 641

From the definitions of the functions incrementMinutes and incrementSeconds,
it is clear that a member function of a class can call other member functions of the
class.

The function equalTime has the following definition:

bool clockType::equalTime(const clockType& otherClock) const
{

return (hr == otherClock.hr
&& min == otherClock.min
&& sec == otherClock.sec);

}

Let us see how the member function equalTime works.

Suppose that myClock and yourClock are objects of type clockType, as declared
previously. Further suppose that we have myClock and yourClock, as shown in
Figure 10-5.

Consider the following statement:

if (myClock.equalTime(yourClock))
.
.
.

In the expression:

myClock.equalTime(yourClock)

the object myClock accesses the member function equalTime. Because otherClock

is a reference parameter, the address of the actual parameter yourClock is passed to the
formal parameter otherClock, as shown in Figure 10-6.

hr 14

min 25

sec 54

yourClock
hr 14

min 8

sec 25

myClock

FIGURE 10-5 Objects myClock and yourClock

642 | Chapter 10: Classes and Data Abstraction

The member variables hr, min, and sec of otherClock have the values 14, 25, and
54, respectively. In other words, when the body of the function equalTime executes,
the value of otherClock.hr is 14, the value of otherClock.min is 25, and the value
of otherClock.sec is 54. The function equalTime is a member of myClock. When
the function equalTime executes, the variables hr, min, and sec in the body of the
function equalTime are the member variables of the object myClock. Therefore, the
member hr of myClock is compared with otherClock.hr, the member min of
myClock is compared with otherClock.min, and the member sec of myClock is
compared with otherClock.sec.

Once again, from the definition of the function equalTime, it is clear why it has only
one parameter.

Let us again take a look at the definition of the function equalTime. Notice that within
the definition of this function, the object otherClock accesses the member variables hr,
min, and sec. However, these member variables are private. So is there any violation?
The answer is no. The function equalTime is a member of the class clockType, and
hr, min, and sec are the member variables. Moreover, otherClock is an object of type
clockType. Therefore, the object otherClock can access its private member vari-
ables within the definition of the function equalTime.

The same is true for any member function of a class. In general, when you write the
definition of a member function, say, dummyFunction, of a class, say, dummyClass,
and the function uses an object, dummyObject of the class dummyClass, then within
the definition of dummyFunction, the object dummyObject can access its private

member variables (in fact, any private member of the class).

Once a class is properly defined and implemented, it can be used in a program. A program
or software that uses and manipulates the objects of a class is called a client of that class.

When you declare objects of the class clockType, every object has its own copy of
the member variables hr, min, and sec. In object-oriented terminology, variables such
as hr, min, and sec are called instance variables of the class because every object has its
own instance of the data.

1

0

hr 14

min 25

sec 54

yourClock
hr 14

min 8

sec 25

myClock

otherClock

equalTime

FIGURE 10-6 Object myClock and parameter otherClock

Classes | 643

Accessor and Mutator Functions
Let us look at the member functions of the class clockType. The function setTime

sets the values of the member variables to the values specified by the user. In other
words, it alters or modifies the values of the member variables. Similarly, the functions
incrementSeconds, incrementMinutes, and incrementHours also modify the
member variables. On the other hand, functions such as getTime, printTime, and
equalTime only access the values of the member variables. They do not modify the
member variables. We can, therefore, categorize the member functions of the class

clockType into two categories: member functions that modify the member variables
and member functions that only access, and do not modify, the member variables.

This is typically true for any class. That is, every class has member functions that only
access and do not modify the member variables, called accessor functions, and member
functions that modify the member variables, called mutator functions.

Accessor function: A member function of a class that only accesses (that is, does not
modify) the value(s) of the member variable(s).

Mutator function: A member function of a class that modifies the value(s) of the member
variable(s).

Because an accessor function only accesses the values of the member variables, as a
safeguard, we typically include the reserved word const at the end of the headings of
these functions. Moreover, a constant member function of a class cannot modify the
member variables of that class. For example, see the headings of the member functions
getTime, printTime, and equalTime of the class clockType.

A member function of a class is called a constant function if its heading contains the reserved
word const at the end. For example, the member functions getTime, printTime, and
equalTime of the class clockType are constant functions. A constant member function
of a class cannot modify the member variables of that class, so these are accessor functions.
One thing that should be remembered about constant member functions is that a constant
member function of a class can only call other constant member functions of that class.
Therefore, you should be careful when you make a member function constant.

Example 10-2 shows how to use the class clockType in a program. Note that we
have combined the definition of the class, the definition of the member functions, and the
main function to create a complete program. Later in this chapter, you will learn how to
separate the definition of the class clockType, the definitions of the member func-
tions, and the main program, using three files.

EXAMPLE 10-2

//The program listing of the program that defines
//and uses the class clockType

644 | Chapter 10: Classes and Data Abstraction

1

0

#include <iostream>
using namespace std;

class clockType
{

public:
void setTime(int, int, int);
void getTime(int&, int&, int&) const;
void printTime() const;
void incrementSeconds();
void incrementMinutes();
void incrementHours();
bool equalTime(const clockType&) const;

private:
int hr;
int min;
int sec;

};

int main()
{

clockType myClock;
clockType yourClock;

int hours;
int minutes;
int seconds;

//Set the time of myClock
myClock.setTime(5, 4, 30); //Line 1

cout << "Line 2: myClock: "; //Line 2
myClock.printTime(); //print the time of myClock Line 3
cout << endl; //Line 4

cout << "Line 5: yourClock: "; //Line 5
yourClock.printTime(); //print the time of yourClock Line 6
cout << endl; //Line 7

//Set the time of yourClock
yourClock.setTime(5, 45, 16); //Line 8

cout << "Line 9: After setting, yourClock: "; //Line 9
yourClock.printTime(); //print the time of yourClock Line 10
cout << endl; //Line 11

//Compare myClock and yourClock
if (myClock.equalTime(yourClock)) //Line 12

cout << "Line 13: Both times are equal."
<< endl; //Line 13

Classes | 645

else //Line 14
cout << "Line 15: The two times are not equal."

<< endl; //Line 15

cout << "Line 16: Enter the hours, minutes, and "
<< "seconds: "; //Line 16

cin >> hours >> minutes >> seconds; //Line 17
cout << endl; //Line 18

//Set the time of myClock using the value of the
//variables hours, minutes, and seconds

myClock.setTime(hours, minutes, seconds); //Line 19

cout << "Line 20: New myClock: "; //Line 20
myClock.printTime(); //print the time of myClock Line 21
cout << endl; //Line 22

//Increment the time of myClock by one second
myClock.incrementSeconds(); //Line 23

cout << "Line 24: After incrementing myClock by "
<< "one second, myClock: "; //Line 24

myClock.printTime(); //print the time of myClock Line 25
cout << endl; //Line 26

//Retrieve the hours, minutes, and seconds of the
//object myClock

myClock.getTime(hours, minutes, seconds); //Line 27

//Output the value of hours, minutes, and seconds
cout << "Line 28: hours = " << hours

<< ", minutes = " << minutes
<< ", seconds = " << seconds << endl; //Line 28

return 0;
}//end main

void clockType::setTime(int hours, int minutes, int seconds)
{

if (0 <= hours && hours < 24)
hr = hours;

else
hr = 0;

if (0 <= minutes && minutes < 60)
min = minutes;

else
min = 0;

if (0 <= seconds && seconds < 60)
sec = seconds;

else
sec = 0;

}

646 | Chapter 10: Classes and Data Abstraction

//Place the definitions of the remaining functions, getTime,
//incrementHours, incrementMinutes, incrementSeconds, printTime,
//and equalTime, of the class clockType, as described
//previously here.

Sample Run: In this sample run, the user input is shaded.

Line 2: myClock: 05:04:30
Line 5: yourClock: 0-858993460:0-858993460:0-858993460
Line 9: After setting, yourClock: 05:45:16
Line 15: The two times are not equal.
Line 16: Enter the hours, minutes, and seconds: 5 23 59

Line 20: New myClock: 05:23:59
Line 24: After incrementing myClock by one second, myClock: 05:24:00
Line 28: hours = 5, minutes = 24, seconds = 0

The value of yourClock, as printed in the second line of the output (Line 5), is
machine dependent you might get different values.

Order of public and private Members of a Class
C++ has no fixed order in which you declare public and private members; you can
declare them in any order. The only thing you need to remember is that, by default, all
members of a class are private. You must use the member access specifier public to
make a member available for public access. If you decide to declare the private

members after the public members (as is done in the case of clockType), you must
use the member access specifier private to begin the declaration of the private

members.

We can declare the class clockType in one of three ways, as shown in Examples 10-3
through 10-5.

EXAMPLE 10-3

This declaration is the same as before. For the sake of completeness, we include the class
definition:

class clockType
{

public:
void setTime(int, int, int);
void getTime(int&, int&, int&) const;
void printTime() const;
void incrementSeconds();
void incrementMinutes();
void incrementHours();
bool equalTime(const clockType&) const;

1

0

Classes | 647

private:
int hr;
int min;
int sec;

};

EXAMPLE 10-4

class clockType
{

private:
int hr;
int min;
int sec;

public:
void setTime(int, int, int);
void getTime(int&, int&, int&) const;
void printTime() const;
void incrementSeconds();
void incrementMinutes();
void incrementHours();
bool equalTime(const clockType&) const;

};

EXAMPLE 10-5

class clockType
{

int hr;
int min;
int sec;

public:
void setTime(int, int, int);
void getTime(int&, int&, int&) const;
void printTime() const;
void incrementSeconds();
void incrementMinutes();
void incrementHours();
bool equalTime(const clockType&) const;

};

648 | Chapter 10: Classes and Data Abstraction

In Example 10-5, because the identifiers hr, min, and sec do not follow any member
access specifier, they are private.

It is a common practice to list all of the public members first and then the private

members. This way, you can focus your attention on the public members.

Constructors
In the program in Example 10-2, when we printed the value of yourClock without
calling the function setTime, the output was some strange numbers (see the output of
Line 5 in the sample run). This is due to the fact that C++ does not automatically initialize
the variables. Because the private members of a class cannot be accessed outside of the
class (in our case, the member variables), if the user forgets to initialize these variables by
calling the function setTime, the program will produce erroneous results.

To guarantee that the member variables of a class are initialized, you use constructors.
There are two types of constructors: with parameters and without parameters. The
constructor without parameters is called the default constructor.

Constructors have the following properties:

• The name of a constructor is the same as the name of the class.

• A constructor, even though it is a function, has no type. That is, it is
neither a value-returning function nor a void function.

• A class can have more than one constructor. However, all constructors of
a class have the same name.

• If a class has more than one constructor, the constructors must have
different formal parameter lists. That is, either they have a different
number of formal parameters or, if the number of formal parameters is
the same, then the data type of the formal parameters, in the order you
list, must differ in at least one position.

• Constructors execute automatically when a class object enters its scope.
Because they have no types, they cannot be called like other functions.

• Which constructor executes depends on the types of values passed to the
class object when the class object is declared.

Let us extend the definition of the class clockType by including two constructors:

class clockType
{

public:
void setTime(int, int, int);
void getTime(int&, int&, int&) const;
void printTime() const;
void incrementSeconds();

1

0

Classes | 649

void incrementMinutes();
void incrementHours();
bool equalTime(const clockType&) const;
clockType(int, int, int); //constructor with parameters
clockType(); //default constructor

private:
int hr;
int min;
int sec;

};

This definition of the class clockType includes two constructors: one with three
parameters and one without any parameters. Let us now write the definitions of these
constructors:

clockType::clockType(int hours, int minutes, int seconds)
{

if (0 <= hours && hours < 24)
hr = hours;

else
hr = 0;

if (0 <= minutes && minutes < 60)
min = minutes;

else
min = 0;

if (0 <= seconds && seconds < 60)
sec = seconds;

else
sec = 0;

}

clockType::clockType() //default constructor
{

hr = 0;
min = 0;
sec = 0;

}

From the definitions of these constructors, it follows that the default constructor sets the
three member variables—hr, min, and sec—to 0. Also, the constructor with parameters
sets the member variables to whatever values are assigned to the formal parameters.
Moreover, we can write the definition of the constructor with parameters by calling
the function setTime, as follows:

clockType::clockType(int hours, int minutes, int seconds)
{

setTime(hours, minutes, seconds);
}

650 | Chapter 10: Classes and Data Abstraction

1

0

Invoking a Constructor
Recall that when a class object is declared, a constructor is automatically executed.
Because a class might have more than one constructor, including the default constructor,
next we discuss how to invoke a specific constructor.

Invoking the Default Constructor
Suppose that a class contains the default constructor. The syntax to invoke the default
constructor is:

className classObjectName;

For example, the statement:

clockType yourClock;

declares yourClock to be an object of type clockType. In this case, the default
constructor executes, and the member variables of yourClock are initialized to 0.

If you declare an object and want the default constructor to be executed, the empty

parentheses after the object name are not required in the object declaration statement. In

fact, if you accidentally include the empty parentheses, the compiler generates a syntax error

message. For example, the following statement to declare the objectyourClock is illegal:

clockType yourClock(); //illegal object declaration

Invoking a Constructor with Parameters
Suppose a class contains constructors with parameters. The syntax to invoke a constructor
with a parameter is:

className classObjectName(argument1, argument2, ...);

in which argument1, argument2, and so on are either a variable or an expression.

Note the following:

• The number of arguments and their type should match the formal
parameters (in the order given) of one of the constructors.

• If the type of the arguments does not match the formal parameters of any
constructor (in the order given), C++ uses type conversion and looks for
the best match. For example, an integer value might be converted to a
floating-point value with a zero decimal part. Any ambiguity will result
in a compile-time error.

Consider the statement:

clockType myClock(5, 12, 40);

Classes | 651

This statement declares an object myClock of type clockType. Here, we are passing three
values of type int, which matches the type of the formal parameters of the constructor with
a parameter. Therefore, the constructor with parameters of the class clockType executes,
and the three member variables of the object myClock are set to 5, 12, and 40.

Example 10-6 further illustrates how constructors are executed.

EXAMPLE 10-6

Consider the following class definition:

class inventory
{
public:

inventory(); //Line 1
inventory(string); //Line 2
inventory(string, int, double); //Line 3
inventory(string, int, double, int); //Line 4

//Add additional functions

private:
string name;
int itemNum;
double price;
int unitsInStock;

};

This class has four constructors and four member variables. Suppose that the definitions of
the constructors are as follows:

inventory::inventory() //default constructor
{

name = "";
itemNum = -1;
price = 0.0;
unitsInStock = 0;

}

inventory::inventory(string n)
{

name = n;
itemNum = -1;
price = 0.0;
unitsInStock = 0;

}

inventory::inventory(string n, int iNum, double cost)
{

name = n;
itemNum = iNum;
price = cost;
unitsInStock = 0;

}

652 | Chapter 10: Classes and Data Abstraction

1

0

inventory::inventory(string n, int iNum, double cost, int inStock)
{

name = n;
itemNum = iNum;
price = cost;
unitsInStock = inStock;

}

Consider the following declarations:

inventory item1;
inventory item2("Dryer");
inventory item3("Washer", 2345, 278.95);
inventory item4("Toaster", 8231, 34.49, 200);

For item1, the default constructor in Line 1 executes because no value is passed to this
variable. For item2, the constructor in Line 2 executes because only one parameter,
which is of type string, is passed, and it matches with the constructor in Line 2. For
item3, the constructor in Line 3 executes because three parameters are passed to item3,
and they match with the constructor in Line 3. Similarly, for item4, the constructor in
Line 4 executes (see Figure 10-7).

If the values passed to a class object do not match the parameters of any constructor and

if no type conversion is possible, a compile-time error will be generated.

name

itemNum -1

price 0.0

item1

unitsInStock 0

name Dryer

itemNum -1

price 0.0

item2

unitsInStock 0

item4

name Toaster

itemNum 8231

price 34.49

unitsInStock 200

name Washer

itemNum 2345

price 278.95

item3

unitsInStock 0

FIGURE 10-7 Effect of constructors on objects

Classes | 653

Constructors and Default Parameters
A constructor can also have default parameters. In such cases, the rules for declaring
formal parameters are the same as those for declaring default formal parameters in a
function. Moreover, actual parameters to a constructor with default parameters are
passed according to the rules for functions with default parameters. (Chapter 6 discusses
functions with default parameters.) Using the rules for defining default parameters, in the
definition of the class clockType, you can replace both constructors using the following
statement. (Recall that in the function prototype, the name of a formal parameter is optional.)

clockType clockType(int = 0, int = 0, int = 0); //Line 1

In the implementation file, the definition of this constructor is the same as the definition
of the constructor with parameters.

If you replace the constructors of the class clockType with the constructor in Line 1
(the constructor with the default parameters), then you can declare clockType objects
with zero, one, two, or three arguments, as follows:

clockType clock1; //Line 2
clockType clock2(5); //Line 3
clockType clock3(12, 30); //Line 4
clockType clock4(7, 34, 18); //Line 5

The member variables of clock1 are initialized to 0. The member variable hr of clock2
is initialized to 5, and the member variables min and sec of clock2 are initialized to 0.
The member variable hr of clock3 is initialized to 12, the member variable min of
clock3 is initialized to 30, and the member variable sec of clock3 is initialized to 0.
The member variable hr of clock4 is initialized to 7, the member variable min of
clock4 is initialized to 34, and the member variable sec of clock4 is initialized to 18.

Using these conventions, we can say that a constructor that has no parameters, or has all
default parameters, is called the default constructor.

Classes and Constructors: A Precaution
As discussed in the preceding section, constructors provide guaranteed initialization of the
object’s member variables. Typically, the default constructor is used to initialize the member
variables to some default values, and this constructor has no parameters. A constructor with
parameters is used to initialize the member variables to some specific values.

We have seen that if a class has no constructor(s), then the object created is uninitialized
because C++ does not automatically initialize variables when they are declared. In reality, if a
class has no constructor(s), then C++ automatically provides the default constructor. How-
ever, this default constructor does not do anything. The object declared is still uninitialized.

The important things to remember about classes and constructors are the following:

• If a class has no constructor(s), C++ automatically provides the default
constructor. However, the object declared is still uninitialized.

654 | Chapter 10: Classes and Data Abstraction

1

0

• On the other hand, suppose a class, say, dummyClass, includes con-
structor(s) with parameter(s) and does not include the default constructor. In
this case, C++ does not provide the default constructor for the class

dummyClass. Therefore, when an object of the class dummyClass is
declared, we must include the appropriate arguments in its declaration.

The following code further explains this. Consider the definition of the following class:

class dummyClass
{

public:
void print() const;

dummyClass(int dX, int dY);

private:
int x;
int y;

};

The class dummyClass does not have the default constructor. It has a constructor with
parameters. Given this definition of the class dummyClass, the following object
declaration is legal:

dummyClass myObject(10, 25); //object declaration is legal

However, because the class dummyClass does not contain the default constructor, the
following declaration is incorrect and would generate a syntax error:

dummyClass dummyObject; //incorrect object declaration

Therefore, to avoid such pitfalls, if a class has constructor(s), the class should also include
the default constructor.

Arrays of Class Objects (Variables) and Constructors
If a class has constructors and you declare an array of that class’s objects, the class should have the
default constructor. The default constructor is typically used to initialize each (array) class object.

For example, if you declare an array of 100 class objects, then it is impractical (if not
impossible) to specify different constructors for each component. (We will further clarify
this at the end of this section.)

Suppose that you have 100 employees who are paid on an hourly basis, and you need to keep
track of their arrival and departure times. You can declare two arrays—arrivalTimeEmp

and departureTimeEmp—of 100 components each, wherein each component is an object
of type clockType.

Consider the following statement:

clockType arrivalTimeEmp[100]; //Line 1

The statement in Line 1 creates the array of objects arrivalTimeEmp[0],
arrivalTimeEmp[1], . . ., arrivalTimeEmp[99], as shown in Figure 10-8.

Classes | 655

You can now use the functions of the class clockType to manipulate the time for
each employee. For example, the following statement sets the arrival time, that is, hr,
min, and sec, of the 50th employee to 8, 5, and 10, respectively (see Figure 10-9).

arrivalTimeEmp[49].setTime(8, 5, 10); //Line 2

To output the arrival time of each employee, you can use a loop, such as the following:

for (int j = 0; j < 100; j++) //Line 3
{

cout << "Employee " << (j + 1)
<< " arrival time: ";

arrivalTimeEmp[j].printTime(); //Line 4
cout << endl;

}

The statement in Line 4 outputs the arrival time of an employee in the form
hr:min:sec.

arrivalTimeEmp[0]
arrivalTimeEmp[1]

arrivalTimeEmp[49]

arrivalTimeEmp[98]
arrivalTimeEmp[99]

arrivalTimeEmp

arrivalTimeEmp[49]

hr 8

min 5

sec 10

FIGURE 10-9 Array arrivalTimeEmp after setting the time of employee 49

arrivalTimeEmp[0]
arrivalTimeEmp[1]

arrivalTimeEmp[49]

arrivalTimeEmp[98]
arrivalTimeEmp[99]

arrivalTimeEmp

arrivalTimeEmp[49]

hr 0

min 0

sec 0

FIGURE 10-8 Array arrivalTimeEmp

656 | Chapter 10: Classes and Data Abstraction

To keep track of the departure time of each employee, you can use the array
departureTimeEmp.

Similarly, you can use arrays to manage a list of names or other objects.

Before leaving our discussion of arrays of class objects, we would like to point out the

following: The beginning of this section stated that if you declare an array of class objects

and the class has constructor(s), then the class should have the default constructor. The

compiler uses the default constructor to initialize the array of objects. If the array size is

large, then it is impractical to specify a different constructor with parameters for each object.

For a small-sized array, we can manage to specify a different constructor with parameters.

For example, the following statement declares clocks to be an array of two compo-

nents. The member variables of the first component are initialized to 8, 35, and 42,

respectively. The member variables of the second component are initialized to 6, 52, and

39, respectively.

clockType clocks[2] = {clockType(8, 35, 42), clockType(6, 52, 39)};

In fact, the expression clockType(8, 35, 42) creates an anonymous object of the

class clockType; initializes its member variables to 8, 35, and 42, respectively;

and then uses a member-wise copy to initialize the object clock[0].

Consider the following statement, which creates the object myClock and initializes its

member variables to 10, 45, and 38, respectively. This is how we have been creating and

initializing objects. In fact, the statement:

clockType myClock(10, 45, 38);

is equivalent to the statement:

clockType myClock = clockType(10, 45, 38);

However, the first statement is more efficient. It does not first require that an anonymous

object be created and then member-wise copied in order to initialize myClock.

The main point that we are stressing here, and that we discussed in the preceding section,

is the following: To avoid any pitfalls, if a class has constructor(s), it should also have the

default constructor.

Destructors
Like constructors, destructors are also functions. Moreover, like constructors, a destructor
does not have a type. That is, it is neither a value-returning function nor a void function.
However, a class can have only one destructor, and the destructor has no parameters. The
name of a destructor is the tilde character (~), followed by the name of the class. For
example, the name of the destructor for the class clockType is:

~clockType();

1

0

Classes | 657

The destructor automatically executes when the class object goes out of scope. The use of
destructors is discussed in subsequent chapters.

Data Abstraction, Classes, and Abstract
Data Types
For the car that we drive, most of us want to know how to start the car and drive it.
Most people are not concerned with the complexity of how the engine works. By
separating the design details of a car’s engine from its use, the manufacturer helps the
driver focus on how to drive the car. Our daily life has other similar examples. For
the most part, we are concerned only with how to use certain items, rather than with
how they work.

Separating the design details (that is, how the car’s engine works) from its use is
called abstraction. In other words, abstraction focuses on what the engine does and
not on how it works. Thus, abstraction is the process of separating the logical
properties from the implementation details. Driving the car is a logical property;
the construction of the engine constitutes the implementation details. We have an
abstract view of what the engine does but are not interested in the engine’s actual
implementation.

Abstraction can also be applied to data. Earlier sections of this chapter defined a data type
clockType. The data type clockType has three member variables and the following
basic operations:

1. Set the time.

2. Return the time.

3. Print the time.

4. Increment the time by one second.

5. Increment the time by one minute.

6. Increment the time by one hour.

7. Compare two times to see whether they are equal.

The actual implementation of the operations, that is, the definitions of the member
functions of the class clockType, was postponed.

Data abstraction is defined as a process of separating the logical properties of the data from
its implementation. The definition of clockType and its basic operations are the logical
properties; the storing of clockType objects in the computer and the algorithms to
perform these operations are the implementation details of clockType.

Abstract data type (ADT): A data type that separates the logical properties from the
implementation details.

658 | Chapter 10: Classes and Data Abstraction

Like any other data type, an ADT has three things associated with it: the name of the
ADT, called the type name; the set of values belonging to the ADT, called the domain;
and the set of operations on the data. Following these conventions, we can define the
clockType ADT as follows:

dataTypeName
clockType

domain
Each clockType value is a time of day in the form of hours,
minutes, and seconds.

operations
Set the time.
Return the time.
Print the time.
Increment the time by one second.
Increment the time by one minute.
Increment the time by one hour.
Compare the two times to see whether they are equal.

EXAMPLE 10-7

A list is defined as a set of values of the same type. Because all values in a list are of the
same type, a convenient way to represent and process a list is to use an array. You can
define a list as an ADT as follows:

dataTypeName
listType

domain
Every listType value is an array of, say, 1000 numbers

operations
Check to see whether the list is empty.
Check to see whether the list is full.
Search the list for a given item.
Delete an item from the list.
Insert an item in the list.
Sort the list.
Destroy the list.
Print the list.

The next obvious question is how to implement an ADT in a program. To implement an
ADT, you must represent the data and write algorithms to perform the operations.

The previous section used classes to group data and functions together. Furthermore, our
definition of a class consisted only of the specifications of the operations; functions to
implement the operations were written separately. Thus, we see that classes are a
convenient way to implement an ADT. In fact, in C++, classes were specifically designed
to handle ADTs.

1

0

Data Abstraction, Classes, and Abstract Data Types | 659

Next, we define the class listType to implement a list as an ADT. Typically in a list,
not only do we store the elements, but we also keep track of the number of elements in
the list. Therefore, our class listType has two member variables: one to store the
elements and another to keep track of the number of elements in the list. The following
class, listType, defines the list as an ADT.

class listType
{

public:
bool isEmptyList() const;
bool isFullList() const;
int search(int searchItem) const;
void insert(int newElement);
void remove(int removeElement);
void destroyList();
void printList() const;
listType(); //constructor

private:
int list[1000];
int length;

};

Figure 10-10 shows the UML class diagram of the class listType.

A struct Versus a class
Chapter 9 defined a struct as a fixed collection of components, wherein the compo-
nents can be of different types. This definition of components in a struct included only
member variables. However, a C++ struct is very similar to a C++ class. As with a

listType

-list: int

-length: int

+isEmptyList() const: bool

+isFullList() const: bool

+search(int) const: int

+insert(int): void

+remove(int): void

+destroyList(): void

+printList(): const: void

+listType()

FIGURE 10-10 UML class diagram of the class listType

660 | Chapter 10: Classes and Data Abstraction

class, members of a struct can also be functions, including constructors and a
destructor. The only difference between a struct and a class is that, by default, all
members of a struct are public, and all members of a class are private. You can
use the member access specifier private in a struct to make a member private.

In C, the definition of a struct is similar to the definition of a struct in C++, as given
in Chapter 9. Because C++ evolved from C, the standard C-structs are perfectly
acceptable in C++. However, the definition of a struct in C++ was expanded to
include member functions and constructors and destructors. In the future, because a
class is a syntactically separate entity, specially designed to handle an ADT, the
definition of a class may evolve in a completely different way than the definition of a
C-like struct.

Both C++ classes and structs have the same capabilities. However, most programmers
restrict their use of structures to adhere to their C-like structure form and thus do not use
them to include member functions. In other words, if all of the member variables of a
class are public and the class has no member functions, you typically use a struct to
group these members. This is, in fact, how it is done in this book.

Information Hiding
The previous section defined the class clockType to implement the time in a
program. We then wrote a program that used the class clockType. In fact, we
combined the class clockType with the function definitions to implement the
operations and the function main so as to complete the program. That is, the specifica-
tion and implementation details of the class clockType were directly incorporated
into the program.

Is it a good practice to include the specification and implementation details of a class in
the program? Definitely not. There are several reasons for not doing so. Suppose the
definition of the class and the definitions of the member functions are directly included in
the user’s program. The user then has direct access to the definition of the class and the
definitions of the member functions. Therefore, the user can modify the operations in
any way the user pleases. The user can also modify the member variables of an object in
any way the user pleases. Thus, in this sense, the private member variables of an object
are no longer private to the object.

If several programmers use the same object in a project and if they have direct access to
the internal parts of the object, there is no guarantee that every programmer will use the
same object in exactly the same way. Thus, we must hide the implementation details. The
user should know only what the object does, not how it does it. Hiding the implementa-
tion details frees the user from having to fit this extra piece of code in the program. Also,
by hiding the details, we can ensure that an object will be used in exactly the same way
throughout the project. Furthermore, once an object has been written, debugged, and
tested properly, it becomes (and remains) error-free.

1

0

Information Hiding | 661

This section discusses how to hide the implementation details of an object. For illustration
purposes, we will use the class clockType.

To implement clockType in a program, the user must declare objects of type
clockType and know which operations are allowed and what the operations do.
So, the user must have access to the specification details. Because the user is not
concerned with the implementation details, we must put those details in a separate file
called an implementation file. Also, because the specification details can be too long,
we must free the user from having to include them directly in the program. However,
the user must be able to look at the specification details so that he or she can correctly
call the functions, and so forth. We must, therefore, put the specification details in a
separate file. The file that contains the specification details is called the header file (or
interface file).

The implementation file contains the definitions of the functions to implement the
operations of an object. This file contains, among other things (such as the preprocessor
directives), the C++ statements. Because a C++ program can have only one function,
main, the implementation file does not contain the function main. Only the user
program contains the function main. Because the implementation file does not contain
the function main, we cannot produce the executable code from this file. In fact, we
produce what is called the object code from the implementation file. The user then links
the object code produced by the implementation file with the object code of the program
that uses the class to create the final executable code.

Finally, the header file has an extension h, whereas the implementation file has an extension
cpp. Suppose that the specification details of the class clockType are in a file called
clockType. The complete name of this file should then be clockType.h. If the
implementation details of the class clockType are in a file—say, clockTypeImp—the
name of this file must be clockTypeImp.cpp.

The file clockTypeImp.cpp contains only the definitions of the functions, not
the definition of the class. Thus, to resolve the problem of an undeclared identifier
(such as the function names and variable names), we include the header file
clockType.h in the file clockTypeImp.cpp with the help of the include

statement. The following include statement is required by any program that uses
the class clockType, as well as by the implementation file that defines the
operations for the class clockType:

#include "clockType.h"

Note that the header file clockType.h is enclosed in double quotation marks, not angular
brackets. The header file clockType.h is called the user-defined header file. Typically, all
user-defined header files are enclosed in double quotation marks, whereas the system-
provided header files (such as iostream) are enclosed between angular brackets.

The implementation contains the definitions of the functions, and these definitions are
hidden from the user because the user is typically provided only the object code.

662 | Chapter 10: Classes and Data Abstraction

However, the user of the class should be aware of what a particular function does and
how to use it. Therefore, in the specification file with the function prototypes, we
include comments that briefly describe the function and specify any preconditions and/
or postconditions.

Precondition: A statement specifying the condition(s) that must be true before the
function is called.

Postcondition: A statement specifying what is true after the function call is completed.

Following are the specification and implementation files for the class clockType:

//clockType.h, the specification file for the class clockType

class clockType
{

public:
void setTime(int hours, int minutes, int seconds);

//Function to set the time.
//The time is set according to the parameters.
//Postcondition: hr = hours; min = minutes;
// sec = seconds;
// The function checks whether the
// values of hours, minutes, and seconds
// are valid. If a value is invalid, the
// default value 0 is assigned.

void getTime(int& hours, int& minutes, int& seconds) const;
//Function to return the time.
//Postcondition: hours = hr; minutes = min;
// seconds = sec;

void printTime() const;
//Function to print the time.
//Postcondition: The time is printed in the form
// hh:mm:ss.

void incrementSeconds();
//Function to increment the time by one second.
//Postcondition: The time is incremented by one second.
// If the before-increment time is
// 23:59:59, the time is reset to 00:00:00.

void incrementMinutes();
//Function to increment the time by one minute.
//Postcondition: The time is incremented by one minute.
// If the before-increment time is
// 23:59:53, the time is reset to 00:00:53.

void incrementHours();
//Function to increment the time by one hour.
//Postcondition: The time is incremented by one hour.

1

0

Information Hiding | 663

// If the before-increment time is
// 23:45:53, the time is reset to 00:45:53.

bool equalTime(const clockType& otherClock) const;
//Function to compare the two times.
//Postcondition: Returns true if this time is equal to
// otherClock; otherwise, returns false.

clockType(int hours, int minutes, int seconds);
//Constructor with parameters.
//The time is set according to the parameters.
//Postcondition: hr = hours; min = minutes;
// sec = seconds;
// The constructor checks whether the
// values of hours, minutes, and seconds
// are valid. If a value is invalid, the
// default value 0 is assigned.

clockType();
//Default constructor
//The time is set to 00:00:00.
//Postcondition: hr = 0; min = 0; sec = 0;

private:
int hr; //variable to store the hours
int min; //variable to store the minutes
int sec; //variable to store the seconds

};

//clockTypeImp.cpp, the implementation file

#include <iostream>
#include "clockType.h"

using namespace std;
.
.
.

//Place the definitions of the member functions of the class
//clockType here.

.

.

.

Next, we describe the user file containing the program that uses the class clockType.

//The user program that uses the class clockType

#include <iostream>
#include "clockType.h"

664 | Chapter 10: Classes and Data Abstraction

using namespace std;
.
.
.

//Place the definitions of the function main and the other
//user-defined functions here

.

.

.

To save space, we have not provided the complete details of the implementation file and

the file that contains the user program. However, you can find these files and the

specification (header) file at the Web site accompanying this book.

Executable Code
The previous section discussed how to hide the implementation details of a class. To use
an object in a program, during execution, the program must be able to access the
implementation details of the object (that is, the algorithms to implement the operations
on the object). This section discusses how a client’s program obtains access to the
implementation details of an object. For illustration purposes, we will use the class

clockType.

As explained previously, to use the class clockType, the program must include the
header file clockType.h via the include statement. For example, the following
program segment includes the header file clockType.h:

//Program test.cpp

#include "clockType.h"
.
.
.
int main()
{

.

.

.
}

The program test.cpp must include only the header file, not the implementation file.
To create the executable code to run the program test.cpp, the following steps are
required:

1. We separately compile the file clockTypeImp.cpp and create the
object code file clockTypeImp.obj. The object code file contains
the machine language code, but the code is not in an executable form.

1

0

Executable Code | 665

Suppose that the command cc invokes the C++ compiler or linker, or
both, on the computer’s system command line. The command:

cc -c clockTypeImp.cpp

creates the object code file clockTypeImp.obj.

2. To create the executable code for the source code file test.cpp, we
compile the source code file test.cpp, create the object code file
test.obj, and then link the files test.obj and clockTypeImp.obj

to create the executable file test.exe. The following command on the
system command line creates the executable file test.exe:

cc test.cpp clockTypeImp.obj

1. To create the object code file for any source code file, we use the command line

option -c on the system command line. For example, to create the

object code file for the source code file, called exercise.cpp, we

use the following command on the system command line:

cc -c exercise.cpp

2. To link more than one object code file with a source code file, we list all of the

object code files on the system command line. For example, to link

A.obj and B.obj with the source code file test.cpp, we use the

command:

cc test.cpp A.obj B.obj

3. If a source code file is modified, it must be recompiled.

4. If modifications in one source file affect other files, the other files must be

recompiled and relinked.

5. The user must have access to the header file and the object code file. Access to

the header file is needed to see what the objects do and how to use

them. Access to the object code file is needed so that the user can link

the program with the object code to produce an executable code. The

user does not need access to the source code file containing the

implementation details.

As stated in Chapter 1, IDEs Visual C++ 2008 Express, Visual C++ 2010 Express, Visual
Studio 2010, and C++ Builder put the editor, compiler, and linker all into one package.
With one command, the program is compiled and linked with the other necessary files.
These systems also manage multiple-file programs in the form of a project. Thus, a
project consists of several files, called the project files. These systems usually have a
command, called build, rebuild, or make. (Check your system’s documentation.)
When the build, rebuild, or make command is applied to a project, the system
automatically compiles and links all of the files required to create the executable code.

666 | Chapter 10: Classes and Data Abstraction

1

0

When one or more files in the project change, you can use these commands to recompile
and relink the files.

More Examples of Classes
In this section, we give various examples of classes and how to use them in a program.

EXAMPLE 10-8

The following statements define the class circleType to implement the basic proper-
ties of a circle:

class circleType
{
public:

void setRadius(double r);
//Function to set the radius.
//Postcondition: if (r >= 0) radius = r;
// otherwise radius = 0;

double getRadius();
//Function to return the radius.
//Postcondition: The value of radius is returned.

double area();
//Function to return the area of a circle.
//Postcondition: Area is calculated and returned.

double circumference();
//Function to return the circumference of a circle.
//Postcondition: Circumference is calculated and returned.

circleType(double r = 0);
//Constructor with a default parameter.
//Radius is set according to the parameter.
//The default value of the radius is 0.0;
//Postcondition: radius = r;

private:
double radius;

};

The definitions of the member functions are as follows:

void circleType::setRadius(double r)
{

if (r >= 0)
radius = r;

else
radius = 0;

}

More Examples of Classes | 667

double circleType::getRadius()
{

return radius;
}

double circleType::area()
{

return 3.1416 * radius * radius;
}

double circleType::circumference()
{

return 2 * 3.1416 * radius;
}

circleType::circleType(double r)
{

setRadius(r);
}

The following illustrates how to use the class circleType in a program:

//The user program that uses the class circleType

#include <iostream>
#include <iomanip>
#include "circleType.h"

using namespace std;

int main() //Line 1
{ //Line 2

circleType circle1(8); //Line 3
circleType circle2; //Line 4

double radius; //Line 5

cout << fixed << showpoint << setprecision(2); //Line 6

cout << "Line 7: circle1 - "
<< "radius: " << circle1.getRadius()
<< ", area: " << circle1.area()
<< ", circumference: " << circle1.circumference()
<< endl; //Line 7

cout << "Line 8: circle2 - "
<< "radius: " << circle2.getRadius()
<< ", area: " << circle2.area()
<< ", circumference: " << circle2.circumference()
<< endl << endl; //Line 8

cout << "Line 9: Enter the radius of a circle: "; //Line 9
cin >> radius; //Line 10
cout << endl; //Line 11

668 | Chapter 10: Classes and Data Abstraction

1

0

circle2.setRadius(radius); //Line 12

cout << "Line 13: After setting the radius." << endl; //Line 13
cout << "Line 14: circle2 - "

<< "radius: " << circle2.getRadius()
<< ", area: " << circle2.area()
<< ", circumference: " << circle2.circumference()
<< endl; //Line 14

return 0; //Line 15
}//end main //Line 16

Sample Run: In this sample run, the user input is shaded.

Line 7: circle1 - radius: 8.00, area: 201.06, circumference: 50.27
Line 8: circle2 - radius: 0.00, area: 0.00, circumference: 0.00

Line 9: Enter the radius of a circle: 5.5

Line 13: After setting the radius.
Line 14: circle2 - radius: 5.50, area: 95.03, circumference: 34.56

The preceding program works as follows. The statements in Lines 3 and 4 create the
objects circle1 and circle2. The radius of circle1 is set to 8; and the radius of
circle2 is set to 0 by using the default value by the constructor. The statements in Lines
7 and 8 output the data of circle1 and circle2. The statements in Lines 9 and 10
prompt the user to enter the radius of a circle and store the radius in the variable radius.
The statement in Line 12 uses the member function setRadius and the value of radius
to set the radius of circle2. The statement in Line 14 ouputs the (new) data of circle2.

EXAMPLE 10-9

In Example 6-4, in Chapter 6, the function rollDice rolls a pair of dice until the sum of
the numbers rolled is a given number and returns the number of times the dice are rolled
to get the desired sum. In fact, we can design a class that implements the basic properties
of a die. Consider the definition of the following class die.

class die
{
public:

die();
//Default constructor
//Sets the default number rolled by a die to 1

int roll();
//Function to roll a die.
//This function uses a random number generator to randomly
//generate a number between 1 and 6, and stores the number
//in the instance variable num and returns the number.

More Examples of Classes | 669

int getNum() const;
//Function to return the number on the top face of the die.
//Returns the value of the instance variable num.

private
int num;

};

The definitions of the member functions are given next.

die::die()
{

num = 1;
srand(time(0));

}

int die::roll()
{

num = rand() % 6 + 1;

return num;
}

int die::getNum() const
{

return num;
}

The following program shows how to use the class die in a program:

//The user program that uses the class die

#include <iostream>
#include "die.h"

using namespace std;

int main()
{ //Line 1

die die1; //Line 2
die die2; //Line 3

cout << "Line 4: die1: " << die1.getNum() << endl; //Line 4

cout << "Line 5: die2: " << die2.getNum() << endl; //Line 5

cout << "Line 6: After rolling die1: "
<< die1.roll() << endl; //Line 6

cout << "Line 7: After rolling die2: "
<< die2.roll() << endl; //Line 7

cout << "Line 8: The sum of the numbers rolled"
<< " by the dice is: "
<< die1.getNum() + die2.getNum() << endl; //Line 8

670 | Chapter 10: Classes and Data Abstraction

cout << "Line 9: After again rolling, the sum of "
<< "the numbers rolled is: "
<< die1.roll() + die2.roll() << endl; //Line 9

return 0; //Line 10
}//end main //Line 11

Sample Run:

Line 4: die1: 1
Line 5: die2: 1
Line 6: After rolling die1: 3
Line 7: After rolling die2: 4
Line 8: The sum of the numbers rolled by the dice is: 7
Line 9: After again rolling, the sum of the numbers rolled is: 5

The preceding program works as follows. The statements in Lines 2 and 3 create the objects
die1 and die2, and, using the default constructor, set both the dice to 1. The statements in
Lines 4 and 5 output the number of both the dice. The statement in Line 6 rolls die1 and
outputs the number rolled. Similarly, the statement in Line 7 rolls die2 and outputs the number
rolled. The statement in Line 8 outputs the sum of the numbers rolled by die1 and die2. The
statement in Line 9 again rolls both the dice and outputs the sum of the numbers rolled.

Example 10-10 further illustrates how classes are designed and implemented. The class

personType that is designed in Example 10-10 is very useful; we will use this class in
subsequent chapters.

EXAMPLE 10-10

The most common attributes of a person are the person’s first and last name. The typical
operations on a person’s name are to set the name and print the name. The following
statements define a class with these properties.

#include <string>

using namespace std;

class personType
{

public:
void print() const;

//Function to output the first name and last name
//in the form firstName lastName.

void setName(string first, string last);
//Function to set firstName and lastName according
//to the parameters.
//Postcondition: firstName = first; lastName = last;

1

0

More Examples of Classes | 671

string getFirstName() const;
//Function to return the first name.
//Postcondition: The value of firstName is returned.

string getLastName() const;
//Function to return the last name.
//Postcondition: The value of lastName is returned.

personType(string first = "", string last = "");
//Constructor
//Sets firstName and lastName according to the parameters.
//The default values of the parameters are null strings.
//Postcondition: firstName = first; lastName = last;

private:
string firstName; //variable to store the first name
string lastName; //variable to store the last name

};

Figure 10-11 shows the UML class diagram of the class personType.

We now give the definitions of the member functions of the class personType.

void personType::print() const
{

cout << firstName << " " << lastName;
}

void personType::setName(string first, string last)
{

firstName = first;
lastName = last;

}

personType

-firstName: string

-lastName: string

+print(): void

+setName(string, string): void

+getFirstName() const: string

+getLastName() const: string

+personType(string = "", string = "")

FIGURE 10-11 UML class diagram of the class personType

672 | Chapter 10: Classes and Data Abstraction

1

0

string personType::getFirstName() const
{

return firstName;
}

string personType::getLastName() const
{

return lastName;
}

//constructor
personType::personType(string first, string last)
{

firstName = first;
lastName = last;

}

Static Members of a Class

This section may be skipped without any loss of continuation.

In Chapter 6, we described two types of variables: automatic and static. Recall that if
a local variable of a function is static, it exists between function calls. Similar to static

variables, a class can have static members, functions, or variables. Let us note the
following about the static members of a class:

• If a function of a class is static, in the class definition it is declared using
the keyword static in its heading.

• If a member variable of a class is static, it is declared using the keyword
static, as discussed in Chapter 6 and also illustrated in Example 10-11.

• A public static member, function, or variable of a class can be
accessed using the class name and the scope resolution operator.

Example 10-11 clarifies the effect of the keyword static.

EXAMPLE 10-11

Consider the following definition of the class illustrate:

class illustrate
{

public:
static int count; //public static variable

Static Members of a Class | 673

void print() const;
//Function to output x, y, and count.

void setX(int a);
//Function to set x.
//Postcondition: x = a;

static void incrementY();
//static function
//Function to increment y by 1.
//Postcondition: y = y + 1

illustrate(int a = 0);
//constructor
//Postcondition: x = a;
// If no value is specified for a, x = 0;

private:
int x;
static int y; //private static variable

};

Suppose that the static member variables and the definitions of the member functions
of the class illustrate are as follows. (These statements are all placed in the
implementation file. Also, notice that all static member variables are initialized, as
shown below.)

int illustrate::count = 0;
int illustrate::y = 0;

void illustrate::print() const
{

cout << "x = " << x << ", y = " << y
<< ", count = " << count << endl;

}

void illustrate::setX(int a)
{

x = a;
}

void illustrate::incrementY()
{

y++;
}

illustrate::illustrate(int a)
{

x = a;
}

674 | Chapter 10: Classes and Data Abstraction

Because the function incrementY is static and public, the following statement is
legal:

illustrate::incrementY();

Similarly, because the member variable count is static and public, the following
statement is legal:

illustrate::count++;

Next, we elaborate on static member variables a bit more. Suppose that you have a
class, say, myClass, with member variables (static as well as non-static). When
you create objects of type myClass, only non-static member variables of the class

myClass become the member variables of each object. For each static member
variable of a class, C++ allocates only one memory space. All myClass objects refer to
the same memory space. In fact, static member variables of a class exist even when no
object of that class type exists. You can access the public static member variables
outside of the class, as explained earlier in this section.

Next, we explain how memory space is allocated for static and non-static member
variables of a class.

Suppose that you have the class illustrate, as given in Example 10-10. Memory
space then exists for the static member variables y and count.

Consider the following statements:

illustrate illusObject1(3); //Line 1
illustrate illusObject2(5); //Line 2

The statements in Lines 1 and 2 declare illusObject1 and illusObject2 to be
illustrate type objects (see Figure 10-12).

Now, consider the following statements:

illustrate::incrementY();
illustrate::count++;

1

0

illusObject2illusObject1

y 0

count 0

x 5x 3

FIGURE 10-12 illusObject1 and illusObject2

Static Members of a Class | 675

After these statements execute, the objects and static members are as shown in Figure 10-13.

The output of the statement:

illusObject1.print();

is:

x = 3, y = 1, count = 1

Similarly, the output of the statement:

illusObject2.print();

is:

x = 5, y = 1, count = 1

Now consider the statement:

illustrate::count++;

After this statement executes, the objects and static members are as shown in
Figure 10-14.

illusObject2illusObject1

y 1

count 1

x 5x 3

FIGURE 10-13 illusObject1 and illusObject2 after the statements illustrate::

incrementY(); and illustrate::count++; execute

illusObject2illusObject1

y 1

count 2

x 5x 3

FIGURE 10-14 illusObject1 and illusObject2 after the statement illustrate::
count++; executes

676 | Chapter 10: Classes and Data Abstraction

The output of the statements:

illusObject1.print();
illusObject2.print();

is:

x = 3, y = 1, count = 2
x = 5, y = 1, count = 2

The program in Example 10-12 further illustrates how static members of a class work.

EXAMPLE 10-12

#include <iostream>

#include "illustrate.h"

using namespace std;

int main()
{

illustrate illusObject1(3); //Line 1
illustrate illusObject2(5); //Line 2

illustrate::incrementY(); //Line 3
illustrate::count++; //Line 4
illusObject1.print(); //Line 5
illusObject2.print(); //Line 6
cout << "Line 7: ***Increment y using "

<< "illusObject1***" << endl; //Line 7

illusObject1.incrementY(); //Line 8
illusObject1.setX(8); //Line 9
illusObject1.print(); //Line 10
illusObject2.print(); //Line 11

cout << "Line 12: ***Increment y using "
<< "illusObject2***" << endl; //Line 12

illusObject2.incrementY(); //Line 13
illusObject2.setX(23); //Line 14
illusObject1.print(); //Line 15
illusObject2.print(); //Line 16

return 0;
}

1

0

Static Members of a Class | 677

Sample Run:

x = 3, y = 1, count = 1
x = 5, y = 1, count = 1
Line 7: ***Increment y using illusObject1***
x = 8, y = 2, count = 1
x = 5, y = 2, count = 1
Line 12: ***Increment y using illusObject2***
x = 8, y = 3, count = 1
x = 23, y = 3, count = 1

The preceding program works as follows. The static member variables y and count

are initialized to 0. The statement in Line 1 declares illusObject1 to be an object of
the class illustrate and initializes its member variable x to 3. The statement in
Line 2 declares illusObject2 to be an object of the class illustrate and
initializes its member variable x to 5.

The statement in Line 3 uses the name of the class illustrate and the function
incrementY to increment y. Now, count is a public static member of the
class illustrate. So the statement in Line 4 uses the name of the class

illustrate to directly access count and increments it by 1. The statements in
Lines 5 and 6 output the data stored in the objects illusObject1 and illusObject2.
Notice that the value of y for both objects is the same. Similarly, the value of count for both
objects is the same.

The statement in Line 7 is an output statement. The statement in Line 8 uses the object
illusObject1 and the function incrementY to increment y. The statement in Line 9
sets the value of the member variable x of illusObject1 to 8. Lines 10 and 11 output
the data stored in the objects illusObject1 and illusObject2. Notice that the
value of y for both objects is the same. Similarly, the value of count for both objects is
the same. Moreover, notice that the statement in Line 9 changes only the value of the
member variable x of illusObject1 because x is not a static member of the class

illustrate.

The statement in Line 13 uses the object illusObject2 and the function
incrementY to increment y. The statement in Line 14 sets the value of the member
variable x of illusObject2 to 23. Lines 15 and 16 output the data stored in the
objects illusObject1 and illusObject2. Notice that the value of y for both
objects is the same. Similarly, the value of count for both objects is the same.
Moreover, notice that the statement in Line 14 changes only the value of the
member variable x of illusObject2, because x is not a static member of the
class illustrate.

678 | Chapter 10: Classes and Data Abstraction

Here are some additional comments on static members of a class. As you have seen in this

section, a static member function of a class does not need any object to be invoked. It can

be called using the name of the class and the scope resolution operator, as illustrated. There-

fore, a static member function cannot use anything that depends on a calling object. In

other words, in the definition of a static member function, you cannot use a non-static

member variable or a non-static function unless there is an object declared locally that

accesses the non-static member variable or the non-static member function.

Let us again consider the class illustrate, as defined in Example 10-11. This class
contains both static and non-static member variables. When we declare objects of this
class, each object has its own copy of the member variable x, which is non-static, and all
objects share the member variables y and count, which are static. Earlier in this chapter, we
defined the terminology instance variables of a class using the class clockType. However, at
that point, we did not discuss static member variables of a class. A class can have static as
well as non-static member variables. We can, therefore, make the general statement that
non-static member variables of a class are called the instance variables of the class.

1

0

PROGRAMMING EXAMPLE: Juice Machine
A common place to buy juice is from a machine. A new juice machine has been
purchased for the gym, but it is not working properly. The machine sells the following
types of juices: orange, apple, mango, and strawberry–banana. You have been asked to
write a program for this juice machine so that it can be put into operation.

The program should do the following:

1. Show the customer the different products sold by the juice machine.

2. Let the customer make the selection.

3. Show the customer the cost of the item selected.

4. Accept money from the customer.

5. Release the item.

Input The item selection and the cost of the item.

Output The selected item.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

A juice machine has two main components: a built-in cash register and several
dispensers to hold and release the products.

Watch

the Video

Programming Example: Juice Machine | 679

Cash Register Let us first discuss the properties of a cash register. The register has some cash on
hand, it accepts the amount from the customer, and if the amount deposited is more
than the cost of the item, then—if possible—it returns the change. For simplicity, we
assume that the user deposits the money greater than or equal to the cost of the
product. The cash register should also be able to show to the juice machine’s owner
the amount of money in the register at any given time. The following class defines
the properties of a cash register:

class cashRegister
{
public:

int getCurrentBalance() const;
//Function to show the current amount in the cash
//register.
//Postcondition: The value of cashOnHand is returned.

void acceptAmount(int amountIn);
//Function to receive the amount deposited by
//the customer and update the amount in the register.
//Postcondition: cashOnHand = cashOnHand + amountIn;

cashRegister(int cashIn = 500);
//Constructor
//Sets the cash in the register to a specific amount.
//Postcondition: cashOnHand = cashIn;
// If no value is specified when the
// object is declared, the default value
// assigned to cashOnHand is 500.

private:
int cashOnHand; //variable to store the cash

//in the register
};

Figure 10-15 shows the UML class diagram of the class cashRegister.

cashRegister

–cashOnHand: int

+getCurrentBalance() const: int

+acceptAmount(int): void

+cashRegister(int = 500)

FIGURE 10-15 UML class diagram of the class cashRegister

680 | Chapter 10: Classes and Data Abstraction

1

0

Next, we give the definitions of the functions to implement the operations of the
class cashRegister. The definitions of these functions are very simple and easy to
follow.

The function getCurrentBalance shows the current amount in the cash register. It
returns the value of the private member variable cashOnHand. So its definition is:

int cashRegister::getCurrentBalance() const
{

return cashOnHand;
}

The function acceptAmount accepts the amount of money deposited by the customer.
It updates the cash in the register by adding the amount deposited by the customer to the
previous amount in the cash register. Essentially, the definition of this function is:

void cashRegister::acceptAmount(int amountIn)
{

cashOnHand = cashOnHand + amountIn;
}

In the definition of the class cashRegister, the constructor is declared with a
default value. Therefore, if the user does not specify any value when the object is
declared, the default value is used to initialize the member variable cashOnHand. Recall
that because we have specified the default value for the constructor’s parameter in the
definition of the class, in the heading of the definition of the constructor, we do not
specify the default value. The definition of the constructor is as follows:

cashRegister::cashRegister(int cashIn)
{

if (cashIn >= 0)
cashOnHand = cashIn;

else
cashOnHand = 500;

}

Note that the definition of the constructor checks for valid values of the parameter
cashIn. If the value of cashIn is less than 0, the value assigned to the member
variable cashOnHand is 500.

Dispenser The dispenser releases the selected item if it is not empty. It should show the number
of items in the dispenser and the cost of the item. The following class defines the
properties of a dispenser. Let us call this class dispenserType:

class dispenserType
{

public:
int getNoOfItems() const;

//Function to show the number of items in the machine.
//Postcondition: The value of numberOfItems is returned.

Programming Example: Juice Machine | 681

int getCost() const;
//Function to show the cost of the item.
//Postcondition: The value of cost is returned.

void makeSale();
//Function to reduce the number of items by 1.
//Postcondition: numberOfItems--;

dispenserType(int setNoOfItems = 50, int setCost = 50);
//Constructor
//Sets the cost and number of items in the dispenser
//to the values specified by the user.
//Postcondition: numberOfItems = setNoOfItems;
// cost = setCost;
// If no value is specified for a
// parameter, then its default value is
// assigned to the corresponding member
// variable.

private:
int numberOfItems; //variable to store the number of

//items in the dispenser
int cost; //variable to store the cost of an item

};

Figure 10-16 shows the UML class diagram of the class dispenserType.

Because the juice machine sells four types of items, we shall declare four objects of
type dispenserType. For example, the statement:

dispenserType apple(100, 65);

declares apple to be an object of type dispenserType, sets the number of apple
juice bottles in the dispenser to 100, and sets the cost of each apple juice bottle to 65

cents (see Figure 10-17).

dispenserType

+getNoOfItems() const: int

+getCost(): const: int

+makeSale(): void

+dispenserType(int = 50, int = 50)

–numberOfItems: int

–cost: int

FIGURE 10-16 UML class diagram of the class dispenserType

682 | Chapter 10: Classes and Data Abstraction

1

0

Next, we discuss the definitions of the functions to implement the operations of the
class dispenserType.

The function getNoOfItems returns the number of items of a particular product.
Because the number of items currently in the dispenser is stored in the private

member variable numberOfItems, the function returns the value of
numberOfItems. The definition of this function is:

int dispenserType::getNoOfItems() const
{

return numberOfItems;
}

The function getCost returns the cost of a product. Because the cost of a product is
stored in the private member variable cost, the function returns the value of
cost. The definition of this function is:

int dispenserType::getCost() const
{

return cost;
}

When a product is sold, the number of items in that dispenser is reduced by 1. There-
fore, the function makeSale reduces the number of items in the dispenser by 1. That is,
it decrements the value of the private member variable numberOfItems by 1. The
definition of this function is:

void dispenserType::makeSale()
{

numberOfItems--;
}

The definition of the constructor checks for valid values of the parameters. If these
values are less than 0, the default values are assigned to the member variables. The
definition of the constructor is:

//constructor
dispenserType::dispenserType(int setNoOfItems, int setCost)
{

if (setNoOfItems >= 0)
numberOfItems = setNoOfItems;

else
numberOfItems = 50;

cost

apple
100

65

numberOfItems

FIGURE 10-17 Object apple

Programming Example: Juice Machine | 683

if (setCost >= 0)
cost = setCost;

else
cost = 50;

}

MAIN

PROGRAM

When the program executes, it must do the following:

1. Show the different products sold by the juice machine.

2. Show how to select a particular product.

3. Show how to terminate the program.

Furthermore, these instructions must be displayed after processing each selection (except
exiting the program) so that the user need not remember what to do if he or she wants to
buy two or more items. Once the user has made the appropriate selection, the juice
machine must act accordingly. If the user has opted to buy a product and that product is
available, the juice machine should show the cost of the product and ask the user to
deposit the money. If the amount deposited is at least the cost of the item, the juice
machine should sell the item and display an appropriate message.

This discussion translates into the following algorithm:

1. Show the selection to the customer.

2. Get the selection.

3. If the selection is valid and the dispenser corresponding to the
selection is not empty, sell the product.

We divide this program into three functions: showSelection, sellProduct, and main.

showSelection This function displays the information necessary to help the user select and buy a
product. This definition of the function showSelection is:

void showSelection()
{

cout << "*** Welcome to Shelly's Juice Shop ***" << endl;
cout << "To select an item, enter " << endl;
cout << "1 for orange juice" << endl;
cout << "2 for apple juice" << endl;
cout << "3 for mango juice" << endl;
cout << "4 for strawberry banana juice" << endl;
cout << "9 to exit" << endl;

}//end showSelection

sellProduct This function attempts to sell the product selected by the customer. Therefore, it must
have access to the dispenser holding the product. The first thing that this function does is
check whether the dispenser holding the product is empty. If the dispenser is empty, the
function informs the customer that this product is sold out. If the dispenser is not empty,
it tells the user to deposit the necessary amount to buy the product.

684 | Chapter 10: Classes and Data Abstraction

1

0

If the user does not deposit enough money to buy the product, sellProduct tells the
user how much additional money must be deposited. If the user fails to deposit enough
money in two tries to buy the product, the function simply returns the money.
(Programming Exercise 11, at the end of this chapter, asks you to revise
the definition of the function sellProduct so that it keeps asking the user to
enter the additional amount as long as the user has not entered enough money to
buy the product.) If the amount deposited by the user is sufficient, it accepts the
money and sells the product. Selling the product means to decrement the number
of items in the dispenser by 1 and to update the money in the cash register by
adding the cost of the product. (Because this program does not return the extra
money deposited by the customer, the cash register is updated by adding the
money entered by the user.)

From this discussion, it is clear that the function sellProduct must have access to
the dispenser holding the product (to decrement the number of items in the dispenser
by 1 and to show the cost of the item) as well as the cash register (to update the cash).
Therefore, this function has two parameters: one corresponding to the dispenser and
the other corresponding to the cash register. Furthermore, both parameters must be
referenced.

In pseudocode, the algorithm for this function is:

1. If the dispenser is not empty,

a. Show and prompt the customer to enter the cost of the item.

b. Get the amount entered by the customer.

c. If the amount entered by the customer is less than the cost of the
product,

i. Show and prompt the customer to enter the additional amount.

ii. Calculate the total amount entered by the customer.

d. If the amount entered by the customer is at least the cost of the
product,

i. Update the amount in the cash register.

ii. Sell the product—that is, decrement the number of items
in the dispenser by 1.

iii. Display an appropriate message.

e. If the amount entered by the user is less than the cost of the
item, return the amount.

2. If the dispenser is empty, tell the user that this product is sold out.

This definition of the function sellProduct is:

void sellProduct(dispenserType& product,
cashRegister& pCounter)

Programming Example: Juice Machine | 685

{

int amount; //variable to hold the amount entered
int amount2; //variable to hold the extra amount needed

if (product.getNoOfItems() > 0) //if the dispenser is not
//empty

{

cout << "Please deposit " << product.getCost()
<< " cents" << endl;

cin >> amount;

if (amount < product.getCost())
{

cout << "Please deposit another "
<< product.getCost()- amount
<< " cents" << endl;

cin >> amount2;
amount = amount + amount2;

}

if (amount >= product.getCost())
{

pCounter.acceptAmount(amount);
product.makeSale();
cout << "Collect your item at the bottom and "

<< "enjoy." << endl;
}

else
cout << "The amount is not enough. "

<< "Collect what you deposited." << endl;

cout << "*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*"
<< endl << endl;

}

else
cout << "Sorry, this item is sold out." << endl;

}//end sellProduct

Now that we have described the functions showSelection and sellProduct, the
function main is described next.

main The algorithm for the function main is as follows:

1. Create the cash register—that is, declare an object of type
cashRegister.

2. Create four dispensers—that is, declare four objects of type
dispenserType and initialize these objects. For example, the statement:

dispenserType orange(100, 50);

creates a dispenser object, orange, to hold the juice. The number of items in
the dispenser is 100, and the cost of an item is 50 cents.

686 | Chapter 10: Classes and Data Abstraction

1

0

3. Declare additional variables as necessary.

4. Show the selection; call the function showSelection.

5. Get the selection.

6. While not done (a selection of 9 exits the program),

a. Sell the product; call the function sellProduct.

b. Show the selection; call the function showSelection.

c. Get the selection.

The definition of the function main is as follows:

int main()
{

cashRegister counter;
dispenserType orange(100, 50);
dispenserType apple(100, 65);
dispenserType mango(75, 80);
dispenserType strawberry banana(100, 85);

int choice; //variable to hold the selection

showSelection();
cin >> choice;

while (choice != 9)
{

switch (choice)
{

case 1:
sellProduct(orange, counter);
break;

case 2:
sellProduct(apple, counter);
break;

case 3:
sellProduct(mango, counter);
break;

case 4:
sellProduct(strawberry banana, counter);
break;

default :
cout << "Invalid selection." << endl;

}//end switch

showSelection();
cin >> choice;

}//end while

return 0;

}//end main

Programming Example: Juice Machine | 687

COMPLETE PROGRAM LISTING

In the previous sections, we designed the classes to implement cash registers and
dispensers to implement a juice machine. In this section, for the sake of completeness,
we give complete definitions of the classes, the implementation file, and the user
program to implement a juice machine.

//**
// Author: D.S. Malik
//
// class cashRegister
// This class specifies the members to implement a cash
// register.
//**

class cashRegister
{
public:

int getCurrentBalance() const;
//Function to show the current amount in the cash
//register.
//Postcondition: The value of cashOnHand is returned.

void acceptAmount(int amountIn);
//Function to receive the amount deposited by
//the customer and update the amount in the register.
//Postcondition: cashOnHand = cashOnHand + amountIn;

cashRegister(int cashIn = 500);
//Constructor
//Sets the cash in the register to a specific amount.
//Postcondition: cashOnHand = cashIn;
// If no value is specified when the
// object is declared, the default value
// assigned to cashOnHand is 500.

private:
int cashOnHand; //variable to store the cash

//in the register
};

//**
// Author: D.S. Malik
//
// class dispenserType
// This class specifies the members to implement a dispenser.
//**

class dispenserType
{
public:

int getNoOfItems() const;
//Function to show the number of items in the machine.
//Postcondition: The value of numberOfItems is returned.

688 | Chapter 10: Classes and Data Abstraction

1

0

int getCost() const;
//Function to show the cost of the item.
//Postcondition: The value of cost is returned.

void makeSale();
//Function to reduce the number of items by 1.
//Postcondition: numberOfItems--;

dispenserType(int setNoOfItems = 50, int setCost = 50);
//Constructor
//Sets the cost and number of items in the dispenser
//to the values specified by the user.
//Postcondition: numberOfItems = setNoOfItems;
// cost = setCost;
// If no value is specified for a
// parameter, then its default value is
// assigned to the corresponding member
// variable.

private:
int numberOfItems; //variable to store the number of

//items in the dispenser
int cost; //variable to store the cost of an item

};

//**
// Author: D.S. Malik
//
// Implementation file juiceMachineImp.cpp
// This file contains the definitions of the functions to
// implement the operations of the classes cashRegister and
// dispenserType.
//**

#include <iostream>
#include "juiceMachine.h"

using namespace std;

int cashRegister::getCurrentBalance() const
{

return cashOnHand;
}

void cashRegister::acceptAmount(int amountIn)
{

cashOnHand = cashOnHand + amountIn;
}

cashRegister::cashRegister(int cashIn)
{

if (cashIn >= 0)
cashOnHand = cashIn;

else
cashOnHand = 500;

}

Programming Example: Juice Machine | 689

int dispenserType::getNoOfItems() const
{

return numberOfItems;
}

int dispenserType::getCost() const
{

return cost;
}

void dispenserType::makeSale()
{

numberOfItems--;
}

dispenserType::dispenserType(int setNoOfItems, int setCost)
{

if (setNoOfItems >= 0)
numberOfItems = setNoOfItems;

else
numberOfItems = 50;

if (setCost >= 0)
cost = setCost;

else
cost = 50;

}

Main

Program

//***
// Author: D.S. Malik
//
// This program uses the classes cashRegister and
// dispenserType to implement a juice machine.
// **

#include <iostream>
#include "juiceMachine.h"

using namespace std;

void showSelection();
void sellProduct(dispenserType& product,

cashRegister& pCounter);

int main()
{

cashRegister counter;
dispenserType orange(100, 50);
dispenserType apple(100, 65);
dispenserType mango(75, 80);
dispenserType strawberry banana(100, 85);

int choice; //variable to hold the selection

showSelection();
cin >> choice;

690 | Chapter 10: Classes and Data Abstraction

1

0

while (choice != 9)
{

switch (choice)
{
case 1:

sellProduct(orange, counter);
break;

case 2:
sellProduct(apple, counter);
break;

case 3:
sellProduct(mango, counter);
break;

case 4:
sellProduct(strawberry banana, counter);
break;

default:
cout << "Invalid selection." << endl;

}//end switch
showSelection();
cin >> choice;

}//end while

return 0;
}//end main

void showSelection()
{

cout << "*** Welcome to Shelly's Juice Shop ***" << endl;
cout << "To select an item, enter " << endl;
cout << "1 for orange juice" << endl;
cout << "2 for apple juice" << endl;
cout << "3 for mango juice" << endl;
cout << "4 for strawberry banana" << endl;
cout << "9 to exit" << endl;

}//end showSelection

void sellProduct(dispenserType& product,
cashRegister& pCounter)

{
int amount; //variable to hold the amount entered
int amount2; //variable to hold the extra amount needed

if (product.getNoOfItems() > 0) //if the dispenser is not
//empty

{
cout << "Please deposit " << product.getCost()

<< " cents" << endl;
cin >> amount;

if (amount < product.getCost())
{

cout << "Please deposit another "
<< product.getCost()- amount
<< " cents" << endl;

cin >> amount2;
amount = amount + amount2;

}

Programming Example: Juice Machine | 691

if (amount >= product.getCost())
{

pCounter.acceptAmount(amount);
product.makeSale();
cout << "Collect your item at the bottom and "

<< "enjoy." << endl;
}
else

cout << "The amount is not enough. "
<< "Collect what you deposited." << endl;

cout << "*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*"
<< endl << endl;

}
else

cout << "Sorry, this item is sold out." << endl;
}//end sellProduct

Sample Run: In this sample run, the user input is shaded.

*** Welcome to Shelly's Juice Shop ***
To select an item, enter
1 for orange juice
2 for apple juice
3 for mango juice
4 for strawberry banana
9 to exit
1
Please deposit 50 cents
50
Collect your item at the bottom and enjoy.
--*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

*** Welcome to Shelly's Juice Shop ***
To select an item, enter
1 for orange
2 for apple
3 for mango
4 for strawberry banana
9 to exit
9

We placed the definitions of the classes cashRegister and
dispenserType in the same header file juiceMachine.h. However, you
can also place the definitions of these classes in separate header files and include
those header files in the files that use these classes, such as the implementation
file of these classes and the file that contains the main program. Similarly, you
can also create separate implementation files for these classes. The Web site
accompanying this book contains these header and implementation files.

692 | Chapter 10: Classes and Data Abstraction

QUICK REVIEW

1. A class is a collection of a fixed number of components.

2. Components of a class are called the members of the class.

3. Members of a class are accessed by name.

4. In C++, class is a reserved word.

5. Members of a class are classified into one of three categories: private,
protected, and public.

6. The private members of a class are not accessible outside of the class.

7. The public members of a class are accessible outside of the class.

8. By default, all members of a class are private.

9. The public members are declared using the member access specifier
public and the colon, :.

10. The private members are declared using the member access specifier
private and the colon, :.

11. A member of a class can be a function or a variable.

12. If any member of a class is a function, you usually use the function
prototype to declare it.

13. If any member of a class is a variable, it is declared like any other variable.

14. In the definition of a class, you cannot initialize a variable when you declare it.

15. In the Unified Modeling Language (UML) diagram of a class, the top
box contains the name of the class. The middle box contains the member
variables and their data types. The last box contains the member function
name, parameter list, and the return type of the function. A + (plus) sign in
front of a member indicates that this member is a public member. A -

(minus) sign preceding a member indicates that this is a private member.
The symbol # before the member name indicates that the member is a
protected member.

16. In C++, a class is a definition. No memory is allocated for the class

itself; memory is allocated for the class variables when you declare them.

17. In C++, class variables are called class objects or class instances or,
simply, objects.

18. A class member is accessed using the class variable name, followed by
the dot operator (.), followed by the member name.

19. The only built-in operations on classes are the assignment andmember selection.

20. As parameters to functions, classes can be passed either by value or by reference.

21. A function can return a value of type class.

22. Any program (or software) that uses a class is called a client of the class.

1

0

Quick Review | 693

23. A member function of a class that only accesses (that is, does not modify)
the value(s) of the member variable(s) is called an accessor function.

24. A member function of a class that modifies the value(s) of the member
variable(s) is called a mutator function.

25. A member function of a class is called a constant function if its heading
contains the reserved word const at the end. Moreover, a constant member
function of a class cannot modify the member variables of the class.

26. A constant member function of a class can only call the other constant
member functions of the class.

27. Constructors guarantee that the member variables are initialized when an
object is declared.

28. The name of a constructor is the same as the name of the class.

29. A class can have more than one constructor.

30. A constructor without parameters is called the default constructor.

31. Constructors automatically execute when a class object enters its scope.

32. Destructors automatically execute when a class object goes out of scope.

33. A class can have only one destructor, and the destructor has no
parameters.

34. The name of a destructor is the tilde (~), followed by the class name
(no spaces in between).

35. Constructors and destructors are functions without any type; that is, they
are neither value-returning nor void. As a result, they cannot be called like
other functions.

36. A data type that separates the logical properties from the implementation
details is called an abstract data type (ADT).

37. Classes were specifically designed in C++ to handle ADTs.

38. To implement an ADT, you must represent the data and write related
algorithms to implement the operations.

39. A precondition is a statement specifying the condition(s) that must be true
before the function is called.

40. A postcondition is a statement specifying what is true after the function call
is completed.

41. A public static member, function or variable, of a class can be
accessed using the class name and the scope resolution operator.

42. For each static variable of a class, C++ allocates only one memory
space. All objects of the class refer to the same memory space.

43. static member variables of a class exist even when no object of the
class type exists.

44. Non-static member variables of a class are called the instance variables
of the class.

694 | Chapter 10: Classes and Data Abstraction

EXERCISES

1. Mark the following statements as true or false.

a. The member variables of a class must be of the same type.

b. The member functions of a class must be public.

c. A class can have more than one constructor.

d. A class can have more than one destructor.

e. Both constructors and destructors can have parameters.

2. Find the syntax errors in the following class definition:

class mystery //Line 1
{ //Line 2
public: //Line 3

void print() const; //Line 4
void setNum(double, double); //Line 5
int power(); //Line 6
double mystery(); //Line 7
double mystery(double, double); //Line 8

private: //Line 9
double x; //Line 10
double y; //Line 11

}; //Line 12

3. Find the syntax errors in the following class definition:

class secret //Line 1
{ //Line 2
public: //Line 3

bool multiply(); //Line 4
print() const; //Line 5
secret(int = 0, int = 0); //Line 6

private: //Line 7
int one; //Line 8
int two; //Line 9

}; //Line 10

4. Find the syntax errors in the following class definition:

class secret //Line 1
{ //Line 2
public: //Line 3

bool compare(); //Line 4
void print() const; //Line 5
secret(int = 0, int = 0) const; //Line 6

private: //Line 7
string str; //Line 8
int one; //Line 9
int two; //Line 10

}; //Line 11

1

0

Exercises | 695

5. Find the syntax errors in the following class definition:

class discover //Line 1
{ //Line 2
public; //Line 3

void set(string, int, int); //Line 4
void print() const; //Line 5
discover(); //Line 6
discover(string, int, int); //Line 7
bool discover(string, int, int); //Line 8

private: //Line 9
string type; //Line 10
int l; //Line 11
int w; //Line 12

} //Line 13

6. Consider the following declarations:

class bagType
{
public:

void set(string, double, double, double, double);
void print() const;
string getStyle() const;
double getPrice() const;
void get(double, double, double, double);
bagType();
bagType(string, double, double, double, double);

private:
string style;
double l;
double w;
double h;
double price;

};

bagType newBag; //variable declaration

a. How many members does class bagType have?

b. How many private members does class bagType have?

c. How many constructors does class bagType have?

d. How many constant functions does class bagType have?

e. Which constructor is used to initialize the object newBag?

7. Assume the definition of class bagType as given in Exercise 6. Answer the
following questions:

a. Write the definition of the member function set so that private

members are set according to the parameters.

b. Write the definition of the member function print that prints the
values of the data members.

696 | Chapter 10: Classes and Data Abstraction

c. Write the definition of the default constructor of the class bagType so
that the private member variables are initialized to "", 0.0, 0.0, 0.0,
0.0, respectively.

d. Write a C++ statement that prints the value of the object newBag.

e. Write a C++ statement that declares the object tempBag of type
bagType, and initializes the member variables of tempBag to
"backPack", 15, 8, 20, and 49.99, respectively.

8. Consider the definition of the following class:

class employee //Line 1
{ //Line 2
public: //Line 3

employee(); //Line 4
employee(string, int, double); //Line 5
employee(int, double); //Line 6
employee(string); //Line 7

void setData(string, int, double); //Line 8
void print() const; //Line 9
void updatePay(double x); //Line 10
int getNumOfServiceYears() const; //Line 11
double getPay() const; //Line 12

private: //Line 13
string name; //Line 14
int numOfServiceYears; //Line 15
double pay; //Line 16

}; //Line 17

a. Give the line number containing the constructor that is executed in each of the
following declarations:

i. employee tempEmployee;

ii. employee newEmployee("Harry Miller", 0, 25000);

iii. employee oldEmployee("Bill Dunbar", 15, 55000);

b. Write the definition of the constructor in Line 4 so that the instance
variables are initialized to "", 0, and 0.0, respectively.

c. Write the definition of the constructor in Line 5 so that the instance
variables are initialized according to the parameters.

d. Write the definition of the constructor in Line 6 so that the instance
variable name is initialized to the empty string and the remaining
instance variables are initialized according to the parameters.

9. Consider the definition of the class employee as given in Exercise 8.
Which function members are accessors and which are mutators?

10. Consider the definition of the class employee as given in Exercise 8.
Answer the following questions:

1

0

Exercises | 697

a. Write the definition of the function setData so that the instance
variables are set according to the parameters.

b. Write the definition of the function print to output the values of the
instance variables.

c. Write the definition of the function updatePay to update the value of
the instance variable pay by adding the value of the parameter.

d. Write the definition of the function getNumOfServiceYears to
return the value of the instance variable numOfServiceYears.

e. Write the definition of the function getPay to return the value of the
instance variable pay.

f. Write a program to test the class employee.

11. Consider the following statements:

class temporary
{
public:

void set(string, double, double);
void print();
double manipulate();
void get(string&, double&, double&);
void setDescription(string);
void setFirst(double);
void setSecond(double);
string getDescription() const;
double getFirst()const;
double getSecond()const;

temporary(string = "", double = 0.0, double = 0.0);

private:
string description;
double first;
double second;

};

a. How many members does class temporary have?

b. How many private members does class temporary have?

c. How many constructors does class temporary have? Can this con-
structor be used to initialize an object without specifying any parameters?
If yes, then illustrate with an example; otherwise, explain why it cannot
be used to initialize an object witout specifying any parameters.

12. Assume the definition of class temporary as given in Exercise 11.
Answer the following questions:

a. Write the definition of the member function set so that the instance
variables are set according to the parameters.

698 | Chapter 10: Classes and Data Abstraction

b. Write the definition of the member function manipulate that returns a
decimal number as follows: If the value of description is "rectangle",
it returns first * second; if the value of description is "circle", it
returns the area of the circle with radius first; if the value of
description is "sphere", it returns the volume of the sphere with radius
first; if the value of description is "cylinder", it returns the volume
of the cylinder with radius first and height second; otherwise, it
returns the value -1.

c. Write the definition of the function print to print the values of the
instance variables and the values returned by the function manipulate.
For example, if description ¼ "rectangle", first ¼ 8.5, and
second ¼ 5, it should print:

rectangle: length = 8.50, width = 5.00, area = 42.50

d. Write the definition of the constructor so that it initializes the instance
variables using the function set.

e. Write the definition of the remaining functions to set or retrieve the
values of the instance variables. Note that the function get returns the
values of all instance variables.

13. Assume the definition of class temporary as given in Exercise 11. What
is the effect of the following statements?

temporary object1; //Line 1
temporary object2("rectangle", 3.0, 5.0); //Line 2
temporary object3("circle", 6.5, 0.0); //Line 3
temporary object4("cylinder", 6.0, 3.5); //Line 4

14. Assume the definition of class temporary as given in Exercise 11 and the
definitions of the member functions and the constructor as specified in
Exercise 12. What is the output of the following statements?

temporary object1;
temporary object2("rectangle", 8.5, 5);
temporary object3("circle", 6, 0);
temporary object4("cylinder", 6, 3.5);

cout << fixed << showpoint << setprecision(2);

object1.print();
object2.print();
object3.print();
object4.print();

object1.set("sphere", 4.5, 0);
object1.print();

15. What are the built-in operations on classes?

16. What is the main difference between a struct and a class?

1

0

Exercises | 699

17. Consider the definition of the following class:

class testClass
{

public:
int sum();

//Returns the sum of the private member variables
void print() const;

//Prints the values of the private member variables
testClass();

//Default constructor
//Initializes the private member variables to 0

testClass(int a, int b);
//Constructors with parameters
//initializes the private member variables to the values
//specified by the parameters
//Postcondition: x = a; y = b;

private:
int x;
int y;

};

a. Write the definitions of the member functions as described in the
definition of the class testClass.

b. Write a test program to test the various operations of the
class testClass.

18. Given the definition of the class clockType with constructors (as described in
this chapter), what is the output of the following C++ code?

clockType clock1;
clockType clock2(23, 13, 75);

clock1.printTime();
cout << endl;
clock2.printTime();
cout << endl;

clock1.setTime(6, 59, 39);
clock1.printTime();
cout << endl;

clock1.incrementMinutes();
clock1.printTime();
cout << endl;

clock1.setTime(0, 13, 0);

if (clock1.equalTime(clock2))
cout << "clock1 time is the same as clock2 time."

<< endl;
else

cout << "The two times are different." << endl;

700 | Chapter 10: Classes and Data Abstraction

19. Assume the definition of the class personType as given in this chapter.

a. Write a C++ statement that declares student to be a personType

object, and initialize its first name to "Buddy" and last name to
"Arora".

b. Write a C++ statement that outputs the data stored in the object
student.

c. Write a C++ statement that changes the first name of student to
"Susan" and the last name to "Gilbert".

20. Explain why you would need both public and private members in a
class.

21. What is a constructor? Why would you include a constructor in a class?

22. Which of the following characters appears before a destructor’s name?

a. # b. ! c. ~ d. $

23. What is a destructor and what is its purpose?

24. Write the definition of a class that has the following properties:

a. The name of the class is secretType.

b. The class secretType has four member variables: name of type
string, age and weight of type int, and height of type
double.

c. The class secretType has the following member functions. (Make
each accessor function constant.)

print—outputs the data stored in the member variables with the
appropriate titles

setName—function to set the name

setAge—function to set the age

setWeight—function to set the weight

setHeight—function to set the height

getName—value-returning function to return the name

getAge—value-returning function to return the age

getWeight—value-returning function to return the weight

getHeight—value-returning function to return the height

constructor—with default parameters: The default value of name is
the empty string " ", and the default values of age, weight, and
height are 0.

d. Write the definition of the member functions of the class secretType,
as described in Part c.

1

0

Exercises | 701

25. Consider the following definition of the class myClass:

class myClass
{

public:
void setX(int a);
//Function to set the value of x.
//Postcondition: x = a;

void printX() const;
//Function to output x.

static void printCount();
//Function to output count.

static void incrementCount();
//Function to increment count.
//Postcondition: count++;

myClass(int a = 0);
//constructor with default parameters
//Postcondition x = a;
//If no value is specified for a, x = 0;

private:
int x;
static int count;

};

a. Write a C++ statement that initializes the member variable count to
0.

b. Write a C++ statement that increments the value of count by 1.

c. Write a C++ statement that outputs the value of count.

d. Write the definitions of the functions of the class myClass as
described in its definition.

e. Write a C++ statement that declares myObject1 to be a myClass

object and initializes its member variable x to 5.

f. Write a C++ statement that declares myObject2 to be a myClass

object and initializes its member variable x to 7.

g. Which of the following statements are valid? (Assume that myObject1
and myObject2 are as declared in Parts e and f.)

myObject1.printCount(); //Line 1
myObject1.printX(); //Line 2
myClass.printCount(); //Line 3
myClass.printX(); //Line 4
myClass::count++; //Line 5

h. Assume that myObject1 and myObject2 are as declared in Parts e and f.
What is the output of the following C++ code?

myObject1.printX();
cout << endl;
myObject1.incrementCount();
myClass::incrementCount();

702 | Chapter 10: Classes and Data Abstraction

myObject1.printCount();
cout << endl;
myObject2.printCount();
cout << endl;
myObject2.printX();
cout << endl;
myObject1.setX(14);
myObject1.incrementCount();
myObject1.printX();
cout << endl;
myObject1.printCount();
cout << endl;
myObject2.printCount();
cout << endl;

26. In Example 10-9, we designed the class die. Using this class,
declare an array named rolls, of 100 components of type die. Write
C++ statements to roll each die of the array rolls, find and output the
heighest number rolled and the number of times this number was rolled,
and find and output the number that is rolled the maximum number
of times together with its count. Also write a program to test your
statements.

PROGRAMMING EXERCISES

1. Chapter 9 defined the struct houseType to implement the basic properties
of a house. Define the class houseType with the same components as the
struct houseType, and add member functions to manipulate the data
members. (Note that the data members of the class houseType must be
private.) Write a program to illustrate how to use the class houseType.

2. Write a program to illustrate how to use the class temporary, designed in
Exercises 11 and 12 of this chapter. Your program should not use the
statements given in Exercises 13 and 14. Also, your program must contain
statements that would ask the user to enter data of an object and use the
member function set to initialize the object.

3. Write a program that converts a number entered in Roman numerals to a
decimal. Your program should consist of a class, say, romanType. An
object of type romanType should do the following:

a. Store the number as a Roman numeral.

b. Convert and store the number into decimal form.

c. Print the number as a Roman numeral or decimal number as requested
by the user.

1

0

Programming Exercises | 703

The decimal values of the Roman numerals are:

M 1000

D 500

C 100

L 50

X 10

V 5

I 1

d. Test your program using the following Roman numerals: MCXIV,
CCCLIX, MDCLXVI.

4. Design and implement a class dayType that implements the day of the
week in a program. The class dayType should store the day, such as Sun
for Sunday. The program should be able to perform the following operations
on an object of type dayType:

a. Set the day.

b. Print the day.

c. Return the day.

d. Return the next day.

e. Return the previous day.

f. Calculate and return the day by adding certain days to the current day.
For example, if the current day is Monday and we add 4 days, the day to
be returned is Friday. Similarly, if today is Tuesday and we add 13 days,
the day to be returned is Monday.

g. Add the appropriate constructors.

5. Write the definitions of the functions to implement the operations for the
class dayType as defined in Programming Exercise 4. Also, write a
program to test various operations on this class.

6. This chapter defines the class clockType to implement time in a pro-
gram. Add functions to this class so that a program that uses this class
can set only the hours, minutes, or seconds and retrieve only the hours,
minutes, or seconds. Also write a program to test your class.

7. Example 10-10 defined a class personType to store the name of a person.
The member functions that we included merely print the name and set the
name of a person. Redefine the class personType so that, in addition to
what the existing class does, you can:

a. Set the first name only.

b. Set the last name only.

c. Store and set the middle name.

704 | Chapter 10: Classes and Data Abstraction

1

0

d. Check whether a given first name is the same as the first name of this person.

e. Check whether a given last name is the same as the last name of this person.

Write the definitions of the member functions to implement the operations
for this class. Also, write a program to test various operations on this class.

8. a. Some of the characteristics of a book are the title, author(s), publisher,
ISBN, price, and year of publication. Design a class bookType that
defines the book as an ADT.

i. Each object of the class bookType can hold the following
information about a book: title, up to four authors, publisher,
ISBN, price, and number of copies in stock. To keep track of
the number of authors, add another member variable.

ii. Include the member functions to perform the various operations on
objects of type bookType. For example, the usual operations that
can be performed on the title are to show the title, set the title, and
check whether a title is the same as the actual title of the book.
Similarly, the typical operations that can be performed on the
number of copies in stock are to show the number of copies in stock,
set the number of copies in stock, update the number of copies in
stock, and return the number of copies in stock. Add similar opera-
tions for the publisher, ISBN, book price, and authors. Add the
appropriate constructors and a destructor (if one is needed).

b. Write the definitions of the member functions of the class bookType.

c. Write a program that uses the class bookType and tests various
operations on the objects of the class bookType. Declare an array
of 100 components of type bookType. Some of the operations that you
should perform are to search for a book by its title, search by ISBN, and
update the number of copies of a book.

9. In this exercise, you will design a class memberType.

a. Each object of memberType can hold the name of a person, member
ID, number of books bought, and amount spent.

b. Include the member functions to perform the various operations on the
objects of memberType—for example, modify, set, and show a person’s
name. Similarly, update, modify, and show the number of books bought
and the amount spent.

c. Add the appropriate constructors.

d. Write the definitions of the member functions of memberType.

e. Write a program to test various operations of your class memberType.

10. Using the classes designed in Programming Exercises 8 and 9, write a program
to simulate a bookstore. The bookstore has two types of customers: those who
are members of the bookstore and those who buy books from the bookstore
only occasionally. Each member has to pay a $10 yearly membership fee and
receives a 5% discount on each book purchased.

Programming Exercises | 705

For each member, the bookstore keeps track of the number of books
purchased and the total amount spent. For every eleventh book that a
member buys, the bookstore takes the average of the total amount of the
last 10 books purchased, applies this amount as a discount, and then resets
the total amount spent to 0.

Write a program that can process up to 1000 book titles and 500members. Your
program should contain a menu that gives the user different choices to effectively
run the program; in other words, your program should be user driven.

11. The method sellProduct of the Juice Machine programming example
gives the user only two chances to enter enough money to buy the product.
Rewrite the definition of the method sellProduct so that it keeps prompt-
ing the user to enter more money as long as the user has not entered enough
money to buy the product. Also, write a program to test your method.

12. Write the definition of a class, swimmingPool, to implement the proper-
ties of a swimming pool. Your class should have the instance variables to
store the length (in feet), width (in feet), depth (in feet), the rate (in gallons
per minute) at which the water is filling the pool, and the rate (in gallons per
minute) at which the water is draining from the pool. Add appropriate
constructors to initialize the instance variables. Also add member functions
to do the following: determine the amount of water needed to fill an empty
or partially filled pool; determine the time needed to completely or partially
fill or empty the pool; add or drain water for a specific amount of time.

13. (Tic-Tac-Toe) Write a program that allows two players to play the tic-tac-toe
game. Your program must contain the class ticTacToe to implement a
ticTacToe object. Include a 3-by-3 two-dimensional array, as a private

member variable, to create the board. If needed, include additional member
variables. Some of the operations on a ticTacToe object are printing the
current board, getting a move, checking if a move is valid, and determining the
winner after each move. Add additional operations as needed.

14. The equation of a line in standard form is ax + by ¼ c, wherein both a and
b cannot be zero, and a, b, and c are real numbers. If b 6¼ 0, then –a/b is the
slope of the line. If a ¼ 0, then it is a horizontal line, and if b ¼ 0, then it is
a vertical line. The slope of a vertical line is undefined. Two lines are
parallel if they have the same slope or both are vertical lines. Two lines are
perpendicular if either one of the lines is horizontal and the other is vertical
or the product of their slopes is –1. Design the class lineType to store a
line. To store a line, you need to store the values of a (coefficient of x), b
(coefficient of y), and c. Your class must contain the following operations:

a. If a line is nonvertical, then determine its slope.

b. Determine if two lines are equal. (Two lines a1x + b1y ¼ c1 and a2x +
b2y ¼ c2 are equal if either a1 ¼ a2, b1 ¼ b2, and c1 ¼ c2 or a1 ¼ ka2,
b1 ¼ kb2, and c1 ¼ kc2 for some real number k.)

c. Determine if two lines are parallel.

706 | Chapter 10: Classes and Data Abstraction

d. Determine if two lines are perpendicular.

e. If two lines are not parallel, then find the point of intersection.

Add appropriate constructors to initialize variables of lineType. Also write
a program to test your class.

15. Typically, everyone saves money periodically for retirement, buying a
house, or for some other purposes. If you are saving money for retirement,
then the money you put in a retirement fund is tax sheltered and your
employer also makes some contribution into your retirement fund. In this
exercise, for simplicity, we assume that the money is put into an account that
pays a fixed interest rate, and money is deposited into the account at the end
of the specified period. Suppose that a person deposits R dollars m times a
year into an account that pays r% interest compounded m times a year for t
years. Then the total accumulated at the end of t years is given by

R 1þr=mð Þmt�1

r=m

h i

. For example, suppose that you deposit $500 at the end of

each month into an account that pays 4.8% interest per year compounded
monthly for 25 years. Then the total money accumulated into the account is
500[(1 + 0.048/12)300 – 1]/(0.048/12) ¼ $289,022.42.

On the other hand, suppose that you want to accumulate S dollars in t years
and would like to know how much money, m times a year, you should
deposit into an account that pays r% interest compounded m times a year.

The periodic payment is given by the formula
sðr=mÞ

ð1þr=mÞmt�1
.

Design a class that uses the above formulas to determine the total
accumulated into an account and the periodic deposits to accumulate a
specifc amount. Your class should have instance variables to store the
periodic deposit, the value of m, the interest rate, and the number of years
the money will be saved. Add appropriate constructors to initialize
instance variables, functions to set the values of the instance variables,
functions to retrieve the values of the instance variables, and functions to
do the necessary calculations and output results.

16. Define the class bankAccount to implement the basic properties of a
bank account. An object of this class should store the following data:
Account holder’s name (string), account number (int), account type
(string, checking/saving), balance (double), and interest rate (double).
(Store interest rate as a decimal number.) Add appropriate member func-
tions to manipulate an object. Use a static member in the class to
automatically assign account numbers. Also declare an array of 10 compo-
nents of type bankAccount to process up to 10 customers and write a
program to illustrate how to use your class.

1

0

Programming Exercises | 707

This page intentionally left blank

INHERITANCE AND

COMPOSITION
IN THIS CHAPTER , YOU WILL :

. Learn about inheritance

. Learn about derived and base classes

. Explore how to redefine the member functions of a base class

. Examine how the constructors of base and derived classes work

. Learn how to construct the header file of a derived class

. Explore three types of inheritance: public, protected, and private

. Learn about composition (aggregation)

. Become familiar with the three basic principles of object-oriented design

11C H A P T E R

Chapter 10 introduced classes, abstract data types (ADT), and ways to implement ADT in
C++. By using classes, you can combine data and operations in a single unit. An object,
therefore, becomes a self-contained entity. Operations can directly access the data, but the
internal state of an object cannot be manipulated directly.

In addition to implementing ADT, classes have other features. For instance, classes can
create new classes from existing classes. This important feature encourages code reuse. In
C++, you can relate two or more classes in more than one way. Two common ways to
relate classes in a meaningful way are:

• Inheritance (‘‘is-a’’ relationship)

• Composition (aggregation) (‘‘has-a’’ relationship)

Inheritance
Suppose that you want to design a class, partTimeEmployee, to implement and
process the characteristics of a part-time employee. The main features associated with
a part-time employee are the name, pay rate, and number of hours worked. In
Example 10-10 (in Chapter 10), we designed a class to implement a person’s name.
Every part-time employee is a person. Therefore, rather than design the class

partTimeEmployee from scratch, we want to be able to extend the definition of
the class personType (from Example 10-10) by adding additional members (data
and/or functions).

Of course, we do not want to make the necessary changes directly to the class

personType—that is, edit the class personType and add and/or delete members.
In fact, we want to create the class partTimeEmployee without making any
physical changes to the class personType by adding only the members that are
necessary. For example, because the class personType already has members to store
the first name and last name, we will not include any such members in the class

partTimeEmployee. In fact, these member variables will be inherited from the
class personType. (We will design such a class in Example 11-3.)

In Chapter 10, we extensively studied and designed the class clockType to implement
the time of day in a program. The class clockType has three member variables to store
the hours, minutes, and seconds. Certain applications, in addition to the hours, minutes, and
seconds, might also require us to store the time zone. In this case, we would like to extend
the definition of the class clockType and create a class, extClockType, to accom-
modate this new information. That is, we want to derive the class extClockType by
adding a member variable—say, timeZone—and the necessary member functions to
manipulate the time (see Programming Exercise 1 at the end of this chapter). In C++, the
mechanism that allows us to accomplish this task is the principle of inheritance. Inheritance is
an ‘‘is-a’’ relationship; for instance, ‘‘every employee is a person.’’

Inheritance lets us create new classes from existing classes. The new classes that we create
from the existing classes are called the derived classes; the existing classes are called the

710 | Chapter 11: Inheritance and Composition

base classes. The derived classes inherit the properties of the base classes. So rather than
create completely new classes from scratch, we can take advantage of inheritance and
reduce software complexity.

Each derived class, in turn, becomes a base class for a future derived class. Inheritance
can be either single inheritance or multiple inheritance. In single inheritance, the
derived class is derived from a single base class; in multiple inheritance, the derived
class is derived from more than one base class. This chapter concentrates on single
inheritance.

Inheritance can be viewed as a treelike, or hierarchical, structure wherein a base class is
shown with its derived classes. Consider the tree diagram shown in Figure 11-1.

In this diagram, shape is the base class. The classes circle and rectangle are
derived from shape, and the class square is derived from rectangle. Every
circle and every rectangle is a shape. Every square is a rectangle.

The general syntax of a derived class is:

class className: memberAccessSpecifier baseClassName
{

member list
};

in which memberAccessSpecifier is public, protected, or private. When no
memberAccessSpecifier is specified, it is assumed to be a private inheritance.
(We will discuss protected inheritance later in this chapter.)

1

1

circle rectangle

square

shape

FIGURE 11-1 Inheritance hierarchy

Inheritance | 711

EXAMPLE 11-1

Suppose that we have defined a class called shape. The following statements specify that
the class circle is derived from shape, and it is a public inheritance.

class circle: public shape
{

.

.

.
};

On the other hand, consider the following definition of the class circle:

class circle: private shape
{

.

.

.
};

This is a private inheritance. In this definition, the public members of shape

become private members of the class circle. So any object of type circle

cannot directly access these members. The previous definition of circle is equiva-
lent to:

class circle: shape
{

.

.

.
};

That is, if we do not use either the memberAccessSpecifier public or private,
the public members of a base class are inherited as private members.

The following facts about the base and the derived classes should be kept in mind.

1. The private members of a base class are private to the base class;
hence, the members of the derived class cannot directly access them. In
other words, when you write the definitions of the member functions of
the derived class, you cannot directly access the private members of
the base class.

2. The public members of a base class can be inherited either as public
members or as private members by the derived class. That is, the
public members of the base class can become either public or
private members of the derived class.

3. The derived class can include additional members—data and/or functions.

712 | Chapter 11: Inheritance and Composition

4. The derived class can redefine the public member functions of the base
class. That is, in the derived class, you can have a member function with
the same name, number, and types of parameters as a function in the
base class. However, this redefinition applies only to the objects of the
derived class, not to the objects of the base class.

5. All member variables of the base class are also member variables of
the derived class. Similarly, the member functions of the base class
(unless redefined) are also member functions of the derived class.
(Remember Rule 1 when accessing a member of the base class in the
derived class.)

The next sections describe two important issues related to inheritance. The first issue is
the redefinition of the member functions of the base class in the derived class. While
discussing this issue, we will also address how to access the private (data) members of
the base class in the derived class. The second key inheritance issue is related to the
constructor. The constructor of a derived class cannot directly access the private member
variables of the base class. Thus, we need to ensure that the private member variables
that are inherited from the base class are initialized when a constructor of the derived class
executes.

Redefining (Overriding) Member Functions of the Base Class
Suppose that a class derivedClass is derived from the class baseClass.
Further assume that both derivedClass and baseClass have some member
variables. It then follows that the member variables of the class derivedClass

are its own member variables, together with the member variables of baseClass.
Suppose that baseClass contains a function, print, that prints the values of the
member variables of baseClass. Now derivedClass contains member variables
in addition to the member variables inherited from baseClass. Suppose that
you want to include a function that prints the values of the member variables of
derivedClass. You can give any name to this function. However, in the class

derivedClass, you can also name this function as print (the same name used by
baseClass). This is called redefining (or overriding) the member function of the
base class. Next, we illustrate how to redefine the member functions of a base class
with the help of an example.

To redefine a public member function of a base class in the derived class, the

corresponding function in the derived class must have the same name, number, and

types of parameters. In other words, the name of the function being redefined in the

derived class must have the same name and the same set of parameters. If the

corresponding functions in the base class and the derived class have the same name but

different sets of parameters, then this is function overloading in the derived class,

which is also allowed.

1

1

Inheritance | 713

Consider the definition of the following class:

class rectangleType
{

public:
void setDimension(double l, double w);

//Function to set the length and width of the rectangle.
//Postcondition: length = l; width = w;

double getLength() const;
//Function to return the length of the rectangle.
//Postcondition: The value of length is returned.

double getWidth() const;
//Function to return the width of the rectangle.
//Postcondition: The value of width is returned.

double area() const;
//Function to return the area of the rectangle.
//Postcondition: The area of the rectangle is
// calculated and returned.

double perimeter() const;
//Function to return the perimeter of the rectangle.
//Postcondition: The perimeter of the rectangle is
// calculated and returned.

void print() const;
//Function to output the length and width of
//the rectangle.

rectangleType();
//Default constructor
//Postcondition: length = 0; width = 0;

rectangleType(double l, double w);
//Constructor with parameters
//Postcondition: length = l; width = w;

private:
double length;
double width;

};

Figure 11-2 shows the UML class diagram of the class rectangleType.

714 | Chapter 11: Inheritance and Composition

The class rectangleType has 10 members.

Suppose that the definitions of the member functions of the class rectangleType are
as follows:

void rectangleType::setDimension(double l, double w)
{

if (l >= 0)
length = l;

else
length = 0;

if (w >= 0)
width = w;

else
width = 0;

}

double rectangleType::getLength() const
{

return length;
}

double rectangleType::getWidth() const
{

return width;
}

double rectangleType::area() const
{

return length * width;
}

1

1

rectangleType

–length: double

–width: double

+setDimension(double, double): void

+getLength() const: double

+getWidth() const: double

+area() const: double

+perimeter() const: double

+print() const: void

+rectangleType()

+rectangleType(double, double)

FIGURE 11-2 UML class diagram of the class rectangleType

Inheritance | 715

double rectangleType::perimeter() const
{

return 2 * (length + width);
}

void rectangleType::print() const
{

cout << "Length = " << length
<< "; Width = " << width;

}

rectangleType::rectangleType(double l, double w)
{

setDimension(l, w);
}

rectangleType::rectangleType()
{

length = 0;
width = 0;

}

Now consider the definition of the following class boxType, derived from the
class rectangleType:

class boxType: public rectangleType
{

public:
void setDimension(double l, double w, double h);

//Function to set the length, width, and height
//of the box.
//Postcondition: length = l; width = w; height = h;

double getHeight() const;
//Function to return the height of the box.
//Postcondition: The value of height is returned.

double area() const;
//Function to return the surface area of the box.
//Postcondition: The surface area of the box is
// calculated and returned.

double volume() const;
//Function to return the volume of the box.
//Postcondition: The volume of the box is
// calculated and returned.

void print() const;
//Function to output the length, width, and height of a box.

boxType();
//Default constructor
//Postcondition: length = 0; width = 0; height = 0;

716 | Chapter 11: Inheritance and Composition

boxType(double l, double w, double h);
//Constructor with parameters
//Postcondition: length = l; width = w; height = h;

private:
double height;

};

Figure 11-3 shows the UML class diagram of the class boxType and the inheritance
hierarchy.

From the definition of the class boxType, it is clear that the class boxType

is derived from the class rectangleType, and it is a public inheritance. Therefore,
all public members of the class rectangleType are public members of the class

boxType. The class boxType also overrides (redefines) the functions print and
area.

In general, while writing the definitions of the member functions of a derived class to
specify a call to a public member function of the base class, we do the following:

• If the derived class overrides a public member function of the base class,
then to specify a call to that public member function of the base class,
you use the name of the base class, followed by the scope resolution
operator, ::, followed by the function name with the appropriate para-
meter list.

• If the derived class does not override a public member function of the
base class, you may specify a call to that public member function by
using the name of the function and the appropriate parameter list. (See
the following note for member functions of the base class that are over-
loaded in the derived class.)

1

1

boxType

rectangleType

boxType

–height: double

+setDimension(double, double, double): void

+getHeight() const: double

+area() const: double

+volume() const: double

+print() const: void

+boxType()

+boxType(double, double, double)

FIGURE 11-3 UML class diagram of the class boxType and the inheritance hierarchy

Inheritance | 717

If a derived class overloads a public member function of the base class, then while

writing the definition of a member function of the derived class, to specify a call to

that (overloaded) member function of the base class, you might need (depending on

the compiler) to use the name of the base class, followed by the scope resolution

operator, ::, followed by the function name with the appropriate parameter list. For

example, the class boxType overloads the member function setDimension

of the class rectangleType. (See the definition of the function setDimension

[of the class boxType], given later in this section.)

Next, let us write the definition of the member function print of the class boxType.

The class boxType has three member variables: length, width, and height. The
member function print of the class boxType prints the values of these member
variables. To write the definition of the function print of the class boxType, keep in
mind the following:

• The member variables length and width are private members of
the class rectangleType, so they cannot be directly accessed in the
class boxType. Therefore, when writing the definition of the function
print of the class boxType, we cannot access length and width

directly.

• The member variables length and width of the class rectangleType

are accessible in the class boxType through the publicmember functions
of the class rectangleType. Therefore, when writing the definition of
the member function print of the class boxType, we first call the
member function print of the class rectangleType to print the values
of length and width. After printing the values of length and width, we
output the values of height.

To call the member function print of rectangleType in the definition of the
member function print of boxType, we must use the following statement:

rectangleType::print();

This statement ensures that we call the member function print of the base class

rectangleType, not of the class boxType.

The definition of the member function print of the class boxType is:

void boxType::print() const
{

rectangleType::print();
cout << "; Height = " << height;

}

Let us write the definitions of the remaining member functions of the class boxType.

718 | Chapter 11: Inheritance and Composition

1

1

The definition of the function setDimension is:

void boxType::setDimension(double l, double w, double h)
{

rectangleType::setDimension(l, w);

if (h >= 0)
height = h;

else
height = 0;

}

Notice that in the preceding definition of the function setDimension, a call to the
member function setDimension of the class rectangleType is preceded by the
name of the class and the scope resolution operator, even though the class boxType

overloads—not overrides—the function setDimension.

The definition of the function getHeight is:

double boxType::getHeight() const
{

return height;
}

The member function area of the class boxType determines the surface area of a box.
To determine the surface area of a box, we need to access the length and width of the box,
which are declared as private members of the class rectangleType. Therefore, we
use the member functions getLength and getWidth of the class rectangleType to
retrieve the length and width, respectively. Because the class boxType does not contain
any member functions that have the names getLength or getWidth, we call these
member functions of the class rectangleType without using the name of the base class.

double boxType::area() const
{

return 2 * (getLength() * getWidth()
+ getLength() * height
+ getWidth() * height);

}

The member function volume of the class boxType determines the volume of a box.
To determine the volume of a box, you multiply the length, width, and height of the
box or multiply the area of the base of the box by its height. Let us write the definition of
the member function volume by using the second alternative. To do this, you can use
the member function area of the class rectangleType to determine the area of the
base. Because the class boxType overrides the member function area, to specify a call
to the member function area of the class rectangleType, we use the name of the
base class and the scope resolution operator, as shown in the following definition:

double boxType::volume() const
{

return rectangleType::area() * height;
}

Inheritance | 719

In the next section, we discuss how to specify a call to the constructor of the base class
when writing the definition of a constructor of the derived class.

Constructors of Derived and Base Classes
A derived class can have its own private member variables, so a derived class can
explicitly include its own constructors. A constructor typically serves to initialize the
member variables. When we declare a derived class object, this object inherits the
members of the base class, but the derived class object cannot directly access the
private (data) members of the base class. The same is true for the member functions
of a derived class. That is, the member functions of a derived class cannot directly access
the private members of the base class.

As a consequence, the constructors of a derived class can (directly) initialize only the
(public data) members inherited from the base class of the derived class. Thus, when
a derived class object is declared, it must also automatically execute one of the
constructors of the base class. Because constructors cannot be called like other
functions, the execution of a derived class’s constructor must trigger the execution
of one of the base class’s constructors. This is, in fact, what happens. Furthermore, a
call to the base class’s constructor is specified in the heading of the definition of a
derived class constructor.

In the preceding section, we defined the class rectangleType and derived the class

boxType from it. Moreover, we illustrated how to override a member function of the
class rectangleType. Let us now discuss how to write the definitions of the
constructors of the class boxType.

The class rectangleType has two constructors and two member variables. The
class boxType has three member variables: length, width, and height. The
member variables length and width are inherited from the class rectangleType.

First, let us write the definition of the default constructor of the class boxType.
Recall that, if a class contains the default constructor and no values are specified when
the object is declared, the default constructor executes and initializes the object. Because
the class rectangleType contains the default constructor, when writing the defini-
tion of the default constructor of the class boxType, we do not specify any constructor
of the base class.

boxType::boxType()
{

height = 0.0;
}

Next, we discuss how to write the definitions of constructors with parameters. To trigger
the execution of a constructor (with parameters) of the base class, you specify the name of
a constructor of the base class with the parameters in the heading of the definition of the
constructor of the derived class.

720 | Chapter 11: Inheritance and Composition

Consider the following definition of the constructor with parameters of the class boxType:

boxType::boxType(double l, double w, double h)
: rectangleType(l, w)

{

if (h >= 0)
height = h;

else
height = 0;

}

In this definition, we specify the constructor of rectangleType with two parameters.
When this constructor of boxType executes, it triggers the execution of the constructor
with two parameters of type double of the class rectangleType.

Consider the following statements:

rectangleType myRectangle(5.0, 3.0); //Line 1
boxType myBox(6.0, 5.0, 4.0); //Line 2

The statement in Line 1 creates the rectangleType object myRectangle. Thus, the
object myRectangle has two member variables: length and width. The statement in
Line 2 creates the boxType object myBox. Thus, the object myBox has three member
variables: length, width, and height (see Figure 11-4).

Consider the following statements:

myRectangle.print(); //Line 3
cout << endl; //Line 4
myBox.print(); //Line 5
cout << endl; //Line 6

In the statement in Line 3, the member function print of the class rectangleType

is executed. In the statement in Line 5, the function print associated with the class

boxType is executed. Recall that, if a derived class overrides a member function of the
base class, the redefinition applies only to the objects of the derived class. Thus, the
output of the statement in Line 3 is:

Length = 5.0; Width = 3.0

1

1

3.0

5.0
myRectangle

myBox

length

width
5.0

6.0length

width

4.0height

FIGURE 11-4 Objects myRectangle and myBox

Inheritance | 721

The output of the statement in Line 5 is:

Length = 6.0; Width = 5.0; Height = 4.0

When the object myBox enters its scope, the constructors of the classes rectangleType
and boxType execute. Note that the constructors of a base class are not inherited in a derived
class. A call to a constructor of a base class is specified in the definition of a constructor of the
derived class. When a derived class constructor executes, first a constructor of the base class
executes to initialize the data members inherited from the base class, and then the constructor
of the derived class executes to initialize the data members declared by the derived class. So
first, the constructor of the class rectangleType executes to initialize the instance
variables length and width, and then the constructor of the class boxType executes
to initialize the instance variable height.

The program in Example 11-2 shows how the objects of a base class and a derived class
behave.

EXAMPLE 11-2

In this example, we write a program to solve the following problems:

1. Jim’s lawn care store specializes in putting up fences around small farms
and home lawns and fertilizing the farms and lawns. For simplicity, we
assume that the yards and farms are rectangular in shape. In order to put
up the fence, the program needs to know the perimeter and to fertilize,
the program needs to know the area. We will write a program that uses
the class rectangle to store the dimensions of a yard or a farm. The
program will also prompt the user to input the dimensions (in feet) of a
yard or farm, the cost (per foot) to put up the fence, and the cost (per
square foot) to fertilize the area. The program will then output the cost
of putting up the fence and fertilizing the area.

2. Linda’s gift store specializes in wrapping small packages. For simplicity,
we assume that a package is in the shape of a box with a specific length,
width, and height. We will write a program that uses the class box-

Type to store the dimensions of a package. The program will ask the
user to input the dimensions of the package and the cost (per square
foot) to wrap the package. The program will then output the cost of
wrapping the package. (The program assumes that the minimum cost of
wrapping a package is $1.00.)

Consider the following C++ program:

#include <iostream> //Line 1
#include <iomanip> //Line 2
#include "rectangleType.h" //Line 3
#include "boxType.h" //Line 4

722 | Chapter 11: Inheritance and Composition

using namespace std; //Line 5

int main() //Line 6
{ //Line 7

rectangleType yard; //Line 8
double fenceCostPerFoot; //Line 9
double fertilizerCostPerSquareFoot; //Line 10
double length, width; //Line 11
double billingAmount; //Line 12

cout << fixed << showpoint << setprecision(2); //Line 13

cout << "Line 14: Enter the length and width of the "
<< "yard (in feet): "; //Line 14

cin >> length >> width; //Line 15
cout << endl; //Line 16

yard.setDimension(length, width); //Line 17

cout << "Line 18: Enter the cost of fence "
<< "(per foot): $"; //Line 18

cin >> fenceCostPerFoot; //Line 19
cout << endl; //Line 20

cout << "Line 21: Enter the cost of fertilizer "
<< "(per square foot): $"; //Line 21

cin >> fertilizerCostPerSquareFoot; //Line 22
cout << endl; //Line 23

billingAmount = yard.perimeter() * fenceCostPerFoot
+ yard.area() * fertilizerCostPerSquareFoot; //Line 24

cout << "Line 25: Amount due: $" << billingAmount
<< endl; //Line 25

boxType package; //Line 26
double height; //Line 27
double wrappingCostPerSquareFeet; //Line 28

cout << "Line 29: Enter the length, width, and height "
<< "of the package (in feet): "; //Line 29

cin >> length >> width >> height; //Line 30
cout << endl; //Line 31

package.setDimension(length, width, height); //Line 32

cout << "Line 33: Enter the cost (25 to 50 cents) of "
<< "wrapping per square foot: "; //Line 33

cin >> wrappingCostPerSquareFeet; //Line 34
cout << endl; //Line 35

billingAmount = wrappingCostPerSquareFeet
* package.area() / 100; //Line 36

if (billingAmount < 1.00) //Line 37
billingAmount = 1.00; //Line 38

1

1

Inheritance | 723

cout << "Line 39: Amount due: $" << billingAmount
<< endl; //Line 39

return 0; //Line 40
} //Line 41

Sample Run: In this sample run, the user input is shaded.

Line 14: Enter the length and width of the yard (in feet): 70 50

Line 18: Enter the cost of fence (per foot): $10.00

Line 21: Enter the cost of fertilizer (per square foot): $0.25

Line 25: Amount due: $3275.00

Line 29: Enter the length, width, and height of the package (in feet): 3 2 0.25

Line 33: Enter the cost (25 to 50 cents) of wrapping per square foot: 25

Line 39: Amount due: $3.63

The preceding programworks as follows: The statements in Lines 8 to 12 and 26 to 28 declare
the variables and objects used in the program. (Note that the statement in Line 8 creates the
object yard, and the statement in Line 26 creates the object package.) The statement in
Line 14 prompts the user to input the length and width of the yard and the statement in Line
15 inputs these values in the variables length and width, respectively. The statement in
Line 17 uses the function setDimension to initialize the instance variables of the object
yard. The statements in Lines 18 to 23 prompt the user to input the cost of putting up the
fence and fertilizing the yard, and they store the values in the variables fenceCostPerFoot
and fertilizerCostPerSquareFoot. The statement in Line 24 calculates the billing
amount. Note that this statement uses the functions perimeter and area of the class

rectangleType to compute the length of the fence and the area of the yard. Then the
statement in Line 25 outputs the billing amount.

The statement in Line 29 prompts the user to input the length, width, and height of the
package and the statement in Line 30 inputs these values in the variables length, width, and
height, respectively. The statement in Line 32 uses the function setDimension to initialize
the instance variables of the object package. The statement in Line 33 prompts the user to
input the cost (per square foot) of wrapping the package and the statement in Line 34 stores
the cost in the variable wrappingCostPerSquareFeet. The statement in Line 36
calculates the billing amount. Note that this statement uses the function area of the class
boxType to compute the surface area of the package. The statement in Line 37 checks if
the value of the billing amount is less than $1.00, and the statement in Line 38 sets the value
of the billing amount to 1.00. Then the statement in Line 39 outputs the billing amount.

Note that in this program the length of the yard is 70 feet and the width is 50 feet.
So the perimeter of the yard is 2 * (70 + 50) = 240 feet, and the area of the yard is
70 * 50 = 3500 square feet. The total cost of putting up the fence and fertilizing the
yard ¼ $(240 * 10 + 3500 * 0.25) = $(2400 + 875) = $3275.00.

724 | Chapter 11: Inheritance and Composition

Next, the length, width, and height of the package are 3 feet, 2 feet, and 0.25 feet. So
the surface area of the package ¼ 2 * (3 * 2 + 3 * 0.25 + 2 * 0.25) = 14.50 square
feet. Therefore, the cost of wrapping the package is $14.50 * 25 / 100 = $3.625 =

$3.63 (rounded to two decimal places).

Now both the classes rectangleType and boxType have the functions setDimension
and area. It follows that the program correctly calls the function setDimension of
each class to initialize the objects yard and package. Similarly, in the case of yard,
the function area of the class rectangleType is called to calculate the area of the
yard, and in the case of package, the function area of the class boxType is called
to calculate the surface area of the package.

From the output of this program, it follows that the redefinition of the functions
setDimension and area in the class boxType applies only to an object of the type
boxType.

The Web site accompanying this book contains a program in the folder

Ch11_InheritanceAndConstructors that further illustrates how to use the classes

rectangleType and boxType in a program.

(Constructors with default parameters and the inheritance hierarchy) Recall that a class can

have a constructor with default parameters. Therefore, a derived class can also have a

constructor with default parameters. For example, suppose that the definition of the

class rectangleType is as shown below. (To save space, these definitions have no

documentation.)

class rectangleType
{

public:
void setDimension(double l, double w);
double getLength() const;
double getWidth() const;
double area() const;
double perimeter()const;
void print() const;
rectangleType(double l = 0, double w = 0);

//Constructor with default parameters

private:
double length;
double width;

};

1

1

Inheritance | 725

Suppose the definition of the constructor is:

rectangleType::rectangleType(double l, double w)
{

setDimension(l, w);
}

Now suppose that the definition of the class boxType is:

class boxType: public rectangleType
{

public:
void setDimension(double l, double w, double h);
double getHeight()const;
double area() const;
double volume() const;
void print() const;
boxType(double l = 0, double w = 0, double h = 0);

//Constructor with default parameters

private:
double height;

};

You can write the definition of the constructor of the class boxType as follows:

boxType::boxType(double l, double w, double h)
: rectangleType(l, w)

{
if (h >= 0)

height = h;
else

height = 0;
}

Notice that this definition also takes care of the default constructor of the class

boxType.

Suppose that a base class, baseClass, has private member variables and constructors.

Further suppose that the class derivedClass is derived from baseClass, and

derivedClass has no member variables. Therefore, the member variables of

derivedClass are the ones inherited from baseClass. A constructor cannot be called

like other functions, and the member variables of baseClass cannot be directly accessed

by the member functions of derivedClass. To guarantee the initialization of the inherited

member variables of an object of type derivedClass, even though derivedClass

has no member variables, it must have the appropriate constructors. A constructor (with

parameters) of derivedClass merely issues a call to a constructor (with parameters)

of baseClass. Therefore, when you write the definition of the constructor (with parameters)

of derivedClass, the heading of the definition of the constructor contains a call to an

appropriate constructor (with parameters) of baseClass, and the body of the constructor

is empty—that is, it contains only the opening and closing braces.

726 | Chapter 11: Inheritance and Composition

EXAMPLE 11-3

Suppose that you want to define a class to group the attributes of an employee. There are
both full-time and part-time employees. Part-time employees are paid based on the number
of hours worked and an hourly rate. Suppose that you want to define a class to keep track of a
part-time employee’s information, such as name, pay rate, and hours worked. You can
then print the employee’s name together with his or her wages. Because every employee is a
person and Example 10-10 (Chapter 10) defined the class personType to store the first
name and the last name together with the necessary operations on name, we can define a
class partTimeEmployee based on the class personType. You can also redefine the
print function to print the appropriate information.

class partTimeEmployee: public personType
{

public:
void print() const;

//Function to output the first name, last name, and
//the wages.
//Postcondition: Outputs
// firstName lastName wages are $$$$.$$

double calculatePay() const;
//Function to calculate and return the wages.
//Postcondition: Pay is calculated and returned

void setNameRateHours(string first, string last,
double rate, double hours);

//Function to set the first name, last name, payRate,
//and hoursWorked according to the parameters.
//Postcondition: firstName = first; lastName = last;
// payRate = rate; hoursWorked = hours

partTimeEmployee(string first = "", string last = "",
double rate = 0, double hours = 0);

//Constructor with parameters
//Sets the first name, last name, payRate, and hoursWorked
//according to the parameters. If no value is specified,
//the default values are assumed.
//Postcondition: firstName = first; lastName = last;
// payRate = rate; hoursWorked = hours

private:
double payRate; //variable to store the pay rate
double hoursWorked; //variable to store the hours worked

};

Figure 11-5 shows the UML class diagram of the class partTimeEmployee and the
inheritance hierarchy.

1

1

Inheritance | 727

The definitions of the member functions of the class partTimeEmployee are as follows:

void partTimeEmployee::print() const
{

personType::print(); //print the name of the employee
cout << "'s wages are: $" << calculatePay() << endl;

}

double partTimeEmployee::calculatePay() const
{

return (payRate * hoursWorked);
}

void partTimeEmployee::setNameRateHours(string first,
string last, double rate, double hours)

{

personType::setName(first, last);
payRate = rate;
hoursWorked = hours;

}

//Constructor
partTimeEmployee::partTimeEmployee(string first, string last,

double rate, double hours)
: personType(first, last)

{
if (rate >= 0)

payRate = rate;
else

payRate = 0;

if (hours >= 0)
hoursWorked = hours;

else
hoursWorked = 0;

}

partTimeEmployee

–payRate:

–hoursWorked:

+print()

+calculatePay()

+setNameRateHours(string, string,

):

+partTimeEmployee(string = "", string = "",

personType

partTimeEmployee

const void

void

:

const double:

double, double

double

double

double

double = 0)= 0,

FIGURE 11-5 UML class diagram of the class partTimeEmployee and inheritance hierarchy

728 | Chapter 11: Inheritance and Composition

Destructors in a Derived Class
Recall from Chapter 10 that a class can have a destructor. As we will see in the next
chapter, destructors are typically used to deallocate dynamic memory allocated by the
objects of a class. (A memory space that is allocated during execution time is called a
dynamic memory space. The next chapter explains how to create and work with dynamic
memory.) Suppose that a base class and its derived class have destructors. When a derived
class object goes out of scope, it automatically invokes its destructor. When the destructor
of the derived class executes, it automatically invokes the destructor of the base class.
So when writing the definition of the destructor of the derived class, an explict call to
the destructor of the base class is not needed. Furthermore, when the destructor of the
derived class executes first, it executes its own code and then calls the destructor of the
base class. For example, suppose that class three is derived from class two, class

two is derived from class one, and these classes have destructors. When an object of
class three goes out of scope, first the destructor of class three executes, then the
destructor of class two executes, and finally, the destructor of class one executes.
That is, the destructors execute in the reverse order.

HEADER FILE OF A DERIVED CLASS

The previous section explained how to derive new classes from previously defined
classes. To define new classes, you create new header files. The base classes are
already defined, and header files contain their definitions. Thus, to create new
classes based on the previously defined classes, the header files of the new classes
contain commands that tell the computer where to look for the definitions of the
base classes.

Suppose that the definition of the class personType is placed in the header file
personType.h. To create the definition of the class partTimeEmployee, the
header file—say, partTimeEmployee.h—must contain the preprocessor directive:

#include "personType.h"

before the definition of the class partTimeEmployee. To be specific, the header file
partTimeEmployee.h is as shown below.

//Header file partTimeEmployee

#include "personType.h"

class partTimeEmployee: public personType
{

public:
void print() const;

//Function to output the first name, last name, and
//the wages.
//Postcondition: Outputs
// firstName lastName wages are $$$$.$$

1

1

Inheritance | 729

double calculatePay() const;
//Function to calculate and return the wages.
//Postcondition: Pay is calculated and returned

void setNameRateHours(string first, string last,
double rate, double hours);

//Function to set the first name, last name, payRate,
//and hoursWorked according to the parameters.
//Postcondition: firstName = first; lastName = last;
// payRate = rate; hoursWorked = hours

partTimeEmployee(string first = "", string last = "",
double rate = 0, double hours = 0);

//Constructor with parameters
//Sets the first name, last name, payRate, and hoursWorked
//according to the parameters. If no value is specified,
//the default values are assumed.
//Postcondition: firstName = first; lastName = last;
// payRate = rate; hoursWorked = hours

private:
double payRate; //variable to store the pay rate
double hoursWorked; //variable to store the hours worked

};

The definitions of the member functions can be placed in a separate file. Recall that to
include a system-provided header file, such as iostream, in a user program, you enclose
the header file between angular brackets; to include a user-defined header file in a
program, you enclose the header file between double quotation marks.

Multiple Inclusions of a Header File
The previous section discussed how to create the header file of a derived class. To
include a header file in a program, you use the preprocessor command. Recall that
before a program is compiled, the preprocessor first processes the program. Consider
the following header file:

//Header file test.h

const int ONE = 1;
const int TWO = 2;

Suppose that the header file testA.h includes the file test.h in order to use the
identifiers ONE and TWO. To be specific, suppose that the header file testA.h looks like:

//Header file testA.h

#include "test.h"
.
.
.

730 | Chapter 11: Inheritance and Composition

Now, consider the following program code:

//Program headerTest.cpp

#include "test.h"
#include "testA.h"
.
.
.

When the program headerTest.cpp is compiled, it is first processed by the preprocessor.
The preprocessor includes first the header file test.h and then the header file testA.h.
When the header file testA.h is included, because it contains the preprocessor directive
#include "test.h", the header file test.h is included twice in the program. The second
inclusion of the header file test.h results in compile-time errors, such as the identifier ONE
already being declared. This problem occurs because the first inclusion of the header file
test.h has already defined the variables ONE and TWO. To avoid multiple inclusion of a file
in a program, we use certain preprocessor commands in the header file. Let us first rewrite
the header file test.h using these preprocessor commands and then explain the meaning of
these commands.

//Header file test.h

#ifndef H_test
#define H_test
const int ONE = 1;
const int TWO = 2;
#endif

a. #ifndef H_test means ‘‘if not defined H_test’’

b. #define H_test means ‘‘define H_test’’

c. #endif means ‘‘end if’’

Here, H_test is a preprocessor identifier.

The effect of these commands is as follows: If the identifier H_test is not defined,
we must define the identifier H_test and let the remaining statements between
#define and #endif pass through the compiler. If the header file test.h

is included the second time in the program, the statement #ifndef fails and all
of the statements until #endif are skipped. In fact, all header files are written using
similar preprocessor commands.

C++ Stream Classes
Chapter 3 described in detail how to perform input/output (I/O) using standard I/O
devices and file I/O. In particular, you used the object cin, the extraction operator >>,
and functions such as get and ignore to read data from the standard input device. You
also used the object cout and the insertion operator << to send output to the standard
output device. To use cin and cout, the programs included the header file iostream,

1

1

Inheritance | 731

which includes the definitions of the classes istream and ostream. Moreover, for file
I/O, the programs included the header file fstream, and they used objects of type
ifstream for file input and objects of type ofstream for file output. This section
briefly describes how stream classes are related and implemented in C++.

In C++, stream classes are implemented using the inheritance mechanism, as shown in
Figure 11-6.

Figure 11-6 shows the stream classes that we have encountered in previous chapters.
From this figure, it follows that the class ios is the base class for all stream classes.
Classes istream and ostream are directly derived from the class ios. The class

ifstream is derived from the class istream, and the class ofstream is derived
from the class ostream. Moreover, using the mechanism of multiple inheritance, the
class iostream (not to be confused with the header file iostream—these are separate
things) and the class fstream are derived from the class iostream. (The classes
iostream and fstream are not discussed in this book.)

The class ios contains formatting flags and member functions to access and/or modify
the setting of these flags. To identify the I/O status, the class ios contains an integer
status word. This integer status word provides a continuous update reporting the status of
the stream.

The classes istream and ostream are responsible for providing the operations for
the data transfer between memory and devices. The class istream defines the extrac-
tion operator, >>, and functions such as get and ignore. The class ostream defines
the insertion operator, <<, which is used by the object cout.

The class ifstream is derived from the class istream to provide the file input
operations. Similarly, the class ofstream is derived from the class ostream to
provide the file output operations. Objects of type ifstream are used for file input;
objects of type ofstream are used for file output. The header file fstream contains the
definitions of the classes ifstream and ofstream.

istream ostream

ofstream

ios

ifstream

FIGURE 11-6 C++ stream classes hierarchy

732 | Chapter 11: Inheritance and Composition

Protected Members of a Class
The private members of a class are private to the class and cannot be directly
accessed outside of the class. Only member functions of that class can access the
private members. As discussed previously, the derived class cannot directly access
the private members of a base class. However, it is sometimes necessary (say, for
efficiency and/or to simplify the code) for a derived class to directly access a private

member of a base class. If you make a private member become public, then anyone
can access that member. Recall that the members of a class are classified into three
categories: public, private, and protected. So, for a base class to give access to a
member to its derived class and still prevent its direct access outside of the class, you
must declare that member under the memberAccessSpecifier protected. Thus,
the accessibility of a protected member of a class is in between public and private.
A derived class can directly access the protected members of a base class.

To summarize, if a member of a base class needs to be accessed by a derived class, that
member is declared under the memberAccessSpecifier protected.

Inheritance as public, protected, or private
Suppose class B is derived from class A. Then, B cannot directly access the private

members of A. That is, the private members of A are hidden in B. What about the
public and protected members of A? This section gives the rules that generally apply
when accessing the members of a base class.

Consider the following statement:

class B: memberAccessSpecifier A
{

.

.

.
};

In this statement, memberAccessSpecifier is either public, protected, or private.

1. If memberAccessSpecifier is public—that is, the inheritance is
public—then:

a. The public members of A are public members of B. They can be
directly accessed in class B.

b. The protected members of A are protected members of B. They
can be directly accessed by the member functions (and friend

functions) of B.

c. The private members of A are hidden in B. They cannot be directly
accessed in B. They can be accessed by the member functions (and
friend functions) of B through the public or protected members
of A.

1

1

Inheritance | 733

2. If memberAccessSpecifier is protected—that is, the inheritance
is protected—then:

a. The public members of A are protected members of B. They can
be accessed by the member functions (and friend functions) of B.

b. The protected members of A are protected members of B. They
can be accessed by the member functions (and friend functions) of B.

c. The private members of A are hidden in B. They cannot be
directly accessed in B. They can be accessed by the member
functions (and friend functions) of B through the public or
protected members of A.

3. If memberAccessSpecifier is private—that is, the inheritance is
private—then:

a. The public members of A are private members of B. They can
be accessed by the member functions (and friend functions) of B.

b. The protected members of A are private members of B. They can
be accessed by the member functions (and friend functions) of B.

c. The private members of A are hidden in B. They cannot be
directly accessed in B. They can be accessed by the member
functions (and friend functions) of B through the public or
protected members of A.

Chapter 13 describes the friend functions.

Example 11-4 illustrates how the member functions of a derived class can directly access a
protected member of the base class.

EXAMPLE 11-4

(Accessing protected Members in the Derived Class)
Consider the following definition of the class bClass:

class bClass
{

public:
void setData(double);
void setData(char, double);
void print() const;

734 | Chapter 11: Inheritance and Composition

bClass(char ch = '*', double u = 0.0);

protected:
char bCh;

private:
double bX;

};

The definition of the class bClass contains a protected member variable bCh of
type char and a private member variable bX of type double. It also contains an
overloaded member function setData. One version is used to set both member vari-
ables; the other version is used to set only the private member variable. The class also
has a constructor with default parameters. Suppose that the definitions of the member
functions and the constructor are as follows:

void bClass::setData(double u)
{

bX = u;
}

void bClass::setData(char ch, double u)
{

bCh = ch;
bX = u;

}

void bClass::print() const
{

cout << "Base class: bCh = " << bCh << ", bX = " << bX
<< endl;

}

bClass::bClass(char ch, double u)
{

bCh = ch;
bX = u;

}

Next, we derive a class dClass from the class bClass using public inheritance as
follows:

class dClass: public bClass
{

public:
void setData(char, double, int);
void print() const;

dClass(char ch = '*', double u = 0.0, int x = 0);

private:
int dA;

};

1

1

Inheritance | 735

The class dClass contains a private member variable dA of type int. It also
contains a constructor, a member function setData with three parameters, and the
function print.

Let us now write the definition of the function setData. Because bCh is a protected

member variable of the class bClass, it can be directly accessed in the definition of the
function setData. However, because bX is a private member variable of the class

bClass, the function setData cannot directly access it. Thus, the function setData

must set bX by using the function setData of the class bClass. The definition of the
function setData of the class dClass can be written as follows:

void dClass::setData(char ch, double v, int a)
{

bClass::setData(v);

bCh = ch; //initialize bCh using the assignment statement
dA = a;

}

Note that the definition of the function setData calls the function bClass::setData,
with one parameter to set the member variable bX, and then directly sets the value of bCh.
Next, let us write the definition of the function print (of the class dClass).

Notice that in the definition of the class bClass, the member function print is not
overloaded as in the member function setData. It prints the values of both member
variables, bCh and bX. The member variable bX is a private member variable, so it
cannot be directly accessed in the class dClass. Even though bCh is a protected

member variable and it can be directly accessed in the class dClass, we must print its
value using the function print of the class bClass, because this function outputs the
values of both bCh and dX. For this reason, we first call the function print (of the
class bClass) and then output only the value of dA. The definition of the function
print is:

void dClass::print() const
{

bClass::print();

cout << "Derived class dA = " << dA << endl;
}

The definition of the constructor is:

dClass::dClass(char ch, double u, int x)
: bClass(ch, u)

{
dA = x;

}

The following program illustrates how the objects of bClass and dClass work. We assume
that the definition of the class bClass is in the header file protectMembClass.h, and the
definition of the class dClass is in the header file protectMembInDerivedCl.h.

736 | Chapter 11: Inheritance and Composition

//Accessing protected members of a base class in the derived
//class.

#include <iostream>
#include "protectMembClass.h"
#include "protectMembInDerivedCl.h"

using namespace std;

int main()
{

bClass bObject; //Line 1
dClass dObject; //Line 2

bObject.print(); //Line 3
cout << endl; //Line 4

cout << "*** Derived class object ***" << endl; //Line 5

dObject.setData('&', 2.5, 7); //Line 6

dObject.print(); //Line 7

return 0;
}

Sample Run:

Base class: bCh = *, bX = 0

*** Derived class object ***
Base class: bCh = &, bX = 2.5
Derived class dA = 7

When you write the definitions of the member functions of the class dClass, the
protected member variable bCh can be accessed directly. However, dClass objects
cannot directly access bCh. That is, the following statement is illegal (it is, in fact, a syntax
error):

dObject.bCh = '&'; //illegal

Composition (Aggregation)

Composition (aggregation) is another way to relate two classes. In composition (aggre-

gation), one or more members of a class are objects of another class type. Composition is
a ‘‘has-a’’ relation; for example, ‘‘every person has a date of birth.’’

Example 10-10 in Chapter 10 defined a class called personType. The class personType

stores a person’s first and last name. Suppose we want to keep track of additional
information for a person, such as a personal ID (e.g., a Social Security number)

1

1

Composition (Aggregation) | 737

and a date of birth. Because every person has a personal ID and a date of birth, we can
define a new class, called personalInfo, in which one of the members is an object of
type personType. We can declare additional members to store the personal ID and date
of birth for the class personalInfo.

First, we define another class, dateType, to store only a person’s date of birth.
Then, we construct the class personalInfo from the classes personType and
dateType. This way, we can demonstrate how to define a new class using two
classes.

To define the class dateType, we need three member variables—to store the
month, day number, and year. Some of the operations that need to be performed on
a date are to set the date and to print the date. The following statements define the
class dateType:

class dateType
{

public:
void setDate(int month, int day, int year);

//Function to set the date.
//The member variables dMonth, dDay, and dYear are set
//according to the parameters.
//Postcondition: dMonth = month; dDay = day;
// dYear = year

int getDay() const;
//Function to return the day.
//Postcondition: The value of dDay is returned.

int getMonth() const;
//Function to return the month.
//Postcondition: The value of dMonth is returned.

int getYear() const;
//Function to return the year.
//Postcondition: The value of dYear is returned.

void printDate() const;
//Function to output the date in the form mm-dd-yyyy.

dateType(int month = 1, int day = 1, int year = 1900);
//Constructor to set the date
//The member variables dMonth, dDay, and dYear are set
//according to the parameters.
//Postcondition: dMonth = month; dDay = day; dYear = year;
// If no values are specified, the default
// values are used to initialize the member
// variables.

738 | Chapter 11: Inheritance and Composition

1

1

private:
int dMonth; //variable to store the month
int dDay; //variable to store the day
int dYear; //variable to store the year

};

Figure 11-7 shows the UML class diagram of the class dateType.

The definitions of the member functions of the class dateType are as follows:

void dateType::setDate(int month, int day, int year)
{

dMonth = month;
dDay = day;
dYear = year;

}

The definition of the function setDate, before storing the date into the member
variables, does not check whether the date is valid. That is, it does not confirm whether
month is between 1 and 12, year is greater than 0, and day is valid (for example, for
January, day should be between 1 and 31). In Programming Exercise 2 at the end of this
chapter, you are asked to rewrite the definition of the function setDate so that the date
is validated before storing it in the member variables. The definitions of the remaining
member functions are as follows:

int dateType::getDay() const
{

return dDay;
}

int dateType::getMonth() const
{

return dMonth;
}

dateType

–dMonth: int

–dDay: int

–dYear: int

+setDate(int, int, int): void

+getDay() const: int

+getMonth() const: int

+getYear() const: int

+printDate() const: void

+dateType(int = 1, int = 1, int = 1900)

FIGURE 11-7 UML class diagram of the class dateType

Composition (Aggregation) | 739

int dateType::getYear() const
{

return dYear;
}

void dateType::printDate() const
{

cout << dMonth << "-" << dDay << "-" << dYear;
}

//Constructor with parameters
dateType::dateType(int month, int day, int year)
{

dMonth = month;
dDay = day;
dYear = year;

}

Just as in the case of setDate, in Programming Exercise 2, you are asked to rewrite the
definition of the constructor so that it checks for the valid values of month, day, and
year before storing the date into the member variables.

Next, we give the definition of the class personalInfo:

class personalInfo
{

public:
void setpersonalInfo(string first, string last, int month,

int day, int year, int ID);
//Function to set the personal information.
//The member variables are set according to the
//parameters.
//Postcondition: firstName = first; lastName = last;
// dMonth = month; dDay = day;
// dYear = year; personID = ID;

void printpersonalInfo () const;
//Function to print the personal information.

personalInfo(string first = "", string last = "",
int month = 1, int day = 1, int year = 1900,
int ID = 0);

//Constructor
//The member variables are set according to the
//parameters.
//Postcondition: firstName = first; lastName = last;
// dMonth = month; dDay = day;
// dYear = year; personID = ID;
// If no values are specified, the default
// values are used to initialize the member
// variables.

740 | Chapter 11: Inheritance and Composition

private:
personType name;
dateType bDay;
int personID;

};

Figure 11-8 shows the UML class diagram of the class personalInfo and composi-
tion (aggregation).

Before we give the definition of the member functions of the class personalInfo, let
us discuss how the constructors of the objects bDay and name are invoked.

Recall that a class constructor is automatically executed when a class object enters its
scope. Suppose that we have the following statement:

personalInfo student;

When the object student enters its scope, the objects bDay and name, which are
members of student, also enter their scopes. As a result, one of their constructors is
executed. We, therefore, need to know how to pass arguments to the constructors of the
member objects (that is, bDay and name), which occurs when we give the definitions of
the constructors of the class. Recall that constructors do not have a type and so cannot be
called like other functions. The arguments to the constructor of a member object (such as
bDay) are specified in the heading part of the definition of the constructor of the class.
Furthermore, member objects of a class are constructed (that is, initialized) in the order
they are declared (not in the order they are listed in the constructor’s member initializa-
tion list) and before the containing class objects are constructed. Thus, in our case, the
object name is initialized first, then bDay, and finally, student.

The following statements illustrate how to pass arguments to the constructors of the
member objects name and bDay:

1

1

personalInfo

-name: personType

-bDay: dateType

-personID: int

setpersonalInfo(string, string, int, int,

int, int): void

printpersonalInfo () const: void

personalInfo(string = "", string = "",

int = 1, int = 1,

int = 1900, int = 0)

personalInfo

personType dateType

FIGURE 11-8 UML class diagram of the class personalInfo and composition (aggregation)

Composition (Aggregation) | 741

personalInfo::personalInfo(string first, string last, int month,
int day, int year, int ID)

: name(first, last), bDay(month, day, year)
{

.

.

.
}

The definitions of the member functions of the class personalInfo are as follows:

void personalInfo::setpersonalInfo(string first, string last,
int month, int day, int year, int ID)

{

name.setName(first,last);
bDay.setDate(month,day,year);
personID = ID;

}

void personalInfo::printpersonalInfo() const
{

name.print();
cout << "'s date of birth is ";
bDay.printDate();
cout << endl;
cout << "and personal ID is " << personID;

}

personalInfo::personalInfo(string first, string last, int month,
int day, int year, int ID)

: name(first, last), bDay(month, day, year)
{

personID = ID;

}

In the case of inheritance, use the class name to invoke the base class’s constructor. In

the case of composition, use the member object name to invoke its own constructor.

Object-Oriented Design (OOD) and
Object-Oriented Programming (OOP)
The first 11 chapters of this book used the top-down approach to programming, also
called structured programming, to write programs. Problems were broken down into
modules, and each module solved a particular part of the problem. Data requirements
were identified, and functions were written to manipulate the data. The functions and the
data were kept separate, and the functions acted on the data in a passive way. Structured
programming, therefore, has certain limitations. In structured programming, functions are

742 | Chapter 11: Inheritance and Composition

dependent on the data, and functions are designed specifically to solve a particular
problem. It is quite difficult, if not impossible, to reuse a function written for one
program in another program. For some of these reasons, structured programming is not
very efficient for large software development.

Chapter 10 began with the introduction of classes. We learned how classes are defined
and used. Later in that chapter, we concentrated on the data requirements of a problem
and the logical operations on that data. With the help of classes, we combined the data—
and the operations on that data—in a single unit. That is, the data and operations were
encapsulated in a single unit. Also, with the help of classes, we were able to separate the
data and the algorithms to manipulate that data. However, the functions to implement
the operations on the data had direct access to the data. This chapter explains how to
create new classes from existing classes through inheritance (and also using composition).
Furthermore, an object has the capability to hide the information details. These are some
of the features of object-oriented design (OOD).

The three basic principles of OOD are as follows:

• Encapsulation—The ability to combine data and operations on that
data in a single unit.

• Inheritance—The ability to create new objects (classes) from existing
objects (classes).

• Polymorphism—The ability to use the same expression to denote
different operations.

In OOD, an object is a fundamental entity; in structured programming, a function is a
fundamental entity. In OOD, we debug classes; in structured programming, we debug
functions. In OOD, a program is a collection of interacting objects; in structured program-
ming, a program is a collection of interacting functions. Also, OOD encourages code reuse.
Once a class becomes error-free, it can be reused in many programs because it is a self-
contained entity. Object-oriented programming (OOP) implements OOD.

To create objects, we must know how to represent the data and write functions to
manipulate that data. Thus, we must know everything that we have learned in Chapters 2
through 8. The first eight chapters are essential for any type of programming, whether
structured or object-oriented.

C++ supports OOP through the use of classes. We have already examined the first
two features of OOP, encapsulation and inheritance, in this chapter and Chapter 10.
Chapter 13 discusses the third feature of OOD: polymorphism. A polymorphic function
or operator has many forms.

In C++, a function name and the operators can be overloaded. An example of function
overloading occurs when the function is called, and the operator is evaluated according to
the arguments used. For instance, if both operands are integers, the division operator
yields an integer result; otherwise, the division operator yields a decimal result. Suppose a
class has constructors. If no arguments are passed to an object when it is declared, the

1

1

Object-Oriented Design (OOD) and Object-Oriented Programming (OOP) | 743

default constructor is executed; otherwise, one of the constructors with parameters is
executed. However, all constructors have the same name.

C++ also provides parametric polymorphism. In parametric polymorphism, the (data)
type is left unspecified and then later instantiated. Templates (discussed in Chapter 13)
provide parametric polymorphism. Also, C++ provides virtual functions as a means to
implement polymorphism in an inheritance hierarchy, which allows the run-time selec-
tion of appropriate member functions. (Chapter 12 discusses virtual functions.)

There are several OOP languages in existence today, including Ada,Modula-2, Object Pascal,
Turbo Pascal, Eiffel, C++, Java, and Smalltalk. The earliest OOP language was Simula,
developed in 1967. The OOP terminology is influenced by the vocabulary of Smalltalk, the
OOP language largely developed at a Xerox research center during the 1970s. An OOP
language uses many ‘‘fancy’’ words, such as methods, message passing, and so forth.

OOP is a natural and intuitive way to view the programming process. When we view an
object, we immediately think of what it can do. For example, when we think about a car,
we also think about the operations on the car, such as starting the car and driving the car.
When programmers think about a list, they also think about the operations on the list,
such as searching, sorting, and inserting. OOP allows ADT to be created and used. In
C++, we implement ADT through the use of classes.

Objects are created when class variables are declared. Objects interact with each other via
function calls. Every object has an internal state and an external state. The private

members form the internal state; the public members form the external state. Only the
object can manipulate its internal state.

Identifying Classes, Objects, and Operations
In this book’s first 9 chapters, in the problem analysis phase, we analyzed the problem,
identified the data, and outlined the algorithm. To reduce the complexity of the function
main, we wrote functions to manipulate the data. In Chapter 10, we used the OOD
technique and first identified the objects that made up the overall problem. The objects
were designed and implemented independently of the main program. The hardest part in
OOD is to identify the classes and objects. In this section, we describe a common and
simple technique to identify classes and objects.

We begin with a description of the problem and then identify all of the nouns and verbs. We
choose our classes from the list of nouns, and we choose our operations from the list of verbs.

For example, suppose that we want to write a program that calculates and prints the
volume and surface area of a cylinder. We can state this problem as follows:

Write a program to input the dimensions of a cylinder and calculate and print the
surface area and volume.

In this statement, the nouns are bold, and the verbs are italic. From the list of nouns—
program, dimensions, cylinder, surface area, and volume—we can easily visualize

744 | Chapter 11: Inheritance and Composition

cylinder to be a class—say, cylinderType—from which we can create many cylinder
objects of various dimensions. The nouns dimensions, surface area, and volume are
characteristics of a cylinder and thus can hardly be considered classes.

After we identify a class, the next step is to determine three pieces of information:

• Operations that an object of that class type can perform

• Operations that can be performed on an object of that class type

• Information that an object of that class type must maintain

From the list of verbs identified in the problem description, we choose a list of possible
operations that an object of that class can perform, or has performed, on itself. For
example, from the list of verbs for the cylinder problem description—write, input, calculate,
and print—the possible operations for a cylinder object are input, calculate, and print.

For the class cylinderType, the dimensions represent the data. The center of the base,
radius of the base, and height of the cylinder are the characteristics of the dimensions.
You can input data to the object either by a constructor or by a mutator function.

The verb calculate applies to determining the volume and the surface area. From this, you
can deduce the operations: cylinderVolume and cylinderSurfaceArea. Similarly,
the verb print applies to the display of the volume and the surface area on an output
device. In Programming Exercise 3 at the end of this chapter, you are asked to design a
class to implement the characteristics of a cylinder.

Identifying classes via the nouns and verbs from the descriptions of the problem is not the
only technique possible. There are several other OOD techniques in the literature.
However, this technique is sufficient for the programming exercises in this book.

1

1

PROGRAMMING EXAMPLE: Grade Report
This programming example further illustrates the concepts of inheritance and
composition.

The mid-semester point at your local university is approaching. The registrar’s office
wants to prepare the grade reports as soon as the students’ grades are recorded.
However, some of the students enrolled have not yet paid their tuition.

1. If a student has paid the tuition, the grades are shown on the grade
report together with the grade point average (GPA).

2. If a student has not paid the tuition, the grades are not printed. For
these students, the grade report contains a message indicating that
the grades have been held for nonpayment of the tuition. The grade
report also shows the billing amount.

The registrar’s office and the business office want your help in writing a program that
can analyze the students’ data and print the appropriate grade reports. The data is
stored in a file in the following form:

Watch

the Video

Programming Example: Grade Report | 745

15000 345
studentName studentID isTuitionPaid numberOfCourses
courseName courseNumber creditHours grade
courseName courseNumber creditHours grade
.
.
.
studentName studentID isTuitionPaid numberOfCourses
courseName courseNumber creditHours grade
courseName courseNumber creditHours grade
.
.
.

The first line indicates the number of students enrolled and the tuition rate per credit
hour. The students’ data is given thereafter.

A sample input file is as follows:

3 345
Lisa Miller 890238 Y 4
Mathematics MTH345 4 A
Physics PHY357 3 B
ComputerSci CSC478 3 B
History HIS356 3 A
.
.
.

The first line indicates that the input file contains three students’ data, and the tuition
rate is $345 per credit hour. Next, the course data for student Lisa Miller is given:
Lisa Miller’s ID is 890238, she has paid the tuition, and she is taking four courses.
The course number for the mathematics class she is taking is MTH345, the course has
four credit hours, her mid-semester grade is A, and so on.

The desired output for each student is in the following form:

Student Name: Lisa Miller
Student ID: 890238
Number of courses enrolled: 4

Course No Course Name Credits Grade

CSC478 ComputerSci 3 B

HIS356 History 3 A

MTH345 Mathematics 4 A

PHY357 Physics 3 B

Total number of credits: 13
Mid-Semester GPA: 3.54

746 | Chapter 11: Inheritance and Composition

1

1

It is clear from this output that the courses must be ordered according to the course
number. To calculate the GPA, we assume that the grade A is equivalent to four
points, B is equivalent to three points, C is equivalent to two points, D is equivalent to
one point, and F is equivalent to zero points.

Input A file containing the data in the form given previously. For easy reference,
let us assume that the name of the input file is stData.txt.

Output A file containing the output in the form given previously.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

We must first identify the main components of the program. The university has
students, and every student takes courses. Thus, the two main components are the
student and the course.

Let us first describe the course component.

Course The main characteristics of a course are the course name, course number, and
number of credit hours.

Some of the basic operations that need to be performed on an object of the course type are:

1. Set the course information.

2. Print the course information.

3. Show the credit hours.

4. Show the course number.

The following class defines the course as an ADT:

class courseType
{

public:
void setCourseInfo(string cName, string cNo, int credits);

//Function to set the course information.
//The course information is set according to the
//parameters.
//Postcondition: courseName = cName; courseNo = cNo;
// courseCredits = credits;

void print(ostream& outF);
//Function to print the course information.
//This function sends the course information to the
//output device specified by the parameter outF. If the
//actual parameter to this function is the object cout,
//then the output is shown on the standard output device.
//If the actual parameter is an ofstream variable, say,
//outFile, then the output goes to the file specified by
//outFile.

int getCredits();
//Function to return the credit hours.
//Postcondition: The value of courseCredits is returned.

Programming Example: Grade Report | 747

string getCourseNumber();
//Function to return the course number.
//Postcondition: The value of courseNo is returned.

string getCourseName();
//Function to return the course name.
//Postcondition: The value of courseName is returned.

courseType(string cName = "", string cNo = "",
int credits = 0);

//Constructor
//The object is initialized according to the parameters.
//Postcondition: courseName = cName; courseNo = cNo;
// courseCredits = credits;

private:
string courseName; //variable to store the course name
string courseNo; //variable to store the course number
int courseCredits; //variable to store the credit hours

};

Figure 11-9 shows the UML class diagram of the class courseType.

Next, we discuss the definitions of the functions to implement the operations of the
class courseType. These definitions are quite straightforward and easy to follow.

The function setCourseInfo sets the values of the private member variables
according to the values of the parameters. Its definition is:

courseType

–courseName: string

–courseNo: string

–courseCredits: int

+setCourseInfo(string, string,int): void

+print(ostream&): void

+getCredits(): int

+getCourseNumber(): string

+getCourseName(): string

+courseType(string = "", string = "", int = 0)

FIGURE 11-9 UML class diagram of the class courseType

748 | Chapter 11: Inheritance and Composition

1

1

void courseType::setCourseInfo(string cName, string cNo,
int credits)

{

courseName = cName;
courseNo = cNo;
courseCredits = credits;

} //end setCourseInfo

The function print prints the course information. The parameter outF specifies the
output device. Also, we print the course name and course number left-justified rather
than right-justified (the default). Thus, we need to set the left manipulator. Before
printing the credit hours, the manipulator is set to be right-justified. The following
steps describe this function:

1. Set the left manipulator.

2. Print the course number.

3. Print the course name.

4. Set the right manipulator.

5. Print the credit hours.

The definition of the function print is:

void courseType::print(ostream& outF)
{

outF << left; //Step 1
outF << setw(8) << courseNo << " "; //Step 2
outF << setw(15) << courseName; //Step 3
outF << right; //Step 4
outF << setw(3) << courseCredits << " "; //Step 5

} //end print

The constructor is declared with the default values. If no values are specified when a
courseType object is declared, the constructor uses the default to initialize the
object. Using the default values, the object’s member variables are initialized as
follows: courseNo to blank, courseName to blank, and courseCredits to 0.
Otherwise, the values specified in the object declaration are used to initialize the
object. Its definition is:

courseType::courseType(string cName, string cNo, int credits)
{

courseName = cName;
courseNo = cNo;
courseCredits = credits;

} //end default constructor

Programming Example: Grade Report | 749

The definitions of the remaining functions are as follows:

int courseType::getCredits()
{

return courseCredits;
} //end getCredits

string courseType::getCourseNumber()
{

return courseNo;
}//end getCourseNumber

string courseType::getCourseName()
{

return courseName;
} //end getCourseName

Next, we discuss the student component.

Notice that in the definition of the class courseType, the member functions,

such as print and getCredits, are accessor functions. This class also has

other accessor functions. As noted in Chapter 10, we typically define the accessor

functions with the keyword const at the end of their headings. We leave it as

an exercise for you to redefine this class so that the accessor functions are

declared as constant functions. (See Programming Exercise 12 at the end of this

chapter.)

Student The main characteristics of a student are the student name, student ID, number of
courses in which enrolled, courses in which enrolled, and grade for each course.
Because every student has to pay tuition, we also include a member to indicate
whether the student has paid the tuition.

Every student is a person, and every student takes courses. We have already designed
a class personType to process a person’s first and last name. We have also
designed a class to process the information for a course. Thus, we see that we can
derive the class studentType to keep track of a student’s information from the
class personType, and one member of this class is of type courseType. We can
add more members as needed.

The basic operations to be performed on an object of type studentType are as
follows:

1. Set the student information.

2. Print the student information.

3. Calculate the number of credit hours taken.

750 | Chapter 11: Inheritance and Composition

1

1

4. Calculate the GPA.

5. Calculate the billing amount.

6. Because the grade report will print the courses in ascending order,
sort the courses according to the course number.

The following class defines studentType as an ADT. We assume that a student
takes no more than six courses per semester.

class studentType: public personType
{

public:
void setInfo(string fname, string lName, int ID,

int nOfCourses, bool isTPaid,
courseType courses[], char courseGrades[]);

//Function to set the student's information.
//Postcondition: The member variables are set
// according to the parameters.

void print(ostream& outF, double tuitionRate);
//Function to print the student's grade report.
//If the member variable isTuitionPaid is true, the grades
//are shown; otherwise, three stars are printed. If the
//actual parameter corresponding to outF is the object
//cout, then the output is shown on the standard output
//device. If the actual parameter corresponding to outF
//is an ofstream object, say outFile, then the output
//goes to the file specified by outFile.

studentType();
//Default constructor
//The member variables are initialized.

int getHoursEnrolled();
//Function to return the credit hours a student is
//enrolled in.
//Postcondition: The number of credit hours is
// calculated and returned.

double getGpa();
//Function to return the grade point average.
//Postcondition: The gpa is calculated and returned.

double billingAmount(double tuitionRate);
//Function to return the tuition fees.
//Postcondition: The billing amount is calculated
//and returned.

Programming Example: Grade Report | 751

private:
void sortCourses();

//Function to sort the courses.
//Postcondition: The array coursesEnrolled is sorted.
// For each course, its grade is stored in
// the array coursesGrade. Therefore, when
// the array coursesEnrolled is sorted, the
// corresponding entries in the array
// coursesGrade are adjusted.

int sId; //variable to store the student ID
int numberOfCourses; //variable to store the number

//of courses
bool isTuitionPaid; //variable to indicate whether the

//tuition is paid
courseType coursesEnrolled[6]; //array to store the courses
char coursesGrade[6]; //array to store the course grades

};

Figure 11-10 shows the UML class diagram of the class studentType together
with the inheritance and composition (aggregation) relation.

Before writing the definitions of the member functions of the class studentType,
we make the following note.

studentType

-sId: int

-numberOfCourses: int

-isTuitionPaid: bool

-coursesEnrolled[6]: courseType

-coursesGrade[6]: char

+setInfo(string, string, int, int, bool,

 courseType [], char []): void

+print(ostream&, double): void

+getHoursEnrolled(): int

+getGpa(): double

+billingAmount(double): double

-sortCourses(): void

+studentType()

studentType

personType

courseType

FIGURE 11-10 UML class diagram of the class studentType together with inheritance and
composition (aggregation) relation

752 | Chapter 11: Inheritance and Composition

1

1

Notice that in the definition of the class studentType, the member functions,

such as print and getGpa, are accessor functions. This class also has other

accessor functions. As noted in Chapter 10, we typically define the accessor

functions with the keyword const at the end of their headings. We leave it as an

exercise for you to redefine this class so that the accessor functions are declared as

constant functions. (See Programming Exercise 12 at the end of this chapter.)

Note that the member function sortCourses to sort the array coursesEnrolled

is a private member of the class studentType. This is due to the fact that this
function is needed for internal data manipulation, and the user of the class does not
need to access this member.

Next, we discuss the definitions of the functions to implement the operations of the
class studentType.

The function setInfo first initializes the privatemember variables according to the
incoming parameters. This function then calls the function sortCourses to sort the
array coursesEnrolled by course number. The class studentType is derived
from the class personType, and the variables to store the first and last name are
private member variables of that class. Therefore, we call the member function
setName of the class personType and pass the appropriate variables to set the first
and last names. The definition of the function setInfo is as follows:

void studentType::setInfo(string fName, string lName, int ID,
int nOfCourses, bool isTPaid,
courseType courses[], char cGrades[])

{

int i;

setName(fName, lName); //set the name

sId = ID; //set the student ID
isTuitionPaid = isTPaid; //set isTuitionPaid
numberOfCourses = nOfCourses; //set the number of courses

//set the course information
for (i = 0; i < numberOfCourses; i++)
{

coursesEnrolled[i] = courses[i];
coursesGrade[i] = cGrades[i];

}

sortCourses(); //sort the array coursesEnrolled
} //end setInfo

Programming Example: Grade Report | 753

The default constructor initializes the private member variables to the default
values. Note that because the private member variable coursesEnrolled is
of type courseType and is an array, the default constructor of the class

courseType executes automatically, and the entire array is initialized.

studentType::studentType()
{

numberOfCourses = 0;
sId = 0;
isTuitionPaid = false;

for (int i = 0; i < 6; i++)
coursesGrade[i] = '*';

} //end default constructor

The function print prints the grade report. The parameter outF specifies the
output device. If the student has paid his or her tuition, the grades and the GPA are
shown. Otherwise, three stars are printed in place of each grade, the GPA is not
shown, a message indicates that the grades are being held for nonpayment of the
tuition, and the amount due is shown. This function has the following steps:

1. Output the student’s name.

2. Output the student’s ID.

3. Output the number of courses in which the student is enrolled.

4. Output the heading:
Course No Course Name Credits Grade

5. Print each course’s information.

For each course, print:

a. Course No, Course Name, Credits

b. if isTuitionPaid is true

Output the grade

else

Output three stars.

6. Print the total credit hours.

7. To output the GPA and billing amount in a fixed decimal format
with the decimal point and trailing zeros, set the necessary flag. Also,
set the precision to two decimal places.

8. if isTuitionPaid is true

Output the GPA

else

Output the billing amount and a message about withholding the grades.

754 | Chapter 11: Inheritance and Composition

1

1

The definition of the function print is as follows:

void studentType::print(ostream& outF, double tuitionRate)
{

int i;

outF << "Student Name: " << getFirstName()
<< " " << getLastName() << endl; //Step 1

outF << "Student ID: " << sId << endl; //Step 2

outF << "Number of courses enrolled: "
<< numberOfCourses << endl; //Step 3

outF << endl;

outF << left;
outF << "Course No" << setw(15) << " Course Name"

<< setw(8) << "Credits"
<< setw(6) << "Grade" << endl; //Step 4

outF << right;
for (i = 0; i < numberOfCourses; i++) //Step 5
{

coursesEnrolled[i].print(outF); //Step 5a

if (isTuitionPaid) //Step 5b
outF <<setw(4) << coursesGrade[i] << endl;

else
outF << setw(4) << "***" << endl;

}

outF << endl;

outF << "Total number of credit hours: "
<< getHoursEnrolled() << endl; //Step 6

outF << fixed << showpoint << setprecision(2); //Step 7

if (isTuitionPaid) //Step 8
outF << "Mid-Semester GPA: " << getGpa()

<< endl;
else
{

outF << "*** Grades are being held for not paying "
<< "the tuition. ***" << endl;

outF << "Amount Due: $" << billingAmount(tuitionRate)
<< endl;

}

outF << "-*"
<< "-*-*-*-*-" << endl << endl;

} //end print

Programming Example: Grade Report | 755

Let us take a look at the formal parameter of the function print. The formal

parameter outF is an object of the class ostream. We can use this function to

send the output to the standard output device, the screen, or to a file. As indicated in

the definition of the class, if the actual parameter is, say, cout, then the output is

displayed on the screen. If the actual parameter is, say, outfile, an object of the

class ofstream, then the output is sent to the device indicated by outfile.

As mentioned in the section, ‘‘C++ Stream Classes,’’ the class ofstream is

derived from the class ostream. Therefore, the class ostream is the base

class. In C++, if a formal reference parameter is of the type ostream, it can refer to

an object of the class ofstream.

In general, C++ allows a formal reference parameter of the base class type to refer to an

object of the derived class. Of course, for user-defined classes, some other things need to

be taken into account for this mechanism to work properly, which we will discuss in

Chapter 12 (in the section ‘‘Inheritance, Pointers, and Virtual Functions’’).

The function getHoursEnrolled calculates and returns the total credit hours that
a student is taking. These credit hours are needed to calculate both the GPA and the
billing amount. The total credit hours are calculated by adding the credit hours of
each course in which the student is enrolled. Because the credit hours for a course are
in the private member variable of an object of type courseType, we use the
member function getCredits of the class courseType to retrieve the credit
hours. The definition of this function is:

int studentType::getHoursEnrolled()
{

int totalCredits = 0;
int i;

for (i = 0; i < numberOfCourses; i++)
totalCredits += coursesEnrolled[i].getCredits();

return totalCredits;
} //end getHoursEnrolled

If a student has not paid the tuition, the function billingAmount calculates
and returns the amount due, based on the number of credit hours enrolled. The
definition of this function is:

double studentType::billingAmount(double tuitionRate)
{

return tuitionRate * getHoursEnrolled();
} //end billingAmount

756 | Chapter 11: Inheritance and Composition

1

1

We now discuss the function getGpa. This function calculates a student’s GPA. To find
the GPA, we find the equivalent points for each grade, add the points, and then divide
the sum by the total credit hours the student is taking. The definition of this function is:

double studentType::getGpa()
{

int i;
double sum = 0.0;

for (i = 0; i < numberOfCourses; i++)
{

switch (coursesGrade[i])
{

case 'A':
sum += coursesEnrolled[i].getCredits() * 4;
break;

case 'B':
sum += coursesEnrolled[i].getCredits() * 3;
break;

case 'C':
sum += coursesEnrolled[i].getCredits() * 2;
break;

case 'D':
sum += coursesEnrolled[i].getCredits() * 1;
break;

case 'F':
break;

default:
cout << "Invalid Course Grade." << endl;

}

}

return sum / getHoursEnrolled();
} //end getGpa

The function sortCourses sorts the array coursesEnrolled by course number.
To sort the array, we use a selection sort algorithm. Because we will compare the
course numbers, which are strings and private member variables of the class

courseType, we first retrieve and store the course numbers in local variables.

void studentType::sortCourses()
{

int i, j;
int minIndex;
courseType temp; //variable to swap the data
char tempGrade; //variable to swap the grades
string course1;
string course2;

Programming Example: Grade Report | 757

for (i = 0; i < numberOfCourses - 1; i++)
{

minIndex = i;

for (j = i + 1; j < numberOfCourses; j++)
{

//get the course numbers
course1 =

coursesEnrolled[minIndex].getCourseNumber();
course2 = coursesEnrolled[j].getCourseNumber();

if (course1 > course2)
minIndex = j;

}//end for

temp = coursesEnrolled[minIndex];
coursesEnrolled[minIndex] = coursesEnrolled[i];
coursesEnrolled[i] = temp;

tempGrade = coursesGrade[minIndex];
coursesGrade[minIndex] = coursesGrade[i];
coursesGrade[i] = tempGrade;

} //end for
} //end sortCourses

MAIN

PROGRAM

Now that we have designed the classes courseType and studentType, we will
use these classes to complete the program.

We will restrict our program to process a maximum of 10 students. Note that this
program can easily be enhanced to process any number of students.

Because the print function of the class does the necessary computations to print the
final grade report, the main program has very little work to do. In fact, all that is left
for the main program is to declare the objects to hold the students’ data, load the data
into these objects, and then print the grade reports. Because the input is in a file and
the output will be sent to a file, we declare stream variables to access the input and
output files. Essentially, the main algorithm for the program is:

1. Declare the variables.

2. Open the input file.

3. If the input file does not exist, exit the program.

4. Open the output file.

5. Get the number of students registered and the tuition rate.

6. Load the students’ data.

7. Print the grade reports.

758 | Chapter 11: Inheritance and Composition

1

1

VARIABLES This program processes a maximum of 10 students. Therefore, we must declare an
array of 10 components of type studentType to hold the students’ data. We also need
to store the number of students registered and the tuition rate. Because the data will be
read from a file and because the output is sent to a file, we need two stream variables
to access the input and output files. Thus, we need the following variables:

studentType studentList[MAX_NO_OF_STUDENTS]; //array to store
//the students' data

int noOfStudents; //variable to store the number of students
double tuitionRate; //variable to store the tuition rate

ifstream infile; //input stream variable
ofstream outfile; //output stream variable

Function

getStudentData

This function has three parameters: a parameter to access the input file, a parameter to
access the array studentList, and a parameter to know the number of students
registered. In pseudocode, the definition of this function is as follows:

For each student in the university,

1. Get the first name, last name, student ID, and isPaid.

2. if isPaid is ‘Y’
set isTuitionPaid to true

else

set isTuitionPaid to false

3. Get the number of courses the student is taking.

4. For each course:
Get the course name, course number, credit hours, and grade.
Load the course information into a courseType object.

5. Load the data into a studentType object.

We need to declare several local variables to read and store the data. The definition of
the function getStudentData is:

void getStudentData(ifstream& infile,
studentType studentList[],
int numberOfStudents)

{

//local variables
string fName; //variable to store the first name
string lName; //variable to store the last name
int ID; //variable to store the student ID
int noOfCourses; //variable to store the number of courses
char isPaid; //variable to store Y/N, that is,

//is tuition paid
bool isTuitionPaid; //variable to store true/false

Programming Example: Grade Report | 759

string cName; //variable to store the course name
string cNo; //variable to store the course number
int credits; //variable to store the course credit hours

int count; //loop control variable
int i; //loop control variable

courseType courses[6]; //array of objects to store the
//course information

char cGrades[6]; //array to hold the course grades

for (count = 0; count < numberOfStudents; count++)
{

infile >> fName >> lName >> ID >> isPaid; //Step 1

if (isPaid == 'Y') //Step 2
isTuitionPaid = true;

else
isTuitionPaid = false;

infile >> noOfCourses; //Step 3

for (i = 0; i < noOfCourses; i++) //Step 4
{

infile >> cName >> cNo >> credits
>> cGrades[i]; //Step 4.a

courses[i].setCourseInfo(cName, cNo,
credits); //Step 4.b

}

studentList[count].setInfo(fName, lName, ID,
noOfCourses,
isTuitionPaid,
courses, cGrades); //Step 5

}//end for
} //end getStudentData

Function

printGrade

Reports

This function prints the grade reports. For each student, it calls the function print

of the class studentType to print the grade report. The definition of the function
printGradeReports is:

void printGradeReports(ofstream& outfile,
studentType studentList[],
int numberOfStudents,
double tuitionRate)

{

int count;
for (count = 0; count < numberOfStudents; count++)

studentList[count].print(outfile, tuitionRate);
} //end printGradeReports

760 | Chapter 11: Inheritance and Composition

1

1

PROGRAMMING LISTING

//**
// Author: D.S. Malik
//
// class courseType
// This class specifies the members to implement a course's
// information.
//**

#ifndef H_courseType
#define H_courseType

#include <fstream>
#include <string>

using namespace std;

//The definition of the class courseType goes here.
.
.
.
#endif

//**
// Author: D.S. Malik
//
// Implementation file courseTypeImp.cpp
// This file contains the definitions of the functions to
// implement the operations of the class courseType.
//**

#include <iostream>
#include <fstream>
#include <string>
#include <iomanip>
#include "courseType.h"

using namespace std;

//The definitions of the member functions of the class
//courseType go here.
.
.
.

Programming Example: Grade Report | 761

//**
// Author: D.S. Malik
//
// class personType
// This class specifies the members to implement a person's
// first name and last name.
//**

#ifndef H_personType
#define H_personType

#include <string>

using namespace std;

//The definition of the class personType goes here.
.
.
.
#endif

//**
// Author: D.S. Malik
//
// Implementation file personTypeImp.cpp
// This file contains the definitions of the functions to
// implement the operations of the class personType.
//**

#include <iostream>
#include <string>
#include "personType.h"

using namespace std;

//The definitions of the member functions of the class
//personType go here.
.
.
.

//**
// Author: D.S. Malik
//
// class studentType
// This class specifies the members to implement a student's
// information.
//**

762 | Chapter 11: Inheritance and Composition

1

1

#ifndef H_studentType
#define H_studentType

#include <fstream>
#include <string>
#include "personType.h"
#include "courseType.h"

using namespace std;

//The definition of the class studentType goes here.
.
.
.

#endif

//**
// Author: D.S. Malik
//
// Implementation file studentTypeImp.cpp
// This file contains the definitions of the functions to
// implement the operations of the class studentType.
//**

#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>
#include "personType.h"
#include "courseType.h"
#include "studentType.h"

using namespace std;

//The definitions of the member functions of the class
//studentType go here.
.
.
.

//**
// Author: D.S. Malik
//
// This program reads students' data from a file and outputs
// the grades. If student has not paid the tuition, the
// grades are not shown, and an appropriate message is
// output. The output is stored in a file.
//**

Programming Example: Grade Report | 763

#include <iostream>
#include <fstream>
#include <string>
#include "studentType.h"

using namespace std;

const int MAX_NO_OF_STUDENTS = 10;

void getStudentData(ifstream& infile,
studentType studentList[],
int numberOfStudents);

void printGradeReports(ofstream& outfile,
studentType studentList[],
int numberOfStudents,
double tuitionRate);

int main()
{

studentType studentList[MAX_NO_OF_STUDENTS];

int noOfStudents;
double tuitionRate;
ifstream infile;
ofstream outfile;

infile.open("stData.txt");

if (!infile)
{

cout << "The input file does not exist. "
<< "Program terminates." << endl;

return 1;
}

outfile.open("sDataOut.txt");

infile >> noOfStudents; //get the number of students
infile >> tuitionRate; //get the tuition rate

getStudentData(infile, studentList, noOfStudents);
printGradeReports(outfile, studentList,

noOfStudents, tuitionRate);

return 0;
}

//Place the definitions of the functions getStudentData and
//printGradeReports here.

764 | Chapter 11: Inheritance and Composition

1

1

Sample Run:

Student Name: Lisa Miller
Student ID: 890238
Number of courses enrolled: 4

Course No Course Name Credits Grade
CSC478 ComputerSci 3 B
HIS356 History 3 A
MTH345 Mathematics 4 A
PHY357 Physics 3 B

Total number of credit hours: 13
Mid-Semester GPA: 3.54
-*-

Student Name: Bill Wilton
Student ID: 798324
Number of courses enrolled: 5

Course No Course Name Credits Grade
BIO234 Biology 4 ***
CHM256 Chemistry 4 ***
ENG378 English 3 ***
MTH346 Mathematics 3 ***
PHL534 Philosophy 3 ***

Total number of credit hours: 17
*** Grades are being held for not paying the tuition. ***
Amount Due: $5865.00
-*-

Student Name: Dandy Goat
Student ID: 746333
Number of courses enrolled: 6

Course No Course Name Credits Grade
BUS128 Business 3 C
CHM348 Chemistry 4 B
CSC201 ComputerSci 3 B
ENG328 English 3 B
HIS101 History 3 A
MTH137 Mathematics 3 A

Total number of credit hours: 19
Mid-Semester GPA: 3.16
-*-

Programming Example: Grade Report | 765

QUICK REVIEW

1. Inheritance and composition (aggregation) are meaningful ways to relate
two or more classes.

2. Inheritance is an ‘‘is-a’’ relation.

3. Composition (aggregation) is a ‘‘has-a’’ relation.

4. In a single inheritance, the derived class is derived from only one existing
class called the base class.

5. In a multiple inheritance, a derived class is derived from more than one base
class.

6. The private members of a base class are private to the base class. The
derived class cannot directly access them.

7. The public members of a base class can be inherited either as public or
private by the derived class.

8. A derived class can redefine the member functions of a base class, but this
redefinition applies only to the objects of the derived class.

9. A call to a base class’s constructor (with parameters) is specified in the
heading of the definition of the derived class’s constructor.

Input File:

3 345
Lisa Miller 890238 Y 4
Mathematics MTH345 4 A
Physics PHY357 3 B
ComputerSci CSC478 3 B
History HIS356 3 A

Bill Wilton 798324 N 5
English ENG378 3 B
Philosophy PHL534 3 A
Chemistry CHM256 4 C
Biology BIO234 4 A
Mathematics MTH346 3 C

Dandy Goat 746333 Y 6
History HIS101 3 A
English ENG328 3 B
Mathematics MTH137 3 A
Chemistry CHM348 4 B
ComputerSci CSC201 3 B
Business BUS128 3 C

766 | Chapter 11: Inheritance and Composition

10. If in the heading of the definition of a derived class’s constructor, no call to
a constructor (with parameters) of a base class is specified, then during the
derived class’s object declaration and initialization, the default constructor
(if any) of the base class executes.

11. When initializing the object of a derived class, the constructor of the base
class is executed first.

12. Review the inheritance rules given in this chapter.

13. In composition (aggregation), a member of a class is an object of another class.

14. In composition (aggregation), a call to the constructor of the member
objects is specified in the heading of the definition of the class’s constructor.

15. The three basic principles of OOD are encapsulation, inheritance, and
polymorphism.

16. An easy way to identify classes, objects, and operations is to describe the
problem in English and then identify all of the nouns and verbs. Choose your
classes (objects) from the list of nouns and operations from the list of verbs.

EXERCISES

1. Mark the following statements as true or false.

a. The constructor of a derived class can specify a call to the constructor of
the base class in the heading of the function definition.

b. The constructor of a derived class can specify a call to the constructor of
the base class using the name of the class.

c. Suppose that x and y are classes, one of the member variables of x is an
object of type y, and both classes have constructors. The constructor of x
specifies a call to the constructor of y by using the object name of type y.

2. Draw a class hierarchy in which several classes are derived from a single base
class.

3. Suppose that a class employeeType is derived from the class

personType (see Example 10-10, in Chapter 10). Give examples of
members—data and functions—that can be added to the class

employeeType. Also write the definition of the class employeeType

that you derived from the class personType.

4. Consider the class circleType as defined in Example 10-8 (Chapter 10).
Suppose that the class sphereType is derived from the class circleType.

a. Name some of the functions and/or data members that can be added to
the class sphereType.

b. Write the definition of the class sphereType.

c. Write the definitions of the member functions of the class sphereType.

1

1

Exercises | 767

5. Consider the following statements:

class molecules: atom
{

...
};

a. In this declaration, which class is the base class and which class is the
derived class?

b. What is the type of this inheritance?

6. Consider the following statements:

class pigeon: public bird
{

...
};

a. In this declaration, which class is the base class and which class is the
derived class?

b. What is the type of this inheritance?

7. Consider the following class definition:

class circle class cylinder: public circle
{ {
public: public:

void print() const; void print() const;
void setRadius(double); void setHeight(double);
void setCenter(double, double); double getHeight();
void getCenter(double&, double&); double volume();
double getRadius(); double area();
double area(); cylinder();
circle(); cylinder(double, double,
circle(double, double, double); double, double);

private: private:
double xCoordinate; double height;
double yCoordinate; };
double radius;

};

Suppose that you have the declaration:

cylinder newCylinder;

Determine the private members of the object newCylinder.

8. Suppose that you have the declarations of Exercise 7. Write the definitions
of the member functions of the classes circle and cylinder. Identify
the member functions of the class cylinder that overrides the member
functions of the class circle.

768 | Chapter 11: Inheritance and Composition

9. Consider the following class definition:

class temp
{
public:

void print() const;
void setDescription(string);
void setX(double);
string getDescription();
double getX();
temp();
temp(string, double);

private:
string description;
double x;

};

What is wrong with the following class definition?

class derivedFromTemp public temp
{
public:

void print();
void setZ(double);
double getZ();
double power();

//returns x to the power of z.

private:
double z;

}

10. Assume the definition of the class temp as given in Exercise 9. Consider
the following class definition:

class derivedFromTemp: public temp;
{
public:

void print();
//outputs the values of all the instance variables.

void setZ(double);
//sets the value of z according to the parameter.

double getZ();
//returns the value of z.

double power() const;
//returns x to the power of z.

derivedFromTemp();
//sets the values of instance variables to "",
//0.0, and 0.0, respectively.

1

1

Exercises | 769

derivedFromTemp(string, double, double);
//sets the values of instance variables according
//to the parameters.

private:
double z;

}

a. Identify and correct errors, if any, in the definition of the class

derivedFromTemp. Also give a correct definition of this class.

b. After correcting errors, if any, in the definition of the class

derivedFromTemp, write the definition of the member functions of
the class derivedFromTemp.

11. Consider the following statements:

class base class derived: public base
{ {
public: public:

void print() const; .
void set(int, int); .
void get(int&, int&); .
base();
base(int, int);

private:
private: int c;

int a;
int b; };

};

a. Suppose that class derived overrides the function print of the
class base. What is the heading of the function print in the class

derived?

b. Suppose that the class overloads the functions set and get of the
class base. What are the headings of these functions in the class

derived?

12. Explain the difference between overriding and overloading a member
function of a base class in a derived class.

13. Suppose that class three is derived from class two and class two is
derived from class one and that each class has instance variables. Suppose
that an object of class three enters its scope, so the constructors of these
classes will execute. Determine the order in which the constructors of
these classes will execute.

770 | Chapter 11: Inheritance and Composition

14. Consider the following class definitions:

class smart class superSmart: public smart
{ {
public: public:

void print() const; void print() const;
void set(int, int); void set(int, int, int);
int sum(); int manipulate();
smart(); superSmart();
smart(int, int); superSmart(int, int, int);

private: private:
int x; int z;
int y; };
int secret();

};

a. Which private members, if any, of smart are public members of
superSmart?

b. Which members, functions, and/or data of the class smart are
directly accessible in class superSmart?

15. Assume the definitions of the classes smart and superSmart as given
in Exercise 14. Suppose that the following statements are in a user program
(client code):

smart smartObject;
superSmart superSmartObject;

Mark the following statements as valid or invalid. If a statement is invalid, explain
why.

a. int smart::sum()
{

return x + y + z;
}

b. smartObject.secret();
superSmartObject.z = 0;

c. void superSmart::set(int a, int b, int c)
{

smart::set(a, b);
z = c;

}

d. Assume that the following statement is in a user program:

smart.print();

e. Assume that the following statement is in a user program:

cout << superSmart.sum() << superSmart.z << endl;

1

1

Exercises | 771

16. Assume the declaration of Exercise 14.

a. Write the definition of the default constructor of smart so that the
instance variables of smart are initialized to 0.

b. Write the definition of the default constructor of superSmart so that
the instance variables of superSmart are initialized to 0.

c. Write the definition of the member function set of smart so that the
instance variables are initialized according to the parameters.

d. Write the definition of the member function sum of the class smart

so that it returns the sum of the instance variables.

e. Write the definition of the member function manipulate of the
class superSmart so that it returns the (x + y)

z, that is, return x

plus y to the power of z.

17. Explain how in a private inheritance, the members of the base class are
inherited by a derived class.

18. Explain how in a protected inheritance, the members of the base class are
inherited by a derived class.

19. Explain how in a public inheritance, the members of the base class are
inherited by a derived class.

20. Explain the difference between the private and protected members of
a class.

21. Explain the difference between the protected and public members of
a class.

22. Consider the following class definition:

class first
{
public:

void setX();
void print const();

protected:
int y;
void setY(int a);

private:
int x;

};

Suppose that class second is derived from class first using the
statement:

class second: private first

Determine which members of class first are private, protected, and
public in class second.

772 | Chapter 11: Inheritance and Composition

23. Assume the declaration of Exercise 22. Suppose that class third is
derived from class first using the statement:

class third: protected first

Determine which members of class first are private, protected, and
public in class third.

24. Assume the declaration of Exercise 22. Suppose that class fourth is
derived from class first using the statement:

class fourth: public first

Determine which members of class first are private, protected, and
public in class fourth.

25. Assume the declaration of Exercise 22. Suppose that class fifth is
derived from class first using the statement:

class fifth: first

Determine which members of class first are private, protected, and
public in class fifth.

26. What is wrong with the following code?

class classA
{

protected:
void setX(int a); //Line 1

//Postcondition: x = a; //Line 2

private: //Line 3
int x; //Line 4

};
.
.
.
int main()
{

classA aObject; //Line 5

aObject.setX(4); //Line 6
return 0; //Line 7

}

1

1

Exercises | 773

27. Consider the following code:

class one
{

public:
void print() const;

//Output the values of x and y
protected:

void setData(int u, int v);
//Postcondition: x = u; y = v;

private:
int x;
int y;

};

class two: public one
{

public:
void setData(int a, int b, int c);

//Postcondition: x = a; y = b; z = c;
void print() const;

//Output the values of x, y, and z
private:

int z;
};

a. Write the definition of the function setData of class two.

b. Write the definition of the function print of class two.

28. What is the output of the following C++ program?

#include <iostream>
#include <string>

using namespace std;

class baseClass
{

public:
void print() const;

baseClass(string s = " ", int a = 0);
//Postcondition: str = s; x = a;

protected:
int x;

private:
string str;

};

774 | Chapter 11: Inheritance and Composition

class derivedClass: public baseClass
{

public:
void print() const;

derivedClass(string s = "", int a = 0, int b = 0);
//Postcondition: str = s; x = a; y = b;

private:
int y;

};

int main()
{

baseClass baseObject("This is the base class", 2);
derivedClass derivedObject("DDDDDD", 3, 7);

baseObject.print();
derivedObject.print();

return 0;
}

void baseClass::print() const
{

cout << x << " " << str << endl;
}

baseClass::baseClass(string s, int a)
{

str = s;
x = a;

}

void derivedClass::print() const
{

cout << "Derived class: " << y << endl;
baseClass::print();

}

derivedClass::derivedClass(string s, int a, int b)
:baseClass("Hello Base", a + b)

{

y = b;
}

1

1

Exercises | 775

PROGRAMMING EXERCISES

1. In Chapter 10, the class clockType was designed to implement the time
of day in a program. Certain applications, in addition to hours, minutes, and
seconds, might require you to store the time zone. Derive the class

extClockType from the class clockType by adding a member variable
to store the time zone. Add the necessary member functions and constructors
to make the class functional. Also, write the definitions of the member
functions and the constructors. Finally, write a test program to test
your class.

2. In this chapter, the class dateType was designed to implement the date in
a program, but the member function setDate and the constructor do not
check whether the date is valid before storing the date in the member
variables. Rewrite the definitions of the function setDate and the con-
structor so that the values for the month, day, and year are checked before
storing the date into the member variables. Add a member function,
isLeapYear, to check whether a year is a leap year. Moreover, write a
test program to test your class.

3. Chapter 10 defined the class circleType to implement the basic proper-
ties of a circle. (Add the function print to this class to output the radius,
area, and circumference of a circle.) Now every cylinder has a base and
height, where the base is a circle. Design a class cylinderType that can
capture the properties of a cylinder and perform the usual operations on the
cylinder. Derive this class from the class circleType designed in Chap-
ter 10. Some of the operations that can be performed on a cylinder are as
follows: calculate and print the volume, calculate and print the surface area,
set the height, set the radius of the base, and set the center of the base. Also,
write a program to test various operations on a cylinder.

4. Amanda and Tyler opened a business that specializes in shipping liquids, such
as milk, juice, and water, in cylinderical containers. The shipping charges
depend on the amount of the liquid in the container. (For simplicity, you
may assume that the container is filled to the top.) They also provide the
option to paint the outside of the container for a reasonable amount. Write a
program that does the following:

a. Prompts the user to input the dimensions (in feet) of the container
(radius of the base and the height).

b. Prompts the user to input the shipping cost per liter.

c. Prompts the user to input the paint cost per square foot. (Assume that
the entire container including the top and bottom needs to be painted.)

d. Separately outputs the shipping cost and the cost of painting.

Your program must use the class cylinderType (designed in
Programming Exercise 3) to store the radius of the base and the height
of the container. (Note that 1 cubic feet ¼ 28.32 liters or 1 liter ¼
0.353146667 cubic feet.)

776 | Chapter 11: Inheritance and Composition

5. Using classes, design an online address book to keep track of the names,
addresses, phone numbers, and dates of birth of family members, close
friends, and certain business associates. Your program should be able to
handle a maximum of 500 entries.

a. Define a class addressType that can store a street address, city, state,
and ZIP code. Use the appropriate functions to print and store the
address. Also, use constructors to automatically initialize the member
variables.

b. Define a class extPersonType using the class personType (as
defined in Example 10-10, Chapter 10), the class dateType (as designed
in this chapter’s Programming Exercise 2), and the class addressType.
Add a member variable to this class to classify the person as a family
member, friend, or business associate. Also, add a member variable to store
the phone number. Add (or override) the functions to print and store the
appropriate information. Use constructors to automatically initialize the
member variables.

c. Define the class addressBookType using the previously defined
classes. An object of the type addressBookType should be able to
process a maximum of 500 entries.

The program should perform the following operations:

i. Load the data into the address book from a disk.

ii. Sort the address book by last name.

iii. Search for a person by last name.

iv. Print the address, phone number, and date of birth (if it exists) of a
given person.

v. Print the names of the people whose birthdays are in a given month.

vi. Print the names of all the people between two last names.

vii. Depending on the user’s request, print the names of all family
members, friends, or business associates.

6. In Programming Exercise 2, the class dateType was designed and imple-
mented to keep track of a date, but it has very limited operations. Redefine
the class dateType so that it can perform the following operations on a
date, in addition to the operations already defined:

a. Set the month.

b. Set the day.

c. Set the year.

d. Return the month.

e. Return the day.

f. Return the year.

1

1

Programming Exercises | 777

g. Test whether the year is a leap year.

h. Return the number of days in the month. For example, if the date is
3-12-2015, the number of days to be returned is 31 because there are
31 days in March.

i. Return the number of days passed in the year. For example, if the date is
3-18-2015, the number of days passed in the year is 77. Note that the
number of days returned also includes the current day.

j. Return the number of days remaining in the year. For example, if the
date is 3-18-2015, the number of days remaining in the year is 288.

k. Calculate the new date by adding a fixed number of days to the date. For
example, if the date is 3-18-2015 and the days to be added are 25, the
new date is 4-12-2015.

7. Write the definitions of the functions to implement the operations defined
for the class dateType in Programming Exercise 6.

8. The class dateType defined in Programming Exercise 6 prints the date in
numerical form. Some applications might require the date to be printed in
another form, such as March 24, 2015. Derive the class extDateType so
that the date can be printed in either form.

Add a member variable to the class extDateType so that the month can
also be stored in string form. Add a member function to output the month
in the string format, followed by the year—for example, in the form March
2015.

Write the definitions of the functions to implement the operations for the
class extDateType.

9. Using the classes extDateType (Programming Exercise 8) and dayType

(Chapter 10, Programming Exercise 4), design the class calendarType so
that, given the month and the year, we can print the calendar for that month.
To print a monthly calendar, you must know the first day of the month and the
number of days in that month. Thus, you must store the first day of the month,
which is of the form dayType, and the month and the year of the calendar.
Clearly, the month and the year can be stored in an object of the form
extDateType by setting the day component of the date to 1 and the month
and year as specified by the user. Thus, the class calendarType has two
member variables: an object of the type dayType and an object of the type
extDateType.

Design the class calendarType so that the program can print a calendar for
any month starting January 1, 1500. Note that the day for January 1 of the year
1500 is a Monday. To calculate the first day of a month, you can add the
appropriate days to Monday of January 1, 1500.

778 | Chapter 11: Inheritance and Composition

1

1

For the class calendarType, include the following operations:

a. Determine the first day of the month for which the calendar will be printed.
Call this operation firstDayOfMonth.

b. Set the month.

c. Set the year.

d. Return the month.

e. Return the year.

f. Print the calendar for the particular month.

g. Add the appropriate constructors to initialize the member variables.

10. a. Write the definitions of the member functions of the class

calendarType (designed in Programming Exercise 9) to imple-
ment the operations of the class calendarType.

b. Write a test program to print the calendar for either a particular month
or a particular year. For example, the calendar for September 2015 is:

September 2015

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30

11. In this exercise, you will design various classes and write a program to
computerize the billing system of a hospital.

a. Design the class doctorType, inherited from the class

personType, defined in Chapter 10, with an additional data member
to store a doctor’s speciality. Add appropriate constructors and mem-
ber functions to initialize, access, and manipulate the data members.

b. Design the class billType with data members to store a patient’s ID
and a patient’s hospital charges, such as pharmacy charges for medicine,
doctor’s fee, and room charges. Add appropriate constructors and
member functions to initialize, access, and manipulate the data members.

c. Design the class patientType, inherited from the class

personType, defined in Chapter 10, with additional data members
to store a patient’s ID, age, date of birth, attending physician’s name,
the date when the patient was admitted in the hospital, and the date
when the patient was discharged from the hospital. (Use the class

dateType to store the date of birth, admit date, discharge date, and
the class doctorType to store the attending physician’s name.) Add

Programming Exercises | 779

appropriate constructors and member functions to initialize, access,
and manipulate the data members.

Write a program to test your classes.

12. In the Programming Example Grade Report, in the definitions of the
classes courseType and studentType, the accessor functions are not
made constants; that is, they are not defined with the reserved word const

at the end of their headings. Redefine these classes so that all of the accessor
functions are constant functions. Accordingly, modify the definitions of the
accessor functions and rerun the program.

13. a. Define the class bankAccount to store a bank customer’s account
number and balance. Suppose that account number is of type int, and
balance is of type double. Your class should, at least, provide the
following operations: set the account number, retrieve the account
number, retrieve the balance, deposit and withdraw money, and print
account information. Add appropriate constructors.

b. Every bank offers a checking account. Derive the class

checkingAccount from the class bankAccount (designed in part
(a)). This class inherits members to store the account number and
the balance from the base class. A customer with a checking
account typically receives interest, maintains a minimum balance,
and pays service charges if the balance falls below the minimum
balance. Add member variables to store this additional information.
In addition to the operations inherited from the base class, this class
should provide the following operations: set interest rate, retrieve
interest rate, set minimum balance, retrieve minimum balance, set
service charges, retrieve service charges, post interest, verify if the
balance is less than the minimum balance, write a check, withdraw
(override the method of the base class), and print account informa-
tion. Add appropriate constructors.

c. Every bank offers a savings account. Derive the class

savingsAccount from the class bankAccount (designed in part
(a)). This class inherits members to store the account number and
the balance from the base class. A customer with a savings account
typically receives interest, makes deposits, and withdraws money. In
addition to the operations inherited from the base class, this class
should provide the following operations: set interest rate, retrieve
interest rate, post interest, withdraw (override the method of the base
class), and print account information. Add appropriate constructors.

d. Write a program to test your classes designed in parts (b) and (c).

780 | Chapter 11: Inheritance and Composition

POINTERS, CLASSES, VIRTUAL

FUNCTIONS, AND ABSTRACT

CLASSES
IN THIS CHAPTER , YOU WILL :

. Learn about the pointer data type and pointer variables

. Explore how to declare and manipulate pointer variables

. Learn about the address of operator and the dereferencing operator

. Discover dynamic variables

. Explore how to use the new and delete operators to manipulate dynamic variables

. Learn about pointer arithmetic

. Discover dynamic arrays

. Become aware of the shallow and deep copies of data

. Discover the peculiarities of classes with pointer member variables

. Learn about virtual functions

. Examine the relationship between the address of operator and classes

. Become aware of abstract classes

12C H A P T E R

In Chapter 2, you learned that C++’s data types are classified into three categories:
simple, structured, and pointers. Until now, you have studied only the first two data
types. This chapter discusses the third data type called the pointer data type. You will first
learn how to declare pointer variables (or pointers, for short) and manipulate the data to
which they point. Later, you will use these concepts when you study dynamic arrays and
linked lists. Linked lists are discussed in Chapter 17.

Pointer Data Type and Pointer Variables
Chapter 2 defined a data type as a set of values together with a set of operations. Recall that
the set of values is called the domain of the data type. In addition to these two properties,
until now, all of the data types you have encountered have one more thing associated with
them: the name of the data type. For example, there is a data type called int. The set of
values belonging to this data type includes integers that range between –2147483648 and
2147483647, and the operations allowed on these values are the arithmetic operators
described in Chapter 2. To manipulate numeric integer data in the range –2147483648
to 2147483647, you can declare variables using the word int. The name of the data type
allows you to declare a variable. Next, we describe the pointer data type.

The values belonging to pointer data types are the memory addresses of your computer.
As in many other languages, there is no name associated with the pointer data type in
C++. Because the domain—that is, the set of values of a pointer data type—is the
addresses (memory locations), a pointer variable is a variable whose content is an address,
that is, a memory location.

Pointer variable: A variable whose content is an address (that is, a memory address).

Declaring Pointer Variables
As remarked previously, there is no name associated with pointer data types. Moreover,
pointer variables store memory addresses. So the obvious question is: If no name is
associated with a pointer data type, how do you declare pointer variables?

The value of a pointer variable is an address. That is, the value refers to another memory
space. The data is typically stored in this memory space. Therefore, when you declare a
pointer variable, you also specify the data type of the value to be stored in the memory
location pointed to by the pointer variable.

In C++, you declare a pointer variable by using the asterisk symbol (*) between the data
type and the variable name. The general syntax to declare a pointer variable is:

dataType *identifier;

As an example, consider the following statements:

int *p;
char *ch;

782 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

In these statements, both p and ch are pointer variables. The content of p (when
properly assigned) points to a memory location of type int, and the content of ch

points to a memory location of type char. Usually, p is called a pointer variable of
type int, and ch is called a pointer variable of type char.

Before discussing how pointers work, let us make the following observations. The
statement:

int *p;

is equivalent to the statement:

int* p;

which is equivalent to the statement:

int * p;

Thus, the character * can appear anywhere between the data type name and the variable name.

Now, consider the following statement:

int* p, q;

In this statement, only p is the pointer variable, not q. Here, q is an int variable. To avoid
confusion, we prefer to attach the character * to the variable name. So the preceding
statement is written as:

int *p, q;

Of course, the statement:

int *p, *q;

declares both p and q to be pointer variables of type int.

Now that you know how to declare pointers, next we will discuss how to make a pointer
point to a memory space and how to manipulate the data stored in these memory
locations.

Because the value of a pointer is a memory address, a pointer can store the address of a
memory space of the designated type. For example, if p is a pointer of type int, p can
store the address of any memory space of type int. C++ provides two operators—the
address of operator (&) and the dereferencing operator (*)—to work with pointers. The
next two sections describe these operators.

Address of Operator (&)
In C++, the ampersand, &, called the address of operator, is a unary operator that
returns the address of its operand. For example, given the statements:

int x;
int *p;

1

2

Address of Operator (&) | 783

the statement:

p = &x;

assigns the address of x to p. That is, x and the value of p refer to the same memory
location.

Dereferencing Operator (*)
Every chapter until now has used the asterisk character, *, as the binary multiplication
operator. C++ also uses * as a unary operator. When used as a unary operator, *, commonly
referred to as the dereferencing operator or indirection operator, refers to the object to
which its operand (that is, the pointer) points. For example, given the statements:

int x = 25;
int *p;
p = &x; //store the address of x in p

the statement:

cout << *p << endl;

prints the value stored in the memory space pointed to by p, which is the value of x. Also,
the statement:

*p = 55;

stores 55 in the memory location pointed to by p—that is, in x.

EXAMPLE 12-1

Let us consider the following statements:

int *p;
int num;

In these statements, p is a pointer variable of type int, and num is a variable of type int.
Let us assume that memory location 1200 is allocated for p, and memory location 1800 is
allocated for num. (See Figure 12-1.)

1200

p

1800

num

.

FIGURE 12-1 Variables p and num

784 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

Consider the following statements:

1. num = 78;
2. p = #
3. *p = 24;

The following shows the values of the variables after the execution of each statement.

After

Statement Values of the Variables Explanation

1 The statement num = 78; stores

78 into num.

2
The statement p = # stores

the address of num, which is 1800,
into p.

3
The statement *p = 24; stores 24
into the memory location to which p
points. Because the value of p is

1800, statement 3 stores 24 into

memory location 1800. Note that the

value of num is also changed.

Let us summarize the preceding discussion.

1. A declaration such as int *p; allocates memory for p only, not for *p.
Later, you will learn how to allocate memory for *p.

2. The content of p points only to a memory location of type int.

3. &p, p, and *p all have different meanings.

4. &p means the address of p—that is, 1200 (in Figure 12-1).

5. p means the content of p, which is 1800, after the statement p = #

executes.

6. *p means the content of the memory location to which p points.
Note that after the statement p = # executes, the value
of *p is 78; after the statement *p = 24; executes, the value of
*p is 24.

1

2

1200

p

1800

num

1800 24.

1200

p

1800

num

78.

1200

p

1800

num

1800 78.

Dereferencing Operator (*) | 785

EXAMPLE 12-2

Consider the following statements:

int *p;
int x;

Suppose that we have the memory allocation for p and x as shown in Figure 12-2.

The values of &p, p, *p, &x, and x are as follows:

&p 1400 p ? (unknown) *p Does not exist

(undefined)

&x 1750 x ? (unknown)

Suppose that the following statements are executed in the order given:

x = 50;
p = &x;
*p = 38;

The values of &p, p, *p, &x, and x are shown after each of these statements executes.

After the statement x = 50; executes, the values of &p, p, *p, &x, and x are as follows:

&p 1400 p ? (unknown) *p Does not exist

(undefined)

&x 1750 x 50

After the statement p = &x; executes, the values of &p, p, *p, &x, and x are as follows:

&p 1400 p 1750 *p 50 &x 1750 x 50

After the statement *p = 38; executes, the values of &p, p, *p, &x, and x are as follows.
(Because *p and x refer to the same memory space, the value of x is also changed to 38.)

&p 1400 p 1750 *p 38 &x 1750 x 38

1400

p

1750

x

.

1400

p

1750

x

.

FIGURE 12-2 Variables p and x

786 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

1

2

Let us note the following:

1. p is a pointer variable.

2. The content of p points only to a memory location of type int.

3. Memory location x exists and is of type int. Therefore, the assignment
statement:
p = &x;

is legal. After this assignment statement executes, *p is valid and
meaningful.

The program in Example 12-3 further illustrates how a pointer variable works.

EXAMPLE 12-3

The following program illustrates how pointer variables work:

//Chapter 12: Example 12-3

#include <iostream> //Line 1
#include <iomanip> //Line 2

using namespace std; //Line 3

const double PI = 3.1416; //Line 4

int main() //Line 5
{ //Line 6

double radius; //Line 7
double *radiusPtr; //Line 8

cout << fixed << showpoint << setprecision(2); //Line 9

radius = 2.5; //Line 10
radiusPtr = &radius; //Line 11

cout << "Line 12: Radius = " << radius
<< ", area = " << PI * radius * radius << endl; //Line 12

cout << "Line 13: Radius = " << *radiusPtr
<< ", area = "
<< PI * (*radiusPtr) * (*radiusPtr) << endl; //Line 13

cout << "Line 14: Enter the radius: "; //Line 14
cin >> *radiusPtr; //Line 15
cout << endl; //Line 16

Dereferencing Operator (*) | 787

cout << "Line 17: Radius = " << radius << ", area = "
<< PI * radius * radius << endl; //Line 17

cout << "Line 18: Radius = " << *radiusPtr
<< ", area = "
<< PI * (*radiusPtr) * (*radiusPtr) << endl
<< endl; //Line 18

cout << "Line 19: Address of radiusPtr: "
<< &radiusPtr << endl; //Line 19

cout << "Line 20: Value stored in radiusPtr: "
<< radiusPtr << endl; //Line 20

cout << "Line 21: Address of radius: "
<< &radius << endl; //Line 21

cout << "Line 22: Value stored in radius: "
<< radius << endl; //Line 22

return 0; //Line 23
} //Line 24

Sample Run: In this sample run, the user input is shaded.

Line 12: Radius = 2.50, area = 19.64
Line 13: Radius = 2.50, area = 19.64
Line 14: Enter the radius: 4.90

Line 17: Radius = 4.90, area = 75.43
Line 18: Radius = 4.90, area = 75.43

Line 19: Address of radiusPtr: 0012FF50
Line 20: Value stored in radiusPtr: 0012FF5C
Line 21: Address of radius: 0012FF5C
Line 22: Value stored in radius: 4.90

The preceding program works as follows. The statement in Line 7 declares radius to
be a variable of type double and the statement in Line 8 declares radiusPtr to be a
pointer variable of type double. The statement in Line 10 stores 2.5 in radius and
the statement in Line 11 stores the address of radius in radiusPtr. The statement in
Line 12 outputs the radius and area of the circle using the value stored in the memory
location radius. The statement in Line 13 outputs the radius and area of the circle
using the value stored in the memory location to which radiusPtr is pointing. Note
that the output of the statements in Lines 12 and 13 is the same because radiusPtr

points to radius. Next, the statement in Line 14 prompts the user to input the radius
and the statement in Line 15 stores the radius in the memory location to which
radiusPtr is pointing. Next, similar to the statements in Lines 12 and 13, the
statements in Lines 17 and 18 output the radius and area using the variables radius

and radiusPtr. The statements in Lines 19 to 22, output the address of radiusPtr,
the value stored in radiusPtr, the address of radius, and the value stored in radius.

788 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

From the output of the statements in Lines 20 and 21, it follows that radiusPtr stores
the address of the variable radius. (Note that the address of radiusPtr, the value of
radiusPtr, and the address of radius as shown by the output of Lines 19, 20, and 21,
respectively, are machine dependent. When you run this program on your machine,
you are likely to get different values. Furthermore, the pointer values, that is, the
addresses, are printed in hexadecimal by default.)

Classes, Structs, and Pointer Variables
In the previous section, you learned how to declare and manipulate pointers of simple
data types, such as int and char. You can also declare pointers to other data types, such
as classes. You will now learn how to declare and manipulate pointers to classes and
structs. (Recall that both classes and structs have the same capabilities. The only difference
between classes and structs is that, by default, all members of a class are private, and, by
default, all members of a struct are public. Therefore, the following discussion applies
to both.)

Consider the following declaration of a struct:

struct studentType
{

char name[26];
double gpa;
int sID;
char grade;

};

studentType student;
studentType *studentPtr;

In the preceding declaration, student is an object of type studentType, and
studentPtr is a pointer variable of type studentType. The following statement stores
the address of student in studentPtr:

studentPtr = &student;

The following statement stores 3.9 in the component gpa of the object student:

(*studentPtr).gpa = 3.9;

The expression (*studentPtr).gpa is a mixture of pointer dereferencing and the class
component selection. In C++, the dot operator, ., has a higher precedence than the
dereferencing operator.

Let us elaborate on this a bit. In the expression (*studentPtr).gpa, the operator *

evaluates first, so the expression *studentPtr evaluates first. Because studentPtr is a

1

2

Classes, Structs, and Pointer Variables | 789

pointer variable of type studentType, *studentPtr refers to a memory space of type
studentType, which is a struct. Therefore, (*studentPtr).gpa refers to the
component gpa of that struct.

Consider the expression *studentPtr.gpa. Let us see how this expression gets evaluated.
Because. (dot) has a higher precedence than *, the expression studentPtr.gpa evaluates
first. The expression studentPtr.gpa would result in a syntax error, as studentPtr is
not a struct variable, so it has no such component as gpa.

As you can see, in the expression (*studentPtr).gpa, the parentheses are important.
However, typos can be problematic. Therefore, to simplify the accessing of class or
struct components via a pointer, C++ provides another operator called the member

access operator arrow, ->. The operator -> consists of two consecutive symbols: a
hyphen and the ‘‘greater than’’ sign.

The syntax for accessing a class (struct) member using the operator -> is:

pointerVariableName->classMemberName

Thus, the statement:

(*studentPtr).gpa = 3.9;

is equivalent to the statement:

studentPtr->gpa = 3.9;

Accessing class (struct) components via pointers using the operator -> thus eliminates
the use of both parentheses and the dereferencing operator. Because typos are unavoid-
able and missing parentheses can result in either an abnormal program termination or
erroneous results, when accessing class (struct) components via pointers, this book
uses the arrow notation.

Example 12-4 illustrates how pointers work with class member functions.

EXAMPLE 12-4

Consider the following class:

class classExample
{
public:

void setX(int a);
//Function to set the value of x
//Postcondition: x = a;

void print() const;
//Function to output the value of x

private:
int x;

};

790 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

1

2

The definition of the member function is as follows:

void classExample::setX(int a)
{

x = a;
}

void classExample::print() const
{

cout << "x = " << x << endl;
}

Consider the following function main:

int main()
{

classExample *cExpPtr; //Line 1
classExample cExpObject; //Line 2

cExpPtr = &cExpObject; //Line 3

cExpPtr->setX(5); //Line 4
cExpPtr->print(); //Line 5

return 0;
}

Sample Run:

x = 5

In the function main, the statement in Line 1 declares cExpPtr to be a pointer of type
classExample, and the statement in Line 2 declares cExpObject to be an object of
type classExample. The statement in Line 3 stores the address of cExpObject into
cExpPtr (see Figure 12-3).

cExpObject

cExpPtr x

FIGURE 12-3 cExpObject and cExpPtr after the statement cExpPtr = &cExpObject;

executes

Classes, Structs, and Pointer Variables | 791

In the statement in Line 4, the pointer cExpPtr accesses the member function setX to
set the value of the member variable x (see Figure 12-4).

In the statement in Line 5, the pointer cExpPtr accesses the member function print to
print the value of x, as shown above.

Initializing Pointer Variables
Because C++ does not automatically initialize variables, pointer variables must be
initialized if you do not want them to point to anything. Pointer variables are initialized
using the constant value 0, called the null pointer. Thus, the statement p = 0; stores the
null pointer in p, that is, p points to nothing. Some programmers use the named constant
NULL to initialize pointer variables. The following two statements are equivalent:

p = NULL;
p = 0;

The number 0 is the only number that can be directly assigned to a pointer variable.

Dynamic Variables
In the previous sections, you learned how to declare pointer variables, how to store the
address of a variable into a pointer variable of the same type as the variable, and how to
manipulate data using pointers. However, you learned how to use pointers to manipulate
data only into memory spaces that were created using other variables. In other words, the
pointers manipulated data into existing memory spaces. So what is the benefit of using
pointers? You can access these memory spaces by working with the variables that were
used to create them. In this section, you will learn about the power behind pointers. In
particular, you will learn how to allocate and deallocate memory during program execu-
tion using pointers.

cExpObject

cExpPtr x 5

FIGURE 12-4 cExpObject and cExpPtr after the statement cExpPtr->setX(5); executes

Watch

the Video

792 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

Variables that are created during program execution are called dynamic variables. With
the help of pointers, C++ creates dynamic variables. C++ provides two operators, new
and delete, to create and destroy dynamic variables, respectively. When a program
requires a new variable, the operator new is used. When a program no longer needs a
dynamic variable, the operator delete is used.

In C++, new and delete are reserved words.

Operator new
The operator new has two forms: one to allocate a single variable and another to allocate
an array of variables. The syntax to use the operator new is:

new dataType; //to allocate a single variable
new dataType[intExp]; //to allocate an array of variables

in which intExp is any expression evaluating to a positive integer.

The operator new allocates memory (a variable) of the designated type and returns a
pointer to it—that is, the address of this allocated memory. Moreover, the allocated
memory is uninitialized.

Consider the following declaration:

int *p;
char *q;
int x;

The statement:

p = &x;

stores the address of x in p. However, no new memory is allocated. On the other hand,
consider the following statement:

p = new int;

This statement creates a variable during program execution somewhere in memory and
stores the address of the allocated memory in p. The allocated memory is accessed via
pointer dereferencing—namely, *p. Similarly, the statement:

q = new char[16];

creates an array of 16 components of type char and stores the base address of the
array in q.

1

2

Dynamic Variables | 793

Because a dynamic variable is unnamed, it cannot be accessed directly. It is accessed
indirectly by the pointer returned by new. The following statements illustrate this
concept:

int *p; //p is a pointer of type int
char *name; //name is a pointer of type char
string *str; //str is a pointer of type string

p = new int; //allocates memory of type int
//and stores the address of the
//allocated memory in p

*p = 28; //stores 28 in the allocated memory

name = new char[5]; //allocates memory for an array of
//five components of type char and
//stores the base address of the array
//in name

strcpy(name, "John"); //stores John in name

str = new string; //allocates memory of type string
//and stores the address of the
//allocated memory in str

*str = "Sunny Day"; //stores the string "Sunny Day" in
//the memory pointed to by str

Recall that the operator new allocates memory space of a specific type and

returns the address of the allocated memory space. However, if the operator

new is unable to allocate the required memory space (for example, there is not

enough memory space), then it throws a bad_alloc exception, and if this

exception is not handled, it terminates the program with an error message.

Exceptions are covered in detail in Chapter 14. This chapter also discusses

bad_alloc exception.

Operator delete
Suppose you have the following declaration:

int *p;

This statement declares p to be a pointer variable of type int. Next, consider the
following statements:

p = new int; //Line 1
*p = 54; //Line 2
p = new int; //Line 3
*p = 73; //Line 4

Figure 12-5 shows the effect of these statements.

794 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

1

2

(The number 1500 on top of the box indicates the address of the memory space.) The
statement in Line 1 allocates memory space of type int and stores the address of the allocated
memory space into p. Suppose that the address of allocated memory space is 1500. Then, the
value of p after the execution of this statement is 1500 (see Figure 12-5(a)). The statement in
Line 2 stores 54 into the memory space that p points to, which is 1500 (see Figure 12-5(b)).

Next, the statement in Line 3 executes, which allocates a memory space of type int

and stores the address of the allocated memory space into p. Suppose the address of
this allocated memory space is 1800. It follows that the value of p is now 1800 (see
Figure 12-5(c)). The statement in Line 4 stores 73 into the memory space that p points
to, which is 1800. In other words, after the execution of the statement in Line 4, the
value stored into memory space at location 1800 is 73 (see Figure 12-5(d)).

Now the obvious question is what happened to the memory space 1500 that p was
pointing to after execution of the statement in Line 1. After execution of the statement in
Line 3, p points to the new memory space at location 1800. The previous memory space
at location 1500 is now inaccessible. In addition, the memory space 1500 remains as
marked allocated. In other words, it cannot be reallocated. This is called memory leak.
That is, there is an unused memory space that cannot be allocated.

Imagine what would happen if you executed statements, such as Line 3, a few thousand
or a few million times. There would be a good amount of memory leak. The program
might then run out of memory spaces for data manipulation and eventually result in an
abnormal termination of the program.

The question at hand is how to avoid memory leak. When a dynamic variable is no
longer needed, it can be destroyed; that is, its memory can be deallocated. The C++

p 1500

1500

54p 1500

1500

p 1800

1800

54

1500

73p 1800

1800

54

1500

(a) p after the execution of

 p = new int;

(b) p and *p after the

 execution of *p = 54;

(c) p after the execution of

 p = new int;

(d) p and *p after the

 execution of *p = 73;

main

FIGURE 12-5 p after the memory space it points to following the execution of various statements

Dynamic Variables | 795

operator delete is used to destroy dynamic variables. The syntax to use the operator
delete has two forms:

delete pointerVariable; //to deallocate a single
//dynamic variable

delete [] pointerVariable; //to deallocate a dynamically
//created array

Thus, given the declarations of the previous section, the statements:

delete p;
delete [] name;
delete str;

deallocate the memory spaces that the pointers p, name, and str point to.

Suppose p and name are pointer variables, as declared previously. Notice that an expres-
sion such as:

delete p;

or:

delete [] name;

only marks the memory spaces that these pointer variables point to as deallocated.
Depending on a particular system, after these statements execute, these pointer variables
may still contain the addresses of the deallocated memory spaces. In this case, we say that
these pointers are dangling. Therefore, if later you access the memory spaces via these
pointers without properly initializing them, depending on a particular system, either the
program will access a wrong memory space, which may result in corrupting data, or the
program will terminate with an error message. One way to avoid this pitfall is to set these
pointers to NULL after the delete operation. Also note that for the operator delete to
work properly, the pointer must point to a valid memory space.

In Example 12-3, we used the pointer variable radiusPtr to access the memory location of
the variable radius. However, in that example, the radiusPtr pointed to an existing
memory, which was not created during program execution. In the following example, we
illustrate how to use the new and delete operators to allocate and deallocate dynamicmemory.

EXAMPLE 12-5

The following program illustrates how to use the operators new and delete.

//This program illustrates how to use the operators new and delete.

#include <iostream> //Line 1
#include <iomanip> //Line 2

796 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

1

2

using namespace std; //Line 3
const double PI = 3.1416; //Line 4

int main() //Line 5
{ //Line 6

double *radiusPtr; //Line 7

cout << fixed << showpoint << setprecision(2); //Line 8

radiusPtr = new double; //Line 9

cout << "Line 10: Enter the radius: "; //Line 10
cin >> *radiusPtr; //Line 11
cout << endl; //Line 12

cout << "Line 13: Radius = " << *radiusPtr
<< ", area = " << PI * (*radiusPtr) * (*radiusPtr)
<< endl << endl; //Line 13

cout << "Line 14: Address of radiusPtr: "
<< &radiusPtr << endl; //Line 14

cout << "Line 15: Value stored in radiusPtr: "
<< radiusPtr << endl; //Line 15

cout << "Line 16: Value stored in the memory "
<< "location to which \n radiusPtr "
<< "is pointing: " << *radiusPtr << endl; //Line 16

delete radiusPtr; //Line 17

cout << "Line 18: After using the delete operator, "
<< "the value stored in the location\n "
<< "to which radiusPtr is pointing: "
<< *radiusPtr << endl; //Line 18

double *lengthPtr = new double; //Line 19
radiusPtr = new double; //Line 20

*radiusPtr = 5.38; //Line 21

cout << "Line 22: Address of radiusPtr: "
<< &radiusPtr << endl; //Line 22

cout << "Line 23: Value stored in radiusPtr: "
<< radiusPtr << endl; //Line 23

cout << "Line 24: Value stored in the memory "
<< "location to which radiusPtr is pointing: "
<< *radiusPtr << endl; //Line 24

cout << "Line 25: Value stored in lengthPtr: "
<< lengthPtr << endl; //Line 25

return 0; //Line 26
} //Line 27

Dynamic Variables | 797

Sample Run: In this sample run, the user input is shaded.

Line 10: Enter the radius: 2.5

Line 13: Radius = 2.50, area = 19.64

Line 14: Address of radiusPtr: 0012FF60
Line 15: Value stored in radiusPtr: 003450A8
Line 16: Value stored in the memory location to which

radiusPtr is pointing: 2.50
Line 18: After using the delete operator, the value stored in the location

to which radiusPtr is pointing: -145681599014746290000000000000
00
000000000000000000000000000000000000000.00
Line 22: Address of radiusPtr: 0012FF60
Line 23: Value stored in radiusPtr: 00345550
Line 24: Value stored in the memory location to which radiusPtr is pointing:
5.38
Line 25: Value stored in lengthPtr: 003450A8

For the most part, the preceding program is the same as the program in Example 12-3.
However, let us note the following: the statement in Line 9 allocates memory of type
double and stores the address of the allocated memory in radiusPtr. The output of the
statement in Line 15 shows that the address of the allocated memory is 003450A8. Next
the statement in Line 17 deallocates the memory space to which radiusPtr is pointing.
The statement in Line 18 outputs the value stored in the memory location to which
radiusPtr is pointing. As shown by the output of this statement, the value stored is a
strange number. This is because after the delete operation in Line 17, radiusPtr does
not point to a valid memory location. Next, the statement in Line 19 declares the pointer
variable lengthPtr, allocates memory space of type double, and stores the address of the
allocated memory space in lengthPtr. The statement in Line 20 allocates (another)
memory space of type double and stores the address of the allocated memory space in
radiusPtr, and the statement in Line 21 stores 5.38 in the allocated memory space.
The statements in Lines 22 to 25 output the addresses as shown by the output. (Note that
the addresses and the value printed by the statement in Line 18 are machine dependent.
When you run this program on your machine, you are likely to get different values.)

Operations on Pointer Variables
The operations that are allowed on pointer variables are the assignment and relational
operations and some limited arithmetic operations. The value of one pointer variable can
be assigned to another pointer variable of the same type. Two pointer variables of the
same type can be compared for equality, and so on. Integer values can be added and
subtracted from a pointer variable. The value of one pointer variable can be subtracted
from another pointer variable.

For example, suppose that we have the following statements:

int *p, *q;

798 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

1

2

The statement:

p = q;

copies the value of q into p. After this statement executes, both p and q point to the same
memory location. Any changes made to *p automatically change the value of *q, and vice versa.

The expression:

p == q

evaluates to true if p and q have the same value—that is, if they point to the same
memory location. Similarly, the expression:

p != q

evaluates to true if p and q point to different memory locations.

The arithmetic operations that are allowed differ from the arithmetic operations on
numbers. First, let us use the following statements to explain the increment and decre-
ment operations on pointer variables:

int *p;
double *q;
char *chPtr;
studentType *stdPtr; //studentType is as defined before

Recall that the size of the memory allocated for an int variable is 4 bytes, a double

variable is 8 bytes, and a char variable is 1 byte. The memory allocated for a variable of
type studentType is then 40 bytes.

The statement:

p++; or p = p + 1;

increments the value of p by 4 bytes because p is a pointer of type int. Similarly, the
statements:

q++;
chPtr++;

increment the value of q by 8 bytes and the value of chPtr by 1 byte, respectively. The
statement:

stdPtr++;

increments the value of stdPtr by 40 bytes.

The increment operator increments the value of a pointer variable by the size of the
memory to which it is pointing. Similarly, the decrement operator decrements the value
of a pointer variable by the size of the memory to which it is pointing.

Moreover, the statement:

p = p + 2;

increments the value of p by 8 bytes.

Operations on Pointer Variables | 799

Thus, when an integer is added to a pointer variable, the value of the pointer variable is
incremented by the integer times the size of the memory to which the pointer is pointing.
Similarly, when an integer is subtracted from a pointer variable, the value of the pointer variable
is decremented by the integer times the size of the memory to which the pointer is pointing.

Pointer arithmetic can be very dangerous. Using pointer arithmetic, the program can

accidentally access the memory locations of other variables and change their content

without warning, leaving the programmer trying to find out what went wrong. If a pointer

variable tries to access either the memory spaces of other variables or an illegal memory

space, some systems might terminate the program with an appropriate error message.

Always exercise extra care when doing pointer arithmetic.

Dynamic Arrays
In Chapter 8, you learned how to declare and process arrays. The arrays discussed in
Chapter 8 are called static arrays because their size was fixed at compile time. One of the
limitations of a static array is that every time you execute the program, the size of the
array is fixed, so it might not be possible to use the same array to process different data sets
of the same type. One way to handle this limitation is to declare an array that is large
enough to process a variety of data sets. However, if the array is very big and the data set
is small, such a declaration would result in memory waste. On the other hand, it would
be helpful if, during program execution, you could prompt the user to enter the size of
the array and then create an array of the appropriate size. This approach is especially
helpful if you cannot even guess the array size. In this section, you will learn how to
create arrays during program execution and process such arrays.

An array created during the execution of a program is called a dynamic array. To create
a dynamic array, we use the second form of the new operator.

The statement:

int *p;

declares p to be a pointer variable of type int. The statement:

p = new int[10];

allocates 10 contiguous memory locations, each of type int, and stores the address of the
first memory location into p. In other words, the operator new creates an array of
10 components of type int, it returns the base address of the array, and the assignment
operator stores the base address of the array into p. Thus, the statement:

*p = 25;

stores 25 into the first memory location, and the statements:

p++; //p points to the next array component
*p = 35;

800 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

store 35 into the second memory location. Thus, by using the increment and decrement
operations, you can access the components of the array. Of course, after performing a few
increment operations, it is possible to lose track of the first array component. C++ allows
us to use array notation to access these memory locations. For example, the statements:

p[0] = 25;
p[1] = 35;

store 25 and 35 into the first and second array components, respectively. That is, p[0]
refers to the first array component, p[1] refers to the second array component, and so on.
In general, p[i] refers to the (i + 1)th array component. After the preceding statements
execute, p still points to the first array component. Moreover, the following for loop
initializes each array component to 0:

for (j = 0; j < 10; j++)
p[j] = 0;

in which j is an int variable.

When the array notation is used to process the array pointed to by p, p stays fixed at
the first memory location. Moreover, p is a dynamic array created during program
execution.

The statement:

int list[5];

declares list to be an array of five components. Recall from Chapter 8 that list itself

is a variable, and the value stored in list is the base address of the array—that is, the

address of the first array component. Suppose the address of the first array component is

1000. Figure 12-6 shows list and the array list.

list[0] 1000

1000list

list[1] 1004

list[2] 1008

list[3] 1012

list[4] 1016

1000

FIGURE 12-6 list and array list

Because the value of llist, which is 1000, is a memory address, list is a pointer

variable. However, the value stored in list, which is 1000, cannot be altered during

1

2

Dynamic Arrays | 801

program execution. That is, the value of list is constant. Therefore, the increment and

decrement operations cannot be applied to list. In fact, any attempt to use the

increment or decrement operations on list results in a compile-time error.

Notice that here we are only saying that the value of list cannot be changed. However,

the data into the array list can be manipulated as before. For example, the statement

list[0] = 25; stores 25 into the first array component. Similarly, the statement

list[3] = 78; stores 78 into the fourth component of list (see Figure 12-7).

list[0] 1000

1000list

list[1] 1004

list[2] 1008

list[3] 1012

list[4] 1016

1000

25

78

FIGURE 12-7 Array list after the execution of the statements list[0] = 25; and
list[3] = 78;

If pp is a pointer variable of type int, then the statement:

p = list;

copies the value of list, which is 1000, the base address of the array, into p. We are

allowed to perform increment and decrement operations on p.

An array name is a constant pointer.

EXAMPLE 12-6

The following program segment illustrates how to obtain a user’s response to get the array
size and create a dynamic array during program execution. Consider the following
statements:

int *intList; //Line 1
int arraySize; //Line 2

cout << "Enter array size: "; //Line 3
cin >> arraySize; //Line 4
cout << endl; //Line 5

intList = new int[arraySize]; //Line 6

802 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

The statement in Line 1 declares intList to be a pointer of type int, and the statement
in Line 2 declares arraySize to be an int variable. The statement in Line 3 prompts the
user to enter the size of the array, and the statement in Line 4 inputs the array size into the
variable arraySize. The statement in Line 6 creates an array of the size specified by
arraySize, and the base address of the array is stored in intList. From this point on,
you can treat intList just like any other array. For example, you can use the array
notation to process the elements of intList and pass intList as a parameter to the
function.

Functions and Pointers
A pointer variable can be passed as a parameter to a function either by value or by
reference. To declare a pointer as a value parameter in a function heading, you use the
same mechanism as you use to declare a variable. To make a formal parameter be a
reference parameter, you use & when you declare the formal parameter in the function
heading. Therefore, to declare a formal parameter as a reference pointer parameter,
between the data type name and the identifier name, you must include * to make the
identifier a pointer and & to make it a reference parameter. The obvious question is: In
what order should & and * appear between the data type name and the identifier to
declare a pointer as a reference parameter? In C++, to make a pointer a reference
parameter in a function heading, * appears before the & between the data type name
and the identifier. The following example illustrates this concept:

void pointerParameters(int* &p, double *q)
{

.

.

.
}

In the function pointerParameters, both p and q are pointers. The parameter p is a
reference parameter; the parameter q is a value parameter. Furthermore, the function
pointerParameters can change the value of *q, but not the value of q. However, the
function pointerParameters can change the value of both p and *p.

Pointers and Function Return Values
In C++, the return type of a function can be a pointer. For example, the return type of
the function:

int* testExp(...)
{

.

.

.
}

is a pointer type int.

1

2

Dynamic Arrays | 803

Dynamic Two-Dimensional Arrays
The beginning of this section discussed how to create dynamic one-dimensional arrays.
You can also create dynamic multidimensional arrays. In this section, we discuss how to
create dynamic two-dimensional arrays. Dynamic multidimensional arrays are created
similarly.

There are various ways you can create dynamic dimensional arrays. One way is as follows.
Consider the statement:

int *board[4];

This statement declares board to be an array of four pointers wherein each pointer is of
type int. Because board[0], board[1], board[2], and board[3] are pointers, you
can now use these pointers to create the rows of board. Suppose that each row of board
has six columns. Then, the following for loop creates the rows of board.

for (int row = 0; row < 4; row++)
board[row] = new int[6];

Note that the expression new int[6] creates an array of six components of type int and
returns the base address of the array. The assignment statement then stores the returned
address into board[row]. It follows that after the execution of the previous for loop,
board is a two-dimensional array of four rows and six columns.

In the previous for loop, if you replace the number 6 with the number 10, then the loop
will create a two-dimensional array of four rows and 10 columns. In other words, the
number of columns of board can be specified during execution. However, the way
board is declared, the number of rows is fixed. So in reality, board is not a true dynamic
two-dimensional array.

Next, consider the following statement:

int **board;

This statement declares board to be a pointer to a pointer. In other words, board and
*board are pointers. Now board can store the address of a pointer or an array of pointers
of type int, and *board can store the address of an int memory space or an array of int
values.

Suppose that you want board to be an array of 10 rows and 15 columns. To accomplish
this, first we create an array of 10 pointers of type int and assign the address of that array
to board. The following statement accomplishes this:

board = new int* [10];

Next, we create the columns of board. The following for loop accomplishes this:

for (int row = 0; row < 10; row++)
board[row] = new int[15];

804 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

To access the components of board, you can use the array subscripting notation discussed
in Chapter 8.

Note that the number of rows and the number of columns of board can be specified
during program execution. The following program further explains how to create two-
dimensional arrays.

EXAMPLE 12-7

// Dynamic two-dimensional arrays

#include <iostream>
#include <iomanip>

using namespace std;

void fill(int **p, int rowSize, int columnSize);
void print(int **p, int rowSize, int columnSize);

int main()
{

int **board; //Line 1

int rows; //Line 2
int columns; //Line 3

cout << "Line 4: Enter the number of rows "
<<"and columns: "; //Line 4

cin >> rows >> columns; //Line 5
cout << endl; //Line 6

//Create the rows of board
board = new int* [rows]; //Line 7

//Create the columns of board
for (int row = 0; row < rows; row++) //Line 8

board[row] = new int[columns]; //Line 9

//Insert elements into board
fill(board, rows, columns); //Line 10

cout << "Line 11: Board:" << endl; //Line 11

//Output the elements of board
print(board, rows, columns); //Line 12

return 0;
}

1

2

Dynamic Arrays | 805

void fill(int **p, int rowSize, int columnSize)
{

for (int row = 0; row < rowSize; row++)
{

cout << "Enter " << columnSize << " number(s) for row "
<< "number " << row << ": ";

for (int col = 0; col < columnSize; col++)
cin >> p[row][col];

cout << endl;
}

}

void print(int **p, int rowSize, int columnSize)
{

for (int row = 0; row < rowSize; row++)
{

for (int col = 0; col < columnSize; col++)
cout << setw(5) << p[row][col];

cout << endl;
}

}

Sample Run: In this sample run, the user input is shaded.

Line 4: Enter the number of rows and columns: 3 4

Enter 4 number(s) for row number 0: 1 2 3 4

Enter 4 number(s) for row number 1: 5 6 7 8

Enter 4 number(s) for row number 2: 9 10 11 12

Line 11: Board:
1 2 3 4
5 6 7 8
9 10 11 12

The preceding program contains the functions fill and print. The function fill

prompts the user to enter the elements of a two-dimensional array of type int. The
function print outputs the elements of a two-dimensional array of type int.

For the most part, the preceding output is self-explanatory. Let us look at the statements
in the function main. The statement in Line 1 declares board to be a pointer to a pointer
of type int. The statements in Lines 2 and 3 declare int variables rows and columns.
The statement in Line 4 prompts the user to input the number of rows and number of
columns. The statement in Line 5 stores the number of rows in the variable rows and the
number of columns in the variable columns. The statement in Line 7 creates the rows of
board, and the for loop in Lines 8 and 9 creates the columns of board. The statement
in Line 10 uses the function fill to fill the array board, and the statement in Line 12
uses the function print to output the elements of board.

806 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

Shallow versus Deep Copy and Pointers
In an earlier section, we discussed pointer arithmetic and explained that if we are not careful,
one pointermight access the data of another (completely unrelated) pointer. This eventmight
result in unsuspected or erroneous results.Here, we discuss another peculiarity of pointers. To
facilitate the discussion, we will use diagrams to show pointers and their related memory.

Consider the following statements:

int *first;
int *second;

first = new int[10];

The first two statements declare first and second pointer variables of type int. The
third statement creates an array of 10 components, and the base address of the array is
stored into first (see Figure 12-8). (Note that first together with the arrow indicates
that first points to the allocated memory.)

Suppose that some meaningful data is stored in the array pointed to by first. To be
specific, suppose that this array is as shown in Figure 12-9.

Next, consider the following statement:

second = first; //Line A

This statement copies the value of first into second. After this statement executes,
both first and second point to the same array, as shown in Figure 12-10.

1

2

first

FIGURE 12-8 Pointer first and the array to which it points

first 10 36 89 29 47 64 28 92 37 73

FIGURE 12-9 Pointer first and its array

10 36 89 29 47 64 28 92 37 73
first

second

FIGURE 12-10 first and second after the statement second = first; executes

Shallow versus Deep Copy and Pointers | 807

Let us next execute the following statement:

delete [] second;

After this statement executes, the array pointed to by second is deleted. This action
results in Figure 12-11.

Because first and second point to the same array, after the statement:

delete [] second;

executes, first becomes invalid, that is, first (as well as second) are now dangling
pointers. Therefore, if the program later tries to access the memory pointed to by first,
either the program will access the wrong memory or it will terminate in an error. This
case is an example of a shallow copy. More formally, in a shallow copy, two or more
pointers of the same type point to the same memory; that is, they point to the same data.

On the other hand, suppose that instead of the earlier statement, second = first; (in
Line A), we have the following statements:

second = new int[10];

for (int j = 0; j < 10; j++)
second[j] = first[j];

The first statement creates an array of 10 components of type int, and the base address of
the array is stored in second. The second statement copies the array pointed to by first

into the array pointed to by second (see Figure 12-12).

Both first and second now point to their own data. If second deletes its memory,
there is no effect on first. This case is an example of a deep copy. More formally, in a
deep copy, two or more pointers have their own data.

first

second

first

second

FIGURE 12-11 first and second after the statement delete [] second; executes

10first

second

36 89 29 47 64 28 92 37 73

10 36 89 29 47 64 28 92 37 73

FIGURE 12-12 first and second both pointing to their own data

808 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

From the preceding discussion, it follows that you must know when to use a shallow
copy and when to use a deep copy.

Classes and Pointers: Some Peculiarities
In the previous section, we discussed how to use the arrow notation to access class
members via the pointer if a pointer variable is of a class type. Because a class can have
pointer member variables, this section discusses some peculiarities of such classes. To
facilitate the discussion, we will use the following class:

class ptrMemberVarType
{
public:

.

.

.
private:

int x;
int lenP;
int *p;

};

Also, consider the following statements (see Figure 12-13):

ptrMemberVarType objectOne;
ptrMemberVarType objectTwo;

Destructor
The object objectOne has a pointer member variable p. Suppose that during program
execution, the pointer p creates a dynamic array. When objectOne goes out of scope, all
of the member variables of objectOne are destroyed. However, p created a dynamic
array, and dynamic memory must be deallocated using the operator delete. Thus, if the
pointer p does not use the delete operator to deallocate the dynamic array, the memory
space of the dynamic array would stay marked as allocated, even though it cannot be
accessed. How do we ensure that when p is destroyed, the dynamic memory created by p

is also destroyed? Suppose that objectOne is as shown in Figure 12-14.

1

2

objectTwoobjectOne

x

p

lenP

x

p

lenP

FIGURE 12-13 Objects objectOne and objectTwo

Classes and Pointers: Some Peculiarities | 809

Recall that if a class has a destructor, the destructor automatically executes whenever a
class object goes out of scope (see Chapter 10). Therefore, we can put the necessary code
in the destructor to ensure that when objectOne goes out of scope, the memory created
by the pointer p is deallocated. For example, the definition of the destructor for the
class ptrMemberVarType is:

ptrMemberVarType::~ptrMemberVarType()
{

delete [] p;
}

Of course, you must include the destructor as a member of the class in its definition.
Let us extend the definition of the class ptrMemberVarType by including the
destructor. Moreover, the remainder of this section assumes that the definition of the
destructor is as given previously—that is, the destructor deallocates the memory space
pointed to by p.

class ptrMemberVarType
{
public:

~ptrMemberVarType();
.
.
.

private:
int x;
int lenP;
int *p;

};

For the destructor to work properly, the pointer p must have a valid value. If p is not

properly initialized (that is, if the value of p is garbage) and the destructor executes,

either the program terminates with an error message or the destructor deallocates an

unrelated memory space. For this reason, you should exercise extra caution while working

with pointers.

objectOne
x

5 36

8

50

24 15 ...

p

lenP

FIGURE 12-14 Object objectOne and its data

810 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

1

2

Assignment Operator
This section describes the limitations of the built-in assignment operators for classes with
pointer member variables. Suppose that objectOne and objectTwo are as shown in
Figure 12-15.

Recall that one of the built-in operations on classes is the assignment operator. For
example, the statement:

objectTwo = objectOne;

copies the member variables of objectOne into objectTwo. That is, the value of
objectOne.x is copied into objectTwo.x, and the value of objectOne.p is copied
into objectTwo.p. Because p is a pointer, this member-wise copying of the data would
lead to a shallow copying of the data. That is, both objectTwo.p and objectOne.p

would point to the same memory space, as shown in Figure 12-16.

Now, if objectTwo.p deallocates the memory space to which it points, objectOne.p
would become invalid. This situation could very well happen if the class

ptrMemberVarType has a destructor that deallocates the memory space pointed to by p

when an object of type ptrMemberVarType goes out of scope. It suggests that there must be

objectTwoobjectOne
x

5 36

8

50

24 15 ...

p

lenP

x

p

lenP

8

50
objectTwoobjectOne

x

5 36

8

50

24 15 ...

p

lenP

x

p

lenP

8

50

FIGURE 12-16 Objects objectOne and objectTwo after the statement objectTwo= objectOne;

executes

objectTwoobjectOne
x

5 36

8

50

24 15 ...

p

lenP

x

p

lenP

FIGURE 12-15 Objects objectOne and objectTwo

Classes and Pointers: Some Peculiarities | 811

a way to avoid this pitfall. To avoid this shallow copying of data for classes with a pointer
member variable, C++ allows the programmer to extend the definition of the assignment
operator. This process is called overloading the assignment operator. Chapter 13 explains
how to accomplish this task by using operator overloading. Once the assignment operator is
properly overloaded, both objectOne and objectTwo have their own data, as shown in
Figure 12-17.

Copy Constructor
When declaring a class object, you can initialize it by using the value of an existing object
of the same type. For example, consider the following statement:

ptrMemberVarType objectThree(objectOne);

The object objectThree is being declared and is also being initialized by using the value
of objectOne. That is, the values of the member variables of objectOne are copied into
the corresponding member variables of objectThree. This initialization is called the
default member-wise initialization. The default member-wise initialization is due to the
constructor, called the copy constructor (provided by the compiler). Just as in the case
of the assignment operator, because the class ptrMemberVarType has pointer member
variables, this default initialization would lead to a shallow copying of the data, as shown
in Figure 12-18. (Assume that objectOne is given as before.)

objectTwoobjectOne
x

5 36

8

50

24 15 ... 5 36 24 15 ...

p

lenP

x

p

lenP

8

50

FIGURE 12-17 Objects objectOne and objectTwo

objectThreeobjectOne
x

5 36

8

50

24 15 ...

p

lenP

x

p

lenP

8

50

FIGURE 12-18 Objects objectOne and objectThree

812 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

Before describing how to overcome this deficiency, let us describe one more situation that
could also lead to a shallow copying of the data. The solution to both these problems is the same.

Recall that as parameters to a function, class objects can be passed either by reference or
by value. Remember that the class ptrMemberVarType has the destructor, which
deallocates the memory space pointed to by p. Suppose that objectOne is as shown in
Figure 12-19.

Let us consider the following function prototype:

void destroyList(ptrMemberVarType paramObject);

The function destroyList has a formal value parameter, paramObject. Now consider
the following statement:

destroyList(objectOne);

In this statement, objectOne is passed as a parameter to the function destroyList.
Because paramObject is a value parameter, the copy constructor copies the member
variables of objectOne into the corresponding member variables of paramObject. Just
as in the previous case, paramObject.p and objectOne.p would point to the same
memory space, as shown in Figure 12-20.

1

2

objectOne
x

5 36

8

50

24 15 ...

p

lenP

FIGURE 12-19 Object objectOne

paramObject

destroyList

objectOne
x

5 36

8

50

24 15 ...

p

lenP

x

p

lenP

8

50

FIGURE 12-20 Pointer member variables of objects objectOne and paramObject pointing to the
same array

Classes and Pointers: Some Peculiarities | 813

Because objectOne is passed by value, the member variables of paramObject should
have their own copy of the data. In particular, paramObject.p should have its own
memory space. How do we ensure that this is, in fact, the case?

If a class has pointer member variables:

• During object declaration, the initialization of one object using the value
of another object would lead to a shallow copying of the data if the
default member-wise copying of data is allowed.

• If, as a parameter, an object is passed by value and the default member-wise
copying of data is allowed, it would lead to a shallow copying of the data.

In both cases, to force each object to have its own copy of the data, we must override the
definition of the copy constructor provided by the compiler; that is, wemust provide our own
definition of the copy constructor. This is usually done by putting a statement that includes the
copy constructor in the definition of the class and then writing the definition of the copy
constructor. Then, whenever the copy constructor needs to be executed, the system would
execute the definition provided by us, not the one provided by the compiler. Therefore, for
the class ptrMemberVarType, we can overcome this shallow copying problem by includ-
ing the copy constructor in the class ptrMemberVarType. Example 12-8 illustrates this.

The copy constructor automatically executes in three situations (the first two are
described previously).

• When an object is declared and initialized by using the value of another object

• When, as a parameter, an object is passed by value

• When the return value of a function is an object

Therefore, once the copy constructor is properly defined for the class

ptrMemberVarType, both objectOne.p and objectThree.p will have their own
copies of the data. Similarly, objectOne.p and paramObject.p will have their own
copies of the data, as shown in Figure 12-21.

paramObject

destroyList

objectOne
x

5 36

8

50

24 15 ... 5 36 24 15 ...

p

lenP

x

p

lenP

8

50

FIGURE 12-21 Pointer member variables of objects objectOne and paramObject with their
own data

814 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

1

2

When the function destroyList exits, the formal parameter paramObject goes
out of scope, and the destructor for the object paramObject deallocates the memory space
pointed to by paramObject.p. However, this deallocation has no effect on objectOne.

The general syntax to include the copy constructor in the definition of a class is:

className(const className& otherObject);

Notice that the formal parameter of the copy constructor is a constant reference parameter.

Example 12-8 illustrates how to include the copy constructor in a class and how it works.

EXAMPLE 12-8

Consider the following class:

class ptrMemberVarType
{
public:

void print() const;
//Function to output the data stored in the array p.

void insertAt(int index, int num);
//Function to insert num into the array p at the
//position specified by index.
//If index is out of bounds, the program is terminated.
//If index is within bounds, but greater than the index
//of the last item in the list, num is added at the end
//of the list.

ptrMemberVarType(int size = 10);
//Constructor
//Creates an array of the size specified by the
//parameter size; the default array size is 10.

~ptrMemberVarType();
//Destructor
//deallocates the memory space occupied by the array p.

ptrMemberVarType(const ptrMemberVarType& otherObject);
//Copy constructor

private:
int maxSize; //variable to store the maximum size of p
int length; //variable to store the number elements in p
int *p; //pointer to an int array

};

Suppose that the definitions of the members of the class ptrMemberVarType are as
follows:

Classes and Pointers: Some Peculiarities | 815

void ptrMemberVarType::print() const
{

for (int i = 0; i < length; i++)
cout << p[i] << " ";

}

void ptrMemberVarType::insertAt(int index, int num)
{

//if index is out of bounds, terminate the program
assert(index >= 0 && index < maxSize);

if (index < length)
p[index] = num;

else
{

p[length] = num;
length++;

}
}

ptrMemberVarType::ptrMemberVarType(int size)
{

if (size <= 0)
{

cout << "The array size must be positive." << endl;
cout << "Creating an array of the size 10." << endl;

maxSize = 10;
}
else

maxSize = size;

length = 0;

p = new int[maxSize];

}

ptrMemberVarType::~ptrMemberVarType()
{

delete [] p;
}

//copy constructor
ptrMemberVarType::ptrMemberVarType

(const ptrMemberVarType& otherObject)
{

maxSize = otherObject.maxSize;
length = otherObject.length;

816 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

1

2

p = new int[maxSize];

for (int i = 0; i < length; i++)
p[i] = otherObject.p[i];

}

Consider the following function main. (We assume that the definition of the class

ptrMemberVarType is in the header file ptrMemberVarType.h.)

#include <iostream>
#include "ptrMemberVarType.h"

using namespace std;

void testCopyConst(ptrMemberVarType temp);

int main()
{

ptrMemberVarType listOne; //Line 1

int num; //Line 2
int index; //Line 3

cout << "Line 4: Enter 5 integers." << endl; //Line 4

for (index = 0; index < 5; index++) //Line 5
{

cin >> num; //Line 6
listOne.insertAt(index, num); //Line 7

}

cout << "Line 8: listOne: "; //Line 8
listOne.print(); //Line 9
cout << endl; //Line 10

//Declare listTwo and initialize it using listOne
ptrMemberVarType listTwo(listOne); //Line 11

cout << "Line 12: listTwo: "; //Line 12
listTwo.print(); //Line 13
cout << endl; //Line 14

listTwo.insertAt(5, 34); //Line 15
listTwo.insertAt(2, -76); //Line 16

cout << "Line 17: After modifying listTwo: "; //Line 17
listTwo.print(); //Line 18
cout << endl; //Line 19

cout << "Line 20: After modifying listTwo, "
<< "listOne: "; //Line 20

listOne.print(); //Line 21
cout << endl; //Line 22

Classes and Pointers: Some Peculiarities | 817

cout << "Line 23: Calling the function testCopyConst"
<< endl; //Line 23

//Call function testCopyConst
testCopyConst(listOne); //Line 24

cout << "Line 25: After a call to the function "
<< "testCopyConst, " << endl
<< " listOne is: "; //Line 25

listOne.print(); //Line 26
cout << endl; //Line 27

return 0; //Line 28
}

void testCopyConst(ptrMemberVarType temp)
{

cout << "Line 29: *** Inside the function "
<< "testCopyConst ***" << endl; //Line 29

cout << "Line 30: Object temp data: "; //Line 30
temp.print(); //Line 31
cout << endl; //Line 32

temp.insertAt(3, -100); //Line 33
cout << "Line 34: After changing temp: "; //Line 34
temp.print(); //Line 35
cout << endl; //Line 36

cout << "Line 37: *** Exiting the function "
<< "testCopyConst ***" << endl; //Line 37

}

Sample Run: In this sample run, the user input is shaded.

Line 4: Enter 5 integers.
14 8 34 2 58
Line 8: listOne: 14 8 34 2 58
Line 12: listTwo: 14 8 34 2 58
Line 17: After modifying listTwo: 14 8 -76 2 58 34
Line 20: After modifying listTwo, listOne: 14 8 34 2 58
Line 23: Calling the function testCopyConst
Line 29: *** Inside the function testCopyConst ***
Line 30: Object temp data: 14 8 34 2 58
Line 34: After changing temp: 14 8 34 -100 58
Line 37: *** Exiting the function testCopyConst ***
Line 25: After a call to the function testCopyConst,

listOne is: 14 8 34 2 58

In the preceding program, the statement in Line 1 declares listOne to be an object of type
ptrMemberVarType. The member variable p of listOne is an array of size 10, which is

818 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

1

2

the default array size. The for loop in Line 5 reads and stores five integers in listOne.p.
The statement in Line 9 outputs the numbers stored in listOne, that is, the five numbers
stored in p. (See the output of the line marked Line 8 in the sample run.)

The statement in Line 11 declares listTwo to be an object of type ptrMemberVarType and
also initializes listTwo using the values of listOne. The statement in Line 13 outputs the
numbers stored in listTwo. (See the output of the line marked Line 12 in the sample run.)

The statements in Lines 15 and 16 modify listTwo, and the statement in Line 18 outputs
the modified data of listTwo. (See the output of the line marked Line 17 in the sample
run.) The statement in Line 21 outputs the data stored in listOne. Notice that the data
stored in listOne is unchanged, even though listTwo modified its data. It follows that
the copy constructor used to initialize listTwo using listOne (at Line 11) provides
listTwo its own copy of the data.

The statements in Lines 23 through 28 show that when listOne is passed as a parameter by
value to the function testCopyConst (see Line 24), the corresponding formal parameter
temp has its own copy of data. Notice that the function testCopyConst modifies the
object temp; however, the object listOne remains unchanged. See the outputs of the lines
marked Line 23 (before the function testCopyConst is called) and Line 25 (after the
function testCopyConst terminates) in the sample run. Also notice that when the function
testCopyConst terminates, the destructor of the class ptrMemberVarType deallocates
the memory space occupied by temp.p, which has no effect on listOne.p.

For classes with pointer member variables, three things are normally done:

1. Include the destructor in the class.

2. Overload the assignment operator for the class.

3. Include the copy constructor.

Chapter 13 discusses overloading the assignment operator. Until then, whenever we
discuss classes with pointer member variables, out of the three items in the previous list,
we will implement only the destructor and the copy constructor.

Inheritance, Pointers, and Virtual Functions
Recall that as a parameter, a class object can be passed either by value or by reference.
Earlier chapters also said that the types of the actual and formal parameters must match.
However, in the case of classes, C++ allows the user to pass an object of a derived class to a

formal parameter of the base class type.

First, let us discuss the case in which the formal parameter is either a reference parameter
or a pointer. To be specific, let us consider the following classes:

class petType
{
public:

Inheritance, Pointers, and Virtual Functions | 819

void print();
petType(string n = "");

private:
string name;

};

class dogType: public petType
{
public:

void print();
dogType(string n = "", string b = "");

private:
string breed;

};

The class petType has three members. The class dogType is derived from the
class petType and has three members of its own. Both classes have a member
function print. Suppose that the definitions of the member functions of both classes
are as follows:

void petType::print()
{

cout << "Name: " << name;
}

petType::petType(string n)
{

name = n;
}

void dogType::print()
{

petType::print();
cout << ", Breed: " << breed << endl;

}

Consider the following function in a user program (client code):

void callPrint(petType& p)
{

p.print();
}

The function callPrint has a formal reference parameter p of type petType. You can
call the function callPrint by using an object of either type petType or type dogType

as a parameter. Moreover, the body of the function callPrint calls the member
function print. Consider the following function main:

int main()
{

petType pet("Lucky"); //Line 1
dogType dog("Tommy", "German Shepherd"); //Line 2

pet.print(); //Line 3
cout << endl; //Line 4
dog.print(); //Line 5

820 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

cout << "*** Calling the function callPrint ***"
<< endl; //Line 6

callPrint(pet); //Line 7
cout << endl; //Line 8
callPrint(dog); //Line 9
cout << endl; //Line 10

return 0;
}

Sample Run:

Name: Lucky
Name: Tommy, Breed: German Shepherd
*** Calling the function callPrint ***
Name: Lucky
Name: Tommy

The statements in Lines 1 through 6 are quite straightforward. Let us look at the
statements in Lines 7 and 9. The statement in Line 7 calls the function callPrint and
passes the object pet as the parameter; it generates the fourth line of the output. The
statement in Line 9 also calls the function callPrint but passes the object dog as the
parameter; it generates the fifth line of the output. The output generated by the state-
ments in Lines 7 and 9 shows only the value of name, even though each time a different
class object was passed as a parameter. Because in Line 9, object dog is passed as a
parameter to the function callPrint, one would expect that the output generated by
the statement in Line 9 should be the same as the second line of the output. What actually
occurred is that for both statements (Lines 7 and 9), the member function print of the
class petType was executed. This is due to the fact that the binding of the member
function print in the body of the function callPrint occurred at compile time.
Because the formal parameter p of the function callPrint is of type petType, for the
statement p.print();, the compiler associates the function print of the class

petType. More specifically, in compile-time binding, the necessary code to call a
specific function is generated by the compiler. (Compile-time binding is also known as
static binding or early binding.)

For the statement in Line 9, the actual parameter is of type dogType. Thus, when
the body of the function callPrint executes, logically the print function of object
dog should execute, which is not the case. So, during program execution, how does
C++ correct this problem of making the call to the appropriate function? C++
corrects this problem by providing the mechanism of virtual functions. The binding
of virtual functions occurs at program execution time, not at compile time. This kind
of binding is called run-time binding or late binding. More formally, in run-time
binding, the compiler does not generate the code to call a specific function. Instead,
it generates enough information to enable the run-time system to generate the
specific code for the appropriate function call. Run-time binding is also known as
dynamic binding.

In C++, virtual functions are declared using the reserved word virtual. Let us redefine
the previous classes using this feature.

1

2

Inheritance, Pointers, and Virtual Functions | 821

class petType
{
public:

virtual void print(); //virtual function
petType(string n = "");

private:
string name;

};

class dogType: public petType
{
public:

void print();
dogType(string n = "", string b = "");

private:
string breed;

};

Note that we need to declare a virtual function only in the base class.

The definition of the member function print is the same as before. If we execute the
previous program with these modifications, the output is as follows.

Sample Run:

Name: Lucky
Name: Tommy, Breed: German Shepherd
*** Calling the function callPrint ***
Name: Lucky
Name: Tommy, Breed: German Shepherd

This output shows that for the statement in Line 9, the print function of dogType is
executed (see the last two lines of the output).

The previous discussion also applies when a formal parameter is a pointer to a class, and a
pointer of the derived class is passed as an actual parameter. To illustrate this feature,
suppose we have the preceding classes. (We assume that the definition of the class

petType is in the header file petType.h, and the definition of the class dogType is in
the header file dogType.h.) Consider the following program:

#include <iostream>
#include "petType.h"
#include "dogType.h"

using namespace std;

void callPrint(petType *p);

int main()
{

petType *q; //Line 1
dogType *r; //Line 2

q = new petType("Lucky"); //Line 3
r = new dogType("Tommy", "German Shepherd"); //Line 4

822 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

q->print(); //Line 5
cout << endl; //Line 6
r->print(); //Line 7

cout << "*** Calling the function callPrint ***"
<< endl; //Line 8

callPrint(q); //Line 9
cout << endl; //Line 10
callPrint(r); //Line 11

return 0;
}

void callPrint(petType *p)
{

p->print();
}

Sample Run:

Name: Lucky
Name: Tommy, Breed: German Shepherd
*** Calling the function callPrint ***
Name: Lucky
Name: Tommy, Breed: German Shepherd

The preceding examples show that if a formal parameter, say p of a class type, is either a
reference parameter or a pointer and p uses a virtual function of the base class, we can
effectively pass a derived class object as an actual parameter to p.

However, if p is a value parameter, then this mechanism of passing a derived class object as
an actual parameter to p does not work, even if p uses a virtual function. Recall that, if a
formal parameter is a value parameter, the value of the actual parameter is copied into the
formal parameter. Therefore, if a formal parameter is of a class type, the member
variables of the actual object are copied into the corresponding member variables of the
formal parameter.

Suppose that we have the above classes—that is, petType and dogType. Consider the
following function definition:

void callPrint(petType p) //p is a value parameter
{

p.print();
}

Further suppose that we have the following declaration:

dogType dog;

The object dog has two member variables, name and breed. The member variable name

is inherited from the base class. Consider the following function call:

callPrint(dog);

1

2

Inheritance, Pointers, and Virtual Functions | 823

In this statement, because the formal parameter p is a value parameter, the member variables
of dog are copied into the member variables of p. However, because p is an object of type
petType, it has only one member variable. Consequently, only the member variable name of
dog will be copied into the member variable name of p. Also, the statement:

p.print();

in the body of the function will result in executing the member function print of the
class petType.

The output of the following program further illustrates this concept. (As before, we
assume that the definition of the class petType is in the header file petType.h, and the
definition of the class dogType is in the header file dogType.h.)

//Chapter 12: Virtual Functions and Value Parameters

#include <iostream>
#include "petType.h"
#include "dogType.h"

using namespace std;

void callPrint(petType p);

int main()
{

petType pet("Lucky"); //Line 1
dogType dog("Tommy", "German Shepherd"); //Line 2

pet.print(); //Line 3
cout << endl; //Line 4
dog.print(); //Line 5

cout << "*** Calling the function callPrint ***"
<< endl; //Line 6

callPrint(pet); //Line 7
cout << endl; //Line 8
callPrint(dog); //Line 9
cout << endl; //Line 10

return 0;
}

void callPrint(petType p) //p is a value parameter
{

p.print();
}

Sample Run:

Name: Lucky
Name: Tommy, Breed: German Shepherd
*** Calling the function callPrint ***
Name: Lucky
Name: Tommy

824 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

Look closely at the output of the statements in Lines 7 and 9 (the last two lines of
output). In Line 9, because the formal parameter p is a value parameter, the member
variables of dog are copied into the corresponding member variables of p. However,
because p is an object of type petType, it has only one member variable. Conse-
quently, only the member variable name of dog is copied into the member variable
name of p. Moreover, the statement p.print(); in the function callPrint exe-
cutes the function print of the class petType, not of the class dogType.
Therefore, the last line of the output shows only the value of name (the member
variable of dog).

An object of the base class type cannot be passed to a formal parameter of the derived

class type.

Before closing this section, we discuss another issue related to virtual functions.

Suppose that the definition of the class petType is as before, and the definition of the
class dogType is modified slightly as follows:

class dogType: public petType
{
public:

void print();
void setBreed(string b = "");
dogType(string n = "", string b = "");

private:
string breed;

};

Consider the following statements:

petType pet("Lucky");
dogType dog("Tommy", "German Shepherd");

pet = dog;

C++ allows this type of assignment, that is, the values of a derived class object can be
copied into a base class object. (Note that the reverse statement, that is, dog = pet;

is not allowed.) Now, because the object pet has only one data member (name)
and the object dog has two data members (name and breed), only the value of
the data member name of dog is copied into the data member name of pet.
This is called the slicing problem. The following statement will result in a
compile-time error.

pet.setBreed("Siberian Husky");

C++ offers a way to treat a dogType object as a petType object without losing the
additional properties of the class dogType by using pointers.

1

2

Inheritance, Pointers, and Virtual Functions | 825

For example, suppose that you have the following statements:

petType *pet;
dogType *dog;

dog = new dogType("Tommy", "German Shepherd");
dog->setBreed("Siberian Husky ");

pet = dog;

In this case, the output of the statements pet->print();

is: Name: Tommy, Breed: Siberian Husky

Classes and Virtual Destructors
One thing recommended for classes with pointer member variables is that these classes should
have the destructor. The destructor executes automatically when the class object goes out of
scope. Thus, if the object creates dynamic memory space, the destructor can be designed to
deallocate that memory space. If a derived class object is passed to a formal parameter of the
base class type, the destructor of the base class executes regardless of whether the derived class
object is passed by reference or by value. Logically, however, the destructor of the derived
class should be executed when the derived class object goes out of scope.

To correct this problem, the destructor of the base class must be virtual. The virtual

destructor of a base class automatically makes the destructor of a derived class virtual.
When a derived class object is passed to a formal parameter of the base class type, then
when the object goes out of scope, the destructor of the derived class executes. After
executing the destructor of the derived class, the destructor of the base class executes.
Therefore, when the derived class object is destroyed, the base class part (that is, the
members inherited from the base class) of the derived class object is also destroyed.

If a base class contains virtual functions, make the destructor of the base class virtual.

Abstract Classes and Pure Virtual Functions
The preceding sections discussed virtual functions. Other than enforcing run-time bind-
ing of functions, virtual functions also have another use, which is discussed in this section.
Chapter 11 discussed the second principle of OOD—inheritance. Through inheritance
we can derive new classes without designing them from scratch. The derived classes, in
addition to inheriting the existing members of the base class, can add their own members
and also redefine or override public and protected member functions of the base class.
The base class can contain functions that you would want each derived class to imple-
ment. There are many scenarios for which a class is desired to be served as a base class for
a number of derived classes; however, the base class may contain certain functions that
may not have meaningful definitions in the base class.

Let us consider the class shape given in Chapter 11. As noted in that chapter, from the
class shape, you can derive other classes, such as rectangle, circle, ellipse,

826 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

and so on. Some of the things common to every shape are its center, using the center to
move a shape to a different location, and drawing the shape. We can include these in the
class shape. For example, you could have the definition of the class shape similar to
the following:

class shape
{
public:

virtual void draw();
//Function to draw the shape.

virtual void move(double x, double y);
//Function to move the shape at the position
//(x, y).

.

.

.
};

Because the definitions of the functions draw and move are specific to a particular shape,
each derived class can provide an appropriate definition of these functions. Note that we
have made the functions draw and move virtual to enforce run-time binding of these
functions.

This definition of the class shape requires you to write the definitions of the functions
draw and move. However, at this point, there is no shape to draw or move. Therefore,
these function bodies have no code. One way to handle this is to make the body of these
functions empty. This solution would work, but it has another drawback. Once we write
the definitions of the functions of the class shape, then we could create an object of
this class. Because there is no shape to work with, we would like to prevent the user from
creating objects of the class shape. It follows that we would like to do the following
two things—to not include the definitions of the functions draw and move and to
prevent the user from creating objects of the class shape.

Because we do not want to include the definitions of the functions draw and move of the
class shape, we must convert these functions to pure virtual functions. In this case,
the prototypes of these functions are:

virtual void draw() = 0;
virtual void move(double x, double y) = 0;

Note the expression = 0 before the semicolon. Once you make these functions pure
virtual functions in the class shape, you no longer need to provide the definitions of
these functions for the class shape.

Once a class contains one or more pure virtual functions, then that class is called an
abstract class. Thus, the abstract definition of the class shape is similar to the
following:

1

2

Abstract Classes and Pure Virtual Functions | 827

class shape
{
public:

virtual void draw() = 0;
//Function to draw the shape. Note that this is a
//pure virtual function.

virtual void move(double x, double y) = 0;
//Function to move the shape at the position
//(x, y). Note that this is a pure virtual
//function.

.

.

.

};

Because an abstract class is not a complete class, as it (or its implementation file)
does not contain the definitions of certain functions, you cannot create objects of
that class.

Now suppose that we derive the class rectangle from the class shape. To make
rectangle a nonabstract class so that we can create objects of this class, the class (or its
implementation file) must provide the definitions of the pure virtual functions of its
base class, which is the class shape.

Note that in addition to the pure virtual functions, an abstract class can contain instance
variables, constructors, and functions that are not pure virtual. However, the abstract class
must provide the definitions of the constructor and functions that are not pure virtual.
The following example further illustrates how abstract classes work.

EXAMPLE 12-9

In Chapter 11, we defined the class partTimeEmployee, which was derived from the
class personType, to illustrate inheritance. We also noted that there are two types of
employees: full-time and part-time. The base salary of a full-time employee is usually
fixed for a year. In addition, a full-time employee may receive a bonus. On the other
hand, the salary of a part-time employee is usually calculated according to the pay rate per
hour and the number of hours worked. In this example, we first define the class

employeeType, derived from the class personType, to store an employee’s name
and ID. We include functions to set the ID and retrieve the ID. We also include pure
virtual functions print and calculatePay to print an employee’s data, which
includes the employee’s ID, name, and wages.

From the class employeeType, we derive the classes fullTimeEmployee and
partTimeEmployee and provide the definitions of the pure virtual functions of the
class employeeType.

828 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

The definition of the class employeeType is:

#include "personType.h"

class employeeType: public personType
{
public:

virtual void print() const = 0;
//Function to output employee's data.

virtual double calculatePay() const = 0;
//Function to calculate and return the wages.
//Postcondition: Pay is calculated and returned

void setId(long id);
//Function to set the salary.
//Postcondition: personId = id;

long getId() const;
//Function to retrieve the id.
//Postcondition: returns personId

employeeType(string first = "", string last = "",
long id = 0);

//Constructor with parameters
//Sets the first name, last name, payRate, and
//hoursWorked according to the parameters. If
//no value is specified, the default values are
//assumed.
//Postcondition: firstName = first;
// lastName = last; personId = id;

private:
long personId; //stores the id

};

The definitions of the constructor and functions of the class employeeType that are
not pure virtual are:

void employeeType::setId(long id)
{

personId = id;
}

long employeeType::getId() const
{

return personId;
}

employeeType::employeeType(string first, string last, long id)
: personType(first, last)

{
personId = id;

}

1

2

Abstract Classes and Pure Virtual Functions | 829

The definition of the class fullTimeEmployee is:

#include "employeeType.h"

class fullTimeEmployee: public employeeType
{
public:

void set(string first, string last, long id,
double salary, double bonus);

//Function to set the first name, last name,
//id, and salary according to the parameters.
//Postcondition: firstName = first; lastName = last;
// personId = id; empSalary = salary;
// empBonus = bonus;

void setSalary(double salary);
//Function to set the salary.
//Postcondition: empSalary = salary;

double getSalary();
//Function to retrieve the salary.
//Postcondition: returns empSalary

void setBonus(double bonus);
//Function to set the bonus.
//Postcondition: empBonus = bonus;

double getBonus();
//Function to retrieve the bonus.
//Postcondition: returns empBonus;

void print() const;
//Function to output the first name, last name,
//and the wages.
//Postcondition: Outputs
// Id:
// Name: firstName lastName
// Wages: $$$$.$$

double calculatePay() const;
//Function to calculate and return the wages.
//Postcondition: Pay is calculated and returned

fullTimeEmployee(string first = "", string last = "",
long id = 0, double salary = 0,
double bonus = 0);

//Constructor with default parameters.
//Sets the first name, last name, id, salary, and
//bonus according to the parameters. If
//no value is specified, the default values are
//assumed.
//Postcondition: firstName = first; lastName = last;
// personId = id; empSalary = salary;
// empBonus = bonus;

830 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

private:
double empSalary;
double empBonus;

};

The definitions of the constructor and functions of the class fullTimeEmployee are:

void fullTimeEmployee::set(string first, string last,
long id,
double salary, double bonus)

{
setName(first, last);
setId(id);
empSalary = salary;
empBonus = bonus;

}

void fullTimeEmployee::setSalary(double salary)
{

empSalary = salary;
}

double fullTimeEmployee::getSalary()
{

return empSalary;
}

void fullTimeEmployee::setBonus(double bonus)
{

empBonus = bonus;
}

double fullTimeEmployee::getBonus()
{

return empBonus;
}

void fullTimeEmployee::print() const
{

cout << "Id: " << getId() << endl;
cout << "Name: ";
personType::print();
cout << endl;
cout << "Wages: $" << calculatePay() << endl;

}

double fullTimeEmployee::calculatePay() const
{

return empSalary + empBonus;
}

1

2

Abstract Classes and Pure Virtual Functions | 831

fullTimeEmployee::fullTimeEmployee(string first, string last,
long id, double salary,
double bonus)

: employeeType(first, last, id)
{

empSalary = salary;
empBonus = bonus;

}

The definition of the class partTimeEmployee is:

#include "employeeType.h"

class partTimeEmployee: public employeeType
{
public:

void set(string first, string last, long id, double rate,
double hours);

//Function to set the first name, last name, id,
//payRate, and hoursWorked according to the
//parameters.
//Postcondition: firstName = first; lastName = last;
// personId = id;
// payRate = rate; hoursWorked = hours

double calculatePay() const;
//Function to calculate and return the wages.
//Postcondition: Pay is calculated and returned.

void setPayRate(double rate);
//Function to set the salary.
//Postcondition: payRate = rate;

double getPayRate();
//Function to retrieve the salary.
//Postcondition: returns payRate;

void setHoursWorked(double hours);
//Function to set the bonus.
//Postcondition: hoursWorked = hours

double getHoursWorked();
//Function to retrieve the bonus.
//Postcondition: returns empBonus;

void print() const;
//Function to output the id, first name, last name,
//and the wages.
//Postcondition: Outputs
// Id:
// Name: firstName lastName
// Wages: $$$$.$$

832 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

1

2

partTimeEmployee(string first = "", string last = "",
long id = 0,
double rate = 0, double hours = 0);

//Constructor with parameters
//Sets the first name, last name, payRate, and
//hoursWorked according to the parameters. If
//no value is specified, the default values are
//assumed.
//Postcondition: firstName = first; lastName = last;
// personId = id, payRate = rate;
// hoursWorked = hours;

private:
double payRate; //stores the pay rate
double hoursWorked; //stores the hours worked

};

The definitions of the constructor and functions of the class partTimeEmployee are:

void partTimeEmployee::set(string first, string last, long id,
double rate, double hours)

{
setName(first, last);
setId(id);
payRate = rate;
hoursWorked = hours;

}

void partTimeEmployee::setPayRate(double rate)
{

payRate = rate;
}

double partTimeEmployee::getPayRate()
{

return payRate;
}

void partTimeEmployee::setHoursWorked(double hours)
{

hoursWorked = hours;
}

double partTimeEmployee::getHoursWorked()
{

return hoursWorked;
}

void partTimeEmployee::print() const
{

cout << "Id: " << getId() << endl;
cout << "Name: ";

Abstract Classes and Pure Virtual Functions | 833

personType::print();
cout << endl;
cout << "Wages: $" << calculatePay() << endl;

}

double partTimeEmployee::calculatePay() const
{

return (payRate * hoursWorked);
}

//constructor
partTimeEmployee::partTimeEmployee(string first, string last,

long id,
double rate, double hours)

: employeeType(first, last, id)
{

payRate = rate;
hoursWorked = hours;

}

The following function main tests these classes:

#include <iostream>
#include "partTimeEmployee.h"
#include "fullTimeEmployee.h"

int main()
{

fullTimeEmployee newEmp("John", "Smith", 75, 56000, 5700);
partTimeEmployee tempEmp("Bill", "Nielson", 275, 15.50, 57);

newEmp.print();
cout << endl;
tempEmp.print();

return 0;
}

Sample Run:

Id: 75
Name: John Smith
Wages: $61700

Id: 275
Name: Bill Nielson
Wages: $883.5

The preceding output is self-explanatory. We leave the details as an exercise.

834 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

Address of Operator and Classes
This chapter has used the address of operator, &, to store the address of a variable into a
pointer variable. The address of operator is also used to create aliases to an object.
Consider the following statements:

int x;
int &y = x;

The first statement declares x to be an int variable, and the second statement declares y
to be an alias of x. That is, both x and y refer to the same memory location. Thus, y is
like a constant pointer variable. The statement:

y = 25;

sets the value of y and, hence, the value of x to 25. Similarly, the statement:

x = 2 * x + 30;

updates the value of x and, hence, the value of y.

The address of operator can also be used to return the address of a private member
variable of a class. However, if you are not careful, this operation can result in serious
errors in the program. The following example helps illustrate this idea.

Consider the following class definition:

//header file testadd.h

#ifndef H_testAdd
#define H_testAdd

class testAddress
{
public:

void setX(int);
void printX() const;
int& addressOfX(); //this function returns the address

//of the x
private:

int x;
};

#endif

The definitions of the functions to implement the member functions are as follows:

//Implementation file testAdd.cpp

#include <iostream>
#include "testAdd.h"

1

2

Address of Operator and Classes | 835

using namespace std;

void testAddress::setX(int inX)
{

x = inX;
}
void testAddress::printX() const
{

cout << x;
}

int& testAddress::addressOfX()
{

return x;
}

Because the return type of the function addressOfX, which is int&, is an address of an
int memory location, the effect of the statement:

return x;

is that the address of x is returned.

Next, let us write a simple program that uses the class testAddress and illustrates
what can go wrong. Later, we will show how to fix the problem.

//Test program.
#include <iostream>
#include "testAdd.h"

using namespace std;

int main()
{

testAddress a;
int &y = a.addressOfX();

a.setX(50);
cout << "x in class testAddress = ";
a.printX();
cout << endl;

y = 25;
cout << "After y = 25, x in class testAddress = ";
a.printX();
cout << endl;

return 0;
}

Sample Run:

x in class testAddress = 50
After y = 25, x in class testAddress = 25

836 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

1

2

In the preceding program, after the statement:

int &y = a.addressOfX();

executes, y becomes an alias of the private member variable x of the object a. Thus, the
statement:

y = 25;

changes the value of x.

Chapter 10 said that private member variables are not accessible outside of the class.
However, by returning their addresses, the programmer can manipulate them. One way
to resolve this problem is to never provide the user of the class with the addresses of the
private member variables. Sometimes, however, it is necessary to return the address of a
private member variable, as we will see in the next chapter. How can we prevent the
program from directly manipulating the private member variables? To fix this problem,
we use the word const before the return type of the function. This way, we can still
return the addresses of the private member variables, but at the same time prevent the
programmer from directly manipulating the private member variables. Let us rewrite
the class testAddress using this feature.

#ifndef H_testAdd
#define H_testAdd

class testAddress
{
public:

void setX(int);
void printX() const;
const int& addressOfX(); //this function returns the

//address of the private data
//member

private:
int x;

};

#endif

The definition of the function addressOfX in the implementation file is:

const int& testAddress::addressOfX()
{

return x;
}

The same program will now generate a compile-time error.

QUICK REVIEW

1. Pointer variables contain the addresses of other variables as their values.

2. In C++, no name is associated with the pointer data type.

Quick Review | 837

3. A pointer variable is declared using an asterisk, *, between the data type
and the variable. For example, the statements:

int *p;
char *ch;

declare p and ch to be pointer variables. The value of p points to a memory
space of type int, and the value of ch points to a memory space of type
char. Usually, p is called a pointer variable of type int, and ch is called a
pointer variable of type char.

4. In C++, & is called the address of operator.

5. The address of operator returns the address of its operand. For example, if p
is a pointer variable of type int and num is an int variable, the statement:

p = #

sets the value of p to the address of num.

6. When used as a unary operator, * is called the dereferencing operator.

7. The memory location indicated by the value of a pointer variable is
accessed by using the dereferencing operator, *. For example, if p is a
pointer variable of type int, the statement:

*p = 25;

sets the value of the memory location indicated by the value of p to 25.

8. You can use the member access operator arrow, ->, to access the compo-
nent of an object pointed to by a pointer.

9. Pointer variables are initialized using either 0 (the integer zero), NULL, or
the address of a variable of the same type.

10. The only number that can be directly assigned to a pointer variable is 0.

11. The only arithmetic operations allowed on pointer variables are increment
(++), decrement (--), addition of an integer to a pointer variable, subtrac-
tion of an integer from a pointer variable, and subtraction of a pointer from
another pointer.

12. Pointer arithmetic is different than ordinary arithmetic. When an integer is
added to a pointer, the value added to the value of the pointer variable is
the integer times the size of the object to which the pointer is pointing.
Similarly, when an integer is subtracted from a pointer, the value subtracted
from the value of the pointer variable is the integer times the size of the
object to which the pointer is pointing.

13. Pointer variables can be compared using relational operators. (It makes
sense to compare pointers of the same type.)

14. The value of one pointer variable can be assigned to another pointer
variable of the same type.

15. A variable created during program execution is called a dynamic variable.

838 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

16. The operator new is used to create a dynamic variable.

17. The operator delete is used to deallocate the memory occupied by a
dynamic variable.

18. In C++, both new and delete are reserved words.

19. The operator new has two forms: one to create a single dynamic variable
and another to create an array of dynamic variables.

20. If p is a pointer of type int, the statement:

p = new int;

allocates storage of type int somewhere in memory and stores the address
of the allocated storage in p.

21. The operator delete has two forms: one to deallocate the memory
occupied by a single dynamic variable and another to deallocate the
memory occupied by an array of dynamic variables.

22. If p is a pointer of type int, the statement:

delete p;

deallocates the memory pointed to by p.

23. The array name is a constant pointer. It always points to the same memory
location, which is the location of the first array component.

24. To create a dynamic array, the form of the new operator that creates an
array of dynamic variables is used. For example, if p is a pointer of type
int, the statement:

p = new int[10];

creates an array of 10 components of type int. The base address of the
array is stored in p. We call p a dynamic array.

25. Array notation can be used to access the components of a dynamic array.
For example, suppose p is a dynamic array of 10 components. Then, p[0]
refers to the first array component, p[1] refers to the second array
component, and so on. In particular, p[i] refers to the (i + 1)th compo-
nent of the array.

26. An array created during program execution is called a dynamic array.

27. If p is a dynamic array, then the statement:

delete [] p;

deallocates the memory occupied by p—that is, the components of p.

28. C++ allows a program to create dynamic multidimensional arrays.

29. In the statement int **board;, the variable board is a pointer to a
pointer.

30. In a shallow copy, two or more pointers of the same type point to the same
memory space; that is, they point to the same data.

1

2

Quick Review | 839

31. In a deep copy, two or more pointers of the same type have their own
copies of the data.

32. If a class has a destructor, the destructor is automatically executed whenever
a class object goes out of scope.

33. If a class has pointer member variables, the built-in assignment operators
provide a shallow copy of the data.

34. A copy constructor executes when an object is declared and initialized by
using the value of another object and when an object is passed by value as a
parameter.

35. C++ allows a user to pass an object of a derived class to a formal parameter
of the base class type.

36. The binding of virtual functions occurs at execution time, not at compile
time, and is called dynamic, or run-time, binding.

37. In C++, virtual functions are declared using the reserved word virtual.

38. A class is called an abstract class if it contains one or more pure virtual
functions.

39. Because an abstract class is not a complete class—as it (or its implementation
file) does not contain the definitions of certain functions—you cannot
create objects of that class.

40. In addition to the pure virtual functions, an abstract class can contain
instance variables, constructors, and functions that are not pure virtual.
However, the abstract class must provide the definitions of constructors
and functions that are not pure virtual.

41. The address of operator can be used to return the address of a private

member variable of a class.

EXERCISES

1. Mark the following statements as true or false.

a. In C++, pointer is a reserved word.

b. In C++, pointer variables are declared using the word pointer.

c. The statement delete p; deallocates the variable pointer p.

d. The statement delete p; deallocates the dynamic variable that is
pointed to by p.

e. Given the declaration:

int list[10];
int *p;

the statement:

p = list;

is valid in C++.

840 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

1

2

f. Given the declaration:

int *p;

the statement:

p = new int[50];

dynamically allocates an array of 50 components of type int, and p contains
the base address of the array.

g. The address of operator returns the address and value of its operand.

h. If p is a pointer variable, then the statement p = p * 2; is valid in C++.

2. Given the following declaration:

int num;
int *ptr1;
int *ptr2;
double *ptr3;

Mark the following statements as valid or invalid. If a statement is invalid, explain why.

a. ptr1 = ptr2;

b. num = ptr1;

c. ptr3 = ptr1;

d. *prt3 = *ptr2;

e. *ptr1 = *ptr2;

f. num = *ptr2;

g. ptr1 = &ptr2;

h. ptr1 = #

i. num = &ptr1;

3. Explain how the operator * is used to work with pointers.

4. Consider the following statement:

int* p, q;

This statement could lead to what type of misinterpretation?

5. Suppose that you have the declaration int *numPtr;. What is the differ-
ence between the expressions: *numPtr and &numPtr?

6. What is the output of the following C++ code?

int x;
int y;
int *p = &x;
int *q = &y;
x = 35;
y = 46;
p = q;
*p = 27;
cout << x << " " << y << endl;
cout << *p << " " << *q << endl;

Exercises | 841

7. Given the following statements:

int num;
int *numPtr;

Write C++ statements that use the variable numPtr to increment the value
of the variable num.

8. What is the output of the following C++ code?

string *str;
string fName, lName;
str = &fName;
*str = "Miller";
str = &lName;
*str = "Tommy";
cout << fName << " " << lName << endl;

9. What is the output of the following C++ code?

int num1;
int num2;
int *p = &num1;
p = &num2;
*p = 25;
num1 = num2 + 6;
p = &num1;
num2 = 73;
*p = 47;
cout << *p << " " << num1 << " " << num2 << endl;

10. What is the output of the following C++ code?

int *length;
int *width;
length = new int;
*length = 5;
width = length;
length = new int;
*length = 2 * (*width);
cout << *length << " " << *width << " " << (*length) * (*width)

<< endl;

11. What is the output of the following C++ code?

int *first = new int;
int *second;
*first = 85;
second = first;
*second = *second + *first;
first = new int;
*first = *second - 100;
cout << *first << " " << *second << endl;

12. What is the output of the following C++ code?

int *p = new int;
int *q = new int;

842 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

*p = 26;
*q = 10;
cout << 2 * (*p) << " " << (*q + 3) << endl;
p = q;
*p = 42;
cout << *p << " " << *q << endl;
q = new int;
*p = 25;
*q = 18;
cout << *p << " " << *q << endl;

13. What is the output of the following C++ code? (Assume that decimal
numbers are output with two decimal places.)

double *test1 = new double;
double *test2 = new double;
double *average;
average = test1;
*test1 = 45.00;
*test2 = 90.00;
test1 = test2;
test2 = new double;
*test2 = 86.00;
*average = ((*test1) + (*test2)) / 2;
cout << *test1 << " " << *test2 << " " << *average << endl;

14. What is wrong with the following C++ code?

double *deposit; //Line 1
double *intRate; //Line 2
double interest; //Line 3

deposit = new double; //Line 4
*deposit = 25000; //Line 5

interest = (*deposit) * (*intRate); //Line 6

cout << interest << endl; //Line 7

15. What is wrong with the following C++ code?

double *firstPtr = new double; //Line 1
double *nextPtr = new double; //Line 2

*firstPtr = 62; //Line 3
nextPtr = firstPtr; //Line 4
delete firstPtr; //Line 5
delete nextPtr; //Line 6
firstPtr = new double; //Line 7
*firstPtr = 28; //Line 8

cout << *firstPtr << " " << *nextPtr << endl; //Line 9

16. What is the output of the following C++ code?

int *p;
int *q = new int;

1

2

Exercises | 843

p = q;
*q = 75;
delete p;
p = new int;
*p = 62;
q = new int;
q = p;
*q = 26;
cout << *p << " " << *q << endl;

17. What is stored in list after the following code executes?

int list[7] = {10, 8, 15, 14, 16, 24, 36};
int *ptr = list;

*ptr = *ptr + 2;
ptr = ptr + 2;
*ptr = (*ptr) – *(ptr – 1);
ptr++;
*ptr = 2 * (*ptr) – 3;

18. What is the output of the following C++ code?

int num;
int *listPtr;
int *temp;
listPtr = new int[5];
num = 8;
temp = listPtr;

for (int j = 0; j < 5; j++)
{

*listPtr = num;
num = num + 2;
listPtr++;

}

listPtr = temp;

for (int k = 0; k < 5; k++)
{

*temp = *temp + 3;
temp++;

}

for (int k = 0; k < 5; k++)
{

cout << *listPtr << " ";
listPtr ++;

}
cout << endl;

19. Suppose that numPtr is a pointer of type int and gpaPtr is a pointer of
type double. Further suppose that numPtr = 1050 and gpaPtr = 2000.
Also suppose that the size of the memory allocated for an int value is 4

844 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

bytes and the size of the memory allocated for a double value is 8 bytes.
What are the values of numPtr and gpaPtr after the statements numPtr =

numPtr + 2; and gpaPtr = gpaPtr + 3; execute?

20. What does the operator new do?

21. What does the operator delete do?

22. What is the output of the following C++ code?

int *tempList;
int num = 3;

tempList = new int[7];
tempList[6] = 4;
for (int j = 5; j >= 0; j--)

tempList[j] = tempList[j + 1] + j * num;
for (int j = 0; j < 7; j++)

cout << tempList [j] << " ";
cout << endl;

23. Consider the following statement:
int *num;

a. Write the C++ statement that dynamically creates an array of 10
components of type int and num contains the base address of the array.

b. Write a C++ code that inputs data into the array num from the standard
input device.

c. Write a C++ statement that deallocates the memory space of array to
which num points.

24. Consider the following C++ code:

int *p;
p = new int[10];
for (int j = 0; j < 10; j++)

p[i] = 2 * j - 2;

Write the C++ statement that deallocates the memory space occupied by
the array to which p points.

25. Explain the difference between a shallow copy and a deep copy of data.

26. What is wrong with the following C++ code?

int *p; //Line 1
int *q; //Line 2

p = new int[5]; //Line 3
*p = 2; //Line 4

for (int i = 1; i < 5; i++) //Line 5
p[i] = p[i - 1] + i; //Line 6

1

2

Exercises | 845

q = p; //Line 7

delete [] p; //Line 8

for (int j = 0; j < 5; j++) //Line 9
cout << q[j] << " "; //Line 10

cout << endl; //Line 11

27. What is the output of the following C++ code?

int *myList = new int[5];
int *yourList = new int[10];

myList[0] = 3;

for (int i = 1; i < 5; i++)
myList[i] = myList[i - 1] + i;

for (int i = 0; i < 5; i++)
{

yourList[i] = myList[i] + 4;
yourList[i + 5] = myList[4 - i] - 3;

}

cout << "myList: ";
for (int i = 0; i < 5; i++)

cout << myList[i] << " ";
cout << endl;

cout << "yourList: ";
for (int i = 0; i < 10; i++)

cout << yourList[i] << " ";

cout << endl;

28. a. Write a statement that declares sales to be a pointer to a pointer of type
double.

b. Write a C++ code that dynamically creates a two-dimensional array of
five rows and seven columns and sales contains the base address of
that array.

c. Write a C++ code that inputs data from the standard input device into
the array sales.

d. Write a C++ code that deallocates the memory space occupied by the
two-dimensional array to which sales points.

29. What is the purpose of a copy constructor?

30. Name two situations in which a copy constructor executes.

31. Name three things that you should do for classes with pointer member variables.

846 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

32. Suppose that you have the following classes, classA and classB:

class classA
{
public:

virtual void print() const;
void doubleNum();
classA(int a = 0);

private:
int x;

};

void classA::print() const
{

cout << "ClassA x: " << x << endl;
}

void classA::doubleNum()
{

x = 2 * x;
}

classA::classA(int a)
{

x = a;
}

class classB: public classA
{
public:

void print() const;
void doubleNum();
classB(int a = 0, int b = 0);

private:
int y;

};

void classB::print() const
{

classA::print();
cout << "ClassB y: " << y << endl;

}

void classB::doubleNum()
{

classA::doubleNum();

y = 2 * y;
}

1

2

Exercises | 847

classB::classB(int a, int b)
: classA(a)

{
y = b;

}

What is the output of the following function main?

int main()
{

classA *ptrA;
classA objectA(2);

classB objectB(3, 5);

ptrA = &objectA;
ptrA->doubleNum();
ptrA->print();
cout << endl;

ptrA = &objectB;

ptrA->doubleNum();
ptrA->print();
cout << endl;

return 0;
}

33. What is the output of the function main of Exercise 32, if the definition of
classA is replaced by the following definition?

class classA
{
public:

virtual void print() const;
virtual void doubleNum();
classA(int a = 0);

private:
int x;

};

34. What is the difference between compile-time binding and run-time binding?

35. Is it legal to have an abstract class with all member functions pure virtual?

36. Consider the following definition of the class studentType:

public studentType: public personType
{
public:

void print();
void calculateGPA();
void setID(long id);
void setCourses(const string c[], int noOfC);
void setGrades(const char cG[], int noOfC);

848 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

void getID();
void getCourses(string c[], int noOfC);
void getGrades(char cG[], int noOfC);
void studentType(string fName = "", string lastName = "",

long id, string c[] = NULL,
char cG[] = NULL, int noOfC = 0);

private:
long studentId;
string courses[6];
char coursesGrade[6]
int noOfCourses;

}

Rewrite the definition of the class studentType so that the functions print and
calculateGPA are pure virtual functions.

37. Suppose that the definitions of the classes employeeType,
fullTimeEmployee, and partTimeEmployee are as given in Example
12-9 of this chapter. Which of the following statements is legal?

a. employeeType tempEmp;

b. fullTimeEmployee newEmp();

c. partTimeEmployee pEmp("Molly", "Burton", 101, 0.0, 0);

PROGRAMMING EXERCISES

1. Redo Programming Exercise 5 of Chapter 8 using dynamic arrays.

2. Redo Programming Exercise 6 of Chapter 8 using dynamic arrays.

3. Redo Programming Exercise 7 of Chapter 8 using dynamic arrays. You must
ask the user for the number of candidates and then create the appropriate
arrays to hold the data.

4. Programming Exercise 11 in Chapter 8 explains how to add large integers using
arrays. However, in that exercise, the program could add only integers of, at
most, 20 digits. This chapter explains how to work with dynamic integers.
Design a class named largeIntegers such that an object of this class can
store an integer of any number of digits. Add operations to add, subtract,
multiply, and compare integers stored in two objects. Also add constructors to
properly initialize objects and functions to set, retrieve, and print the values
of objects.

5. Banks offer various types of accounts, such as savings, checking, certificate
of deposits, and money market, to attract customers as well as meet their
specific needs. Two of the most commonly used accounts are savings and
checking. Each of these accounts has various options. For example, you may
have a savings account that requires no minimum balance but has a lower

1

2

Programming Exercises | 849

interest rate. Similarly, you may have a checking account that limits the
number of checks you may write. Another type of account that is used to
save money for the long term is certificate of deposit (CD).

In this programming exercise, you use abstract classes and pure virtual
functions to design classes to manipulate various types of accounts. For
simplicity, assume that the bank offers three types of accounts: savings,
checking, and certificate of deposit, as described next.

Savings accounts: Suppose that the bank offers two types of savings
accounts: one that has no minimum balance and a lower interest rate and
another that requires a minimum balance and has a higher interest rate.

Checking accounts: Suppose that the bank offers three types of checking
accounts: one with a monthly service charge, limited check writing, no
minimum balance, and no interest; another with no monthly service charge,
a minimum balance requirement, unlimited check writing and lower interest;
and a third with no monthly service charge, a higher minimum requirement, a
higher interest rate, and unlimited check writing.

Certificate of deposit (CD): In an account of this type, money is left for
some time, and these accounts draw higher interest rates than savings or
checking accounts. Suppose that you purchase a CD for six months. Then
we say that the CD will mature in six months. The penalty for early
withdrawal is stiff.

Figure 12-22 shows the inheritance hierarchy of these bank accounts.

bankAccount

checkingAccount savingsAccount

highInterestSavingsserviceChargeChecking noServiceChargeChecking

highInterestChecking

certificateOfDeposit

FIGURE 12-22 Inheritance hierarchy of banking accounts

850 | Chapter 12: Pointers, Classes, Virtual Functions, and Abstract Classes

Note that the classes bankAccount and checkingAccount are
abstract. That is, we cannot instantiate objects of these classes. The other
classes in Figure 12-22 are not abstract.

bankAccount: Every bank account has an account number, the name of
the owner, and a balance. Therefore, instance variables such as name,
accountNumber, and balance should be declared in the abstract class

bankAccount. Some operations common to all types of accounts are retrieve
account owner’s name, account number, and account balance; make deposits;
withdraw money; and create monthly statement. So include functions to imple-
ment these operations. Some of these functions will be pure virtual.

checkingAccount: A checking account is a bank account. Therefore, it
inherits all the properties of a bank account. Because one of the objectives of
a checking account is to be able to write checks, include the pure virtual
function writeCheck to write a check.

serviceChargeChecking: A service charge checking account is a checking
account. Therefore, it inherits all the properties of a checking account. For
simplicity, assume that this type of account does not pay any interest, allows the
account holder to write a limited number of checks each month, and does not
require any minimum balance. Include appropriate named constants, instance
variables, and functions in this class.

noServiceChargeChecking: A checking account with no monthly service
charge is a checking account. Therefore, it inherits all the properties of a
checking account. Furthermore, this type of account pays interest, allows the
account holder to write checks, and requires a minimum balance.

highInterestChecking: A checking account with high interest is a checking
account with no monthly service charge. Therefore, it inherits all the properties
of a no service charge checking account. Furthermore, this type of account pays
higher interest and requires a higher minimum balance than the no service
charge checking account.

savingsAccount: A savings account is a bank account. Therefore, it inherits
all the properties of a bank account. Furthermore, a savings account also pays
interest.

highInterestSavings: A high-interest savings account is a savings account.
Therefore, it inherits all the properties of a savings account. It also requires a
minimum balance.

certificateOfDeposit: A certificate of deposit account is a bank account.
Therefore, it inherits all the properties of a bank account. In addition, it has
instance variables to store the number of CD maturity months, interest rate, and
the current CD month.

Write the definitions of the classes described in this programming exercise and a
program to test your classes.

1

2

Programming Exercises | 851

This page intentionally left blank

OVERLOADING AND

TEMPLATES
IN THIS CHAPTER , YOU WILL :

. Learn about overloading

. Become aware of the restrictions on operator overloading

. Examine the pointer this

. Learn about friend functions

. Explore the members and nonmembers of a class

. Discover how to overload various operators

. Learn about templates

. Explore how to construct function templates and class templates

13C H A P T E R

In Chapter 10, you learned how classes in C++ are used to combine data and
operations on that data in a single entity. The ability to combine data and operations
on the data is called encapsulation. It is the first principle of object-oriented design
(OOD). Chapter 10 defined the abstract data type (ADT) and described how classes in
C++ implement ADT. Chapter 11 discussed how new classes can be derived from
existing classes through the mechanism of inheritance. Inheritance, the second principle
of OOD, encourages code reuse.

This chapter covers operator overloading and templates. Templates enable the
programmer to write generic code for related functions and classes. We will also simplify
function overloading (introduced in Chapter 6) through the use of templates, called
function templates.

Why Operator Overloading Is Needed
Chapter 10 defined and implemented the class clockType. It also showed how you
can use the class clockType to represent the time of day in a program. Let us review
some of the characteristics of the class clockType.

Consider the following statements:

clockType myClock(8, 23, 34);
clockType yourClock(4, 5, 30);

The first statement declares myClock to be an object of type clockType and initializes
the member variables hr, min, and sec of myClock to 8, 23, and 34, respectively.
The second statement declares yourClock to be an object of type clockType and
initializes the member variables hr, min, and sec of yourClock to 4, 5, and 30,
respectively.

Now consider the following statements:

myClock.printTime();

myClock.incrementSeconds();

if (myClock.equalTime(yourClock))
.
.
.

The first statement prints the value of myClock in the form hr:min:sec. The second
statement increments the value of myClock by one second. The third statement checks
whether the value of myClock is the same as the value of yourClock.

These statements do their job. However, if we can use the insertion operator << to
output the value of myClock, the increment operator ++ to increment the value of
myClock by one second, and relational operators for comparison, we can enhance the

854 | Chapter 13: Overloading and Templates

flexibility of the class clockType considerably. More specifically, we prefer to use the
following statements instead of the previous statements:

cout << myClock;

myClock++;

if (myClock == yourClock)
.
.
.

Recall that the only built-in operations on classes are the assignment operator and the
member selection operator. Therefore, other operators cannot be directly applied to
class objects. However, C++ allows the programmer to extend the definitions of
most of the operators so that operators—such as relational operators, arithmetic
operators, the insertion operator for data output, and the extraction operator for data
input—can be applied to classes. In C++ terminology, this is called operator

overloading.

Operator Overloading
Recall how the arithmetic operator / works. If both operands of / are integers, the result
is an integer; otherwise, the result is a floating-point number. Similarly, the stream
insertion operator, <<, and the stream extraction operator, >>, are overloaded. The
operator >> is used as both a stream extraction operator and a right shift operator. The
operator << is used as both a stream insertion operator and a left shift operator. These are
examples of operator overloading. (Note that the operators << and >> have also been
overloaded for various data types, such as int, double, and string.)

Other examples of overloaded operators are + and -. The results of + and - are different
for integer arithmetic, floating-point arithmetic, and pointer arithmetic.

C++ allows the user to overload most of the operators so that the operators can
work effectively in a specific application. It does not allow the user to create new
operators. Most of the existing operators can be overloaded to manipulate class
objects.

In order to overload operators, you must write functions (that is, the header and body).
The name of the function that overloads an operator is the reserved word operator
followed by the operator to be overloaded. For example, the name of the function to
overload the operator >= is:

operator>=

Operator function: The function that overloads an operator.

1

3

Operator Overloading | 855

Syntax for Operator Functions
The result of an operation is a value. Therefore, the operator function is a value-returning
function.

The syntax of the heading for an operator function is:

returnType operator operatorSymbol(formal parameter list)

In C++, operator is a reserved word.

Recall that the only built-in operations on classes are assignment (=) and member
selection. To use other operators on class objects, they must be explicitly overloaded.
Operator overloading provides the same concise expressions for user-defined data types as
it does for built-in data types.

To overload an operator for a class:

1. Include the statement to declare the function to overload the operator
(that is, the operator function) prototype in the definition of the class.

2. Write the definition of the operator function.

Certain rules must be followed when you include an operator function in a class
definition. These rules are described in the section, ‘‘Operator Functions as Member
Functions and Nonmember Functions’’ later in this chapter.

Overloading an Operator: Some Restrictions
When overloading an operator, keep the following in mind:

1. You cannot change the precedence of an operator.

2. The associativity cannot be changed. (For example, the associativity of
the arithmetic operator addition is from left to right, and it cannot be
changed.)

3. Default parameters cannot be used with an overloaded operator.

4. You cannot change the number of parameters an operator takes.

5. You cannot create new operators. Only existing operators can be over-
loaded.

6. The operators that cannot be overloaded are:

. .* :: ?: sizeof

7. The meaning of how an operator works with built-in types, such as int,
remains the same.

8. Operators can be overloaded either for objects of the user-defined types,
or for a combination of objects of the user-defined type and objects of
the built-in type.

856 | Chapter 13: Overloading and Templates

Pointer this
A member function of a class can (directly) access the member variables of that class for
a given object. Sometimes, it is necessary for a member function to refer to the object
as a whole, rather than the object’s individual member variables. How do you refer to
the object as a whole (that is, as a single unit) in the definition of the member
function, especially when the object is not passed as a parameter? Every object of a
class maintains a (hidden) pointer to itself, and the name of this pointer is this. In
C++, this is a reserved word. The pointer this (in a member function) is available
for you to use. When an object invokes a member function, the member function
references the pointer this of the object. For example, suppose that test is a class
and has a member function called one. Further suppose that the definition of one

looks like the following:

test test::one()
{

.

.

.
return *this;

}

If x and y are objects of type test, then the statement:

y = x.one();

copies the value of object x into object y. That is, the member variables of x are copied
into the corresponding member variables of y. When object x invokes function one, the
pointer this in the definition of member function one refers to object x, so this means
the address of x and *this means the value of x.

The following example illustrates how the pointer this works.

EXAMPLE 13-1

In Chapter 11, we defined the class rectangleType. We will add a function to this
class to illustrate how the pointer this works. We do not give the complete definition of
this class. We only show the function that uses the pointer this to return the whole
object. The complete definition can be found at the Web site accompanying this book.

class rectangleType
{
public:

//The functions setDimension, getLength, getWidth, area,
//perimeter, print, and the constructors are the same as before.

rectangleType doubleDimensions();
//Postcondition: length = 2 * length;
// width = 2 * width;

1

3

Operator Overloading | 857

private:
double length;
double width;

};

Suppose that the definition of the member function doubleDimensions is:

rectangleType rectangleType::doubleDimensions()
{

length = 2 * length;
width = 2 * width;

return *this;
}

The function doubleDimensions doubles both the length and width of the object and
using the pointer this returns the value of the entire object.

Consider the following function main:

//Chapter 13: this pointer illustration

#include <iostream> //Line 1
#include <iomanip> //Line 2
#include "rectangleType.h" //Line 3

using namespace std; //Line 4

int main() //Line 5
{ //Line 6

rectangleType oldYard(20.00, 10.00); //Line 7
rectangleType newYard; //Line 8

cout << fixed << showpoint << setprecision(2); //Line 9

cout << "Line 10: Area of oldYard = "
<< oldYard.area() << endl; //Line 10

newYard = oldYard.doubleDimensions(); //Line 11

cout << "Line 12: Area of newYard = "
<< newYard.area() << endl; //Line 12

return 0; //Line 13
} //Line 14

Sample Run

Line 10: Area of oldYard = 200.00
Line 12: Area of newYard = 800.00

For the most part, the output is self-explanatory. The statement in Line 7 creates the
object oldYard and sets the length and width to 20.00 and 10.00, respectively. The
statement in Line 8 creates the object newYard and using the default constructor sets the

858 | Chapter 13: Overloading and Templates

1

3

length and width to 0.00, and 0.00, respectively. The statement in Line 10 outputs the
area of oldYard. The statement in Line 11 doubles the dimensions of oldYard and then
the object oldYard, with new length and width, is returned by the pointer this. The
assignment operator then copies the value of oldYard into newYard. The statement in
Line 12 outputs the area of newYard.

The following example shows another way of how the pointer this works.

EXAMPLE 13-2

Consider the following class:

class rectangleType
{
public:

void setDimension(double l, double w);
double getLength() const;
double getWidth() const;
double area() const;
double perimeter() const;
void print() const;

rectangleType& setLength(double l);
//Function to set the length.
//Postcondition: length = l
// After setting the length, a reference to the object,
// that is, the address of the object, is returned.

rectangleType& setWidth(double w);
//Function to set the width.
//Postcondition: width = w
// After setting the width a reference to the object,
// that is, the address of the object, is returned.

rectangleType(double l = 0.0, double w = 0.0);

private:
double length;
double width;

};

Note that the definition of the class rectangleType is the same as given in Chapter
11, except that here, in the definition of the class rectangleType, we have added the
functions setLength and setWidth to individually set a rectangle’s length and width,
and then return the entire object. We have also replaced the constructors with the
constructor with default parameters.

The definitions of the functions print, setDimension, getLength, getWidth,
area, and perimeter are the same as before. The definition of the constructor with
default parameters is the same as the definition of the constructor with parameters. The
definitions of the functions setLength and setWidth are as follows:

Operator Overloading | 859

rectangleType& rectangleType::setLength(double l)
{

length = l;
return *this;

}

rectangleType& rectangleType::setWidth(double w)
{

width = w;
return *this;

}

The following program shows how to use the class rectangleType. (We assume that
the definition of the class rectangleType is in the file rectangleType.h.)

//Test Program: class rectangleType

#include <iostream> //Line 1
#include <iomanip> //Line 2
#include "rectangleType.h" //Line 3

using namespace std; //Line 4

int main() //Line 5
{ //Line 6

rectangleType myRectangle; //Line 7
rectangleType yourRectangle; //Line 8

cout << fixed << showpoint << setprecision(2); //Line 9

myRectangle.setLength(15.25).setWidth(12.00); //Line 10

cout << "Line 11 -- myRectangle: "; //Line 11
myRectangle.print(); //Line 12
cout << endl; //Line 13

yourRectangle.setLength(18.50); //Line 14

cout << "Line 15 -- yourRectangle: "; //Line 15
yourRectangle.print(); //Line 16
cout << endl; //Line 17

yourRectangle.setWidth(7.50); //Line 18

cout << "Line 19 -- yourRectangle: "; //Line 19
yourRectangle.print(); //Line 20
cout << endl; //Line 21

return 0; //Line 22
} //Line 23

860 | Chapter 13: Overloading and Templates

1

3

Sample Run

Line 11: myRectangle: Length = 15.25; Width = 12.00
Line 15: yourRectangle: Length = 18.50; Width = 0.00
Line 19: yourRectangle: Length = 18.50; Width = 7.50

The statements in Lines 7 and 8 declare and initialize the objects myRectangle and
yourRectangle, to default values. Consider the statement in Line 10, which is:

myRectangle.setLength(15.25).setWidth(12.00);

First the expression:

myRectangle.setLength(15.25)

is executed because the associativity of the dot operator is from left to right. This
expression sets the length of myRectangle to 15.25 and returns a reference of the
object, which is myRectangle. Thus, the next expression executed is:

myRectangle.setWidth(12.00)

which sets the width of myRectangle to 12.00. The statement in Line 12 outputs the
value of myRectangle.

The statement in Line 14 sets the length of the object yourRectangle to 18.50, and
ignores the value returned. The statement in Line 16 outputs the value of yourRectangle.
Notice the output in Line 15. The value printed for width is 0.00, which was stored when
the object was declared in Line 8. Next, the statement in Line 18 sets the width of
yourRectangle, and the statement in Line 20 outputs the value of yourRectangle.

Friend Functions of Classes
A friend function of a class is a nonmember function of the class but has access to all of
the members (public or non-public) of the class. To make a function be a friend to a
class, the reserved word friend precedes the function prototype (in the class definition).
The word friend appears only in the function prototype in the class definition, not in
the definition of the friend function.

Consider the following statements:

class classIllusFriend
{

friend void two(/*parameters*/);
.
.
.

};

In the definition of the class classIllusFriend, two is declared as a friend of the
class classIllusFriend. That is, it is a nonmember function of the class
classIllusFriend. When you write the definition of the function two, any object

Operator Overloading | 861

of type classIllusFriend—which is either a local variable of two or a formal
parameter of two—can access its private members within the definition of the function
two. (Example 13-3 illustrates this concept.) Moreover, because a friend function is not
a member of a class, its declaration can be placed within the private, protected, or
public part of the class. However, they are typically placed before any member function
declaration.

DEFINITION OF A friend FUNCTION

When writing the definition of a friend function, the name of the class and the scope
resolution operator do not precede the name of the friend function in the function
heading. Also, recall that the word friend does not appear in the heading of the
friend function’s definition. Thus, the definition of the function two in the previous
class classIllusFriend is:

void two(/*parameters*/)
{

.

.

.
}

Of course, we will place the definition of the friend function in the implementation file.

The next section illustrates the difference between a member function and a nonmember
function (friend function) when we overload some of the operators for a specific class.

The following example shows how a friend function accesses the private members of
a class.

EXAMPLE 13-3

In this example, we use the class rectangleType to illustrate how a friend function
works. In the following definition we do not document the functions. The complete
definition of this class is available at the Web site accompanying this book.

class rectangleType
{

friend void rectangleFriend(rectangleType recObject);
public:

void setDimension(double l, double w);
double getLength() const;
double getWidth() const;
double area() const;
double perimeter() const;
void print() const;

rectangleType();
rectangleType(double l, double w);

862 | Chapter 13: Overloading and Templates

1

3

private:
double length;
double width;

};

In the definition of the class rectangleType, rectangleFriend is declared as a
friend function. Suppose that the definition of the function rectangleFriend is:

void rectangleFriend(rectangleType recFriendObject)
{

cout << "recFriendObject area: " << recFriendObject.area()
<< endl;

recFriendObject.length = recFriendObject.length + 5;
recFriendObject.width = recFriendObject.width + 5;

cout << "After increasing length and width by 5 units "
<< "each, \n recFriendObject area: "
<< recFriendObject.area() << endl;

}

The function rectangleFriend contains a (value) formal parameter recFriendObject
of type rectangleType. (Note that because rectangleType is a value parameter, it
will copy the value of its actual parameter.) The first statement outputs the area of the
object recFriendObject. The next two statements increase the length and width of
recFriendObject by 5 units. The next statement outputs the area of the the object
recFriendObject using the new length and width. Note that the recFriendObject
accesses its private member variables length and width and increase their values
by 5 units. If rectangleFriend is not declared as a friend function of the
class rectangleType, then this statement would result in a syntax error because an
object cannot directly access its private members.

The definition of the remaining functions and constructors of the class rectangleType

is as given in Chapter 11.

Now consider the definition of the following function main:

//Friend Function Illustration

#include <iostream> //Line 1
#include <iomanip> //Line 2
#include "rectangleType.h" //Line 3

using namespace std; //Line 4

int main() //Line 5
{ //Line 6

rectangleType myYard(25, 18); //Line 7

cout << fixed << showpoint << setprecision(2); //Line 8

cout << "myYard area: " << myYard.area()
<< endl; //Line 9

Operator Overloading | 863

cout << "Passing object myYard to the friend "
<< "function rectangleFriend." << endl; //Line 10

rectangleFriend(myYard); //Line 11

return 0; //Line 12
} //Line 13

Sample Run

myYard area: 450.00
Passing object myYard to the friend function rectangleFriend.
recFriendObject area: 450.00
After increasing length and width by 5 units each,

recFriendObject area: 690.00

For the most part, the output is self-explanatory. The statement in Line 9 outputs the area
of myYard. The statement in Line 11 calls the function rectangleFriend (a friend
function of the class rectangleType) and passes the object myYard as an actual
parameter. Notice that the function rectangleFriend generates the last three lines of
the output.

Later in this chapter, you will learn that for a class, stream insertion and extraction
operators can be overloaded only as friend functions.

Operator Functions as Member Functions
and Nonmember Functions
The beginning of this chapter stated that certain rules must be followed when you include
an operator function in the definition of a class. This section describes these rules.

Most operator functions can be either member functions or nonmember functions—that
is, friend functions of a class. To make an operator function be a member or non-
member function of a class, keep the following in mind:

1. The function that overloads any of the operators (), [], ->, or = for a
class must be declared as a member of the class.

2. Suppose that an operator op is overloaded for a class—say, opOverClass.
(Here, op stands for an operator that can be overloaded, such as + or >>.)

a. If the far left operand of op is an object of a different type (that is,
not of type opOverClass), the function that overloads the operator
op for opOverClass must be a nonmember—that is, a friend of
the class opOverClass.

b. If the operator function that overloads the operator op for the
class opOverClass is a member of the class opOverClass,
then when applying op on objects of type opOverClass, the far
left operand of op must be of type opOverClass.

864 | Chapter 13: Overloading and Templates

You must follow these rules when including an operator function in a class definition.

You will see later in this chapter that functions that overload the insertion operator, <<,
and the extraction operator, >>, for a class must be nonmembers—that is, friend
functions of the class.

Except for certain operators noted previously, operators can be overloaded either as
member functions or as nonmember functions. The following discussion shows the
difference between these two types of functions.

To facilitate our discussion of operator overloading, we will use the class rectangleType,
given next. (Although Chapter 11 defines this class, Chapter 11 is not a prerequisite for this
chapter. For easy reference, we reproduce the definition of this class and the definitions of the
member functions.)

class rectangleType
{

public:
void setDimension(double l, double w);

//Function to set the length and width of the rectangle.
//Postcondition: length = l; width = w;

double getLength() const;
//Function to return the length of the rectangle.
//Postcondition: The value of length is returned.

double getWidth() const;
//Function to return the width of the rectangle.
//Postcondition: The value of width is returned.

double area() const;
//Function to return the area of the rectangle.
//Postcondition: The area of the rectangle is
// calculated and returned.

double perimeter() const;
//Function to return the perimeter of the rectangle.
//Postcondition: The perimeter of the rectangle is
// calculated and returned.

void print() const;
//Function to output the length and width of
//the rectangle.

rectangleType();
//Default constructor
//Postcondition: length = 0; width = 0;

rectangleType(double l, double w);
//Constructor with parameters
//Postcondition: length = l; width = w;

1

3

Operator Overloading | 865

private:
double length;
double width;

};

The definitions of the member functions of the class rectangleType are as follows:

void rectangleType::setDimension(double l, double w)
{

if (l >= 0)
length = l;

else
length = 0;

if (w >= 0)
width = w;

else
width = 0;

}

double rectangleType::getLength() const
{

return length;
}

double rectangleType::getWidth()const
{

return width;
}

double rectangleType::area() const
{

return length * width;
}

double rectangleType::perimeter() const
{

return 2 * (length + width);
}

void rectangleType::print() const
{

cout << "Length = " << length
<< "; Width = " << width;

}

rectangleType::rectangleType(double l, double w)
{

setDimension(l, w);
}

866 | Chapter 13: Overloading and Templates

rectangleType::rectangleType()
{

length = 0;
width = 0;

}

The class rectangleType has two private member variables: length and width,
both of type double. We will add operator functions to the class rectangleType as
we overload the operators.

Also, suppose that you have the following statements:

rectangleType myRectangle;
rectangleType yourRectangle;
rectangleType tempRect;

That is, myRectangle, yourRectangle, and tempRect are objects of type
rectangleType.

C++ consists of both binary and unary operators. It also has a ternary operator, which cannot be
overloaded. The next few sections discuss how to overload various binary and unary operators.

Overloading Binary Operators
Suppose that # represents a binary operator (arithmetic, such as +; or relational, such as
==) that is to be overloaded for the class rectangleType. This operator can be
overloaded as either a member function of the class or as a friend function. We will
describe both ways to overload this operator.

OVERLOADING THE BINARY OPERATORS AS MEMBER FUNCTIONS

Suppose that # is overloaded as a member function of the class rectangleType. The
name of the function to overload # for the class rectangleType is:

operator#

Because myRectangle and yourRectangle are objects of type rectangleType, you
can perform the operation:

myRectangle # yourRectangle

The compiler translates this expression into the following expression:

myRectangle.operator#(yourRectangle)

This expression clearly shows that the function operator# has only one parameter,
which is yourRectangle.

Because operator# is a member of the class rectangleType and myRectangle is
an object of type rectangleType, in the previous statement, operator# has direct
access to the private members of the object myRectangle. Thus, the first parameter
of operator# is the object that is invoking the function operator#, and the second
parameter is passed as a parameter to this function.

1

3

Operator Overloading | 867

GENERAL SYNTAX TO OVERLOAD THE BINARY (ARITHMETIC OR RELATIONAL)

OPERATORS AS MEMBER FUNCTIONS

This section describes the general form of the functions to overload the binary operators
as member functions of a class.

Function Prototype (to be included in the definition of the class):

returnType operator#(const className&) const;

in which # stands for the binary operator, arithmetic or relational, to be overloaded;
returnType is the type of value returned by the function; and className is the name
of the class for which the operator is being overloaded.

Function Definition:

returnType className::operator#
(const className& otherObject) const

{

//algorithm to perform the operation

return value;
}

The return type of the functions that overload relational operators is bool.

EXAMPLE 13-4

Let us overload +, *, ==, and != for the class rectangleType. These operators are
overloaded as member functions.

class rectangleType
{

public:
void setDimension(double l, double w);
double getLength() const;
double getWidth() const;
double area() const;
double perimeter() const;
void print() const;

rectangleType operator+(const rectangleType&) const;
//Overload the operator +

rectangleType operator*(const rectangleType&) const;
//Overload the operator *

868 | Chapter 13: Overloading and Templates

1

3

bool operator==(const rectangleType&) const;
//Overload the operator ==

bool operator!=(const rectangleType&) const;
//Overload the operator !=

rectangleType();
rectangleType(double l, double w);

private:
double length;
double width;

};

The definition of the function operator+ is as follows:

rectangleType rectangleType::operator+
(const rectangleType& rectangle) const

{

rectangleType tempRect;

tempRect.length = length + rectangle.length;
tempRect.width = width + rectangle.width;

return tempRect;
}

Notice that operator+ adds the corresponding lengths and widths of the two rectangles.
The definition of the function operator* is as follows:

rectangleType rectangleType::operator*
(const rectangleType& rectangle) const

{

rectangleType tempRect;

tempRect.length = length * rectangle.length;
tempRect.width = width * rectangle.width;

return tempRect;
}

Notice that operator*multiplies the corresponding lengths and widths of the two rectangles.

Two rectangles are equal if their lengths and widths are equal. Therefore, the definition
of the function to overload the operator == is:

bool rectangleType::operator==
(const rectangleType& rectangle) const

{

return (length == rectangle.length &&
width == rectangle.width);

}

Two rectangles are not equal if either their lengths are not equal or their widths are not
equal. Therefore, the definition of the function to overload the operator != is:

Operator Overloading | 869

bool rectangleType::operator!=
(const rectangleType& rectangle) const

{

return (length != rectangle.length ||
width != rectangle.width);

}

(Note that after writing the definition of the function to overload the operator ==, you
can use it to write the definition of the function to overload the operator !=. We leave
the details as an exercise.)

Consider the following program. (We assume that the definition of the class
rectangleType is in the header file rectangleType.h.)

//This program shows how to use the class rectangleType.

#include <iostream>
#include "rectangleType.h"

using namespace std;

int main()
{

rectangleType rectangle1(23, 45); //Line 1
rectangleType rectangle2(12, 10); //Line 2
rectangleType rectangle3; //Line 3
rectangleType rectangle4; //Line 4

cout << "Line 5: rectangle1: "; //Line 5
rectangle1.print(); //Line 6
cout << endl; //Line 7

cout << "Line 8: rectangle2: "; //Line 8
rectangle2.print(); //Line 9
cout << endl; //Line 10

rectangle3 = rectangle1 + rectangle2; //Line 11

cout << "Line 12: rectangle3: "; //Line 12
rectangle3.print(); //Line 13
cout << endl; //Line 14

rectangle4 = rectangle1 * rectangle2; //Line 15

cout << "Line 16: rectangle4: "; //Line 16
rectangle4.print(); //Line 17
cout << endl; //Line 18

if (rectangle1 == rectangle2) //Line 19
cout << "Line 20: rectangle1 and "

<< "rectangle2 are equal." << endl; //Line 20
else //Line 21

cout << "Line 22: rectangle1 and "
<< "rectangle2 are not equal."
<< endl; //Line 22

870 | Chapter 13: Overloading and Templates

1

3

if (rectangle1 != rectangle3) //Line 23
cout << "Line 24: rectangle1 and "

<< "rectangle3 are not equal."
<< endl; //Line 24

else //Line 25
cout << "Line 25: rectangle1 and "

<< "rectangle3 are equal." << endl; //Line 26

return 0;
}

Sample Run:

Line 5: rectangle1: Length = 23; Width = 45
Line 8: rectangle2: Length = 12; Width = 10
Line 12: rectangle3: Length = 35; Width = 55
Line 16: rectangle4: Length = 276; Width = 450
Line 22: rectangle1 and rectangle2 are not equal.
Line 24: rectangle1 and rectangle3 are not equal.

For the most part, the preceding output is self-explanatory. However, let us look at the
statements in Lines 11, 15, 19, and 23. The statement in Line 11 uses the operator + to
add the lengths and widths of rectangle1 and rectangle2 and stores the result in
rectangle3. (That is, after the execution of this statement, the length of rectangle3
is the sum of the lengths of rectangle1 and rectangle2, and the width of
rectangle3 is the sum of the widths of rectangle1 and rectangle2. The statement
in Line 13 outputs the length and width of rectangle3.) Similarly, the statement in
Line 15 uses the operator * to multiply the lengths and widths of rectangle1 and
rectangle2 and stores the result in rectangle4. (The statement in Line 17 outputs
the length and width of rectangle4.) The statement in Line 19 uses the relational
operator == to determine whether the dimensions of rectangle1 and rectangle2 are
the same. Similarly, the statement in Line 23 uses the relational operator != to determine
whether the dimensions of rectangle1 and rectangle3 are the same.

OVERLOADING THE BINARY OPERATORS (ARITHMETIC OR RELATIONAL) AS

NONMEMBER FUNCTIONS

Suppose that # represents the binary operator (arithmetic or relational) that is to be
overloaded as a nonmember function of the class rectangleType.

Further suppose that the following operation is to be performed:

myRectangle # yourRectangle

In this case, the expression is compiled as:

operator#(myRectangle, yourRectangle)

Here, we see that the function operator# has two parameters. This expression also clearly
shows that the function operator# is neither a member of the object myRectangle

Operator Overloading | 871

nor a member of the object yourRectangle. Both of the objects, myRectangle and
yourRectangle, are passed as parameters to the function operator#.

To include the operator function operator# as a nonmember function of the class in
the definition of the class, the reserved word friend must appear before the function
heading. Also, the function operator# must have two parameters.

GENERAL SYNTAX TO OVERLOAD THE BINARY (ARITHMETIC OR RELATIONAL)

OPERATORS AS NONMEMBER FUNCTIONS

This section describes the general form of the functions to overload the binary operators
as nonmember functions of a class.

Function Prototype (to be included in the definition of the class):

friend returnType operator#(const className&,
const className&);

in which # stands for the binary operator to be overloaded; returnType is the type of
value returned by the function; and className is the name of the class for which the
operator is being overloaded.

Function Definition:

returnType operator#(const className& firstObject,
const className& secondObject)

{

//algorithm to perform the operation

return value;
}

EXAMPLE 13-5

This example illustrates how to overload the operators + and == as nonmember functions
of the class rectangleType.

To include the operator function operator+ as a nonmember function of the class
rectangleType, its prototype in the definition of rectangleType is:

friend rectangleType operator+(const rectangleType&,
const rectangleType&);

The definition of the function operator+ is as follows:

rectangleType operator+(const rectangleType& firstRect,
const rectangleType& secondRect)

872 | Chapter 13: Overloading and Templates

1

3

{

rectangleType tempRect;

tempRect.length = firstRect.length + secondRect.length;
tempRect.width = firstRect.width + secondRect.width;

return tempRect;
}

In the preceding definition, the corresponding member variables of firstRect and
secondRect are added, and the result is stored in tempRect. Recall that the private
members of a class are local to the class and, therefore, cannot be accessed outside of the
class. If we follow this rule, then because operator+ is not a member of the class
rectangleType, its definition expressions such as firstRect.length must be
illegal because length is a private member of firstRect. However, because
operator+ is declared as a friend function of the class rectangleType, an object
of type rectangleType can access its private members in the definition of
operator+. Also, note that in the function heading, the name of the class—that
is, rectangleType—and the scope resolution operator are not included before the name
of the function operator+, because the function operator+ is not a member of the class.

To include the operator function operator== as a nonmember function of the class
rectangleType, its prototype in the definition of rectangleType is:

friend bool operator==(const rectangleType& ,
const rectangleType&);

The definition of the function operator== is as follows:

bool operator==(const rectangleType& firstRect,
const rectangleType& secondRect)

{

return (firstRect.length == secondRect.length &&
firstRect.width == secondRect.width);

}

You can write a program similar to the one in Example 13-4 to test the overloading of
the operators + and == as nonmembers.

Overloading the Stream Insertion (<<) and Extraction (>>)
Operators
The operator function that overloads the insertion operator, <<, or the extraction operator,
>>, for a class must be a nonmember function of that class for the following reason.

Consider the expression:

cout << myRectangle;

In this expression, the far left operand of << (that is, cout) is an ostream object, not an
object of type rectangleType. Because the far left operand of << is not an object of

Operator Overloading | 873

type rectangleType, the operator function that overloads the insertion operator for
rectangleType must be a nonmember function of the class rectangleType.

Similarly, the operator function that overloads the stream extraction operator for
rectangleType must be a nonmember function of the class rectangleType.

OVERLOADING THE STREAM INSERTION OPERATOR (<<)

The general syntax to overload the stream insertion operator, <<, for a class is described next.

Function Prototype (to be included in the definition of the class):

friend ostream& operator<<(ostream&, const className&);

Function Definition:

ostream& operator<<(ostream& osObject, const className& cObject)
{

//local declaration, if any
//Output the members of cObject.
//osObject << . . .

//Return the stream object.
return osObject;

}

In this function definition:

• Both parameters are reference parameters.

• The first parameter—that is, osObject— is a reference to an ostream

object.

• The second parameter is usually a const reference to a particular class,
because (recall from Chapter 10) the most effective way to pass an object
as a parameter to a class is by reference. In this case, the formal parameter
does not need to copy the member variables of the actual parameter. The
word const appears before the class name because we want to print only
the member variables of the object. That is, the function should not
modify the member variables of the object.

• The function return type is a reference to an ostream object.

The return type of the function to overload the operator << must be a reference to an
ostream object for the following reasons.

Suppose that the operator << is overloaded for the class rectangleType. The statement:

cout << myRectangle;

is equivalent to the statement:

operator<<(cout, myRectangle);

874 | Chapter 13: Overloading and Templates

This is a perfectly legal statement because both of the actual parameters are objects, not
the value of the objects. The first parameter, cout, is of type ostream; the second
parameter, myRectangle, is of type rectangleType.

Now consider the following statement:

cout << myRectangle << yourRectangle;

This statement is equivalent to the statement:

operator<<(operator<<(cout, myRectangle), yourRectangle); //Line A

because the associativity of the operator << is from left to right.

To execute the previous statement, you must first execute the expression:

cout << myRectangle

that is, the expression:

operator<<(cout, myRectangle)

After executing this expression, which outputs the value of myRectangle, whatever is
returned by the function operator << will become the left-side parameter of the
operator << (that is, the first parameter of the function operator<<) in order to output
the value of object yourRectangle (see the statement in Line A). Because the left-side
parameter of the operator << must be an object of the ostream type, the expression:

cout << myRectangle

must return the object cout (not its value) in order to output the value of yourRectangle.

Therefore, the return type of the function operator<< must be a reference to an object
of the ostream type.

OVERLOADING THE STREAM EXTRACTION OPERATOR (>>)

The general syntax to overload the stream extraction operator, >>, for a class is described next.

Function Prototype (to be included in the definition of the class):

friend istream& operator>>(istream&, className&);

Function Definition:

istream& operator>>(istream& isObject, className& cObject)
{

//local declaration, if any
//Read the data into cObject.
//isObject >> . . .

//Return the stream object.
return isObject;

}

1

3

Operator Overloading | 875

In this function definition:

• Both parameters are reference parameters.

• The first parameter—that is, isObject—is a reference to an istream

object.

• The second parameter is usually a reference to a particular class. The data
read will be stored in the object.

• The function return type is a reference to an istream object.

For the same reasons as explained previously (when we overloaded the insertion operator
<<), the return type of the function operator>> must be a reference to an istream

object. We can then successfully execute statements of the following type:

cin >> myRectangle >> yourRectangle;

Example 13-6 shows how the stream insertion and extraction operators are overloaded
for the class rectangleType.

EXAMPLE 13-6

The definition of the class rectangleType and the definitions of the operator
functions are:

#include <iostream>

using namespace std;

class rectangleType
{

//Overload the stream insertion and extraction operators
friend ostream& operator<< (ostream&, const rectangleType &);
friend istream& operator>> (istream&, rectangleType &);

public:
void setDimension(double l, double w);
double getLength() const;
double getWidth() const;
double area() const;
double perimeter() const;
void print() const;

rectangleType operator+(const rectangleType&) const;
//Overload the operator +

rectangleType operator*(const rectangleType&) const;
//Overload the operator *

bool operator==(const rectangleType&) const;
//Overload the operator ==

bool operator!=(const rectangleType&) const;
//Overload the operator !=

876 | Chapter 13: Overloading and Templates

1

3

rectangleType();
rectangleType(double l, double w);

private:
double length;
double width;

};

Notice that we have removed the member function print because we are overloading
the stream insertion operator <<.

//The definitions of the functions operator+, operator*,
//operator==, and operator!= are the same as in Example 13-5.

ostream& operator<< (ostream& osObject,
const rectangleType& rectangle)

{

osObject << "Length = " << rectangle.length
<< "; Width = " << rectangle.width;

return osObject;
}

istream& operator>> (istream& isObject,
rectangleType& rectangle)

{

isObject >> rectangle.length >> rectangle.width;

return isObject;
}

Consider the following program. (We assume that the definition of the class
rectangleType is in the header file rectangleType.h.)

//This program shows how to use the modified class rectangleType.

#include <iostream>

#include "rectangleType.h"

using namespace std;

int main()
{

rectangleType myRectangle(23, 45); //Line 1
rectangleType yourRectangle; //Line 2

cout << "Line 3: myRectangle: " << myRectangle
<< endl; //Line 3

cout << "Line 4: Enter the length and width "
<<"of a rectangle: "; //Line 4

cin >> yourRectangle; //Line 5
cout << endl; //Line 6

Operator Overloading | 877

cout << "Line 7: yourRectangle: "
<< yourRectangle << endl; //Line 7

cout << "Line 8: myRectangle + yourRectangle: "
<< myRectangle + yourRectangle << endl; //Line 8

cout << "Line 9: myRectangle * yourRectangle: "
<< myRectangle * yourRectangle << endl; //Line 9

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Line 3: myRectangle: Length = 23; Width = 45
Line 4: Enter the length and width of a rectangle: 32 15

Line 7: yourRectangle: Length = 32; Width = 15
Line 8: myRectangle + yourRectangle: Length = 55; Width = 60
Line 9: myRectangle * yourRectangle: Length = 736; Width = 675

The statements in Lines 1 and 2 declare and initialize myRectangle and yourRectangle

to be objects of type rectangleType. The statement in Line 3 outputs the value of
myRectangle using cout and the insertion operator. The statement in Line 5 inputs the
data into yourRectangle using cin and the extraction operator. The statement in Line 7
outputs the value of yourRectangle using cout and the insertion operator. The cout

statement in Line 8 adds the lengths and widths of myRectangle and yourRectangle

and outputs the result. Similarly, the cout statement in Line 9 multiplies the lengths and
widths of myRectangle and yourRectangle and outputs the result. The output shows
that both the stream insertion and stream extraction operators were overloaded successfully.

Overloading the Assignment Operator (=)
One of the built-in operations on classes is the assignment operation. The assignment
operator causes a member-wise copy of the member variables of the class. For example,
the statement:

myRectangle = yourRectangle;

is equivalent to the statements:

myRectangle.length = yourRectangle.length;
myRectangle.width = yourRectangle.width;

From Chapter 12, recall that the built-in assignment operator works well for classes that
do not have pointer member variables, but not for classes with pointer member variables.
Therefore, to avoid the shallow copy of data for classes with pointer member variables,
we must explicitly overload the assignment operator.

Recall that to overload the assignment operator = for a class, the operator function
operator= must be a member of that class.

878 | Chapter 13: Overloading and Templates

1

3

GENERAL SYNTAX TO OVERLOAD THE ASSIGNMENT OPERATOR = FOR A CLASS

The general syntax to overload the assignment operator = for a class is described next.

Function Prototype (to be included in the definition of the class):

const className& operator=(const className&);

Function Definition:

const className& className::operator=
(const className& rightObject)

{

//local declaration, if any

if (this != &rightObject) //avoid self-assignment
{

//algorithm to copy rightObject into this object
}

//Return the object assigned.
return *this;

}

In the definition of the function operator=:

• There is only one formal parameter.

• The formal parameter is usually a const reference to a particular class.

• The function return type is a const reference to a particular class.

We now explain why the return type of the function operator= should be a reference
of the class type.

Suppose that the assignment operator = is overloaded for the class rectangleType.
The statement:

myRectangle = yourRectangle;

is equivalent to the statement:

myRectangle.operator=(yourRectangle);

That is, the object yourRectangle becomes the actual parameter to the function:

operator=

Now consider the statement:

myRectangle = yourRectangle = tempRect;

Because the associativity of the operator = is from right to left, this statement is equivalent
to the statement:

myRectangle.operator=(yourRectangle.operator=(tempRect)); //Line A

Operator Overloading | 879

Clearly, we must first execute the expression:

yourRectangle.operator=(tempRect)

that is, the expression:

yourRectangle = tempRect

The value returned by the expression:

yourRectangle.operator=(tempRect)

will become the parameter to the function operator= in order to assign a value to the
object myRectangle (see the statement in Line A). Because the formal parameter of the
function operator= is a reference parameter, the expression:

yourRectangle.operator=(tempRect)

must return a reference to the object, rather than its value. That is, it must return a
reference to the object yourRectangle, not the value of yourRectangle. For this
reason, the return type of the function to overload the assignment operator = for a class
must be a reference to the class type.

Now consider the statement:

myRectangle = myRectangle; //Line B

Here, we are trying to copy the value of myRectangle into myRectangle; that is, this
statement is a self-assignment. One reason why we must prevent such assignments is
because they waste computer time. First, however, we explain how the body of the
assignment operator prevents such assignments.

As noted above, the body of the function operator= does prevent assignments, such as
the one given in Line B. Let us see how.

Consider the if statement in the body of the operator function operator=:

if (this != &rightObject) //avoid self-assignment
{

//algorithm to copy rightObject into this object
}

The statement:

myRectangle = myRectangle;

is compiled into the statement:

myRectangle.operator=(myRectangle);

Because the function operator= is invoked by the object myRectangle, the pointer
this in the body of the function operator= refers to the object myRectangle.
Furthermore, because myRectangle is also a parameter of the function operator=,

880 | Chapter 13: Overloading and Templates

the formal parameter rightObject also refers to the object myRectangle. Therefore,
in the expression:

this != &rightObject

this and &rightObject both mean the address of myRectangle. Thus, the expres-
sion will evaluate to false and, therefore, the body of the if statement will be skipped.

This note illustrates another reason why the body of the operator function must prevent

self-assignments. Let us consider the following class:

class arrayClass
{

public:
const arrayClass& operator= (const& arrayClass);
.
.
.

private:
int *list;
int length;
int maxSize;

};

The class arrayClass has a pointer member variable, list, which is used to

create an array to store integers. Suppose that the definition of the function to overload

the assignment operator for the class arrayClass is written without the if
statement, as follows:

const arrayClass & arrayClass::operator=
(const arrayClass& otherList)

{

delete [] list; //Line 1
maxSize = otherList.maxSize; //Line 2
length = otherList.length; //Line 3

list = new int[maxSize]; //Line 4

for (int i = 0; i < length; i++) //Line 5
list[i] = otherList.list[i]; //Line 6

return *this; //Line 7
}

Suppose that we have the following declaration in a user program:

arrayClass myList;

Consider the following statement:

myList = myList;

1

3

Operator Overloading | 881

This is a self-assignment. When this statement executes in the body of the function

operator=:

1. listmeans myList.list, maxSizemeans myList.maxSize,
and lengthmeans myList.length.

2. otherList is the same as myList.

The statement in Line 1 destroys list, that is, myList.list, so the array

holding the numbers no longer exists. That is, it is not valid. The problem is in

Line 6. Here, the expression list[i] = otherList.list[i] is equivalent to

the statement myList.list[i] = myList.list[i]. Because

myList.list[i] has no valid data (it was destroyed in Line 1), the statement in

Line 6 produces garbage.

It follows that the definition of the function operator= must prevent self-assignments.

The correct definition of operator= for the class arrayClass is:

const arrayClass& arrayClass::operator=
(const arrayClass& otherList)

{

if (this != & otherList) //Line 1
{

delete [] list; //Line 2
maxSize = otherList.maxSize; //Line 3
length = otherList.length; //Line 4

list = new int[maxSize]; //Line 5

for (int i = 0; i < length; i++) //Line 6
list[i] = otherList.list[i]; //Line 7

}

return *this; //Line 8
}

The following example illustrates how to overload the assignment operator.

EXAMPLE 13-7

Consider the following class:

class cAssignmentOprOverload
{

public:
const cAssignmentOprOverload&

operator=(const cAssignmentOprOverload& otherList);
//Overload assignment operator

882 | Chapter 13: Overloading and Templates

1

3

void print() const;
//Function to print the list

void insertEnd(int item);
//Function to insert an item at the end of the list
//Postcondition: if the list is not full,
// length++; list[length] = item;
// if the list is full,
// output an appropriate message

void destroyList();
//Function to destroy the list
//Postcondition: length = 0; maxSize = 0; list = NULL;

cAssignmentOprOverload(int size = 0);
//Constructor
//Postcondition: length = 0; maxSize = size;
// list is an array of size maxSize

private:
int maxSize;
int length;
int *list;

};

The definitions of the member functions of the class cAssignmentOprOverload are:

void cAssignmentOprOverload::print() const
{

if (length == 0)
cout << "The list is empty." << endl;

else
{

for (int i = 0; i < length; i++)
cout << list[i] << " ";

cout << endl;
}

}

void cAssignmentOprOverload::insertEnd(int item)
{

if (length == maxSize)
cout << "List is full" << endl;

else
list[length++] = item;

}

void cAssignmentOprOverload::destroyList()
{

delete [] list;
list = NULL;
length = 0;
maxSize = 0;

}

Operator Overloading | 883

cAssignmentOprOverload::cAssignmentOprOverload(int size)
{

maxSize = size;
length = 0;

if (maxSize == 0)
list = NULL;

else
list = new int[maxSize];

}

const cAssignmentOprOverload& cAssignmentOprOverload::operator=
(const cAssignmentOprOverload& otherList)

{

if (this != &otherList) //avoid self-assignment; Line 1
{

delete [] list; //Line 2
maxSize = otherList.maxSize; //Line 3
length = otherList.length; //Line 4

list = new int[maxSize]; //Line 5

for (int i = 0; i < length; i++) //Line 6
list[i] = otherList.list[i]; //Line 7

}

return *this; //Line 8
}

The function to overload the assignment operator works as follows. The statement in
Line 1 checks whether an object is copying itself. The statement in Line 2 destroys
list. The statements in Lines 3 and 4 copy the values of the member variables
maxSize and length of otherList into the member variables maxSize and
length of list, respectively. The statement in Line 5 creates the array to store the
numbers. The for loop in Line 6 copies otherList into list. The statement in
Line 8 returns the address of this object, because the return type of the function
operator= is a reference type.

The following program tests the class cAssignmentOprOverload:

#include <iostream>

#include "classAssignmentOverload.h"

using namespace std;
int main()
{

cAssignmentOprOverload intList1(10); //Line 9
cAssignmentOprOverload intList2; //Line 10
cAssignmentOprOverload intList3; //Line 11

884 | Chapter 13: Overloading and Templates

int i; //Line 12
int number; //Line 13

cout << "Line 14: Enter 5 integers: "; //Line 14

for (i = 0; i < 5; i++) //Line 15
{

cin >> number; //Line 16
intList1.insertEnd(number); //Line 17

}

cout << endl; //Line 18
cout << "Line 19: intList1: "; //Line 19
intList1.print(); //Line 20

intList3 = intList2 = intList1; //Line 21

cout << "Line 22: intList2: "; //Line 22
intList2.print(); //Line 23

intList2.destroyList(); //Line 24

cout << endl; //Line 25
cout << "Line 26: intList2: "; //Line 26
intList2.print(); //Line 27

cout << "Line 28: After destroying intList2, "
<< "intList1: "; //Line 28

intList1.print(); //Line 29

cout << "Line 30: After destroying intList2, "
<< "intList3: "; //Line 30

intList3.print(); //Line 31
cout << endl; //Line 32

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Line 14: Enter 5 integers: 8 5 3 7 2

Line 19: intList1: 8 5 3 7 2
Line 22: intList2: 8 5 3 7 2

Line 26: intList2: The list is empty.
Line 28: After destroying intList2, intList1: 8 5 3 7 2
Line 30: After destroying intList2, intList3: 8 5 3 7 2

The statement in Line 9 creates intList1 of size 10; the statements in Lines 10 and 11
create intList2 and intList3 of (default) size 50. The statements in Lines 15 through
17 input the data into intList1, and the statement in Line 20 outputs intList1. The

1

3

Operator Overloading | 885

statement in Line 21 copies intList1 into intList2 and then copies intList2 into
intList3. The statement in Line 23 outputs intList2 (see Line 22 in the sample run,
which contains the output of Lines 22 and 23). The statement in Line 24 destroys
intList2. The statement in Line 27 outputs intList2, which is empty. (See Line
26 in the sample run, which contains the output of Lines 26 and 27.) After destroying
intList2, the program outputs the contents of intList1 and intList3 (see Lines 28
and 30 in the sample run). The sample run clearly shows that the destruction of
intList2 affects neither intList1 nor intList3, because intList1 and intList3

each have their own data.

Overloading Unary Operators
The process of overloading unary operators is similar to the process of overloading binary
operators. The only difference is that in the case of binary operators, the operator has two
operands. In the case of unary operators, the operator has only one parameter. Therefore,
to overload a unary operator for a class:

1. If the operator function is a member of the class, it has no parameters.

2. If the operator function is a nonmember—that is, a friend function of
the class—it has one parameter.

Next, we describe how to overload the increment and decrement operators.

OVERLOADING THE INCREMENT (++) AND DECREMENT (--) OPERATORS

The increment operator has two forms: pre-increment (++u) and post-increment (u++), in
which u is a variable, say, of type int. In the case of pre-increment, ++u, the value of the
variable, u, is incremented by 1 before the value of u is used in an expression. In the case of
post-increment, the value of u is used in the expression before it is incremented by 1.

Overloading the Pre-Increment Operator. Overloading the pre-increment operator is quite
straightforward. In the function definition, first we increment the value of the object,
and then we use the pointer this to return the object’s value.

For example, suppose that we overload the pre-increment operator for the class
rectangleType to increment the length and width of a rectangle by 1. Also, suppose
that the operator function operator++ is a member of the class rectangleType.
The operator function operator++ then has no parameters. Because the operator
function operator++ has no parameters, we use the pointer this to return the
incremented value of the object:

rectangleType rectangleType::operator++()
{

//increment the length and width
++length;
++width;

886 | Chapter 13: Overloading and Templates

return *this; //return the incremented value of the object
}

Because myRectangle is an object of type rectangleType, the statement:

++myRectangle;

increments the values of the length and width of myRectangle by 1. Moreover, the pointer
this associated with myRectangle returns the incremented value of myRectangle,
which is ignored.

Now, yourRectangle is also an object of type rectangleType, so the statement:

yourRectangle = ++myRectangle;

increments the length and width of myRectangle by 1, and the pointer this associated
with myRectangle returns the incremented value of myRectangle, which is copied
into yourRectangle.

GENERAL SYNTAX TO OVERLOAD THE PRE-INCREMENT OPERATOR ++ AS A MEMBER FUNCTION

The general syntax to overload the pre-increment operator ++ as a member function is
described next.

Function Prototype (to be included in the definition of the class):

className operator++();

Function Definition:

className className::operator++()
{

//increment the value of the object by 1
return *this;

}

The operator function to overload the pre-increment operator can also be a nonmember
of the class rectangleType, which we describe next.

Because the operator function operator++ is a nonmember function of the class
rectangleType, it has one parameter, which is an object of type rectangleType. (As
before, we assume that the increment operator increments the length andwidth of a rectangle
by 1.)

rectangleType operator++(rectangleType& rectangle)
{

//increment the length and width of the rectangle
(rectangle.length)++;
(rectangle.width)++;
return rectangle; //return the incremented

//value of the object
}

1

3

Operator Overloading | 887

GENERAL SYNTAX TO OVERLOAD THE PRE-INCREMENT OPERATOR ++ AS A NONMEMBER FUNCTION

The general syntax to overload the pre-increment operator ++ as a nonmember function
is described next.

Function Prototype (to be included in the definition of the class):

friend className operator++(className&);

Function Definition:

className operator++(className& incObj)
{

//increment incObj by 1
return incObj;

}

OVERLOADING THE POST-INCREMENT OPERATOR

We now discuss how to overload the post-increment operator. As in the case of the pre-
increment operator, we first describe the overloading of this operator as a member of a class.

Let us overload the post-increment operator for the class rectangleType. In both cases,
pre- and post-increment, the name of the operator function is the same—operator++. To
distinguish between pre- and post-increment operator overloading, we use a dummy
parameter (of type int) in the function heading of the operator function. Thus, the function
prototype for the post-increment operator of the class rectangleType is:

rectangleType operator++(int);

The statement:

myRectangle++;

is compiled by the compiler in the statement:

myRectangle.operator++(0);

and so the function operator++ with a parameter executes. The parameter 0 is used
merely to distinguish between the pre- and post-increment operator functions.

The post-increment operator first uses the value of the object in the expression and then
increments the value of the object. So the steps required to implement this function are:

1. Save the value of the object—in, say, temp.

2. Increment the value of the object.

3. Return the value that was saved in temp.

The function definition of the post-increment operator for the class rectangleType is:

rectangleType rectangleType::operator++(int u)

888 | Chapter 13: Overloading and Templates

1

3

{

rectangleType temp = *this; //use this pointer to copy
//the value of the object

//increment the length and width
length++;
width++;

return temp; //return the old value of the object
}

GENERAL SYNTAX TO OVERLOAD THE POST-INCREMENT OPERATOR ++ AS A MEMBER FUNCTION

The general syntax to overload the post-increment operator ++ as a member function is
described next.

Function Prototype (to be included in the definition of the class):

className operator++(int);

Function Definition:

className className::operator++(int u)
{

className temp = *this; //use this pointer to copy
//the value of the object

//increment the object

return temp; //return the old value of the object
}

The post-increment operator can also be overloaded as a nonmember function of the
class. In this situation, the operator function operator++ has two parameters. The
definition of the function to overload the post-increment operator for the class
rectangleType as a nonmember is:

rectangleType operator++(rectangleType& rectangle, int u)
{

rectangleType temp = rectangle; //copy rectangle into temp

//increment the length and width of rectangle
(rectangle.length)++;
(rectangle.width)++;

return temp; //return the old value of the object
}

GENERAL SYNTAX TO OVERLOAD THE POST-INCREMENT OPERATOR ++ AS A NONMEMBER FUNCTION

The general syntax to overload the post-increment operator ++ as a nonmember function
is described next.

Operator Overloading | 889

Function Prototype (to be included in the definition of the class):

friend className operator++(className&, int);

Function Definition:

className operator++(className& incObj, int u)
{

className temp = incObj; //copy incObj into temp

//increment incObj

return temp; //return the old value of the object
}

The decrement operators can be overloaded in a similar way, the details of which are left
as an exercise for you.

Let us now write the definition of the class rectangleType and show how the
operator functions appear in the class definition. Because certain operators can be over-
loaded as either member or nonmember functions, we give two equivalent definitions of
the class rectangleType. In the first definition, the increment, decrement, arith-
metic, and relational operators are overloaded as member functions. In the second
definition, the increment, decrement, arithmetic, and relational operators are overloaded
as nonmember functions.

The definition of the class rectangleType is as follows:

//Definition of the class rectangleType
//The increment, decrement, arithmetic, and relational
//operator functions are members of the class.

#include <iostream>

using namespace std;

class rectangleType
{

//Overload the stream insertion and extraction operators
friend ostream& operator<<(ostream&, const rectangleType &);
friend istream& operator>>(istream&, rectangleType &);

public:
void setDimension(double l, double w);
double getLength() const;
double getWidth() const;
double area() const;
double perimeter() const;

//Overload the arithmetic operators
rectangleType operator+(const rectangleType &) const;
rectangleType operator-(const rectangleType &) const;

890 | Chapter 13: Overloading and Templates

rectangleType operator*(const rectangleType&) const;
rectangleType operator/(const rectangleType&) const;

//Overload the increment and decrement operators
rectangleType operator++(); //pre-increment
rectangleType operator++(int); //post-increment
rectangleType operator--(); //pre-decrement
rectangleType operator--(int); //post-decrement

//Overload the relational operators
bool operator==(const rectangleType&) const;
bool operator!=(const rectangleType&) const;
bool operator<=(const rectangleType&) const;
bool operator<(const rectangleType&) const;
bool operator>=(const rectangleType&) const;
bool operator>(const rectangleType&) const;

//Constructors
rectangleType();
rectangleType(double l, double w);

private:
double length;
double width;

};

Following is the definition of the class rectangleType, in which the increment,
decrement, arithmetic, and relational operators are overloaded as nonmembers.

//Definition of the class rectangleType
//The increment, decrement, arithmetic, and relational
//operator functions are nonmembers of the class.

#include <iostream>

using namespace std;

class rectangleType
{

//Overload the stream insertion and extraction operators
friend ostream& operator<<(ostream&, const rectangleType&);
friend istream& operator>>(istream&, rectangleType&);

//Overload the arithmetic operators
friend rectangleType operator+(const rectangleType&,

const rectangleType&);
friend rectangleType operator-(const rectangleType&,

const rectangleType&);
friend rectangleType operator*(const rectangleType&,

const rectangleType&);
friend rectangleType operator/(const rectangleType&,

const rectangleType&);

1

3

Operator Overloading | 891

//Overload the increment and decrement operators
friend rectangleType operator++(rectangleType&);

//pre-increment
friend rectangleType operator++(rectangleType&, int);

//post-increment
friend rectangleType operator--(rectangleType&);

//pre-decrement
friend rectangleType operator--(rectangleType&, int);

//post-decrement

//Overload the relational operators
friend bool operator==(const rectangleType&,

const rectangleType&);
friend bool operator!=(const rectangleType&,

const rectangleType&);
friend bool operator<=(const rectangleType&,

const rectangleType&);
friend bool operator<(const rectangleType&,

const rectangleType&);
friend bool operator>=(const rectangleType&,

const rectangleType&);
friend bool operator>(const rectangleType&,

const rectangleType&);

public:
void setDimension(double l, double w);
double getLength() const;
double getWidth() const;
double area() const;
double perimeter() const;

//Constructors
rectangleType();
rectangleType(double l, double w);

private:
double length;
double width;

};

The definitions of the functions to overload the operators for the class rectangleType

are left as an exercise for you. (See Programming Exercises 1 and 2 at the end of this chapter.)

Operator Overloading: Member versus Nonmember
The preceding sections discussed and illustrated how to overload operators. Certain
operators must be overloaded as member functions of the class, and some must be
overloaded as nonmember (friend) functions. What about the operators that can be
overloaded as either member functions or nonmember functions? For example, the
binary arithmetic operator + can be overloaded as a member function or a nonmember
function. If you overload + as a member function, then the operator + has direct access to
the member variables of one of the objects, and you need to pass only one object as a

892 | Chapter 13: Overloading and Templates

parameter. On the other hand, if you overload + as a nonmember function, then you must
pass both objects as parameters. When both objects are passed as parameters, the code may
become somewhat clearer. So it is a matter of preference whether you overload + as a
member or as a nonmember function. In the remainder of this chapter, if we overload an
operator as a member function, we will leave it as an exercise for you to overload it as a
nonmember function.

Classes and Pointer Member Variables (Revisited)
Chapter 12 described the peculiarities of classes with pointer member variables. Now that
we have discussed how to overload various operators, let us review the peculiarities of classes
with pointer member variables, for the sake of completeness, and how to avoid them.

Recall that the only built-in operations on classes are assignment and member selection.
The assignment operator provides a member-wise copy of the data. That is, the member
variables of an object are copied into the corresponding member variables of another
object of the same type. We have seen that this member-wise copy does not work well
for classes with pointer member variables. Other problems that may arise with classes with
pointer member variables relate to deallocating dynamic memory when an object goes
out of scope and passing a class object as a parameter by value. To resolve these problems,
classes with pointer member variables must:

1. Explicitly overload the assignment operator

2. Include the copy constructor

3. Include the destructor

Operator Overloading: One Final Word
Next, we look at three examples that illustrate operator overloading. Before delving into
these examples, you must remember the following: Suppose that an operator op is
overloaded for a class—say, rectangleType. Whenever we use the operator op on
objects of type rectangleType, the body of the function that overloads the operator op
for the class rectangleType executes. Therefore, whatever code you put in the body
of the function executes.

1

3
PROGRAMMING EXAMPLE: clockType

Chapter 10 defined a class clockType to implement the time of day in a program.
We implemented the operations to print the time, increment the time, and compare
the two times for equality using functions. This example redefines the class
clockType. It also overloads the stream insertion and extraction operators for easy
input and output, relational operators for comparisons, and the increment operator to
increment the time by one second. The program that uses the class clockType

requires the user to input the time in the form hr:min:sec.

Watch

the Video

Programming Example: clockType | 893

The definition of the class clockType is as follows:

//Header file newClock.h

#ifndef H_newClock
#define H_newClock

#include <iostream>

using namespace std;

class clockType
{

friend ostream& operator<<(ostream&, const clockType&);
friend istream& operator>>(istream&, clockType&);

public:
void setTime(int hours, int minutes, int seconds);

//Function to set the member variables hr, min, and sec.
//Postcondition: hr = hours; min = minutes; sec = seconds;

void getTime(int& hours, int& minutes, int& seconds) const;
//Function to return the time.
//Postcondition: hours = hr; minutes = min; seconds = sec;

clockType operator++();
//Overload the pre-increment operator.
//Postcondition: The time is incremented by one second.

bool operator==(const clockType& otherClock) const;
//Overload the equality operator.
//Postcondition: Returns true if the time of this clock
// is equal to the time of otherClock,
// otherwise it returns false.

bool operator!=(const clockType& otherClock) const;
//Overload the not equal operator.
//Postcondition: Returns true if the time of this clock
// is not equal to the time of otherClock,
// otherwise it returns false.

bool operator<=(const clockType& otherClock) const;
//Overload the less than or equal to operator.
//Postcondition: Returns true if the time of this clock
// is less than or equal to the time of
// otherClock, otherwise it returns false.

bool operator<(const clockType& otherClock) const;
//Overload the less than operator.
//Postcondition: Returns true if the time of this clock
// is less than the time of otherClock,
// otherwise it returns false.

894 | Chapter 13: Overloading and Templates

bool operator>=(const clockType& otherClock) const;
//Overload the greater than or equal to operator.
//Postcondition: Returns true if the time of this clock
// is greater than or equal to the time of
// otherClock, otherwise it returns false.

bool operator>(const clockType& otherClock) const;
//Overload the greater than operator.
//Postcondition: Returns true if the time of this clock
// is greater than the time of otherClock,
// otherwise it returns false.

clockType(int hours = 0, int minutes = 0, int seconds = 0);
//Constructor to initialize the object with the values
//specified by the user. If no values are specified,
//the default values are assumed.
//Postcondition: hr = hours; min = minutes;
// sec = seconds;

private:
int hr; //variable to store the hours
int min; //variable to store the minutes
int sec; //variable to store the seconds

};

#endif

Figure 13-1 shows a UML class diagram of the class clockType.

clockType

–hr: int

–min: int

–sec: int

+operator<<(ostream&, const clockType&): ostream&

+operator>>(istream&, clockType&): istream&

+setTime(int, int, int): void

+getTime(int&, int&, int&) const: void

+operator++(): clockType

+operator==(const clockType&) const: bool

+operator!=(const clockType&) const: bool

+operator<=(const clockType&) const: bool

+operator<(const clockType&) const: bool

+operator>=(const clockType&) const: bool

+operator>(const clockType&) const: bool

+clockType(int = 0, int = 0, int = 0)

FIGURE 13-1 UML class diagram of the class clockType

Programming Example: clockType | 895

Let us now write the definitions of the functions to implement the operations of the
class clockType. Notice that the class clockType overloads only the pre-
increment operator. For consistency, however, the class should also overload the
post-increment operator. This step is left as an exercise for you. (See Programming
Exercise 5 at the end of this chapter.)

First, we write the definition of the function operator++. The algorithm to
increment the time by one second is as follows:

a. Increment the seconds by 1.

b. If seconds > 59,

b.1. Set the seconds to 0.

b.2. Increment the minutes by 1.

b.3. If minutes > 59

b.3.1. Set the minutes to 0.

b.3.2. Increment the hours by 1.

b.3.3. If hours > 23,

b.3.3.1. Set the hours to 0.

c. Return the incremented value of the object.

The definition of the function operator++ is:

//Overload the pre-increment operator.
clockType clockType::operator++()
{

sec++; //Step a

if (sec > 59) //Step b
{

sec = 0; //Step b.1
min++; //Step b.2

if (min > 59) //Step b.3
{

min = 0; //Step b.3.1
hr++; //Step b.3.2

if (hr > 23) //Step b.3.3
hr = 0; //Step b.3.3.1

}

}

return *this; //Step c
}

The definition of the function operator== is quite simple. The two times are the
same if they have the same hours, minutes, and seconds. Therefore, the definition of
the function operator== is:

896 | Chapter 13: Overloading and Templates

1

3

//Overload the equality operator.
bool clockType::operator==(const clockType& otherClock) const
{

return (hr == otherClock.hr && min == otherClock.min
&& sec == otherClock.sec);

}

The definition of the function operator<= is given next. The first time is less than
or equal to the second time if:

1. The hours of the first time are less than the hours of the second time, or

2. The hours of the first time and the second time are the same, but the
minutes of the first time are less than the minutes of the second time, or

3. The hours and minutes of the first time and the second time are the
same, but the seconds of the first time are less than or equal to the
seconds of the second time.

The definition of the function operator<= is:

//Overload the less than or equal to operator.
bool clockType::operator<=(const clockType& otherClock) const
{

return ((hr < otherClock.hr) ||
(hr == otherClock.hr && min < otherClock.min) ||
(hr == otherClock.hr && min == otherClock.min &&
sec <= otherClock.sec));

}

In a similar manner, we can write the definitions of the other relational operator
functions as follows:

//Overload the not equal operator.
bool clockType::operator!=(const clockType& otherClock) const
{

return (hr != otherClock.hr || min != otherClock.min
|| sec != otherClock.sec);

}

//Overload the less than operator.
bool clockType::operator<(const clockType& otherClock) const
{

return ((hr < otherClock.hr) ||
(hr == otherClock.hr && min < otherClock.min) ||
(hr == otherClock.hr && min == otherClock.min &&
sec < otherClock.sec));

}

//Overload the greater than or equal to operator.
bool clockType::operator>=(const clockType& otherClock) const

Programming Example: clockType | 897

{

return ((hr > otherClock.hr) ||
(hr == otherClock.hr && min > otherClock.min) ||
(hr == otherClock.hr && min == otherClock.min &&
sec >= otherClock.sec));

}

//Overload the greater than operator.
bool clockType::operator>(const clockType& otherClock) const
{

return ((hr > otherClock.hr) ||
(hr == otherClock.hr && min > otherClock.min) ||
(hr == otherClock.hr && min == otherClock.min &&
sec > otherClock.sec));

}

(Note that after writing the definition of the function to overload the operator ==, you
can use the operator == to write the definition of the function to overload the operator
!=. Similarly, you can use the operators == and < to write the definition of the function
to overload the operator <=, and so on. We leave the details as an exercise.)

The definitions of the functions setTime and getTime are the same as given in
Chapter 10. They are included here for the sake of completeness. Moreover, we have
modified the definition of the constructor so that it uses the function setTime to set
the time. The definitions are as follows:

void clockType::setTime(int hours, int minutes, int seconds)
{

if (0 <= hours && hours < 24)
hr = hours;

else
hr = 0;

if (0 <= minutes && minutes < 60)
min = minutes;

else
min = 0;

if (0 <= seconds && seconds < 60)
sec = seconds;

else
sec = 0;

}

void clockType::getTime(int& hours, int& minutes,
int& seconds) const

{

hours = hr;
minutes = min;
seconds = sec;

}

898 | Chapter 13: Overloading and Templates

1

3

//Constructor
clockType::clockType(int hours, int minutes, int seconds)
{

setTime(hours, minutes, seconds);
}

We now discuss the definition of the function operator<<. The time must be
output in the form:

hh:mm:ss

The algorithm to output the time in this format is the same as the body of the
printTime function of clockType given in Chapter 10. Here, after printing
the time in the previous format, we must return the ostream object. Therefore,
the definition of the function operator<< is:

//Overload the stream insertion operator.
ostream& operator<<(ostream& osObject, const clockType& timeOut)
{

if (timeOut.hr < 10)
osObject << '0';

osObject << timeOut.hr << ':';

if (timeOut.min < 10)
osObject << '0';

osObject << timeOut.min << ':';

if (timeOut.sec < 10)
osObject << '0';

osObject << timeOut.sec;

return osObject; //return the ostream object
}

Let us now discuss the definition of the function operator>>. The input to the
program is of the form:

hh:mm:ss

That is, the input is the hours followed by a colon, followed by the minutes, followed by
a colon, followed by the seconds. Clearly, the algorithm to input the time is:

a. Get the input, which is a number, and store it in the member
variable hr. Also check if the input is valid.

b. Get the next input, which is a colon, and discard it.

c. Get the next input, which is a number, and store it in the
member variable min. Also check if the input is valid.

d. Get the next input, which is a colon, and discard it.

e. Get the next input, which is a number, and store it in the
member variable sec. Also check if the input is valid.

f. Return the istream object.

Programming Example: clockType | 899

Clearly, we need a local variable of type char to read the colon.

The definition of the function operator>> is:

//overload the stream extraction operator
istream& operator>> (istream& is, clockType& timeIn)
{

char ch;

is >> timeIn.hr; //Step a

if (timeIn.hr < 0 || timeIn.hr >= 24) //Step a
timeIn.hr = 0;

is.get(ch); //Read and discard :. Step b

is >> timeIn.min; //Step c

if (timeIn.min < 0 || timeIn.min >= 60) //Step c
timeIn.min = 0;

is.get(ch); //Read and discard :. Step d

is >> timeIn.sec; //Step e

if (timeIn.sec < 0 || timeIn.sec >= 60) //Step e
timeIn.sec = 0;

return is; //Step f
}

The following test program uses the class clockType:

//**
// Author: D.S. Malik
//
// This program shows how to use the class clockType.
//**

#include <iostream>
#include "newClock.h"

using namespace std;

int main()
{

clockType myClock(5, 6, 23); //Line 1
clockType yourClock; //Line 2

cout << "Line 3: myClock = " << myClock
<< endl; //Line 3

900 | Chapter 13: Overloading and Templates

1

3

cout << "Line 4: yourClock = " << yourClock
<< endl; //Line 4

cout << "Line 5: Enter the time in the form "
<< "hr:min:sec "; //Line 5

cin >> myClock; //Line 6
cout << endl; //Line 7

cout << "Line 8: The new time of myClock = "
<< myClock << endl; //Line 8

++myClock; //Line 9

cout << "Line 10: After incrementing the time, "
<< "myClock = " << myClock << endl; //Line 10

yourClock.setTime(13, 35, 38); //Line 11

cout << "Line 12: After setting the time, "
<< "yourClock = " << yourClock << endl; //Line 12

if (myClock == yourClock) //Line 13
cout << "Line 14: The times of myClock and "

<< "yourClock are equal." << endl; //Line 14
else //Line 15

cout << "Line 16: The times of myClock and "
<< "yourClock are not equal." << endl; //Line 16

if (myClock <= yourClock) //Line 17
cout << "Line 18: The time of myClock is "

<< "less than or equal to " << endl
<< "the time of yourClock." << endl; //Line 18

else //Line 19
cout << "Line 20: The time of myClock is "

<< "greater than the time of "
<< "yourClock." << endl; //Line 20

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Line 3: myClock = 05:06:23
Line 4: yourClock = 00:00:00
Line 5: Enter the time in the form hr:min:sec 4:50:59

Line 8: The new time of myClock = 04:50:59
Line 10: After incrementing the time, myClock = 04:51:00
Line 12: After setting the time, yourClock = 13:35:38
Line 16: The times of myClock and yourClock are not equal.
Line 18: The time of myClock is less than or equal to
the time of yourClock.

Programming Example: clockType | 901

PROGRAMMING EXAMPLE: Complex Numbers
A number of the form a + ib, in which i2 = -1 and a and b are real numbers, is called a
complex number. We call a the real part and b the imaginary part of a + ib.
Complex numbers can also be represented as ordered pairs (a, b). The addition and
multiplication of complex numbers are defined by the following rules:

(a + ib) + (c + id) = (a + c) + i(b + d)

(a + ib) * (c + id) = (ac - bd) + i(ad + bc)

Using the ordered pair notation, these rules are written as:

(a, b) + (c, d) = ((a + c), (b + d))

(a, b) * (c, d) = ((ac - bd), (ad + bc))

C++ has no built-in data type that allows us to manipulate complex numbers. In this
example, we will construct a data type, complexType, that can be used to process
complex numbers. We will overload the stream insertion and stream extraction
operators for easy input and output. We will also overload the operators + and * to
perform addition and multiplication of complex numbers. If x and y are complex
numbers, we can evaluate expressions such as x + y and x * y.

//Specification file complexType.h

#ifndef H_complexNumber
#define H_complexNumber

#include <iostream>
using namespace std;

class complexType
{

//Overload the stream insertion and extraction operators
friend ostream& operator<<(ostream&, const complexType&);
friend istream& operator>>(istream&, complexType&);

public:
void setComplex(const double& real, const double& imag);

//Function to set the complex numbers according to
//the parameters.
//Postcondition: realPart = real; imaginaryPart = imag;

void getComplex(double& real, double& imag) const;
//Function to retrieve the complex number.
//Postcondition: real = realPart; imag = imaginaryPart;

902 | Chapter 13: Overloading and Templates

1

3

complexType(double real = 0, double imag = 0);
//Constructor
//Initializes the complex number according to
//the parameters.
//Postcondition: realPart = real; imaginaryPart = imag;

complexType operator+
(const complexType& otherComplex) const;

//Overload the operator +

complexType operator*
(const complexType& otherComplex) const;

//Overload the operator *

bool operator== (const complexType& otherComplex) const;
//Overload the operator ==

private:
double realPart; //variable to store the real part
double imaginaryPart; //variable to store the

//imaginary part
};

#endif

Figure 13-2 shows a UML class diagram of the class complexType.

Next, we write the definitions of the functions to implement various operations of
the class complexType.

The definitions of most of these functions are straightforward. We will discuss only
the definitions of the functions to overload the stream insertion operator, <<, and the
stream extraction operator, >>.

complexType

–realPart: double

–imaginaryPart: double

+operator<<(ostream&, const complexType&): ostream&

+operator>>(istream&, complexType&): istream&

+setComplex(const double&, const double&): void

+getComplex(double& double&) const: void

+operator+(const complexType&) const: complexType

+operator*(const complexType&) const: complexType

+operator==(const complexType&) const: bool

+complexType(double = 0, double = 0)

FIGURE 13-2 UML class diagram of the class complexType

Programming Example: Complex Numbers | 903

To output a complex number in the form:

(a, b)

in which a is the real part and b is the imaginary part, clearly the algorithm is:

a. Output the left parenthesis, (.

b. Output the real part.

c. Output the comma and a space.

d. Output the imaginary part.

e. Output the right parenthesis,).

Therefore, the definition of the function operator<< is:

ostream& operator<<(ostream& osObject,
const complexType& complex)

{

osObject << "("; //Step a
osObject << complex.realPart; //Step b
osObject << ", "; //Step c
osObject << complex.imaginaryPart; //Step d
osObject << ")"; //Step e

return osObject; //return the ostream object
}

Next, we discuss the definition of the function to overload the stream extraction
operator, >>.

The input is of the form:

(3, 5)

In this input, the real part of the complex number is 3, and the imaginary part is 5.
Clearly, the algorithm to read this complex number is:

a. Read and discard the left parenthesis.

b. Read and store the real part.

c. Read and discard the comma.

d. Read and store the imaginary part.

e. Read and discard the right parenthesis.

Following these steps, the definition of the function operator>> is:

istream& operator>>(istream& isObject, complexType& complex)
{

char ch;

isObject >> ch; //Step a
isObject >> complex.realPart; //Step b

904 | Chapter 13: Overloading and Templates

1

3

isObject >> ch; //Step c
isObject >> complex.imaginaryPart; //Step d
isObject >> ch; //Step e

return isObject; //return the istream object
}

The definitions of the other functions are as follows:

bool complexType::operator==
(const complexType& otherComplex) const

{

return (realPart == otherComplex.realPart &&
imaginaryPart == otherComplex.imaginaryPart);

}

//Constructor
complexType::complexType(double real, double imag)
{

realPart = real;
imaginaryPart = imag;

}

//Function to set the complex number after the object
//has been declared.

void complexType::setComplex(const double& real,
const double& imag)

{

realPart = real;
imaginaryPart = imag;

}

void complexType::getComplex(double& real, double& imag) const
{

real = realPart;
imag = imaginaryPart;

}

//overload the operator +
complexType complexType::operator+

(const complexType& otherComplex) const
{

complexType temp;

temp.realPart = realPart + otherComplex.realPart;
temp.imaginaryPart = imaginaryPart

+ otherComplex.imaginaryPart;

return temp;
}

Programming Example: Complex Numbers | 905

//overload the operator *
complexType complexType::operator*

(const complexType& otherComplex) const
{

complexType temp;
temp.realPart = (realPart * otherComplex.realPart) -

(imaginaryPart * otherComplex.imaginaryPart);
temp.imaginaryPart = (realPart * otherComplex.imaginaryPart)

+ (imaginaryPart * otherComplex.realPart);
return temp;

}

The following program illustrates the use of the class complexType:

//**
// Author: D.S. Malik
//
// This program shows how to use the class complexType.
//**

#include <iostream>
#include "complexType.h"

using namespace std;

int main()
{

complexType num1(23, 34); //Line 1
complexType num2; //Line 2
complexType num3; //Line 3

cout << "Line 4: Num1 = " << num1 << endl; //Line 4
cout << "Line 5: Num2 = " << num2 << endl; //Line 5

cout << "Line 6: Enter the complex number "
<< "in the form (a, b) "; //Line 6

cin >> num2; //Line 7
cout << endl; //Line 8

cout << "Line 9: New value of num2 = "
<< num2 << endl; //Line 9

num3 = num1 + num2; //Line 10

cout << "Line 11: Num3 = " << num3 << endl; //Line 11

cout << "Line 12: " << num1 << " + " << num2
<< " = " << num1 + num2 << endl; //Line 12

cout << "Line 13: " << num1 << " * " << num2
<< " = " << num1 * num2 << endl; //Line 13

return 0;
}

906 | Chapter 13: Overloading and Templates

1

3

Next, we will define a class, called newString, and overload the assignment and
relational operators. That is, when we declare a variable of type newString, we will
be able to use the assignment operator to copy one string into another and relational
operators to compare the two strings.

Before discussing the class newString, however, we will examine the overloading
of the operator []. Recall that we have used the operator [] to access the components
of an array. To access individual characters in a string of type newString, we have to
overload the operator [] for the class newString.

Overloading the Array Index (Subscript)
Operator ([])
Recall that the function to overload the operator [] for a class must be a member of the
class. Furthermore, because an array can be declared as constant or nonconstant, we need
to overload the operator [] to handle both cases.

The syntax to declare the operator function operator[] as a member of a class for
nonconstant arrays is:

Type& operator[](int index);

The syntax to declare the operator function operator[] as a member of a class for
constant arrays is:

const Type& operator[](int index) const;

in which Type is the data type of the array elements.

Suppose that classTest is a class that has an array member variable. The definition of
classTest to overload the operator [] is:

class classTest
{

public:

Sample Run: In this sample run, the user input is shaded.

Line 4: Num1 = (23, 34)
Line 5: Num2 = (0, 0)
Line 6: Enter the complex number in the form (a, b) (3, 4)
Line 9: New value of num2 = (3, 4)
Line 11: Num3 = (26, 38)
Line 12: (23, 34) + (3, 4) = (26, 38)
Line 13: (23, 34) * (3, 4) = (-67, 194)

You can extend this data type to perform subtraction and division on complex numbers.

Overloading the Array Index (Subscript) Operator ([]) | 907

Type& operator[](int index);
//Overload the operator for nonconstant arrays

const Type& operator[](int index) const;
//Overload the operator for constant arrays
.
.
.

private:
Type *list; //pointer to the array
int arraySize;

};

in which Type is the data type of the array elements.

The definitions of the functions to overload the operator [] for classTest are:

//Overload the operator [] for nonconstant arrays
Type& classTest::operator[](int index)
{

assert(0 <= index && index < arraySize);
return list[index]; //return a pointer of the

//array component
}

//Overload the operator [] for constant arrays
const Type& classTest::operator[](int index) const
{

assert(0 <= index && index < arraySize);
return list[index]; //return a pointer of the

//array component
}

The preceding function definitions use the assert statement. (For an explanation of the

assert statement, see Chapter 4 or the Appendix.)

Consider the following statements:

classTest list1;
classTest list2;
const classTest list3;

In the case of the statement:

list1[2] = list2[3];

the body of the operator function operator[] for nonconstant arrays is executed. In the
case of the statement:

list1[2] = list3[5];

first, the body of the operator function operator[] for constant arrays is executed
because list3 is a constant array. Next, the body of the operator function operator[]
for nonconstant arrays is executed to complete the execution of the assignment statement.

908 | Chapter 13: Overloading and Templates

1

3

PROGRAMMING EXAMPLE: newString
Chapter 8 discussed C-strings. Recall that:

1. A C-string is a sequence of one or more characters.

2. C-strings are enclosed in double quotation marks.

3. C-strings are null terminated.

4. C-strings are stored in character arrays.

The only aggregate operations allowed on C-strings are input and output. To use
other operations, the programmer needs to include the header file cstring, which
contains the specifications of many functions for string manipulation.

Initially, C++ did not provide any built-in data types to handle C-strings. More
recent versions of C++, however, provide a string class to handle C-strings and
operations on C-strings.

Our objective in this example is to define our own class for C-string manipulation
and, at the same time, to further illustrate operator overloading. More specifically,
we overload the assignment operator, the relational operators, and the stream
insertion and extraction operators for easy input and output. Let us call this class
newString. First, we give the definition of the class newString:

//Header file myString.h

#ifndef H_myString
#define H_myString

#include <iostream>

using namespace std;

class newString
{

//Overload the stream insertion and extraction operators.
friend ostream& operator << (ostream&, const newString&);
friend istream& operator >> (istream&, newString&);

public:
const newString& operator=(const newString&);

//overload the assignment operator
newString(const char *);

//constructor; conversion from the char string
newString();

//Default constructor to initialize the string to null
newString(const newString&);

//Copy constructor

Programming Example: newString | 909

~newString();
//Destructor

char &operator[] (int);
const char &operator[](int) const;

//overload the relational operators
bool operator==(const newString&) const;
bool operator!=(const newString&) const;
bool operator<=(const newString&) const;
bool operator<(const newString&) const;
bool operator>=(const newString&) const;
bool operator>(const newString&) const;

private:
char *strPtr; //pointer to the char array

//that holds the string
int strLength; //variable to store the length

//of the string
};

#endif

The class newString has two private member variables: one to store the
C-string and one to store the length of the C-string.

Next, we give the definitions of the functions to implement the newString operations.
The implementation file includes the header file cassert because we are using the
function assert. (For an explanation of the function assert, see Chapter 4 or the
header file cassert in the Appendix).

//Implementation file myStringImp.cpp
#include <iostream>
#include <iomanip>
#include <cstring>
#include <cassert>
#include "myString.h"

using namespace std;

//Constructor: conversion from the char string to newString
newString::newString(const char *str)
{

strLength = strlen(str);
strPtr = new char[strLength + 1]; //allocate memory to

//store the char string
strcpy(strPtr, str); //copy string into strPtr

}

910 | Chapter 13: Overloading and Templates

1

3

//Default constructor to store the null string
newString::newString()
{

strLength = 0;
strPtr = new char[1];
strcpy(strPtr, "");

}

newString::newString(const newString& rightStr) //copy constructor
{

strLength = rightStr.strLength;
strPtr = new char[strLength + 1];
strcpy(strPtr, rightStr.strPtr);

}

newString::~newString() //destructor
{

delete [] strPtr;
}

//overload the assignment operator
const newString& newString::operator=(const newString& rightStr)
{

if (this != &rightStr) //avoid self-copy
{

delete [] strPtr;
strLength = rightStr.strLength;
strPtr = new char[strLength + 1];
strcpy(strPtr, rightStr.strPtr);

}

return *this;
}

char& newString::operator[] (int index)
{

assert(0 <= index && index < strLength);
return strPtr[index];

}

const char& newString::operator[](int index) const
{

assert(0 <= index && index < strLength);
return strPtr[index];

}

//Overload the relational operators.
bool newString::operator==(const newString& rightStr) const
{

return (strcmp(strPtr, rightStr.strPtr) == 0);
}

Programming Example: newString | 911

bool newString::operator<(const newString& rightStr) const
{

return (strcmp(strPtr, rightStr.strPtr) < 0);
}

bool newString::operator<=(const newString& rightStr) const
{

return (strcmp(strPtr, rightStr.strPtr) <= 0);
}

bool newString::operator>(const newString& rightStr) const
{

return (strcmp(strPtr, rightStr.strPtr) > 0);
}

bool newString::operator>=(const newString& rightStr) const
{

return (strcmp(strPtr, rightStr.strPtr) >= 0);
}

bool newString::operator!=(const newString& rightStr) const
{

return (strcmp(strPtr, rightStr.strPtr) != 0);
}

//Overload the stream insertion operator <<
ostream& operator << (ostream& osObject, const newString& str)
{

osObject << str.strPtr;

return osObject;
}

//Overload the stream extraction operator >>
istream& operator >> (istream& isObject, newString& str)
{

char temp[81];

isObject >> setw(81) >> temp;
str = temp;
return isObject;

}

Consider the statement:

isObject >> setw(81) >> temp;

in the definition of the function operator>>. Because temp is declared to be an
array of size 81, the largest string that can be stored into temp is of length 80. The
manipulator setw in this statement (that is, in the input statement) ensures that no
more than 80 characters are read into temp.

912 | Chapter 13: Overloading and Templates

1

3

Most of these functions are quite straightforward. Let us explain the functions that over-
load the conversion constructor, the assignment operator, and the copy constructor.

The conversion constructor is a single-parameter function that converts its argu-
ment to an object of the constructor’s class. In our case, the conversion constructor
converts a string to an object of the newString type.

Note that the assignment operator is explicitly overloaded only for objects of the
newString type. However, the overloaded assignment operator also works if we
want to store a C-string into a newString object. Consider the declaration:

newString str;

and the statement:

str = "Hello there";

The compiler translates this statement into:

str.operator=("Hello there");

1. First, the compiler automatically invokes the conversion constructor
to create an object of the newString type to temporarily store the
string "Hello there".

2. Second, the compiler invokes the overloaded assignment operator to
assign the temporary newString object to the object str.

Hence, it is not necessary to explicitly overload the assignment operator to store a
C-string into an object of type newString.

Next, we write a C++ program that tests some of the operations of the class
newString.

//**
// Author: D.S. Malik
//
// This program shows how to use the class newString.
//**

#include <iostream>
#include "myString.h"

using namespace std;

int main()
{

newString str1 = "Sunny"; //initialize str1 using
//the assignment operator

const newString str2("Warm"); //initialize str2 using the
//conversion constructor

Programming Example: newString | 913

newString str3; //initialize str3 to the empty string
newString str4; //initialize str4 to the empty string

cout << "Line 1: " << str1 << " " << str2
<< " ***" << str3 << "###." << endl; //Line 1

if (str1 <= str2) //compare str1 and str2; Line 2
cout << "Line 3: " << str1 << " is less "

<< "than or equal to" << str2 << endl; //Line 3
else //Line 4

cout << "Line 5: " << str2 << " is less "
<< "than " << str1 << endl; //Line 5

cout << "Line 6: Enter a string with a length "
<< "of at least 7: "; //Line 6

cin >> str1; //input str1; Line 7
cout << endl; //Line 8

cout << "Line 9: The new value of "
<< "str1 = " << str1 << endl; //Line 9

str4 = str3 = "Birth Day"; //Line 10

cout << "Line 11: str3 = " << str3
<< ", str4 = " << str4 << endl; //Line 11

str3 = str1; //Line 12
cout << "Line 13: The new value of str3 = "

<< str3 << endl; //Line 13

str1 = "Bright Sky"; //Line 14

str3[1] = str1[5]; //Line 15
cout << "Line 16: After replacing the second "

<< "character of str3 = " << str3 << endl; //Line 16

str3[2] = str2[0]; //Line 17
cout << "Line 18: After replacing the third "

<< "character of str3 = " << str3 << endl; //Line 18

str3[5] = 'g'; //Line 19
cout << "Line 20: After replacing the sixth "

<< "character of str3 = " << str3 << endl; //Line 20

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Line 1: Sunny Warm ***###.
Line 3: Sunny is less than or equal to Warm

914 | Chapter 13: Overloading and Templates

Function Overloading
The previous section discussed operator overloading. Operator overloading provides the
programmer with the same concise notation for user-defined data types as the operator
has for built-in types. The types of parameters used with an operator determine the action
to take. Similar to operator overloading, C++ allows the programmer to overload a
function name. Chapter 6 introduced function overloading. For easy reference in the
following discussion, let us review this concept.

Recall that a class can have more than one constructor, but all constructors of a class have
the same name, which is the name of the class. This is an example of overloading a
function. Further recall that overloading a function refers to having several functions
with the same name but different parameter lists. The parameter list determines which
function will execute.

For function overloading to work, we must give the definition of each function. The
next section teaches you how to overload functions with a single code segment and leave
the job of generating code for separate functions for the compiler.

1

3

Line 6: Enter a string with a length of at least 7: 123456789
Line 9: The new value of str1 = 123456789
Line 11: str3 = Birth Day, str4 = Birth Day
Line 13: The new value of str3 = 123456789
Line 16: After replacing the second character of str3 = 1t3456789
Line 18: After replacing the third character of str3 = 1tW456789
Line 20: After replacing the sixth character of str3 = 1tW45g789

The preceding program works as follows. The statement in Line 1 outputs the values
of str1, str2, and str3. Notice that the value of str3 is to be printed between
*** and ###. Because str3 is empty, nothing is printed between *** and ###; see
Line 1 in the sample run. The statements in Lines 2 through 5 compare str1 and
str2 and output the result. The statement in Line 7 inputs a string with a length of at
least 7 into str1, and the statement in Line 9 outputs the new value of str1. Note
that in the statement (see Line 10):

str4 = str3 = "Birth Day";

Because the associativity of the assignment operator is from right to left, first the
statement str3 = "Birth Day"; executes, and then the statement str4 = str3;

executes. The statement in Line 11 outputs the values of str3 and str4. The
statements in Lines 15, 17, and 19 use the array subscripting operator [] to indivi-
dually manipulate the characters of str3. The meanings of the remaining statements
are straightforward.

Function Overloading | 915

Templates
Templates are a very powerful feature of C++. They allow you to write a single code
segment for a set of related functions, called a function template, and for a set of related
classes, called a class template. The syntax we use for templates is:

template <class Type>
declaration;

in which Type is the name of a data type, built-in or user-defined, and declaration is
either a function declaration or a class declaration. In C++, template is a reserved word.
The word class in the heading refers to any user-defined type or built-in type. Type is
referred to as a formal parameter to the template. (Note that in the first line, template
<class Type>, the keyword class can be replaced with the keyword typename.)

Similar to variables being parameters to functions, types (that is, data types) are parameters
to templates.

Function Templates
In Chapter 6, when we introduced function overloading, the function larger was
overloaded to find the larger of two integers, characters, floating-point numbers, or
strings. To implement the function larger, we need to write four function definitions
for the data type: one for int, one for char, one for double, and one for string.
However, the body of each function is similar. C++ simplifies the process of overloading
functions by providing function templates.

The syntax of the function template is:

template <class Type>
function definition;

in which Type is referred to as a formal parameter of the template. It is used to specify the
type of parameters to the function and the return type of the function and to declare
variables within the function.

The statements:

template <class Type>
Type larger(Type x, Type y)
{

if (x >= y)
return x;

else
return y;

}

define a function template larger, which returns the larger of two items. In the function
heading, the type of the formal parameters x and y is Type, which will be specified by the
type of the actual parameters when the function is called. The statement:

916 | Chapter 13: Overloading and Templates

cout << larger(5, 6) << endl;

is a call to the function template larger. Because 5 and 6 are of type int, the data type
int is substituted for Type, and the compiler generates the appropriate code.

Note that the function template larger will work only for those data types for which
the operator >= has been defined.

If we omit the body of the function in the function template definition, the function
template, as usual, is the prototype.

The following example illustrates the use of function templates.

EXAMPLE 13-8

The following program uses the function template larger to determine the larger of the
two items.

// Template larger

#include <iostream>
#include "myString.h"

using namespace std;

template <class Type>
Type larger(Type x, Type y);

int main()
{

cout << "Line 1: Larger of 5 and 6 = "
<< larger(5, 6) << endl; //Line 1

cout << "Line 2: Larger of A and B = "
<< larger('A', 'B') << endl; //Line 2

cout << "Line 3: Larger of 5.6 and 3.2 = "
<< larger(5.6, 3.2) << endl; //Line 3

newString str1 = "Hello"; //Line 4
newString str2 = "Happy"; //Line 5

cout << "Line 6: Larger of " << str1 << " and "
<< str2 << " = " << larger(str1, str2)
<< endl; //Line 6

return 0;
}

template <class Type>
Type larger(Type x, Type y)
{

if (x >= y)

1

3

Templates | 917

return x;
else

return y;
}

Sample Run:

Line 1: Larger of 5 and 6 = 6
Line 2: Larger of A and B = B
Line 3: Larger of 5.6 and 3.2 = 5.6
Line 6: Larger of Hello and Happy = Hello

Class Templates
Like function templates, class templates are used to write a single code segment for a set of
related classes. For example, in Chapter 10, we defined a list as an ADT; our list element
type was int. If the list element type changes from int to, say, char, double, or
string, we need to write separate classes for each element type. For the most part, the
operations on the list and the algorithms to implement those operations remain the same.
Using class templates, we can create a generic class listType, and the compiler can
generate the appropriate source code for a specific implementation.

The syntax we use for a class template is:

template <class Type>
class declaration

Class templates are called parameterized types because, based on the parameter type, a
specific class is generated.

The following statements define listType to be a class template:

template <class elemType>
class listType
{

public:
bool isEmpty() const;

//Function to determine whether the list is empty.
//Postcondition: Returns true if the list is empty,
// otherwise it returns false.

bool isFull() const;
//Function to determine whether the list is full.
//Postcondition: Returns true if the list is full,
// otherwise it returns false.

bool search(const elemType& searchItem) const;
//Function to search the list for searchItem.
//Postcondition: Returns true if searchItem
// is found in the list, and
// false otherwise.

918 | Chapter 13: Overloading and Templates

void insert(const elemType& newElement);
//Function to insert newElement in the list.
//Precondition: Prior to insertion, the list must
// not be full.
//Postcondition: The list is the old list plus
// newElement.

void remove(const elemType& removeElement);
//Function to remove removeElement from the list.
//Postcondition: If removeElement is found in the list,
// it is deleted from the list, and the
// list is the old list minus removeElement.
// If the list is empty, output the message
// "Cannot delete from the empty list."

void destroyList();
//Function to destroy the list.
//Postcondition: length = 0;

void printList();
//Function to output the elements of the list.

listType();
//Default constructor
//Sets the length of the list to 0.
//Postcondition: length = 0;

protected:
elemType list[100]; //array to hold the list elements
int length; //variable to store the number of

//elements in the list
};

This definition of the class template listType is a generic definition and includes only
the basic operations on a list. To derive a specific list from this list and to add or rewrite
the operations, we declare the array containing the list elements and the length of the list
as protected.

Next, we describe a specific list. Suppose that you want to create a list to process integer
data. The statement:

listType<int> intList; //Line 1

declares intList to be an object of listType. The protectedmember list is an array
of 100 components, with each component being of type int. Similarly, the statement:

listType<newString> stringList; //Line 2

declares stringList to be an object of listType. The protected member list is
an array of 100 components, with each component being of type newString.

1

3

Templates | 919

In the statements in Lines 1 and 2, listType<int> and listType<newString> are
referred to as template instantiations or instantiations of the class template listType<elemType>,
in which elemType is the class parameter in the template header. A template instantiation
can be created with either a built-in or user-defined type.

The function members of a class template are considered function templates. Thus, when
giving the definitions of the function members of a class template, we must follow the
definition of the function template. For example, the definition of the member insert
of the class listType is:

template <class elemType>
void listType<elemType>::insert(elemType newElement)
{

.

.

.
}

In the heading of the member function’s definition, the name of the class is specified with
the parameter elemType.

The statement in Line 1 declares intList to be a list of 100 components. When the
compiler generates the code for intList, it replaces the word elemType with int in
the definition of the class listType. The template parameter in the definitions of the
member functions (for example, elemType in the definition of insert) of the class
listType is also replaced by int.

HEADER FILE AND IMPLEMENTATION FILE OF A CLASS TEMPLATE

Until now, we have placed the definition of the class (in the header file) and the definitions
of the member functions (in the implementation file) in separate files. The object code was
generated from the implementation file and linked with the user code. However, this
mechanism of separating the class definition and the definitions of the member functions
does not work with class templates. Passing parameters to a function has an effect at run
time, whereas passing a parameter to a class template has an effect at compile time. Because
the actual parameter to a class is specified in the user code and because the compiler cannot
instantiate a function template without the actual parameter to the template, we can no
longer compile the implementation file independently of the user code.

This problem has several possible solutions. We could put the class definition and the
definitions of the function templates directly in the client code, or we could put the class
definition and the definitions of the function templates together in the same header file.
Another alternative is to put the class definition and the definitions of the functions in
separate files (as usual) but include a directive to the implementation file at the end of the
header file. In either case, the function definitions and the client code are compiled
together. For illustrative purposes, we will put the class definition and the function
definitions in the same header file.

The following example demonstrates the use of class templates.

920 | Chapter 13: Overloading and Templates

1

3

EXAMPLE 13-9

In this example, we will write a program that uses the class listType. Some of the
operations included are as follows: check whether the list is empty, check whether the list
is full, sort the list, and print the list. Because we can dynamically allocate arrays, the user
will have the option to specify the size of the array. The default array size is 50. We will
manipulate a list of integers and a list of strings. Because the class newString that we
defined earlier allows us to use relational operators for comparison and the assignment
operator for assignment, we will use the class newString to declare strings.

The definition of the class listType is:

#ifndef H_listType
#define H_listType

#include <iostream>
#include <cassert>

using namespace std;

template <class elemType>
class listType
{

public:
bool isEmpty() const;

//Function to determine whether the list is empty.
//Postcondition: Returns true if the list is empty,
// otherwise it returns false.

bool isFull() const;
//Function to determine whether the list is full.
//Postcondition: Returns true if the list is full,
// otherwise it returns false.

int getLength() const;
//Function to return the number of elements in the list.
//Postcondition: The value of length is returned.

int getMaxSize() const;
//Function to return the maximum number of elements
//that can be stored in the list.
//Postcondition: The value of maxSize is returned.

void sort();
//Function to sort the list.
//Postcondition: The list elements are in ascending order.

void print() const;
//Outputs the elements of the list.

void insertAt(const elemType& item, int position);
//Function to insert item in the list at the location

Templates | 921

//specified by position.
//Postcondition: list[position] = item; length++;
// If position is out of range, the program
// is aborted.

listType(int listSize = 50);
//Constructor
//Creates an array of the size specified by the
//parameter listSize; the default array size is 50.
//Postcondition: list contains the base address of the
// array; length = 0; maxsize = listSize;

~listType();
//Destructor
//Deletes all the elements of the list.
//Postcondition: The array list is deleted.

private:
int maxSize; //variable to store the maximum size

//of the list
int length; //variable to store the number of elements

//in the list
elemType *list; //pointer to the array that holds the

//list elements
};

template <class elemType>
bool listType<elemType>::isEmpty() const
{

return (length == 0)
}

template <class elemType>
bool listType<elemType>::isFull() const
{

return (length == maxSize);
}

template <class elemType>
int listType<elemType>::getLength() const
{

return length;
}

template <class elemType>
int listType<elemType>::getMaxSize() const
{

return maxSize;
}

//Constructor; the default array size is 50
template <class elemType>

922 | Chapter 13: Overloading and Templates

1

3

listType<elemType>::listType(int listSize)
{

maxSize = listSize;
length = 0;
list = new elemType[maxSize];

}

template <class elemType>
listType<elemType>::~listType() //destructor
{

delete [] list;
}

template <class elemType>
void listType<elemType>::sort() //selection sort
{

int i, j;
int min;
elemType temp;

for (i = 0; i < length; i++)
{

min = i;
for (j = i + 1; j < length; ++j)

if (list[j] < list[min])
min = j;

temp = list[i];
list[i] = list[min];
list[min] = temp;

}//end for
}//end sort

template <class elemType>
void listType<elemType>::print() const
{

int i;
for (i = 0; i < length; ++i)

cout << list[i] << " ";
cout << endl;

}//end print

template <class elemType>
void listType<elemType>::insertAt(const elemType& item,

int position)
{

assert(position >= 0 && position < maxSize);
list[position] = item;
length++;

}

#endif

Templates | 923

Consider the following program:

//This program shows how to use the class template listType.

#include <iostream>

#include "myString.h"
#include "listType.h"

using namespace std;

int main()
{

listType<int> intList(100); //Line 1
listType<newString> stringList; //Line 2
int index; //Line 3
int number; //Line 4

cout << "List 5: Processing the integer list"
<< endl; //Line 5

cout << "List 6: Enter 5 integers: "; //Line 6

for (index = 0; index < 5; index++) //Line 7
{

cin >> number; //Line 8
intList.insertAt(number, index); //Line 9

}

cout << endl; //Line 10
cout << "List 11: intList: "; //Line 11
intList.print(); //Line 12
cout << endl; //Line 13

//Sort intList
intList.sort(); //Line 14

cout << "Line 15: After sorting, intList: "; //Line 15
intList.print(); //Line 16
cout << endl; //Line 17

newString str; //Line 18

cout << "Line 19: Processing the string list"
<< endl; //Line 19

cout << "Line 20: Enter 5 strings: "; //Line 20

for (index = 0; index < 5; index++) //Line 21
{

cin >> str; //Line 22
stringList.insertAt(str, index); //Line 23

}

924 | Chapter 13: Overloading and Templates

1

3

cout << endl; //Line 24
cout << "Line 25: stringList: "; //Line 25
stringList.print(); //Line 26
cout << endl; //Line 27

//Sort stringList
stringList.sort(); //Line 28

cout << "Line 29: After sorting, stringList: "; //Line 29
stringList.print(); //Line 30
cout << endl; //Line 31

int intListSize; //Line 32

cout << "Line 33: Enter the size of the integer "
<< "list: "; //Line 33

cin >> intListSize; //Line 34
cout << endl; //Line 35

listType<int> intList2(intListSize); //Line 36

cout << "Line 37: Processing the integer list"
<< endl; //Line 37

cout << "Line 38: Enter " << intListSize
<< " integers: "; //Line 38

for (index = 0; index < intListSize; index++) //Line 39
{

cin >> number; //Line 40
intList2.insertAt(number, index); //Line 41

}

cout << endl; //Line 42

cout << "Line 43: intList2: "; //Line 43
intList2.print(); //Line 44
cout << endl; //Line 45

//Sort intList2
intList2.sort(); //Line 46

cout << "Line 47: After sorting, intList2: "; //Line 47
intList2.print(); //Line 48
cout << endl; //Line 49

cout << "Line 50: Length of intList2: "
<< intList2.getLength() << endl; //Line 50

cout << "Line 51: Maximum size of intList2: "
<< intList2.getMaxSize() << endl; //Line 51

return 0;
}

Templates | 925

Sample Run: In this sample run, the user input is shaded.

List 5: Processing the integer list
List 6: Enter 5 integers: 19 15 66 24 34

List 11: intList: 19 15 66 24 34

Line 15: After sorting, intList: 15 19 24 34 66

Line 19: Processing the string list
Line 20: Enter 5 strings: summer cold hot warm sunny

Line 25: stringList: summer cold hot warm sunny

Line 29: After sorting, stringList: cold hot summer sunny warm

Line 33: Enter the size of the integer list: 10

Line 37: Processing the integer list
Line 38: Enter 10 integers: 23 65 34 8 11 5 3 16 45 2

Line 43: intList2: 23 65 34 8 11 5 3 16 45 2

Line 47: After sorting, intList2: 2 3 5 8 11 16 23 34 45 65

Line 50: Length of intList2: 10
Line 51: Maximum size of intList2: 10

QUICK REVIEW

1. An operator that has different meanings with different data types is said to
be overloaded.

2. In C++, >> is used as a stream extraction operator and as a right shift
operator. Similarly, << is used as a stream insertion operator and as a left
shift operator. Both are examples of operator overloading.

3. Any function that overloads an operator is called an operator function.

4. The syntax of the heading of the operator function is:

returnType operator operatorSymbol(parameters)

5. In C++, operator is a reserved word.

6. Operator functions are value-returning functions.

7. Except for the assignment operator and the member selection operator, to
use an operator on class objects, that operator must be overloaded. The
assignment operator performs a default member-wise copy.

8. For classes with pointer member variables, the assignment operator must be
explicitly overloaded.

926 | Chapter 13: Overloading and Templates

9. Operator overloading provides the same concise notation for user-defined
data types as is available for built-in data types.

10. When an operator is overloaded, its precedence cannot be changed, its
associativity cannot be changed, default parameters cannot be used with an
overloaded operator, the number of parameters that the operator takes
cannot be changed, and the meaning of how an operator works with
built-in data types remains the same.

11. It is not possible to create new operators. Only existing operators can be
overloaded.

12. Most C++ operators can be overloaded.

13. The operators that cannot be overloaded are ., .*, ::, ?:, and sizeof.

14. The pointer this refers to the object as a whole.

15. The operator functions that overload the operators (), [], ->, or = for a
class must be members of that class.

16. A friend function is a nonmember of a class.

17. The heading of the prototype of a friend function is preceded by the
word friend.

18. In C++, friend is a reserved word.

19. If an operator function is a member of a class, the far left operand of the
operator must be a class object (or a reference to a class object) of that
operator’s class.

20. The binary operator function as a member of a class has only one para-
meter; as a nonmember of a class, it has two parameters.

21. The operator functions that overload the stream insertion operator, <<, and
the stream extraction operator, >>, for a class must be friend functions of
that class.

22. To overload the pre-increment (++) operator for a class if the operator
function is a member of that class, it must have no parameters. Similarly, to
overload the pre-decrement (--) operator for a class if the operator func-
tion is a member of that class, it must have no parameters.

23. To overload the post-increment (++) operator for a class if the opera-
tor function is a member of that class, it must have one parameter,
of type int. The user does not specify any value for the parameter.
The dummy parameter in the function heading helps the compiler
generate the correct code. The post-decrement operator has similar
conventions.

24. A conversion constructor is a single-parameter function.

25. A conversion constructor converts its argument to an object of the con-
structor’s class. The compiler implicitly calls such constructors.

1

3

Quick Review | 927

26. Classes with pointer member variables must overload the assignment opera-
tor and include both the copy constructor and the destructor.

27. In C++, a function name can be overloaded.

28. In C++, template is a reserved word.

29. Using templates, you can write a single code segment for a set of related
functions—called the function template.

30. Using templates, you can write a single code segment for a set of related
classes—called the class template.

31. The syntax of a template is:

template <class Type>
declaration;

in which Type is a user-defined identifier, which is used to pass types (that
is, data types) as parameters, and declaration is either a function or a
class. The word class in the heading refers to any user-defined data type
or built-in data type.

32. Class templates are called parameterized types.

33. In a class template, the parameter Type specifies how a generic class
template is to be customized to form a specific template class.

34. The parameter Type is mentioned in every class header and member
function definition.

35. Suppose cType is a class template, and func is a member function of
cType. The heading of the function definition of func is:

template <class Type>
funcType cType<Type>::func(parameters)

in which funcType is the type of the function, such as void.

36. Suppose cType is a class template, which can take int as a parameter. The
statement:

cType<int> x;

declares x to be an object of type cType, and the type passed to the class
cType is int.

EXERCISES

1. Mark the following statements as true or false.

a. In C++, all operators can be overloaded for user-defined data types.

b. In C++, operators cannot be redefined for built-in types.

c. The function that overloads an operator is called the operator function.

d. C++ allows users to create their own operators.

928 | Chapter 13: Overloading and Templates

1

3

e. The precedence of an operator cannot be changed, but its associativity
can be changed.

f. Every instance of an overloaded function has the same number of
parameters.

g. It is not necessary to overload relational operators for classes that have
only int member variables.

h. The member function of a class template is a function template.

i. When writing the definition of a friend function, the keyword
friend must appear in the function heading.

j. Templates provide the capability for software reuse.

k. The function heading of the operator function to overload the pre-
increment operator (++) and the post-increment operator (++) is the
same because both operators have the same symbols.

2. What is a friend function?

3. What is the difference between a friend function of a class and a member
function of a class?

4. Consider the definition of the class dateType given in Chapter 11.

a. Write the statement that includes a friend function named before in the
class dateType that takes as parameters two objects of type dateType

and returns true if the date represented by the first object comes before the
date representedby the secondobject; otherwise, the function returnsfalse.

b. Write the definition of the function you defined in part a.

5. Suppose that the operator << is to be overloaded for a user-defined class
mystery. Why must << be overloaded as a friend function?

6. Suppose that the binary operator + is overloaded as a member function for a
class strange. How many parameters does the function operator+ have?

7. When should a class overload the assignment operator and define the copy
constructor?

8. Consider the following declaration:

class strange
{

.

.

.
};

a. Write a statement that shows the declaration in the class strange to
overload the operator >>.

b. Write a statement that shows the declaration in the class strange to
overload the operator =.

c. Write a statement that shows the declaration in the class strange to
overload the binary operator + as a member function.

Exercises | 929

d. Write a statement that shows the declaration in the class strange to
overload the operator == as a member function.

e. Write a statement that shows the declaration in the class strange to
overload the post-increment operator ++ as a member function.

9. Assume the declaration of Exercise 8.

a. Write a statement that shows the declaration in the class strange to
overload the binary operator + as a friend function.

b. Write a statement that shows the declaration in the class strange to
overload the operator == as a friend function.

c. Write a statement that shows the declaration in the class strange to
overload the post-increment operator ++ as a friend function.

10. Find the error(s) in the following code:

class secret //Line 1
{ //Line 2
public: //Line 3

secret operator>=(secret); //Line 4
secret(); //Line 5
secret(int, int); //Line 6

private: //Line 7
int a; //Line 8
int b; //Line 9

}; //Line 10

11. Find the error(s) in the following code:

class temp //Line 1
{ //Line 2
public: //Line 3

int operator*(const temp& obj); //Line 4
//Returns the object containing the
//product of the corresponding members
//of this object and obj.

temp(); //Line 5
temp(int, int); //Line 6

private: //Line 7
int a; //Line 8
int b; //Line 9

}; //Line 10

12. Find the error(s) in the following code:

class discover //Line 1
{ //Line 2
public: //Line 3

discover operator+(const discover& a,
const discover& b); //Line 4

//Returns the object containing the
//sum of the corresponding members
//of the objects a and b.

discover(); //Line 5
discover(int, int); //Line 6

930 | Chapter 13: Overloading and Templates

1

3

private: //Line 7
int first; //Line 8
int second; //Line 9

}; //Line 10

13. Find the error(s) in the following code:

class mystery //Line 1
{ //Line 2

friend mystery operator<(const mystery& a,
const mystery& b); //Line 3

//Return true if object a is less than
//object b; otherwise it returns false

.

.

.
private: //Line 4

double r; //Line 5
}; //Line 6

14. Find the error(s) in the following code:

class mystery //Line 1
{ //Line 2

friend mystery operator+(const mystery& a,
const mystery& b) const; //Line 3

//Return true if object a is less than
//object b; otherwise it returns false

.

.

.
private: //Line 4

double r; //Line 5
}; //Line 6

15. Find the error(s) in the following code:

class discover //Line 1
{ //Line 2

friend double operator+(const discover&,
const discover&); //Line 3

public: //Line 4
discover(); //Line 5
discover(double, double); //Line 6

private: //Line 7
double first; //Line 8
double second; //Line 9

}; //Line 10

double discover::operator+(const discover& a,
const discover& b) //Line 11

{ //Line 12
discover temp;
temp.first = a.first + b.first; //Line 13
temp.second = a.second + b.second; //Line 14
return temp; //Line 15

} //Line 16

Exercises | 931

16. a. In a class, why do you include the function that overloads the stream
insertion operator, <<, as a friend function?

b. In a class, why do you include the function that overloads the stream
extraction operator, >>, as a friend function?

17. What is returned by the function that overloads the operator >> for a class?

18. What is returned by the function that overloads the operator << for a class?

19. What is the purpose of a dummy parameter in a function that overloads the
post-increment or post-decrement operator for a class?

20. What type of value should be returned by a function that overloads a
relational operator?

21. How many parameters are required to overload the pre-increment operator
for a class as a member function?

22. How many parameters are required to overload the pre-increment operator
for a class as a friend function?

23. How many parameters are required to overload the post-increment opera-
tor for a class as a member function?

24. How many parameters are required to overload the post-increment opera-
tor for a class as a friend function?

25. Let a + ib be a complex number. The conjugate of a + ib is a – ib, and the
absolute value of a + ib is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

. Extend the definition of the class
complexType of the Programming Example: Complex Numbers by over-
loading the operators ~ and ! as member functions so that ~ returns the
conjugate of a complex number and ! returns the absolute value. Also,
write the definitions of these operator functions.

26. Redo Exercise 25 so that the operators ~ and ! are overloaded as non-
member functions.

27. Find the error(s) in the following code:

template <class type> //Line 1
class strange //Line 2
{

.

.

.
};

strange<int> s1; //Line 3
strange<type> s2; //Line 4

28. Consider the following declaration:

template <class type>
class strange
{

.

.

.

932 | Chapter 13: Overloading and Templates

private:
type a;
type b;

};

a. Write a statement that declares sObj to be an object of type strange

such that the private member variables a and b are of type int.

b. Write a statement that shows the declaration in the class strange to
overload the operator == as a member function.

c. Assume that two objects of type strange are equal if their correspond-
ing member variables are equal. Write the definition of the function
operator== for the class strange, which is overloaded as a
member function.

29. Consider the definition of the following function template:

template <class Type>
Type surprise(Type x, Type y)
{

return x + y;
}

What is the output of the following statements?

a. cout << surprise(5, 7) << endl;

b. string str1 = "Sunny";
string str2 = " Day";
cout << surprise(str1, str2) << endl;

30. Consider the definition of the following function template:

template <class type>
type funcExp(type list[], int size)
{

type x = list[0];
type y = list[size - 1];

for (int j = 1; j < size - 1; j++)
{

if (x < list[j])
x = list[j];

if (y > list[size - 1 - j])
y = list[size - 1 - j];

}

return y + x;
}

Further suppose that you have the following declarations:

double sales[7] = {280.50, 320.00, 56.00, 78.90, 300.00,
100.00, 250.00};

string names[] = {"Mike", "Lisa", "Nancy", "Robinson",
"Miller", "Sam"};

1

3

Exercises | 933

What is the output of the following statements?

a. cout << funcExp(sales, 7) << endl;

b. cout << funcExp(names, 6) << endl;

31. Write the definition of the function template that swaps the contents of two
variables.

32. a. Overload the operator + for the class newString to perform string
concatenation. For example, if s1 is "Hello " and s2 is "there", the
statement:

s3 = s1 + s2;

should assign "Hello there" to s3, in which s1, s2, and s3 are
newString objects.

b. Overload the operator += for the class newString to perform the
following string concatenation. Suppose that s1 is "Hello " and s2 is
"there". Then, the statement:

s1 += s2;

should assign "Hello there" to s1, in which s1 and s2 are
newString objects.

PROGRAMMING EXERCISES

1. This chapter uses the class rectangleType to illustate how to overload the
operators +, *, ==, !=, >>, and <<. In this exercise, first redefine the class
rectangleType by declaring the instance variables as protected and then
overload additional operators as defined in parts a to c.

a. Overload the pre- and post-increment and decrement operators to
increment and decrement, respectively, the length and width of a
rectangle by one unit. (Note that after decrementing the length and
width, they must be postive.)

b. Overload the binary operator - to subtract the dimensions of one
rectangle from the corresponding dimensions of another rectangle. If
the resulting dimensions are not positive, output an appropriate message
and do not perform the operation.

c. The operators == and != are overloaded by considering the lengths and
widths of rectangles. Redefine the functions to overload the relational
operator by considering the areas of rectangles as follows: Two rectangles
are the same, if they have the same area; otherwise, the rectangles are not
the same. Similary, rectangle yard1 is greater than rectangle yard2 if
the area of yard1 is greater than the area of yard2. Overload the
remaining relational operators using similar definitions.

934 | Chapter 13: Overloading and Templates

1

3

d. Write the definitions of the functions to overload the operators defined
in parts a to c.

e. Write a test program that tests various operations on the
class rectangleType.

2. a. Redo Programming Exercise 1 by overloading the operators as
nonmembers of the class rectangleType.

b. Write a test program that tests various operations on the
class rectangleType.

3. a. Chapter 11 defined the class boxType by extending the definition of
the class rectangleType. In this exercise, derive the
class boxType from the class rectangleType, defined in Exercise
1, add the functions to overload the operators +, -, *, ==, !=, <=, <,
>=, >, and pre- and post-increment and decrement operators as mem-
bers of the class boxType. Also overload the operators << and >>.
Overload the relational operators by considering the volume of the boxes.
For example, two boxes are the same if they have the same volume.

b. Write the definitions of the functions of the class boxType as defined
in part a.

c. Write a test program that tests various operations on the
class rectangleType.

4. a. Redo Programming Exercise 3 by overloading the operators as
nonmembers of the class boxType.

b. Write a test program that tests various operations on the class
boxType.

5. a. Extend the definition of the class clockType by overloading
the post-increment operator function as a member of the class
clockType.

b. Write the definition of the function to overload the post-increment
operator for the class clockType as defined in part a.

6. a. The increment and relational operators in the class clockType are
overloaded as member functions. Rewrite the definition of the class
clockType so that these operators are overloaded as nonmember func-
tions. Also, overload the post-increment operator for the class
clockType as a nonmember.

b. Write the definitions of the member functions of the class clockType

as designed in part a.

c. Write a test program that tests various operations on the class as designed
in parts a and b.

7. a. Extend the definition of the class complexType so that it performs
the subtraction and division operations. Overload the operators subtrac-
tion and division for this class as member functions.

Programming Exercises | 935

If (a, b) and (c, d) are complex numbers:

(a, b) - (c, d) = (a - c, b - d).

If (c, d) is nonzero:

(a, b) / (c, d) = ((ac + bd) / (c2 + d 2), (-ad + bc) / (c2 + d 2)).

b. Write the definitions of the functions to overload the operators - and /
as defined in part a.

c. Write a test program that tests various operations on the class
complexType. Format your answer with two decimal places.

8. a. Rewrite the definition of the class complexType so that the arith-
metic and relational operators are overloaded as nonmember functions.

b. Write the definitions of the member functions of the class complexType

as designed in part a.

c. Write a test program that tests various operations on the class
complexType as designed in parts a and b. Format your answer with
two decimal places.

9. a. Extend the definition of the class newString as follows:

i. Overload the operators + and += to perform the string concate-
nation operations.

ii. Add the function length to return the length of the string.

b. Write the definition of the function to implement the operations
defined in part a.

c. Write a test program to test various operations on the newString

objects.

10. Rational fractions are of the form a / b, in which a and b are integers and
b 6¼ 0. In this exercise, by ‘‘fractions’’ we mean rational fractions. Suppose
a / b and c / d are fractions. Arithmetic operations on fractions are
defined by the following rules:

a=bþ c=d ¼ ðad þ bcÞ=bd

a=b� c=d ¼ ðad � bcÞ=bd

a=b� c=d ¼ ac=bd

ða=bÞ=ðc=dÞ ¼ ad=bc; in which c=d 6¼ 0:

Fractions are compared as follows: a / b op c / d if ad op bc, in which op is
any of the relational operations. For example, a / b < c / d if ad < bc.

Design a class—say, fractionType—that performs the arithmetic and
relational operations on fractions. Overload the arithmetic and relational

936 | Chapter 13: Overloading and Templates

operators so that the appropriate symbols can be used to perform the
operation. Also, overload the stream insertion and stream extraction
operators for easy input and output.

Write a C++ program that, using the class fractionType, performs
operations on fractions.

Among other things, test the following: Suppose x, y, and z are objects
of type fractionType. If the input is 2/3, the statement:

cin >> x;

should store 2/3 in x. The statement:

cout << x + y << endl;

should output the value of x + y in fraction form. The statement:

z = x + y;

should store the sum of x and y in z in fraction form. Your answer need
not be in the lowest terms.

11. Recall that in C++, there is no check on an array index out of bounds.
However, during program execution, an array index out of bounds can
cause serious problems. Also, in C++, the array index starts at 0.

Design and implement the class myArray that solves the array index out
of bounds problem and also allows the user to begin the array index starting
at any integer, positive or negative. Every object of type myArray is an
array of type int. During execution, when accessing an array component,
if the index is out of bounds, the program must terminate with an appro-
priate error message. Consider the following statements:

myArray<int> list(5); //Line 1
myArray<int> myList(2, 13); //Line 2
myArray<int> yourList(-5, 9); //Line 3

The statement in Line 1 declares list to be an array of 5 components, the
component type is int, and the components are: list[0], list[1], ...,
list[4]; the statement in Line 2 declares myList to be an array of 11 com-
ponents, the component type is int, and the components are: myList[2],
myList[3], ..., myList[12]; the statement in Line 3 declares yourList
to be an array of 14 components, the component type is int, and the
components are: yourList[-5], yourList[-4], ..., yourList[0],
..., yourList[8]. Write a program to test the class myArray.

12. Programming Exercise 11 processes only int arrays. Redesign the class
myArray using class templates so that the class can be used in any
application that requires arrays to process data.

1

3

Programming Exercises | 937

13. Design a class to perform various matrix operations. A matrix is a set of
numbers arranged in rows and columns. Therefore, every element of a
matrix has a row position and a column position. If A is a matrix of five
rows and six columns, we say that the matrix A is of the size 5 � 6 and
sometimes denote it as A5�6. Clearly, a convenient place to store a matrix is
in a two-dimensional array. Two matrices can be added and subtracted if
they have the same size. Suppose A = [aij] and B = [bij] are two matrices of
the size m � n, in which aij denotes the element of A in the ith row and the
jth column, and so on. The sum and difference of A and B are given by:

Aþ B ¼ ½aij þ bij	

A� B ¼ ½aij � bij	

The multiplication of A and B (A * B) is defined only if the number
of columns of A is the same as the number of rows of B. If A is of the size
m � n and B is of the size n � t, then A *B = [cik] is of the size m � t and
the element cik is given by the formula:

cik ¼ ai1b1k þ ai2b2k þ � � � þ ainbnk

Design and implement aclass matrixType that can store amatrix of any size.
Overload the operators +, -, and * to perform the addition, subtraction, and
multiplication operations, respectively, and overload the operator << to output a
matrix. Also, write a test program to test various operations on the matrices.

14. a. In Programming Exercise 3 in Chapter 10, we defined a class
romanType to implement Roman numbers in a program. In that
exercise, we also implemented a function, romanToDecimal, to con-
vert a Roman number into its equivalent decimal number.

Modify the definition of the class romanType so that the member
variables are declared as protected. Use the class newString, as
designed in Programming Exercise 9, to manipulate strings. Further-
more, overload the stream insertion and stream extraction operators for
easy input and output. The stream insertion operator outputs the
Roman number in the Roman format.

Also, include a member function, decimalToRoman, that converts the
decimal number (the decimal number must be a positive integer) to an
equivalent Roman number format. Write the definition of the member
function decimalToRoman.

For simplicity, we assume that only the letter I can appear in front of
another letter and that it appears only in front of the letters V and X. For
example, 4 is represented as IV, 9 is represented as IX, 39 is represented
as XXXIX, and 49 is represented as XXXXIX. Also, 40 will be repre-
sented as XXXX, 190 will be represented as CLXXXX, and so on.

938 | Chapter 13: Overloading and Templates

1

3

b. Derive a class extRomanType from the class romanType to do
the following: In the class extRomanType, overload the arithmetic
operators +, -, *, and / so that arithmetic operations can be performed on
Roman numbers. Also, overload the pre- and post-increment and decre-
ment operators as member functions of the class extRomanType.

To add (subtract, multiply, or divide) Roman numbers, add (subtract,
multiply, or divide, respectively) their decimal representations and then
convert the result to the Roman number format. For subtraction, if the
first number is smaller than the second number, output a message saying
that, ‘‘Because the first number is smaller than the second,

the numbers cannot be subtracted’’. Similarly, for division, the
numerator must be larger than the denominator. Use similar conventions
for the increment and decrement operators.

c. Write the definitions of the functions to overload the operators
described in part b.

d. Write a program to test your class.

15. In Example 13-9, the class template listType is designed to implement a
list in a program. For illustration purposes, that example included only the
sorting operation. Extend the definition of the class template to include the
remove and search operations. Write the definitions of the member func-
tions to implement the class template listType. Also, write a test program
to test various operations on a list.

16. Consider the class dateType given in Chapter 11. In this class, add the
functions to overload the increment and decrement operators to increase
the date by a day and decrease the date by a day, respectively; relational
operators to compare two dates; and stream operators for easy input and
output. (Assume that the date is input and output in the form MM-DD-YYYY.)
Also write a program to test your class.

17. Programming Exercise 14, Chapter 10, describes how to design the class
lineType to implement a line. Redo this programming exercise so that
the class lineType:

a. Overloads the stream insertion operator, <<, for easy output.

b. Overloads the stream extraction operator, >>, for easy intput. (The line
ax + by ¼ c is input as (a, b, c).)

c. Overloads the assignment operator to copy a line into another line.

d. Overloads the unary operator +, as a member function, so that it returns
true if a line is vertical; false otherwise.

e. Overloads the unary operator -, as a member function, so that it returns
true if a line is horizontal; false otherwise.

f. Overloads the operator ==, as a member function, so that it returns
true if two lines are equal; false otherwise.

Programming Exercises | 939

g. Overloads the operator ||, as a member function, so that it returns
true if two lines are parallel; false otherwise.

h. Overloads the operator &&, as a member function, so that it returns
true if two lines are perpendicular; false otherwise.

Write a program to test your class.

18. Consider the classes class cashRegister and dispenserType given in
the Programming Example ‘‘Juice Machine’’ in Chapter 10.

a. In the class class cashRegister, add the functions to overload the
binary operators + and – to add and subtract an amount in a cash
register; the relational operators to compare the amount in two cash
registers; and the stream insertion operator for easy output.

b. The class dispenserType, in the Programming Example ‘‘Juice
Machine’’ in Chapter 10, is designed to implement a dispenser to hold
and release products. In this class, add the functions to overload the
increment and decrement operators to increment and decrement the
number of items by one, respectively, and the stream insertion operator
for easy output.

c. Write a program to test the classes designed in parts a and b.

19. (Stock Market) Write a program to help a local stock trading company
automate its systems. The company invests only in the stock market. At the
end of each trading day, the company would like to generate and post the
listing of its stocks so that investors can see how their holdings performed
that day. We assume that the company invests in, say, 10 different stocks.
The desired output is to produce two listings, one sorted by stock symbol
and another sorted by percent gain from highest to lowest.

The input data is provided in a file in the following format:

symbol openingPrice closingPrice todayHigh todayLow
prevClose volume

For example, the sample data is:

MSMT 112.50 115.75 116.50 111.75 113.50 6723823
CBA 67.50 75.50 78.75 67.50 65.75 378233
.
.
.

The first line indicates that the stock symbol is MSMT, today’s opening price was
112.50, the closing price was 115.75, today’s high price was 116.50, today’s low
price was 111.75, yesterday’s closing price was 113.50, and the number of shares
currently being held is 6723823.

940 | Chapter 13: Overloading and Templates

The listing sorted by stock symbols must be of the following form:

********* First Investor's Heaven **********
********* Financial Report **********
Stock Today Previous Percent
Symbol Open Close High Low Close Gain Volume
------ ----- ----- ----- ----- -------- ------- ------

ABC 123.45 130.95 132.00 125.00 120.50 8.67% 10000
AOLK 80.00 75.00 82.00 74.00 83.00 -9.64% 5000
CSCO 100.00 102.00 105.00 98.00 101.00 0.99% 25000
IBD 68.00 71.00 72.00 67.00 75.00 -5.33% 15000

MSET 120.00 140.00 145.00 140.00 115.00 21.74% 30920
Closing Assets: $9628300.00
-*

Develop this programming exercise in two steps. In the first step (part a), design and
implement a stock object. In the second step (part b), design and implement an
object to maintain a list of stocks.

a. (Stock Object) Design and implement the stock object. Call the class
that captures the various characteristics of a stock object stockType.

The main components of a stock are the stock symbol, stock price, and
number of shares. Moreover, we need to output the opening price,
closing price, high price, low price, previous price, and the percent
gain/loss for the day. These are also all the characteristics of a stock.
Therefore, the stock object should store all this information.

Perform the following operations on each stock object:

i. Set the stock information.

ii. Print the stock information.

iii. Show the different prices.

iv. Calculate and print the percent gain/loss.

v. Show the number of shares.

a.1. The natural ordering of the stock list is by stock symbol.
Overload the relational operators to compare two stock
objects by their symbols.

a.2. Overload the insertion operator, <<, for easy output.

a.3. Because the data is stored in a file, overload the stream
extraction operator, >>, for easy input.

For example, suppose infile is an ifstream object and the input file
was opened using the object infile. Further suppose that myStock is
a stock object. Then, the statement:

infile >> myStock;

1

3

Programming Exercises | 941

reads the data from the input file and stores it in the object myStock.
(Note that this statement reads and stores the data in the relevant
components of myStock.)

b. Now that you have designed and implemented the class stockType

to implement a stock object in a program, it is time to create a list of
stock objects.

Let us call the class to implement a list of stock objects stockListType.

The class stockListType must be derived from the class
listType, which you designed and implemented in the previous
exercise. However, the class stockListType is a very specific class,
designed to create a list of stock objects. Therefore, the class
stockListType is no longer a template.

Add and/or overwrite the operations of the class listType to
implement the necessary operations on a stock list.

The following statement derives the class stockListType from the
class listType.

class stockListType: public listType<stockType>

{

member list
};

The member variables to hold the list elements, the length of the list,
and the max listSize were declared as protected in the class
listType. Therefore, these members can be directly accessed in the
class stockListType.

Because the company also requires you to produce the list ordered by the
percent gain/loss, youneed to sort the stock list by this component.However,
you are not to physically sort the list by the component percent gain/loss.
Instead, you will provide a logical ordering with respect to this component.

To do so, add a member variable, an array, to hold the indices of the
stock list ordered by the component percent gain/loss. Call this array
sortIndicesGainLoss. When printing the list ordered by the com-
ponent percent gain/loss, use the array sortIndicesGainLoss to print
the list. The elements of the array sortIndicesGainLoss will tell
which component of the stock list to print next.

c. Write a program that uses these two classes to automate the company’s
analysis of stock data.

942 | Chapter 13: Overloading and Templates

EXCEPTION HANDLING
IN THIS CHAPTER , YOU WILL :

. Learn what an exception is

. Learn how to handle exceptions within a program

. See how a try/catch block is used to handle exceptions

. Become familiar with C++ exception classes

. Learn how to create your own exception classes

. Discover how to throw and rethrow an exception

. Explore stack unwinding

14C H A P T E R

An exception is an occurrence of an undesirable situation that can be detected during
program execution. For example, division by zero is an exception. Similarly, trying to open
an input file that does not exist is an exception, as is an array index that goes out of bounds.

Until now, we have dealt with certain exceptions by using either an if statement or
the assert function. For instance, in Examples 5-3 and 5-4, before dividing sum by
counter or count, we checked whether counter or count was nonzero. Similarly,
in the Programming Example newString (Chapter 13), we used the assert function to
determine whether the array index is within bounds.

On the other hand, there were places where we simply ignored the exception. For
instance, while determining a substring in a string (Chapter 7), we never checked
whether the starting position of the substring was within range. Also, we did not handle
the array index out-of-bounds exception. However, in all of these cases, if exceptions
occurred during program execution, either we included code to terminate the program
or the program terminated with an appropriate error message. For instance, if we opened
an input file in the function main and the input file did not exist, we terminated the
function main, so the program was terminated.

There are situations when an exception occurs, but you don’t want the program to
simply ignore the exception and terminate. For example, a program that monitors
stock performance should not automatically sell if the account balance goes below a
certain level. It should inform the stockholder and request an appropriate action.
Similarly, a program that monitors a patient’s heartbeat cannot be terminated if the
blood pressure goes very high. A program that monitors a satellite in space cannot be
terminated if there is a temporary power failure in some section of the satellite.

The code to handle exceptions depends on the type of application you develop. One
common way to provide exception-handling code is to add exception-handling code at
the point where an error can occur. This technique allows the programmer reading the
code to see the exception-handling code together with the actual code and to determine
whether the error-checking code is properly implemented. The disadvantage of this approach
is that the program can become cluttered with exception-handling code, which can make
understanding and maintaining the program difficult. This can distract the programmer from
ensuring that the program functions correctly.

Handling Exceptions within a Program
In Chapter 3, we noted that if you try to input invalid data into a variable, the input
stream enters the fail state, so an exception occurs. This occurs, for example, if you try
to input a letter into an int variable. Chapter 3 also showed how to clear and restore
the input stream. Chapter 4 introduced the assert function and explained how to use
it to avoid certain unforeseeable errors, such as division by zero. Even though the
function assert can check whether an expression meets the required condition(s), if
the conditions are not met, it terminates the program. As indicated in the previous
section, situations occur in which, if something goes wrong, the program should not be
simply terminated.

944 | Chapter 14: Exception Handling

1

4

This section discusses how to handle exceptions. However, first we offer some examples
that show what can happen if an exception is not handled. We also review some of the
ways to handle exceptions.

The program in Example 14-1 shows what happens when division by zero occurs and the
problem is not addressed.

EXAMPLE 14-1

// Division by zero.

#include <iostream>

using namespace std;

int main()
{

int dividend, divisor, quotient; //Line 1

cout << "Line 2: Enter the dividend: "; //Line 2
cin >> dividend; //Line 3
cout << endl; //Line 4

cout << "Line 5: Enter the divisor: "; //Line 5
cin >> divisor; //Line 6
cout << endl; //Line 7

quotient = dividend / divisor; //Line 8
cout << "Line 9: Quotient = " << quotient

<< endl; //Line 9

return 0; //Line 10
}

Sample Run 1:

Line 2: Enter the dividend: 12

Line 5: Enter the divisor: 5

Line 9: Quotient = 2

Sample Run 2:

Line 2: Enter the dividend: 24

Line 5: Enter the divisor: 0

CPP_Proj1.exe has encountered a problem and needs to close. We are
sorry for the inconvenience.

In Sample Run 1, the value of divisor is nonzero, so no exception occurs. The program
calculates and outputs the quotient and terminates normally.

Handling Exceptions within a Program | 945

In Sample Run 2, the value entered for divisor is 0. The statement in Line 8 divides
dividend by the divisor. However, the program does not check whether divisor is 0
before dividing dividend by divisor. So the program crashes with the message shown.
Notice that the error message is platform independent, that is, IDE dependent. Some
IDEs might not give this error message and might simply hang.

Next, consider Example 14-2. This is the same program as in Example 14-1, except that
in Line 8, the program checks whether divisor is zero.

EXAMPLE 14-2

// Checking division by zero.

#include <iostream>

using namespace std;

int main()
{

int dividend, divisor, quotient; //Line 1

cout << "Line 2: Enter the dividend: "; //Line 2
cin >> dividend; //Line 3
cout << endl; //Line 4

cout << "Line 5: Enter the divisor: "; //Line 5
cin >> divisor; //Line 6
cout << endl; //Line 7

if (divisor != 0) //Line 8
{

quotient = dividend / divisor; //Line 9
cout << "Line 10: Quotient = " << quotient

<< endl; //Line 10
}

else //Line 11
cout << "Line 12: Cannot divide by zero."

<< endl; //Line 12

return 0; //Line 13
}

Sample Run 1:

Line 2: Enter the dividend: 12

Line 5: Enter the divisor: 5

Line 10: Quotient = 2

946 | Chapter 14: Exception Handling

1

4

Sample Run 2:

Line 2: Enter the dividend: 24

Line 5: Enter the divisor: 0

Line 12: Cannot divide by zero.

In Sample Run 1, the value of divisor is nonzero, so no exception occurs. The program
calculates and outputs the quotient and terminates normally.

In Sample Run 2, the value entered for divisor is 0. In Line 8, the program checks
whether divisor is 0. Because divisor is 0, the expression in the if statement fails, so
the else part executes, which outputs the third line of the sample run.

The program in Example 14-3 uses the function assert to determine whether the divisor is
zero. If the divisor is zero, the function assert terminates the programwith an error message.

EXAMPLE 14-3

// Division by zero and the assert function.

#include <iostream>
#include <cassert>

using namespace std;

int main()
{

int dividend, divisor, quotient; //Line 1

cout << "Line 2: Enter the dividend: "; //Line 2
cin >> dividend; //Line 3
cout << endl; //Line 4

cout << "Line 5: Enter the divisor: "; //Line 5
cin >> divisor; //Line 6
cout << endl; //Line 7

assert(divisor != 0); //Line 8
quotient = dividend / divisor; //Line 9

cout << "Line 10: Quotient = " << quotient
<< endl; //Line 10

return 0; //Line 11
}

Sample Run 1:

Line 2: Enter the dividend: 26

Line 5: Enter the divisor: 7

Line 10: Quotient = 3

Handling Exceptions within a Program | 947

Sample Run 2:

Line 2: Enter the dividend: 24

Line 5: Enter the divisor: 0

Assertion failed: divisor!= 0, file c:\chapter14 sourcecode\ch14_exp3.cpp,

line 20

In Sample Run 1, the value of divisor is nonzero, so no exception occurs. The program
calculates and outputs the quotient and terminates normally.

In Sample Run 2, the value entered for divisor is 0. In Line 8, the function assert

checks whether divisor is nonzero. Because divisor is 0, the expression in the
assert statement evaluates to false, and the function assert terminates the program
with the error message shown in the third line of the output.

C++ Mechanisms of Exception Handling
Examples 14-1 through 14-3 show what happens when an exception occurs in a program
and is not processed. This section describes how to include the necessary code to handle
exceptions within a program.

try/catch Block
The statements that may generate an exception are placed in a try block. The try block
also contains statements that should not be executed if an exception occurs. The try

block is followed by one or more catch blocks. A catch block specifies the type of
exception it can catch and contains an exception handler.

The general syntax of the try/catch block is:

try
{

//statements
}
catch (dataType1 identifier)
{

//exception-handling code
}
.
.
.
catch (dataTypen identifier)
{

//exception-handling code
}
.
.
.
catch (...)
{

//exception-handling code
}

948 | Chapter 14: Exception Handling

1

4

Suppose there is a statement that can generate an exception, for example, division by 0.
Usually, before executing such a statement, we check whether certain conditions are met.
For example, before performing the division, we check whether the divisor is nonzero. If
the conditions are not met, we typically generate an exception, which in C++ terminology
is called throwing an exception. This is typically done using the throw statement, which
we will explain shortly. We will show what is typically thrown to generate an exception.

Let us now note the following about try/catch blocks.

• If no exception is thrown in a try block, all catch blocks associated
with that try block are ignored and program execution resumes after the
last catch block.

• If an exception is thrown in a try block, the remaining statements in that
try block are ignored. The program searches the catch blocks in the
order they appear after the try block and looks for an appropriate excep-
tion handler. If the type of thrown exception matches the parameter type
in one of the catch blocks, the code of that catch block executes, and
the remaining catch blocks after this catch block are ignored.

• The last catch block that has an ellipses (three dots) is designed to catch
any type of exception.

Consider the following catch block:

catch (int x)
{

//exception-handling code
}

In this catch block:

• The identifier x acts as a parameter. In fact, it is called a catch block parameter.

• The data type int specifies that this catch block can catch an exception
of type int.

• A catch block can have at most one catch block parameter.

Essentially, the catch block parameter becomes a placeholder for the value thrown. In
this case, x becomes a placeholder for any thrown value that is of type int. In other
words, if the thrown value is caught by this catch block, then the thrown value is stored
in the catch block parameter. This way, if the exception-handling code wants to do
something with that value, it can be accessed via the catch block parameter.

Suppose in a catch block heading only the data type is specified, that is, there is no
catch block parameter. The thrown value then may not be accessible in the catch block
exception-handling code.

THROWING AN EXCEPTION

In order for an exception to occur in a try block and be caught by a catch block, the
exception must be thrown in the try block. The general syntax to throw an exception is:

throw expression;

Handling Exceptions within a Program | 949

in which expression is a constant value, variable, or object. The object being thrown
can be either a specific object or an anonymous object. It follows that in C++, an
exception is a value.

In C++, throw is a reserved word.

Example 14-4 illustrates how to use a throw statement.

EXAMPLE 14-4

Suppose we have the following declaration:

int num = 5;
string str = "Something is wrong!!!";

throw expression Effect

throw 4; The constant value 4 is thrown.

throw x; The value of the variable x is thrown.

throw str; The object str is thrown.

throw string("Exception found!"); An anonymous string object with

the string "Exception found!"
is thrown.

ORDER OF catch BLOCKS

A catch block can catch either all exceptions of a specific type or all types of exceptions.
The heading of a catch block specifies the type of exception it handles. As noted
previously, the catch block that has an ellipses (three dots) is designed to catch any type
of exception. Therefore, if we put this catch block first, then this catch block can catch
all types of exceptions.

Suppose that an exception occurs in a try block and is caught by a catch block. The
remaining catch blocks associated with that try block are then ignored. Therefore, you
should be careful about the order in which you list catch blocks following a try block.
For example, consider the following sequence of try/catch blocks:

try //Line 1
{

//statements
}
catch (...) //Line 2
{

//statements
}
catch (int x) //Line 3
{

//statements
}

950 | Chapter 14: Exception Handling

1

4

Suppose that an exception is thrown in the try block. Because the catch block in Line 2
can catch exceptions of all types, the catch block in Line 3 cannot be reached. For this
sequence of try/catch blocks, some compilers might, in fact, give a syntax error (check
your compiler’s documentation).

In a sequence of try/catch blocks, if the catch block with an ellipses (in the heading) is
needed, then it should be the last catch block of that sequence.

USING try/catch BLOCKS IN A PROGRAM

Next, we provide examples that illustrate how a try/catch block might appear in a program.

A common error that might occur when performing numeric calculations is division by
zero with integer values. If, during program execution, division by zero occurs with integer
values and is not addressed by the program, the programmight terminate with an error message
or might simply hang. Example 14-5 shows how to handle division by zero exceptions.

EXAMPLE 14-5

This example illustrates how to catch and handle division by zero exceptions. It also
shows how a try/catch block might appear in a program.

// Handling division by zero exception.

#include <iostream>

using namespace std;

int main()
{

int dividend, divisor, quotient; //Line 1

try //Line 2
{

cout << "Line 3: Enter the dividend: "; //Line 3
cin >> dividend; //Line 4
cout << endl; //Line 5

cout << "Line 6: Enter the divisor: "; //Line 6
cin >> divisor; //Line 7
cout << endl; //Line 8

if (divisor == 0) //Line 9
throw 0; //Line 10

quotient = dividend / divisor; //Line 11

cout << "Line 12: Quotient = " << quotient
<< endl; //Line 12

}

catch (int) //Line 13

Handling Exceptions within a Program | 951

{

cout << "Line 14: Division by 0." << endl; //Line 14
}

return 0; //Line 15
}

Sample Run 1: In this sample run, the user input is shaded.

Line 3: Enter the dividend: 17

Line 6: Enter the divisor: 8

Line 12: Quotient = 2

Sample Run 2: In this sample run, the user input is shaded.

Line 3: Enter the dividend: 34

Line 6: Enter the divisor: 0

Line 14: Division by 0.

This program works as follows. The statement in Line 1 declares the int variables dividend,
divisor, and quotient. The try block starts at Line 2. The statement in Line 3 prompts the
user to enter the value for the dividend; the statement in Line 4 stores this number in the
variable dividend. The statement in Line 6 prompts the user to enter the value for the divisor,
and the statement in Line 7 stores this number in the variable divisor. The statement in
Line 9 checks whether the value of divisor is 0. If the value of divisor is 0, the statement
in Line 10 throws the constant value 0. The statement in Line 11 calculates the quotient
and stores it in quotient. The statement in Line 12 outputs the value of quotient.

The catch block starts in Line 13 and catches an exception of type int.

In Sample Run 1, the program does not throw any exception.

In Sample Run 2, the entered value of divisor is 0. Therefore, the statement in Line 10
throws 0, which is caught by the catch block starting in Line 13. The statement in Line
14 outputs the appropriate message.

The program in Example 14-6 is the same as the program in Example 14-5, except that
the throw statement throws the value of the variable divisor.

EXAMPLE 14-6

// Handling division by zero exception.

#include <iostream>

using namespace std;

952 | Chapter 14: Exception Handling

1

4

int main()
{

int dividend, divisor, quotient; //Line 1

try //Line 2
{

cout << "Line 3: Enter the dividend: "; //Line 3
cin >> dividend; //Line 4
cout << endl; //Line 5

cout << "Line 6: Enter the divisor: "; //Line 6
cin >> divisor; //Line 7
cout << endl; //Line 8

if (divisor == 0) //Line 9
throw divisor; //Line 10

quotient = dividend / divisor; //Line 11

cout << "Line 12: Quotient = " << quotient
<< endl; //Line 12

}
catch (int x) //Line 13
{

cout << "Line 14: Division by " << x
<< endl; //Line 14

}

return 0; //Line 15
}

Sample Run 1: In this sample run, the user input is shaded.

Line 3: Enter the dividend: 14

Line 6: Enter the divisor: 5

Line 12: Quotient = 2

Sample Run 2: In this sample run, the user input is shaded.

Line 3: Enter the dividend: 23

Line 6: Enter the divisor: 0

Line 14: Division by 0

This program works the same way as the program in Example 14-5.

The program in Example 14-7 illustrates how to handle division by zero, division by a
negative integer, and input failure exceptions. It also shows how to throw and catch an
object. This program is similar to the programs in Examples 14-5 and 14-6.

Handling Exceptions within a Program | 953

EXAMPLE 14-7

// Handle division by zero, division by a negative integer,
// and input failure exceptions.

#include <iostream>
#include <string>

using namespace std;

int main()
{

int dividend, divisor = 1, quotient; //Line 1

string inpStr
= "The input stream is in the fail state."; //Line 2

try //Line 3
{

cout << "Line 4: Enter the dividend: "; //Line 4
cin >> dividend; //Line 5
cout << endl; //Line 6

cout << "Line 7: Enter the divisor: "; //Line 7
cin >> divisor; //Line 8
cout << endl; //Line 9

if (divisor == 0) //Line 10
throw divisor; //Line 11

else if (divisor < 0) //Line 12
throw string("Negative divisor."); //Line 13

else if (!cin) //Line 14
throw inpStr; //Line 15

quotient = dividend / divisor; //Line 16

cout << "Line 17: Quotient = " << quotient
<< endl; //Line 17

}
catch (int x) //Line 18
{

cout << "Line 19: Division by " << x
<< endl; //Line 19

}
catch (string s) //Line 20
{

cout << "Line 21: " << s << endl; //Line 21
}

return 0; //Line 22
}

954 | Chapter 14: Exception Handling

1

4

Sample Run 1: In this sample run, the user input is shaded.

Line 4: Enter the dividend: 23

Line 7: Enter the divisor: 6

Line 17: Quotient = 3

Sample Run 2: In this sample run, the user input is shaded.

Line 4: Enter the dividend: 34

Line 7: Enter the divisor: -6

Line 21: Negative divisor.

Sample Run 3: In this sample run, the user input is shaded.

Line 4: Enter the dividend: 34

Line 7: Enter the divisor: g

Line 21: The input stream is in the fail state.

In this program, the statements in Lines 1 and 2 declare the variables used in the program.
Notice that the string object inpStr is also initialized.

The statements in Lines 4 through 9 input the data into the variables dividend and
divisor. The statement in Line 10 checks whether divisor is 0, the statement in Line
12 checks whether divisor is negative, and the statement in Line 14 checks whether the
standard input stream is in the fail state.

The statement in Line 11 throws the variable divisor, the statement in Line 13 throws
an anonymous string object with the string "Negative divisor.", and the statement in
Line 15 throws the object inpStr.

The catch block in Line 18 catches an exception of type int, and the catch block in Line
20 catches an exception of type string. If the exception is thrown by the statement in Line
11, it is caught and processed by the catch block in Line 18. If the exception is thrown by
the statements in Lines 13 or 15, it is caught and processed by the catch block in Line 20.

In Sample Run 1, the program does not encounter any problems. In Sample Run 2, division
by a negative number occurs. In Sample Run 3, the standard input stream enters the fail state.

Using C++ Exception Classes
C++ provides support to handle exceptions via a hierarchy of classes. The class

exception is the base of the classes designed to handle exceptions. Among others, this
class contains the function what. The function what returns a string containing an

Handling Exceptions within a Program | 955

appropriate message. All derived classes of the class exception override the function
what to issue their own error messages.

Two classes are immediately derived from the class exception: logic_error and
runtime_error. Both of these classes are defined in the header file stdexcept.

To deal with logical errors in a program, such as a string subscript out of range or an invalid
argument to a function call, several classes are derived from the class logic_error. For
example, the class invalid_argument is designed to deal with illegal arguments used in
a function call. The class out_of_range deals with the string subscript out of range
error. If a length greater than the maximum allowed for a string object is used, the class

length_error deals with this error. For example, recall that every string object has a
maximum length (see Chapter 7). If a length larger then the maximum length allowed for a
string is used, then the length_error exception is generated. If the operator new cannot
allocate memory space, this operator throws a bad_alloc exception.

The class runtime_error is designed to deal with errors that can be detected only
during program execution. For example, to deal with arithmetic overflow and underflow
exceptions, the classes overflow_error and underflow_error are derived from the
class runtime_error.

Examples 14-8 and 14-9 illustrate how C++’s exception classes are used to handle
exceptions in a program.

The program in Example 14-8 shows how to handle the exceptions out_of_range and
length_error. Notice that in this program, these exceptions are thrown by the string
functions substr and the string concatenation operator +. Because the exceptions are
thrown by these functions, we do not include any throw statement in the try block.

EXAMPLE 14-8

// Handling out_of_range and length_error exceptions.

#include <iostream>
#include <string>

using namespace std;

int main()
{

string sentence; //Line 1
string str1, str2, str3; //Line 2

try //Line 3
{

sentence = "Testing string exceptions!"; //Line 4
cout << "Line 5: sentence = " << sentence

<< endl; //Line 5

956 | Chapter 14: Exception Handling

1

4

cout << "Line 6: sentence.length() = "
<< static_cast<int>(sentence.length())
<< endl; //Line 6

str1 = sentence.substr(8, 20); //Line 7
cout << "Line 8: str1 = " << str1

<< endl; //Line 8

str2 = sentence.substr(28, 10); //Line 9
cout << "Line 10: str2 = " << str2

<< endl; //Line 10

str3 = "Exception handling. " + sentence; //Line 11
cout << "Line 12: str3 = " << str3

<< endl; //Line 12

}
catch (out_of_range re) //Line 13
{

cout << "Line 14: In the out_of_range "
<< "catch block: " << re.what()
<< endl; //Line 14

}
catch (length_error le) //Line 15
{

cout << "Line 16: In the length_error "
<< "catch block: " << le.what()
<< endl; //Line 16

}

return 0; //Line 17
}

Sample Run:

Line 5: sentence = Testing string exceptions!
Line 6: sentence.length() = 26
Line 8: str1 = string exceptions!
Line 14: In the out_of_range catch block: invalid string position

In this program, the statement in Line 7 uses the function substr to determine a
substring in the string object sentence. The length of the string sentence is 26. Because
the starting position of the substring is 8, which is less than 26, no exception is thrown.
However, in the statement in Line 9, the starting position of the substring is 28, which is
greater than 26 (the length of sentence). Therefore, the function substr throws an
out_of_range exception, which is caught and processed by the catch block in Line 13.
Notice that in the statement in Line 14, the object re uses the function what to return
the error message, invalid string position.

The program in Example 14-9 illustrates how to handle the exception bad_alloc

thrown by the operator new.

Handling Exceptions within a Program | 957

EXAMPLE 14-9

// Handling bad_alloc exception thrown by the operator new.

#include <iostream>

using namespace std;

int main()
{

int *list[100]; //Line 1

try //Line 2
{

for (int i = 0; i < 100; i++) //Line 3
{

list[i] = new int[50000000]; //Line 4
cout << "Line 4: Created list[" << i

<< "] of 50000000 components."
<< endl; //Line 5

}

}

catch (bad_alloc be) //Line 6
{

cout << "Line 7: In the bad_alloc catch "
<< "block: " << be.what() << "."
<< endl; //Line 7

}

return 0; //Line 8
}

Sample Run:

Line 4: Created list[0] of 50000000 components.
Line 4: Created list[1] of 50000000 components.
Line 4: Created list[2] of 50000000 components.
Line 4: Created list[3] of 50000000 components.
Line 4: Created list[4] of 50000000 components.
Line 4: Created list[5] of 50000000 components.
Line 4: Created list[6] of 50000000 components.
Line 4: Created list[7] of 50000000 components.
Line 7: In the bad_alloc catch block: bad allocation.

The preceding program works as follows. The statement in Line 1 declares list to be an
array of 100 pointers. The body of the for loop in Line 3 is designed to execute 100

times. For each iteration of the for loop, the statement in Line 4 uses the operator new to
allocate an array of 50000000 components of type int. As shown in the sample run, the
operator new is able to create eight arrays of 50000000 components each. In the ninth
iteration, the operator new is unable to create the array and throws a bad_alloc

958 | Chapter 14: Exception Handling

1

4

exception. This exception is caught and processed by the catch block in Line 6. Notice
that the expression be.what() returns the string bad allocation. (Moreover, the
string returned by be.what() is IDE dependent. Some IDEs might return the string
bad_alloc.) After the statement in Line 7 executes, control exits the try/catch block,
and the statement in Line 8 terminates the program.

Creating Your Own Exception Classes
Whenever you create your own classes or write programs, exceptions are likely to occur.
As you have seen, C++ provides numerous exception classes to deal with these situations.
However, it does not provide all of the exception classes you will ever need. Therefore,
C++ enables programmers to create their own exception classes to handle both the
exceptions not covered by C++’s exception classes and their own exceptions. This
section describes how to create your own exception classes.

C++ uses the samemechanism to process the exceptions that you define as it uses for built-in
exceptions. However, you must throw your own exceptions using the throw statement.

In C++, any class can be considered an exception class. Therefore, an exception class is
simply a class. It need not be inherited from the class exception. What makes a class
an exception is how you use it.

The exception class that you define can be very simple in the sense that it does not contain
any members. For example, the following code can be considered an exception class:

class dummyExceptionClass
{

};

The program in Example 14-10 uses a user-defined class (with no members) to throw an
exception.

EXAMPLE 14-10

// Using a user-defined exception class.

#include <iostream>

using namespace std;

class divByZero
{};

int main()
{

int dividend, divisor, quotient; //Line 1

Watch

the Video

Creating Your Own Exception Classes | 959

try //Line 2
{

cout << "Line 3: Enter the dividend: "; //Line 3
cin >> dividend; //Line 4
cout << endl; //Line 5

cout << "Line 6: Enter the divisor: "; //Line 6
cin >> divisor; //Line 7
cout << endl; //Line 8

if (divisor == 0) //Line 9
throw divByZero(); //Line 10

quotient = dividend / divisor; //Line 11
cout << "Line 12: Quotient = " << quotient

<< endl; //Line 12
}
catch (divByZero) //Line 13
{

cout << "Line 14: Division by zero!"
<< endl; //Line 14

}

return 0; //Line 15
}

Sample Run 1: In this sample run, the user input is shaded.

Line 3: Enter the dividend: 34

Line 6: Enter the divisor: 5

Line 12: Quotient = 6

Sample Run 2: In this sample run, the user input is shaded.

Line 3: Enter the dividend: 56

Line 6: Enter the divisor: 0

Line 14: Division by zero!

The preceding program works as follows. If the user enters 0 for the divisor, the
statement in Line 10 throws an anonymous object of the class divByZero.
The class divByZero has no members, so we cannot really do anything with
the thrown object. Therefore, in the catch block in Line 13, we specify only the data type
name without the parameter name. The statement in Line 14 outputs the appropriate error
message.

Let us again consider the statement throw divByZero(); in Line 10. Notice that in this
statement, divByZero is the name of the class, the expression divByZero() creates an
anonymous object of this class, and the throw statement throws the object.

960 | Chapter 14: Exception Handling

The exception class divByZero designed and used in Example 14-10 has no members.
Next, we illustrate how to create exception classes with members.

If you want to include members in your exception class, you typically include constructors
and the function what. Consider the following definition of the class divisionByZero.

// User-defined exception class.

#include <iostream>
#include <string>

using namespace std;

class divisionByZero //Line 1
{ //Line 2
public: //Line 3

divisionByZero() //Line 4
{

message = "Division by zero"; //Line 5
} //Line 6

divisionByZero(string str) //Line 7
{ //Line 8

message = str; //Line 9
} //Line 10

string what() //Line 11
{ //Line 12

return message; //Line 13
} //Line 14

private: //Line 15
string message; //Line 16

}; //Line 17

The definition of the class divisionByZero contains two constructors: the default
constructor and the constructor with parameters. The default constructor stores the
string "Division by zero" in an object. The constructor with parameters allows users
to create their own error messages. The function what is used to return the string stored
in the object.

In the definition of the class divisionByZero, the constructors can also be

written as:

divisionByZero() : message("Division by zero"){}
divisionByZero(string str) : message(str){}

The program in Example 14-11 uses the preceding class to throw an exception.

1

4

Creating Your Own Exception Classes | 961

EXAMPLE 14-11

// Using user-defined exception class divisionByZero with
// default error message.

#include <iostream>
#include "divisionByZero.h"

using namespace std;

int main()
{

int dividend, divisor, quotient; //Line 1

try //Line 2
{

cout << "Line 3: Enter the dividend: "; //Line 3
cin >> dividend; //Line 4
cout << endl; //Line 5

cout << "Line 6: Enter the divisor: "; //Line 6
cin >> divisor; //Line 7
cout << endl; //Line 8

if (divisor == 0) //Line 9
throw divisionByZero(); //Line 10

quotient = dividend / divisor; //Line 11
cout << "Line 12: Quotient = " << quotient

<< endl; //Line 12
}
catch (divisionByZero divByZeroObj) //Line 13
{

cout << "Line 14: In the divisionByZero "
<< "catch block: "
<< divByZeroObj.what() << endl; //Line 14

}

return 0; //Line 15
}

Sample Run 1: In this sample run, the user input is shaded.

Line 3: Enter the dividend: 34

Line 6: Enter the divisor: 5

Line 12: Quotient = 6

962 | Chapter 14: Exception Handling

Sample Run 2: In this sample run, the user input is shaded.

Line 3: Enter the dividend: 56

Line 6: Enter the divisor: 0

Line 14: In the divisionByZero catch block: Division by zero

In this program, the statement in Line 10 throws an object (exception) of the class

divisionByZero if the user enters 0 for the divisor. This thrown exception is caught
and processed by the catch block in Line 13. The parameter divByZeroObj in the
catch block catches the value of the thrown object and then uses the function what to
return the string stored in the object. The statement in Line 14 outputs the appropriate
error message.

The program in Example 14-12 is similar to the program in Example 14-11. Here, the
thrown object is still an anonymous object, but the error message is specified by the user
(see the statement in Line 10).

EXAMPLE 14-12

// Using user-defined exception class divisionByZero with a
// specific error message.

#include <iostream>
#include "divisionByZero.h"

using namespace std;

int main()
{

int dividend, divisor, quotient; //Line 1

try //Line 2
{

cout << "Line 3: Enter the dividend: "; //Line 3
cin >> dividend; //Line 4
cout << endl; //Line 5

cout << "Line 6: Enter the divisor: "; //Line 6
cin >> divisor; //Line 7
cout << endl; //Line 8

if (divisor == 0) //Line 9
throw divisionByZero("Found division by zero"); //Line 10

quotient = dividend / divisor; //Line 11
cout << "Line 12: Quotient = " << quotient

<< endl; //Line 12
}

1

4

Creating Your Own Exception Classes | 963

catch(divisionByZero divByZeroObj) //Line 13
{

cout << "Line 14: In the divisionByZero "
<< "catch block: "
<< divByZeroObj.what() << endl; //Line 14

}

return 0; //Line 15
}

Sample Run 1: In this sample run, the user input is shaded.

Line 3: Enter the dividend: 34

Line 6: Enter the divisor: 5

Line 12: Quotient = 6

Sample Run 2: In this sample run, the user input is shaded.

Line 3: Enter the dividend: 56

Line 6: Enter the divisor: 0

Line 14: In the divisionByZero catch block: Found division by zero

This program works the same way as the program in Example 14-11. The details are left
as an exercise for you.

In the programs in Examples 14-11 and 14-12, the data manipulation is done in the
function main. Therefore, the exception is thrown, caught, and processed in the function
main. The program in Example 14-13 uses the user-defined function doDivision to
manipulate the data. Therefore, the exception is thrown, caught, and processed in the
function doDivision.

EXAMPLE 14-13

// Handling an exception thrown by a function.

#include <iostream>
#include "divisionByZero.h"

using namespace std;

void doDivision();

int main()
{

doDivision(); //Line 1

return 0; //Line 2
}

964 | Chapter 14: Exception Handling

1

4

void doDivision()
{

int dividend, divisor, quotient; //Line 3

try
{

cout << "Line 4: Enter the dividend: "; //Line 4
cin >> dividend; //Line 5
cout << endl; //Line 6

cout << "Line 7: Enter the divisor: "; //Line 7
cin >> divisor; //Line 8
cout << endl; //Line 9

if (divisor == 0) //Line 10
throw divisionByZero(); //Line 11

quotient = dividend / divisor; //Line 12
cout << "Line 13: Quotient = " << quotient

<< endl; //Line 13
}
catch (divisionByZero divByZeroObj) //Line 14
{

cout << "Line 15: In the function "
<< "doDivision: "
<< divByZeroObj.what() << endl; //Line 15

}
}

Sample Run 1: In this sample run, the user input is shaded.

Line 4: Enter the dividend: 34

Line 7: Enter the divisor: 5

Line 13: Quotient = 6

Sample Run 2: In this sample run, the user input is shaded.

Line 4: Enter the dividend: 56

Line 7: Enter the divisor: 0

Line 15: In the function doDivision: Division by zero

EXAMPLE 14-14

Example 10-8 defined the class circleType to implement the basic properties of a
circle. If a circleType object tries to set the radius to a negative number, then the
function setRadius of this class sets the radius to 0. In this example, first we define the
class negativeNumber to handle negative number exceptions and then use this class to
throw an exception if a circleType object tries to set the radius to a negative number.
So consider the following class:

Creating Your Own Exception Classes | 965

// User-defined exception class.

#include <iostream>
#include <string>

using namespace std;

class negativeNumber
{

public:
negativeNumber()
{

message = "Number cannot be negative";
}

negativeNumber(string str)
{

message = str + " cannot be negative";
}

string what()
{

return message;
}

private:
string message;

};

Note that the definition of the class negativeNumber is similar to the definition of the
class divisionByZero.

The definition of the class circleType is the same as in Example 10-8, except for the
definition of function setRadius. The modified definition of this function is:

void circleType::setRadius(double r)
{

if (r < 0)
throw negativeNumber("Radius");

radius = r;
}

If the value of the parameter r is a negative number, the function setRadius throws a
negativeNumber object. In this case, the value of the instance variable message of the
object thrown is "Radius cannot be negative". The user program will handle the
exception, if any, thrown by this function.

Consider the following program:

//The user program that uses the class circleType

#include <iostream>
#include <iomanip>
#include "circleType.h"
#include "negativeNumber.h"

966 | Chapter 14: Exception Handling

1

4

using namespace std;

int main() //Line 1
{ //Line 2

circleType circle; //Line 3

double radius; //Line 4

cout << fixed << showpoint << setprecision(2); //Line 5

try //Line 6
{ //Line 7

cout << "Line 8: Enter the radius of a circle: "; //Line 8
cin >> radius; //Line 9
cout << endl; //Line 10

circle.setRadius(radius); //Line 11

cout << "Line 12: circle - "
<< "radius: " << circle.getRadius()
<< ", area: " << circle.area()
<< ", circumference: "
<< circle.circumference() << endl; //Line 12

} //Line 13
catch (negativeNumber obj) //Line 14
{ //Line 15

cout << "Line 16: " << obj.what() << endl; //Line 16
} //Line 17

return 0; //Line 18
}//end main //Line 19

Sample Run 1: In this sample run, the user input is shaded.

Line 8: Enter the radius of a circle: 4.75

Line 12: circle - radius: 4.75, area: 70.88, circumference: 29.85

Sample Run 2: In this sample run, the user input is shaded.

Line 8: Enter the radius of a circle: -2.65

Line 16: Radius cannot be negative

The preceding program works as follows. The statement in Line 3 creates the circleType

object circle and using the default constructor sets the radius to 0.0. The statement in Line 4
declares the double variable radius. The try/catch block, between Lines 7 and 17 contains
the code toprompt theuser to enter the radius of the circle anddependingon thevalue enteredby
the user generates the output. For example, if the user enters a nonnegative radius, the statement
in Line 11 sets the radius of the circle and the statement in Line 12outputs the radius, area, and the
perimeter of the circle. If the user enters a negative number, the statement in Line 11 throws an
exception,which is a negativeNumber object, and the catch block processes the exception. In
SampleRun 1, the user enters 4.75, a nonnegative number, and the programoutputs the radius,
area, and the perimeter of the circle. In SampleRun 2, the user enters -2.65, which is a negative
number, and the statement in Line 16 outputs that the radius cannot be negative.

Creating Your Own Exception Classes | 967

Rethrowing and Throwing an Exception
When an exception occurs in a try block, control immediately passes to one of the
catch blocks. Typically, a catch block either handles the exception or partially processes
the exception and then rethrows the same exception, or it rethrows another exception in
order for the calling environment to handle the exception. The catch block in Examples
14-4 through 14-14 handles the exception. The mechanism of rethrowing or throwing
an exception is quite useful in cases in which a catch block catches the exception but
cannot handle the exception, or if the catch block decides that the exception should be
handled by the calling block or environment. This allows the programmer to provide the
exception-handling code all in one place.

To rethrow or throw an exception, we use the throw statement. The general syntax to
rethrow an exception caught by a catch block is:

throw;

(in this case, the same exception is rethrown) or:

throw expression;

in which expression is a constant value, variable, or object. The object being thrown
can be either a specific object or an anonymous object.

A function specifies the exceptions it throws (to be handled somewhere) in its heading
using the throw clause. For example, the following function specifies that it throws
exceptions of type int, string, and divisionByZero, in which divisionByZero is
the class, as defined previously.

void expThrowExcep(int x) throw (int, string, divisionByZero)
{

.

.

.
//include the appropriate throw statements
.
.
.

}

The program inExample 14-15 further explains how a function specifies the exception it throws.

EXAMPLE 14-15

// Handling an exception, in the main function, thrown by another
// function. The function throws the same exception object.

#include <iostream>
#include "divisionByZero.h"

968 | Chapter 14: Exception Handling

1

4

using namespace std;

void doDivision() throw (divisionByZero);

int main()
{

try //Line 1
{

doDivision(); //Line 2
}
catch (divisionByZero divByZeroObj) //Line 3
{

cout << "Line 4: In main: "
<< divByZeroObj.what() << endl; //Line 4

}

return 0; //Line 5
}

void doDivision() throw (divisionByZero)
{

int dividend, divisor, quotient; //Line 6

try //Line 7
{

cout << "Line 8: Enter the dividend: "; //Line 8
cin >> dividend; //Line 9
cout << endl; //Line 10

cout << "Line 11: Enter the divisor: "; //Line 11
cin >> divisor; //Line 12
cout << endl; //Line 13

if (divisor == 0) //Line 14
throw divisionByZero("Found division by 0!"); //Line 15

quotient = dividend / divisor; //Line 16
cout << "Line 17: Quotient = " << quotient

<< endl; //Line 17
}
catch (divisionByZero) //Line 18
{

throw; //Line 19
}

}

Sample Run 1: In this sample run, the user input is shaded.

Line 8: Enter the dividend: 34

Line 11: Enter the divisor: 5

Line 17: Quotient = 6

Creating Your Own Exception Classes | 969

Sample Run 2: In this sample run, the user input is shaded.

Line 8: Enter the dividend: 56

Line 11: Enter the divisor: 0

Line 4: In main: Found division by 0!

In this program, if the value of divisor is 0, the statement in Line 15 throws an
exception of type divisionByZero, which is an anonymous object of this class, with
the message string:

"Found division by 0!"

The statement in Line 19, in the catch block, throws the same exception value, which in
this case is an object.

In Sample Run 1, no exception is thrown.

Let us see what happens in Sample Run 2. The function main calls the function doDivision

in the try block. In the function doDivision, the value of divisor is 0, so the statement in
Line 15 throws an exception. The exception is caught by the catch block in Line 18. The
statement in Line 19 rethrows the same exception. In other words, the catch block catches
and rethrows the same exception. Therefore, the function call statement in Line 2 results in
throwing an exception. This exception is caught and processed by the catch block in Line 3.

EXAMPLE 14-16

// Handling exception, in the main function, thrown by another
// function. The function throws a different exception object.

#include <iostream>
#include "divisionByZero.h"

using namespace std;

void doDivision() throw (divisionByZero);

int main()
{

try //Line 1
{

doDivision(); //Line 2
}
catch (divisionByZero divByZeroObj) //Line 3
{

cout << "Line 4: In main: "
<< divByZeroObj.what() << endl; //Line 4

}

return 0; //Line 5
}

970 | Chapter 14: Exception Handling

1

4

void doDivision() throw (divisionByZero)
{

int dividend, divisor, quotient; //Line 6

try //Line 7
{

cout << "Line 8: Enter the dividend: "; //Line 8
cin >> dividend; //Line 9
cout << endl; //Line 10

cout << "Line 11: Enter the divisor: "; //Line 11
cin >> divisor; //Line 12
cout << endl; //Line 13

if (divisor == 0) //Line 14
throw divisionByZero(); //Line 15

quotient = dividend / divisor; //Line 16
cout << "Line 17: Quotient = " << quotient

<< endl; //Line 17
}
catch (divisionByZero) //Line 18
{

throw
divisionByZero("Division by zero found!"); //Line 19

}
}

Sample Run 1: In this sample run, the user input is shaded.

Line 8: Enter the dividend: 34

Line 11: Enter the divisor: 5

Line 17: Quotient = 6

Sample Run 2: In this sample run, the user input is shaded.

Line 8: Enter the dividend: 56

Line 11: Enter the divisor: 0

Line 4: In main: Division by zero found!

This program works the same way as the program in Example 14-15. The only
difference is that here, the catch block in Line 18 rethrows a different exception
value, that is, object.

The programs in Examples 14-15 and 14-16 illustrate how a function can rethrow the
same exception or throw another exception for the calling function to handle. This
mechanism is quite useful because it allows a program to handle all of the exceptions in
one location, rather than spread the exception-handling code throughout the program.

Creating Your Own Exception Classes | 971

Exception-Handling Techniques
When an exception occurs in a program, the programmer usually has three choices:
terminate the program, include code in the program to recover from the exception, or
log the error and continue. The following sections discuss each of these situations.

Terminate the Program
In some cases, it is best to let the program terminate when an exception occurs. Suppose
you have written a program that inputs data from a file. If the input file does not exist
when the program executes, then there is no point in continuing with the program. In
this case, the program can output an appropriate error message and terminate.

Fix the Error and Continue
In other cases, you will want to handle the exception and let the program continue.
Suppose that you have a program that takes as input an integer. If a user inputs a letter in
place of a number, the input stream will enter the fail state. This is a situation in which
you can include the necessary code to keep prompting the user to input a number until
the entry is valid. The program in Example 14-17 illustrates this situation.

EXAMPLE 14-17

// Handle exceptions by fixing the errors. The program continues to
// prompt the user until a valid input is entered.

#include <iostream>
#include <string>

using namespace std;

int main()
{

int number; //Line 1
bool done = false; //Line 2

string str =
"The input stream is in the fail state."; //Line 3

do //Line 4
{ //Line 5

try //Line 6
{ //Line 7

cout << "Line 8: Enter an integer: "; //Line 8
cin >> number; //Line 9

972 | Chapter 14: Exception Handling

1

4

cout << endl; //Line 10

if (!cin) //Line 11
throw str; //Line 12

done = true; //Line 13
cout << "Line 14: Number = " << number

<< endl; //Line 14
} //Line 15
catch (string messageStr) //Line 16
{ //Line 17

cout << "Line 18: " << messageStr
<< endl; //Line 18

cout << "Line 19: Restoring the "
<< "input stream." << endl; //Line 19

cin.clear(); //Line 20
cin.ignore(100, '\n'); //Line 21

} //Line 22
}
while (!done); //Line 23

return 0; //Line 24
}

Sample Run: In this sample run, the user input is shaded.

Line 8: Enter an integer: r5

Line 18: The input stream is in the fail state.
Line 19: Restoring the input stream.
Line 8: Enter an integer: d45

Line 18: The input stream is in the fail state.
Line 19: Restoring the input stream.
Line 8: Enter an integer: hw3

Line 18: The input stream is in the fail state.
Line 19: Restoring the input stream.
Line 8: Enter an integer: 48

Line 14: Number = 48

This program prompts the user to enter an integer. If the input is invalid, the standard
input stream enters the fail state. In the try block, the statement in Line 12 throws an
exception, which is a string object. Control passes to the catch block, and the
exception is caught and processed. The statement in Line 20 restores the input stream
to its good state, and the statement in Line 21 clears the rest of the input from the line.
The do. . .while loop continues to prompt the user until the user inputs a valid
number.

Exception-Handling Techniques | 973

Log the Error and Continue
The program that terminates when an exception occurs usually assumes that this
termination is reasonably safe. However, if your program is designed to run a nuclear
reactor or continuously monitor a satellite, it cannot be terminated if an exception
occurs. These programs should report the exception, but the program must continue
to run.

For example, consider a program that analyzes an airline’s ticketing transactions. Because
numerous ticketing transactions occur each day, a program is run at the end of each day
to validate that day’s transactions. This type of program would take an enormous amount
of time to process the transactions and use exceptions to identify any erroneous entries.
Instead, when an exception occurs, the program should write the exception into a file
and continue to analyze the transactions.

Stack Unwinding
The examples given in this chapter show how to catch and process an exception. In
particular, you learned how to catch and process an exception in the same block, as well
as process the caught exception in the calling environment.

When an exception is thrown in, say, a function, the function can do the following:

• Do nothing.

• Partially process the exception and throw the same exception or a new
exception.

• Throw a new exception.

In each of these cases, the function-call stack is unwound so that the exception can be
caught in the next try/catch block. When the function call stack is unwound, the
function in which the exception was not caught and/or rethrown terminates, and the
memory for its local variables is destroyed. The stack unwinding continues until either a
try/catch handles the exception or the program does not handle the exception. If the
program does not handle the exception, then the function terminate is called to
terminate the program.

Examples 14-18 and 14-19 illustrate how the exceptions are propagated. For this, let us
define the following exception class:

// User-defined myException class.

#include <string>

using namespace std;

974 | Chapter 14: Exception Handling

class myException
{
public:

myException()
{

message = "Something is wrong!";
}

myException(string str)
{

message = str;
}

string what()
{

return message;
}

private:
string message;

};

In the definition of the class myException, the constructors can also be written

as follows:

myException() : message("Something is wrong!"){}
myException(string str) : message(str){}

The program in Example 14-18 illustrates how exceptions thrown in a function get
processed in the calling environment.

EXAMPLE 14-18

// Processing exceptions thrown by a function in the calling
// environment.

#include <iostream>
#include "myException.h"

using namespace std;

void functionA() throw (myException);
void functionB() throw (myException);
void functionC() throw (myException);

int main()
{

try
{

functionA();
}

1

4

Stack Unwinding | 975

catch (myException me)
{

cout << me.what() << " Caught in main." << endl;
}

return 0;
}

void functionA() throw (myException)
{

functionB();
}

void functionB() throw (myException)
{

functionC();
}

void functionC() throw (myException)
{

throw myException("Exception generated in function C.");
}

Sample Run:

Exception generated in function C. Caught in main.

In this program, the function main calls functionA, functionA calls functionB, and
functionB calls functionC. The function functionC creates and throws an exception
of type myException. The functions functionA and functionB do not process the
exception thrown by functionC.

The function main calls functionA in the try block and catches the exception
thrown by functionC. The parameter me in the catch block heading catches
the value of the exception and then uses the function what to return the string
stored in that object. The output statement in the catch block outputs the appro-
priate message.

The program in Example 14-19 is similar to the program in Example 14-18. Here, the
exception is caught and processed by the immediate calling environment.

EXAMPLE 14-19

// Processing exceptions, thrown by a function, in the
// immediate calling environment.

#include <iostream>
#include "myException.h"

976 | Chapter 14: Exception Handling

using namespace std;

void functionA();
void functionB();
void functionC() throw (myException);

int main()
{

try
{

functionA();
}
catch (myException e)
{

cout << e.what() << " Caught in main." << endl;
}

return 0;
}

void functionA()
{

functionB();
}

void functionB()
{

try
{

functionC();
}
catch (myException me)
{

cout << me.what() << " Caught in functionB." << endl;
}

}

void functionC() throw (myException)
{

throw myException("Exception generated in functionC.");
}

Sample Run:

Exception generated in functionC. Caught in functionB.

In this program, the exception is caught and processed by functionB. Even though the
function main contains the try/catch block, the try block does not throw any
exceptions because the exception thrown by functionC is caught and processed by
functionB. 1

4

Stack Unwinding | 977

QUICK REVIEW

1. An exception is an occurrence of an undesirable situation that can be
detected during program execution.

2. Some typical ways of dealing with exceptions are to use an if statement or
the assert function.

3. The function assert can check whether an expression meets the required
condition(s). If the conditions are not met, it terminates the program.

4. The try/catch block is used to handle exceptions within a program.

5. Statements that may generate an exception are placed in a try block. The
try block also contains statements that should not be executed if an
exception occurs.

6. The try block is followed by one or more catch blocks.

7. A catch block specifies the type of exception it can catch and contains an
exception handler.

8. If the heading of a catch block contains...(ellipses) in place of parameters,
then this catch block can catch exceptions of all types.

9. If no exceptions are thrown in a try block, all catch blocks associated
with that try block are ignored and program execution resumes after the
last catch block.

10. If an exception is thrown in a try block, the remaining statements in the try

block are ignored. The program searches the catch blocks, in the order they
appear after the try block, and looks for an appropriate exception handler. If
the type of the thrown exception matches the parameter type in one of the
catch blocks, then the code in that catch block executes and the remaining
catch blocks after this catch block are ignored.

11. The data type of the catch block parameter specifies the type of exception
that the catch block can catch.

12. A catch block can have, at most, one catch block parameter.

13. If only the data type is specified in a catch block heading, that is, if there is
no catch block parameter, then the thrown value may not be accessible in
the catch block exception-handling code.

14. In order for an exception to occur in a try block and be caught by a catch
block, the exception must be thrown in the try block.

15. The general syntax to throw an exception is:

throw expression;

in which expression is a constant value, variable, or object. The object
being thrown can be either a specific object or an anonymous object.

16. C++ provides support to handle exceptions via a hierarchy of classes.

978 | Chapter 14: Exception Handling

17. The class exception is the base class of the exception classes provided by
C++.

18. The function what returns the string containing the exception object
thrown by C++’s built-in exception classes.

19. The class exception is contained in the header file exception.

20. The two classes that are immediately derived from the class exception

are logic_error and runtime_error. Both of these classes are defined in
the header file stdexcept.

21. The class invalid_argument is designed to deal with illegal arguments
used in a function call.

22. The class out_of_range deals with the string subscript out_of_range

error.

23. If a length greater than the maximum allowed for a string object is used, the
class length_error deals with the error that occurs when a length
greater than the maximum size allowed for the object being manipulated
is used.

24. If the operator new cannot allocate memory space, this operator throws a
bad_alloc exception.

25. The class runtime_error is designed to deal with errors that can be
detected only during program execution. For example, to deal with arith-
metic overflow and underflow exceptions, the classes overflow_error

and underflow_error are derived from the class runtime_error.

26. A catch block typically handles the exception or partially processes the
exception and then either rethrows the same exception or rethrows another
exception in order for the calling environment to handle the exception.

27. C++ enables programmers to create their own exception classes to handle
both the exceptions not covered by C++’s exception classes and their own
exceptions.

28. C++ uses the same mechanism to process the exceptions you define as it
uses for built-in exceptions. However, you must throw your own excep-
tions using the throw statement.

29. In C++, any class can be considered an exception class. It need not be
inherited from the class exception. What makes a class an exception is
how it is used.

30. The general syntax to rethrow an exception caught by a catch block is:

throw;

(in this case, the same exception is rethrown) or:

throw expression;

in which expression is a constant value, variable, or object. The object
being thrown can be either a specific object or an anonymous object.

1

4

Quick Review | 979

31. A function specifies the exceptions it throws in its heading using the throw

clause.

32. When an exception is thrown in a function, the function can do the
following: do nothing; partially process the exception and throw the same
exception or a new exception; or throw a new exception. In each of these
cases, the function-call stack is unwound so that the exception can be
caught in the next try/catch block. The stack unwinding continues until
a try/catch handles the exception or the program does not handle the
exception.

33. If the program does not handle the exception, then the function terminate

is called to terminate the program.

EXERCISES

1. Mark the following statements as true or false.

a. The order in which catch blocks are listed is not important.

b. An exception can be caught either in the function where it occurred or
in any of the functions that led to the invocation of this method.

c. One way to handle an exception is to print an error message and exit the
program.

d. All exceptions need to be reported to avoid compilation errors.

2. What is the difference between a try block and a catch block?

3. What will happen if an exception is thrown but not caught?

4. What happens if no exception is thrown in a try block?

5. What happens if an exception is thrown in a try block?

6. What is wrong with the following C++ code? Also, provide the correct code.

double balance = 25000;
double intRate;

catch (double x)
{

cout << "Negative interest rate: " << x << endl;
}

try
{

cout << "Enter the interest rate: ";
cin >> intRate;
cout << endl;

if (intRate < 0.0)
throw intRate;

cout << "Interest: $" << balance * intRate / 100 << endl;
}

980 | Chapter 14: Exception Handling

7. What is wrong with the following C++ code? Also, provide the correct code.

double radius;

try
{

cout << "Enter the radius: ";
cin >> radius;
cout << endl;

if (radius < 0.0)
throw radius;

cout << "Area: " << 3.1416 * radius * radius << endl;
}

cout << "Entering the catch block." << endl;
catch (double x)
{

cout << "Negative radius: " << x << endl;
}

8. Consider the following C++ code:

double balance;

try
{

cout << "Enter the balance: ";
cin >> balance;
cout << endl;

if (balance < 1000.00)
throw balance;

cout << "Leaving the try block." << endl;
}

catch (double x)
{

cout << "Current balance: " << x << endl
<< "Balance must be greater than 1000.00" << endl;

}

a. In this code, identify the try block.

b. In this code, identify the catch block.

c. In this code, identify the catch block parameter and its type.

d. In this code, identify the throw statement.

9. Assume the code given in Exercise 8.

a. What is the output if the input is 1200?

b. What is the output if the input is 975?

c. What is the output if the input is -2000?

1

4

Exercises | 981

10. Consider the following C++ code:

int lowerLimit;
.
.
.
try
{

cout << "Entering the try block." << endl;

if (lowerLimit < 100)
throw exception("Lower limit violation.");

cout << "Exiting the try block." << endl;
}

catch (exception eObj)
{

cout << "Exception: " << eObj.what() << endl;
}

cout << "After the catch block" << endl;

What is the output if:

a. The value of lowerLimit is 50?

b. The value of lowerLimit is 150?

11. Consider the following C++ code:

int lowerLimit;
int divisor;
int result;

try
{

cout << "Entering the try block." << endl;

if (divisor == 0)
throw 0;

if (lowerLimit < 100)
throw string("Lower limit violation.");

result = lowerLimit / divisor;
cout << "Exiting the try block." << endl;

}

catch (int x)
{

cout << "Exception: " << x << endl;
result = 120;

}

catch (string str)
{

cout << "Exception: " << str << endl;
}

cout << "After the catch block" << endl;

982 | Chapter 14: Exception Handling

What is the output if:

a. The value of lowerLimit is 50, and the value of divisor is 10?

b. The value of lowerLimit is 50, and the value of divisor is 0?

c. The value of lowerLimit is 150, and the value of divisor is 10?

d. The value of lowerLimit is 150, and the value of divisor is 0?

12. If you define your own exception class, what is typically included in that class?

13. What type of statement is used to rethrow an exception?

14. Define an exception class called tornadoException. The class should have
two constructors, including the default constructor. If the exception is thrown
with the default constructor, the method what should return "Tornado: Take

cover immediately!". The other constructor has a single parameter, say, m, of
the int type. If the exception is thrown with this constructor, the method what

should return "Tornado: m miles away; and approaching!"

15. Write a C++ program to test the class tornadoException specified in
Exercise 14.

16. Suppose the exception class myException is defined as follows:

class myException
{

public:
myException()
{

message = "myException thrown!";
cout << "Immediate attention required!"

<< endl;
}

myException(string msg)
{

message = msg;
cout << "Attention required!" << endl;

}

string what()
{

return message;
}

private:
string message;

}

Suppose that in a user program, the catch block has the following form:

catch (myException mE)
{

cout << mE.what() << endl;
}

1

4

Exercises | 983

What output will be produced if the exception is thrown with the default con-
structor? Also, what output will be produced if the exception is thrown with the
constructor with parameters with the following actual parameter?

"May Day, May Day"

17. If a function throws an exception, how does it specify that exception?

18. Name three exception-handling techniques.

PROGRAMMING EXERCISES

1. Write a program that prompts the user to enter a length in feet and inches
and outputs the equivalent length in centimeters. If the user enters a negative
number or a nondigit number, throw and handle an appropriate exception
and prompt the user to enter another set of numbers.

2. Redo Programming Exercise 9 of Chapter 4 so that your program handles
exceptions such as division by zero and invalid input.

3. Redo Programming Exercise 7 of Chapter 7 so that your program handles
exceptions such as division by zero and invalid input.

4. Write a program that prompts the user to enter time in 12-hour notation.
The program then outputs the time in 24-hour notation. Your program
must contain three exception classes: invalidHr, invalidMin, and
invalidSec. If the user enters an invalid value for hours, then the program
should throw and catch an invalidHr object. Similar conventions for the
invalid values of minutes and seconds.

5. Write a program that prompts the user to enter a person’s date of birth in
numeric form such as 8-27-1980. The program then outputs the date of
birth in the form: August 27, 1980. Your program must contain at least two
exception classes: invalidDay and invalidMonth. If the user enters
an invalid value for day, then the program should throw and catch an
invalidDay object. Similar conventions for the invalid values of month
and year. (Note that your program must handle a leap year.)

984 | Chapter 14: Exception Handling

RECURSION
IN THIS CHAPTER , YOU WILL :

. Learn about recursive definitions

. Explore the base case and the general case of a recursive definition

. Discover what is a recursive algorithm

. Learn about recursive functions

. Explore how to use recursive functions to implement recursive algorithms

15C H A P T E R

In previous chapters, to devise solutions to problems, we used the most common technique
called iteration. For certain problems, however, using the iterative technique to obtain the
solution is quite complicated. This chapter introduces another problem-solving technique
called recursion and provides several examples demonstrating how recursion works.

Recursive Definitions
The process of solving a problem by reducing it to smaller versions of itself is called recursion.
Recursion is a very powerful way to solve certain problems for which the solution would
otherwise be very complicated. Let us consider a problem that is familiar to most everyone.

In mathematics, the factorial of a nonnegative integer is defined as follows:

0! ¼ 1 ð15-1Þ
n! ¼ n� ðn� 1Þ! if n > 0 ð15-2Þ
In this definition, 0! is defined to be 1, and if n is an integer greater than 0, first we find
(n � 1)! and then multiply it by n. To find (n � 1)!, we apply the definition again. If
(n � 1) > 0, then we use Equation 15-2; otherwise, we use Equation 15-1. Thus, for an
integer n greater than 0, n! is obtained by first finding (n � 1)! (that is, n! is reduced to a
smaller version of itself) and then multiplying (n � 1)! by n.

Let us apply this definition to find 3!. Here, n = 3. Because n > 0, we use Equation 15-2
to obtain:

3! ¼ 3� 2!

Next, we find 2! Here, n = 2. Because n > 0, we use Equation 15-2 to obtain:

2! ¼ 2� 1!

Now, to find 1!, we again use Equation 15-2 because n = 1 > 0. Thus:

1! ¼ 1� 0!

Finally, we use Equation 15-1 to find 0!, which is 1. Substituting 0! into 1! gives 1! = 1.
This gives 2! = 2 � 1! = 2 � 1 = 2, which, in turn, gives 3! = 3 � 2! = 3 � 2 = 6.

The solution in Equation 15-1 is direct—that is, the right side of the equation contains
no factorial notation. The solution in Equation 15-2 is given in terms of a smaller version
of itself. The definition of the factorial given in Equations 15-1 and 15-2 is called a
recursive definition. Equation 15-1 is called the base case (that is, the case for which
the solution is obtained directly); Equation 15-2 is called the general case.

Recursive definition: A definition in which something is defined in terms of a smaller
version of itself.

From the previous example (factorial), it is clear that:

1. Every recursive definition must have one (or more) base cases.

2. The general case must eventually be reduced to a base case.

3. The base case stops the recursion.

986 | Chapter 15: Recursion

1

5

The concept of recursion in computer science works similarly. Here, we talk about
recursive algorithms and recursive functions. An algorithm that finds the solution to a
given problem by reducing the problem to smaller versions of itself is called a recursive
algorithm. The recursive algorithm must have one or more base cases, and the general
solution must eventually be reduced to a base case.

A function that calls itself is called a recursive function. That is, the body of the
recursive function contains a statement that causes the same function to execute again
before completing the current call. Recursive algorithms are implemented using recursive
functions.

Next, let us write the recursive function that implements the factorial function.

int fact(int num)
{

if (num == 0)
return 1;

else
return num * fact(num - 1);

}

Figure 15-1 traces the execution of the following statement:

cout << fact(3) << endl;

because num != 0

 return 3 * fact(2);

fact(3)

because num != 0

 return 2 * fact(1);

fact(2)

because num != 0

 return 1 * fact(0);

fact(1)

because num is 0

 return 1;

fact(0)

return 1

fact(0) = 1

return 1 * 1

fact(1) = 1

return 2 * 1

fact(2) = 2

return 3 * 2

fact(3) = 6

3num

2num

1num

0num

FIGURE 15-1 Execution of fact(3)

Recursive Definitions | 987

The output of the previous cout statement is:

6

In Figure 15-1, the down arrow represents the successive calls to the function fact, and the
upward arrows represent the values returned to the caller, that is, the calling function.

Let us note the following from the preceding example, involving the factorial function.

• Logically, you can think of a recursive function as having an unlimited
number of copies of itself.

• Every call to a recursive function—that is, every recursive call—has its
own code and its own set of parameters and local variables.

• After completing a particular recursive call, control goes back to the
calling environment, which is the previous call. The current (recursive)
call must execute completely before control goes back to the previous
call. The execution in the previous call begins from the point immedi-
ately following the recursive call.

Direct and Indirect Recursion
A function is called directly recursive if it calls itself. A function that calls another
function and eventually results in the original function call is said to be indirectly

recursive. For example, if function A calls function B and function B calls function A,
then function A is indirectly recursive. Indirect recursion can be several layers deep. For
example, suppose that function A calls function B, function B calls function C, function C

calls function D, and function D calls function A. Function A is then indirectly recursive.

Indirect recursion requires the same careful analysis as direct recursion. The base cases
must be identified, and appropriate solutions to them must be provided. However,
tracing through indirect recursion can be tedious. You must, therefore, exercise extra
care when designing indirect recursive functions. For simplicity, the problems in this
book involve only direct recursion.

A recursive function in which the last statement executed is the recursive call is called a
tail recursive function. The function fact is an example of a tail recursive function.

Infinite Recursion
Figure 15-1 shows that the sequence of recursive calls eventually reached a call that made
no further recursive calls. That is, the sequence of recursive calls eventually reached a base
case. On the other hand, if every recursive call results in another recursive call, then the
recursive function (algorithm) is said to have infinite recursion. In theory, infinite
recursion executes forever. Every call to a recursive function requires the system to
allocate memory for the local variables and formal parameters. The system also saves this
information so that after completing a call, control can be transferred back to the right
caller. Therefore, because computer memory is finite, if you execute an infinite recursive

988 | Chapter 15: Recursion

function on a computer, the function executes until the system runs out of memory and
results in an abnormal termination of the program.

Recursive functions (algorithms) must be carefully designed and analyzed. You must make
sure that every recursive call eventually reduces to a base case. This chapter provides several
examples that illustrate how to design and implement recursive algorithms.

To design a recursive function, you must do the following:

a. Understand the problem requirements.

b. Determine the limiting conditions. For example, for a list, the
limiting condition is the number of elements in the list.

c. Identify the base cases and provide a direct solution to each base case.

d. Identify the general cases and provide a solution to each general case
in terms of smaller versions of itself.

Problem Solving Using Recursion
Examples 15-1 through 15-3 illustrate how recursive algorithms are developed and
implemented in C++ using recursive functions.

EXAMPLE 15-1: LARGEST ELEMENT IN AN ARRAY

In Chapter 8, we used a loop to find the largest element in an array. In this example, we use a
recursive algorithm to find the largest element in an array. Consider the list given in Figure 15-2.

The largest element in the list in Figure 15-2 is 10.

Suppose list is the name of the array containing the list elements. Also, suppose that
list[a]...list[b] stands for the array elements list[a], list[a + 1], ..., and
list[b]. For example, list[0]...list[5] represents the array elements
list[0], list[1], list[2], list[3], list[4], and list[5]. Similarly,
list[1]...list[5] represents the array elements list[1], list[2], list[3],
list[4], and list[5]. To write a recursive algorithm to find the largest element in
list, let us think in terms of recursion.

If list is of length 1, then list has only one element, which is the largest element.
Suppose the length of list is greater than 1. To find the largest element in

1

5

[0] [1] [2] [3] [4]

list

[5] [6]

5 8 2 10 9 4

FIGURE 15-2 list with six elements

Problem Solving Using Recursion | 989

list[a]... list[b], we first find the largest element in list[a + 1]...list[b]

and then compare this largest element with list[a]. That is, the largest element in
list[a]...list[b] is given by:

maximum(list[a], largest(list[a + 1]...list[b]))

Let us apply this formula to find the largest element in the list shown in Figure 15-2. This list
has six elements, given by list[0]...list[5]. Now, the largest element in list is:

maximum(list[0], largest(list[1]...list[5]))

That is, the largest element in list is the maximum of list[0] and the largest element
in list[1]...list[5]. To find the largest element in list[1]...list[5], we use
the same formula again because the length of this list is greater than 1. The largest element
in list[1]...list[5] is then:

maximum(list[1], largest(list[2]...list[5]))

and so on. We see that every time we use the preceding formula to find the largest
element in a sublist, the length of the sublist in the next call is reduced by one.
Eventually, the sublist is of length 1, in which case the sublist contains only one element,
which is the largest element in the sublist. From this point onward, we backtrack through
the recursive calls. This discussion translates into the following recursive algorithm, which
is presented in pseudocode.

Base Case: The size of the list is 1
The only element in the list is the largest element

General Case: The size of the list is greater than 1
To find the largest element in list[a]...list[b]

a. Find the largest element in list[a + 1]...list[b]
and call it max

b. Compare the elements list[a] and max
if (list[a] >= max)

the largest element in list[a]...list[b] is list[a]
otherwise

the largest element in list[a]...list[b] is max

This algorithm translates into the following C++ function to find the largest element in
an array:

int largest(const int list[], int lowerIndex, int upperIndex)
{

int max;

if (lowerIndex == upperIndex) //size of the sublist is one
return list[lowerIndex];

else
{

max = largest(list, lowerIndex + 1, upperIndex);

if (list[lowerIndex] >= max)
return list[lowerIndex];

990 | Chapter 15: Recursion

else
return max;

}

}

Consider the list given in Figure 15-3.

Let us trace the execution of the following statement:

cout << largest(list, 0, 3) << endl;

Here, upperIndex = 3 and the list have four elements. Figure 15-4 traces the execution
of largest(list, 0, 3).

1

5

[0] [1] [2] [3]

list 5 10 12 8

FIGURE 15-3 list with four elements

because list[2] > max

 return list[2]

because list[1] < max

 return max

because lowerIndex != upperIndex

 max = largest(list,1,3)

largest(list,0,3)

largest(list,1,3)

largest(list,2,3)

return 8

because list[0] < max

 return max

return 12

return 12

return 12

0lowerIndex 3upperIndex max
12max

12max

8max

because lowerIndex != upperIndex

 max = largest(list,2,3)

1lowerIndex 3upperIndex max

because lowerIndex != upperIndex

 max = largest(list,3,3)

2lowerIndex 3upperIndex max

because lowerIndex == upperIndex

 return list[3]

largest(list,3,3)

3lowerIndex 3upperIndex max

FIGURE 15-4 Execution of largest(list, 0, 3)

Problem Solving Using Recursion | 991

The value returned by the expression largest(list, 0, 3) is 12, which is the largest
element in list.

The following C++ program uses the function largest to determine the largest element
in a list.

//Largest Element in an Array

#include <iostream>

using namespace std;

int largest(const int list[], int lowerIndex, int upperIndex);

int main()
{

int intArray[10] = {23, 43, 35, 38, 67, 12, 76, 10, 34, 8};

cout << "The largest element in intArray: "
<< largest(intArray, 0, 9);

cout << endl;

return 0;
}

int largest(const int list[], int lowerIndex, int upperIndex)
{

int max;

if (lowerIndex == upperIndex) //size of the sublist is one
return list[lowerIndex];

else
{

max = largest(list, lowerIndex + 1, upperIndex);

if (list[lowerIndex] >= max)
return list[lowerIndex];

else
return max;

}

}

Sample Run:

The largest element in intArray: 76

992 | Chapter 15: Recursion

EXAMPLE 15-2: F IBONACCI NUMBER

In Chapter 5, we designed a program to determine the desired Fibonacci number. In
this example, we write a recursive function, rFibNum, to determine the desired
Fibonacci number. The function rFibNum takes as parameters three numbers repre-
senting the first two numbers of the Fibonacci sequence and a number n, the desired nth
Fibonacci number. The function rFibNum returns the nth Fibonacci number in the
sequence.

Recall that the third Fibonacci number is the sum of the first two Fibonacci numbers.
The fourth Fibonacci number in a sequence is the sum of the second and third Fibonacci
numbers. Therefore, to calculate the fourth Fibonacci number, we add the second
Fibonacci number and the third Fibonacci number (which is itself the sum of the first
two Fibonacci numbers). The following recursive algorithm calculates the nth Fibonacci
number, in which a denotes the first Fibonacci number, b the second Fibonacci number,
and n the nth Fibonacci number.

rFibNumða;b;nÞ ¼
a if n ¼ 1

b if n ¼ 2

rFibNumða;b;n� 1Þ þ rFibNumða;b;n� 2Þ if n > 2:

8

<

:

ð15-3Þ

Suppose that we want to determine:

rFibNum(2, 5, 4)

Here, a = 2, b = 5, and n = 4. That is, we want to determine the fourth Fibonacci
number of the sequence whose first number is 2 and whose second number is 5.
Because n is 4 > 2:

1. rFibNum(2, 5, 4) = rFibNum(2, 5, 3) + rFibNum(2, 5, 2)

Next, we determine rFibNum(2, 5, 3) and rFibNum(2, 5, 2). Let us
first determine rFibNum(2, 5, 3). Here, a = 2, b = 5, and n is 3.
Because n is 3:

1.a. rFibNum(2, 5, 3) = rFibNum(2, 5, 2) + rFibNum(2, 5, 1)

This statement requires us to determine rFibNum(2, 5, 2) and
rFibNum(2, 5, 1). In rFibNum(2, 5, 2), a = 2, b = 5, and n = 2.
Therefore, from the definition given in Equation 15-3, it follows
that:

1.a.1. rFibNum(2, 5, 2) = 5

To find rFibNum(2, 5, 1), note that a = 2, b = 5, and n = 1.
Therefore, by the definition given in Equation 15-3:

1

5

Problem Solving Using Recursion | 993

1.a.2. rFibNum(2, 5, 1) = 2

We substitute the values of rFibNum(2, 5, 2) and
rFibNum(2, 5, 1) into (1.a) to get:

rFibNum(2, 5, 3) = 5 + 2 = 7

Next, we determine rFibNum(2, 5, 2). As in (1.a.1), rFibNum(2,
5, 2) = 5. We can substitute the values of rFibNum(2, 5, 3) and
rFibNum(2, 5, 2) into (1) to get:

rFibNum(2, 5, 4) = 7 + 5 = 12

The following recursive function implements this algorithm.

int rFibNum(int a, int b, int n)
{

if (n == 1)
return a;

else if (n == 2)
return b;

else
return rFibNum(a, b, n - 1) + rFibNum(a, b, n - 2);

}

Let us trace the execution of the following statement:

cout << rFibNum(2, 3, 5) << endl;

In this statement, the first number is 2, the second number is 3, and we want to determine
the fifth Fibonacci number of the sequence. Figure 15-5 traces the execution of the
expression rFibNum(2,3,5). The value returned is 13, which is the fifth Fibonacci
number of the sequence whose first number is 2 and second number is 3.

994 | Chapter 15: Recursion

1

5

The following C++ program uses the function rFibNum:

//Chapter 15: Fibonacci Number

#include <iostream>

using namespace std;

int rFibNum(int a, int b, int n);

int main()
{

int firstFibNum;
int secondFibNum;
int nth;

cout << "Enter the first Fibonacci number: ";
cin >> firstFibNum;
cout << endl;

return rFibNum(2,3,4) + rFibNum(2,3,3)

rFibNum(2,3,5)

return rFibNum(2,3,3) + rFibNum(2,3,2)

rFibNum(2,3,4)

return rFibNum(2,3,2) + rFibNum(2,3,1)

rFibNum(2,3,3)

return b

rFibNum(2,3,2)

return a

rFibNum(2,3,1)

return rFibNum(2,3,2) + rFibNum(2,3,1)

return b

rFibNum(2,3,2)

return a

rFibNum(2,3,1)

return b

rFibNum(2,3,2)rFibNum(2,3,3)

return 3 return 2

return 5
return 3 return 3

return 2

return 5

return 8

return 13

2a 3b 5n

2a 3b 4n 2a 3b 3n

2a 3b 3n 2a 3b 2n 2a 3b 2n 2a 3b 1n

2a 3b 2n 2a 3b 1n

FIGURE 15-5 Execution of rFibNum(2, 3, 5)

Problem Solving Using Recursion | 995

cout << "Enter the second Fibonacci number: ";
cin >> secondFibNum;
cout << endl;

cout << "Enter the position of the desired Fibonacci number: ";
cin >> nth;
cout << endl;

cout << "The Fibonacci number at position " << nth
<< " is: " << rFibNum(firstFibNum, secondFibNum, nth)
<< endl;

return 0;
}

int rFibNum(int a, int b, int n)
{

if (n == 1)
return a;

else if (n == 2)
return b;

else
return rFibNum(a, b, n - 1) + rFibNum(a, b, n - 2);

}

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1

Enter the first Fibonacci number: 2

Enter the second Fibonacci number: 5

Enter the position of the desired Fibonacci number: 6

The Fibonacci number at position 6 is: 31

Sample Run 2

Enter the first Fibonacci number: 12

Enter the second Fibonacci number: 18

Enter the position of the desired Fibonacci number: 15

The Fibonacci number at position 15 is: 9582

996 | Chapter 15: Recursion

EXAMPLE 15-3: TOWER OF HANOI

In the nineteenth century, a game called the Tower of Hanoi became popular in Europe.
This game represents work that is under way in the temple of Brahma. At the creation of
the universe, priests in the temple of Brahma were supposedly given three diamond
needles, with one needle containing 64 golden disks. Each golden disk is slightly smaller
than the disk below it. The priests’ task is to move all 64 disks from the first needle to the
third needle. The rules for moving the disks are as follows:

1. Only one disk can be moved at a time.

2. The removed disk must be placed on one of the needles.

3. A larger disk cannot be placed on top of a smaller disk.

The priests were told that once they had moved all of the disks from the first needle to the
third needle, the universe would come to an end.

Our objective is to write a program that prints the sequence of moves needed to transfer
the disks from the first needle to the third needle. Figure 15-6 shows the Tower of Hanoi
problem with three disks.

As before, we think in terms of recursion. Let us first consider the case in which the
first needle contains only one disk. In this case, the disk can be moved directly from
needle 1 to needle 3. So let us consider the case in which the first needle contains
only two disks. In this case, first we move the first disk from needle 1 to needle 2,
and then we move the second disk from needle 1 to needle 3. Finally, we move the
first disk from needle 2 to needle 3. Next, we consider the case in which the first
needle contains three disks and then generalize this to the case of 64 disks (in fact, to
an arbitrary number of disks).

Suppose that needle 1 contains three disks. To move disk number 3 to needle 3, the top
two disks must first be moved to needle 2. Disk number 3 can then be moved from
needle 1 to needle 3. To move the top two disks from needle 2 to needle 3, we use the
same strategy as before. This time, we use needle 1 as the intermediate needle. Figure 15-7
shows a solution to the Tower of Hanoi problem with three disks.

1

5

3
2
1

FIGURE 15-6 Tower of Hanoi problem with three disks

Problem Solving Using Recursion | 997

Let us now generalize this problem to the case of 64 disks. To begin, the first needle
contains all 64 disks. Disk number 64 cannot be moved from needle 1 to needle 3
unless the top 63 disks are on the second needle. So first, we move the top 63 disks
from needle 1 to needle 2, and then we move disk number 64 from needle 1 to
needle 3. Now the top 63 disks are all on needle 2. To move disk number 63 from
needle 2 to needle 3, we first move the top 62 disks from needle 2 to needle 1, and
then we move disk number 63 from needle 2 to needle 3. To move the remaining
62 disks, we use a similar procedure. This discussion translates into the following
recursive algorithm given in pseudocode. Suppose that needle 1 contains n disks, in
which n � 1.

1. Move the top n � 1 disks from needle 1 to needle 2, using needle 3 as
the intermediate needle.

2. Move disk number n from needle 1 to needle 3.

3. Move the top n � 1 disks from needle 2 to needle 3, using needle 1 as
the intermediate needle.

(a) Move 1: Move disk 1 from needle 1 to needle 3 (b) Move 2: Move disk 2 from needle 1 to needle 2

(d) Move 4: Move disk 3 from needle 1 to needle 3

(e) Move 5: Move disk 1 from needle 2 to needle 1 (f) Move 6: Move disk 2 from needle 2 to needle 3

(g) Move 7: Move disk 1 from needle 1 to needle 3

3 2 13
2
1

32
1

3
2

1

3 2
1

321 3
2

1

3
2

1

(c) Move 3: Move disk 1 from needle 3 to needle 2

3 2
1

3 2 1

32132
1

3
2
1

3
2

1

FIGURE 15-7 Solution to Tower of Hanoi problem with three disks

998 | Chapter 15: Recursion

1

5

This recursive algorithm translates into the following C++ function:

void moveDisks(int count, int needle1, int needle3, int needle2)
{

if (count > 0)
{

moveDisks(count - 1, needle1, needle2, needle3);

cout << "Move disk " << count << " from " << needle1
<< " to " << needle3 << "." << endl;

moveDisks(count - 1, needle2, needle3, needle1);
}

}

Tower of Hanoi: Analysis
Let us determine how long it would take to move all 64 disks from needle 1 to needle 3.
If needle 1 contains three disks, then the number of moves required to move all three
disks from needle 1 to needle 3 is 23 � 1 = 7. Similarly, if needle 1 contains 64 disks, then
the number of moves required to move all 64 disks from needle 1 to needle 3 is 264 � 1.
Because 210 ¼ 1024
 1000 ¼ 103, we have:

264 ¼ 24 � 260
 24 � 1018 ¼ 1:6� 1019

The number of seconds in one year is approximately 3.2 � 107. Suppose the priests move
one disk per second and they do not rest. Now:

1:6� 1019 ¼ 5� 3:2� 1018 ¼ 5� ð3:2� 107Þ � 1011 ¼ ð3:2� 107Þ � ð5� 1011Þ
The time required to move all 64 disks from needle 1 to needle 3 is roughly 5 � 1011

years. It is estimated that our universe is about 15 billion years old (1.5 � 1010). Also,
5 � 1011 = 50 � 1010
 33 � (1.5 � 1010). This calculation shows that our universe
would last about 33 times as long as it already has.

Assume that a computer can generate 1 billion (109) moves per second. Then the number
of moves that the computer can generate in one year is:

ð3:2� 107Þ � 109 ¼ 3:2� 1016

So the computer time required to generate 264 moves is:

264
 1:6� 1019 ¼ 1:6� 1016 � 103 ¼ ð3:2� 1016Þ � 500

Thus, it would take about 500 years for the computer to generate 264 moves at the rate of
1 billion moves per second.

Recursion or Iteration?
In Chapter 5, we designed a program to determine a desired Fibonacci number. That
program used a loop to perform the calculation. In other words, the programs in Chapter
5 used an iterative control structure to repeat a set of statements. More formally, iterative

Recursion or Iteration? | 999

control structures use a looping structure, such as while, for, or do. . .while, to
repeat a set of statements. In Example 15-2, we designed a recursive function to calculate
a Fibonacci number. From the examples here, it follows that in recursion, a set of
statements is repeated by having the function call itself. Moreover, a selection control
structure is used to control the repeated calls in recursion.

Similarly, in Chapter 8, we used an iterative control structure (a for loop) to determine
the largest element in a list. In this chapter, we use recursion to determine the largest
element in a list. In addition, this chapter began by designing a recursive function to find
the factorial of a nonnegative integer. Using an iterative control structure, we can also
write an algorithm to find the factorial of a nonnegative integer. The only reason to give a
recursive solution to a factorial problem is to illustrate how recursion works.

We thus see that there are usually two ways to solve a particular problem—iteration and
recursion. The obvious question is which method is better—iteration or recursion? There
is no simple answer. In addition to the nature of the problem, the other key factor in
determining the best solution method is efficiency.

Example 6-13 (Chapter 6), while tracing the execution of the problem, showed us that
whenever a function is called, memory space for its formal parameters and (automatic)
local variables is allocated. When the function terminates, that memory space is then
deallocated.

This chapter, while tracing the execution of recursive functions, also shows us that
every (recursive) call has its own set of parameters and (automatic) local variables. That
is, every (recursive) call requires the system to allocate memory space for its formal
parameters and (automatic) local variables and then deallocate the memory space when
the function exits. Thus, there is overhead associated with executing a (recursive)
function both in terms of memory space and computer time. Therefore, a recursive
function executes more slowly than its iterative counterpart. On slower computers,
especially those with limited memory space, the (slow) execution of a recursive
function would be visible.

Today’s computers, however, are fast and have inexpensive memory. Therefore, the
execution of a recursion function is not noticeable. Keeping the power of today’s
computers in mind, the choice between the two alternatives—iteration or recursion—
depends on the nature of the problem. Of course, for problems such as mission control
systems, efficiency is absolutely critical and, therefore, the efficiency factor would dictate
the solution method.

As a general rule, if you think that an iterative solution is more obvious and easier to
understand than a recursive solution, use the iterative solution, which would be more
efficient. On the other hand, problems exist for which the recursive solution is more
obvious or easier to construct, such as the Tower of Hanoi problem. (In fact, it turns out
that it is difficult to construct an iterative solution for the Tower of Hanoi problem.)
Keeping the power of recursion in mind, if the definition of a problem is inherently
recursive, then you should consider a recursive solution.

1000 | Chapter 15: Recursion

1

5PROGRAMMING EXAMPLE: Converting a Number from Binary to

Decimal
In Chapter 1, we explained that the language of a computer, called machine
language, is a sequence of 0s and 1s. When you press the key A on the keyboard,
01000001 is stored in the computer. Also, you know that the collating sequence of A
in the ASCII character set is 65. In fact, the binary representation of A is 01000001,
and the decimal representation of A is 65.

The numbering system we use is called the decimal system, or base 10 system. The
numbering system that the computer uses is called the binary system, or base 2
system. In this and the next programming example, we discuss how to convert a
number from base 2 to base 10 and from base 10 to base 2.

Binary to

Decimal

To convert a number from base 2 to base 10, we first find the weight of each bit in
the binary number. The weight of each bit in the binary number is assigned from
right to left. The weight of the rightmost bit is 0. The weight of the bit immediately
to the left of the rightmost bit is 1, the weight of the bit immediately to the left of it is
2, and so on. Consider the binary number 1001101. The weight of each bit is as
follows:

Weight 6 5 4 3 2 1 0

1 0 0 1 1 0 1

We use the weight of each bit to find the equivalent decimal number. For each bit,
we multiply the bit by 2 to the power of its weight and then we add all of the
numbers. For the above binary number, the equivalent decimal number is:

1� 26 þ 0� 25 þ 0� 24 þ 1� 23 þ 1� 22 þ 0� 21 þ 1� 20

¼ 64þ 0þ 0þ 8þ 4þ 0þ 1

¼ 77

To write a program that converts a binary number into the equivalent decimal
number, we note two things: (1) the weight of each bit in the binary number must
be known, and (2) the weight is assigned from right to left. Because we do not
know in advance how many bits are in the binary number, we must process the bits
from right to left. After processing a bit, we can add 1 to its weight, giving the
weight of the bit immediately to the left of it. Also, each bit must be extracted from
the binary number and multiplied by 2 to the power of its weight. To extract a bit,
we can use the mod operator. Consider the following recursive algorithm, which is
given in pseudocode.

Watch

the Video

Programming Example: Converting a Number from Binary to Decimal | 1001

if (binaryNumber > 0)
{

bit = binaryNumber % 10; //extract the rightmost bit
decimal = decimal + bit * power(2, weight);
binaryNumber = binaryNumber / 10; //remove the rightmost

//bit
weight++;
convert the binaryNumber into decimal

}

This algorithm assumes that the memory locations decimal and weight have been
initialized to 0 before using the algorithm. This algorithm translates to the following
C++ recursive function:

void binToDec(int binaryNumber, int& decimal, int& weight)
{

int bit;

if (binaryNumber > 0)
{

bit = binaryNumber % 10;
decimal = decimal

+ bit * static_cast<int>(pow(2.0, weight));
binaryNumber = binaryNumber / 10;
weight++;
binToDec(binaryNumber, decimal, weight);

}
}

In this function, both decimal and weight are reference parameters. The actual
parameters corresponding to these parameters are initialized to 0. After extracting the
rightmost bit, this function updates the decimal number and the weight of the next
bit. Suppose decimalNumber and bitWeight are int variables. Consider the
following statements:

decimalNumber = 0;
bitWeight = 0;
binToDec(1101, decimalNumber, bitWeight);

Figure 15-8 traces the execution of the last statement, that is, binToDec(1101,

decimalNumber, bitWeight);. It shows the content of the variables
decimalNumber and bitWeight next to each function call.

1002 | Chapter 15: Recursion

1

5

In Figure 15-8, each down arrow represents the successive function call. Because the
last statement of the function binToDec is a function call, after this statement
executes, nothing happens. After the statement:

before call

decimalNumber

 bitWeight

binToDec(1101,decimalNumber,bitWeight)

because binaryNumber > 0

 bit = 1101 % 10 = 1;

 decimal = 0 + 1 * 20 = 1;

 weight = 1;

 binaryNumber = 1101 / 10 = 110;

 binToDec(110,decimal,weight);

binaryNumber bit

binToDec(110,decimal,weight)

because binaryNumber > 0

 bit = 110 % 10 = 0;

 decimal = 1 + 0 * 21 = 1;

 weight = 2;

 binaryNumber = 110 / 10 = 11;

 binToDec(11,decimal,weight);

binToDec(11,decimal,weight)

because binaryNumber > 0

 bit = 11 % 10 = 1;

 decimal = 1 + 1 * 22 = 5;

 weight = 3;

 binaryNumber = 11 / 10 = 1;

 binToDec(1,decimal,weight);

binToDec(1,decimal,weight)

because binaryNumber > 0

 bit = 1 % 10 = 1;

 decimal = 5 + 1 * 23 = 13;

 weight = 4;

 binaryNumber = 1 / 10 = 0;

 binToDec(0,decimal,weight);

binToDec(0,decimal,weight)

because binaryNumber is 0

 the if statement fails and this

 call exits

1101

0

0

before call

decimalNumber

 bitWeight

1

1

before call

decimalNumber

 bitWeight

1

2

before call

decimalNumber

 bitWeight

5

3

before call

decimalNumber

 bitWeight

13

4

binaryNumber bit 110

binaryNumber bit 11

binaryNumber bit 1

binaryNumber bit 0

FIGURE 15-8 Execution of binToDec(1101, decimalNumber, bitWeight);

Programming Example: Converting a Number from Binary to Decimal | 1003

binToDec(1101, decimalNumber, bitWeight);

executes, the value of the variable decimalNumber is 13.

The following C++ program tests the function binToDec:

//**
// Author: D. S. Malik
//
// Program: Binary to decimal
// This program uses recursion to find the decimal
// representation of a binary number.
//**

#include <iostream>
#include <cmath>

using namespace std;

void binToDec(int binaryNumber, int& decimal, int& weight);

int main()
{

int decimalNumber;
int bitWeight;
int binaryNum;

decimalNumber = 0;
bitWeight = 0;

cout << "Enter number in binary: ";
cin >> binaryNum;
cout << endl;

binToDec(binaryNum, decimalNumber, bitWeight);
cout << "Binary " << binaryNum << " = " << decimalNumber

<< " decimal" << endl;

return 0;
}

void binToDec(int binaryNumber, int& decimal, int& weight)
{

int bit;

if (binaryNumber > 0)
{

bit = binaryNumber % 10;
decimal = decimal

+ bit * static_cast<int>(pow(2.0, weight));
binaryNumber = binaryNumber / 10;

1004 | Chapter 15: Recursion

1

5

weight++;
binToDec(binaryNumber, decimal, weight);

}
}

Sample Run: In this sample run, the user input is shaded.

Enter a number in binary: 11010110

Binary 11010110 = 214 decimal

PROGRAMMING EXAMPLE: Converting a Number from Decimal to

Binary
The previous programming example discussed and designed a program to convert a
number from a binary representation to a decimal format—that is, from base 2 to base
10. This programming example discusses and designs a program that uses recursion to
convert a nonnegative integer in decimal format—that is, base 10—into the equiva-
lent binary number—that is, base 2. First, we define some terms.

Let x be an integer. We call the remainder of x after division by 2 the rightmost bit of x.

Thus, the rightmost bit of 33 is 1 because 33 % 2 is 1, and the rightmost bit of 28 is 0
because 28 % 2 is 0.

We first illustrate the algorithm to convert an integer in base 10 to the equivalent
number in binary format, with the help of an example.

Suppose we want to find the binary representation of 35. First, we divide 35 by 2. The
quotient is 17, and the remainder—that is, the rightmost bit of 35—is 1. Next, we
divide 17 by 2. The quotient is 8, and the remainder—that is, the rightmost bit of 17—
is 1. Next, we divide 8 by 2. The quotient is 4, and the remainder—that is, the
rightmost bit of 8—is 0. We continue this process until the quotient becomes 0.

The rightmost bit of 35 cannot be printed until we have printed the rightmost bit of
17. The rightmost bit of 17 cannot be printed until we have printed the rightmost bit
of 8, and so on. Thus, the binary representation of 35 is the binary representation of
17 (that is, the quotient of 35 after division by 2), followed by the rightmost bit of 35.

Thus, to convert an integer num in base 10 into the equivalent binary number, we
first convert the quotient num / 2 into an equivalent binary number and then append
the rightmost bit of num to the binary representation of num / 2.

This discussion translates into the following recursive algorithm, in which binary(num)

denotes the binary representation of num.

Programming Example: Converting a Number from Decimal to Binary | 1005

1. binary(num) = num if num = 0.

2. binary(num) = binary(num / 2) followed by num % 2 if num > 0.

The following recursive function implements this algorithm:

void decToBin(int num, int base)
{

if (num > 0)
{

decToBin(num / base, base);
cout << num % base;

}
}

Figure 15-9 traces the execution of the following statement:

decToBin(13, 2);

in which num is 13 and base is 2.

execute

 cout << 1 % 2;

Output: 1

decToBin(13,2)

because num > 0

 decToBin(13/2,2);

decToBin(6,2)

decToBin(3,2)

decToBin(1,2)

decToBin(0,2)

Call 1

Call 2

Call 3

Call 4

Call 5

execute

 cout << 3 % 2;

Output: 1

execute

 cout << 6 % 2;

Output: 0

execute

 cout << 13 % 2;

Output: 1

13 2num base

because num > 0

 decToBin(6/2,2);

6 2num base

because num > 0

 decToBin(3/2,2);

3 2num base

because num > 0

 decToBin(1/2,2);

1 2num base

because num is 0

 exit this call

0 2num base

FIGURE 15-9 Execution of decToBin(13, 2)

1006 | Chapter 15: Recursion

1

5

Because the if statement in call 5 fails, this call does not print anything. The first
output is produced by call 4, which prints 1; the second output is produced by call 3,
which prints 1; the third output is produced by call 2, which prints 0; and the fourth
output is produced by call 1, which prints 1. Thus, the output of the statement:

decToBin(13, 2);

is:

1101

The following C++ program tests the function decToBin.

//**
// Author: D. S. Malik
//
// Program: Decimal to binary
// This program uses recursion to find the binary
// representation of a nonnegative integer.
//**

#include <iostream>

using namespace std;

void decToBin(int num, int base);

int main()
{

int decimalNum;
int base;

base = 2;

cout << "Enter number in decimal: ";
cin >> decimalNum;
cout << endl;

cout << "Decimal " << decimalNum << " = ";
decToBin(decimalNum, base);
cout << " binary" << endl;

return 0;
}

void decToBin(int num, int base)
{

if (num > 0)
{

decToBin(num / base, base);
cout << num % base;

}
}

Programming Example: Converting a Number from Decimal to Binary | 1007

QUICK REVIEW

1. The process of solving a problem by reducing it to smaller versions of itself
is called recursion.

2. A recursive definition defines a problem in terms of smaller versions of itself.

3. Every recursive definition has one or more base cases.

4. A recursive algorithm solves a problem by reducing it to smaller versions of itself.

5. Every recursive algorithm has one or more base cases.

6. The solution to the problem in a base case is obtained directly.

7. A function is called recursive if it calls itself.

8. Recursive algorithms are implemented using recursive functions.

9. Every recursive function must have one or more base cases.

10. The general solution breaks the problem into smaller versions of itself.

11. The general case must eventually be reduced to a base case.

12. The base case stops the recursion.

13. While tracing a recursive function:

• Logically, you can think of a recursive function as having an unlimited
number of copies of itself.

• Every call to a recursive function—that is, every recursive call—has its
own code and its own set of parameters and local variables.

• After completing a particular recursive call, control goes back to the
calling environment, which is the previous call. The current (recursive)
call must execute completely before control goes back to the previous
call. The execution in the previous call begins from the point imme-
diately following the recursive call.

14. A function is called directly recursive if it calls itself.

15. A function that calls another function and eventually results in the original
function call is said to be indirectly recursive.

16. A recursive function in which the last statement executed is the recursive
call is called a tail recursive function.

17. To design a recursive function, you must do the following:

a. Understand the problem requirements.

b. Determine the limiting conditions. For example, for a list, the limiting
condition is the number of elements in the list.

Sample Run: In this sample run, the user input is shaded.

Enter a number in decimal: 57

Decimal 57 = 111001 binary

1008 | Chapter 15: Recursion

1

5

c. Identify the base cases and provide a direct solution to each base case.

d. Identify the general cases and provide a solution to each general case in
terms of smaller versions of itself.

EXERCISES

1. Mark the following statements as true or false.

a. Every recursive definition must have one or more base cases.

b. Every recursive function must have one or more base cases.

c. The general case stops the recursion.

d. In the general case, the solution to the problem is obtained directly.

e. A recursive function always returns a value.

2. What is a base case?

3. What is a recursive case?

4. What is direct recursion?

5. What is indirect recursion?

6. What is tail recursion?

7. Consider the following recursive function:

int mystery(int number) //Line 1
{

if (number == 0) //Line 2
return number; //Line 3

else //Line 4
return(mystery(number + 1) - number); //Line 5

}

a. Identify the base case.

b. Identify the general case.

c. What valid values can be passed as parameters to the function mystery?

d. If mystery(0) is a valid call, what is its value? If not, explain why.

e. If mystery(10) is a valid call, what is its value? If not, explain why.

f. If mystery(-3) is a valid call, what is its value? If not, explain why.

8. Consider the following recursive function:

void funcRec(int u, char v) //Line 1
{

if (u == 0) //Line 2
cout << v; //Line 3

else //Line 4
{ //Line 5

char w; //Line 6
w = static_cast<char>

(static_cast<int>(v) + 1); //Line 7
funcRec(u - 1, w); //Line 8

} //Line 9
} //Line 10

Exercises | 1009

Answer the following questions:

a. Identify the base case.

b. Identify the general case.

c. What is the output of the following statement?

funcRec(5, 'A');

9. Consider the following recursive function:

void recFun(int x)
{

if (x > 0)
{

cout << x % 10 << " ";
recFun(x / 10);

}

else if (x != 0)
cout << x << endl;

}

What is the output of the following statements?

a. recFun(258); b. recFun(7); c. recFun(36); d. recFun(-85);

10. Consider the following recursive function:

void recFun(int u)
{

if (u == 0)
cout << "Zero! ";

else
{

cout << "Negative ";
recFun(u + 1);

}

}

What is the output, if any, of the following statements?

a. recFun(8); b. recFun(0); c. recFun(-2);

11. Consider the following recursive function:

void exercise(int x)
{

if (x > 0 && x < 10)
{

cout << x << " ";
exercise(x + 1);

}

}

What is the output of the following statements?

a. exercise(0); b. exercise(5); c. exercise(10); d. exercise(-5);

1010 | Chapter 15: Recursion

1

5

12. Consider the following function:

int test(int x, int y)
{

if (x <= y)
return y - x;

else
return test(x - 1, y + 1);

}

What is the output of the following statements?

a. cout << test(3, 100) << endl;

b. cout << test(15, 7) << endl;

13. Consider the following function:

int func(int x)
{

if (x == 0)
return 2;

else if (x == 1)
return 3;

else
return (func(x - 1) + func(x - 2));

}

What is the output of the following statements?

a. cout << func(0) << endl;

b. cout << func(1) << endl;

c. cout << func(2) << endl;

d. cout << func(5) << endl;

14. Suppose that intArray is an array of integers, and length specifies the
number of elements in intArray. Also, suppose that low and high are two
integers such that 0 <= low < length, 0 <= high < length, and low < high.
That is, low and high are two indices in intArray. Write a recursive
definition that reverses the elements in intArray between low and high.

15. Write a recursive algorithm to multiply two positive integers m and n using
repeated addition. Specify the base case and the recursive case.

16. Consider the following problem: How many ways can a committee of four
people be selected from a group of 10 people? There are many other similar
problems in which you are asked to find the number of ways to select a set
of items from a given set of items. The general problem can be stated as
follows: Find the number of ways r different things can be chosen from a set
of n items, in which r and n are nonnegative integers and r � n. Suppose
C(n, r) denotes the number of ways r different things can be chosen from a
set of n items. Then, C(n, r) is given by the following formula:

Cðn;rÞ ¼ n!

r!ðn� rÞ!

Exercises | 1011

in which the exclamation point denotes the factorial function. Moreover,
C(n, 0) =C(n, n) = 1. It is also known thatC(n, r) =C(n – 1, r – 1) +C(n – 1, r).

a. Write a recursive algorithm to determine C(n, r). Identify the base
case(s) and the general case(s).

b. Using your recursive algorithm, determine C(5, 3) and C(9, 4).

PROGRAMMING EXERCISES

1. Write a recursive function that takes as a parameter a nonnegative integer
and generates the following pattern of stars. If the nonnegative integer is 4,
then the pattern generated is:

**
*
*
**

Also, write a program that prompts the user to enter the number of lines in
the pattern and uses the recursive function to generate the pattern. For
example, specifying 4 as the number of lines generates the above pattern.

2. Write a recursive function to generate the following pattern of stars:

*
* *

* * *
* * * *
* * *
* *
*

Also, write a program that prompts the user to enter the number of lines in
the pattern and uses the recursive function to generate the pattern. For
example, specifying 4 as the number of lines generates the above pattern.

3. Write a recursive function, vowels, that returns the number of vowels in a
string. Also, write a program to test your function.

4. Write a recursive function named sumSquares that returns the sum of the
squares of the numbers from 0 to num, in which num is a nonnegative int

variable. Do not use global variables; use the appropriate parameters. Also
write a program to test your function.

5. Write a recursive function that finds and returns the sum of the elements of
an int array. Also, write a program to test your function.

6. A palindrome is a string that reads the same both forward and backward.
For example, the string "madam" is a palindrome. Write a program that uses

1012 | Chapter 15: Recursion

1

5

a recursive function to check whether a string is a palindrome. Your
program must contain a value-returning recursive function that returns true
if the string is a palindrome and false otherwise. Do not use any global
variables; use the appropriate parameters.

7. Write a recursive function that returns both the smallest and the largest
element in an int array. Also, write a program to test your function.

8. Write a recursive function that returns true if the digits of a positive integer
are in increasing order; otherwise, the function returns false. Also, write a
program to test your function.

9. Write a recursive function, reverseDigits, that takes an integer as a
parameter and returns the number with the digits reversed. Also, write a
program to test your function.

10. Write a recursive function, power, that takes as parameters two integers x
and y such that x is nonzero and returns xy. You can use the following
recursive definition to calculate xy. If y � 0:

powerðx; yÞ ¼
1 if y ¼ 0

x if y ¼ 1

x� powerðx; y� 1Þ if y > 1:

8

<

:

If y < 0:

powerðx; yÞ ¼ 1

powerðx;�yÞ :

Also, write a program to test your function.

11. (Greatest Common Divisor) Given two integers x and y, the following
recursive definition determines the greatest common divisor of x and y,
written gcd(x,y):

gcdðx; yÞ ¼ x if y ¼ 0

gcdðy; x%yÞ if y 6¼ 0

�

Note: In this definition, % is the mod operator.

Write a recursive function, gcd, that takes as parameters two integers and
returns the greatest common divisor of the numbers. Also, write a program
to test your function.

12. (Ackermann’s Function) The Ackermann’s function is defined as follows:

Aðm; nÞ ¼
nþ 1; if m ¼ 0

Aðm� 1; 1Þ; if n ¼ 0

Aðm� 1;Aðm; n� 1ÞÞ; otherwise;

8

<

:

in which m and n are nonnegative integers. Write a recursive function to
implement Ackermann’s function. Also write a program to test your func-
tion. What happens when you call the function with m ¼ 4 and n ¼ 3?

Programming Exercises | 1013

13. Write a recursive function to implement the recursive algorithm of Exercise
14 (reversing the elements of an array between two indices). Also, write a
program to test your function.

14. Write a recursive function to implement the recursive algorithm of Exercise
15 (multiplying two positive integers using repeated addition). Also, write a
program to test your function.

15. Write a recursive function to implement the recursive algorithm of Exercise
16 (determining the number of ways to select a set of things from a given set
of things). Also, write a program to test your function.

16. (Recursive Sequential Search) The sequential search algorithm given in
Chapter 8 is nonrecursive. Write and implement a recursive version of the
sequential search algorithm.

17. In the Programming Example, Converting a Number from Decimal to Binary,
given in this chapter, you learned how to convert a decimal number into the
equivalent binary number. Two more number systems, octal (base 8) and
hexadecimal (base 16), are of interest to computer scientists. In fact, in C++,
you can instruct the computer to store a number in octal or hexadecimal.
(Appendix C describes these number systems.)

The digits in the octal number system are 0, 1, 2, 3, 4, 5, 6, and 7. The
digits in the hexadecimal number system are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,
C, D, E, and F. So A in hexadecimal is 10 in decimal, B in hexadecimal is
11 in decimal, and so on.

The algorithm to convert a positive decimal number into an equivalent number
in octal (or hexadecimal) is the same as discussed for binary numbers. Here, we
divide the decimal number by 8 (for octal) and by 16 (for hexadecimal). Suppose
ab represents the number a to the base b. For example, 7510means 75 to the base
10 (that is decimal), and 8316 means 83 to the base 16 (that is, hexadecimal).
Then 75310 = 13618 and 75310 = 2F116.

Write a program that uses a recursive function to convert a number in decimal
to base 8 or base 16.

18. The function sqrt from the header file cmath can be used to find the square
root of a nonnegative real number. Using Newton’s method, you can also
write an algorithm to find the square root of a nonnegative real number within
a given tolerance as follows: Suppose x is a nonnegative real number, a is the
approximate square root of x, and epsilon is the tolerance. Start with a = x.

a. If |a2 � x| � epsilon, then a is the square root of x within the tolerance;
otherwise:

b. Replace a with (a2 + x) / (2a) and repeat Step a
in which |a2 � x| denotes the absolute value of a2 � x.

Write a recursive function to implement this algorithm to find the square root of
a nonnegative real number. Also, write a program to test your function.

1014 | Chapter 15: Recursion

SEARCHING, SORTING,
AND THE vector TYPE

IN THIS CHAPTER , YOU WILL :

. Explore how to sort an array using the bubble sort and insertion sort algorithms

. Learn how to implement the binary search algorithm

. Become familiar with the vector type

16C H A P T E R

Chapter 8 introduced arrays, the structured data type, and also discussed the sequential
search and selection sort algorithms. In this chapter, we will discuss additional searching
and sorting algorithms. We will then examine the vector type.

List Processing
A list is a collection of values of the same type. Because all values are of the same type, a
convenient place to store a list is in an array and, particularly, in a one-dimensional array.
The size of a list is the number of elements in the list. Because the size of a list can
increase and decrease, the array you use to store the list should be declared as the
maximum size of the list.

Basic operations performed on a list include the following:

• Search the list for a given item.

• Sort the list.

• Insert an item in the list.

• Delete an item from the list.

• Print the list.

The following sections discuss searching and sorting algorithms.

Searching
In Chapter 8, we described the sequential search algorithm. Recall that the sequential
search algorithm is:

int seqSearch(const int list[], int listLength, int searchItem)
{

int loc;
bool found = false;
loc = 0;

while (loc < listLength && !found)
if (list[loc] == searchItem)

found = true;
else

loc++;

if (found)
return loc;

else
return -1;

}

Suppose that you have a list with 1000 elements. If the search item is the second item in
the list, the sequential search makes two key (also called item) comparisons to determine

1016 | Chapter 16: Searching, Sorting, and the vector Type

whether the search item is in the list. Similarly, if the search item is the 900th item in the
list, the sequential search makes 900 key comparisons to determine whether the search
item is in the list. If the search item is not in the list, the sequential search makes 1000 key
comparisons.

Therefore, if searchItem is always at the bottom of the list, it will take many comparisons to
find it. Also, if searchItem is not in list, then we compare searchItem with every
element in list. A sequential search is therefore not very efficient for large lists. In fact, it
can be proved that, on average, the number of comparisons (key comparisons, not index
comparisons) made by the sequential search is equal to half the size of the list. So, for a list size
of 1000, on average, the sequential search makes about 500 key comparisons.

The sequential search algorithm does not assume that the list is sorted. If the list is sorted,
then you can significantly improve the search algorithm as discussed in the section Binary
Search of this chapter. However, first, we discuss how to sort a list.

Bubble Sort
Many sorting algorithms are available in the literature. Chapter 8 discussed a selection sort
algorithm. Next we describe two more sorting algorithms: bubble sort and insertion sort.
First we describe bubble sort.

Suppose list[0]...list[n - 1] is a list of n elements, indexed 0 to n - 1. We want to
rearrange, that is, sort, the elements of list in increasing order. The bubble sort
algorithm works as follows:

In a series of n - 1 iterations, the successive elements list[index] and list[index + 1] of
list are compared. If list[index] is greater than list[index + 1], then the elements
list[index] and list[index + 1] are swapped, that is, interchanged.

It follows that the smaller elements move toward the top (beginning), and the larger
elements move toward the bottom (end) of the list.

In the first iteration, we consider list[0]...list[n - 1]; in the second iteration,
we consider list[0]...list[n - 2]; in the third iteration, we consider
list[0]...list[n - 3], and so on. For example, consider list[0]...list[4], as
shown in Figure 16-1.

1

6

list

list[0] 10

7

19

5

16

list[1]

list[2]

list[3]

list[4]

FIGURE 16-1 List of five elements

List Processing | 1017

Iteration 1: Sort list[0]...list[4]. Figure 16-2 shows how the elements
of list get rearranged in the first iteration.

Notice that in the first diagram of Figure 16-2, list[0] > list[1].
Therefore, list[0] and list[1] are swapped. In the second
diagram, list[1] and list[2] are compared. Because list[1]

< list[2], they do not get swapped. The third diagram of Figure
16-2 compares list[2] with list[3]; because list[2] >

list[3], list[2] is swapped with list[3]. Then, in the fourth
diagram, we compare list[3] with list[4]. Because list[3] >

list[4], list[3] and list[4] are swapped.

After the first iteration, the largest element is at the last position.
Therefore, in the next iteration, we consider list[0...3].

Iteration 2: Sort list[0...3]. Figure 16-3 shows how the elements of list
get rearranged in the second iteration.

The elements are compared and swapped as in the first iteration.
Here, only the list elements list[0] through list[3] are consid-
ered. After the second iteration, the last two elements are in the right
place. Therefore, in the next iteration, we consider list[0...2].

Iteration 3: Sort list[0...2]. Figure 16-4 shows how the elements of list
get rearranged in the third iteration.

compare
and

swap
unsorted

list

compare

compare
and

swap
compare

and
swap

10

7

19

5

16

7

10

19

5

16

7

10

19

5

16

7

10

5

19

16

7

10

5

16

19

FIGURE 16-2 Elements of list during the first iteration

compare

compare

compare
and

swap

unsorted
list

7

10

5

16

19

7

10

5

16

19

7

5

10

16

19

7

5

10

16

19

FIGURE 16-3 Elements of list during the second iteration

1018 | Chapter 16: Searching, Sorting, and the vector Type

1

6

After the third iteration, the last three elements are in the right
place. Therefore, in the next iteration, we consider
list[0...1].

Iteration 4: Sort list[0...1]. Figure 16-5 shows how the elements of list
get rearranged in the fourth iteration.

After the fourth iteration, list is sorted.

The following function implements the bubble sort algorithm:

void bubbleSort(int list[], int length)
{

int temp;
int iteration;
int index;
for (iteration = 1; iteration < length; iteration++)
{

for (index = 0; index < length - iteration; index++)
if (list[index] > list[index + 1])
{

temp = list[index];
list[index] = list[index + 1];
list[index + 1] = temp;

}

}

}

compare

compare
and

swap
unsorted

list

7

5

10

16

19

5

7

10

16

19

5

7

10

16

19

FIGURE 16-4 Elements of list during the third iteration

compare
unsorted

list

5

7

10

16

19

5

7

10

16

19

FIGURE 16-5 Elements of list during the fourth iteration

List Processing | 1019

The program in Example 16-1 illustrates how to use the bubble sort algorithm in a
program.

EXAMPLE 16-1

//Bubble sort

#include <iostream>

using namespace std;

void bubbleSort(int list[], int length);

int main()
{

int list[] = {2, 56, 34, 25, 73, 46, 89, 10, 5, 16}; //Line 1
int i; //Line 2

bubbleSort(list, 10); //Line 3

cout << "After sorting, the list elements are:"
<< endl; //Line 4

for (i = 0; i < 10; i++) //Line 5
cout << list[i] << " "; //Line 6

cout << endl; //Line 7

return 0; //Line 8
}

//Place the definition of the function bubbleSort given
//previously here.

Sample Run:

After sorting, the list elements are:
2 5 10 16 25 34 46 56 73 89

The statement in Line 1 declares and initializes list to be an array of 10 components of type
int. The statement in Line 3 uses the function bubbleSort to sort list. Notice that both
list and its length (the number of elements in it, which is 10) are passed as parameters to the
function bubbleSort. The for loop in Lines 5 and 6 outputs the elements of list.

To illustrate the bubble sort algorithm in this program, we declared and initialized the
array list. However, you can also prompt the user to input the data during program
execution.

For a list of length n, the bubble sort given previously makes exactly
nðn� 1Þ

2
key

comparisons and, on average, about
nðn� 1Þ

4
item assignments. Therefore, if n = 1000, to sort

the list, bubble sort makes about 500,000 key comparisons and about 250,000 item

1020 | Chapter 16: Searching, Sorting, and the vector Type

assignments. The next section presents the insertion sort algorithm, which reduces the
number of comparisons.

The performance of bubble sort can be improved if we stop the sorting process as

soon as we find that, in an iteration, no swapping of elements takes place. In this

case, the list has been sorted. See Exercise 12 and Programming Exercise 17 at the

end of this chapter.

Insertion Sort
As noted in the previous section and in Chapter 8, for a list of length 1000, bubble sort
makes approximately 500,000 key comparisons, which is quite high. This section describes
the sorting algorithm called insertion sort, which tries to improve—that is, reduce—the
number of key comparisons.

The insertion sort algorithm sorts the list by moving each element to its proper place.
Consider the list given in Figure 16-6.

The length of the list is 8. Moreover, the list elements list[0], list[1], list[2], and
list[3] are already in (ascending) order. That is, list[0]...list[3] is sorted (see
Figure 16-7).

Next, we consider the element list[4], the first element of the unsorted list.
Because list[4] < list[3], we need to move the element list[4] to its proper
location. It thus follows that element list[4] should be moved to list[2] (see
Figure 16-8).

1

6

list

[0]

10 18 25 30 23 17 45 35

[1]

sorted list unsorted list

[2] [3] [4] [5] [6] [7]

FIGURE 16-7 Sorted and unsorted portion of list

list

[0]

10 18 25 30 23 17 45 35

[1] [2] [3] [4] [5] [6] [7]

FIGURE 16-6 list

List Processing | 1021

To move list[4] into list[2], first we copy list[4] into temp, a temporary
memory space (see Figure 16-9).

Next, we copy list[3] into list[4] and then list[2] into list[3] (see Figure 16-10).

list

temp

[0]

10 18

23

25 30

copy copy

23 17 45 35

[1]

sorted list unsorted list

[2] [3] [4] [5] [6] [7]

FIGURE 16-10 list before copying list[3] into list[4] and then list[2] into list[3]

list

[0]

10 18 25 30

move

23 17 45 35

[1]

sorted list unsorted list

[2] [3] [4] [5] [6] [7]

FIGURE 16-8 Move list[4] into list[2]

list

temp

[0]

10 18

23

25 30

copy

23 17 45 35

[1]

sorted list unsorted list

[2] [3] [4] [5] [6] [7]

FIGURE 16-9 Copy list[4] into temp

1022 | Chapter 16: Searching, Sorting, and the vector Type

After copying list[3] into list[4] and list[2] into list[3], the list is as shown in
Figure 16-11.

We now copy temp into list[2]. Figure 16-12 shows the resulting list.

Now list[0]...list[4] is sorted, and list[5]...list[7] is unsorted. We repeat
this process on the resulting list by moving the first element of the unsorted list into the
proper place in the sorted list.

From this discussion, we see that during the sorting phase, the array containing the list is
divided into two sublists: sorted and unsorted. Elements in the sorted sublist are sorted;
elements in the unsorted sublist are to be moved to their proper places in the sorted
sublist one at a time. We use an index—say, firstOutOfOrder—to point to the first
element in the unsorted sublist. Initially, firstOutOfOrder is initialized to 1.

This discussion translates into the following pseudocode:

for (firstOutOfOrder = 1; firstOutOfOrder < listLength;
firstOutOfOrder++)

if (list[firstOutOfOrder] is less than list[firstOutOfOrder - 1])
{

copy list[firstOutOfOrder] into temp

1

6

list

temp

[0]

10 18

23

25 30

copy

23 17 45 35

[1]

sorted list
unsorted

list
[2] [3] [4] [5] [6] [7]

FIGURE 16-12 list after copying temp into list[2]

list

temp

[0]

10 18

23

25 25 30 17 45 35

[1]

sorted list unsorted list

[2] [3] [4] [5] [6] [7]

FIGURE 16-11 list after copying list[3] into list[4] and then list[2] into list[3]

List Processing | 1023

initialize location to firstOutOfOrder

do
{

a. copy list[location - 1] into list[location]
b. decrement location by 1 to consider the next element

in the sorted portion of the array
}

while (location > 0 && the element in the upper list at
location - 1 is greater than temp)

}

copy temp into list[location]

The following C++ function implements the previous algorithm:

void insertionSort(int list[], int listLength)

{

int firstOutOfOrder, location;

int temp;

for (firstOutOfOrder = 1; firstOutOfOrder < listLength;

firstOutOfOrder++)

if (list[firstOutOfOrder] < list[firstOutOfOrder - 1])

{

temp = list[firstOutOfOrder];

location = firstOutOfOrder;

do

{

list[location] = list[location - 1];

location--;

}

while (location > 0 && list[location - 1] > temp);

list[location] = temp;

}

} //end insertionSort

We leave it as an exercise to write a program to test the insertion sort algorithm.

It is known that for a list of length n, on average, insertion sort makes about n2 þ 3n� 4
4

key comparisons and about
nðn� 1Þ

4
item assignments. Therefore, if n = 1000, to sort

the list, insertion sort makes about 250,000 key comparisons and about 250,000 item
assignments.

This chapter and Chapter 8 presented three sorting algorithms. In fact, these are not the
only sorting algorithms. You might be wondering why there are so many different sorting
algorithms. The answer is that the performance of each sorting algorithm is different. Some

1024 | Chapter 16: Searching, Sorting, and the vector Type

algorithms make more comparisons, whereas others make fewer item assignments. Also,
there are algorithms that make fewer comparisons, as well as fewer item assignments.
The previous sections and Chapter 8 give the average number of comparisons and item
assignments for the three sorting algorithms covered in this chapter and Chapter 8.
Analysis of the number of key comparisons and item assignments allows the user to
decide which algorithm to use in a particular situation.

Binary Search
A sequential search is not very efficient for large lists. It typically searches about half of
the list. However, if the list is sorted, you can use another search algorithm called binary

search. A binary search is much faster than a sequential search. In order to apply a binary
search, the list must be sorted.

A binary search uses the ‘‘divide and conquer’’ technique to search the list. First, the
search item is compared with the middle element of the list. If the search item is less than
the middle element of the list, we restrict the search to the upper half of the list;
otherwise, we search the lower half of the list.

Consider the following sorted list of length = 12, as shown in Figure 16-13.

Suppose that we want to determine whether 75 is in the list. Initially, the entire list is the
search list (see Figure 16-14).

1

6

list

[0]

4 8 19 25 34 39 45 48 66 75 89 95

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

FIGURE 16-13 List of length 12

list

[0]

4 8 19 25 34 39 45 48 66 75 89 95

[1] [2] [3] [4] [5]

search list

mid

[6] [7] [8] [9] [10] [11]

FIGURE 16-14 Search list, list[0]...list[11]

List Processing | 1025

First, we compare 75 with the middle element, list[5] (which is 39), in the list. Because
75 6¼ list[5] and 75 > list[5], next we restrict our search to list[6]...list[11],
as shown in Figure 16-15.

The above process is now repeated on list[6]...list[11], which is a list of
length = 6.

Because we frequently need to determine the middle element of the list, the binary search
algorithm is usually implemented for array-based lists. To determine the middle element of
the list, we add the starting index, first, and the ending index, last, of the search list and

divide by 2 to calculate its index. That is, mid = firstþ last
2

. Initially, first = 0 and (because

array index in C++ starts at 0 and listLength denotes the number of elements in
the list) last = listLength � 1. (Note that the formula for calculating the middle
element works regardless of whether the list has an even or odd number of elements.)

The following C++ function implements the binary search algorithm. If the item is
found in the list, its location is returned. If the search item is not in the list, -1 is returned.

int binarySearch(const int list[], int listLength, int searchItem)
{

int first = 0;
int last = listLength - 1;
int mid;

bool found = false;

while (first <= last && !found)
{

mid = (first + last) / 2;

if (list[mid] == searchItem)
found = true;

else if (list[mid] > searchItem)
last = mid - 1;

else
first = mid + 1;

}

if (found)
return mid;

else
return -1;

}//end binarySearch

list

[0]

4 8 19 25 34 39 45 48 66 75 89 95

[1] [2] [3] [4] [5]

search list

[6] [7] [8] [9] [10] [11]

FIGURE 16-15 Search list, list[6]...list[11]

1026 | Chapter 16: Searching, Sorting, and the vector Type

1

6

Note that in the binary search algorithm, two key (item) comparisons are made each time
through the loop, except in the successful case—the last time through the loop—when
only one key comparison is made.

Next, we walk through the binary search algorithm on the list shown in Figure 16-16.

The size of the list in Figure 16-16 is 12, so listLength = 12. Suppose that the item
for which we are searching is 89, so searchItem = 89. Before the while loop executes,
first = 0, last = 11, and found = false. In the following, we trace the execution of
the while loop, showing the values of first, last, and mid and the number of key
comparisons during each iteration.

The item is found at location 10, and the total number of key comparisons is 5.

Next, let’s search the list for 34, so searchItem = 34. Before the while loop executes,
first = 0, last = 11, and found = false. In the following, as before, we trace the
execution of the while loop, showing the values of first, last, and mid and the
number of key comparisons during each iteration.

The item is found at location 4, and the total number of key comparisons is 7.

Let’s now search for 22, so searchItem = 22. Before the while loop executes, first
= 0, last = 11, and found = false. In the following, as before, we trace the execution
of the while loop, showing the values of first, last, and mid and the number of key
comparisons during each iteration.

list

[0]

4 8 19 25 34 39 45 48 66 75 89 95

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

FIGURE 16-16 Sorted list for a binary search

Iteration ffirst last mid list[mid] No. of key comparisons

1 0 11 5 39 2

2 6 11 8 66 2

3 9 11 10 89 1 (found is true)

Iteration first last mid list[mid] No. of key comparisons

1 0 11 5 39 2

2 0 4 2 19 2

3 3 4 3 25 2

4 4 4 4 34 1 (found is true)

List Processing | 1027

This is an unsuccessful search. The total number of key comparisons is 6.

From these tracings of the binary search algorithm, you can see that every time you go
through the loop, you cut the size of the sublist by half. That is, the size of the sublist you
search the next time through the loop is half the size of the previous sublist.

We leave it as an exercise for you to write a program to test the function binarySearch.
See Programming Exercise 2 at the end of this chapter.

Performance of Binary Search
Suppose that L is a sorted list of size 1024, and we want to determine whether an
item x is in L. From the binary search algorithm, it follows that every iteration of the
while loop cuts the size of the search list by half. (For example, see Figures 16-17
and 16-18.) Because 1024 = 210, the while loop will have, at most, 11 iterations to
determine whether x is in L. Because every iteration of the while loop makes two
item (key) comparisons, that is, x is compared twice with the elements of L, the binary
search will make, at most, 22 comparisons to determine whether x is in L. On the other
hand, recall that a sequential search, on average, will make 512 comparisons to determine
whether x is in L.

To better understand how fast binary search is compared to sequential search, suppose
that L is of size 1048576. Because 1048576 = 220, it follows that the while loop in a
binary search will have, at most, 21 iterations to determine whether an element is in L.
Every iteration of the while loop makes two key (that is, item) comparisons. Therefore,
to determine whether an element is in L, a binary search makes, at most, 42 item
comparisons.

Note that 40 = 2 * 20 = 2 * log22
20 = 2 * log2(1048576).

In general, suppose that L is a sorted list of size n. Moreover, suppose that n is a power of
2, that is, n = 2m, for some nonnegative integer m. After each iteration of the while loop,
about half of the elements are left to search, that is, the search sublist for the next iteration
is half the size of the current sublist. For example, after the first iteration, the search sublist
is of size about n/2 = 2m-1. It is easy to see that the maximum number of the iteration
of the while loop is about m + 1. Also m = log2n. Each iteration makes two key
comparisons. Thus, the maximum number of comparisons to determine whether an
element x is in L is 2(m + 1) = 2(log2n + 1) = 2log2n + 2.

Iteration first last mid list[mid] No. of key comparisons

1 0 11 5 39 2

2 0 4 2 19 2

3 3 4 3 25 2

4 3 2 the loop stops (since first > last)
unsuccessful search

1028 | Chapter 16: Searching, Sorting, and the vector Type

1

6

vector Type (class)

This section may be skipped without any discontinuation.

Chapter 8 and the previous sections of this chapter described how arrays can be used to
implement and process lists. One of the limitations of arrays discussed so far is that once you
create an array, its size remains fixed. This means that only a fixed number of elements can be
stored in an array. Also, inserting an element in the array at a specific position could require
the elements of the array to be shifted. Similarly, removing an element from the array could
also require shifting the elements of the array, as we typically do not leave empty positions
between array positions holding some data. Typically, empty array positions are at the end.

In addition to arrays, C++ provides the vector type (most commonly called the class

vector) to implement a list. A variable declared using the vector type is called a vector
container (or a vector, a vector object, or simply an object). Unlike an array, the size
of a vector object can grow and shrink during program execution. Therefore, you do
not need to be concerned with the number of data elements.

When you declare a vector object, you must specify the type of the element the vector

object stores. Table 16-1 describes various ways a vector object can be declared.

In Table 16-1, elemType specifies the data type of the element to be stored in vecList.

TABLE 16-1 Various Ways to Declare and Initialize a vector Object

Statement Effect

vector<elemType> vecList;
Creates the empty vector object

vecList without any elements.

vector<elemType> vecList(otherVecList);

Creates the vector object

vecList and initializes

vecList to the elements of the

vector otherVecList.
vecList and otherVecList
are of the same type.

vector<elemType> vecList(size);
Creates the vector object

vecList of size size. vecList
is initialized using the default values.

vector<elemType> vecList(n, elem);

Creates the vector object

vecList of size n. vecList is

initialized using n copies of the

element elem.

vector Type (class) | 1029

EXAMPLE 16-2

a. The following statement declares intList to be an empty vector

object, and the element type is int.

vector<int> intList;

b. The following statement declares intList to be a vector object of
size 10, and the element type is int. The elements of intList are
initialized to 0.

vector<int> intList(10);

Now that we know how to declare a vector object, let us discuss how to manipulate the
data stored in a vector object. To do so, we must know the following basic operations:

• Item insertion

• Item deletion

• Stepping through the elements of a vector container

The type vector provides various operations to manipulate data stored in a vector
object. Each of these operations is defined in the form of a function. Table 16-2 describes
some of these functions and how to use them with a vector object. (Assume that vecList
is a vector object. The name of the function is shown in bold.)

TABLE 16-2 Operations on a vector Object

Expression Effect

vecList.at(index)
Returns the element at the position

specified by index.

vecList[index]
Returns the element at the position

specified by index.

vecList.front()
Returns the first element. (Does not check

whether the object is empty.)

vecList.back()
Returns the last element. (Does not check

whether the object is empty.)

vecList.clear() Deletes all elements from the object.

vecList.push_back(elem)
A copy of elem is inserted into vecList
at the end.

vecList.pop_back() Delete the last element of vecList.

1030 | Chapter 16: Searching, Sorting, and the vector Type

Table 16-2 shows that the elements in a vector can be processed just as they are in an
array. (Recall that in C++, arrays start at location 0. Similarly, the first element in a
vector object is at location 0. Note that both the function at and the subscripting
operator [] return the elements at the specified position. However, if the position, that is,
the index, of the specified position is out of range, the function at throws an exception.
Exceptions are discussed in Chapter 14.)

EXAMPLE 16-3

Consider the following statement, which declares intList to be a vector of size 5 and
the element to be of type int:

vector<int> intList(5);

You can use a loop, such as the following, to store elements into intList:

for (int j = 0; j < 5; j++)
intList[j] = j;

Similarly, you can use a for loop to output the elements of intList.

Example 16-3 uses a for loop and the array subscripting operator, [], to access the
elements of intList. We declare intList to be a vector object of size 5. Does this
mean that we can store only five elements in intList? The answer is no. You can, in
fact, add more elements to intList. However, because when we declared intList, we
specified the size to be 5, in order to add any elements past position 4, we use the
function push_back.

Furthermore, if you initially declare a vector object and do not specify its size, then to
add elements to the vector object, we use the function push_back. Example 16-4
explains how to use this function.

1

6
vecList.empty()

Returns true if the object vecList is

empty and false otherwise.

vecList.size()
Returns the number of elements currently

in the object vecList. The value returned
is an unsigned int value.

vecList.max_size()
Returns the maximum number of elements

that can be inserted into the object

vecList.

TABLE 16-2 Operations on a vector Object (continued)

Expression Effect

vector Type (class) | 1031

EXAMPLE 16-4

The following statement declares intList to be a vector container of size 0:

vector<int> intList;

To add elements into intList, we can use the function push_back as follows:

intList.push_back(34);
intList.push_back(55);

After these statements execute, the size of intList is 2, and

intList = {34, 55}.

In Example 16-4, because intList is declared to be of size 0, we use the function
push_back to add elements to intList. However, we can also use the resize function
to increase the size of intList and then use the array subscripting operator. For example,
suppose that intList is declared as in Example 16-4. Then, the following statement sets
the size of intList to 10:

intList.resize(10);

Similarly, the following statement increases the size of intList by 10:

intList.resize(intList.size() + 10);

However, at times, the push_back function is more convenient because it does not need
to know the size of the vector; it simply adds the elements at the end.

The name of the header file that contains the class vector is vector. Therefore, to

use the class vector, you must include the header file vector, that is, include the

following statement in your program:

#include <vector>

The program in Example 16-5 illustrates how to use a vector object in a program and
how to process the elements of a vector.

EXAMPLE 16-5

// This program illustrates how to use a vector object.

#include <iostream>
#include <vector>

using namespace std;

1032 | Chapter 16: Searching, Sorting, and the vector Type

1

6

int main()
{

vector<int> intList; //Line 1
unsigned int i; //Line 2

intList.push_back(13); //Line 3
intList.push_back(75); //Line 4
intList.push_back(28); //Line 5
intList.push_back(35); //Line 6

cout << "Line 7: List Elements: "; //Line 7

for (i = 0; i < intList.size(); i++) //Line 8
cout << intList[i] << " "; //Line 9

cout << endl; //Line 10

for (i = 0; i < intList.size(); i++) //Line 11
intList[i] = intList[i] * 2; //Line 12

cout << "Line 13: List Elements: "; //Line 13

for (i = 0; i < intList.size(); i++) //Line 14
cout << intList[i] << " "; //Line 15

cout << endl; //Line 16

return 0;
}

Sample Run:

Line 7: List Elements: 13 75 28 35
Line 13: List Elements: 26 150 56 70

The statement in Line 1 declares the vector object (or vector for short) intList of type
int. The statement in Line 2 declares i to be an unsigned int variable. (Notice that we
declare i to be an unsigned int because, in the for loop, we are using the expression
intList.size(), which returns an unsigned int value, to determine the size of intList.)

The statements in Lines 3 through 6 use the operation push_back to insert four numbers—
13, 75, 28, and 35—into intList. The statements in Lines 8 and 9 use a for loop and the
array subscripting operator, [], to output the elements of intList. In the output, see the line
marked Line 7, which contains the output of Lines 7 through 10 of the program. The
statements in Lines 11 and 12 use a for loop to double the value of each element of
intList; the statements in Lines 14 and 15 output the elements of intList. In the output,
see the line marked Line 13, which contains the output of Lines 13 through 16 of the program.

The data type (class) vector is a part of C++ standard template library (STL). To learn

more about STL, see Appendix H.

vector Type (class) | 1033

PROGRAMMING EXAMPLE: Election Results
The presidential election for the student council of your local university will be held
soon. For reasons related to confidentiality, the chair of the election committee wants to
computerize the voting. The chair is looking for someone to write a program to analyze
the data and report the winner. Let us write a program to help the election committee.

The university has four major divisions, and each division has several departments.
For the purpose of the election, the divisions are labeled as Region 1, Region 2,
Region 3, and Region 4. Each department in each division manages its own voting
process and directly reports the results to the election committee. The voting is
reported in the following form:

candidateName regionNumber numberOfVotesForTheCandidate

The election committee wants the output in the following tabular form:

--------------Election Results--------------

Candidate Votes
Name Region1 Region2 Region3 Region4 Total
--------- ------- ------- ------- ------- -----
Ashley 23 89 0 160 272
Danny 25 71 89 97 282
Donald 110 158 0 0 268
.
.
.

Winner: ???, Votes Received: ???

Total votes polled: ???

The names of the candidates in the output must be in alphabetical order.

For this program, we assume that six candidates are running for student council
president. This program can be modified to accommodate any number of candidates.

The data is provided in two files. One file, candData.txt, consists of the names of
candidates. The names in the file are in no particular order. In the second file,
voteData.txt, each line consists of voting results in the following form:

candidateName regionNumber numberOfVotesForTheCandidate

That is, each line in the file voteData.txt consists of the candidate name, region
number, and the votes received by the candidate in this region. There is one entry
per line. For example, the input file containing voting data looks like:

Watch

the Video

1034 | Chapter 16: Searching, Sorting, and the vector Type

1

6

Mia 2 34
Mickey 1 56
Donald 2 56
Mia 1 78
Danny 4 29
Ashley 4 78
.
.
.

The first line indicates that Mia received 34 votes from region 2.

Input Two files, one containing the candidates’ names and the other containing the
voting data, as described previously.

Output The election results in a tabular form, as described previously, and the winner.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

From the output requirements, it is clear that the program must organize the voting
data by region. The program must also calculate the total number of votes received
by each candidate, as well as the total votes cast in the election. Furthermore, the
names of the candidates must appear in alphabetical order.

Because the data type of a candidate’s name (which is a string) and the data type of the
number of votes (which is an integer) are different, we need two separate arrays—one
to hold the candidates’ names and one to hold the voting data. The array to hold the
names of the candidates is a one-dimensional array, and each component of this array
is a string. Instead of using a single two-dimensional array to hold the voting data, we
will use a two-dimensional array to hold the next four columns of the output (that is,
the votes by region data) and a one-dimensional array to hold the total votes received
by each candidate. These three arrays are parallel arrays (see Figure 16-17).

[0]

candidatesName votesByRegion totalVotes

[1]

[2]

[3]

[4]

[5]

[0]

[0] [1] [2] [3]

[1]

[2]

[3]

[4]

[5]

[0]

[1]

[2]

[3]

[4]

[5]

FIGURE 16-17 Parallel arrays: candidatesName, votesByRegion, and totalVotes

Programming Example: Election Results | 1035

The data in the first row of these three arrays corresponds to the candidate whose
name is stored in the first row of the array candidatesName, and so on. In the
votesByRegion array, column 1 corresponds to Region 1, column 2 corresponds to
Region 2, and so on. Recall that in C++, an array index starts at 0. Therefore, if the
name of this array in the program is votesByRegion, then votesByRegion[][0]

refers to the first column and thus Region 1, and so on.

For easy reference, suppose that in the program the name of the candidates’
names array is candidatesName, the name of the voting totals by region array is
votesByRegion, and the name of the total votes array is totalVotes.

The first thing we must do in this program is read the candidates’ names from the
input file candData.txt into the array candidatesName. Once the candidates’
names are stored in the array, we must sort it.

Next, we must process the voting data. Every entry in the file voteData.txt contains a
candidateName, regionNumber, and numberOfVotesForTheCandidate.To process
each entry, we find the appropriate entry in the array votesByRegion and update it by
adding numberOfVotesForTheCandidate to this entry. Therefore, it follows that the
array votesByRegionmust be initialized to zero. (Processing the voting data is described
in detail later in this section.)

After processing the voting data, the next step is to calculate the total votes received
by each candidate. This task is accomplished by adding the votes received in each
region. Therefore, we must initialize the array totalVotes to zero. Finally, we
output the results as shown earlier.

This discussion translates into the following algorithm:

1. Read the candidates’ names into the array candidatesName.

2. Sort the array candidatesName.

3. Initialize the arrays votesByRegion and totalVotes.

4. Process the voting data.

5. Calculate the total votes received by each candidate.

6. Output the results.

Because the input data is provided in two separate files, in this program, we must
open two files. We open both input files in the function main.

To implement these six steps of the algorithm, this program consists of several
functions, as described next.

Function

getCandidatesName

This function reads the data from the input file candData.txt and fills the array
candidatesName. The input file is opened in the function main. We see that this
function has three parameters: one corresponding to the input file, one corresponding

1036 | Chapter 16: Searching, Sorting, and the vector Type

1

6

to the array candidatesName, and one to pass the number of rows of the array
candidatesName. Essentially, this function is:

void getCandidatesName(ifstream& inp, string cNames[],
int noOfRows)

{

int i;

for (i = 0; i < noOfRows; i++)
inp >> cNames[i];

}

After a call to this function, the arrays to hold the data are as shown in Figure 16-18.

Function

sortCandidatesName

This function uses the insertion sort algorithm to sort the array candidatesName.
This function has two parameters: one corresponding to the array candidatesName

and a second to pass the number of rows of the array candidatesName. Essentially,
this function is:

void sortCandidatesName(string cNames[], int noOfRows)
{

int firstOutOfOrder, location;
string temp;

for (firstOutOfOrder = 1; firstOutOfOrder < noOfRows;
firstOutOfOrder++)

if (cNames[firstOutOfOrder] < cNames[firstOutOfOrder - 1])
{

temp = cNames[firstOutOfOrder];
location = firstOutOfOrder;

[0] Mia

Mickey

Donald

Peter

Danny

Ashley

candidatesName votesByRegion totalVotes

[1]

[2]

[3]

[4]

[5]

[0]

[0] [1] [2] [3]

[1]

[2]

[3]

[4]

[5]

[0]

[1]

[2]

[3]

[4]

[5]

FIGURE 16-18 Arrays candidatesName, votesByRegion, and totalVotes after reading
candidates’ names

Programming Example: Election Results | 1037

do
{

cNames[location] = cNames[location - 1];
location--;

}
while (location > 0 && cNames[location - 1] > temp);

cNames[location] = temp;
}

}

After a call to this function, the arrays are as shown in Figure 16-19.

Function

initialize

The function initialize initializes the arrays votesByRegion and totalVotes to
zero. This function must have three parameters: one corresponding to the array
votesByRegion, one corresponding to the array totalVotes, and one to pass the
number of rows of the array votesByRegion. Note that both arrays have the same
number of rows. The definition of this function is:

void initialize(int vbRegion[][NO_OF_REGIONS], int tVotes[],
int noOfRows)

{

int i, j;

for (i = 0; i < noOfRows; i++)
for (j = 0; j < NO_OF_REGIONS; j++)

vbRegion[i][j] = 0;

for (i = 0; i < noOfRows; i++)
tVotes[i] = 0;

}

[0] Ashley

Danny

Donald

Mia

Mickey

Peter

candidatesName votesByRegion totalVotes

[1]

[2]

[3]

[4]

[5]

[0]

[0] [1] [2] [3]

[1]

[2]

[3]

[4]

[5]

[0]

[1]

[2]

[3]

[4]

[5]

FIGURE 16-19 Arrays candidatesName, votesByRegion, and totalVotes after sorting
names

1038 | Chapter 16: Searching, Sorting, and the vector Type

1

6

After a call to this function, the arrays votesByRegion and totalVotes are as
shown in Figure 16-20.

Process

Voting Data

Processing the voting data is quite straightforward. Each entry in the file voteData.txt is
in the following form:

candidateName regionNumber numberOfVotesForTheCandidate

The general algorithm to process the voting data is shown next. For each entry in the
file voteData.txt, we do the following:

a. Get a candidateName, regionNumber, and
numberOfVotesForTheCandidate.

b. Find the row number in the array candidatesName that
corresponds to this candidate. This gives the corresponding
row number in the array votesByRegion for this candidate.

c. Find the column in the array votesByRegion that corresponds
to the regionNumber.

d. Update the appropriate entry in the array votesByRegion by
adding the numberOfVotesForTheCandidate.

Step b requires us to search the array candidatesName to find the location (that is,
row number) of a particular candidate. Because the array candidatesName is sorted,
we can use the binary search algorithm to find the row number corresponding to a
particular candidate. Therefore, this program also includes a function, binSearch, to
implement the binary search algorithm on the array candidatesName. We will write
the definition of the function binSearch shortly. First, let us discuss how to update
the array votesByRegion.

Suppose that the three arrays are as shown in Figure 16-21.

[0] Ashley

Danny

Donald

Mia

Mickey

Peter

candidatesName votesByRegion totalVotes

[1]

[2]

[3]

[4]

[5]

[0] 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0

0

0

0

0

0

[0] [1] [2] [3]

[1]

[2]

[3]

[4]

[5]

[0]

[1]

[2]

[3]

[4]

[5]

FIGURE 16-20 Arrays candidatesName, votesByRegion, and totalVotes after initializing

Programming Example: Election Results | 1039

Further, suppose that the next entry read from the input file is:

Donald 2 35

We must locate the row in the grid that corresponds to this candidate. To find
the row, we search the array candidatesName to find the row that corresponds
to this name. Donald corresponds to row number 2 in the array candidatesName

(see Figure 16-22).

To process this entry, we access row number 2 of the array votesByRegion.
Because Donald received 35 votes from Region 2, we access row 2 and column 1

(that is, votesByRegion[2][1]) and update this entry by adding 35 to its previous
value. The following statement accomplishes this task:

votesByRegion[2][1] = votesByRegion[2][1] + 35;

[0] Ashley

Danny

Donald

Mia

Mickey

Peter

candidatesName votesByRegion totalVotes

[1]

[2]

[3]

[4]

[5]

[0] 0 0 50 0

10 0 56 0

76 13 0 0

0 45 0 0

50 0 45 0

100 0 0 20

0

0

0

0

0

0

[0] [1] [2] [3]

[1]

[2]

[3]

[4]

[5]

[0]

[1]

[2]

[3]

[4]

[5]

FIGURE 16-21 Arrays candidatesName, votesByRegion, and totalVotes

[0] Ashley

Danny

Donald

Mia

Mickey

Peter

candidatesName

Donald region = 2

votesByRegion totalVotes

[1]

[2]

[3]

[4]

[5]

[0] 0 0 50 0

10 0 56 0

76 13 0 0

0 45 0 0

50 0 45 0

100 0 0 20

0

0

0

0

0

0

[0] [1] [2] [3]

[1]

[2]

[3]

[4]

[5]

[0]

[1]

[2]

[3]

[4]

[5]

FIGURE 16-22 Position of Donald and region = 2

1040 | Chapter 16: Searching, Sorting, and the vector Type

1

6

After processing this entry, the three arrays are as shown in Figure 16-23.

Next, we describe the function binSearch and the function processVotes to
process the voting data.

Function

binSearch

This function implements the binary search algorithm on the array candidatesName.
It is similar to the function binarySearch discussed earlier in this chapter. Its defini-
tion is:

int binSearch(string cNames[], int noOfRows, string name)
{

int first, last, mid;
bool found;
first = 0;
last = noOfRows - 1;
found = false;

while (!found && first <= last)
{

mid = (first + last) / 2;

if (cNames[mid] == name)
found = true;

else if (cNames[mid] > name)
last = mid - 1;

else
first = mid + 1;

}

[0] Ashley

Danny

Donald

Mia

Mickey

Peter

candidatesName

Donald region = 2

votesByRegion totalVotes

[1]

[2]

[3]

[4]

[5]

[0] 0 0 50 0

10 0 56 0

76 48 0 0

0 45 0 0

50 0 45 0

100 0 0 20

0

0

0

0

0

0

[0] [1] [2] [3]

[1]

[2]

[3]

[4]

[5]

[0]

[1]

[2]

[3]

[4]

[5]

FIGURE 16-23 Arrays candidatesName, votesByRegion, and totalVotes after processing
the entry Donald 2 35

Programming Example: Election Results | 1041

if (found)
return mid;

else
return -1;

}

Function

processVotes

This function processes the voting data. Clearly, it must have access to the arrays
candidatesName and votesByRegion, as well as to the input file, voteData.txt.
We also need to tell this function the number of rows in each array. Thus, the
function processVotes has four parameters: one to access the input file
voteData.txt, one corresponding to the array candidatesName, one
corresponding to the array votesByRegion, and one to pass the number of rows in
each array. The definition of this function is:

void processVotes(ifstream& inp, string cNames[],
int vbRegion[][NO_OF_REGIONS],
int noOfRows)

{

string candName;
int region;
int noOfVotes;
int loc;

inp >> candName >> region >> noOfVotes;

while (inp)
{

loc = binSearch(cNames, noOfRows, candName);

if (loc != -1)
vbRegion[loc][region - 1] = vbRegion[loc][region - 1]

+ noOfVotes;
inp >> candName >> region >> noOfVotes;

}

}

Calculate

Total

Votes

(Function

addRegionsVote)

After processing the voting data, the next step is to calculate the total votes for each
candidate. Suppose that after processing the voting data, the arrays are as shown in
Figure 16-24.

1042 | Chapter 16: Searching, Sorting, and the vector Type

1

6

After calculating the total votes received by each candidate, the three arrays are as
shown in Figure 16-25.

To calculate the total votes received by each candidate, we add the contents of each row in
the votesByRegion array and then store the sum in the corresponding row in the
totalVotes array. This task is accomplished by the function addRegionsVote.

The function addRegionsVote calculates the number of total votes received by each
candidate. This function must access the arrays votesByRegion and totalVotes.
Also, we must tell this function the number of rows in each array. This function has
three parameters: one corresponding to the array votesByRegion, one corre-
sponding to the array totalVotes, and one to pass the number of rows in each
array. The definition of this function is:

[0] Ashley

Danny

Donald

Mia

Mickey

Peter

candidatesName votesByRegion totalVotes

[1]

[2]

[3]

[4]

[5]

[0] 23 89 0 160

25 71 89 97

110 158 0 0

134 112 156 0

56 63 67 89

207 56 0 46

272

282

268

402

275

309

[0] [1] [2] [3]

[1]

[2]

[3]

[4]

[5]

[0]

[1]

[2]

[3]

[4]

[5]

FIGURE 16-25 Arrays candidatesName, votesByRegion, and totalVotes after calculating
total votes received by each candidate

[0] Ashley

Danny

Donald

Mia

Mickey

Peter

candidatesName votesByRegion totalVotes

[1]

[2]

[3]

[4]

[5]

[0] 23 89 0 160

25 71 89 97

110 158 0 0

134 112 156 0

56 63 67 89

207 56 0 46

0

0

0

0

0

0

[0] [1] [2] [3]

[1]

[2]

[3]

[4]

[5]

[0]

[1]

[2]

[3]

[4]

[5]

FIGURE 16-24 Arrays candidatesName, votesByRegion, and totalVotes after processing
the voting data

Programming Example: Election Results | 1043

void addRegionsVote(int vbRegion[][NO_OF_REGIONS],
int tVotes[], int noOfRows)

{

int i, j;

for (i = 0; i < noOfRows; i++)
for (j = 0; j < NO_OF_REGIONS; j++)

tVotes[i] = tVotes[i] + vbRegion[i][j];
}

We now describe the remaining functions required to get the desired output.

Function

printHeading

This function outputs the first four lines of input, so it contains certain output
statements. The definition of this function is:

void printHeading()
{

cout << " -------------Election Results----------"
<< "----" << endl << endl;

cout << "Candidate Votes" << endl;
cout << "Name Region1 Region2 Region3 "

<< "Region4 Total" << endl;
cout << "--------- ------- ------- ------- "

<< "------- -------" << endl;
}

Function

printResults

This function outputs the remaining lines of the output. Clearly, it must have access
to each of the three arrays. We must also tell the function the number of rows in each
array. (Note that each array has the same number of rows.) Thus, this function has
four parameters. Suppose that the parameter cName corresponds to
candidatesName, the parameter vbRegion corresponds to votesByRegion, and
the parameter tVotes corresponds to totalVotes.

Further suppose that the variable sumVotes holds the total number of votes cast in
the election, the variable largestVotes holds the largest number of votes received
by a candidate, and the variable winLoc holds the index of the winning candidate in
the array candidatesName. The algorithm for this function is:

a. Initialize sumVotes, largestVotes, and winLoc to 0.

b. For each row in each array:

i. if (largestVotes < tVotes[i])
{

largestVotes = tVotes[i];
winLoc = i;

}

1044 | Chapter 16: Searching, Sorting, and the vector Type

1

6

ii. sumVotes = sumVotes + tVotes[i];

iii. Output the data from the corresponding rows of each array.

c. Output the final lines of output.

The definition of this function is:

void printResults(string cNames[],
int vbRegion[][NO_OF_REGIONS],
int tVotes[], int noOfRows)

{

int i, j;
int largestVotes = 0;
int winLoc = 0;
int sumVotes = 0;

for (i = 0; i < noOfRows; i++)
{

if (largestVotes < tVotes[i])
{

largestVotes = tVotes[i];
winLoc = i;

}

sumVotes = sumVotes + tVotes[i];

cout << left;
cout << setw(9) << cNames[i] << " ";
cout << right;
for (j = 0; j < NO_OF_REGIONS; j++)

cout << setw(8) << vbRegion[i][j] << " ";
cout << setw(6) << tVotes[i] << endl;

}

cout << endl << endl << "Winner: " << cNames[winLoc]
<< ", Votes Received: " << tVotes[winLoc]
<< endl << endl;

cout << "Total votes polled: " << sumVotes << endl;
}

We now give the main algorithm.

Suppose that the variables in the function main are:

string candidatesName[NO_OF_CANDIDATES]; //array to store the
//candidate's name

int votesByRegion[NO_OF_CANDIDATES][NO_OF_REGIONS]; //array to
//hold the voting data by region

int totalVotes[NO_OF_CANDIDATES]; //array to hold the total votes
//received by each candidate

ifstream infile; //input file variable

Programming Example: Election Results | 1045

Furthermore, suppose that the candidates’ names are in the file candData.txt, and
the voting data is in the file voteData.txt.

MAIN

ALGORITHM:

FUNCTION

main

1. Declare the variables.

2. Open the input file candData.txt.

3. If the input file does not exist, exit the program.

4. Read the data from the file candData.txt into the array
candidatesName.

5. Sort the array candidatesName.

6. Close the file candData.txt and clear the input stream.

7. Open the input file voteData.txt.

8. If the input file does not exist, exit the program.

9. Initialize the arrays votesByRegion and totalVotes.

10. Process the voting data and store the results in the array
votesByRegion.

11. Calculate the number of total votes received by each candidate and
store the results in the array totalVotes.

12. Print the heading.

13. Print the results.

PROGRAM LISTING

//***
// Author: D.S. Malik
//
// This program processes voting data for student council
// president's post. It outputs each candidate's name and the
// votes they received. The name of the winner is also printed.
//***

#include <iostream>
#include <fstream>
#include <string>
#include <iomanip>

using namespace std;

const int NO_OF_CANDIDATES = 6;
const int NO_OF_REGIONS = 4;

void printHeading();

1046 | Chapter 16: Searching, Sorting, and the vector Type

1

6

void initialize(int vbRegion[][NO_OF_REGIONS], int tVotes[],
int noOfRows);

void getCandidatesName(ifstream& inp, string cNames[],
int noOfRows);

void sortCandidatesName(string cNames[], int noOfRows);

int binSearch(string cNames[], int noOfRows, string name);

void processVotes(ifstream& inp, string cNames[],
int vbRegion[][NO_OF_REGIONS],
int noOfRows);

void addRegionsVote(int vbRegion[][NO_OF_REGIONS],
int tVotes[], int noOfRows);

void printResults(string cNames[],
int vbRegion[][NO_OF_REGIONS],
int tVotes[], int noOfRows);

int main()
{

//Declare variables; Step 1
string candidatesName[NO_OF_CANDIDATES];
int votesByRegion[NO_OF_CANDIDATES][NO_OF_REGIONS];
int totalVotes[NO_OF_CANDIDATES];
ifstream infile;

infile.open("candData.txt"); //Step 2
if (!infile) //Step 3
{

cout << "Input file (candData.txt) does "
<< "not exist." << endl;

return 1;
}

getCandidatesName(infile, candidatesName,
NO_OF_CANDIDATES); //Step 4

sortCandidatesName(candidatesName,
NO_OF_CANDIDATES); //Step 5

infile.close(); //Step 6
infile.clear(); //Step 6

infile.open("voteData.txt"); //Step 7
if (!infile) //Step 8
{

cout << "Input file (voteData.txt) does "
<< "not exist." << endl;

return 1;
}

Programming Example: Election Results | 1047

initialize(votesByRegion, totalVotes,
NO_OF_CANDIDATES); //Step 9

processVotes(infile, candidatesName,
votesByRegion, NO_OF_CANDIDATES); //Step 10

addRegionsVote(votesByRegion, totalVotes,
NO_OF_CANDIDATES); //Step 11

printHeading(); //Step 12
printResults(candidatesName,votesByRegion,

totalVotes, NO_OF_CANDIDATES); //Step 13

return 0;
}

//Place the definitions of the functions initialize,
//getCandidatesName, sortCandidatesName, binSearch,
//processVotes, addRegionsVote, printHeading, and
//printResults here.

Sample Run: (After placing the definitions of all the functions, as described, into the
program and executing.)

--------------Election Results--------------

Candidate Votes
Name Region1 Region2 Region3 Region4 Total
--------- ------- ------- ------- ------- ------
Ashley 23 89 0 160 272
Danny 25 71 89 97 282
Donald 110 158 0 0 268
Mia 134 112 156 0 402
Mickey 56 63 67 89 275
Peter 207 56 0 46 309

Winner: Mia, Votes Received: 402

Total votes polled: 1808

The complete listing of this program and the input files are available at the
Web site accompanying this book.

1048 | Chapter 16: Searching, Sorting, and the vector Type

QUICK REVIEW

1. A list is a set of elements of the same type.

2. The length of a list is the number of elements in the list.

3. A one-dimensional array is a convenient place to store and process lists.

4. The sequential search algorithm searches a list for a given item, starting with
the first element in the list. It continues to compare the search item with
the other elements in the list until either the item is found or the list has no
more elements left to be compared with the search item.

5. On average, the sequential search searches half of the list.

6. The sequential search is good only for very short lists.

7. To sort a list, say list, of n elements, the bubble sort algorithm works
as follows: In a series of n � 1 iterations, the successive elements,
list[index] and list[index + 1], of list are compared. If
list[index] is greater than list[index + 1], then the elements
list[index] and list[index + 1] are interchanged.

8. For a list of length n, bubble sort given in this chapter makes exactly
nðn� 1Þ

2

key comparisons and, on average, about
nðn� 1Þ

4
item assignments.

9. Insertion sort algorithm sorts the list by moving each element to its proper
place.

10. For a list of length n, on average, insertion sort makes n2 þ 3n� 4
4

key
comparisons and about

nðn� 1Þ
4

item assignments.

11. Binary search is much faster than the sequential search.

12. Binary search requires that the list elements are in order—that is, the list
must be sorted.

13. For a list of length 1024, to determine whether an item is in the list, the
binary search algorithm requires no more than 22 key comparisons.

14. In addition to arrays, C++ provides the vector type (most commonly
called the class vector) to implement a list.

15. Unlike an array, the size of a vector object can increase and decrease
during program execution. Therefore, you do not need to be concerned
with the number of data elements.

16. When you declare a vector object, you must specify the type of element
the vector object stores.

17. The elements in a vector can be processed just as they are in an array. As
in an array, the first element in a vector object is at location 0.

18. The following functions can be used to perform various operations on a
vector object: at, front, back, clear, push_back, pop_back, empty,
size, resize, and max_size. For a description of these functions, see
Table 16-2.

1

6

Quick Review | 1049

EXERCISES

1. Mark the following statements as true or false.

a. A sequential search of a list assumes that the list elements are sorted in
ascending order.

b. A binary search of a list assumes that the list is sorted.

c. A binary search is faster on ordered lists and slower on unordered lists.

d. A binary search is faster on large lists, but a sequential search is faster on
small lists.

e. When you declare a vector object and specify its size as 10, then only
10 elements can be stored in the object.

2. Consider the following list:

35, 82, 45, 12, 56, 67, 92, 77

Using a sequential search, how many comparisons are required to deter-
mine whether the following items are in the list or not? (Recall that
comparisons mean item comparisons, not index comparisons.)

a. 12 b. 92 c. 65 d. 35

3. a. Write a version of the sequential search algorithm that can be used to
search a sorted list.

b. Consider the following list:

8, 12, 15, 27, 35, 48, 65, 77, 86, 94, 120

Using a sequential search on ordered lists, which you designed in (a), how
many comparisons are required to determine whether the following items
are in the list or not? (Recall that comparisons mean item comparisons, not
index comparisons.)

i. 65 ii. 8 iii. 80 iv. 125

4. Consider the following list:

5, 12, 25, 32, 38, 46, 58, 62, 85, 90, 97, 105, 110

Using the binary search, how many comparisons are required to determine
whether the following items are in the list or not? Show the values of
first, last, and middle and the number of comparisons after each
iteration of the loop.

a. 32 b. 20 c. 105 d. 60

5. Sort the following list using the bubble sort algorithm as discussed in this
chapter. Show the list after each iteration of the outer for loop.

38, 60, 43, 5, 70, 58, 15, 10

1050 | Chapter 16: Searching, Sorting, and the vector Type

6. Sort the following list using the bubble sort algorithm as discussed in this
chapter. Show the list after each iteration of the outer for loop.

46, 58, 16, 25, 83, 98, 8, 70, 5, 62

7. Consider the following list:

8, 28, 31, 20, 55, 46

The first three keys are in order. To move 20 to its proper position using the
insertion sort as described in this chapter, exactly howmany key comparisons
are executed?

8. Consider the following list:

12, 38, 45, 50, 55, 5, 30

The first five keys are in order. To move 5 to its proper position using the
insertion sort as described in this chapter, exactly how many key compar-
isons are executed?

9. Consider the following list:

25, 32, 20, 15, 45, 4, 18, 91, 62, 88, 66

This list is to be sorted using the insertion sort algorithm as described in this
chapter. Show the resulting list after seven passes of the sorting phase—that
is, after seven iterations of the for loop.

10. Recall the insertion sort algorithm as discussed in this chapter. Assume the
following list of keys:

30, 20, 35, 27, 96, 82, 56, 60, 48, 75, 5, 80

Exactly how many key comparisons are executed to sort this list using insertion
sort?

11. Suppose that L is a list of 10,000 elements. Find the average number of
comparisons made by bubble sort and insertion sort to sort L.

12. a. It was remarked in this chapter that the performance of bubble sort can
be improved if we stop the sorting process as soon as we find that in an
iteration, no swapping of elements takes place. Write a function that
implements bubble sort algorithm using this fact.

b. Using the algorithm that you designed in part (a), find the number of
iterations that are needed to sort the list: 65, 14, 52, 43, 75, 25, 80, 90, 95.

13. Suppose that L is a sorted list of 4096 elements. What is the maximum
number of comparisons made by binary search to determine whether an
item is in L?

14. Suppose that the elements of a list are in descending order, and they need to
be put in ascending order. Write a C++ function that takes as input an array
of items in descending order and the number or elements in the array. The
function rearranges the element of the array in ascending order. Your
function must not incorporate any sorting algorithms, that is, no item
comparisons should take place.

1

6

Exercises | 1051

15. To use a vector object in a program, which header file must be included in
the program?

16. What do the following statements do?

a. vector<int> list(50);

b. vector<string> nameList;

17. What is the output of the following C++ code?

vector<int> intList(5);
int i;

for (i = 0; i < 5; i++)
intList[i] = 2 * i + 1;

for (i = 0; i < 5; i++)
cout << intList.at(i) << " ";

cout << endl;

18. What is the output of the following C++ code?

vector<string> classList;

classList.push_back("Nisha");
classList.push_back("Tony");
classList.push_back("Bobby");
classList.push_back("Peter");

for (unsigned int i = 0; i < classList.size(); i++)
cout << classList[i] << " ";

cout << endl;

19. a. Write a C++ statement that declares secretList to be a vector

object to store integers. (Do not specify the size of secretList.)

b. Write C++ statements to store the following values, in the order given,
into secretList:
56, 28, 32, 96, 75

c. Write a for loop that outputs the contents of secretList. (Use
the expression secretList.size() to determine the size of
secretList.)

20. What is the output of the following C++ code?

vector<int> intList(10);

for (int i = 0; i < 10; i++)
intList[i] = 2 * i + 5;

cout << intList.front() << " " << intList.back() << endl;

1052 | Chapter 16: Searching, Sorting, and the vector Type

21. Suppose that you have the following C++ code:

vector<int> myList(5);

unsigned int length;

myList[0] = 3;
for (int i = 1; i < 4; i++)

myList[i] = 2 * myList[i - 1] - 5;

myList.push_back(46);
myList.push_back(57);
myList.push_back(35);

a. Write a C++ statement that outputs the first and the last elements of
myList. (Do not use the array subscripting operator or the index of the
elements.)

b. Write a C++ statement that stores the size of myList into length.

c. Write a for loop that outputs the elements of myList.

22. What is the difference between the size and capacity of a vector?

PROGRAMMING EXERCISES

1. Write a program to test your sequential search algorithm that you wrote in
Exercise 3(a) of this chapter. Use either the function bubbleSort or
insertionSort to sort the list before the search.

2. Write a program to test the function binarySearch. Use either the function
bubbleSort or insertionSort to sort the list before the search.

3. Write a function, remove, that takes three parameters: an array of integers,
the number of elements in the array, and an integer (say, removeItem). The
function should find and delete the first occurrence of removeItem in the
array. If the value does not exist or the array is empty, output an appropriate
message. (Note that after deleting the element, the number of elements in
the array is reduced by 1.) Assume that the array is unsorted.

4. Write a function, removeAt, that takes three parameters: an array of
integers, the number of elements in the array, and an integer (say,
index). The function should delete the array element indicated by
index. If index is out of range or the array is empty, output an appropriate
message. (Note that after deleting the element, the number of elements in
the array is reduced by 1.) Assume that the array is unsorted.

5. Write a function, removeAll, that takes three parameters: an array of integers,
the number of elements in the array, and an integer (say, removeItem). The
function should find and delete all of the occurrences of removeItem in the
array. If the value does not exist or the array is empty, output an appropriate
message. (Note that after deleting the element, the number of elements in the
array is reduced.) Assume that the array is unsorted.

1

6

Programming Exercises | 1053

6. Redo Exercises 3, 4, and 5 for a sorted array.

7. Write a function, insertAt, that takes four parameters: an array of integers,
the number of elements in the array, an integer (say, insertItem), and an
integer (say, index). The function should insert insertItem in the array at
the position specified by index. If index is out of range, output an
appropriate message. (Note that index must be between 0 and the number
of elements in the array; that is, 0 <= index < the number of elements in

the array.) Assume that the array is unsorted.

8. Write a version of the selection sort algorithm that can be used to sort a list
of strings. (Selection sort for int lists is discussed in Chapter 8.)

9. Write a version of the binary search algorithm that can be used to search a
list of strings. (Use the selection sort that you designed in Exercise 8 to sort
the list.)

10. Write a version of the sequential search algorithm that can be used to search
a string vector object. Also, write a program to test your algorithm.

11. Write a version of the bubble sort algorithm that can be used to sort a string
vector object. Also, write a program to test your algorithm.

12. Write a version of the selection sort algorithm that can be used to sort a
string vector object. Also, write a program to test your algorithm.

13. Write a program to test the insertion sort algorithm as given in this chapter.

14. Write a version of the insertion sort algorithm that can be used to sort a
string vector object. Also, write a program to test your algorithm.

15. Write a version of the binary search algorithm that can be used to search
a string vector object. Also, write a program to test your algorithm.
(Use the selection sort algorithm you developed in Programming Exercise 12
to sort the vector.)

16. Write a program that creates three identical arrays, list1, list2, and
list3 of 5000 elements. The program then sorts list1 using bubble sort,
list2 using selection sort, and list3 using insertion sort and outputs
the number of comparisons and item assignments made by each sorting
algorithm.

17. Write a program to test the function you designed in Exercise 12 to
improve the performance of bubble sort.

18. Write a program to test the function you designed in Exercise 14.

19. (Recursive Binary Search) The binary search algorithm given in this
chapter is nonrecursive. Write and implement a recursive version of the
binary search algorithm.

20. In Programming Exercise 13 (Chapter 8), you are asked to write a program
to calculate students’ average test scores and their grades. Improve this
programming exercise by adding a function to sort students’ names so that
students’ data is output into ascending order according to their name.

1054 | Chapter 16: Searching, Sorting, and the vector Type

1

6

21. Your state is in a process of creating a weekly lottery. Once a week, five
distinct random integers between 1 to 40 (inclusive) are drawn. If a player
guesses all of the numbers correctly, the player wins a certain amount.
Write a program that does the following:

a. Generates five distinct random numbers between 1 and 40 (inclusive)
and stores them in an array.

b. Sorts the array containing the lottery numbers.

c. Prompts the player to select five distinct integers between 1 and 40 (inclu-
sive) and stores the numbers in an array. The player can select the numbers
in any order, and the array containing the numbers need not be sorted.

d. Determines whether the player guessed the lottery numbers correctly. If
the player guessed the lottery numbers correctly, it outputs the message
‘‘You win!’’; otherwise it outputs the message ‘‘You lose!’’ and outputs
the lottery numbers.

Your program should allow a player to play the game as many times as the
player wants to play. Before each play, generate a new set of lottery
numbers.

22. Redo the Election Results Programming Example (in this chapter) so that the
names of the candidates and the total votes are stored in vector objects.

23. Write a program to keep track of a hardware store inventory. The store sells
various items. For each item in the store, the following information is kept:
item ID, item name, number of pieces ordered, number of pieces currently
in the store, number of pieces sold, manufacturer’s price for the item, and
the store’s selling price. At the end of each week, the store manager would
like to see a report in the following form:

Friendly Hardware Store

itemID itemName pOrdered pInStore pSold manufPrice sellingPrice
4444 Circular Saw 150 150 40 45.00 125.00
3333 Cooking Range 50 50 20 450.00 850.00
.
.
.

Total Inventory: $#########.##
Total number of items in the store: ___________

The total inventory is the total selling value of all of the items currently in the store. The
total number of items is the sum of the number of pieces of all of the items in the store.

Your program must be menu driven, giving the user various choices, such as checking
whether an item is in the store, selling an item, and printing the report. After inputting
the data, sort it according to the items’ names. Also, after an item is sold, update the
appropriate counts.

Programming Exercises | 1055

Initially, the number of pieces (of an item) in the store is the same as the number of pieces
ordered, and the number of pieces of an item sold is zero. Input to the program is a file
consisting of data in the following form:

itemID
itemName
pOrdered manufPrice sellingPrice

Use seven parallel vectors to store the information. The program must contain at least the
following functions: one to input data into the vectors, one to display the menu, one to
sell an item, and one to print the report for the manager.

1056 | Chapter 16: Searching, Sorting, and the vector Type

LINKED LISTS
IN THIS CHAPTER , YOU WILL :

. Learn about linked lists

. Become aware of the basic properties of linked lists

. Explore the insertion and deletion operations on linked lists

. Discover how to build and manipulate a linked list

. Learn how to construct a doubly linked list

17C H A P T E R

You have already seen how data is organized and processed sequentially using an array
called a sequential list. You have performed several operations on sequential lists, such as
sorting, inserting, deleting, and searching. You also found that if data is not sorted, then
searching for an item in the list can be very time consuming especially with large lists.
Once the data is sorted, you can use a binary search and improve the search algorithm.
However, in this case, insertion and deletion become time consuming especially with
large lists, because these operations require data movement. Also, because the array size
must be fixed during execution, new items can be added only if there is room. Thus,
there are limitations on when you organize data in an array.

This chapter helps you to overcome some of these problems. Chapter 12 showed how
memory (variables) can be dynamically allocated and deallocated using pointers. This
chapter uses pointers to organize and process data in lists called linked lists. Recall that
when data is stored in an array, memory for the components of the array is contiguous—
that is, the blocks are allocated one after the other. However, as we will see, the
components (called nodes) of a linked list need not be contiguous.

Linked Lists
A linked list is a collection of components called nodes. Every node (except the last node)
contains the address of the next node. Thus, every node in a linked list has two components:
one to store the relevant information (that is, data) and one to store the address, called the
link, of the next node in the list. The address of the first node in the list is stored in a separate
location called the head or first. Figure 17-1 is a pictorial representation of a node.

Linked list: A list of items, called nodes, in which the order of the nodes is determined
by the address, called the link, stored in each node.

The list in Figure 17-2 is an example of a linked list.

The arrow in each node indicates that the address of the node to which it is pointing is
stored in that node. The down arrow in the last node indicates that this link field is NULL.

data link

FIGURE 17-1 Structure of a node

head 45 65 34 76

FIGURE 17-2 Linked list

1058 | Chapter 17: Linked Lists

For a better understanding of this notation, suppose that the first node is at memory location
1200, and the second node is at memory location 1575. We thus have Figure 17-3.

The value of the head is 1200, the data part of the first node is 45, and the link component
of the first node contains 1575, the address of the second node. If no confusion arises, then
we will use the arrow notation whenever we draw the figure of a linked list.

For simplicity and for the ease of understanding and clarity, Figures 17-3 through 17-6
use decimal integers as the values of memory addresses. However, in computer memory,
the memory addresses are in binary.

Because each node of a linked list has two components, we need to declare each node as a
class or struct. The data type of each node depends on the specific application—that
is, what kind of data is being processed. However, the link component of each node is a
pointer. The data type of this pointer variable is the node type itself. For the previous
linked list, the definition of the node is as follows. (Suppose that the data type is int.)

struct nodeType
{

int info;
nodeType *link;

};

The variable declaration is:

nodeType *head;

Linked Lists: Some Properties
To help you better understand the concept of a linked list and a node, some important
properties of linked lists are described next.

Consider the linked list in Figure 17-4.

1

7

head 1200 45 1575

15751200

65

FIGURE 17-3 Linked list and values of the links

head

2000 17

info link info link info link info link

2000 2800 1500 3600

2800 92 1500 63 45 03600

FIGURE 17-4 Linked list with four nodes

Linked Lists | 1059

This linked list has four nodes. The address of the first node is stored in the pointer head.
Each node has two components: info, to store the info, and link, to store the address of
the next node. For simplicity, we assume that info is of type int.

Suppose that the first node is at location 2000, the second node is at location 2800,
the third node is at location 1500, and the fourth node is at location 3600. Therefore,
the value of head is 2000, the value of the component link of the first node is 2800,
the value of the component link of the second node is 1500, and so on. Also, the
value 0 in the component link of the last node means that this value is NULL, which
we indicate by drawing a down arrow. The number at the top of each node is the
address of that node. The following table shows the values of head and some other
nodes in the list shown in Figure 17-4.

Suppose that current is a pointer of the same type as the pointer head. Then, the
statement:

current = head;

copies the value of head into current (see Figure 17-5).

Clearly, in Figure 17-5:

Value Explanation

head 2000

head->info 17
Because head is 2000 and the info of
the node at location 2000 is 17

head->link 2800

head->link->info 92
Because head->link is 2800 and the
info of the node at location 2800 is 92

head

2000

current 2000

17

info link info link info link info link

2000 2800 1500 3600

2800 92 1500 63 45 03600

FIGURE 17-5 Linked list after the statement current = head; executes

Value

ccurrent 2000

current->info 17

current->link 2800

current->link->info 92

1060 | Chapter 17: Linked Lists

1

7

Now consider the statement:

current = current->link;

This statement copies the value of current->link, which is 2800, into current.
Therefore, after this statement executes, current points to the second node in the list.
(When working with linked lists, we typically use these types of statements to advance a
pointer to the next node in the list.) See Figure 17-6.

In Figure 17-6:

Finally, note that in Figure 17-6:

From now on, when working with linked lists, we will use only the arrow notation.

TRAVERSING A LINKED LIST

The basic operations of a linked list are as follows: search the list to determine whether a
particular item is in the list, insert an item in the list, and delete an item from the list.

Value

head->link->link 1500

head->link->link->info 63

head->link->link->link 3600

head->link->link->link->info 45

current->link->link 3600

current->link->link->info 45

current->link->link->link 0 (that is, NULL)

current->link->link->link->info Does not exist

Value

current 2800

current->info 92

current->link 1500

current->link->info 63

head

2000

current 2800

17

info link info link info link info link

2000 2800 1500 3600

2800 92 1500 63 45 03600

FIGURE 17-6 List after the statement current = current->link; executes

Linked Lists | 1061

These operations require the list to be traversed. That is, given a pointer to the first node
of the list, we must step through the nodes of the list.

Suppose that the pointer head points to the first node in the list, and the link of the last
node is NULL. We cannot use the pointer head to traverse the list because if we use
head to traverse the list, we would lose the nodes of the list. This problem occurs because
the links are in only one direction. The pointer head contains the address of the first
node, the first node contains the address of the second node, the second node contains the
address of the third node, and so on. If we move head to the second node, the first node
is lost (unless we save a pointer to this node). If we keep advancing head to the next
node, we will lose all of the nodes of the list (unless we save a pointer to each node before
advancing head, which is impractical because it would require additional computer time
and memory space to maintain the list).

Therefore, we always want head to point to the first node. It now follows that we must
traverse the list using another pointer of the same type. Suppose that current is a pointer
of the same type as head. The following code traverses the list:

current = head;

while (current != NULL)
{

//Process the current node
current = current->link;

}

For example, suppose that head points to a linked list of numbers. The following code
outputs the data stored in each node:

current = head;

while (current != NULL)
{

cout << current->info << " ";
current = current->link;

}

ITEM INSERTION AND DELETION

This section discusses how to insert an item into, and delete an item from, a linked list.
Consider the following definition of a node. (For simplicity, we assume that the info

type is int. The next section, which discusses linked lists as an abstract data type (ADT)
using templates, uses the generic definition of a node.)

struct nodeType
{

int info;
nodeType *link;

};

We will use the following variable declaration:

nodeType *head, *p, *q, *newNode;

1062 | Chapter 17: Linked Lists

INSERTION

Consider the linked list shown in Figure 17-7.

Suppose that p points to the node with info 65, and a new node with info 50 is to be
created and inserted after p. Consider the following statements:

newNode = new nodeType; //create newNode
newNode->info = 50; //store 50 in the new node
newNode->link = p->link;
p->link = newNode;

Table 17-1 shows the effect of these statements.

1

7

p

45 7665 34head

FIGURE 17-7 Linked list before item insertion

TABLE 17-1 Inserting a Node in a Linked List

Statement Effect

nnewNode = new nodeType;

newNode->info = 50;

newNode->link = p->link;

p->link = newNode;

7634

newNode

p

45 65head

50newNode

p

45 7665 34head

p

45 7665 34head

50newNode

p

45 7665 34head

50newNode

Linked Lists | 1063

Note that the sequence of statements to insert the node is very important because to insert
newNode in the list, we use only one pointer, p, to adjust the links of the node of the
linked list. Suppose that we reverse the sequence of the statements and execute the
statements in the following order:

p->link = newNode;
newNode->link = p->link;

Figure 17-8 shows the resulting list after these statements execute.

From Figure 17-8, it is clear that newNode points back to itself and the remainder of the
list is lost.

Using two pointers, we can simplify the insertion code somewhat. Suppose q points to
the node with info 34 (see Figure 17-9).

The following statements insert newNode between p and q.

newNode->link = q;
p->link = newNode;

The order in which these statements execute does not matter. To illustrate this, suppose
that we execute the statements in the following order:

p->link = newNode;
newNode->link = q;

Table 17-2 shows the effect of these statements.

p

45 7665 34head

50newNode

FIGURE 17-8 List after the execution of the statement p->link = newNode; followed by the
execution of the statement newNode->link = p->link;

p

45 7665 34

50

head

newNode

q

FIGURE 17-9 List with pointers p and q

1064 | Chapter 17: Linked Lists

Deletion
Consider the linked list shown in Figure 17-10.

Suppose that the node with info 34 is to be deleted from the list. The following
statement removes the node from the list.

p->link = p->link->link;

Figure 17-11 shows the resulting list after the preceding statement executes.

From Figure 17-11, it is clear that the node with info 34 is removed from the list.
However, the memory is still occupied by this node, and this memory is inaccessible; that
is, this node is dangling. To deallocate the memory, we need a pointer to this node. The

1

7

TABLE 17-2 Inserting a Node in a Linked List Using Two Pointers

Statement Effect

p->link = newNode;

newNode->link = q;

p

45 7665 34head

50newNode

q

p

45 7665 34head

50newNode
q

p

45 65 34 76head

FIGURE 17-10 Node to be deleted is with info 34

p

45 7665 34 head

FIGURE 17-11 List after the statement newNode->link = q; executes

Linked Lists | 1065

following statements delete the node from the list and deallocate the memory occupied
by this node.

q = p->link;
p->link = q->link;
delete q;

Table 17-3 shows the effect of these statements.

Building a Linked List
Now that we know how to insert a node in a linked list, let us see how to build a linked
list. First, we consider a linked list in general. If the data we read is unsorted, the linked
list will be unsorted. Such a list can be built in two ways: forward and backward. In the
forward manner, a new node is always inserted at the end of the linked list. In the
backward manner, a new node is always inserted at the beginning of the list. We will
consider both cases.

BUILDING A LINKED LIST FORWARD

Suppose that the nodes are in the usual info-link form, and info is of type int. Let us
assume that we process the following data:

2 15 8 24 34

We need three pointers to build the list: one to point to the first node in the list, which
cannot be moved; one to point to the last node in the list; and one to create the new
node. Consider the following variable declaration:

nodeType *first, *last, *newNode;
int num;

TABLE 17-3 Deleting a Node from a Linked List

Statement Effect

q = p->link;

p->link = q->link;

delete q;

3465

p

45 76head

q

p

45 7665 34head

q

p

45 65 76head

1066 | Chapter 17: Linked Lists

Suppose that first points to the first node in the list. Initially, the list is empty, so both
first and last are NULL. Thus, we must have the statements:

first = NULL;
last = NULL;

to initialize first and last to NULL.

Next, consider the following statements:

1 cin >> num; //read and store a number in num
2 newNode = new nodeType; //allocate memory of type nodeType

//and store the address of the
//allocated memory in newNode

3 newNode->info = num; //copy the value of num into the
//info field of newNode

4 newNode->link = NULL; //initialize the link field of
//newNode to NULL

5 if (first == NULL) //if first is NULL, the list is empty;
//make first and last point to newNode

{

5a first = newNode;
5b last = newNode;

}

6 else //list is not empty
{

6a last->link = newNode; //insert newNode at the end of the list
6b last = newNode; //set last so that it points to the

//actual last node in the list
}

Let us now execute these statements. Initially, both first and last are NULL.
Therefore, we have the list as shown in Figure 17-12.

After statement 1 executes, num is 2. Statement 2 creates a node and stores the address of
that node in newNode. Statement 3 stores 2 in the info field of newNode, and statement
4 stores NULL in the link field of newNode (see Figure 17-13).

1

7

first

last

FIGURE 17-12 Empty list

newNode 2

FIGURE 17-13 newNode with info 2

Linked Lists | 1067

Because first is NULL, we execute statements 5a and 5b. Figure 17-14 shows the
resulting list.

We now repeat statements 1 through 6b. After statement 1 executes, num is 15. Statement
2 creates a node and stores the address of this node in newNode. Statement 3 stores 15 in
the info field of newNode, and statement 4 stores NULL in the link field of newNode (see
Figure 17-15).

Because first is not NULL, we execute statements 6a and 6b. Figure 17-16 shows the
resulting list.

We now repeat statements 1 through 6b three more times. Figure 17-17 shows the
resulting list.

newNode
2

last

first

FIGURE 17-14 List after inserting newNode in it

first 2

newNodelast

15

FIGURE 17-16 List after inserting newNode at the end

first
2

last

newNode 15

FIGURE 17-15 List and newNode with info 15

1068 | Chapter 17: Linked Lists

To build the linked list, we can put the previous statements in a loop and execute the
loop until certain conditions are met. We can, in fact, write a C++ function to build a
linked list.

Suppose that we read a list of integers ending with -999. The following function,
buildListForward, builds a linked list (in a forward manner) and returns the pointer
of the built list:

nodeType* buildListForward()
{

nodeType *first, *newNode, *last;
int num;

cout << "Enter a list of integers ending with -999."
<< endl;

cin >> num;
first = NULL;

while (num != -999)
{

newNode = new nodeType;
newNode->info = num;
newNode->link = NULL;

if (first == NULL)
{

first = newNode;
last = newNode;

}

else
{

last->link = newNode;
last = newNode;

}

cin >> num;
} //end while

return first;
} //end buildListForward

1

7

first 2 15 8 24 34

newNodelast

FIGURE 17-17 List after inserting 8, 24, and 34

Linked Lists | 1069

BUILDING A LINKED LIST BACKWARD

Now we consider the case of building a linked list backward. For the previously given
data—2, 15, 8, 24, and 34—the linked list is as shown in Figure 17-18.

Because the new node is always inserted at the beginning of the list, we do not need to
know the end of the list, so the pointer last is not needed. Also, after inserting the new
node at the beginning, the new node becomes the first node in the list. Thus, we need to
update the value of the pointer first to correctly point to the first node in the list. We
see, then, that we need only two pointers to build the linked list: one to point to the list
and one to create the new node. Because initially the list is empty, the pointer first

must be initialized to NULL. In pseudocode, the algorithm is:

1. Initialize first to NULL.

2. For each item in the list,

a. Create the new node, newNode.

b. Store the item in newNode.

c. Insert newNode before first.

d. Update the value of the pointer first.

The following C++ function builds the linked list backward and returns the pointer of
the built list:

nodeType* buildListBackward()
{

nodeType *first, *newNode;
int num;

cout << "Enter a list of integers ending with -999."
<< endl;

cin >> num;
first = NULL;

while (num != -999)
{

newNode = new nodeType; //create a node
newNode->info = num; //store the data in newNode
newNode->link = first; //put newNode at the beginning

first 34 24 8 15 2

newNode

FIGURE 17-18 List after building it backward

1070 | Chapter 17: Linked Lists

//of the list
first = newNode; //update the head pointer of

//the list, that is, first
cin >> num; //read the next number

}

return first;
} //end buildListBackward

Linked List as an ADT
The previous sections taught you the basic properties of linked lists and how to construct
and manipulate them. Because a linked list is a very important data structure, rather than
discuss specific lists such as a list of integers or a list of strings, this section discusses linked lists
as an abstract data type (ADT). Using templates, this section gives a generic definition of
linked lists, which is then used in the next section and later in this book. The programming
example at the end of this chapter also uses this generic definition of linked lists.

The basic operations on linked lists are:

1. Initialize the list.

2. Determine whether the list is empty.

3. Print the list.

4. Find the length of the list.

5. Destroy the list.

6. Retrieve the info contained in the first node.

7. Retrieve the info contained in the last node.

8. Search the list for a given item.

9. Insert an item in the list.

10. Delete an item from the list.

11. Make a copy of the linked list.

In general, there are two types of linked lists—sorted lists, whose elements are arranged
according to some criteria, and unsorted lists, whose elements are in no particular order.
The algorithms to implement the operations search, insert, and remove slightly differ for
sorted and unsorted lists. Therefore, we will define the class linkedListType to
implement the basic operations on a linked list as an abstract class. Using the principle
of inheritance, we, in fact, will derive two classes—unorderedLinkedList and
orderedLinkedList—from the class linkedListType.

Objects of the class unorderedLinkedList would arrange list elements in no parti-
cular order, that is, these lists may not be sorted. On the other hand, objects of the class

orderedLinkedList would arrange elements according to some comparison criteria,
usually less than or equal to. That is, these lists will be in ascending order. Moreover, after

1

7

Linked List as an ADT | 1071

inserting an element into or removing an element from an ordered list, the resulting list
will be ordered.

If a linked list is unordered, we can insert a new item at either the end or the
beginning. Furthermore, you can build such a list in either a forward manner or a
backward manner. The function buildListForward inserts the new item at the end,
whereas the function buildListBackward inserts the new item at the beginning. To
accommodate both operations, we will write two functions: insertFirst to insert
the new item at the beginning of the list and insertLast to insert the new item at
the end of the list. Also, to make the algorithms more efficient, we will use two
pointers in the list: first, which points to the first node in the list, and last, which
points to the last node in the list.

Structure of Linked List Nodes
Recall that each node of a linked list must store the data as well as the address for the next
node in the list (except the last node of the list). Therefore, the node has two member
variables. To simplify operations such as insert and delete, we define the class to imple-
ment the node of a linked list as a struct. The definition of the struct nodeType is:

//Definition of the node

template <class Type>
struct nodeType
{

Type info;
nodeType<Type> *link;

};

The class to implement the node of a linked list is declared as a struct. Programming

Exercise 9, at the end of this chapter, asks you to redefine the class to implement the nodes

of a linked list so that the member variables of the class nodeType are private.

Member Variables of the class linkedListType
To maintain a linked list, we use two pointers: first and last. The pointer first points
to the first node in the list, and last points to the last node in the list. We also keep a count
of the number of nodes in the list. Therefore, the class linkedListType has three
member variables, as follows:

protected:
int count; //variable to store the number of

//elements in the list
nodeType<Type> *first; //pointer to the first node

//of the list
nodeType<Type> *last; //pointer to the last node

//of the list

1072 | Chapter 17: Linked Lists

Linked List Iterators
One of the basic operations performed on a list is to process each node of the list. This
requires the list to be traversed, starting at the first node. Moreover, a specific application
requires each node to be processed in a very specific way. A common technique to
accomplish this is to provide an iterator. So what is an iterator? An iterator is an object
that produces each element of a container, such as a linked list, one element at a time.
The two most common operations on iterators are ++ (the increment operator) and * (the
dereferenceing operator). The increment operator advances the iterator to the next node
in the list, and the dereferencing operator returns the info of the current node.

Note that an iterator is an object. So we need to define a class, which we will call
linkedListIterator, to create iterators to objects of the class linkedListType.
The iterator class would have one member variable pointing to (the current) node.

template <class Type>
class linkedListIterator
{
public:

linkedListIterator();
//Default constructor.
//Postcondition: current = NULL;

linkedListIterator(nodeType<Type> *ptr);
//Constructor with a parameter.
//Postcondition: current = ptr;

Type operator*();
//Function to overload the dereferencing operator *.
//Postcondition: Returns the info contained in the node.

linkedListIterator<Type> operator++();
//Overload the pre-increment operator.
//Postcondition: The iterator is advanced to the next
// node.

bool operator==(const linkedListIterator<Type>& right) const;
//Overload the equality operator.
//Postcondition: Returns true if this iterator is equal to
// the iterator specified by right,
// otherwise it returns false.

bool operator!=(const linkedListIterator<Type>& right) const;
//Overload the not equal to operator.
//Postcondition: Returns true if this iterator is not equal
// to the iterator specified by right,
// otherwise it returns false.

private:
nodeType<Type> *current; //pointer to point to the current

//node in the linked list
};

1

7

Linked List as an ADT | 1073

Figure 17-19 shows the UML class diagram of the class linkedListIterator.

The definitions of the functions of the class linkedListIterator are:

template <class Type>
linkedListIterator<Type>::linkedListIterator()
{

current = NULL;
}

template <class Type>
linkedListIterator<Type>::

linkedListIterator(nodeType<Type> *ptr)
{

current = ptr;
}

template <class Type>
Type linkedListIterator<Type>::operator*()
{

return current->info;
}

template <class Type>
linkedListIterator<Type> linkedListIterator<Type>::operator++()
{

current = current->link;

return *this;
}

template <class Type>
bool linkedListIterator<Type>::operator==

(const linkedListIterator<Type>& right) const
{

return (current == right.current);
}

linkedListIterator<Type>

-*current: nodeType<Type>

+linkedListIterator()

+linkedListIterator(nodeType<Type>)

+operator*(): Type

+operator++(): linkedListIterator<Type>

+operator==(const linkedListIterator<Type>&) const: bool

+operator!=(const linkedListIterator<Type>&) const: bool

FIGURE 17-19 UML class diagram of the class linkedListIterator

1074 | Chapter 17: Linked Lists

1

7

template <class Type>
bool linkedListIterator<Type>::operator!=

(const linkedListIterator<Type>& right) const
{

return (current != right.current);
}

Now that we have defined the classes to implement the node of a linked list and an
iterator to a linked list, next we describe the class linkedListType to implement the
basic properties of a linked list.

The following abstract class defines the basic properties of a linked list as an ADT:

template <class Type>
class linkedListType
{
public:

const linkedListType<Type>& operator=
(const linkedListType<Type>&);

//Overload the assignment operator.

void initializeList();
//Initialize the list to an empty state.
//Postcondition: first = NULL, last = NULL, count = 0;

bool isEmptyList() const;
//Function to determine whether the list is empty.
//Postcondition: Returns true if the list is empty,
// otherwise it returns false.

void print() const;
//Function to output the data contained in each node.
//Postcondition: none

int length() const;
//Function to return the number of nodes in the list.
//Postcondition: The value of count is returned.

void destroyList();
//Function to delete all the nodes from the list.
//Postcondition: first = NULL, last = NULL, count = 0;

Type front() const;
//Function to return the first element of the list.
//Precondition: The list must exist and must not be
// empty.
//Postcondition: If the list is empty, the program
// terminates; otherwise, the first
// element of the list is returned.

Type back() const;
//Function to return the last element of the list.
//Precondition: The list must exist and must not be
// empty.
//Postcondition: If the list is empty, the program
// terminates; otherwise, the last
// element of the list is returned.

Linked List as an ADT | 1075

virtual bool search(const Type& searchItem) const = 0;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is in the
// list, otherwise the value false is
// returned.

virtual void insertFirst(const Type& newItem) = 0;
//Function to insert newItem at the beginning of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the beginning of the list,
// last points to the last node in the list,
// and count is incremented by 1.

virtual void insertLast(const Type& newItem) = 0;
//Function to insert newItem at the end of the list.
//Postcondition: first points to the new list, newItem
// is inserted at the end of the list,
// last points to the last node in the list,
// and count is incremented by 1.

virtual void deleteNode(const Type& deleteItem) = 0;
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing
// deleteItem is deleted from the list.
// first points to the first node, last
// points to the last node of the updated
// list, and count is decremented by 1.

linkedListIterator<Type> begin();
//Function to return an iterator at the begining of the
//linked list.
//Postcondition: Returns an iterator such that current is
// set to first.

linkedListIterator<Type> end();
//Function to return an iterator one element past the
//last element of the linked list.
//Postcondition: Returns an iterator such that current is
// set to NULL.

linkedListType();
//default constructor
//Initializes the list to an empty state.
//Postcondition: first = NULL, last = NULL, count = 0;

linkedListType(const linkedListType<Type>& otherList);
//copy constructor

�linkedListType();
//destructor
//Deletes all the nodes from the list.
//Postcondition: The list object is destroyed.

protected:
int count; //variable to store the number of

//elements in the list

1076 | Chapter 17: Linked Lists

nodeType<Type> *first; //pointer to the first node of the list
nodeType<Type> *last; //pointer to the last node of the list

private:
void copyList(const linkedListType<Type>& otherList);

//Function to make a copy of otherList.
//Postcondition: A copy of otherList is created and
// assigned to this list.

};

Figure 17-20 shows the UML class diagram of the class linkedListType.

Note that typically, in the UML diagram, the name of an abstract class and abstract
function is shown in italics.

The instance variables first and last, as defined earlier, of the class

linkedListType are protected, not private, because as noted previously, we will
derive the classes unorderedLinkedList and orderedLinkedList from the
class linkedListType. Because each of the classes unorderedLinkedList

1

7

linkedListType<Type>

#count: int

#*first: nodeType<Type>

#*last: nodeType<Type>

+operator=(const linkedListType<Type>&):

const linkedListType<Type>&

+initializeList(): void

+isEmptyList() const: bool

+print() const: void

+length() const: int

+destroyList(): void

+front() const: Type

+back() const: Type

+search(const Type&) const = 0: bool

+insertFirst(const Type&) = 0: void

+insertLast(const Type&) = 0: void

+deleteNode(const Type&) = 0: void

+begin(): linkedListIterator<Type>

+end(): linkedListIterator<Type>

+linkedListType()

+linkedListType(const linkedListType<Type>&)

+~linkedListType()

-copyList(const linkedListType<Type>&): void

FIGURE 17-20 UML class diagram of the class linkedListType

Linked List as an ADT | 1077

and orderedLinkedList will provide separate definitions of the functions search,
insertFirst, insertLast, and deleteNode and because these functions would access
the instance variable, to provide direct access to the instance variables, the instance variables
are declared as protected.

The definition of the class linkedListType includes a member function to overload
the assignment operator. For classes that include pointer data members, the assignment
operator must be explicitly overloaded (see Chapters 12 and 13). For the same reason, the
definition of the class also includes a copy constructor.

Notice that the definition of the class linkedListType contains the member function
copyList, which is declared as a private member. This is due to the fact that this
function is used only to implement the copy constructor and overload the assignment
operator.

Next, we write the definitions of the nonabstract functions of the class LinkedListClass.

The list is empty if first is NULL. Therefore, the definition of the function isEmptyList

to implement this operation is as follows:

template <class Type>
bool linkedListType<Type>::isEmptyList() const
{

return (first == NULL);
}

DEFAULT CONSTRUCTOR

The default constructor, linkedListType, is quite straightforward. It simply initializes
the list to an empty state. Recall that when an object of the linkedListType type is
declared and no value is passed, the default constructor is executed automatically.

template <class Type>
linkedListType<Type>::linkedListType() //default constructor
{

first = NULL;
last = NULL;
count = 0;

}

DESTROY THE LIST

The function destroyList deallocates the memory occupied by each node. We traverse
the list starting from the first node and deallocate the memory by calling the operator
delete. We need a temporary pointer to deallocate the memory. Once the entire list is
destroyed, we must set the pointers first and last to NULL and count to 0.

template <class Type>
void linkedListType<Type>::destroyList()
{

nodeType<Type> *temp; //pointer to deallocate the memory
//occupied by the node

1078 | Chapter 17: Linked Lists

1

7

while (first != NULL) //while there are nodes in the list
{

temp = first; //set temp to the current node
first = first->link; //advance first to the next node
delete temp; //deallocate the memory occupied by temp

}

last = NULL; //initialize last to NULL; first has already
//been set to NULL by the while loop

count = 0;
}

INITIALIZE THE LIST

The function initializeList initializes the list to an empty state. Note that the
default constructor or the copy constructor has already initialized the list when the list
object was declared. This operation, in fact, reinitializes the list to an empty state, so it
must delete the nodes (if any) from the list. This task can be accomplished by using the
destroyList operation, which also resets the pointers first and last to NULL and
sets count to 0.

template <class Type>
void linkedListType<Type>::initializeList()
{

destroyList(); //if the list has any nodes, delete them
}

Print the List
The member function print prints the data contained in each node. To do so, we must
traverse the list, starting at the first node. Because the pointer first always points to the
first node in the list, we need another pointer to traverse the list. (If we use first to
traverse the list, the entire list will be lost.)

template <class Type>
void linkedListType<Type>::print() const
{

nodeType<Type> *current; //pointer to traverse the list

current = first; //set current so that it points to
//the first node

while (current != NULL) //while more data to print
{

cout << current->info << " ";
current = current->link;

}
}//end print

Length of a List
The length of a linked list (that is, how many nodes are in the list) is stored in the variable
count. Therefore, this function returns the value of this variable:

Linked List as an ADT | 1079

template <class Type>
int linkedListType<Type>::length() const
{

return count;
}

Retrieve the Data of the First Node
The function front returns the info contained in the first node, and its definition is
straightforward:

template <class Type>
Type linkedListType<Type>::front() const
{

assert(first != NULL);

return first->info; //return the info of the first node
}//end front

Notice that if the list is empty, the assert statement terminates the program. Therefore,
before calling this function, check to see whether the list is nonempty.

Retrieve the Data of the Last Node
The function back returns the info contained in the last node, and its definition is
straightforward:

template <class Type>
Type linkedListType<Type>::back() const
{

assert(last != NULL);

return last->info; //return the info of the last node
}//end back

Notice that if the list is empty, the assert statement terminates the program. Therefore,
before calling this function, check to see whether the list is nonempty.

Begin and End
The function begin returns an iterator to the first node in the linked list, and the
function end returns an iterator to one past the last node in the linked list. Their
definitions are:

template <class Type>
linkedListIterator<Type> linkedListType<Type>::begin()
{

linkedListIterator<Type> temp(first);

return temp;
}

1080 | Chapter 17: Linked Lists

1

7

template <class Type>
linkedListIterator<Type> linkedListType<Type>::end()
{

linkedListIterator<Type> temp(NULL);

return temp;
}

Copy the List
The function copyList makes an identical copy of a linked list. Therefore, we traverse
the list to be copied, starting at the first node. Corresponding to each node in the original
list, we:

a. Create a node, and call it newNode.

b. Copy the info of the node (in the original list) into newNode.

c. Insert newNode at the end of the list being created.

The definition of the function copyList is:

template <class Type>
void linkedListType<Type>::copyList

(const linkedListType<Type>& otherList)
{

nodeType<Type> *newNode; //pointer to create a node
nodeType<Type> *current; //pointer to traverse the list

if (first != NULL) //if the list is nonempty, make it empty
destroyList();

if (otherList.first == NULL) //otherList is empty
{

first = NULL;
last = NULL;
count = 0;

}

else
{

current = otherList.first; //current points to the
//list to be copied

count = otherList.count;

//copy the first node
first = new nodeType<Type>; //create the node
first->info = current->info; //copy the info
first->link = NULL; //set the link field of

//the node to NULL
last = first; //make last point to the

//first node
current = current->link; //make current point to

//the next node

Linked List as an ADT | 1081

//copy the remaining list
while (current != NULL)
{

newNode = new nodeType<Type>; //create a node
newNode->info = current->info; //copy the info
newNode->link = NULL; //set the link of

//newNode to NULL
last->link = newNode; //attach newNode after last
last = newNode; //make last point to

//the actual last node
current = current->link; //make current point

//to the next node
}//end while

}//end else
}//end copyList

Destructor
The destructor deallocates the memory occupied by the nodes of a list when the class object
goes out of scope. Because memory is allocated dynamically, resetting the pointers first and
last does not deallocate the memory occupied by the nodes in the list. We must traverse the
list, starting at the first node, and delete each node in the list. The list can be destroyed by
calling the function destroyList. Therefore, the definition of the destructor is:

template <class Type>
linkedListType<Type>::~linkedListType() //destructor
{

destroyList();
}

Copy Constructor
Because the class linkedListType contains pointer data members, the definition of
this class contains the copy constructor. Recall that if a formal parameter is a value
parameter, the copy constructor provides the formal parameter with its own copy of the
data. The copy constructor also executes when an object is declared and initialized using
another object. (For more information, see Chapter 12.)

The copy constructor makes an identical copy of the linked list. This can be done by
calling the function copyList. Because the function copyList checks whether the
original is empty by checking the value of first, we must first initialize the pointer
first to NULL before calling the function copyList.

The definition of the copy constructor is:

template <class Type>
linkedListType<Type>::linkedListType

(const linkedListType<Type>& otherList)
{

first = NULL;
copyList(otherList);

}//end copy constructor

1082 | Chapter 17: Linked Lists

Overloading the Assignment Operator
The definition of the function to overload the assignment operator for the class

linkedListType is similar to the definition of the copy constructor. We give its
definition for the sake of completeness.

//overload the assignment operator
template <class Type>
const linkedListType<Type>& linkedListType<Type>::operator=

(const linkedListType<Type>& otherList)
{

if (this != &otherList) //avoid self-copy
{

copyList(otherList);
}//end else

return *this;
}

Unordered Linked Lists
As described in the preceding section, we derive the class unorderedLinkedList

from the abstract class linkedListType and implement the operations search,
insertFirst, insertLast, and deleteNode.

The following class defines an unordered linked list as an ADT.

template <class Type>
class unorderedLinkedList: public linkedListType<Type>
{
public:

bool search(const Type& searchItem) const;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is in the
// list, otherwise the value false is
// returned.

void insertFirst(const Type& newItem);
//Function to insert newItem at the beginning of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the beginning of the list,
// last points to the last node in the
// list, and count is incremented by 1.

void insertLast(const Type& newItem);
//Function to insert newItem at the end of the list.
//Postcondition: first points to the new list, newItem
// is inserted at the end of the list,
// last points to the last node in the
// list, and count is incremented by 1.

void deleteNode(const Type& deleteItem);
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing

1

7

Unordered Linked Lists | 1083

// deleteItem is deleted from the list.
// first points to the first node, last
// points to the last node of the updated
// list, and count is decremented by 1.

};

Figure 17-21 shows a UML class diagram of the class unorderedLinkedList and the
inheritance hierarchy.

Next, we give the definitions of the member functions of the class

unorderedLinkedList.

Search the List
The member function search searches the list for a given item. If the item is found, it
returns true; otherwise, it returns false. Because a linked list is not a random-access
data structure, we must sequentially search the list, starting from the first node.

This function has the following steps:

1. Compare the search item with the current node in the list. If the info of
the current node is the same as the search item, stop the search; other-
wise, make the next node the current node.

2. Repeat Step 1 until either the item is found or no more data is left in the
list to compare with the search item.

template <class Type>

bool unorderedLinkedList<Type>::

search(const Type& searchItem) const

{

nodeType<Type> *current; //pointer to traverse the list

bool found = false;

current = first; //set current to point to the first

//node in the list

unorderedLinkedList<Type>

+search(const Type&) const: bool

+insertFirst(const Type&): void

+insertLast(const Type&): void

+deleteNode(const Type&): void

linkedListType

unorderedLinkedList

FIGURE 17-21 UML class diagram of the class unorderedLinkedList and inheritance
hierarchy

1084 | Chapter 17: Linked Lists

while (current != NULL && !found) //search the list

if (current->info == searchItem) //searchItem is found

found = true;

else

current = current->link; //make current point to

//the next node

return found;

}//end search

The function search can also be written as:

template <class Type>
bool unorderedLinkedList<Type>::search(const Type& searchItem)

const
{

nodeType<Type> *current; //pointer to traverse the list

current = first; //set current to point to the first
//node in the list

while (current != NULL) //search the list
if (current->info == searchItem) //searchItem is found

return true;
else

current = current->link; //make current point to
//the next node

return false; //searchItem is not in the list, return false
}//end search

Insert the First Node
The function insertFirst inserts the new item at the beginning of the list—that is,
before the node pointed to by first. The steps needed to implement this function are as
follows:

1. Create a new node.

2. Store the new item in the new node.

3. Insert the node before first.

4. Increment count by 1.

template <class Type>
void unorderedLinkedList<Type>::insertFirst(const Type& newItem)
{

nodeType<Type> *newNode; //pointer to create the new node
newNode = new nodeType<Type>; //create the new node
newNode->info = newItem; //store the new item in the node

1

7

Unordered Linked Lists | 1085

newNode->link = first; //insert newNode before first
first = newNode; //make first point to the

//actual first node
count++; //increment count

if (last == NULL) //if the list was empty, newNode is also
//the last node in the list

last = newNode;
}//end insertFirst

Insert the Last Node
The definition of the member function insertLast is similar to the definition of the
member function insertFirst. Here, we insert the new node after last. Essentially,
the function insertLast is:

template <class Type>
void unorderedLinkedList<Type>::insertLast(const Type& newItem)
{

nodeType<Type> *newNode; //pointer to create the new node

newNode = new nodeType<Type>; //create the new node
newNode->info = newItem; //store the new item in the node
newNode->link = NULL; //set the link field of newNode

//to NULL

if (first == NULL) //if the list is empty, newNode is
//both the first and last node

{

first = newNode;
last = newNode;
count++; //increment count

}

else //the list is not empty, insert newNode after last
{

last->link = newNode; //insert newNode after last
last = newNode; //make last point to the actual

//last node in the list
count++; //increment count

}

}//end insertLast

DELETE A NODE

Next, we discuss the implementation of the member function deleteNode,
which deletes a node from the list with a given info. We need to consider several
cases:

Case 1: The list is empty.

Case 2: The first node is the node with the given info. In this case, we need to adjust
the pointer first.

1086 | Chapter 17: Linked Lists

Case 3: The node with the given info is somewhere in the list. If the node to be
deleted is the last node, then we must adjust the pointer last.

Case 4: The list does not contain the node with the given info.

If list is empty, we can simply print a message indicating that the list is empty. If list is
not empty, we search the list for the node with the given info and, if such a node is
found, we delete this node. After deleting the node, count is decremented by 1. In
pseudocode, the algorithm is:

if list is empty
Output(cannot delete from an empty list);

else
{

if the first node is the node with the given info
adjust the head pointer, that is, first, and deallocate
the memory;

else
{

search the list for the node with the given info
if such a node is found, delete it and adjust the
values of last (if necessary) and count.

}

}

Case 1: The list is empty.

If the list is empty, output an error message as shown in the pseudocode.

Case 2: The list is not empty. The node to be deleted is the first node.

This case has two scenarios: list has only one node, and list has more than one node.
Consider the list with one node, as shown in Figure 17-22.

Suppose that we want to delete 37. After deletion, the list becomes empty. Therefore,
after deletion, both first and last are set to NULL, and count is set to 0.

Now consider the list of more than one node, as shown in Figure 17-23.

1

7

first

list

37
last

1count

FIGURE 17-22 list with one node

Unordered Linked Lists | 1087

Suppose that the node to be deleted is 28. After deleting this node, the second node
becomes the first node. Therefore, after deleting this node, the value of the pointer first
changes; that is, after deletion, first contains the address of the node with info 17, and
count is decremented by 1. Figure 17-24 shows the list after deleting 28.

Case 3: The node to be deleted is not the first node but is somewhere in the list.

This case has two subcases: (a) the node to be deleted is not the last node, and (b) the
node to be deleted is the last node. Let us illustrate both cases.

Case 3a: The node to be deleted is not the last node.

Consider the list shown in Figure 17-25.

Suppose that the node to be deleted is 37. After deleting this node, the resulting list is as
shown in Figure 17-26. (Notice that the deletion of 37 does not require us to change the

28 17 37 24 54first

list

last

5count

FIGURE 17-23 list with more than one node

17 37 24 54first

list

last

4count

FIGURE 17-24 list after deleting node with info 28

28 17 37 24 54first

list

last

5count

FIGURE 17-25 list before deleting 37

1088 | Chapter 17: Linked Lists

1

7

values of first and last. The link field of the previous node—that is, 17—changes.
After deletion, the node with info 17 contains the address of the node with 24.)

Case 3b: The node to be deleted is the last node.

Consider the list shown in Figure 17-27. Suppose that the node to be deleted is 54.

After deleting 54, the node with info 24 becomes the last node. Therefore, the
deletion of 54 requires us to change the value of the pointer last. After deleting 54,
last contains the address of the node with info 24. Also, count is decremented
by 1. Figure 17-28 shows the resulting list.

Case 4: The node to be deleted is not in the list. In this case, the list requires no
adjustment. We simply output an error message, indicating that the item to be
deleted is not in the list.

28 17 37 24first

list

last

4count

FIGURE 17-28 list after deleting 54

28 17 37 24 54first

list

last

5count

FIGURE 17-27 list before deleting 54

28 17 24 54first

list

last

4count

FIGURE 17-26 list after deleting 37

Unordered Linked Lists | 1089

From Cases 2, 3, and 4, it follows that the deletion of a node requires us to traverse
the list. Because a linked list is not a random-access data structure, we must sequen-
tially search the list. We handle Case 1 separately, because it does not require us to
traverse the list. We sequentially search the list, starting at the second node. If the node
to be deleted is in the middle of the list, we need to adjust the link field of the node just
before the node to be deleted. Thus, we need a pointer to the previous node. When we
search the list for the given info, we use two pointers: one to check the info of the
current node and one to keep track of the node just before the current node. If the node to
be deleted is the last node, we must adjust the pointer last.

The definition of the function deleteNode is:

template <class Type>
void unorderedLinkedList<Type>::deleteNode(const Type& deleteItem)
{

nodeType<Type> *current; //pointer to traverse the list
nodeType<Type> *trailCurrent; //pointer just before current
bool found;

if (first == NULL) //Case 1; the list is empty
cout << "Cannot delete from an empty list."

<< endl;
else
{

if (first->info == deleteItem) //Case 2
{

current = first;
first = first->link;
count--;

if (first == NULL) //the list has only one node
last = NULL;

delete current;
}

else //search the list for the node with the given info
{

found = false;
trailCurrent = first; //set trailCurrent to point

//to the first node
current = first->link; //set current to point to

//the second node

while (current != NULL && !found)
{

if (current->info != deleteItem)
{

trailCurrent = current;
current = current-> link;

}

else
found = true;

}//end while

1090 | Chapter 17: Linked Lists

1

7

if (found) //Case 3; if found, delete the node
{

trailCurrent->link = current->link;
count--;

if (last == current) //node to be deleted
//was the last node

last = trailCurrent; //update the value
//of last

delete current; //delete the node from the list
}

else
cout << "The item to be deleted is not in "

<< "the list." << endl;
}//end else

}//end else
}//end deleteNode

Header File of the Unordered Linked List
For the sake of completeness, we will show how to create the header file that defines the
class unorderedListType and the operations on such lists. (We assume that the
definition of the class linkedListType and the definitions of the functions to imple-
ment the operations are in the header file linkedlist.h.)

#ifndef H_UnorderedLinkedList
#define H_UnorderedLinkedList

#include "linkedList.h"

using namespace std;

template <class Type>
class unorderedLinkedList: public linkedListType<Type>
{
public:

bool search(const Type& searchItem) const;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is in the
// list, otherwise the value false is
// returned.

void insertFirst(const Type& newItem);
//Function to insert newItem at the beginning of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the beginning of the list,
// last points to the last node in the
// list, and count is incremented by 1.

void insertLast(const Type& newItem);
//Function to insert newItem at the end of the list.
//Postcondition: first points to the new list, newItem
// is inserted at the end of the list,
// last points to the last node in the
// list, and count is incremented by 1.

Unordered Linked Lists | 1091

void deleteNode(const Type& deleteItem);
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing
// deleteItem is deleted from the list.
// first points to the first node, last
// points to the last node of the updated
// list, and count is decremented by 1.

};

//Place the definitions of the functions search,
//insertFirst, insertLast, and deleteNode here.
.
.
.
#endif

The Web site accompanying this book contains several programs illustrating how to use

the class unorderedLinkedList.

Ordered Linked Lists
The preceding section described the operations on an unordered linked list. This section deals
with ordered linked lists. As noted earlier, we derive the class orderedLinkedList

from the class linkedListType and provide the definitions of the abstract functions
insertFirst, insertLast, search, and deleteNode to take advantage of the fact
that the elements of an ordered linked list are arranged using some ordering criteria. For
simplicity, we assume that elements of an ordered linked list are arranged in ascending order.

Because the elements of an ordered linked list are in order, we include the function
insert to insert an element in an ordered list at the proper place.

The following class defines an ordered linked list as an ADT:

template <class Type>
class orderedLinkedList: public linkedListType<Type>
{
public:

bool search(const Type& searchItem) const;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is in the list,
// otherwise the value false is returned.

void insert(const Type& newItem);
//Function to insert newItem in the list.
//Postcondition: first points to the new list, newItem
// is inserted at the proper place in the
// list, and count is incremented by 1.

void insertFirst(const Type& newItem);
//Function to insert newItem at the beginning of the list.
//Postcondition: first points to the new list, newItem is

1092 | Chapter 17: Linked Lists

// inserted at the proper place in the list,
// last points to the last node in the
// list, and count is incremented by 1.

void insertLast(const Type& newItem);
//Function to insert newItem at the end of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the proper place in the list,
// last points to the last node in the
// list, and count is incremented by 1.

void deleteNode(const Type& deleteItem);
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing
// deleteItem is deleted from the list;
// first points to the first node of the
// new list, and count is decremented by 1.
// If deleteItem is not in the list, an
// appropriate message is printed.

};

Figure 17-29 shows a UML class diagram of the class orderedLinkedList and the
inheritance hierarchy.

Next, we give the definitions of the member functions of the class orderedLinkedList.

Search the List
First, we discuss the search operation. The algorithm to implement the search opera-
tion is similar to the search algorithm for general lists discussed earlier. Here, because
the list is sorted, we can improve the search algorithm somewhat. As before, we start the
search at the first node in the list. We stop the search as soon as we find a node in
the list with info greater than or equal to the search item or when we have searched
the entire list.

1

7

+search(const Type&) const: bool

+insert(const Type&): void

+insertFirst(const Type&): void

+insertLast(const Type&): void

+deleteNode(const Type&): void orderedLinkedList

orderedLinkedList<Type>

linkedListType

FIGURE 17-29 UML class diagram of the classorderedLinkedList and the inheritance hierarchy

Ordered Linked Lists | 1093

The following steps describe this algorithm:

1. Compare the search item with the current node in the list. If the info of
the current node is greater than or equal to the search item, stop the
search; otherwise, make the next node the current node.

2. Repeat Step 1 until either an item in the list that is greater than or equal
to the search item is found or no more data is left in the list to compare
with the search item.

Note that the loop does not explicitly check whether the search item is equal to an item
in the list. Thus, after the loop executes, we must check whether the search item is equal
to the item in the list.

template <class Type>
bool orderedLinkedList<Type>::

search(const Type& searchItem) const
{

bool found = false;
nodeType<Type> *current; //pointer to traverse the list

current = first; //start the search at the first node

while (current != NULL && !found)
if (current->info >= searchItem)

found = true;
else

current = current->link;

if (found)
found = (current->info == searchItem); //test for equality

return found;
}//end search

Insert a Node
To insert an item in an ordered linked list, we first find the place where the new item is
supposed to go, and then we insert the item in the list. To find the place for the new item,
as before, we search the list. Here, we use two pointers, current and trailCurrent, to
search the list. The pointer current points to the node whose info is being compared
with the item to be inserted, and trailCurrent points to the node just before current.
Because the list is in order, the search algorithm is the same as before. The following cases
arise:

Case 1: The list is initially empty. The node containing the new item is the only node
and thus the first node in the list.

Case 2: The new item is smaller than the smallest item in the list. The new item goes at
the beginning of the list. In this case, we need to adjust the list’s head pointer—
that is, first. Also, count is incremented by 1.

Case 3: The item is to be inserted somewhere in the list.

1094 | Chapter 17: Linked Lists

3a: The new item is larger than all of the items in the list. In this case, the new item
is inserted at the end of the list. Thus, the value of current is NULL, and the
new item is inserted after trailCurrent. Also, count is incremented by 1.

3b: The new item is to be inserted somewhere in the middle of the list. In this case,
the new item is inserted between trailCurrent and current. Also, count is
incremented by 1.

The following statements can accomplish both Cases 3a and 3b. Assume newNode points
to the new node.

trailCurrent->link = newNode;
newNode->link = current;

Let us next illustrate these cases.

Case 1: The list is empty.

Consider the list shown in Figure 17-30(a).

Suppose that we want to insert 27 in the list. To accomplish this task, we create a node, copy
27 into the node, set the link of the node to NULL, and make first point to the node. Figure
17-30(b) shows the resulting list. Notice that, after inserting 27, the values of both first and
count change.

Case 2: The list is not empty, and the item to be inserted is smaller than the smallest item
in the list. Consider the list shown in Figure 17-31.

1

7

first

 last

list

0count

first

 last

list

27

1count

(a) Empty list (b) After inserting 27

FIGURE 17-30 list

17 27 38 54first

list

last

4count

FIGURE 17-31 Nonempty list before inserting 10

Ordered Linked Lists | 1095

Suppose that 10 is to be inserted. After inserting 10 in the list, the node with info 10

becomes the first node of list. This requires us to change the value of first. Also,
count is incremented by 1. Figure 17-32 shows the resulting list.

Case 3: The list is not empty, and the item to be inserted is larger than the first item in
the list. As indicated previously, this case has two scenarios.

Case 3a: The item to be inserted is larger than the largest item in the list; that is, it goes at
the end of the list. Consider the list shown in Figure 17-33.

Suppose that we want to insert 65 in the list. After inserting 65, the resulting list is as
shown in Figure 17-34.

17 27 38 54 65first

list

last

5count

FIGURE 17-34 list after inserting 65

10 17 27 38 54first

list

last

5count

FIGURE 17-32 list after inserting 10

17 27 38 54first

list

last

4count

FIGURE 17-33 list before inserting 65

1096 | Chapter 17: Linked Lists

Case 3b: The item to be inserted goes somewhere in the middle of the list. Consider the
list shown in Figure 17-35.

Suppose that we want to insert 27 in this list. Clearly, 27 goes between 17 and 38, which
would require the link of the node with info 17 to be changed. After inserting 27, the
resulting list is as shown in Figure 17-36.

From Case 3, it follows that we must first traverse the list to find the place where the new
item is to be inserted. It also follows that we should traverse the list with two pointers—
say, current and trailCurrent. The pointer current is used to traverse the list and
compare the info of the node in the list with the item to be inserted. The pointer
trailCurrent points to the node just before current. For example, in Case 3b, when
the search stops, trailCurrent points to node 17 and current points to node 38. The
item is inserted after trailCurrent. In Case 3a, after searching the list to find the place
for 65, trailCurrent points to node 54 and current is NULL.

Essentially, the function insert is as follows:

template <class Type>
void orderedLinkedList<Type>::insert(const Type& newItem)
{

nodeType<Type> *current; //pointer to traverse the list
nodeType<Type> *trailCurrent; //pointer just before current
nodeType<Type> *newNode; //pointer to create a node

1

7

17 38 45 54first

list

last

4count

FIGURE 17-35 list before inserting 27

17 27 38 45 54first

list

last

5count

FIGURE 17-36 list after inserting 27

Ordered Linked Lists | 1097

bool found;

newNode = new nodeType<Type>; //create the node
newNode->info = newItem; //store newItem in the node
newNode->link = NULL; //set the link field of the node

//to NULL

if (first == NULL) //Case 1
{

first = newNode;
last = newNode;
count++;

}

else
{

current = first;
found = false;

while (current != NULL && !found) //search the list
if (current->info >= newItem)

found = true;
else
{

trailCurrent = current;
current = current->link;

}

if (current == first) //Case 2
{

newNode->link = first;
first = newNode;
count++;

}

else //Case 3
{

trailCurrent->link = newNode;
newNode->link = current;

if (current == NULL)
last = newNode;

count++;
}

}//end else
}//end insert

Insert First and Insert Last
The function insertFirst inserts the new item at the beginning of the list. However,
because the resulting list must be sorted, the new item must be inserted at the proper
place. Similarly, the function insertLast must insert the new item at the proper place.

1098 | Chapter 17: Linked Lists

Therefore, we use the function insertNode to insert the new item at its proper place.
The definitions of these functions are:

template <class Type>
void orderedLinkedList<Type>::insertFirst(const Type& newItem)
{

insert(newItem);
}//end insertFirst

template <class Type>
void orderedLinkedList<Type>::insertLast(const Type& newItem)
{

insert(newItem);
}//end insertLast

Note that in reality, the functions insertFirst and insertLast do not apply to
ordered linked lists because the new item must be inserted at the proper place in the list.
However, you must provide its definition as these functions are declared as abstract in the
parent class.

Delete a Node
To delete a given item from an ordered linked list, first we search the list to see whether
the item to be deleted is in the list. The function to implement this operation is the same
as the delete operation on general linked lists. Here, because the list is sorted, we can
somewhat improve the algorithm for ordered linked lists.

As in the case of insertNode, we search the list with two pointers, current and
trailCurrent. Similar to the operation insertNode, several cases arise:

Case 1: The list is initially empty. We have an error. We cannot delete from an empty list.

Case 2: The item to be deleted is contained in the first node of the list. We must adjust
the head pointer of the list—that is, first.

Case 3: The item to be deleted is somewhere in the list. In this case, current points to
the node containing the item to be deleted, and trailCurrent points to the
node just before the node pointed to by current.

Case 4: The list is not empty, but the item to be deleted is not in the list.

After deleting a node, count is decremented by 1. The definition of the function
deleteNode is:

template <class Type>
void orderedLinkedList<Type>::deleteNode(const Type& deleteItem)
{

nodeType<Type> *current; //pointer to traverse the list
nodeType<Type> *trailCurrent; //pointer just before current
bool found;

1

7

Ordered Linked Lists | 1099

if (first == NULL) //Case 1
cout << "Cannot delete from an empty list." << endl;

else
{

current = first;
found = false;

while (current != NULL && !found) //search the list
if (current->info >= deleteItem)

found = true;
else
{

trailCurrent = current;
current = current->link;

}

if (current == NULL) //Case 4
cout << "The item to be deleted is not in the "

<< "list." << endl;
else

if (current->info == deleteItem) //the item to be
//deleted is in the list

{

if (first == current) //Case 2
{

first = first->link;

if (first == NULL)
last = NULL;

delete current;
}

else //Case 3
{

trailCurrent->link = current->link;

if (current == last)
last = trailCurrent;

delete current;
}

count--;
}

else //Case 4
cout << "The item to be deleted is not in the "

<< "list." << endl;
}

}//end deleteNode

Header File of the Ordered Linked List
For the sake of completeness, we will show how to create the header file that defines the
class orderedListType, as well as the operations on such lists. (We assume that the

1100 | Chapter 17: Linked Lists

1

7

definition of the class linkedListType and the definitions of the functions to imple-
ment the operations are in the header file linkedlist.h.)

#ifndef H_orderedListType
#define H_orderedListType

#include "linkedList.h"

using namespace std;

template <class Type>
class orderedLinkedList: public linkedListType<Type>
{
public:

bool search(const Type& searchItem) const;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is in the list,
// otherwise the value false is returned.

void insert(const Type& newItem);
//Function to insert newItem in the list.
//Postcondition: first points to the new list, newItem
// is inserted at the proper place in the
// list, and count is incremented by 1.

void insertFirst(const Type& newItem);
//Function to insert newItem at the beginning of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the proper place in the list,
// last points to the last node in the
// list, and count is incremented by 1.

void insertLast(const Type& newItem);
//Function to insert newItem at the end of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the proper place in the list,
// last points to the last node in the
// list, and count is incremented by 1.

void deleteNode(const Type& deleteItem);
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing
// deleteItem is deleted from the list;
// first points to the first node of the
// new list, and count is decremented by 1.
// If deleteItem is not in the list, an
// appropriate message is printed.

};

//Place the definitions of the functions search, insert,
//insertFirst, insertLast, and deleteNode here.
.
.
.
#endif

Ordered Linked Lists | 1101

The following program tests various operations on an ordered linked list:

//Program to test the various operations on an ordered linked list

#include <iostream>
#include "orderedLinkedList.h"

using namespace std;

int main()
{

orderedLinkedList<int> list1, list2; //Line 1
int num; //Line 2

cout << "Line 3: Enter numbers ending "
<< "with -999." << endl; //Line 3

cin >> num; //Line 4
while (num != -999) //Line 5
{

list1.insert(num); //Line 6
cin >> num; //Line 7

}

cout << endl; //Line 8

cout << "Line 9: list1: "; //Line 9
list1.print(); //Line 10
cout << endl; //Line 11

list2 = list1; //test the assignment operator Line 12

cout << "Line 13: list2: "; //Line 13
list2.print(); //Line 14
cout << endl; //Line 15

cout << "Line 16: Enter the number to be "
<< "deleted: "; //Line 16

cin >> num; //Line 17
cout << endl; //Line 18

list2.deleteNode(num); //Line 19

cout << "Line 20: After deleting "
<< num << ", list2: " << endl; //Line 20

list2.print(); //Line 21
cout<<endl; //Line 22

return 0;
}

1102 | Chapter 17: Linked Lists

Sample Run: In this sample run, the user input is shaded.

Line 3: Enter numbers ending with -999.
23 65 34 72 12 82 36 55 29 -999

Line 9: list1: 12 23 29 34 36 55 65 72 82
Line 13: list2: 12 23 29 34 36 55 65 72 82
Line 16: Enter the number to be deleted: 34

Line 20: After deleting 34, list2:
12 23 29 36 55 65 72 82

The preceding output is self-explanatory. The details are left as an exercise for you.

Notice that the function insert does not check whether the item to be inserted is

already in the list, that is, it does not check for duplicates. Programming Exercise 8 at

the end of this chapter asks you to revise the definition of the function insert so

that before inserting the item, it checks whether it is already in the list. If the item to

be inserted is already in the list, the function outputs an appropriate error message. In

other words, duplicates are not allowed.

Print a Linked List in Reverse Order
(Recursion Revisited)
The nodes of an ordered list (as constructed previously) are in ascending order. Certain
applications, however, might require the data to be printed in descending order, which
means that we must print the list backward. We now discuss the function reversePrint.
Given a pointer to a list, this function prints the elements of the list in reverse order.

Consider the linked list shown in Figure 17-37.

For the list in Figure 17-37, the output should be in the following form:

20 15 10 5

Because the links are in only one direction, we cannot traverse the list backward starting
from the last node. Let us see how we can effectively use recursion to print the list in
reverse order.

1

7

first 5 10 15 20

FIGURE 17-37 Linked list

Print a Linked List in Reverse Order (Recursion Revisited) | 1103

Let us think in terms of recursion. We cannot print the info of the first node until we
have printed the remainder of the list (that is, the tail of the first node). Similarly, we
cannot print the info of the second node until we have printed the tail of the second
node, and so on. Every time we consider the tail of a node, we reduce the size of the list
by 1. Eventually, the size of the list will be reduced to zero, in which case the recursion
will stop. Let us first write the algorithm in pseudocode. (Suppose that current is a
pointer to a linked list.)

if (current != NULL)
{

reversePrint(current->link); //print the tail
cout << current->info << endl; //print the node

}

Here, we do not see the base case; it is hidden. The list is printed only if the pointer to
the list is not NULL. Also, in the body of the if statement, the recursive call is on the
tail of the list. Because eventually the tail of the list will be empty, the if statement in
the next call will fail, and the recursion will stop. Also, note that statements (for
example, printing the info of the node) appear after the recursive call; thus, when the
transfer comes back to the calling function, we must execute the remaining statements.
Recall that the function exits only after the last statement executes. (By the ‘‘last
statement,’’ we do not mean the physical last statement, but rather the logical last
statement.)

Let us write the previous function in C++ and then apply it to a list.

template <class Type>
void linkedListType<Type>::reversePrint

(nodeType<Type> *current) const
{

if (current != NULL)
{

reversePrint(current->link); //print the tail
cout << current->info << " "; //print the node

}
}

Consider the statement:

reversePrint(first);

in which first is a pointer of type nodeType<Type>.

Let us trace the execution of this statement, which is a function call, for the list shown in
Figure 17-37. Because the formal parameter is a value parameter, the value of the actual
parameter is passed to the formal parameter. See Figure 17-38.

1104 | Chapter 17: Linked Lists

printListReverse

Now that we have written the function reversePrint, we can write the definition of
the function printListReverse. Its definition is:

template <class Type>
void linkedListType<Type>::printListReverse() const
{

reversePrint(first);
cout << endl;

}

1

7

current->5

because(current != NULL)

 reversePrint(current->link)

reversePrint(first)

execute the statement

 cout << current->info;

 Print 20

 Now control goes back

 to the caller

reversePrint(current->link)

current->10

because(current != NULL)

 reversePrint(current->link)

reversePrint(current->link)

current->15

because(current != NULL)

 reversePrint(current->link)

reversePrint(current->link)

current->20

because(current != NULL)

 reversePrint(current->link)

reversePrint(current->link)

current is NULL

because (current is NULL)

 the if statement fails

 control goes back to the caller

execute the statement

 cout << current->info;

 Print 15

 Now control goes back

 to the caller

execute the statement

 cout << current->info;

 Print 10

 Now control goes back

 to the caller

execute the statement

 cout << current->info;

 Print 5

 Now control goes back

 to the caller

FIGURE 17-38 Execution of the statement reversePrint(first);

Print a Linked List in Reverse Order (Recursion Revisited) | 1105

Doubly Linked Lists
A doubly linked list is a linked list in which every node has a next pointer and a back
pointer. In other words, every node contains the address of the next node (except the last
node), and every node contains the address of the previous node (except the first node)
(see Figure 17-39).

A doubly linked list can be traversed in either direction. That is, we can traverse the list
starting at the first node or, if a pointer to the last node is given, we can traverse the list
starting at the last node.

As before, the typical operations on a doubly linked list are:

1. Initialize the list.

2. Destroy the list.

3. Determine whether the list is empty.

4. Search the list for a given item.

5. Retrieve the first element of the list.

6. Retrieve the last element of the list.

7. Insert an item in the list.

8. Delete an item from the list.

9. Find the length of the list.

10. Print the list.

11. Make a copy of the doubly linked list.

Next, we describe these operations for an ordered doubly linked list. The following class
defines a doubly linked list as an ADT:

//Definition of the node
template <class Type>
struct nodeType
{

Type info;
nodeType<Type> *next;
nodeType<Type> *back;

};

first

last

FIGURE 17-39 Doubly linked list

1106 | Chapter 17: Linked Lists

template <class Type>
class doublyLinkedList
{

public:
const doublyLinkedList<Type>& operator=

(const doublyLinkedList<Type> &);
//Overload the assignment operator.

void initializeList();
//Function to initialize the list to an empty state.
//Postcondition: first = NULL; last = NULL; count = 0;

bool isEmptyList() const;
//Function to determine whether the list is empty.
//Postcondition: Returns true if the list is empty,
// otherwise returns false.

void destroy();
//Function to delete all the nodes from the list.
//Postcondition: first = NULL; last = NULL; count = 0;

void print() const;
//Function to output the info contained in each node.

void reversePrint() const;
//Function to output the info contained in each node
//in reverse order.

int length() const;
//Function to return the number of nodes in the list.
//Postcondition: The value of count is returned.

Type front() const;
//Function to return the first element of the list.
//Precondition: The list must exist and must not be empty.
//Postcondition: If the list is empty, the program
// terminates; otherwise, the first
// element of the list is returned.

Type back() const;
//Function to return the last element of the list.
//Precondition: The list must exist and must not be empty.
//Postcondition: If the list is empty, the program
// terminates; otherwise, the last
// element of the list is returned.

bool search(const Type& searchItem) const;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is found in
// the list, otherwise returns false.

1

7

Doubly Linked Lists | 1107

void insert(const Type& insertItem);
//Function to insert insertItem in the list.
//Precondition: If the list is nonempty, it must be in
// order.
//Postcondition: insertItem is inserted at the proper place
// in the list, first points to the first
// node, last points to the last node of the
// new list, and count is incremented by 1.

void deleteNode(const Type& deleteItem);
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing deleteItem
// is deleted from the list; first points
// to the first node of the new list, last
// points to the last node of the new list,
// and count is decremented by 1; otherwise
// an appropriate message is printed.

doublyLinkedList();
//default constructor
//Initializes the list to an empty state.
//Postcondition: first = NULL; last = NULL; count = 0;

doublyLinkedList(const doublyLinkedList<Type>& otherList);
//copy constructor

�doublyLinkedList();
//destructor
//Postcondition: The list object is destroyed.

protected:
int count;
nodeType<Type> *first; //pointer to the first node
nodeType<Type> *last; //pointer to the last node

private:
void copyList(const doublyLinkedList<Type>& otherList);

//Function to make a copy of otherList.
//Postcondition: A copy of otherList is created and
// assigned to this list.

};

We leave the UML class diagram of the class doublyLinkedList as an exercise for
you.

The functions to implement the operations of a doubly linked list are similar to the ones
discussed earlier. Here, because every node has two pointers, back and next, some of the
operations require the adjustment of two pointers in each node. For the insert and delete
operations, because we can traverse the list in either direction, we use only one pointer to
traverse the list. Let us call this pointer current. We can set the value of trailCurrent
by using both the current pointer and the back pointer of the node pointed to by
current. We give the definition of each function here, with four exceptions. Definitions

1108 | Chapter 17: Linked Lists

of the functions copyList, the copy constructor, overloading the assignment operator,
and the destructor are left as exercises for you. (See Programming Exercise 11 at the end
of this chapter.) Moreover, the function copyList is used only to implement the copy
constructor and overload the assignment operator.

Default Constructor
The default constructor initializes the doubly linked list to an empty state. It sets first
and last to NULL and count to 0.

template <class Type>
doublyLinkedList<Type>::doublyLinkedList()
{

first= NULL;
last = NULL;
count = 0;

}

isEmptyList

This operation returns true if the list is empty; otherwise, it returns false. The list is
empty if the pointer first is NULL.

template <class Type>
bool doublyLinkedList<Type>::isEmptyList() const
{

return (first == NULL);
}

Destroy the List
This operation deletes all of the nodes in the list, leaving the list in an empty state. We
traverse the list starting at the first node and then delete each node. Furthermore, count
is set to 0.

template <class Type>
void doublyLinkedList<Type>::destroy()
{

nodeType<Type> *temp; //pointer to delete the node

while (first != NULL)
{

temp = first;
first = first->next;
delete temp;

}

last = NULL;
count = 0;

}

1

7

Doubly Linked Lists | 1109

Initialize the List
This operation reinitializes the doubly linked list to an empty state. This task can be done
by using the operation destroy. The definition of the function initializeList is:

template <class Type>
void doublyLinkedList<Type>::initializeList()
{

destroy();
}

Length of the List
The length of a linked list (that is, how many nodes are in the list) is stored in the variable
count. Therefore, this function returns the value of this variable.

template <class Type>
int doublyLinkedList<Type>::length() const
{

return count;
}

Print the List
The function print outputs the info contained in each node. We traverse the list,
starting from the first node.

template <class Type>
void doublyLinkedList<Type>::print() const
{

nodeType<Type> *current; //pointer to traverse the list

current = first; //set current to point to the first node

while (current != NULL)
{

cout << current->info << " "; //output info
current = current->next;

}//end while
}//end print

Reverse Print the List
This function outputs the info contained in each node in reverse order. We traverse the
list in reverse order, starting from the last node. Its definition is:

template <class Type>
void doublyLinkedList<Type>::reversePrint() const
{

nodeType<Type> *current; //pointer to traverse
//the list

1110 | Chapter 17: Linked Lists

current = last; //set current to point to the
//last node

while (current != NULL)
{

cout << current->info << " ";
current = current->back;

}//end while
}//end reversePrint

Search the List
The function search returns true if searchItem is found in the list; otherwise, it
returns false. The search algorithm is exactly the same as the search algorithm for an
ordered linked list.

template <class Type>
bool doublyLinkedList<Type>::

search(const Type& searchItem) const
{

bool found = false;
nodeType<Type> *current; //pointer to traverse the list

current = first;

while (current != NULL && !found)
if (current->info >= searchItem)

found = true;
else

current = current->next;

if (found)
found = (current->info == searchItem); //test for

//equality

return found;
}//end search

First and Last Elements
The function front returns the first element of the list, and the function back returns
the last element of the list. If the list is empty, both functions terminate the program.
Their definitions are:

template <class Type>
Type doublyLinkedList<Type>::front() const
{

assert(first != NULL);

return first->info;
}

1

7

Doubly Linked Lists | 1111

template <class Type>
Type doublyLinkedList<Type>::back() const
{

assert(last != NULL);

return last->info;
}

INSERT A NODE

Because we are inserting an item in a doubly linked list, the insertion of a node in the list
requires the adjustment of two pointers in certain nodes. As before, we find the place
where the new item is supposed to be inserted, create the node, store the new item, and
adjust the link fields of the new node and other particular nodes in the list. There are four
cases:

Case 1: Insertion in an empty list

Case 2: Insertion at the beginning of a nonempty list

Case 3: Insertion at the end of a nonempty list

Case 4: Insertion somewhere in a nonempty list

Both Cases 1 and 2 require us to change the value of the pointer first. Cases 3 and
4 are similar. After inserting an item, count is incremented by 1. Next, we show
Case 4.

Consider the doubly linked list shown in Figure 17-40.

Suppose that 20 is to be inserted in the list. After inserting 20, the resulting list is as
shown in Figure 17-41.

first

last

count 4

8 15 24 40

FIGURE 17-40 Doubly linked list before inserting 20

1112 | Chapter 17: Linked Lists

1

7

From Figure 17-41, it follows that the next pointer of node 15, the back pointer of
node 24, and both the next and back pointers of node 20 need to be adjusted.

The definition of the function insert is:

template <class Type>
void doublyLinkedList<Type>::insert(const Type& insertItem)
{

nodeType<Type> *current; //pointer to traverse the list
nodeType<Type> *trailCurrent; //pointer just before current
nodeType<Type> *newNode; //pointer to create a node
bool found;

newNode = new nodeType<Type>; //create the node
newNode->info = insertItem; //store the new item in the node
newNode->next = NULL;
newNode->back = NULL;

if (first == NULL) //if the list is empty, newNode is
//the only node

{

first = newNode;
last = newNode;
count++;

}

else
{

found = false;
current = first;

while (current != NULL && !found) //search the list
if (current->info >= insertItem)

found = true;
else
{

trailCurrent = current;
current = current->next;

}

first

last

count 5

8 15

20

24 40

FIGURE 17-41 Doubly linked list after inserting 20

Doubly Linked Lists | 1113

if (current == first) //insert newNode before first
{

first->back = newNode;
newNode->next = first;
first = newNode;
count++;

}

else
{

//insert newNode between trailCurrent and current
if (current != NULL)
{

trailCurrent->next = newNode;
newNode->back = trailCurrent;
newNode->next = current;
current->back = newNode;

}

else
{

trailCurrent->next = newNode;
newNode->back = trailCurrent;
last = newNode;

}

count++;
}//end else

}//end else
}//end insert

DELETE A NODE

This operation deletes a given item (if found) from the doubly linked list. As before, we
first search the list to see whether the item to be deleted is in the list. The search
algorithm is the same as before. Similar to the insertNode operation, this operation
(if the item to be deleted is in the list) requires the adjustment of two pointers in certain
nodes. The delete operation has several cases:

Case 1: The list is empty.

Case 2: The item to be deleted is in the first node of the list, which would require us to
change the value of the pointer first.

Case 3: The item to be deleted is somewhere in the list.

Case 4: The item to be deleted is not in the list.

After deleting a node, count is decremented by 1. Let us demonstrate Case 3. Consider
the list shown in Figure 17-42.

1114 | Chapter 17: Linked Lists

Suppose that the item to be deleted is 17. First, we search the list with two pointers
and find the node with info 17 and then adjust the link field of the affected nodes (see
Figure 17-43).

Next, we delete the node pointed to by current (see Figure 17-44).

1

7

first

last

count 3

5 44 52

FIGURE 17-44 List after deleting the node with info 17

first

last

count 4

5 17 44 52

FIGURE 17-42 Doubly linked list before deleting 17

first

current

trailCurrent

last

count 4

5 17 44 52

FIGURE 17-43 List after adjusting the links of the nodes before and after the node with info 17

Doubly Linked Lists | 1115

The definition of the function deleteNode is:

template <class Type>
void doublyLinkedList<Type>::deleteNode(const Type& deleteItem)
{

nodeType<Type> *current; //pointer to traverse the list
nodeType<Type> *trailCurrent; //pointer just before current

bool found;

if (first == NULL)
cout << "Cannot delete from an empty list." << endl;

else if (first->info == deleteItem) //node to be deleted is
//the first node

{
current = first;
first = first->next;

if (first != NULL)
first->back = NULL;

else
last = NULL;

count--;

delete current;
}
else
{

found = false;
current = first;

while (current != NULL && !found) //search the list
if (current->info >= deleteItem)

found = true;
else

current = current->next;

if (current == NULL)
cout << "The item to be deleted is not in "

<< "the list." << endl;
else if (current->info == deleteItem) //check for

//equality
{

trailCurrent = current->back;
trailCurrent->next = current->next;

if (current->next != NULL)
current->next->back = trailCurrent;

if (current == last)
last = trailCurrent;

count--;
delete current;

}

1116 | Chapter 17: Linked Lists

1

7

else
cout << "The item to be deleted is not in list."

<< endl;
}//end else

}//end deleteNode

Circular Linked Lists
A linked list in which the last node points to the first node is called a circular linked list.
Figure 17-45 show various circular linked lists.

In a circular linked list with more than one node, as in Figure 17-45(c), it is convenient to
make the pointer first point to the last node of the list. Then, by using first, you can
access both the first and the last nodes of the list. For example, first points to the last
node, and first->link points to the first node.

As before, the usual operations on a circular list are:

1. Initialize the list (to an empty state).

2. Determine if the list is empty.

3. Destroy the list.

4. Print the list.

5. Find the length of the list.

6. Search the list for a given item.

7. Insert an item in the list.

8. Delete an item from the list.

9. Copy the list.

We leave it as an exercise for you to design a class to implement a sorted circular linked
list. (See Programming Exercise 13 at the end of this chapter.)

first
first

first

(a) Empty circular list (b) Circular linked list with one node

(c) Circular linked list with more than one node

FIGURE 17-45 Circular linked lists

Circular Linked Lists | 1117

PROGRAMMING EXAMPLE: DVD Store
For a family or an individual, a favorite place to go on weekends or holidays is to a
DVD store to rent movies. A new DVD store in your neighborhood is about to open.
However, it does not have a program to keep track of its DVDs and customers. The
store managers want someone to write a program for their system so that the DVD
store can function. The program should be able to perform the following operations:

1. Rent a DVD; that is, check out a DVD.

2. Return, or check in, a DVD.

3. Create a list of DVDs owned by the store.

4. Show the details of a particular DVD.

5. Print a list of all of the DVDs in the store.

6. Check whether a particular DVD is in the store.

7. Maintain a customer database.

8. Print a list of all of the DVDs rented by each customer.

Let us write a program for the DVD store. This example further illustrates the object-
oriented design methodology and, in particular, inheritance and overloading.

The programming requirement tells us that the DVD store has two major compo-
nents: DVDs and customers. We will describe these two components in detail. We
also need to maintain the following lists:

• A list of all of the DVDs in the store

• A list of all of the store’s customers

• Lists of the DVDs currently rented by the customers

We will develop the program in two parts. In Part 1, we design, implement, and test
the DVD component. In Part 2, we design and implement the customer component,
which is then added to the DVD component developed in Part 1. That is, after
completing Parts 1 and 2, we can perform all of the operations listed previously.

PART 1: DVD

COMPONENT

DVD Object This is the first stage, wherein we discuss the DVD component. The common things
associated with a DVD are:

• Name of the movie

• Names of the stars

• Name of the producer

• Name of the director

Watch

the Video

1118 | Chapter 17: Linked Lists

1

7

• Name of the production company

• Number of copies in the store

From this list, we see that some of the operations to be performed on a DVD object are:
1. Set the DVD information—that is, the title, stars, production com-

pany, and so on.

2. Show the details of a particular DVD.

3. Check the number of copies in the store.

4. Check out (that is, rent) the DVD. In other words, if the number of
copies is greater than zero, decrement the number of copies by one.

5. Check in (that is, return) the DVD. To check in a DVD, first we
must check whether the store owns such a DVD and, if it does,
increment the number of copies by one.

6. Check whether a particular DVD is available—that is, check whether
the number of copies currently in the store is greater than zero.

The deletion of a DVD from the DVD list requires that the list be searched for the
DVD to be deleted. Thus, we need to check the title of a DVD to find out which
DVD is to be deleted from the list. For simplicity, we assume that two DVDs are the
same if they have the same title.

The following class defines the DVD object as an ADT.

//**
// Author: D.S. Malik
//
// class dvdType
// This class specifies the members to implement a DVD.
//**

#include <iostream>
#include <string>

using namespace std;

class dvdType
{

friend ostream& operator<< (ostream&, const dvdType&);

public:
void setDVDInfo(string title, string star1,

string star2, string producer,
string director, string productionCo,
int setInStock);

//Function to set the details of a DVD.
//The member variables are set according to the
//parameters.

Programming Example: DVD Store | 1119

//Postcondition: dvdTitle = title; movieStar1 = star1;
// movieStar2 = star2; movieProducer = producer;
// movieDirector = director;
// movieProductionCo = productionCo;
// copiesInStock = setInStock;

int getNoOfCopiesInStock() const;
//Function to check the number of copies in stock.
//Postcondition: The value of copiesInStock is returned.

void checkOut();
//Function to rent a DVD.
//Postcondition: The number of copies in stock is
// decremented by one.

void checkIn();
//Function to check in a DVD.
//Postcondition: The number of copies in stock is
// incremented by one.

void printTitle() const;
//Function to print the title of a movie.

void printInfo() const;
//Function to print the details of a DVD.
//Postcondition: The title of the movie, stars,
// director, and so on are displayed
// on the screen.

bool checkTitle(string title);
//Function to check whether the title is the same as the
//title of the DVD.
//Postcondition: Returns the value true if the title
// is the same as the title of the DVD;
// false otherwise.

void updateInStock(int num);
//Function to increment the number of copies in stock by
//adding the value of the parameter num.
//Postcondition: copiesInStock = copiesInStock + num;

void setCopiesInStock(int num);
//Function to set the number of copies in stock.
//Postcondition: copiesInStock = num;

string getTitle() const;
//Function to return the title of the DVD.
//Postcondition: The title of the DVD is returned.

dvdType(string title = "", string star1 = "",
string star2 = "", string producer = "",

1120 | Chapter 17: Linked Lists

1

7

string director = "", string productionCo = "",
int setInStock = 0);

//constructor
//The member variables are set according to the
//incoming parameters. If no values are specified, the
//default values are assigned.
//Postcondition: dvdTitle = title; movieStar1 = star1;
// movieStar2 = star2;
// movieProducer = producer;
// movieDirector = director;
// movieProductionCo = productionCo;
// copiesInStock = setInStock;

//Overload the relational operators.
bool operator==(const dvdType&) const;
bool operator!=(const dvdType&) const;

private:
string dvdTitle; //variable to store the name

//of the movie
string movieStar1; //variable to store the name

//of the star
string movieStar2; //variable to store the name

//of the star
string movieProducer; //variable to store the name

//of the producer
string movieDirector; //variable to store the name

//of the director
string movieProductionCo; //variable to store the name

//of the production company
int copiesInStock; //variable to store the number of

//copies in stock
};

We leave the UML diagram of the class dvdType as an exercise for you.

For easy output, we will overload the output stream insertion operator, <<, for the
class dvdType.

Next, we will write the definitions of each function in the class dvdType. The
definitions of these functions, as given below, are quite straightforward and easy to
follow.

void dvdType::setDVDInfo(string title, string star1,
string star2, string producer,
string director,
string productionCo,
int setInStock)

{

dvdTitle = title;
movieStar1 = star1;

Programming Example: DVD Store | 1121

movieStar2 = star2;
movieProducer = producer;
movieDirector = director;
movieProductionCo = productionCo;
copiesInStock = setInStock;

}

void dvdType::checkOut()
{

if (getNoOfCopiesInStock() > 0)
copiesInStock--;

else
cout << "Currently out of stock" << endl;

}

void dvdType::checkIn()
{

copiesInStock++;
}

int dvdType::getNoOfCopiesInStock() const
{

return copiesInStock;
}

void dvdType::printTitle() const
{

cout << "DVD Title: " << dvdTitle << endl;
}

void dvdType::printInfo() const
{

cout << "DVD Title: " << dvdTitle << endl;
cout << "Stars: " << movieStar1 << " and "

<< movieStar2 << endl;
cout << "Producer: " << movieProducer << endl;
cout << "Director: " << movieDirector << endl;
cout << "Production Company: " << movieProductionCo

<< endl;
cout << "Copies in stock: " << copiesInStock

<< endl;
}

bool dvdType::checkTitle(string title)
{

return(dvdTitle == title);
}

void dvdType::updateInStock(int num)
{

copiesInStock += num;
}

1122 | Chapter 17: Linked Lists

1

7

void dvdType::setCopiesInStock(int num)
{

copiesInStock = num;
}

string dvdType::getTitle() const
{

return dvdTitle;
}

dvdType::dvdType(string title, string star1,
string star2, string producer,
string director,
string productionCo, int setInStock)

{

setDVDInfo(title, star1, star2, producer, director,
productionCo, setInStock);

}

bool dvdType::operator==(const dvdType& other) const
{

return (dvdTitle == other.dvdTitle);
}

bool dvdType::operator!=(const dvdType& other) const
{

return (dvdTitle != other.dvdTitle);
}

ostream& operator<< (ostream& osObject, const dvdType& dvd)
{

osObject << endl;
osObject << "DVD Title: " << dvd.dvdTitle << endl;
osObject << "Stars: " << dvd.movieStar1 << " and "

<< dvd.movieStar2 << endl;
osObject << "Producer: " << dvd.movieProducer << endl;
osObject << "Director: " << dvd.movieDirector << endl;
osObject << "Production Company: "

<< dvd.movieProductionCo << endl;
osObject << "Copies in stock: " << dvd.copiesInStock

<< endl;
osObject << "_____________________________________"

<< endl;

return osObject;
}

DVD List This program requires us to maintain a list of all of the DVDs in the store. We also
should be able to add a new DVD to our list. In general, we would not know how
many DVDs are in the store, and adding or deleting a DVD from the store would
change the number of DVDs in the store. Therefore, we will use a linked list to
create a list of DVDs (see Figure 17-46).

Programming Example: DVD Store | 1123

Earlier in this chapter, we defined the class unorderedLinkedList to
create a linked list of objects. We also defined the basic operations such as insertion
and deletion of a DVD in the list. However, some operations are very specific to
the DVD list, such as check out a DVD, check in a DVD, set the number of
copies of a DVD, and so on. These operations are not available in the class

unorderedLinkedList. We will, therefore, derive a class dvdListType from
the class unorderedLinkedList and add these operations.

The definition of the class dvdListType is:

//***
// Author: D.S. Malik
//
// class dvdListType
// This class specifies the members to implement a list of
// DVDs.
//**

#include <string>
#include "unorderedLinkedList.h"
#include "dvdType.h"

using namespace std;

class dvdListType:public unorderedLinkedList<dvdType>
{

public:
bool dvdSearch(string title) const;

//Function to search the list to see whether a
//particular title, specified by the parameter title,
//is in the store.
//Postcondition: Returns true if the title is found,
// and false otherwise.

bool isDVDAvailable(string title) const;
//Function to determine whether a copy of a particular
//DVD is in the store.
//Postcondition: Returns true if at least one copy of the
// DVD specified by title is in the store,
// and false otherwise.

DVD

infofirst

last

DVD

info
... DVD

info

FIGURE 17-46 dvdList

1124 | Chapter 17: Linked Lists

1

7

void dvdCheckOut(string title);
//Function to check out a DVD, that is, rent a DVD.
//Postcondition: copiesInStock is decremented by one.

void dvdCheckIn(string title);
//Function to check in a DVD returned by a customer.
//Postcondition: copiesInStock is incremented by one.

bool dvdCheckTitle(string title) const;
//Function to determine whether a particular DVD is in
//the store.
//Postcondition: Returns true if the DVD’s title is
// the same as title, and false otherwise.

void dvdUpdateInStock(string title, int num);
//Function to update the number of copies of a DVD
//by adding the value of the parameter num. The
//parameter title specifies the name of the DVD for
//which the number of copies is to be updated.
//Postcondition: copiesInStock = copiesInStock + num;

void dvdSetCopiesInStock(string title, int num);
//Function to reset the number of copies of a DVD.
//The parameter title specifies the name of the DVD
//for which the number of copies is to be reset, and the
//parameter num specifies the number of copies.
//Postcondition: copiesInStock = num;

void dvdPrintTitle() const;
//Function to print the titles of all the DVD in
//the store.

private:
void searchDVDList(string title, bool& found,

nodeType<dvdType>* ¤t) const;
//This function searches the DVD list for a
//particular DVD, specified by the parameter title.
//Postcondition: If the DVD is found, the parameter
// found is set to true, otherwise it is set
// to false. The parameter current points
// to the node containing the DVD.

};

Note that the class dvdListType is derived from the class

unorderedLinkedList via a public inheritance. Furthermore,
unorderedLinkedList is a class template, and we have passed the class

dvdType as a parameter to this class. That is, the class dvdListType is not a

Programming Example: DVD Store | 1125

template. Because we are now dealing with a very specific data type, the class

dvdListType is no longer required to be a template. Thus, the info type of
each node in the linked list is now dvdType. Through the member functions of
the class dvdType, certain members—such as dvdTitle and copiesInStock

of an object of type dvdType—can now be accessed.

The definitions of the functions to implement the operations of the class

dvdListType are given next.

The primary operations on the DVD list are to check in a DVD and to check out a
DVD. Both operations require the list to be searched and the location of the DVD
being checked in or checked out to be found in the DVD list. Other operations, such
as determining whether a particular DVD is in the store, updating the number of
copies of a DVD, and so on, also require the list to be searched. To simplify the
search process, we will write a function that searches the DVD list for a particular
DVD. If the DVD is found, it sets a parameter found to true and returns a pointer
to the DVD so that check-in, check-out, and other operations on the DVD object
can be performed. Note that the function searchDVDList is a private data
member of the class dvdListType because it is used only for internal manipula-
tion. First, we describe the search procedure.

Consider the node of the DVD list shown in Figure 17-47.

The component info is of type dvdType and contains the necessary information
about a DVD. In fact, the component info of the node has seven members:
dvdTitle, movieStar1, movieStar2, movieProducer, movieDirector,
movieProductionCo, and copiesInStock. (See the definition of the
class dvdType.) Therefore, the node of a DVD list has the form shown in
Figure 17-48.

DVD

info

FIGURE 17-47 Node of a DVD list

1126 | Chapter 17: Linked Lists

1

7

These member variables are all private and cannot be accessed directly. The
member functions of the class dvdType will help us in checking and/or setting the
value of a particular component.

Suppose a pointer—say, current—points to a node in the DVD list (see Figure 17-49).

dvdTitle

movieStar1

movieStar2current

movieProducer

movieDirector

movieProductionCo

copiesInStock

info link

FIGURE 17-49 Pointer current and DVD list node

dvdTitle

movieStar1

movieStar2

movieProducer

movieDirector

movieProductionCo

copiesInStock

info link

FIGURE 17-48 DVD list node showing components of info

Programming Example: DVD Store | 1127

Now:

current->info

refers to the info part of the node. Suppose that we want to know whether the title
of the DVD stored in this node is the same as the title specified by the variable
title. The expression:

current->info.checkTitle(title)

is true if the title of the DVD stored in this node is the same as the title specified by the
parameter title, and false otherwise. (Note that the member function checkTitle

is a value-returning function. See its declaration in the class dvdType.)

As another example, suppose that we want to set copiesInStock of this node to 10.
Because copiesInStock is a private member, it cannot be accessed directly.
Therefore, the statement:

current->info.copiesInStock = 10; //illegal

is incorrect and will generate a compile-time error. We have to use the member
function setCopiesInStock as follows:

current->info.setCopiesInStock(10);

Now that we know how to access a member variable of a DVD stored in a node, let
us describe the algorithm to search the DVD list.

while (not found)
if the title of the current DVD is the same as the desired

title, stop the search
else

check the next node

The following function definition performs the desired search.

void dvdListType::searchDVDList(string title, bool& found,
nodeType<dvdType>* ¤t) const

{

found = false; //set found to false

current = first; //set current to point to the first node
//in the list

while (current != NULL && !found) //search the list
if (current->info.checkTitle(title)) //the item is found

found = true;
else

current = current->link; //advance current to
//the next node

}//end searchDVDList

1128 | Chapter 17: Linked Lists

1

7

If the search is successful, the parameter found is set to true and the parameter
current points to the node containing the DVD info. If it is unsuccessful, found is
set to false and current will be NULL.

The definitions of the other functions of the class dvdListType follow:

bool dvdListType::isDVDAvailable(string title) const
{

bool found;
nodeType<dvdType> *location;

searchDVDList(title, found, location);

if (found)
found = (location->info.getNoOfCopiesInStock() > 0);

else
found = false;

return found;
}

void dvdListType::dvdCheckIn(string title)
{

bool found = false;
nodeType<dvdType> *location;

searchDVDList(title, found, location); //search the list

if (found)
location->info.checkIn();

else
cout << "The store does not carry " << title

<< endl;
}

void dvdListType::dvdCheckOut(string title)
{

bool found = false;
nodeType<dvdType> *location;

searchDVDList(title, found, location); //search the list

if (found)
location->info.checkOut();

else
cout << "The store does not carry " << title

<< endl;
}

Programming Example: DVD Store | 1129

bool dvdListType::dvdCheckTitle(string title) const
{

bool found = false;
nodeType<dvdType> *location;

searchDVDList(title, found, location); //search the list

return found;
}

void dvdListType::dvdUpdateInStock(string title, int num)
{

bool found = false;
nodeType<dvdType> *location;

searchDVDList(title, found, location); //search the list

if (found)
location->info.updateInStock(num);

else
cout << "The store does not carry " << title

<< endl;
}

void dvdListType::dvdSetCopiesInStock(string title, int num)
{

bool found = false;
nodeType<dvdType> *location;

searchDVDList(title, found, location);

if (found)
location->info.setCopiesInStock(num);

else
cout << "The store does not carry " << title

<< endl;
}

bool dvdListType::dvdSearch(string title) const
{

bool found = false;
nodeType<dvdType> *location;

searchDVDList(title, found, location);

return found;
}

1130 | Chapter 17: Linked Lists

1

7

void dvdListType::dvdPrintTitle() const
{

nodeType<dvdType>* current;

current = first;
while (current != NULL)
{

current->info.printTitle();
current = current->link;

}

}

PART 2: CUSTOMER

COMPONENT

Customer

Object

The customer object stores information about a customer, such as the first name, last
name, account number, and a list of DVDs rented by the customer.

Every customer is a person. We have already designed the class personType in
Example 10-10 (Chapter 10) and described the necessary operations on the name of a
person. Therefore, we can derive the class customerType from the class per-

sonType and add the additional members that we need. First, however, we must
redefine the class personType to take advantage of the new features of object-
oriented design that you have learned, such as operator overloading, and then derive
the class customerType.

Recall that the basic operations on an object of type personType are:

1. Print the name.

2. Set the name.

3. Show the first name.

4. Show the last name.

Similarly, the basic operations on an object of type customerType are:

1. Print the name, account number, and the list of rented DVDs.

2. Set the name and the account number.

3. Rent a DVD; that is, add the rented DVD to the list.

4. Return a DVD; that is, delete the rented DVD from the list.

5. Show the account number.

The details of implementing the customer component are left as an exercise for you.
(See Programming Exercise 14 at the end of this chapter.)

Main Program We will now write the main program to test the DVD object. We assume that the
necessary data for the DVDs are stored in a file. We will open the file and create the

Programming Example: DVD Store | 1131

list of DVDs owned by the DVD store. The data in the input file is in the following
form:

DVD title (that is, the name of the movie)
movie star1
movie star2
movie producer
movie director
movie production co.
number of copies
.
.
.

We will write a function, createDVDList, to read the data from the input file and
create the list of DVDs. We will also write a function, displayMenu, to show the
different choices—such as check in a movie or check out a movie—that the user can
make. The algorithm of the function main is:

1. Open the input file.
If the input file does not exist, exit the program.

2. Create the list of DVDs (createDVDList).

3. Show the menu (displayMenu).

4. While not done
Perform various operations.

Opening the input file is straightforward. Let us describe Steps 2 and 3, which
are accomplished by writing two separate functions: createDVDList and
displayMenu.

createDVDList This function reads the data from the input file and creates a linked list of DVDs.
Because the data will be read from a file and the input file was opened in the function
main, we pass the input file pointer to this function.We also pass the DVD list pointer,
declared in the function main, to this function. Both parameters are reference
parameters. Next, we read the data for each DVD and then insert the DVD in the
list. The general algorithm is:

a. Read the data and store it in a DVD object.

b. Insert the DVD in the list.

c. Repeat steps a and b for each DVD’s data in the file.

displayMenu This function informs the user what to do. It contains the following output statements:

Select one of the following:

1. To check whether the store carries a particular DVD

2. To check out a DVD

1132 | Chapter 17: Linked Lists

1

7

3. To check in a DVD

4. To check whether a particular DVD is in stock

5. To print only the titles of all the DVDs

6. To print a list of all the DVDs

9. To exit

In pseudocode, Step 4 (of the main program) is:

a. get choice
b.

while (choice != 9)
{

switch (choice)
{

case 1:
a. get the movie name
b. search the DVD list
c. if found, report success

else report "failure"
break;

case 2:
a. get the movie name
b. search the DVD list
c. if found, check out the DVD

else report "failure"
break;

case 3:
a. get the movie name
b. search the DVD list
c. if found, check in DVD

else report "failure"
break;

case 4:
a. get the movie name
b. search the DVD list
c. if found

if number of copies > 0
report "success"

else
report "currently out of stock"

else report "failure"
break;

case 5:
print the titles of the DVDs
break;

case 6:
print all the DVDs in the store
break;

default: invalid selection
} //end switch

Programming Example: DVD Store | 1133

displayMenu();
get choice;

}//end while

PROGRAM

LISTING

/***
// Author: D.S. Malik
//
// This program uses the classes dvdType and dvdListType to
// create a list of DVDs for a DVD store. It also performs
// basic operations such as check in and check out DVDs.
//***

#include <iostream>
#include <fstream>
#include <string>
#include "dvdType.h"
#include "dvdListType.h"

using namespace std;

void createDVDList(ifstream& infile,
dvdListType& dvdList);

void displayMenu();

int main()
{

dvdListType dvdList;
int choice;
char ch;
string title;

ifstream infile;

//open the input file
infile.open("dvdDat.txt");
if (!infile)
{

cout << "The input file does not exist. "
<< "The program terminates!!!" << endl;

return 1;
}

//create the DVD list
createDVDList(infile, dvdList);
infile.close();

//show the menu
displayMenu();
cout << "Enter your choice: ";
cin >> choice; //get the request
cin.get(ch);
cout << endl;

1134 | Chapter 17: Linked Lists

1

7

//process the requests
while (choice != 9)
{

switch (choice)
{

case 1:
cout << "Enter the title: ";
getline(cin, title);
cout << endl;

if (dvdList.dvdSearch(title))
cout << "The store carries " << title

<< endl;
else

cout << "The store does not carry "
<< title << endl;

break;

case 2:
cout << "Enter the title: ";
getline(cin, title);
cout << endl;

if (dvdList.dvdSearch(title))
{

if (dvdList.isDVDAvailable(title))
{

dvdList.dvdCheckOut(title);
cout << "Enjoy your movie: "

<< title << endl;
}

else
cout << "Currently " << title

<< " is out of stock." << endl;
}

else
cout << "The store does not carry "

<< title << endl;
break;

case 3:
cout << "Enter the title: ";
getline(cin, title);
cout << endl;

if (dvdList.dvdSearch(title))
{

dvdList.dvdCheckIn(title);
cout << "Thanks for returning "

<< title << endl;
}

Programming Example: DVD Store | 1135

else
cout << "The store does not carry "

<< title << endl;
break;

case 4:
cout << "Enter the title: ";
getline(cin, title);
cout << endl;

if (dvdList.dvdSearch(title))
{

if (dvdList.isDVDAvailable(title))
cout << title << " is currently in "

<< "stock." << endl;
else

cout << title << " is currently out "
<< "of stock." << endl;

}

else
cout << "The store does not carry "

<< title << endl;
break;

case 5:
dvdList.dvdPrintTitle();
break;

case 6:
dvdList.print();
break;

default:
cout << "Invalid selection." << endl;

}//end switch

displayMenu(); //display menu

cout << "Enter your choice: ";
cin >> choice; //get the next request
cin.get(ch);
cout << endl;

}//end while

return 0;
}

1136 | Chapter 17: Linked Lists

1

7

void createDVDList(ifstream& infile,
dvdListType& dvdList)

{

string title;
string star1;
string star2;
string producer;
string director;
string productionCo;

char ch;
int inStock;

dvdType newDVD;

getline(infile, title);

while (infile)
{

getline(infile, star1);
getline(infile, star2);
getline(infile, producer);
getline(infile, director);
getline(infile, productionCo);
infile >> inStock;
infile.get(ch);
newDVD.setDVDInfo(title, star1, star2, producer,

director, productionCo, inStock);
dvdList.insertFirst(newDVD);

getline(infile, title);
}//end while

}//end createDVDList

void displayMenu()
{

cout << "Select one of the following:" << endl;
cout << "1: To check whether the store carries a "

<< "particular DVD." << endl;
cout << "2: To check out a DVD." << endl;
cout << "3: To check in a DVD." << endl;
cout << "4: To check whether a particular DVD is "

<< "in stock." << endl;
cout << "5: To print only the titles of all the DVDs."

<< endl;
cout << "6: To print a list of all the DVDs." << endl;
cout << "9: To exit" << endl;

}//end displayMenu

Programming Example: DVD Store | 1137

QUICK REVIEW

1. A linked list is a list of items, called nodes, in which the order of the nodes
is determined by the address, called a link, stored in each node.

2. The pointer to a linked list—that is, the pointer to the first node in the
list—is stored in a separate location called the head or first.

3. A linked list is a dynamic data structure.

4. The length of a linked list is the number of nodes in the list.

5. Item insertion and deletion from a linked list do not require data
movement; only the pointers are adjusted.

6. A (single) linked list is traversed in only one direction.

7. The search on a linked list is sequential.

8. The first (or head) pointer of a linked list is always fixed, pointing to the
first node in the list.

9. To traverse a linked list, the program must use a pointer different than the
head pointer of the list, initialized to the first node in the list.

10. In a doubly linked list, every node has two links: one points to the next
node and one points to the previous node.

11. A doubly linked list can be traversed in either direction.

12. In a doubly linked list, item insertion and deletion require the adjustment of
two pointers in a node.

13. A linked list in which the last node points to the first node is called a
circular linked list.

EXERCISES

1. Mark the following statements as true or false.

a. In a linked list, the order of the elements is determined by the order in
which the nodes were created to store the elements.

b. In a linked list, memory allocated for the nodes is sequential.

c. A single linked list can be traversed in either direction.

d. In a linked list, nodes are always inserted either at the beginning or the
end because a linked link is not a random-access data structure.

2. Describe the two typical components of a single linked list node.

3. What is stored in the link field of the last node of a nonempty single linked list?

4. Suppose that first is a pointer to a linked list. What is stored in first?

5. Suppose that the fourth node of a linked list is to be deleted, and p points to the fourth
node? Why do you need a pointer to the third node of the linked list?

1138 | Chapter 17: Linked Lists

Consider the linked list shown in Figure 17-50. Assume that the nodes are in the usual
info-link form. Use this list to answer Exercises 6 through 14. If necessary, declare
additional variables. (Assume that list, current, temp, trail, and last

are pointers of type nodeType.)

6. What is the output, if any, of each of the following C++ statements?

a. cout << current->info;

b. current ¼ current->link;

cout << current->info;

c. cout << temp->link->link->info;

d. trail->link ¼ NULL;

cout << trail->info;

e. cout << last->link->info;

7. What is the value of each of the following relational expressions?

a. current->link ¼¼ temp

b. temp->link->link->info ¼¼ 50

c. trail->link->link ¼¼ 0

d. last->link ¼¼ NULL

e. list ¼¼ current

8. What are the effects, if any, of each of the following C++ statements?

a. trail->link ¼ NULL;

delete last;

b. temp->link ¼ trail;

c. list->info ¼ 19;

d. current ¼ current->link;

current->link ¼ temp->link;

9. Write C++ statements to do the following:

a. Set the info of the second node to 52.

b. Make current point to the node with info 10.

c. Make trail point to the node before temp.

1

7
75 35 86 10 50 28 65 39

current

list

lasttrailtemp

FIGURE 17-50 Linked list for exercises 6 through 14

Exercises | 1139

d. Make temp point to an empty list.

e. Set the value of the node before trail to 36.

f. Write a while loop to make current point to the node with info 10.

10. Mark each of the following statements as valid or invalid. If a statement is
invalid, explain why.

a. current ¼ list;

b. temp->link->link ¼ NULL;

c. trail->link ¼ 0;

d. *temp ¼ last;

e. list ¼ 75;

f. temp->link->info ¼ 75;

g. current->info ¼ trail->link;

h. *list ¼ *last;

i. current ¼ last;

j. cout << trail->link->link->info;

11. Write C++ statements to do the following:

a. Write a C++ code so that current traverses the entire list.

b. Create the node with info 68 and insert between trail and last.

c. Delete the last node of the list and also deallocate the memory occupied
by this node. After deleting the node, make last point to the last node
of the list and the link of the last node must be NULL.

d. Delete the node with info 10. Also, deallocate the memory occupied
by this node.

12. What is the output of the following C++ code?

a. while (current != NULL)
cout << current->info << " ";
current = current->link;
cout << endl;

b. while (current != last)
current = current->link;
cout << current->info << " ";
cout << endl;

13. If the following C++ code is valid, show the output. If it is invalid, explain why.

temp = current; //Line 1
current = current->link; //Line 2
current->link = last; //Line 3
trail = current->link; //Line 4
trail = trail->link; //Line 5
cout << current->info << " "

<< trail->info << endl; //Line 6

1140 | Chapter 17: Linked Lists

14. If the following C++ code is valid, show the output. If it is invalid, explain
why.

current = temp->link;
trail = list;
temp = list->link;
trail = temp;
temp->link = current->link;
current = trail->link;
cout << trail->info << " " << current->info << endl;

15. Show what is produced by the following C++ code. Assume the node is in
the usual info-link form with the info of the type int. (list, trail,
and current are pointers of type nodeType.)

list = new nodeType;
list->info = 28;
trail = new nodeType;
trail->info = 33;
trail->link = list;
list->link = NULL;
current = new nodeType;
current->info = 62;
trail->link = current;
current->link = list;
list = trail;
current = list->link;
trail = current->link;
cout << list->info << " " << current->info << " "

<< trail->info << endl;

16. Show what is produced by the following C++ code. Assume the node is in
the usual info-link form with the info of the type int. (list, trail,
and current are pointers of type nodeType.)

current = new nodeType;
current->info = 72;
current->link = NULL;
trail = current;
current = new nodeType;
current->info = 46;
current->link = trail;
list = current;
current = new nodeType;
current->info = 52;
list->link = current;
current->link = trail;
trail = current;
current = new nodeType;
current->info = 91;
current->link = trail->link;
trail->link = current;
current = list;
while (current!= NULL)

1

7

Exercises | 1141

{
cout << current->info << " ";
current = current->link;

}
cout << endl;

17. Assume that the node of a linked list is in the usual info-link form with
the info of type int. The following data, as described in parts (a) to (d), is
to be inserted into an initially linked list: 72, 43, 8, 12. Suppose that head is
a pointer of type nodeType. After the linked list is created, head should
point to the first node of the list. Declare additional variables as you need
them. Write the C++ code to create the linked list. After the linked list is
created, write a code to print the list. What is the output of your code?

a. Insert 72 into an empty linked list.

b. Insert 43 before 72.

c. Insert 8 at the end of the list.

d. Insert 12 after 43.

18. Assume that the node of a linked list is in the usual info-link form with
the info of type int. (list and ptr are pointers of type nodeType.) The
following code creates a linked list:

ptr = new nodeType;
ptr->info = 16;
list = new nodeType;
list->info = 25;
list->link = ptr;
ptr = new nodeType;
ptr->info = 12;
ptr->link = NULL;
list->link->link = ptr;

Use the linked list created by this code to answer the following questions.
(These questions are independent of each other.) Declare additional poin-
ters if you need them.

a. Which pointer points to the first node of the linked list?

b. Determine the order of the nodes of the linked list.

c. Write a C++ code that creates and inserts a node with info 45 after
the node with info 16.

d. Write a C++ code that creates and inserts a node with info 58 before
the node with info 25. Does this require you to the change the value
of the pointer that was pointing to the first node of the linked list?

e. Write a C++ code that deletes the node with info 25. Does this
require you to the change the value of the pointer that was pointing to
the first node of the linked list?

1142 | Chapter 17: Linked Lists

19. Consider the following C++ statements. (The class unorderedLinkedList

is as defined in this chapter.)

unorderedLinkedList<int> list;

list.insertFirst(38);
list.insertFirst(42);
list.insertLast(55);
list.insertFirst(60);
list.insertLast(18);
list.insertLast(35);
list.insertFirst(66);
list.deleteNode(60);
list.insertFirst(93);
list.deleteNode(42);
list.deleteNode(12);
list.print();
cout << endl;

What is the output of this program segment?

20. Suppose the input is:

45 35 12 83 40 23 11 98 64 120 16 -999

What is the output of the following C++ code? (The class unorderedLinkedList

is as defined in this chapter.)

unorderedLinkedList<int> list;
unorderedLinkedList<int> copyList;
int num;

cin >> num;
while (num != -999)
{

if (num % 4 == 0 || num % 3 == 0)
list.insertFirst(num);

else
list.insertLast(num);

cin >> num;
}

cout << "list = ";
list.print();
cout << endl;

copyList = list;

copyList.deleteNode(33);
copyList.deleteNode(58);

cout << "copyList = ";
copyList.print();
cout << endl;

1

7

Exercises | 1143

21. Draw the UML diagram of the class doublyLinkedList as discussed in
this chapter.

22. Draw the UML diagram of the class dvdType of the DVD Store
programming example.

23. Draw the UML diagram of the class dvdListType of the DVD Store
programming example.

PROGRAMMING EXERCISES

1. (Online Address Book revisited) Programming Exercise 5 in Chapter 11
could handle a maximum of only 500 entries. Using linked lists, redo the
program to handle as many entries as required. Add the following operations
to your program:

a. Add or delete a new entry to the address book.

b. Allow the user to save the data in the address book.

2. Extend the class linkedListType by adding the following operations:

a. Find and delete the node with the smallest info in the list. (Delete only
the first occurrence and traverse the list only once.)

b. Find and delete all occurrences of a given info from the list. (Traverse
the list only once.)

Add these as abstract functions in the class linkedListType and provide
the definitions of these functions in the class unorderedLinkedList.
Also, write a program to test these functions.

3. Extend the class linkedListType by adding the following operations:

a. Write a function that returns the info of the kth element of the linked
list. If no such element exists, terminate the program.

b. Write a function that deletes the kth element of the linked list. If no such
element exists, terminate the program.

Provide the definitions of these functions in the class linkedListType.
Also, write a program to test these functions. (Use either the class

unorderedLinkedList or the class orderedLinkedList to test your
function.)

4. (Printing a single linked list backward) Include the functions
reversePrint and recursiveReversePrint, as discussed in this chapter,
in the class linkedListType. Also, write a program function to print a
(single) linked list backward. (Use either the class unorderedLinkedList or
the class orderedLinkedList to test your function.)

5. (Dividing a linked list into two sublists of almost equal sizes)

1144 | Chapter 17: Linked Lists

a. Add the operation divideMid to the class linkedListType as
follows:

void divideMid(linkedListType<Type> &sublist);
//This operation divides the given list into two sublists
//of (almost) equal sizes.
//Postcondition: first points to the first node and last
// points to the last node of the first
// sublist.
// sublist.first points to the first node
// and sublist.last points to the last node
// of the second sublist.

Consider the following statements:

unorderedLinkedList<int> myList;
unorderedLinkedList<int> subList;

Suppose myList points to the list with elements 34 65 27 89 12 (in this
order). The statement:

myList.divideMid(subList);

divides myList into two sublists: myList points to the list with the
elements 34 65 27, and subList points to the sublist with the elements
89 12.

b. Write the definition of the function template to implement the operation
divideMid. Also, write a program to test your function.

6. (Splitting a linked list, at a given node, into two sublists)

a. Add the following operation to the class linkedListType:

void divideAt(linkedListType<Type> &secondList,
const Type& item);

//Divide the list at the node with the info item into two
//sublists.
//Postcondition: first and last point to the first and

// last nodes of the first sublist.
// secondList.first and secondList.last
// point to the first and last nodes of the
// second sublist.

Consider the following statements:

unorderedLinkedList<int> myList;
unorderedLinkedList<int> otherList;

1

7

Programming Exercises | 1145

Suppose myList points to the list with the elements 34 65 18 39 27 89 12

(in this order). The statement:

myList.divideAt(otherList, 18);

divides myList into two sublists: myList points to the list with the
elements 34 65, and otherList points to the sublist with the elements
18 39 27 89 12.

b. Write the definition of the function template to implement the opera-
tion divideAt. Also, write a program to test your function.

7. a. Add the following operation to the class orderedLinkedList:

void mergeLists(orderedLinkedList<Type> &list1,
orderedLinkedList<Type> &list2);

//This function creates a new list by merging the
//elements of list1 and list2.
//Postcondition: first points to the merged list
// list1 and list2 are empty

Consider the following statements:

orderedLinkedList<int> newList;
orderedLinkedList<int> list1;
orderedLinkedList<int> list2;

Suppose list1 points to the list with the elements 2 6 7, and list2

points to the list with the elements 3 5 8. The statement:

newList.mergeLists(list1, list2);

creates a new linked list with the elements in the order 2 3 5 6 7 8, and
the object newList points to this list. Also, after the preceding statement
executes, list1 and list2 are empty.

b. Write the definition of the function template mergeLists to imple-
ment the operation mergeLists.

8. The function insert of the class orderedLinkedList does not check if
the item to be inserted is already in the list; that is, it does not check for
duplicates. Rewrite the definition of the function insert so that before
inserting the item, it checks whether the item to be inserted is already in the
list. If the item to be inserted is already in the list, the function outputs an
appropriate error message. Also, write a program to test your function.

9. In this chapter, the class to implement the nodes of a linked list is defined as a
struct. The following rewrites the definition of the struct nodeType so
that it is declared as a class and the member variables are private.

template <class Type>
class nodeType
{

1146 | Chapter 17: Linked Lists

public:
const nodeType<Type>& operator=(const nodeType<Type>&);

//Overload the assignment operator.

void setInfo(const Type& elem);
//Function to set the info of the node.
//Postcondition: info = elem;

Type getInfo() const;
//Function to return the info of the node.
//Postcondition: The value of info is returned.

void setLink(nodeType<Type> *ptr);
//Function to set the link of the node.
//Postcondition: link = ptr;

nodeType<Type>* getLink() const;
//Function to return the link of the node.
//Postcondition: The value of link is returned.

nodeType();
//Default constructor
//Postcondition: link = NULL;

nodeType(const Type& elem, nodeType<Type> *ptr);
//Constructor with parameters
//Sets info to point to the object elem points to, and
//link is set to point to the object ptr points to.
//Postcondition: info = elem; link = ptr

nodeType(const nodeType<Type> &otherNode);
//Copy constructor

�nodeType();
//Destructor

private:
Type info;
nodeType<Type> *link;

};

Write the definitions of the member functions of the class nodeType.
Also, write a program to test your class.

10. Programming Exercise 9 asks you to redefine the class to implement the nodes
of a linked list so that the instance variables are private. Therefore, the class

linkedListType and its derived classes unorderedLinkedList and
orderedLinkedList can no longer directly access the instance variables of
the class nodeType. Rewrite the definitions of these classes so that they use

1

7

Programming Exercises | 1147

the member functions of the class nodeType to access the info and link
fields of a node. Also, write programs to test various operations of the classes
unorderedLinkedList and orderedLinkedList.

11. Write the definitions of the function copyList, the copy constructor,
and the function to overload the assignment operator for the class

doublyLinkedList.

12. Write a program to test various operations of the class doublyLinkedList.

13. (Circular linked lists) This chapter defined and identified various
operations on a circular linked list.

a. Write the definitions of the class circularLinkedList and its
member functions. (You may assume that the elements of the circular
linked list are in ascending order.)

b. Write a program to test various operations of the class defined in (a).

14. (DVD Store programming example)

a. Complete the design and implementation of the class customerType

defined in the DVD Store programming example.

b. Design and implement the class customerListType to create and
maintain a list of customers for the DVD store.

15. (DVD Store programming example) Complete the design and imple-
mentation of the DVD store program. In other words, write a program that
uses the classes designed in the DVD Store programming example and in
Programming Exercise 14 to make a DVD store operational.

16. Extend the class linkedListType by adding the following function:
void rotate();

//Function to remove the first node of a linked list and put it

//at the end of the linked list.

Also write a program to test your function. Use the class

unorderedLinkedList to create a linked list.

17. Write a program that prompts the user to input a string and then outputs
the string in the pig Latin form. The rules for converting a string into pig
Latin form are described in Programming Example: Pig Latin Strings of
Chapter 7. Your program must store the characters of a string into a linked
list and use the function rotate, as described in Programming Exercise 16,
to rotate the string.

1148 | Chapter 17: Linked Lists

STACKS AND QUEUES
IN THIS CHAPTER , YOU WILL :

. Learn about stacks

. Examine various stack operations

. Learn how to implement a stack as an array

. Learn how to implement a stack as a linked list

. Discover stack applications

. Learn how to use a stack to remove recursion

. Learn about queues

. Examine various queue operations

. Learn how to implement a queue as an array

. Learn how to implement a queue as a linked list

. Discover queue applications

18C H A P T E R

This chapter discusses two very useful data structures: stacks and queues. Both stacks and
queues have numerous applications in computer science.

Stacks
Suppose that you have a program with several functions. To be specific, suppose that you
have functions A, B, C, and D in your program. Now suppose that function A calls
function B, function B calls function C, and function C calls function D. When function
D terminates, control goes back to function C; when function C terminates, control goes
back to function B; and when function B terminates, control goes back to function A.
During program execution, how do you think the computer keeps track of the function
calls? What about recursive functions? How does the computer keep track of the
recursive calls? In Chapter 17, we designed a recursive function to print a linked list
backward. What if you want to write a nonrecursive algorithm to print a linked list
backward?

This section discusses the data structure called the stack, which the computer uses to
implement function calls. You can also use stacks to convert recursive algorithms into
nonrecursive algorithms, especially recursive algorithms that are not tail recursive. Stacks
have numerous applications in computer science. After developing the tools necessary to
implement a stack, we will examine some applications of stacks.

A stack is a list of homogeneous elements in which the addition and deletion of elements
occur only at one end, called the top of the stack. For example, in a cafeteria, the second
tray in a stack of trays can be removed only if the first tray has been removed. For another
example, to get to your favorite computer science book, which is underneath your math
and history books, you must first remove the math and history books. After removing
these books, the computer science book becomes the top book—that is, the top element
of the stack. Figure 18-1 shows some examples of stacks.

Stack of

coins

Stack of

trays

Stack of

boxes

Stack of

books

5

Chemistry

English

C++ Programming

World History

Applied Math

FIGURE 18-1 Various types of stacks

1150 | Chapter 18: Stacks and Queues

The elements at the bottom of the stack have been in the stack the longest. The top element
of the stack is the last element added to the stack. Because the elements are added and
removed from one end (that is, the top), it follows that the item that is added last will be
removed first. For this reason, a stack is also called a Last In First Out (LIFO) data structure.

Stack: A data structure in which the elements are added and removed from one end
only; a Last In First Out (LIFO) data structure.

Now that you know what a stack is, let us see what kinds of operations can be performed on
a stack. Because new items can be added to the stack, we can perform the add operation,
called push, to add an element onto the stack. Similarly, because the top item can be
retrieved and/or removed from the stack, we can perform the operation top to retrieve the
top element of the stack and the operation pop to remove the top element from the stack.

The push, top, and pop operations work as follows: Suppose there are boxes lying on
the floor that need to be stacked on a table. Initially, all of the boxes are on the floor, and
the stack is empty (see Figure 18-2).

First, we push box A onto the stack. After the push operation, the stack is as shown in
Figure 18-3(a).

1

8

Empty stack

A

B

D

C

E

FIGURE 18-2 Empty stack

Push Box A

A

Push Box CPush Box B

B
C

Peek at the

top element

Push Box D Pop stack

(a) (b) (c)

(d) (e) (f)

C C
D

FIGURE 18-3 Stack operations

Stacks | 1151

We then push box B onto the stack. After this push operation, the stack is as shown in
Figure 18-3(b). Next, we push box C onto the stack. After this push operation, the stack is
as shown in Figure 18-3(c). Next, we look, that is, peek, at the top element of the stack.
After this operation, the stack is unchanged and shown in Figure 18-3(d). We then push
box D onto the stack. After this push operation, the stack is as shown in Figure 18-3(e).
Next, we pop the stack. After the pop operation, the stack is as shown in Figure 18-3(f).

An element can be removed from the stack only if there is something in the stack, and an
element can be added to the stack only if there is room. The two operations that
immediately follow from push, top, and pop are isFullStack (checks whether the
stack is full) and isEmptyStack (checks whether the stack is empty). Because a stack
keeps changing as we add and remove elements, the stack must be empty before we first
start using it. Thus, we need another operation, called initializeStack, which
initializes the stack to an empty state. Therefore, to successfully implement a stack, we
need at least these six operations, which are described in the next section. We might also
need other operations on a stack, depending on the specific implementation.

Stack Operations

• initializeStack: Initializes the stack to an empty state.

• isEmptyStack: Determines whether the stack is empty. If the stack is
empty, it returns the value true; otherwise, it returns the value false.

• isFullStack: Determines whether the stack is full. If the stack is full, it
returns the value true; otherwise, it returns the value false.

• push: Adds a new element to the top of the stack. The input to this
operation consists of the stack and the new element. Prior to this opera-
tion, the stack must exist and must not be full.

• top: Returns the top element of the stack. Prior to this operation, the
stack must exist and must not be full.

• pop: Removes the top element of the stack. Prior to this operation, the
stack must exist and must not be empty.

The following abstract class stackADT defines these operations as an ADT:

template <class Type>
class stackADT
{

public:
virtual void initializeStack() = 0;

//Method to initialize the stack to an empty state.
//Postcondition: Stack is empty.

virtual bool isEmptyStack() const = 0;
//Function to determine whether the stack is empty.
//Postcondition: Returns true if the stack is empty,
// otherwise returns false.

1152 | Chapter 18: Stacks and Queues

virtual bool isFullStack() const = 0;
//Function to determine whether the stack is full.
//Postcondition: Returns true if the stack is full,
// otherwise returns false.

virtual void push(const Type& newItem) = 0;
//Function to add newItem to the stack.
//Precondition: The stack exists and is not full.
//Postcondition: The stack is changed and newItem
// is added to the top of the stack.

virtual Type top() const = 0;
//Function to return the top element of the stack.
//Precondition: The stack exists and is not empty.
//Postcondition: If the stack is empty, the program
// terminates; otherwise, the top element
// of the stack is returned.

virtual void pop() = 0;
//Function to remove the top element of the stack.
//Precondition: The stack exists and is not empty.
//Postcondition: The stack is changed and the top
// element is removed from the stack.

};

Figure 18-4 shows the UML class diagram of the class stackADT.

We now consider the implementation of our abstract stack data structure. Because all
of the elements of a stack are of the same type, a stack can be implemented as either an
array or a linked structure. Both implementations are useful and are discussed in this
chapter.

1

8

stackADT<Type>

+initializeStack(): void

+isEmptyStack(): boolean

+isFullStack(): boolean

+push(Type): void

+top(): Type

+pop(): void

FIGURE 18-4 UML class diagram of the class stackADT

Stacks | 1153

Implementation of Stacks as Arrays
Because all of the elements of a stack are of the same type, you can use an array to
implement a stack. The first element of the stack can be put in the first array slot, the
second element of the stack in the second array slot, and so on. The top of the stack is the
index of the last element added to the stack.

In this implementation of a stack, stack elements are stored in an array, and an array is a
random access data structure; that is, you can directly access any element of the array.
However, by definition, a stack is a data structure in which the elements are accessed
(popped or pushed) at only one end—that is, a Last In First Out data structure. Thus, a
stack element is accessed only through the top, not through the bottom or middle. This
feature of a stack is extremely important and must be recognized in the beginning.

To keep track of the top position of the array, we can simply declare another variable
called stackTop.

The following class, stackType, implements the functions of the abstract class

stackADT. By using a pointer, we can dynamically allocate arrays, so we will leave it
for the user to specify the size of the array (that is, the stack size). We assume that the
default stack size is 100. Because the class stackType has a pointer member variable
(the pointer to the array to store the stack elements), we must overload the assignment
operator and include the copy constructor and destructor. Moreover, we give a generic
definition of the stack. Depending on the specific application, we can pass the stack
element type when we declare a stack object.

template <class Type>
class stackType: public stackADT<Type>
{
public:

const stackType<Type>& operator=(const stackType<Type>&);
//Overload the assignment operator.

void initializeStack();
//Function to initialize the stack to an empty state.
//Postcondition: stackTop = 0;

bool isEmptyStack() const;
//Function to determine whether the stack is empty.
//Postcondition: Returns true if the stack is empty,
// otherwise returns false.

bool isFullStack() const;
//Function to determine whether the stack is full.
//Postcondition: Returns true if the stack is full,
// otherwise returns false.

void push(const Type& newItem);
//Function to add newItem to the stack.
//Precondition: The stack exists and is not full.
//Postcondition: The stack is changed and newItem
// is added to the top of the stack.

1154 | Chapter 18: Stacks and Queues

Type top() const;
//Function to return the top element of the stack.
//Precondition: The stack exists and is not empty.
//Postcondition: If the stack is empty, the program
// terminates; otherwise, the top element
// of the stack is returned.

void pop();
//Function to remove the top element of the stack.
//Precondition: The stack exists and is not empty.
//Postcondition: The stack is changed and the top
// element is removed from the stack.

stackType(int stackSize = 100);
//Constructor
//Create an array of the size stackSize to hold
//the stack elements. The default stack size is 100.
//Postcondition: The variable list contains the base
// address of the array, stackTop = 0, and
// maxStackSize = stackSize.

stackType(const stackType<Type>& otherStack);
//Copy constructor

~stackType();
//Destructor
//Remove all the elements from the stack.
//Postcondition: The array (list) holding the stack
// elements is deleted.

private:
int maxStackSize; //variable to store the maximum stack size
int stackTop; //variable to point to the top of the stack
Type *list; //pointer to the array that holds the

//stack elements

void copyStack(const stackType<Type>& otherStack);
//Function to make a copy of otherStack.
//Postcondition: A copy of otherStack is created and
// assigned to this stack.

};

Figure 18-5 shows the UML class diagram of the class stackType.

1

8

Implementation of Stacks as Arrays | 1155

Because C++ arrays begin with the index 0, we need to distinguish between the value of

stackTop and the array position indicated by stackTop. If stackTop is 0, the stack

is empty; if stackTop is nonzero, then the stack is nonempty and the top element of the

stack is given by stackTop - 1.

Notice that the function copyStack is included as a private member. This is

because we want to use this function only to implement the copy constructor and overload

the assignment operator. To copy a stack into another stack, the program can use the

assignment operator.

Figure 18-6 shows this data structure, wherein stack is an object of type stackType.
Note that stackTop can range from 0 to maxStackSize. If stackTop is nonzero, then
stackTop - 1 is the index of the stackTop element of the stack. Suppose that max-

StackSize = 100.

stackType<Type>

-maxStackSize: int

-stackTop: int

-*list: Type

+operator=(const stackType<Type>&):

const stackType<Type>&

+initializeStack(): void

+isEmptyStack() const: bool

+isFullStack() const: bool

+push(const Type&): void

+top() const: Type

+pop(): void

-copyStack(const stackType<Type>&): void

+stackType(int = 100)

+stackType(const stackType<Type>&)

+~stackType()

FIGURE 18-5 UML class diagram of the class stackType

1156 | Chapter 18: Stacks and Queues

Note that the pointer list contains the base address of the array (holding the stack
elements)—that is, the address of the first array component. Next, we discuss how to
implement the member functions of the class stackType.

Initialize Stack
Let us consider the initializeStack operation. Because the value of stackTop

indicates whether the stack is empty, we can simply set stackTop to 0 to initialize the
stack (see Figure 18-7).

1

8
maxStackSize 100

stackTop 4

list

stack

A

B

C

.

.

.

.

.

[0]

[1]

[2]

[99]

stack

elements

[3] D

FIGURE 18-6 Example of a stack

maxStackSize 100

stackTop 0

list

stack

A

B

C

.

.

.

.

.

[0]

[1]

[2]

[99]

unused

stack

[3] D

FIGURE 18-7 Empty stack

Implementation of Stacks as Arrays | 1157

The definition of the function initializeStack is:

template <class Type>
void stackType<Type>::initializeStack()
{

stackTop = 0;
}//end initializeStack

Empty Stack
We have seen that the value of stackTop indicates whether the stack is empty. If
stackTop is 0, the stack is empty; otherwise, the stack is not empty. The definition of
the function isEmptyStack is:

template <class Type>
bool stackType<Type>::isEmptyStack() const
{

return(stackTop == 0);
}//end isEmptyStack

Full Stack
Next, we consider the operation isFullStack. It follows that the stack is full if stack-
Top is equal to maxStackSize. The definition of the function isFullStack is:

template <class Type>
bool stackType<Type>::isFullStack() const
{

return (stackTop == maxStackSize);
} //end isFullStack

Push
Adding, or pushing, an element onto the stack is a two-step process. Recall that the value
of stackTop indicates the number of elements in the stack, and stackTop - 1 gives the
position of the top element of the stack. Therefore, the push operation is as follows:

1. Store the newItem in the array component indicated by stackTop.

2. Increment stackTop.

Figures 18-8 and 18-9 illustrate the push operation.

Suppose that before the push operation, the stack is as shown in Figure 18-8.

1158 | Chapter 18: Stacks and Queues

Assume newItem is 'y'. After the push operation, the stack is as shown in Figure 18-9.

1

8
maxStackSize 100

stackTop 4

list

stack

S

u

n

n

.

.

.

.

.

[0]

[1]

[2]

[99]

stack

elements

[3]

FIGURE 18-8 Stack before pushing y

maxStackSize 100

5

list

stack

S

u

n

n

.

.

.

.

[0]

[1]

[2]

[99]

stack

elements

[3]

y [4]

stackTop

FIGURE 18-9 Stack after pushing y

Implementation of Stacks as Arrays | 1159

Using the previous algorithm, the definition of the function push is:

template <class Type>
void stackType<Type>::push(const Type& newItem)
{

if (!isFullStack())
{

list[stackTop] = newItem; //add newItem to the
//top of the stack

stackTop++; //increment stackTop
}

else
cout << "Cannot add to a full stack." << endl;

}//end push

If we try to add a new item to a full stack, the resulting condition is called an overflow.
Error checking for an overflow can be handled in different ways. One way is as shown
previously. Or, we can check for an overflow before calling the function push, as shown
next (assuming stack is an object of type stackType).

if (!stack.isFullStack())
stack.push(newItem);

Return the Top Element
The operation top returns the top element of the stack. Its definition is:

template <class Type>
Type stackType<Type>::top() const
{

assert(stackTop != 0); //if stack is empty,
//terminate the program

return list[stackTop - 1]; //return the element of the
//stack indicated by
//stackTop - 1

}//end top

Pop
To remove, or pop, an element from the stack, we simply decrement stackTop by 1.

Figures 18-10 and 18-11 illustrate the pop operation.

Suppose that before the pop operation, the stack is as shown in Figure 18-10.

1160 | Chapter 18: Stacks and Queues

After the pop operation, the stack is as shown in Figure 18-11.

1

8

maxStackSize 100

3

list

stack

B

O

L

D

.

.

.

.

.

[0]

[1]

[2]

[99]

stack

elements

[3]

stackTop

FIGURE 18-11 Stack after popping D

maxStackSize 100

4

list

stack

B

O

L

D

.

.

.

.

.

[0]

[1]

[2]

[99]

stack

elements

[3]

stackTop

FIGURE 18-10 Stack before popping D

Implementation of Stacks as Arrays | 1161

The definition of the function pop is:

template <class Type>
void stackType<Type>::pop()
{

if (!isEmptyStack())
stackTop--; //decrement stackTop

else
cout << "Cannot remove from an empty stack." << endl;

}//end pop

If we try to remove an item from an empty stack, the resulting condition is called an
underflow. Error checking for an underflow can be handled in different ways. One way
is as shown in the definition of the function pop. Or, we can check for an underflow
before calling the function pop, as shown next (assuming stack is an object of type
stackType).

if (!stack.isEmptyStack())
stack.pop();

Copy Stack
The function copyStack makes a copy of a stack. The stack to be copied is passed as a
parameter to the function copyStack. We will, in fact, use this function to implement
the copy constructor and overload the assignment operator. The definition of this
function is:

template <class Type>
void stackType<Type>::copyStack(const stackType<Type>& otherStack)
{

delete [] list;
maxStackSize = otherStack.maxStackSize;
stackTop = otherStack.stackTop;

list = new Type[maxStackSize];

//copy otherStack into this stack
for (int j = 0; j < stackTop; j++)

list[j] = otherStack.list[j];
} //end copyStack

Constructor and Destructor
The functions to implement the constructor and the destructor are straightforward. The
constructor with parameters sets the stack size to the size specified by the user, sets
stackTop to 0, and creates an appropriate array in which to store the stack elements. If
the user does not specify the size of the array in which to store the stack elements, the
constructor uses the default value, which is 100, to create an array of size 100. The
destructor simply deallocates the memory occupied by the array (that is, the stack) and
sets stackTop to 0. The definitions of the constructor and destructor are:

1162 | Chapter 18: Stacks and Queues

template <class Type>
stackType<Type>::stackType(int stackSize)
{

if (stackSize <= 0)
{

cout << "Size of the array to hold the stack must "
<< "be positive." << endl;

cout << "Creating an array of size 100." << endl;

maxStackSize = 100;
}

else
maxStackSize = stackSize; //set the stack size to

//the value specified by
//the parameter stackSize

stackTop = 0; //set stackTop to 0
list = new Type[maxStackSize]; //create the array to

//hold the stack elements
}//end constructor

template <class Type>
stackType<Type>::~stackType() //destructor
{

delete [] list; //deallocate the memory occupied
//by the array

}//end destructor

Copy Constructor
The copy constructor is called when a stack object is passed as a (value) parameter to a
function. It copies the values of the member variables of the actual parameter into the
corresponding member variables of the formal parameter. Its definition is:

template <class Type>
stackType<Type>::stackType(const stackType<Type>& otherStack)
{

list = NULL;

copyStack(otherStack);
}//end copy constructor

Overloading the Assignment Operator (=)
Recall that for classes with pointer member variables, the assignment operator must be
explicitly overloaded. The definition of the function to overload the assignment operator
for the class stackType is:

template <class Type>
const stackType<Type>& stackType<Type>::operator=

(const stackType<Type>& otherStack)

1

8

Implementation of Stacks as Arrays | 1163

{

if (this != &otherStack) //avoid self-copy
copyStack(otherStack);

return *this;
} //end operator=

Stack Header File
Now that you know how to implement the stack operations, you can put the definitions
of the class and the functions to implement the stack operations together to create the
stack header file. For the sake of completeness, we next describe the header file. (To save
space, only the definition of the class is shown; no documentation is provided.) Suppose
that the name of the header file containing the definition of the class stackType is
myStack.h. We will refer to this header file in any program that uses a stack.

//Header file: myStack.h

#ifndef H_StackType
#define H_StackType

#include <iostream>
#include <cassert>

#include "stackADT.h"

using namespace std;

template <class Type>
class stackType: public stackADT<Type>
{
public:

const stackType<Type>& operator=(const stackType<Type>&);

void initializeStack();

bool isEmptyStack() const;

bool isFullStack() const;

void push(const Type& newItem);

Type top() const;

void pop();

stackType(int stackSize = 100);

stackType(const stackType<Type>& otherStack);

~stackType();

1164 | Chapter 18: Stacks and Queues

private:
int maxStackSize; //variable to store the maximum stack size
int stackTop; //variable to point to the top of the stack
Type *list; //pointer to the array that holds the

//stack elements

void copyStack(const stackType<Type>& otherStack);
};

template <class Type>
void stackType<Type>::initializeStack()
{

stackTop = 0;
}//end initializeStack

template <class Type>
bool stackType<Type>::isEmptyStack() const
{

return (stackTop == 0);
}//end isEmptyStack

template <class Type>
bool stackType<Type>::isFullStack() const
{

return (stackTop == maxStackSize);
} //end isFullStack

template <class Type>
void stackType<Type>::push(const Type& newItem)
{

if (!isFullStack())
{

list[stackTop] = newItem; //add newItem to the
//top of the stack

stackTop++; //increment stackTop
}
else

cout << "Cannot add to a full stack." << endl;
}//end push

template <class Type>
Type stackType<Type>::top() const
{

assert(stackTop != 0); //if stack is empty,
//terminate the program

return list[stackTop - 1]; //return the element of the
//stack indicated by
//stackTop - 1

}//end top

template <class Type>
void stackType<Type>::pop()
{

if (!isEmptyStack())
stackTop--; //decrement stackTop

else
cout << "Cannot remove from an empty stack." << endl;

}//end pop

1

8

Implementation of Stacks as Arrays | 1165

template <class Type>
stackType<Type>::stackType(int stackSize)
{

if (stackSize <= 0)
{

cout << "Size of the array to hold the stack must "
<< "be positive." << endl;

cout << "Creating an array of size 100." << endl;

maxStackSize = 100;
}
else

maxStackSize = stackSize; //set the stack size to
//the value specified by
//the parameter stackSize

stackTop = 0; //set stackTop to 0
list = new Type[maxStackSize]; //create the array to

//hold the stack elements
}//end constructor

template <class Type>
stackType<Type>::~stackType() //destructor
{

delete [] list; //deallocate the memory occupied
//by the array

}//end destructor

template <class Type>
void stackType<Type>::copyStack(const stackType<Type>& otherStack)
{

delete [] list;
maxStackSize = otherStack.maxStackSize;
stackTop = otherStack.stackTop;

list = new Type[maxStackSize];

//copy otherStack into this stack
for (int j = 0; j < stackTop; j++)

list[j] = otherStack.list[j];
} //end copyStack

template <class Type>
stackType<Type>::stackType(const stackType<Type>& otherStack)
{

list = NULL;

copyStack(otherStack);
}//end copy constructor

template <class Type>
const stackType<Type>& stackType<Type>::operator=

(const stackType<Type>& otherStack)
{

if (this != &otherStack) //avoid self-copy
copyStack(otherStack);

1166 | Chapter 18: Stacks and Queues

return *this;
} //end operator=

#endif

EXAMPLE 18-1

Before we give a programming example, let us first write a simple program that uses the
class stackType and tests some of the stack operations. Among others, we will test the
assignment operator and the copy constructor. The program and its output are as follows:

//Program to test the various operations of a stack

#include <iostream>
#include "myStack.h"

using namespace std;

void testCopyConstructor(stackType<int> otherStack);

int main()
{

stackType<int> stack(50);
stackType<int> copyStack(50);
stackType<int> dummyStack(100);

stack.initializeStack();
stack.push(23);
stack.push(45);
stack.push(38);
copyStack = stack; //copy stack into copyStack

cout << "The elements of copyStack: ";

while (!copyStack.isEmptyStack()) //print copyStack
{

cout << copyStack.top() << " ";
copyStack.pop();

}

cout << endl;

copyStack = stack;
testCopyConstructor(stack); //test the copy constructor

if (!stack.isEmptyStack())
cout << "The original stack is not empty." << endl

<< "The top element of the original stack: "
<< copyStack.top() << endl;

dummyStack = stack; //copy stack into dummyStack
cout << "The elements of dummyStack: ";

1

8

Implementation of Stacks as Arrays | 1167

while (!dummyStack.isEmptyStack()) //print dummyStack
{

cout << dummyStack.top() << " ";
dummyStack.pop();

}

cout << endl;

return 0;
}

void testCopyConstructor(stackType<int> otherStack)
{

if (!otherStack.isEmptyStack())
cout << "otherStack is not empty." << endl

<< "The top element of otherStack: "
<< otherStack.top() << endl;

}

Sample Run:

The elements of copyStack: 38 45 23
otherStack is not empty.
The top element of otherStack: 38
The original stack is not empty.
The top element of the original stack: 38
The elements of dummyStack: 38 45 23

It is recommended that you do a walk-through of this program.

PROGRAMMING EXAMPLE: Highest GPA
In this example, we write a C++ program that reads a data file consisting of each
student’s GPA followed by the student’s name. The program then prints the highest
GPA and the names of all of the students who received that GPA. The program scans
the input file only once. Moreover, we assume that there is a maximum of 100
students in the class.

Input The program reads an input file consisting of each student’s GPA, followed
by the student’s name. Sample data is:

3.4 Randy
3.2 Kathy
2.5 Colt
3.4 Tom
3.8 Ron
3.8 Mickey
3.6 Peter

Watch

the Video

1168 | Chapter 18: Stacks and Queues

1

8

Output The highest GPA and all of the names associated with the highest GPA.
For example, for the above data, the highest GPA is 3.8, and the students
with that GPA are Ron and Mickey.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

We read the first GPA and the name of the student. Because this data is the first item
read, it is the highest GPA so far. Next, we read the second GPA and the name of the
student. We then compare this (second) GPA with the highest GPA so far. Three
cases arise:

1. The new GPA is greater than the highest GPA so far. In this case, we:

a. Update the value of the highest GPA so far.

b. Initialize the stack—that is, remove the names of the students
from the stack.

c. Save the name of the student having the highest GPA so far in
the stack.

2. The new GPA is equal to the highest GPA so far. In this case, we
add the name of the new student to the stack.

3. The new GPA is smaller than the highest GPA so far. In this case,
we discard the name of the student having this grade.

We then read the next GPA and the name of the student and repeat Steps 1 through 3.
We continue this process until we reach the end of the input file.

From this discussion, it is clear that we need the following variables:

double GPA; //variable to hold the current GPA
double highestGPA; //variable to hold the highest GPA
string name; //variable to hold the name of the student
stackType<string> stack(100); //object to implement the stack

The preceding discussion translates into the following algorithm:

1. Declare the variables and initialize stack.

2. Open the input file.

3. If the input file does not exist, exit the program.

4. Set the output of the floating-point numbers to a fixed decimal
format with a decimal point and trailing zeroes. Also, set the
precision to two decimal places.

5. Read the GPA and the student name.

6. highestGPA = GPA;

Programming Example: Highest GPA | 1169

7. while (not end of file)

{

7.1. if (GPA > highestGPA)

{

7.1.1. clearstack(stack);

7.1.2. push(stack, student name);

7.1.3. highestGPA = GPA;

}

7.2. else
if (GPA is equal to highestGPA)

push(stack, student name);

7.3. Read GPA and student name;

}

8. Output the highest GPA.

9. Output the names of the students having the highest GPA.

PROGRAM LISTING

//***
// Author: D.S. Malik
//
// This program uses the class myStack to determine the
// highest GPA from a list of students with their GPA.
// The program also outputs the names of the students
// who received the highest GPA.
//***

#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>

#include "myStack.h"

using namespace std;

int main()
{

//Step 1
double GPA;
double highestGPA;
string name;

stackType<string> stack(100);

ifstream infile;

1170 | Chapter 18: Stacks and Queues

1

8

infile.open("HighestGPAData.txt"); //Step 2

if (!infile) //Step 3
{

cout << "The input file does not "
<< "exist. Program terminates!"
<< endl;

return 1;
}

cout << fixed << showpoint; //Step 4
cout << setprecision(2); //Step 4

infile >> GPA >> name; //Step 5

highestGPA = GPA; //Step 6

while (infile) //Step 7
{

if (GPA > highestGPA) //Step 7.1
{

stack.initializeStack(); //Step 7.1.1

if (!stack.isFullStack()) //Step 7.1.2
stack.push(name);

highestGPA = GPA; //Step 7.1.3
}

else if (GPA == highestGPA) //Step 7.2
if (!stack.isFullStack())

stack.push(name);
else
{

cout << "Stack overflows. "
<< "Program terminates!"
<< endl;

return 1; //exit program
}

infile >> GPA >> name; //Step 7.3
}

cout << "Highest GPA = " << highestGPA
<< endl; //Step 8

cout << "The students holding the "
<< "highest GPA are:" << endl;

while (!stack.isEmptyStack()) //Step 9
{

cout << stack.top() << endl;
stack.pop();

}

Programming Example: Highest GPA | 1171

Linked Implementation of Stacks
Because an array size is fixed, in the array (linear) representation of a stack, only a fixed
number of elements can be pushed onto the stack. If in a program the number of
elements to be pushed exceeds the size of the array, the program may terminate in an
error. We must overcome these problems.

We have seen that by using pointer variables, we can dynamically allocate and deallocate
memory, and by using linked lists, we can dynamically organize data (such as an ordered
list). Next, we will use these concepts to implement a stack dynamically.

cout << endl;

return 0;
}

Sample Run:

Input File (HighestGPAData.txt)

3.4 Randy
3.2 Kathy
2.5 Colt
3.4 Tom
3.8 Ron
3.8 Mickey
3.6 Peter
3.5 Donald
3.8 Cindy
3.7 Dome
3.9 Andy
3.8 Fox
3.9 Minnie
2.7 Gilda
3.9 Vinay
3.4 Danny

Output

Highest GPA = 3.90
The students holding the highest GPA are:
Vinay
Minnie
Andy

Note that the names of the students with the highest GPA are output in the reverse
order, relative to the order they appear in the input, due to the fact that the top
element of the stack is the last element added to the stack.

1172 | Chapter 18: Stacks and Queues

Recall that in the linear representation of a stack, the value of stackTop indicates the
number of elements in the stack, and the value of stackTop - 1 points to the top item in
the stack. With the help of stackTop, we can do several things: find the top element,
check whether the stack is empty, and so on.

Similar to the linear representation, in a linked representation, stackTop is used to locate
the top element in the stack. However, there is a slight difference. In the former case,
stackTop gives the index of the array. In the latter case, stackTop gives the address
(memory location) of the top element of the stack.

The following class implements the functions of the abstract class stackADT:

//Definition of the node
template <class Type>
struct nodeType
{

Type info;
nodeType<Type> *link;

};

template <class Type>
class linkedStackType: public stackADT<Type>
{

public:
const linkedStackType<Type>& operator=

(const linkedStackType<Type>&);
//Overload the assignment operator.

bool isEmptyStack() const;
//Function to determine whether the stack is empty.
//Postcondition: Returns true if the stack is empty;
// otherwise returns false.

bool isFullStack() const;
//Function to determine whether the stack is full.
//Postcondition: Returns false.

void initializeStack();
//Function to initialize the stack to an empty state.
//Postcondition: The stack elements are removed;
// stackTop = NULL;

void push(const Type& newItem);
//Function to add newItem to the stack.
//Precondition: The stack exists and is not full.
//Postcondition: The stack is changed and newItem
// is added to the top of the stack.

1

8

Linked Implementation of Stacks | 1173

Type top() const;
//Function to return the top element of the stack.
//Precondition: The stack exists and is not empty.
//Postcondition: If the stack is empty, the program
// terminates; otherwise, the top
// element of the stack is returned.

void pop();
//Function to remove the top element of the stack.
//Precondition: The stack exists and is not empty.
//Postcondition: The stack is changed and the top
// element is removed from the stack.

linkedStackType();
//Default constructor
//Postcondition: stackTop = NULL;

linkedStackType(const linkedStackType<Type>& otherStack);
//Copy constructor

~linkedStackType();
//Destructor
//Postcondition: All the elements of the stack are
// removed from the stack.

private:
nodeType<Type> *stackTop; //pointer to the stack

void copyStack(const linkedStackType<Type>& otherStack);
//Function to make a copy of otherStack.
//Postcondition: A copy of otherStack is created and
// assigned to this stack.

};

In this linked implementation of stacks, the memory to store the stack elements is

allocated dynamically. Logically, the stack is never full. The stack is full only if we run out

of memory space. Therefore, in reality, the function isFullStack does not apply to

linked implementation of stacks. However, the class linkedStackType must pro-

vide the definition of the function isFullStack, because it is defined in the parent

abstract class stackADT.

We leave the UML class diagram of the class linkedStackType as an exercise for you.
(See Exercise 28 at the end of this chapter.)

EXAMPLE 18-2

Suppose that stack is an object of type linkedStackType. Figure 18-12(a) shows an
empty stack, and Figure 18-12(b) shows a nonempty stack.

1174 | Chapter 18: Stacks and Queues

1

8

In Figure 18-12(b), the top element of the stack is C; that is, the last element pushed onto
the stack is C.

Next, we discuss the definitions of the functions to implement the operations of a linked
stack.

Default Constructor
The first operation that we consider is the default constructor. The default constructor
initializes the stack to an empty state when a stack object is declared. Thus, this function
sets stackTop to NULL. The definition of this function is:

template <class Type>
linkedStackType<Type>::linkedStackType()
{

stackTop = NULL;
}

Empty Stack and Full Stack
The operations isEmptyStack and isFullStack are quite straightforward. The stack is
empty if stackTop is NULL. Also, because the memory for a stack element is allocated
and deallocated dynamically, the stack is never full. (The stack is full only if we run out of
memory.) Thus, the function isFullStack always returns the value false. The
definitions of the functions to implement these operations are:

template <class Type>
bool linkedStackType<Type>::isEmptyStack() const

stackTop

stack

stackTop

stack

C

B

A

(a) Empty stack

(b) Nonempty stack

FIGURE 18-12 Empty and nonempty linked stack

Linked Implementation of Stacks | 1175

{

return (stackTop == NULL);
} //end isEmptyStack

template <class Type>
bool linkedStackType<Type>:: isFullStack() const
{

return false;
} //end isFullStack

Recall that in the linked implementation of stacks, the function isFullStack does not
apply because, logically, the stack is never full. However, you must provide its definition
because it is included as an abstract function in the parent class stackADT.

Initialize Stack
The operation initializeStack reinitializes the stack to an empty state. Because the
stack may contain some elements and we are using a linked implementation of a stack, we
must deallocate the memory occupied by the stack elements and set stackTop to NULL.
The definition of this function is:

template <class Type>
void linkedStackType<Type>:: initializeStack()
{

nodeType<Type> *temp; //pointer to delete the node

while (stackTop != NULL) //while there are elements in
//the stack

{

temp = stackTop; //set temp to point to the
//current node

stackTop = stackTop->link; //advance stackTop to the
//next node

delete temp; //deallocate memory occupied by temp
}

} //end initializeStack

Next, we consider the push, top, and pop operations. From Figure 18-12(b), it is clear
that the newElement will be added (in the case of push) at the beginning of the linked
list pointed to by stackTop. In the case of pop, the node pointed to by stackTop will
be removed. In both cases, the value of the pointer stackTop is updated. The operation
top returns the info of the node that stackTop is pointing to.

Push
Consider the stack shown in Figure 18-13.

1176 | Chapter 18: Stacks and Queues

Figure 18-14 shows the steps of the push operation. (Assume that the new element to be
pushed is 'D'.)

The statements:

newNode = new nodeType<Type>; //create the new node
newNode->info = newElement;

1

8

stackTop

stack

C

B

A

FIGURE 18-13 Stack before the push operation

D

stackTop

stack

C

B

A

D

C

B

A

newNode

(a) Create newNode

and store D
(b) Put newNode on

the top of stack
(c) Make stackTop point

to the top element

stackTop

stack

stackTop

stack

newNode newNode

D

C

B

A

FIGURE 18-14 Push operation

Linked Implementation of Stacks | 1177

create a node, store the address of the node into the variable newNode, and store
newElement into the info field of newNode. See Figure 18-14(a).

The statement:

newNode->link = stackTop;

inserts newNode at the top of the stack, as shown in Figure 18-14(b).

Finally, the statement:

stackTop = newNode;

updates the value of stackTop, which results in Figure 18-14(c).

The definition of the function push is:

template <class Type>
void linkedStackType<Type>::push(const Type& newElement)
{

nodeType<Type> *newNode; //pointer to create the new node

newNode = new nodeType<Type>; //create the node

newNode->info = newElement; //store newElement in the node
newNode->link = stackTop; //insert newNode before stackTop
stackTop = newNode; //set stackTop to point to the

//top node
} //end push

We do not need to check whether the stack is full before we push an element onto the
stack because in this implementation, logically, the stack is never full.

Return the Top Element
The operation to return the top element of the stack is quite straightforward. Its
definition is:

template <class Type>
Type linkedStackType<Type>::top() const
{

assert(stackTop != NULL); //if stack is empty,
//terminate the program

return stackTop->info; //return the top element
}//end top

Pop
Now we consider the pop operation, which removes the top element of the stack.
Consider the stack shown in Figure 18-15.

1178 | Chapter 18: Stacks and Queues

Figure 18-16 shows the pop operation.

The statement:

temp = stackTop;

makes temp point to the top of the stack. See Figure 18-16(a). Next, the statement:

stackTop = stackTop->link;

makes the second element of the stack become the top element of the stack.
See Figure 18-16(b).

1

8

stackTop

stack

C

B

A

FIGURE 18-15 Stack before the pop operation

temp
C

B

A

stackTop

stack

C

B

A

B

A

stackTop

stack

stackTop

temp

(a) Make temp point to the

top element

(b) Make stackTop point to

the next element
(c) Delete temp

FIGURE 18-16 Pop operation

Linked Implementation of Stacks | 1179

Finally, the statement:

delete temp;

deallocates the memory pointed to by temp. See Figure 18-16(c).

The definition of the function pop is:

template <class Type>
void linkedStackType<Type>::pop()
{

nodeType<Type> *temp; //pointer to deallocate memory

if (stackTop != NULL)
{

temp = stackTop; //set temp to point to the top node

stackTop = stackTop->link; //advance stackTop to the
//next node

delete temp; //delete the top node
}

else
cout << "Cannot remove from an empty stack." << endl;

}//end pop

Copy Stack
The function copyStack makes an identical copy of a stack. Its definition is similar to the
definition of copyList for linked lists, given in Chapter 17. The definition of the
function copyStack is:

template <class Type>
void linkedStackType<Type>::copyStack

(const linkedStackType<Type>& otherStack)
{

nodeType<Type> *newNode, *current, *last;

if (stackTop != NULL) //if stack is nonempty, make it empty
initializeStack();

if (otherStack.stackTop == NULL)
stackTop = NULL;

else
{

current = otherStack.stackTop; //set current to point
//to the stack to be copied

//copy the stackTop element of the stack
stackTop = new nodeType<Type>; //create the node

stackTop->info = current->info; //copy the info

1180 | Chapter 18: Stacks and Queues

stackTop->link = NULL; //set the link field of the
//node to NULL

last = stackTop; //set last to point to the node
current = current->link; //set current to point to

//the next node

//copy the remaining stack
while (current != NULL)
{

newNode = new nodeType<Type>;

newNode->info = current->info;
newNode->link = NULL;
last->link = newNode;
last = newNode;
current = current->link;

}//end while
}//end else

} //end copyStack

Constructors and Destructors
We have already discussed the default constructor. To complete the implementation of
the stack operations, next we give the definitions of the functions to implement the copy
constructor and the destructor and to overload the assignment operator. (These functions
are similar to those discussed for linked lists in Chapter 17.)

//copy constructor
template <class Type>
linkedStackType<Type>::linkedStackType(

const linkedStackType<Type>& otherStack)
{

stackTop = NULL;
copyStack(otherStack);

}//end copy constructor

//destructor
template <class Type>
linkedStackType<Type>::~linkedStackType()
{

initializeStack();
}//end destructor

Overloading the Assignment Operator (=)
The definition of the function to overload the assignment operator for the class

linkedStackType is:

template <class Type>
const linkedStackType<Type>& linkedStackType<Type>::operator=

(const linkedStackType<Type>& otherStack)

1

8

Linked Implementation of Stacks | 1181

{

if (this != &otherStack) //avoid self-copy
copyStack(otherStack);

return *this;
}//end operator=

The definition of a stack and the functions to implement the stack operations discussed
previously are generic. Also, as in the case of an array representation of a stack, in the
linked representation of a stack, we must put the definition of the stack and the functions
to implement the stack operations together in a (header) file. A client’s program can
include this header file via the include statement.

Example 18-3 illustrates how a linkedStack object is used in a program.

EXAMPLE 18-3

We assume that the definition of the class linkedStackType and the functions to
implement the stack operations are included in the header file "linkedStack.h".

//This program tests various operations of a linked stack

#include <iostream>
#include "linkedStack.h"

using namespace std;

void testCopy(linkedStackType<int> OStack);

int main()
{

linkedStackType<int> stack;
linkedStackType<int> otherStack;
linkedStackType<int> newStack;

//Add elements into stack
stack.push(34);
stack.push(43);
stack.push(27);

//Use the assignment operator to copy the elements
//of stack into newStack

newStack = stack;

cout << "After the assignment operator, newStack: "
<< endl;

//Output the elements of newStack
while (!newStack.isEmptyStack())
{

cout << newStack.top() << endl;
newStack.pop();

}

1182 | Chapter 18: Stacks and Queues

//Use the assignment operator to copy the elements
//of stack into otherStack

otherStack = stack;

cout << "Testing the copy constructor." << endl;

testCopy(otherStack);

cout << "After the copy constructor, otherStack: " << endl;

while (!otherStack.isEmptyStack())
{

cout << otherStack.top() << endl;
otherStack.pop();

}

return 0;
}

//Function to test the copy constructor
void testCopy(linkedStackType<int> OStack)
{

cout << "Stack in the function testCopy:" << endl;

while (!OStack.isEmptyStack())
{

cout << OStack.top() << endl;
OStack.pop();

}

}

Sample Run:

After the assignment operator, newStack:
27
43
34
Testing the copy constructor.
Stack in the function testCopy:
27
43
34
After the copy constructor, otherStack:
27
43
34

1

8

Linked Implementation of Stacks | 1183

Stack as Derived from the class unorderedLinkedList
If we compare the push function of the stack with the insertFirst function
discussed for general lists in Chapter 17, we see that the algorithms to implement these
operations are similar. A comparison of other functions—such as initializeStack and
initializeList, isEmptyList and isEmptyStack, and so on—suggests that the
class linkedStackType can be derived from the class linkedListType. More-
over, the functions pop and isFullStack can be implemented as in the previous section.
Note that the class linkedListType is an abstract and does not implement all of the
operations. However, the class unorderedLinkedListType is derived from the
class linkedListType and provides the definitions of the abstract functions of
the class linkedListType. Therefore, we can derive the class linkedStackType

from the class unorderedLinkedListType.

Next, we define the class linkedStackType that is derived from the class

unorderedLinkedList. The definitions of the functions to implement the stack opera-
tions are also given.

#include <iostream>
#include "unorderedLinkedList.h"

using namespace std;

template <class Type>
class linkedStackType: public unorderedLinkedList<Type>
{
public:

void initializeStack();
bool isEmptyStack() const;
bool isFullStack() const;
void push(const Type& newItem);
Type top() const;
void pop();

};

template <class Type>
void linkedStackType<Type>::initializeStack()
{

unorderedLinkedList<Type>::initializeList();
}

template <class Type>
bool linkedStackType<Type>::isEmptyStack() const
{

return unorderedLinkedList<Type>::isEmptyList();
}
template <class Type>
bool linkedStackType<Type>::isFullStack() const
{

return false;
}

1184 | Chapter 18: Stacks and Queues

1

8

template <class Type>
void linkedStackType<Type>::push(const Type& newElement)
{

unorderedLinkedList<Type>::insertFirst(newElement);
}

template <class Type>
Type linkedStackType<Type>::top() const
{

return unorderedLinkedList<Type>::front();
}

template <class Type>
void linkedStackType<Type>::pop()
{

nodeType<Type> *temp;

temp = first;
first = first->link;
delete temp;

}

Application of Stacks: Postfix Expressions
Calculator
The usual notation for writing arithmetic expressions (the notation we learned in elemen-
tary school) is called infix notation, in which the operator is written between the operands.
For example, in the expression a + b, the operator + is between the operands a and b. In
infix notation, the operators have precedence. That is, we must evaluate expressions from
left to right, and multiplication and division have higher precedence than do addition and
subtraction. If we want to evaluate the expression in a different order, we must include
parentheses. For example, in the expression a + b * c, we first evaluate * using the operands
b and c, and then we evaluate + using the operand a and the result of b * c.

In the early 1920s, the Polish mathematician Jan Lukasiewicz discovered that if operators
were written before the operands (prefix or Polish notation; for example, + a b), the
parentheses could be omitted. In the late 1950s, the Australian philosopher and early
computer scientist Charles L. Hamblin proposed a scheme in which the operators follow
the operands (postfix operators), resulting in the Reverse Polish notation. This has the
advantage that the operators appear in the order required for computation.

For example, the expression:

a + b * c

in a postfix expression is:

a b c * +

The following example shows various infix expressions and their equivalent postfix
expressions.

Application of Stacks: Postfix Expressions Calculator | 1185

EXAMPLE 18-4

Shortly after Lukasiewicz’s discovery, it was realized that postfix notation had important
applications in computer science. In fact, many compilers now first translate arithmetic
expressions into some form of postfix notation and then translate this postfix expression
into machine code. Postfix expressions can be evaluated using the following algorithm:

Scan the expression from left to right. When an operator is found, back up to get the
required number of operands, perform the operation, and continue.

Consider the following postfix expression:

6 3 + 2 * =

Let us evaluate this expression using a stack and the previous algorithm. Figure 18-17
shows how this expression gets evaluated.

Infix Expression Equivalent Postfix Expression

a + b a b +

a + b * c a b c * +

a * b + c a b * c +

(a + b) * c a b + c *

(a � b) * (c + d) a b � c d + *

(a + b) * (c � d / e) + f a b + c d e / � * f +

96

Push

6

into

stack

(a)

3

6

(b)

+

Pop

stack

twice

op2 = 3;

op1 = 6;

(c)

op1 + op2

= 9

Push 9

into

stack

(d)

Expression: 6 3 + 2 * =

Push

3

into

stack

2

9

(e)

Push

2

into

stack

*

Pop

stack

twice

op2 = 2;

op1 = 9;

(f)

op1 * op2

= 18

Push 18

into

stack 18

(g)

=

Pop

stack

and

print:

18

(h)

FIGURE 18-17 Evaluating the postfix expression: 6 3 + 2 * ¼

1186 | Chapter 18: Stacks and Queues

Read the first symbol, 6, which is a number. Push the number onto the stack
(see Figure 18-17(a)). Read the next symbol, 3, which is a number. Push the number
onto the stack (see Figure 18-17(b)). Read the next symbol, +, which is an operator.
Because an operator requires two operands to be evaluated, pop the stack twice
(see Figure 18-17(c)). Perform the operation and put the result back onto the stack
(see Figure 18-17(d)).

Read the next symbol, 2, which is a number. Push the number onto the stack
(see Figure 18-17(e)). Read the next symbol, *, which is an operator. Because an
operator requires two operands to be evaluated, pop the stack twice (see Figure 18-17(f)).
Perform the operation, and put the result back onto the stack (see Figure 18-17(g)).

Scan the next symbol, =, which is the equal sign, indicating the end of the expression. Therefore,
print the result. The result of the expression is in the stack, so pop and print (see Figure 18-17(h)).

The value of the expression 6 3 + 2 * = 18.

From this discussion, it is clear that when we read a symbol other than a number, the
following cases arise:

1. The symbol we read is one of the following: +, -, *, /, or =.

a. If the symbol is +, -, *, or /, the symbol is an operator, so we must
evaluate it. Because an operator requires two operands, the stack must
have at least two elements; otherwise, the expression has an error.

b. If the symbol is = (an equal sign), the expression ends and we must
print the answer. At this step, the stack must contain exactly one
element; otherwise, the expression has an error.

2. The symbol we read is something other than +, -, *, /, or =. In this
case, the expression contains an illegal operator.

It is also clear that when an operand (number) is encountered in an expression, it is
pushed onto the stack because the operator comes after the operands.

Consider the following expressions:

a. 7 6 + 3 ; 6 - =

b. 14 + 2 3 * =

c. 14 2 3 + =

Expression (a) has an illegal operator, expression (b) does not have enough operands for +,
and expression (c) has too many operands. In the case of expression (c), when we
encounter the equal sign (=), the stack will have two elements, and this error cannot be
discovered until we are ready to print the value of the expression.

To make the input easier to read, we assume that the postfix expressions are in the
following form:

#6 #3 + #2 * =

1

8

Application of Stacks: Postfix Expressions Calculator | 1187

The symbol # precedes each number in the expression. If the symbol scanned is #, then
the next input is a number (that is, an operand). If the symbol scanned is not #, then it is
either an operator (may be illegal) or an equal sign (indicating the end of the expression).
Furthermore, we assume that each expression contains only the +, -, *, and / operators.

This program outputs the entire postfix expression together with the answer. If the
expression has an error, the expression is discarded. In this case, the program outputs
the expression together with an appropriate error message. Because an expression may
contain an error, we must clear the stack before processing the next expression. Also, the
stack must be initialized; that is, the stack must be empty.

Main Algorithm
Following the previous discussion, the main algorithm in pseudocode is:

Read the first character
while not the end of input data
{

a. initialize the stack
b. process the expression
c. output result
d. get the next expression

}

To simplify the complexity of the function main, we write four functions:
evaluateExpression, evaluateOpr, discardExp, and printResult. The function
evaluateExpression, if possible, evaluates the expression and leaves the result in the
stack. If the postfix expression is error free, the function printResult outputs the result.
The function evaluateOpr evaluates an operator, and the function discardExp discards
the current expression if there is any error in the expression.

Function evaluateExpression
The function evaluateExpression evaluates each postfix expression. Each expression
ends with the symbol =. The general algorithm is:

while (ch is not = '=') //process each expression
//= marks the end of an expression

{

switch (ch)
{

case '#':
read a number
output the number;
push the number onto the stack;
break;

default:
assume that ch is an operation
evaluate the operation;

} //end switch

1188 | Chapter 18: Stacks and Queues

if no error was found, then
{

read next ch;
output ch;

}

else
Discard the expression

} //end while

From this algorithm, it follows that this method has five parameters—one to access the input file,
one to access the output file, one to access the stack, one to pass a character of the expression,
and one to indicate whether there is an error in the expression. The definition of this function is:

void evaluateExpression(ifstream& inpF, ofstream& outF,
stackType<double>& stack,
char& ch, bool& isExpOk)

{

double num;

while (ch != '=')
{

switch (ch)
{

case '#':
inpF >> num;
outF << num << " ";
if (!stack.isFullStack())

stack.push(num);
else
{

cout << "Stack overflow. "
<< "Program terminates!" << endl;

exit(0); //terminate the program
}

break;
default:

evaluateOpr(outF, stack, ch, isExpOk);
}//end switch

if (isExpOk) //if no error
{

inpF >> ch;
outF << ch;

if (ch != '#')
outF << " ";

}

else
discardExp(inpF, outF, ch);

} //end while (!= '=')
}

1

8

Application of Stacks: Postfix Expressions Calculator | 1189

Note that the function exit terminates the program.

Function evaluateOpr
This function (if possible) evaluates an expression. Two operands are needed to evaluate an
operation, and operands are saved in the stack. Therefore, the stack must contain at least two
numbers. If the stack contains fewer than two numbers, then the expression has an error. In
this case, the entire expression is discarded, and an appropriate message is printed. This
function also checks for any illegal operations. In pseudocode, this function is:

if stack is empty
{

error in the expression
set expressionOk to false

}

else
{

retrieve the top element of stack into op2
pop stack
if stack is empty
{

error in the expression
set expressionOk to false

}

else
{

retrieve the top element of stack into op1
pop stack

//If the operation is legal, perform the
//operation and push the result onto the stack.

switch (ch)
{

case '+':
//Perform the operation and push the result
//onto the stack.

stack.push(op1 + op2);
break;

case '-':
//Perform the operation and push the result
//onto the stack.

stack.push(op1 – op2);
break;

case '*':
//Perform the operation and push the
//result onto the stack.

stack.push(op1 * op2);
break;

case '/':
//If (op2 != 0), perform the operation and
//push the result onto the stack.

stack.push(op1 / op2);

1190 | Chapter 18: Stacks and Queues

//Otherwise, report the error.
//Set expressionOk to false.

break;
otherwise operation is illegal

{

output an appropriate message;
set expressionOk to false

}

} //end switch
}

Following this pseudocode, the definition of the function evaluateOpr is:

void evaluateOpr(ofstream& out, stackType<double>& stack,
char& ch, bool& isExpOk)

{

double op1, op2;

if (stack.isEmptyStack())
{

out << " (Not enough operands)";
isExpOk = false;

}

else
{

op2 = stack.top();
stack.pop();

if (stack.isEmptyStack())
{

out << " (Not enough operands)";
isExpOk = false;

}

else
{

op1 = stack.top();
stack.pop();

switch (ch)
{

case '+':
stack.push(op1 + op2);
break;

case '-':
stack.push(op1 - op2);
break;

case '*':
stack.push(op1 * op2);
break;

case '/':
if (op2 != 0)

stack.push(op1 / op2);

1

8

Application of Stacks: Postfix Expressions Calculator | 1191

else
{

out << " (Division by 0)";
isExpOk = false;

}

break;
default:

out << " (Illegal operator)";
isExpOk = false;

}//end switch
} //end else

} //end else
} //end evaluateOpr

Function discardExp
This function is called whenever an error is discovered in the expression. It reads and
writes the input data only until the input is '=', the end of the expression. The def inition
of this function is:

void discardExp(ifstream& in, ofstream& out, char& ch)
{

while (ch != '=')
{

in.get(ch);
out << ch;

}

} //end discardExp

Function printResult
If the postfix expression contains no errors, the function printResult prints the
result; otherwise, it outputs an appropriate message. The result of the expression is in
the stack, and the output is sent to a file. Therefore, this function must have access to
the stack and the output file. Suppose that no errors were encountered by the
method evaluateExpression. If the stack has only one element, then the expres-
sion is error free and the top element of the stack is printed. If either the stack is
empty or it has more than one element, then there is an error in the postfix
expression. In this case, this method outputs an appropriate error message. The
definition of this method is:

void printResult(ofstream& outF, stackType<double>& stack,
bool isExpOk)

{

double result;

if (isExpOk) //if no error, print the result

1192 | Chapter 18: Stacks and Queues

{

if (!stack.isEmptyStack())
{

result = stack.top();
stack.pop();

if (stack.isEmptyStack())
outF << result << endl;

else
outF << " (Error: Too many operands)" << endl;

} //end if
else

outF << " (Error in the expression)" << endl;
}

else
outF << " (Error in the expression)" << endl;

outF << "_________________________________"
<< endl << endl;

} //end printResult

PROGRAM LISTING

//***
// Author: D.S. Malik
//
// Program: Postfix Calculator
// This program evaluates postfix expressions.
//***

#include <iostream>
#include <iomanip>
#include <fstream>
#include "mystack.h"

using namespace std;

void evaluateExpression(ifstream& inpF, ofstream& outF,

stackType<double>& stack,

char& ch, bool& isExpOk);
void evaluateOpr(ofstream& out, stackType<double>& stack,

char& ch, bool& isExpOk);
void discardExp(ifstream& in, ofstream& out, char& ch);
void printResult(ofstream& outF, stackType<double>& stack,

bool isExpOk);

int main()
{

bool expressionOk;
char ch;

1

8

Application of Stacks: Postfix Expressions Calculator | 1193

stackType<double> stack(100);
ifstream infile;
ofstream outfile;

infile.open("RpnData.txt");

if (!infile)
{

cout << "Cannot open the input file. "
<< "Program terminates!" << endl;

return 1;
}

outfile.open("RpnOutput.txt");

outfile << fixed << showpoint;
outfile << setprecision(2);

infile >> ch;
while (infile)
{

stack.initializeStack();
expressionOk = true;
outfile << ch;

evaluateExpression(infile, outfile, stack, ch,
expressionOk);

printResult(outfile, stack, expressionOk);
infile >> ch; //begin processing the next expression

} //end while

infile.close();
outfile.close();

return 0;

} //end main
//Place the definitions of the function evaluateExpression,
//evaluateOpr, discardExp, and printResult as described
//previously here.

Sample Run:

Input File

#35 #27 + #3 * =
#26 #28 + #32 #2 ; - #5 / =
#23 #30 #15 * / =
#2 #3 #4 + =
#20 #29 #9 * ; =
#25 #23 - + =
#34 #24 #12 #7 / * + #23 - =

1194 | Chapter 18: Stacks and Queues

Output

#35.00 #27.00 + #3.00 * = 186.00

#26.00 #28.00 + #32.00 #2.00 ; (Illegal operator) - #5 / = (Error in the expression)

#23.00 #30.00 #15.00 * / = 0.05

#2.00 #3.00 #4.00 + = (Error: Too many operands)

#20.00 #29.00 #9.00 * ; (Illegal operator) = (Error in the expression)

#25.00 #23.00 - + (Not enough operands) = (Error in the expression)

#34.00 #24.00 #12.00 #7.00 / * + #23.00 - = 52.14

Removing Recursion: Nonrecursive Algorithm
to Print a Linked List Backward
In Chapter 17, we used recursion to print a linked list backward. In this section, you will
learn how a stack can be used to design a nonrecursive algorithm to print a linked list
backward.

Consider the linked list shown in Figure 18-18.

To print the list backward, first we need to get to the last node of the list, which we can do by
traversing the linked list starting at the first node. However, once we are at the last node, how
do we get back to the previous node, especially given that links go in only one direction?
You can again traverse the linked list with the appropriate loop termination condition, but
this approach might waste a considerable amount of computer time, especially if the list is
very large. Moreover, if we do this for every node in the list, the programmight execute very
slowly. Next, we show how to use a stack effectively to print the list backward.

After printing the info of a particular node, we need to move to the node immediately
behind this node. For example, after printing 15, we need to move to the node with

1

8

5first 10 15

FIGURE 18-18 Linked list

Removing Recursion: Nonrecursive Algorithm to Print a Linked List Backward | 1195

info 10. Thus, while initially traversing the list to move to the last node, we must save a
pointer to each node. For example, for the list in Figure 18-18, we must save a pointer to
each of the nodes with info 5 and 10. After printing 15, we go back to the node with
info 10; after printing 10, we go back to the node with info 5. From this, it follows
that we must save pointers to each node in a stack, so as to implement the Last In First
Out principle.

Because the number of nodes in a linked list is usually not known, we will use the linked
implementation of a stack. Suppose that stack is an object of type linkedListType,
and current is a pointer of the same type as the pointer first. Consider the following
statements:

current = first; //Line 1

while (current != NULL) //Line 2
{

stack.push(current); //Line 3
current = current->link; //Line 4

}

After the statement in Line 1 executes, current points to the first node (see Figure 18-19).

Because current is not NULL, the statements in Lines 3 and 4 execute (see Figure 18-20).

current

stack

stackTop
5first 10 15

FIGURE 18-19 List after the statement current ¼ first; executes

 5
current

stack

stackTop
5first 10 15

FIGURE 18-20 List and stack after the statements stack.push(current); and current ¼
current->link; execute

1196 | Chapter 18: Stacks and Queues

After the statement in Line 4 executes, the loop condition in Line 2 is reevaluated.
Because current is not NULL, the loop condition evaluates to true, so the statements in
Lines 3 and 4 execute (see Figure 18-21).

After the statement in Line 4 executes, the loop condition, in Line 2, is evaluated again.
Because current is not NULL, the loop condition evaluates to true, so the statements in
Lines 3 and 4 execute (see Figure 18-22).

After the statement in Line 4 executes, the loop condition in Line 2 is evaluated again.
Because current is NULL, the loop condition evaluates to false, and the while loop in

1

8 5

stack

stackTop
5first 10 15

 10
current

FIGURE 18-21 List and stack after the statements stack.push(current); and current =

current->link; execute

 5

current

stack

stackTop
5first 10 15

 15

 10

FIGURE 18-22 List and stack after the statements stack.push(current); and current =

current->link; execute

Removing Recursion: Nonrecursive Algorithm to Print a Linked List Backward | 1197

Line 2 terminates. From Figure 18-22, it follows that a pointer to each node in the linked
list is saved in the stack. The top element of the stack contains a pointer to the last node in
the list, and so on. Let us now execute the following statements:

while (!stack.isEmptyStack()) //Line 5
{

current = stack.top(); //Line 6
stack.pop(); //Line 7
cout << current->info << " "; //Line 8

}

The loop condition in Line 5 evaluates to true because the stack is nonempty. There-
fore, the statements in Lines 6, 7, and 8 execute. After the statement in Line 6 executes,
current points to the last node. The statement in Line 7 removes the top element of the
stack (see Figure 18-23).

The statement in Line 8 outputs current->info, which is 15. Next, the loop condition in
Line 5 is evaluated. Because the loop condition evaluates to true, the statements in Lines 6,
7, and 8 execute. After the statements in Lines 6 and 7 execute, Figure 18-24 results.

 5

stack

stackTop
5first 10 15

 10
current

FIGURE 18-23 List and stack after the statements current = stack.top(); and stack. pop();
execute

 5
current

stack

stackTop
5first 10 15

FIGURE 18-24 List and stack after the statements current = stack.top(); and stack. pop();

execute

1198 | Chapter 18: Stacks and Queues

The statement in Line 8 outputs current->info, which is 10. Next, the loop condition in
Line 5 is evaluated. Because the loop condition evaluates to true, the statements in Lines 6,
7, and 8 execute. After the statements in Lines 6 and 7 execute, Figure 18-25 results.

The statement in Line 8 outputs current->info, which is 5. Next, the loop condition
in Line 5 is evaluated. Because the loop condition evaluates to false, the while loop
terminates. The while loop in Line 5 produces the following output:

15 10 5

Queues
This section discusses another important data structure called a queue. The notion of a
queue in computer science is the same as the notion of the queues to which you are
accustomed in everyday life. There are queues of customers in a bank or in a grocery store
and queues of cars waiting to pass through a tollbooth. Similarly, because a computer can
send a print request faster than a printer can print, a queue of documents is often waiting to
be printed at a printer. The general rule to process elements in a queue is that the customer
at the front of the queue is served next, and when a new customer arrives, he or she stands
at the end of the queue. That is, a queue is a First In First Out data structure.

Queues have numerous applications in computer science. Whenever a system is modeled
on the First In First Out principle, queues are used. At the end of this section, we will
discuss one of the most widely used applications of queues, computer simulation. First,
however, we need to develop the tools necessary to implement a queue. The next few
sections discuss how to design classes to implement queues as an ADT.

A queue is a set of elements of the same type in which the elements are added at one end,
called the back or rear, and deleted from the other end, called the front. For example,
consider a line of customers in a bank, wherein the customers are waiting to withdraw/
deposit money or to conduct some other business. Each new customer gets in the line at
the rear. Whenever a teller is ready for a new customer, the customer at the front of the
line is served.

The rear of the queue is accessed whenever a new element is added to the queue, and the
front of the queue is accessed whenever an element is deleted from the queue. As in a

1

8

current

stack

stackTop
5first 10 15

FIGURE 18-25 List and stack after the statements current = stack.top(); and stack. pop();

execute

Queues | 1199

stack, the middle elements of the queue are inaccessible, even if the queue elements are
stored in an array.

Queue: A data structure in which the elements are added at one end, called the rear, and
deleted from the other end, called the front; a First In First Out (FIFO) data structure.

Queue Operations
From the definition of queues, we see that the two key operations are add and delete. We
call the add operation addQueue and the delete operation deleteQueue. Because
elements can be neither deleted from an empty queue nor added to a full queue, we
need two more operations to successfully implement the addQueue and deleteQueue

operations: isEmptyQueue (checks whether the queue is empty) and isFullQueue

(checks whether a queue is full).

We also need an operation, initializeQueue, to initialize the queue to an empty state.
Moreover, to retrieve the first and last elements of the queue, we include the operations
front and back, as described in the following list. Some of the queue operations are:

• initializeQueue: Initializes the queue to an empty state.

• isEmptyQueue: Determines whether the queue is empty. If the queue is
empty, it returns the value true; otherwise, it returns the value false.

• isFullQueue: Determines whether the queue is full. If the queue is full,
it returns the value true; otherwise, it returns the value false.

• front: Returns the front, that is, the first element of the queue. Input to
this operation consists of the queue. Prior to this operation, the queue
must exist and must not be empty.

• back: Returns the last element of the queue. Input to this operation
consists of the queue. Prior to this operation, the queue must exist and
must not be empty.

• addQueue: Adds a new element to the rear of the queue. Input to this
operation consists of the queue and the new element. Prior to this
operation, the queue must exist and must not be full.

• deleteQueue: Removes the front element from the queue. Input to this
operation consists of the queue. Prior to this operation, the queue must
exist and must not be empty.

As in the case of a stack, a queue can be stored in an array or in a linked structure. We will
consider both implementations. Because elements are added at one end and removed
from the other end, we need two pointers to keep track of the front and rear of the
queue, called queueFront and queueRear.

1200 | Chapter 18: Stacks and Queues

The following abstract class queueADT defines these operations as an ADT:

template <class Type>
class queueADT
{

public:
virtual bool isEmptyQueue() const = 0;

//Function to determine whether the queue is empty.
//Postcondition: Returns true if the queue is empty,
// otherwise returns false.

virtual bool isFullQueue() const = 0;
//Function to determine whether the queue is full.
//Postcondition: Returns true if the queue is full,
// otherwise returns false.

virtual void initializeQueue() = 0;
//Function to initialize the queue to an empty state.
//Postcondition: The queue is empty.

virtual Type front() const = 0;
//Function to return the first element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: If the queue is empty, the program
// terminates; otherwise, the first
// element of the queue is returned.

virtual Type back() const = 0;
//Function to return the last element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: If the queue is empty, the program
// terminates; otherwise, the last
// element of the queue is returned.

virtual void addQueue(const Type& queueElement) = 0;
//Function to add queueElement to the queue.
//Precondition: The queue exists and is not full.
//Postcondition: The queue is changed and queueElement
// is added to the queue.

virtual void deleteQueue() = 0;
//Function to remove the first element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: The queue is changed and the first
// element is removed from the queue.

};

We leave it as an exercise for you to draw the UML class diagram of the class

queueADT.

1

8

Queues | 1201

Implementation of Queues as Arrays
Before giving the definition of the class to implement a queue as an ADT, we need to
decide how many member variables are needed to implement the queue. Of course, we
need an array to store the queue elements, the variables queueFront and queueRear to
keep track of the first and last elements of the queue and the variable maxQueueSize to
specify the maximum size of the queue. Thus, we need at least four member variables.

Before writing the algorithms to implement the queue operations, we need to decide
how to use queueFront and queueRear to access the queue elements. How do
queueFront and queueRear indicate that the queue is empty or full? Suppose that
queueFront gives the index of the first element of the queue, and queueRear gives the
index of the last element of the queue. To add an element to the queue, first we advance
queueRear to the next array position, and then we add the element to the position that
queueRear is pointing to. To delete an element from the queue, first we retrieve the
element that queueFront is pointing to, and then we advance queueFront to the next
element of the queue. Thus, queueFront changes after each deleteQueue operation,
and queueRear changes after each addQueue operation.

Let’s see what happens when queueFront changes after a deleteQueue operation and
queueRear changes after an addQueue operation. Assume that the array to hold the
queue elements is of size 100.

Initially, the queue is empty. After the operation:

addQueue(Queue,'A');

the array is as shown in Figure 18-26.

After two more addQueue operations:

addQueue(Queue,'B');
addQueue(Queue,'C');

the array is as shown in Figure 18-27.

queueFront 0

queueRear 0

[0] [1] [2] [3] [97]

A

[98] [99]

......

FIGURE 18-26 Queue after the first addQueue operation

1202 | Chapter 18: Stacks and Queues

Now consider the deleteQueue operation:

deleteQueue();

After this operation, the array containing the queue is as shown in Figure 18-28.

Will this queue design work? Suppose A stands for adding (that is, addQueue) an element
to the queue, and D stands for deleting (that is, deleteQueue) an element from the
queue. Consider the following sequence of operations:

AAADADADADADADADA...

This sequence of operations would eventually set the index queueRear to point to the
last array position, giving the impression that the queue is full. However, the queue has
only two or three elements, and the front of the array is empty (see Figure 18-29).

1

8

queueFront 0

queueRear 2

[0] [1] [2] [3] [97]

A B C

[98] [99]

......

FIGURE 18-27 Queue after two more addQueue operations

queueFront 1

queueRear 2

[0] [1] [2] [3] [97]

A B C

[98] [99]

......

FIGURE 18-28 Queue after the deleteQueue operation

queueFront 97

queueRear 99

[0] [1] [2] [3] [97] [98] [99]

......

FIGURE 18-29 Queue after the sequence of operations AAADADADADADA...

Queues | 1203

One solution to this problem is that when the queue overflows to the rear (that is, queueRear
points to the last array position),we can check the value of the index queueFront. If the value
of queueFront indicates that there is room in the front of the array, then when queueRear

gets to the last array position, we can slide all of the queue elements toward the first array
position. This solution is good if the queue size is very small; otherwise, the program may
execute more slowly.

Another solution to this problem is to assume that the array is circular—that is, the first
array position immediately follows the last array position (see Figure 18-30).

We will consider the array containing the queue to be circular, although we will draw the
figures of the array holding the queue elements as before.

Suppose that we have the queue as shown in Figure 18-31(a).

After the operation addQueue(Queue,'Z');, the queue is as shown in Figure 18-31(b).

FIGURE 18-30 Circular queue

[0]

queueFront queueRear

[1]

..... X Y

[98][99]

98 99

[0]

queueFront queueRear

Z

[1]

..... X Y

[98][99]

98 0

(a) Before addQueue(Queue,'Z'); (b) After addQueue(Queue,'Z');

FIGURE 18-31 Queue before and after the add operation

1204 | Chapter 18: Stacks and Queues

Because the array containing the queue is circular, we can use the following statement to
advance queueRear (queueFront) to the next array position:

queueRear = (queueRear + 1) % maxQueueSize;

If queueRear < maxQueueSize - 1, then queueRear + 1 <= maxQueueSize - 1, so
(queueRear + 1) % maxQueueSize = queueRear + 1. If queueRear == maxQueue-

Size - 1 (that is, queueRear points to the last array position), queueRear + 1 ==

maxQueueSize, so (queueRear + 1) % maxQueueSize = 0. In this case, queueRear
will be set to 0, which is the first array position.

This queue design seems to work well. Before we write the algorithms to implement the
queue operations, consider the following two cases.

Case 1: Suppose that after certain operations, the array containing the queue is as shown
in Figure 18-32(a).

After the operation deleteQueue();, the resulting array is as shown in Figure 18-32(b).

Case 2: Let us now consider the queue shown in Figure 18-33(a).

After the operation addQueue(Queue,'Z');, the resulting array is as shown in
Figure 18-33(b).

1

8

[0]

queueFront queueRear

[97]

..... X

[98][99]

98 98 queueFront queueRear99 98

(b) After deleteQueue();

[0] [97]

.....

[98][99]

(a) Before deleteQueue();

FIGURE 18-32 Queue before and after the delete operation

[0]

queueFront queueRear

[97]

.....

[98][99]

99 97 queueFront queueRear99 98

(a) Before addQueue(Queue,'Z'); (b) After addQueue(Queue,'Z');

queue

elements

[0] [97]

..... Z

[98][99]

queue elements

FIGURE 18-33 Queue before and after the add operation

Queues | 1205

The arrays in Figures 18-32(b) and 18-33(b) have identical values for queueFront and
queueRear. However, the resulting array in Figure 18-32(b) represents an empty queue,
whereas the resulting array in Figure 18-33(b) represents a full queue. This latest queue
design has brought up another problem of distinguishing between an empty and a full queue.

This problem has several solutions. One solution is to keep a count. In addition to the
member variables queueFront and queueRear, we need another variable, count, to
implement the queue. The value of count is incremented whenever a new element is
added to the queue, and it is decremented whenever an element is removed from the
queue. In this case, the function initializeQueue initializes count to 0. This solution
is very useful if the user of the queue frequently needs to know the number of elements in
the queue.

Another solution is to let queueFront indicate the index of the array position preceding

the first element of the queue, rather than the index of the (actual) first element itself. In
this case, assuming queueRear still indicates the index of the last element in the queue,
the queue is empty if queueFront == queueRear. In this solution, the slot indicated by
the index queueFront (that is, the slot preceding the first true element) is reserved. The
queue will be full if the next available space is the special reserved slot indicated by
queueFront. Finally, because the array position indicated by queueFront is to be kept
empty, if the array size is, say, 100, then 99 elements can be stored in the queue
(see Figure 18-34).

Let us implement the queue using the first solution. That is, we use the variable count to
indicate whether the queue is empty or full.The following class implements the functions
of the abstract class queueADT. Because arrays can be allocated dynamically, we will
leave it for the user to specify the size of the array to implement the queue. The default
size of the array is 100.

template <class Type>
class queueType: public queueADT<Type>
{
public:

const queueType<Type>& operator=(const queueType<Type>&);
//Overload the assignment operator.

queueFront queueRear1 97

[2] [97]

.....

[98][99]

queue

elements

[0] [1]

reserved slot

FIGURE 18-34 Array to store the queue elements with a reserved slot

1206 | Chapter 18: Stacks and Queues

1

8

bool isEmptyQueue() const;
//Function to determine whether the queue is empty.
//Postcondition: Returns true if the queue is empty,
// otherwise returns false.

bool isFullQueue() const;
//Function to determine whether the queue is full.
//Postcondition: Returns true if the queue is full,
// otherwise returns false.

void initializeQueue();
//Function to initialize the queue to an empty state.
//Postcondition: The queue is empty.

Type front() const;
//Function to return the first element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: If the queue is empty, the program
// terminates; otherwise, the first
// element of the queue is returned.

Type back() const;
//Function to return the last element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: If the queue is empty, the program
// terminates; otherwise, the last
// element of the queue is returned.

void addQueue(const Type& queueElement);
//Function to add queueElement to the queue.
//Precondition: The queue exists and is not full.
//Postcondition: The queue is changed and queueElement
// is added to the queue.

void deleteQueue();
//Function to remove the first element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: The queue is changed and the first
// element is removed from the queue.

queueType(int queueSize = 100);
//Constructor

queueType(const queueType<Type>& otherQueue);
//Copy constructor

�queueType();
//Destructor

private:
int maxQueueSize; //variable to store the maximum queue size
int count; //variable to store the number of

//elements in the queue
int queueFront; //variable to point to the first

//element of the queue
int queueRear; //variable to point to the last

//element of the queue
Type *list; //pointer to the array that holds

//the queue elements
};

Queues | 1207

We leave the UML class diagram of the class queueType as an exercise for you.
(See Exercise 30 at the end of this chapter.)

Next, we consider the implementation of the queue operations.

EMPTY QUEUE AND FULL QUEUE

As discussed earlier, the queue is empty if count == 0, and the queue is full if count ==

maxQueueSize. So the functions to implement these operations are:

template <class Type>
bool queueType<Type>::isEmptyQueue() const
{

return (count == 0);
} //end isEmptyQueue

template <class Type>
bool queueType<Type>::isFullQueue() const
{

return (count == maxQueueSize);
} //end isFullQueue

INITIALIZE QUEUE

This operation initializes a queue to an empty state. The first element is added at
the first array position. Therefore, we initialize queueFront to 0, queueRear to
maxQueueSize - 1, and count to 0 (see Figure 18-35).

The definition of the function initializeQueue is:

template <class Type>
void queueType<Type>::initializeQueue()
{

queueFront = 0;
queueRear = maxQueueSize - 1;
count = 0;

} //end initializeQueue

FRONT

This operation returns the first element of the queue. If the queue is nonempty, the
element of the queue indicated by the index queueFront is returned; otherwise, the
program terminates.

[0]

queueFront queueRear

[1]

.....

[97]

0 99

[2]

count 0

[98][99]

FIGURE 18-35 Empty queue

1208 | Chapter 18: Stacks and Queues

template <class Type>
Type queueType<Type>::front() const
{

assert(!isEmptyQueue());
return list[queueFront];

} //end front

BACK

This operation returns the last element of the queue. If the queue is nonempty, the
element of the queue indicated by the index queueRear is returned; otherwise, the
program terminates.

template <class Type>
Type queueType<Type>::back() const
{

assert(!isEmptyQueue());
return list[queueRear];

} //end back

addQueue

Next, we implement the addQueue operation. Because queueRear points to the last
element of the queue, to add a new element to the queue, we first advance
queueRear to the next array position and then add the new element to the array
position indicated by queueRear. We also increment count by 1. So the function
addQueue is:

template <class Type>
void queueType<Type>::addQueue(const Type& newElement)
{

if (!isFullQueue())
{

queueRear = (queueRear + 1) % maxQueueSize; //use the
//mod operator to advance queueRear
//because the array is circular

count++;
list[queueRear] = newElement;

}

else
cout << "Cannot add to a full queue." << endl;

} //end addQueue

deleteQueue

To implement the deleteQueue operation, we access the index queueFront. Because
queueFront points to the array position containing the first element of the queue, in
order to remove the first queue element, we decrement count by 1 and advance
queueFront to the next queue element. So the function deleteQueue is:

1

8

Queues | 1209

template <class Type>
void queueType<Type>::deleteQueue()
{

if (!isEmptyQueue())
{

count--;
queueFront = (queueFront + 1) % maxQueueSize; //use the

//mod operator to advance queueFront
//because the array is circular

}

else
cout << "Cannot remove from an empty queue." << endl;

} //end deleteQueue

CONSTRUCTORS AND DESTRUCTORS

To complete the implementation of the queue operations, we next consider the
implementation of the constructor and the destructor. The constructor gets the
maxQueueSize from the user, sets the variable maxQueueSize to the value specified
by the user, and creates an array of size maxQueueSize. If the user does not specify
the queue size, the constructor uses the default value, which is 100, to create an array
of size 100. The constructor also initializes queueFront and queueRear to indicate
that the queue is empty. The definition of the function to implement the constructor
is:

template <class Type>
queueType<Type>::queueType(int queueSize)
{

if (queueSize <= 0)
{

cout << "Size of the array to hold the queue must "
<< "be positive." << endl;

cout << "Creating an array of size 100." << endl;

maxQueueSize = 100;
}

else
maxQueueSize = queueSize; //set maxQueueSize to

//queueSize

queueFront = 0; //initialize queueFront
queueRear = maxQueueSize - 1; //initialize queueRear
count = 0;
list = new Type[maxQueueSize]; //create the array to

//hold the queue elements
} //end constructor

The array to store the queue elements is created dynamically. Therefore, when the queue
object goes out of scope, the destructor simply deallocates the memory occupied by the
array that stores the queue elements. The definition of the function to implement the
destructor is:

1210 | Chapter 18: Stacks and Queues

template <class Type>
queueType<Type>::~queueType()
{

delete [] list;
}

The implementation of the copy constructor and overloading the assignment operator are
left as exercises for you. (The definitions of these functions are similar to those discussed
for linked lists and stacks.)

Linked Implementation of Queues
Because the size of the array to store the queue elements is fixed, only a finite number of
queue elements can be stored in the array. Also, the array implementation of the queue
requires the array to be treated in a special way together with the values of the indices
queueFront and queueRear. The linked implementation of a queue simplifies many of
the special cases of the array implementation and, because the memory to store a queue
element is allocated dynamically, the queue is never full. This section discusses the linked
implementation of a queue.

Because elements are added at one end and removed from the other end, we need to
know the front of the queue and the rear of the queue. Thus, we need two pointers,
queueFront and queueRear, to maintain the queue. The following class implements
the functions of the abstract class queueADT:

//Definition of the node
template <class Type>
struct nodeType
{

Type info;
nodeType<Type> *link;

};

template <class Type>
class linkedQueueType: public queueADT<Type>
{
public:

const linkedQueueType<Type>& operator=
(const linkedQueueType<Type>&);

//Overload the assignment operator.

bool isEmptyQueue() const;
//Function to determine whether the queue is empty.
//Postcondition: Returns true if the queue is empty,
// otherwise returns false.

bool isFullQueue() const;
//Function to determine whether the queue is full.
//Postcondition: Returns true if the queue is full,
// otherwise returns false.

1

8

Queues | 1211

void initializeQueue();
//Function to initialize the queue to an empty state.
//Postcondition: queueFront = NULL; queueRear = NULL

Type front() const;
//Function to return the first element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: If the queue is empty, the program
// terminates; otherwise, the first
// element of the queue is returned.

Type back() const;
//Function to return the last element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: If the queue is empty, the program
// terminates; otherwise, the last
// element of the queue is returned.

void addQueue(const Type& queueElement);
//Function to add queueElement to the queue.
//Precondition: The queue exists and is not full.
//Postcondition: The queue is changed and queueElement
// is added to the queue.

void deleteQueue();
//Function to remove the first element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: The queue is changed and the first
// element is removed from the queue.

linkedQueueType();
//Default constructor

linkedQueueType(const linkedQueueType<Type>& otherQueue);
//Copy constructor

~linkedQueueType();
//Destructor

private:
nodeType<Type> *queueFront; //pointer to the front of

//the queue
nodeType<Type> *queueRear; //pointer to the rear of

//the queue
};

The UML class diagram of the class linkedQueueType is left as an exercise for you.
(See Exercise 31 at the end of this chapter.)

Next, we write the definitions of the functions of the class linkedQueueType.

EMPTY AND FULL QUEUE

The queue is empty if queueFront is NULL. Memory to store the queue elements
is allocated dynamically. Therefore, the queue is never full, so the function to implement

1212 | Chapter 18: Stacks and Queues

the isFullQueue operation returns the value false. (The queue is full only if we run
out of memory.)

template <class Type>
bool linkedQueueType<Type>::isEmptyQueue() const
{

return (queueFront == NULL);
} //end

template <class Type>
bool linkedQueueType<Type>::isFullQueue() const
{

return false;
} //end isFullQueue

Note that in reality, in the linked implementation of queues, the function isFullQueue

does not apply because, logically, the queue is never full. However, you must provide its
definition because it is included as an abstract function in the parent class queueADT.

INITIALIZE QUEUE

The operation initializeQueue initializes the queue to an empty state. The queue is
empty if there are no elements in the queue. Note that the constructor initializes the
queue when the queue object is declared. So this operation must remove all of the
elements, if any, from the queue. Therefore, this operation traverses the list containing
the queue starting at the first node, and it deallocates the memory occupied by the queue
elements. The definition of this function is:

template <class Type>
void linkedQueueType<Type>::initializeQueue()
{

nodeType<Type> *temp;

while (queueFront!= NULL) //while there are elements left
//in the queue

{

temp = queueFront; //set temp to point to the
//current node

queueFront = queueFront->link; //advance first to
//the next node

delete temp; //deallocate memory occupied by temp
}

queueRear = NULL; //set rear to NULL
} //end initializeQueue

addQueue, front, back, AND deleteQueue OPERATIONS

The addQueue operation adds a new element at the end of the queue. To implement this
operation, we access the pointer queueRear.

1

8

Queues | 1213

If the queue is nonempty, the operation front returns the first element of the queue, and
so the element of the queue indicated by the pointer queueFront is returned. If the
queue is empty, the function front terminates the program.

If the queue is nonempty, the operation back returns the last element of the queue, so
the element of the queue indicated by the pointer queueRear is returned. If the queue is
empty, the function back terminates the program. Similarly, if the queue is nonempty,
the operation deleteQueue removes the first element of the queue, so we access the
pointer queueFront.

The definitions of the functions to implement these operations are:

template <class Type>
void linkedQueueType<Type>::addQueue(const Type& newElement)
{

nodeType<Type> *newNode;

newNode = new nodeType<Type>; //create the node

newNode->info = newElement; //store the info
newNode->link = NULL; //initialize the link field to NULL

if (queueFront == NULL) //if initially the queue is empty
{

queueFront = newNode;
queueRear = newNode;

}

else //add newNode at the end
{

queueRear->link = newNode;
queueRear = queueRear->link;

}

}//end addQueue

template <class Type>
Type linkedQueueType<Type>::front() const
{

assert(queueFront != NULL);
return queueFront->info;

} //end front

template <class Type>
Type linkedQueueType<Type>::back() const
{

assert(queueRear!= NULL);
return queueRear->info;

} //end back

1214 | Chapter 18: Stacks and Queues

template <class Type>
void linkedQueueType<Type>::deleteQueue()
{

nodeType<Type> *temp;

if (!isEmptyQueue())
{

temp = queueFront; //make temp point to the
//first node

queueFront = queueFront->link; //advance queueFront

delete temp; //delete the first node

if (queueFront == NULL) //if after deletion the
//queue is empty

queueRear = NULL; //set queueRear to NULL
}

else
cout << "Cannot remove from an empty queue" << endl;

}//end deleteQueue

The definition of the default constructor is:

template<class Type>
linkedQueueType<Type>::linkedQueueType()
{

queueFront = NULL; //set front to null
queueRear = NULL; //set rear to null

} //end default constructor

When the queue object goes out of scope, the destructor destroys the queue; that is, it
deallocates the memory occupied by the elements of the queue. The definition of
the function to implement the destructor is similar to the definition of the function
initializeQueue. Also, the functions to implement the copy constructor and overload
the assignment operators are similar to the corresponding functions for stacks. Imple-
menting these operations is left as an exercise for you.

EXAMPLE 18-5

The following program tests various operations on a queue. It uses the class

linkedQueueType to implement a queue.

//Test Program linked queue

#include <iostream>
#include "linkedQueue.h"

using namespace std;
int main()

1

8

Queues | 1215

{

linkedQueueType<int> queue;
int x, y;

queue.initializeQueue();
x = 4;
y = 5;
queue.addQueue(x);
queue.addQueue(y);
x = queue.front();
queue.deleteQueue();
queue.addQueue(x + 5);
queue.addQueue(16);
queue.addQueue(x);
queue.addQueue(y - 3);

cout << "Queue Elements: ";

while (!queue.isEmptyQueue())
{

cout << queue.front() << " ";
queue.deleteQueue();

}

cout << endl;

return 0;
}

Sample Run:

Queue Elements: 5 9 16 4 2

Queue Derived from the class unorderedLinkedListType
From the definitions of the functions to implement the queue operations, it is clear that the
linked implementation of a queue is similar to the implementation of a linked list created in a
forward manner (see Chapter 17). The addQueue operation is similar to the operation
insertFirst. Likewise, the operations initializeQueue and initializeList and
isEmptyQueue and isEmptyList are similar. The deleteQueue operation can be imple-
mented as before. The pointer queueFront is the same as the pointer first, and the
pointer queueRear is the same as the pointer last. This correspondence suggests that we
can derive the class to implement the queue from the class linkedListType (seeChapter 17).
Note that the class linkedListType is an abstract class and does not implement all
of the operations. However, the class unorderedLinkedListType is derived from
the class linkedListType and provides the definitions of the abstract functions of the
class linkedListType. Therefore, we can derive the class linkedQueueType from
the class unorderedLinkedListType.

1216 | Chapter 18: Stacks and Queues

We leave it as an exercise for you to write the definition of the class linkedQueueType

that is derived from the class unorderedLinkedListType. See Programming Exer-
cise 17 at the end of this chapter.

Application of Queues: Simulation
A technique in which one system models the behavior of another system is called
simulation. For example, physical simulators include wind tunnels used to experiment
with the design of car bodies and flight simulators used to train airline pilots. Simulation
techniques are used when it is too expensive or dangerous to experiment with real
systems. You can also design computer models to study the behavior of real systems.
(We will describe some real systems modeled by computers shortly.)

Simulating the behavior of an expensive or dangerous experiment using a computer
model is usually less expensive than using the real system and is a good way to gain insight
without putting human life in danger. Moreover, computer simulations are particularly
useful for complex systems when it is difficult to construct a mathematical model. For
such systems, computer models can retain descriptive accuracy. In computer simulations,
the steps of a program are used to model the behavior of a real system. Let us consider one
such problem.

The manager of a local movie theater is hearing complaints from customers about the
length of time they have to wait in line to buy tickets. The theater currently has only one
cashier. Another theater is preparing to open in the neighborhood, and the manager is
afraid of losing customers. The manager wants to hire enough cashiers so that a customer
does not have to wait too long to buy a ticket but does not want to hire extra cashiers on
a trial basis and potentially waste time and money. One thing that the manager would like
to know is the average time a customer has to wait for service. The manager wants
someone to write a program to simulate the behavior of the theater.

In computer simulation, the objects being studied are usually represented as data. For the
theater problem, some of the objects are the customers and the cashier. The cashier serves
the customers, and we want to determine a customer’s average waiting time. Actions are
implemented by writing algorithms, which in a programming language are implemented
with the help of functions. Thus, functions are used to implement the actions of the
objects. In C++, we can combine the data and the operations on that data into a single
unit with the help of classes. Thus, objects can be represented as classes. The member
variables of the class describe the properties of the objects, and the function members
describe the actions on that data. This change in simulation results can also occur if we
change the values of the data or modify the definitions of the functions (that is, modify
the algorithms implementing the actions). The main goal of a computer simulation is to
either generate results showing the performance of an existing system or predict the
performance of a proposed system.

In the theater problem, when the cashier is serving a customer, the other customers must
wait. Because customers are served on a first come, first served basis and queues are an

1

8

Application of Queues: Simulation | 1217

effective way to implement a First In First Out system, queues are important data
structures for use in computer simulations. This section examines computer simulations
in which queues are the basic data structure. These simulations model the behavior of
systems, called queuing systems, in which queues of objects are waiting to be served by
various servers. In other words, a queuing system consists of servers and queues of objects
waiting to be served. We deal with a variety of queuing systems on a daily basis. For
example, a grocery store and a banking system are both queuing systems. Furthermore,
when you send a print request to a networked printer that is shared by many people, your
print request goes in a queue. Print requests that arrived before your print request are
usually completed before yours. Thus, the printer acts as the server when a queue of
documents is waiting to be printed.

Designing a Queuing System
In this section, we describe a queuing system that can be used in a variety of applications,
such as a bank, grocery store, movie theater, printer, or a mainframe environment in
which several people are trying to use the same processors to execute their programs. To
describe a queuing system, we use the term server for the object that provides the
service. For example, in a bank, a teller is a server; in a grocery store or movie theater, a
cashier is a server. We will call the object receiving the service the customer, and the
service time—the time it takes to serve a customer—the transaction time.

Because a queuing system consists of servers and a queue of waiting objects, we will
model a system that consists of a list of servers and a waiting queue holding the customers
to be served. The customer at the front of the queue waits for the next available server.
When a server becomes free, the customer at the front of the queue moves to the free
server to be served.

When the first customer arrives, all servers are free and the customer moves to the first
server. When the next customer arrives, if a server is available, the customer immediately
moves to the available server; otherwise, the customer waits in the queue. To model a
queuing system, we need to know the number of servers, the expected arrival time of a
customer, the time between the arrivals of customers, and the number of events affecting
the system.

Let us again consider the movie theater system. The performance of the system depends
on how many servers are available, how long it takes to serve a customer, and how often a
customer arrives. If it takes too long to serve a customer and customers arrive frequently,
then more servers are needed. This system can be modeled as a time-driven simulation. In
a time-driven simulation, the clock is implemented as a counter, and the passage of,
say, one minute can be implemented by incrementing the counter by 1. The simulation is
run for a fixed amount of time. If the simulation needs to be run for 100 minutes, the
counter starts at 1 and goes up to 100, which can be implemented by using a loop.

For the simulation described in this section, we want to determine the average wait time for
a customer. To calculate the average wait time for a customer, we need to add the waiting

1218 | Chapter 18: Stacks and Queues

time of each customer and then divide the sum by the number of customers who have
arrived. When a customer arrives, he or she goes to the end of the queue and the
customer’s waiting time begins. If the queue is empty and a server is free, the customer
is served immediately, so this customer’s waiting time is zero. On the other hand, if a
customer arrives and either the queue is nonempty or all of the servers are busy, the customer
must wait for the next available server and, therefore, this customer’s waiting time begins.
We can keep track of the customer’s waiting time by using a timer for each customer. When
a customer arrives, the timer is set to 0, which is incremented after each time unit.

Suppose that, on average, it takes five minutes for a server to serve a customer. When a
server becomes free and the waiting customer’s queue is nonempty, the customer at the
front of the queue proceeds to begin the transaction. Thus, we must keep track of the
time a customer is with a server. When the customer arrives at a server, the transaction
time is set to five and is decremented after each time unit. When the transaction time
becomes zero, the server is marked free. Hence, the two objects needed to implement a
time-driven computer simulation of a queuing system are the customer and the server.

Next, before designing the main algorithm to implement the simulation, we design classes
to implement each of the two objects: customer and server.

Customer
Every customer has a customer number, arrival time, waiting time, transaction time, and
departure time. If we know the arrival time, waiting time, and transaction time, we can
determine the departure time by adding these three times. Let us call the class to
implement the customer object customerType. It follows that the class

customerType has four member variables: the customerNumber, arrivalTime,
waitingTime, and transactionTime, each of the data type int. The basic operations
that must be performed on an object of type customerType are as follows: set the
customer’s number, arrival time, and waiting time; increment the waiting time by one
time unit; return the waiting time; return the arrival time; return the transaction time;
and return the customer number. The following class, customerType, implements the
customer as an ADT:

class customerType
{

public:
customerType(int cN = 0, int arrvTime = 0, int wTime = 0,

int tTime = 0);
//Constructor to initialize the instance variables
//according to the parameters.
//If no value is specified in the object declaration,
//the default values are assigned.
//Postcondition: customerNumber = cN;
// arrivalTime = arrvTime;
// waitingTime = wTime;
// transactionTime = tTime;

1

8

Application of Queues: Simulation | 1219

void setCustomerInfo(int customerN = 0, int inTime = 0,
int wTime = 0, int tTime = 0);

//Function to initialize the instance variables.
//Instance variables are set according to the parameters.
//Postcondition: customerNumber = customerN;
// arrivalTime = arrvTime;
// waitingTime = wTime;
// transactionTime = tTime;

int getWaitingTime() const;
//Function to return the waiting time of a customer.
//Postcondition: The value of waitingTime is returned.

void setWaitingTime(int time);
//Function to set the waiting time of a customer.
//Postcondition: waitingTime = time;

void incrementWaitingTime();
//Function to increment the waiting time by one time unit.
//Postcondition: waitingTime++;

int getArrivalTime() const;
//Function to return the arrival time of a customer.
//Postcondition: The value of arrivalTime is returned.

int getTransactionTime() const;
//Function to return the transaction time of a customer.
//Postcondition: The value of transactionTime is returned.

int getCustomerNumber() const;
//Function to return the customer number.
//Postcondition: The value of customerNumber is returned.

private:
int customerNumber;
int arrivalTime;
int waitingTime;
int transactionTime;

};

Figure 18-36 shows the UML class diagram of the class customerType.

1220 | Chapter 18: Stacks and Queues

The definitions of the member functions of the class customerType follow easily from
their descriptions. Next, we give the definitions of the member functions of the class

customerType.

The function setCustomerInfo uses the values of the parameters to initialize cus-

tomerNumber, arrivalTime, waitingTime, and transactionTime. The definition
of setCustomerInfo is:

void customerType::setCustomerInfo(int customerN, int arrvTime,
int wTime, int tTime)

{

customerNumber = customerN;
arrivalTime = arrvTime;
waitingTime = wTime;
transactionTime = tTime;

}

The definition of the constructor is similar to the definition of the function
setCustomerInfo. It uses the values of the parameters to initialize customerNumber,
arrivalTime, waitingTime, and transactionTime. To make debugging easier, we
use the function setCustomerInfo to write the definition of the constructor, which is
given next, as follows:

1

8

customerType

-customerNumber: int

-arrivalTime: int

-waitingTime: int

-transactionTime: int

+setCustomerInfo(int = 0, int = 0, int = 0,

int = 0): void

+getWaitingTime() const: int

+setWaitingTime(int): void

+incrementWaitingTime(): void

+getArrivalTime() const: int

+getTransactionTime() const: int

+getCustomerNumber() const: int

+customerType(int = 0, int = 0, int = 0,

int = 0)

FIGURE 18-36 UML class diagram of the class customerType

Application of Queues: Simulation | 1221

customerType::customerType(int customerN, int arrvTime,
int wTime, int tTime)

{

setCustomerInfo(customerN, arrvTime, wTime, tTime);
}

The function getWaitingTime returns the current waiting time. The definition of the
function getWaitingTime is:

int customerType::getWaitingTime() const
{

return waitingTime;
}

The function incrementWaitingTime increments the value of waitingTime. Its
definition is:

void customerType::incrementWaitingTime()
{

waitingTime++;
}

The definitions of the functions setWaitingTime, getArrivalTime,
getTransactionTime, and getCustomerNumber are left as an exercise for you.

Server
At any given time unit, the server is either busy serving a customer or is free. We use
a string variable to set the status of the server. Every server has a timer and,
because the program might need to know which customer is served by which server,
the server also stores the information of the customer being served. Thus, three
member variables are associated with a server: the status, the transactionTime,
and the currentCustomer. Some of the basic operations that must be performed on
a server are as follows: check whether the server is free; set the server as free; set the
server as busy; set the transaction time (that is, how long it takes to serve the
customer); return the remaining transaction time (to determine whether the server
should be set to free); if the server is busy after each time unit, decrement the
transaction time by one time unit; and so on. The following class, serverType,
implements the server as an ADT:

class serverType
{

public:
serverType();

//Default constructor
//Sets the values of the instance variables to their default
//values.
//Postcondition: currentCustomer is initialized by its
// default constructor; status = "free"; and
// the transaction time is initialized to 0.

1222 | Chapter 18: Stacks and Queues

bool isFree() const;
//Function to determine if the server is free.
//Postcondition: Returns true if the server is free,
// otherwise returns false.

void setBusy();
//Function to set the status of the server to busy.
//Postcondition: status = "busy";

void setFree();
//Function to set the status of the server to "free".
//Postcondition: status = "free";

void setTransactionTime(int t);
//Function to set the transaction time according to the
//parameter t.
//Postcondition: transactionTime = t;

void setTransactionTime();
//Function to set the transaction time according to
//the transaction time of the current customer.
//Postcondition:
// transactionTime = currentCustomer.transactionTime;

int getRemainingTransactionTime() const;
//Function to return the remaining transaction time.
//Postcondition: The value of transactionTime is returned.

void decreaseTransactionTime();
//Function to decrease the transactionTime by one unit.
//Postcondition: transactionTime--;

void setCurrentCustomer(customerType cCustomer);
//Function to set the info of the current customer
//according to the parameter cCustomer.
//Postcondition: currentCustomer = cCustomer;

int getCurrentCustomerNumber() const;
//Function to return the customer number of the current
//customer.
//Postcondition: The value of customerNumber of the
// current customer is returned.

int getCurrentCustomerArrivalTime() const;
//Function to return the arrival time of the current
//customer.
//Postcondition: The value of arrivalTime of the current
// customer is returned.

int getCurrentCustomerWaitingTime() const;
//Function to return the current waiting time of the
//current customer.

1

8

Application of Queues: Simulation | 1223

//Postcondition: The value of transactionTime is
// returned.

int getCurrentCustomerTransactionTime() const;
//Function to return the transaction time of the
//current customer.
//Postcondition: The value of transactionTime of the
// current customer is returned.

private:
customerType currentCustomer;
string status;
int transactionTime;

};

Figure 18-37 shows the UML class diagram of the class serverType.

The definitions of some of the member functions of the class serverType are:

serverType::serverType()
{

status = "free";
transactionTime = 0;

}

serverType

-currentCustomer: customerType

-status: string

-transactionTime: int

+isFree() const: bool

+setBusy(): void

+setFree(): void

+setTransactionTime(int): void

+setTransactionTime(): void

+getRemainingTransactionTime() const: int

+decreaseTransactionTime(): void

+setCurrentCustomer(customerType): void

+getCurrentCustomerNumber() const: int

+getCurrentCustomerArrivalTime() const: int

+getCurrentCustomerWaitingTime() const: int

+getCurrentCustomerTransactionTime() const: int

+serverType()

FIGURE 18-37 UML class diagram of the class serverType

1224 | Chapter 18: Stacks and Queues

bool serverType::isFree() const
{

return (status == "free");
}

void serverType::setBusy()
{

status = "busy";
}

void serverType::setFree()
{

status = "free";
}

void serverType::setTransactionTime(int t)
{

transactionTime = t;
}

void serverType::setTransactionTime()
{

int time;

time = currentCustomer.getTransactionTime();

transactionTime = time;
}

void serverType::decreaseTransactionTime()
{

transactionTime--;
}

We leave the definitions of the functions getRemainingTransactionTime,
setCurrentCustomer, getCurrentCustomerNumber, getCurrentCustomerArrivalTime,
getCurrentCustomerWaitingTime, and getCurrentCustomerTransactionTime as an
exercise for you.

Because we are designing a simulation program that can be used in a variety of applica-
tions, we need to design two more classes: one to create and process a list of servers and
one to create and process a queue of waiting customers. The next two sections describe
each of these classes.

Server List
A server list is a set of servers. At any given time, a server is either free or busy. For the
customer at the front of the queue, we need to find a server in the list that is free. If all of
the servers are busy, then the customer must wait until one of the servers becomes free.
Thus, the class that implements a list of servers has two member variables: one to store the

1

8

Application of Queues: Simulation | 1225

number of servers and one to maintain a list of servers. Using dynamic arrays, depending
on the number of servers specified by the user, a list of servers is created during
program execution. Some of the operations that must be performed on a server list are
as follows: return the server number of a free server; when a customer gets ready to do
business and a server is available, set the server to busy; when the simulation ends, some of
the servers might still be busy, so return the number of busy servers; after each time unit,
reduce the transactionTime of each busy server by one time unit; and if the trans-

actionTime of a server becomes zero, set the server to free. The following class,
serverListType, implements the list of servers as an ADT:

class serverListType
{

public:
serverListType(int num = 1);

//Constructor to initialize a list of servers
//Postcondition: numOfServers = num
// A list of servers, specified by num,
// is created and each server is
// initialized to "free".

~serverListType();
//Destructor
//Postcondition: The list of servers is destroyed.

int getFreeServerID() const;
//Function to search the list of servers.
//Postcondition: If a free server is found, returns
// its ID; otherwise, returns -1.

int getNumberOfBusyServers() const;
//Function to return the number of busy servers.
//Postcondition: The number of busy servers is returned.

void setServerBusy(int serverID, customerType cCustomer,
int tTime);

//Function to set a server as busy.
//Postcondition: The server specified by serverID is set
// to "busy", to serve the customer
// specified by cCustomer, and the
// transaction time is set according to the
// parameter tTime.

void setServerBusy(int serverID, customerType cCustomer);
//Function to set a server as busy.
//Postcondition: The server specified by serverID is set
// to "busy", to serve the customer
// specified by cCustomer.

void updateServers(ostream& outFile);
//Function to update the status of a server.
//Postcondition: The transaction time of each busy

1226 | Chapter 18: Stacks and Queues

// server is decremented by one unit. If
// the transaction time of a busy server
// is reduced to zero, the server is set
// to "free". Moreover, if the actual
// parameter corresponding to outFile is
// cout, a message indicating which customer
// has been served is printed on the screen,
// together with the customer's departing
// time. Otherwise, the output is sent to
// a file specified by the user.

private:
int numOfServers;
serverType *servers;

};

Figure 18-38 shows the UML class diagram of the class serverListType.

Following are the definitions of the member functions of the class serverListType.
The definitions of the constructor and destructor are straightforward.

serverListType::serverListType(int num)
{

numOfServers = num;
servers = new serverType[num];

}

serverListType::~serverListType()
{

delete [] servers;
}

1

8

serverListType

-numOfServers: int

-*servers: serverType

+getFreeServerID() const: int

+getNumberOfBusyServers() const: int

+setServerBusy(int, customerType, int): void

+setServerBusy(int, customerType): void

+updateServers(ostream&): void

+serverListType(int = 1)

+~serverListType()

FIGURE 18-38 UML class diagram of the class serverListType

Application of Queues: Simulation | 1227

The function getFreeServerID searches the list of servers. If a free server is found, it
returns the server’s ID; otherwise, the value -1 is returned, which indicates that all of the
servers are busy. The definition of this function is:

int serverListType::getFreeServerID() const
{

int serverID = -1;

int i;

for (i = 0; i < numOfServers; i++)
if (servers[i].isFree())
{

serverID = i;
break;

}

return serverID;
}

The function getNumberOfBusyServers searches the list of servers and determines and
returns the number of busy servers. The definition of this function is:

int serverListType::getNumberOfBusyServers() const
{

int busyServers = 0;

int i;

for (i = 0; i < numOfServers; i++)
if (!servers[i].isFree())

busyServers++;

return busyServers;
}

The function setServerBusy sets a server to busy. This function is overloaded. The
serverID of the server that is set to busy is passed as a parameter to this function. One
function sets the server’s transaction time according to the parameter tTime; the other
function sets it by using the transaction time stored in the object cCustomer. The
transaction time is later needed to determine the average wait time. The definitions of
these functions are:

void serverListType::setServerBusy(int serverID,
customerType cCustomer,
int tTime)

{

servers[serverID].setBusy();
servers[serverID].setTransactionTime(tTime);
servers[serverID].setCurrentCustomer(cCustomer);

}

1228 | Chapter 18: Stacks and Queues

void serverListType::setServerBusy(int serverID,
customerType cCustomer)

{

int time;

time = cCustomer.getTransactionTime();

servers[serverID].setBusy();
servers[serverID].setTransactionTime(time);
servers[serverID].setCurrentCustomer(cCustomer);

}

The definition of the function updateServers is quite straightforward. Starting at the
first server, it searches the list of servers for busy servers. When a busy server is found, its
transactionTime is decremented by 1. If the transactionTime reduces to zero, the
server is set to free. If the transactionTime of a busy server reduces to zero, then the
transaction of the customer being served by the server is complete. If the actual parameter
corresponding to outFile is cout, a message indicating which customer has been served
is printed on the screen, together with the customer’s departing time. Otherwise, the
output is sent to a file specified by the user. The definition of this function is as follows:

void serverListType::updateServers(ostream& outFile)
{

int i;

for (i = 0; i < numOfServers; i++)
if (!servers[i].isFree())
{

servers[i].decreaseTransactionTime();

if (servers[i].getRemainingTransactionTime() == 0)
{

outFile << "From server number " << (i + 1)
<< " customer number "
<< servers[i].getCurrentCustomerNumber()
<< "\n departed at time unit "
<< servers[i].

getCurrentCustomerArrivalTime()
+ servers[i].

getCurrentCustomerWaitingTime()
+ servers[i].

getCurrentCustomerTransactionTime()
<< endl;

servers[i].setFree();
}

}

}

1

8

Application of Queues: Simulation | 1229

Waiting Customers Queue
When a customer arrives, he or she goes to the end of the queue. When a server
becomes available, the customer at the front of the queue leaves to conduct the
transaction. After each time unit, the waiting time of each customer in the queue is
incremented by 1. The ADT queueType designed in this chapter has all the
operations needed to implement a queue, except the operation of incrementing the
waiting time of each customer in the queue by one time unit. We will derive a
class, waitingCustomerQueueType, from the class queueType and add the
additional operations to implement the customer queue. The definition of the class

waitingCustomerQueueType is as follows:

class waitingCustomerQueueType: public queueType<customerType>
{

public:
waitingCustomerQueueType(int size = 100);

//Constructor
//Postcondition: The queue is initialized according to
// the parameter size. The value of size
// is passed to the constructor of queueType.

void updateWaitingQueue();
//Function to increment the waiting time of each
//customer in the queue by one time unit.

};

Notice that the class waitingCustomerQueueType is derived from the class

queueType, which implements the queue in an array. You can also derive it from the

class linkedQueueType, which implements the queue in a linked list. We leave the

details as an exercise for you.

The definitions of the member functions are given next. The definition of the constructor
is as follows:

waitingCustomerQueueType::waitingCustomerQueueType(int size)
:queueType<customerType>(size)

{

}

The function updateWaitingQueue increments the waiting time of each customer in
the queue by one time unit. The class waitingCustomerQueueType is derived from
the class queueType. Because the member variables of queueType are private, the
function updateWaitingQueue cannot directly access the elements of the queue. The
only way to access the elements of the queue is to use the deleteQueue operation. After
incrementing the waiting time, the element can be put back into the queue by using the
addQueue operation.

1230 | Chapter 18: Stacks and Queues

The addQueue operation inserts the element at the end of the queue. If we perform the
deleteQueue operation followed by the addQueue operation for each element of the
queue, then eventually the front element again becomes the front element. Given that
each deleteQueue operation is followed by an addQueue operation, how do we
determine that all of the elements of the queue have been processed? We cannot use
the isEmptyQueue or isFullQueue operations on the queue, because the queue will
never be empty or full.

One solution to this problem is to create a temporary queue. Every element of the
original queue is removed, processed, and inserted into the temporary queue. When the
original queue becomes empty, all of the elements in the queue are processed. We can
then copy the elements from the temporary queue back into the original queue.
However, this solution requires us to use extra memory space, which could be significant.
Also, if the queue is large, extra computer time is needed to copy the elements from the
temporary queue back into the original queue. Let us look into another solution.

In the second solution, before starting to update the elements of the queue, we can insert
a dummy customer with a wait time of, say, -1. During the update process, when we
arrive at the customer with the wait time of -1, we can stop the update process without
processing the customer with the wait time of -1. If we do not process the customer with
the wait time of -1, this customer is removed from the queue and, after processing all of
the elements of the queue, the queue will contain no extra elements. This solution does
not require us to create a temporary queue, so we do not need extra computer time to
copy the elements back into the original queue. We will use this solution to update the
queue. Therefore, the definition of the function updateWaitingQueue is:

void waitingCustomerQueueType::updateWaitingQueue()
{

customerType cust;

cust.setWaitingTime(-1);
int wTime = 0;

addQueue(cust);

while (wTime != -1)
{

cust = front();
deleteQueue();

wTime = cust.getWaitingTime();
if (wTime == -1)

break;
cust.incrementWaitingTime();
addQueue(cust);

}

}

1

8

Application of Queues: Simulation | 1231

Main Program
To run the simulation, we first need to get the following information:

• The number of time units the simulation should run. Assume that each
time unit is one minute.

• The number of servers.

• The amount of time it takes to serve a customer—that is, the transaction time.

• The approximate time between customer arrivals.

These pieces of information are called simulation parameters. By changing the values of
these parameters, we can observe the changes in the performance of the system. We can
write a function, setSimulationParameters, to prompt the user to specify these
values. The definition of this function is:

void setSimulationParameters(int& sTime, int& numOfServers,
int& transTime,
int& tBetweenCArrival)

{

cout << "Enter the simulation time: ";
cin >> sTime;
cout << endl;

cout << "Enter the number of servers: ";
cin >> numOfServers;
cout << endl;

cout << "Enter the transaction time: ";
cin >> transTime;
cout << endl;

cout << "Enter the time between customer arrivals: ";
cin >> tBetweenCArrival;
cout << endl;

}

When a server becomes free and the customer queue is nonempty, we can move the
customer at the front of the queue to the free server to be served. Moreover, when a
customer starts the transaction, the waiting time ends. The waiting time of the customer
is added to the total waiting time. The general algorithm to start the transaction
(supposing that serverID denotes the ID of the free server) is:

1. Remove the customer from the front of the queue.

customer = customerQueue.front();
customerQueue.deleteQueue();

2. Update the total wait time by adding the current customer’s wait time to
the previous total wait time.

totalWait = totalWait + customer.getWaitingTime();

1232 | Chapter 18: Stacks and Queues

3. Set the free server to begin the transaction.

serverList.setServerBusy(serverID, customer, transTime);

To run the simulation, we need to know the number of customers arriving at a given
time unit and how long it takes to serve the customer. We use the Poisson distribution
from statistics, which says that the probability of y events occurring at a given time is
given by the formula:

PðyÞ ¼ �ye��

y!
; y ¼ 0; 1; 2; . . . ;

in which l is the expected value that y events occur at that time. Suppose that, on
average, a customer arrives every four minutes. During this four-minute period, the
customer can arrive at any one of the four minutes. Assuming an equal likelihood of each
of the four minutes, the expected value that a customer arrives in each of the four minutes
is, therefore, 1 / 4 = .25. Next, we need to determine whether or not the customer
actually arrives at a given minute.

Now, P(0) = e-l is the probability that no event occurs at a given time. One of the basic
assumptions of the Poisson distribution is that the probability of more than one outcome
occurring in a short time interval is negligible. For simplicity, we assume that only one
customer arrives at a given time unit. Thus, we use e-l as the cutoff point to determine
whether a customer arrives at a given time unit. Suppose that, on average, a customer arrives
every four minutes. Then, l = 0.25.We can use an algorithm to generate a number between
0 and 1. If the value of the number generated is > e-0.25, we can assume that the customer
arrived at a particular time unit. For example, suppose that rNum is a random number such
that 0 � rNum � 1. If rNum> e-0.25, the customer arrived at the given time unit.

We now describe the function runSimulation to implement the simulation. Suppose
that we run the simulation for 100 time units and customers arrive at time units 93, 96, and
100. The average transaction time is five minutes—that is, five time units. For simplicity,
assume that we have only one server and that the server becomes free at time unit 97, and
that all customers arriving before time unit 93 have been served. When the server becomes
free at time unit 97, the customer arriving at time unit 93 starts the transaction. Because the
transaction of the customer arriving at time unit 93 starts at time unit 97 and it takes five
minutes to complete a transaction, when the simulation loop ends, the customer arriving at
time unit 93 is still at the server. Moreover, customers arriving at time units 96 and 100 are
in the queue. For simplicity, we assume that when the simulation loop ends, the customers
at the servers are considered served. The general algorithm for this function is:

1. Declare and initialize the variables, such as the simulation parameters,
customer number, clock, total and average waiting times, number of
customers arrived, number of customers served, number of customers
left in the waiting queue, number of customers left with the servers,
waitingCustomersQueue, and a list of servers.

1

8

Application of Queues: Simulation | 1233

2. The main loop is:
for (clock = 1; clock <= simulationTime; clock++)

{

2.1. Update the server list to decrement the transaction time of each busy server
by one time unit.

2.2. If the customer’s queue is nonempty, increment the waiting time of each
customer by one time unit.

2.3. If a customer arrives, increment the number of customers by 1 and add the
new customer to the queue.

2.4. If a server is free and the customer’s queue is nonempty, remove a
customer from the front of the queue and send the customer to
the free server.

}

3. Print the appropriate results. Your results must include the number of
customers left in the queue, the number of customers still with servers,
the number of customers arrived, and the number of customers who
actually completed a transaction.

Once you have designed the function runSimulation, the definition of the function
main is simple and straightforward because the function main calls only the function
runSimulation.

When we tested our version of the simulation program, we generated the following
results. (The program was executed two times.) We assumed that the average transaction
time is five minutes and that, on average, a customer arrives every four minutes, and we
used a random number generator to generate a number between 0 and 1 to decide
whether a customer arrived at a given time unit.

Sample Runs:

Sample Run 1:

Customer number 1 arrived at time unit 4
Customer number 2 arrived at time unit 8
From server number 1 customer number 1

departed at time unit 9
Customer number 3 arrived at time unit 9
Customer number 4 arrived at time unit 12
From server number 1 customer number 2

departed at time unit 14
From server number 1 customer number 3

departed at time unit 19
Customer number 5 arrived at time unit 21
From server number 1 customer number 4

departed at time unit 24
From server number 1 customer number 5

departed at time unit 29

1234 | Chapter 18: Stacks and Queues

Customer number 6 arrived at time unit 37
Customer number 7 arrived at time unit 38
Customer number 8 arrived at time unit 41
From server number 1 customer number 6

departed at time unit 42
Customer number 9 arrived at time unit 43
Customer number 10 arrived at time unit 44
From server number 1 customer number 7

departed at time unit 47
Customer number 11 arrived at time unit 49
Customer number 12 arrived at time unit 51
From server number 1 customer number 8

departed at time unit 52
Customer number 13 arrived at time unit 52
Customer number 14 arrived at time unit 53
Customer number 15 arrived at time unit 54
From server number 1 customer number 9

departed at time unit 57
Customer number 16 arrived at time unit 59
From server number 1 customer number 10

departed at time unit 62
Customer number 17 arrived at time unit 66
From server number 1 customer number 11

departed at time unit 67
Customer number 18 arrived at time unit 71
From server number 1 customer number 12

departed at time unit 72
From server number 1 customer number 13

departed at time unit 77
Customer number 19 arrived at time unit 78
From server number 1 customer number 14

departed at time unit 82
From server number 1 customer number 15

departed at time unit 87
Customer number 20 arrived at time unit 90
From server number 1 customer number 16

departed at time unit 92
Customer number 21 arrived at time unit 92
From server number 1 customer number 17

departed at time unit 97

The simulation ran for 100 time units
Number of servers: 1
Average transaction time: 5
Average arrival time difference between customers: 4
Total waiting time: 269
Number of customers that completed a transaction: 17
Number of customers left in the servers: 1
The number of customers left in queue: 3
Average waiting time: 12.81
************** END SIMULATION *************

Sample Run 2:
Customer number 1 arrived at time unit 4
Customer number 2 arrived at time unit 8
From server number 1 customer number 1

departed at time unit 9

1

8

Application of Queues: Simulation | 1235

Customer number 3 arrived at time unit 9
Customer number 4 arrived at time unit 12
From server number 2 customer number 2

departed at time unit 13
From server number 1 customer number 3

departed at time unit 14
From server number 2 customer number 4

departed at time unit 18
Customer number 5 arrived at time unit 21
From server number 1 customer number 5

departed at time unit 26
Customer number 6 arrived at time unit 37
Customer number 7 arrived at time unit 38
Customer number 8 arrived at time unit 41
From server number 1 customer number 6

departed at time unit 42
From server number 2 customer number 7

departed at time unit 43
Customer number 9 arrived at time unit 43
Customer number 10 arrived at time unit 44
From server number 1 customer number 8

departed at time unit 47
From server number 2 customer number 9

departed at time unit 48
Customer number 11 arrived at time unit 49
Customer number 12 arrived at time unit 51
From server number 1 customer number 10

departed at time unit 52
Customer number 13 arrived at time unit 52
Customer number 14 arrived at time unit 53
From server number 2 customer number 11

departed at time unit 54
Customer number 15 arrived at time unit 54
From server number 1 customer number 12

departed at time unit 57
From server number 2 customer number 13

departed at time unit 59
Customer number 16 arrived at time unit 59
From server number 1 customer number 14

departed at time unit 62
From server number 2 customer number 15

departed at time unit 64
Customer number 17 arrived at time unit 66
From server number 1 customer number 16

departed at time unit 67
From server number 2 customer number 17

departed at time unit 71
Customer number 18 arrived at time unit 71
From server number 1 customer number 18

departed at time unit 76
Customer number 19 arrived at time unit 78
From server number 1 customer number 19

departed at time unit 83
Customer number 20 arrived at time unit 90
Customer number 21 arrived at time unit 92
From server number 1 customer number 20

departed at time unit 95

1236 | Chapter 18: Stacks and Queues

From server number 2 customer number 21
departed at time unit 97

The simulation ran for 100 time units
Number of servers: 2
Average transaction time: 5
Average arrival time difference between customers: 4
Total waiting time: 20
Number of customers that completed a transaction: 21
Number of customers left in the servers: 0
The number of customers left in queue: 0
Average waiting time: 0.95
************** END SIMULATION *************

QUICK REVIEW

1. A stack is a data structure in which the items are added and deleted from
one end only.

2. A stack is a Last In First Out (LIFO) data structure.

3. The basic operations on a stack are as follows: push an item onto the stack,
pop an item from the stack, retrieve the top element of the stack, initialize
the stack, check whether the stack is empty, and check whether the stack is
full.

4. A stack can be implemented as an array or a linked list.

5. The middle elements of a stack should not be accessed directly.

6. Stacks are restricted versions of arrays and linked lists.

7. Postfix notation does not require the use of parentheses to enforce operator
precedence.

8. In postfix notation, the operators are written after the operands.

9. Postfix expressions are evaluated according to the following rules:

a. Scan the expression from left to right.

b. If an operator is found, back up to get the required number of
operands, evaluate the operator, and continue.

10. A queue is a data structure in which the items are added at one end and
removed from the other end.

11. A queue is a First In First Out (FIFO) data structure.

12. The basic operations on a queue are as follows: add an item to the queue,
remove an item from the queue, retrieve the first or last element of the
queue, initialize the queue, check whether the queue is empty, and check
whether the queue is full.

13. A queue can be implemented as an array or a linked list.

14. The middle elements of a queue should not be accessed directly.

15. Queues are restricted versions of arrays and linked lists.

1

8

Quick Review | 1237

EXERCISES

1. Describe the two basic operations on a stack.

2. Suppose that stack is an object of type stackType<int>. What is the
difference between stack.top and stack.top - 1?

3. Suppose that stack is an object of type stackType<double> and the
value of stack.top is 5. What is the index of the top element of the stack?

4. Suppose that stack is an object of type stackType<string> and the
value of stack.top - 1 is 2. How many elements are in the stack?

5. Consider the following statements:

stackType<int> stack;
int num1, num2;

Show what is output by the following segment of code:

stack.push(12);
stack.push(5);
num1 = stack.top() + 3;
stack.push(num1 + 5);
num2 = stack.top();
stack.push(num1 + num2);
num2 = stack.top();
stack.pop();
stack.push(15);
num1 = stack.top();
stack.pop();

while (!stack.isEmptyStack())
{

cout << stack.top() << " ";
stack.pop();

}
cout << endl;
cout << "num1 = " << num1 << endl;
cout << "num2 = " << num2 << endl;

6. Consider the following statements:

stackType<int> stack(50);
int num;

Suppose that the input is:

31 47 86 39 62 71 15 63

1238 | Chapter 18: Stacks and Queues

Show what is output by the following segment of code:

cin >> num;

while (cin)
{

if (!stack.isFullStack())
{

if (num % 2 == 0 || num % 3 == 0)
stack.push(num);

else if (!stack.isEmptyStack())
{

cout << stack.top() << " ";
stack.pop();

}
else

stack.push(num + 3);
}
cin >> num;

}
cout << endl;

cout << "Stack Elements: ";

while (!stack.isEmptyStack())
{

cout << " " << stack.top();
stack.pop();

}
cout << endl;

7. Evaluate the following postfix expressions:

a. 17 5 3 - * 6 + =

b. 14 2 * 8 + 6 / 5 + =

c. 15 16 3 10 2 + + - + 8 / =

d. 1 8 12 - - 9 + 25 5 / * =

8. Convert the following infix expressions to postfix notations:

a. x * (y + z) - (w + t)

b. (x + y) / (z - w) * t

c. ((x - y) + (z - w) / t) * u

d. x - y / (z + w) * t / u + (v - s)

9. Write the equivalent infix expressions for the following postfix expressions:

a. x y + z * w -

b. x y * z / w +

c. x y z + * w -

1

8

Exercises | 1239

10. What is the output of the following program?

#include <iostream>
#include <string>
#include "myStack.h"

using namespace std;

template <class type>
void mystery(stackType<type>& s1, stackType<type>& s2,

stackType<type>& s3);

int main()
{

stackType<string> stack1;
stackType<string> stack2;
stackType<string> newStack;

string fNames[] = {"Chelsea", "Kirk", "David", "Stephanie",
"Bianca", "Katie", "Holly"};

string lNames[] = {"Jackson", "McCarthy", "Miller", "Pratt",
"Hollman", "Smith", "Klien"};

for (int i = 0; i < 7; i++)
{

stack1.push(fNames[i]);
stack2.push(lNames[i]);

}

mystery(stack1, stack2, newStack);

while (!newStack.isEmptyStack())
{

cout << newStack.top() << endl;
newStack.pop();

}
}

template <class type>
void mystery(stackType<type>& s1, stackType<type>& s2,

stackType<type>& s3)
{

while (!s1.isEmptyStack() && !s2.isEmptyStack())
{

s3.push(s1.top() + " " + s2.top());
s1.pop();
s2.pop();

}
}

1240 | Chapter 18: Stacks and Queues

11. What is the output of the following program?

#include <iostream>
#include <cmath>
#include "myStack.h"

using namespace std;

void mystery(stackType<int>& s, stackType<double>& t);

int main()
{

int list[] = {1, 2, 3, 4, 5};

stackType<int> s1;
stackType<double> s2;

for (int i = 0; i < 5; i++)
s1.push(list[i]);

mystery(s1, s2);

while (!s2.isEmptyStack())
{

cout << s2.top() << " ";
s2.pop();

}
cout << endl;

}

void mystery(stackType<int>& s, stackType<double>& t)
{

double x = 1.0;

while (!s.isEmptyStack())
{

t.push(pow(s.top(), x));
s.pop();
x = x + 1;

}
}

12. Explain why, in the linked implementation of a stack, it is not necessary to
implement the operation to determine whether the stack is full.

13. Suppose that stack is an object of type linkedStackType<int>. What is
the difference between the statements stack.top(); and stack.pop();?

14. Write the definition of the function template printListReverse that uses
a stack to print a linked list in reverse order. Assume that this function is a
member of the class linkedListType, designed in Chapter 17.

1

8

Exercises | 1241

15. Write the definition of the method second that takes as a parameter a stack
object and returns the second element of the stack. The original stack
remains unchanged.

16. Consider the following statements:

queueType<int> queue;
int num;

Show what is output by the following segment of code:

num = 7;
queue.addQueue(6);
queue.addQueue(num);
num = queue.front();
queue.deleteQueue();
queue.addQueue(num + 5);
queue.addQueue(14);
queue.addQueue(num - 2);
queue.addQueue(25);
queue.deleteQueue();

cout << "Queue elements: ";
while (!queue.isEmptyQueue())
{

cout << queue.front() << " ";
queue.deleteQueue();

}
cout << endl;

17. Consider the following statements:

linkedStackType<int> stack;
linkedQueueType<int> queue;
int num;

Suppose the input is:

48 35 72 88 92 11 10 15 44 52 67 36

Show what is written by the following segment of code:

stack.push(0);
queue.addQueue(0);
cin >> num;

while (cin)
{

switch (num % 3)
{
case 0:

stack.push(num);
break;

case 1:
queue.addQueue(num);
break;

1242 | Chapter 18: Stacks and Queues

case 2:
if (!stack.isEmptyStack())
{

cout << stack.top() << " ";
stack.pop();

}
else if (!queue.isEmptyQueue())
{

cout << queue.front() << " ";
queue.deleteQueue();

}
else

cout << "Stack and queue are empty." << endl;
break;

} //end switch

cin >> num;
} //end while

cout << endl;

cout << "stack: ";
while (!stack.isEmptyStack())
{

cout << stack.top() << " ";
stack.pop();

}

cout << endl;

cout << "queue: ";
while (!queue.isEmptyQueue())
{

cout << queue.front() << " ";
queue.deleteQueue();

}
cout << endl;

18. What does the following function do?

void mystery(queueType<int>& q)
{

stackType<int> s;

while (!q.isEmptyQueue())
{

s.push(q.front());
q.deleteQueue();

}

1

8

Exercises | 1243

while (!s.isEmptyStack())
{

q.addQueue(2 * s.top());
s.pop();

}

}

19. Suppose that queue is a queueType object and the size of the array
implementing queue is 100. Also, suppose that the value of queueFront
is 50 and the value of queueRear is 99.

a. What are the values of queueFront and queueRear after adding an
element to queue?

b. What are the values of queueFront and queueRear after removing an
element from queue?

20. Suppose that queue is a queueType object and the size of the array
implementing queue is 100. Also, suppose that the value of queueFront
is 99 and the value of queueRear is 25.

a. What are the values of queueFront and queueRear after adding an
element to queue?

b. What are the values of queueFront and queueRear after removing an
element from queue?

21. Suppose that queue is a queueType object and the size of the array
implementing queue is 100. Also, suppose that the value of queueFront
is 25 and the value of queueRear is 75.

a. What are the values of queueFront and queueRear after adding an
element to queue?

b. What are the values of queueFront and queueRear after removing an
element from queue?

22. Suppose that queue is a queueType object and the size of the array
implementing queue is 100. Also, suppose that the value of queueFront
is 99 and the value of queueRear is 99.

a. What are the values of queueFront and queueRear after adding an
element to queue?

b. What are the values of queueFront and queueRear after removing an
element from queue?

23. Suppose that queue is implemented as an array with the special reserved
slot, as described in this chapter. Also, suppose that the size of the array
implementing queue is 100. If the value of queueFront is 50, what is the
position of the first queue element?

1244 | Chapter 18: Stacks and Queues

1

8

24. Suppose that queue is implemented as an array with the special reserved
slot, as described in this chapter. Suppose that the size of the array imple-
menting queue is 100. Also, suppose that the value of queueFront is 74
and the value of queueRear is 99.

a. What are the values of queueFront and queueRear after adding an
element to queue?

b. What are the values of queueFront and queueRear after removing
an element from queue? Also, what is the position of the removed
queue element?

25. Write a function template, reverseStack, that takes as a parameter a
stack object and uses a queue object to reverse the elements of the stack.

26. Write a function template, reverseQueue, that takes as a parameter a
queue object and uses a stack object to reverse the elements of the queue.

27. Add the operation queueCount to the class queueType (the array imple-
mentation of queues), which returns the number of elements in the queue.
Write the definition of the function template to implement this operation.

28. Draw the UML class diagram of the class linkedStackType.

29. Draw the UML class diagram of the class queueADT.

30. Draw the UML class diagram of the class queueType.

31. Draw the UML class diagram of the class linkedQueueType.

PROGRAMMING EXERCISES

1. Two stacks of the same type are the same if they have the same number of
elements and their elements at the corresponding positions are the same.
Overload the relational operator == for the class stackType that returns
true if two stacks of the same type are the same; it returns false other-
wise. Also, write the definition of the function template to overload this
operator.

2. Repeat Programming Exercise 1 for the class linkedStackType.

3. a. Add the following operation to the class stackType.

void reverseStack(stackType<Type> &otherStack);

This operation copies the elements of a stack in reverse order onto
another stack.

Consider the following statements:

stackType<int> stack1;
stackType<int> stack2;

The statement:

stack1.reverseStack(stack2);

Programming Exercises | 1245

copies the elements of stack1 onto stack2 in reverse order. That is, the
top element of stack1 is the bottom element of stack2, and so on. The
old contents of stack2 are destroyed, and stack1 is unchanged.

b. Write the definition of the function template to implement the opera-
tion reverseStack.

4. Repeat Programming Exercises 3a and 3b for the class linkedStackType.

5. Write a program that takes as input an arithmetic expression. The program
outputs whether the expression contains matching grouping symbols. For
example, the arithmetic expressions {25 + (3 – 6) * 8} and 7 + 8 * 2 contain
matching grouping symbols. However, the expression 5 + {(13 + 7) / 8 - 2 * 9

does not contain matching grouping symbols.

6. Write a program that uses a stack to print the prime factors of a positive
integer in descending order.

7. The Programming Example, Converting a Number from Binary to Decimal,
in Chapter 15, uses recursion to convert a binary number into an equivalent
decimal number. Write a program that uses a stack to convert a binary
number into an equivalent decimal number.

8. The Programming Example, Converting a Number from Decimal to Binary,
in Chapter 15, contains a program that uses recursion to convert a decimal
number into an equivalent binary number. Write a program that uses a stack
to convert a decimal number into an equivalent binary number.

9. Write a program that reads a string consisting of a positive integer or a
positive decimal number and converts the number to the numeric format. If
the string consists of a decimal number, the program must use a stack to
convert the decimal number to the numeric format.

10. (Infix to Postfix) Write a program that converts an infix expression into an
equivalent postfix expression.

The rules to convert an infix expression into an equivalent postfix expression
are as follows:

Suppose infx represents the infix expression and pfx represents the postfix
expression. The rules to convert infx into pfx are as follows:

a. Initialize pfx to an empty expression and also initialize the stack.

b. Get the next symbol, sym, from infx.

b.1. If sym is an operand, append sym to pfx.

b.2. If sym is (, push sym into the stack.

b.3. If sym is), pop and append all of the symbols from the stack
until the most recent left parentheses. Pop and discard the left
parentheses.

1246 | Chapter 18: Stacks and Queues

b.4. If sym is an operator:

b.4.1. Pop and append all of the operators from the stack to pfx

that are above the most recent left parentheses and have
precedence greater than or equal to sym.

b.4.2. Push sym onto the stack.

c. After processing infx, some operators might be left in the stack. Pop
and append to pfx everything from the stack.

In this program, you will consider the following (binary) arithmetic operators:
+, -, *, and /. Youmay assume that the expressions you will process are error free.

Design a class that stores the infix and postfix strings. The class must include
the following operations:

• getInfix: Stores the infix expression.

• showInfix: Outputs the infix expression.

• showPostfix: Outputs the postfix expression.

Some other operations that you might need are:

• convertToPostfix: Converts the infix expression into a postfix
expression. The resulting postfix expression is stored in pfx.

• precedence: Determines the precedence between two operators. If the
first operator is of higher or equal precedence than the second operator, it
returns the value true; otherwise, it returns the value false.

Include the constructors and destructors for automatic initialization and
dynamic memory deallocation.

Test your program on the following expressions:

a. A + B - C;

b. (A + B) * C;

c. (A + B) * (C - D);

d. A + ((B + C) * (E - F) - G) / (H - I);

e. A + B * (C + D) - E / F * G + H;

For each expression, your answer must be in the following form:

Infix Expression: A + B - C;
Postfix Expression: A B + C -

11. Write the definitions of the functions to overload the assignment operator
and copy constructor for the class queueType. Also, write a program to
test these operations.

12. Write the definitions of the functions to overload the assignment operator
and copy constructor for the class linkedQueueType. Also, write a
program to test these operations.

1

8

Programming Exercises | 1247

13. This chapter describes the array implementation of queues that use a special array
slot, called the reserved slot, to distinguish between an empty and a full queue.
Write the definition of the class and the definitions of the function members of
this queue design.Also,write a test program to test various operations on a queue.

14. Write the definition of the function moveNthFront that takes as a para-
meter a positive integer, n. The function moves the nth element of the
queue to the front. The order of the remaining elements remains unchanged.
For example, suppose:

queue = {5, 11, 34, 67, 43, 55} and n = 3.

After a call to the function moveNthFront:

queue = {34, 5, 11, 67, 43, 55}.

Add this function to the class queueType. Also, write a program to test
your method.

15. Write a program that reads a line of text, changes each uppercase letter to
lowercase, and places each letter both in a queue and onto a stack. The
program should then verify whether the line of text is a palindrome (a set of
letters or numbers that is the same whether read forward or backward).

16. The implementation of a queue in an array, as given in this chapter, uses the
variable count to determinewhether the queue is empty or full. You can also use
the variable count to return the number of elements in the queue. On the other
hand, class linkedQueueType does not use such a variable to keep track of
the number of elements in the queue. Redefine the class linkedQueueType

by adding the variablecount to keep track of the number of elements in the queue.
Modify the definitions of the functions addQueue and deleteQueue as neces-
sary. Add the function queueCount to return the number of elements in the
queue. Also, write a program to test various operations of the class you defined.

17. Write the definition of the class linkedQueueType, which is derived
from the class unorderedLinkedList, as explained in this chapter. Also,
write a program to test various operations of this class.

18. a. Write the definitions of the functions setWaitingTime, getArrivalTime,
getTransactionTime, and getCustomerNumber of the class

customerType defined in the section Application of Queues: Simulation.

b. Write the definitions of the functions getRemainingTransactionTime,
setCurrentCustomer, getCurrentCustomerNumber,
getCurrentCustomerArrivalTime, getCurrentCustomerWaitingTime,
and getCurrentCustomerTransactionTime of the class serverType

defined in the section Application of Queues: Simulation.

c. Write the definition of the function runSimulation to complete the
design of the computer simulation program (see the section Application
of Queues: Simulation). Test run your program for a variety of data.
Moreover, use a random number generator to decide whether a cus-
tomer arrived at a given time unit.

1248 | Chapter 18: Stacks and Queues

and and_eq asm auto

bitand bitor bool break

case catch char class

compl const const_cast continue

default delete do double

dynamic_cast else enum explicit

export extern false float

for friend goto if

include inline int long

mutable namespace new not

not_eq operator or or_eq

private protected public register

reinterpret_cast return short signed

sizeof static static_cast struct

switch template this throw

true try typedef typeid

typename union unsigned using

virtual void volatile wchar_t

while xor xor_eq

1249

APPENDIX A

RESERVED WORDS

This page intentionally left blank

The following table shows the precedence (highest to lowest) and associativity of the

operators in C++.

Operator Associativity

:: (binary scope resolution) Left to right

:: (unary scope resolution) Right to left

() Left to right

[] -> . Left to right

++ �� (as postfix operators) Right to left

typeid dynamic_cast Right to left

static_cast const_cast Right to left

reinterpret_cast Right to left

++ �� (as prefix operators) ! + (unary) - (unary) Right to left

~ & (address of) * (dereference) Right to left

new delete sizeof Right to left

->* �� .* Left to right

* / % Left to right

+ - Left to right

<< >> Left to right

< <= > >= Left to right

== != Left to right

& Left to right

^ Left to right

1251

APPENDIX B

OPERATOR PRECEDENCE

Operator Associativity

| Left to right

&& Left to right

|| Left to right

?: Right to left

= += -= *= /= %= Right to left

<<= >>= &= |= ^= Right to left

throw Right to left

, (the sequencing operator) Left to right

1252 | Appendix B: Operator Precedence

ASCII (American Standard Code for Information
Interchange)
The following table shows the ASCII character set.

ASCII

0 1 2 3 4 5 6 7 8 9

0 nul soh stx etx eot enq ack bel bs ht

1 lf vt ff cr so si dle dc1 dc2 dc3

2 dc4 nak syn etb can em sub esc fs gs

3 rs us b ! " # $ % & '

4 () * + , - . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 < = > ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [\] ^ _ ` a b c

10 d e f g h i j k l m

11 n o p q r s t u v w

12 x y z { | } ~ del

The numbers 0-12 in the first column specify the left digit(s), and the numbers 0-9 in the

second row specify the right digit of each character in the ASCII data set. For example,

1253

APPENDIX C

CHARACTER SETS

the character in the row marked 6 (the number in the first column) and the column

marked 5 (the number in the second row) is A. Therefore, the character at position 65

(which is the 66th character) is A. Moreover, the character b at position 32 represents the

space character.

The first 32 characters, that is, the characters at positions 00-31 and at position 127 are

nonprintable characters. The following table shows the abbreviations and meanings of

these characters.

nul null character ff form feed can cancel

soh start of header cr carriage return em end of medium

stx start of text so shift out sub substitute

etx end of text si shift in esc escape

eot end of transmission dle data link escape fs file separator

enq enquiry dc1 device control 1 gs group separator

ack acknowledge dc2 device control 2 rs record separator

bel bell dc3 device control 3 us unit separator

bs back space dc4 device control 4 b space

ht horizontal tab nak negative acknowledge del delete

lf line feed syn synchronous idle

vt vertical tab etb end of transmitted block

EBCDIC (Extended Binary Coded Decimal
Interchange Code)
The following table shows some of the characters in the EBCDIC character set.

EBCDIC

0 1 2 3 4 5 6 7 8 9

6 b

7 . < (+ |

8 &

9 ! $ *) ; � - /

10 , % _

1254 | Appendix C: Character Sets

EBCDIC

11 > ?

12 ` : # @ ‘ = " a

13 b c d e f g h i

14 j k l m n

15 o p q r

16 ~ s t u v w x y z

17

18 []

19 A B C D E F G

20 H I J

21 K L M N O P Q R

22 S T U V

23 W X Y Z

24 0 1 2 3 4 5 6 7 8 9

The numbers 6-24 in the first column specify the left digit(s), and the numbers 0-9 in the

second row specify the right digits of the characters in the EBCDIC data set. For

example, the character in the row marked 19 (the number in the first column) and the

column marked 3 (the number in the second row) is A. Therefore, the character at

position 193 (which is the 194th character) is A. Moreover, the character b at position 64

represents the space character. The preceding table does not show all the characters in the

EBCDIC character set. In fact, the characters at positions 00-63 and 250-255 are

nonprintable control characters.

EBCDIC (Extended Binary Coded Decimal Interchange Code) | 1255

This page intentionally left blank

The following table lists the operators that can be overloaded.

Operators that can be overloaded

+ - * / % ^ & |

! && || = == < <= >

>= != += -= *= /= %= ^=

|= &= << >> >>= <<= ++ —

->* , -> [] () ~ new delete

The following table lists the operators that cannot be overloaded.

Operators that cannot be overloaded

. .* :: ?: sizeof

APPENDIX D

OPERATOR

OVERLOADING

1257

This page intentionally left blank

Binary (Base 2) Representation
of a Nonnegative Integer

Converting a Base 10 Number to a Binary Number (Base 2)
Chapter 1 remarked that A is the 66th character in the ASCII character set, but its position

is 65 because the position of the first character is 0. Furthermore, the binary number

1000001 is the binary representation of 65. The number system that we use daily is

called the decimal number system or base 10 system. The number system that the

computer uses is called the binary number system or base 2 system. In this section,

we describe how to find the binary representation of a nonnegative integer and vice versa.

Consider 65. Note that:

65 ¼ 1� 26 þ 0� 25 þ 0� 24 þ 0� 23 þ 0� 22 þ 0� 21 þ 1� 20

Similarly:

711 ¼ 1� 29 þ 0� 28 þ 1� 27 þ 1� 26 þ 0� 25 þ 0� 24 þ 0� 23 þ 1� 22þ
1� 21 þ 1� 20

In general, if m is a nonnegative integer, then m can be written as:

m ¼ ak � 2k þ ak�1 � 2k�1 þ ak�2 � 2k�2 þ � � � þ a1 � 21 þ a0 � 20;

for some nonnegative integer k, and where ai = 0 or 1, for each i = 0, 1, 2, . . ., k. The
binary number akak�1ak�2. . .a1a0 is called the binary or base 2 representation of m. In
this case, we usually write:

m10 ¼ ðakak�1ak�2 � � � a1a0Þ2
and say that m to the base 10 is akak-1ak-2. . .a1a0 to the base 2.

For example, for the integer 65, k = 6, a6 = 1, a5 = 0, a4 = 0, a3 = 0, a2 = 0, a1 = 0, and
a0 = 1. Thus, a6a5a4a3a2a1a0 = 1000001, so the binary representation of 65 is 1000001, that is:

6510 ¼ ð1000001Þ2:
If no confusion arises, then we write (1000001)2 as 10000012.

1259

APPENDIX E

ADDITIONAL C++
TOPICS

Similarly, for the number 711, k = 9, a9 = 1, a8 = 0, a7 = 1, a6 = 1, a5 = 0, a4 = 0, a3 = 0,

a2 = 1, a1 = 1, and a0 = 1. Thus:

71110 ¼ 10110001112:

It follows that to find the binary representation of a nonnegative, we need to find the

coefficients, which are 0 or 1, of various powers of 2. However, there is an easy algorithm,

described next, that can be used to find the binary representation of a nonnegative integer.

First, note that:

010 ¼ 02; 110 ¼ 12; 210 ¼ 102; 310 ¼ 112; 410 ¼ 1002; 510 ¼ 1012; 610 ¼ 1102;

and 710 ¼ 1112:

Let us consider the integer 65. Note that 65 / 2 = 32 and 65 % 2 = 1, where % is

the mod operator. Next, 32 / 2 = 16, and 32 % 2 = 0, and so on. It can be shown that

a0 = 65 % 2 = 1, a1 = 32 % 2 = 0, and so on. We can show this continuous division and

obtaining the remainder with the help of Figure E-1.

Notice that in Figure E-1(a), starting at the second row, the second column contains the

quotient when the number in the previous row is divided by 2 and the third column

contains the remainder of that division. For example, in the second row, 65 / 2 = 32, and

65 % 2 = 1. In the third row, 32 / 2 = 16 and 32 % 2 = 0, and so on. For each row, the

number in the second column is divided by 2, the quotient is written in the next row,

below the current row, and the remainder is written in the third column. When using a

65

dividend / quotient

(a) (b)

dividend / quotient

remainder

remainder

2

2

2

2

2

2

65 / 2 = 32 65 % 2 = 1 = a 0

32 / 2 = 16

16 / 2 = 8

8 / 2 = 4

4 / 2 = 2

2 / 2 = 1

1 / 2 = 0 1 % 2 = 1 = a 6

32 % 2 = 0 = a 1

16 % 2 = 0 = a 2

8 % 2 = 0 = a 3

4 % 2 = 0 = a 4

2 % 2 = 0 = a 5

65

2 32

2

2

2

2

2

1 = a 0

16

8

4

2

1

0 1 = a 6

0 = a 1

0 = a 2

0 = a 3

0 = a 4

0 = a 5

FIGURE E-1 Determining the binary representation of 65

1260 | Appendix E: Additional C++ Topics

figure, such as E-1, to find the binary representation of a nonnegative integer, typically,

we show only the quotients and remainders as in Figure E-1(b). You can write the binary

representation of the number starting with the last remainder in the third column,

followed by the second to last remainder, and so on. Thus:

6510 ¼ 10000012:

Next, consider the number 711. Figure E-2 shows the quotients and the remainders.

From Figure E-2, it follows that:

71110 ¼ 10110001112:

Converting a Binary Number (Base 2) to Base 10
To convert a number from base 2 to base 10, we first find the weight of each bit in the

binary number. The weight of each bit in the binary number is assigned from right to left.

The weight of the rightmost bit is 0. The weight of the bit immediately to the left of the

rightmost bit is 1, the weight of the bit immediately to the left of it is 2, and so on.

Consider the binary number 1001101. The weight of each bit is as follows:

weight 6 5 4 3 2 1 0

1 0 0 1 1 0 1

711

2

2

2

2

2

2

355

177

88

44

22

11

0

5

2

1

2

2

2

1 = a 0

1 = a 1

1 = a 2

0 = a 3

0 = a 4

0 = a 5

1 = a 6

1 = a 7

0 = a 8

1 = a 9

dividend / quotient

remainder

FIGURE E-2 Determining the binary representation of 711

Binary (Base 2) Representation of a Nonnegative Integer | 1261

We use the weight of each bit to find the equivalent decimal number. For each bit, we

multiply the bit by 2 to the power of its weight and then we add all of the numbers. For

the above binary number, the equivalent decimal number is:

1� 26 þ 0� 25 þ 0� 24 þ 1� 23 þ 1� 22 þ 0� 21 þ 1� 20

¼ 64þ 0þ 0þ 8þ 4þ 0þ 1

¼ 77:

Converting a Binary Number (Base 2) to Octal (Base 8)
and Hexadecimal (Base 16)
The previous sections described how to convert a binary number to a decimal number

(base 2). Even though the language of a computer is binary, if the binary number is too

long, then it will be hard to manipulate it manually. To effectively deal with binary

numbers, two more number systems, octal (base 8) and hexadecimal (base 16), are of

interest to computer scientists.

The digits in the octal number system are 0, 1, 2, 3, 4, 5, 6, and 7. The digits in the

hexadecimal number system are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. So A in

hexadecimal is 10 in decimal, B in hexadecimal is 11 in decimal, and so on.

The algorithm to convert a binary number into an equivalent number in octal (or

hexadecimal) is quite simple. Before we describe the method to do so, let us review

some notations. Suppose ab represents the number a to the base b. For example, 2A016
means 2A0 to the base 16, and 638 means 63 to the base 8.

First we describe how to convert a binary number into an equivalent octal number and

vice versa. Table E-1 describes the first eight octal numbers.

Consider the binary number 1101100010101. To find the equivalent octal number,

starting from right to left we consider three digits at a time and write their octal

representation. Note that the binary number 1101100010101 has only 13 digits. So when

TABLE E-1 Binary representation of first eight octal numbers

Binary Octal Binary Octal

000 0 100 4

001 1 101 5

010 2 110 6

011 3 111 7

1262 | Appendix E: Additional C++ Topics

we consider three digits at a time, at the end we will be left with only one digit. In this

case, we just add two 0s to the left of the binary number; the equivalent binary number is

001101100010101. Thus,

11011000101012 ¼ 0011011000101012

¼ 001 101 100 010 101

¼ 154258 because 0012 ¼ 18, 1012 ¼58, 1002 ¼ 48, 0102 ¼ 28,

and 1012 ¼ 58

Thus, 11011000101012 ¼ 154258.

To convert an octal number into an equivalent binary number, using Table E-1, write

the binary representation of each octal digit in the number. For example,

37618 ¼ 011 111 110 0012

¼ 0111111100012

¼ 111111100012

Thus, 37618 ¼ 111111100012.

Next we discuss how to convert a binary number into an equivalent hexadecimal number

and vice versa. The method to do so is similar to converting a number from binary to

octal and vice versa, except that here we work with four binary digits. Table E-2 gives

the binary representation of the first 16 hexadecimal numbers.

TABLE E-2 Binary representation of first 16 hexadecimal numbers

Binary Hexadecimal Binary Hexadecimal

0000 0 1000 8

0001 1 1001 9

0010 2 1010 A

0011 3 1011 B

0100 4 1100 C

0101 5 1101 D

0110 6 1110 E

0111 7 1111 F

Binary (Base 2) Representation of a Nonnegative Integer | 1263

Consider the binary number 11111010100010101012. Now,

11111010100010101012 ¼ 111 1101 0100 0101 01012

¼ 0111 1101 0100 0101 01012, add one zero to the left

¼ 7D45516

Hence, 11111010100010101012 ¼ 7D45516.

Next, to convert a hexadecimal number into an equivalent binary number, write the

four-digit binary representation of each hexadecimal digit into that number. For example,

A7F3216 ¼ 1010 0111 1111 0011 00102

¼ 101001111111001100102

Thus, A7F3216 ¼ 101001111111001100102.

More on File Input/Output
In Chapter 3, you learned how to read data from and write data to a file. This section

expands on the concepts introduced in that chapter.

Binary Files
In Chapter 3, you learned how to make a program read data from and write data to a file.

However, the files that the programs have used until now are called text files. Data in a

text file is stored in the character format. For example, consider the number 45. If 45 is

stored in a file, then it is stored as a sequence of two characters—the character '4'

followed by the character '5'. The eight-bit machine representation of '4' is

00000100 and the eight-bit machine representation of '5' is 00000101. Therefore,

in a text file, 45 is stored as 0000010000000101. When this number is read by a C++

program, it must first be converted to its binary format. Suppose that the integers are

represented as 16-bit binary numbers. The 16-bit binary representation of 45 is then

0000000000101101. Similarly, when a program stores the number 45 in a text file, it

first must be converted to its text format. It thus follows that reading data from and

writing data to a text file is not efficient, because the data must be converted from the text

to the binary format and vice versa.

On the other hand, when data is stored in a file in the binary format, reading and writing

data is faster because no time is lost in converting the data from one format to another

format. Such files are called binary files. More formally, binary files are files in which

data is stored in the binary format. Data in a text file is also called formatted data, and in

a binary file it is called raw data.

C++ allows a programmer to create binary files. This section explains how to create

binary files and also how to read data from binary files.

1264 | Appendix E: Additional C++ Topics

To create a binary file, the file must be opened in the binary mode. Suppose outFile is

an ofstream variable (object). Consider the following statement:

outFile.open("employee.dat", ios::binary);

This statement opens the file employee.dat. Data in this file will be written in its

binary format. Therefore, the file opening mode ios::binary specifies that the file is

opened in the binary mode.

Next, you use the stream function write to write data to the file employee.dat. The

syntax to use the function write is:

fileVariableName.write(reinterpret_cast<const char *> (buffer),
sizeof(buffer));

where fileVariableName is the object used to open the output file, and the first argument

buffer specifies the starting address of the location in memory where the data is stored. The

expression sizeof(buffer)specifies the size of the data, in bytes, to be written.

For example, suppose num is an int variable. The following statement writes the value of

num in the binary format to the file associated with outFile:

outFile.write(reinterpret_cast<const char *> (&num),
sizeof(num));

Similarly, suppose empSalary is an array of, say, 100 components and the component

type is double. The following statement writes the entire array to the file associated with

outFile:

outFile.write(reinterpret_cast<const char *> (empSalary),
sizeof(empSalary));

Next, let us discuss how to read data from a binary file. The operation of reading data

from a binary file is similar to writing data to a binary file. First, the binary file must be

opened. For example, suppose inFile is an ifstream variable, and a program has

already created the binary file employee.dat. The following statement opens this file:

inFile.open("employee.dat");

or:

inFile.open("employee.dat", ios::binary);

To read data in the binary format, the stream function read is used. The syntax to use

the function read is:

fileVariableName.read(reinterpret_cast<char *> (buffer),
sizeof(buffer));

More on File Input/Output | 1265

The first argument buffer specifies the starting address of the location in memory where

the data is to be stored. The expression sizeof(buffer) specifies the size of the data,

in bytes, to be read.

The program in the following example further explains how to create binary files and

read data from a binary file.

EXAMPLE E-1

//Creating and reading binary files

#include <iostream>
#include <fstream>

using namespace std;

struct studentType
{

char firstName[15];
char lastName[15];
int ID;

};

int main()
{

//create and initialize an array of students’ IDs
int studentIDs[5] = {111111, 222222, 333333,

444444, 555555}; //Line 1

//declare and initialize the struct newStudent
studentType newStudent = {"John", "Wilson",

777777}; //Line 2

ofstream outFile; //Line 3

//open the output file as a binary file
outFile.open("ids.dat", ios::binary); //Line 4

//write the array in the binary format
outFile.write(reinterpret_cast<const char *> (studentIDs),

sizeof(studentIDs)); //Line 5
//write the newStudent data in the binary format

outFile.write(reinterpret_cast<const char *> (&newStudent),
sizeof(newStudent)); //Line 6

outFile.close(); //close the file //Line 7

ifstream inFile; //Line 8
int arrayID[5]; //Line 9
studentType student; //Line 10

1266 | Appendix E: Additional C++ Topics

//open the input file
inFile.open("ids.dat"); //Line 11

if (!inFile) //Line 12
{

cout << "The input file does not exist. "
<< "The program terminates!!!!" << endl; //Line 13

return 1; //Line 14
}

//input the data into the array arrayID
inFile.read(reinterpret_cast<char *> (arrayID),

sizeof(arrayID)); //Line 15
//output the data of the array arrayID

for (int i = 0; i < 5; i++) //Line 16
cout << arrayID[i] << " "; //Line 17

cout << endl; //Line 18

//read the student's data
inFile.read(reinterpret_cast<char *> (&student),

sizeof(student)); //Line 19

//output studentData
cout << student.ID << " " << student.firstName

<< " " << student.lastName << endl; //Line 20

inFile.close(); //close the file //Line 21

return 0; //Line 22
}

Sample Run:

111111 222222 333333 444444 555555
777777 John Wilson

The output of the preceding program is self-explanatory. The details are left as an exercise
for you.

In the program in Example E-1, the statement in Line 2 declares the struct variable

newStudent and also initializes it. Because newStudent has three components and

we want to initialize all the components, three values are specified in braces separated by

commas. In other words, struct variables can also be initialized when they are

declared.

The program in the following example further explains how to create binary files and

then read the data from the binary files.

More on File Input/Output | 1267

EXAMPLE E-2

//Creating and reading a binary file consisting of
//bank customers' data

#include <iostream>
#include <fstream>
#include <iomanip>

using namespace std;

struct customerType
{

char firstName[15];
char lastName[15];
int ID;
double balance;

};

int main()
{

customerType cust; //Line 1
ifstream inFile; //Line 2
ofstream outFile; //Line 3

inFile.open("customerData.txt"); //Line 4

if (!inFile) //Line 5
{

cout << "The input file does not exist. "
<< "The program terminates!!!!" << endl; //Line 6

return 1; //Line 7
}

outFile.open("customer.dat", ios::binary); //Line 8

inFile >> cust.ID >> cust.firstName >> cust.lastName
>> cust.balance; //Line 9

while (inFile) //Line 10
{

outFile.write(reinterpret_cast<const char *> (&cust),
sizeof(cust)); //Line 11

inFile >> cust.ID >> cust.firstName >> cust.lastName
>> cust.balance; //Line 12

}

inFile.close(); //Line 13
inFile.clear(); //Line 14
outFile.close(); //Line 15

1268 | Appendix E: Additional C++ Topics

inFile.open("customer.dat", ios::binary); //Line 16

if (!inFile) //Line 17
{

cout << "The input file does not exist. "
<< "The program terminates!!!!" << endl; //Line 18

return 1; //Line 19
}

cout << left << setw(8) << "ID"
<< setw(16) << "First Name"
<< setw(16) << "Last Name"
<< setw(10) << " Balance" << endl; //Line 20

cout << fixed << showpoint << setprecision(2); //Line 21

//read and output the data from the binary
//file customer.dat

inFile.read(reinterpret_cast<char *> (&cust),
sizeof(cust)); //Line 22

while (inFile) //Line 23
{

cout << left << setw(8) << cust.ID
<< setw(16) << cust.firstName
<< setw(16) << cust.lastName
<< right << setw(10) << cust.balance
<< endl; //Line 24

inFile.read(reinterpret_cast<char *> (&cust),
sizeof(cust)); //Line 25

}

inFile.close(); //close the file //Line 26

return 0; //Line 27
}

Sample Run:

ID First Name Last Name Balance
77234 Ashley White 4563.50
12345 Brad Smith 128923.45
87123 Lisa Johnson 2345.93
81234 Sheila Robinson 674.00
11111 Rita Gupta 14863.50
23422 Ajay Kumar 72682.90
22222 Jose Ramey 25345.35
54234 Sheila Duffy 65222.00
55555 Tommy Pitts 892.85
23452 Salma Quade 2812.90
32657 Jennifer Ackerman 9823.89
82722 Steve Sharma 78932.00

More on File Input/Output | 1269

Random File Access
In Chapter 3 and the preceding section, you learned how to read data from and write data

to a file. More specifically, you used ifstream objects to read data from a file and

ofstream objects to write data to a file. However, the files were read and/or written

sequentially. Reading data from a file sequentially does not work very well for a variety of

applications. For example, consider a program that processes customers’ data in a bank.

Typically, there are thousands or even millions of customers in a bank. Suppose we want

to access a customer’s data from the file that contains such data, say, for an account

update. If the data is accessed sequentially, starting from the first position and read until

the desired customer’s data is found, this process might be extremely time consuming.

Similarly, in an airline’s reservation system to access a passenger’s reservation information

sequentially, this might also be very time consuming. In such cases, the data retrieval must

be efficient. A convenient way to do this is to be able to read the data randomly from a

file, that is, randomly access any record in the file.

In the preceding section, you learned how to use the stream function read to read a

specific number of bytes, and the function write to write a specific number of bytes.

The stream function seekg is used to move the read position to any byte in the file. The

general syntax to use the function seekg is:

fileVariableName.seekg(offset, position);

The stream function seekp is used to move the write position to any byte in the file.

The general syntax to use the function seekp is:

fileVariableName.seekp(offset, position);

The offset specifies the number of bytes the reading/writing positions are to be

moved, and position specifies where to begin the offset. The offset can be calculated

from the beginning of the file, end of the file, or the current position in the file.

Moreover, offset is a long integer representation of an offset. Table E-3 shows the

values that can be used for position.

TABLE E-3 Values of position

position Description

ios::beg The offset is calculated from the beginning of the file.

ios::cur The offset is calculated from the current position of the reading marker

in the file.

ios::end The offset is calculated from the end of the file.

1270 | Appendix E: Additional C++ Topics

EXAMPLE E-3

Suppose you have the following line of text stored in a file, say,
digitsAndLetters.txt:

0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ

Also, suppose that inFile is an ifstream object and the file digitsAndLetters.txt
has been opened using the object inFile. One byte is used to store each character of this
line of text. Moreover, the position of the first character is 0.

The program in the following example further explains how the functions seekg and

seekp work.

EXAMPLE E-4

#include <iostream>
#include <fstream>

using namespace std;

int main()
{

char ch; //Line 1
ifstream inFile; //Line 2

inFile.open("digitsAndAlphabet.txt"); //Line 3

if (!inFile) //Line 4
{

cout << "The input file does not exist. "
<< "The program terminates!!!!" << endl; //Line 5

return 1; //Line 6
}

Statement Explanation

inFile.seekp(10L, ios::beg); Sets the reading position of inFile to the 11th

byte (character), which is at position 10. That is, it
sets the reading position just after the digit 9 or

just before the letter A.

inFile.seekp(5L, ios::cur); Moves the reading position of inFile five bytes

to the right of its current position.

inFile.seekp(-6L, ios::end); Sets the reading position of inFile to the sixth

byte (character) from the end. That is, it sets the

reading position just before the letter U.

More on File Input/Output | 1271

inFile.get(ch); //Line 7
cout << "Line 8: The first byte: " << ch << endl; //Line 8

//position the reading marker six bytes to the
//right of its current position

inFile.seekg(6L, ios::cur); //Line 9
inFile.get(ch); //read the character //Line 10
cout << "Line 11: Current byte read: " << ch

<< endl; //Line 11

//position the reading marker seven bytes
//from the beginning

inFile.seekg(7L, ios::beg); //Line 12
inFile.get(ch); //read the character //Line 13
cout << "Line 14: Seventh byte from the beginning: "

<< ch << endl; //Line 14

//position the reading marker 26 bytes
//from the end

inFile.seekg(-26L, ios::end); //Line 15
inFile.get(ch); //read the character //Line 16
cout << "Line 17: Byte 26 from the end: " << ch

<< endl; //Line 17

return 0; //Line 18
}

Sample Run:

Line 8: The first byte: 0
Line 11: Current byte read: 7
Line 14: Seventh byte from the beginning: 7
Line 17: Byte 26 from the end: A

The input file contains the following line of text:

0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ

The following program illustrates how the function seekg works with structs.

EXAMPLE E-5

Suppose customerType is a struct defined as follows:

struct customerType
{

char firstName[15];
char lastName[15];
int ID;
double balance;

};

1272 | Appendix E: Additional C++ Topics

The program in Example E-2 created the binary file customer.dat consisting of
certain customers’ data. You can use the function seekg to move the reading position
of this file to any record. Suppose inFile is an ifstream object used to open the
binary file customer.dat.

The following statement calculates the size of a customerType struct and stores it in
the variable custSize:

long custSize = sizeof(cust);

We can use the value of the variable custSize to move the reading position to a specific
record in the file. For example, consider the following statement:

inFile.seekg(6 * custSize, ios::beg);

This statement moves the reading position just after the sixth customer’s record, that is,
just before the seventh customer’s record.

The following program further illustrates how the function seekg works with structs.

EXAMPLE E-6

//Reading a file randomly

#include <iostream>
#include <fstream>
#include <iomanip>

using namespace std;

struct customerType
{

char firstName[15];
char lastName[15];
int ID;
double balance;

};

void printCustData(const customerType& customer);

int main()
{

customerType cust; //Line 1
ifstream inFile; //Line 2

long custSize = sizeof(cust); //Line 3

inFile.open("customer.dat", ios::binary); //Line 4
if (!inFile) //Line 5

More on File Input/Output | 1273

{

cout << "The input file does not exist. "
<< "The program terminates!!!!" << endl; //Line 6

return 1; //Line 7
}

cout << fixed << showpoint << setprecision(2); //Line 8

//randomly read the records and output them
inFile.seekg(6 * custSize, ios::beg); //Line 9
inFile.read(reinterpret_cast<char *> (&cust),

sizeof(cust)); //Line 10
cout << "Seventh customer's data: " << endl; //Line 11
printCustData(cust); //Line 12

inFile.seekg(8 * custSize, ios::beg); //Line 13
inFile.read(reinterpret_cast<char *> (&cust),

sizeof(cust)); //Line 14
cout << "Ninth customer's data: " << endl; //Line 15
printCustData(cust);

inFile.seekg(-8 * custSize, ios::end); //Line 16
inFile.read(reinterpret_cast<char *> (&cust),

sizeof(cust)); //Line 17
cout << "Eighth (from the end) customer's data: "

<< endl; //Line 18
printCustData(cust); //Line 19

inFile.close(); //close the file //Line 20

return 0; //Line 21
}

void printCustData(const customerType& customer)
{

cout << " ID: " << customer.ID <<endl
<< " First Name: " << customer.firstName <<endl
<< " Last Name: " << customer.lastName <<endl
<< " Account Balance: $" << customer.balance
<< endl;

}

Sample Run:

Seventh customer's data:
ID: 22222
First Name: Jose
Last Name: Ramey
Account Balance: $25345.35

Ninth customer's data:
ID: 55555
First Name: Tommy
Last Name: Pitts

1274 | Appendix E: Additional C++ Topics

Account Balance: $892.85
Eighth (from the end) customer's data:

ID: 11111
First Name: Rita
Last Name: Gupta
Account Balance: $14863.50

The program in Example E-6 illustrates how the function seekg works. Using the

function seekg, the reading position in a file can be moved to any location in the file.

Similarly, the function seekp can be used to move the write position in a file to any

location. Furthermore, these functions can be used to create a binary file in which the

data is organized according to the values of either a variable or a particular component of

a struct. For example, suppose there are at most, say, 100 students in a class. Each

student has a unique ID in the range 1 to 100. Using the students’ IDs, we can create a

random access binary file in such a way that in the file, a student’s data is written at the

location specified by its ID. This is like treating the file as an array. The advantage is that,

once the file is created, a student’s data from the file can be read, directly, using the

student’s ID. Another advantage is that in the file, the data is sorted according to the IDs.

Here, we are assuming that the student IDs are in the range 1 to 100. However, if you use,

say, a three-, four-, or five-digit number as a student ID and there are only a few students in

the class, the data in the file could be scattered. In other words, a lot of space could be used

just to store only a few students’ data. In such cases, more advanced techniques are used to

organize the data so that it can be accessed efficiently.

The program in Example E-7 illustrates how to use the students’ IDs to organize the data

in a binary file. The program also shows how to output the file.

EXAMPLE E-7

//Creating and reading a random access file.

#include <iostream>
#include <fstream>
#include <iomanip>

using namespace std;

struct studentType
{

char firstName[15];
char lastName[15];
int ID;
double GPA;

};

void printStudentData(const studentType& student);

More on File Input/Output | 1275

int main()
{

studentType st; //Line 1
ifstream inFile; //Line 2
ofstream outFile; //Line 3

long studentSize = sizeof(st); //Line 4

//open the input file, which is a text file
inFile.open("studentData.txt"); //Line 5

if (!inFile) //Line 6
{

cout << "The input file does not exist. "
<< "The program terminates!!!!" << endl; //Line 7

return 1; //Line 8
}

//open a binary output file
outFile.open("student.dat", ios::binary); //Line 9

inFile >> st.ID >> st.firstName
>> st.lastName >> st.GPA; //Line 10

while (inFile) //Line 11
{

outFile.seekp((st.ID - 1) * studentSize,
ios::beg); //Line 12

outFile.write(reinterpret_cast<const char *> (&st),
sizeof(st)); //Line 13

inFile >> st.ID >> st.firstName
>> st.lastName >> st.GPA; //Line 14

};

inFile.close(); //Line 15
inFile.clear(); //Line 16
outFile.close(); //Line 17

cout << left << setw(3) << "ID"
<< setw(16) << "First Name"
<< setw(16) << "Last Name"
<< setw(12) << "Current GPA" << endl; //Line 18

cout << fixed << showpoint << setprecision(2); //Line 19

//open the input file, which is a binary file
inFile.open("student.dat", ios::binary); //Line 20

if (!inFile) //Line 21
{

cout << "The input file does not exist. "
<< "The program terminates!!!!" << endl; //Line 22

return 1; //Line 23
}

1276 | Appendix E: Additional C++ Topics

//read the data at location 0 in the file
inFile.read(reinterpret_cast<char *> (&st),

sizeof(st)); //Line 24
while (inFile) //Line 25
{

if (st.ID != 0) //Line 26
printStudentData(st); //Line 27

//read the data at the current reading position
inFile.read(reinterpret_cast<char *> (&st),

sizeof(st)); //Line 28
};

return 0; //Line 29
}

void printStudentData(const studentType& student)
{

cout << left << setw(3) << student.ID
<< setw(16) << student.firstName
<< setw(16) << student.lastName
<< right << setw(10)<< student.GPA
<< endl;

}

Sample Run:

ID First Name Last Name Current GPA
2 Sheila Duffy 4.00
10 Ajay Kumar 3.60
12 Ashley White 3.90
16 Tommy Pitts 2.40
23 Rita Gupta 3.40
34 Brad Smith 3.50
36 Salma Quade 3.90
41 Steve Sharma 3.50
45 Sheila Robinson 2.50
56 Lisa Johnson 2.90
67 Jose Ramey 3.80
75 Jennifer Ackerman 4.00

The data in the file studentData.txt is as follows:

12 Ashley White 3.9
34 Brad Smith 3.5
56 Lisa Johnson 2.9
45 Sheila Robinson 2.5
23 Rita Gupta 3.4
10 Ajay Kumar 3.6
67 Jose Ramey 3.8
2 Sheila Duffy 4.0
16 Tommy Pitts 2.4

More on File Input/Output | 1277

36 Salma Quade 3.9
75 Jennifer Ackerman 4.0
41 Steve Sharma 3.5

Naming Conventions of Header Files in ANSI/ISO
Standard C++ and Standard C++
The programs in this book are written using ANSI/ISO Standard C++. As indicated

in Chapter 1, there are two versions of C++—ANSI/ISO Standard C++ and

Standard C++. For the most part, these two standards are the same. The header

files in Standard C++ have the extension .h, while the header files in ANSI/ISO

Standard C++ have no extension. Moreover, the names of certain header files, such

as math.h, in ANSI/ISO Standard C++ start with the letter c. The language C++

evolved from C. Therefore, certain header files—such as math.h, stdlib.h, and

string.h—were brought from C into C++. The header files—such as

iostream.h, iomanip.h, and fstream.h—were specially designed for C++.

Recall that when a header file is included in a program, the global identifiers of

the header file also become the global identifiers of the program. In ANSI/ISO

Standard C++, to take advantage of the namespace mechanism, all of the header

files were modified so that the identifiers are declared within a namespace. Recall

that the name of this namespace is std.

In ANSI/ISO Standard C++, the extension .h of the header files that were specially

designed for C++ was dropped. For the header files that were brought from C into C++,

the extension .h was dropped and the names of these header files start with the letter c.

Following are the names of the most commonly used header files in Standard C++ and

ANSI/ISO Standard C++:

Standard C++ Header File Name ANSI/ISO Standard C++ Header File Name

assert.h cassert

ctype.h cctype

float.h cfloat

fstream.h fstream

iomanip.h iomanip

iostream.h iostream

limits.h climits

math.h cmath

stdlib.h cstdlib

string.h cstring

1278 | Appendix E: Additional C++ Topics

To include a header file, say, iostream, the following statement is required:

#include <iostream>

Furthermore, to use identifiers, such as cin, cout, endl, and so on, the program should

use either the statement:

using namespace std;

or the prefix std:: before the identifier.

Naming Conventions of Header Files in ANSI/ISO Standard C++ and Standard C++ | 1279

This page intentionally left blank

The C++ standard library contains many predefined functions, named constants, and

specialized data types. This appendix discusses some of the most widely used library

routines (and several named constants). For additional explanation and information on

functions, named constants, and so on, check your system documentation. The names of

the Standard C++ header files are shown in parentheses.

Header File cassert (assert.h)
The following table describes the function assert. Its specification is contained in the

header file cassert (assert.h).

assert(expression) expression is any

int expression;

expression is usually

a logical expression

• If the value of expression

is nonzero (true), the
program continues to execute.

• If the value of expression

is 0 (false), execution of

the program terminates

immediately. The expression,

the name of the file containing

the source code, and the line

number in the source code are

displayed.

To disable all of the assert statements, place the preprocessor directive #define
NDEBUG before the directive #include <cassert>.

1281

APPENDIX F

HEADER FILES

Header File cctype (ctype.h)
The following table shows various functions from the header file cctype (ctype.h).

Function Name

and Parameters

Parameter(s) Types Function Return Value

isalnum(ch) ch is a char value Function returns an int value as follows:

• If ch is a letter or a digit character, that is

('A'-'Z', 'a'-'z', '0'-'9'), it
returns a nonzero value (true)

• 0 (false), otherwise

iscntrl(ch) ch is a char value Function returns an int value as follows:

• If ch is a control character (in ASCII, a

character value 0-31 or 127), it returns a

nonzero value (true)

• 0 (false), otherwise

isdigit(ch) ch is a char value Function returns an int value as follows:

• If ch is a digit ('0'-'9'), it returns a

nonzero value (true)

• 0 (false), otherwise

islower(ch) ch is a char value Function returns an int value as follows:

• If ch is lowercase ('a'-'z'), it returns a

nonzero value (true)

• 0 (false), otherwise

isprint(ch) ch is a char value Function returns an int value as follows:

• If ch is a printable character, including blank

(in ASCII, ' ' through '~'), it returns
a nonzero value (true)

• 0 (false), otherwise

ispunct(ch) ch is a char value Function returns an int value as follows:

• If ch is a punctuation character, it returns a

nonzero value (true)

• 0 (false), otherwise

isspace(ch) ch is a char value Function returns an int value as follows:

• If ch is a whitespace character (blank,

newline, tab, carriage return, form feed), it

returns a nonzero value (true)

• 0 (false), otherwise

1282 | Appendix F: Header Files

Function Name

and Parameters

Parameter(s) Types Function Return Value

isupper(ch) ch is a char value Function returns an int value as follows:

• If ch is an uppercase letter ('A'-'Z'), it
returns a nonzero value (true)

• 0 (false), otherwise

tolower(ch) ch is a char value Function returns an int value as follows:

• If ch is an uppercase letter, it returns the

ASCII value of the lowercase equivalent of ch

• ASCII value of ch, otherwise

toupper(ch) ch is a char value Function returns an int value as follows:

• If ch is a lowercase letter, it returns the ASCII

value of the uppercase equivalent of ch

• ASCII value of ch, otherwise

Header File cfloat (float.h)
In Chapter 2, we listed the largest and smallest values belonging to the floating-point data

types. We also remarked that these values are system dependent. These largest and

smallest values are stored in named constants. The header file cfloat contains many

such named constants. The following table lists some of these constants.

Named Constant Description

FLT_DIG Approximate number of significant digits in a float value

FLT_MAX Maximum positive float value

FLT_MIN Minimum positive float value

DBL_DIG Approximate number of significant digits in a double value

DBL_MAX Maximum positive double value

DBL_MIN Minimum positive double value

LDBL_DIG Approximate number of significant digits in a long double value

LDBL_MAX Maximum positive long double value

LDBL_MIN Minimum positive long double value

Header File cfloat (float.h) | 1283

A program similar to the following can print the values of these named constants on your

system:

#include <iostream>
#include <cfloat>

using namespace std;

int main()
{

cout << "Approximate number of significant digits "
<< "in a float value " << FLT_DIG << endl;

cout << "Maximum positive float value " << FLT_MAX
<< endl;

cout << "Minimum positive float value " << FLT_MIN
<< endl;

cout << "Approximate number of significant digits "
<< "in a double value " << DBL_DIG << endl;

cout << "Maximum positive double value " << DBL_MAX
<< endl;

cout << "Minimum positive double value " << DBL_MIN
<< endl;

cout << "Approximate number of significant digits "
<< "in a long double value " << LDBL_DIG << endl;

cout << "Maximum positive long double value " << LDBL_MAX
<< endl;

cout << "Minimum positive long double value " << LDBL_MIN
<< endl;

return 0;
}

Header File climits (limits.h)
In Chapter 2, we listed the largest and smallest values belonging to the integral data types.

We also remarked that these values are system dependent. These largest and smallest

values are stored in named constants. The header file climits contains many such

named constants. The following table lists some of these constants.

Named Constant Description

CHAR_BIT Number of bits in a byte

CHAR_MAX Maximum char value

CHAR_MIN Minimum char value

SHRT_MAX Maximum short value

SHRT_MIN Minimum short value

1284 | Appendix F: Header Files

Named Constant Description

INT_MAX Maximum int value

INT_MIN Minimum int value

LONG_MAX Maximum long value

LONG_MIN Minimum long value

LLONG_MAX Maximum long long value

LLONG_MIN Minimum long long value

UCHAR_MAX Maximum unsigned char value

USHRT_MAX Maximum unsigned short value

UINT_MAX Maximum unsigned int value

ULONG_MAX Maximum unsigned long value

Aprogram similar to the following can print the values of these named constants on your system:

#include <iostream>
#include <climits>

using namespace std;

int main()
{

cout << "Number of bits in a byte " << CHAR_BIT << endl;
cout << "Maximum char value " << CHAR_MAX << endl;
cout << "Minimum char value " << CHAR_MIN << endl;
cout << "Maximum short value " << SHRT_MAX << endl;
cout << "Minimum short value " << SHRT_MIN << endl;
cout << "Maximum int value " << INT_MAX << endl;
cout << "Minimum int value " << INT_MIN << endl;
cout << "Maximum long value " << LONG_MAX << endl;
cout << "Minimum long value " << LONG_MIN << endl;
cout << "Maximum long long value " << LLONG_MAX << endl;
cout << "Minimum long long value " << LLONG_MIN << endl;
cout << "Maximum unsigned char value " << UCHAR_MAX

<< endl;
cout << "Maximum unsigned short value " << USHRT_MAX

<< endl;
cout << "Maximum unsigned int value " << UINT_MAX << endl;
cout << "Maximum unsigned long value " << ULONG_MAX

<< endl;

return 0;
}

Header File climits (limits.h) | 1285

Header File cmath (math.h)
The following table shows various math functions.

Function Name

and Parameters

Parameter(s) Type Function Return Value

acos(x) x is a floating-point expression,

–1.0 � x � 1.0

Arc cosine of x, a value between 0.0 and p

asin(x) x is a floating-point expression,

–1.0 � x � 1.0

Arc sine of x, a value between -p/2

and p/2

atan(x) x is a floating-point expression Arc tan of x, a value between -p/2 and p/2

ceil(x) x is a floating-point expression The smallest whole number � x,

(‘‘ceiling’’ of x)

cos(x) x is a floating-point expression,

x is measured in radians

Trigonometric cosine of the angle

cosh(x) x is a floating-point expression Hyperbolic cosine of x

exp(x) x is a floating-point expression The value e raised to the power of x;

(e = 2.718. . .)

fabs(x) x is a floating-point expression Absolute value of x

floor(x) x is a floating-point expression The largest whole number� x; (‘‘floor’’ of x)

log(x) x is a floating-point expression,

in which x > 0.0

Natural logarithm (base e) of x

log10(x) x is a floating-point expression,

in which x > 0.0

Common logarithm (base 10) of x

pow(x,y) x and y are floating-point

expressions. If x = 0.0,

y must be positive;

if x � 0.0, y must

be a whole number.

x raised to the power of y

sin(x) x is a floating-point expression;

x is measured in radians

Trigonometric sine of the angle

sinh(x) x is a floating-point expression Hyperbolic sine of x

1286 | Appendix F: Header Files

Function Name

and Parameters

Parameter(s) Type Function Return Value

sqrt(x) x is a floating-point expression,

in which x � 0.0

Square root of x

tan(x) x is a floating-point expression;

x is measured in radians

Trigonometric tangent of the angle

tanh(x) x is a floating-point expression Hyperbolic tangent of x

Header File cstddef (stddef.h)
Among others, this header file contains the definition of the following symbolic constant:

NULL: The system-dependent null pointer (usually 0)

Header File cstring (string.h)
The following table shows various string functions.

Function Name and

Parameters

Parameter(s) Type Function Return Value

strcat(destStr, srcStr) destStr and srcStr

are null-terminated char
arrays; destStr must be

large enough to hold the

result

The base address of

destStr is returned;

srcStr, including the

null character, is

concatenated to the end of

destStr

strcmp(str1, str2) str1 and str2 are null-

terminated char arrays

The returned value is as

follows:

• An int value < 0 if

str1 < str2

• An int value 0 if

str1 = str2

• An int value > 0 if

str1 > str2

Header File cmath (math.h) | 1287

Function Name and

Parameters

Parameter(s) Type Function Return Value

strcpy(destStr, srcStr) destStr and

srcStr are

null-terminated char
arrays

The base address of

destStr is returned;

srcStr is copied into

destStr

strlen(str) str is a null-terminated

char array

An integer value � 0

specifying the length of

the str (excluding the

'\0') is returned

HEADER FILE string

This header file—not to be confused with the header file cstring—supplies a programmer-

defined data type named string. Associated with the string type are a data type

string::size_type and a named constant string::npos. These are defined as follows:

string::size_type An unsigned integer type

string::npos The maximum value of type string::size_type

The type string contains several functions for string manipulation. In addition to the

string functions listed in Table 7-1, the following table describes additional string functions.

In this table, we assume that strVar is a string variable and str is a string variable, a

string constant, or a character array. The name of the function is shown in bold.

Expression Effect

getline(istreamVar, strVar); istreamVar is an input stream variable (of type

istream or ifstream).

Characters until the newline character are input

from istreamVar and stored in strVar. (The

newline character is read but not stored into
strVar.) The value returned by this function is

usually ignored.

strVar.append(str, n) The first n characters of the character array str are

appended to strVar.

strVar.c_str() The base address of a null-terminated C-string

corresponding to the characters in strVar.

1288 | Appendix F: Header Files

Expression Effect

strVar.capacity() Returns the size of the storage allocated for strVar.

strVar.erase(pos); pos is a parameter of type

string::size_type.

Removes all of the characters from strVar starting

at index pos.

strVar.resize(n, ch); Changes the size of storage allocation for strVar
to n. If n is less than the current storage size of

strVar, the storage size of the string is truncated

to n. If n is greater than the current storage size, the

string is expanded to size n and the additional space

is filled with copies of the character specified by the

char variable ch.

Header File cmath (math.h) | 1289

This page intentionally left blank

A program similar to the following prints the memory size of the built-in data types on

your system. (The output of the program shows the size of the built-in data type on

which this program was run.)

#include <iostream>

using namespace std;

int main()
{

cout << "Size of char = " << sizeof(char) << endl;
cout << "Size of int = " << sizeof(int) << endl;
cout << "Size of short = " << sizeof(short) << endl;
cout << "Size of unsigned int = " << sizeof(unsigned int) << endl;
cout << "Size of long = " << sizeof(long) << endl;
cout << "Size of long long = " << sizeof(long long) << endl;
cout << "Size of bool = " << sizeof(bool) << endl;
cout << "Size of float = " << sizeof(float) << endl;
cout << "Size of double = " << sizeof(double) << endl;
cout << "Size of long double = " << sizeof(long double) << endl;
cout << "Size of unsigned short = "

<< sizeof(unsigned short) << endl;
cout << "Size of unsigned long = "

<< sizeof(unsigned long) << endl;

return 0;
}

Sample Run:
Size of char = 1
Size of int = 4
Size of short = 2
Size of unsigned int = 4
Size of long = 4
Size of long long = 8
Size of bool = 1
Size of float = 4
Size of double = 8
Size of long double = 8
Size of unsigned short = 2
Size of unsigned long = 4

APPENDIX G

MEMORY SIZE ON A
SYSTEM AND RANDOM
NUMBER GENERATOR

1291

Random Number Generator
To generate a random number, you can use the C++ function rand. To use the function

rand, the program must include the header file cstdlib. The header file cstdlib also

contains the constant RAND_MAX. Typically, the value of RAND_MAX is 32767. To find

the exact value of RAND_MAX, check your system’s documentation. The function rand

generates an integer between 0 and RAND_MAX. The following program illustrates how to

use the function rand. It also prints the value of RAND_MAX:

#include <iostream>
#include <cstdlib>
#include <iomanip>

using namespace std;

int main()
{

cout << fixed << showpoint << setprecision(5);
cout << "The value of RAND_MAX: " << RAND_MAX << endl;

cout << "A random number: " << rand() << endl;
cout << "A random number between 0 and 9: "

<< rand() % 10 << endl;
cout << "A random number between 0 and 1: "

<< static_cast<double> (rand())
/ static_cast<double>(RAND_MAX)

<< endl;

return 0;
}

Sample Run:

The value of RAND_MAX: 32767
A random number: 41
A random number between 0 and 9: 7
A random number between 0 and 1: 0.19330

1292 | Appendix G: Memory Size on a System and Random Number Generator

Chapter 13 introduced templates. With the help of class templates, we developed (and

used) a generic code to process lists. For example, we used the class listType to

process a list of integers and a list of strings. In Chapters 17 and 18, we studied the three

most important data structures: linked lists, stacks, and queues. In these chapters, using

class templates, we developed a generic code to process linked lists. In addition, using the

second principle of object-oriented programming (OOP), we developed generic codes to

process unordered and ordered lists. Thus, a template is a powerful tool that promotes

code reuse. This appendix discusses many important features of the STL and shows how

to use the tools provided by the STL in a program.

Components of the STL
The main objective of a program is to manipulate data and generate results. This

requires the ability to store data in computer memory, access a particular piece of data,

and write algorithms to manipulate the data. For example, if all the data items are of

the same type and we have some idea of the number of data items, we could use an

array to store this data. We can then use the index to access a particular component of

the array. Using a loop and the array index, we can step through the elements of the

array. Algorithms, such as initializing the array, sorting, and searching, are used to

manipulate the data stored in an array. On the other hand, if we do not want to be

concerned with the size of the data, we can use a linked list to process the data. The

STL is equipped with these and other features to effectively manipulate the data. More

formally, the STL has the following three main components:

• Containers

• Iterators

• Algorithms

Containers and iterators are templatized classes. Iterators are used to step through the

elements of a container. Algorithms are used to manipulate data. The ensuing sections

discuss each of these three components in detail.

1293

APPENDIX H

STANDARD TEMPLATE
LIBRARY (STL)

Container Types
Containers are used to manage objects of a given type. The STL containers are divided

into three categories:

• Sequence containers (also called sequential containers)

• Associative containers

• Container adapters

This appendix discusses sequence and container adapters.

Sequence Containers
Every object in a sequence container has a specific position. The three predefined

sequence containers are:

• vectors

• deque

• lists

Before discussing container types in general, let us first briefly describe the sequence

container vector. We do so because vector containers are similar to arrays and thus can

be processed like arrays. Also, with the help of vector containers, we can describe several

properties that are common to all containers. In fact, all containers use the same names for

the common operations. Of course, there are operations that are specific to a container,

which will be discussed when describing a specific container.

Sequence Container: Vectors
A vector container stores and manages its objects in a dynamic array. Because an array is a

random access data structure, the elements of a vector can be accessed randomly. Item

insertion at the beginning or middle of an array is time consuming, especially if the array

is large. However, inserting an item at the end is quite fast.

Chapter 16 briefly introduced the class vector and explained how to declare a

vector object and manipulate the data in that object. However, to make this appendix

a stand-alone section, we repeat some of the material in Chapter 16. We also provide a

detailed discussion of the class vector.

The name of the class that implements the vector container is vector. (Recall that

containers are class templates.) The name of the header file containing the class

vector is vector. Thus, to use a vector container in a program, the program must

include the following statement:

#include <vector>

Furthermore, to define an object of type vector, we must specify the type of the object

because the class vector is a class template. For example, the statement:

1294 | Appendix H: Standard Template Library (STL)

vector<int> intList;

declares intList to be a vector and the component type is int. Similarly, the statement:

vector<string> stringList;

declares stringList to be a vector container and the component type is string.

DECLARING VECTOR OBJECTS

The class vector contains several constructors, including the default construc-

tor. Therefore, a vector container can be declared and initialized several ways.

Table H-1 describes how a vector container of a specific type can be declared and

initialized.

TABLE H-1 Various Ways to Declare and Initialize a Vector Container

Statement Effect

vector<elemType> vecList;

Creates the empty vector container

vecList. (The default

constructor is invoked.)

vector<elemType> vecList(otherVecList);

Creates the vector container

vecList, and initializes

vecList to the elements of the

vector otherVecList.

vecList and otherVecList

are of the same type.

vector<elemType> vecList(size);

Creates the vector container

vecList of size size.

vecList is initialized using the

default constructor.

vector<elemType> vecList(n, elm);

Creates the vector container

vecList of size n. vecList is

initialized using n copies of the

element elm.

vector<elemType> vecList(beg, end);

Creates the vector container

vecList. vecList is

initialized to the elements in the

range [beg, end), that is, all

the elements in the range

beg...end-1. Both beg and

end are pointers, called iterators in

STL terminology. (Later in this

appendix, we explain how iterators

are used.)

Container Types | 1295

Now that we know how to declare a vector sequence container, let us now discuss how

to manipulate the data stored in a vector container. In order to manipulate the data in a

vector container, we must know the following basic operations:

• Item insertion

• Item deletion

• Stepping through the elements of a vector container

The elements in a vector container can be accessed directly by using the operations given

in Table H-2. The name of the function is shown in bold.

From Table H-2, it follows that the elements in a vector can be processed just as they can

in an array; see Example H-1. (Recall that in C++, arrays start at location 0. Similarly,

the first element in a vector container is at location 0.)

EXAMPLE H-1

Consider the following statement, which declares intList to be a vector container of
size 5 and the element type is int:

vector<int> intList(5);

You can use a loop, such as the following, to store elements into intList:

for (int j = 0; j < 5; j++)
intList[j] = j;

Similarly, you can use a for loop to output the elements of intList.

TABLE H-2 Operations to Access the Elements of a Vector Container

Expression Description

vecList.at(index) Returns the element at the position specified by index.

vecList[index] Returns the element at the position specified by index.

vecList.front()
Returns the first element. (Does not check whether the

container is empty.)

vecList.back()
Returns the last element. (Does not check whether the

container is empty.)

1296 | Appendix H: Standard Template Library (STL)

The class vector also contains member functions that can be used to find the number

of elements currently in the container, the maximum number of elements that can be

inserted into a container, and so on. Table H-3 describes some of these operations. The

name of the function is shown in bold. (Suppose that vecCont is a vector container.)

The class vector also contains member functions that can be used to manipulate the

data, as well as insert and delete items, in a vector container. Suppose that vecList is a

container of type vector. Item insertion and deletion in vecList are accomplished

using the operations given in Table H-4. These operations are implemented as member

functions of the class vector, and are shown in bold. Table H-4 also shows how these

operations are used.

TABLE H-3 Operations to Determine the Size of a Vector Container

Expression Description

vecCont.capacity()
Returns the maximum number of elements that can

be inserted into the container vecCont without

reallocation.

vecCont.empty()
Returns true if the container vecCont is empty,

false otherwise.

vecCont.size()
Returns the number of elements currently in the container

vecCont.

vecCont.max_size()
Returns the maximum number of elements that can be

inserted into the container vecCont.

TABLE H-4 Various Operations on a Vector Container

Statement Effect

vecList.clear()
Deletes all the elements from the

container.

vecList.erase(position)
Deletes the element at the

position specified by position.

vecList.erase(beg, end)
Deletes all the elements starting at

beg until end-1.

Container Types | 1297

In Table H-4, the identifiers position, beg, and end in STL terminology are called

iterators. An iterator is just like a pointer. In general, iterators are used to step through the

elements of a container. In other words, with the help of an iterator, we can walk through

the elements of a container and process them one at a time. Because iterators are an

integral part of the STL, they are discussed in the section, ‘‘Iterators,’’ located later in this

appendix.

Example H-1 used a for loop and the array subscripting operator, [], to access the

elements of intList. We declare intList to be a vector object of size 5. Does this

mean that we can store only five elements in intList? The answer is no. You can, in

fact, add more elements to intList. However, because when we declare intList we

specify the size to be 5, in order to add any elements past position 4, we use the function

Statement Effect

vecList.insert(position, elem)

A copy of elem is inserted at the

position specified by position.
The position of the new element is

returned.

vecList.insert(position, n, elem)
n copies of elem are inserted at

the position specified by

position.

vecList.insert(position, beg, end)

A copy of the elements, starting at

beg until end-1, is inserted into

vecList at the position

specified by position.

vecList.push_back(elem)
A copy of elem is inserted into

vecList at the end.

vecList.pop_back() Deletes the last element.

vecList.resize(num)

Changes the number of elements

to num. If size() increases, the

default constructor creates the

new elements.

vecList.resize(num, elem)

Changes the number of elements

to num. If size() increases, the

default constructor creates the

new elements.

TABLE H-4 Various Operations on a Vector Container (continued)

1298 | Appendix H: Standard Template Library (STL)

push_back. Furthermore, if you initially declare a vector object and do not specify its

size, then to add elements to the vector object you use the function push_back.

Example H-2 explains how to use the function push_back.

EXAMPLE H-2

The following statement declares intList to be a vector object of size 0:

vector<int> intList;

To add elements to intList, we can use the function push_back as follows:

intList.push_back(34);
intList.push_back(55);

After these statements execute, the size of intList is 2 and:

intList = {34, 55}.

In Example H-2, because intList is declared to be of size 0, we use the function

push_back to add elements to intList. However, we can also use the resize

function to increase the size of intList and then use the array subscripting operator.

For example, suppose that intList is declared as in Example H-2. Then, the following

statement sets the size of intList to 10:

intList.resize(10);

Similarly, the following statement increases the size of intList by 10:

intList.resize(intList.size() + 10);

However, at times, the push_back function is more convenient because it does not

need to know the size of the vector; it simply adds the elements at the end.

Next, we describe how to declare an iterator to a vector container.

DECLARING AN ITERATOR TO A VECTOR CONTAINER

The class vector contains a typedef iterator, which is declared as a public

member. An iterator to a vector container is declared using the typedef iterator. For

example, the statement:

vector<int>::iterator intVecIter;

declares intVecIter to be an iterator to a vector container of type int.

Container Types | 1299

Because iterator is a typedef defined inside the class vector, we must use the

container name (which is vector), the container element type, and the scope resolution

operator to use the typedef iterator.

The expression:

++intVecIter

advances the iterator intVecIter to the next element in the container, and the

expression:

*intVecIter

returns the element at the current iterator position.

Note that these operations are the same as the operations on pointers, discussed in

Chapter 12. Recall that when used as a unary operator, * is called the dereferencing

operator.

We now discuss how to use an iterator to a vector container to manipulate the data stored

in the vector container.

Suppose that we have the following statements:

vector<int> intList; //Line 1
vector<int>::iterator intVecIter; //Line 2

The statement in Line 1 declares intList to be a vector container, and the element type

is int.

The statement in Line 2 declares intVecIter to be an iterator to a vector container

whose element type is int.

CONTAINERS AND THE FUNCTIONS begin AND end

Every container has the member functions begin and end. The function begin returns

the position of the first element in the container; the function end returns a pointer to

the position after the last element in the container. Also, these functions have no

parameters.

After the following statement executes:

intVecIter = intList.begin();

the iterator intVecIter points to the first element in the container intList.

The following for loop outputs the elements of intList to the standard output device:

for (intVecIter = intList.begin(); intVecIter != intList.end();
++intVecIter)

cout << *intVecIter << " ";

Example H-3 shows how the function insert works with vector objects.

1300 | Appendix H: Standard Template Library (STL)

EXAMPLE H-3

Consider the following statements:

int intArray[7] = {1, 3, 5, 7, 9, 11, 13}; //Line 1
vector<int> vecList(intArray, intArray + 7}; //Line 2
vector<int>::iterator intVecIter; //Line 3

The statement in Line 2 declares and initializes the vector container vecList. Now
consider the following statements:

intVecIter = vecList.begin(); //Line 4
++intVecIter; //Line 5
vecList.insert(intVecIter, 22); //Line 6

The statement in Line 4 initializes the iterator intVecIter to the first element of
vecList; the statement in Line 5 advances intVecIter to the second element of
vecList. The statement in Line 6 inserts 22 at the position specified by intVecIter.
After the statement in Line 6 executes, vecList = {1, 22, 3, 5, 7, 9, 11, 13}.
Notice that the size of the container also increases.

The following example illustrates how to use a vector container in a program and how to

process the elements in a vector container.

EXAMPLE H-4

#include <iostream>
#include <vector>

using namespace std;

int main()
{

vector<int> intList; //Line 1
int i; //Line 2

intList.push_back(13); //Line 3
intList.push_back(75); //Line 4
intList.push_back(28); //Line 5
intList.push_back(35); //Line 6

cout << "Line 7: List elements: "; //Line 7
for (i = 0; i < 4; i++) //Line 8

cout << intList[i] << " "; //Line 9
cout << endl; //Line 10

Container Types | 1301

for (i = 0; i < 4; i++) //Line 11
intList[i] *= 2; //Line 12

cout << "Line 13: List elements: "; //Line 13
for (i = 0; i < 4; i++) //Line 14

cout << intList[i] << " "; //Line 15
cout << endl; //Line 16

vector<int>::iterator listIt; //Line 17

cout << "Line 18: List elements: "; //Line 18
for (listIt = intList.begin();

listIt != intList.end(); ++listIt) //Line 19
cout << *listIt << " "; //Line 20

cout << endl; //Line 21

listIt = intList.begin(); //Line 22
++listIt; //Line 23
++listIt; //Line 24

//Insert 88 at the position specified
//by listIt

intList.insert(listIt, 88); //Line 25

cout << "Line 25: List elements: "; //Line 26
for (listIt = intList.begin();

listIt != intList.end(); ++listIt) //Line 27
cout << *listIt << " "; //Line 28

cout << endl; //Line 29

return 0;
}

Sample Run:

Line 7: List elements: 13 75 28 35
Line 13: List elements: 26 150 56 70
Line 18: List elements: 26 150 56 70
Line 25: List elements: 26 150 88 56 70

The statement in Line 1 declares a vector container (or vector for short), intList, of
type int. The statement in Line 2 declares i to be an int variable. The statements in
Lines 3 through 6 use the operation push_back to insert four numbers—13, 75, 28,
and 35—into intList. The statements in Lines 8 and 9 use the for loop and the array
subscripting operator, [], to output the elements of intList. In the output, see the line
marked Line 7, which contains the output of Lines 7 through 10. The statements in Lines
11 and 12 use a for loop to double the value of each element of intList; the
statements in Lines 14 and 15 output the elements of intList. In the output, see the
line marked Line 13, which contains the output of Lines 13 through 16.

The statement in Line 17 declares listIt to be a vector iterator that processes any vector
container whose elements are of type int. Using the iterator listIt, the statements in

1302 | Appendix H: Standard Template Library (STL)

Lines 19 and 20 output the elements of intList. After the statement in Line 22 executes,
listIt points to the first element of intList. The statements in Lines 23 and 24 advance
listIt twice; after these statements execute, listIt points to the third element of
intList. The statement in Line 25 inserts 88 into intList at the position specified by
the iterator listIt. Because listIt points to the component at position 2 (the third
element of intList), 88 is inserted at position 2 in intList; that is, 88 becomes the third
element of intList. The statements in Lines 27 and 28 output the modified intList.

Member Functions Common to All Containers
The previous section discussed vector containers. This section discusses operations that

are common to all containers. For example, every container class has the default con-

structor, several constructors with parameters, the destructor, a function to insert an

element into a container, and so on.

Recall that a class encapsulates data, and operations on that data, into a single unit. Because

every container is a class, several operations are directly defined for a container, and are

provided as part of the definition of the class. Also, recall that the operations to manipulate

the data are implemented with the help of functions and are called member functions of the

class. Table H-5 describes the member functions that are common to all containers; that is,

these functions are included as members of the class template implementing the container.

Suppose ct, ct1, and ct2 are containers of the same type. In Table H-5, the name of

the function is shown in bold. This table also shows how a function is called.

TABLE H-5 Operations Common to All Containers

Member Function Description

Default constructor Initializes the object to an empty state.

Constructor with parameters

In addition to the default constructor, every

container has constructors with parameters. We

will describe these constructors when we discuss

a specific container.

Copy constructor

Executes when an object is passed as a parameter

by value, and when an object is declared and

initialized using another object of the same type.

Destructor Executes when the object goes out of scope.

ct.empty()
Returns true if container ct is empty, false
otherwise.

Container Types | 1303

Member Function Description

ct.size()
Returns the number of elements currently in

container ct.

ct.max_size()
Returns the maximum number of elements that

can be inserted in container ct.

ct1.swap(ct2) Swaps the elements of containers ct1 and ct2.

ct.begin()
Returns an iterator to the first element into

container ct.

ct.end()
Returns an iterator to the position after the last

element into container ct.

ct.rbegin()
Reverse begin. Returns a pointer to the last

element into container ct. This function is used

to process the elements of ct in reverse.

ct.rend()
Reverse end. Returns a pointer to the position

before the first element into container ct.

ct.insert(position, elem)
Inserts elem into container ct at the position

specified by position. Note that here

position is an iterator.

ct.erase(beg, end)
Deletes all the elements between beg...end-1
from container ct. Both beg and end are

iterators.

ct.clear()
Deletes all the elements from the container. After

a call to this function, container ct is empty.

Operator Functions

ct1 = ct2;
Copies the elements of ct2 into ct1. After this
operation, the elements in both containers are the

same.

ct1 == ct2
Returns true if containers ct1 and ct2 are

equal, false otherwise.

ct1 != ct2
Returns true if containers ct1 and ct2 are not

equal, false otherwise.

TABLE H-5 Operations Common to All Containers (continued)

1304 | Appendix H: Standard Template Library (STL)

Because these operations are common to all containers, when discussing a specific

container, to save space, these operations will not be listed again.

Member Functions Common to Sequence Containers
The previous section described the member functions that are common to all containers. In

addition to these member functions, Table H-6 describes the member functions that are

common to all sequence containers, that is, containers of type vector, deque, and list.

The name of the function is shown in bold. (Suppose that seqCont is a sequence container.)

TABLE H-6 Member Functions Common to All Sequence Containers

Expression Description

seqCont.insert(position, elem)

A copy of elem is inserted at the

position specified by the iterator

position. The position of the

new element is returned.

seqCont.insert(position, n, elem)
n copies of elem are inserted at

the position specified by the

iterator position.

seqCont.insert(position, beg, end)

A copy of the elements, starting at

beg until end-1, are inserted

into seqCont at the position

specified by the iterator

position. Also, beg and end
are iterators.

seqCont.push_back(elem)
A copy of elem is inserted into

seqCont at the end.

seqCont.pop_back() Deletes the last element.

seqCont.erase(position)
Deletes the element at the position

specified by the iterator

position.

seqCont.erase(beg, end)
Deletes all the elements starting at

beg until end-1. Both beg and

end are iterators.

seqCont.clear()
Deletes all the elements from the

container.

Container Types | 1305

copy Algorithm
ExampleH-4 used a for loop to output the elements of a vector container. The STL provides

a convenient way to output the elements of a container with the help of the function copy.

The function copy is provided as a part of the generic algorithm and can be used with any

container type. Because we need to frequently output the elements of a container, before

continuing with our discussion of containers, let us first describe this function.

The function copy does more than output the elements of a container. In general,

the function copy allows us to copy the elements from one place to another. For

example, to output the elements of a vector, or to copy the elements of a vector into

another vector, we can use the function copy. The prototype of the function

template copy is:

template <class inputIterator, class outputIterator>
outputItr copy(inputIterator first1, inputIterator last,

outputIterator first2);

The parameter first1 specifies the position from where to begin copying the elements,

and the parameter last specifies the end position. The parameter first2 specifies

where to copy the elements. Therefore, the parameters first1 and last specify the

source, and the parameter first2 specifies the destination.

Note that the elements of the range first1...last-1 are copied.

The definition of the function template copy is contained in the header file algorithm.

Thus, to use the function copy, the program must include the statement:

#include <algorithm>

The function copy works as follows.

Consider the following statement:

int intArray[] = {5, 6, 8, 3, 40, 36, 98, 29, 75};

Expression Description

seqCont.resize(num)

Changes the number of elements

to num. If size() grows, the new

elements are created by their

default constructor.

seqCont.resize(num, elem)
Changes the number of elements

to num. If size() grows, the new

elements are copies of elem.

TABLE H-6 Member Functions Common to All Sequence Containers (continued)

1306 | Appendix H: Standard Template Library (STL)

This statement creates an array intArray of nine components. Here, intArray[0] = 5,

intArray[1] = 6, and so on.

The statement:

vector<int> vecList(9);

creates an empty container of nine components of type vector, and the element type

is int.

Recall that the array name, intArray, is, in fact, a pointer and contains the base

address of the array. Therefore, intArray points to the first component of the array,

intArray + 1 points to the second component of the array, and so on.

Consider the statement:

copy(intArray, intArray + 9, vecList.begin());

This statement copies the elements starting at the location intArray—which is the first

component of the array intArray, until intArray + 9 - 1 (that is, intArray + 8),

which is the last element of the array intArray—into the container vecList. (Note that

here first1 is intArray, last is intArray + 9, and first2 is vecList.begin().)

After the previous statement executes:

vecList = {5, 6, 8, 3, 40, 36, 98, 29, 75}

Now consider the statement:

copy(intArray + 1, intArray + 9, intArray);

Here, first1 is intArray + 1; that is, first1 points to the location of the second

element of the array intArray, and last is intArray + 9. Also, first2 is intArray,

that is, first2 points to the location of the first element of the array intArray. Therefore,

the second array element is copied into the first array component, the third array element

into the second array component, and so on. After the preceding statement executes:

intArray[] = {6, 8, 3, 40, 36, 98, 29, 75, 75}

Clearly, the elements of the array intArray are shifted to the left by one position.

Now consider the statement:

copy(vecList.rbegin() + 2, vecList.rend(), vecList.rbegin());

Recall that the function rbegin, reverse begin, returns a pointer to the last element in a

container, and this function is used to process the elements of a container in reverse.

Therefore, vecList.rbegin() + 2 returns a pointer to the third to the last element in

the container vecList. The function rend, reverse end, returns a pointer to the

position before the first element in a container. The previous statement shifts the elements

of the container vecList to the right by two positions. After the previous statement

executes, the container vecList is:

Container Types | 1307

vecList = {5, 6, 5, 6, 8, 3, 40, 36, 98}

Example H-5 shows the effect of the preceding statements using a C++ program. Before

showing Example H-5, let us next describe a special type of iterators, called ostream

iterators, which work well with the function copy to copy the elements of a

container to an output device.

ostream ITERATOR AND THE FUNCTION copy

One way to output the contents of a container is to use a for loop and the function

begin to initialize the for loop control variable, and the function end to set the limit.

However, the function copy can also be used to output the elements of a container. In

this case, an iterator of type ostream specifies the destination. (ostream iterators are

discussed later in this appendix.) When we create an iterator of type ostream, we also

specify the type of element the iterator will output.

The following statement illustrates how to create an ostream iterator of type int:

ostream_iterator<int> screen(cout, " "); //Line A

This statement creates screen to be an ostream iterator, and the element type is int.

The iterator screen has two arguments: the object cout and a space. This means that

the iterator screen is initialized using the object cout, and when this iterator outputs

the elements, they are separated by a space.

The statement:

copy(intArray, intArray + 9, screen);

outputs the elements of intArray on the screen.

Similarly, the statement:

copy(vecList.begin(), vecList.end(), screen);

outputs the elements of the container vecList on the screen.

We will frequently use the function copy to output the elements of a container by

using an ostream iterator. Also, until we discuss ostream iterators in detail, we

will use statements similar to the statement in Line A to create an ostream

iterator.

Of course, we can directly specify an ostream iterator in the function copy. For

example, the statement (shown previously):

copy(vecList.begin(), vecList.end(), screen);

is equivalent to the statement:

copy(vecList.begin(), vecList.end(),
ostream_iterator<int>(cout, " "));

1308 | Appendix H: Standard Template Library (STL)

Finally, the statement:

copy(vecList.begin(), vecList.end(),
ostream_iterator<int>(cout, ", "));

outputs the elements of vecList with a comma and space between them.

Example H-5 illustrates how to use the function copy and an ostream iterator in a

program.

EXAMPLE H-5

#include <algorithm>
#include <vector>
#include <iterator>
#include <iostream>

using namespace std;

int main()
{

int intArray[] = {5, 6, 8, 3, 40,
36, 98, 29, 75}; //Line 1

vector<int> vecList(9); //Line 2

ostream_iterator<int> screen(cout, " "); //Line 3

cout << "Line 4: intArray: "; //Line 4
copy(intArray, intArray + 9, screen); //Line 5
cout << endl; //Line 6

copy(intArray, intArray + 9, vecList.begin()); //Line 7

cout << "Line 8: vecList: "; //Line 8
copy(vecList.begin(), vecList.end(), screen); //Line 9
cout << endl; //Line 10

copy(intArray+1, intArray + 9, intArray); //Line 11
cout << "Line 12: After shifting the elements "

<< "one position to the left, " << endl
<< " intArray: "; //Line 12

copy(intArray, intArray + 9, screen); //Line 13
cout << endl; //Line 14

copy(vecList.rbegin() + 2, vecList.rend(),
vecList.rbegin()); //Line 15

cout << "Line 16: After shifting the elements "
<< "down by two positions, "<< endl
<< " vecList: "; //Line 16

Container Types | 1309

copy(vecList.begin(), vecList.end(), screen); //Line 17
cout << endl; //Line 18

return 0;
}

Sample Run:

Line 4: intArray: 5 6 8 3 40 36 98 29 75
Line 8: vecList: 5 6 8 3 40 36 98 29 75
Line 12: After shifting the elements one position to the left,

intArray: 6 8 3 40 36 98 29 75 75
Line 16: After shifting the elements down by two positions,

vecList: 5 6 5 6 8 3 40 36 98

Sequence Container: deque
This section describes the sequence container deque. The term deque stands for double-

ended queue. Deque containers are implemented as dynamic arrays in such a way that the

elements can be inserted at both ends. Thus, a deque can expand in either direction.

Elements can also be inserted in the middle. Inserting elements at the beginning or the

end is fast; inserting elements in the middle, however, is time consuming because the

elements in the queue need to be shifted.

The name of the class defining the deque containers is deque. Also, the definition of the

class deque, and the functions to implement the various operations on a deque

object, are contained in the header file deque. Therefore, to use a deque container in

a program, the program must include the following statement:

#include <deque>

The class deque contains several constructors. Thus, a deque object can be initialized

in various ways when it is declared. Table H-7 describes various ways a deque object can

be declared.

TABLE H-7 Various Ways to Declare a deque Object

Statement Description

deque<elementType> deq;
Creates an empty deque container

deq. (The default constructor is

invoked.)

deque<elementType> deq(otherDeq);

Creates the deque container deq
and initializes it to the elements
of otherDeq; deq and

otherDeq are of the same type.

1310 | Appendix H: Standard Template Library (STL)

In addition to the operations that are common to all containers (see Table H-6), Table H-8

describes operations that can be used to manipulate the elements of a deque container.

The name of the function implementing the operations is shown in bold. The statement

also shows how to use a particular function. (Suppose that deq is a deque container.)

Statement Description

deque<elementType> deq(size);
Creates the deque container deq
of size size. deq is initialized

using the default constructor.

deque<elementType> deq(n, elm);
Creates the deque container deq
of size n. deq is initialized using n
copies of the element elm.

deque<elementType> deq(beg, end);

Creates the deque container deq.
deq is initialized to the elements

in the range [beg, end), that is,
all elements in the range

beg...end-1. Both beg and

end are iterators.

TABLE H-7 Various Ways to Declare a deque Object (continued)

TABLE H-8 Various Operations that Can Be Performed on a deque Object

Expression Description

deq.assign(n,elem) Assigns n copies of elem.

deq.assign(beg, end) Assigns all the elements in the range beg...end-1.

deq.push_front(elem) Inserts elem at the beginning of deq.

deq.pop_front() Removes the first element from deq.

deq.at(index) Returns the element at the position specified by index.

deq[index] Returns the element at the position specified by index.

deq.front()
Returns the first element. (Does not check whether the

container is empty.)

deq.back()
Returns the last element. (Does not check whether the

container is empty.)

Container Types | 1311

Example H-6 illustrates how to use a deque container in a program.

EXAMPLE H-6

//deque Example
#include <iostream>
#include <deque>
#include <algorithm>
#include <iterator>

using namespace std;

int main()
{

deque<int> intDeq; //Line 1
ostream_iterator<int> screen(cout, " "); //Line 2

intDeq.push_back(13); //Line 3
intDeq.push_back(75); //Line 4
intDeq.push_back(28); //Line 5
intDeq.push_back(35); //Line 6

cout << "Line 7: intDeq: "; //Line 7
copy(intDeq.begin(), intDeq.end(), screen); //Line 8
cout << endl; //Line 9

intDeq.push_front(0); //Line 10
intDeq.push_back(100); //Line 11

cout << "Line 12: After adding two more "
<< "elements, one at the front " << endl
<< " and one at the back, "
<<"intDeq: "; //Line 12

copy(intDeq.begin(), intDeq.end(), screen); //Line 13
cout << endl; //Line 14

intDeq.pop_front(); //Line 15
intDeq.pop_front(); //Line 16

cout << "Line 17: After removing the first "
<< "two elements, " << endl
<< " intDeq: "; //Line 17

copy(intDeq.begin(), intDeq.end(), screen); //Line 18
cout << endl; //Line 19

intDeq.pop_back(); //Line 20
intDeq.pop_back(); //Line 21

cout << "Line 22: After removing the last "
<< "two elements, " << endl
<< " intDeq: "; //Line 22

1312 | Appendix H: Standard Template Library (STL)

copy(intDeq.begin(), intDeq.end(), screen); //Line 23
cout << endl; //Line 24

return 0;
}

Sample Run:

Line 7: intDeq: 13 75 28 35
Line 12: After adding two more elements, one at the front

and one at the back, intDeq: 0 13 75 28 35 100
Line 17: After removing the first two elements,

intDeq: 75 28 35 100
Line 22: After removing the last two elements,

intDeq: 75 28

The statement in Line 1 declares a deque container intDeq of type int, that is, all the
elements of intDeq are of type int. The statement in Line 2 declares screen to be an
ostream iterator initialized to the standard output device. The statements in Lines 3
through 6 use the push_back operation to insert four numbers—13, 75, 28, and 35—
into intDeq. The statement in Line 8 outputs the elements of intDeq. In the output,
see the line marked Line 7, which contains the output of the statements in Lines 7
through 9.

The statement in Line 10 inserts 0 at the beginning of intDeq; the statement in Line 11
inserts 100 at the end of intDeq. The statement in Line 13 outputs the modified
intDeq.

The statements in Lines 15 and 16 use the operation pop_front to remove the first two
elements of intDeq, and the statement in Line 18 outputs the modified intDeq. The
statements in Lines 20 and 21 use the operation pop_back to remove the last two
elements of intDeq, and the statement in Line 23 outputs the modified intDeq.

Sequence Container: list
This section describes the sequence container list. List containers are implemented as

doubly linked lists. Thus, every element in a list points to its immediate predecessor and

immediate successor (except the first and the last elements). Recall that a linked list is not

a random access data structure, such as an array. Therefore, to access, say, the fifth

element in a list, we must first traverse the first four elements.

The name of the class containing the definition of the class list is list. Also, the

definition of the class list, and the definitions of the functions to implement the

various operations on a list, are contained in the header file list. Therefore, to use list

in a program, the program must include the following statement:

#include <list>

Container Types | 1313

Like other container classes, the class list also contains several constructors. Thus, a

list object can be initialized several ways when it is declared. Table H-9 shows various

ways to declare and initialize a list object.

Table H-5 described the operations that are common to all containers, and Table H-6

described the operations that are common to all sequence containers. In addition to these

common operations, Table H-10 describes operations that are specific to a list con-

tainer. The name of the function implementing the operation is shown in bold. (Suppose

that listCont, listCont1, and listCont2 are containers of type list.)

TABLE H-9 Various Ways to Declare a list Object

Statement Description

list<elementType> listCont;

Creates the empty list
container listCont. (The
default constructor is

invoked.)

list<elementType> listCont(otherList);

Creates the list container

listCont and initializes

it to the elements of

otherList. listCont
and otherList are of the

same type.

list<elementType> listCont(size);

Creates the list container

listCont of size size.
listCont is initialized

using the default constructor.

list<elementType> listCont(n, elm);

Creates the list container

listCont of size n.
listCont is initialized

using n copies of the

element elm.

list<elementType> listCont(beg, end);

Creates the list container

listCont. listCont is

initialized to the elements in

the range [beg, end),
that is, all the elements in

the range beg...end-1.
Both beg and end are

iterators.

1314 | Appendix H: Standard Template Library (STL)

TABLE H-10 Various Operations Specific to a list Container

Expression Description

listCont.assign(n, elem) Assigns n copies of elem.

listCont.assign(beg, end)
Assigns all the elements in the range

beg...end-1. Both beg and end
are iterators.

listCont.push_front(elem)
Inserts elem at the beginning of

listCont.

listCont.pop_front()
Removes the first element from

listCont.

listCont.front()
Returns the first element. (Does not

check whether the container is empty.)

listCont.back()
Returns the last element. (Does not

check whether the container is empty.)

listCont.remove(elem)
Removes all the elements that are

equal to elem.

listCont.remove_if(oper)
Removes all the elements for which

oper is true.

listCont.unique()
If the consecutive elements in

listCont have the same value,

removes the duplicates.

listCont.unique(oper)

If the consecutive elements in

listCont have the same value,

removes the duplicates, for which

oper is true.

listCont.sort()
The elements of listCont are

sorted. The sort criteria is <.

listCont.sort(oper)
The elements of listCont are

sorted. The sort criteria is specified by

oper.

Container Types | 1315

Example H-7 illustrates how to use various operations on a list container.

EXAMPLE H-7

//List Container Example

#include <iostream>
#include <list>
#include <iterator>
#include <algorithm>

using namespace std;

int main()
{

list<int> intList1, intList2, intList3, intList4; //Line 1

ostream_iterator<int> screen(cout, " "); //Line 2

intList1.push_back(23); //Line 3
intList1.push_back(58); //Line 4
intList1.push_back(58); //Line 5
intList1.push_back(58); //Line 6
intList1.push_back(36); //Line 7

Expression Description

listCont1.merge(listCont2)

Suppose that the elements of

listCont1 and listCont2 are

sorted. This operation moves all the

elements of listCont2 into

listCont1. After this operation, the

elements in listCont1 are sorted.

Moreover, after this operation,

listCont2 is empty.

listCont1.merge(listCont2,oper)

Suppose that the elements of

listCont1 and listCont2 are

sorted according to the sort criteria

oper. This operation moves all the

elements of listCont2 into

listCont1. After this operation, the

elements in listCont1 are sorted

according to the sort criteria oper.

listCont.reverse()
The elements of listCont are

reversed.

TABLE H-10 Various Operations Specific to a list Container (continued)

1316 | Appendix H: Standard Template Library (STL)

intList1.push_back(15); //Line 8
intList1.push_back(93); //Line 9
intList1.push_back(98); //Line 10
intList1.push_back(58); //Line 11

cout << "Line 12: intList1: "; //Line 12
copy(intList1.begin(), intList1.end(), screen); //Line 13
cout << endl; //Line 14

intList2 = intList1; //Line 15

cout << "Line 16: intList2: "; //Line 16
copy(intList2.begin(), intList2.end(), screen); //Line 17
cout << endl; //Line 18

intList1.unique(); //Line 19

cout << "Line 20: After removing the consecutive "
<< "duplicates," << endl
<< " intList1: "; //Line 20

copy(intList1.begin(), intList1.end(), screen); //Line 21
cout << endl; //Line 22

intList2.sort(); //Line 23

cout << "Line 24: After sorting, intList2: "; //Line 24
copy(intList2.begin(),intList2.end(),screen); //Line 25
cout << endl; //Line 26

intList3.push_back(13); //Line 27
intList3.push_back(25); //Line 28
intList3.push_back(23); //Line 29
intList3.push_back(198); //Line 30
intList3.push_back(136); //Line 31

cout << "Line 32: intList3: "; //Line 32
copy(intList3.begin(), intList3.end(), screen); //Line 33
cout << endl; //Line 34

intList3.sort(); //Line 35

cout << "Line 36: After sorting, intList3: "; //Line 36
copy(intList3.begin(), intList3.end(), screen); //Line 37
cout << endl; //Line 38

intList2.merge(intList3); //Line 39

cout << "Line 40: After merging intList2 and "
<< "intList3, intList2: " << endl
<< " "; //Line 40

Container Types | 1317

copy(intList2.begin(), intList2.end(), screen); //Line 41
cout << endl; //Line 42

return 0;
}

Sample Run:

Line 12: intList1: 23 58 58 58 36 15 93 98 58
Line 16: intList2: 23 58 58 58 36 15 93 98 58
Line 20: After removing the consecutive duplicates,

intList1: 23 58 36 15 93 98 58
Line 24: After sorting, intList2: 15 23 36 58 58 58 58 93 98
Line 32: intList3: 13 25 23 198 136
Line 36: After sorting, intList3: 13 23 25 136 198
Line 40: After merging intList2 and intList3, intList2:

13 15 23 23 25 36 58 58 58 58 93 98 136 198

For the most part, the output of the preceding program is straightforward. The statements
in Lines 3 through 11 insert the element numbers 23, 58, 58, 58, 36, 15, 93, 98, and
58 (in this order) into intList1. The statement in Line 15 copies the elements of
intList1 into intList2. After this statement executes, intList1 and intList2

are identical. The statement in Line 19 removes any consecutive occurrences of the same
elements. For example, the number 58 appears consecutively three times. The operation
unique removes two occurrences of 58. Note that this operation has no effect on the 58
that appears at the end of intList1.

The statement in Line 23 sorts intList2. The statements in Lines 27 through 31 insert 13,
25, 23, 198, and 136 into intList3. The statement in Line 35 sorts intList3, and the
statement in Line 39 merges intList2 and intList3 into intList2. After the merge

operation, intList3 is empty. The meanings of the remaining statements are similar.

Iterators
Iterators are like pointers. In general, an iterator points to the elements of a container

(sequence or associative). Thus, with the help of iterators, we can successively access each

element of a container.

The two most common operations on iterators are ++ (the increment operator) and * (the

dereferencing operator). Suppose that cntItr is an iterator to a container. The statement:

++cntItr;

advances cntItr so that it points to the next element in the container. Similarly, the

statement:

*cntItr;

returns the value of the element of the container pointed to by cntItr.

1318 | Appendix H: Standard Template Library (STL)

IOStream Iterators
A useful set of iterators is stream iterators—istream iterators and ostream iterators.

The next two sections describe these iterators.

istream_iterator

The istream iterator is used to input data into a program from an input stream. The

class istream_iterator contains the definition of an input stream iterator. The

general syntax to use an istream iterator is:

istream_iterator<Type> isIdentifier(istream&);

where Type is either a built-in type or a user-defined class type, for which an input

iterator is defined. The identifier isIdentifier is initialized using the constructor

whose argument is either an istream class object such as cin, or any publicly defined

istream subtype, such as ifstream.

ostream_iterator

The ostream iterators are used to output data from a program to an output stream.

These iterators were defined earlier in this appendix. We review them here for the sake of

completeness.

The class ostream_iterator contains the definition of an output stream iterator.

The general syntax to use an ostream iterator is:

ostream_iterator<Type> osIdentifier(ostream&);

or:

ostream_iterator<Type> osIdentifier(ostream&, char* deLimit);

where Type is either a built-in type or a user-defined class type, for which an output

iterator is defined. The identifier osIdentifier is initialized using the constructor

whose argument in either an ostream class object, such as cout, or any publicly defined

ostream subtype, such as ofstream. In the second form of declaring an ostream

iterator, using the second argument (deLimit) of the initializing constructor, we can

specify the character separating the output.

Container Adapters
The previous sections discussed several types of containers. In addition to the containers

that work in a general framework, the STL also provides containers to accommodate

special situations. These containers, called container adapters, are adapted standard STL

containers to work in a specific environment. The three container adapters are:

Iterators | 1319

• Stack

• Queue

• Priority queues

The container adapters do not support any type of iterator. That is, iterators cannot be

used with these types of containers. The next two sections describe the container adapters

stack and queue.

STACK

Chapter 18 discussed the data structure stack in detail. Because a stack is an important data

structure, the STL provides a class to implement stacks in a program. The name of the

class defining a stack is stack, and the name of the header file containing the definition

of the class stack is stack. Table H-11 defines various operations supported by the

stack container class.

In addition to the operations size, empty, push, top, and pop, the stack container

class also provides relational operators to compare two stacks. For example, the relational

operator == can be used to determine whether two stacks are identical, and so on.

The program in Example H-8 illustrates how to use the stack container class.

EXAMPLE H-8

#include <iostream>
#include <stack>

using namespace std;

TABLE H-11 Various Operations on a stack Object

Operation Description

size Returns the actual number of elements in the stack.

empty Returns true if the stack is empty, false otherwise.

push(item) Inserts a copy of item into the stack.

top
Returns the top element of the stack, but does not remove the element

from the stack. This operation is implemented as a value-returning

function.

pop Removes the top element of the stack.

1320 | Appendix H: Standard Template Library (STL)

int main()
{

stack<int> intStack; //Line 1

intStack.push(16); //Line 2
intStack.push(8); //Line 3
intStack.push(20); //Line 4
intStack.push(3); //Line 5

cout << "Line 6: The top element of "
<< "intStack: " << intStack.top()
<< endl; //Line 6

intStack.pop(); //Line 7

cout << "Line 8: After the pop operation, "
<< "the top element of intStack: "
<< intStack.top() << endl; //Line 8

cout << "Line 9: intStack elements: "; //Line 9

while (!intStack.empty()) //Line 10
{

cout << intStack.top() << " "; //Line 11
intStack.pop(); //Line 12

}

cout << endl; //Line 13

return 0;
}

Sample Run:

Line 6: The top element of intStack: 3
Line 8: After the pop operation, the top element of intStack: 20
Line 9: intStack elements: 20 8 16

QUEUE

Chapter 18 discussed the data structure queue in detail. Because a queue is an important

data structure, the STL provides a class to implement queues in a program. The name of

the class defining a queue is queue, and the name of the header file containing the

definition of the class queue is queue. Table H-12 defines various operations

supported by the queue container class.

Iterators | 1321

In addition to the operations size, empty, push, front, back, and pop, the queue

container class also provides relational operators to compare two queues. For example,

the relational operator == can be used to determine whether two queues are identical,

and so on.

The program in Example H-9 illustrates how to use the queue container class.

EXAMPLE H-9

#include <iostream>
#include <queue>

using namespace std;

int main()
{

queue<int> intQueue; //Line 1

intQueue.push(26); //Line 2
intQueue.push(18); //Line 3
intQueue.push(50); //Line 4
intQueue.push(33); //Line 5

cout << "Line 6: The front element of "
<< "intQueue: " << intQueue.front()
<< endl; //Line 6

TABLE H-12 Various Operations on a queue Object

Operation Description

size Returns the actual number of elements in the queue.

empty Returns true if the queue is empty, false otherwise.

push(item) Inserts a copy of item into the queue.

front
Returns the next, that is, first, element in the queue, but does not

remove the element from the queue. This operation is implemented

as a value-returning function.

back
Returns the last element in the queue, but does not remove the element

from the queue. This operation is implemented as a value-returning

function.

pop Removes the next element in the queue.

1322 | Appendix H: Standard Template Library (STL)

cout << "Line 7: The last element of "
<< "intQueue: " << intQueue.back()
<< endl; //Line 7

intQueue.pop(); //Line 8

cout << "Line 9: After the pop operation, "
<< "the front element of intQueue: "
<< intQueue.front() << endl; //Line 9

cout << "Line 10: intQueue elements: "; //Line 10

while (!intQueue.empty()) //Line 11
{

cout << intQueue.front() << " "; //Line 12
intQueue.pop(); //Line 13

}

cout << endl; //Line 14

return 0;
}

Sample Run:

Line 6: The front element of intQueue: 26
Line 7: The last element of intQueue: 33
Line 9: After the pop operation, the front element of intQueue: 18
Line 10: intQueue elements: 18 50 33

Algorithms
Several operations can be defined for a container. Some of the operations are very specific to a

container and, therefore, are provided as part of the container definition (that is, as member

functions of the class implementing the container). However, several operations—such as

find, sort, and merge—are common to all containers. These common operations are,

therefore, provided as generic algorithms, and can be applied to all containers as well as the

built-in array type. The algorithms are bound to a particular container through an iterator pair.

The generic algorithms are contained in the header file algorithm. The ensuing

sections describe several of these algorithms and show how to use them in a program.

Because algorithms are implemented with the help of functions, in these sections, the

terms function and algorithm mean the same thing.

STL Algorithm Classification
In earlier sections, you applied various operations on the sequence container, such as

clear, sort, merge, and so on. However, those algorithms were tied to a specific

Algorithms | 1323

container in terms of the members of a specific class. All those algorithms and a few

more are also available in a more general form, called generic algorithms, and can

be applied in a variety of situations. This section discusses some of these generic

algorithms.

The STL contains algorithms that look only at the elements in a container and that move

the elements of a container. It also has algorithms that can perform a specific calculation,

such as finding the sum of the elements of a numeric container. The STL also contains

algorithms for basic set theory operations, such as set union and intersection. You have

already encountered some of the generic algorithms, such as the copy algorithm, which

copies the elements from a given range of elements to another place, such as another

container or the screen. The algorithms in the STL can be classified into the following

categories:

• Nonmodifying algorithms

• Modifying algorithms

• Numeric algorithms

• STL algorithms

The next four sections describe these algorithms. Most of the generic algorithms are

contained in the header file algorithm. Certain algorithms, such as numeric, are

contained in the header file numeric.

NONMODIFYING ALGORITHMS

Nonmodifying algorithms do not modify the elements of the container; they only

investigate the elements. Table H-13 describes the nonmodifying algorithms.

TABLE H-13 Nonmodifying Algorithms

Nonmodifying Algorithms

adjacent_find find_if max

binary_search find_end max_element

count find_first_of min

count_if for_each min_element

equal includes search

equal_range lower_bound search_n

find mismatch upper_bound

1324 | Appendix H: Standard Template Library (STL)

MODIFYING ALGORITHMS

Modifying algorithms, as the name implies, modify the elements of a container by

rearranging, removing, and/or changing the values of the elements. Table H-14 describes

the modifying algorithms.

Modifying algorithms that change the order of the elements, not their values, are also

called mutating algorithms. For example, next_permutation, partition,

previous_permutation, random_shuffle, reverse, reverse_copy, rotate,

rotate_copy, and stable_partition are mutating algorithms.

TABLE H-14 Modifying Algorithms

Modifying Algorithms

copy previous_permutation rotate_copy

copy_backward random_shuffle set_difference

fill remove set_intersection

fill_n remove_copy set_symmetric_difference

generate remove_copy_if set_union

generate_n remove_if sort

inplace_merge replace stable_partition

iter_swap replace_copy stable_sort

merge replace_copy_if swap

next_permutation replace_if swap_ranges

nth_element reverse transform

partial_sort reverse_copy unique

partial_sort_copy rotate unique_copy

partition

Algorithms | 1325

NUMERIC ALGORITHMS

Numeric algorithms are designed to perform numeric calculations on the elements of a

container. Table H-15 defines these algorithms.

The next section shows how some of these algorithms are used in a program.

STL Algorithms
The ensuing sections describe some of the STL algorithms. Each algorithm includes the

function prototypes, a brief description of what the algorithm does, and a program or

example showing how to use it. In the function prototypes, the parameter types indicate

for which type of container the algorithm is applicable.

Functions fill and fill_n

The function fill is used to fill a container with elements, and the function fill_n is

used to fill the next n elements. The element that is used as a filling element is passed as a

parameter to these functions. Both of these functions are defined in the header file

algorithm. The prototypes of these functions are:

template <class forwardItr, class Type>
void fill(forwardItr first, forwardItr last, const Type& value);

template <class forwardItr, class size, class Type>
void fill_n(forwardItr first, size n, const Type& value);

The first two parameters of the function fill are forward iterators that specify the

starting and ending positions of the container; the third parameter is the filling element.

The first parameter of the function fill_n is a forward iterator that specifies the

starting position of the container; the second parameter specifies the number of

elements to be filled; and the third parameter specifies the filling element. The program

in Example H-10 illustrates how to use these functions.

TABLE H-15 Numeric Algorithms

Numeric Algorithms

accumulate inner_product

adjacent_difference partial_sum

1326 | Appendix H: Standard Template Library (STL)

EXAMPLE H-10

//STL functions fill and fill_n

#include <iostream>
#include <algorithm>
#include <iterator>
#include <vector>

using namespace std;

int main()
{

vector<int> vecList(8); //Line 1
ostream_iterator<int> screen(cout, " "); //Line 2

fill(vecList.begin(), vecList.end(), 2); //Line 3

cout << "Line 4: After filling vecList "
<< "with 2's: "; //Line 4

copy(vecList.begin(), vecList.end(), screen); //Line 5
cout << endl; //Line 6

fill_n(vecList.begin(), 3, 5); //Line 7

cout << "Line 8: After filling the first "
<< "three elements with 5's: "
<< endl << " "; //Line 8

copy(vecList.begin(), vecList.end(), screen); //Line 9
cout << endl; //Line 10

return 0;
}

Sample Run:

Line 4: After filling vecList with 2's: 2 2 2 2 2 2 2 2
Line 8: After filling the first three elements with 5's:

5 5 5 2 2 2 2 2

The statements in Lines 1 and 2 declare vecList to be a sequence container of size 8,
and screen to be an ostream iterator initialized to cout with the delimit character
space, respectively. The statement in Line 3 uses the function fill to fill vecList with 2;
that is, all eight elements of vecList are set to 2. The statement in Line 5 outputs the
elements of vecList using the copy function. The statement in Line 7 uses the
function fill_n to store 5 in the elements of vecList. In the statement in Line 7,
the first parameter of fill_n is vecList.begin(), which specifies the starting
position of where to begin copying. The second parameter of fill_n is 3, which
specifies the number of elements to be filled, and the third parameter, 5, specifies the

Algorithms | 1327

filling element. Therefore, 5 is copied into the first three elements of vecList. The
statement in Line 9 outputs the elements of vecList.

Functions find and find_if

The functions find and find_if are used to find the elements in a given range. These

functions are defined in the header file algorithm. The prototypes of the functions

find and find_if are:

template <class inputItr, class size, class Type>
inputItr find(inputItr first, inputItr last,

const Type& searchValue);

template <class inputItr, class unaryPredicate>
inputItr find_if(inputItr first, inputItr last, unaryPredicate op);

The function find searches the range of elements first...last-1 for the element

searchValue. If searchValue is found in the range, the function returns the position

in the range where searchValue is found; otherwise, it returns last. The function

find_if searches the range of elements first...last-1 for the element for which

op(rangeElement) is true. If an element satisfying op(rangeElement) true is

found, it returns the position in the given range where such an element is found;

otherwise, it returns last.

Example H-11 illustrates how to use the functions find and find_if.

EXAMPLE H-11

Consider the following statements:

char cList[10] = {'a', 'i', 'C', 'd', 'e', 'f',
'o', 'H', 'u', 'j'}; //Line 1

vector<char> charList(cList, cList + 10); //Line 2

vector<char>::iterator position; //Line 3

After the statement in Line 2 executes, the vector container charList is:

charList = {'a', 'i', 'C', 'd', 'e', 'f', 'o', 'H', 'u', 'j'};

Consider the following statement:

position = find(charList.begin(), charList.end(), 'd');

1328 | Appendix H: Standard Template Library (STL)

This statement searches charList for the first occurrence of 'd' and returns an iterator,
which is stored in position. Because 'd' is the fourth character in charList, its
position is 3. Therefore, position points to the element at position 3 in charList.

Now consider the following statement:

position = find_if(charList.begin(), charList.end(), isupper);

This statement uses the function find_if to find the first uppercase character in
charList. (Note that the function isupper from the header file cctype is passed
as the third parameter to the function find_if.) The first uppercase character in
charList is the third element. Therefore, after this statement executes, position

points to the third element of charList.

We leave it as an exercise for you to write a program that tests the functions find and
find_if.

Functions remove and replace

The function remove is used to remove certain elements from a sequence. The function

replace is used to replace all occurrences, in a given range, of a given element with a

new value. Some of the prototypes of these functions are:

template <class forwardItr, class Type>
forwardItr remove(forwardItr first, forwardItr last,

const Type& value);

template <class forwardItr, class Type>
void replace(forwardItr first, forwardItr last,

const Type& oldValue, const Type& newValue);

The function remove removes each occurrence of a given element in the range

first...last-1. The element to be removed is passed as the third parameter to this

function. This function returns an iterator, which points to the position after the last

element copied.

The function replace replaces all the elements in the range first...last-1 whose

value is equal to oldValue with the value specified by newValue.

The program in Example H-12 shows how to use the functions remove and replace.

EXAMPLE H-12

//STL functions remove and replace

#include <iostream>
#include <cctype>
#include <algorithm>

Algorithms | 1329

#include <iterator>
#include <vector>

using namespace std;

int main()
{

char cList[10] = {'A', 'a', 'A', 'B', 'A',
'c', 'D', 'e', 'F', 'A'}; //Line 1

vector<char> charList1(cList, cList + 10); //Line 2
vector<char> charList2(cList, cList + 10); //Line 3

vector<char>::iterator lastElem; //Line 4

ostream_iterator<char> screen(cout, " "); //Line 5

cout << "Line 6: Character list 1: "; //Line 6
copy(charList1.begin(), charList1.end(), screen); //Line 7
cout << endl; //Line 8

//remove
lastElem = remove(charList1.begin(),

charList1.end(), 'A'); //Line 9

cout << "Line 10: Character list 1 after "
<< "removing A: "; //Line 10

copy(charList1.begin(), lastElem, screen); //Line 11
cout << endl; //Line 12

cout << "Line 13: Character list 2: "; //Line 13
copy(charList2.begin(), charList2.end(), screen); //Line 14
cout << endl; //Line 15

//replace
replace(charList2.begin(), charList2.end(),

'A', 'Z'); //Line 16

cout << "Line 17: Character list 2 after "
<< "replacing A with Z: " << endl; //Line 17

copy(charList2.begin(), charList2.end(), screen); //Line 18
cout << endl; //Line 19

return 0;
}

Sample Run:

Line 6: Character list 1: A a A B A c D e F A
Line 10: Character list 1 after removing A: a B c D e F
Line 13: Character list 2: A a A B A c D e F A
Line 17: Character list 2 after replacing A with Z:
Z a Z B Z c D e F Z

1330 | Appendix H: Standard Template Library (STL)

The statements in Lines 2 and 3 create vector lists, charList1 and charList2, of type
char and initialize them using the array cList created in Line 1. The statement in Line
4 declares the vector iterator lastElem. The statement in Line 5 declares the ostream

iterator screen. The statement in Line 7 outputs the value of charList1.

The statement in Line 9 uses the function remove to remove all the occurrences of 'A'
from charList1. The function returns a pointer to one character past the last element
of the new range, which is stored in lastElem. The statement in Line 11 outputs the
elements in the new range.

The statement in Line 16 uses the function replace to replace all the occurrences of
'A' with 'Z' in charList2. The statement in List 18 outputs the elements of
charList2.

Functions search, sort, and binary_search

The functions search, sort, and binary_search are defined in the header file

algorithm. The function search is used to search for elements. A prototype of the

function search is:

template <class forwardItr1, class forwardItr2>
forwardItr1 search(forwardItr1 first1, forwardItr1 last1,

forwardItr2 first2, forwardItr2 last2);

Given the two ranges of elements, first1...last1-1 and first2...last2-1,

the function search searches for the first element in the range first1...last1-1

where the range first2...last2-1 occurs as a subrange of first1...last1-1.

A prototype of the function sort is:

template <class randomAccessItr>
void sort(randomAccessItr first, randomAccessItr last);

The function sort reorders the elements in the range first...last-1 in ascending

order.

A prototype of the function binary_search is:

template <class forwardItr, class Type>
bool binary_search(forwardItr first, forwardItr last,

const Type& searchValue);

This function returns true if searchValue is found in the range first...last-1,

false otherwise.

Example H-13 illustrates how to use these searching and sorting functions.

Algorithms | 1331

EXAMPLE H-13

//STL functions search, sort, and binary_search

#include <iostream>
#include <algorithm>
#include <iterator>
#include <vector>

using namespace std;

int main()
{

int intList[15] = {12, 34, 56, 34, 34,
78, 38, 43, 12, 25,
34, 56, 62, 5, 49}; //Line 1

vector<int> vecList(intList, intList + 15); //Line 2
int list[2] = {34, 56}; //Line 3

vector<int>::iterator location; //Line 4

ostream_iterator<int> screenOut(cout, " "); //Line 5

cout << "Line 6: vecList: "; //Line 6
copy(vecList.begin(), vecList.end(), screenOut); //Line 7
cout << endl; //Line 8

cout << "Line 9: list: "; //Line 9
copy(list, list + 2, screenOut); //Line 10
cout << endl; //Line 11

//search
location = search(vecList.begin(), vecList.end(),

list, list + 2); //Line 12

if (location != vecList.end()) //Line 13
cout << "Line 14: list found in vecList. "

<< "The first occurrence of \n "
<< " list in vecList is at position: "
<< (location - vecList.begin())
<< endl; //Line 14

else //Line 15
cout << "Line 16: list is not in vecList."

<< endl; //Line 16

//sort
sort(vecList.begin(), vecList.end()); //Line 17

cout << "Line 18: vecList after sorting:\n"
<< " "; //Line 18

copy(vecList.begin(), vecList.end(), screenOut); //Line 19

1332 | Appendix H: Standard Template Library (STL)

cout << endl; //Line 20

//binary_search
bool found; //Line 21

found = binary_search(vecList.begin(),
vecList.end(), 78); //Line 22

if (found) //Line 23
cout << "Line 24: 43 found in vecList "

<< endl; //Line 24
else //Line 25

cout << "Line 26: 43 not in vecList" << endl; //Line 26

return 0;
}

Sample Run:

Line 6: vecList: 12 34 56 34 34 78 38 43 12 25 34 56 62 5 49
Line 9: list: 34 56
Line 14: list found in vecList. The first occurrence of

list in vecList is at position: 1
Line 18: vecList after sorting:

5 12 12 25 34 34 34 34 38 43 49 56 56 62 78
Line 24: 43 found in vecList

The statement in Line 2 creates a vector, vecList, and initializes it using the array
intList created in Line 1. The statement in Line 3 creates an array, list, of two
components and also initializes list. The statement in Line 7 outputs vecList. The
statement in Line 12 uses the function search and searches vecList to find the
position (of the first occurrence) in vecList where list occurs as a subsequence.
The statements in Lines 13 through 16 output the result of the search. See the line
marked Line 14 in the output.

The statement in Line 17 uses the function sort to sort vecList. The statement in Line
19 outputs vecList. In the output, the line marked Line 18 contains the output of the
statements in Lines 18 through 20.

The statement in Line 22 uses the function binary_search to search vecList. The
statements in Lines 23 through 26 output the search result.

Algorithms | 1333

This page intentionally left blank

Chapter 1
1. a. false; b. false; c. true; d. false; e. false; f; false; g. false; h. true; i. true; j. false;

k. true; l. false

3. Central processing unit (CPU), main memory (MM), and input/output devices.

5. An operating system monitors the overall activity of the computer and provides

services. Some of these services include memory management, input/output activ-

ities, and storage management.

7. In machine language, the programs are written using the binary codes, whereas in

high-level language, the programs are closer to the natural language. For execution,

a high-level language program is translated into machine language, whereas a

machine language need not be translated into any other language.

9. Because the computer cannot directly execute instructions written in a high-level

language, a compiler is needed to translate a program written in high-level language

into machine code.

11. Every computer directly understands its own machine language. Therefore, for the

computer to execute a program written in a high-level language, the high-level

language program must be translated into the computer’s machine language.

13. In linking, an object program is combined with other programs in the library used

in the program to create the executable code.

15. To find the weighted average of the four test scores, first you need to know each

test score and its weight. Next, you multiply each test score with its weight and

then add these numbers to get the average. Therefore:

1. Get testScore1, weightTestScore1

2. Get testScore2, weightTestScore2

3. Get testScore3, weightTestScore3

4. Get testScore4, weightTestScore4

5. weightedAverage = testScore1 * weightTestScore1 +
testScore2 * weightTestScore2 +
testScore3 * weightTestScore3 +
testScore4 * weightTestScore4;

APPENDIX I

ANSWERS TO
ODD-NUMBERED
EXERCISES

1335

17. To find the price per square inch, first we need to find the area of the pizza. Then

we divide the price of the pizza by the area of the pizza. Let radius denote the

radius, area denote the area of the circle, and price denote the price of the pizza.

Also, let pricePerSquareInch denote the price per square inch.

a. Get radius

b. area = p * radius * radius

c. Get price

d. pricePerSquareInch = price / area

19. To calculate the area of a triangle using the given formula, we need to know the

lengths of the sides—a, b, and c—of the triangle. Next, we calculate s using the

formula:

s = (1/2)(a + b + c)

and then calculate the area using the formula:

area = sqrt(s(s-a)(s-b)(s-c))

where sqrt denotes the square root.

The algorithm, therefore, is:

a. Get a, b, c

b. s ¼ (1/2)(a + b + c)

c. area ¼ sqrt(s(s-a)(s-b)(s-c))

The information needed to calculate the area of the triangle is the lengths of the

sides of the triangle.

21. Suppose that numOfPages denotes the number of pages to be faxed, and

billingAmount denotes the total charges for the pages faxed. To calculate the

total charges, you need to know the number of pages faxed.

If numOfPages is less than or equal to 10, the billing amount is service charges þ
(numOfPages � 0.20); otherwise, billing amount is service charges þ 10 � 0.20þ
(numOfPages - 10) � 0.10. That is,

You can now write the algorithm as follows:

a. Get numOfPages.

b. Calculate billing amount using the formula:

if (numOfPages is less than or equal to 10)

billingAmount = 3.00 + (numOfPages � 0.20);

otherwise

billingAmount = 3.00 + 10 � 0.20 + (numOfPages - 10) � 0.10;

1336 | Appendix I: Answers to Odd-Numbered Exercises

23. Suppose averageTestScore denotes the average test score, highestScore

denotes the highest test score, testScore denotes a test score, sum denotes the

sum of all of the test scores, count denotes the number of students in class, and

studentName denotes the name of a student.

a. First, you design an algorithm to find the average test score. To find the average

test score, first you need to count the number of students in the class and add the

test score of each student. You then divide the sum by count to find the average

test score. The algorithm to find the average test score is as follows:

i. Set sum and count to 0.

ii. Repeat the following for each student in class.

1. Get testScore

2. Increment count and update the value of sum by adding the current

test score to sum.

iii. Use the following formula to find the average test score:

if (count is 0)
averageTestScore = 0;

otherwise
averageTestScore = sum / count;

b. The following algorithm determines and prints the names of all of the students

whose test score is below the average test score.

Repeat the following for each student in class:

i. Get studentName and testScore

ii. if (testScore is less than averageTestScore)
print studentName

c. The following algorithm determines the highest test score.
i. Get first student’s test score and call it highestTestScore.

ii. Repeat the following for each of the remaining students in class:

1. Get testScore

2. if (testScore is greater than highestTestScore)
highestTestScore = testScore;

d. To print the names of all of the students whose test score is the same as the

highest test score, compare the test score of each student with the highest test

score, and if they are equal, print the name. The following algorithm accom-

plishes this. Repeat the following for each student in class:

i. Get studentName and testScore

ii. if (testScore is equal to highestTestScore)
print studentName

Chapter 1 | 1337

You can use the solutions of the subproblems obtained in parts a through d to design

the main algorithm as follows:

1. Use the algorithm in part a to find the average test score.

2. Use the algorithm in part b to print the names of all of the students whose score is

below the average test score.

3. Use the algorithm in part c to find the highest test score.

4. Use the algorithm in part d to print the names of all of the students whose test score

is the same as the highest test score.

Chapter 2
1. a. false; b. false; c. false; d. true; e. true; f. false; g. true; h. true; i. false; j. true; k. false

3. b, d, e

5. The identifiers firstName and FirstName are not the same. C++ is case

sensitive. The first letter of firstName is lowercase f, whereas the first character

of FirstName is uppercase F. So these identifiers are different.

7. a. 3

b. Not possible. Both of the operands of the operator % must be integers. Because

the second operand, w, is a floating-point value, the expression is invalid.

c. Not possible. Both of the operands of the operator % must be integers. Because

the first operand, which is y + w, is a floating-point value, the expression is

invalid.

d. 38.5

e. 1

f. 2

g. 2

h. 420.0

9. 7

11. a and c are valid.

13. a. 32 * a + b

b. '8'

c. "Julie Nelson"

d. (b * b – 4 * a * c) / (2 * a)

e. (a + b) / c * (e * f) - g * h

f. (-b + (b * b - 4 * a * c)) / (2 * a)

15. x = 28
y = 35
z = 1
w = 22.00
t = 6.5

17. a. 0.50; b. 24.50; c. 37.6; d. 8.3; e. 10; f. 38.75

1338 | Appendix I: Answers to Odd-Numbered Exercises

19. a and c are correct.

21. a. int num1;
int num2;

b. cout << "Enter two numbers separated by spaces." << endl;

c. cin >> num1 >> num2;

d. cout << "num1 = " << num1 << "num2 = " << num2
<< "2 * num1 - num2 = " << 2 * num1 - num2 << endl;

23. A correct answer is:
#include <iostream>

using namespace std;

const char STAR = '*';
const int PRIME = 71;

int main()
{

int count, sum;
double x;

int newNum; //declare newNum

count = 1;
sum = count + PRIME;
x = 25.67; // x = 25.67;
newNum = count * 1 + 2; //newNum = count * ONE + 2;
sum = sum + count; //sum + count = sum;
x = x + sum * count; // x = x + sum * COUNT;
cout << " count = " << count << ", sum = " << sum

<< ", PRIME = " << PRIME << endl;
return 0;

}

25. An identifier must be declared before it can be used.

27. a. x *= 2;

b. x += y - 2;

c. sum += num;

d. z *= x + 2;

e. y /= x + 5;

29. a b c
a = (b++) + 3; 9 7 und
c = 2 * a + (++b); 9 8 26
b = 2 * (++c) – (a++); 10 45 27

31. (The user input is shaded.)

a = 25
Enter two integers : 20 15

The numbers you entered are 20 and 15
z = 45.5
Your grade is A
The value of a = 65

Chapter 2 | 1339

33. #include <iostream>
#include <string>

using namespace std;

const double X = 13.45;
const int Y = 34;
const char BLANK = ' ';

int main()
{

string firstName, lastName;
int num;
double salary;

cout << "Enter first name: ";
cin >> firstName;
cout << endl;

cout << "Enter last name: ";
cin >> lastName;
cout << endl;

cout << "Enter a positive integer less than 70: ";
cin >> num;
cout << endl;

salary = num * X;

cout << "Name: " << firstName << BLANK << lastName << endl;
cout << "Wages: $" << salary << endl;
cout << "X = " << X << endl;
cout << "X + Y = " << X + Y << endl;

return 0;
}

Chapter 3
1. a. true; b. true; c. false; d. false; e. true; f. true

3. a. x = 37, y = 86, z = 0.56

b. x = 37, y = 32, z = 86.56

c. Input failure: z = 37.0, x = 86, trying to read the . (period) into y.

5. Input failure: Trying to read A into y, which is an int variable. x = 46, y = 18, and

z = 'A'. The values of y and z are unchanged.

7. iomanip

9. cmath

1340 | Appendix I: Answers to Odd-Numbered Exercises

11. To use the function putback, the program must include the header file iomanip.

To use the function peek, the program must include the header file iostream.

13. getline(cin, name);

15. a. name ¼ " Lance Grant", age ¼ 23

b. name ¼ " ", age ¼ 23

17. #include <iostream>
#include <fstream>

using namespace std;

int main()
{

int num1, num2;
ifstream infile;
ostream outfile;

infile.open("input.dat");
outfile.open("output.dat");

infile >> num1 >> num2;
outfile << "Sum = " << num1 + num2 << endl;

infile.close();
outfile.close();

return 0;
}

19. fstream

21. a. Same as before.

b. The file contains the output produced by the program.

c. The file contains the output produced by the program. The old contents are

erased.

d. The program would prepare the file and store the output in the file.

23. a. outfile.open("travel.dat ");

b. outfile >> fixed >> showpoint >> setprecision(2);

c. outfile >> day >> " " >> distance >> " " >> speed >> endl;

d. travelTime = distance / speed;
outfile >> travelTime;

e. fstream and iomanip.

Chapter 4
1. a. false; b. false; c. false; d. true; e. false; f. false; g. false; h. false; i. false; j. true

3. a. true; b. false; c. true; d. true; e. false

Chapter 4 | 1341

5. a. x = y: 0

b. x != z: 1

c. y = = z – 3: 1

d. !(z > w): 0

e. x + y < z: 0

7. a. %%

b. 10 2 * 5

c. A

d. C--

e. Sam Tom

Tom Sam

f. -6

**

9. a. R&

b. 1 2 3 4

$$

c. Jack Accounting

John Business

11. The value of found is: 1

13. Omit the semicolon after else. The correct statement is:
if (score >= 60)

cout << "You pass." << endl;
else

cout << "You fail." << endl;

15. The correct code is:

if (0 < numOfItemsBought && numOfItemsBought < 5)
shippingCharges = 5.00 * numOfItemsBought;

else if (5 <= numOfItemsBought && numOfItemsBought < 10)
shippingCharges = 2.00 * numOfItemsBought;

else
shippingCharges = 0.0;

17. 3 1

19. if (sale > 20000)
bonus = 0.10

else if (sale > 10000 && sale <= 20000)
bonus = 0.05;

else
bonus = 0.0;

21. a. The output is: Discount ¼ 10%. The semicolon at the end of the if statement

terminates the if statement. So the cout statement is not part of the if

statement. The cout statement will execute regardless of whether the expres-

sion in the if statement evaluates to true or false.

1342 | Appendix I: Answers to Odd-Numbered Exercises

b. The output is: Discount ¼ 10%. The semicolon at the end of the if

statement terminates the if statement. So the cout statement is not part of

the if statement. The cout statement will execute regardless of whether the

expression in the if statement evaluates to true or false.

23. a. (x >= y) ? z = x – y : z = y – x;

b. (hours >= 40.0) ? wages = 40 * 7.50 + 1.5 * 7.5 * (hours - 40)
: wages = hours * 7.50;

c. (score >= 60) ? str = "Pass" : str = "Fail";

25. a. 40.00

b. 40.00

c. 55.00

27. a. 16 b. 3 c. 18 d. 23

29. a. 3 b. -20 c. 3 d. 5

31. #include <iostream>

using namespace std;
const int SECRET = 5;

int main()
{

int x, y, w, z;

z = 9;

if (z > 10)
{

x = 12;
y = 5;
w = x + y + SECRET;

}

else
{

x = 12;
y = 4;
w = x + y + SECRET;

}

cout << "w = " << w << endl;

return 0;
}

33. switch (classStanding)
{

case 'f':
dues = 150.00;
break;

Chapter 4 | 1343

case 's':
if (gpa >= 3.75)

dues = 75.00;
else

dues = 120.00;
break;

case 'j':
if (gpa >= 3.75)

dues = 50.00;
else

dues = 100.00;
break;

case 'n':
if (gpa >= 3.75)

dues = 25.00;
else

dues = 75.00;
break;

default:
cout << "Invalid class standing code." << endl;

}

Chapter 5
1. a. false; b. true; c. false; d. true; e. true; f. true; g. true; h. false

3. 181.00

5. if ch > 'Z' or ch < 'A'

7. Sum = 94

9. Sum = 37

11. a. 29

b. 2 8

c. 8 13 21 34

d. The value of num1 + num2 becomes larger than the largest int value and the

value of temp overflows its memory space. Some of the values output by the

program are: 4 7 11 18 29 47 76 123 199 322 521 843 1364 2207 3571

5778 9349 15127 24476 39603 64079 103682 167761 271443 439204

710647 1149851 1860498 3010349 4870847 7881196 12752043

20633239 33385282 54018521 87403803 141422324 228826127

370248451 599074578 969323029 1568397607

13. Replace the while loop statement with the following:

while (response = = 'Y' || response = = 'y')

Replace the cout statement:

cout << num1 << " + " << num2 << " = " << (num1 - num2)
<< endl;

1344 | Appendix I: Answers to Odd-Numbered Exercises

with the following:

cout << num1 << " + " << num2 << " = " << (num1 + num2)
<< endl;

15. 4 3 2 1

17. 0 3 8 15 24

19. Loop control variable: j

The initialization statement: j = 1;

Loop condition: j <= 10;

Update statement: j++

The statement that updates the value of s: s = s + j * (j - 1);

21. -1 1 3 5 7 6

23. a. *

b. infinite loop

c. infinite loop

d. ****

e. ******

f. ***

25. The relationship between x and y is: 3y = x.

Output: x = 19683, y = 10

27. 0 - 24
25 - 49
50 - 74
75 - 99
100 - 124
125 - 149
150 - 174
175 - 200

29. a. both

b. do . . . while

c. while

d. while

31. In a pretest loop, the loop condition is evaluated before executing the body of the

loop. In a posttest loop, the loop condition is evaluated after executing the body of

the loop. A posttest loop executes at least once, whereas a pretest loop may not

execute at all.

33. int num;
do
{

cout << "Enter a number less than 20 or greater than 75: ";
cin >> num;

}

while (20 <= num && num <= 75);

Chapter 5 | 1345

35. int i = 0, value = 0;
do
{

if (i % 2 == 0 && i <= 10)
value = value + i * i;

else if (i % 2 == 0 && i > 10)
value = value + i;

else
value = value - i;

i = i + 1;
}

while (i <= 20);

cout << "value = " << value << endl;

The Output is: Value = 200

37. cin >> number;
while (number != -1)
{

total = total + number;
cin >> number;

}

cout << endl;
cout << total << endl;

39. a. number = 1;
while (number <= 10)
{

cout << setw(3) << number;
number++;

}

b. number = 1;
do
{

cout << setw(3) << number;
number++;

}

while (number <= 10);

41. a. 29

b. 2 8

c. 8 13 21 34

d. 28 43 71 114

43. -1 0 3 8 15 24

45. 12 11 9 7 6 4 2 1

1346 | Appendix I: Answers to Odd-Numbered Exercises

Chapter 6
1. a. false; b. true; c. true; d. true; e. false; f. true; g. false; h. true; i. false; j. true;

k. false; l. false; m. false; n. true

3. a. 12 b. 23.45 c. 7.8 d. 23.04 e. 32.00
f. 7.0 g. 2.7 h. 6.0 i. 36.00 j. 19.00

5. (ii) and (iii)

7. a, b, c, d, e are valid. In f, the second argument in the function call is missing.

In g and h, the function call requires one more argument.

9. a. 2; int

b. 3; double

c. 4; char

d. 2; string

e. The function func1 requires 2 actual parameters. The type and the order of

these parameters is: int, double

f. cout << func1(3, 8.5) << endl;.

g. cout << join("John", "Project Manager") << endl;

h. cout << static_cast<char>(static_cast<int>

(three(4, 3, 'A', 17.6)) + 1) << endl;

11. bool isUppercaseLetter(char ch)

{

if (isupper(ch))

return true;

else

return false;

}

13. a. (i) 45 (ii) 30

b. The function computes (k – 1) * k * m / 2, where m and n are

the arguments of the function and k ¼ abs(n).

15. a. 385

b. This function computes 1+4+9+16+25+36+49+64+81+100

17. double funcEx17(double x, double y, double z)

{

return x * pow(y, z);

}

19. a. In a void function, a return statement is used without any value such as

return;.

b. In a void function, a return statement is used to exit the function early.

Chapter 6 | 1347

21. a. A variable declared in the heading of a function definition is called a formal

parameter. A variable or expression used in a function call is called an actual

parameter.

b. A value parameter receives a copy of the actual parameter’s data. A reference

parameter receives the address of the actual parameter.

c. A variable declared within a function or block is called a local variable. A

variable declared outside of every function definition is called a global variable.

23. void funcThreeTimes(double x)

{

cout << fixed << showpoint << setprecision(2);

cout << 3 * x << endl;

}

25. void initialize(int& x, double& y, string& str)

{

x = 0;

y = 0;

str = "";

}

27. 5, 10, 15

20, 10, 15

25, 30, 15

45, 30, 60

29. #include <iostream>

using namespace std;

int secret(int, int);

void func(int x, int& y);

int main()
{

int num1, num2;

__1__ num1 = 6;

__2__ cout << "Enter a positive integer: ";
__3__ cin >> num2;
__4__ cout << endl;
__8__ cout << secret(num1, num2) << endl;
__9__ num2 = num2 - num1;
_10__ cout << num1 << " " << num2 << endl;
_15__ func(num2, num1);
_16__ cout << num1 << " " << num2 << endl;

_17__ return 0;
}

1348 | Appendix I: Answers to Odd-Numbered Exercises

int secret(int a, int b)
{

int d;

__5__ d = a + b;
__6__ b = a * d;

__7__ return b;
}

void func (int x, int& y)
{

int val1, val2;

_11__ val1 = x + y;
_12__ val2 = x * y;
_13__ y = val1 + val2;
_14__ cout << val1 << " " << val2 << endl;

}

If the input is 10, the output is:

96
6 4
10 24
34 4

31. void traceMe(double& x, double y, double& z)

{

if (x != 0)

z = sqrt(y) / x;

else

{

cout << "Enter a nonzero number: ";

cin >> x;

cout << endl;

z = floor(pow(y, x));

}

}

33. 10 20

5 20

35. 11, 3

16, 2

19, 3

24, 2

37. a, b, c, and e are correct.

Chapter 6 | 1349

Chapter 7
1. a. true; b. false; c. true; d. false; e. false; f. true; g. true; h. true; i. false; j. false; k. false

3. Only a and c are valid.

5. courseType readIn()
{

string course;

cin >> course;

if (course == "Algebra")
class = ALGEBRA;

else if (course == "Beginning Spanish")
class = BEGINNING_SPANISH;

else if (course == "Astronomy")
class == ASTRONOMY;

else if (course == "General Chemistry")
class = GENERAL_CHEMISTRY;

else if (course == "Physics")
class = PHYSICS;

else if (course == "Logic")
class = LOGIC;

else
cout << "Invalid course" << endl;

return course;
}

7. Because there is no name for an anonymous type, you cannot pass an anonymous

type as a parameter to a function and a function cannot return an anonymous type

value. Also, values used in one anonymous type can be used in another anonymous

type, but variables of those types are treated differently.

9. The statement in Line 2 should be:

using namespace std; //Line 2

11. The statement in Line 2 should be:

using namespace std; //Line 2

13. Either include the statement:

using namespace aaa;

before the function main or refer to the identifiers x and y in main as aaa::x

and aaa::y, respectively.

15. a. Heelo Thlre

b. Giamond Dold

c. Ca+ J+va

1350 | Appendix I: Answers to Odd-Numbered Exercises

17. Summer or Fall Trip to Hawaii
Trip to Hawaii in Summer or Fall
29
8
7
Fall Trip to Hawaii
Summer or Fall Trip to ******
C++ Programming
15
J+$ Programming

Chapter 8
1. a. true; b. true; c. false; d. false; e. true; f. false; g. false; h. false; i. true; j. false;

k. false; l. false

3. a. This declaration is correct.

b. The statement should be: int age[80];.

c. This declaration is correct.

d. The statement should be: int list[100];.

e. The statement should be: double salaries[50];.

f. The const declaration should be: const double LENGTH ¼ 30;.

g. This declaration is correct.

5. 0 to 63

7. 2.00 3.00 6.00 11.00 18.00
27.00 12.00 22.00 11.00 18.00

9. 2 3 5 8 13 21 34 55 144 343

11. int myList[10];

for (int i = 0; i < 10; i++)

myList[i] = [i];

13. If array index is less than 0 or greater than arraySize – 1, we say that the array index

is out of bounds. C++ does not check for array indices within bound.

15. a. double heights[10] = {5.2, 6.3, 5.8, 4.9, 5.2, 5.7, 6.7, 7.1, 5.10, 6.0};

or

double heights[] = {5.2, 6.3, 5.8, 4.9, 5.2, 5.7, 6.7, 7.1, 5.10, 6.0};

b. int weights[7] = {120, 125, 137, 140, 150, 180, 210};

or

int weights[] = {120, 125, 137, 140, 150, 180, 210};

c. char specialSymbols[] = {'$ ', '# ', '% ', '@ ', '& ', '! ', '^ '};

d. string seasons[4] ¼ {"fall", "winter", "spring", "summer"};

or

string seasons[] ¼ {"fall", "winter", "spring", "summer"};

Chapter 8 | 1351

17. list[0] ¼ 6, list[1] ¼ 10, list[2] ¼ 14, list[3] ¼ 18, list[4] ¼ 22, list[5] ¼ 0,

list[6] ¼ 0.

19. 16 32 44 56 68 37 20

21. a. Correct.

b. Correct.

c. Incorrect. The size of score is 50, so the call should be tryMe(score, 50);.

d. Correct.

e. Incorrect. The array gpa is of type double, whereas the parameter x of tryMe

is of type int. So there will be a mismatch data type error.

23. 1 25000.00 750.00

2 36500.00 1095.00

3 85000.00 2550.00

4 62500.00 1875.00

5 97000.00 2910.00

25. List elements: 11 16 21 26 30

27. 1 3.50 10.70 235.31

2 7.20 6.50 294.05

3 10.50 12.00 791.68

4 9.80 10.50 646.54

5 6.50 8.00 326.73

29. No.

31. List before the first iteration: 36, 55, 17, 35, 63, 85, 12, 48, 3, 66

List after the first iteration: 3, 55, 17, 35, 63, 85, 12, 48, 36, 66

List after the second iteration: 3, 12, 17, 35, 63, 85, 55, 48, 36, 66

List after the third iteration: 3, 12, 17, 35, 63, 85, 55, 48, 36, 66

List after the fourth iteration: 3, 12, 17, 35, 63, 85, 55, 48, 36, 66

List after the fifth iteration: 3, 12, 17, 35, 36, 85, 55, 48, 63, 66

List after the sixth iteration: 3, 12, 17, 35, 36, 48, 55, 85, 63, 66

List after the seventh iteration: 3, 12, 17, 35, 36, 48, 55, 85, 63, 66

List after the eighth iteration: 3, 12, 17, 35, 36, 48, 55, 63, 85, 66

List after the ninth iteration: 3, 12, 17, 35, 36, 48, 55, 63, 66, 85

33. a. Invalid; the assignment operator is not defined for C-strings.

b. Invalid; the relational operators are not defined for C-strings.

c. Invalid; the assignment operator is not defined for C-strings.

d. Valid

35. a. strcpy(str1, "Sunny Day");

b. length = strlen(str1);

c. strcpy(str2, name);

1352 | Appendix I: Answers to Odd-Numbered Exercises

d. if (strcmp(str1, str2) <= 0)
cout << str1 << endl;

else
cout << str2 << endl;

37. int temp[3][4] = {{6, 8, 12, 9},
{7, 5, 10, 6},
{4, 13, 16, 20}};

39. a. 30; b. 5; c. 6; d. row; e. column

41. a. beta is initialized to 0.

b. First row of beta: 0 1 2
Second row of beta: 1 2 3
Third row of beta: 2 3 4

c. First row of beta: 0 0 0
Second row of beta: 0 1 2
Third row of beta: 0 2 4

d. First row of beta: 0 2 0
Second row of beta: 2 0 2
Third row of beta: 0 2 0

Chapter 9
1. a. false; b. false; c. true; d. true; e. true; f. true; g. false

3. carType newCar;

newCar.manufacturer = "GMT";
newCar.model = " Cyclone";
newCar.modelType = "sedan";
newCar.color = "blue"
newCar.numOfDoors = 4;
newCar.cityMilesPerGallon = 28;
newCar.highwayMilesPerGallon = 32;
newCar.yearBuilt = 2006;
newCar.price = 25000.00;

5. fruitType fruit;

fruit.name = "banana";
fruit.color = "yellow";
fruit.fat = 1;
fruit.sugar = 15;
fruit.carbohydrate = 22;

7. student.name.first = "Linda";
student.name.last = "Brown";
student.gpa = 3.78;
student.course.name: "Calculus";
student.course.callNum = 23827;
student.course.credits = 4;
student.course.grade = 'A';

Chapter 9 | 1353

9. a. Invalid; the member name of newEmployee is a struct. Specify the member

names to store the value "John Smith". For example:

newEmployee.name.first = "John";
newEmployee.name.last = "Smith";

b. Invalid; the member name of newEmployee is a struct. There are no aggregate

output operations on a struct. A correct statement is:

cout << newEmployee.name.first << " "
<< newEmployee.name.last << endl;

c. Valid

d. Valid

e. Invalid; employees is an array. There are no aggregate assignment operations

on arrays.

11. partsType inventory [100];

13. void getData(partsType& pType)

{

for (int j = 0; j < length; j++)

{

cin >> pType.partName;

cin >> pType.partNum;

cin >> pType.price;

cin >> pType.quantitiesInStock;

}

}

for (int j = 0; j < 100; j++)

getData(inventory [i]);

Chapter 10
1. a. false; b. false; c. true; d. false; e. false

3. The type of the function print is missing. The statement in Line 5 should be:

void print() const; //Line 5

5. The semicolon after public should be a colon, there is a missing semicolon after },

and a constructor has no type. The statements in Lines 3, 8, and 13 should be:

public: //Line 3

discover(string, int, int); //Line 8

}; //Line 13

1354 | Appendix I: Answers to Odd-Numbered Exercises

7. a. void bagType::set(string s, double a, double b, double c, double d)

{

style = s;

l = a;

w = b;

h = c;

price = d;

}

b. void bagType::print() const

{

cout << "Bag Type: " << style << ", length = " << l

<< ", width = " << w << ", height = " << h

<< ", price = $ " << price << endl;

}

c. bagType::bagType()

{

style = "";

l = 0.0;

w = 0.0;

h = 0.0;

price = 0.0;

}

d. newBag.print();

e. bagType tempBag("backPack", 15, 8, 20, 49.99);

9. The functions print, updatePay, and getNumOfServiceYears are accessors;

functions setData and updatePay are mutators.

11. a. 14

b. 3

c. The class temporary has only one constructor. Because this is a constructor

with default parameters, it can be used to initialize an object without specifying

any parameters. For example, the following statement creates the object

newObject and its instance variables are initialized to " ", 0, and 0, respectively.

temporary newObject;

13. The statement in Line 1 creates object1 and initializes the instance variables of this

object to " ", 0, 0, that is, object1.description¼ " ";, object1.first¼ 0.0;,

and object1.second ¼ 0.0;. The statement in Line 2 creates object2 and

initializes the instance variables of this object as follows: object2.description ¼
"rectangle";, object2.first ¼ 3.0;, and object2.second ¼ 5.0;. The

statement in Line 3 creates object3 and initializes the instance variables of this object

as follows: object3.description ¼ "circle";, object3.first ¼ 6.5;, and

object3.second ¼ 0.0;. The statement in Line 4 creates object4 and

Chapter 10 | 1355

initializes the instance variables of this object as follows: object4.description =

"cylinder";, object4.first = 6.0;, and object4.second = 3.5;.

15. There are two built-in operations for class objects: Member access (.) and

assignment (=).

17. a. int testClass::sum()
{

return x + y;
}

void testClass::print() const
{

cout << "x = " << x << ", y = " << y << endl;
}

testClass::testClass()
{

x = 0;
y = 0;

}

testClass::testClass(int a, int b)
{

x = a;
y = b;

}

b. One possible solution. (We assume that the name of the header file containing

the definition of the class testClass is Exercise17Ch10.h.)

#include <iostream>
#include "Exercise17Ch10.h"

int main()
{

testClass one;
testClass two(4, 5);

one.print();
two.print();

return 0;
}

19. a. personType student("Buddy", "Arora");

b. student.print();

c. student.setName("Susan", "Gilbert");

21. A constructor is a member of a class, and it executes automatically when a class

object is instantiated and a call to the constructor is specified in the object declara-

tion. A constructor is included in a class so that the objects are properly initialized

when they are declared.

1356 | Appendix I: Answers to Odd-Numbered Exercises

23. A destructor is a member of a class, and if it is included in a class, it executes

automatically when a class object goes out of scope. Its main purpose is to deallocate

the dynamic memory created by an object.

25. a. myClass::count = 0;

b. myClass.incrementCount();

c. myClass.printCount();

d. int myClass::count = 0;

void myClass::setX(int a)
{

x = a;
}

void myClass::printX() const
{

cout << x;
}

void myClass::printCount()
{

cout << count;
}

void myClass::incrementCount()
{

count++;
}

myClass::myClass(int a)
{

x = a;
}

e. myClass myObject1(5);

f. myClass myObject2(7);

g. The statements in Lines 1 and 2 are valid.

The statement in Line 3 should be: myClass::printCount();.

The statement in Line 4 is invalid because the member function printX is not a

static member of the class, and so cannot be called by using the name of class.

The statement in Line 5 is invalid because count is a private static

member variable of the class.

h. 5
2
2
3
14
3
3

Chapter 10 | 1357

Chapter 11
1. a. true; b. true; c. true

3. Some of the member variables that can be added to the class employeeType are:

department, salary, employeeCategory (such as supervisor and president),

and employeeID. Some of the member functions are: setInfo, setSalary,

getSalary, setDepartment, getDepartment, setCategory, getCategory,

setID, and getID.

class employeeType: public personType
{

public:
void setInfo(string, string, string, double, string, string);
void setSalary(double);
void setDepartment(string);
void setCategory(string);
void setID(string);
double getSalary() const;
string getDepartment(string) const;
string getCategory()const;
string getID()const;

private:
string department;
double salary;
string employeeCategory;
string employeeID;

};

5. a. The base class is atom and the derived class is molecules.

b. This is a private inheritance.

7. Private members of the object newCylinder are xCoordinate, yCoordinate,

radius, and height.

9. Missing : in the first statement. The first statement should be:

class derivedFromTemp: public temp

Also missing ; after }. It should be

};

11. a. void print() const;

b. void set(int, int, int);
void get(int&, int&, int&);

13. First a constructor of class one will execute, then a constructor of class two

will execute, and finally a constructor of class three will execute.

1358 | Appendix I: Answers to Odd-Numbered Exercises

15. a. Invalid. z is an instance variable of the derived class, it cannot be accessed by

the members of the class smart.

b. Invalid. secret is a private member of the class smart. It cannot be

accessed directly outside of the class. Also z is a private member of the class

superSmart. It cannot be accessed directly outside of the class.

c. Valid

d. Invalid. smart is the name of a class, not an object of this class. It cannot be

used to call its member function print.

e. Invalid. superSmart is the name of a class. It cannot be used to access its

members.

17. In a private inheritance, the public members of the base class are private

members of the derived class. They can be accessed by the member functions (and

friend functions) of the derived class. The protected members of the base class

are private members of the derived class. They can be accessed by the member

functions (and friend functions) of the derived class. The private members of

the base class are hidden in the derived class. They cannot be directly accessed in the

derived class. They can be accessed by the member functions (and friend func-

tions) of the derived class through the public or protected members of the

base class.

19. In a public inheritance, the public members of the base class are public

members of the derived class. They can be directly accessed in the derived class.

The protected members of the base class are protected members of the derived

class. They can be directly accessed by the member functions (and friend func-

tions) of the derived class. The private members of the base class are hidden in

the derived class. They cannot be directly accessed in the derived class. They can be

accessed by the member functions (and friend functions) of the derived class

through the public or protected members of the base class.

21. The protected members of a base class can be directly accessed by the member

functions of the derived class, but they cannot be directly accessed in a program that

uses that class. The public members of a class can be directly accessed by the

member functions of any derived class as well as in a program that uses that class.

23. The members setX, print, y, and setY are protected members in class

third. The private member x of class first is hidden in class third, and

it can be accessed in class third only through the protected and public

members of class first.

25. Because the memberAccessSpecifier is not specified, it is a private inheritance.

Therefore, all of the members of the class first become private members in

class fifth.

Chapter 11 | 1359

27. a. void two::setData(int a, int b, int c)
{

one::setData(a, b);
z = c;

}

b. void two::print() const
{

one::print();
cout << z << endl;

}

Chapter 12
1. a. false; b. false; c. false; d. true; e. true; f. true; g. false; h. false

3. The operator * is used to declare a pointer variable and to access the memory

space to which a pointer variable points.

5. *numPtr gives the address of the memory location to which numPtr points,

while &numPtr gives the address of numPtr.

7. numPtr = #
(*numPtr)++;

9. 47 47 73

11. 70 170

13. 90.00 86.00 88.00

15. In Line 6, the operator delete deallocates the memory space to which nextPtr

points. So the expression *nextPtr, in Line 9, does not have a valid value.

17. 12 8 7 25 16 24 36

19. numPtr ¼ 1058 and gpaPtr ¼ 2024

21. The operator delete deallocates the memory space to which a pointer points.

23. a. num ¼ new int[10];

b. for (int j = 0; j < 10; j++)

cin >> num[j];

c. delete [] num;

25. In a shallow copy of data, two or more pointers point to the same memory space.

In a deep copy of data, each pointer has its own copy of the data.

27. myList: 3 4 6 9 13
yourList: 7 8 10 13 17 10 6 3 1 0

29. The copy constructor makes a copy of the actual variable.

31. Classes with pointer data members should include the destructor, overload the

assignment operator, and explicitly provide the copy constructor by including it in

the class definition and providing its definition.

1360 | Appendix I: Answers to Odd-Numbered Exercises

33. ClassA x: 4

ClassA x: 6
ClassB y: 10

35. Yes.

37. a. Because employeeType is an abstract class, you cannot instantiate an object of

this class. Therefore, this statement is illegal.

b. This statement is legal.

c. This statement is legal.

Chapter 13
1. a. false; b. true; c. true; d. false; e. false; f. true; g. false; h. true; i. false; j. true; k. false

3. A friend function is a nonmember of a class, whereas a member function is a

member of a class.

5. Because the left operand of << is a stream object, which is not of the type

mystery.

7. When the class has pointer data members.

9. a. friend strange operator+(const strange&, const strange&);

b. friend bool operator==(const strange&, const strange&);

c. friend strange operator++(strange&, int);

11. In Line 4, the return type of the function operator* should be temp.

The correct statement is:

temp operator*(const temp& obj); //Line 4

13. In Line 3, the return type of the function operator< should be bool.

The correct statement is:

friend bool operator<(const mystery& a,
const mystery& b); //Line 3

15. In Lines 3 and 11, the return type of the function operator+ should be

discover. Also since operator+ is a friend function of the class, the name of

the class and the scope resolution operator in the heading of the function, in Line

11, are not needed. The correct statements are:

friend discover operator+(const discover&,
const discover&); //Line 3

discover operator+(const discover& a,
const discover& b) //Line 11

17. A reference to an object of the class istream.

Chapter 13 | 1361

19. Suppose that a class, say temp, overloads the pre- and postincrement operator ++,

and tempObj is an object of the class temp. Then, the statement ++tempObj; is

compiled as tempObj.operator++();, and the statement tempObj++; is com-

piled as tempObj.operator++(0);. The dummy parameter distinguishes

between the pre- and postincrement operator functions. Similar conventions for

the pre- and postincrement operators.

21. None.

23. One.

25. The answer to this question is available at the Web site accompanying this book.

27. Error in Line 4. A template instantiation can be for only a built-in type or a user-

defined type. The word ‘‘type’’ between the angular brackets must be replaced

either with a built-in type or a user-defined type.

29. a. 12 b. Sunny Day

31. template <class Type>
void swap(Type &x, Type &y)
{

Type temp;
temp = x;
x = y;
y = temp;

}

Chapter 14
1. a. false; b. true; c. true; d. false

3. The program will terminate with an error message.

5. If an exception is thrown in a try block, the remaining statements in that try

block are ignored. The program searches the catch blocks in the order that they

appear after the try block and looks for an appropriate exception handler. If the

type of thrown exception matches the parameter type in one of the catch blocks,

the code of that catch block executes, and the remaining catch blocks after this

catch block are ignored.

7. The catch block has no associated try block, that is, the catch block does not follow

any try block. Also, the try block has no associated catch block, that is, there is no

catch block that follows the try block. The cout statement just before the catch

block disassociates the catch block from the try block. The correct code is:

double radius;

try
{

cout << "Enter the radius: ";
cin >> radius;
cout << endl;

1362 | Appendix I: Answers to Odd-Numbered Exercises

if (radius < 0.0)
throw radius;

cout << "Area: " << 3.1416 * radius * radius << endl;
}

catch (double x)
{

cout << "Negative radius: " << x << endl;
}

9. a. Leaving the try block.

b. Current balance: 975

Balance must be greater than 1000.00

c. Current balance: -2000

Balance must be greater than 1000.00

11. a. Entering the try block.
Exception: Lower limit violation.
After the catch block

b. Entering the try block.
Exception: 0
After the catch block

c. Entering the try block.
Exiting the try block.
After the catch block

d. Entering the try block.
Exception: 0
After the catch block

13. A throw statement.

15. (Assume that the definition of the class tornadoException is in the header file

tornadoException.h.)

#include <iostream>
#include "tornadoException.h"

using namespace std;

int main()
{

int miles;

try
{

cout << "Enter the miles: ";
cin >> miles;
cout << endl;

if (miles < 5)
throw tornadoException();

else
throw tornadoException(miles);

Chapter 14 | 1363

}

catch (tornadoException tE)
{

cout << tE.what() << endl;
}

return 0;
}

17. A function specifies the exceptions it throws in its heading using the throw clause.

Chapter 15
1. a. true; b. true; c. false; d. false; e. false

3. The case in which the solution is defined in terms of smaller versions of itself.

5. A function that calls another function and eventually results in the original function

call is said to be indirectly recursive.

7. a. The statements in Lines 2 and 3.

b. The statements in Lines 4 and 5.

c. Any nonpositive integer.

d. It is a valid call. The value of mystery(0) is 0.

e. It is an invalid call. It will result in infinite recursion.

f. It is a valid call. The value of mystery(-3) is 6.

9. a. 8 5 2 b. 7 c. 6 3 d. -85

11. a. It does not produce any output.

b. 5 6 7 8 9

c. It does not produce any output.

d. It does not produce any output.

13. a. 2; b. 3; c. 5; d. 21

15.

multiplyðm; nÞ ¼
0 if n ¼ 0

m if n ¼ 1

mþ multiplyðm; n� 1Þ otherwise

8

<

:

The base cases are when n = 0 or n = 1. The general case is specified by the
option otherwise.

Chapter 16
1. a. false; b. true; c. false; d. false; e. false

3. a. int seqOrderedSearch(const int list[], int listLength,
int searchItem)

1364 | Appendix I: Answers to Odd-Numbered Exercises

{

int loc;
bool found = false;

for (loc = 0; loc < listLength; loc++)
if (list[loc] >= searchItem)
{

found = true;
break;

}

if (found)
if (list[loc] == searchItem)

return loc;
else

return -1;
else

return -1;
}

b. i. 8 ii. 2 iii. 10 iv. 11

5. List before the first iteration: 38, 60, 43, 5, 70, 58, 15, 10

List after the first iteration: 38, 43, 5, 60, 58, 15, 10, 70

List after the second iteration: 38, 5, 43, 58, 15, 10, 60, 70

List after the third iteration: 5, 38, 43, 15, 10, 58, 60, 70

List after the fourth iteration: 5, 38, 15, 10, 43, 58, 60, 70

List after the fifth iteration: 5, 15, 10, 38, 43, 58, 60, 70

List after the sixth iteration: 5, 10, 15, 38, 43, 58, 60, 70

List after the seventh iteration: 5, 10, 15, 38, 43, 58, 60, 70

7. 3

9. 4, 15, 18, 20, 25, 32, 45, 91, 62, 88, 66

11. Bubble sort: 49,995,000; selection sort: 49,995,000; insertion sort: 25,007,499

13. 26

15. To use a vector object in a program, the program must include the header file

vector.

17. 1 3 5 7 9

19. a. vector<int> secretList;

b. secretList.push_back(56);
secretList.push_back(28);
secretList.push_back(32);
secretList.push_back(96);
secretList.push_back(75);

c. for (unsigned int i = 0; i < secretList.size(); i++)
cout << secretList[i] << " ";

cout << endl;

Chapter 16 | 1365

21. a. cout << myList.front() << " " << myList.back() << endl;

b. length = myList.size();

c. for (int i = 0; i < myList.size(); i++)
cout << myListi] << " ";

cout << endl;

Chapter 17
1. a. false; b. false; c. false; d. false

3. NULL

5. Before deletion, the link field of the third node stores the address of the fourth node.

After deletion, the link field of the third node will store the address of the next node,

which is the old fifth node. If there was no fifth node, then after deletion, the link

field will store the value NULL. Therefore, after deleting the fourth node, the link

field of the third node is changed. So a pointer to the third node is needed.

7. a. false; b. true; c. true; d. true; e. true

9. a. current->link->info ¼ 52;

b. current ¼ temp->link;

c. trail ¼ current->link;

d. temp->link->link->link->info ¼ 36;

e. while (current->info != 10)
current = current->link;

11. a. while (current != NULL)
current = current->link;

b. temp = new nodeType;
temp->info = 68;
temp->link = last;
trail->link = temp;

c. delete last;
trail->link = NULL;
last = trail;

d. trail = temp->link;
temp->link = trail->link;
delete trail;

13. After the execution of the statement in Line 5, trail is NULL, so trail->info

does not exist. This code will result in a run-time error.

15. 33 62 28

1366 | Appendix I: Answers to Odd-Numbered Exercises

17. nodeType head, p, q;

head = new nodeType;

head->info = 72;

head->link = NULL;

p = new nodeType;

p->info = 43;

p->link = head;

head = p;

p = head->link;

q = new nodeType;

q->info = 8;

q->link = NULL;

p->link = q;

q = new nodeType;

q->info = 12;

q->link = p;

head->link = q;

p = head;

while (p != NULL)

{

cout << p->info << " ";

p = p->link;

}

cout << endl;

The output of this code is: 43 12 72 8

19. Item to be deleted is not in the list.
93 66 38 55 18 35

21. The answer to this question is available at the Web site accompanying this book.

23. The answer to this question is available at the Web site accompanying this book.

Chapter 18
1. The two basic operations on a stack are push, to add an element to a stack, and pop,

to remove an element from a stack.

3. 4

5. 13 5 12
num1 = 15
num2 = 21

Chapter 18 | 1367

7. a. 40

b. 11

c. 2

d. 70

9. a. (x + y) * z - w

b. x * y / z + w

c. x * (y + z) - w

11. 1 16 27 16 5

13. If the stack is nonempty, the statement stack.top(); returns the top element of

the stack, and the statement stack.pop(); removes the top element of the stack.

15. template <class elemType>
elemType second(stackType<elemType> stack)
{

elemType temp1, temp2;

if (stack.isEmptyStack())
{

cout << "Stack is empty." << endl;
exit(0); //terminate the program

}

temp1 = stack.top();
stack.pop();

if (stack.isEmptyStack())
{

cout << "Stack has only one element." << endl;
exit(0); //terminate the program

}

temp2 = stack.top();
stack.push(temp1);

return temp2;
}

17. 48 72 0 15
stack: 36
queue: 0 88 10 52 67

19. a. queueFront = 50; queueRear = 0.

b. queueFront = 51; queueRear = 99.

21. a. queueFront = 25; queueRear = 76.

b. queueFront = 26; queueRear = 75.

23. 51

1368 | Appendix I: Answers to Odd-Numbered Exercises

25. template <class Type>
void reverseStack(stackType<Type> &s)
{

linkedQueueType<Type> q;
Type elem;

while (!s.isEmptyStack())
{

elem = s.top();
s.pop();
q.addQueue(elem);

}

while (!q.isEmptyQueue())
{

elem = q.front();
q.deleteQueue();
s.push(elem);

}

}

27. template <class Type>
int queueType<Type>::queueCount()
{

return count;
}

29. The answer to this question is available at the Web site accompanying this book.

31. The answer to this question is available at the Web site accompanying this book.

Chapter 18 | 1369

This page intentionally left blank

Note : Page numbers in bo ld face ind ica te key te rms .

& (ampersand), 364, 365, 372, 518
<> (angle brackets), 30, 35
* (asterisk), 7, 35, 782
\ (backslash), 78, 535
, (comma), 35, 40, 90
{} (curly braces), 7, 83, 90, 203, 214, 220, 398,

592, 726

’’ (double quotes), 30, 476
= (equal sign), 35, 59
! (exclamation point), 35
/ (forward slash), 31, 35, 159
- (hyphen), 35
() (parentheses), 46, 195, 199, 288
. (period), 35, 594, 635
+ (plus sign), 40, 634
(pound sign), 10, 79, 634, 867, 868, 871, 1188
? (question mark), 35
; (semicolon), 35, 77, 87, 90, 199, 201, 211, 263,

290, 593, 631

� (tilde), 657
_ (underscore), 36, 37, 55, 471

A

abacus, 2

abs function, 337, 342

abstract classes

described, 827

pure virtual functions and, 826–834

abstract data types. See ADTs (abstract data types)
abstraction. See data abstraction

accessor functions, 644, 645–647

accumulate algorithm, 1326

action statements, 197, 205

actual parameters, 342

Ada, 744

addFirst function, 384

addition (+) operator, 43, 45, 46–49
addQueue operation, 1200, 1202–1206, 1208,

1213–1214, 1216, 1230–1231

addRegionsVote function, 1043–1044

address of (&) operator
described, 783

overview, 835–837

pointers and, 783, 784, 803

addresses, 4–5, 33

base, 521, 522–524

described, 4

addressOfX function, 836, 837

adjacent_difference algorithm, 1326

adjacent_find algorithm, 1324

ADTs (abstract data types), 744, 747–748, 751, 918
described, 658

linked lists and, 1062, 1071–1083, 1092, 1106

overview, 658–660

stacks and, 1152–1153, 1183–1184

structs and, 661

queues and, 1199, 1201–1202, 1206,

1211–1216, 1219, 1226, 1230–1231

age variable, 139, 140, 141

aggregate operations, 517

aggregation. See composition

Aiken, Howard, 3

airline seating assignments, 589

algebra, 336–337

algorithm(s). See also functions

ANSI/ISO Standard C++ and, 22

arrays and, 514

cable company billing program and, 234, 236

calculating change and, 99–102

calculating length and, 96–99

charitable donations program and, 162

classification of, 1323–1326

classifying numbers and, 295–297, 403–406

INDEX

algorithm(s) (Continued)
code detection program and, 559–562

control structures and, 207, 234, 236, 295–297,

301–302

data comparison program and, 409–410, 412–413

described, 12
divisibility tests and, 301–302

election results program and, 1035–1036

generic, 1324
grade report program and, 747–748

juice machine program and, 679–680

largest number program and, 362

modifying, 1324, 1325

mutating, 1325
nonmodifying, 1324

nonrecursive, 1195–1199

numeric, 1326

overview, 21

problem-analysis-coding-execution cycle and, 12–20

queues and, 1233

rock, paper, and scissors game and, 463, 468–469

sales data analysis and, 609–611, 617–618

selection sort, 530, 531–535
sequential search, 526–535

stacks and, 1169–1172, 1188

STL and, 1293, 1323–1333

strings and, 490–491, 493–494

student grade program and, 167–170

text processing program and, 565–566, 568

algorithm header file, 1306, 1326, 1329

amountdue variable, 57

ampersand (&), 364, 365, 372, 518
analog signals, 6
and (&&) operator, 190–195, 208, 313
angle brackets (<>), 30, 35
anonymous data types, 461
ANSI (American National Standard Institution), 22.

See also ANSI/ISO Standard C++

ANSI/ISO Standard C++

header files and, 1278–1279

namespaces and, 81, 471, 472

naming conventions, 1278–1279

overview, 22

string data type and, 53, 476, 555

append function, 480

application programs, 6
area function, 717, 719, 724, 725, 859

areaAndPerimeter function, 366

arguments, 129, 132. See also parameters

arithmetic expressions, 45. See also expressions

arithmetic operators

assignment statements and, 94–99

described, 43

operator overloading and, 868–872

order of precedence and, 46–49

overview, 43–51

array(s), 1154–1172. See also dynamic arrays;

two-dimensional arrays

base addresses, 521, 522–524
of class objects, 655–657

in computer memory, 521–524

components, accessing, 509–511, 545

declaring, 510–511, 516–517, 527

implementation of stacks as, 1154–1172

initializing, 512, 516–517, 548–550

largest element in, 512, 989–990

multidimensional, 543–544, 557–558

n-dimensional, 557, 558
one-dimensional,507,508,511–512,518,521–524
overview, 507–524

as parameters to functions, 518–521

parallel, 542, 543
passing of, 518, 524–526
printing, 512, 548

processing, 511–512, 517–518

queues and, 1202–1211

reading data into, 512

recursion and, 989–990

searching, for specific items, 527–535

size, 511, 516

stacks and, 1162–1163

of strings, 555–556

structs and, 599, 600–604

sum/average of, finding, 512

array subscript operator, 478, 509, 907–909, 1298
arrayClass class, 881, 882

arraySize variable, 803

arrivalTime variable, 1219, 1221

ASCII (American Standard Code for Information

Interchange) character set, 40–41, 188
cast operator and, 53

character arithmetic and, 46

classification of, as seven-bit code, 8

control structures and, 187–188

C-strings and, 535

data types and, 40

described, 7
functions and, 340

input/output and, 124

nonprintable characters in, 41, 535

recursion and, 1001

string comparison and, 537–538

table, 1253–1254

assemblers, 9
assembly language, 8–9

assert function, 231, 232–233, 910, 944–948, 1282

1372 | Index

assign function, 1311, 1315

assignment (=) operator, 636, 637
associativity of, 61
described, 58
equality operator (==) and, confusion between,

217–219

linked lists and, 1083

operator overloading and, 856, 878–886, 1083,

1163–1164, 1181–1183

pointers and, 811–812

assignment statements

arrays and, 509–510

control structures and, 313

overview, 57–58, 94–102

structs and, 596–597

associativity, 46, 61, 193, 209–211
asterisk (*), 7, 35, 782
at function, 480, 1031

average variable, 292

averageAndGrade function, 367

averages, of numbers, 260–261

B

Babbage, Charles, 2

Babylon, 2

back, of queues, 1199, 1200
back function, 1030, 1080, 1111, 1311, 1315

back operation, 1200, 1208–1209, 1213–1214

back pointer, 1108, 1113

backslash (\), 78, 535
backslash (\\) escape sequence, 78, 535

backspace (\b) escape sequence, 78

bad_alloc exception, 794, 956, 957–959

balance variable, 204

bar graphs, 417

base class(es). See also classes; inheritance

constructors and, 720–728

described, 711
member functions, 713–720

base case, 986, 990
baseClass class, 713, 726

bCh variable, 735, 736, 737

bClass class, 735, 736

beg identifier, 1298

begin function, 1080, 1300–1304

Bell Laboratories, 22

binary digits (bits), 6
binary (base 2) number(s)

converting numbers and, 1001–1006, 1261–1264

described, 6
nonnegative integers and, 1259–1279

overview, 6–8, 1259

binary files

described, 1264

file I/O and, 1264–1269

binary operators

described, 45

operator overloading and, 867–873

binary searches, 1025, 1026–1028, 1324,
1331–1333

binary_search function, 1324, 1331–1333

binSearch function, 1041–1042

binToDec function, 1002–1005

bits (binary digits), 6
blank spaces, 90, 92, 131

blank symbols, 35–36

blocks, of statements. See compound

statements

bonuses, calculating, 17

bool data type, 38, 39

control structures and, 275

logical expressions and, 196

overview, 40

Boolean (logical) expressions
associativity and, 209–211

bool data type and, 196

control structures and, 278

described, 186

int data type and, 195–196

order of precedence and, 192–195

overview, 188, 190–196

short-circuit evaluation of, 207, 208

typedef statements and, 462

Boolean (logical) operators
described, 190

order of precedence and, 192–195

overview, 190–196

Boolean (logical) values, 186
box problem, 447–448

boxType class, 716–722, 724–725

brackets. See curly braces ({})
break keyword, 223

break statement, 224–227, 231, 303–305

breed variable, 823–824

bubble sort

described, 1017

overview, 1017–1021

bubbleSort function, 1019–1020

buffers, 160

bug(s). See also debugging; errors; exceptions

avoiding, 211–214, 229–231

control structures and, 310–313

patches and, 310–313

Build command, 12, 666

Index | 1373

buildListBackward function, 1070–1071,

1072

buildListForward function, 1069, 1072

bx variable, 735

bytes

described, 6
overview, 6–7

C

C (high-level language), 9
C++ Builder (Borland), 12, 666
C# (high-level language), 9
cable company billing program, 233–239,

356–361

calculateAverage function, 409, 410–411, 413

callPrint function, 820–821

case keyword, 223

case sensitivity, 36, 484

cashRegister class, 680–681, 692

cassert (assert.h), 232, 910, 1278, 1282
cAssignmentOprOverload class, 883–885

cast operator

described, 51
overview, 51–53

cctype (ctype.h) header file, 1278, 1282–1283
ceil function, 337

Census (United States), 2, 3
central processing units. See CPUs (central

processing units)
cfloat (float.h) header file, 1278, 1283–1284
Ch5_FibonacciNumberUsingAForLoop.cpp, 293

Ch5_LoopWithBugsCorrectedProgram.cpp, 313

Ch5_LoopWithBugsData.txt, 311

change, calculating, 99–102

change variable, 461

char data type, 38, 39

cast operator and, 53

control structures and, 187–188, 277

C-strings and, 535–538

enumeration types and, 456

input/output and, 67, 73, 124, 126, 127,

132–133, 135

operator precedence and, 46

overview, 40

pointers and, 783

templates and, 916

char keyword, 36

character(s). See also specific character sets

comparing, 187–188

control structures and, 187–188

counting, 567

nonprintable, 41, 535

character arrays (C-strings), 555–556, 1287–1289
described, 535
operator overloading and, 909–915

overview, 535–542

reading/writing, 539

characterCount function, 567

charitable donations program, 161–166

China, 2

chips (integrated circuits), 3
cin identifier, 36, 63, 85

control structures and, 277

dot notation and, 137

extraction (>>) operator and, 123–128
get function and, 131–132

ignore function and, 133–134

inheritance and, 731–732

namespaces and, 474

preprocessors and, 122–123

std:: prefix and, 1279

using, 80–81

circle class, 711, 712, 826

circleType class, 667–669, 965–967

circular linked lists, 1117
class(es). See also classes (listed by name)

address of (&) operator and, 835–837
built-in operations on, 636

clients of, 643

definitions, 630

described, 631
examples of, 667–673

functions and, relationship of, 638

identifying, 744–745

overview, 629–658

pointers and, 789–792, 809–819

scope, 637

stream, 731–732

structs versus, 660–661

virtual destructors and, 826

class keyword, 631

class member(s). See also class member functions

accessing, 635–636

described, 630
protected, 733

static, 673–674

class member functions, 639–640, 864–871

common to all containers, 1303–1304

overriding, 713–720

class objects (instances)
arrays of, 655–657

declaring, 634

described, 634
reference parameters and, 638

scope and, 637, 810, 811, 826

1374 | Index

class template(s)
described, 916
header files, 820

implementation files, 820

overview, 918–926

classes (listed by name). See also classes

arrayClass class, 881, 882

baseClass class, 713, 726

bClass class, 735, 736

boxType class, 716–722, 724–725

cashRegister class, 680–681, 692

cAssignmentOprOverload class, 883–885

circle class, 711, 712, 826

circleType class, 667–669, 965–967

classIllusFriend class, 861, 862

clockType class, 631, 632–667, 710, 854–855,

893–901

complexTime class, 902–907

courseType class, 747–750, 758

customerType class, 1219–1222, 1131

cylinderType class, 745

dateType class, 738–740

dClass class, 735–737

deque class, 1310

derivedClass class, 713, 726

die class, 669–671

dispenserType class, 681–689

divByZero class, 960–961

divisionByZero class, 961–963, 968, 970

dogType class, 820, 822, 823–826

dummyClass class, 655

dummyExceptionClass class, 959

ellipse class, 826

employeeType class, 828–830

exception class, 955–956, 959

extClockType class, 710

fullTimeEmployee class, 828, 830–832

illustrate class, 673–675, 678–679

invalid_argument class, 956

ios class, 732

istream class, 732

length_error class, 956

LinkedListClass class, 1078

linkedListIterator class, 1073–1075

linkedListType class, 1071, 1072, 1073, 1075,

1077–1078, 1082, 1083, 1091–1092,

1101

linkedListType class, 1196, 1216

linkedQueueType class, 1215–1217, 1230

linkedStackType class, 1174–1175, 1181–1185

list class, 1313–1318

listType class, 660, 918–926

logic_error class, 956

myClass class, 675

myException class, 975

negativeNumber class, 965, 966, 967

newString class, 907, 909–915, 921

one class, 729

opOverClass class, 864

orderedLinkedList class, 1071, 1077–1078,

1092–1103

ostream class, 732

out_of_range class, 956

overflow_error class, 956

partTimeEmployee class, 710–711, 727–730,

828–829, 832–834

personalInfo class, 738, 740–742

personType class, 671–673, 710, 727, 729–730,

737–738, 828, 1131

petType class, 819–826

ptrMemberVarType class, 809–819

queue class, 1321–1323

queueADT class, 1201–1202, 1206, 1211–1216

queueType class, 1230–1231

rectangle class, 711, 722, 826, 828

rectangleType class, 714–716, 719–722,

724–726, 857–863, 865–893

runtime_error class, 956

serverListType class, 1226–1228

serverType class, 1222–1225

shape class, 712, 826–827, 828

square class, 711

stack class, 1320

stackADT class, 1152–1155, 1176, 1183–1184

stackType class, 1155–1156, 1163–1168

studentType class, 752–753, 789

test class, 857

testAddress class, 836, 837

three class, 729

two class, 729

underflow_error class, 956

unorderedLinkedList class, 1071, 1077, 1083,

1184–1185

unorderedLinkedListType class, 1216–1217

vector class, 1029–1033, 1294–1299

classifyNumber function, 404–405

classIllusFriend class, 861, 862

clear function, 140–141, 480, 482, 1030, 1305

clear operation, 1323

clients, of classes, 643
climits (limits.h) header file, 1278, 1284–1285
clockType class, 631, 632–667, 710, 854–855,

893–901

clockType.h, 662, 663–665

clockTypeImp.cpp, 662, 665–666

clockTypeImp.obj, 665

Index | 1375

close function, 160

cmath (math.h) header file, 79, 81, 129, 209,
1278, 1286–1287

functions and, 337

namespaces and, 474, 476

COBOL

classification of, as a high-level language, 9

introduction of, 3

code

case sensitivity and, 36, 484

color coding and, 31, 34

executable, 665–667

detection program, 559–560

source, 10, 82
spaghetti, 304

walk-throughs, 60, 69, 222, 306
collating sequence, 40, 41
color coding, 31, 34

column(s)
largest element in each, 551

processing, 548, 549
sum by, 551

columns variable, 806

comma (,), 35, 40, 90
comments

overview, 34–35

multiple line, 35

single-line, 35

common

input, 122
output, 122

compare function, 480

compareCode function, 561–562

compareThree function, 348, 349

comparison (relational) operators
associativity of, 209–211

control structures and, 185–190, 192–195

described, 186
enumeration types and, 455–456

operator overloading and, 868–872

order of precedence and, 192–195

overview, 185–190

simple data types and, 186–187

string data type and, 188–190

structs and, 597–598

compiler(s)
ANSI/ISO Standard C++ and, 22

constants and, 55

data types and, 39

debugging and, 85–88

described, 9
errors, 825

identifiers and, 37

preprocessor directives and, 79

slicing problem and, 825

string data type and, 53

typical C++ program processing and, 10, 11

complex number(s)
described, 902
programming example, 902–907

complexTime class, 902–907

composition

described, 737
overview, 737–742

compound assignment statements

described, 94
overview, 94–95

compound statements, 203, 204
computer(s)

language of, 6–8

systems, elements of, 3–6

Computer History Museum, 2

computer programs. See programs

concepts, avoiding partially understood, 211–214,

229–231

conditional expressions, 219
conditional (?:) operator, 219
const keyword, 36, 602, 633, 638

constant functions, 644
constants, allocating memory with, 54–57. See also

named constants

constructor(s). See also default constructors

arrays and, 655–657

inheritance and, 720–828

invoking, 651–653

linked lists and, 1082, 1109

overview, 649–650

parameters and, 654, 725

precautions regarding, 654–655

queues and, 1210–1211

stacks and, 1162–1163, 1175, 1181

container(s)
adapters, 1319, 1320–1323
member functions common to all, 1303–1304

sequence, 1294–1303

STL and, 1293–1323

types, 1294–1323

continue statement, 303–305

control structures. See also repetition structures;

selection structures

choosing the right, 303

nested, 271–273, 294, 305–310
overview, 183–333

pseudocode and, 220–223

switch structures and, 223–241

testing and, 220–223

1376 | Index

conversion constructor, 913
conversion identifier, 37

convertEnum function, 464, 467–468

cookies sold, calculating, 265–270

copy algorithm, 1306–1310, 1325

copy constructor

containers and, 1303

described, 812
linked lists and, 1082, 1109

overview, 812–819

stacks and, 1163

copy_backward algorithm, 1325

copyList function, 1081–1082, 1109

copyStack function, 1162, 1180–1181

copyText function, 566–567

cos function, 337

count algorithm, 1324

count variable, 122–123, 472, 675, 678, 679

counter variable, 43, 267, 294, 308

counter-controlled loops

for loops as, 287–288

while loops as, 264, 265–267
count_if algorithm, 1324

courseGrade function, 352–353

courseType class, 747–750, 758

cout identifier, 31, 36, 85

debugging with, 154–157

generating output with, 72–70

inheritance and, 731–732

namespaces and, 474

operator overloading and, 878

putback function and, 136

recursion and, 988

setprecision manipulator and, 143

std:: prefix and, 1279

using, 80–81

.cpp filename extension, 10, 82, 662

CPUs (central processing units)
described, 4
invention of, 3

createDVDList function, 1132

credit card balance program, 198–199

creditCardBalance variable, 199

cstddef (stddef.h) header file, 1287
cstdlib (stdlib.h) header file, 274, 1278, 1292
c_str function, 541–542

C-strings (character arrays), 555–556, 1287–1289
described, 535
operator overloading and, 909–915

overview, 535–542

reading/writing, 539

cstring (string.h) header file, 489, 536, 541, 909,
1278, 1287–1289

curly braces ({}), 7, 83, 90, 203, 214, 220, 398,
592, 726

current pointer, 1094–1095, 1097, 1099, 1104,

1108

customerNumber variable, 1219

customers

simulations and, 1218–1222

waiting, 1230–1231

use of the term, with queues, 1218

customerType class, 1219–1222, 1131

custSize variable, 1273–1275

cylinders, dimensions of, 744–745

cylinderType class, 745

D

dangling pointers, 796

.dat file name extension, 159

data abstraction. See also abstract classes

described, 658
overview, 658–660

data types. See also specific data types

anonymous, 461
described, 38
overview, 37–42

variables and, 42–43

data comparison program, 408–418

dateType class, 738–740

dClass class, 735–737

debugging. See also bugs; errors; exceptions

control structures and, 220–223

drivers and, 396–398

information hiding and, 661

input/output and, 154–157

loops, 313–314

overview, 85–88

pseudocode and, 220–223

stubs and, 396–398

decimal (base 10) numbers

described, 7
floating-point notation and, 41

number conversion and, 1001–1006, 1259–1262

overview, 1259

decision makers, 217, 218

described, 197
overview, 261

while loops and, 261

declaration statements, 83
decrement operator(s)

described, 70
operator overloading and, 886–887

overview, 70–72

pointers and, 799

Index | 1377

decToBin function, 1006–1008

deep copy

described, 808
shallow versus, 807–809

default constructors, 651, 655. See also

constructors

containers and, 1303

described, 649
linked lists and, 1078, 1109

stacks and, 1175

default keyword, 223

delete operator, 793, 794–798, 1078

deleteNode function, 1078, 1083, 1090, 1092,

1099–1100, 1116

deleteQueue operation, 1200, 1202–1203, 1205,

1208–1209, 1213–1214, 1230–1231

denominators, 231–233

deque class, 1310

deque container, 1310, 1311–1313
dereferencing (*) operator

described, 784
pointers and, 783–789, 803

STL and, 1318

derived classes. See also inheritance

constructors and, 720–728

described, 710
destructors and, 729–730

header files and, 729–730

overview, 710–711, 713

protected members in, 734–737

derivedClass class, 713, 726

destroyList function, 813, 815, 1078–1079

destructors, 657–658, 809–810

derived classes and, 729–730

linked lists and, 1082

queues and, 1210–1211

stacks and, 1162–1163, 1181

virtual, 826
Dev-C++ IDE (Bloodshed Software), 12
dice, rolling a pair of, 353–355, 669–671

die class, 669–671

difference engine, 2

digital signals, 6
digitsAndLetters.txt, 1271

directly recursive functions, 988
discardExp function, 1192

Discrete Mathematics: Theory and Applications

(Malik and Sen), 313
dispenserType class, 681–689

displayMenu function, 1132–1134

displayResults function, 464, 468

displayRules function, 464–465

divByZero class, 960–961

dividend variable, 952–953, 955

divisibility test, 301–302

division (\) operator, 43–44, 45, 46–49
divisionByZero class, 961–963, 968, 970

divisor, 301
divisor variable, 952–953

do keyword, 299

do. . .while loops, 394, 973

classification of, as posttest loops, 300

continue statements and, 304–305

divisibility tests and, 301–302

overview, 298–303

documentation, importance of, 92

doDivision function, 964

dogType class, 820, 822, 823–826

dogType.h header file, 822

domains, 659
dot notation, 137
double data type, 41–42, 204

arrays and, 511, 518

constants and, 55, 56

enumeration types and, 456

functions and, 345, 346

inheritance and, 721, 735

initializing variables and, 62

input/output and, 124–125, 126, 127

pointers and, 788, 798

variables and, 57

double keyword, 36

double precision, 42
double quotes ("), 30, 476
double quotation (\") escape sequence, 78

doubleDimensions function, 858

draw function, 827

drivers, 396, 397–398
dummyClass class, 655

dummyExceptionClass class, 959

DVD store program, 1118–1137

dynamic arrays

described, 511
overview, 800–806

two-dimensional, 804–806

dynamic binding. See run-time (late) binding

E

EBCDIC (Extended Binary-coded Decimal

Interchange Code) character set, 8, 40
C-strings and, 535

table, 1254–1255

Eiffel, 744

election results program, 1034–1046

ellipse class, 826

1378 | Index

else keyword, 201

else statements, pairing, with if statements, 204,
205

employeeType class, 828–830

empty function, 480, 482, 1031

empty operation, 1320, 1322

encapsulation, 743
end function, 1080, 1300–1304

end identifier, 1298

end-of-file (EOF)-controlled while loops, 277,
278–282, 308, 309

endl manipulator, 30–31, 72, 85

namespaces and, 474

output statements and, 75, 77

parameters and, 153

std:: prefix and, 1279

ENIAC (Electronic Numerical Integrator and

Calculator), 3
enum keyword, 453

enumeration data types

arrays and, 527, 546–549

described, 38
declaring variables when defining, 360–361

functions and, 459–460

input/output and, 456–458

loops and, 456

operations on, 455

overview, 452–471

enumerators, 453
eof function, 277, 278–282
EOF-controlled while loops, 277, 278–282, 308,

309

equal algorithm, 1324

equal sign (=), 35, 59
equal to (==) operator, 186, 217–219
equal_range algorithm, 1324

equalTime function, 631–633, 635, 642, 643, 644

erase function, 480, 482, 1304, 1305

error(s). See also bugs; debugging; exceptions

control structures and, 211, 277

data types and, 38

flagging, 87

identifiers and, 37, 57

input/output and, 154–157

linked lists and, 1087

new operator and, 794

operators and, 218, 219

semantic, 199, 202

stacks and, 1192

escape sequences

commonly used, 78

effects of, 78–79

evaluateExpression function, 1188–1189

evaluateOpr function, 1190–1192

exabyte (EB), 7
example function, 519

Example2_4Modified.cpp, 45

Example2_9.cpp, 69

Example2_26.cpp, 79

Example_ArrayIndexOutOfBoundsA.cpp, 516

Example_ArrayIndexOutOfBoundsB.cpp, 516

exception(s). See also bugs; errors; exception

handling

classes, 955–971

new operator and, 794

rethrowing, 968–971

throwing, 949–950, 964, 968–971

exception class, 955–956, 959

exception handling. See also exceptions

C++ mechanisms of, 948–955

exception classes and, 955–971

fixing errors and continuing, 972–973

logging errors and continuing, 974

overview, 943–984

techniques, 972–974

terminating programs, 972

unwinding stacks and, 974–977

exclamation point (!), 35
.exe filename extension, 82

executable code, 665–667

executable statements, 83

exp function, 337

Exp_5_25_.txt, 309

expr variable, 344–348

expressions

cast operator and, 52

conditional, 219

described, 45

mixed, 48, 49–51

overview, 43–51

saving, 61

three types of, 48

using the value of, 61

extClockType class, 710

extern keyword, 390

external variables, 390

extraction (>>) operator
cin and, 123–128

control structures and, 309

C-strings and 539

get function and, 131–132

inheritance and, 731, 732

input/output and, 153–154

operator overloading and, 865, 873–878

overview, 123

Index | 1379

F

fabs function, 209, 337

fact function, 988

fail state, 138
false keyword, 188, 190–191, 196

feetAndInchesToMetersAndCents function, 392

fenceCostPerFoot variable, 724

fertilizerCostPerSquareFoot variable, 724

Fibonacci numbers, 283, 284–294, 993–996

Fibonacci sequences, 283, 284–287
FIFO (First In First Out), 1199
file(s). See also file input/output

binary, 1264, 1265–1269

described, 158

opening, 158, 159

file extension(s)
.cpp filename extension, 10, 82, 662

.dat file name extension, 159

.exe filename extension, 82

.h filename extension, 1278

.obj filename extension, 82

.out file name extension, 159

.txt file name extension, 159

file input/output. See also input/output (I/O)
binary files and, 1264–1269

overview, 157–161, 1264–1278

random file access and, 1270–1278

file stream variables, 158
fill function, 806, 1325, 1326–1328

fillArray function, 526

fill_n function, 1326–1328, 1325

find function, 481, 484, 486, 1324,

1328–1329

find_end algorithm, 1324

find_first_not_of function, 481

find_first_of function, 481, 1324

find_if function, 1328–1329, 1324

first identifier, 37

first pointer, 1079, 1082, 1117

first variable, 1077

FirstCPPPorgram.cpp, 10

firstNum variable, 85, 340

firstProg.cpp, 82

firstProg.obj, 82

firstProg.out, 161

firstProgram.cpp, 82

firstProj.exe, 82

fixed manipulator, 143–144, 145, 153, 359

flag variable, 462

flag-controlled while loops, 273, 274–276, 282–283
float data type, 41–42, 56

float keyword, 36

floating-point data type

described, 38
overview, 41–42

floating-point expressions, 48
floating-point notation, 41
floating-point numbers

comparing, 208–209

converting, to integers, 51

floor function, 337, 338

for keyword, 288

for loop(s)
arrays and, 513, 515, 549–551

classification of, as pretest loops, 300

continue statements and, 304–305

enumeration types and, 456

Fibonacci number program and, 293–294

general syntax, 288

nested, 305–307

overview, 287–288

pointers and, 819

sorting lists and, 532–533

vector containers and, 1298, 1300–1301

for loop control variable, 288
for statements

functions and, 387

range-based, 515
for_each algorithm, 1324

formal parameter lists, 87

formal parameters, 342, 346
formatted data, 1264
FORTRAN

classification of, as a high-level language, 9

introduction of, 3

forward slash (/), 31, 35, 159
friend functions, 864–867, 892

definition of, 862–863

described, 861
inheritance and, 734

overview, 861–864

front, of queues, 1199, 1200
front function, 1030, 1080, 1111, 1311, 1315

front operation, 1200, 1208–1209, 1213–1214

fstream (fstream.h) header file, 158, 732, 1278
fullTimeEmployee class, 828, 830–832

funcA function, 361

funcArrayAsParam function, 518

funcB function, 361

funcExp function, 401

function(s). See also function prototypes; function

templates; virtual functions

arguments, 129, 132
body, 83, 341
calls, 129, 343, 524–526, 365

1380 | Index

classes and, relationship of, 638

default parameters and, 400–418

definitions, 342, 364
described, 34
enumeration types and, 459–460

flow of execution and, 361–364

headers, 341
indirectly recursive, 988
overloading, 399, 400, 915
overriding, 713–720

overview, 335–449

pointers and, 803

predefined, 34, 336–340
return values, 803

structs and, 598–599

value-returning, 341, 342–364
void, 341

function prototypes, 349–350, 401–402, 813

described, 348
operator overloading and, 872, 874, 875, 879,

887, 888, 889, 890

function templates

described, 916
overview, 916–917

functionA function, 976–977

functionABC function, 399–400

FunctionB function, 976–977

functionC function, 976–977

functions (listed by name). See also functions; main

function

abs function, 337, 342

addFirst function, 384

addRegionsVote function, 1043–1044

addressOfX function, 836, 837

append function, 480

area function, 717, 719, 724, 725, 859

areaAndPerimeter function, 366

assert function, 231, 232–233, 910, 944–948,

1282

assign function, 1311, 1315

at function, 480, 1031

averageAndGrade function, 367

back function, 1030, 1080, 1111, 1311, 1315

begin function, 1080, 1300–1304

binary_search function, 1324, 1331–1333

binSearch function, 1041–1042

binToDec function, 1002–1005

bubbleSort function, 1019–1020

buildListBackward function, 1070–1071, 1072

buildListForward function, 1069, 1072

calculateAverage function, 409, 410–411, 413

callPrint function, 820–821

ceil function, 337

characterCount function, 567

classifyNumber function, 404–405

clear function, 140–141, 480, 482, 1030, 1305

close function, 160

compare function, 480

compareCode function, 561–562

compareThree function, 348, 349

convertEnum function, 464, 467–468

copyList function, 1081–1082, 1109

copyStack function, 1162, 1180–1181

copyText function, 566–567

cos function, 337

courseGrade function, 352–353

createDVDList function, 1132

c_str function, 541–542

decToBin function, 1006–1008

deleteNode function, 1078, 1083, 1090, 1092,

1099–1100, 1116

destroyList function, 813, 815, 1078–1079

discardExp function, 1192

displayMenu function, 1132–1134

displayResults function, 464, 468

displayRules function, 464–465

doDivision function, 964

doubleDimensions function, 858

draw function, 827

empty function, 480, 482, 1031

end function, 1080, 1300–1304

eof function, 277, 278–282

equalTime function, 631–633, 635, 642, 643,

644

erase function, 480, 482, 1304, 1305

evaluateExpression function, 1188–1189

evaluateOpr function, 1190–1192

example function, 519

exp function, 337

fabs function, 209, 337

fact function, 988

feetAndInchesToMetersAndCents function, 392

fill function, 806, 1325, 1326–1328

fillArray function, 526

fill_n function, 1326–1328, 1325

find function, 481, 484, 486, 1324, 1328–1329

find_first_not_of function, 481

find_first_of function, 481, 1324

find_if function, 1328–1329, 1324

floor function, 337, 338

front function, 1030, 1080, 1111, 1311, 1315

funcA function, 361

funcArrayAsParam function, 518

funcB function, 361

funcExp function, 401

functionA function, 976–977

Index | 1381

functions (listed by name) (Continued)
functionABC function, 399–400

FunctionB function, 976–977

functionC function, 976–977

functionSeven function, 399

functionSix function, 399

funcValueParam function, 371

funExample function, 390

funOne function, 378, 380, 391

funTwo function, 380, 382

gameResult function, 464, 466–467

get function, 128, 131–132, 135, 137, 309,

539, 731

getCandidateName function, 1036–1037

getData function, 612–614, 618

getFreeServerID function, 1228

getGPA function, 757

getHoursEnrolled function, 756

getLength function, 719, 859

getline function, 163, 154, 309

getNumber function, 404, 405, 408

getNumberOfBusyServers function, 1228

getScore function, 372–374

getStudentData function, 759–760

getTime function, 631, 632, 633, 641, 644, 898

getWidth function, 719, 859

ignore function, 133–134, 137, 140, 731

incrementHours function, 631, 632, 633, 644

incrementMinutes function, 631, 632, 633,

642, 644

incrementSeconds function, 631, 632, 633,

642, 644

incrementY function, 678

indexLargestElement function, 524

initialize function, 404, 405, 519, 566, 611,

617, 1038–1039

initializeList function, 1079, 1110

insert function, 481, 486–487, 920, 1113,

1300–1301, 1304, 1305

insertFirst function, 1072, 1078, 1083, 1092,

1098–1099, 1184, 1216

insertLast function, 1072, 1078, 1083, 1086,

1092, 1098–1099

insertNode function, 1099

iSEmptyList function, 1078

isFullQueue function, 1213, 1231

islower function, 338, 340

isPalindrome function, 355–356

isupper function, 338

isVowel function, 491

larger function, 345–350, 362–363, 400, 916,

917–918

largerChar function, 400

largest function, 990–992

largestInRows function, 553, 555

length function, 129, 131, 481, 482, 484

maxSaleByPerson function, 616, 618

maxSaleByQuarter function, 616–617, 618

max_size function, 1031, 1304

merge function, 1316

metersAndCentTofeetAndInches function, 392

move function, 827

one function, 390

open function, 158

peek function, 134–137

perimeter function, 724, 859

pigLatinString function, 492–493

pointerParameters function, 803

poolCapacity function, 398

poolFillTime function, 398

pop function, 1162

pop_back function, 1030, 1313, 1305

pop_front function, 1313, 1315

pow function, 129, 131, 337, 338, 341, 342,

474

power function, 342

print function, 754–756, 760, 717, 718, 736,

806, 820, 822, 824–825, 859, 877, 1079

printArray function, 526

printGrade function, 372–375

printGradeReports function, 760

printHeading function, 1044

printListReverse function, 1105

printMatrix function, 552–555

printReport function, 615–616, 618

printResult function, 409, 411–412, 417–418,

472, 476, 1188, 1192

printStars function, 367–368

printTime function, 631, 632, 633, 636, 644,

899

processVotes function, 1042

push_back function, 1030, 1031, 1032, 1033,

1299, 1302, 1305

push_front function, 1311, 1315

putback function, 134–137

rand function, 274, 1292

rbegin function, 1304, 1307

read function, 1265, 1270

readCode function, 560

readCourses function, 460

readIn function, 599

rectangleFriend function, 863

remove function, 1315, 1325, 1329–1331

rend function, 1304, 1307

replace function, 481, 486–487, 1325,

1329–1331

1382 | Index

residential function, 356–357

resize function, 1032, 1299, 1306

retrievePlay function, 464, 465–466

reverse function, 1316, 1325

reversePrint function, 1103–1105

rFibNum function, 993–996

rollDice function, 354, 669–671

rotate function, 491, 1325

runSimulation function, 1233, 1234

saleByQuarter function, 614, 618

search function, 1078, 1083, 1084–1085,

1092, 1111, 1324, 1331–1333

search_n function, 1324

secret function, 350–351

seekg function, 1270, 1271, 1272, 1273

seekp function, 1271, 1275

selectionSort function, 533, 545

sellProduct function, 684–686

seqSearch function, 529, 601, 602, 1016

setCustomerInfo function, 1221–1222

setData function, 736, 739–740

setDimension function, 718–719, 724, 725, 859

setInfo function, 753

setLength function, 859, 860

setRadius function, 965–967

setServerBusy function, 1228

setSimulationParameters function, 1232

setTime function, 631, 632, 633, 636, 639–640,

644, 649, 650, 898

setWidth function, 859

showChoices function, 392

showSelection function, 684

size function, 481, 1031, 1033, 1304

sort function, 1325, 1315, 1331–1333

sortCandidateName function, 1037–1038

sortCourse function, 757–758

sqrt function, 337, 338

squareFirst function, 385

strcmp function, 536, 538

strcpy function, 536, 537

strlen function, 537

stub function, 398

substr function, 481, 487–488, 957

sumArray function, 524, 526

sumRows function, 553, 555

swap function, 481, 489–490, 1304, 1325

terminate function, 974

test function, 396

testCopyConst function, 819

testTime function, 638–639

three function, 390

time function, 274, 275

tolower function, 338

totalSaleByPerson function, 614–615, 618

toupper function, 338, 340

two function, 861

unique function, 1315, 1325

unsetf function, 151

updateServers function, 1229

validSelection function, 464, 465

volume function, 719

what function, 955–957, 961, 963, 976

winningObject function, 464, 468

write function, 1265, 1270

writeTotal function, 567

functionSeven function, 399

functionSix function, 399

funcValueParam function, 371

funExample function, 390

funOne function, 378, 380, 391

funTwo function, 380, 382

G

gameResult function, 464, 466–467

garbage, 62, 810

general case, 986, 990

generate algorithm, 1325

generate_n algorithm, 1325

generic algorithms, 1324

get function, 128, 131–132, 135, 137, 309,

539, 731

getCandidateName function, 1036–1037

getData function, 612–614, 618

getFreeServerID function, 1228

getGPA function, 757

getHoursEnrolled function, 756

getLength function, 719, 859

getline function, 163, 154, 309

getNumber function, 404, 405, 408

getNumberOfBusyServers function, 1228

getScore function, 372–374

getStudentData function, 759–760

getTime function, 631, 632, 633, 641, 644, 898

getWidth function, 719, 859

gigabyte (GB), 7
GPA (grade point average) programs, 211–214, 592,

595, 598–599, 745–766, 789–792,

1168–1172. See also grades, calculating

GPS (global positioning satellites), 3
grades, calculating, 19, 372–375, 542–543.

See also GPA (grade point average) programs

greater than or equal to operator, 186

Index | 1383

H

.h filename extension, 1278

hardware, overview of, 4–5

head, of linked lists, 1058, 1060, 1062
header file(s)

control structures and, 232

derived classes and, 729–730

described, 662
file input/output and, 158

inheritance and, 729–731

linked lists and, 1091–1092, 1100–1103

multiple inclusions of, 730–731

naming conventions, 1278–1279

overview, 1282–1289

predefined functions and, 129

stacks and, 1164–1168, 1182

strings and, 556

templates and, 820

headerText.cpp.h, 731

height variable, 139, 140, 141, 146, 718, 720,

721, 722, 724

Hello! output, 289, 290, 538

hexadecimal (base 16) numbers,

1262–1264

high-level languages, 9
Hollerith, Herman, 2–3

horizontal tab character (\t), 41
hr variable, 632, 633–634, 640, 643, 649–650,

654, 656, 854

hyphen (-), 35

I

IBM (International Business Machines)
EBCDIC encoding and, 8, 40

history of computing and, 3

PCs (personal computers), introduction of, 3

identifiers. See also specific identifiers

case sensitivity of, 36

compilers and, 57

described, 36
enumeration types and, 452–454

global, 386, 387, 471
illegal, 37

legal, 37

local, 386, 387
namespaces and, 471

naming, 90–91

overview, 36–37

scope of, 386, 387–390
self-documenting, 91
using, 80–81

IDEs (integrated development environments)
control structures and, 313, 314

exception handling and, 959

identifiers and, 37

indentation and, 220

input/output and, 142, 159

management of files by, 666

overview, 11

preprocessor directives and, 79

warning messages and, 67

well-known, 12

if keyword, 197

if statements, 196–220, 351

functions and, 351

if. . .else statements and, comparing, 206–207

input failure and, 214–217

nested, 204, 205–206
operators and, 217–219, 880, 881

pairing else statements with, 204, 205
if. . .else statements, 196–220, 282

conditional operators and, 219

debugging and, 222

errors and, 212–214

if statements and, comparing, 206–207

incorporating multiple selections in, 204–206

switch statements and, 229

ifstream header file, 158, 732, 215, 216, 1270, 1271

ignore function, 133–134, 137, 140, 731

illustrate class, 673–675, 678–679

implementation

files, 662, 820
linked, 1172–1185

implicit type coercion, 51
inches, calculating length in, 44–45

includes algorithm, 1324

increment (++) operator
described, 70
operator overloading and, 854, 886–887

overview, 70–72

pointers and, 799

STL and, 1318

incrementHours function, 631, 632, 633, 644

incrementMinutes function, 631, 632, 633, 642, 644

incrementSeconds function, 631, 632, 633, 642, 644

incrementY function, 678

indentation, 93–94, 205, 219–220, 290

index(es), 513, 546
in bounds, 575, 576
described, 509
integral data type and, 526–527

out of bounds, 575, 576
indexLargestElement function, 524

indirection operator. See dereferencing (*) operator

1384 | Index

indirectly recursive functions, 988
infile variable, 215, 278, 282, 309, 542

infix notation, 1185
information hiding, 661–665

inheritance

described, 743
hierarchy diagram, 711

overview, 710–737

pointers and, 819–826

pure virtual functions and, 828

initial statement, 288–290

initialize function, 404, 405, 519, 566, 611, 617,

1038–1039

initializeList function, 1079, 1110

initializeQueue operation, 1200, 1206, 1213–1216

initializeStack operation, 1157–1158, 1162, 1176

inner_product algorithm, 1326

inplace_merge algorithm, 1325

input. See also input/output; input streams

described, 63
devices, 5
failure, 128, 138–141, 214–217
overview, 63–66

input stream(s), 122–128, 137, 731–732
described, 122
variables, 123

input/output. See also file input/output; input; output

debugging and, 154–157

devices, 5
dot notation and, 137

files, specifying, at execution time, 541

input failure and 138–141

overview, 121–181

predefined functions and, 128–137

strings and, 153–154, 477, 541–542

structs and, 598

insert function, 481, 486–487, 920, 1113,

1300–1301, 1304, 1305

insertFirst function, 1072, 1078, 1083, 1092,

1098–1099, 1184, 1216

insertion (++) operator
operator overloading and, 854, 865

setprecision manipulator and, 143

strings and, 540–541

insertion sort, 1021–1025

insertLast function, 1072, 1078, 1083, 1086,

1092, 1098–1099

insertNode function, 1099

insertNode operation, 1114

instance variables, 643, 679
int data type, 38, 60, 452, 631, 798–800, 803

arrays and, 508, 518, 524, 529

containers and, 1313

control structures and, 195–196, 205, 228, 260,

262, 301

debugging and, 87

enumeration types and, 456

exception handling and, 968

initializing variables and, 62

input/output and, 125, 126, 127, 138, 140, 132,

147

logical expressions and, 195–196

operators and, 53, 70, 71, 72

overview, 39–40

pointers and, 782, 783–787, 794, 807

structs and, 605, 596

templates and, 918

typedef statements and, 462

variables and, 57

int keyword, 36

integer data type, 39

integers

adding large, 587

classifying, 295–298

finding the sum of, 294

integral data type, 38, 43–44, 526–527

integral expressions, 48

integrated development environments (IDEs)
control structures and, 313, 314

exception handling and, 959

identifiers and, 37

indentation and, 220

input/output and, 142, 159

management of files by, 666

overview, 11

preprocessor directives and, 79

warning messages and, 67

well-known, 12

interestRate variable, 43, 204

interface files. See header files

International Standards Organization. See ISO

(International Standards Organization)
intList variable, 600

invalid_argument class, 956

inventory tracking, 543–544, 546–548

iomanip (iomanip.h) header file, 81, 146–147, 150,
153, 163, 476, 1278

ios class, 732

ios::app option, 161

iostream (iostream.h) header file, 79, 85, 97, 1278,
1279, 1291

functions and, 337

inheritance and, 730, 731–732

input/output and, 122, 153, 158

namespaces and, 80–81, 471, 474, 476

iSEmptyList function, 1078

Index | 1385

isEmptyQueue operation, 1216, 1200, 1231

isEmptyStack operation, 1158, 1162, 1175–1176

isFullQueue function, 1213, 1231

isFullQueue operation, 1200

isFullStack operation, 1158, 1162–1163,

1174–1176

isGuessed variable, 275

islower function, 338, 340

isNegative variable, 303, 304

ISO (International Standards Organization), 22
isPalindrome function, 355–356

istream class, 732

istream data type, 122, 123, 137, 278

istream iterator, 1319

istream member functions, 128

istreamVar variable, 135, 140, 154

isupper function, 338

isVowel function, 491

iter_swap algorithm, 1325

iterative control structures, 999, 1000. See also loops

iterator(s)
declaring, 1299–1300

described, 1073

linked lists and, 1073–1076

overview, 1318–1323

STL and, 1298–1300, 1318–1323, 1293, 1298

use of the term, 1298

J

Jacquard, Joseph, 2

Java, 9, 744

Johns, Steven, 3

juice machine program, 679–692

juiceMachine.h, 692

K

key comparisons, 1016, 1017

keyboard shortcuts, 278

keywords

described, 36

lists, 1249

keywords (listed by name)
break keyword, 223

case keyword, 223

char keyword, 36

class keyword, 631

const keyword, 36, 602, 633, 638

default keyword, 223

do keyword, 299

double keyword, 36

else keyword, 201

enum keyword, 453

extern keyword, 390

false keyword, 188, 190–191, 196

float keyword, 36

for keyword, 288

if keyword, 197

int keyword, 36

namespace keyword, 472

private keyword, 631, 632, 633, 636, 643

protected keyword, 631

public keyword, 631

return keyword, 345

static keyword, 673

static_cast keyword, 51, 52, 53

struct keyword, 592

switch keyword, 223

template keyword, 916

this keyword, 857

throw keyword, 950

true keyword, 188, 190–191, 196, 262

typedef keyword, 461

virtual keyword, 821

void keyword, 36

while keyword, 261

kilobytes (KB), 6, 7

L

larger function, 345–350, 362–363, 400, 916,

917–918

largerChar function, 400

largest function, 990–992

largest number calculations, 362–363

largestInRows function, 553, 555

last pointer, 1082

last variable, 1077

Last In First Out data structure. See LIFO (Last In
First Out) data structure

LCVs (loop control variables)
described, 262

incrementing/decrementing, 291

initializing, 263

while loops and, 262–263

left manipulator, 151–153

legalAge variable, 196

Leibniz, Gottfried von, 2

length

calculating, 44–45, 64, 66–70

converting, 96–99

length function, 129, 131, 481, 482, 484

length identifier, 36

1386 | Index

length variable, 33, 718, 720, 721, 722, 724, 798,

864, 867, 884

length_error class, 956

less than (<) operator, 186
less than or equal to (<=) operator, 186
letter variable, 273

libraries. See also STL (Standard Template Library)
described, 11
preprocessor directives and, 79

LIFO (Last In First Out) data structure, 1151
line and letter count program, 565–571

linear searches. See sequential searches

linked list(s). See also lists

ADTs and, 1062, 1071–1083, 1075–1076,

1083, 1092, 1106

building, 1066–1071

circular, 1117
copying, 1081–1082

default constructors and, 1078

deleting items in, 1065–1066

described, 1058
destroying, 1078–1079, 1109

doubly, 1106–1117

first and last elements of, 1111–1117

head of, 1058, 1060, 1062
initializing, 1079, 1110

inserting items in, 1062–1065

iterators, 1073, 1074–1076
length of, 1079–1080, 1110

links in, 1058
ordered, 1092–1103

overview, 1057–1139

printing, 1079, 1103–1105, 1110, 1195–1199

properties, 1059–1065

searching, 1111

traversing, 1061–1062

unordered, 1071, 1077, 1083–1092,

1216–1217

LinkedListClass class, 1078

linkedlist.h, 1091–1092, 1101

linkedListIterator class, 1073–1075

linkedListType class, 1071, 1072, 1073, 1075,

1077–1078, 1082, 1083, 1091–1092, 1101,

1196, 1216

linkedQueueType class, 1215–1217, 1230

linkedStack.h, 1182

linkedStackType class, 1174–1175, 1181–1185

linkers, 11

links, in linked lists, 1058
list(s). See also linked lists

described, 1016
dynamic arrays and, 801–803

exception handling and, 958

operator overloading and, 881–886

pointers, 818–819

printing, 1079, 1103–1105, 1110, 1195–1199

processing, 1016–1028

recursion and, 989–990

searching, 526–535, 1084–1085, 1093–1094

sorting, 530–535, 1017–1021

STL and, 1294–1299, 1313–1318

templates and, 918–926

list class, 1313–1318

list container, 1313–1318

listOne parameter, 518

listTwo parameter, 518

listType class, 660, 918–926

loaders, 11
local declarations, 345
local variables, 376
logic error(s). See also errors

control structures and, 201, 218, 219

debugging and, 154–157

input/output and, 154–157

operators and, 218, 219

logical (Boolean) expressions
associativity and, 209–211

bool data type and, 196

control structures and, 278

described, 186
int data type and, 195–196

order of precedence and, 192–195

overview, 188, 190–196

short-circuit evaluation of, 207, 208
typedef statements and, 462

logical (Boolean) operators
described, 190
order of precedence and, 192–195

overview, 190–196

logical (Boolean) values, 186
logic_error class, 956

loop(s). See also LCVs (loop control variables);
repetition structures; specific types

arrays and, 511–513, 517, 518

choosing the right, 303

enumeration types and, 456

infinite, 313

posttest, 300
pretest, 300
structs and, 603–604

loop condition, 288–290, 292, 304

loop control variables (LCVs)
described, 262
incrementing/decrementing, 291

initializing, 263

while loops and, 262–263

Index | 1387

long data type, 38, 39

long double data type, 41

lower_bound algorithm, 1324

Lukasiewicz, Jan, 1185–1186

M

machine language, 6, 8–9
main function, 128, 356–361

arrays and, 806

calculating grades and, 372–375

calculating length and, 96–98

control structures and, 215

debugging and, 88

definition of, placement of, 403

described, 31
do. . .while loops in, 394

election results program and, 1046

exception handling and, 944, 964, 970, 976,

977

flow of execution and, 361–364

friend functions and, 863

function prototypes and, 348, 349–350

identifier scope and, 390

information hiding and, 662

juice machine program and, 686–687

larger function and, 348

named constants and, 392

namespaces and, 474–476

operator overloading and, 858, 863

overview, 32, 34, 81–82

parameters and, 384, 385

pointers and, 791, 817

printing a pattern of stars and, 369

program style and, 89

queues and, 1234

reducing the complexity of, 340

stacks and, 1188, 1192

structs and, 617–618

syntax, 82–85

value parameters and, 371

variables and, 378

virtual functions and, 820–821

void function and, 364

main memory. See RAM (random access memory)
make command, 666

manipulators

disabling, 143, 152

left manipulator, 151–153

parameterized stream, 153
right manipulator, 151–153

scientific, 143–144

two types of, 153

Mark I computer, 3

math.h header file, 1278

max algorithm, 1324

max variable, 345, 362

max_element algorithm, 1324

maxNum variable, 347

maxQueueSie variable, 1202

maxSaleByPerson function, 616, 618

maxSaleByQuarter function, 616–617, 618

max_size function, 1031, 1304

maxSize variable, 884

megabyte (MB), 7
member access operator, 137, 594, 635, 636, 637,

790

members. See class members

memory. See also pointers; RAM (random access

memory)
allocation, 33, 54–57, 376–386

arrays in, 521–524

cells, 4
data types and, 38–39

floating-point notation and, 41

get function and, 132

input/output and 135

iterative control structures and, 1000

leaks, 795, 796
linked lists and, 1059, 1082

overview, 4–5

queues and, 1210

size, 1291

structs and, 593

memory addresses, 4–5, 33. See also memory

base, 521, 522–524
described, 4

menu-drive programs, 392–393

merge algorithm, 1325

merge function, 1316

merge operation, 1323

metersAndCentTofeetAndInches function, 392

methodologies, programming, 20–22

min algorithm, 1324

min variable, 632, 633, 634, 640, 643, 649, 650,

654, 656, 854

min_element algorithm, 1324

mismatch algorithm, 1324

mixed expressions. See also expressions

described, 48
overview, 49–51

mnemonics, 8, 9
Modula-2, 744

modular programming. See structured design

modules. See functions

modulus (%) operator, 43–44, 46–49

1388 | Index

move function, 827

movie ticket sales program, 161–166

multidimensional arrays, 543–544, 557–558

multiple inheritance, 711
multiplication (*) operator, 43, 45, 46–49
multiplication tables, 306

mutating algorithms, 1325
mutator functions, 644, 645–647
myClass class, 675

myException class, 975

myList variable, 527

mySport variable, 454, 455, 456, 461

myStack.h header file, 1174

N

name variable, 139, 140, 141, 477, 823–824

named constants, 85, 97, 100, 234

described, 55
functions and, 390–394

global, 392

overview, 55–56

typedef statements and, 462

names, of persons, handling, 671–672

namespace(s)
overview, 80–81, 471–476

syntax, 471–472

namespace keyword, 472

naming conventions, for header files, 1278–1279

n-dimensional arrays, 557, 558
negativeNumber class, 965, 966, 967

nested

blocks, 387
control structures, 271–273, 294, 305–310

Neumann, John von, 3

new operator, 793–798, 800, 957–958

newHouse variable, 593

newline character (\n), 40–41, 73, 75–78, 131,
539–540

newNum variable, 292

newString class, 907, 909–915, 921

newStudent variable, 599, 1267

next pointer, 1108, 1113

next_permutation algorithm, 1325

nodes

data of first/last, retrieving, 1080

deleting, 1086–1091, 1099–1100, 1114

described, 1058
inserting, 1085–1091, 1094–1098, 1112

structure of, 1072

nonprintable characters, 41, 535

nonrecursive algorithms, 1195–1199

not equal to (!=) operator, 186

not (!) operator, 190–195
nth_element algorithm, 1325

null characters, 535

null pointers, 792
null strings, 53
num identifier, 87

num variable, 132, 362, 260, 301,

303–304

NUMBER constant, 85

NUMBER identifier, 36

number(s). See also specific types

classifying, 295–298, 403–408

-guessing games, 18, 274–276, 282–283

number variable, 371

numberOfBlanks variable, 368

numerators, 231–233

numOfVolunteers variable, 267, 270

O

.obj filename extension, 82

object(s)
code files, 82, 665–666

declarations, 634–635

described, 630
programs, 10, 11

Object Pascal, 744

octal (base 8) numbers, 1262–1264

one class, 729

one function, 390

one-dimensional arrays, 507, 508, 511–512, 518,
521–524

OOD (object-oriented design)
basic principles, 743

described, 20
overview, 20–22, 630, 742–766

OOP (object-oriented programming)
described, 21
languages, 744

overview, 742–766

open function, 158

open statement, 161, 541

operands, 45
operating systems, 6
operations, 659. See also specific operations

operator(s). See also operator functions; operator

overloading; specific operators

associativity of, 209–211

member versus nonmember, 892–893

precedence, 43–51, 192–195, 1251–1252

simple data types and, 186–187

ternary, 219
unary, 45, 886–892

Index | 1389

operator function(s)
described, 855
as member and nonmember functions,

864–873

syntax, 856

operator overloading

binary operators and, 867–873

described, 855
need for, 854–855

overview, 853–907

restrictions on, 856

stacks and, 1163–1164, 1181–1183

table, 1257

opOverClass class, 864

or (||) operator, 190–195, 207–208, 313
orderedLinkedList class, 1071, 1077–1078,

1092–1103

ostream class, 732

ostream data type, 122, 123, 137

ostream iterators, 1308–1309, 1319,

1327

.out file name extension, 159

outFile variable, 282

out_of_range class, 956

output. See also input/output

devices, 5
formatting, 142–153

output statements

described, 72
overview, 29–31, 72–79

output stream

described, 122
variables, 123

overflow condition, 1160
overflow_error class, 956

overtime pay calculations, 201–202

P

Palindrome example, 355–356

parallel arrays, 542, 543
parameter(s). 638, 654. See also arguments

actual, 342
arrays and, 518–521, 524–526, 558

constructors and, 651–653

default, 400–418, 725

described, 129
exception handling and, 963, 976

formal, 342, 519–521, 523, 552, 558
functions, 341, 863

operator overloading and, 856, 863, 874

passing arrays as, 552–555

queues and, 1221

reference, 365, 466
reference variables as, 371–375

stacks and, 1162–1163

structs and, 601, 602

templates and, 916

types, 365–369

value, 365, 466, 823, 824–825
parameter lists, 343, 344, 364–365

actual, 365

different formal, 399
formal, 364–365

function overloading and, 399–400

parameterized stream manipulators, 153. See also

manipulators

parameterized types, 918. See also class templates

parametric polymorphism, 744. See also

polymorphism

parentheses, 46, 195, 199, 288

partial_sort algorithm, 1325

Partial_sort_copy algorithm, 1325

partial_sum algorithm, 1326

partition algorithm, 1325

partTimeEmployee class, 710–711, 727–730,

828–829, 832–834

partTimeEmployee.h, 729–730

Pascal, 9

Pascal, Blaise, 2

Pascaline, 2

patches, software, 310–313

patterns, printing, 367–368

paychecks, calculating, 16–18, 200–203

payment variable, 199

payRate identifier, 37

payRate variable, 123–128, 159

peek function, 134–137

perimeter function, 724, 859

perimeter variable, 33

period (.), 35, 594, 635
personalInfo class, 738, 740–742

personType class, 671–673, 710, 727, 729–730,

737–738, 828, 1131

personType.h, 729–730

petabyte (PB), 7
petType class, 819–826

petType.h header file, 822, 824

pig Latin strings, 490–494

pigLatinString function, 492–493

pipe problem, 449

plus sign +), 40, 634
point1x variable, 131

point1y variable, 131

point2x variable, 131

point2Y variable, 131

1390 | Index

pointer(s), 38, 1157. See also pointer variables

arithmetic, 800

classes and, 809–819

constant, 802

dangling, 796
functions and, 803

inheritance and, 819–826

linked lists and, 1072

null, 792
overview, 782–783

queues and, 1200

shallow versus deep copy and, 807–809

pointer data type, 782–783

pointer variables, 798–800, 881

classes and, 789–792

declaring, 782–783

described, 782
initializing, 792

operator overloading and, 893

overview, 782–789

structs and, 789–792

pointerParameters function, 803

Polish notation

described, 1185
Reverse, 1185

polymorphism

described, 743
parametric, 744

poolCapacity function, 398

poolFillTime function, 398

pop function, 1162

pop operation, 1151–1153, 1160–1162, 1176,

1178–1180, 1320, 1322

pop_back function, 1030, 1313, 1305

pop_front function, 1313, 1315

popularSport variable, 454, 455

position identifier, 1298

postconditions, 663
postfix expressions calculator, 1185–1195

post-increment operator, 888–892

posttest loops, 300
pow function, 129, 131, 337, 338, 341, 342,

474

power function, 342

power station problem, 448–449

pre-increment operator, 886, 887, 888

precision, 42
preconditions, 663
predefined (standard) functions

described, 34
overview, 129

using, in programs, 128–137

prefix (Polish) notation, 1185

preprocessors

described, 10
inheritance and, 729–731

overview, 79–81

pretest loops, 300
previous_permutation algorithm, 1325

print function, 754–756, 760, 717, 718, 736, 806,

820, 822, 824–825, 859, 877, 1079

printArray function, 526

printGrade function, 372–375

printGradeReports function, 760

printHeading function, 1044

printListReverse function, 1105

printMatrix function, 552–555

printReport function, 615–616, 618

printResult function, 409, 411–412, 417–418,

472, 476, 1188, 1192

printStars function, 367–368

printTime function, 631, 632, 633, 636,

644, 899

private keyword, 631, 632, 633, 636, 643

private members

address of (&) operator and, 835, 837
declaring, order for, 647–650

friend functions and, 862, 863, 873

information hiding and, 661

inheritance and, 711, 712, 713, 720, 733–734

overview, 631

structs and, 661

problem solving

problem-analysis-coding-execution cycle and,

12–20

programming as, 12

problem-analysis-coding-execution cycle, 12–20

processVotes function, 1042

prog.dat file, 159

prog.out file, 159

program(s). See also programming; software

basic of, 34–37

creating, 81–85

described, 28
object, 10, 11
overview, 6, 28–33

processing, 10–12

style/form, 89–94, 219–220

system, 6
terminating, 31, 231–233, 972

using predefined functions in, 128–137

various parts of, 32–33

programming

described, 28
methodologies, 20–22

structured, 20

Index | 1391

programming languages

evolution of, 8–9

overview, 34

prompt lines, 91, 92
protected keyword, 631

protected members, 634, 862

inheritance and, 711, 733–737

overview, 631

templates and, 919

protectMembClass.h, 736

pseudocode

described, 220
sorting lists and, 532

using, 220–223

ptrMemberVarType class, 809–819

ptrMemberVarType.h, 817

public keyword, 631

public members, 632–634, 636

declaring, order for, 647–650

friend functions and, 861, 862

inheritance and, 711–713, 717–718,

733–734

overview, 631

static, 673

structs and, 661

push operation, 1151–1153, 1158–1160,

1176–1178, 1184, 1320, 1322

push_back function, 1030, 1031, 1032, 1033,

1299, 1302, 1305

push_front function, 1311, 1315

putback function, 134–137

Q

question mark (?), 35
queue(s)

back of, 1199, 1200
constructors and, 1210–1211

described, 1199
destructors and, 1210–1211

empty, 1208, 1212–1213

front of, 1199, 1200
full, 1208, 1212–1213

implementation of, 1202–1216

initializing, 1208, 1213–1216

operations, 1200–1201

overview, 1199–1217

simulation program and, 1217–1237

STL and, 1321–1323

queue class, 1321–1323

queueADT class, 1201–1202, 1206,

1211–1216

queueType class, 1230–1231

queuing systems

described, 1218
designing, 1218–1219

quotient variable, 952–953

R

radius variable, 146–147, 669, 788–789,

967

radiusPtr variable, 796, 798

RAM (random access memory), 4. See also memory

rand function, 274, 1292

RAND_MAX constant, 1292

random file access, 1270–1278

random number generation, 1291–1292

random_shuffle algorithm, 1325

raw data, 1264
rbegin function, 1304, 1307

read function, 1265, 1270

readCode function, 560

readCourses function, 460

readIn function, 599

real data type, 39

Rebuild command, 12, 666
record(s). See also structs

arrays and, 599–604

assignment statements and, 596–597

described, 592
general syntax of, 592–593

input/output and, 598

overview, 591–628

structs within, 604–607

rectangle(s)
finding the perimeter and area of, 15

length/width, 29–30, 33

rectangle class, 711, 722, 826, 828

rectangleFriend function, 863

rectangleType class, 714–716, 719–722, 724–726,

857–863, 865–893

rectangleType.h, 860–861, 870, 877

recursion

described, 986
infinite, 988–989

linked lists and, 1103–1105

overview, 985–1014

problem solving using, 989–990

removing, 1195–1199

recursive functions

described, 987
problem solving using, 989–990

recursive algorithms, 987
recursive definition, 986
ref variable, 385–386

1392 | Index

reference

parameters, 376–386, 820, 1002

passed by, 518, 524, 602
variables, as parameters, 371–375

registered variable, 457

relational operators

associativity of, 209–211

control structures and, 185–190, 192–195

described, 186
enumeration types and, 455–456

operator overloading and, 868–872

order of precedence and, 192–195

overview, 185–190

simple data types and, 186–187

string data type and, 188–190

structs and, 597–598

remove function, 1315, 1325, 1329–1331

remove_copy algorithm, 1325

remove_copy_if algorithm, 1325

remove_if algorithm, 1325

rend function, 1304, 1307

repetition structures. See also control structures.

See also loops

need for, 260–261

overview, 184–185, 259–333

replace function, 481, 486–487, 1325, 1329–1331

replace_copy algorithm, 1325

replace_copy_if algorithm, 1325

replace_if algorithm, 1325

reserved words. See keywords

residential function, 356–357

resize function, 1032, 1299, 1306

retrievePlay function, 464, 465–466

return (\r) escape sequence, 78

return statements, 85, 88, 215, 344–348, 351–352

return keyword, 345

return types, 345, 364, 400

reverse function, 1316, 1325

Reverse Polish notation, 1185
reverse_copy algorithm, 1325

reversePrint function, 1103–1105

rFibNum function, 993–996

right manipulator, 151–153

rightmost bit, 1005
rock, paper, and scissors game, 463–464

rollDice function, 354, 669–671

rotate function, 491, 1325

rotate_copy algorithm, 1325

row(s)
largest element in each, 551

order form, 552
processing described, 548, 549
sum by, 550

rows variable, 806

run-time (late) binding, 821, 827
run-together word, 91
runSimulation function, 1233, 1234

runtime_error class, 956

S

saleByQuarter function, 614, 618

sales data analysis, 608–621

sales tax calculations, 15–16

scientific format, 143–144

scientific manipulator, 143–144

scope of identifiers, 386, 387–390
scope resolution (::) operator, 390, 639, 673, 717, 719
score variable, 596

search function, 1078, 1083, 1084–1085, 1092,

1111, 1324, 1331–1333

search_n function, 1324

searching

arrays, 526–535

lists, 1016–1017

sec variable, 632, 633, 634, 640, 643, 649, 650,

654, 656, 854

secondary storage, 5
secondNum variable, 85, 340

secret function, 350–351

seekg function, 1270, 1271, 1272, 1273

seekp function, 1271, 1275

selection

control structures, 184–257

multiple, 204–206

one-way, 197–199, 206

sort, 530, 531–535

two-way, 200–203

selectionSort function, 533, 545

selectors, 223

self-documenting identifiers, 91
sellProduct function, 684–686

semantic(s)
described, 90
errors, 199, 202

rules, 34

semicolon (;), 35, 77, 87, 90, 199, 201, 211, 263,
290, 593, 631

sentinel-controlled while loops, 268, 269–273
seqSearch function, 529, 601, 602, 1016

sequence container, 1294–1303, 1305–1306,

1310–1318

sequential search(es)
algorithms, 601, 1016–1017

described, 527
overview, 527–535

Index | 1393

server(s)
described, 1218
lists, 1225–1230

queues and, 1218, 1222–1225

serverListType class, 1226–1228

serverType class, 1222–1225

setCustomerInfo function, 1221–1222

setData function, 736, 739–740

set_difference algorithm, 1325

setDimension function, 718–719, 724, 725,

859

setfill manipulator, 149–151, 153, 163

setInfo function, 753

set_intersection algorithm, 1325

setLength function, 859, 860

setprecision manipulator, 142–144, 147,

153

setRadius function, 965–967

setServerBusy function, 1228

setSimulationParameters function, 1232

set_symmetric_difference algorithm, 1325

setTime function, 631, 632, 633, 636, 639–640,

644, 649, 650, 898

set_union algorithm, 1325

setw manipulator, 147–149, 151, 153

setWidth function, 859

shallow copy

deep copy versus, 807–809

described, 808
shape class, 712, 826–827, 828

short data type, 38

short-circuit evaluation, 207, 208
showChoices function, 392

showpoint manipulator, 144–147, 153, 359

showSelection function, 684

side effects, of using global variables,

390–394

signatures, of functions, 399

silent killer, use of the term, 218

simple assignment statements, 94, 95
simple data types, 38, 186–187

described, 57
structured data types, comparison of,

506

Simula, 744

simulation program, 1217–1237

single inheritance, 711
single precision, 42
single quotation (\’) escape sequence, 78

size function, 481, 1031, 1033, 1304

size operation, 1320, 1322

slicing problem, 825
SmallTalk, 744

software. See also programs

overview, 6

patches, 310–313

sort function, 1325, 1315, 1331–1333

sort operation, 1323

sortCandidateName function, 1037–1038

sortCourse function, 757–758

source code, 10, 82. See also code

source file, 82
source program. See source code

spaghetti code, 304

sphereRadius variable, 131

sphereVolume variable, 131

sqrt function, 337, 338

square class, 711

squareFirst function, 385

stable_partition algorithm, 1325

stable_sort algorithm, 1325

stack(s)
application of, 1185–1195

described, 1150
empty, 1158, 1175–1176

exception handling and, 974–977

full, 1158, 1175–1176

implementation of, 1154–1185

operations, 1152–1163

overview, 1149–1153

top of, 1150, 1151, 1176, 1178
unwinding, 974–977

stack class, 1320

stackADT class, 1152–1155, 1176,

1183–1184

stackTop variable, 1154, 1156, 1157–1158,

1175, 1183

stackType class, 1155–1156, 1163–1168

standard output device, 72

Standard C++. See also ANSI/ISO Standard C++

identifier scope and, 387

strings and, 556

Standard Template Library (STL)
algorithms and, 1323–1333

iterators and, 1298–1300, 1318–1323, 1293,

1298

overview, 1293–1333

stars

pattern of, 367–369

printing lines of, 305–306

statement terminators, 90. See also semicolon (;)
static keyword, 673

static_cast keyword, 51, 52, 53

std namespace, 80–81

std:: prefix, 31, 80–81, 85, 474, 476, 1279

stepwise refinement. See structured design

1394 | Index

STL (Standard Template Library)
algorithms and, 1323–1333

iterators and, 1298–1300, 1318–1323, 1293,

1298

overview, 1293–1333

str variable, 480

strcmp function, 536, 538

strcpy function, 536, 537

stream(s)
classes, 731–732

described, 122
functions, 128
variables, 376

stream extraction (>>) operator, 63, 64–66
stream insertion (<<) operator, 32, 72, 873–878
string(s). See also string data type

arrays of, 555–556

comparison, 537–538

described, 53
input/output and, 67, 78, 129, 539–541

overview, 505–589

pig Latin, 490–494

reading/writing, 539

templates and, 916

string data type. See also strings

enumeration types and, 457

input/output and, 153–154, 541–542

operations, 480–489

overview, 53–54, 81, 476–494

relational operators and, 188–190

string.h (cstring) header file, 489, 536, 541, 909,
1278, 1287–1289

strlen function, 537

Stroustrup, Bjarne, 22

struct(s). See also records

classes and, comparison of, 630

linked lists and, 1059

members, accessing, 594–596

pointer variables and, 789–792

relational operators and, 597–598

struct data type, 592

struct keyword, 592

struct variables, 598–599, 606

structured data types, 38, 506
structured design

described, 20
using OOD with, 21–22

structured programming, 20
stub function, 398
stubs, 396–398

studentType class, 752–753, 789

subprograms. See functions

substr function, 481, 487–488, 957

subtraction (-) operator, 43, 46–49
sum variable, 260, 292, 294, 301, 303–304,

354

sumArray function, 524, 526

sumRows function, 553, 555

sums, finding, 294, 512, 550

swap function, 481, 489–490, 1304, 1325

swap_ranges algorithm, 1325

switch keyword, 223

switch statements, 231, 282

enumeration types and, 457

exiting, 303

switch structures, 197, 273

described, 223

overview, 223–241

syntax. See also syntax errors

overview, 10, 89

problem-analysis-coding-execution cycle, 14

rules, 34

syntax errors. See also errors

arrays and, 517, 518, 522

blank spaces and, 92

control structures and, 201, 211, 222

debugging and, 85–88

functions and, 400

identifiers and, 57

input/output and, 154

overview, 89

semicolons and, 631

typical C++ program processing and, 10, 11

system programs, 6

T

tab (\t) escape sequence, 78, 79

Tabulating Machine Company, 3

tail recursive functions, 988

techniques, avoiding partially understood, 211–214,

229–231

telephone digit program, 271–273

temperature conversion, 155–157

template keyword, 916

templates. See also STL (Standard Template Library)
class, 916, 918–926, 820

function, 916, 917

overview, 916–926

tempNum identifier, 87

terabyte (TB), 7
terminate function, 974

ternary operators, 219

test class, 857

test function, 396

Index | 1395

test scores, 19, 167–170, 216–217, 229–231,

279–282, 514–515

testAddress class, 836, 837

testA.h, 730–731

testCopyConst function, 819

test.cpp, 665–666

test.h, 730–731

testing

control structures and, 220–223

pseudocode and, 220–223

testTime function, 638–639

text processing program, 565–571

textin.txt, 565

this keyword, 857

this pointer, 857–861, 886–887

three class, 729

three function, 390

throw keyword, 950

tilde (�), 657
time function, 274, 275

time-drive simulations, 1218, 1219
timeZone variable, 710

tokens, 35, 36
tolower function, 338

top of stacks, 1150, 1151, 1176, 1178
top operation, 1151–1153, 1320, 1322

top-down design. See structured design

totalNumOfBoxesSold variable, 267, 270

totalSaleByPerson function, 614–615, 618

toupper function, 338, 340

Tower of Hanoi problem, 997–998, 1000

trailCurrent pointer, 1094–1095, 1097, 1099,

1108

trailing zeros, 144, 146

transaction type, 1226

transactionTime variable, 1219, 1221, 1222, 1229

transform algorithm, 1325

trigonometry, 449

true keyword, 188, 190–191, 196, 262

try/catch blocks, 948–955, 968–971, 974, 977

Turbo Pascal, 744

two class, 729

two function, 861

two-dimensional arrays, 543–544, 546–549.

See also arrays

declaring, 556–557

described, 544
dynamic, 804–806

initializing, 546

passing as parameters, to functions, 552–555

processing, 548–549

.txt file name extension, 159

type casting. See cast operator

type conversion. See cast operator

type names, 659

typedef iterator, 1299–1300

typedef keyword, 461

typedef statement, 461–462

U

UML (Unified Modeling Language), 634
UML class diagrams, 634, 660, 672, 682,

714–717, 727–728, 739, 741, 748, 752, 895,

1153–1156

linked lists and, 1074, 1077, 1084, 1093, 1108

operator overloading and, 903

queues and, 1220–1221, 1224, 1227

unary operators

described, 45

operator overloading and, 886–892

underflow condition, 1162

underflow_error class, 956

underscore (_), 36, 37, 55, 471
Unicode, 8

Unified Modeling Language. See UML (Unified
Modeling Language)

unique function, 1315, 1325

unique_copy algorithm, 1325

UNIVAC, 3

University of Pennsylvania, 3

UNIX, 278

unordered linked lists, 1071, 1077, 1083–1092,

1216–1217. See also linked lists

unorderedLinkedList class, 1071, 1077, 1083,

1184–1185

unorderedLinkedListType class, 1216–1217

unsetf function, 151

unsigned char data type, 38

unsigned int data type, 38

unsigned long data type, 38

unsigned short data type, 38

update statement, 288–290, 304

updateServers function, 1229

upper_bound algorithm, 1324

using namespace, 1291

using statement, 473–475

V

validSelection function, 464, 465

value(s). See also value-returning functions

logical (Boolean), 186
passing by, 524, 601

of the type array, 524–526

1396 | Index

value parameters, 370–371, 376–386

value-returning function(s)
described, 341, 342–364
examples, 350–361

flow of execution and, 361–364

peculiarities of, 350–352

prototypes, 349–350

reference parameters and, 386

syntax, 343

varChar variable, 132

variable(s). See also pointer variables

allocating memory with, 54–57

automatic, 395, 396
cable company billing program and,

234

calculating change and, 100

charitable donations calculations and,

162–163

classifying numbers and, 295–296

data types and, 42–43

debugging and, 87

declaring, 42–43, 56–63, 454, 460–461,

634–635

described, 56
dynamic, 792, 793, 794–798
external, 390
Fibonacci numbers and, 284–286

file stream, 158
global, 390–394

initializing, 58, 62–63, 66–70
instance, 643, 679
overview, 33

putting data into, 57–61

rock, paper, and scissors game and,

464

side effects of, 390–394

static, 395, 396
structs and, 593–594, 598–599

student grade program and, 167

text processing program and,

565–566

vector(s)
described, 1029
initializing, 1029–1030

objects, declaring, 1295–1299

overview, 1029–1033

STL and, 1294–1303

vector class, 1029–1033, 1294–1299

vector header file, 1032

vector objects. See vectors

vector type. See vector class

video rental program, 20–22

virtual destructors, 826

virtual functions

abstract classes and, 826–834

described, 821
pointers and, 819–826

pure, 826, 827, 828–834
virtual keyword, 821

Visual C++ 2008 Express, 12, 666

Visual C++ 2010 Express, 12, 666

Visual Studio 2010 (Microsoft), 12, 86,
666

Visual Studio.NET (Microsoft), 159
void functions

described, 341
overview, 364–369

void keyword, 36

volume function, 719

voting data, 309–310

W

wages, computing, 201–202, 231–233

waitingTime variable, 1219,

1221

walk-through, 60, 69, 222, 306
warning messages, 67

weight variable, 139, 140, 141

what function, 955–957, 961, 963,

976

while keyword, 261

while loop(s)
break statements and, 304

classification of, as pretest loops,

300

continue statements and, 304–305

counter-controlled, 264, 265–267

described, 261
designing, 269–270

end-of-file (EOF)-controlled, 277, 278–282,
308, 309

expressions in, 282–283

flag-controlled, 273, 274–276,
282–283

nested, 307, 308

overview, 261–298

search algorithms and, 1028

sentinel-controlled, 268, 269–273
whitespace(s)

described, 37
get function and, 131

width variable, 33, 718, 720, 721, 722, 724,

864, 867

Windows (Microsoft), 278
winningObject function, 464, 468

Index | 1397

Wozniak, Stephen, 3

wrappingCostPerSquareFeet variable,

724

write function, 1265, 1270

writeTotal function, 567

X

x variable, 678, 679

Y

y variable, 678, 679

yourList variable, 527

Z

zero(s)
division by, 232, 945–945

trailing, 144, 146

zettabyte (ZB), 7

1398 | Index

	Cover
	Title Page
	Copyright
	Table of Contents������������������������
	Preface��������������
	1 AN OVERVIEW OF COMPUTERS AND PROGRAMMING LANGUAGES
	Introduction�������������������
	A Brief Overview of the History of Computers���
	Elements of a Computer System������������������������������������
	Hardware
	Central Processing Unit and Main Memory
	Input /Output Devices
	Software

	The Language of a Computer���������������������������������
	The Evolution of Programming Languages���
	Processing a C++ Program�������������������������������
	Programming with the Problem Analysis-Coding-Execution Cycle���
	Programming Methodologies��������������������������������
	Structured Programming
	Object-Oriented Programming

	ANSI/ISO Standard C++����������������������������
	Quick Review�������������������
	Exercises����������������

	2 BASIC ELEMENTS OF C++
	A Quick Look at a C++ Program������������������������������������
	The Basics of a C++ Program����������������������������������
	Comments
	Special Symbols
	Reserved Words (Keywords)
	Identifiers
	Whitespaces

	Data Types�����������������
	Simple Data Types
	Floating-Point Data Types

	Data Types and Variables�������������������������������
	Arithmetic Operators, Operator Precedence, and Expressions���
	Order of Precedence
	Expressions
	Mixed Expressions

	Type Conversion (Casting)��������������������������������
	string Type
	Variables, Assignment Statements, and Input Statements���
	Allocating Memory with Constants and Variables
	Putting Data into Variables
	Assignment Statement
	Saving and Using the Value of an Expression
	Declaring and Initializing Variables
	Input (Read) Statement
	Variable Initialization

	Increment and Decrement Operators��
	Output�������������
	Preprocessor Directives������������������������������
	namespace and Using cin and cout in a Program
	Using the string Data Type in a Program

	Creating a C++ Program�����������������������������
	Debugging: Understanding and Fixing Syntax Errors��
	Program Style and Form�����������������������������
	Syntax
	Use of Blanks
	Use of Semicolons, Brackets, and Commas
	Semantics
	Naming Identifiers
	Prompt Lines
	Documentation
	Form and Style

	More on Assignment Statements������������������������������������
	Programming Example: Convert Length��
	Programming Example: Make Change���������������������������������������
	Quick Review�������������������
	Exercises����������������
	Programming Exercises����������������������������

	3 INPUT/OUTPUT
	I/O Streams and Standard I/O Devices���
	cin and the Extraction Operator >>

	Using Predefined Functions in a Program��
	cin and the get Function
	cin and the ignore Function
	The putback and peek Functions
	The Dot Notation between I/O Stream Variables and I/O Functions: A Precaution

	Input Failure��������������������
	The clear Function

	Output and Formatting Output�����������������������������������
	setprecision Manipulator
	fixed Manipulator
	showpoint Manipulator
	setw

	Additional Output Formatting Tools���
	Setfill Manipulator
	Left and right Manipulators

	Input/Output and the string Type
	Debugging: Understanding Logic Errors and Debugging with cout Statements���
	File Input/Output������������������������
	Programming Example: Movie Tickets Sale and Donation to Charity��
	Programming Example: Student Grade���
	Quick Review�������������������
	Exercises����������������
	Programming Exercises����������������������������

	4 CONTROL STRUCTURES I (SELECTION)
	Control Structures
	Relational Operators
	Relational Operators and Simple Data Types
	Comparing Characters
	Relational Operators and the string Type

	Logical (Boolean) Operators and Logical Expressions
	Order of Precedence
	int Data Type and Logical (Boolean) Expressions
	bool Data Type and Logical (Boolean) Expressions

	Selection: if and if...else
	One-Way Selection
	Two-Way Selection
	Compound (Block of) Statements
	Multiple Selections: Nested if
	Comparing if...else Statements with a Series of if Statements
	Short-Circuit Evaluation
	Comparing Floating-Point Numbers for Equality: A Precaution
	Associativity of Relational Operators: A Precaution
	Avoiding Bugs by Avoiding Partially Understood Concepts and Techniques
	Input Failure and the if Statement
	Confusion between the Equality Operator (==) and the Assignment Operator (=)
	Conditional Operator (?:)
	Program Style and Form (Revisited): Indentation

	Using Pseudocode to Develop, Test, and Debug a Program
	Switch Structures
	Avoiding Bugs by Avoiding Partially Understood Concepts and Techniques (Revisited)

	Terminating a Program with the assert Function
	Programming Example: Cable Company Billing
	Quick Review
	Exercises
	Programming Exercises

	5 CONTROL STRUCTURES II (REPETITION)
	Why Is Repetition Needed?
	While Looping (Repetition) Structure
	Designing while Loops
	Case 1: Counter-Controlled while Loops
	Case 2: Sentinel-Controlled while Loops
	Telephone Digits
	Case 3: Flag-Controlled while Loops
	Number Guessing Game
	Case 4: EOF-Controlled while Loops
	eof Function
	More on Expressions in while Statements

	Programming Example: Fibonacci Number
	for Looping (Repetition) Structure
	Programming Example: Classifying Numbers
	do...while Looping (Repetition) Structure
	Divisibility Test by 3 and 9
	Choosing the Right Looping Structure

	break and continue Statements
	Nested Control Structures
	Avoiding Bugs by Avoiding Patches
	Debugging Loops
	Quick Review
	Exercises
	Programming Exercises

	6 USER-DEFINED FUNCTIONS
	Predefined Functions
	User-Defined Functions
	Value-Returning Functions
	Syntax: Value-Returning function
	Syntax: Formal Parameter List
	Function Call
	Syntax: Actual Parameter List
	return Statement
	Syntax: return Statement
	Function Prototype
	Syntax: Function Prototype
	Value-Returning Functions: Some Peculiarities
	More Examples of Value-Returning Functions
	Flow of Execution

	Void Functions
	Value Parameters
	Reference Variables as Parameters
	Calculate Grade

	Value and Reference Parameters and Memory Allocation
	Reference Parameters and Value-Returning Functions
	Scope of an Identifier
	Global Variables, Named Constants, and Side Effects
	Static and Automatic Variables
	Debugging: Using Drivers and Stubs
	Function Overloading: An Introduction
	Functions with Default Parameters
	Programming Example: Classify Numbers
	Programming Example: Data Comparison
	Quick Review
	Exercises

	7 USER-DEFINED SIMPLE DATA TYPES, NAMESPACES, AND THE STRING TYPE
	Enumeration Type
	Declaring Variables
	Assignment
	Operations on Enumeration Types
	Relational Operators
	Input/Output of Enumeration Types
	Functions and Enumeration Types
	Declaring Variables When Defining the Enumeration Type
	Anonymous Data Types
	typedef Statement

	Programming Example: The Game of Rock, Paper, and Scissors
	Namespaces
	string Type
	Additional string Operations

	Programming Example: Pig Latin Strings
	Quick Review
	Exercises
	Programming Exercises

	8 ARRAYS AND STRINGS
	Arrays
	Accessing Array Components
	Processing One-Dimensional Arrays
	Array Index Out of Bounds
	Array Initialization During Declaration
	Partial Initialization of Arrays During Declaration
	Some Restrictions on Array Processing
	Arrays as Parameters to Functions
	Constant Arrays as Formal Parameters
	Base Address of an Array and Array in Computer Memory
	Functions Cannot Return a Value of the Type Array
	Integral Data Type and Array Indices
	Other Ways to Declare Arrays

	Searching an Array for a Specific Item
	Selection Sort

	C-Strings (Character Arrays)
	String Comparison
	Reading and Writing Strings
	String Input
	String Output
	Specifying Input/Output Files at Execution Time
	string Type and Input/Output Files

	Parallel Arrays
	Two- and Multidimensional Arrays
	Accessing Array Components
	Two-Dimensional Array Initialization During Declaration
	Two-Dimensional Arrays and Enumeration Types
	Initialization
	Print
	Input
	Sum by Row
	Sum by Column
	Largest Element in Each Row and Each Column
	Passing Two-Dimensional Arrays as Parameters to Functions
	Arrays of Strings
	Arrays of Strings and the string Type
	Arrays of Strings and C-Strings (Character Arrays)
	Another Way to Declare a Two-Dimensional Array
	Multidimensional Arrays

	Programming Example: Code Detection
	Programming Example: Text Processing
	Quick Review
	Exercises
	Programming Exercises

	9 RECORDS (STRUCTS)
	Records (structs)
	Accessing struct Members
	Assignment
	Comparison (Relational Operators)
	Input/Output
	struct Variables and Functions
	Arrays versus structs
	Arrays in structs
	structs in Arrays
	structs within a struct

	Programming Example: Sales Data Analysis
	Quick Review
	Exercises
	Programming Exercises

	10 CLASSES AND DATA ABSTRACTION
	Classes
	Unified Modeling Language Class Diagrams
	Variable (Object) Declaration
	Accessing Class Members
	Built-in Operations on Classes
	Assignment Operator and Classes
	Class Scope
	Functions and Classes
	Reference Parameters and Class Objects (Variables)
	Implementation of Member Functions
	Accessor and Mutator Functions
	Order of public and private Members of a Class
	Constructors
	Invoking a Constructor
	Invoking the Default Constructor
	Invoking a Constructor with Parameters
	Constructors and Default Parameters
	Classes and Constructors: A Precaution
	Arrays of Class Objects (Variables) and Constructors
	Destructors

	Data Abstraction, Classes, and Abstract Data Types
	A struct Versus a class
	Information Hiding
	Executable Code
	More Examples of Classes
	Static Members of a Class
	Programming Example: Juice Machine
	Quick Review
	Exercises
	Programming Exercises

	11 INHERITANCE AND COMPOSITION
	Inheritance
	Redefining (Overriding) Member Functions of the Base Class
	Constructors of Derived and Base Classes
	Destructors in a Derived Class
	Multiple Inclusions of a Header File
	C++ Stream Classes
	Protected Members of a Class
	Inheritance as public, protected, or private
	(Accessing protected Members in the Derived Class)

	Composition (Aggregation)
	Object-Oriented Design (OOD) and Object-Oriented Programming (OOP)
	Identifying Classes, Objects, and Operations

	Programming Example: Grade Report
	Quick Review
	Exercises
	Programming Exercises

	12 POINTERS, CLASSES, VIRTUAL FUNCTIONS, AND ABSTRACT CLASSES
	Pointer Data Type and Pointer Variables
	Declaring Pointer Variables

	Address of Operator (&)
	Dereferencing Operator (*)
	Classes, Structs, and Pointer Variables
	Initializing Pointer Variables
	Dynamic Variables
	Operator new
	Operator delete

	Operations on Pointer Variables
	Dynamic Arrays
	Functions and Pointers
	Pointers and Function Return Values
	Dynamic Two-Dimensional Arrays

	Shallow versus Deep Copy and Pointers
	Classes and Pointers: Some Peculiarities
	Destructor
	Assignment Operator
	Copy Constructor

	Inheritance, Pointers, and Virtual Functions
	Classes and Virtual Destructors

	Abstract Classes and Pure Virtual Functions
	Address of Operator and Classes
	Quick Review
	Exercises
	Programming Exercises

	13 OVERLOADING AND TEMPLATES
	Why Operator Overloading Is Needed
	Operator Overloading
	Syntax for Operator Functions
	Overloading an Operator: Some Restrictions
	Pointer this
	Friend Functions of Classes
	Operator Functions as Member Functions and Nonmember Functions
	Overloading Binary Operators
	Overloading the Stream Insertion (<<) and Extraction (>>) Operators
	Overloading the Assignment Operator (=)
	Overloading Unary Operators
	Operator Overloading: Member versus Nonmember
	Classes and Pointer Member Variables (Revisited)
	Operator Overloading: One Final Word

	Programming Example: clockType
	Programming Example: Complex Numbers
	Overloading the Array Index (Subscript) Operator ([])
	Programming Example: newString
	Function Overloading
	Templates
	Function Templates
	Class Templates

	Quick Review
	Exercises
	Programming Exercises

	14 EXCEPTION HANDLING
	Handling Exceptions within a Program
	C++ Mechanisms of Exception Handling
	try/catch Block
	Using C++ Exception Classes

	Creating Your Own Exception Classes
	Rethrowing and Throwing an Exception
	Exception-Handling Techniques
	Terminate the Program
	Fix the Error and Continue
	Log the Error and Continue

	Stack Unwinding
	Quick Review
	Exercises
	Programming Exercises

	15 RECURSION
	Recursive Definitions
	Direct and Indirect Recursion
	Infinite Recursion

	Problem Solving Using Recursion
	Tower of Hanoi: Analysis

	Recursion or Iteration?
	Programming Example: Converting a Number from Binary to Decimal
	Programming Example: Converting a Number from Decimal to Binary
	Quick Review
	Exercises
	Programming Exercises

	16 SEARCHING, SORTING, AND THE VECTOR TYPE
	List Processing
	Searching
	Bubble Sort
	Insertion Sort
	Binary Search
	Performance of Binary Search

	vector Type (class)
	Programming Example: Election Results
	Quick Review
	Exercises
	Programming Exercises

	17 LINKED LISTS
	Linked Lists
	Linked Lists: Some Properties
	Deletion
	Building a Linked List

	Linked List as an ADT
	Structure of Linked List Nodes
	Member Variables of the class linkedListType
	Linked List Iterators
	Print the List
	Length of a List
	Retrieve the Data of the First Node
	Retrieve the Data of the Last Node
	Begin and End
	Copy the List
	Destructor
	Copy Constructor
	Overloading the Assignment Operator

	Unordered Linked Lists
	Search the List
	Insert the First Node
	Insert the Last Node
	Header File of the Unordered Linked List

	Ordered Linked Lists
	Search the List
	Insert a Node
	Insert First and Insert Last
	Delete a Node
	Header File of the Ordered Linked List

	Print a Linked List in Reverse Order (Recursion Revisited)
	printListReverse

	Doubly Linked Lists
	Default Constructor
	isEmptyList
	Destroy the List
	Initialize the List
	Length of the List
	Print the List
	Reverse Print the List
	Search the List
	First and Last Elements

	Circular Linked Lists
	Programming Example: DVD Store
	Quick Review
	Exercises
	Programming Exercises

	18 STACKS AND QUEUES
	Stacks
	Stack Operations

	Implementation of Stacks as Arrays
	Initialize Stack
	Empty Stack
	Full Stack
	Push
	Return the Top Element
	Pop
	Copy Stack
	Constructor and Destructor
	Copy Constructor
	Overloading the Assignment Operator (=)
	Stack Header File

	Programming Example: Highest GPA
	Linked Implementation of Stacks
	Default Constructor
	Empty Stack and Full Stack
	Initialize Stack
	Push
	Return the Top Element
	Pop
	Copy Stack
	Constructors and Destructors
	Overloading the Assignment Operator (=)
	Stack as Derived from the class unorderedLinkedList

	Application of Stacks: Postfix Expressions Calculator
	Main Algorithm
	Function evaluateExpression
	Function evaluateOpr
	Function discardExp
	Function printResult

	Removing Recursion: Nonrecursive Algorithm to Print a Linked List Backward
	Queues
	Queue Operations
	Implementation of Queues as Arrays
	Linked Implementation of Queues
	Queue Derived from the class unorderedLinkedListType

	Application of Queues: Simulation
	Designing a Queuing System
	Customer
	Server
	Server List
	Waiting Customers Queue
	Main Program

	Quick Review
	Exercises
	Programming Exercises

	APPENDIX A: RESERVED WORDS
	APPENDIX B: OPERATOR PRECEDENCE
	APPENDIX C: CHARACTER SETS
	ASCII (American Standard Code for Information Interchange)
	EBCDIC (Extended Binary Coded Decimal Interchange Code)

	APPENDIX D: OPERATOR OVERLOADING
	APPENDIX E: ADDITIONAL C++ TOPICS
	Binary (Base 2) Representation of a Nonnegative Integer
	Converting a Base 10 Number to a Binary Number (Base 2)
	Converting a Binary Number (Base 2) to Base 10
	Converting a Binary Number (Base 2) to Octal (Base 8) and Hexadecimal (Base 16)

	More on File Input/Output
	Binary Files
	Random File Access

	Naming Conventions of Header Files in ANSI/ISO Standard C++ and Standard C++

	APPENDIX F: HEADER FILES
	Header File cassert (assert.h)
	Header File cctype (ctype.h)
	Header File cfloat (float.h)
	Header File climits (limits.h)
	Header File cmath (math.h)
	Header File cstddef (stddef.h)
	Header File cstring (string.h)

	APPENDIX G: MEMORY SIZE ON A SYSTEM AND RANDOM NUMBER GENERATOR
	Random Number Generator

	APPENDIX H: STANDARD TEMPLATE LIBRARY (STL)
	Components of the STL
	Container Types
	Sequence Containers
	Sequence Container: Vectors
	Member Functions Common to All Containers
	Member Functions Common to Sequence Containers
	copy Algorithm
	Sequence Container: deque
	Sequence Container: list

	Iterators
	IOStream Iterators
	Container Adapters

	Algorithms
	STL Algorithm Classification
	STL Algorithms
	Functions fill and fill_n
	Functions find and find_if
	Functions remove and replace
	Functions search, sort, and binary_search

	APPENDIX I: ANSWERS TO ODD-NUMBERED EXERCISES
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18

	INDEX

