C++ PROGRAMMING:

From Problem Analysis to Program Design

SIXTH EDITION

D.S. MALIK

C++ PROGRAMMING:

FrRom PrRoOBLEM ANALYSIS TO PROGRAM DESIGN

SixTH EDITION

D.S. MALIK

;% CENGAGE

%~ Learning

Australia e Brazil e Japan e Korea e Mexico e Singapore e Spain e United Kingdom e United States

This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

~

CENGAGE

1% learning

C++ Programming: From Problem Analysis
to Program Design, Sixth Edition

D.S. Malik

Executive Editor: Marie Lee

Acquisitions Editor: Brandi Shailer

Senior Product Manager: Alyssa Pratt

Associate Product Manager: Stephanie
Lorenz

Content Project Manager: Matthew
Hutchinson

Art Director: Faith Brosnan

Print Buyer: Julio Esperas

Cover Designer: Roycroft Design/
www.roycroftdesign.com

Cover Photo: © Masterfile Royalty Free

Proofreader: Andrea Schein

Indexer: Elizabeth Cunningham

Compositor: Integra Software Services

© 2013 Cengage Learning

ALL RIGHTS RESERVED. No part of this work
covered by the copyright herein may be
reproduced, transmitted, stored or used in any
form or by any means graphic, electronic, or
mechanical, including but not limited to
photocopying, recording, scanning, digitizing,
taping, Web distribution, information
networks, or information storage and retrieval
systems, except as permitted under Section
107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of
the publisher.

Printed in the United States of America
1234567161716151413 12

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support,
www.cengage.com/support
For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

Library of Congress Control Number: 2011945466
ISBN-13: 978-1-133-62638-1

Cengage Learning

20 Channel Center Street
Boston, MA 02210

USA

Some of the product names and company names used in this
book have been used for identification purposes only and may
be trademarks or registered trademarks of their respective
manufacturers and sellers.

Any fictional data related to persons or companies or URLs used
throughout this book is intended for instructional purposes only.
At the time this book was printed, any such data was fictional
and not belonging to any real persons or companies.

Cengage Learning reserves the right to revise this publication
and make changes from time to time in its content without
notice.

The programs in this book are for instructional purposes only.
They have been tested with care, but are not guaranteed

for any particular intent beyond educational purposes. The
author and the publisher do not offer any warranties or
representations, nor do they accept any liabilities with respect
to the programs.

Cengage Learning is a leading provider of customized
learning solutions with office locations around the globe,
including Singapore, the United Kingdom, Australia, Mexico,
Brazil and Japan. Locate your local office at:
www.cengage.com/global

Cengage Learning products are represented in Canada
by Nelson Education, Ltd.

To learn more about Cengage Learning, visit
www.cengage.com

Purchase any of our products at your local college store or at
our preferred online store www.CengageBrain.com

TO

My Daughter

Shelly Malik

This page intentionally left blank

BRIEF CONTENTS

PREFACE XXiX
1. An Overview of Computers and Programming Languages 1
2. Basic Elements of C++ 27
3. Input/Output 121
4. Control Structures | (Selection) 183
5. Control Structures |l (Repetition) 259
6. User-Defined Functions 335
7. User-Defined Simple Data Types, Namespaces,

and the string Type 451
8. Arrays and Strings 505
9. Records (structs) 591
10. Classes and Data Abstraction 629
11. Inheritance and Composition 709
12. Pointers, Classes, Virtual Functions, and Abstract Classes 781
13. Overloading and Templates 853
14. Exception Handling 943
15. Recursion 985
16. Searching, Sorting, and the vector Type 1015
17. Linked Lists 1057

18. Stacks and Queues 1149

vi | C++ Programming: From Problem Analysis to Program Design, Sixth Edition

APPENDIX A Reserved Words 1249
APPENDIX B Operator Precedence 1251
APPENDIX C Character Sets 1253
APPENDIX D Operator Overloading 1257
APPENDIX E Additional C++ Topics 1259
APPENDIX F Header Files 1281
APPENDIX G Memory Size on a System and Random

Number Generator 1291
APPENDIX H Standard Template Library (STL) 1293
APPENDIX | Answers to Odd-Numbered Exercises 1335

INDEX 1371

TABLE OF CONTENTS

Preface XXiX

n AN OVERVIEW OF COMPUTERS AND PROGRAMMING

LANGUAGES 1
Introduction 2
A Brief Overview of the History of Computers 2
Elements of a Computer System 3

Hardware 4
Central Processing Unit and Main Memory 4
Input/Output Devices 5
Software 6
The Language of a Computer 6
The Evolution of Programming Languages 8
Processing a C++ Program 10
Programming with the Problem
Analysis—Coding—Execution Cycle 12
Programming Methodologies 20
Structured Programming 20
Object-Oriented Programming 20
ANSI/ISO Standard C++ 22
Quick Review 22

Exercises 24

viii

C++ Programming: From Problem Analysis to Program Design, Sixth Edition

BASIC ELEMENTS OF C++
A Quick Look at a C++ Program

The Basics of a C++ Program
Comments
Special Symbols
Reserved Words (Keywords)
Identifiers
Whitespaces

Data Types
Simple Data Types
Floating-Point Data Types

Data Types and Variables

Arithmetic Operators, Operator Precedence,
and Expressions

Order of Precedence

Expressions

Mixed Expressions

Type Conversion (Casting)
string Type

Variables, Assignment Statements, and Input
Statements
Allocating Memory with Constants and Variables
Putting Data into Variables
Assignment Statement
Saving and Using the Value of an Expression
Declaring and Initializing Variables
Input (Read) Statement
Variable Initialization

Increment and Decrement Operators
Output

Preprocessor Directives

namespace and Using cin and cout in a Program

Using the string Data Type in a Program

27
28

34
34
35
36
36
37

37
38
41

42

43
46
48
49

51
53

54
54
57
57
61
62
63
66

70
72

79
80
81

Table of Contents | ix

Creating a C++ Program 81
Debugging: Understanding and Fixing Syntax Errors 85
Program Style and Form 89
Syntax 89
Use of Blanks 90
Use of Semicolons, Brackets, and Commas 90
Semantics 90
Naming ldentifiers 90
Prompt Lines 91
Documentation 92
Form and Style 92
More on Assignment Statements 94
Programming Example: Convert Length 96
Programming Example: Make Change 99
Quick Review 103
Exercises 105
Programming Exercises 114
B INPUT/OUTPUT 121
I1/0 Streams and Standard 1/0 Devices 122
cin and the Extraction Operator >> 123
Using Predefined Functions in a Program 128
cin and the get Function 131
cin and the ignore Function 133
The putback and peek Functions 134
The Dot Notation between 1/0 Stream Variables and 1/0
Functions: A Precaution 137
Input Failure 138

The clear Function 140

X

C++ Programming: From Problem Analysis to Program Design, Sixth Edition

Output and Formatting Output
setprecision Manipulator
fixed Manipulator
showpoint Manipulator

setw

Additional Output Formatting Tools
setfill Manipulator
left and right Manipulators

Input/Output and the string Type

Debugging: Understanding Logic Errors and Debugging

with cout Statements
File Input/Output

Programming Example: Movie Tickets Sale and
Donation to Charity

Programming Example: Student Grade
Quick Review
Exercises

Programming Exercises

CONTROL STRUCTURES | (SELECTION)
Control Structures

Relational Operators
Relational Operators and Simple Data Types
Comparing Characters
Relational Operators and the string Type

Logical (Boolean) Operators and Logical Expressions
Order of Precedence
int Data Type and Logical (Boolean) Expressions
bool Data Type and Logical (Boolean) Expressions

Selection: if and if...else
One-Way Selection
Two-Way Selection

142
142
143
144
147

149
149
151

153

154
157

161
167
170
171
177

183
184

185
186
187
188

190
192
195
196

196
197
200

Table of Contents |

Compound (Block of) Statements

Multiple Selections: Nested if

Comparing if...else Statements with a Series of if
Statements

Short-Circuit Evaluation

Comparing Floating-Point Numbers for Equality:
A Precaution

Associativity of Relational Operators: A Precaution

Avoiding Bugs by Avoiding Partially Understood Concepts
and Techniques

Input Failure and the if Statement

Confusion between the Equality Operator (==) and the
Assignment Operator (=)

Conditional Operator (?:)

Program Style and Form (Revisited): Indentation

Using Pseudocode to Develop, Test, and Debug
a Program

switch Structures
Avoiding Bugs by Avoiding Partially Understood Concepts
and Techniques (Revisited)

Terminating a Program with the assert Function
Programming Example: Cable Company Billing
Quick Review

Exercises

Programming Exercises

CONTROL STRUCTURES Il (REPETITION)
Why Is Repetition Needed?

while Looping (Repetition) Structure
Designing while Loops
Case 1: Counter-Controlled while Loops
Case 2: Sentinel-Controlled while Loops
Telephone Digits

203
204

206
207

208
209

211
214

217
219
219

220
223

229
231
233
239
240
251

259
260

261
263
264
268
271

Xi

xii | C++ Programming: From Problem Analysis to Program Design, Sixth Edition

Case 3: Flag-Controlled while Loops 273
Number Guessing Game 274
Case 4: EOF-Controlled while Loops 277
eof Function 277
More on Expressions in while Statements 282
Programming Example: Fibonacci Number 283
for Looping (Repetition) Structure 287
Programming Example: Classifying Numbers 295
do...while Looping (Repetition) Structure 298
Divisibility Test by 3 and 9 301
Choosing the Right Looping Structure 303
break and continue Statements 303
Nested Control Structures 305
Avoiding Bugs by Avoiding Patches 310
Debugging Loops 313
Quick Review 314
Exercises 315
Programming Exercises 328
H USER-DEFINED FUNCTIONS 335
Predefined Functions 336
User-Defined Functions 340
Value-Returning Functions 341
Syntax: Value-Returning function 343
Syntax: Formal Parameter List 343
Function Call 343
Syntax: Actual Parameter List 344
return Statement 344
Syntax: return Statement 344
Function Prototype 348

Syntax: Function Prototype 349

Table of Contents

Value-Returning Functions: Some Peculiarities

More Examples of Value-Returning Functions
Flow of Execution

Void Functions
Value Parameters

Reference Variables as Parameters
Calculate Grade

Value and Reference Parameters and Memory Allocation

Reference Parameters and Value-Returning Functions

Scope of an Identifier

Global Variables, Named Constants, and Side Effects

Static and Automatic Variables
Debugging: Using Drivers and Stubs
Function Overloading: An Introduction
Functions with Default Parameters
Programming Example: Classify Numbers
Programming Example: Data Comparison
Quick Review

Exercises

Programming Exercises

USER-DEFINED SIMPLE DATA TYPES,
NAMESPACES, AND THE strInG TYPE

Enumeration Type
Declaring Variables
Assignment
Operations on Enumeration Types
Relational Operators
Input /Output of Enumeration Types

I xiii

350
352
361

364
370

371
372

376
386
386
390
395
396
399
400
403
408
418
422
436

451

452
454
454
455
455
456

xiv. | C++ Programming: From Problem Analysis to Program Design, Sixth Edition

Functions and Enumeration Types 459
Declaring Variables When Defining the Enumeration Type 460
Anonymous Data Types 461
typedef Statement 461

Programming Example: The Game of Rock, Paper,

and Scissors 463
Namespaces 471
string Type 476
Additional string Operations 480
Programming Example: Pig Latin Strings 490
Quick Review 494
Exercises 496
Programming Exercises 501
n ARRAYS AND STRINGS 505
Arrays 507
Accessing Array Components 509
Processing One-Dimensional Arrays 511
Array Index Out of Bounds 515
Array Initialization During Declaration 516
Partial Initialization of Arrays During Declaration 516
Some Restrictions on Array Processing 517
Arrays as Parameters to Functions 518
Constant Arrays as Formal Parameters 519
Base Address of an Array and Array in Computer Memory 521
Functions Cannot Return a Value of the Type Array 524
Integral Data Type and Array Indices 526
Other Ways to Declare Arrays 527
Searching an Array for a Specific ltem 527
Selection Sort 530
C-Strings (Character Arrays) 535
String Comparison b37

Reading and Writing Strings 539

Table of Contents

String Input

String Output

Specifying Input/Output Files at Execution Time
string Type and Input/Output Files

Parallel Arrays

Two- and Multidimensional Arrays
Accessing Array Components
Two-Dimensional Array Initialization During Declaration
Two-Dimensional Arrays and Enumeration Types
Initialization
Print
Input
Sum by Row
Sum by Column
Largest Element in Each Row and Each Column
Passing Two-Dimensional Arrays as Parameters to Functions
Arrays of Strings
Arrays of Strings and the string Type
Arrays of Strings and ¢-Strings (Character Arrays)
Another Way to Declare a Two-Dimensional Array
Multidimensional Arrays

Programming Example: Code Detection
Programming Example: Text Processing
Quick Review

Exercises

Programming Exercises

RECORDS (sTrRUCTS)

Records (structs)

Accessing struct Members
Assignment

Comparison (Relational Operators)
Input/Output

539
540
541
541

542

543
545
546
546
549
550
550
550
551
551
552
555
555
555
556
557

559
565
572
573
584

591

592
594
596
597
598

XV

xvi | C++ Programming: From Problem Analysis to Program Design, Sixth Edition

struct Variables and Functions 598
Arrays versus structs 599
Arrays in structs 600
structs in Arrays 602
structs within a struct 604
Programming Example: Sales Data Analysis 608
Quick Review 622
Exercises 622
Programming Exercises 626
m CLASSES AND DATA ABSTRACTION 629
Classes 630
Unified Modeling Language Class Diagrams 634
Variable (Object) Declaration 634
Accessing Class Members 635
Built-in Operations on Classes 636
Assignment Operator and Classes 637
Class Scope 637
Functions and Classes 638
Reference Parameters and Class Objects (Variables) 638
Implementation of Member Functions 639
Accessor and Mutator Functions 644
Order of public and private Members of a Class 647
Constructors 649
Invoking a Constructor 651
Invoking the Default Constructor 651
Invoking a Constructor with Parameters 651
Constructors and Default Parameters 654
Classes and Constructors: A Precaution 654
Arrays of Class Objects (Variables) and Constructors 655
Destructors 657
Data Abstraction, Classes, and Abstract Data Types 658

A struct Versus a class 660

Table of Contents

Information Hiding

Executable Code

More Examples of Classes

Static Members of a Class
Programming Example: Juice Machine
Quick Review

Exercises

Programming Exercises

INHERITANCE AND COMPOSITION

Inheritance
Redefining (Overriding) Member Functions
of the Base Class
Constructors of Derived and Base Classes
Destructors in a Derived Class
Multiple Inclusions of a Header File
C++ Stream Classes
Protected Members of a Class
Inheritance as public, protected, or private
(Accessing protected Members in the Derived Class)

Composition (Aggregation)

Object-Oriented Design (OOD) and Object-Oriented
Programming (OOP)
Identifying Classes, Objects, and Operations

Programming Example: Grade Report
Quick Review
Exercises

Programming Exercises

I xvii

661
665
667
673
679
693
695
703

709
710

713
720
729
730
731
733
733
734

737

742
744

745
766
767
776

xviii | C++ Programming: From Problem Analysis to Program Design, Sixth Edition

m POINTERS, CLASSES, VIRTUAL FUNCTIONS,

AND ABSTRACT CLASSES 781
Pointer Data Type and Pointer Variables 782
Declaring Pointer Variables 782
Address of Operator (&) 783
Dereferencing Operator (*) 784
Classes, Structs, and Pointer Variables 789
Initializing Pointer Variables 792
Dynamic Variables 792
Operator new 793
Operator delete 794
Operations on Pointer Variables 798
Dynamic Arrays 800
Functions and Pointers 803
Pointers and Function Return Values 803
Dynamic Two-Dimensional Arrays 804
Shallow versus Deep Copy and Pointers 807
Classes and Pointers: Some Peculiarities 809
Destructor 809
Assignment Operator 811
Copy Constructor 812
Inheritance, Pointers, and Virtual Functions 819
Classes and Virtual Destructors 826
Abstract Classes and Pure Virtual Functions 826
Address of Operator and Classes 835
Quick Review 837
Exercises 840

Programming Exercises 849

Table of Contents

OVERLOADING AND TEMPLATES
Why Operator Overloading Is Needed

Operator Overloading

Syntax for Operator Functions

Overloading an Operator: Some Restrictions

Pointer this

Friend Functions of Classes

Operator Functions as Member Functions and Nonmember
Functions

Overloading Binary Operators

Overloading the Stream Insertion (<<) and Extraction (>>)
Operators

Overloading the Assignment Operator (=)

Overloading Unary Operators

Operator Overloading: Member versus Nonmember

Classes and Pointer Member Variables (Revisited)

Operator Overloading: One Final Word

Programming Example: clockType

Programming Example: Complex Numbers
Overloading the Array Index (Subscript) Operator ([1)
Programming Example: newString

Function Overloading

Templates
Function Templates
Class Templates

Quick Review
Exercises

Programming Exercises

[xix

853
854

855
856
856
857
861

864
867

873
878
886
892
893
893

893
902
907
909
915

916
916
918

926
928
934

xx | C++ Programming: From Problem Analysis to Program Design, Sixth Edition

EXCEPTION HANDLING

Handling Exceptions within a Program
C++ Mechanisms of Exception Handling
try/catch Block
Using C++ Exception Classes

Creating Your Own Exception Classes
Rethrowing and Throwing an Exception

Exception-Handling Techniques
Terminate the Program
Fix the Error and Continue
Log the Error and Continue

Stack Unwinding
Quick Review
Exercises

Programming Exercises

RECURSION

Recursive Definitions
Direct and Indirect Recursion
Infinite Recursion

Problem Solving Using Recursion
Tower of Hanoi: Analysis

Recursion or Iteration?

Programming Example: Converting a Number from

Binary to Decimal

Programming Example: Converting a Number from

Decimal to Binary
Quick Review
Exercises

Programming Exercises

943

944
948
948
955

959
968

972
972
972
974

974
978
980
984

985

986
988
988

989
999

999

1001

1005
1008
1009
1012

Table of Contents | xxi

SEARCHING, SORTING, AND THE vECTOR TYPE

List Processing
Searching
Bubble Sort
Insertion Sort
Binary Search
Performance of Binary Search

vector Type (class)

Programming Example: Election Results
Quick Review

Exercises

Programming Exercises

LINKED LISTS
Linked Lists
Linked Lists: Some Properties

Deletion
Building a Linked List

Linked List as an ADT
Structure of Linked List Nodes
Member Variables of the class linkedListType
Linked List Iterators
Print the List
Length of a List
Retrieve the Data of the First Node
Retrieve the Data of the Last Node
Begin and End
Copy the List
Destructor
Copy Constructor
Overloading the Assignment Operator

1015

1016
1016
1017
1021
1025
1028

1029
1034
1049
1050
1053

1057

1058
1059
1065
1066

1071
1072
1072
1073
1079
1079
1080
1080
1080
1081
1082
1082
1083

XXii

C++ Programming: From Problem Analysis to Program Design, Sixth Edition

Unordered Linked Lists
Search the List
Insert the First Node
Insert the Last Node
Header File of the Unordered Linked List

Ordered Linked Lists
Search the List
Insert a Node
Insert First and Insert Last
Delete a Node
Header File of the Ordered Linked List

Print a Linked List in Reverse Order
(Recursion Revisited)

printListReverse

Doubly Linked Lists
Default Constructor
isEmptyList
Destroy the List
Initialize the List
Length of the List
Print the List
Reverse Print the List
Search the List
First and Last Elements

Circular Linked Lists
Programming Example: DVD Store
Quick Review

Exercises

Programming Exercises

1083
1084
1085
1086
1091

1092
1093
1094
1098
1099
1100

1103
1105

1106
1109
1109
1109
1110
1110
1110
1110
1111
1111

1117
1118
1138
1138
1144

Table of Contents | xxiii

m STACKS AND QUEUES 1149
Stacks 1150
Stack Operations 1152
Implementation of Stacks as Arrays 1154
Initialize Stack 1157
Empty Stack 1158
Full Stack 1158
Push 1158
Return the Top Element 1160
Pop 1160
Copy Stack 1162
Constructor and Destructor 1162
Copy Constructor 1163
Overloading the Assignment Operator (=) 1163
Stack Header File 1164
Programming Example: Highest GPA 1168
Linked Implementation of Stacks 1172
Default Constructor 1175
Empty Stack and Full Stack 1175
Initialize Stack 1176
Push 1176
Return the Top Element 1178
Pop 1178
Copy Stack 1180
Constructors and Destructors 1181
Overloading the Assignment Operator (=) 1181

Stack as Derived from the class unorderedLinkedList 1184

Application of Stacks: Postfix Expressions Calculator 1185

Main Algorithm 1188
Function evaluateExpression 1188
Function evaluateOpr 1190
Function discardExp 1192

Function printResult 1192

xxiv | C++ Programming: From Problem Analysis to Program Design, Sixth Edition

Removing Recursion: Nonrecursive Algorithm to

Print a Linked List Backward 1195
Queues 1199
Queue Operations 1200
Implementation of Queues as Arrays 1202
Linked Implementation of Queues 1211
Queue Derived from the
class unorderedLinkedListType 1216
Application of Queues: Simulation 1217
Designing a Queuing System 1218
Customer 1219
Server 1222
Server List 1225
Waiting Customers Queue 1230
Main Program 1232
Quick Review 1237
Exercises 1238
Programming Exercises 1245
APPENDIX A: RESERVED WORDS 1249
APPENDIX B: OPERATOR PRECEDENCE 1251
APPENDIX C: CHARACTER SETS 1253

ASCII (American Standard Code for Information
Interchange) 1253

EBCDIC (Extended Binary Coded Decimal
Interchange Code) 1254

APPENDIX D: OPERATOR OVERLOADING 1257

Table of Contents | xxv

APPENDIX E: ADDITIONAL C++ TOPICS

Binary (Base 2) Representation of a Nonnegative
Integer
Converting a Base 10 Number to a Binary Number
(Base 2)
Converting a Binary Number (Base 2) to Base 10
Converting a Binary Number (Base 2) to Octal (Base 8)
and Hexadecimal (Base 16)

More on File Input/Output
Binary Files
Random File Access

Naming Conventions of Header Files in ANSI/ISO
Standard C++ and Standard C++

APPENDIX F: HEADER FILES
Header File cassert (assert.h)
Header File cctype (ctype.h)
Header File cfloat (float.h)
Header File climits (limits.h)

Header File cmath (math.h)
Header File cstddef (stddef.h)
Header File cstring (string.h)

APPENDIX G: MEMORY SIZE ON A SYSTEM AND
RANDOM NUMBER GENERATOR

Random Number Generator

APPENDIX H: STANDARD TEMPLATE LIBRARY (STL)
Components of the STL

Container Types
Sequence Containers
Sequence Container: Vectors

1259

1259

1259
1261

1262

1264
1264
1270

1278

1281
1281
1282
1283
1284

1286
1287
1287

1291
1292

1293
1293

1294
1294
1294

XXVi

C++ Programming: From Problem Analysis to Program Design, Sixth Edition

Member Functions Common to All Containers
Member Functions Common to Sequence Containers
copy Algorithm

Sequence Container: deque

Sequence Container: 1ist

Iterators
|OStream lterators
Container Adapters

Algorithms
STL Algorithm Classification
STL Algorithms
Functions £il1l and £ill_n
Functions £find and £ind_if
Functions remove and replace
Functions search, sort, and binary_search

APPENDIX |I: ANSWERS TO ODD-NUMBERED
EXERCISES

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12

1303
1305
1306
1310
1313

1318
1319
1319

1323
1323
1326
1326
1328
1329
1331

1335
1335
1338
1340
1341
1344
1347
1350
1351
1353
1354
1358
1360

Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18

INDEX

Table of Contents

[xxvii

1361
1362
1364
1364
1366
1367

1371

This page intentionally left blank

PREFACE

WELCOME TO THE SIXTH EDITION OF C++ Programming: From Problem Analysis to Program
Design. Designed for a first Computer Science (CS1) C++ course, this text provides a
breath of fresh air to you and your students. The CS1 course serves as the cornerstone of
the Computer Science curriculum. My primary goal is to motivate and excite all CS1
students, regardless of their level. Motivation breeds excitement for learning. Motivation
and excitement are critical factors that lead to the success of the programming student. This
text is a culmination and development of my classroom notes throughout more than fifty
semesters of teaching successful programming to Computer Science students.

Warning: This text can be expected to create a serious reduction in the demand for
programming help during your office hours. Other side effects include significantly
diminished student dependency on others while learning to program.

C++ Programming: From Problem Analysis to Program Design started as a collection of brief
examples, exercises, and lengthy programming examples to supplement the books that were
in use at our university. It soon turned into a collection large enough to develop into a text.
The approach taken in this book is, in fact, driven by the students’ demand for clarity and readability.
The material was written and rewritten until the students felt comfortable with it. Most of the
examples in this book resulted from student interaction in the classroom.

As with any profession, practice is essential. Cooking students practice their recipes.
Budding violinists practice their scales. New programmers must practice solving
problems and writing code. This is not a C++ cookbook. We do not simply list the
C++ syntax followed by an example; we dissect the “why” behind all the concepts. The
crucial question of “why?” is answered for every topic when first introduced. This
technique offers a bridge to learning C++. Students must understand the “why?” in
order to be motivated to learn.

Traditionally, a C++ programming neophyte needed a working knowledge of another
programming language. This book assumes no prior programming experience. However,
some adequate mathematics background, such as college algebra, is required.

xxx | C++ Programming: From Problem Analysis to Program Design, Sixth Edition

Changes in the Sixth Edition

The sixth edition contains 200 new exercises, and more than 25 new programming exercises.
Earlier editions contain two chapters on user-defined functions. In this edition, without
sacrificing the rigor, these chapters are combined into one chapter so that user-defined functions
can be learned without interruption. Since Chapters 6 and 7 of earlier editions have been
combined into one chapter, the sixth edition contains one less chapter than the earlier editions.

The first part of Chapter 2 is rewritten and reorganized. Chapter 10, on searching and sorting
algorithms and the class vector is now Chapter 16. However, the selection sorting algorithm is
moved from Chapter 10 to Chapter 8 (arrays and string). So in addition to learning about array
and strings, the reader can also study a sequential search algorithm and a selection sort algorithm.
Even though additional searching and sorting algorithms are covered in Chapter 16, Chapter 16
can be studied right after studying Chapter 8. This edition also includes various new examples,
such as Examples 3-4, 3-8, 3-9, 4-8, 5-3, 5-4, 6-1, 8-4, 10-8, 11-2, 12-5, and 14-14.

Approach

The programming language C++, which evolved from C, is no longer considered an
industry-only language. Numerous colleges and universities use C++ for their first program-
ming language course. C++ is a combination of structured programming and object-oriented
programming, and this book addresses both types.

This book can be easily divided into two parts: structured programming and object-oriented
programming. The first 9 chapters form the structured programming part; Chapters 10
through 14, 17, and 18 form the object-oriented part. However, only the first six chapters
are essential to move on to the object-oriented portion.

In July 1998, ANSI/ISO Standard C++ was officially approved. This book focuses on ANSI/
ISO Standard C++. Even though the syntax of Standard C++ and ANSI/ISO Standard C++
is very similar, Chapter 7 discusses some of the features of ANSI/ISO Standard C++ that are
not available in Standard C++.

Chapter 1 briefly reviews the history of computers and programming languages. The reader can
quickly skim through this chapter and become familiar with some of the hardware components
and the software parts of the computer. This chapter contains a section on processing a C++
program. This chapter also describes structured and object-oriented programming.

Chapter 2 discusses the basic elements of C++. After completing this chapter, students
become familiar with the basics of C++ and are ready to write programs that are complicated
enough to do some computations. Input/output is fundamental to any programming
language. It is introduced early, in Chapter 3, and is covered in detail.

Chapters 4 and 5 introduce control structures to alter the sequential flow of execution.
Chapter 6 studies user-defined functions. It is recommended that readers with no prior
programming background spend extra time on Chapter 6. Several examples are provided to
help readers understand the concepts of parameter passing and the scope of an identifier.

Preface | xxxi

Chapter 7 discusses the user-defined simple data type (enumeration type), the namespace
mechanism of ANSI/ISO Standard C++, and the string type. The earlier versions of C did
not include the enumeration type. Enumeration types have very limited use; their main
purpose is to make the program readable. This book is organized such that readers can skip
the section on enumeration types during the first reading without experiencing any disconti-
nuity, and then later go through this section.

Chapter 8 discusses arrays in detail. This chapter also discusses a sequential search algorithm
and a selection sort algorithm. Chapter 9 introduces records (structs). The introduction of
structs in this book is similar to C structs. This chapter is optional; it is not a prerequisite
for any of the remaining chapters.

Chapter 10 begins the study of object-oriented programming (OOP) and introduces classes.
The first half of this chapter shows how classes are defined and used in a program. The second
half of the chapter introduces abstract data types (ADTs). This chapter shows how classes in
C++ are a natural way to implement ADTs. Chapter 11 continues with the fundamentals of
object-oriented design (OOD) and OOP and discusses inheritance and composition. It
explains how classes in C++ provide a natural mechanism for OOD and how C++ supports
OOP. Chapter 11 also discusses how to find the objects in a given problem.

Chapter 12 studies pointers in detail. After introducing pointers and how to use them in a
program, this chapter highlights the peculiarities of classes with pointer data members and
how to avoid them. Moreover, this chapter also discusses how to create and work with
dynamic two-dimensional arrays. Chapter 12 also discusses abstract classes and a type of
polymorphism accomplished via virtual functions.

Chapter 13 continues the study of OOD and OOP. In particular, it studies polymorphism in C++.
The chapter specifically discusses two types of polymorphism—overloading and templates.

Chapter 14 discusses exception handling in detail. Chapter 15 introduces and discusses recursion.
Moreover, this 1s a stand-alone chapter, so it can be studied anytime after Chapter 9. Chapter 16
describes various searching and sorting algorithms as well as an introduction to the vector class.

Chapters 17 and 18 are devoted to the study of data structures. Discussed in detail are linked
lists in Chapter 17 and stacks and queues in Chapter 18. The programming code developed in
these chapters is generic. These chapters effectively use the fundamentals of OOD.

Appendix A lists the reserved words in C++. Appendix B shows the precedence and
associativity of the C++ operators. Appendix C lists the ASCII (American Standard Code
for Information Interchange) and EBCDIC (Extended Binary Coded Decimal Interchange
Code) character sets. Appendix D lists the C++ operators that can be overloaded.

Appendix E has three objectives. First, we discuss how to convert a number from decimal to
binary and binary to decimal. We then discuss binary and random access files in detail.
Finally, we describe the naming conventions of the header files in both ANSI/ISO Standard
C++ and Standard C++. Appendix F discusses some of the most widely used library
routines, and includes the names of the standard C++ header files. The programs in
Appendix G show how to print the memory size for the built-in data types on your system
as well as how to use a random number generator. Appendix H gives an introduction to

xxxii | C++ Programming: From Problem Analysis to Program Design, Sixth Edition

the Standard Template Library, and Appendix I provides the answers to odd-numbered
exercises in the book.

How to Use the Book

This book can be used in various ways. Figure 1 shows the dependency of the chapters.

A8

Chapter 4

|

Chapter 7 Chapter 8*
v v
Chapter 16 Chapter 9 Chapter 10

Y v v
Chapter 11 Chapter 12 Chapter 14
Chapter 13
Chapter 15
b
Chapter 17

Chapter 18

FIGURE 1 Chapter dependency diagram

Preface | xxxiii

In Figure 1, dotted lines mean that the preceding chapter is used in one of the sections of the
chapter and is not necessarily a prerequisite for the next chapter. For example, Chapter 8
covers arrays in detail. In Chapters 9 and 10, we show the relationship between arrays and
structs and arrays and classes, respectively. However, if Chapter 10 is studied before
Chapter 8, then the section dealing with arrays in Chapter 10 can be skipped without any
discontinuation. This particular section can be studied after studying Chapter 8.

It is recommended that the first six chapters be covered sequentially. After covering the first
six chapters, if the reader is interested in learning OOD and OOP early, then Chapter 10 can
be studied right after Chapter 6. Chapter 7 can be studied anytime after Chapter 6.

After studying the first six chapters in sequence, some of the approaches are:

1. Study chapters in the sequence: 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18.
2. Study chapters in the sequence: 8, 10, 12, 13, 11, 15, 17, 18, 16, 15.
3. Study chapters in the sequence: 10, 8, 16, 12, 13, 11, 15, 17, 18, 14.
4. Study chapters in the sequence: 10, 8, 12, 13, 11, 15, 17, 18, 16, 14.

ngth

FEATURES OF THE Book

Programming Example: Fibonacci Number | 283

noOfGuessest+;
if (guess == num)
{
cout << "Winner!. You guessed the correct number."
<< endl;
isGuessed = true;

if (guess < num)
cout << "Your guess is lower than the numbe
<< "Guess again!" << endl;

"Your guess—i8 higher than the number.\n"
Guess again!"™ << endl;
} //end while

You also 1 the following code o be included after the while loop in case the user

cannot guess the correct number in five tries:

if (lisGuessed)
cout << "You lose! The correct number is " << num << endl;

Programming Exercise 16 at the end of this chapter asks you to write a complete C++
pr m o impl nt the Number Guessing Game in which the user has, at most, five
tries to guess the number.

ou can see from the preceding while loop, the expression aterment can
be complex. The main objective of a while | IS to repeat certain went(s) until
certin conditions are met.

prROGRAMMING ExampLE: Fibonacci Number

Saa far, « seen several examples of loops. Recall that in C++, while loops are
used when a ain statement(s) must be executed repeatedly until certain conditions are
met, Followin C++ program that uses a while loop to find 2 Fibonacei number.

Consider the follow equence of numbers:
3; 5,8, 13, 21, 34,

is called the Fibonacei sequence. Given the fisst two numbers of
sequence (say, o and a3), the nth numbe >= 3, of this sequence is given by:

Thus;
m=mdaq=141=2,
iy =iy + 24+1=3

and so on

Four-color interior
design shows
accurate C++
code and related
comments.

One video is
available for each
chapter on the
optional
CourseMate that
accompanies this
text. Each video is
designed to
explain how a
program works.

More than 300
visual diagrams,
both extensive
and exhaustive,
illustrate difficult
concepts.

equence of statements whose 011_1‘:‘ tive 15 1o
ams you have examined so far wer
To process a program, the computer begins at the first

cutable state 1d executes the statements in order until it comes to the end.
In this chaprer and Chapter 5, you will learn how to rell a compurer thar it does
not have to follow a simple sequential order of statements; it can also make
decisions and repeat certain statements over and over until certain conditions
are met.

Control Structures

A computer can process i program in one of the following wa
by making a choice, which is also called a branch; repetinively, by ¢ 1 statement
over and over, using a structure called a loop; or by calling a fu on. Figure 4-1
illustrates the first three types of program flow. (In Chapter 6, we will show how function
calls we The progr: £ examples in Chapters 2 and 3 included simple sequential
programs. With such a program, the computer starts at the b ming and follows the
statements in order. No choices are made; there is no repetitio ontrol structures
provide alternatives to sequential program execution and are used to alter the sequential
flow of execution. The two most common control structures are selection and repetition
it the pecrisnt cubcuees parsiotiar sty depeadiog on some Soncirionty.

repetition, the program repeats particular statements a ¢ number of times based on

nent

. Sequence c. Repetition

FIGURE 4-1 F

th in
s 1o
iy il
eten
et by

In C++, identifiers can be of any length.

The following are legal identifiers in C++:

first
conversion
payRate
counterl

Table 2-1 shows some illegal identifiers and explains why they are illegal.
TABLE 2-1 Examples of lllegal Identifiers

employee Salary There can be no space between employee and Salary.
Hello! The exclamation mark cannot be used in an identifier.
one + two The symbol + cannot be used in an identifier.

2nd An identifier cannot begin with a digit.

Compiler vendors usually begin certain identifiers with an underscore ()

When the linker links the object program with the system resources provided by

the integrated development environment (IDE), certain errors could occur. Therefore, it
is advisable that you should not begin identifiers in your program with an underscore (_).

Whitespaces

Every C++ program contains whitespaces. Whitespaces include blanks, tabs, and newline
characters. In a C++ program, whitespaces are used to separate special symbols, reserved
words, and identifiers. Whitespaces are nonprintable the sense that when they are
printed on a white sheet of paper, the space between special symbols, reserved words, and
identifiers is white. Proper utilization of whitespaces in a program is important. They can
be used to make the program more readable.

Data Types

The objective of a C++ program is to manipulate data. Different programs manipulate
different data. A program designed to calculate an employee's paycheck will add, subtract,
multply, and divide numbers, and some of the numbers might represent hours worked and
pay rate nilarly, a program designed to alphabetize a class list will manipulate names. You
wouldn’t use a cherry pie recipe to help you bake cookies. Similarly, you wouldn’t use a

Numbered Examples
illustrate the key
concepts with their
relevant code. The
programming code in
these examples is
followed by a Sample
Run. An explanation
then follows that
describes what each
line in the code does.

Notes highlight
important facts

about the concepts

introduced in the
chapter.

Programming Examples are
where everything in the
chapter comes together.
These examples teach
problem-solving skills and
include the concrete stages
of input, output, problem
analysis and algorithm
design, class design, and
a program listing. All
programs are designed to
be methodical, consistent,
and user-friendly. Each
Programming Example
starts with a problem
analysis that is followed
by the algorithm design
and/or class design, and
every step of the algorithm
is coded in C++. In
addition to helping
students learn problem-
solving techniques, these
detailed programs show
the student how to
implement concepts in

an actual C++ program.
We strongly recommend
that students study the
Programming Examples
carefully in order to learn
C++ effectively. Students
typically learn much from
completely worked-out
programs. Further,

96 | Chapter 2: Basic Elements of C++

procRAMMING ExampLE: Convert Length

Write a program that takes as mput given lengths expressed i feet and inches. The
n convert and output the lengths in centimerers, Assume that the

given lengths in feer and inches are integers.

Input Length in feet and inches.

Output Equivalent length in centimeters.

The lengths are given in feet and inches, and you need to find the equivalent length
in centimeters, One inch is equal to 2.54 cenumeters. The fist thing the prog
needs to do s convert the length given in feer and inches to all inches. Then, you can

use the conversion formula, 1 inch = 2,54 centimeters, to find the equ
n centimeters. To convert the length from feet and inches to inches, y y
the number of feet by 12, as 1 foot is equal to 12 inches, and add the given inches.

xample, suppose the input is § feet and 7 inches. You then find the total inches
lows:
totallnches = (12 * feet) + inches
- 125+ 7
- §7
You can then apply the conversion formula, 1 inch = 2,54 centimeters, to find the
length in centimeters.
centimeters = totallnches * 2.54
= 67 * 2.54
= 170.18
Based on this analysis of the problem, you can design an algorithm as follows:
Get the length in feet and inches,
Convert the length into total inches.
Convert total inches into centimeters,
Output centimeters.
The input for the program is two numbers: one for feet and one for i Thus,
one to store feet and the other to st g, wse the
will first convert the given length into inches, you d another variable to
store the total inches, You also need a variable to store the equivalent J;,-ng(h in
centimeters, In summary, you need the following variables:
t feet; //wariable to hold given feet
inches; //variable to held given inches

t totallnchas; f/variable to hold total inches
ble centimeters; //variable to hold length in centimeters

programming examples considerably reduce the students’ need for help outside the classroom and bolster the

students’ self-confidence.

e
givern

EXERCISES

Mark the following statements as true or false.

The member variables of a elass must be of the same type,

The member functions of a elass must be public

A class can have more than one constructor.

A class can have more than one destructor.

Both constructors and destructors can have parameters,

Find the syntax errors in the following class

class mystery
{
public:
void print() const;
void setNum(double, double);
int power();
double mystery();
doub mystery {(double, double);
privata:
double
double y
i

Find the syntax errors in the follow

ass secret

public:
bool multiply():
print() cons
secret (int
}.‘:-r;\.ratr-_-:
int one;
int two;

Find the syntax errors in the following class

class secret
{
publiec:
bool compare();:
void print() const;
secret (int = 0, int = 0) const;
private:
string str;
int one;
int two;

definition:

//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
definiion:

//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
definition:
//Line
J/Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line

[SE RN IR T R U

1
2
3
4
5
6
i
8
9
e !
1
1

Exercises

6

9

5

Exercises further
reinforce learning
and ensure that
students have, in
fact, mastered the
material.

Programming Exercises | 251

cin >> firstNum >> secondNum;
cout << endl;

//Missing statements

Suppose that classStanding is a char varable, and gpa and dues are
double variables. Write a switch expression that assigns the dues as following:
If classStanding is '£°, the dues are $150.00; if classStanding s 's’
(if gpa is at least 3,75, the dues are §75.00; otherwise, dues are 120, 00); if
classStanding is '§' (if gpa is at least 3.75, the dues are $50.00;
otherwise, dues are $100,00); if classStanding is 'n" (if gpa is at le

3,75, the dues are $25.00; otherwise, dues are $75,00). (Note that the code
1§ sands for first year students, the code 's' stands for second y

students, the code '3 stands for juniors, and the code 'n* stan I SCTIOrs,)

Suppose that billingAmount is a double variable, which denotes the

amount you need to pay to the department stpfe. if you pay the full

amount, you $10.00 or 1% of .I]:u ?illinq}\mount, whic ver is Programming

smaller, as a dit on your next bill; if fou pay at least 50% of the :

billingAmount, the penalty is 5% of the’balance; if you pay at least 20% Exercises challenge
npth of the billingAmount and less thaw 50% of the billingAmount, the students to write

othep@ise, the penalty is 20% of the balance. :

Design an al £ apis the user to enter the billing amount and C++ programs with

the desired pa . The algotithm then calculates and outputs the credit a specified

or the remaining balance, i the amount is not paid in full, the algorithm

should also output the pénalty amount.

outcome.

PROGRAMMING EXERCISES

Write a program that prompts the user to input a number. The program
should then output the number and a message saying whether the number is
pusitive, negative, or zero,

Write a program that prompts the user to input three numbers. The
program should then output the numt n ascending order.

Write a program that prompts the user to input an integer between 0 and 35. If
the number is less than or equal to 9, the program should output the number;
otherwise, it should output A for 10, B for 11, € for 12.... and 2 for 35. (Hint:
Use the cast operator, static cast<char> (), for numbers >=10.)

The statements in the following program are in incorrect order. Rearrange

the statements so that they prompt the user to input the shape typ
(rectangle, circle, or cylinder) id the appropriate dimension of

SUPPLEMENTAL

RESOURCES

CourseMate

Make the most of your study time with everything you need to succeed in one place. Read
your textbook, highlight and take notes, review flashcards, watch videos, and take practice
quizzes online. Learn more at www.cengage.com/coursemate.

The C++ Programming CourseMate includes the following features:

® Videos step you through programs in each chapter, while integrated quizzes provide
immediate feedback to gauge your understanding.

e Lab Manual lets you apply material with a wealth of practical, hands-on exercises.

¢ Interactive Quizzes and Study Games drill key chapter concepts, while open-
ended Assignments develop critical thinking skills.

e Interactive eBook, flashcards, and more!

Instructors may add CourseMate to the textbook package, or students may purchase
CourseMate directly through www.cengagebrain.com.

Source Code

The source code, in ANSI/ISO Standard C++, is available for students to download at
www.cengagebrain.com and through the CourseMate available for this text. These files are also
available to instructors on the Instructor Resources CD and at login.cengage.com. The input
files needed to run some of the programs are also included with the source code.

Instructor Resources

The following supplemental materials are available when this book is used in a classroom
setting. All instructor teaching tools are available with this book on a single CD-ROM. Many
are also available for download at login.cengage.com.

Supplemental Resources | xli

Electronic Instructor’s Manual

The Instructor’s Manual follows the text chapter-by-chapter and includes material to assist in

planning and organizing an effective, engaging course.

The Manual includes Overviews, Chapter Objectives, Teaching Tips, Quick Quizzes, Class
Discussion Topics, Additional Projects, Additional Resources, and Key Terms. A Sample
Syllabus is also available.

ExamView®

This textbook is accompanied by ExamView, a powerful testing software package that allows

instructors to create and administer printed, computer (LAN-based), and Internet exams.
ExamView includes hundreds of questions that correspond to the topics covered in this
text, enabling students to generate detailed study guides that include page references for
further review. These computer-based and Internet testing components allow students to
take exams at their computers, and save the instructor time because each exam is graded
automatically. The test banks are also available in Blackboard, WebCT, and Angel
compatible formats.

PowerPoint Presentations

This book comes with PowerPoint slides to accompany each chapter. Slides may be used to
guide classroom presentation, to make available to students for chapter review, or to print as
classroom handouts. Instructors can add their own slides for additional topics that they
introduce to the class, as well as customize the slides with the complete Figure Files from
the text.

Solution Files

The solution files for all Programming Exercises, in ANSI/ISO C++, are available at
login.cengage.com, and are also available on the Instructor Resources CD-ROM. The input files
needed to run some of the Programming Exercises are also included with the solution files.

ACKNOWLEDGMENTS

There are many people that I must thank who, one way or another, contributed to the success
of this book. First, I would like to thank all the students who, during the preparation, were
spontaneous in telling me if certain portions needed to be reworded for better understanding
and clearer reading. Next, I would like to thank those who e-mailed numerous comments to
help improve upon the next edition. I am thankful to Professors S.C. Cheng and Randall
Crist for constantly supporting this project. I am also very grateful to the reviewers who
reviewed earlier versions of this book and offered many critical suggestions on how to
improve it.

I owe a great deal to the following reviewers who made helpful, critical suggestions for
improving this edition of the text: Gary Bricher, Lane Community College; Clift Brozo,
Monroe College; and Marie Pullan, Farmingdale State College.

Next, I express thanks to Brandi Shailer, Acquisition Editor, for recognizing the importance
and uniqueness of this project. All this would not have been possible without the careful
planning of Senior Product Manager, Alyssa Pratt. I extend my sincere thanks to Alyssa, as
well as to Content Project Manager, Mathew Hutchinson. My special thanks are to Stephanie
Lorenz for using her expertise in carefully editing the videos. I also thank Sreemannarayana
Reddy of Integra Software Services for assisting us in keeping the project on schedule.
I would like to thank Chris Scriver and Serge Palladino of the QA department at Cengage
Learning for patiently and carefully testing the code and discovering typos and errors.

I am thankful to my parents for their blessings.

Finally, I am thankful for the support of my wife Sadhana and especially my daughter, Shelly,
to whom this book is dedicated. They cheered me up whenever I was overwhelmed during
the writing of this book.

I welcome any comments concerning the text. Comments may be forwarded to the following
e-mail address: malik@creighton.edu

D. S. Malik

AN OVERVIEW OF
COMPUTERS AND
PROGRAMMING

L ANGUAGES

IN THIS CHAPTER, YOU WILL:

Learn about different types of computers

Explore the hardware and software components of a computer system

Learn about the language of a computer

Learn about the evolution of programming languages

Examine high-level programming languages

Discover what a compiler is and what it does

Examine a C++ program

Explore how a C++ program is processed

Learn what an algorithm is and explore problem-solving techniques

Become aware of structured design and object-oriented design programming methodologies

Become aware of Standard C++ and ANSI/ISO Standard C++

2 | Chapter 1: An Overview of Computers and Programming Languages

Introduction

Terms such as “the Internet,” which were unfamiliar just 20 years ago are now common.
Students in elementary school regularly “surf™ the Internet and use computers to design their
classroom projects. Many people use the Internet to look for information and to commu-
nicate with others. This is all made possible by the availability of different software, also
known as computer programs. Without software, a computer is useless. Software is devel-
oped by using programming languages. The programming language C++ is especially well
suited for developing software to accomplish specific tasks. Our main objective is to help you
learn how to write programs in the C++ programming language. Before you begin
programming, it is useful to understand some of the basic terminology and different
components of a computer. We begin with an overview of the history of computers.

A Brief Overview of the History of Computers

The first device known to carry out calculations was the abacus. The abacus was invented in
Asia but was used in ancient Babylon, China, and throughout Europe until the late middle
ages. The abacus uses a system of sliding beads in a rack for addition and subtraction. In 1642,
the French philosopher and mathematician Blaise Pascal invented the calculating device
called the Pascaline. It had eight movable dials on wheels and could calculate sums up to
eight figures long. Both the abacus and Pascaline could perform only addition and subtrac-
tion operations. Later in the 17th century, Gottfried von Leibniz invented a device that was
able to add, subtract, multiply, and divide. In 1819, Joseph Jacquard, a French weaver,
discovered that the weaving instructions for his looms could be stored on cards with holes
punched in them. While the cards moved through the loom in sequence, needles passed
through the holes and picked up threads of the correct color and texture. A weaver could
rearrange the cards and change the pattern being woven. In essence, the cards programmed a
loom to produce patterns in cloth. The weaving industry may seem to have little in common
with the computer industry. However, the idea of storing information by punching holes on
a card proved to be of great importance in the later development of computers.

In the early and mid-1800s, Charles Babbage, an English mathematician and physical
scientist, designed two calculating machines: the difference engine and the analytical
engine. The difference engine could perform complex operations such as squaring numbers
automatically. Babbage built a prototype of the difference engine, but did not build the
actual device. The first complete difference engine was completed in London in 2002,
153 years after it was designed. It consists of 8,000 parts, weighs five tons, and measures 11
feet long. A replica of the difference engine was completed in 2008 and is on display at the
Computer History Museum in Mountain View, California (http://www.computerhistory.org/
babbage/). Most of Babbage’s work is known through the writings of his colleague Ada
Augusta, Countess of Lovelace. Augusta is considered the first computer programmer.

At the end of the 19th century, U.S. Census officials needed help in accurately tabulating
the census data. Herman Hollerith invented a calculating machine that ran on electricity
and used punched cards to store data. Hollerith’s machine was immensely successful.

Elements of a Computer System | 3

Hollerith founded the Tabulating Machine Company, which later became the computer
and technology corporation known as IBM.

The first computer-like machine was the Mark I. It was built, in 1944, jointly by IBM and
Harvard University under the leadership of Howard Aiken. Punched cards were used to feed
data into the machine. The Mark I was 52 feet long, weighed 50 tons, and had 750,000 parts.
In 1946, the ENIAC (Electronic Numerical Integrator and Calculator) was built at the
University of Pennsylvania. It contained 18,000 vacuum tubes and weighed some 30 tons.

The computers that we know today use the design rules given by John von Neumann in
the late 1940s. His design included components such as an arithmetic logic unit, a control
unit, memory, and input/output devices. These components are described in the next
section. Von Neumann’s computer design makes it possible to store the programming
instructions and the data in the same memory space. In 1951, the UNIVAC (Universal
Automatic Computer) was built and sold to the U.S. Census Bureau.

In 1956, the invention of transistors resulted in smaller, faster, more reliable, and more
energy-efficient computers. This era also saw the emergence of the software development
industry, with the introduction of FORTRAN and COBOL, two early programming
languages. In the next major technological advancement, transistors were replaced by tiny
integrated circuits, or “chips.” Chips are smaller and cheaper than transistors and can contain
thousands of circuits on a single chip. They give computers tremendous processing speed.

In 1970, the microprocessor, an entire CPU on a single chip, was invented. In 1977,
Stephen Wozniak and Steven Jobs designed and built the first Apple computer in their
garage. In 1981, IBM introduced its personal computer (PC). In the 1980s, clones of the
IBM PC made the personal computer even more affordable. By the mid-1990s, people
from many walks of life were able to afford them. Computers continue to become faster
and less expensive as technology advances.

Modern-day computers are powerful, reliable, and easy to use. They can accept spoken-word
instructions and imitate human reasoning through artificial intelligence. Expert systems assist
doctors in making diagnoses. Mobile computing applications are growing significantly. Using
hand-held devices, delivery drivers can access global positioning satellites (GPS) to verify
customer locations for pickups and deliveries. Cell phones permit you to check your e-mail,
make airline reservations, see how stocks are performing, and access your bank accounts.

Although there are several categories of computers, such as mainframe, midsize, and
micro, all computers share some basic elements, described in the next section.

Elements of a Computer System

A computer is an electronic device capable of performing commands. The basic commands
that a computer performs are input (get data), output (display result), storage, and perfor-
mance of arithmetic and logical operations. There are two main components of a computer
system: hardware and software. In the next few sections, we give a brief overview of these
components. Let’s look at hardware first.

4 | Chapter 1: An Overview of Computers and Programming Languages

Hardware

Major hardware components include the central processing unit (CPU); main memory
(MM), also called random access memory (RAM); input/output devices; and secondary
storage. Some examples of input devices are the keyboard, mouse, and secondary storage.
Examples of output devices are the screen, printer, and secondary storage. Let’s look at
each of these components in greater detail.

Central Processing Unit and Main Memory

The central processing unit is the “brain” of the computer and the single most expensive
piece of hardware in a computer. The more powerful the CPU, the faster the computer.
Arithmetic and logical operations are carried out inside the CPU. Figure 1-1(a) shows some
hardware components.

1000
1001

2000
2001

Main Memory

(a) (b)

FIGURE 1-1 Hardware components of a computer and main memory

Main memory, or random access memory, is connected directly to the CPU. All
programs must be loaded into main memory before they can be executed. Similarly, all
data must be brought into main memory before a program can manipulate it. When the
computer is turned off, everything in main memory is lost.

Main memory is an ordered sequence of cells, called memory cells. Each cell has a
unique location in main memory, called the address of the cell. These addresses help
you access the information stored in the cell. Figure 1-1(b) shows main memory with
some data.

Elements of a Computer System | 5

Today’s computers come with main memory consisting of millions to billions of cells.
Although Figure 1-1(b) shows data stored in cells, the content of a cell can be either a
programming instruction or data. Moreover, this figure shows the data as numbers and
letters. However, as explained later in this chapter, main memory stores everything as
sequences of 0s and 1s. The memory addresses are also expressed as sequences of 0s and 1s.

SECONDARY STORAGE

Because programs and data must be stored in main memory before processing and
because everything in main memory is lost when the computer is turned off, information
stored in main memory must be transferred to some other device for permanent storage.
The device that stores information permanently (unless the device becomes unusable or
you change the information by rewriting it) is called secondary storage. To be able to
transfer information from main memory to secondary storage, these components must
be directly connected to each other. Examples of secondary storage are hard disks, flash
drives, floppy disks, ZIP disks, CD-ROMs, and tapes.

Input/Output Devices

For a computer to perform a useful task, it must be able to take in data and programs and
display the results of calculations. The devices that feed data and programs into computers
are called input devices. The keyboard, mouse, and secondary storage are examples of
input devices. The devices that the computer uses to display results are called output
devices. A monitor, printer, and secondary storage are examples of output devices.
Figure 1-2 shows some input and output devices.

Input devices Output devices

FIGURE 1-2 Some input and output devices

6 | Chapter 1: An Overview of Computers and Programming Languages

Software

Software are programs written to perform specific tasks. For example, word processors
are programs that you use to write letters, papers, and even books. All software is written
in programming languages. There are two types of programs: system programs and
application programs.

System programs control the computer. The system program that loads first when you
turn on your PC is called the operating system. Without an operating system, the
computer is useless. The operating system monitors the overall activity of the computer
and provides services. Some of these services include memory management, input/output
activities, and storage management. The operating system has a special program that
organizes secondary storage so that you can conveniently access information.

Application programs perform a specific task. Word processors, spreadsheets, and
games are examples of application programs. The operating system is the program that
runs application programs.

The Language of a Computer

When you press A on your keyboard, the computer displays A on the screen. But what is
actually stored inside the computer’s main memory? What is the language of the
computer? How does it store whatever you type on the keyboard?

Remember that a computer is an electronic device. Electrical signals are used inside the
computer to process information. There are two types of electrical signals: analog and
digital. Analog signals are continuous wave forms used to represent such things as
sound. Audio tapes, for example, store data in analog signals. Digital signals represent
information with a sequence of 0s and 1s. A 0 represents a low voltage, and a 1
represents a high voltage. Digital signals are more reliable carriers of information than
analog signals and can be copied from one device to another with exact precision. You
might have noticed that when you make a copy of an audio tape, the sound quality of
the copy is not as good as the original tape. On the other hand, when you copy a CD,
the copy is as good as the original. Computers use digital signals.

Because digital signals are processed inside a computer, the language of a computer, called
machine language, is a sequence of 0s and 1s. The digit 0 or 1 is called a binary digit,
or bit. Sometimes a sequence of 0s and 1s is referred to as a binary code or a binary
number.

Bit: A binary digit 0 or 1.

A sequence of eight bits is called a byte. Moreover, 2'” bytes = 1024 bytes is called
a kilobyte (KB). Table 1-1 summarizes the terms used to describe various numbers
of bytes.

The Language of a Computer | 7

TABLE 1-1 Binary Units

Byte 8 bits
Kilobyte KB 210 pytes = 1024 bytes
Megabyte MB 1024 KB = 2'° KB = 22° bytes = 1,048,576 bytes
Gigabyte GB 1024 MB = 29 MB = 23° bytes = 1,073,741,824 bytes
1024 GB = 2'° GB = 240 bytes =
T B
erabyte 1,099,511,627,776 bytes
1024 TB = 2'° TB = 2°° bytes =
Petabyt PB
etayte 1,125,899,906,842,624 bytes
1024 PB = 219 PB = 20 bytes =
Exabyt EB
xapyte 1,152,921,504,606,846,976 bytes
__ nlO __ n70 _
Zettabyte 7B 1024 EB =2"" EB = 2" bytes =

1,180,591,620,717,411,303,424 bytes

Every letter, number, or special symbol (such as * or{) on your keyboard is encoded as a
sequence of bits, each having a unique representation. The most commonly used
encoding scheme on personal computers is the seven-bit American Standard Code
for Information Interchange (ASCII). The ASCII data set consists of 128 characters
numbered O through 127. That is, in the ASCII data set, the position of the first character
is 0, the position of the second character is 1, and so on. In this scheme, A is encoded as
the binary number 1000001. In fact, A is the 66th character in the ASCII character code,
but its position is 65 because the position of the first character is 0. Furthermore, the
binary number 1000001 is the binary representation of 65. The character 3 is encoded as
0110011. Note that in the ASCII character set, the position of the character 3 is 51, so
the character 3 is the 52nd character in the ASCII set. It also follows that 0110011 is the
binary representation of 51. For a complete list of the printable ASCII character set, refer
to Appendix C.

NOTE The number system that we use in our daily life is called the decimal system, or base 10.
Because everything inside a computer is represented as a sequence of Os and 1s, that is,
binary numbers, the number system that a computer uses is called binary, or base 2. We
indicated in the preceding paragraph that the number 1000001 is the binary representation
of 65. Appendix E describes how to convert a number from base 10 to base 2 and vice versa.

8 | Chapter 1: An Overview of Computers and Programming Languages

Inside the computer, every character is represented as a sequence of eight bits, that is, as
a byte. Now the eight-bit binary representation of 65 is 01000001. Note that we added 0
to the left of the seven-bit representation of 65 to convert it to an eight-bit representa-
tion. Similarly, the eight-bit binary representation of 51 is 00110011.

ASCII is a seven-bit code. Therefore, to represent each ASCII character inside the
computer, you must convert the seven-bit binary representation of an ASCII character
to an eight-bit binary representation. This is accomplished by adding 0 to the left of the
seven-bit ASCII encoding of a character. Hence, inside the computer, the character
A is represented as 01000001, and the character 3 is represented as 00110011.

There are other encoding schemes, such as EBCDIC (used by IBM) and Unicode,
which i1s a more recent development. EBCDIC consists of 256 characters; Unicode
consists of 65,536 characters. To store a character belonging to Unicode, you need
two bytes.

The Evolution of Programming Languages

The most basic language of a computer, the machine language, provides program
instructions in bits. Even though most computers perform the same kinds of operations,
the designers of the computer may have chosen difterent sets of binary codes to perform
the operations. Therefore, the machine language of one machine is not necessarily the
same as the machine language of another machine. The only consistency among com-
puters is that in any modern computer, all data is stored and manipulated as binary codes.

Early computers were programmed in machine language. To see how instructions are
written in machine language, suppose you want to use the equation:

wages = rate . hours

to calculate weekly wages. Further, suppose that the binary code 100100 stands for load,
100110 stands for multiplication, and 100010 stands for store. In machine language, you
might need the following sequence of instructions to calculate weekly wages:

100100 010001
100110 010010
100010 010011

To represent the weekly wages equation in machine language, the programmer had to
remember the machine language codes for various operations. Also, to manipulate
data, the programmer had to remember the locations of the data in the main memory.
This need to remember specific codes made programming not only very difficult, but also
error prone.

Assembly languages were developed to make the programmer’s job easier. In assembly
language, an instruction is an easy-to-remember form called a mnemonic. Table 1-2
shows some examples of instructions in assembly language and their corresponding
machine language code.

The Evolution of Programming Languages | 9

TABLE 1-2 Examples of Instructions in Assembly Language and Machine Language

LOAD 100100
STOR 100010
MULT 100110
ADD 100101
SUB 100011

Using assembly language instructions, you can write the equation to calculate the weekly
wages as follows:

LOAD rate
MULT hours
STOR wages

As you can see, it is much easier to write instructions in assembly language. However,
a computer cannot execute assembly language instructions directly. The instructions first
have to be translated into machine language. A program called an assembler translates
the assembly language instructions into machine language.

Assembler: A program that translates a program written in assembly language into an
equivalent program in machine language.

Moving from machine language to assembly language made programming easier, but
a programmer was still forced to think in terms of individual machine instructions. The
next step toward making programming easier was to devise high-level languages that
were closer to natural languages, such as English, French, German, and Spanish. Basic,
FORTRAN, COBOL, Pascal, C, C++, C#, and Java are all high-level languages. You
will learn the high-level language C++ in this book.

In C++, you write the weekly wages equation as follows:
wages = rate * hours;

The instruction written in C++ is much easier to understand and is self~explanatory
to a novice user who is familiar with basic arithmetic. As in the case of assembly language,
however, the computer cannot directly execute instructions written in a high-level
language. To run on a computer, these C++ instructions first need to be translated into
machine language. A program called a compiler translates instructions written in high-
level languages into machine code.

Compiler: A program that translates instructions written in a high-level language into the
equivalent machine language.

10 | Chapter 1: An Overview of Computers and Programming Languages

Processing a C++ Program

In the previous sections, we discussed machine language and high-level languages and
showed a C++ program. Because a computer can understand only machine language,
you are ready to review the steps required to process a program written in C++.

Consider the following C++ program:

#include <iostream>
using namespace std;

int main ()

{
cout << "My first C++ program." << endl;

return 0;

}

At this point, you need not be too concerned with the details of this program. However,
if you run (execute) this program, it will display the following line on the screen:

My first C++ program.

Recall that a computer can understand only machine language. Therefore, in order to run
this program successfully, the code must first be translated into machine language. In this
section, we review the steps required to execute programs written in C++.

The following steps, as shown in Figure 1-3, are necessary to process a C++ program.

1. You use a text editor to create a C++ program following the rules, or
syntax, of the high-level language. This program is called the source
code, or source program. The program must be saved in a text file
that has the extension .cpp. For example, if you saved the preceding
program in the file named FirstCPPProgram, then its complete name
1s FirstCPPProgram. cpp.

Source program: A program written in a high-level language.

2. The C++ program given in the preceding section contains the statement
#include <iostream>. In a C++ program, statements that begin with
the symbol # are called preprocessor directives. These statements are pro-
cessed by a program called preprocessor.

3. After processing preprocessor directives, the next step is to verify that the
program obeys the rules of the programming language—that is, the program
is syntactically correct—and translate the program into the equivalent
machine language. The compiler checks the source program for syntax errors
and, if no error is found, translates the program into the equivalent machine
language. The equivalent machine language program is called an object
program.

Processing a C++ Program | 11

Object program: The machine language version of the high-level language
program.

4. The programs that you write in a high-level language are developed using
an integrated development environment (IDE). The IDE contains many
programs that are useful in creating your program. For example, it contains
the necessary code (program) to display the results of the program and
several mathematical functions to make the programmer’s job somewhat

easier. Therefore, if certain code is already available, you can use this code
rather than writing your own code. Once the program is developed and
successfully compiled, you must still bring the code for the resources used
from the IDE into your program to produce a final program that the
computer can execute. This prewritten code (program) resides in a place
called the library. A program called a linker combines the object program
with the programs from libraries.

Linker: A program that combines the object program with other programs
in the library and is used in the program to create the executable code.

5. You must next load the executable program into main memory for execu-
tion. A program called a loader accomplishes this task.

Loader: A program that loads an executable program into main memory.

6. The final step is to execute the program.

Figure 1-3 shows how a typical C++ program is processed.

C++ Program

* Step 1

Step 2

Syntax
EMFf Error = Step3
F Step 4

Step 5
Ste
FIGURE 1-3 Processing a C++ program

As a programmer, you need to be concerned only with Step 1. That is, you must learn,
understand, and master the rules of the programming language to create source programs.

12 | Chapter 1: An Overview of Computers and Programming Languages

As noted earlier, programs are developed using an IDE. Well-known IDEs used to create
programs in the high-level language C++ include Visual C++ 2008 Express, Visual C++
2010 Express, Visual Studio 2010 (from Microsoft), and C++ Builder (from Borland). You
can also use Dev-C++ IDE from Bloodshed Software to create and test C++ programs.
These IDEs contain a text editor to create the source program, a compiler to check the
source program for syntax errors, a program to link the object code with the IDE resources,
and a program to execute the program.

These IDEs are quite user friendly. When you compile your program, the compiler not
only identifies the syntax errors, but also typically suggests how to correct them. More-
over, with just a simple command, the object code is linked with the resources used from
the IDE. For example, the command that does the linking on Visual C++ 2008 Express,
Visual C++ 2010 Express, and Visual Studio 2010 is Build or Rebuild. (For further
clarification regarding the use of these commands, check the documentation of these IDEs.)
If the program is not yet compiled, each of these commands first compiles the program and
then links and produces the executable code.

The Web site http://msdn.microsoft.com/en-us/beginner/bb964629.aspx contains a video that
explains how to use Visual C++ 2008 Express to write C++ programs.

Programming with the Problem
Analysis—Coding—Execution Cycle

Programming is a process of problem solving. Different people use different techniques to
solve problems. Some techniques are nicely outlined and easy to follow. They not
only solve the problem, but also give insight into how the solution was reached.
These problem-solving techniques can be easily modified if the domain of the
problem changes.

To be a good problem solver and a good programmer, you must follow good problem-
solving techniques. One common problem-solving technique includes analyzing a pro-
blem, outlining the problem requirements, and designing steps, called an algorithm, to
solve the problem.

Algorithm: A step-by-step problem-solving process in which a solution is arrived at in a
finite amount of time.

In a programming environment, the problem-solving process requires the following three steps:

1. Analyze the problem, outline the problem and its solution requirements,
and design an algorithm to solve the problem.

2. Implement the algorithm in a programming language, such as C++, and
verify that the algorithm works.

3. Maintain the program by using and modifying it if the problem domain changes.

Figure 1-4 summarizes this three-step programming process.

Programming with the Problem Analysis—Coding—Execution Cycle | 13

Problem

|

Analysis -

|
l
l

-~

Preprocessor

R Gomge 8 —eror—
|

- No Iirror
T
!

No Error
—

FIGURE 1-4 Problem analysis—coding—execution cycle

To develop a program to solve a problem, you start by analyzing the problem. You then
design the algorithm; write the program instructions in a high-level language, or code the
program; and enter the program into a computer system.

Analyzing the problem is the first and most important step. This step requires you to do
the following:

1. Thoroughly understand the problem.

2. Understand the problem requirements. Requirements can include whether
the program requires interaction with the user, whether it manipulates data,

14 | Chapter 1: An Overview of Computers and Programming Languages

whether it produces output, and what the output looks like. If the program
manipulates data, the programmer must know what the data is and how it is
represented. That 1s, you need to look at sample data. If the program produces
output, you should know how the results should be generated and formatted.

3. If the problem is complex, divide the problem into subproblems and repeat
Steps 1 and 2. That is, for complex problems, you need to analyze each
subproblem and understand each subproblem’s requirements.

After you carefully analyze the problem, the next step is to design an algorithm to solve the
problem. If you broke the problem into subproblems, you need to design an algorithm for
each subproblem. Once you design an algorithm, you need to check it for correctness. You
can sometimes test an algorithm’s correctness by using sample data. At other times, you
might need to perform some mathematical analysis to test the algorithm’s correctness.

Once you have designed the algorithm and verified its correctness, the next step is to
convert it into an equivalent programming code. You then use a text editor to enter the
programming code or the program into a computer. Next, you must make sure that the
program follows the language’s syntax. To verify the correctness of the syntax, you run
the code through a compiler. If the compiler generates error messages, you must identify
the errors in the code, remove them, and then run the code through the compiler again.
When all the syntax errors are removed, the compiler generates the equivalent machine
code, the linker links the machine code with the system’s resources, and the loader places
the program into main memory so that it can be executed.

The final step is to execute the program. The compiler guarantees only that the program
follows the language’s syntax. It does not guarantee that the program will run correctly.
During execution, the program might terminate abnormally due to logical errors, such as
division by zero. Even if the program terminates normally, it may still generate erroneous
results. Under these circumstances, you may have to reexamine the code, the algorithm,
or even the problem analysis.

Your overall programming experience will be successful if you spend enough time to
complete the problem analysis before attempting to write the programming instructions.
Usually, you do this work on paper using a pen or pencil. Taking this careful approach to
programming has a number of advantages. It is much easier to discover errors in a program
that is well analyzed and well designed. Furthermore, a carefully analyzed and designed
program is much easier to follow and modify. Even the most experienced programmers
spend a considerable amount of time analyzing a problem and designing an algorithm.

Throughout this book, you will not only learn the rules of writing programs in C++, but you
will also learn problem-solving techniques. Most of the chapters contain programming exam-
ples that discuss programming problems. These programming examples teach techniques of
how to analyze and solve problems, design algorithms, code the algorithms into C++, and also
help you understand the concepts discussed in the chapter. To gain the full benefit of this book,
we recommend that you work through these programming examples.

Next, we provide examples of various problem-analysis and algorithm-design techniques.

Programming with the Problem Analysis—Coding—Execution Cycle | 15

In this example, we design an algorithm to find the perimeter and area of a rectangle.

To find the perimeter and area of a rectangle, you need to know the rectangle’s length and

width.

The perimeter and area of the rectangle are then given by the following formulas:

perimeter = 2 - (length + width)
area = length . width

The algorithm to find the perimeter and area of the rectangle is:

1. Get the length of the rectangle.
2. Get the width of the rectangle.

3. Find the perimeter using the following equation:

perimeter = 2 . (length + width)

4. Find the area using the following equation:

area = length . width

In this example, we design an algorithm that calculates the sales tax and the price of an item
sold in a particular state.

The sales tax is calculated as follows: The state’s portion of the sales tax is 4%, and the city’s
portion of the sales tax is 1.5%. If the item is a luxury item, such as a car more than $50,000,
then there is a 10% luxury tax.

To calculate the price of the item, we need to calculate the state’s portion of the sales
tax, the city’s portion of the sales tax, and, if it is a luxury item, the luxury tax.
Suppose salePrice denotes the selling price of the item, stateSalesTax denotes
the state’s sales tax, citySalesTax denotes the city’s sales tax, luxuryTax denotes
the luxury tax, salesTax denotes the total sales tax, and amountDue denotes the final price
of the item.

To calculate the sales tax, we must know the selling price of the item and whether the item is
a luxury item.

The stateSalesTax and citySalesTax can be calculated using the following formulas:

stateSalesTax = salePrice - 0.04
citySalesTax = salePrice . 0.015

Watch
the Video

16 | Chapter 1: An Overview of Computers and Programming Languages

Next, you can determine luxuryTax as follows:
if (item is a luxury item)
luxuryTax = salePrice . 0.1

otherwise
luxuryTax = 0

Next, you can determine salesTax as follows:

salesTax = stateSalesTax + citySalesTax + luxuryTax
Finally, you can calculate amountDue as follows:

amountDue = salePrice + salesTax

The algorithm to determine salesTax and amountDue is, therefore:

1. Get the selling price of the item.
2. Determine whether the item is a luxury item.

3. Find the state’s portion of the sales tax using the formula:
stateSalesTax = salePrice - 0.04
4. Find the city’s portion of the sales tax using the formula:
citySalesTax = salePrice - 0.015
5. Find the luxury tax using the following formula:
if (item is a luxury item)
luxuryTax = salePrice - 0.1

otherwise
luxuryTax = 0

6. Find salesTax using the formula:
salesTax = stateSalesTax + citySalesTax + luxuryTax
7. Find amountDue using the formula:

amountDue = salePrice + salesTax

In this example, we design an algorithm that calculates the monthly paycheck of a salesperson

at a local department store.

Every salesperson has a base salary. The salesperson also receives a bonus at the end of each
month, based on the following criteria: If the salesperson has been with the store for five years
or less, the bonus is $10 for each year that he or she has worked there. If the salesperson has
been with the store for more than five years, the bonus is $20 for each year that he or she has
worked there. The salesperson can earn an additional bonus as follows: If the total sales made

Programming with the Problem Analysis—Coding—Execution Cycle | 17

by the salesperson for the month are at least $5,000 but less than $10,000, he or she receives a
3% commission on the sale. If the total sales made by the salesperson for the month are at least
$10,000, he or she receives a 6% commission on the sale.

To calculate a salesperson’s monthly paycheck, you need to know the base salary, the number of
years that the salesperson has been with the company, and the total sales made by the sales-
person for that month. Suppose baseSalary denotes the base salary, noOfServiceYears
denotes the number of years that the salesperson has been with the store, bonus denotes
the bonus, totalSales denotes the total sales made by the salesperson for the month, and
additionalBonus denotes the additional bonus.

You can determine the bonus as follows:

if (noOfServiceYears is less than or equal to five)
bonus = 10 . noOfServiceYears

otherwise
bonus = 20 . noOfServiceYears

Next, you can determine the additional bonus of the salesperson as follows:

if (totalSales is less than 5000)
additionalBonus = 0
otherwise
if (totalSales is greater than or equal to 5000 and
totalSales is less than 10000)
additionalBonus = totalSales - (0.03)
otherwise
additionalBonus = totalSales - (0.06)

Following the above discussion, you can now design the algorithm to calculate a salesperson’s

monthly paycheck:

Get baseSalary.
Get noOfServiceYears.

Calculate bonus using the following formula:

1f (noOfServiceYears is less than or equal to five)
bonus = 10 . noOfServiceYears
otherwise

bonus = 20 . noOfServiceYears
4. Get totalSales.

5. Calculate additionalBonus using the following formula:

if (totalSales is less than 5000)
additionalBonus = 0
otherwise
if (totalSales is greater than or equal to 5000 and
totalSales is less than 10000)
additionalBonus = totalSales - (0.03)
otherwise
additionalBonus = totalSales - (0.06)

18 | Chapter 1: An Overview of Computers and Programming Languages

6. Calculate payCheck using the equation:

payCheck = baseSalary + bonus + additionalBonus

In this example, we design an algorithm to play a number-guessing game.

The objective is to randomly generate an integer greater than or equal to 0 and less than 100.
Then prompt the player (user) to guess the number. If the player guesses the number
correctly, output an appropriate message. Otherwise, check whether the guessed number is
less than the random number. If the guessed number is less than the random number
generated, output the message, “Your guess is lower than the number. Guess again!”;
otherwise, output the message, “Your guess is higher than the number. Guess again!”. Then
prompt the player to enter another number. The player is prompted to guess the random
number until the player enters the correct number.

The first step is to generate a random number, as described above. C++ provides the means to
do so, which is discussed in Chapter 5. Suppose num stands for the random number and
guess stands for the number guessed by the player.

After the player enters the guess, you can compare the guess with the random number as follows:

if (guess is equal to num)
Print "You guessed the correct number."
otherwise
if guess is less than num
Print "Your guess is lower than the number. Guess again!"
otherwise
Print "Your guess is higher than the number. Guess again!"

You can now design an algorithm as follows:

1. Generate a random number and call it num.

2. Repeat the following steps until the player has guessed the correct number:

a. Prompt the player to enter guess.

b.

if (guess is equal to num)
Print "You guessed the correct number."
otherwise
if guess is less than num
Print "Your guess is lower than the number. Guess again!"
otherwise
Print "Your guess is higher than the number. Guess again!"

In Chapter 5, we use this algorithm to write a C++ program to play the guessing the number
game.

Programming with the Problem Analysis—Coding—Execution Cycle | 19

There are 10 students in a class. Each student has taken five tests, and each test is worth 100
points. We want to design an algorithm to calculate the grade for each student, as well as the
class average. The grade is assigned as follows: If the average test score is greater than or equal
to 90, the grade is A; if the average test score is greater than or equal to 80 and less than 90,
the grade is B; if the average test score is greater than or equal to 70 and less than 80, the grade
is C; if the average test score is greater than or equal to 60 and less than 70, the grade is D;
otherwise, the grade is F. Note that the data consists of students’ names and their test scores.

This is a problem that can be divided into subproblems as follows: There are five tests, so you
design an algorithm to find the average test score. Next, you design an algorithm to determine the
grade. The two subproblems are to determine the average test score and to determine the grade.

Let us first design an algorithm to determine the average test score. To find the average test
score, add the five test scores and then divide the sum by 5. Therefore, the algorithm is the
following:

1. Get the five test scores.
2. Add the five test scores. Suppose sum stands for the sum of the test scores.

3. Suppose average stands for the average test score. Then
average = sum / 5;

Next, you design an algorithm to determine the grade. Suppose grade stands for the grade
assigned to a student. The following algorithm determines the grade:

if average is greater than or equal to 90

grade = A
otherwise
if average is greater than or equal to 80 and less than 90
grade = B
otherwise
if average is greater than or equal to 70 and less than 80
grade = C
otherwise
if average is greater than or equal to 60 and less than 70
grade = D
otherwise
grade = F

You can use the solutions to these subproblems to design the main algorithm as follows:
(Suppose totalAverage stands for the sum of the averages of each student’s test average.)

1. totalAverage = 0;
2. Repeat the following steps for each student in the class:
a. Get student’s name.

b. Use the algorithm as discussed above to find the average test score.

20 | Chapter 1: An Overview of Computers and Programming Languages

c. Use the algorithm as discussed above to find the grade.

d. Update totalAverage by adding the current student’s average test score.
3. Determine the class average as follows:
classAverage = totalAverage / 10

A programming exercise in Chapter 8 asks you to write a C++ program to determine the
average test score and grade for each student in a class.

Programming Methodologies

Two popular approaches to programming design are the structured approach and the
object-oriented approach, which are outlined below.

Structured Programming

Dividing a problem into smaller subproblems is called structured design. Each subproblem
is then analyzed, and a solution is obtained to solve the subproblem. The solutions to all of
the subproblems are then combined to solve the overall problem. This process of imple-
menting a structured design is called structured programming. The structured-design
approach is also known as top-down design, bottom-up design, stepwise refinement,
and modular programming.

Object-Oriented Programming

Object-oriented design (OOD) is a widely used programming methodology. In OOD, the
first step in the problem-solving process is to identify the components called objects, which
form the basis of the solution, and to determine how these objects interact with one another.
For example, suppose you want to write a program that automates the video rental process for
a local video store. The two main objects in this problem are the video and the customer.

Atfter identifying the objects, the next step is to specity for each object the relevant data
and possible operations to be performed on that data. For example, for a video object, the
data might include:

® movie name

® starring actors

e producer

® production company

® number of copies in stock
Some of the operations on a video object might include:
e checking the name of the movie

® reducing the number of copies in stock by one after a copy is rented

® incrementing the number of copies in stock by one after a customer returns a
particular video

Programming Methodologies | 21

This illustrates that each object consists of data and operations on that data. An object
combines data and operations on the data into a single unit. In OOD, the final program is
a collection of interacting objects. A programming language that implements OOD is
called an object-oriented programming (OOP) language. You will learn about the
many advantages of OOD in later chapters.

Because an object consists of data and operations on that data, before you can design and
use objects, you need to learn how to represent data in computer memory, how to
manipulate data, and how to implement operations. In Chapter 2, you will learn the basic
data types of C++ and discover how to represent and manipulate data in computer
memory. Chapter 3 discusses how to input data into a C++ program and output the
results generated by a C++ program.

To create operations, you write algorithms and implement them in a programming
language. Because a data element in a complex program usually has many operations,
to separate operations from each other and to use them effectively and in a convenient
manner, you use functions to implement algorithms. After a brief introduction in
Chapters 2 and 3, you will learn the details of functions in Chapter 6. Certain algorithms
require that a program make decisions, a process called selection. Other algorithms might
require certain statements to be repeated until certain conditions are met, a process called
repetition. Still other algorithms might require both selection and repetition. You will
learn about selection and repetition mechanisms, called control structures, in Chapters 4
and 5. Also, in Chapter 8, using a mechanism called an array, you will learn how to
manipulate data when data items are of the same type, such as items in a list of
sales figures.

Finally, to work with objects, you need to know how to combine data and operations on
the data into a single unit. In C++, the mechanism that allows you to combine data and
operations on the data into a single unit is called a class. You will learn how classes work,
how to work with classes, and how to create classes in the chapter Classes and Data
Abstraction (later in this book).

As you can see, you need to learn quite a few things before working with the OOD
methodology. To make this learning easier and more eftective, this book purposely
divides control structures into two chapters (4 and 5).

For some problems, the structured approach to program design will be very eftective.
Other problems will be better addressed by OOD. For example, if a problem requires
manipulating sets of numbers with mathematical functions, you might use the struc-
tured design approach and outline the steps required to obtain the solution. The C++
library supplies a wealth of functions that you can use effectively to manipulate
numbers. On the other hand, if you want to write a program that would make a
candy machine operational, the OOD approach is more effective. C++ was designed
especially to implement OOD. Furthermore, OOD works well and is used in conjunction
with structured design.

22 | Chapter 1: An Overview of Computers and Programming Languages

Both the structured design and OOD approaches require that you master the basic compo-
nents of a programming language to be an effective programmer. In Chapters 2 to 8, you will
learn the basic components of C++, such as data types, input/output, control structures,
user-defined functions, and arrays, required by either type of programming. We illustrate
how these concepts work using the structured programming approach. Starting with the
chapter Classes and Data Abstraction, we use the OOD approach.

ANSI/ISO Standard C++

The programming language C++ evolved from C and was designed by Bjarne
Stroustrup at Bell Laboratories in the early 1980s. From the early 1980s through the
early 1990s, several C++ compilers were available. Even though the fundamental
features of C++ in all compilers were mostly the same, the C++ language, referred
to in this book as Standard C++, was evolving in slightly different ways in different
compilers. As a consequence, C++ programs were not always portable from one
compiler to another.

To address this problem, in the early 1990s, a joint committee of the American National
Standard Institution (ANSI) and International Standard Organization (ISO) was established
to standardize the syntax of C++. In mid-1998, ANSI/ISO C++ language standards were
approved. Most of today’s compilers comply with these new standards. Over the last several
years, the C++ committee met several times to further standardize the syntax of C++. In
mid-2010, the second standard of C++ was voted on and approved. The main objective of
this standard, referred to as C++0X, or tentatively as C++11, is to make the C++ code
cleaner and more effective. For example, the new standard introduces the data type long long
to deal with large integers, auto declaration of variables using initialization statements,
enhancing the functionality of for loops to effectively work with arrays and containers,
and new algorithms. However, not all new features of this new standard have been
implemented by all the compilers currently available. In this book, we introduce the new
C++ features that we know have been implemented by the well-known compilers and also
comment on the ones that will be implemented in the future.

This book focuses on the syntax of C++ as approved by ANSI/ISO, referred to as ANSI/
ISO Standard C++.

QUICK REVIEW

1. A computer is an electronic device capable of performing arithmetic and
logical operations.

2. A computer system has two components: hardware and software.

3. The central processing unit (CPU) and the main memory are examples of
hardware components.

4. All programs must be brought into main memory before they can be executed.

When the power is switched off, everything in main memory is lost.

12,
13.

15.

16.
17.

20.

21.
22,

23.

24,

25.

Quick Review

Secondary storage provides permanent storage for information. Hard disks,
flash drives, floppy disks, ZIP disks, CD-ROMs, and tapes are examples of
secondary storage.

Input to the computer is done via an input device. Two common input devices
are the keyboard and the mouse.

The computer sends its output to an output device, such as the computer screen.
Software are programs run by the computer.

The operating system monitors the overall activity of the computer and
provides services.

The most basic language of a computer is a sequence of 0s and 1s called machine
language. Every computer directly understands its own machine language.

A bit is a binary digit, 0 or 1.

A byte is a sequence of eight bits.

A sequence of Os and 1s is referred to as a binary code or a binary number.
One kilobyte (KB) is 2'” = 1024 bytes; one megabyte (MB) is 2* = 1,048,576
bytes; one gigabyte (GB) is 2°" = 1,073,741,824 bytes; one terabyte (TB) is
2% =1,099,511,627,776 bytes; one petabyte (PB) is 2°" = 1,125,899,906,842,624
bytes; one exabyte (EB) is 200 — 1,152,921,504,606,846,976 bytes; and one
zettabyte (ZB) is 2" = 1,180,591,620,717,411,303,424 bytes.

Assembly language uses easy-to-remember instructions called mnemonics.
Assemblers are programs that translate a program written in assembly language
into machine language.

Compilers are programs that translate a program written in a high-level
language into machine code, called object code.

A linker links the object code with other programs provided by the integrated
development environment (IDE) and used in the program to produce execu-
table code.

Typically, six steps are needed to execute a C++ program: edit, preprocess,
compile, link, load, and execute.

A loader transfers executable code into main memory.

An algorithm is a step-by-step problem-solving process in which a solution is
arrived at in a finite amount of time.

The problem-solving process has three steps: analyze the problem and design
an algorithm, implement the algorithm in a programming language, and
maintain the program.

Programs written using the structured design approach are easier to understand,
easier to test and debug, and easier to modify.

In structured design, a problem is divided into smaller subproblems. Each
subproblem is solved, and the solutions to all of the subproblems are then
combined to solve the problem.

23

24 | Chapter 1: An Overview of Computers and Programming Languages
26. In object-oriented design (OOD), a program is a collection of interacting objects.
27. An object consists of data and operations on that data.
28. The ANSI/ISO Standard C++ syntax was approved in mid-1998.
EXERCISES
1. Mark the following statements as true or false.
a. The first device known to carry out calculations was the Pascaline.
b. Modern-day computers can accept spoken-word instructions but cannot
imitate human reasoning.
c. In ASCII coding, every character is coded as a sequence of 8 bits.
d. A compiler translates a high-level program into assembly language.
e. The arithmetic operations are performed inside the CPU, and if an error is
found, it outputs the logical errors.
. A sequence of Os and 1s is called a decimal code.
g. A linker links and loads the object code from main memory into the CPU
for execution.
h. Development of a C++ program includes six steps.
i. A program written in a high-level programming language is called a source
program.
j. ZB stands for zero byte.
k. The first step in the problem-solving process is to analyze the problem.
I. In object-oriented design, a program is a collection of interacting functions.
2. What are the basic commands performed by a computer?
3. Name three hardware components.
4. Why is secondary storage needed?
5. What is the function of an operating system?
6. What are the two types of programs?
7. What are the differences between machine languages and high-level languages?
8. What is a source program?
9. Why do you need a compiler?
10. What kind of errors are reported by a compiler?
1. Why do you need to translate a program written in a high-level language into machine
language?
12. - Why would you prefer to write a program in a high-level language rather than a
machine language?
13. What is linking?

20.

21.

22,

Exercises

What are the advantages of problem analysis and algorithm design over directly writing a

program in a high-level language?

Design an algorithm to find the weighted average of four test scores. The four
test scores and their respective weights are given in the following format:

testScorel weightTestScorel

For example, sample data is as follows:

75 0.20

95 0.35

85 0.15

65 0.30

Design an algorithm to convert the change given in quarters, dimes, nickels,
and pennies into pennies.

Given the radius, in inches, and price of a pizza, design an algorithm to find the
price of the pizza per square inch.

To make a profit, the prices of the items sold in a furniture store are marked up
by 80%. After marking up the prices each item is put on sale at a discount of
10%. Design an algorithm to find the selling price of an item sold at the
furniture store. What information do you need to find the selling price?

Suppose a, b, and ¢ denote the lengths of the sides of a triangle. Then the area of
the triangle can be calculated using the formula:

Vsls—a)(s —b)(s o).

where s = (1/2)(a + b + ¢). Design an algorithm that uses this formula to find
the area of a triangle. What information do you need to find the area?

Jason typically uses the Internet to buy various items. If the total cost of the
items ordered, at one time, is $200 or more, then the shipping and handling is
free; otherwise, the shipping and handling is $10 per item. Design an algorithm
that prompts Jason to enter the number of items ordered and the price of each
item. The algorithm then outputs the total billing amount. Your algorithm
must use a loop (repetition structure) to get the price of each item. (For
simplicity, you may assume that Jason orders no more than five items at a time.)

Suppose that the cost of sending an international fax is calculated as follows:
The service charge is $3.00, $.20 per page for the first 10 pages, and $0.10 for
each additional page. Design an algorithm that asks the user to enter the
number of pages to be faxed. The algorithm then uses the number of pages
to be faxed to calculate the amount due.

An ATM allows a customer to withdraw a maximum of $500 per day. If a
customer withdraws more than $300, the service charge is 4% of the amount
over $300. If the customer does not have sufficient money in the account, the
ATM informs the customer about the insufficient funds and gives the customer

26 | Chapter 1: An Overview of Computers and Programming Languages

the option to withdraw the money for a service charge of $25.00. If there is no
money in the account or if the account balance is negative, the ATM does not
allow the customer to withdraw any money. If the amount to be withdrawn is
greater than $500, the ATM informs the customer about the maximum amount
that can be withdrawn. Write an algorithm that allows the customer to enter
the amount to be withdrawn. The algorithm then checks the total amount
in the account, dispenses the money to the customer, and debits the
account by the amount withdrawn and the service charges, if any.

23. You are given a list of students’ names and their test scores. Design an algorithm
that does the following:

a. Calculates the average test scores.

b. Determines and prints the names of all the students whose test scores are
below the average test score.

c. Determines the highest test score.

d. Prints the names of all the students whose test scores are the same as the
highest test score.

(You must divide this problem into subproblems as follows: The first subproblem
determines the average test score. The second subproblem determines and prints the
names of all the students whose test scores are below the average test score. The third
subproblem determines the highest test score. The fourth subproblem prints the names
of all the students whose test scores are the same as the highest test score. The main
algorithm combines the solutions of the subproblems.)

Basic ELEMENTS oF CH++

IN THIS CHAPTER, YOU WILL:

Become familiar with the basic components of a C++ program, including functions, special
symbols, and identifiers

Explore simple data types

Discover how to use arithmetic operators

Examine how a program evaluates arithmetic expressions

Learn what an assignment statement is and what it does

Become familiar with the string data type

Discover how to input data into memory using input statements
Become familiar with the use of increment and decrement operators
Examine ways to output results using output statements

Learn how to use preprocessor directives and why they are necessary
Learn how to debug syntax errors

Explore how to properly structure a program, including using comments to document a program

Learn how to write a C++ program

28 | Chapter 2: Basic Elements of C++

In this chapter, you will learn the basics of C++. As your objective is to learn the C++
programming language, two questions naturally arise. First, what is a computer program?
Second, what is programming? A computer program, or a program, is a sequence of
statements whose objective is to accomplish a task. Programming is a process of
planning and creating a program. These two definitions tell the truth, but not the whole
truth, about programming. It may very well take an entire book to give a good and
satisfactory definition of programming. You might gain a better grasp of the nature of
programming from an analogy, so let us turn to a topic about which almost everyone has
some knowledge—cooking. A recipe is also a program, and everyone with some cooking
experience can agree on the following:

1. It is usually easier to follow a recipe than to create one.
There are good recipes and there are bad recipes.
Some recipes are easy to follow and some are not easy to follow.

Some recipes produce reliable results and some do not.

ok

You must have some knowledge of how to use cooking tools to follow
a recipe to completion.

6. To create good new recipes, you must have a lot of knowledge and a
good understanding of cooking.

These same six points are also true about programming. Let us take the cooking analogy
one step further. Suppose you need to teach someone how to become a chef. How
would you go about it? Would you first introduce the person to good food, hoping that a
taste for good food develops? Would you have the person follow recipe after recipe in the
hope that some of it rubs off? Or would you first teach the use of tools and the nature of
ingredients, the foods and spices, and explain how they fit together? Just as there is
disagreement about how to teach cooking, there is disagreement about how to teach
programming.

Learning a programming language is like learning to become a chef or learning to play a
musical instrument. All three require direct interaction with the tools. You cannot
become a good chef or even a poor chef just by reading recipes. Similarly, you cannot
become a player by reading books about musical instruments. The same is true of
programming. You must have a fundamental knowledge of the language, and you must
test your programs on the computer to make sure that each program does what it is
supposed to do.

A Quick Look at a C++ Program

In this chapter, you will learn the basic elements and concepts of the C++ programming
language to create C++ programs. In addition to giving examples to illustrate various
concepts, we will also show C++ programs to clarify these concepts. In this section, we
provide an example of a C++ program that computes the perimeter and area of a

A Quick Look at a C++ Program | 29

rectangle. At this point you need not be too concerned with the details of this program.
You only need to know the eftect of an oufput statement, which is introduced in this
program.

In Example 1-1 (Chapter 1), we designed an algorithm to find the perimeter and area of a
rectangle. Given the length and width of a rectangle, the C++ program, in Example 2-1,
computes and displays the perimeter and area.

//**

// Given the length and width of a rectangle, this C++ program

// computes and outputs the perimeter and area of the rectangle.
YA e e T e a2y

#include <iostream>
using namespace std;

int main ()

{
double length;
double width;
double area;
double perimeter;

cout << "Program to compute and output the perimeter and "
<< "area of a rectangle." << endl;

length = 6.0;

width = 4.0;

perimeter = 2 * (length + width);
area = length * width;

cout << "Length = " << length << endl;

cout << "Width = " << width << endl;

cout << "Perimeter = " << perimeter << endl;
cout << "Area = " << area << endl;

return 0;

}

Sample Run: (When you compile and execute this program, the following five lines are
displayed on the screen.)

Program to compute and output the perimeter and area of a rectangle.
Length = 6

Width = 4

Perimeter = 20

Area = 24

30 | Chapter 2: Basic Elements of C++

These lines are displayed by the execution of the following statements:

cout << "Program to compute and output the perimeter and "
<< "area of a rectangle." << endl;

cout << "Length = " << length << endl;

cout << "Width = " << width << endl;

cout << "Perimeter = " << perimeter << endl;
cout << "Area = " << area << endl;

Next we explain how this happens. Let us first consider the following statement:

cout << "Program to compute and output the perimeter and "
<< "area of a rectangle." << endl;

This is an example of a C++ output statement. It causes the computer to evaluate the
expression after the pair of symbols << and display the result on the screen.

Usually, a C++ program contains various types of expressions such as arithmetic and
strings. For example, length + width is an arithmetic expression. Anything in double
quotes 1s a string. For example, "Program to compute and output the perimeter
and " is a string. Similarly, "area of a rectangle." is also a string. Typically, a string
evaluates to itself. Arithmetic expressions are evaluated according to rules of arithmetic
operations, which you typically learn in an algebra course. Later in this chapter, we will
explain how arithmetic expressions and strings are formed and evaluated.

Also note that in an output statement, endl causes the insertion point to move to the beginning
of the next line. (Note that in endl, the last letter is lowercase el. Also, on the screen, the
insertion point is where the cursor is.) Therefore, the preceding statement causes the
system to display the following line on the screen.

Program to compute and output the area and perimeter of a rectangle.
Let us now consider the following statement:
cout << "Length = " << length << endl;

This output statement consists of two expressions. The first expression, (after the first <<),
is "Length = " and the second expression, (after the second <<), consists of the identifier
length. The expression "Length = " is a string and evaluates to itself. (Notice the space
after =) The second expression, which consists of the identifier length, evaluates to
whatever the value of length is. Because the value assigned to length is 6.0, length
evaluates to 6.0. Therefore, the output of the preceding statement is:

Length = 6

Note that the value of length is output as 6 not as 6.0. We will explain in the next
chapter how to force the program to output the value of length as 6.0. The meaning of
the remaining output statements is similar.

A Quick Look at a C++ Program | 31

The last statement, that is,
return 0;

returns the value 0 to the operating system when the program terminates. We will
elaborate on this statement later in this chapter.

Before we identify various parts of a C++ program, let’s look at one more output
statement. Consider the following statement:

cout << "7 4+ 8 = " << 7 + 8 << endl;

In this output statement, the expression "7 + 8 = ", which is a string, evaluates to itself.
Let us consider the second expression, 7 + 8. This expression consists of the numbers
7 and 8, and the C++ arithmetic operator +. Therefore, the result of the expression 7 + 8
is the sum of 7 and 8, which is 15. Thus, the output of the preceding statement is:

7+ 8 =15

In the next chapter, until we explain how to properly construct a C++ program, we will
be using output statements such as the preceding ones to explain various concepts. After
finishing Chapter 2, you should be able to write C++ programs well enough to do some
computations and show results.

Next, let us note the following about the previous C++ program. A C++ program is a
collection of functions, one of which is the function main. Roughly speaking, a function is
a set of statements whose objective is to accomplish something. The preceding program
consists of only the function main; all C++ programs require a function main.

The first four lines of the program begins with the pair of symbols // (shown in
green), which are comments. Comments are for the user; they typically explain the
purpose of the programs, that is, the meaning of the statements. (We will elaborate
on how to include comments in a program later in this chapter.) The next line of the
program, that is,

#include <iostream>

allows us to use the (predefined object) cout to generate output and the (manipulator)
endl. The statement

using namespace std;

allows you to use cout and endl without the prefix std::. It means that if you do not
include this statement, then cout should be used as std: : cout and endl should be used
as std: :endl. We will elaborate on this later in this chapter.

Next consider the following line:

int main ()

32 | Chapter 2: Basic Elements of C++

This is the heading of the function main. The next line consists of a left brace. This
marks the beginning of the (body) of the function main. The right brace (at the last
line of the program) matches this left brace and marks the end of the body of the
function main. We will explain the meaning of the other terms, such as the ones shown

in blue, later in this book. Note that in C++, << is an operator, called the
insertion operator.

Stream

Before ending this section, let us identify certain parts of the C++ program in Figure 2-1.

//**

// Given the length and width of a rectangle, this C++ program

// computes and outputs the perimeter and area of the rectangle.
A

#include <iostream>
using namespace std;

int main ()

{ Variable declarations. A statement such as

goﬁzie l?ggih; double length;

d°uble WRLEIERS < instructs the system to allocate memory
PREE eureel space and name it length.

double perimeter;

cout << "Program to compute and output the perimeter and "

|

Comments

<< "area of a rectangle." << endl;
length = 6.0; Assignment statement. This statement instructs the system
T to store 6.0 in the memory space length.

width = 4.0;

perimeter = 2 * (length + width);
Assignment statement.

area = length * width; «—— This statement instructs the system to evaluate
the expression length * width and store
the result in the memory space area.

cout << "Length = " << length << endl; Output statements. An

cout << "Width = " << width << endl; <— output statement

cout << "Perimeter = " << perimeter << endl; msnucmthesyﬁemto

cout << "Area = " << area << endl;] dspbyresuhs

return 0;

FIGURE 2-1 Various parts of a C++ program

A Quick Look at a C++ Program | 33

One of the terms that you will encounter throughout the text and that is also identified in
Figure 2-1 is variable. Therefore, we introduce this term in this section. Recall from
Chapter 1 that all data must be loaded into main memory before it can be manipulated.
For example, given the length and width, the program in Figure 2-1 computes and
outputs the area and perimeter of a rectangle. This means that the values of length and
width must be stored in main memory. Also, recall from Chapter 1 that main memory is
an ordered sequence of cells and every cell has an address. Inside the computer, the
address of a memory cell is in binary. Once we store the values of length and width, and
because these values might be needed in more than one place in a program, we would
like to know the locations where these values are stored and how to access those memory
locations. C++ makes it easy for a programmer to specify the locations because the
programmer can supply an alphabetic name for each of those locations. Of course, we
must follow the rules to specify the names. For example, in the program in Figure 2-1,
we are telling the system to allocate four memory spaces and name them length, width,
area, and perimeter, respectively. (We will explain the meaning of the word double,
shown in blue later in this chapter.) Essentially, a variable is a memory location whose
contents can be changed. So length, width, area, and perimeter are variables. Also
during program execution, the system will allocate four memory locations large enough
to store decimal numbers and those memory locations will be named length, width,
area, and perimeter, respectively, see Figure 2-2.

length width area perimeter

FIGURE 2-2 Memory allocation

The statement length = 6.0; will cause the system to store 6.0 in the memory
location length, see Figure 2-3. Examples 2-14 and 2-19 further illustrate how data
is manipulated in variables.

length width area perimeter

FIGURE 2-3 Memory spaces after the statement 1length = 6. 0; executes

As we proceed through this chapter, we will explain the meaning of the remaining parts
identified in Figure 2-1.

34 | Chapter 2: Basic Elements of C++

The Basics of a C++ Program

In the previous section, we gave an example of a C++ program and also identified certain
parts of the program. In general, a C++ program is a collection of one or more
subprograms, called functions. Roughly speaking, a subprogram or a function is a
collection of statements, and when it is activated, or executed, it accomplishes something.
Some functions, called predefined or standard functions, are already written and are
provided as part of the system. But to accomplish most tasks, programmers must learn to
write their own functions.

Every C++ program has a function called main. Thus, if a C++ program has only one
function, it must be the function main. Until Chapter 6, other than using some of the
predefined functions, you will mainly deal with the function main. By the end of this
chapter, you will have learned how to write the function main.

If you have never seen a program written in a programming language, the C++ program in
Example 2-1 may look like a foreign language. T'o make meaningful sentences in a foreign
language, you must learn its alphabet, words, and grammar. The same is true of a program-
ming language. To write meaningful programs, you must learn the programming language’s
special symbols, words, and syntax rules. The syntax rules tell you which statements
(instructions) are legal or valid, that is, which are accepted by the programming language
and which are not. You must also learn semantic rules, which determine the meaning of
the instructions. The programming language’s rules, symbols, and special words enable you
to write programs to solve problems.

Programming language: A set of rules, symbols, and special words.

In the remainder of this section, you will learn about some of the special symbols of a
C++ program. Additional special symbols are introduced as other concepts are encoun-
tered in later chapters. Similarly, syntax and semantic rules are introduced and discussed
throughout the book.

Comments

The program that you write should be clear not only to you, but also to the reader of
your program. Part of good programming is the inclusion of comments in the program.
Typically, comments can be used to identify the authors of the program, give the date
when the program is written or modified, give a briet explanation of the program, and
explain the meaning of key statements in a program. In the programming examples, for
the programs that we write, we will not include the date when the program is written,
consistent with the standard convention for writing such books.

Comments are for the reader, not for the compiler. So when a compiler compiles a
program to check for the syntax errors, it completely ignores comments. Throughout this
book, comments are shown in green.

The Basics of a C++ Program | 35

The program in Example 2-1 contains the following comments:

//**

// Given the length and width of a rectangle, this C++ program

// computes and outputs the perimeter and area of the rectangle.
//**

There are two common types of comments in a C++ program—single-line comments
and multiple-line comments.

Single-line comments begin with // and can be placed anywhere in the line. Everything
encountered in that line after // is ignored by the compiler. For example, consider the
following statement:

cout << "7 + 8 = " << 7 + 8 << endl;

You can put comments at the end of this line as follows:

cout << "7 + 8 = " << 7 + 8 << endl; //prints: 7 + 8 = 15
This comment could be meaningful for a beginning programmer.

Multiple-line comments are enclosed between /* and */. The compiler ignores anything
that appears between /* and * /. For example, the following is an example of a multiple-line
comment:
/*

You can include comments that can

occupy several lines.
*/
In multiple-line comments, many programmers use single-line comments on every line
to make the comments stand out more to the reader (as was done in the program in
Example 2-1.)

Special Symbols

The smallest individual unit of a program written in any language is called a token.
C++’s tokens are divided into special symbols, word symbols, and identifiers.

Following are some of the special symbols:

* /
? ’

<= 1= == >=
The first row includes mathematical symbols for addition, subtraction, multiplication, and
division. The second row consists of punctuation marks taken from English grammar.
Note that the comma is also a special symbol. In C++, commas are used to separate items
in a list. Semicolons are also special symbols and are used to end a C++ statement. Note

that a blank, which is not shown above, is also a special symbol. You create a blank
symbol by pressing the space bar (only once) on the keyboard. The third row consists of

36 | Chapter 2: Basic Elements of C++

tokens made up of two characters that are regarded as a single symbol. No character can
come between the two characters in the token, not even a blank.

Reserved Words (Keywords)

A second category of tokens is reserved word symbols. Some of the reserved word symbols
include the following:

int, float, double, char, const, void, return

Reserved words are also called keywords. The letters that make up a reserved word are
always lowercase. Like the special symbols, each is considered to be a single symbol.
Furthermore, word symbols cannot be redefined within any program; that is, they cannot
be used for anything other than their intended use. For a complete list of reserved words,
see Appendix A.

NOTE Throughout this book, reserved words are shown in blue.

Identifiers

A third category of tokens is identifiers. Identifiers are names of things that appear in
programs, such as variables, constants, and functions. All identifiers must obey C++’s
rules for identifiers.

Identifier: A C++ identifier consists of letters, digits, and the underscore character ()
and must begin with a letter or underscore.

Some identifiers are predefined; others are defined by the user. In the C++ program in
Example 2-1, cout is a predefined identifier and length is a user-defined identifier. Two
predefined identifiers that you will encounter frequently are cout and cin. You have
already seen the effect of cout. Later in this chapter, you will learn how cin, which is
used to input data, works. Unlike reserved words, predefined identifiers can be redefined,
but it would not be wise to do so.

Identifiers can be made of only letters, digits, and the underscore character; no other
symbols are permitted to form an identifier.

NOTE C++ is case sensitive—uppercase and lowercase letters are considered different. Thus,
the identifier NUMBER is not the same as the identifier number. Similarly, the identifiers
X and x are different.

Data Types | 37

In C++, identifiers can be of any length.

EXAMPLE 2-2

The following are legal identifiers in C++:

first
conversion
payRate
counterl

Table 2-1 shows some illegal identifiers and explains why they are illegal.
TABLE 2-1 Examples of Illegal Identifiers

employee Salary There can be no space between employee and Salary.
Hello! The exclamation mark cannot be used in an identifier.
one + two The symbol + cannot be used in an identifier.

2nd An identifier cannot begin with a digit.

NOTE Compiler vendors usually begin certain identifiers with an underscore ().
When the linker links the object program with the system resources provided by
the integrated development environment (IDE), certain errors could occur. Therefore, it
is advisable that you should not begin identifiers in your program with an underscore (_).

Whitespaces

Every C++ program contains whitespaces. Whitespaces include blanks, tabs, and newline
characters. In a C++ program, whitespaces are used to separate special symbols, reserved
words, and identifiers. Whitespaces are nonprintable in the sense that when they are
printed on a white sheet of paper, the space between special symbols, reserved words, and
identifiers is white. Proper utilization of whitespaces in a program is important. They can
be used to make the program more readable.

Data Types

The objective of a C++ program is to manipulate data. Different programs manipulate
different data. A program designed to calculate an employee’s paycheck will add, subtract,
multiply, and divide numbers, and some of the numbers might represent hours worked and
pay rate. Similarly, a program designed to alphabetize a class list will manipulate names. You
wouldn’t use a cherry pie recipe to help you bake cookies. Similarly, you wouldn’t use a

38 | Chapter 2: Basic Elements of C++

program designed to perform arithmetic calculations to manipulate alphabetic characters.
Furthermore, you wouldn’t multiply or subtract names. Reflecting these kinds of underlying
differences, C++ categorizes data into different types, and only certain operations can be
performed on particular types of data. Although at first it may seem confusing, by being so
type conscious, C++ has built-in checks to guard against errors.

Data type: A set of values together with a set of operations.
C++ data types fall into the following three categories:

e Simple data type
e Structured data type

e Pointers

For the next few chapters, you will be concerned only with simple data types.

Simple Data Types

The simple data type is the fundamental data type in C++ because it becomes a building
block for the structured data type, which you will start learning about in Chapter 8.
There are three categories of simple data:

e Integral, which is a data type that deals with integers, or numbers
without a decimal part

¢ Floating-point, which is a data type that deals with decimal numbers

e Enumeration, which is a user-defined data type

NOTE The enumeration type is C++'s method for allowing programmers to create their own
simple data types. This data type will be discussed in Chapter 7.

Integral data types are further classified into the following nine categories: char, short,
int, long, bool, unsigned char, unsigned short, unsigned int, and
unsigned long.

Why are there so many categories of the same data type? Every data type has a different set
of values associated with it. For example, the char data type is used to represent integers
between —128 and 127. The int data type is used to represent integers between
—2147483648 and 2147483647, and the data type short is used to represent integers
between —32768 and 32767.

Which data type you use depends on how big a number your program needs to deal with.
In the early days of programming, computers and main memory were very expensive.
Only a small amount of memory was available to execute programs and manipulate the
data. As a result, programmers had to optimize the use of memory. Because writing a
program and making it work is already a complicated process, not having to worry about

Data Types | 39

the size of memory makes for one less thing to think about. To eftectively use memory, a
programmer can look at the type of data to be used by a program and thereby figure out
which data type to use. (Memory constraints may still be a concern for programs written
for applications such as a wristwatch.)

Newer programming languages have only five categories of simple data types: integer,
real, char, bool, and the enumeration type. The integral data types that are used in this
book are int, bool, and char.

Table 2-2 gives the range of possible values associated with these three data types and the
size of memory allocated to manipulate these values.

TABLE 2-2 Values and Memory Allocation for Three Simple Data Types

int -2147483648t02147483647 4
bool true and false 1
char -1281to0 127 1

NOTE Use this table only as a guide. Different compilers may allow different ranges of
values. Check your compiler’s documentation. To find the exact size of the
integral data types on a particular system, you can run a program given in
Appendix G (Memory Size of a System). Furthermore, to find the maximum and
minimum values of these data types, you can run another program given in
Appendix F (Header File climits).

NOTE To deal with large integers, the new standard of C++ introduces the data type long
long. The memory space for a long long data value is 64 bytes and the range of
values belonging to this data type is —-9223372036854775808 (-2%3) to
9223372036854775807 (2°3 - 1).

int DATA TYPE
This section describes the int data type. This discussion also applies to other integral data

types.

Integers in C++, as in mathematics, are numbers such as the following:

-6728, -67, 0, 78, 36782, +763

40 | Chapter 2: Basic Elements of C++

Note the following two rules from these examples:

1. Positive integers do not need a + sign in front of them.

2. No commas are used within an integer. Recall that in C++, commas
are used to separate items in a list. So 36, 782 would be interpreted as
two integers: 36 and 782.

bool DATA TYPE

The data type bool has only two values: true and false. Also, true and false are called
the logical (Boolean) values. The central purpose of this data type is to manipulate logical
(Boolean) expressions. Logical (Boolean) expressions will be formally defined and discussed
in detail in Chapter 4. In C++, bool, true, and false are reserved words.

char DATA TYPE

The data type char is the smallest integral data type. It is mainly used to represent single
characters—that is, letters, digits, and special symbols. Thus, the char data type can
represent every key on your keyboard. When using the char data type, you enclose each
character represented within single quotation marks. Examples of values belonging to the
char data type include the following:

IAI’ la|’ |Ol’ l*l’ l+l, l$|, |&l’ L} Ll

Note that a blank space is a character and is written as ' ', with a space between the single
quotation marks.

The data type char allows only one symbol to be placed between the single quotation
marks. Thus, the value 'abc!' is not of the type char. Furthermore, even though ' !="and
similar special symbols are considered to be one symbol, they are not regarded as possible
values of the data type char. All the individual symbols located on the keyboard that are
printable may be considered as possible values of the char data type.

Several difterent character data sets are currently in use. The most common are the
American Standard Code for Information Interchange (ASCII) and Extended Binary-
Coded Decimal Interchange Code (EBCDIC). The ASCII character set has 128 values.
The EBCDIC character set has 256 values and was created by IBM. Both character sets
are described in Appendix C.

Each of the 128 values of the ASCII character set represents a different character. For
example, the value 65 represents 'A', and the value 43 represents '+'. Thus, each
character has a predefined ordering represented by the numeric value associated with
the character. This ordering is called a collating sequence, in the set. The collating
sequence is used when you compare characters. For example, the value representing "B’
is 66, so "A" is smaller than 'B"'. Similarly, '+' is smaller than 'A' because 43 is smaller
than 65.

The 14th character in the ASCII character set is called the newline character and is
represented as '\n'. (Note that the position of the newline character in the ASCII

Data Types | 41

character set is 13 because the position of the first character is 0.) Even though the newline
character is a combination of two characters, it is treated as one character. Similarly, the
horizontal tab character is represented in C++ as '\t' and the null character is repre-
sented as '\ 0" (backslash followed by zero). Furthermore, the first 32 characters in the
ASCII character set are nonprintable. (See Appendix C for a description of these
characters.)

Floating-Point Data Types

To deal with decimal numbers, C++ provides the floating-point data type, which we
discuss in this section. To facilitate the discussion, let us review a concept from a high
school or college algebra course.

You may be familiar with scientific notation. For example:

43872918 = 4.3872918 * 10’ { 10 to the power of seven}
.0000265 = 2.65 * 107° {10 to the power of minus five}
47.9832 = 4.79832 * 10° {10 to the power of one}

To represent decimal numbers, C++ uses a form of scientific notation called floating-
point notation. Table 2-3 shows how C++ might print a set of decimal numbers using
one machine’s interpretation of floating-point notation. In the C++ floating-point
notation, the letter E stands for the exponent.

TABLE 2-3 Examples of Decimal Numbers in Scientific and C++ Floating-Point Notations

75.924 7.5924 * 10° 7.592400E1
0.18 1.8 * 107! 1.800000E-1
0.0000453 4.53 * 107° 4.530000E-5
-1.482 -1.482 * 10° -1.482000E0
7800.0 7.8 * 10° 7.800000E3

C++ provides three data types to manipulate decimal numbers: float, double, and
long double. As in the case of integral data types, the data types float, double, and
long double differ in the set of values.

NOTE On most newer compilers, the data types double and long double are the same.
Therefore, only the data types £1loat and double are described here.

42 | Chapter 2: Basic Elements of C++

float: The data type £loat is used in C++ to represent any decimal number between
-3.4*10°° and 3.4 * 10%%. The memory allocated for a value of the £1loat data type is
four bytes.

double: The data type double is used in C++ to represent any decimal number
between -1.7*10%°® and 1.7 * 10°°®. The memory allocated for a value of the double
data type is eight bytes.

The maximum and minimum values of the data types £loat and double are system
dependent. To find these values on a particular system, you can check your compiler’s
documentation or, alternatively, you can run a program given in Appendix F (Header
File cfloat).

Other than the set of values, there is one more difterence between the data types £loat
and double. The maximum number of significant digits—that is, the number of decimal
places—in float values is six or seven. The maximum number of significant digits in
values belonging to the double type is 15.

NOTE For values of the double type, for better precision, some compilers might give more
than 15 significant digits. Check your compiler’s documentation.

The maximum number of significant digits is called the precision. Sometimes £1loat values
are called single precision, and values of type double are called double precision. If you
are dealing with decimal numbers, for the most part you need only the £loat type; if you
need accuracy to more than six or seven decimal places, you can use the double type.

NOTE In C++, by default, floating-point numbers are considered type double. Therefore, if
you use the data type £loat to manipulate floating-point numbers in a program,
certain compilers might give you a warning message, such as “truncation from double
to float.” To avoid such warning messages, you should use the double data type.
For illustration purposes and to avoid such warning messages in programming
examples, this book mostly uses the data type double to manipulate floating-point
numbers.

Data Types and Variables

Now that we know how to define an identifier, what a data type is, and the term variable,
we can show how to declare a variable. When we declare a variable, not only do we
specify the name of the variable, we also specify what type of data a variable can store. A
syntax rule to declare a variable is:

dataType identifier;

Arithmetic Operators, Operator Precedence, and Expressions | 43

For example, consider the following statements:

int counter;
double interestRate;
char grade;

In the first statement, we are telling the system to allocate a memory space large enough
to store an int value and name that memory space counter. That is, counter is a
variable that can store an int value. Similarly, interestRate is a variable that can store
a value of type double; and grade is a variable that can store a value of type char.

Arithmetic Operators, Operator Precedence,
and Expressions

One of the most important uses of a computer is its ability to calculate. You can use the
standard arithmetic operators to manipulate integral and floating-point data types. There
are five arithmetic operators:

Arithmetic Operators: + (addition), — (subtraction or negation), * (multiplication), /
(division), % (mod, (modulus or remainder))

These operators work as follows:

* You can use the operators +, -, *, and / with both integral and floating-
point data types.

e The operators +, -, *, and / work with floating-point data types
(decimal numbers), the same way you learned in a college algebra
course.

e The operators +, —, *, and / work with integral data types the same
way you learned in a college algebra course.

®* You use % with only the integral data type, to find the remainder in
ordinary division.

e When you use / with the integral data type, it gives the quotient in
ordinary division. That is, integral division truncates any fractional part;
there is no rounding.

44 | Chapter 2: Basic Elements of C++

Example 2-3 shows how the operators / and % work with the integral data types.

Arithmetic
. Result
Expression
57/ 2 2
14 /7 2
34 %5 5 4
4 56 4

Description

In the division 5 / 2, the quotient is 2 and the remainder
is 1. Therefore, 5 / 2 with the integral operands evaluates to
the quotient, which is 2.

In the division 14 / 7, the quotient is 2.

In the division 34 / 5, the quotient is 6 and the remainder
is 4. Therefore, 34 % 5 evaluates to the remainder,

which is 4.

In the division 4 / 6, the quotient is 0 and the remainder is
4. Therefore, 4 % 6 evaluates to the remainder, which is 4.

In the following example, we illustrate how to use the operators / and % with integral

data types.

Given length in inches, we write a program that determines and outputs the equivalent
length in feet and (remaining) inches. Now there are 12 inches in a foot. Therefore, 100
inches equals 8 feet and 4 inches; similarly, 55 inches equals 4 feet and 7 inches. Note
that 100 / 12 = 8 and 100 % 12 = 4; similarly, 55 / 12 = 4 and 55 % 12 = 7. From these
examples, it follows that we can eftectively use the operators / and % to accomplish our
task. The desired program is as follows:

// Given length in inches, this program outputs the equivalent
// length in feet and remaining inch(es).

#include <iostream>

using namespace std;

int main ()

{

int inches; //variable to store total inches

inches = 100;

//store 100 in the variable inches

cout << inches << " inch(es) = "; //output the value of

//inches and the equal sign

cout << inches / 12 << " feet (foot) and "; //output maximum

//number of feet (foot)

Arithmetic Operators, Operator Precedence, and Expressions | 45

cout << inches % 12 << " inch(es)" << endl; //output
//remaining inches
return 0;

}

Sample run:
100 inch(es) = 8 feet (foot) and 4 inch (es)

Note that each time you run this program, it will output the value of 100 inches. To convert
some other value of inches, you need to edit this program and store a different value in the
variable inches, which is not very convenient. Later in this chapter we will illustrate how to
include statements in a program that will instruct the user to enter difterent values. However,
if you are curious to know at this point, then replace the statement

inches = 100; //store 100 in the variable inches
with the following statements and rerun the program:

cout << "Enter total inches and press Enter: "; //prompt
//the user to enter total inches
cin >> inches; //store the value entered by the user
//into the variable inches
cout << endl;

The modified program is available at the Web site accompanying this book and is named
Example2 4 Modified.cpp.

Consider the following expressions, which you have been accustomed to working with
since high school: -5,8-7,3+4,2+3*5,5.6+6.2* 3,andx+2* 5+ 6/ y, where x
and y are unknown numbers. These are examples of arithmetic expressions. The
numbers appearing in the expressions are called operands. The numbers that are used
to evaluate an operator are called the operands for that operator.

In expression -5, the symbol - specifies that the number 5 is negative. In this expression,
- has only one operand. Operators that have only one operand are called unary operators.

In expression 8 — 7, the symbol — is used to subtract 7 from 8. In this expression, — has
two operands, 8 and 7. Operators that have two operands are called binary operators.

Unary operator: An operator that has only one operand.
Binary operator: An operator that has two operands.

In expression 3 + 4, 3 and 4 are the operands for the operator +. In this expression, the
operator + has two operands and is a binary operator. Moreover, in the expression +27,
the operator + indicates that the number 27 is positive. Here, + has only one operand and
SO acts as a unary operator.

From the preceding discussion, it follows that — and + are both unary and binary
arithmetic operators. However, as arithmetic operators, *, /, and % are binary and so
must have two operands.

46 | Chapter 2: Basic Elements of C++

Order of Precedence

When more than one arithmetic operator is used in an expression, C++ uses the operator
precedence rules to evaluate the expression. According to the order of precedence rules
for arithmetic operators,

* 14 /I %
are at a higher level of precedence than
+, -

Note that the operators *, /, and % have the same level of precedence. Similarly, the
operators + and - have the same level of precedence.

When operators have the same level of precedence, the operations are performed from
left to right. To avoid confusion, you can use parentheses to group arithmetic expressions.
For example, using the order of precedence rules,

3*7-6+2*5/4+6
means the following:

(((3*7) —6) + ((2*5) /4)) +6
= ((21 - 6) + (10 / 4)) + 6 (Evaluate *)

= ((21 - 6) +2) + 6 (Evaluate /. Note that this is an integer division.)
= (15+2) +6 (Evaluate -)

=17 + 6 (Evaluate first +)

= 23 (Evaluate +)

Note that the use of parentheses in the second example clarifies the order of precedence.
You can also use parentheses to override the order of precedence rules.

Because arithmetic operators, using the precedence rules, are evaluated from left to right,
unless parentheses are present, the associativity of the arithmetic operators is said to be
from left to right.

(Character Arithmetic) Because the char data type is also an integral data type, C++
allows you to perform arithmetic operations on char data. However, you should use this
ability carefully. There is a difference between the character '8' and the integer 8. The
integer value of 8 is 8. The integer value of '8"' is 56, which is the ASCII collating
sequence of the character '8"'.

When evaluating arithmetic expressions, 8 + 7=15; '8' + '7' =56 + 55, which yields
111;and '8"' + 7 =56 + 7, which yields 63. Furthermore, because '8' * '7' =56 *
55 = 3080 and the ASCII character set has only 128 values, 8" * '7"' is undefined in
the ASCII character data set.

These examples illustrate that many things can go wrong when you are performing
character arithmetic. If you must employ them, use arithmetic operations on the char data
type with caution.

Arithmetic Operators, Operator Precedence, and Expressions | 47

The following example shows how arithmetic operators work.

// This program illustrates how arithmetic operators work.

#include <iostream>

using namespace std;

int main ()

{

cout << "2 + 5 =" << 2 + 5 << endl;

cout << "13 + 89 = " << 13 4+ 89 << endl;

cout << "34 - 20 = " << 34 - 20 << endl;

cout << "45 - 90 = " << 45 - 90 << endl;

cout << "2 * 7 =" << 2 * 7 << endl;

cout << "5 / 2 = " << 5 / 2 << endl;

cout << "14 / 7 = " << 14 / 7 << endl;

cout << "34 % 5 = " << 34 % 5 << endl;

cout << "4 % 6 = " << 4 % 6 << endl << endl;
cout << "5.0 + 3.5 = " << 5.0 + 3.5 << endl;
cout << "3.0 + 9.4 = " << 3.0 + 9.4 << endl;
cout << "16.3 - 5.2 = " << 16.3 - 5.2 << endl;
cout << "4.2 * 2.5 =" << 4.2 * 2.5 << endl;
cout << "5.0 / 2.0 = " << 5.0 / 2.0 << endl;
cout << "34.5 / 6.0 = " << 34.5 / 6.0 << endl;
cout << "34.5 / 6.5 = " << 34.5 / 6.5 << endl;

return 0;

}
Sample Run:

2+5=17

13 + 89 102
34 - 20 = 14
45 - 90 = -45

2* 7 =14

5/ 2=2

14 /7 =2

34 5 5 =14

4 %56 =4

5.0 + 3.5 8.5
3.0 + 9.4 12.4
16.3 - 5.2 = 11.1
4.2 * 2.5 =10.5
5.0 / 2.0 = 2.5
34.5 / 6.0 = 5.75
34.5 / 6.5 = 5.30769

48 | Chapter 2: Basic Elements of C++

NOTE You should be careful when evaluating the mod operator with negative integer operands.
You might not get the answer you expect. For example, -34 % 5 = -4, because in the
division =34 / 5, the quotient is —6 and the remainder is —4. Similarly, 34 $ -5 = 4,
because in the division 34 / -5, the quotient is —6 and the remainder is 4. Also -34 % -5
= -4, because in the division —34 / -5, the quotient is 6 and the remainder is —4.

Expressions
There are three types of arithmetic expressions in C++:
e Integral expressions—all operands in the expression are integers. An
integral expression yields an integral result.

¢ Floating-point (decimal) expressions—all operands in the expression
are floating-points (decimal numbers). A floating-point expression yields
a floating-point result.

e Mixed expressions—the expression contains both integers and decimal
numbers.

Looking at some examples will help clarify these definitions.

Consider the following C++ integral expressions:

In these expressions, x, y, and z represent variables of the integral type; that is, they can
hold integer values.

EXAMPLE 2-7

Consider the following C++ floating-point expressions:

12.8 * 17.5 - 34.50
x * 10.5 + y - 16.2

Here, x and y represent variables of the floating-point type; that is, they can hold
floating-point values.

Arithmetic Operators, Operator Precedence, and Expressions | 49

Evaluating an integral or a floating-point expression is straightforward. As before, when
operators have the same precedence, the expression is evaluated from left to right. You
can always use parentheses to group operands and operators to avoid confusion.

Next, we discuss mixed expressions.

Mixed Expressions

An expression that has operands of different data types is called a mixed expression. A
mixed expression contains both integers and floating-point numbers. The following
expressions are examples of mixed expressions:

2 + 3.5
6 / 4+ 3.9
5.4 *2 - 13.6 + 18 / 2

In the first expression, the operand + has one integer operand and one floating-point
operand. In the second expression, both operands for the operator / are integers, the first
operand of + is the result of 6 / 4, and the second operand of + is a floating-point
number. The third example is an even more complicated mix of integers and floating-
point numbers. The obvious question is: How does C++ evaluate mixed expressions?

Two rules apply when evaluating a mixed expression:
1. When evaluating an operator in a mixed expression:

a. If the operator has the same types of operands (that is, either both
integers or both floating-point numbers), the operator is evaluated
according to the type of the operands. Integer operands thus yield an
integer result; floating-point numbers yield a floating-point number.

b. Ifthe operator has both types of operands (that is, one is an integer and
the other is a floating-point number), then during calculation, the
integer is changed to a floating-point number with the decimal part of
zero and the operator is evaluated. The result is a floating-point number.

2. The entire expression is evaluated according to the precedence rules;
the multiplication, division, and modulus operators are evaluated
before the addition and subtraction operators. Operators having the
same level of precedence are evaluated from left to right. Grouping
using parentheses is allowed for clarity.

From these rules, it follows that when evaluating a mixed expression, you concentrate on
one operator at a time, using the rules of precedence. If the operator to be evaluated has
operands of the same data type, evaluate the operator using Rule 1(a). That is, an operator
with integer operands will yield an integer result, and an operator with floating-point
operands will yield a floating-point result. If the operator to be evaluated has one integer
operand and one floating-point operand, before evaluating this operator, convert the
integer operand to a floating-point number with the decimal part of 0. The following
examples show how to evaluate mixed expressions.

50 | Chapter 2: Basic Elements of C++

EXAMPLE 2-8

Mixed Expression Evaluation
3/2+5.5 =1+5.5
=6.5
15.6/2+5 =7.8+5
=12.8
4+5/2.0 =4+2.5
=6.5

4*3+7/5-25.5 =12+7/5-25.5
=12+1-25.5
=13-25.5

=-12.5

Rule Applied

3/2=1 (integer division; Rule 1(a))
(L+5.5

=1.0+5.5 (Rule 1(b))

=6.5)

15.6/2

=15.6/2.0 (Rule 1(b))

=7.8

7.8+5

=7.8+5.0 (Rulel(b))

=12.8

5/2.0=5.0/2.0 (Rulel(b))
=2.5

4+2.5=4.0+2.5 (Rulel(b))
=6.5

4*%3=12 (Rule 1(a))

7/5=1 (integer division; Rule 1(a))
12+1=13 (Rule 1(a))
13-25.5=13.0-25.5 (Rule 1(b))
=-12.5

The following C++ program evaluates the preceding expressions:

// This program illustrates how mixed expressions are evaluated.

#include <iostream>
using namespace std;

int main ()

{
cout << "3 / 2 + 5.5 ="<< 3/
cout << "15.6 / 2 + 5 = " << 15
cout << "4 + 5 / 2.0 =" << 4 +
cout << "4 * 3 + 7 / 5 - 25.5 =
<< 4 3 +7 /5 - 25.5
<< endl;
return 0;
}
Sample Run:

Type Conversion (Casting) | 51

These examples illustrate that an integer is not converted to a floating-point number
unless the operator to be evaluated has one integer and one floating-point operand.

Type Conversion (Casting)

In the previous section, you learned that when evaluating an arithmetic expression, if the
operator has mixed operands, the integer value is changed to a floating-point value with
the zero decimal part. When a value of one data type is automatically changed to another
data type, an implicit type coercion is said to have occurred. As the examples in the
preceding section illustrate, if you are not careful about data types, implicit type coercion
can generate unexpected results.

To avoid implicit type coercion, C++ provides for explicit type conversion through the
use of a cast operator. The cast operator, also called type conversion or type casting,
takes the following form:

static_cast<dataTypeName> (expression)

First, the expression is evaluated. Its value is then converted to a value of the type
specified by dataTypeName. In C++, static_cast is a reserved word.

When converting a floating-point (decimal) number to an integer using the cast operator,
you simply drop the decimal part of the floating-point number. That is, the floating-point
number is truncated. Example 2-9 shows how cast operators work. Be sure you under-
stand why the last two expressions evaluate as they do.

EXAMPLE 2-9

Expression Evaluates to

static_cast<int> (7.9) 7

static_cast<int> (3.3) 3

static_cast<double> (25) 25.0

static_cast<double> (5+3) =static cast<double>(8) =8.0
static_cast<double> (15) /2 =15.0/2

(because static cast<double> (15) =15.0)
=15.0/2.0=7.5

static_cast<double> (15/2) =static cast<double>(7) (because 15/2=7)
= 7.0

static_cast<int> (7.8 +

static cast<double> (15) /2)

static cast<int>(7.8+7.5)
static_cast<int>(15.3)
= 15

static cast<int> (7.8 +
static cast<double> (15/2))

static_cast<int>(7.8 + 7.0)
static_cast<int> (14.8)
=14

52 | Chapter 2: Basic Elements of C++

The following C++ program evaluates the preceding expressions:

// This program illustrates how explicit type conversion works.

#include <iostream>

using namespace std;

int main ()

{

cout

cout

cout

cout

cout

cout

cout

cout

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

"static cast<int>(7.9)
static_cast<int> (7.9)
endl;

"static cast<int>(3.3) ="
static cast<int>(3.3)

endl;

"static_cast<double> (25) ="
static_cast<double> (25)

endl;

"static cast<double>(5 + 3) ="
static_cast<double> (5 + 3)
endl;
"static_cast<double> (15) / 2
static_cast<double> (15) / 2
endl;
"static_cast<double> (15 / 2)
static_cast<double> (15 / 2)
endl;

"static_cast<int>(7.8 + static_cast<double> (15) / 2)
static_cast<int> (7.8 + static_cast<double> (15) / 2)
endl;

"static cast<int> (7.8 + static_ cast<double> (15 / 2))
static cast<int> (7.8 + static_cast<double> (15 / 2))
endl;

return 0;

}

Sample Run:

static_cast<int>(7.9)

static cast<int> (3.3)

7

_ =3
static_cast<double> (25) =
3

/

25
static_cast<double> (5 + 3) = 8
static_cast<double> (15) 2 =17.5
static cast<double> (15 / 2) = 7

static_cast<int> (7.8 + static_cast<double> (15) / 2) =15
static cast<int> (7.8 + static cast<double> (15 / 2)) = 14

Note that the value of the expression static cast<double>(25) is 25.0. However, it
is output as 25 rather than 25.0. This is because we have not yet discussed how to output

decimal numbers with 0 decimal parts to show the decimal point and the trailing zeros.
Chapter 3 explains how to output decimal numbers in a desired format. Similarly, the

output of other decimal numbers with zero decimal parts is without the decimal point
and the 0 decimal part.

string Type | 53

NOTE In C++, the cast operator can also take the form dataType (expression). This form
is called C-like casting. For example, double (5) = 5.0 and int (17.6) = 17.
However, static_cast is more stable than C-like casting.

You can also use cast operators to explicitly convert char data values into int data values
and int data values into char data values. To convert char data values into int data
values, you use a collating sequence. For example, in the ASCII character
set, static_castJlint>('A'") is 65 and static _cast<Jint>('8") 1s 56.
Similarly, static cast<char>(65) is 'A' and static cast<char>(56) is '8".

Earlier in this chapter, you learned how arithmetic expressions are formed and evaluated
in C++. If you want to use the value of one expression in another expression, first you
must save the value of the expression. There are many reasons to save the value of an
expression. Some expressions are complex and may require a considerable amount of
computer time to evaluate. By calculating the values once and saving them for further
use, you not only save computer time and create a program that executes more quickly,
you also avoid possible typographical errors. In C++, expressions are evaluated, and if
the value is not saved, it is lost. That is, unless it is saved, the value of an expression
cannot be used in later calculations. Later in this chapter, you will learn how to save the
value of an expression and use it in subsequent calculations.

Before leaving the discussion of data types, let us discuss one more data type—string.

string Type

The data type string is a programmer-defined data type. It is not directly available for
use in a program like the simple data types discussed earlier. To use this data type, you
need to access program components from the library, which will be discussed later in this
chapter. The data type string is a feature of ANSI/ISO Standard C++.

NOTE Prior to the ANSI/ISO C++ language standard, the standard C++ library did not provide a
string datatype. Compiler vendors often supplied their own programmer-defined string
type, and the syntax and semantics of string operations often varied from vendor to vendor.

A string is a sequence of zero or more characters. Strings in C++ are enclosed in double
quotation marks. A string containing no characters is called a null or empty string. The
following are examples of strings. Note that "™ is the empty string.

"William Jacob"
"Mickey"

Every character in a string has a relative position in the string. The position of the first
character is 0, the position of the second character is 1, and so on. The length of a string is
the number of characters in it.

54 | Chapter 2: Basic Elements of C++

String Position of a Character in the String Length of the String

"William Jacob" Position of "W' is 0. 13
Position of the first "1 " is 1.
Position of ' ' (the space) is 7.
Position of 'J" is 8.
Position of 'b' is 12.
"Mickey" Position of "M" is 0. 6
Position of "1" is 1.
Position of 'c' is 2.
Position of "k" is 3.
Position of 'e" is 4.
Position of 'y is 5.
When determining the length of a string, you must also count any spaces in the string.
For example, the length of the following string is 22.

"It is a beautiful day."

The string type is very powerful and more complex than simple data types. It provides
many operations to manipulate strings. For example, it provides operations to find the
length of a string, extract part of a string, and compare strings. You will learn about this
data over the next few chapters.

Variables, Assignment Statements,
and Input Statements

As noted earlier, the main objective of a C++ program is to perform calculations and
manipulate data. Recall that data must be loaded into main memory before it can be
manipulated. In this section, you will learn how to put data into the computer’s memory.
Storing data in the computer’s memory is a two-step process:

1. Instruct the computer to allocate memory.

2. Include statements in the program to put data into the allocated memory.

Allocating Memory with Constants and Variables

When you instruct the computer to allocate memory, you tell it not only what names to
use for each memory location, but also what type of data to store in those memory
locations. Knowing the location of data is essential, because data stored in one memory
location might be needed at several places in the program. As you saw earlier, knowing
what data type you have is crucial for performing accurate calculations. It is also critical to

Variables, Assignment Statements, and Input Statements | 55

know whether your data needs to remain fixed throughout program execution or
whether it should change.

NAMED CONSTANTS

Some data must stay the same throughout a program. For example, the pay rate is usually
the same for all part-time employees. A conversion formula that converts inches into
centimeters is fixed, because 1 inch is always equal to 2.54 centimeters. When stored
in memory, this type of data needs to be protected from accidental changes during
program execution. In C++, you can use a named constant to instruct a program to
mark those memory locations in which data is fixed throughout program execution.

Named constant: A memory location whose content is not allowed to change during
program execution.

To allocate memory, we use C++’s declaration statements. The syntax to declare a
named constant is:

const dataType identifier = value;

In C++, const is a reserved word.

Consider the following C++ statements:

const double CONVERSION = 2.54;
const int NO_OF_STUDENTS = 20;
const char BLANK = ' ';

The first statement tells the compiler to allocate memory (eight bytes) to store a value
of type double, call this memory space CONVERSION, and store the value 2.54 in it.
Throughout a program that uses this statement, whenever the conversion formula is
needed, the memory space CONVERSION can be accessed. The meaning of the other
statements is similar.

Note that the identifier for a named constant is in uppercase letters. Even though
there are no written rules, C++ programmers typically prefer to use uppercase letters
to name a named constant. Moreover, if the name of a named constant is a combina-
tion of more than one word, called a run-together word, then the words are separated
using an underscore. For example, in the preceding example, NO_OF STUDENTS is a
run-together word. (Also see the section Program Style and Form, later in this
chapter, to properly structure a program.)

56 | Chapter 2: Basic Elements of C++

NOTE As noted earlier, the default type of floating-point numbers is double. Therefore, if
you declare a named constant of type £loat, then you must specify that the value is
of type £1loat as follows:

const float CONVERSION = 2.54f;

Otherwise, the compiler will generate a warning message. Notice that 2 .54 f says that it is
a float value. Recall that the memory size for £1oat values is four bytes; for double
values, eight bytes. Because memory size is of little concern these days, as indicated earlier,
we will mostly use the type double to work with floating-point values.

Using a named constant to store fixed data, rather than using the data value itself, has
one major advantage. If the fixed data changes, you do not need to edit the entire
program and change the old value to the new value wherever the old value is used.
(For example, in the program that computes the sales tax, the sales tax rate may
change.) Instead, you can make the change at just one place, recompile the program,
and execute it using the new value throughout. In addition, by storing a value and
referring to that memory location whenever the value is needed, you avoid typing
the same value again and again and prevent accidental typos. If you misspell the name
of the constant value’s location, the computer will warn you through an error
message, but it will not warn you if the value is mistyped.

VARIABLES

Earlier in this chapter, we introduced the term variable and how to declare it. We now
review this concept and also give the general syntax to declare variables.

In some programs, data needs to be modified during program execution. For example, after
each test, the average test score and the number of tests taken changes. Similarly, after each
pay increase, the employee’s salary changes. This type of data must be stored in those memory
cells whose contents can be modified during program execution. In C++, memory cells
whose contents can be modified during program execution are called variables.

Variable: A memory location whose content may change during program execution.

The syntax for declaring one variable or multiple variables is:

dataType identifier, identifier, . . .;

Consider the following statements:

double amountDue;
int counter;

char ch;

int x, y;

string name;

Variables, Assignment Statements, and Input Statements | 57

The first statement tells the compiler to allocate enough memory to store a value of
the type double and call it amountDue. The second and third statements have similar
conventions. The fourth statement tells the compiler to allocate two different mem-
ory spaces, each large enough to store a value of the type int; name the first memory
space x; and name the second memory space y. The fifth statement tells the compiler
to allocate memory space to store a string and call it name.

As in the case of naming named constants, there are no written rules for naming variables.
However, C++ programmers typically use lowercase letters to declare variables. If a
variable name is a combination of more than one word, then the first letter of each word,
except the first word, is uppercase. (For example, see the variable amountDue in the
preceding example.)

13 : bE : :
From now on, when we say “variable,” we mean a variable memory location.

NOTE In C++, you must declare all identifiers before you can use them. If you refer to an
identifier without declaring it, the compiler will generate an error message (syntax error),
indicating that the identifier is not declared. Therefore, to use either a named constant or
a variable, you must first declare it.

Now that data types, variables, and constants have been defined and discussed, it is
possible to offer a formal definition of simple data types. A data type is called simple if
the variable or named constant of that type can store only one value at a time. For
example, if x is an int variable, at a given time, only one value can be stored in x.

Putting Data into Variables

Now that you know how to declare variables, the next question is: How do you put data
into those variables? In C++, you can place data into a variable in two ways:

1. Use C++’s assignment statement.

2. Use input (read) statements.

Assignment Statement

The assignment statement takes the following form:

variable = expression;

In an assignment statement, the value of the expression should match the data type of
the variable. The expression on the right side is evaluated, and its value is assigned to
the variable (and thus to a memory location) on the left side.

58 | Chapter 2: Basic Elements of C++

A wvariable is said to be initialized the first time a value is placed in the variable.

In C++, = is called the assignment operator.

Suppose you have the following variable declarations:

int numl, num2;
double sale;
char first;
string str;

Now consider the following assignment statements:

numl = 4;

num2 = 4 * 5 - 11;

sale = 0.02 * 1000;

first = 'D';

str = "It is a sunny day.";

For each of these statements, the computer first evaluates the expression on the right and
then stores that value in a memory location named by the identifier on the left. The first
statement stores the value 4 in numl, the second statement stores 9 in num2, the third
statement stores 20.00 in sale, and the fourth statement stores the character Din first.
The fifth statement stores the string "It is a sunny day." in the variable str.

The following C++ program shows the effect of the preceding statements:

// This program illustrates how data in the variables are
// manipulated.

#include <iostream>
#include <string>

using namespace std;

int main ()

{
int numl, num2;
double sale;
char first;
string str;

numl = 4;
cout << "numl = " << numl << endl;

num2 = 4 * 5 - 11;
cout << "num2 = " << num2 << endl;

sale = 0.02 * 1000;
cout << "sale = " << sale << endl;

Variables, Assignment Statements, and Input Statements | 59

first = 'D';

cout << "first = " << first << endl;
str = "It is a sunny day.";
cout << "str = " << str << endl;

return 0;

}

Sample Run:
numl = 4
num2 = 9
sale = 20
first = D

str = It is a sunny day.

For the most part, the preceding program is straightforward. Let us take a look at the
output statement:

cout << " numl = " << numl << endl;

This output statement consists of the string " numl = ", the operator <<, and the variable
numl. Here, first the value of the string " numl = " is output, and then the value of the
variable numl is output. The meaning of the other output statements is similar.

A C++ statement such as
num = num + 2;

means “evaluate whatever is in num, add 2 to it, and assign the new value to the memory
location num.” The expression on the right side must be evaluated first; that value is then
assigned to the memory location specified by the variable on the left side. Thus, the
sequence of C++ statements:

num = 6;
num = num + 2;

and the statement:
num = 8;

both assign 8 to num. Note that if num has not been initialized, the statement num = num + 2
might give unexpected results and/or the complier might generate a warning message
indicating that the variable has not been initialized.

The statement num = 5; is read as “num becomes 57 or “num gets 57 or “num is assigned the
value 5.” Reading the statement as “num equals 5” is incorrect, especially for statements such
as num = num + 2;. Each time a new value is assigned to num, the old value is overwritten.
(Recall that the equal sign in these statements is the assignment operator, not an indication of

equality.)

60 |

Chapter 2: Basic Elements of C++

EXAMPLE 2-14

Suppose that numl, num2, and num3 are int variables and the following statements are
executed in sequence.

1.
2.
3.
4.
5.

numl =18;

numl = numl + 27;
num2 = numl;
num3 = num2 / 5;

num3 = num3 / 4;

The following table shows the values of the variables after the execution of each
statement. (A ? indicates that the value is unknown. The orange color in a box shows
that the value of that variable is changed.)

Values of the Variables Explanation

Before Statement 1

I

numl num?2 num3

After Statement 1 -

I

numl num?2 num3

After Statement 2 -

numl + 27 = 18 + 27 = 45.
This value is assigned to numl, which
numl num2 num3 replaces the old value of numl.

I

After Statement 3 -

I

Copy the value of numl into num2.
numl num2 num3

After Statement 4

num2 / 5 = 45 / 5 = 9. This
value is assigned to num3. So num3

numl num2 num3 = 9

After Statement 5

num3 / 4 =9 / 4 = 2. This
value is assigned to num3, which
numl num? num3 replaces the old value of num3.

Thus, after the execution of the statement in Line 5, numl = 45, num2 = 45, and num3 = 2.

Tracing values through a sequence, called a walk-through, is a valuable tool to learn and
practice. Try it in the sequence above. You will learn more about how to walk through a
sequence of C++ statements later in this chapter.

Variables, Assignment Statements, and Input Statements | 61

NOTE Suppose that %, y, and z are int variables. The following is a legal statement in C++:
X = y = z;

In this statement, first the value of z is assigned to y, and then the new value of y is
assigned to x. Because the assignment operator, =, is evaluated from right to left, the
associativity of the assignment operator is said to be from right to left.

Saving and Using the Value of an Expression

Now that you know how to declare variables and put data into them, you can learn
how to save the value of an expression. You can then use this value in a later
expression without using the expression itself, thereby answering the question raised
earlier in this chapter. To save the value of an expression and use it in a later
expression, do the following:

1. Declare a variable of the appropriate data type. For example, if the
result of the expression is an integer, declare an int variable.

2. Assign the value of the expression to the variable that was declared,
using the assignment statement. This action saves the value of the
expression into the variable.

3. Wherever the value of the expression is needed, use the variable holding
the value. The following example further illustrates this concept.

Suppose that you have the following declaration:

int a, b, ¢, d;
int x, y;

Further suppose that you want to evaluate the expressions -b + (b® — 4ac) and
-b - (b? - 4ac) and assign the values of these expressions to x and y, respectively.
Because the expression b? — 4ac appears in both expressions, you can first calculate
the value of this expression and save its value in d. You can then use the value of d
to evaluate the expressions, as shown by the following statements:

d=b*b -4*a*c;
x =-b + d;
y = -b - d;

Earlier, you learned that if a variable is used in an expression, the expression would
yield a meaningful value only if the variable has first been initialized. You also learned
that after declaring a variable, you can use an assignment statement to initialize it. It is
possible to initialize and declare variables at the same time. Before we discuss how to
use an input (read) statement, we address this important issue.

62 | Chapter 2: Basic Elements of C++

Declaring and Initializing Variables

When a variable is declared, C++ may not automatically put a meaningful value in it. In
other words, C++ may not automatically initialize variables. For example, the int and
double variables may not be initialized to 0, as happens in some programming languages.
This does not mean, however, that there is no value in a variable after its declaration.
When a variable is declared, memory is allocated for it.

Recall from Chapter 1 that main memory is an ordered sequence of cells, and each cell is
capable of storing a value. Also, recall that the machine language is a sequence of Os and
1s, or bits. Therefore, data in a memory cell is a sequence of bits. These bits are nothing
but electrical signals, so when the computer is turned on, some of the bits are 1 and some
are 0. The state of these bits depends on how the system functions. However, when you
instruct the computer to store a particular value in a memory cell, the bits are set
according to the data being stored.

During data manipulation, the computer takes the value stored in particular cells and
performs a calculation. If you declare a variable and do not store a value in it, the memory
cell still has a value—usually the value of the setting of the bits from their last use—and
you have no way to know what this value is.

If you only declare a variable and do not instruct the computer to put data into the variable,
the value of that variable is garbage. However, the computer does not warn us, regards
whatever values are in memory as legitimate, and performs calculations using those values
in memory. Using a variable in an expression without initializing it produces erroneous
results. To avoid these pitfalls, C++ allows you to initialize variables while they are being
declared. For example, consider the following C++ statements in which variables are first
declared and then initialized:

int first, second;
char ch;
double x;

first = 13;
second = 10;
ch=""

x = 12.6;

You can declare and initialize these variables at the same time using the following C++
statements:

int first = 13, second = 10;
char ch ="' ';
double x = 12.6;

The first C++ statement declares two int variables, first and second, and stores 13 in
first and 10 in second. The meaning of the other statements is similar.

Variables, Assignment Statements, and Input Statements | 63

In reality, not all variables are initialized during declaration. It is the nature of the
program or the programmer’s choice that dictates which variables should be initi-
alized during declaration. The key point is that all variables must be initialized before
they are used.

Input (Read) Statement

Previously, you learned how to put data into variables using the assignment statement. In
this section, you will learn how to put data into variables from the standard input device,
using C++’s input (or read) statements.

NOTE In most cases, the standard input device is the keyboard.

When the computer gets the data from the keyboard, the user is said to be acting interactively.

Putting data into variables from the standard input device is accomplished via the use of
cin and the operator >>. The syntax of cin together with >> is:

cin >> variable >> wvariable ...;

This is called an input (read) statement. In C++, >> is called the stream extraction
operator.

NOTE Inasyntax, the shading indicates the part of the definition that is optional. Furthermore,
throughout this book, the syntax is enclosed in yellow boxes.

Suppose that miles is a variable of type double. Further suppose that the input is
73.65. Consider the following statement:

cin >> miles;

This statement causes the computer to get the input, which is 73.65, from the standard
input device and stores it in the variable miles. That is, after this statement executes, the
value of the variable miles is 73.65.

64 | Chapter 2: Basic Elements of C++

Example 2-17 further explains how to input numeric data into a program.

EXAMPLE 2-17

Suppose we have the following statements:

int feet;
int inches;

Suppose the input is:

23 17

Next, consider the following statement:
cin >> feet >> inches;

This statement first stores the number 23 into the variable feet and then the number 7
into the variable inches. Notice that when these numbers are entered via the keyboard,
they are separated with a blank. In fact, they can be separated with one or more blanks or
lines or even the tab character.

The following C++ program shows the effect of the preceding input statements:

// This program illustrates how input statements work.
#include <iostream>
using namespace std;

int main ()

{
int feet;
int inches;
cout << "Enter two integers separated by one or more spaces: ";
cin >> feet >> inches;
cout << endl;
cout << "Feet = " << feet << endl;
cout << "Inches = " << inches << endl;
return 0;
}

Sample Run: In this sample run, the user input is shaded.
Enter two integers separated by one or more spaces: 23 7

Feet = 23
Inches =7

Variables, Assignment Statements, and Input Statements | 65

The C++ program in Example 2-18 illustrates how to read strings and numeric data.

EXAMPLE 2-18

// This program illustrates how to read strings and numeric data.

#include <iostream>
#include <string>

using namespace std;

int main()

{
string firstName; //Line 1
string lastName; //Line 2
int age; //Line 3
double weight; //Line 4

cout << "Enter first name, last name, age, "
<< "and weight, separated by spaces."

<< endl; //Line 5
cin >> firstName >> lastName; //Line 6
cin >> age >> weight; //Line 7
cout << "Name: " << firstName << " "

<< lastName << endl; //Line 8
cout << "Age: " << age << endl; //Line 9
cout << "Weight: " << weight << endl; //Line 10
return 0; //Line 11

Sample Run: In this sample run, the user input is shaded.

Enter first name, last name, age, and weight, separated by spaces.
Sheila Mann 23 120.5

Name: Sheila Mann

Age: 23

Weight: 120.5

The preceding program works as follows: The statements in Lines 1 to 4 declare the
variables firstName and lastName of type string, age of type int, and weight of
type double. The statement in Line 5 is an output statement and tells the user what to
do. (Such output statements are called prompt lines.) As shown in the sample run, the
input to the program is:

Sheila Mann 23 120.5

66 | Chapter 2: Basic Elements of C++

The statement in Line 6 first reads and stores the string Sheila into the variable
firstName and then skips the space after Sheila and reads and stores the string Mann
into the variable lastName. Next, the statement in Line 7 first skips the blank after
Mann and reads and stores 23 into the variable age and then skips the blank after 23
and reads and stores 120.5 into the variable weight.

The statements in Lines 8, 9, and 10 produce the third, fourth, and fifth lines of the
sample run.

During programming execution, if more than one value is entered in a line, these values must
be separated by at least one blank or tab. Alternately, one value per line can be entered.

Variable Initialization

Remember, there are two ways to initialize a variable: by using the assignment statement
and by using a read statement. Consider the following declaration:

int feet;
int inches;

Consider the following two sets of code:

(a) feet = 35; (b) cout << "Enter feet: ";
inches = 6; cin >> feet;
cout << "Total inches =" cout << endl;
<< 12 * feet + inches; cout << "Enter inches: ";

cin >> inches;

cout << endl;

cout << "Total inches ="
<< 12 * feet + inches;

In (a), feet and inches are initialized using assignment statements, and in (b), these
variables are initialized using input statements. However, each time the code in (a)
executes, feet and inches are initialized to the same value unless you edit the source
code, change the value, recompile, and run. On the other hand, in (b), each time the
program runs, you are prompted to enter values for feet and inches. Therefore, a read
statement is much more versatile than an assignment statement.

Sometimes it is necessary to initialize a variable by using an assignment statement. This is
especially true if the variable is used only for internal calculation and not for reading and
storing data.

Recall that C++ does not automatically initialize variables when they are declared. Some
variables can be initialized when they are declared, whereas others must be initialized
using either an assignment statement or a read statement.

NOTE

NOTE

Variables, Assignment Statements, and Input Statements | 67

When the program is compiled, some of the newer IDEs might give warning messages

if the program uses the value of a variable without first properly initializing that variable.
In this case, if you ignore the warning and execute the program, the program might
terminate abnormally with an error message.

Suppose you want to store a character into a chaxr variable using an input statement.

During program execution, when you enter the character, you do not include the single
quotes. For example, suppose that ch is a char variable. Consider the following input
statement:

cin >> ch;

If you want to store K into ch using this statement, during program execution, you
only enter K. Similarly, if you want to store a string into a string variable using an
input statement, during program execution, you enter only the string without the
double quotes.

This example further illustrates how assignment statements and input statements manip-
ulate variables. Consider the following declarations:

int firstNum, secondNum;
double z;

char ch;

string name;

Also, suppose that the following statements execute in the order given:

—_ =
M=o

WX NV LN

firstNum = 4;

secondNum = 2 * firstNum + 6;

z = (firstNum+ 1) / 2.0;

ch="'4a";

cin >> secondNum;

cin>> z;

firstNum = 2 * secondNum + static_ cast<int>(z);
cin >> name;

secondNum = secondNum + 1;

cin >> ch;

firstNum = firstNum + static cast<int>(ch);
z = firstNum - z;

68 |

In addition, suppose the input is:

Chapter 2: Basic Elements of C++

8 16.3 Jenny D

This line has four values, 8, 16.3, Jenny, and D, and each value is separated from the
others by a blank.

Let’s now determine the values of the declared variables after the last statement
executes. To explicitly show how a particular statement changes the value of a
the values of the variables after each statement executes are shown. (In
the following figures, a question mark [?] in a box indicates that the value in the box
is unknown.)

variable,

Before statement 1 executes, all variables are uninitialized, as shown in Figure 2-4.

FIGURE 2-4 Variables before statement 1 executes

firstNum secondNum

name

Next, we show the values of the variables after the execution of each statement.

Aft
St ter Values of the Variables Explanation
1 N EE - - B | s 4 inco firstium
firstNum secondNum
2* firstNum+ 6=2* 4
2 1 - - | -0
firstNum secondNum Store 14 into secondNum.
(firstNum+1) / 2.0
3 --- —(4+1)/2.0=5/2.0
firstNum secondNum = 2.5. Store 2.5 into z.
4 - - B | 5o 2 ino oh
firstNum secondNum
Read a number from the
keyboard (which is 8) and store it
5 - - - - into secondNum. This statement
. replaces the old value of
firstNum secondNum . .
secondNum with this new
value.

Variables, Assignment Statements, and Input Statements | 69

After

St Values of the Variables Explanation

Read a number from the
keyboard (which is 16. 3)

6 El En - N BN o nunber o 2

firstNum secondNum ch name This statement replaces the old

value of z with this new value.

2 * secondNum +
static_cast<int>(z) =
2 * 8 4+

8 16.3 A ? static cast<int> (16.3)
/ =] EN Em =16+ 16 = 32. Store 32 into
firstNum. This statement
replaces the old value of
firstNum with this new value.

firstNum secondNum z ch name

Read the next input, Jenny,
8 S - - - from the keyboard and store it

firstNum secondNum name into name.

O

m - EmEmEm |

‘ Store 9 into secondNum.
firstNum secondNum name

Read the next input from the
keyboard (which is D) and store it
32 9 Je . .
10 - - ‘o into ch. This statement replaces
firstNum secondNum ch name the old value of ch with the new
value.

firstNum +

static cast<int> (ch) =
11 - - - 32 + static cast<int>

firstNum secondNum ch name ('D'") = 32 + 68=100.

Store 100 into £irstNum.

firstNum-z=100-16.3=
12 -- 100.0 - 16.3 = 83.7. Store

firstNum secondNum ch name 83.7 into z.

NOTE When something goes wrong in a program and the results it generates are not
what you expected, you should do a walk-through of the statements that assign
values to your variables. Example 2-19 illustrates how to do a walk-through
of your program. This is a very effective debugging technique. The Web site
accompanying this book contains a C++ program that shows the effect of the
12 statements listed at the beginning of Example 2-19. The program is named
Example 2 19.cpp.

70 | Chapter 2: Basic Elements of C++

If you assign the value of an expression that evaluates to a floating-point value—without using
the cast operator—to a variable of type int, the fractional part is dropped. In this case, the
compiler most likely will issue a warning message about the implicit type conversion.

Increment and Decrement Operators

Now that you know how to declare a variable and enter data into a variable, in this section,
you will learn about two more operators: the increment and decrement operators. These
operators are used frequently by C++ programmers and are useful programming tools.

Suppose count is an int variable. The statement:
count = count + 1;

increments the value of count by 1. To execute this assignment statement, the computer
first evaluates the expression on the right, which is count + 1. It then assigns this value to
the variable on the left, which is count.

As you will see in later chapters, such statements are frequently used to keep track of how
many times certain things have happened. To expedite the execution of such statements,
C++ provides the increment operator, ++, which increases the value of a variable by
1, and the decrement operator, ——, which decreases the value of a variable by 1.
Increment and decrement operators each have two forms, pre and post. The syntax of the
increment operator is:

Pre-increment: ++variable
Post-increment: variable++

The syntax of the decrement operator is:

Pre-decrement: ——variable
Post-decrement: variable——

Let’s look at some examples. The statement:
++count;

or:
count++;

increments the value of count by 1. Similarly, the statement:
——count;

or:

count——;

decrements the value of count by 1.

Increment and Decrement Operators | 71

Because both the increment and decrement operators are built into C++, the value of the
variable is quickly incremented or decremented without having to use the form of an
assignment statement.

Now, both the pre- and post-increment operators increment the value of the variable by 1.
Similarly, the pre- and post-decrement operators decrement the value of the variable by 1.
What is the difference between the pre and post forms of these operators? The difference
becomes apparent when the variable using these operators is employed in an expression.

Suppose that x is an int variable. If ++x is used in an expression, first the value of x is
incremented by 1, and then the new value of x is used to evaluate the expression. On the
other hand, if x++ is used in an expression, first the current value of x is used in the
expression, and then the value of x is incremented by 1. The following example clarifies
the difference between the pre- and post-increment operators.

Suppose that x and y are int variables. Consider the following statements:

x = 5;
y = ++x;

The first statement assigns the value 5 to x. To evaluate the second statement, which uses
the pre-increment operator, first the value of x is incremented to 6, and then this value,
6, is assigned to y. After the second statement executes, both x and y have the value 6.

Now, consider the following statements:

x = 5;
y = x++;

As before, the first statement assigns 5 to x. In the second statement, the post-increment
operator is applied to x. To execute the second statement, first the value of x, which is 5,
is used to evaluate the expression, and then the value of x is incremented to 6. Finally, the
value of the expression, which is 5, is stored in y. After the second statement executes,
the value of x is 6, and the value of y is 5.

The following example further illustrates how the pre and post forms of the increment
operator work.

Suppose a and b are int variables and

a=>5;

b =2+ (++a);

The first statement assigns 5 to a. To execute the second statement, first the expression
2 + (++a) is evaluated. Because the pre-increment operator is applied to a, first the value
of a is incremented to 6. Then 2 is added to 6 to get 8, which is then assigned to b.
Therefore, after the second statement executes, a is 6 and b is 8.

72 | Chapter 2: Basic Elements of C++

On the other hand, after the execution of the following statements:

a =>5;
b 2 + (at++);

the value of a is 6 while the value of b is 7.

This book will most often use the increment and decrement operators with a variable in a
stand-alone statement. That is, the variable using the increment or decrement operator
will not be part of any expression.

Output

In the preceding sections, you have seen how to put data into the computer’s memory
and how to manipulate that data. We also used certain output statements to show the
results on the standard output device. This section explains in some detail how to further use
output statements to generate the desired results.

The standard output device is usually the screen.

In C++, output on the standard output device is accomplished via the use of cout and
the operator <<. The general syntax of cout together with << is:

cout << expression or manipulator << expression or manipulator...;

This is called an output statement. In C++, << is called the stream insertion
operator. Generating output with cout follows two rules:

1. The expression is evaluated, and its value is printed at the current
insertion point on the output device.

2. A manipulator is used to format the output. The simplest manipulator
is endl (the last character is the letter el), which causes the insertion
point to move to the beginning of the next line.

On the screen, the insertion point is where the cursor is.

The next example illustrates how an output statement works. In an output statement, a
string or an expression involving only one variable or a single value evaluates to itself.

Output | 73

NOTE When an output statement outputs char values, it outputs only the character without the
single quotes (unless the single quotes are part of the output statement).

For example, suppose ch is a char variable and ch = "A"' ;. The statement:
cout << ch;
or:

cout << 'A';

outputs:
A

Similarly, when an output statement outputs the value of a string, it outputs only the
string without the double quotes (unless you include double quotes as part of the output).

Consider the following statements. The output is shown to the right of each statement.

Statement Output
1 cout << 29 / 4 << endl: 7
2 cout << "Hello there." << endl; Hello there.
3 cout << 12 << endl; 12
4 cout << "4 + 7" << endl; 4 + 7
5 cout << 4 + 7 << endl; 11
6 cout << 'A' << endl; A
7 cout << "4 4+ 7 = " << 4 + 7 << endl; 4 + 7 =11
8 cout << 2 + 3 * 5 << endl; 17
9 cout << "Hello \nthere." << endl; Hello
there.

Look at the output of statement 9. Recall that in C++, the newline character is "\ n"'; it
causes the insertion point to move to the beginning of the next line before printing there.
Therefore, when \n appears in a string in an output statement, it causes the insertion
point to move to the beginning of the next line on the output device. This fact explains
why Hello and there. are printed on separate lines.

NOTE In C++, \ is called the escape character and \ n is called the newline escape sequence.

74 | Chapter 2: Basic Elements of C++

Recall that all variables must be properly initialized; otherwise, the value stored in them
may not make much sense. Also recall that C++ does not automatically initialize variables.

If num 1s an int variable, then the output of the C++ statement:
cout << num << endl;

is meaningful provided that num has been given a value. For example, the sequence of
C++ statements:

num = 45;
cout << num << endl;

will produce the output 45.

Consider the following C++ program:

// This program illustrates how output statements work.
#include <iostream>
using namespace std;

int main ()

{
int a, b;
a = 65; //Line 1
b = 78; //Line 2
cout << 29 / 4 << endl; //Line 3
cout << 3.0 / 2 << endl; //Line 4
cout << "Hello there.\n"; //Line 5
cout << 7 << endl; //Line 6
cout << 3 + 5 << endl; //Line 7
cout << "3 + 5"; //Line 8
cout << "M kk T, //Line 9
cout << endl; //Line 10
cout << 2 + 3 * 6 << endl; //Line 11
cout << "a" << endl; //Line 12
cout << a << endl; //Line 13
cout << b << endl; //Line 14
return 0;

}

In the following output, the column marked “Output of Statement at” and the line
numbers are not part of the output. The line numbers are shown in this column to make
it easy to see which output corresponds to which statement.

Output | 75

Output of Statement at

7 Line 3

1.5 Line 4

Hello there. Line 5

7 Line 6

8 Line 7

3 + 5 ** Lines 8 and 9
20 Line 11

a Line 12

65 Line 13

78 Line 14

For the most part, the output is straightforward. Look at the output of the statements in
Lines 7, 8, 9, and 10. The statement in Line 7 outputs the result of 3 + 5, which is 8, and
moves the insertion point to the beginning of the next line. The statement in Line 8
outputs the string 3 + 5. Note that the statement in Line 8 consists only of the string 3 + 5.
Therefore, after printing 3 + 5, the insertion point stays positioned after 5; it does not
move to the beginning of the next line. Next the output of the statement in Line 9
outputs space and ** at the insertion point, which was positioned after 5.

The output statement in Line 10 contains only the manipulator endl, which moves
the insertion point to the beginning of the next line. Therefore, when the statement
in Line 11 executes, the output starts at the beginning of the line. Note that in
this output, the column “Output of Statement at” does not contain Line 10. This
is due to the fact that the statement in Line 10 does not produce any printable output.
It simply moves the insertion point to the beginning of the next line. Next, the statement
in Line 11 outputs the value of 2 + 3* 6, which is 20. The manipulator endl then moves
the insertion point to the beginning of the next line.

NOTE Outputting or accessing the value of a variable in an expression does not destroy or modify
the contents of the variable.

Let us now take a close look at the newline character, "\ n'. Consider the following C++
statements:

cout << "Hello there.";
cout << "My name is James.";

If these statements are executed in sequence, the output is:
Hello there.My name is James.
Now consider the following C++ statements:

cout << "Hello there.\n";
cout << "My name is James.";

76 | Chapter 2: Basic Elements of C++

The output of these C++ statements is:

Hello there.
My name 1is James.

When \n is encountered in the string, the insertion point is positioned at the beginning
of the next line. Note also that \ n may appear anywhere in the string. For example, the
output of the statement:

cout << "Hello \nthere. \nMy name is James.";
1s:

Hello
there.
My name is James.

Also, note that the output of the statement:

cout << "\n';

is the same as the output of the statement:

cout << "\n";

which is equivalent to the output of the statement:
cout << endl;

Thus, the output of the sequence of statements:

cout << "Hello there.\n";
cout << "My name is James.";

is equivalent to the output of the sequence of statements:

cout << "Hello there." << endl;
cout << "My name is James.";

Consider the following C++ statements:

cout << "Hello there.\nMy name is James.";
or:

cout << "Hello there.";
cout << "\nMy name is James.";

or:

cout << "Hello there.";
cout << endl << "My name is James.";

Output | 77

In each case, the output of the statements is:

Hello there.
My name is James.

The output of the C++ statements:

cout << "Count...\n....1\n..... 2\n...... 3";
or:
cout << "Count..." << endl << ",...1" << endl
<< "L 2" << endl << "...... 3";
1s:
Count.
.1
..... 2
...... 3

Suppose that you want to output the following sentence in one line as part of a message:
It is sunny, warm, and not a windy day. We can go golfing.

Obviously, you will use an output statement to produce this output. However, in the
programming code, this statement may not fit in one line as part of the output statement.
Of course, you can use multiple output statements as follows:

cout << "It is sunny, warm, and not a windy day. ";
cout << "We can go golfing." << endl;

Note the semicolon at the end of the first statement and the identifier cout at the beginning
of the second statement. Also, note that there is no manipulator endl at the end of the first
statement. Here, two output statements are used to output the sentence in one line.
Equivalently, you can use the following output statement to output this sentence:

cout << "It is sunny, warm, and not a windy day. "
<< "We can go golfing." << endl;

In this statement, note that there is no semicolon at the end of the first line, and the identifier
cout does not appear at the beginning of the second line. Because there is no semicolon at
the end of the first line, this output statement continues at the second line. Also, note the
double quotation marks at the beginning and end of the sentences on each line. The string is
broken into two strings, but both strings are part of the same output statement.

78 | Chapter 2: Basic Elements of C++

If a string appearing in an output statement is long and you want to output the string in
one line, you can break the string by using either of the previous two methods. However,
the following statement would be incorrect:

cout << "It is sunny, warm, and not a windy day.
We can go golfing." << endl; //illegal

In other words, the return (or Enter) key on your keyboard cannot be part of the string.
That is, in programming code, a string cannot be broken into more than one line by using
the return (Enter) key on your keyboard.

Recall that the newline character is \n, which causes the insertion point to move to the
beginning of the next line. There are many escape sequences in C++, which allow you
to control the output. Table 2-4 lists some of the commonly used escape sequences.

TABLE 2-4 Commonly Used Escape Sequences

\n Newline Cursor moves to the beginning of the next line

\t Tab Cursor moves to the next tab stop

\b Backspace Cursor moves one space to the left

\r Return Shtgsr?erx?lci):]i? to the beginning of the current line (not
N\ Backslash Backslash is printed

\! Single quotation Single quotation mark is printed

W@ Double quotation Double quotation mark is printed

The following example shows the effect of some of these escape sequences.

The output of the statement:

cout << "The newline escape sequence is \\n" << endl;
1s:

The newline escape sequence is \n

Preprocessor Directives | 79

The output of the statement:

cout << "The tab character is represented as \'\\t\'" << endl;
1s:

The tab character is represented as '\t'

Note that the single quote can also be printed without using the escape sequence.
Therefore, the preceding statement is equivalent to the following output statement:

cout << "The tab character is represented as '\\t'" << endl;

The output of the statement:

cout << "The string \"Sunny\" contains five characters." << endl;
is:

The string "Sunny" contains five characters.

NOTE The Web site accompanying this text contains the C++ program that shows
the effect of the statements in Example 2-26. The program is named
Example2 26.cpp.

To use cin and cout in a program, you must include a certain header file. The next section
explains what this header file is, how to include a header file in a program, and why you need
header files in a program. Chapter 3 will provide a detailed explanation of cin and cout.

Preprocessor Directives

Only a small number of operations, such as arithmetic and assignment operations, are
explicitly defined in C++. Many of the functions and symbols needed to run a C++
program are provided as a collection of libraries. Every library has a name and is referred
to by a header file. For example, the descriptions of the functions needed to perform
input/output (I/O) are contained in the header file iostream. Similarly, the descriptions
of some very useful mathematical functions, such as power, absolute, and sine, are
contained in the header file cmath. If you want to use I/O or math functions, you need
to tell the computer where to find the necessary code. You use preprocessor directives
and the names of header files to tell the computer the locations of the code provided in
libraries. Preprocessor directives are processed by a program called a preprocessor.

80 | Chapter 2: Basic Elements of C++

Preprocessor directives are commands supplied to the preprocessor that cause the pre-
processor to modify the text of a C++ program before it is compiled. All preprocessor
commands begin with #. There are no semicolons at the end of preprocessor commands
because they are not C++ statements. To use a header file in a C++ program, use the
preprocessor directive include.

The general syntax to include a header file (provided by the IDE) in a C++ program is:

#include <headerFileName>

For example, the following statement includes the header file iostreamin a C++ program:
#include <iostream>

Preprocessor directives to include header files are placed as the first line of a program so
that the identifiers declared in those header files can be used throughout the program.
(Recall that in C++, identifiers must be declared before they can be used.)

Certain header files are provided as part of C++. Appendix F describes some of the
commonly used header files. Individual programmers can also create their own header
files, which is discussed in the chapter Classes and Data Abstraction, later in this book.

Note that the preprocessor commands are processed by the preprocessor before the
program goes through the compiler.

From Figure 1-3 (Chapter 1), we can conclude that a C++ system has three basic
components: the program development environment, the C++ language, and the C++
library. All three components are integral parts of the C++ system. The program
development environment consists of the six steps shown in Figure 1-3. As you learn
the C++ language throughout the book, we will discuss components of the C++ library
as we need them.

namespace and Using cin and cout in a Program

Earlier, you learned that both cin and cout are predefined identifiers. In ANSI/ISO
Standard C++, these identifiers are declared in the header file iostream, but within
a namespace. The name of this namespace is std. (The namespace mechanism will
be formally defined and discussed in detail in Chapter 7. For now, you need to know
only how to use cin and cout and, in fact, any other identifier from the header file
iostream.)

There are several ways you can use an identifier declared in the namespace std. One way to use
cin and cout is to refer to them as std: :cin and std: : cout throughout the program.

Another option is to include the following statement in your program:

using namespace std;

Creating a C++ Program | 81

This statement should appear after the statement #include <iostream>. You can then
refer to cin and cout without using the prefix std::. To simplify the use of cin and
cout, this book uses the second form. That 1s, to use cin and cout in a program, the
programs will contain the following two statements:

#include <iostream>

using namespace std;
In C++, namespace and using are reserved words.

The namespace mechanism is a feature of ANSI/ISO Standard C++. As you learn more
C++ programming, you will become aware of other header files. For example, the
header file cmath contains the specifications of many useful mathematical functions.
Similarly, the header file iomanip contains the specifications of many useful functions
and manipulators that help you format your output in a specific manner. However, just
like the identifiers in the header file iostream, the identifiers in ANSI/ISO Standard
C++ header files are declared within a namespace.

The name of the namespace in each of these header files is std. Therefore, whenever
certain features of a header file in ANSI/ISO Standard C++ are discussed, this book will
refer to the identifiers without the prefix std::. Moreover, to simplify the accessing of
identifiers in programs, the statement using namespace std; will be included. Also, if
a program uses multiple header files, only one using statement is needed. This using
statement typically appears after all the header files.

Using the string Data Type in a Program

Recall that the string data type is a programmer-defined data type and is not directly
available for use in a program. To use the string data type, you need to access its
definition from the header file string. Therefore, to use the string data type in a
program, you must include the following preprocessor directive:

#include <string>

Creating a C++ Program

In previous sections, you learned enough C++ concepts to write meaningful programs.
You are now ready to create a complete C++ program.

A C++ program is a collection of functions, one of which is the function main.
Therefore, if a C++ program consists of only one function, then it must be the function
main. Moreover, a function is a set of instructions designed to accomplish a specific task.
Until Chapter 6, you will deal mainly with the function main.

The statements to declare variables, the statements to manipulate data (such as assignments),
and the statements to input and output data are placed within the function main. The
statements to declare named constants are usually placed outside of the function main.

82 | Chapter 2: Basic Elements of C++

The syntax of the function main used throughout this book has the following form:

int main()

{
statement 1
statement_n
return 0;
}
In the syntax of the function main, each statement (statement 1, ..., statement n) is

usually either a declarative statement or an executable statement. The statement return 0;
must be included in the function main and must be the last statement. If the statement
return 0; is misplaced in the body of the function main, the results generated by the
program may not be to your liking. The full meaning of the statement return 0; will be
discussed in Chapter 6. For now, think of this statement as the end-of-program statement.
In C++, return is a reserved word.

A C++ program might use the resources provided by the IDE, such as the necessary code
to input the data, which would require your program to include certain header files. You
can, therefore, divide a C++ program into two parts: preprocessor directives and the
program. The preprocessor directives tell the compiler which header files to include in
the program. The program contains statements that accomplish meaningful results. Taken
together, the preprocessor directives and the program statements constitute the C++
source code. Recall that to be useful, source code must be saved in a file with the file
extension .cpp. For example, if the source code is saved in the file firstProgram, then
the complete name of this file is firstProgram.cpp. The file containing the source
code is called the source code file or source file.

When the program is compiled, the compiler generates the object code, which is saved in
a file with the file extension .ob3j. When the object code is linked with the system
resources, the executable code is produced and saved in a file with the file extension
.exe. Typically, the name of the file containing the object code and the name of the file
containing the executable code are the same as the name of the file containing the source
code. For example, if the source code is located in a file named firstProg.cpp, the
name of the file containing the object code is firstProg.obj, and the name of the file
containing the executable code is firstProg.exe.

The extensions as given in the preceding paragraph—that is, .cpp, .obj, and .exe—are
system dependent. Moreover, some IDEs maintain programs in the form of projects. The
name of the project and the name of the source file need not be the same. It is possible
that the name of the executable file is the name of the project, with the extension .exe.
To be certain, check your system or IDE documentation.

Because the programming instructions are placed in the function main, let us elaborate on
this function.

Creating a C++ Program | 83

The basic parts of the function main are the heading and the body. The first line of the
function main, that is:

int main()
is called the heading of the function main.

The statements enclosed between the curly braces ({ and }) form the body of the
function main. The body of the function main contains two types of statements:

e Declaration statements

e Executable statements
Declaration statements are used to declare things, such as variables.

In C++, identifiers, such as variables, can be declared anywhere in the program, but they
must be declared before they can be used.

EXAMPLE 2-27

The following statements are examples of variable declarations:

int a, b, c;
double x, y;

Executable statements perform calculations, manipulate data, create output, accept
input, and so on.

Some executable statements that you have encountered so far are the assignment, input,
and output statements.

EXAMPLE 2-28

The following statements are examples of executable statements:

a = 4; //assignment statement
cin >> b; //input statement
cout << a << " " << b << endl; //output statement

In skeleton form, a C++ program looks like the following:

//comments, if needed
preprocessor directives to include header files
using statement

named constants, if necessary

84 | Chapter 2: Basic Elements of C++

int main()

{
statement 1
statement_n
return 0;

}

The C++ program in Example 2-29 shows where include statements, declaration state-
ments, executable statements, and so on typically appear in the program.

//***
// Author: D.S. Malik

//

// This program shows where the include statements, using

// statement, named constants, variable declarations, assignment

// statements, and input and output statements typically appear.
[/%% e e e e e e ok ek ook e e ek e ok ko ok ok e ek koo ok ok ok ok

#include <iostream> //Line 1
using namespace std; //Line 2
const int NUMBER = 12; //Line 3
int main () //Line 4
{ //Line 5
int firstNum; //Line 6
int secondNum; //Line 7
firstNum = 18; //Line 8
cout << "Line 9: firstNum = " << firstNum
<< endl; //Line 9
cout << "Line 10: Enter an integer: "; //Line 10
cin >> secondNum; //Line 11
cout << endl; //Line 12
cout << "Line 13: secondNum = " << secondNum
<< endl; //Line 13
firstNum = firstNum + NUMBER + 2 * secondNum; //Line 14

cout << "Line 15: The new value of "
<< "firstNum = " << firstNum << endl; //Line 15

return 0; //Line 16
} //Line 17

Debugging: Understanding and Fixing Syntax Errors | 85

Sample Run: In this sample run, the user input is shaded.

Line 9: firstNum = 18
Line 10: Enter an integer: 15

Line 13: secondNum = 15
Line 15: The new value of firstNum = 60

The preceding program works as follows: The statement in Line 1 includes the
header file iostream so that program can perform input/output. The statement in
Line 2 uses the using namespace statement so that identifiers declared in the
header file iostream, such as cin, cout, and endl, can be used without using
the prefix std::. The statement in Line 3 declares the named constant NUMBER and
sets its value to 12. The statement in Line 4 contains the heading of the function
main, and the left brace in Line 5 marks the beginning of the function main. The
statements in Lines 6 and 7 declare the variables firstNum and secondNum.

The statement in Line 8 sets the value of firstNum to 18, and the statement in Line 9
outputs the value of firstNum. Next, the statement in Line 10 prompts the user to
enter an integer. The statement in Line 11 reads and stores the integer into the variable
secondNum, which is 15 in the sample run. The statement in Line 12 positions the
cursor on the screen at the beginning of the next line. The statement in Line 13
outputs the value of secondNum. The statement in Line 14 evaluates the expression:

firstNum + NUMBER + 2 * secondNum

and assigns the value of this expression to the variable firstNum, which is 60 in the
sample run. The statement in Line 15 outputs the new value of £irstNum. The statement
in Line 16 contains the return statement, which is the last executable statement. The
right brace in Line 17 marks the end of the function main.

Debugging: Understanding and Fixing
Syntax Errors

The previous sections of this chapter described the basic components of a C++ program.
When you type a program, typos and unintentional syntax errors are likely to occur.
Therefore, when you compile a program, the compiler will identify the syntax error. In
this section, we show how to identify and fix syntax errors.

Consider the following C++ program:

1. #include <iostream>
2
3. using namespace std;
4
5

int main ()

86 | Chapter 2: Basic Elements of C++

6. {
7. int num
8.
9. num=18;
10.
11. tempNum = 2 * num;
12.
13. cout << "Num = " << num << ", tempNum = " < tempNum << endl;
14.
15. return ;
16. 1}

(Note that the numbers 1 to 16 on the left side are not part of the program. We have
numbered the statements for easy reference.) This program contains syntax errors. When
you compile this program, the compiler produces the following errors. (This program is
compiled using Microsoft Visual Studio 2010.)

ExampleCh2_Syntax_Errors.cpp
c:\examplech2 syntax_errors.cpp(9): error C2146: syntax error : missing ';'
before identifier 'num'

c:\examplech2_syntax_errors.cpp(ll): error C2065: 'tempNum' : undeclared identifier
c:\examplech2 syntax errors.cpp(13): error C2065: 'tempNum' : undeclared identifier
c:\examplech2 syntax_errors.cpp(13): error C2563: mismatch in formal parameter list
c:\examplech2 syntax errors.cpp(13): error C2568: '<<' : unable to resolve

function overload
c:\program files\microsoft visual studio
10.0\vc\include\ostream(1021) : could be 'std::basic ostream< Elem, Traits>
&std::endl (std::basic_ostream<_Elem, Traits> &)'
with
[
_Elem=unsigned short,
_Traits=std::char traits<unsigned short>
1

c:\program files\microsoft visual studio

10.0\vc\include\ostream(1011) : or 'std::basic ostream< Elem, Traits>
&std::endl (std::basic_ostream< Elem, Traits> &)'
with

[
_Elem=wchar_t,
_Traits=std::char_traits<wchar_t>
1

c:\program files\microsoft visual studio

10.0\vc\include\ ostream(1003): or 'std::basic_ostream<_Elem, Traits>
&std::endl (std::basic_ostream< Elem, Traits> &)'
with

[
_Elem=char,
_Traits=std::char_traits<char>

Debugging: Understanding and Fixing Syntax Errors | 87

c:\program files\microsoft visual studio 10.0\vc\include\ostream(977) :

or 'std::basic_ostream< Elem, Traits>
&std::endl (std::basic_ostream<_Elem, Traits> &)'
c\examplech2 syntax errors.cpp(l5): error C2561: 'main' : function must return a
value

c:\examplech2 syntax errors.cpp(5) : see declaration of 'main'

It is best to try to correct the errors in top-down fashion because the first error may
confuse the compiler and cause it to flag multiple subsequent errors when actually there
was only one error on an earlier line. So, let’s first consider the following error:

c:\examplech2 syntax_errors.cpp(9): error C2146: syntax error : missing ';'
before identifier 'num'

The expression examplech2 syntax errors.cpp (9) indicates that there is an error in
Line 9. The remaining part of this error specifies that there is a missing ; before the
identifier num. If we look at Line 7, we find that there 1s a missing semicolon at the end of
the statement int num. Therefore, we must insert ; at the end of the statement in Line 7.

Next, consider the second error:

c:\examplech2 syntax errors.cpp(ll): error C2065: 'tempNum' : undeclared identifier
This error occurs in Line 11, and it specifies that the identifier tempNum is undeclared.
When we look at the code, we find that this identifier has not been declared. So we must
declare tempNum as an int variable.

The error:

c:\examplech2 syntax_errors.cpp(ll): error C2065: 'tempNum' : undeclared identifier
occurs in Line 13, and it specifies that the identifier tempNum is undeclared. As in the

previous error, we must declare tempNum. Note that once we declare tempNum and
recompile, this and the previous error will disappear.

The next error is:
c:\examplech2 syntax errors.cpp(13): error C2563: mismatch in formal parameter list

This error occurs in Line 13, and it indicates that some formal parameter list is mis-
matched. For a beginner, this error is somewhat hard to understand. (In Chapter 13, we
will explain the formal parameter list of the operator <<.) However, as you practice, you
will learn how to interpret and correct syntax errors. This error becomes clear if you look
at the next error, the part of which is:

c:\examplech2 syntax errors.cpp(13): error C2568: << : unable to resolve
function overload

It tells us that this error has something to do with the operator <<. When we carefully
look at the statement in Line 13, which is:

cout << "Num = " << num << ", tempNum = " < tempNum << endl;

we find that in the expression < tempNum, we have unintentionally used < in place of <<.
So we must correct this error.

88 | Chapter 2: Basic Elements of C++

Let us look at the last error, which is:

c\examplech2_syntax_errors.cpp(15): error C2561: 'main’' : function must return a value

c:\examplech2_syntax_errors.cpp(5) : see declaration of 'main'

This error occurs in Line 15. However, at this point, the explanation given,
especially for a beginner, is somewhat unclear. However, if you look at the statement
return ; in Line 15 and remember the syntax of the function main as well as all the
programs given in this book, we find that the number 0 is missing, that is, this statement
must be return 0;

From the errors reported by the compiler, we see that the compiler not only identifies the
errors, but it also specifies the line numbers where the errors occur and the types of the
errors. We can effectively use this information to fix syntax errors.

After correcting all of the syntax errors, a correct program is:

#include <iostream>
using namespace std;

int main ()

{
int num;
int tempNum;

num = 18;
tempNum = 2 * num;
cout << "Num = " << num << ", tempNum = " << tempNum << endl;

return 0;

}
The output is:
Num = 18, tempNum = 36

As you learn C++ and practice writing and executing programs, you will learn how to
spot and fix syntax errors. It is possible that the list of errors reported by the compiler is
longer than the program itself. This is because, as indicated above, a syntax error in one
line can cause syntax errors in subsequent lines. In situations like this, correct the syntax
errors in the order they are listed and compile your program, if necessary, after each
correction. You will see how quickly the syntax errors list shrinks. The important thing is
not to panic.

In the next section, we describe some simple rules that you can follow so that your
program is properly structured.

Program Style and Form | 89

Program Style and Form

In previous sections, you learned enough C++ concepts to write meaningful programs.
Before beginning to write programs, however, you need to learn their proper structure,
among other things. Using the proper structure for a C++ program makes it easier to
understand and subsequently modify the program. There is nothing more frustrating
than trying to follow and perhaps modify a program that is syntactically correct but has no
structure.

In addition, every C++ program must satisfy certain rules of the language. A C++
program must contain the function main. It must also follow the syntax rules, which, like
grammar rules, tell what is right and what is wrong and what is legal and what is illegal in
the language. Other rules serve the purpose of giving precise meaning to the language;
that is, they support the language’s semantics.

The following sections are designed to help you learn how to use the C++ programming
elements you have learned so far to create a functioning program. These sections cover the
syntax; the use of blanks; the use of semicolons, brackets, and commas; semantics; naming
identifiers; prompt lines; documentation, including comments; and form and style.

Syntax

The syntax rules of a language tell what is legal and what is not legal. Errors in syntax are
detected during compilation. For example, consider the following C++ statements:

int x; //Line 1
int y //Line 2
double z; //Line 3
y =w + x; //Line 4

When these statements are compiled, a compilation error will occur at Line 2 because the
semicolon is missing after the declaration of the variable y. A second compilation error
will occur at Line 4 because the identifier w is used but has not been declared.

As discussed in Chapter 1, you enter a program into the computer by using a text editor.
When the program is typed, errors are almost unavoidable. Therefore, when the program is
compiled, you are most likely to see syntax errors. It is quite possible that a syntax error at a
particular place might lead to syntax errors in several subsequent statements. It is very
common for the omission of a single character to cause four or five error messages.
However, when the first syntax error is removed and the program is recompiled, sub-
sequent syntax errors caused by this syntax error may disappear. Therefore, you should
correct syntax errors in the order in which the compiler lists them. As you become more
familiar and experienced with C++, you will learn how to quickly spot and fix syntax
errors. Also, compilers not only discover syntax errors, but also hint and sometimes tell the
user where the syntax errors are and how to fix them.

90 | Chapter 2: Basic Elements of C++

Use of Blanks

In C++, you use one or more blanks to separate numbers when data is input. Blanks are
also used to separate reserved words and identifiers from each other and from other
symbols. Blanks must never appear within a reserved word or identifier.

Use of Semicolons, Brackets, and Commas

All C++ statements must end with a semicolon. The semicolon is also called a statement
terminator.

Note that curly braces, { and }, are not C++ statements in and of themselves, even
though they often appear on a line with no other code. You might regard brackets as
delimiters, because they enclose the body of a function and set it off from other parts of
the program. Brackets have other uses, which will be explained in Chapter 4.

Recall that commas are used to separate items in a list. For example, you use commas
when you declare more than one variable following a data type.

Semantics

The set of rules that gives meaning to a language is called semantics. For example, the
order-of-precedence rules for arithmetic operators are semantic rules.

If a program contains syntax errors, the compiler will warn you. What happens when a
program contains semantic errors? It is quite possible to eradicate all syntax errors in a
program and still not have it run. And if it runs, it may not do what you meant it to do.
For example, the following two lines of code are both syntactically correct expressions,
but they have different meanings:

2+ 3*5
and:
(2 + 3) *5

If you substitute one of these lines of code for the other in a program, you will not get the
same results—even though the numbers are the same, the semantics are different. You
will learn about semantics throughout this book.

Naming ldentifiers

Consider the following two sets of statements:

const double A = 2.54; //conversion constant
double x; //variable to hold centimeters
double y; //variable to hold inches

Xx =y * a;

Program Style and Form | 91

and

const double CENTIMETERS PER INCH = 2.54;
double centimeters;
double inches;

centimeters = inches * CENTIMETERS PER INCH;

The identifiers in the second set of statements, such as CENTIMETERS PER_INCH, are
usually called self~documenting identifiers. As you can see, self~documenting identifiers
can make comments less necessary.

Consider the self~documenting identifier annualsale. This identifier is called a run-
together word. In using self-documenting identifiers, you may inadvertently include
run-together words, which may lessen the clarity of your documentation. You can make
run-together words easier to understand by either capitalizing the beginning of each new
word or by inserting an underscore just before a new word. For example, you could use
either annualSale or annual_sale to create an identifier that is more clear.

Recall that earlier in this chapter, we specified the general rules for naming named
constants and variables. For example, an identifier used to name a named constant is
all uppercase. If this identifier is a run-together word, then the words are separated
with the underscore character.

Prompt Lines

Part of good documentation is the use of clearly written prompts so that users will
know what to do when they interact with a program. There is nothing more
frustrating than sitting in front of a running program and not having the foggiest
notion of whether to enter something or what to enter. Prompt lines are executable
statements that inform the user what to do. For example, consider the following
C++ statements, in which num is an int variable:

cout << "Please enter a number between 1 and 10 and "
<< "press the return key" << endl;
cin >> num;

When these two statements execute in the order given, first the output statement causes
the following line of text to appear on the screen:

Please enter a number between 1 and 10 and press the return key

After seeing this line, users know that they must enter a number and press the return key.
If the program contained only the second statement, users would have no idea that they
must enter a number, and the computer would wait forever for the input. The preceding
output statement is an example of a prompt line.

In a program, whenever input is needed from users, you must include the necessary
prompt lines. Furthermore, these prompt lines should include as much information as
possible about what input is acceptable. For example, the preceding prompt line not

92 | Chapter 2: Basic Elements of C++

only tells the user to input a number, but also informs the user that the number
should be between 1 and 10.

Documentation

The programs that you write should be clear not only to you, but also to anyone
else. Therefore, you must properly document your programs. A well-documented
program is easier to understand and modity, even a long time after you originally
wrote it. You use comments to document programs. Comments should appear in a
program to explain the purpose of the program, identify who wrote it, and explain
the purpose of particular statements.

Form and Style

You might be thinking that C++ has too many rules. However, in practice, the rules give
C++ a great degree of freedom. For example, consider the following two ways of
declaring variables:

int feet, inch;
double x, y;

and
int feet,inches;double x,y;

The computer would have no difficulty understanding either of these formats, but the
first form is easier to read and follow. Of course, the omission of a single comma or
semicolon in either format may lead to all sorts of strange error messages.

What about blank spaces? Where are they significant and where are they meaningless?
Consider the following two statements:

int a,b,c;
and
int a, b, c;

Both of these declarations mean the same thing. Here, the blanks between the identifiers
in the second statement are meaningless. On the other hand, consider the following
statement:

inta, b, c;

This statement contains a syntax error. The lack of a blank between int and the
identifier a changes the reserved word int and the identifier a into a new identifier,
inta.

The clarity of the rules of syntax and semantics frees you to adopt formats that are pleasing
to you and easier to understand.

Program Style and Form | 93

The following example further elaborates on this.

EXAMPLE 2-30

Consider the following C++ program:

//An improperly formatted C++ program.

#include <iostream>
#include <string>
using namespace std;

int main ()

{

int num; double height;

string name;

cout << "Enter an integer: "; cin >> num; cout << endl;
cout<<"num: "<<num<<endl;

cout<<"Enter the first name: "; cin>>name;
cout<<endl; cout <<"Enter the height: ";

cin>>height; cout<<endl;

cout<<"Name: "<<name<<endl;cout<<"Height: "
<<height; cout <<endl;return 0;

}

This program is syntactically correct; the C++ compiler would have no difficulty reading
and compiling this program. However, this program is very hard to read. The program
that you write should be properly indented and formatted. Note the difference when the
program is reformatted:

//A properly formatted C++ program.

#include <iostream>
#include <string>

using namespace std;

int main ()

{
int num;
double height;
string name;

cout << "Enter an integer: ";
cin >> num;
cout << endl;

94 | Chapter 2: Basic Elements of C++

cout << "num: " << num << endl;

cout << "Enter the first name: ";
cin >> name;

cout << endl;

cout << "Enter the height: ";

cin >> height;

cout << endl;

cout << "Name: " << name << endl;
cout << "Height: " << height << endl;

return 0;

}

As you can see, this program is easier to read. Your programs should be properly
indented and formatted. To document the variables, programmers typically declare
one variable per line. Also, always put a space before and after an operator. When
you type your program using an IDE, typically, your program is automatically
indented.

More on Assignment Statements

The assignment statements you have seen so far are called simple assignment
statements. In certain cases, you can use special assignment statements called
compound assignment statements to write simple assignment statements in a
more concise notation.

Corresponding to the five arithmetic operators +, -, *, /, and %, C++ provides five
compound operators: +=, -=, *=, /=, and %=, respectively. Consider the following simple
assignment statement, in which x and y are int variables:

x =x*y;
Using the compound operator *=, this statement can be written as:
X *= y;

In general, using the compound operator *=, you can rewrite the simple assignment
statement:

variable = variable * (expression);

as:

variable *= expression;

More on Assignment Statements | 95

The other arithmetic compound operators have similar conventions. For example, using
the compound operator +=, you can rewrite the simple assignment statement:

variable = variable + (expression);
as:
variable += expression;

The compound assignment statement allows you to write simple assignment statements
in a concise fashion by combining an arithmetic operator with the assignment operator.

This example shows several compound assignment statements that are equivalent to
simple assignment statements.

Simple Assignment Statement Compound Assignment Statement
i=1+5; i+=5;

counter = counter + 1; counter += 1;

sum = sum + number; sum += number;

amount = amount * (interest + 1); amount *= interest + 1;
x=x/ (y+05); x /=y + 5;

NOTE Anycompound assignment statement can be converted into a simple assignment statement.
However, a simple assignment statement may not be (easily) converted to a compound
assignment statement. For example, consider the following simple assignment statement:

x=x*y + z - 5;

To write this statement as a compound assignment statement, the variable x must be a
common factor in the right side, which is not the case. Therefore, you cannot immediately
convert this statement into a compound assignment statement. In fact, the equivalent
compound assignment statement is:

X *= vy + (z - 5)/x;

which is more complicated than the simple assignment statement. Furthermore, in the
preceding compound statement, x cannot be 0. We recommend avoiding such compound
expressions.

NOTE In programming code, this book typically uses only the compound operator +=. So
statements such as a = a + b; are written as a +=Db;.

96 | Chapter 2: Basic Elements of C++

PROGRAMMING EXAMPLE: Convert Length

) & Write a program that takes as input given lengths expressed in feet and inches. The
0 program should then convert and output the lengths in centimeters. Assume that the
given lengths in feet and inches are integers.

Watch
the Video Input Length in feet and inches.
Output Equivalent length in centimeters.
PROBLEM The lengths are given in feet and inches, and you need to find the equivalent length
ANALYSIS in centimeters. One inch is equal to 2.54 centimeters. The first thing the program
AND needs to do is convert the length given in feet and inches to all inches. Then, you can
ALGORITHM use the conversion formula, 1 inch = 2.54 centimeters, to find the equivalent length
DESIGN in centimeters. To convert the length from feet and inches to inches, you multiply

the number of feet by 12, as 1 foot is equal to 12 inches, and add the given inches.

For example, suppose the input is 5 feet and 7 inches. You then find the total inches
as follows:

totalInches = (12 * feet) + inches
12 * 5 + 7
= 67

You can then apply the conversion formula, 1 inch = 2.54 centimeters, to find the
length in centimeters.

centimeters = totallnches * 2.54
67 * 2.54
= 170.18

Based on this analysis of the problem, you can design an algorithm as follows:

Get the length in feet and inches.
Convert the length into total inches.

Convert total inches into centimeters.

= =

Output centimeters.

Variables The input for the program is two numbers: one for feet and one for inches. Thus,
you need two variables: one to store feet and the other to store inches. Because the
program will first convert the given length into inches, you need another variable to
store the total inches. You also need a variable to store the equivalent length in
centimeters. In summary, you need the following variables:

int feet; //variable to hold given feet
int inches; //variable to hold given inches
int totallInches; //variable to hold total inches

double centimeters; //variable to hold length in centimeters

Programming Example: Convert Length | 97

Named To calculate the equivalent length in centimeters, you need to multiply the total
Constants inches by 2.54. Instead of using the value 2.54 directly in the program, you will
declare this value as a named constant. Similarly, to find the total inches, you need to
multiply the feet by 12 and add the inches. Instead of using 12 directly in the
program, you will also declare this value as a named constant. Using a named
constant makes it easier to modify the program later.

const double CENTIMETERS PER INCH = 2.54;
const int INCHES PER FOOT = 12;

MAIN In the preceding sections, we analyzed the problem and determined the formulas to do

ALGORITHM the calculations. We also determined the necessary variables and named constants. We
can now expand the algorithm given in the section Problem Analysis and Algorithm
Design to solve the problem given at the beginning of this programming example.

1. Prompt the user for the input. (Without a prompt line, the user
will be staring at a blank screen and will not know what to do.)
2. Get the data.

3. Echo the input—that is, output what the program read as input.
(Without this step, after the program has executed, you will not
know what the input was.)

Find the length in inches.
Output the length in inches.

Convert the length to centimeters.

AN

Output the length in centimeters.

Putting It Now that the problem has been analyzed and the algorithm has been designed, the
Together next step is to translate the algorithm into C++ code. Because this is the first
complete C++ program you are writing, let’s review the necessary steps in sequence.

The program will begin with comments that document its purpose and functionality.
As there is both input to this program (the length in feet and inches) and output (the
equivalent length in centimeters), you will be using system resources for input/output.
In other words, the program will use input statements to get data into the program and
output statements to print the results. Because the data will be entered from the
keyboard and the output will be displayed on the screen, the program must include the
header file iostream. Thus, the first statement of the program, after the comments as
described above, will be the preprocessor directive to include this header file.

This program requires two types of memory locations for data manipulation: named
constants and variables. Typically, named constants hold special data, such as
CENTIMETERS PER INCH. Depending on the nature of a named constant, it can be
placed before the function main or within the function main. If a named constant is to be

98 | Chapter 2: Basic Elements of C++

used throughout the program, then it is typically placed before the function main. We will
comment further on where to put named constants within a program in Chapter 6, when
we discuss user-defined functions in general. Until then, usually, we will place named
constants before the function main so that they can be used throughout the program.

This program has only one function, the function main, which will contain all of the
programming instructions in its body. In addition, the program needs variables to
manipulate data, and these variables will be declared in the body of the function
main. The reasons for declaring variables in the body of the function main are
explained in Chapter 6. The body of the function main will also contain the C++
statements that implement the algorithm. Therefore, the body of the function main
has the following form:

int main ()

{
declare variables
statements
return 0;

}

To write the complete length conversion program, follow these steps:

1. Begin the program with comments for documentation.
2. Include header files, if any are used in the program.

3. Declare named constants, if any.
4

Worite the definition of the function main.

COMPLETE PROGRAM LISTING

VA T
// Author: D. S. Malik

// Program Convert Measurements: This program converts

// measurements in feet and inches into centimeters using

// the formula that 1 inch is equal to 2.54 centimeters.
//**

//Header file
#include <iostream>

using namespace std;
//Named constants

const double CENTIMETERS PER INCH = 2.54;
const int INCHES PER FOOT = 12;

Programming Example: Make Change | 99

int main ()

{

//Declare variables
int feet, inches;
int totallInches;
double centimeter;

//Statements: Step 1 - Step 7
cout << "Enter two integers, one for feet and "

<< "one for inches: "; //Step 1
cin >> feet >> inches; //Step 2
cout << endl;
cout << "The numbers you entered are " << feet

<< " for feet and " << inches

<< " for inches. " << endl; //Step 3
totalInches = INCHES PER FOOT * feet + inches; //Step 4
cout << "The total number of inches = "

<< totallInches << endl; //Step 5
centimeter = CENTIMETERS PER INCH * totalInches; //Step 6
cout << "The number of centimeters = "

<< centimeter << endl; //Step 7
return 0;

}

Sample Run: In this sample run, the user input is shaded.

Enter two integers, one for feet, one for inches: 15 7

The numbers you entered are 15 for feet and 7 for inches.
The total number of inches = 187
The number of centimeters = 474.98

PROGRAMMING EXAMPLE: Make Change

Write a program that takes as input any change expressed in cents. It should then
compute the number of halt-dollars, quarters, dimes, nickels, and pennies to be
returned, returning as many half-dollars as possible, then quarters, dimes, nickels,
and pennies, in that order. For example, 483 cents should be returned as 9 half-
dollars, 1 quarter, 1 nickel, and 3 pennies.

Input Change in cents.

Output Equivalent change in half-dollars, quarters, dimes, nickels, and pennies.

100 | Chapter 2: Basic Elements of C++

PROBLEM Suppose the given change is 646 cents. To find the number of half-dollars, you
ANALYSIS divide 646 by 50, the value of a half-dollar, and find the quotient, which is 12, and
AND the remainder, which is 46. The quotient, 12, is the number of half-dollars, and the
ALGORITHM remainder, 46, is the remaining change.

DESIGN

Next, divide the remaining change by 25 to find the number of quarters. Since the
remaining change is 46, division by 25 gives the quotient 1, which is the number of
quarters, and a remainder of 21, which is the remaining change. This process
continues for dimes and nickels. To calculate the remainder in an integer division,
you use the mod operator, %.

Applying this discussion to 646 cents yields the following calculations:

1. Change = 646

Number of half-dollars = 646 / 50 = 12
Remaining change = 646 % 50 = 46
Number of quarters = 46 / 25 =1
Remaining change = 46 % 25 = 21
Number of dimes = 21 / 10 = 2
Remaining change =21 $ 10 =1
Number of nickels =1/ 5=0

9. Number of pennies = remaining change = 1 $5=1

ge N & o ol

This discussion translates into the following algorithm:

1. Get the change in cents.

Find the number of half-dollars.
Calculate the remaining change.
Find the number of quarters.
Calculate the remaining change.
Find the number of dimes.

Calculate the remaining change.

O O

Find the number of nickels.

9. Calculate the remaining change, which is the number of pennies.

Variables From the previous discussion and algorithm, it appears that the program will need
variables to hold the number of half-dollars, quarters, and so on. However, the numbers
of half~dollars, quarters, and so on are not used in later calculations, so the program can
simply output these values without saving each of them in a variable. The only thing that
keeps changing is the change, so the program actually needs only one variable:

int change;

Programming Example: Make Change | 101

Named To calculate the equivalent change, the program performs calculations using the
Constants values of a half-dollar, which is 50; a quarter, which is 25; a dime, which is 10; and a
nickel, which is 5. Because these data are special and the program uses these values
more than once, it makes sense to declare them as named constants. Using named
constants also simplifies later modification of the program:

const int HALF DOLLAR = 50;
const int QUARTER = 25;
const int DIME = 10;

const int NICKEL = 5;

MAIN
ALGORITHM

Prompt the user for input.

Get input.

Echo the input by displaying the entered change on the screen.
Compute and print the number of half-dollars.

Calculate the remaining change.

Compute and print the number of quarters.

Calculate the remaining change.

Compute and print the number of dimes.

g N ey @ g Y=

Calculate the remaining change.

—_
=

Compute and print the number of nickels.

—_
—_

Calculate the remaining change.

—_
D

Print the remaining change.

COMPLETE PROGRAM LISTING

//**
// Author: D. S. Malik

//

// Program Make Change: Given any amount of change expressed
// in cents, this program computes the number of half-dollars,
// quarters, dimes, nickels, and pennies to be returned,

// returning as many half-dollars as possible, then quarters,

// dimes, nickels, and pennies in that order.
//**

//Header file
#include <iostream>

using namespace std;

//Named constants
const int HALF DOLLAR = 50;
const int QUARTER = 25;
const int DIME = 10;
const int NICKEL = 5;

102

Chapter 2: Basic Elements of C++

int main ()

{

//Declare variable
int change;

//Statements: Step 1 - Step 12
cout << "Enter change in cents: "; //Step
cin >> change; //Step
cout << endl;

cout << "The change you entered is " << change
<< endl; //Step

cout << "The number of half-dollars to be returned "
<< "is " << change / HALF_ DOLLAR

<< endl; //Step
change = change % HALF DOLLAR; //Step
cout << "The number of quarters to be returned is "

<< change / QUARTER << endl; //Step
change = change % QUARTER; //Step
cout << "The number of dimes to be returned is "

<< change / DIME << endl; //Step
change = change % DIME; //Step
cout << "The number of nickels to be returned is "

<< change / NICKEL << endl; //Step
change = change % NICKEL; //Step

cout << "The number of pennies to be returned is "
<< change << endl; //Step

return 0;

Sample Run: In this sample run, the user input is shaded.

Enter change in cents: 583

The
The
The
The
The
The

change you entered is 583

number of half-dollars to be returned is 11
number of quarters to be returned is 1
number of dimes to be returned is 0

number of nickels to be returned is 1
number of pennies to be returned is 3

10

11

12

Quick Review

QUICK REVIEW

103

w

W 00 N O g »H

16.
17.

20.

21.

22,

A C++ program is a collection of functions.

Every C++ program has a function called main.

A single-line comment starts with the pair of symbols //anywhere in the
line.

Multiline comments are enclosed between /* and */.

The compiler skips comments.

Reserved words cannot be used as identifiers in a program.

All reserved words in C++ consist of lowercase letters (see Appendix A).
In C++, identifiers are names of things.

A C++ identifier consists of letters, digits, and underscores and must begin
with a letter or underscore.

Whitespaces include blanks, tabs, and newline characters.
A data type is a set of values together with a set of operations.

C++ data types fall into the following three categories: simple, structured,
and pointers.

There are three categories of simple data: integral, floating-point, and
enumeration.

Integral data types are classified into nine categories: char, short, int,
long, bool, unsigned char, unsigned short, unsigned int, and
unsigned long.

The values belonging to int data type are —2147483648 (= —2°") to
2147483647 (= 2°' — 1).

The data type bool has only two values: true and false.
The most common character sets are ASCII, which has 128 values, and

EBCDIC, which has 256 values.

The collating sequence of a character is its preset number in the character
data set.

C++ provides three data types to manipulate decimal numbers: £loat,
double, and long double.

The data type £loat is used in C++ to represent any real number between
-3.4 % 10% and 3.4 * 10°%. The memory allocated for a value of the
float data type is four bytes.

The data type double is used in C++ to represent any real number
between -1.7* 10°°® and 1.7 * 10°®. The memory allocated for a value
of the double data type is eight bytes.

The arithmetic operators in C++ are addition (+), subtraction (-), multi-
plication (*), division (/), and modulus (%).

104

23.
24,

25.

26.

27.

28.

29.
30.
31.
32.

33.
34.

35.
36.
37.
38.
39.
40.
41.

42.
43.

44,

45.
46.

47.

| Chapter 2: Basic Elements of C++

The modulus operator, %, takes only integer operands.

Arithmetic expressions are evaluated using the precedence rules and the
associativity of the arithmetic operators.

All operands in an integral expression, or integer expression, are integers,
and all operands in a floating-point expression are decimal numbers.

A mixed expression is an expression that consists of both integers and
decimal numbers.

When evaluating an operator in an expression, an integer is converted to a
floating-point number, with a decimal part of 0, only if the operator has
mixed operands.

You can use the cast operator to explicitly convert values from one data
type to another.

A string is a sequence of zero or more characters.
Strings in C++ are enclosed in double quotation marks.
A string containing no characters is called a null or empty string.

Every character in a string has a relative position in the string. The position of
the first character is 0, the position of the second character is 1, and so on.

The length of a string is the number of characters in it.

During program execution, the contents of a named constant cannot be
changed.

A named constant is declared by using the reserved word const.
A named constant is initialized when it is declared.

All variables must be declared before they can be used.

C++ does not automatically initialize variables.

Every variable has a name, a value, a data type, and a size.

When a new value is assigned to a variable, the old value is lost.

Only an assignment statement or an input (read) statement can change the
value of a variable.

In C++, >> is called the stream extraction operator.

Input from the standard input device is accomplished by using cin and the
stream extraction operator >>.

When data is input in a program, the data items, such as numbers, are
usually separated by blanks, lines, or tabs.

In C++, << 1s called the stream insertion operator.

Output of the program to the standard output device is accomplished by
using cout and the stream insertion operator <<.

The manipulator endl positions the insertion point at the beginning of the
next line on an output device.

Exercises

48. Outputting or accessing the value of a variable in an expression does not
destroy or modify the contents of the variable.

49. The character \ is called the escape character.

50. The sequence \n is called the newline escape sequence.

51. All preprocessor commands start with the symbol #.

52. The preprocessor commands are processed by the preprocessor before the
program goes through the compiler.

53. The preprocessor command #include <iostream> instructs the prepro-
cessor to include the header file iostream in the program.

54. To use cin and cout, the program must include the header file iostream
and either include the statement using namespace std; or refer to these
identifiers as std: :cin and std: :cout.

55. All C++ statements end with a semicolon. The semicolon in C++ is called
the statement terminator.

56. A C++ system has three components: environment, language, and the
standard libraries.

57. Standard libraries are not part of the C++ language. They contain functions
to perform operations, such as mathematical operations.

58. A file containing a C++ program usually ends with the extension .cpp.

59. Prompt lines are executable statements that tell the user what to do.

60. Corresponding to the five arithmetic operators +, -, * /, and %,
C++ provides five compound operators: +=, -=, *=, /=, and %=, respectively.

EXERCISES

105

Mark the following statements as true or false.

a. An identifier can be any sequence of digits and letters.

b. In C++, there is no difference between a reserved word and a pre-
defined identifier.

c. A C++ identifier can start with a digit.

d. The operands of the modulus operator must be integers.

e. Ifa=4; andb=3;, then after the statement a =b; the value of b is still 3.
f. In the statement cin>> y;, y can only be an int or a double variable.
g. In an output statement, the newline character may be a part of the string.
h. The following is a legal C++ program:

int main()
{

return 0;

}

106 | Chapter 2: Basic Elements of C++

i. In a mixed expression, all the operands are converted to floating-point
numbers.

ji. Suppose x = 5. After the statement y = x++; executes, y is 5 and
x 15 6.

k. Suppose a = 5. After the statement ++a; executes, the value of a is still
5 because the value of the expression is not saved in another variable.

2. Which of the following are valid C++ identifiers?

a. firstCPPProject h. POP_QUIZ c. C++Program?2 d. quiz7
e. ProgrammingLecture?2 f. 3feetInlYard

g. Mike'sFirstAttempt h. Update Grade i. 4th

J. New_Student

3. Which of the following is a reserved word in C++?
a. Const b. include ¢ Char d. void e int f Return
4. What is the difference between a keyword and a user-defined identifier?
Are the identifiers firstName and FirstName the same?
6. Evaluate the following expressions:

a. 36/5 bh. 18-32/6*3 c. 80%11 d 6-8%11
e. 22.0/5 f 27-12/8.0 g. 25-7%3+8/3
h. 18.0+5.0* 3.0 /4.0

7. Iftx=5,y=6,z=4,and w= 3.5, evaluate each of the following statements,
if possible. If it is not possible, state the reason.

a. (x+z)%y h. (x+vy) %w c. (y+w) $x d. (x+y)*w
e. (x%y) %z f. (yv%z) %x g (x*z) %y h. ((x*y) *w) *z
8. Given:

int numl, num2, newNum;
double x, y;

Which of the following assignments are valid? If an assignment is not valid, state the
reason.

When not given, assume that each variable is declared.

a. numl = 35;

h. newNum = numl — num2;

c. numl =5; num2 = 2 + numl; numl = num2 / 3;
d. numl * num2 = newNum;

e. x=12* numl - 15.3;

f. numl * 2 = newNum + num2;

g x/y=x*y;

Exercises

h. num2 =numl $2.0;

i. newNum=static cast<int> (x) %$5;

o x=x+y-5;

k. newNum=numl + static cast<int> (4.6 /2);

Do a walk-through to find the value assigned to e. Assume that all variables
are properly declared.

a = 3;

b = 4;

c = (a % b) * o6;
d=c/ b;
e=(a+b+c+d / 4;

Which of the following variable declarations are correct? If a variable
declaration is not correct, give the reason(s) and provide the correct
variable declaration.

55 = age; //Line 1
char letter = ' '; //Line 2
string message = 'First test is on Monday' //Line 3
int one = 5; //Line 4
int prime; //Line 5
double x, y, z; //Line 6

Which of the following are valid C++ assignment statements? Assume that
i, x, and percent are double variables.

a. i=i+5; h x+2=x; ¢ x=2.5*x; d percent=10%;
Write C++ statement(s) that accomplish the following:

a. Declare int variables x and y. Initialize x to 25 and y to 18.

h. Declare and initialize an int variable temp to 10 and a char variable
ch to 'A'".

c. Update the value of an int variable x by adding 5 to it.

d. Declare and initialize a double variable payRate to 12.50.

e. Copy the value of an int variable firstNum into an int variable
tempNum.

. Swap the contents of the int variables x and y. (Declare additional
variables, if necessary.)

g. Suppose x and y are double variables. Output the contents of x, y,
and the expression x + 12 / y - 18.

h. Declare a char variable grade and set the value of grade to 'A"'.
i. Declare int variables to store four integers.

ji. Copy the value of a double variable z to the nearest integer into an
int variable x.

107

108 | Chapter 2: Basic Elements of C++

13. Write each of the following as a C++ expression:

a. 32 times a plus b

b. The character that represents 8

c. The string that represents the name Julie Nelson.
d. (b - 4ac) /2a

e. (a+b)/c(ef)-gh

f. (-b+ (b®-4ac)) / 2a

14. Suppose x, y, z, and w are int variables. What value is assigned to each of
these variables after the last statement executes?

x = 4; y=11;

Z =y - 2* x;

x =1z +ty;
y=x+5%* z;
w=x-y+2%* z;
X =y +Ww - x;
—w;

15. Suppose x, y, and z are int variables and w and t are double variables.
What value is assigned to each of these variables after the last statement
executes?

= 23;

35;

x+vy/ 4 - 3;

x % 3;

28 / 3 + 6.5 * 2;

x/ 4.0 +415 % 4 - 3.5;

5 N XK X
Il

16. Suppose %, y, and z are int variables and x =2, y = 5, and z = 6. What is
the output of each of the following statements?

2. cout<< "x="<KLKx<K", y="<Ky<K", z="<<z<< endl;

h. cout<< "x+y="<<x+y<<endl;

c. cout<< "Sumof "<K< x<< Mand"<<z<<K"is"<KKx+z<<endl;
d. cout<< "z /x="<<1z/x<<endl;

e. cout<< "2 times "<K<K X< " ="<< 2*x<< endl;

17. What is the output of the following statements? Suppose a and b are int
variables, ¢ is a double variable, and a=13,b =05, and ¢ =17.5.

2. cout << a + b - ¢ << endl;

. cout << 15 / 2 + ¢ << endl;

c. cout << a /static cast<double>(b) + 2 * ¢
<< endl;

d. cout << 14 % 3 + 6.3 + b / a << endl;

e. cout << static cast<int>(c) $ 5+ a - b
<< endl;

£ cout << 13.5/ 2 + 4.0 * 3.5 + 18 << endl;

20.

21.

22,

Exercises

Write C++ statements that accomplish the following:

a. Output the newline character.
b. Output the tab character.
c. Output double quotation mark.

Which of the following are correct C++ statements?

a. cout << "Hello There!" << endl;

h. cout << "Hello";
<< " There!" << endl;

c. cout << "Hello"
<< " There!" << endl;

d. cout << 'Hello There!' << endl;
Give meaningful identifiers for the following variables:

a. A variable to store the first name of a student.

b. A variable to store the discounted price of an item.
c. A variable to store the number of juice bottles.

d. A variable to store the number of miles traveled.

e. A variable to store the highest test score.
Write C++ statements to do the following:

a. Declare int variable numl and num2.

b. Prompt the user to input two numbers.

c. Input the first number in numl and the second number in num2.

d. Output numl, num2, and 2 times numl minus num2. Your output must
identify each number and the expression.

The following program has syntax errors. Correct them. On each successive

line, assume that any preceding error has been corrected.

#include <io_stream>

const int TOP_NUM = 753,409;
const PAY RATE = 18.35

main() int

{
int testScore, projectScore;
double temp;
double payCheck

testScore = 88;
projectScore = 22;

cout << testScore << " " << projectScore << endl;

109

110 | Chapter 2: Basic Elements of C++

temp = 82;
newTemp = testScore + 2 * projectScore;

first = 2 * TOP_NUM;
TOP NUM = TOP NUM - 919;

cout << first << "™ " TOP_NUM << endl;
paycheck = hoursWorked * PAY RATE
cout << "Wages = " << paycheck << endl;

return 0;

}

23. The following program has syntax mistakes. Correct them. On each
successive line, assume that any preceding error has been corrected.

const char = STAR = '*!
const int PRIME = 71;

int main

{
int count, sum;
double x;

count = 1;
sum = count + PRIME;
x := 25.67;
newNum = count * ONE + 2;
sum + count = sum;
x = x + sum * COUNT;
cout << " count = " << count << ", sum = " << sum
<< ", PRIME = " << Prime << endl;
}

24. The following program has syntax errors. Correct them. On each successive
line, assume that any preceding error has been corrected.

#include <iostream>
using namespace std;

int main ()

{
int temp;
string first;

cout << "Enter first name: ;
cin >> first
cout << endl;

cout << "Enter last name: ;
cin >> last;
cout << endl;

25.
26.

217.

28.

29.

30.

31.

Exercises
cout << "Enter today's temperature: ";
cin >> temperature;
cout << endl;
cout << first << " " << last << today's temperature is:

<< temperature << endl;

return 0;

}

‘What action must be taken before a variable can be used in a program?

Preprocessor directives begin with which of the following symbols:

a. * h. # c. $ d. ! e. None of these.

Write equivalent compound statements if possible.

a. x=2%*x h. x=x+y-2; c. sum=s
d z=z*x+2*z; e. y=y/ (x+5);

um + num;

Write the following compound statements as equivalent simple statements.

a. x+=5-1z; h. y*=2*x+5-2z2; c. w+=2*z + 4;

d. x-=z+y-1t; e. sum += num;

Suppose a, b, and ¢ are int variables and a = 5 and b = 6. What value is
assigned to each variable after each statement executes? If a variable is

undefined at a particular statement, report UND (undefined).

a b c
a = (b++) + 3; _ . _
c=2%*a+ (+tb); . _ _
b=2%* (++c) - (at++);

Suppose a, b, and sum are int variables and ¢ is a double variable. What

value is assigned to each variable after each statement executes? Suppose a = 3,

b=5,and c=14.1.

sum = a + b + c;
c /= a;
b+=c - a;
a*2*b + c;

‘What is printed by the following program? Suppose
20 15

#include <iostream>
using namespace std;

const int NUM = 10;
const double X = 20.5;

sum

the input is:

111

112

32.

| Chapter 2: Basic Elements of C++

int main()

{
int a, b;
double z;
char grade;

a = 25;
cout << "a = " << a << endl;

cout << "Enter two integers: ";
cin >> a >> b;
cout << endl;

cout << "The numbers you entered are "
<< a << " and " << b << endl;

z =X+ 2%*a - b;
cout << "z = " << z << endl;

grade = 'A';
cout << "Your grade is " << grade << endl;

a=2*NUM + z;
cout << "The value of a = " << a << endl;

return 0;

}
What is printed by the following program? Suppose the input is:

Miller
34
340

#include <iostream>
#include <string>

using namespace std;
const int PRIME NUM = 11;

int main ()

{
const int SECRET = 17;

string name;
int id;

int num;

int mysteryNum;

cout << "Enter last name: ";
cin >> name;
cout << endl;

33.

34.

Exercises

cout << "Enter a two digit number: ";
cin >> num;
cout << endl;

id = 100 * num + SECRET;
cout << "Enter a positive integer less than 1000: ";
cin >> num;

cout << endl;

mysteryNum = num * PRIME NUM - 3 * SECRET;

cout << "Name: " << name << endl;

cout << "Id: " << id << endl;

cout << "Mystery number: " << mysteryNum << endl;
return 0;

}
Rewrite the following program so that it is properly formatted.

#include <iostream>
#include <string>
using namespace std;
const double X = 13.45; const int Y=34;
const char BLANK= ' ';
int main ()
{ string firstName,lastName;int num;
double salary;
cout<<"Enter first name: "; cin>> firstName; cout<<endl;
cout<<"Enter last name: "; cin
>>lastName; cout<<endl;
cout<<"Enter a positive integer less than 70:";
cin>>num; cout<<endl; salary=num*X;
cout<<"Name: "<<firstName<<BLANK<<lastName<<endl;cout
<<"Wages: $"<<salary<<endl; cout<<"X = "<<X<<endl;
cout<<"X+Y = " << X+Y << endl; return 0;

}

What type of input does the following program require, and in what order
does the input need to be provided?

#include <iostream>
using namespace std;

int main()

{
int invoiceNumber;
double salesTaxRate;
double productPrice;
string productName;

113

114 | Chapter 2: Basic Elements of C++

cin >> productName;
cin >> salesTaxRate >> productPrice;
cin >> invoiceNumber;

return 0;

PROGRAMMING EXERCISES

1. Write a program that produces the following output:

%k ok gk ok kg ok kK ke ke ke ke k% ke ke ko ok ok ke ok ke ke ke ke ke ke ok

* Programming Assignment 1 *
* Computer Programming I *
* Author: ?72°? *

* Due Date: Thursday, Jan. 24 *
khkhkkhkhkkhhkkhkhkhhkhkhkhkkkhkkdkhkkhkkkhkkkhkkkkk

In your program, substitute 22? with your own name. If necessary, adjust the
positions and the number of the stars to produce a rectangle.

2. Write a program that produces the following output:

cceeecece ++ ++
cc ++ ++
cc e e s 2
cc e e
cc ++ ++
cceeeeece ++ ++

3. Consider the following program segment

//include statement(s)
//using namespace statement

int main ()

{
//variable declaration
//executable statements
//return statement

}

a. Write C++ statements that include the header files iostream.

b. Write a C++ statement that allows you to use cin, cout, and endl
without the prefix std::.

c. Write C++ statements that declare the following variables: numl, num?2,
num3, and average of type int.

Programming Exercises | 115

d. Write C++ statements that store 125 into numl, 28 into num2, and
-25 into num3.

e. Write a C++ statement that stores the average of numl, num2, and
num3, Into average.

. Write C++ statements that output the values of numl, num2, num3,
and average.

g. Compile and run your program.

Repeat Exercise 3 by declaring numl, num2, and num3, and average of
type double. Store 75.35 into numl, -35.56 into num2, and 15.76
into num3.

Consider the following C++ program in which the statements are in the
incorrect order. Rearrange the statements so that it prompts the user to
input the radius of a circle and outputs the area and circumference of
the circle.

#include <iostream>
{
int main ()
cout << "Enter the radius: ";
cin >> radius;
cout << endl;

double radius;
double area;

using namespace std;

return 0;

cout << "Area = " << area << endl;

area = PI * radius * radius;

circumference = 2 * PI * radius;

cout << "Circumference = " << circumference << endl;
const double PI = 3.14;

double circumference;

116 | Chapter 2: Basic Elements of C++

6. Consider the following program segment:

//include statement (s)
//using namespace statement

int main ()

{
//variable declaration
//executable statements
//return statement

}

a. Write C++ statements that include the header files iostream and
string.

b. Write a C++ statement that allows you to use cin, cout, and endl
without the prefix std::.

c. Write C++ statements that declare the following variables: name of type
string and studyHours of type double.

d. Write C++ statements that prompt and input a string into name and a
double value into studyHours.

e. Write a C++ statement that outputs the values of name and studyHours
with the appropriate text. For example, if the value of name is "Donald"
and the value of studyHours is 4.5, the output is:

Hello, Donald! on Saturday, you need to study 4.5 hours for the exam.
. Compile and run your program.

7. Write a program that prompts the user to input a decimal number and
outputs the number rounded to the nearest integer.

8. Consider the following program segment:

//include statement (s)
//using namespace statement

int main ()

{
//variable declaration
//executable statements
//return statement

}

a. Write C++ statements that include the header files iostream and
string.

b. Write a C++ statement that allows you to use cin, cout, and endl
without the prefix std: :.

Programming Exercises

Write C++ statements that declare and initialize the following named
constants: SECRET of type int initialized to 11 and RATE of type
double initialized to 12.50.

Write C++ statements that declare the following variables: numl, num2,
and newNum of type int; name of type string; and hoursWorked and
wages of type double.

Write C++ statements that prompt the user to input two integers and
store the first number in numl and the second number in num2.
Write a C++ statement(s) that outputs the values of numl and num2,
indicating which is numl and which is num2. For example, if numl is 8
and num2 is 5, then the output is:

The value of numl = 8 and the value of num2 = 5.

Write a C++ statement that multiplies the value of numl by 2, adds the
value of num2 to it, and then stores the result in newNum. Then, write a
C++ statement that outputs the value of newNum.

Write a C++ statement that updates the value of newNum by adding
the value of the named constant SECRET. Then, write a C++
statement that outputs the value of newNum with an appropriate
message.

Write C++ statements that prompt the user to enter a person’s last name
and then store the last name into the variable name.

Write C++ statements that prompt the user to enter a decimal number
between 0 and 70 and then store the number entered into hoursWorked.

Write a C++ statement that multiplies the value of the named constant
RATE with the value of hoursWorked and then stores the result into the
variable wages.

Write C++ statements that produce the following output:

Name: //output the value of the variable name
Pay Rate: § //output the value of the variable rate
Hours Worked: //output the value of the variable

/ /hoursWorked
Salary: $ //output the value of the variable wages

For example, if the value of name is "Rainbow" and hoursWorked is
45.50, then the output is:

Name: Rainbow

Pay Rate: $12.50
Hours Worked: 45.50
Salary: $568.75

117

118

| Chapter 2: Basic Elements of C++

m. Write a C++ program that tests each of the C++ statements that you
wrote in parts a through 1. Place the statements at the appropriate place
in the previous C++ program segment. Test run your program (twice)
on the following input data:

a. numl = 13, num2 = 28; name = "Jacobson"; hoursWorked =
48.30.

bh. numl = 32, num2 = 15; name = "Crawford"; hoursWorked =
58.45.

Write a program that prompts the user to enter five test scores and then prints
the average test score. (Assume that the test scores are decimal numbers.)

Write a program that prompts the user to input five decimal numbers. The
program should then add the five decimal numbers, convert the sum to the
nearest integer, and print the result.

Write a program that does the following:

a. Prompts the user to input five decimal numbers.

b. Prints the five decimal numbers.

c. Converts each decimal number to the nearest integer.
d. Adds the five integers.

e. Prints the sum and average of the five integers.

Write a program that prompts the capacity, in gallons, of an automobile
fuel tank and the miles per gallon the automobile can be driven. The
program outputs the number of miles the automobile can be driven
without refueling.

Write a C++ program that prompts the user to input the elapsed time for
an event in seconds. The program then outputs the elapsed time in hours,
minutes, and seconds. (For example, if the elapsed time is 9630 seconds,
then the output is 2:40:30.)

Write a C++ program that prompts the user to input the elapsed time for
an event in hours, minutes, and seconds. The program then outputs the
elapsed time in seconds.

To make a profit, a local store marks up the prices of its items by a certain
percentage. Write a C++ program that reads the original price of the item
sold, the percentage of the marked-up price, and the sales tax rate. The
program then outputs the original price of the item, the percentage of the
mark-up, the store’s selling price of the item, the sales tax rate, the sales tax,
and the final price of the item. (The final price of the item is the selling
price plus the sales tax.)

(Hard drive storage capacity) If you buy a 40GB hard drive, then chances
are that the actual storage on the hard drive is not 40GB. This is due to the
fact that, typically, a manufacturer uses 1000 bytes as the value of 1K bytes,

20.

Programming Exercises

1000K bytes as the value of 1MB, 1000MB as the value of 1GB. Therefore,
a 40GB byte hard drive contains 40,000,000,000 bytes. However, in
computer memory, as given in Table 1-1 (Chapter 1), 1KB is equal to
1024 bytes, and so on. So the actual storage on a 40GB hard drive is
approximately 37.25GB. (You might like to read the fine print next time
you buy a hard drive.) Write a program that prompts the user to enter the
size of the hard drive specified by the manufacturer, on the hard drive box,
and outputs the actual storage capacity of the hard drive.

Write a program to implement and test the algorithm that you designed for
Exercise 17 of Chapter 1. (You may assume that the value of T = 3.141593.
In your program, declare a named constant PI to store this value.)

A milk carton can hold 3.78 liters of milk. Each morning, a dairy farm ships
cartons of milk to a local grocery store. The cost of producing one liter of
milk is $0.38, and the profit of each carton of milk is $0.27. Write a
program that does the following:

a. Prompts the user to enter the total amount of milk produced in the
morning.

b. Outputs the number of milk cartons needed to hold milk. (Round your
answer to the nearest integer.)

c. Outputs the cost of producing milk.
d. Outputs the profit for producing milk.

Redo Programming Exercise 18 so that the user can also input the cost of
producing one liter of milk and the profit on each carton of milk.

You found an exciting summer job for five weeks. It pays, say, $15.50
per hour. Suppose that the total tax you pay on your summer job
income is 14%. After paying the taxes, you spend 10% of your net
income to buy new clothes and other accessories for the next school
year and 1% to buy school supplies. After buying clothes and school
supplies, you use 25% of the remaining money to buy savings bonds.
For each dollar you spend to buy savings bonds, your parents spend
$0.50 to buy additional savings bonds for you. Write a program that
prompts the user to enter the pay rate for an hour and the number
of hours you worked each week. The program then outputs the
following:

a. Your income before and after taxes from your summer job.
b. The money you spend on clothes and other accessories.

c. The money you spend on school supplies.

d. The money you spend to buy savings bonds.

e. The money your parents spend to buy additional savings bonds for
you.

119

120

21.

22.

23.

24,

25.

| Chapter 2: Basic Elements of C++

A permutation of three objects, a, b, and ¢, is any arrangement of these
objects in a row. For example, some of the permutations of these objects
are abc, bca, and cab. The number of permutations of three objects is six.
Suppose that these three objects are strings. Write a program that prompts
the user to enter three strings. The program then outputs the six permu-
tations of those strings.

Write a program that prompts the user to input a number of quarters,
dimes, and nickels. The program then outputs the total value of the coins in
pennies.

Newton’s law states that the force, F, between two bodies of masses M; and
M, is given by:

My My
F=K{"5"),

in which k is the gravitational constant and d is the distance between the
bodies. The value of k is approximately 6.67x10™ dyn. cm®/g”. Write a
program that prompts the user to input the masses of the bodies and the
distance between the bodies. The program then outputs the force between

the bodies.

One metric ton is approximately 2205 pounds. Write a program that
prompts the user to input the amount of rice, in pounds, in a bag. The
program outputs the number of bags needed to store one metric ton of rice.

Cindy uses the services of a brokerage firm to buy and sell stocks. The firm
charges 1.5% service charges on the total amount for each transaction, buy
or sell. When Cindy sells stocks, she would like to know if she gained or
lost on a particular investment. Write a program that allows Cindy to input
the number of shares sold, the purchase price of each share, and the selling
price of each share. The program outputs the amount invested, the total
service charges, amount gained or lost, and the amount received after selling
the stock.

INPUT/OQUuUTPUT

IN THIS CHAPTER, YOU WILL:

Learn what a stream is and examine input and output streams

Explore how to read data from the standard input device

Learn how to use predefined functions in a program

Explore how to use the input stream functions get, ignore, putback, and peek
Become familiar with input failure

Learn how to write data to the standard output device

Discover how to use manipulators in a program to format output

Learn how to perform input and output operations with the string data type
Learn how to debug logic errors

Become familiar with file input and output

122 | Chapter 3: Input/Output

In Chapter 2, you were introduced to some of C++’s input/output (I/0O) instructions,
which get data into a program and print the results on the screen. You used cin and
the extraction operator >> to get data from the keyboard, and cout and the insertion
operator << to send output to the screen. Because I/O operations are fundamental to
any programming language, in this chapter, you will learn about C++’s I/O operations
in more detail. First, you will learn about statements that extract input from the
standard input device and send output to the standard output device. You will then
learn how to format output using manipulators. In addition, you will learn about the
limitations of the I/O operations associated with the standard input/output devices and
learn how to extend these operations to other devices.

|/0O Streams and Standard I/O Devices

A program performs three basic operations: it gets data, it manipulates the data, and it
outputs the results. In Chapter 2, you learned how to manipulate numeric data using
arithmetic operations. In later chapters, you will learn how to manipulate nonnumeric
data. Because writing programs for I/O is quite complex, C++ offers extensive support
for 170 operations by providing substantial prewritten I/O operations, some of which
you encountered in Chapter 2. In this chapter, you will learn about various 1/0O
operations that can greatly enhance the flexibility of your programs.

In C++, I/O is a sequence of bytes, called a stream, from the source to the
destination. The bytes are usually characters, unless the program requires other
types of information, such as a graphic image or digital speech. Therefore, a
stream is a sequence of characters from the source to the destination. There are
two types of streams:

Input stream: A sequence of characters from an input device to the computer.
Output stream: A sequence of characters from the computer to an output device.

Recall that the standard input device is usually the keyboard, and the standard
output device is usually the screen. To receive data from the keyboard and send
output to the screen, every C++ program must use the header file iostream. This
header file contains, among other things, the definitions of two data types,
istream (input stream) and ostream (output stream). The header file also contains
two variable declarations, one for cin (pronounced “see-in”’), which stands for
common input, and one for cout (pronounced “see-out”), which stands for
common output.

These variable declarations are similar to the following C++ statements:

istream cin;
ostream cout;

To use cin and cout, every C++ program must use the preprocessor directive:

#include <iostream>

|/0 Streams and Standard |/0 Devices | 123

NOTE From Chapter 2, recall that you have been using the statement using namespace
std; in addition to including the header file iostream to use cin and cout. Without
the statement using namespace std;, you refer to these identifiers as std: :cin
and std: :cout. In Chapter 7, you will learn about the meaning of the statement
using namespace std; in detail.

Variables of type istream are called input stream variables; variables of type ostream
are called output stream variables. A stream variable is either an input stream
variable or an output stream variable.

Because cin and cout are already defined and have specific meanings, to avoid confu-
sion, you should never redefine them in programs.

The variable cin has access to operators and functions that can be used to extract data
from the standard input device. You have briefly used the extraction operator >> to input
data from the standard input device. The next section describes in detail how the
extraction operator >> works. In the following sections, you will learn how to use the
functions get, ignore, peek, and putback to input data in a specific manner.

cin and the Extraction Operator >>

In Chapter 2, you saw how to input data from the standard input device by using cin and
the extraction operator >>. Suppose payRate is a double variable. Consider the
following C++ statement:

cin >> payRate;

When the computer executes this statement, it inputs the next number typed on
the keyboard and stores this number in payRate. Therefore, if the user types 15.50, the
value stored in payRate is 15.50.

The extraction operator >> is binary and thus takes two operands. The left-side operand
must be an input stream variable, such as cin. Because the purpose of an input statement
is to read and store values in a memory location and because only variables refer to
memory locations, the right-side operand is a variable.

NOTE The extraction operator >> is defined only for putting data into variables of simple
data types. Therefore, the right-side operand of the extraction operator >> is a variable
of the simple data type. However, C++ allows the programmer to extend the definition
of the extraction operator >> so that data can also be put into other types of variables
by using an input statement. You will learn this mechanism in Chapter 13 later in
this book.

The syntax of an input statement using cin and the extraction operator >> is:

cin >> variable >> wvariable...;

124 | Chapter 3: Input/Output

As you can see in the preceding syntax, a single input statement can read more than one
data item by using the operator >> several times. Every occurrence of >> extracts the
next data item from the input stream. For example, you can read both payRate and
hoursWorked via a single input statement by using the following code:

cin >> payRate >> hoursWorked;

There is no difference between the preceding input statement and the following two
input statements. Which form you use is a matter of convenience and style.

cin >> payRate;
cin >> hoursWorked;

How does the extraction operator >> work? When scanning for the next input, >> skips
all whitespace characters. Recall that whitespace characters consist of blanks and certain
nonprintable characters, such as tabs and the newline character. Thus, whether you
separate the input data by lines or blanks, the extraction operator >> simply finds the
next input data in the input stream. For example, suppose that payRate and
hoursWorked are double variables. Consider the following input statement:

cin >> payRate >> hoursWorked;
Whether the input is:

15.50 48.30

or:

15.50 48.30

or:

15.50
48.30

the preceding input statement would store 15.50 in payRate and 48.30 in
hoursWorked. Note that the first input is separated by a blank, the second input is
separated by a tab, and the third input is separated by a line.

Now suppose that the input is 2. How does the extraction operator >> distinguish
between the character 2 and the number 2? The right-side operand of the extraction
operator >> makes this distinction. If the right-side operand is a variable of the data type
char, the input 2 is treated as the character 2 and, in this case, the ASCII value of 2 is
stored. If the right-side operand is a variable of the data type int or double, the input
2 is treated as the number 2.

Next, consider the input 25 and the statement:
cin >> a;

where a is a variable of some simple data type. If a is of the data type char, only the single
character 2 is stored in a. If a is of the data type int, 25 is stored in a. If a is of the data type

|/0 Streams and Standard 1/0 Devices | 125

double, the input 25 is converted to the decimal number 25.0. Table 3-1 summarizes this
discussion by showing the valid input for a variable of the simple data type.

TABLE 3-1 Valid Input for a Variable of the Simple Data Type

char One printable character except the blank

int An integer, possibly preceded by a + or = sign

A decimal number, possibly preceded by a + or — sign. If the actual
double data input is an integer, the input is converted to a decimal number
with the zero decimal part.

When reading data into a char variable, after skipping any leading whitespace characters,
the extraction operator >> finds and stores only the next character; reading stops after a
single character. To read data into an int or double variable, after skipping all leading
whitespace characters and reading the plus or minus sign (if any), the extraction operator
>> reads the digits of the number, including the decimal point for floating-point variables,
and stops when it finds a whitespace character or a character other than a digit.

EXAMPLE 3-1

Suppose you have the following variable declarations:

int a, b;
double z;
char ch;

The following statements show how the extraction operator >> works.

Statement Input Value Stored in Memory
1 cin >> ch; A ch = 'A'
2 c¢in >> ch; AB ch = 'A', '"B' isheld for
later input
cin >> a; 48 a = 48
4 cin >> a; 46.35 a = 46, .35 isheld for
later input
5 cin >> z; 74.35 z = 74.35
cin >> z; 39 z = 39.0
7 cin >> z >> a; 65.78 38 z = 65.78, a = 38

126 | Chapter 3: Input/Output

Statement Input Value Stored in Memory
8§ cin >> a >> b: 4 60 a=4, b =60
9 cin >> a >> z; 46 32.4 68 a =46, z = 32.4, 68is

held for later input

Suppose you have the following variable declarations:
int a;

double z;

char ch;

The following statements show how the extraction operator >> works.

Statement Input Value Stored in Memory

1 c¢cin >> a >> ch >> z; 57 A 26.9 a =57, ch = 'A"'",
z = 26.9

2 c¢cin >> a >> ch >> z; 57 A a =257, ch = 'A",
26.9 z = 26.9

3 cin >> a >> ch >> z; 57 a =57, ch = 'aA",
A z = 26.9

26.9

4 c¢cin >> a >> ch >> z; 57A26.9 a=57, ch ="TA",

z = 26.9

Note that for statements 1 through 4, the input statement is the same; however, the data
is entered differently. For statement 1, data is entered on the same line separated by
blanks. For statement 2, data is entered on two lines; the first two input values are
separated by two blank spaces, and the third input is on the next line. For statement 3, all
three input values are separated by lines, and for statement 4, all three input values are on
the same line, but there is no space between them. Note that the second input is a non-
numeric character. These statements work as follows.

Statements 1, 2, and 3 are easy to follow. Let us look at statement 4.

In statement 4, first the extraction operator >> extracts 57 from the input stream and
stores it in a. Then, the extraction operator >> extracts the character 'A" from the input
stream and stores it in ch. Next, 26.9 is extracted and stored in z.

Note that statements 1, 2, and 3 illustrate that regardless of whether the input is
separated by blanks or by lines, the extraction operator >> always finds the next
input.

|/0 Streams and Standard |/0O Devices | 127

Suppose you have the following variable declarations:
int a, b;

double z;

char ch, chl, ch2;

The following statements show how the extraction operator >> works.

Statement Input Value Stored in Memory
1 cin >> z >> ch >> a; 36.78B34 z = 36.78, ch = 'B',
a = 34
2 ¢cin >> z >> ch >> a; 36.78 z = 36.78, ch = 'B',
B34 a = 34
cin >> a >> b >> z; 11 34 a =11, b = 34,
3 .
computer waits for the next
number
4 cin >> a >> z; 78.49 a=7178, z = 0.49
5 c¢in >> ch >> a; 256 ch = "'2'", a =56
6 cin >> a >> ch; 256 a = 256, computer waits for
the input value for ch
7 cin >> chl >> ch2; A B chl = 'A', ch2 = 'B'

In statement 1, because the first right-side operand of >> is z, which is a double
variable, 36.78 is extracted from the input stream, and the value 36.78 is stored in z.
Next, 'B' is extracted and stored in ch. Finally, 34 is extracted and stored in a.
Statement 2 works similarly.

In statement 3, 11 is stored in a, and 34 is stored in b, but the input stream does not have
enough input data to fill each variable. In this case, the computer waits (and waits, and
waits . . .) for the next input to be entered. The computer does not continue to execute
until the next value is entered.

In statement 4, the first right-side operand of the extraction operator >> is a variable of
the type int, and the input is 78.49. Now for int variables, after inputting the digits of
the number, the reading stops at the first whitespace character or a character other than a
digit. Therefore, the operator >> stores 78 into a. The next right-side operand of >> is
the variable z, which is of the type double. Therefore, the operator >> stores the value
.49 as 0.49 into z.

In statement 5, the first right-side operand of the extraction operator >> is a char
variable, so the first nonwhitespace character, '2", is extracted from the input stream.
The character '2' is stored in the variable ch. The next right-side operand of the
extraction operator >> is an int variable, so the next input value, 56, is extracted and
stored in a.

128 | Chapter 3: Input/Output

In statement 6, the first right-side operator of the extraction operator >> is an int
variable, so the first data item, 256, is extracted from the input stream and stored in a.
Now the computer waits for the next data item for the variable ch.

In statement 7, "A" is stored into chl. The extraction operator >> then skips the blank,
and 'B' is stored in ch2.

NOTE Recall that during program execution, when entering character data such as letters, you
do not enter the single quotes around the character.

What happens if the input stream has more data items than required by the program?
After the program terminates, any values left in the input stream are discarded. When you
enter data for processing, the data values should correspond to the data types of the
variables in the input statement. Recall that when entering a number for a double
variable, it is not necessary for the input number to have a decimal part. If the input
number is an integer and has no decimal part, it is converted to a decimal value. The
computer, however, does not tolerate any other kind of mismatch. For example, entering
a char value into an int or double variable causes serious errors, called input failure.
Input failure is discussed later in this chapter.

The extraction operator, when scanning for the next input in the input stream, skips
whitespace such as blanks and the newline character. However, there are situations when
these characters must also be stored and processed. For example, if you are processing
text in a line-by-line fashion, you must know where in the input stream the newline
character is located. Without identifying the position of the newline character, the
program would not know where one line ends and another begins. The next few sections
teach you how to input data into a program using the input functions, such as get,
ignore, putback, and peek. These functions are associated with the data type istream
and are called istream member functions. I/O functions, such as get, are typically
called stream member functions or stream functions.

Before you can learn about the input functions get, ignore, putback, peek, and other
170 functions that are used in this chapter, you need to first understand what a function is
and how it works. You will study functions in detail and learn how to write your own
in Chapter 6.

Using Predefined Functions in a Program

As noted in Chapter 2, a function, also called a subprogram, is a set of instructions. When
a function executes, it accomplishes something. The function main, as you saw in
Chapter 2, executes automatically when you run a program. Other functions execute

Using Predefined Functions in a Program | 129

only when they are activated—that is, called. C++ comes with a wealth of functions,
called predefined functions, that are already written. In this section, you will learn how
to use some predefined functions that are provided as part of the C++ system. Later in this
chapter, you will learn how to use stream functions to perform a specific I/O operation.

Recall from Chapter 2 that predefined functions are organized as a collection of libraries,
called header files. A particular header file may contain several functions. Therefore, to
use a particular function, you need to know the name of the function and a few other
things, which are described shortly.

A very useful function, pow, called the power function, can be used to calculate x¥ in a
program. That is, pow (x, y) = x¥. For example, pow (2.0, 3.0) =2.0%°=28.0 and
pow (4.0, 0.5) = 4.0°° = /4.0 = 2.0. The numbers x and y that you use in the
function pow are called the arguments or parameters of the function pow. For
example, in pow (2.0, 3.0), the parameters are 2.0 and 3.0.

An expression such as pow (2.0, 3.0) is called a function call, which causes the code
attached to the predefined function pow to execute and, in this case, computes 2.03%-°.
The header file cmath contains the specification of the function pow.

To use a predefined function in a program, you need to know the name of the header
file containing the specification of the function and include that header file in the
program. In addition, you need to know the name of the function, the number of
parameters the function takes, and the type of each parameter. You must also be aware
of what the function is going to do. For example, to use the function pow, you must
include the header file cmath. The function pow has two parameters, which are decimal
numbers. The function calculates the first parameter to the power of the second
parameter. (Appendix F describes some commonly used header files and predefined
functions.)

The program in the following example illustrates how to use predefined functions in a
program. More specifically, we use some math functions, from the header file cmath, and
the string function length, from the header file string. Note that the function
length determines the length of a string.

//How to use predefined functions.

//This program uses the math functions pow and sqrt to determine
//and output the volume of a sphere, the distance between two
//points, respectively, and the string function length to find
//the number of characters in a string.

//If the radius of the sphere is r, then the volume of the sphere
//is (4/3)*PI*r~3. If (x1,yl) and (x2,y2) are the coordinates of two
//points in the X-Y plane, then the distance between these points is
//sqrt((x2-x1)*2 + (y2-yl)*2).

#include <iostream>
#include <cmath>
#include <string>

130 | Chapter 3: Input/Output

using namespace std;
const double PI = 3.1416;

int main()

{

double sphereRadius; //Line 1
double sphereVolume; //Line 2
double pointlX, pointlY; //Line 3
double point2X, point2Y; //Line 4
double distance; //Line 5
string str; //Line 6
cout << "Line 7: Enter the radius of the sphere: "; //Line 7
cin >> sphereRadius; //Line 8
cout << endl; //Line 9
sphereVolume = (4 / 3) * PI * pow(sphereRadius, 3); //Line 10
cout << "Line 11: The volume of the sphere is: "

<< sphereVolume << endl << endl; //Line 11
cout << "Line 12: Enter the coordinates of two "

<< "points in the X-Y plane: "; //Line 12
cin >> pointlX >> pointlY >> point2X >> point2Y; //Line 13
cout << endl; //Line 14
distance = sqgrt(pow(point2X - pointlX, 2)

+ pow (point2Y - pointlY, 2)); //Line 15

cout << "Line 16: The distance between the points "

<< "(" << pointlX << ", " << pointlY¥ << ") and "

<< " (" << point2X << ", " << point2Y << ") is: "

<< distance << endl << endl; //Line 16
str = "Programming with C++"; //Line 17
cout << "Line 18: The number of characters, "

<< "including blanks, in \"" << str << "\" is: "

<< str.length() << endl; //Line 18
return 0; //Line 19

Sample Run: In this sample run, the user input is shaded.

Line 7: Enter the radius of the sphere: 3

Line 11: The volume of the sphere is: 84.8232

Line 12: Enter the coordinates of two points in the X-Y plane: 4 7 9 -5
Line 16: The distance between the points (4, 7) and (9, -=-5) is: 13

Line 18: The number of characters, including blanks, in "Programming
with C++" is: 20

Using Predefined Functions in a Program | 131

The preceding program works as follows. The statements in Lines 1 to 6 declare the
variables used in the program. The statement in Line 7 prompts the user to enter the
radius of the sphere, and the statement in Line 8 stores the radius in the variable
sphereRadius. The statement in Line 10 uses the function pow to compute and store
the volume of the sphere in the variable spherevolume. The statement in Line 11
outputs the volume. The statement in Line 12 prompts the user to enter the coordinates
of two points in the X-Y plane, and the statement in Line 13 stores the coordinates in the
variables pointlX, pointlY, point2X, and point2Y, respectively. The statement in
Line 15 uses the functions sqrt and pow to determine the distance between the points.
The statement in Line 16 outputs the distance between the points. The statement in Line
17 stores the string "Programming with C++" in str. The statement in Line 18 uses the
string function length to determine and output the length of str. Note how the
function length is used. Later in this chapter we will explain the meaning of expressions
such as str.length().

Because 170 is fundamental to any programming language and because writing instruc-
tions to perform a specific I/O operation is not a job for everyone, every programming
language provides a set of useful functions to perform specific I/O operations. In the
remainder of this chapter, you will learn how to use some of these functions in a
program. As a programmer, you must pay close attention to how these functions are
used so that you can get the most out of them. The first function you will learn about
here is the function get.

cin and the get Function

As you have seen, the extraction operator skips all leading whitespace characters when
scanning for the next input value. Consider the variable declarations:

char chl, ch2;
int num;

and the input:

A 25

Now consider the following statement:
cin >> chl >> ch2 >> num;

When the computer executes this statement, "A" is stored in chl, the blank is skipped by
the extraction operator >>, the character '2" is stored in ch2, and 5 is stored in num.
However, what if you intended to store 'A' in chl, the blank in ch2, and 25 in num? It is
clear that you cannot use the extraction operator >> to input this data.

As stated earlier, sometimes you need to process the entire input, including whitespace
characters, such as blanks and the newline character. For example, suppose you want to

132 | Chapter 3: Input/Output

process the entered data on a line-by-line basis. Because the extraction operator >> skips
the newline character and unless the program captures the newline character, the
computer does not know where one line ends and the next begins.

The variable cin can access the stream function get, which is used to read character
data. The get function inputs the very next character, including whitespace characters,
from the input stream and stores it in the memory location indicated by its argument.
The function get comes in many forms. Next, we discuss the one that is used to read a
character.

The syntax of cin, together with the get function to read a character, follows:
cin.get (varChar) ;

In the cin.get statement, varChar is a char variable. varChar, which appears in
parentheses following the function name, is called the argument or parameter of the
function. The eftect of the preceding statement would be to store the next input character
in the variable varChar.

Now consider the following input again:
A 25

To store "A' in chl, the blank in ch2, and 25 in num, you can eftectively use the get
function as follows:

cin.get (chl);
cin.get (ch2);
cin >> num;

Because this form of the get function has only one argument and reads only one
character and you need to read two characters from the input stream, you need to call
this function twice. Notice that you cannot use the get function to read data into the
variable num because num is an int variable. The preceding form of the get function
reads values of only the char data type.

The preceding set of cin.get statements is equivalent to the following
statements:

cin >> chl;
cin.get (ch2);
cin >> num;

The function get has other forms, one of which you will study in Chapter 8.
For the next few chapters, you need only the form of the function get introduced
here.

Using Predefined Functions in a Program | 133

cin and the ignore Function

When you want to process only partial data (say, within a line), you can use the stream
function ignore to discard a portion of the input. The syntax to use the function ignore is:

cin.ignore (intExp, chExp);

Here, intExp is an integer expression yielding an integer value, and chExp is a char
expression yielding a char value. In fact, the value of the expression intExp specifies the
maximum number of characters to be ignored in a line.

Suppose intExp yields a value of, say 100. This statement says to ignore the next 100
characters or ignore the input until it encounters the character specified by chExp,
whichever comes first. To be specific, consider the following statement:

cin.ignore (100, '\n'");

When this statement executes, it ignores either the next 100 characters or all characters
until the newline character is found, whichever comes first. For example, if the next 120
characters do not contain the newline character, then only the first 100 characters are
discarded and the next input data is the character 101. However, if the 75th character is
the newline character, then the first 75 characters are discarded and the next input data is
the 76th character. Similarly, the execution of the statement:

cin.ignore (100, 'A');

results in ignoring the first 100 characters or all characters until the character 'A' is
found, whichever comes first.

Consider the declaration:

int a, b;
and the input:

25 67 89 43 72
12 78 34

Now consider the following statements:

cin >> a;
cin.ignore (100, '\n');
cin >> b;

The first statement, cin >> a;, stores 25 in a. The second statement,
cin.ignore (100, "\n');, discards all of the remaining numbers in the first line. The
third statement, cin>> b;, stores 12 (from the next line) in b.

134 | Chapter 3: Input/Output

Consider the declaration:

char chl, ch2;
and the input:
Hello there. My name is Mickey.
a. Consider the following statements:

cin >> chl;
cin.ignore (100, '.");
cin >> ch2;

The first statement, cin >> chl;, stores "H' in chl. The second statement,
cin.ignore (100, '.'");, results in discarding all characters until . (period).
The third statement, cin >> ch2;, stores the character 'M' (from the same line)
in ch2. (Remember that the extraction operator >> skips all leading whitespace
characters. Thus, the extraction operator skips the space after . [period] and
stores 'M' in ch2.)

b. Suppose that we have the following statement:
cin >> chl;

cin.ignore(5, '."'):
cin >> ch2;

The first statement, cin >> chl;, stores "H' in chl. The second statement,
cin.ignore (5, '.'");, results in discarding the next five characters, that is, until t.
The third statement, cin>> ch2;, stores the character 't' (from the same line) in ch2.

When the function ignore is used without any arguments, then it only skips the very
next character. For example, the following statement will skip the very next character:

cin.ignore();

This statement is typically used to skip the newline character.

The putback and peek Functions

Suppose you are processing data that is a mixture of numbers and characters. Moreover, the
numbers must be read and processed as numbers. You have also looked at many sets of
sample data and cannot determine whether the next input is a character or a number. You
could read the entire data set character by character and check whether a certain character is
a digit. If a digit 1s found, you could then read the remaining digits of the number and
somehow convert these characters into numbers. This programming code would be
somewhat complex. Fortunately, C++ provides two very useful stream functions that
can be used effectively in these types of situations.

Using Predefined Functions in a Program | 135

The stream function putback lets you put the last character extracted from the input
stream by the get function back into the input stream. The stream function peek looks
into the input stream and tells you what the next character is without removing it from
the input stream. By using these functions, after determining that the next input is a
number, you can read it as a number. You do not have to read the digits of the number as
characters and then convert these characters to that number.

The syntax to use the function putback is:

istreamVar.putback (ch);

Here, istreamVar is an input stream variable, such as cin, and ch is a char variable.

The peek function returns the next character from the input stream but does not remove the
character from that stream. In other words, the function peek looks into the input stream
and checks the identity of the next input character. Moreover, after checking the next input
character in the input stream, it can store this character in a designated memory location
without removing it from the input stream. That is, when you use the peek function, the
next input character stays the same, even though you now know what it is.

The syntax to use the function peek is:

ch = istreamVar.peek();

Here, istreamVar is an input stream variable, such as cin, and ch is a char variable.

Notice how the function peek is used. First, the function peek is used in an assignment
statement. It is not a stand-alone statement like get, ignore, and putback. Second, the
function peek has empty parentheses. Until you become comfortable with using a function
and learn how to write one, pay close attention to how to use a predefined function.

The following example illustrates how to use the peek and putback functions.

EXAMPLE 3-7

//Functions peek and putback

#include <iostream>
using namespace std;

int main ()

{
char ch;
cout << "Line 1l: Enter a string: "; //Line 1
cin.get (ch):; //Line 2

cout << endl; //Line 3

136 | Chapter 3: Input/Output

cout << "Line 4: After first cin.get(ch); "

<< "ch = " << ch << endl; //Line 4
cin.get(ch); //Line 5
cout << "Line 6: After second cin.get(ch); "

<< "ch = " << ch << endl; //Line 6
cin.putback(ch); //Line 7
cin.get(ch); //Line 8
cout << "Line 9: After putback and then "

<< "cin.get(ch); ch = " << ch << endl; //Line 9
ch = cin.peek(): //Line 10
cout << "Line 11: After cin.peek(); ch ="

<< ch << endl; //Line 11
cin.get(ch); //Line 12
cout << "Line 13: After cin.get(ch); ch ="

<< ch << endl; //Line 13

return 0;

}
Sample Run: In this sample run, the user input is shaded.

Line 1: Enter a string: abcd

Line 4: After first cin.get(ch); ch = a

Line 6: After second cin.get(ch); ch = Db

Line 9: After putback and then cin.get(ch); ch = Db
Line 11: After cin.peek(); ch = ¢

Line 13: After cin.get(ch); ch = ¢

The user input, abced, allows you to see the effect of the functions get, putback, and
peek in the preceding program. The statement in Line 1 prompts the user to enter a string.
In Line 2, the statement cin.get (ch) ; extracts the first character from the input stream
and stores it in the variable ch. So after Line 2 executes, the value of ch is "a".

The cout statement in Line 4 outputs the value of ch. The statement cin.get (ch) ; in
Line 5 extracts the next character from the input stream, which is 'b", and stores it in ch.
At this point, the value of ch is 'b".

The cout statement in Line 6 outputs the value of ch. The cin.putback (ch) ; statement
in Line 7 puts the previous character extracted by the get function, which is 'b"', back into
the input stream. Therefore, the next character to be extracted from the input streamis 'b"'.

The cin.get (ch); statement in Line 8 extracts the next character from the input
stream, which is still 'b', and stores it in ch. Now the value of ch is 'b". The cout
statement in Line 9 outputs the value of ch as 'b".

In Line 10, the statement ch = cin.peek () ; checks the next character in the input stream,
which is "¢, and stores it in ch. The value of ch is now 'c¢'. The cout statement in Line

Using Predefined Functions in a Program | 137

11 outputs the value of ch. The cin.get (ch); statement in Line 12 extracts the next
character from the input stream and stores it in ch. The cout statement in Line 13 outputs
the value of ch, which is still 'c".

Note that the statement ch = cin.peek () ; in Line 10 did not remove the character 'c"’
from the input stream; it only peeked into the input stream. The output of Lines 11 and
13 demonstrates this functionality.

The Dot Notation between 1/0 Stream Variables and 1/0 Functions:
A Precaution

In the preceding sections, you learned how to manipulate an input stream to get data
into a program. You also learned how to use the functions get, ignore, peek, and
putback. It is important that you use these functions exactly as shown. For example, to
use the get function, you used statements such as the following:

cin.get (ch);

Omitting the dot—that is, the period between the variable cin and the function name
get—results in a syntax error. For example, in the statement:

cin.get (ch);
cin and get are two separate identifiers separated by a dot. In the statement:
cinget (ch);

cinget becomes a new identifier. If you used cinget (ch) ; in a program, the compiler
would try to resolve an undeclared identifier, which would generate an error. Similarly,
missing parentheses, as in cin.getch;, result in a syntax error. Also, remember that you
must use the input functions together with an input stream variable. If you try to use any
of the input functions alone—that is, without the input stream variable—the compiler
might generate an error message such as “undeclared identifier.” For example, the
statement get (ch) ; could result in a syntax error.

As you can see, several functions are associated with an istream variable, each doing a
specific job. Recall that the functions get, ignore, and so on are members of the data type
istream. Called the dot notation, the dot separates the input stream variable name
from the member, or function, name. In fact, in C++, the dot is an operator called the
member access operator.

NOTE C++ has a special name for the data types istream and ostream. The data types
istreamand ostream are called classes. The variables cin and cout also have special
names, called objects. Therefore, cin is called an istream object, and cout is called an
ostream object. In fact, stream variables are called stream objects. You will learn these
concepts in Chapter 11 later in this book.

138 | Chapter 3: Input/Output

Input Failure

Many things can go wrong during program execution. A program that is syntactically
correct might produce incorrect results. For example, suppose that a part-time employee’s
paycheck is calculated by using the following formula:

wages = payRate * hoursWorked;

If you accidentally type + in place of *, the calculated wages would be incorrect, even
though the statement containing a + is syntactically correct.

What about an attempt to read invalid data? For example, what would happen if you tried
to input a letter into an int variable? If the input data did not match the corresponding
variables, the program would run into problems. For example, trying to read a letter into
an int or double variable would result in an input failure. Consider the following
statements:

int a, b, c;
double x;

If the input is:

W 54

then the statement:
cin >> a >> Db;

would result in an input failure, because you are trying to input the character '"W' into
the int variable a. If the input were:

35 67.93 48

then the input statement:

cin >> a >> x > >b;

would result in storing 35 in a, 67.93 in x, and 48 in b.

Now consider the following read statement with the previous input (the input with three
values):

cin >> a >> b >> c;

This statement stores 35 in a and 67 in b. The reading stops at . (the decimal point).
Because the next variable ¢ is of the data type int, the computer tries to read . into c,
which is an error. The input stream then enters a state called the fail state.

What actually happens when the input stream enters the fail state? Once an input stream
enters the fail state, all further I/O statements using that stream are ignored. Unfortu-
nately, the program quietly continues to execute with whatever values are stored in
variables and produces incorrect results. The program in Example 3-8 illustrates an input
failure. This program on your system may produce different results.

Input Failure | 139

EXAMPLE 3-8

//Input Failure program

#include <iostream>
#include <string>

using namespace std;

int main()

{

string name; //Line 1
int age = 0; //Line 2
int weight = 0; //Line 3
double height = 0.0; //Line 4

cout << "Line 5: Enter name, age, weight, and "

<< "height: "; //Line 5
cin >> name >> age >> weight >> height; //Line 6
cout << endl; //Line 7
cout << "Line 8: Name: " << name << endl; //Line 8
cout << "Line 9: Age: " << age << endl; //Line 9
cout << "Line 10: Weight: " << weight << endl; //Line 10

cout << "Line 11: Height: "™ << height << endl; //Line 11

return 0; //Line 12

Sample Runs: In these sample runs, the user input is shaded.
Sample Run 1

Line 5: Enter name, age, weight, and height: Sam 35 g56 6.2

Line 8: Name: Sam
Line 9: Age: 35

Line 10: Weight: O
Line 11: Height: O

The statements in Lines 1, 2, 3, and 4 declare the variables name, age, weight, and
height, and also initialize the variable age, weight, and height. The statement in Line 5
prompts the user to enter a person’s name, age, weight, and height; the statement in Line 6
inputs these values into variables name, age, weight, and height, respectively.

In this sample run, the third input is g56 and the cin statement tries to input this into the
variable weight. However, the input g56 begins with the character 'q' and weight is a
variable of type int, so cin enters the fail state. Note that the printed values of the
variables weight and height are unchanged, as shown by the output of the statements in
Lines 10 and 11.

140 | Chapter 3: Input/Output

Sample Run 2

Line 5: Enter name, age, weight, and height: Sam 35.0 156 6.2

Line 8: Name: Sam
Line 9: Age: 35

Line 10: Weight: O
Line 11: Height: O

In this sample run, after inputting Sam into name and 35 into age, the reading stops at
the decimal point for the cin statement in Line 6. Next the cin statement tries to input
the decimal point into weight, which is an int variable. So the input stream enters the
fail state and the values of weight and height are unchanged, as shown by the output of
the statements in Lines 10 and 11.

The clear Function

When an input stream enters the fail state, the system ignores all further I/O using that
stream. You can use the stream function clear to restore the input stream to a working
state.

The syntax to use the function clear is:
istreamVar.clear();

Here, istreamVar is an input stream variable, such as cin.

After using the function clear to return the input stream to a working state, you still
need to clear the rest of the garbage from the input stream. This can be accomplished by
using the function ignore. Example 3-9 illustrates this situation.

//Input failure and the clear function

#include <iostream>
#include <string>

using namespace std;

int main ()

{

string name; //Line 1
int age = 0; //Line 2
int weight = 0; //Line 3
double height = 0.0; //Line 4

cout << "Line 5: Enter name, age, weight, and "
<< "height: "; //Line 5

Input Failure | 141

cin >> name >> age >> weight >> height; //Line 6
cout << endl; //Line 7
cout << "Line 8: Name: " << name << endl; //Line 8
cout << "Line 9: Age: " << age << endl; //Line 9
cout << "Line 10: Weight: " << weight << endl; //Line 10

cout << "Line 11: Height: " << height << endl; //Line 11

cin.clear(); //Restore input stream; Line 12
cin.ignore (200, '\n"'); //Clear the buffer; Line 13
cout << "\nLine 14: Enter name, age, weight, "

<< "and height: "; //Line 14
cin >> name >> age >> weight >> height; //Line 15
cout << endl; //Line 16
cout << "Line 17: Name: " << name << endl; //Line 17
cout << "Line 18: Age: " << age << endl; //Line 18
cout << "Line 19: Weight: " << weight << endl; //Line 19

cout << "Line 20: Height: " << height << endl; //Line 20

return 0; //Line 21

Sample Run: In this sample run, the user input is shaded.

Line 5: Enter name, age, weight, and height: Sam 35 g56 6.2

Line 8: Name: Sam
Line 9: Age: 35

Line 10: Weight: O
Line 11: Height: O

Line 14: Enter name, age, weight, and height: Sam 35 156 6.2

Line 17: Name: Sam
Line 18: Age: 35
Line 19: Weight: 156
Line 20: Height: 6.2

The statements in Lines 1, 2, 3, and 4 declare the variables name, age, weight, and
height, and also initialize the variable age, weight, and height. The statement in Line 5
prompts the user to enter a person’s name, age, weight, and height; the statement in Line 6
inputs these values into variables name, age, weight, and height, respectively.

As in Example 3-8, when the cin statement tries to input g56 into weight, it enters the
fail statement. The statement in Line 12 restores the input stream by using the function
clear, and the statement in Line 13 ignores the rest of the input. The statement in Line 14
again prompts the user to input a person’s name, age, weight, and height; the statement in
Line 15 stores these values in name, age, weight, and height, respectively. Next, the
statements in Lines 17 to 20 output the values of name, age, weight, and height.

142 | Chapter 3: Input/Output

Output and Formatting Output

Other than writing efficient programs, generating the desired output is one of a pro-
grammer’s highest priorities. Chapter 2 briefly introduced the process involved in
generating output on the standard output device. More precisely, you learned how to
use the insertion operator << and the manipulator endl to display results on the standard
output device.

However, there is a lot more to output than just displaying results. Sometimes, floating-
point numbers must be output in a specific way. For example, a paycheck must be
printed to two decimal places, whereas the results of a scientific experiment might
require the output of floating-point numbers to six, seven, or perhaps even ten decimal
places. Also, you might like to align the numbers in specific columns or fill the empty
space between strings and numbers with a character other than the blank. For example,
in preparing the table of contents, the space between the section heading and the page
number might need to be filled with dots or dashes. In this section, you will learn about
various output functions and manipulators that allow you to format your output in a
desired way.

Recall that the syntax of cout when used together with the insertion operator
<< 1S

cout << expression or manipulator << expression or manipulator...;

Here, expression is evaluated, its value is printed, and manipulator is used to format
the output. The simplest manipulator that you have used so far is endl, which is used to
move the insertion point to the beginning of the next line.

Other output manipulators that are of interest include setprecision, fixed, showpoint,
and setw. The next few sections describe these manipulators.

setprecision Manipulator

You use the manipulator setprecision to control the output of floating-point num-
bers. Usually, the default output of floating-point numbers is scientific notation. Some
integrated development environments (IDEs) might use a maximum of six decimal
places for the default output of floating-point numbers. However, when an employee’s
paycheck is printed, the desired output is a maximum of two decimal places. To print
floating-point output to two decimal places, you use the setprecision manipulator to
set the precision to 2.

The general syntax of the setprecision manipulator is:

setprecision (n)

where n is the number of decimal places.

Output and Formatting Output | 143

You use the setprecision manipulator with cout and the insertion operator. For
example, the statement:

cout << setprecision(2):;

formats the output of decimal numbers to two decimal places until a similar subsequent
statement changes the precision. Notice that the number of decimal places, or the
precision value, is passed as an argument to setprecision.

To use the manipulator setprecision, the program must include the header file
iomanip. Thus, the following include statement is required:

#include <iomanip>

fixed Manipulator

To further control the output of floating-point numbers, you can use other manipulators.
To output floating-point numbers in a fixed decimal format, you use the manipulator
fixed. The following statement sets the output of floating-point numbers in a fixed
decimal format on the standard output device:

cout << fixed;
After the preceding statement executes, all floating-point numbers are displayed in the fixed
decimal format until the manipulator fixed is disabled. You can disable the manipulator

fixed by using the stream member function unsetf. For example, to disable the mani-
pulator £ixed on the standard output device, you use the following statement:

cout.unsetf (ios::fixed);

After the manipulator fixed is disabled, the output of the floating-point numbers returns
to their default settings. The manipulator scientific is used to output floating-point
numbers in scientific format.

NOTE Onsome compilers, the statements cin >> fixed; and cin >> scientific; might not
work. In this case, you can use cin.setf (ios::fixed) ; in place of cin >> fixed;
and cin.setf (ios::scientific); inplace of cin>> scientific;.

The following example shows how the manipulators scientific and fixed work
without using the manipulator setprecision.

//Example: scientific and fixed

#include <iostream>

using namespace std;

144 | Chapter 3: Input/Output

int main()

{
double hours = 35.45;
double rate = 15.00;
double tolerance = 0.01000;
cout << "hours = " << hours << ", rate = " << rate
<< ", pay = " << hours * rate
<< ", tolerance = " << tolerance << endl << endl;
cout << scientific;
cout << "Scientific notation: " << endl;
cout << "hours = " << hours << ", rate = " << rate
<< ", pay = " << hours * rate
<< ", tolerance = " << tolerance << endl << endl;
cout << fixed;
cout << "Fixed decimal notation: " << endl;
cout << "hours = " << hours << ", rate = " << rate
<< ", pay = " << hours * rate
<< ", tolerance = " << tolerance << endl << endl;
return 0;
}
Sample Run:

hours = 35.45, rate = 15, pay = 531.75, tolerance = 0.01

Scientific notation:
hours = 3.545000e+001, rate = 1.500000e+001, pay = 5.317500e+002, tolerance =1
.000000e-002

Fixed decimal notation:
hours = 35.450000, rate = 15.000000, pay = 531.750000, tolerance = 0.010000

The sample run shows that when the value of rate and tolerance are printed without
setting the scientific or £ixed manipulators, the trailing zeros are not shown and, in the
case of rate, the decimal point is also not shown. After setting the manipulators, the values
are printed to six decimal places. In the next section, we describe the manipulator
showpoint to force the system to show the decimal point and trailing zeros. We will then
give an example to show how to use the manipulators setprecision, fixed, and
showpoint to get the desired output.

showpoint Manipulator

Suppose that the decimal part of a decimal number is zero. In this case, when you instruct the
computer to output the decimal number in a fixed decimal format, the output may not show
the decimal point and the decimal part. To force the output to show the decimal point and

Output and Formatting Output | 145

trailing zeros, you use the manipulator showpoint. The following statement sets the output
of decimal numbers with a decimal point and trailing zeros on the standard input device:

cout << showpoint;

Of course, the following statement sets the output of a floating-point number in a fixed
decimal format with the decimal point and trailing zeros on the standard output device:

cout << fixed << showpoint;

The program in Example 3-11 illustrates how to use the manipulators setprecision,
fixed, and showpoint.

//Example: setprecision, fixed, showpoint

#include <iostream> //Line 1
#include <iomanip> //Line 2
using namespace std; //Line 3
const double PI = 3.14159265; //Line 4
int main () //Line 5
{ //Line 6
double radius = 12.67; //Line 7
double height = 12.00; //Line 8
cout << fixed << showpoint; //Line 9

cout << setprecision(2)

<< "Line 10: setprecision(2)" << endl; //Line 10
cout << "Line 11: radius = " << radius << endl; //Line 11
cout << "Line 12: height = " << height << endl; //Line 12
cout << "Line 13: volume = "

<< PI * radius * radius * height << endl; //Line 13
cout << "Line 14: PI = " << PI << endl << endl; //Line 14

cout << setprecision(3)

<< "Line 15: setprecision(3)" << endl; //Line 15
cout << "Line 16: radius = " << radius << endl; //Line 16
cout << "Line 17: height = " << height << endl; //Line 17
cout << "Line 18: volume = "

<< PI * radius * radius * height << endl; //Line 18
cout << "Line 19: PI = " << PI << endl << endl; //Line 19

cout << setprecision(4)

<< "Line 20: setprecision(4)" << endl; //Line 20
cout << "Line 21: radius = " << radius << endl; //Line 21
cout << "Line 22: height = " << height << endl; //Line 22

146 | Chapter 3: Input/Output

cout << "Line 23: volume = "
<< PI * radius * radius * height << endl; //Line 23
cout << "Line 24: PI = " << PI << endl << endl; //Line 24

cout << "Line 25: "
<< setprecision(3) << radius << ", "
<< setprecision(2) << height << ", "

<< setprecision(5) << PI << endl; //Line 25
return 0; //Line 26
} //Line 27

Sample Run:

Line 10: setprecision(2)

Line 11: radius = 12.67
Line 12: height = 12.00
Line 13: volume = 6051.80
Line 14: PI = 3.14

Line 15: setprecision(3)

Line 16: radius = 12.670
Line 17: height = 12.000
Line 18: volume = 6051.797

Line 19: PI = 3.142

Line 20: setprecision (4)

Line 21: radius = 12.6700
Line 22: height = 12.0000
Line 23: volume = 6051.7969

Line 24: PI = 3.1416

Line 25: 12.670, 12.00, 3.14159

In this program, the statement in Line 2 includes the header file iomanip, and the
statement in Line 4 declares the named constant PI and sets the value to eight decimal
places. The statements in Lines 7 and 8 declare and initialize the variables radius and
height to store the radius of the base and the height of a cylinder. The statement in Line
10 sets the output of floating-point numbers in a fixed decimal format with a decimal
point and trailing zeros.

The statements in Lines 11, 12, 13, and 14 output the values of radius, height,
volume, and PI to two decimal places.

The statements in Lines 16, 17, 18, and 19 output the values of radius, height,
volume, and PI to three decimal places.

The statements in Lines 21, 22, 23, and 24 output the values of radius, height,
volume, and PI to four decimal places.

The statement in Line 25 outputs the value of radius to three decimal places, the value
of height to two decimal places, and the value of PI to five decimal places.

Output and Formatting Output | 147

Notice how the values of radius are printed in Lines 11, 16, and 21. The value of
radius printed in Line 16 contains a trailing 0. This is because the stored value of
radius has only two decimal places; a 0 is printed at the third decimal place. In a similar
manner, the value of height is printed in Lines 12, 17, and 22.

Also, notice how the statements in Lines 13, 18, and 23 calculate and output volume to
two, three, and four decimal places.

Note that the value of PI printed in Line 24 is rounded.

The statement in Line 25 first sets the output of floating-point numbers to three decimal
places and then outputs the value of radius to three decimal places. After printing the
value of radius, the statement in Line 25 sets the output of floating-point numbers to
two decimal places and then outputs the value of height to two decimal places. Next, it
sets the output of floating-point numbers to five decimal places and then outputs the
value of PI to four decimal places.

If you omit the statement in Line 9 and recompile and run the program, you will see the
default output of the decimal numbers. More specifically, the value of the expression that
calculates the volume might be printed in the scientific notation.

setw

The manipulator setw is used to output the value of an expression in a specific number of
columns. The value of the expression can be either a string or a number. The expression
setw (n) outputs the value of the next expression in n columns. The output is right-
justified. Thus, if you specify the number of columns to be 8, for example, and the output
requires only four columns, the first four columns are left blank. Furthermore, if the
number of columns specified is less than the number of columns required by the output,
the output automatically expands to the required number of columns; the output is not
truncated. For example, if x is an int variable, the following statement outputs the value
of x in five columns on the standard output device:

cout << setw(5) << x << endl;

To use the manipulator setw, the program must include the header file iomanip. Thus,
the following include statement is required:

#include <iomanip>

Unlike setprecision, which controls the output of all floating-point numbers until it is
reset, setw controls the output of only the next expression.

//Example: setw

#include <iostream>
#include <iomanip>

148 | Chapter 3: Input/Output

using namespace std;

int main ()

{
int x = 19; //Line 1
int a = 345; //Line 2
double y = 76.384; //Line 3
cout << fixed << showpoint; //Line 4
cout << "12345678901234567890" << endl; //Line 5
cout << setw(5) << x << endl; //Line 6
cout << setw(5) << a << setw(5) << "Hi"
<< setw(5) << x << endl << endl; //Line 7
cout << setprecision(2); //Line 8
cout << setw(6) << a << setw(6) << y
<< setw(6) << x << endl; //Line 9
cout << setw(6) << X << setw(6) << a
<< setw(6) << y << endl << endl; //Line 10
cout << setw(5) << a << x << endl; //Line 11
cout << setw(2) << a << setw(4) << x << endl; //Line 12
return 0;
}
Sample Run:
12345678901234567890
19
345 Hi 19
345 76.38 19
19 345 76.38
34519
345 19

The statements in Lines 1, 2, and 3 declare the variables %, a, and y and initialize these
variables to 19, 345, and 76.384, respectively. The statement in Line 4 sets the output of
floating-point numbers in a fixed decimal format with a decimal point and trailing zeros.
The output of the statement in Line 5 shows the column positions when the specific
values are printed; it is the first line of output.

The statement in Line 6 outputs the value of x in five columns. Because x has only two
digits, only two columns are needed to output its value. Therefore, the first three columns
are left blank in the second line of output. The statement in Line 7 outputs the value of a in
the first five columns, the string "Hi" in the next five columns, and then the value of x in the
following five columns. Because the string "Hi" contains only two characters and five
columns are set to output these two characters, the first three columns are left blank. See

Additional Output Formatting Tools | 149

the third line of output. The fourth line of output is blank because the manipulator endl
appears twice in the statement in Line 7.

The statement in Line 8 sets the output of floating-point numbers to two decimal places.
The statement in Line 9 outputs the values of a in the first six columns, y in the next six
columns, and x in the following six columns, creating the fifth line of output. The output
of the statement in Line 10 (which is the sixth line of output) is similar to the output of
the statement in Line 9. Notice how the numbers are nicely aligned in the outputs of the
statements in Lines 9 and 10. The seventh line of output is blank because the manipulator
endl appears twice in the statement in Line 10.

The statement in Line 11 outputs first the value of a in five columns and then the value of
x. Note that the manipulator setw in the statement in Line 11 controls only the output of
a. Thus, after the value of a is printed, the value of x is printed at the current cursor
position (see the eighth line of output).

In the cout statement in Line 12, only two columns are assigned to output the value of a.
However, the value of a has three digits, so the output is expanded to three columns. The
value of x is then printed in four columns. Because the value of x contains only two digits,
only two columns are required to output the value of x. Therefore, because four columns
are allocated to output the value of x, the first two columns are left blank (see the ninth line
of output).

Additional Output Formatting Tools

In the previous section, you learned how to use the manipulators setprecision, fixed, and
showpoint to control the output of floating-point numbers and how to use the manipulator
setw to display the output in specific columns. Even though these manipulators are adequate
to produce an elegant report, in some situations, you may want to do more. In this section, you
will learn additional formatting tools that give you more control over your output.

setfill Manipulator

Recall that in the manipulator setw, if the number of columns specified exceeds the number
of columns required by the expression, the output of the expression is right-justified and the
unused columns to the left are filled with spaces. The output stream variables can use the
manipulator set£ill to fill the unused columns with a character other than a space.

The syntax to use the manipulator set£fill is:

ostreamVar << setfill (ch);

where ostreamVar is an output stream variable and ch is a character. For example, the
statement:

cout << setfill('#'");

150 | Chapter 3: Input/Output

sets the fill character to '#' on the standard output device.
To use the manipulator set£ill, the program must include the header file iomanip.

The program in Example 3-13 illustrates the effect of using set£ill in a program.

//Example: setfill

#include <iostream>
#include <iomanip>

using namespace std;

int main ()

{
int x = 15; //Line 1
int y = 7634; //Line 2
cout << "12345678901234567890" << endl; //Line 3
cout << setw(5) << X << setw(7) << y
<< setw(8) << "Warm" << endl; //Line 4
cout << setfill('*'); //Line 5
cout << setw(5) << x << setw(7) << y
<< setw(8) << "Warm" << endl; //Line 6
cout << setw(5) << x << setw(7) << setfill('#'")
<< y << setw(8) << "Warm" << endl; //Line 7
cout << setw(5) << setfill('QR'") << x
<< setw(7) << setfill('#') << y
<< setw(8) << setfill('"') << "Warm"
<< endl; //Line 8
cout << setfill(' '"): //Line 9
cout << setw(5) << x << setw(7) << y
<< setw(8) << "Warm" << endl; //Line 10
return 0;
}
Sample Run:
12345678901234567890

15 7634 Warm
* % % 15*** 7634****Warm
*xk 154447634444 #Warm
QRRLS###7634"" " Warm
15 7634 Warm

The statements in Lines 1 and 2 declare and initialize the variables x and y to 15 and 7634,
respectively. The output of the statement in Line 3—the first line of output—shows the

Additional Output Formatting Tools | 151

column position when the subsequent statements output the values of the variables. The
statement in Line 4 outputs the value of x in five columns, the value of y in seven columns,
and the string "Warm" in eight columns. In this statement, the filling character is the blank
character, as shown in the second line of output.

The statement in Line 5 sets the filling character to *. The statement in Line 6 outputs
the value of x in five columns, the value of y in seven columns, and the string "Warm"
in eight columns. Because x is a two-digit number and five columns are assigned to
output its value, the first three columns are unused by x and are, therefore, filled by the
filling character *. To print the value of y, seven columns are assigned; y is a four-digit
number, however, so the filling character fills the first three columns. Similarly, to print
the value of the string "Warm", eight columns are assigned; the string "Warm" has only
four characters, so the filling character fills the first four columns. See the third line
of output.

The output of the statement in Line 7—the fourth line of output—is similar to the output
of the statement in Line 6, except that the filling character for y and the string "Warm" is
#. In the output of the statement in Line 8 (the fifth line of output), the filling character
for x is @, the filling character for y is #, and the filling character for the string "Warm" is
~. The manipulator setfill sets these filling characters.

The statement in Line 9 sets the filling character to blank. The statement in Line 10
outputs the values of x, y, and the string "Warm" using the filling character blank, as
shown in the sixth line of output.

left and right Manipulators

Recall that if the number of columns specified in the setw manipulator exceeds the
number of columns required by the next expression, the default output is right-justified.
Sometimes, you might want the output to be left-justified. To left-justify the output, you
use the manipulator left.

The syntax to set the manipulator left is:

ostreamVar << left;
where ostreamVar is an output stream variable. For example, the following statement
sets the output to be left-justified on the standard output device:
cout << left;

You can disable the manipulator left by using the stream function unsetf. The syntax
to disable the manipulator left is:

ostreamVar.unsetf (ios::left);

152 | Chapter 3: Input/Output

where ostreamVar is an output stream variable. Disabling the manipulator left returns
the output to the settings of the default output format. For example, the following
statement disables the manipulator 1left on the standard output device:

cout.unsetf (ios::1left);

The syntax to set the manipulator right is:

ostreamVar << right;

where ostreamvVar is an output stream variable. For example, the following statement
sets the output to be right-justified on the standard output device:

cout << right;

NOTE Onsome compilers, the statements cin >> left; and cin >> right; might not work.
In this case, you can use cin.setf (ios::1eft); in place of cin >> left; and
cin.setf (ios::right); in place of cin >> right;.

The program in Example 3-14 illustrates the eftect of the manipulators left and right.

//Example: left justification

#include <iostream>
#include <iomanip>

using namespace std;

int main ()

{

int x = 15; //Line 1
int y = 7634; //Line 2
cout << left; //Line 3
cout << "12345678901234567890" << endl; //Line 4
cout << setw(5) << x << setw(7) << y

<< setw(8) << "Warm" << endl; //Line 5
cout << setfill('*'); //Line 6

cout << setw(5) << x << setw(7) << y
<< setw(8) << "Warm" << endl; //Line 7

cout << setw(5) << x << setw(7) << setfill('#'")
<< y << setw(8) << "Warm" << endl; //Line 8

cout << setw(5) << setfill('Q'") << x
<< setw(7) << setfill('#') << y

Input/Output and the string Type | 153

<< setw(8) << setfill('"'") << "Warm"

<< endl; //Line 9
cout << right; //Line 10
cout << setfill(' '"):; //Line 11

cout << setw(5) << x << setw(7) << y
<< setw(8) << "Warm" << endl; //Line 12

return 0;

}
Sample Run:

12345678901234567890
15 7634 Warm
15***7634***Warm****
15%** 7634 ## #Warm####
15@RA7634###Warm” """
15 7634 Warm

The output of this program is the same as the output of Example 3-13. The only
difference here is that for the statements in Lines 4 through 9, the output is left-justified.
You are encouraged to do a walk-through of this program.

NOTE This chapter discusses several stream functions and stream manipulators. To use stream
functions such as get, ignore, £ill, and clear in a program, the program must
include the header file iostream.

There are two types of manipulators: those with parameters and those without parameters.
Manipulators with parameters are called parameterized stream manipulators. For example,
manipulators such as setprecision, setw, and set£i11 are parameterized. On the
other hand, manipulators such as endl, fixed, scientific, showpoint, and
left do not have parameters.

To use a parameterized stream manipulator in a program, you must include the header file
iomanip. Manipulators without parameters are part of the iostream header file and,
therefore, do not require inclusion of the header file iomanip.

Input/Output and the string Type

You can use an input stream variable, such as cin, and the extraction operator >> to
read a string into a variable of the data type string. For example, if the input
is the string "Shelly", the following code stores this input into the string
variable name:

string name; //variable declaration
cin >> name; //input statement

154 | Chapter 3: Input/Output

Recall that the extraction operator skips any leading whitespace characters and that
reading stops at a whitespace character. As a consequence, you cannot use the extraction
operator to read strings that contain blanks. For example, suppose that the variable name
is defined as noted above. If the input is:

Alice Wonderland

then after the statement:

cin >> name;

executes, the value of the variable name is "Alice".

To read a string containing blanks, you can use the function getline.

The syntax to use the function getline is:

getline (istreamVar, strVar);

where istreamvar is an input stream variable and strVar is a string variable. The
reading is delimited by the newline character "\n".

The function getline reads until it reaches the end of the current line. The newline
character is also read but not stored in the string variable.

Consider the following statement:

string myString;

If the input is 29 characters:

bbbbHello there. How are you?

where b represents a blank, after the statement:

getline (cin, myString);

the value of myString is:

myString = " Hello there. How are you?"

All 29 characters, including the first four blanks, are stored into myString.

Similarly, you can use an output stream variable, such as cout, and the insertion operator
<< to output the contents of a variable of the data type string.

Debugging: Understanding Logic Errors
and Debugging with cout Statements

In the debugging section of Chapter 2, we illustrated how to understand and correct syntax
errors. As we have seen, syntax errors are reported by the compiler, and the compiler not
only reports syntax errors, but also gives some explanation about the errors. On the other
hand, logic errors are typically not caught by the compiler except for the trivial ones such as
using a variable without properly initializing it. In this section, we illustrate how to spot and

Debugging: Understanding Logic Errors and Debugging with cout Statements | 155

correct logic errors using cout statements. Suppose that we want to write a program that
takes as input the temperature in Fahrenheit and outputs the equivalent temperature in
Celsius. The formula to convert the temperature is: Celsius = 5 / 9 * (Fahrenheit — 32). So

consider the following program:

#include <iostream>
using namespace std;
int main ()
{
int fahrenheit;
int celsius;
cout << "Enter temperature in Fahrenheit: ";
cin >> fahrenheit;
cout << endl;

celsius = 5 / 9 * (fahrenheit - 32);

cout << fahrenheit << " degree F ="
<< celsius << " degree C. " << endl;

return 0;

Sample Run 1: In this sample run, the user input is shaded.

Enter temperature in Fahrenheit: 32

32 degree F = 0 degree C.

Sample Run 2: In this sample run, the user input is shaded.

Enter temperature in Fahrenheit: 110

110 degree F = 0 degree C.

//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line

//Line

//Line

//Line
//Line

1

2

oUW

0

10

11

12
13

The result shown in the first calculation looks correct. However, the result in the second
calculation is clearly not correct even though the same formula is used, because 110 degree
F = 43 degree C. It means the value of celsius calculated in Line 10 is incorrect. Now,
the value of celsius is given by the expression 5 / 9* (fahrenheit - 32). So we should
look at this expression closely. To see the effect of this expression, we can separately print
the values of the two expression 5 / 9 and fahrenheit - 32. This can be accomplished by
temporarily inserting an output statement as shown in the following program:

#include <iostream>
using namespace std;

int main ()

{

int fahrenheit;
int celsius;

//Line
//Line

//Line
//Line
//Line
//Line

1

2

oUW

156 | Chapter 3: Input/Output

cout << "Enter temperature in Fahrenheit: "; //Line 7

cin >> fahrenheit; //Line 8
cout << endl; //Line 9
cout << "5 / 9 ="k 5/ 09

<< "; fahrenheit - 32 ="

<< fahrenheit - 32 << endl; //Line 9a
celsius = 5 / 9 * (fahrenheit - 32); //Line 10
cout << fahrenheit << " degree F = "

<< celsius << " degree C. " << endl; //Line 11
return 0; //Line 12

} //Line 13

Sample Run: In this sample run, the user input is shaded.

Enter temperature in Fahrenheit: 110

5/ 9 = 0; fahrenheit - 32 = 78
110 degree F = 0 degree C.

Let us look at the sample run. We see that the value of 5 / 9 = 0 and the value of
fahrenheit - 32 = 78. Because fahrenheit = 110, the value of the expression
fahrenheit - 32 is correct. Now let us look at the expression 5 / 9. The value of
this expression is 0. Because both of the operands, 5 and 9, of the operator / are integers,
using integer division, the value of the expression is 0. That is, the value of the expression
5/ 9 =0 is also calculated correctly. So by the precedence of the operators, the value of the
expression 5 / 9 * (fahrenheit - 32) will always be 0 regardless of the value of
fahrenheit. So the problem is in the integer division. We can replace the expression
5/ 9 with 5.0 / 9. In this case, the value of the expression 5.0 / 9 * (fahrenheit - 32)
will be a decimal number. Because fahrenheit and celsius are int variables, we can use
the cast operators to convert this value to an integer, that is, we use the following expression:

celsius = static cast<int> (5.0 / 9 * (fahrenheit - 32) + 0.5);

(Note that in the preceding expression, we added 0.5 to round the number to the nearest
integer.)

The revised program is:

#include <iostream> //Line 1
using namespace std; //Line 2
int main () //Line 3
{ //Line 4
int fahrenheit; //Line 5
int celsius; //Line 6

File Input/Output | 157

cout << "Enter temperature in Fahrenheit: "; //Line 7
cin >> fahrenheit; //Line 8
cout << endl; //Line 9

celsius = static cast<int>

(5.0 / 9 * (fahrenheit - 32) + 0.5); //Line 10
cout << fahrenheit << " degree F ="
<< celsius << " degree C. " << endl; //Line 11
return 0; //Line 12
} //Line 13

Sample Run: In this sample run, the user input is shaded.

Enter temperature in Fahrenheit: 110

110 degree F = 43 degree C.

As we can see, using temporary cout statements, we were able to find the problem. After
correcting the problem, the temporary cout statements are removed.

The temperature conversion program contained logic errors, not syntax errors. Using
cout statements to print the values of expressions and/or variables to see the results of a
calculation is an effective way to find and correct logic errors.

File Input/Output

The previous sections discussed in some detail how to get input from the keyboard (standard
input device) and send output to the screen (standard output device). However, getting input
from the keyboard and sending output to the screen have several limitations. Inputting data in a
program from the keyboard is comfortable as long as the amount of input is very small. Sending
output to the screen works well if the amount of data is small (no larger than the size of the
screen) and you do not want to distribute the output in a printed format to others.

If the amount of input data is large, however, it is inefficient to type it at the keyboard
each time you run a program. In addition to the inconvenience of typing large amounts
of data, typing can generate errors, and unintentional typos cause erroneous results. You
must have some way to get data into the program from other sources. By using alternative
sources of data, you can prepare the data before running a program, and the program can
access the data each time it runs.

Suppose you want to present the output of a program in a meeting. Distributing printed
copies of the program output is a better approach than showing the output on a screen.
For example, you might give a printed report to each member of a committee before an
important meeting. Furthermore, output must sometimes be saved so that the output
produced by one program can be used as an input to other programs.

This section discusses how to obtain data from other input devices, such as a disk (that is,
secondary storage), and how to save the output to a disk. C++ allows a program to get

158 | Chapter 3: Input/Output

data directly from and save output directly to secondary storage. A program can use the file
I/0 and read data from or write data to a file. Formally, a file is defined as follows:

File: An area in secondary storage used to hold information.

The standard I/O header file, iostream, contains data types and variables that are used
only for input from the standard input device and output to the standard output device.
In addition, C++ provides a header file called fstream, which is used for file I/O.
Among other things, the £stream header file contains the definitions of two data types:
ifstream, which means input file stream and is similar to istream, and ofstream,
which means output file stream and is similar to ostream.

The variables cin and cout are already defined and associated with the standard input/
output devices. In addition, >>, get, ignore, putback, peek, and so on can be used with
cin, whereas <<, setfill, and so on can be used with cout. These same operators and
functions are also available for file I/O, but the header file f£stream does not declare variables
to use them. You must declare variables called file stream variables, which include
ifstream variables for input and ofstream variables for output. You then use these
variables together with >>, <<, or other functions for [/O. Remember that C++ does not
automatically initialize user-defined variables. Once you declare the £stream variables, you
must associate these file variables with the input/output sources.

File 170 is a five-step process:

1. Include the header file fstream in the program.

2. Declare file stream variables.

3. Associate the file stream variables with the input/output sources.

4. Use the file stream variables with >>, <<, or other input/output functions.
5. Close the files.

We will now describe these five steps in detail. A skeleton program then shows how the
steps might appear in a program.

Step 1 requires that the header file £stream be included in the program. The following
statement accomplishes this task:

#include <fstream>
Step 2 requires you to declare file stream variables. Consider the following statements:

ifstream inData;
ofstream outData;

The first statement declares inData to be an input file stream variable. The second
statement declares outData to be an output file stream variable.

Step 3 requires you to associate file stream variables with the input/output sources. This
step is called opening the files. The stream member function open is used to open files.
The syntax for opening a file is:

fileStreamVariable.open (sourceName) ;

File Input/Output | 159

Here, fileStreamVariable is a file stream variable, and sourceName is the name of the
input/output file.

Suppose you include the declaration from Step 2 in a program. Further suppose that the input
data is stored in a file called prog.dat. The following statements associate inData with
prog.dat and outData with prog.out. That is, the file prog.dat is opened for inputting
data, and the file prog. out is opened for outputting data.

inData.open ("prog.dat"); //open the input file; Line 1
outData.open ("prog.out"); //open the output file; Line 2

NOTE IDEs such as Visual Studio .Net manage programs in the form of projects. That is, first you
create a project, and then you add source files to the project. The statement in Line 1 assumes
that the file prog.dat is in the same directory (subdirectory) as your project. However, if this
is in a different directory (subdirectory), then you must specify the path where the file is
located, along with the name of the file. For example, suppose that the file prog.datisona
flash memory in drive H. Then the statement in Line 1 should be modified as follows:

inData.open("h:\\prog.dat"™);

Note that there are two \ after h:. Recall from Chapter 2 that in C++, \ is the escape
character. Therefore, to produce a \ within a string, you need \\ . (To be absolutely sure
about specifying the source where the input file is stored, such as the drive h:\\, check
your system’s documentation.)

Similar conventions for the statement in Line 2.

NOTE Suppose that a program reads data from a file. Because different computers have drives
labeled differently, for simplicity, throughout the book, we assume that the file containing
the data and the program reading data from the file are in the same directory (subdirectory).

NOTE We typically use .dat, .out, or .txt as an extension for the input and output files
and use Notepad, Wordpad, or TextPad to create and open these files. You can also use
your IDE’s editor, if any, to create . txt (text) files. (To be absolutely sure about it, check
you IDE’s documentation.)

Step 4 typically works as follows. You use the file stream variables with >>, <<, or other
input/output functions. The syntax for using >> or << with file stream variables is exactly
the same as the syntax for using cin and cout. Instead of using cin and cout, however,
you use the file stream variable names that were declared. For example, the statement:

inData >> payRate;
reads the data from the file prog.dat and stores it in the variable payRate. The statement:

outData << "The paycheck is: $" << pay << endl;

160 | Chapter 3: Input/Output

stores the output—The paycheck is: $565.78—in the file prog.out. This statement
assumes that the pay was calculated as 565.78.

Once the 170 is complete, Step 5 requires closing the files. Closing a file means that
the file stream variables are disassociated from the storage area and are freed. Once
these variables are freed, they can be reused for other file I/O. Moreover, closing an
output file ensures that the entire output is sent to the file; that is, the bufter is
emptied. You close files by using the stream function close. For example, assuming
the program includes the declarations listed in Steps 2 and 3, the statements for
closing the files are:

inData.close();
outData.close();

NOTE On some systems, it is not necessary to close the files. When the program terminates,
the files are closed automatically. Nevertheless, it is a good practice to close the files
yourself. Also, if you want to use the same file stream variable to open another file,
you must close the first file opened with that file stream variable.

In skeleton form, a program that uses file I/O usually takes the following form:

#include <fstream>
//Add additional header files you use
using namespace std;

int main ()
{
//Declare file stream variables such as the following
ifstream inData;
ofstream outData;

//Open the files
inData.open ("prog.dat"™); //open the input file
outData.open ("prog.out"); //open the output file

//Code for data manipulation
//Close files
inData.close();

outData.close();

return 0;

Programming Example: Movie Tickets Sale and Donation to Charity | 161

Recall that Step 3 requires the file to be opened for file I/O. Opening a file associates a
file stream variable declared in the program with a physical file at the source, such as a
disk. In the case of an input file, the file must exist before the open statement executes.
If the file does not exist, the open statement fails and the input stream enters the fail
state. An output file does not have to exist before it is opened; if the output file does not
exist, the computer prepares an empty file for output. If the designated output file
already exists, by default, the old contents are erased when the file is opened.

To add the output at the end of an existing file, you can use the option ios: :app as follows.
Suppose that outData is declared as before and you want to add the output at the end
of the existing file, say, firstProg.out. The statement to open this file is:

outData.open("firstProg.out", ios::app):;

If the file £irstProg.out does not exist, then the system creates an empty file.

Appendix E discusses binary and random access files.

PROGRAMMING EXAMPLE:

Movie Tickets Sale and Donation to Charity
6 A movie in a local theater is in great demand. To help a local charity, the theater

owner has decided to donate to the charity a portion of the gross amount generated
from the movie. This example designs and implements a program that prompts the

thV!?Itiz:o user to input the movie name, adult ticket price, child ticket price, number of adult
tickets sold, number of child tickets sold, and percentage of the gross amount to be
donated to the charity. The output of the program is as follows.

R R L U U QR U S e g S R I P

Movie Name: ...ceuieeeveancennonnnss Journey to Mars
Number of Tickets Sold: 2650

Gross AmMOUNL: ..vvveereanoeanoannnas $ 9150.00
Percentage of Gross Amount Donated: 10.00%
Amount Donated:cceieeen.n. $ 915.00

Net Sale: ...eieinreeneanonanoannas $ 8235.00

Note that the strings, such as "Movie Name:" , in the first column are left-justified,
the numbers in the right column are right-justified, and the decimal numbers are
output with two decimal places.

PROBLEM
ANALYSIS
AND
ALGORITHM
DESIGN

162 | Chapter 3: Input/Output

Input The input to the program consists of the movie name, adult ticket price, child
ticket price, number of adult tickets sold, number of child tickets sold, and
percentage of the gross amount to be donated to the charity.

Output The output is as shown above.

To calculate the amount donated to the local charity and the net sale, you first need to
determine the gross amount. To calculate the gross amount, you multiply the number
of adult tickets sold by the price of an adult ticket, multiply the number of child tickets
sold by the price of a child ticket, and then add these two numbers. That is:

grossAmount = adultTicketPrice * noOfAdultTicketsSold
+ childTicketPrice * noOfChildTicketsSold;

Next, you determine the percentage of the amount donated to the charity and then
calculate the net sale amount by subtracting the amount donated from the gross
amount. The formulas to calculate the amount donated and the net sale amount are
given below. This analysis leads to the following algorithm:

1. Get the movie name.
Get the price of an adult ticket.
Get the price of a child ticket.
Get the number of adult tickets sold.
Get the number of child tickets sold.

Get the percentage of the gross amount donated to the charity.

Ny Bogs

Calculate the gross amount using the following formula:

grossAmount = adultTicketPrice * noOfAdultTicketsSold
+ childTicketPrice * noOfChildTicketsSold;

8. Calculate the amount donated to the charity using the following formula:
amountDonated = grossAmount * percentDonation / 100;
9. Calculate the net sale amount using the following formula:

netSaleAmount = grossAmount — amountDonated;

Variables From the preceding discussion, it follows that you need variables to store the

movie name, adult ticket price, child ticket price, number of adult tickets sold,
number of child tickets sold, percentage of the gross amount donated to the
charity, gross amount, amount donated, and net sale amount. Therefore, the
following variables are needed:

string movieName;

double adultTicketPrice;
double childTicketPrice;
int noOfAdultTicketsSold;
int noOfChildTicketsSold;
double percentDonation;

Programming Example: Movie Tickets Sale and Donation to Charity | 163

double grossAmount;
double amountDonated;
double netSaleAmount;

Because movieName is declared as a string variable, you need to include the header
file string. Therefore, the program needs, among others, the following include
statement:

#include <string>

Formatting In the output, the first column is left-justified and the numbers in the second
Output column are right-justified. Therefore, when printing a value in the first column,

the manipulator left is used; before printing a value in the second column, the
manipulator right is used. The empty space between the first and second
columns 1s filled with dots; the program uses the manipulator set£ill to
accomplish this goal. In the lines showing the gross amount, amount donated,
and net sale amount, the space between the $ sign and the number is filled with
blank spaces. Therefore, before printing the dollar sign, the program uses the
manipulator setfill to set the filling character to blank. The following state-
ments accomplish the desired output:

cout << Wk —k ok —k ok —k ok —k ok —k k% k%1

<KL Wk —k ok —k ko k —k _k k —k k% W < and];
cout << setfill('.') << left << setw(35) << "Movie Name: "
<< right << " " << movieName << endl;
cout << left << setw(35) << "Number of Tickets Sold: "
<< setfill(' ') << right << setw(10)
<< noOfAdultTicketsSold + noOfChildTicketsSold

<< endl;
cout << setfill('.') << left << setw(35) << "Gross Amount: "
<< setfill (' ') << right << " §"
<< setw(8) << grossAmount << endl;
cout << setfill('.') << left << setw(35)
<< "Percentage of Gross Amount Donated: "
<< setfill (' ") << right
<< setw(9) << percentDonation << '8%' << endl;
cout << setfill('.'") << left << setw(35) << "Amount Donated: "

<< setfill(' ') << right << " $§"
<< setw(8) << amountDonated << endl;
cout << setfill('.'") << left << setw(35) << "Net Sale: "
<< setfill(' ') << right << " §"
<< setw(8) << netSaleAmount << endl;

MAIN In the preceding sections, we analyzed the problem and determined the formulas to

ALGORITHM do the calculations. We also determined the necessary variables and named constants.
We can now expand the previous algorithm to solve the problem given at the
beginning of this programming example.

164 | Chapter 3: Input/Output

1. Declare the variables.

2. Set the output of the floating-point numbers to two decimal places
in a fixed decimal format with a decimal point and trailing zeros.
Include the header file iomanip.

3. Prompt the user to enter a movie name.

4. Input (read) the movie name. Because the name of a movie might
contain more than one word (and, therefore, might contain blanks),
the program uses the function getline to input the movie name.

Prompt the user to enter the price of an adult ticket.
Input (read) the price of an adult ticket.
Prompt the user to enter the price of a child ticket.

Input (read) the price of a child ticket.

e g N ey B

Prompt the user to enter the number of adult tickets sold.

10. Input (read) the number of adult tickets sold.

11. Prompt the user to enter the number of child tickets sold.

12. Input (read) the number of child tickets sold.

13. Prompt the user to enter the percentage of the gross amount donated.
14. Input (read) the percentage of the gross amount donated.

15. Calculate the gross amount.

16. Calculate the amount donated.

17. Calculate the net sale amount.

18. Output the results.

COMPLETE PROGRAM LISTING

//**
// Author: D.S. Malik

//

// Program: Movie Tickets Sale

// This program determines the money to be donated to a

// charity. It prompts the user to input the movie name, adult
// ticket price, child ticket price, number of adult tickets
// sold, number of child tickets sold, and percentage of the

// gross amount to be donated to the charity.
//**

#include <iostream>
#include <iomanip>
#include <string>

using namespace std;

Programming Example: Movie Tickets Sale and Donation to Charity | 165

int main ()
{
//Step 1

string movieName;
double adultTicketPrice;
double childTicketPrice;
int noOfAdultTicketsSold;
int noOfChildTicketsSold;
double percentDonation;
double grossAmount;
double amountDonated;
double netSaleAmount;

cout << fixed << showpoint << setprecision(2); //Step 2

cout << "Enter the movie name: "; //Step
getline (cin, movieName) ; //Step
cout << endl;

S W

cout << "Enter the price of an adult ticket: "; //Step
cin >> adultTicketPrice; //Step
cout << endl;

o U

cout << "Enter the price of a child ticket: "; //Step 7
cin >> childTicketPrice; //Step 8
cout << endl;
cout << "Enter the number of adult tickets "

<< "sold: "; //Step 9
cin >> noOfAdultTicketsSold; //Step 10
cout << endl;

cout << "Enter the number of child tickets "

<< "sold: "; //Step 11
cin >> noOfChildTicketsSold; //Step 12
cout << endl;

cout << "Enter the percentage of donation: "; //Step 13
cin >> percentDonation; //Step 14
cout << endl << endl;

//Step 15
grossAmount = adultTicketPrice * noOfAdultTicketsSold +
childTicketPrice * noOfChildTicketsSold;

//Step 16
amountDonated = grossAmount * percentDonation / 100;

netSaleAmount = grossAmount - amountDonated; //Step 17
//Step 18: Output results

cout << " —k —k ok —k ok k —k —k —k k _k k ko kW

KL MWk ok k ok ko ok ok ko ko AT o endl;

166 | Chapter 3: Input/Output

cout << setfill('.') << left << setw(35) << "Movie Name: "
<< right << " " << movieName << endl;
cout << left << setw(35) << "Number of Tickets Sold: "
<< setfill (' ') << right << setw(10)
<< noOfAdultTicketsSold + nocOfChildTicketsSold
<< endl;
cout << setfill('.') << left << setw(35)
<< "Gross Amount: "
<< setfill (' ') << right << " 8"
<< setw(8) << grossAmount << endl;
cout << setfill('.') << left << setw(35)
<< "Percentage of Gross Amount Donated: "
<< setfill(' ') << right
<< setw(9) << percentDonation << '%' << endl;
cout << setfill('.') << left << setw(35)
<< "Amount Donated: "
<< setfill (' ') << right << " §"
<< setw(8) << amountDonated << endl;
cout << setfill('.') << left << setw(35) << "Net Sale: "
<< setfill(' ') << right << " §"

<< setw(8) << netSaleAmount << endl;

return 0;

}
Sample Run: In this sample run, the user input is shaded.

Enter movie name: Journey to Mars

Enter the price of an adult ticket: 4.50
Enter the price of a child ticket: 3.00
Enter number of adult tickets sold: 800
Enter number of child tickets sold: 1850

Enter the percentage of donation: 10

=k —k —k ok —k ok —k k ok ok —k ok ok ok ok ok —k —k k ok ok ok ok ok ok ok ok

Movie Name: ...ceuieeeveancennonnnss Journey to Mars
Number of Tickets Sold: 2650

Gross AMOUNL: .. cvvenwrenroneneennes $ 9150.00
Percentage of Gross Amount Donated: 10.00%
Amount Donated:c.cceeceenan.. $ 915.00

Net Sale: .t.iiieenenaneanaeanaannes $ 8235.00

Note that the first six lines of output get the necessary data to generate the last six
lines of the output as required.

Programming Example: Student Grade | 167

PROGRAMMING EXAMPLE: Student Grade

Write a program that reads a student name followed by five test scores. The program
should output the student name, the five test scores, and the average test score.
Output the average test score with two decimal places.

The data to be read is stored in a file called test.txt. The output should be stored
in a file called testavg.out.

Input A file containing the student name and the five test scores. A sample input is:

Andrew Miller 87.50 89 65.75 37 98.50

Output The student name, the five test scores, and the average of the five test
scores, saved to a file.

PROBLEM To find the average of the five test scores, you add the five test scores and divide the
ANALYSIS sum by 5. The input data is in the following form: the student name followed by the
AND five test scores. Therefore, you must read the student name first and then read the five

ALGORITHM test scores. This problem analysis translates into the following algorithm:

DESIGN 1. Read the student name and the five test scores.

2. Output the student name and the five test scores.
3. Calculate the average.
4. Output the average.

You output the average test score in the fixed decimal format with two decimal places.

Variables The program needs to read a student’s first and last name and five test scores. Therefore, you
need two variables to store the student name and five variables to store the five test scores.

To find the average, you must add the five test scores and then divide the sum by 5.
Thus, you need a variable to store the average test score. Furthermore, because the
input data is in a file, you need an ifstream variable to open the input file. Because
the program output will be stored in a file, you need an ofstream variable to open
the output file. The program, therefore, needs at least the following variables:

ifstream inFile; //input file stream variable
ofstream outFile; //output file stream variable

double testl, test2, test3, testd4, testb5; //variables to
//read the five test scores

double average; //variable to store the average test score
string firstName; //variable to store the first name
string lastName; //variable to store the last name

MAIN In the preceding sections, we analyzed the problem and determined the formulas to

ALGORITHM perform the calculations. We also determined the necessary variables and named

168 | Chapter 3: Input/Output

constants. We can now expand the previous algorithm to solve the problem given at
the beginning of this programming example:

1. Declare the variables.

2. Open the input file.
3. Open the output file.
4

To output the floating-point numbers in a fixed decimal format
with a decimal point and trailing zeros, set the manipulators £ixed
and showpoint. Also, to output the floating-point numbers with
two decimal places, set the precision to two decimal places.

Read the student name.
Output the student name.
Read the five test scores.

Output the five test scores.

e N ey W

Find the average test score.
10. Output the average test score.
11. Close the input and output files.

Because this program reads data from a file and outputs data to a file, it must include
the header file £stream. Because the program outputs the average test score to two decimal
places, you need to set the precision to two decimal places. Therefore, the program uses the
manipulator setprecision, which requires you to include the header file iomanip.
Because firstName and lastName are string variables, we must include the header file
string. The program also includes the header file iostream to print a message on the
screen so that you will not stare at a blank screen while the program executes.

COMPLETE PROGRAM LISTING

//**
// Author: D.S. Malik

//

// Program to calculate the average test score.

// Given a student's name and five test scores, this program
// calculates the average test score. The student's name, the
// five test scores, and the average test score are stored in
// the file testavg.out. The data is input from the file

// test.txt.
//**

#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>

using namespace std;

Programming Example: Student Grade

int main ()
{
//Declare variables; Step 1
ifstream inFile;
ofstream outFile;

double testl, test2, test3, test4d4, test5;
double average;

string firstName;
string lastName;

inFile.open ("test.txt"); //Step
outFile.open ("testavg.out"); //Step
outFile << fixed << showpoint; //Step
outFile << setprecision(2); //Step
cout << "Processing data" << endl;
inFile >> firstName >> lastName; //Step
outFile << "Student name: " << firstName
<< " " << lastName << endl; //Step
inFile >> testl >> test2 >> test3
>> testd >> test5; //Step
outFile << "Test scores: " << setw(6) << testl
<< setw(6) << test2 << setw(6) << test3
<< setw(6) << testd << setw(6) << testh
<< endl; //Step
average = (testl + test2 + test3 + test4
+ test5) / 5.0; //Step
outFile << "Average test score: " << setw(6)
<< average << endl; //Step
inFile.close(); //Step
outFile.close () ; //Step

return 0;

}

Sample Run:

Input File (contents of the file test.txt):
Andrew Miller 87.50 89 65.75 37 98.50
Output File (contents of the file testavg.out):

Student name: Andrew Miller
Test scores: 87.50 89.00 65.75 37.00 98.50
Average test score: 75.55

10

11
11

169

170

| Chapter 3: Input/Output

The preceding program uses five variables—test1, test2, test3, test4,
and test5—to read the five test scores and then find the average test score.

The Web site accompanying this book contains a modified version of this program

that uses only one variable, testScore, to read the test scores and another
variable, sum, to find the sum of the test scores. The program is named
Ch3 AverageTestScoreVersion2.cpp.

QUICK REVIEW

A stream in C++ is an infinite sequence of characters from a source to a
destination.

An input stream is a stream from a source to a computer.
An output stream is a stream from a computer to a destination.

cin, which stands for common input, is an input stream object, typically
initialized to the standard input device, which is the keyboard.

cout, which stands for common output, is an output stream object,
typically initialized to the standard output device, which is the screen.

When the binary operator>> is used with an input stream object, such as cin, it
is called the stream extraction operator. The left-side operand of >> must be an
input stream variable, such as cin; the right-side operand must be a variable.

When the binary operator << is used with an output stream object, such as
cout, it is called the stream insertion operator. The left-side operand of <<
must be an output stream variable, such as cout; the right-side operand of
<< must be an expression or a manipulator.

When inputting data into a variable, the operator >> skips all leading
whitespace characters.

To use cin and cout, the program must include the header file iostream.

The function get is used to read data on a character-by-character basis and
does not skip any whitespace characters.

The function ignore is used to skip data in a line.

The function putback puts the last character retrieved by the function get
back into the input stream.

The function peek returns the next character from the input stream but
does not remove the character from the input stream.

Attempting to read invalid data into a variable causes the input stream to
enter the fail state.

Once an input failure has occurred, you use the function clear to restore
the input stream to a working state.

20.

21.

22,

23.

24,

25.
26.

27.

EXE

Exercises

The manipulator setprecision formats the output of floating-point
numbers to a specified number of decimal places.

The manipulator fixed outputs floating-point numbers in the fixed
decimal format.

The manipulator showpoint outputs floating-point numbers with a
decimal point and trailing zeros.

The manipulator setw formats the output of an expression in a specific
number of columns; the default output is right-justified.

If the number of columns specified in the argument of setw is less than the
number of columns needed to print the value of the expression, the output
is not truncated and the output of the expression expands to the required
number of columns.

The manipulator set£i11 is used to fill the unused columns on an output
device with a character other than a space.

If the number of columns specified in the setw manipulator exceeds the
number of columns required by the next expression, the output is right-
justified. To leftjustify the output, you use the manipulator left.

To use the stream functions get, ignore, putback, peek, clear, and unsetf
for standard 1/0O, the program must include the header file iostream.

To use the manipulators setprecision, setw, and setfill, the program
must include the header file iomanip.

The header file fstream contains the definitions of i fstream and ofstream.

For file I/0, you must use the statement #include <fstream> to include the
header file fstream in the program. You must also do the following: declare
variables of type ifstream for file input and of type ofstream for file output
and use open statements to open input and output files. You can use <<, >>,
get, ignore, peek, putback, or clear with file stream variables.

To close a file as indicated by the ifstream variable inFile, you use the
statement inFile.close () ;. To close a file as indicated by the ofstream
variable outFile, you use the statement outFile.close() ;.

RCISES

171

1. Mark the following statements as true or false.

a.

The extraction operator >> skips all leading whitespace characters when
searching for the next data in the input stream.

In the statement cin >> x;, x must be a variable.

The statement cin >> x >> y; requires the input values for x and y to
appear on the same line.

172

| Chapter 3: Input/Output

d. The statement cin>> num; is equivalent to the statement num>> cin;.

e. You generate the newline character by pressing the Enter (return) key
on the keyboard.

. The function ignore is used to skip certain input in a line.

Suppose numl and num2 are int variables and symbol is a char variable.
Consider the following input:

47 18 * 28 §

What value (if any) is assigned to numl, num2, and symbol after each of the
following statements executes? (Use the same input for each statement.)

a. cin >> numl >> symbol >> num2;
b. cin >> symbol >> numl >> num2;

c. cin >> numl;

cin.get (symbol) ;
cin >> num2;

d. c¢in >> numl >> num2;
cin.get (symbol) ;
e. cin.get (symbol);
cin >> numl >> num2;
Suppose x and y are int variables and z is a double variable. Assume the
following input data:

37 86.56 32

What value (if any) is assigned to x, y, and z after each of the following
statements executes? (Use the same input for each statement.)

a. cin >> x >> y >> z;
h. cin >> x >> z >> y;

c. cin >> z >> x >> y;

Suppose x and y are int variables and symbol is a char variable. Assume
the following input data:

38 26 * 67 33
24 $ 55 # 34
& 63 85

What value (if any) is assigned to x, y, and symbol after each of the
following statements executes? (Use the same input for each statement.)

a. cin >> x >> y;
cin.ignore (100, '\n');
cin >> symbol;

h. cin >> x;
cin.ignore (100, '*');
cin >> vy;
cin.get (symbol) ;

Exercises

c. cin >> y;
cin.ignore (100, '\n"');
cin >> x >> symbol;

d. cin.get (symbol);
cin.ignore (100, '*');
cin >> x;
cin.ignore (100, "\n');
cin >> y;

e. cin.ignore (100, "\n'");
cin >> x >> symbol;
cin.ignore (100, "\n');
cin.ignore (100, '&'"):;
cin >> vy;

Given the input:
46 A 49

and the C++ code:
int x = 10, y = 18;

char z = "*';
cin >> x >> y >> z;
cout << x << " " <K y <K<K " "KLz << endl;

What is the output?
Suppose that x and y are int variables, z is a double variable, and ch is a
char variable. Suppose the input statement is:

cin >> x >> y >> ch >> z;

‘What values, if any, are stored in x, y, z, and ch if the input is:

a. 3562.78
h. 86 32A92.6
c. 12 .45A 32

Which header file must be included to use the function steprecision?
Which header file must be included to use the function pow?

Which header file must be included to use the function sqrt?

What is the output of the following program?

#include <iostream>
#include <cmath>
#include <string>

using namespace std;

173

174

| Chapter 3: Input/Output

int main()

{
int x, y;
string message;

double z;
X = 4;
y = 3;
z = 2.5;

cout << static cast<int> (pow(x, 2.0)) << endl;
cout << static cast<int> (pow(z, y)) << endl;

cout << pow(x, z) << endl;
cout << sgrt(36.0) << endl;

z = pow(9.0, 2.5);
cout << z << endl;

message = "Using C++ predefined function";

cout << "Length of message = "
<< message.length() << endl;

return 0;
}
To use the functions peek and putback in a program, which header file(s)
must be included in the program?

Suppose that num is an int variable and discard is a char variable.
Assume the following input data:
#34

What value (if any) is assigned to num and discard after each of the
following statements executes? (Use the same input for each statement.)

a. cin.get (discard);
cin >> num;

h. discard=cin.peek();
cin >> num;

c. cin.get (discard);
cin.putback (discard);
cin >> discard;
cin >> num;

Suppose that name is a variable of type string. Write the input statement
to read and store the input Brenda Clinton in name. (Assume that the
input is from the standard input device.)

Exercises | 175

Write a C++ statement that uses the manipulator set£i11 to output a line
containing 35 stars, as in the following line:

khkhkkkhkhkkhkhkhkhkkhkhkhkkhkhkkhkkhkhkhkkhkkkhkkkkkkkk

Suppose that age is an int variable and name is a string variable. What are
the values of age and name after the following input statements execute:

cin >> age;
getline (cin, name);

if the input is:
a. 23 Lance Grant

h. 23
Lance Grant

Suppose that age is an int variable, ch is a char variable, and name is a
string variable. What are the values of age and name after the following
input statements execute:

cin >> age;

cin.get (ch);

getline (cin, name);

if the input is:
a. 23 Lance Grant

bh. 23
Lance Grant

The following program is supposed to read two numbers from a file named
input.dat and write the sum of the numbers to a file named output.dat.
However, it fails to do so. Rewrite the program so that it accomplishes what
it is intended to do. (Also, include statements to close the files.)

#include <iostream>

#include <fstream>
using namespace std;

int main ()

{
int numl, num2;
ifstream infile;

outfile.open ("output.dat");

infile >> numl >> num2;

outfile << "Sum = " << numl + num2 << endl;
return 0;

176

20.

21.

22,

23.

| Chapter 3: Input/Output

What may cause an input stream to enter the fail state? What happens when
an input stream enters the fail state?

Which header file needs to be included in a program that uses the data types
ifstream and ofstream?

Suppose that infile is an ifstream variable and employee.dat is a file
that contains employees’ information. Write the C++ statement that opens
this file using the variable infile.

A program reads data from a file called inputFile.dat and, after doing
some calculations, writes the results to a file called outFile.dat. Answer
the following questions:

a. After the program executes, what are the contents of the file
inputFile.dat?

b. After the program executes, what are the contents of the file outFile.dat if
this file was empty before the program executed?

c. After the program executes, what are the contents of the file outFile.dat if
this file contained 100 numbers before the program executed?

d. What would happen if the file outFile.dat did not exist before the
program executed?

Suppose that infile is an ifstream variable and it is associated with the
file that contains the following data: 27306 savings 7503.35. Write the
C++ statement(s) that reads and stores the first input in the int variable
acctNumber, the second input in the string variable accountType, and
the third input in the double variable balance.
Suppose that you have the following statements:

ofstream outfile;
double distance = 375;
double speed = 58;
double travelTime;

Write C++ statements to do the following:

a. Open the file travel.dat using the variable outfile.

b. Worite the statement to format your output to two decimal places in
fixed form.

c. Worite the values of the variables day, distance, and speed in the file
travel.dat.

d. Calculate and write the travelTime in the file travel.dat.

e. Which header files are needed to process the information in (a) to (d)?

Programming Exercises

PROGRAMMING EXERCISES

177

1. Consider the following incomplete C++ program:

#include <iostream>

int main ()

{
}

Write a statement that includes the header files fstream, string, and
iomanip in this program.

Worite statements that declare inFile to be an ifstream variable and
outFile to be an ofstream variable.

The program will read data from the file inData. txt and write output to
the file outData. txt. Write statements to open both of these files, associate
inFile with inData.txt, and associate outFile with outData.txt.

Suppose that the file inData.txt contains the following data:

10.20 5.35
15.6

Randy Gill 31
18500 3.5

A

The numbers in the first line represent the length and width, respectively, of
arectangle. The number in the second line represents the radius of a circle.
The third line contains the first name, last name, and the age of a person. The
first number in the fourth line is the savings account balance at the beginning
of the month, and the second number is the interest rate per year. (Assume
that T =3.1416.) The fifth line contains an uppercase letter between Aand
Y (inclusive). Write statements so that after the program executes, the con-
tents of the file outData.txt are as shown below. It necessary, declare
additional variables. Your statements should be general enough so that if the
content of the input file changes and the program is run again (without
editing and recompiling), it outputs the appropriate results.

Rectangle:

Length = 10.20, width = 5.35, area = 54.57, parameter = 31.10

Circle:
Radius = 15.60, area = 764.54, circumference = 98.02

Name: Randy Gill, age: 31
Beginning balance = $18500.00, interest rate
Balance at the end of the month = $18553.96

3.50

The character that comes after A in the ASCII set is B

178 | Chapter 3: Input/Output

e. Write statements that close the input and output files.

. Write a C++ program that tests the statements in parts a through e.

2. Consider the following program in which the statements are in the incorrect
order. Rearrange the statements so that the program prompts the user to input
the height and the radius of the base of a cylinder and outputs the volume and
surface area of the cylinder. Format the output to two decimal places.

#include <iomanip>
#include <cmath>

int main()

{}
double height;

cout << "Volume of the cylinder = "
<< PI * pow(radius, 2.0)* height << endl;

cout << "Enter the height of the cylinder: ";
cin >> radius;
cout << endl;

return 0;

double radius;

cout << "Surface area: "
<< 2 * PI * radius * height + 2 * PI * pow(radius, 2.0)
<< endl;

cout << fixed << showpoint << setprecision(2);

cout << "Enter the radius of the base of the cylinder: ";
cin >> height;
cout << endl;

#include <iostream>
const double PI = 3.14159;

using namespace std;

3. Write a program that prompts the user to enter the weight of a person in
kilograms and outputs the equivalent weight in pounds. Output both the
weights rounded to two decimal places. (Note that 1 kilogram = 2.2
pounds.) Format your output with two decimal places.

4. During each summer, John and Jessica grow vegetables in their backyard
and buy seeds and fertilizer from a local nursery. The nursery carries
different types of vegetable fertilizers in various bag sizes. When buying a
particular fertilizer, they want to know the price of the fertilizer per pound
and the cost of fertilizing per square foot. The following program prompts

Programming Exercises | 179

the user to enter the size of the fertilizer bag, in pounds, the cost of the bag,
and the area, in square feet, that can be covered by the bag. The program
should output the desired result. However, the program contains logic
errors. Find and correct the logic errors so that the program works properly.

//Logic errors.

#include <iostream>
#include <iomanip>

using namespace std;

int main()

{

double cost;

double area;

double bagSize;

cout << fixed << showpoint << setprecision(2);

cout << "Enter the amount of fertilizer, in pounds, "
<< "in one bag: ";

cin >> bagSize;

cout << endl;

cout << "Enter the cost of the " << bagSize
<< " pound fertilizer bag: ";

cin >> cost;

cout << endl;

cout << "Enter the area, in square feet, that can be "

<< "fertilized by one bag: ";

cin >> area;

cout << endl;

cout << "The cost of the fertilizer per pound is: $"
<< bagSize / cost << endl;

cout << "The cost of fertilizing per square foot is: $"
<< area / cost << endl;

return 0;

}

The manager of a football stadium wants you to write a program that
calculates the total ticket sales after each game. There are four types of
tickets—box, sideline, premium, and general admission. After each game,
data is stored in a file in the following form:

ticketPrice numberOfTicketsSold

180

| Chapter 3: Input/Output

Sample data are shown below:

250 5750
100 28000
50 35750
25 18750

The first line indicates that the ticket price is $250 and that 5750 tickets were
sold at that price. Output the number of tickets sold and the total sale
amount. Format your output with two decimal places.

Redo Programming Exercise 21, in Chapter 2, so that each string can store
a line of text.

Three employees in a company are up for a special pay increase. You are
given a file, say Ch3_Ex7Data.txt, with the following data:

Miller Andrew 65789.87 5
Green Sheila 75892.56 6
Sethi Amit 74900.50 6.1

Each input line consists of an employee’s last name, first name, current salary,
and percent pay increase. For example, in the first input line, the last name of
the employee is Miller, the first name is Andrew, the current salary is
65789.87, and the pay increase is 5%. Write a program that reads data from
the specified file and stores the output in the file Ch3 Ex70utput.dat.
For each employee, the data must be output in the following form:
firstName lastName updatedSalary. Format the output of decimal
numbers to two decimal places.

Worite a program that accepts as input the mass, in grams, and density, in
grams per cubic centimeters, and outputs the volume of the object using the
formula: volume = mass / density. Format your output to two decimal places.

Interest on a credit card’s unpaid balance is calculated using the average daily
balance. Suppose that netBalance is the balance shown in the bill, payment is
the payment made, d1 is the number of days in the billing cycle, and d2
is the number of days payment is made before billing cycle. Then, the
average daily balance is:

averageDailyBalance = (netBalance* d1 — payment * d2)/d1

If the interest rate per month is, say, 0.0152, then the interest on the
unpaid balance is:

interest = averageDailyBalance* 0.0152

Programming Exercises

Write a program that accepts as input netBalance, payment, d1, d2, and interest
rate per month. The program outputs the interest. Format your output to two
decimal places.

Linda is starting a new cosmetic and clothing business and would like to
make a net profit of approximately 10% after paying all the expenses, which
include merchandise cost, store rent, employees’ salary, and electricity cost
for the store. She would like to know how much the merchandise should
be marked up so that after paying all the expenses at the end of the year she
gets approximately 10% net profit on the merchandise cost. Note that after
marking up the price of an item she would like to put the item on 15% sale.
Write a program that prompts Linda to enter the total cost of the merchan-
dise, the salary of the employees (including her own salary), the yearly rent,
and the estimated electricity cost. The program then outputs how much the
merchandise should be marked up so that Linda gets the desired profit.

181

This page intentionally left blank

CONTROL STRUCTURES |
(SELECTION)

IN THIS CHAPTER, YOU WILL:

Learn about control structures

Examine relational and logical operators

Explore how to form and evaluate logical (Boolean) expressions

Discover how to use the selection control structures if, if..else, and switch in a program
Learn how to avoid bugs by avoiding partially understood concepts

Learn to use the assert function to terminate a program

184 | Chapter 4: Control Structures | (Selection)

Chapter 2 defined a program as a sequence of statements whose objective is to
accomplish some task. The programs you have examined so far were simple
and straightforward. To process a program, the computer begins at the first exe-
cutable statement and executes the statements in order until it comes to the end.
In this chapter and Chapter 5, you will learn how to tell a computer that it does
not have to follow a simple sequential order of statements; it can also make
decisions and repeat certain statements over and over until certain conditions
are met.

Control Structures

A computer can process a program in one of the following ways: in sequence; selectively,
by making a choice, which is also called a branch; repetitively, by executing a statement
over and over, using a structure called a loop; or by calling a function. Figure 4-1
illustrates the first three types of program flow. (In Chapter 6, we will show how function
calls work.) The programming examples in Chapters 2 and 3 included simple sequential
programs. With such a program, the computer starts at the beginning and follows the
statements in order. No choices are made; there is no repetition. Control structures
provide alternatives to sequential program execution and are used to alter the sequential
flow of execution. The two most common control structures are selection and repetition.
In selection, the program executes particular statements depending on some condition(s).
In repetition, the program repeats particular statements a certain number of times based on
some condition(s).

statementl l
i —false—— true —
statement? —true -
[

/ A

statement? statement! false
\

?
lﬂ

i
i

?
|
®

a. Sequence b. Selection c. Repetition

FIGURE 4-1 Flow of execution

Relational Operators | 185

Before you can learn about selection and repetition, you must understand the nature
of conditional statements and how to use them. Consider the following three
statements:

1. if (score is greater than or equal to 90)
grade is A

2. if (hours worked are less than or equal to 40)
wages = rate * hours
otherwise
wages = (rate * 40) +1.5 * (rate * (hours - 40))

3. if (temperature is greater than 70 degrees and it is not
raining)
Go golfing!

These statements are examples of conditional statements. You can see that certain
statements are to be executed only if certain conditions are met. A condition is met if
it evaluates to true. For example, in statement 1:

score is greater than or equal to 90

is true if the value of score is greater than or equal to 90; it is false otherwise. For
example, if the value of score is 95, the statement evaluates to true. Similarly, if the
value of score is 86, the statement evaluates to false.

It would be useful if the computer could recognize these types of statements to be true
for appropriate values. Furthermore, in certain situations, the truth or falsity of a
statement could depend on more than one condition. For example, in statement 3, both
temperature is greater than 70 degrees and it is not raining must be true to
recommend golfing.

As you can see, for the computer to make decisions and repeat statements, it must be able
to react to conditions that exist when the program executes. The next few sections discuss
how to represent and evaluate conditional statements in C++.

Relational Operators

To make decisions, you must be able to express conditions and make comparisons. For
example, the interest rate and service charges on a checking account might depend on the
balance at the end of the month. If the balance is less than some minimum balance, not
only is the interest rate lower, but there is also usually a service charge. Therefore, to
determine the interest rate, you must be able to state the minimum balance and compare
the account balance with the minimum balance (a condition). The premium on an
insurance policy is also determined by stating conditions and making comparisons. For
example, to determine an insurance premium, you must be able to check the smoking
status of the policyholder. Nonsmokers (the condition) receive lower premiums than
smokers. Both of these examples involve comparing items. Certain items are compared

186 | Chapter 4: Control Structures | (Selection)

for equality against a particular condition; others are compared for inequality (greater than
or less than) against a particular condition.

In C++, a condition is represented by a logical (Boolean) expression. An expression that
has a value of either true or false is called a logical (Boolean) expression. More-
over, true and false are logical (Boolean) values. Suppose i and j are integers.
Consider the expression:

i>73
If this expression is a logical expression, it will have the value true if the value of
i is greater than the value of j; otherwise, it will have the value false. The

symbol > is called a relational operator. A relational operator allows you to make
comparisons in a program.

C++ includes six relational operators that allow you to state conditions and make
comparisons. Table 4-1 lists the relational operators.

TABLE 4-1 Relational Operators in C++

== equal to

1= not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

NOTE In C++, the symbol ==, which consists of two equal signs, is called the equality operator.

Recall that the symbol = is called the assignment operator. Remember that the equality
operator, ==, determines whether two expressions are equal, whereas the assignment

operator, =, assigns the value of an expression to a variable.

Each of the relational operators is a binary operator; that is, it requires two operands.
Because the result of a comparison is true or false, expressions using these operators
evaluate to true or false.

Relational Operators and Simple Data Types

You can use the relational operators with all three simple data types. In the following
example, the expressions use both integers and real numbers:

Relational Operators | 187

Expression Meaning Value
8 < 15 8 is less than 15 true
6 !=6 6 is not equal to 6 false
2.5 > 5.8 2.5 is greater than 5.8 false

5.9 <= 7.5 5.9 is less than or equal to 7.5 true

Comparing Characters

For char values, whether an expression using relational operators evaluates to true or false
depends on a machine’s collating sequence. The collating sequence of some of the characters is:

ASCII ASCII ASCII ASCII

Value Char Value Char Value Char Value Char
32 v 61 = 81 Q 105 i
33 ! 62 > 82 R 106 J
34 " 65 A 83 S 107 k
42 * 66 B 84 T 108 1
43 + 67 C 85 U 109 m
45 - 68 D 86 v 110 n
47 / 69 E 87 W 111 o
48 0 70 F 88 X 112 o)
49 1 71 G 89 Y 113 q
50 2 72 H 90 Z 114 r
51 3 73 I 97 a 115 s
52 4 74 J 98 b 116 t
b3 5 75 K 99 le] 117 u
b4 6 76 L 100 d 118 v
b5 7 77 M 101 e 119 w
56 8 78 N 102 f 120 X
57 9 79 0 103 g 121 y
60 < 80 P 104 h 122 Z

The ASCII character set is described in Appendix C.

Now, because 32 < 97, and the ASCII value of ' ' is 32 and the ASCII value of 'a"' is
97, it follows that ' ' < 'a' is true. Similarly, using the previous ASCII values:

'R'> 'T' is false
T$' < ' g false

'A'<="a'is true

188 | Chapter 4: Control Structures | (Selection)

note that comparing values of different data types may produce unpredictable results. For
example, the following expression compares an integer and a character:

8< 5!

In this expression, on a particular machine, 8 would be compared with the collating
sequence of '5', which is 53. That is, 8 1s compared with 53, which makes this particular
expression evaluate to true.

Expressions such as 4 < 6 and "R' > '"T' are examples of logical (Boolean) expressions.
When C++ evaluates a logical expression, it returns an integer value of 1 if the logical
expression evaluates to true; it returns an integer value of 0 otherwise. In C++, any
nonzero value is treated as true.

NOTE Chapter 2 introduced the data type bool. Recall that the data type bool has two values,
true and false. In C++, true and false are reserved words. The identifier
true is set to 1, and the identifier false is set to 0. For readability, whenever
logical expressions are used, the identifiers true and £alse will be used here as the
value of the logical expression.

Relational Operators and the string Type

The relational operators can be applied to variables of type string. Variables of type
string are compared character by character, starting with the first character and using
the ASCII collating sequence. The character-by-character comparison continues until
either a mismatch is found or the last characters have been compared and are equal. The
following example shows how variables of type string are compared.

Suppose that you have the following statements:

string strl = "Hello";
string str2 = "Hi";
string str3 = "Air";
string str4 = "Bill";
string str5 = "Big":;

The following expressions show how string relational expressions evaluate.

Expression Value /Explanation
strl < str2 true

strl = "Hello" and str2 = "Hi". The first characters
of strl and str2 are the same, but the second character 'e"'
of strl is less than the second character "1i"' of str2.
Therefore, strl < str2 is true.

Relational Operators | 189

strl > "Hen" false
strl = "Hello". The first two characters of strl and
"Hen" are the same, but the third character "1 " of strl is

less than the third character 'n' of "Hen". Therefore,
strl > "Hen" is false.

str3 < "An" true

str3 = "Air". The first characters of str3 and "An" are
the same, but the second character '1"' of "Air" is less than
the second character "n' of "An". Therefore, str3 < "An"
is true.

strl == "hello" false

strl = "Hello". The first character "H' of strl is less
than the first character "h' of "hello" because the ASCII
value of "H"' is 72, and the ASCII value of "h' is 104.
Therefore, strl == "hello" is false.

str3 <= str4 true

str3 = "Air" and str4 = "Bill". The first character
'A' of str3 is less than the first character 'B"' of str4.

Therefore, str3 <= str4 is true.

str2 > str4 true

str2 = "Hi" and str4 = "Bill". The first character
"H' of str2 is greater than the first character 'B' of str4.
Therefore, str2 > stré is true.

If two strings of different lengths are compared and the character-by-character compar-
ison is equal until it reaches the last character of the shorter string, the shorter string is
evaluated as less than the larger string, as shown next.

Expression Value/Explanation

strd >= "Billy" false

str4 = "Bill". It has four characters, and "Bi1l1ly" has
five characters. Therefore, str4 is the shorter string. All four
characters of str4 are the same as the corresponding first
four characters of "B1i11ly", and "Billy" is the larger
string. Therefore, str4 >= "Billy" is false.

str5 <= "Bigger" true

str5 = "Big". It has three characters, and "Bigger"
has six characters. Therefore, str5 is the shorter string.
All three characters of str5 are the same as the
corresponding first three characters of "Bigger",

and "Bigger" is the larger string. Therefore,
str5 <= "Bigger" is true.

190 | Chapter 4: Control Structures | (Selection)

The program Chapter4 StringComparisons.cpp at the Web site accompanying this
book shows the results of the previous expressions.

Logical (Boolean) Operators and Logical Expressions

This section describes how to form and evaluate logical expressions that are combi-
nations of other logical expressions. Logical (Boolean) operators enable you to
combine logical expressions. C++ has three logical (Boolean) operators, as shown in
Table 4-2.

TABLE 4-2 Logical (Boolean) Operators in C++

! not
&& and

| | or

Logical operators take only logical values as operands and yield only logical values as
results. The operator ! is unary, so it has only one operand. The operators && and | | are
binary operators. Tables 4-3, 4-4, and 4-5 define these operators.

Table 4-3 defines the operator ! (not). When you use the ! operator, !true is false
and !false is true. Putting ! in front of a logical expression reverses the value of that
logical expression.

TABLE 4-3 The ! (Not) Operator

true (nonzero) false (0)
false (0) true (1)
EXAMPLE 4-3
Expression Value Explanation
L('A'" > 'B'") true Because 'A' > '"B'isfalse,! ('A' > 'B') istrue.

V(6 <= T7) false Because 6 <= 7 1s true, ! (6 <= 7) 1s false.

Logical (Boolean) Operators and Logical Expressions | 191

Table 4-4 defines the operator &s& (and). From this table, it follows that
Expressionl && Expression2 is true if and only if both Expressionl and
Expression2 are true; otherwise, Expressionl && Expression2 evaluates to
false.

TABLE 4-4 The && (And) Operator

true (nonzero) true (nonzero) true (1)
true (nonzero) false (0) false (0)
false (0) true (nonzero) false (0)
false (0) false (0) false (0)
Expression Value Explanation
(14 >= 5) && ('A' < 'B') true Because (14 >= 5) is true, ('A' <

'B') is true, and true && trueis
true, the expression evaluates to true.
(24 >= 35) && ('A' < 'B') false pogue (24 >= 35) is false, ('A’
<'B') is true, and false && trueis
false, the expression evaluates to false.

Table 4-5 defines the operator [| (or). From this table, it follows that
Expressionl || Expression2 is true if and only if at least one of the expressions,
Expressionl or Expression2,is true; otherwise, Expressionl | | Expression2 evaluates
to false.

TABLE 4-5 The || (Or) Operator

true (nonzero) true (nonzero) true (1)
true (nonzero) false (0) true (1)
false (0) true (nonzero) true (1)

false (0) false (0) false (0)

192 | Chapter 4: Control Structures | (Selection)

EXAMPLE 4-5

Expression Value Explanation

(14>=5) || ("TA"> 'B") true Because (14 >= 5) is true, ('A' >
'B') is false, and true | | false is
true, the expression evaluates to true.

(24>=35) || ('"A'>"'B') false Because (24 >= 35) is false, ('A' >
'B') is false, and false || false is
false, the expression evaluates to false.

("A'<="'a") || (7T!=T) true Because ('A' <= 'a') is true,

(7 !'= 7) is false, and true || false
is true, the expression evaluates to true.

Order of Precedence
Complex logical expressions can be difficult to evaluate. Consider the following logical expression:

11 > 5 |] 6 < 15 && 7 >= 8

This logical expression yields different results, depending on whether || or && is evaluated
first. If || is evaluated first, the expression evaluates to false. If && is evaluated first, the
expression evaluates to true.

An expression might contain arithmetic, relational, and logical operators, as in the expression:
5+ 3<=09%8&2>3

To work with complex logical expressions, there must be some priority scheme for
evaluating operators. Table 4-6 shows the order of precedence of some C++ operators,
including the arithmetic, relational, and logical operators. (See Appendix B for the
precedence of all C++ operators.)

TABLE 4-6 Precedence of Operators

!, +, = (unary operators) first
wol, % second
+, - third
<, <=, >=,> fourth
==, I= fifth
&& sixth
| seventh

= (assignment operator) last

Logical (Boolean) Operators and Logical Expressions | 193

NOTE InC++, & and | are also operators. The meaning of these operators is different from the
meaning of && and | |. Using & in place of && or | in place of | | —as might result from a
typographical error—would produce very strange results.

Using the precedence rules in an expression, relational and logical operators are evaluated
from left to right. Because relational and logical operators are evaluated from left to right, the
associativity of these operators is said to be from left to right.

Example 4-6 illustrates how logical expressions consisting of variables are evaluated.

EXAMPLE 4-6

Suppose you have the following declarations:

bool found = true;

int age = 20;

double hours = 45.30;
double overTime = 15.00;
int count = 20;

char ch = 'B';

Consider the following expressions:

Expression Value / Explanation

! found false

Because found is true, ! found is false.

hours > 40.00 true

Because hours is 45.30 and 45.30 > 40.00 is
true, the expression hours > 40.00 evaluates to
true.

lage false
age is 20, which is nonzero, so age is true.
Therefore, !age is false.

!found && (age >= 18) false
!'foundis false; age > 181520 > 18is true.

Therefore,! found && (age >= 18) is false &&
true, which evaluates to false.

! (found && (age >= 18)) false

Now, found && (age >= 18) is true && true,

which evaluates to true. Therefore, ! (found &é&
(age >= 18)) is ! true, which evaluates to false.

194 | Chapter 4: Control Structures | (Selection)

Expression Value / Explanation

hours + overTime <= 75.00 true
Because hours + overTimeis45.30 + 15.00 =
60.30and 60.30<="75.00 is true, it follows that
hours + overTime <= 75.00 evaluates to true.

(count >= 0) && true

(count <= 100)

Now, count is 20. Because 20 >= 0 is true,
count >= 0is true. Also, 20 <= 100 is true, so
count <= 100 is true. Therefore, (count >=
0) && (count <= 100) is true && true,

which evaluates to true.

('A' <= ch && ch <= '2") true

Here, ch is "B'. Because "A' <= 'B' is true,
'A' <= ch evaluates to true. Also, because "B
<= 'Z'is true, ch <= 'Z"' evaluates to true.
Therefore, ("A' <= ch && ch <= 'Z") is true
&& true, which evaluates to true.

The following program evaluates and outputs the values of these logical expressions. Note
that if a logical expression evaluates to true, the corresponding output is 1; if the logical
expression evaluates to false, the corresponding output is 0, as shown in the output at the
end of the program. (Recall that if the value of a logical expression is true, it evaluates to 1,
and if the value of the logical expression is false, it evaluates to 0.)

//Chapter 4 Logical operators

#include <iostream>
#include <iomanip>

using namespace std;

int main

{

0

bool found = true;

int

age

= 20;

double hours = 45.30;
double overTime = 15.00;
int count = 20;

char

cout
cout

cout
cout
cout
cout

ch

<<
<<
<<
<<
<<

<<
<<
<<
<<
<<

= 'B';

fixed << showpoint << setprecision(2);

"found = " << found << ", age = " << age

", hours = " << hours << ", overTime = " << overTime
"," << endl << "count = " << count

", ch = " << ch << endl << endl;

"l found evaluates to " << !found << endl;

"hours > 40.00 evaluates to " << (hours > 40.00) << endl;
"lage evaluates to " << l!age << endl;

"(!found && (age >= 18)) evaluates to "

(!found && (age >= 18)) << endl;

Logical (Boolean) Operators and Logical Expressions | 195

cout << "!(found && (age >= 18)) evaluates to "
<< (!(found && (age >= 18))) << endl;
cout << "hours + overTime <= 75.00 evaluates to "
<< (hours + overTime <= 75.00) << endl;
cout << "(count >= 0) && (count <= 100) evaluates to "
<< ((count >= 0) && (count <= 100)) << endl;
cout << "('A' <= ch && ch <= "Z2') evaluates to "
<< ('"A'" <= ch && ch <= "2') << endl;

return 0;

Sample Run:

found = 1, age = 20, hours = 45.30, overTime = 15.00,
count 20, ch =B

!found evaluates to 0

hours > 40.00 evaluates to 1

lage evaluates to O

(!found && (age >= 18)) evaluates to O

! (found && (age >= 18)) evaluates to 0

hours + overTime <= 75.00 evaluates to 1
(count >= 0) && (count <= 100) evaluates to 1
('"A' <= ch && ch <= '2'") evaluates to 1

You can insert parentheses into an expression to clarify its meaning. You can also use
parentheses to override the precedence of operators. Using the standard order of pre-
cedence, the expression:

11> 5 || 6 < 15 && 7 >= 8
is equivalent to:
11 > 5 || (6 < 15 && 7 >= 8)

In this expression, 11> 51is true, 6< 15 is true, and 7>=8 is false. Substitute these values in
the expression 11> 5 || (6< 15 && 7>=8) to get true || (true && false) = true ||
false = true. Therefore, the expression 11> 5 || (6< 15 && 7 >=8) evaluates to true.

In C++, logical (Boolean) expressions can be manipulated or processed in either of two
ways: by using int variables or by using bool variables. The following sections describe
these methods.

int Data Type and Logical (Boolean) Expressions

Earlier versions of C++ did not provide built-in data types that had logical (or Boolean)
values true and false. Because logical expressions evaluate to either 1 or 0, the value of
a logical expression was stored in a variable of the data type int. Therefore, you can use
the int data type to manipulate logical (Boolean) expressions.

196 | Chapter 4: Control Structures | (Selection)

Reecall that nonzero values are treated as true. Now, consider the declarations:

int legalAge;
int age;

and the assignment statement:
legalAge = 21;

If you regard legalAge as a logical variable, the value of legalAge assigned by this
statement 1s true.

The assignment statement:
legalAge = (age >= 21);

assigns the value 1 to legalAge if the value of age is greater than or equal to 21. The
statement assigns the value 0 if the value of age is less than 21.

bool Data Type and Logical (Boolean) Expressions

More recent versions of C++ contain a built-in data type, bool, that has the logical
(Boolean) values true and false. Therefore, you can manipulate logical (Boolean)
expressions using the bool data type. Recall that in C++, bool, true, and false are
reserved words. In addition, the identifier true has the value 1, and the identifier false
has the value 0. Now, consider the following declaration:

bool legalAge;
int age;

The statement:

legalAge = true;

sets the value of the variable legalAge to true. The statement:
legalAge = (age >= 21);

assigns the value true to legalAge if the value of age is greater than or equal to 21. This
statement assigns the value false to legalAge if the value of age is less than 21. For
example, if the value of age is 25, the value assigned to legalAge is true—that is, 1.
Similarly, if the value of age is 16, the value assigned to legalAge is false—that is, 0.

NOTE You can use either an int variable or a bool variable to store the value of a logical
expression. For the purpose of clarity, this book uses bool variables to store the values of
logical expressions.

Selection: if and if...else

Although there are only two logical values, true and false, they turn out to be extremely
useful because they permit programs to incorporate decision making that alters the
processing flow. The remainder of this chapter discusses ways to incorporate decisions

Selection: if and if...else | 197

into a program. In C++, there are two selections, or branch control structures: if
statements and the switch structure. This section discusses how if and if...else
statements can be used to create one-way selection, two-way selection, and
multiple selections. The switch structure is discussed later in this chapter.

One-Way Selection

A bank would like to send a notice to a customer if her or his checking account balance
falls below the required minimum balance. That is, if the account balance is below the
required minimum balance, it should send a notice to the customer; otherwise, it should
do nothing. Similarly, if the policyholder of an insurance policy is a nonsmoker, the
company would like to apply a 10% discount to the policy premium. Both of these
examples involve one-way selection. In C++, one-way selections are incorporated using
the if statement. The syntax of one-way selection is:

if (expression)
statement

Note the elements of this syntax. It begins with the reserved word if, followed by
an expression contained within parentheses, followed by a statement. Note that
the parentheses around the expression are part of the syntax. The expression is
sometimes called a decision maker because it decides whether to execute the
statement that follows it. The expression is usually a logical expression. If the
value of the expression is true, the statement executes. If the value is false,
the statement does not execute and the computer goes on to the next statement in
the program. The statement following the expression is sometimes called the
action statement. Figure 4-2 shows the flow of execution of the if statement
(one-way selection).

®
|

expression — true — EENEICINEE

false

!
®

FIGURE 4-2 One-way selection

198 | Chapter 4: Control Structures | (Selection)

EXAMPLE 4-7

if (score >= 60)
grade = 'P';

In this code, if the expression (score >= 60) evaluates to true, the assignment statement,
grade = 'P';, executes. If the expression evaluates to false, the statements (if any)
following the if structure execute. For example, if the value of score is 65, the value
assigned to the variable grade is 'P'.

EXAMPLE 4-8

//Program to compute and output the penalty on an unpaid
//credit card balance. The program assumes that the interest
//rate on the unpaid balance is 1.5% per month.

#include <iostream> //Line 1
#include <iomanip> //Line 2
using namespace std; //Line 3
const double INTEREST RATE = 0.015; //Line 4
int main () //Line 5
{ //Line 6
double creditCardBalance; //Line 7
double payment; //Line 8
double balance; //Line 9
double penalty = 0.0; //Line 10
cout << fixed << showpoint << setprecision(2); //Line 11
cout << "Line 12: Enter credit card balance: "; //Line 12
cin >> creditCardBalance; //Line 13
cout << endl; //Line 14
cout << "Line 15: Enter the payment: "; //Line 15
cin >> payment; //Line 16
cout << endl; //Line 17
balance = creditCardBalance - payment; //Line 18
if (balance > 0) //Line 19
penalty = balance * INTEREST RATE; //Line 20
cout << "Line 21: The balance is: $" << balance
<< endl; //Line 21
cout << "Line 22: The penalty to be added to your "
<< "next month bill is: $" << penalty << endl; //Line 22
return 0; //Line 23

} //Line 24

Selection: if and if...else | 199

Sample Run: In this sample run, the user input is shaded.

Line 12: Enter credit card balance: 2500.00
Line 15: Enter the payment: 275.00

Line 21: The balance is: $2225.00
Line 22: The penalty to be added to your next month bill is: $33.38

The statements in Lines 7 to 10 declare the variables used in the program. The statement in
Line 12 prompts the user to enter the credit card billing amount. The statement in Line 13
inputs the amount into the variable creditCardBalance. The statement in Line 15
prompts the user to enter the payment. The statement in Line 16 inputs the payment into
the variable payment. The statement in Line 18 computes the unpaid balance. The if
statement in Line 19 determines if the unpaid balance is positive. If the unpaid balance is
positive, the statement in Line 20 computes the penalty. The statements in Lines 21 and 22
output the results. This program assumes that the interest rate on the unpaid balance is 18%
per year (that is, 1.5% per month). As you can see the interest rate on the unpaid balance
can quickly add up and ruin your credit ratings as well as put you in financial trouble.

EXAMPLE 4-9

Consider the following statement:

if score >= 60 //syntax error
grade = 'P';

This statement illustrates an incorrect version of an if statement. The parentheses around
the logical expression are missing, which is a syntax error.

Putting a semicolon after the parentheses following the expression in an if statement
(that is, before the statement) is a semantic error. If the semicolon immediately follows
the closing parenthesis, the if statement will operate on the empty statement.

EXAMPLE 4-10

Consider the following C++ statements:

if (score >= 60); //Line 1
grade = 'P'; //Line 2

Because there is a semicolon at the end of the expression (see Line 1), the if statement in
Line 1 terminates. The action of this if statement is null, and the statement in Line 2 is
not part of the if statement in Line 1. Hence, the statement in Line 2 executes regardless
of how the if statement evaluates.

200 | Chapter 4: Control Structures | (Selection)

Two-Way Selection

There are many programming situations in which you must choose between two
alternatives. For example, if a part-time employee works overtime, the paycheck is
calculated using the overtime payment formula; otherwise, the paycheck is calculated
using the regular formula. This is an example of two-way selection. To choose between
two alternatives—that is, to implement two-way selections—C++ provides the if...
else statement. Two-way selection uses the following syntax:

if (expression)
statementl

else
statement?2

Take a moment to examine this syntax. It begins with the reserved word i£, followed by a
logical expression contained within parentheses, followed by a statement, followed by the
reserved word else, followed by a second statement. Statements 1 and 2 are any valid
C++ statements. In a two-way selection, if the value of the expression is true,
statementl executes. If the value of the expression is false, statement2 executes.
Figure 4-3 shows the flow of execution of the if...else statement (two-way selection).

r false — true _l

statement2 statementl

-@-
'

FIGURE 4-3 Two-way selection

Consider the following statements:

if (hours > 40.0) //Line 1
wages = 40.0 * rate +

1.5 * rate * (hours - 40.0); //Line

else //Line

wages = hours * rate; //Line

S wihN

Selection: if and if...else | 201

If the value of the variable hours is greater than 40.0, the wages include overtime
payment. Suppose that hours is 50. The expression in the if statement, in Line 1,
evaluates to true, so the statement in Line 2 executes. On the other hand, if hours is
30 or any number less than or equal to 40, the expression in the if statement, in Line 1,
evaluates to false. In this case, the program skips the statement in Line 2 and executes the
statement in Line 4—that is, the statement following the reserved word else executes.

In a two-way selection statement, putting a semicolon after the expression and
before statementl creates a syntax error. If the if statement ends with a semicolon,
statementl is no longer part of the if statement, and the else part of the
if...else statement stands all by itself. There is no stand-alone else statement in C++.
That is, it cannot be separated from the if statement.

The following statements show an example of a syntax error:

if (hours > 40.0); //Line 1
wages = 40.0 * rate +

1.5 * rate * (hours - 40.0); //Line 2
else //Line 3
wages = hours * rate; //Line 4

The semicolon at the end of the if statement (see Line 1) ends the if statement, so the
statement in Line 2 separates the else clause from the if statement. That is, else is all
by itself. Because there is no stand-alone else statement in C++, this code generates a
syntax error. As shown in Example 4-10, in a one-way selection, the semicolon at the
end of an if statement is a logical error, whereas as shown in this example, in a two-way
selection, it is a syntax error.

The following program determines an employee’s weekly wages. If the hours worked
exceed 40, wages include overtime payment.

//Program: Weekly wages

#include <iostream>
#include <iomanip>

using namespace std;
int main ()

{

double wages, rate, hours;

202 | Chapter 4: Control Structures | (Selection)

cout << fixed << showpoint << setprecision(2); //Line 1
cout << "Line 2: Enter working hours and rate: "; //Line 2
cin >> hours >> rate; //Line 3
if (hours > 40.0) //Line 4
wages = 40.0 * rate +
1.5 * rate * (hours - 40.0); //Line 5
else //Line 6
wages = hours * rate; //Line 7
cout << endl; //Line 8
cout << "Line 9: The wages are $" << wages
<< endl; //Line 9

return 0;

}

Sample Run: In this sample run, the user input is shaded.

Line 2: Enter working hours and rate: 56.45 12.50

Line 9: The wages are $808.44

The statement in Line 1 sets the output of the floating-point numbers in a fixed decimal format,
with a decimal point, trailing zeros, and two decimal places. The statement in Line 2 prompts the
user to input the number of hours worked and the pay rate. The statement in Line 3 inputs these
values into the variables hours and rate, respectively. The statement in Line 4 checks whether
the value of the variable hours is greater than 40.0. If hours is greater than 40.0, then the
wages are calculated by the statement in Line 5, which includes overtime payment. Otherwise,
the wages are calculated by the statement in Line 7. The statement in Line 9 outputs the wages.

Let us now consider another example of an if statement and examine some of the
semantic errors that can occur.

EXAMPLE 4-14

Consider the following statements:

if (score >= 60) //Line 1
cout << "Passing"™ << endl; //Line 2
cout << "Failing" << endl; //Line 3

If the expression (score >= 60) evaluates to false, the output statement in Line 2 does
not execute. So the output would be Failing. That is, this set of statements performs the
same action as an if...else statement. It will execute the output statement in Line 3
rather than the output statement in Line 2. For example, if the value of score is 50, these
statements will output the following line:

Failing

Selection: if and if...else | 203

However, if the expression (score >= 60) evaluates to true, the program will execute
both of the output statements, giving a very unsatisfactory result. For example, if the
value of score is 70, these statements will output the following lines:

Passing

Failing

The if statement controls the execution of only the statement in Line 2. The statement
in Line 3 always executes.

The correct code to print Passing or Failing, depending on the value of score, is:

if (score >= 60)

cout << "Passing" << endl;
else

cout << "Failing" << endl;

Compound (Block of) Statements

The if and if...else structures control only one statement at a time. Suppose, how-
ever, that you want to execute more than one statement if the expression in an if or
if...else statement evaluates to true. To permit more complex statements, C++
provides a structure called a compound statement or a block of statements. A
compound statement takes the following form:

statement 1
statement 2

statement n

That is, a compound statement consists of a sequence of statements enclosed in curly
braces,{ and}.Inan if or if ...else structure, a compound statement functions as if it
was a single statement. Thus, instead of having a simple two-way selection similar to the
following code:

if (age >= 18)

cout << "Eligible to vote." << endl;
else

cout << "Not eligible to vote." << endl;

you could include compound statements, similar to the following code:

if (age >= 18)

{
cout << "Eligible to vote." << endl;
cout << "No longer a minor." << endl;

204 | Chapter 4: Control Structures | (Selection)

else

{
cout << "Not eligible to vote." << endl;
cout << "Still a minor." << endl;

}

The compound statement is very useful and will be used in most of the structured
statements in this chapter.

Multiple Selections: Nested if

In the previous sections, you learned how to implement one-way and two-way selections
in a program. Some problems require the implementation of more than two alternatives.
For example, suppose that if the checking account balance is more than $50,000, the
interest rate is 7%; if the balance is between $25,000 and $49,999.99, the interest rate is
5%; if the balance is between $1,000 and $24,999.99, the interest rate is 3%; otherwise,
the interest rate is 0%. This particular problem has four alternatives—that is, multiple
selection paths. You can include multiple selection paths in a program by using an
if...else structure if the action statement itself is an if or if...else statement. When
one control statement is located within another, it is said to be nested.

Example 4-15 illustrates how to incorporate multiple selections using a nested if...else
structure.

Suppose that balance and interestRate are variables of type double. The following
statements determine the interestRate depending on the value of the balance:

if (balance > 50000.00) //Line 1
interestRate = 0.07; //Line 2
else //Line 3
if (balance >= 25000.00) //Line 4
interestRate = 0.05; //Line 5

else //Line 6

if (balance >= 1000.00) //Line 7
interestRate = 0.03; //Line 8

else //Line 9
interestRate = 0.00; //Line 10

Anested if.. .else structure demands the answer to an important question: How do you know
which else is paired with which i £2? Recall that in C++, there is no stand-alone else statement.
Every else must be paired with an i£. The rule to pair an else with an if is as follows:

Pairingan else withan if: Inanested if statement, C++ associates an else with the most
recent incomplete i f—that is, the most recent i £ that has not been paired with an else.

Using this rule, in Example 4-15, the else in Line 3 is paired with the i £ in Line 1. The else
in Line 6 is paired with the i£ in Line 4, and the else in Line 9 is paired with the i £ in Line 7.

Selection: if and if...else | 205

To avoid excessive indentation, the code in Example 4-15 can be rewritten as follows:

if (balance > 50000.00) //Line 1
interestRate = 0.07; //Line 2
else if (balance >= 25000.00) //Line 3
interestRate = 0.05; //Line 4
else if (balance >= 1000.00) //Line 5
interestRate = 0.03; //Line 6
else //Line 7
interestRate = 0.00; //Line 8

The following examples will help you to see the various ways in which you can use
nested if structures to implement multiple selection.

EXAMPLE 4-16

Assume that score is a variable of type int. Based on the value of score, the following
code outputs the grade:

if (score >= 90)

cout << "The grade is A." << endl;
else if (score >= 80)

cout << "The grade is B." << endl;
else if (score >= 70)

cout << "The grade is C." << endl;
else if (score >= 60)

cout << "The grade is D." << endl;
else

cout << "The grade is F." << endl;

EXAMPLE 4-17

Assume that all variables are properly declared, and consider the following statements:

if (temperature >= 50) //Line 1
if (temperature >= 80) //Line 2
cout << "Good day for swimming." << endl; //Line 3

else //Line 4
cout << "Good day for golfing." << endl; //Line 5

else //Line 6
cout << "Good day to play tennis." << endl; //Line 7

In this C++ code, the else in Line 4 is paired with the if in Line 2, and the else in Line 6
is paired with the if in Line 1. Note that the else in Line 4 cannot be paired with the if in
Line 1. It you pair the else in Line 4 with the if in Line 1, the if in Line 2 becomes the
action statement part of the if in Line 1, leaving the else in Line 6 dangling. Also, the
statements in Lines 2 though 5 form the statement part of the if in Line 1. The indentation
does not determine the pairing, but should be used to communicate the pairing.

206 | Chapter 4: Control Structures | (Selection)

EXAMPLE 4-18

Assume that all variables are properly declared, and consider the following statements:

if (temperature >= 70) //Line 1
if (temperature >= 80) //Line 2
cout << "Good day for swimming." << endl; //Line 3

else //Line 4
cout << "Good day for golfing."™ << endl; //Line 5

In this code, the else in Line 4 is paired with the if in Line 2. Note that for the else in
Line 4, the most recent incomplete if is in Line 2. In this code, the if in Line 1 has no
else and is a one-way selection. Once again, the indentation does not determine the
pairing, but it communicates the pairing.

EXAMPLE 4-19

Assume that all variables are properly declared, and consider the following statements:

if (gender == 'M') //Line 1
if (age < 21) //Line 2
policyRate = 0.05; //Line 3

else //Line 4
policyRate = 0.035; //Line 5

else if (gender == 'F') //Line 6
if (age < 21) //Line 7
policyRate = 0.04; //Line 8

else //Line 9
policyRate = 0.03; //Line 10

In this code, the else in Line 4 is paired with the if in Line 2. Note that for the else in
Line 4, the most recent incomplete if is the if in Line 2. The else in Line 6 is paired
with the if in Line 1. The else in Line 9 is paired with the if in Line 7. Once again,
the indentation does not determine the pairing, but it communicates the pairing.

Comparing if...else Statements with a Series of if Statements
Consider the following C++ program segments, all of which accomplish the same task:

a. if (month == 1) //Line 1
cout << "January" << endl; //Line 2

else if (month == 2) //Line 3
cout << "February" << endl; //Line 4

else if (month == 3) //Line 5
cout << "March" << endl; //Line 6

else if (month == 4) //Line 7
cout << "April" << endl; //Line 8

Selection: if and if...else | 207

else if (month == 5) //Line 9
cout << "May" << endl; //Line 10
else if (month == 6) //Line 11
cout << "June" << endl; //Line 12

b. if (month == 1)

cout << "January" << endl;
if (month == 2)

cout << "February" << endl;
if (month == 3)

cout << "March" << endl;
if (month == 4)

cout << "April" << endl;
if (month == 5)

cout << "May" << endl;
if (month == 6)

cout << "June" << endl;

Program segment (a) is written as a sequence of if...else statements; program segment
(b) is written as a series of if statements. Both program segments accomplish the same
thing. If month is 3, then both program segments output March. If month is 1, then in
program segment (a), the expression in the if statement in Line 1 evaluates to true. The
statement (in Line 2) associated with this if then executes; the rest of the structure,
which is the else of this if statement, is skipped; and the remaining if statements are
not evaluated. In program segment (b), the computer has to evaluate the expression in
each if statement because there is no else statement. As a consequence, program
segment (b) executes more slowly than does program segment (a).

Short-Circuit Evaluation

Logical expressions in C++ are evaluated using a highly efficient algorithm. This algo-
rithm is illustrated with the help of the following statements:

(x>y) Il (x==05) //Line 1
(a == b) && (x >=1T7) //Line 2
In the statement in Line 1, the two operands of the operator | | are the expressions

(x> y) and (x ==5). This expression evaluates to true if either the operand (x> y)
is true or the operand (x ==5) is true. With short-circuit evaluation, the computer
evaluates the logical expression from left to right. As soon as the value of the entire
logical expression is known, the evaluation stops. For example, in statement 1, if the
operand (x > y) evaluates to true, then the entire expression evaluates to true
because true || true is true and true || false is true. Therefore, the value of
the operand (x == 5) has no bearing on the final outcome.

Similarly, in the statement in Line 2, the two operands of the operator && are (a ==Db)
and (x >= 7). If the operand (a ==Db) evaluates to false, then the entire expression
evaluates to false because false && true is false and false && false is false.

Short-circuit evaluation (of a logical expression): A process in which the computer evaluates
a logical expression from left to right and stops as soon as the value of the expression is known.

208 | Chapter 4: Control Structures | (Selection)

EXAMPLE 4-20

Consider the following expressions:

(age >= 21) || (x == 5) //Line 1
(grade == 'A') && (x >= T7) //Line 2

For the expression in Line 1, suppose that the value of age is 25. Because (25 >=21) is
true and the logical operator used in the expression is | |, the expression evaluates to true.
Due to short-circuit evaluation, the computer does not evaluate the expression (x == 5).
Similarly, for the expression in Line 2, suppose that the value of grade is "B'. Because
("B'=="'A") is false and the logical operator used in the expression is &&, the expression
evaluates to false. The computer does not evaluate (x>=7).

Comparing Floating-Point Numbers for Equality: A Precaution

Comparison of floating-point numbers for equality may not behave as you would expect.
For example, consider the following program:
#include <iostream>

#include <iomanip>
#include <cmath>

using namespace std;

int main ()

{

double x = 0;
0

1.
double y = 3.0 / 7.0 + 2.0 / 7.0 + 2.0 / 7.0;
cout << fixed << showpoint << setprecision(17):;

cout << "3.0 / 7.0 + 2.0 / 7.0 + 2.0 / 7.0 ="
<< 3.0/ 7.0+ 2.0/ 7.0+ 2.0/ 7.0 << endl;

cout << "x " << x << endl;

cout << "y = " << y << endl;
if (x == vy)

cout << "x and y are the same." << endl;
else

cout << "x and y are not the same." << endl;

if (fabs(x - y) < 0.000001)
cout << "x and y are the same within the tolerance "
<< "0.000001." << endl;

Selection: if and if...else | 209

else
cout << " x and y are not the same within the "
<< "tolerance 0.000001." << endl;

return 0;

}

Sample Run:

3.0/7.0+42.0/7.0+2.0/7.0=0.99999999999999989
x = 1.00000000000000000

y = 0.99999999999999989

x and y are not the same.

x and y are the same within the tolerance 0.000001.

In this program, x is initialized to 1.0 and y is initialized to 3.0/ 7.0+ 2.0/ 7.0+2.0
/ 7.0. Now, due to rounding, as shown by the output, this expression evaluates to
0.99999999999999989. Therefore, the expression (x ==y) evaluates to false. How-
ever, if you evaluate the expression 3.0/ 7.0+ 2.0/ 7.0+2.0/ 7.0 by hand using a
paper and a pencil, you will get 3.0 /7.0+2.0/7.0+2.0/7.0=(3.0+2.0+2.0) /
7.0=7.0/7.0=1.0. That is, the value of y should be set to 1.0.

The preceding program and its output show that you should be careful when comparing
floating-point numbers for equality. One way to check whether two floating-point
numbers are equal is to check whether the absolute value of their difference is less than
a certain tolerance. For example, suppose the tolerance is 0.000001. Then, x and y are
equal if the absolute value of (x — y) is less than 0.000001. To find the absolute value,
you can use the function fabs of the header file cmath, as shown in the program.
Therefore, the expression fabs(x — y) < 0.000001 determines whether the absolute
value of (x — y) is less than 0.000001.

Associativity of Relational Operators: A Precaution

Sometimes logical expressions do not behave as you might expect, as shown by the
following program, which determines if a number is between 0 and 10 (inclusive).

#include <iostream>
using namespace std;

int main()
{

int num;

cout << "Enter an integer: ";
cin >> num;
cout << endl;

if (0 <= num <= 10)
cout << num << " is within 0 and 10." << endl;

210 | Chapter 4: Control Structures | (Selection)

else
cout << num << " is not within 0 and 10." << endl;

return 0;

}

Sample Runs: In these sample runs, the user input is shaded.
Sample Run 1:

Enter an integer: 5

5 is within 0 and 10.
Sample Run 2:

Enter an integer: 20

20 is within 0 and 10.
Sample Run 3:

Enter an integer: -10
-10 is within 0 and 10.

Clearly, Sample Run 1 is correct and Sample Runs 2 and 3 are incorrect. Because the if
statement determines whether an integer is between 0 and 10, the problem is in the
expression in the if statement. So, let us look at this expression, which is:

0 <= num <= 10

Although this statement is a legal C++ expression, you do not get the desired result. Let us
evaluate this expression for certain values of num. Suppose that the value of num is 5. Then:

0 <= num <= 10 = 0<=5<=10

(Because relational operators

= (0<=3) <=10 are evaluated from left to right)

(Because 0 <= 5 1is true, 0 <=

= <=
1 10 5 evaluates to 1)

=1 (true)

Now, suppose that num = 20. Then:

0 <= num <= 10 = 0 <= 20 <= 10

(Because relational operators are

= (0 <=20) <= 10 evaluated from left to right)

(Because 0 <= 20 is true, 0

=1<=10 <= 20 evaluates to 1)

1 (true)

Selection: if and if...else | 211

Now, you can see why the expression evaluates to true when num is 20. Similarly, if
num is —10, the expression 0 <= num <= 10 evaluates to true. In fact, this expression will
always evaluate to true, no matter what num 1s. This is due to the fact that the expression
0 <= num evaluates to either 0 or 1, and 0 <=10 is true and 1 <=10 is true. So what is
wrong with the expression 0 <= num <= 10? It is missing the logical operator &&. A correct
way to write this expression in C++ is:

0 <= num && num <= 10

You must take care when formulating logical expressions. When creating a complex
logical expression, you must use the proper logical operators.

Avoiding Bugs by Avoiding Partially Understood Concepts
and Techniques
The debugging sections in Chapters 2 and 3 illustrated how to understand and fix syntax

and logic errors. In this section, we illustrate how to avoid bugs by avoiding partially
understood concepts and techniques.

The programs that you have written until now should have illustrated that a small error
such as omission of a semicolon at the end of a variable declaration or using a variable
without properly declaring it can prevent a program from successfully compiling. Simi-
larly, using a variable without properly initializing it can prevent a program from running
correctly. Recall that the condition associated with an if statement must be enclosed in
parentheses. Therefore, the following expression will result in a syntax error:

if score >= 90

Example 4-12 illustrates that an unintended semicolon following the condition of the
following if statement:

if (hours> 40.0);
can prevent successful compilation or correct execution.

The approach that you take to solve a problem must use concepts and techniques correctly;
otherwise, your solution will be either incorrect or deficient. If you do not understand a concept
or technique completely, don’t use it until your understanding is complete. The problem of
using partially understood concepts and techniques can be illustrated by the following program.

Suppose that we want to write a program that analyzes students” GPA. If the GPA is
greater than or equal to 3.9, the student makes the dean’s honor list. If the GPA is less
than 2.00, the student is sent a warning letter indicating that the GPA is below the
graduation requirement. So, consider the following program:

//GPA program with bugs.
#include <iostream> //Line 1
using namespace std; //Line 2

int main () //Line 3

212 | Chapter 4: Control Structures | (Selection)

{ //Line 4
double gpa; //Line 5
cout << "Enter the GPA: "; //Line 6
cin >> gpa; //Line 7
cout << endl; //Line 8
if (gpa >= 2.0) //Line 9

if (gpa >= 3.9) //Line 10
cout << "Dean\’ s Honor List." << endl; //Line 11
else //Line 12

cout << "The GPA is below the graduation "
<< "requirement. \nSee your "
<< "academic advisor." << endl; //Line 13

return 0; //Line 14
} //Line 15

Sample Runs: In these sample runs, the user input is shaded.
Sample Run 1:

Enter the GPA: 3.91
Dean's Honor List.

Sample Run 2:

Enter the GPA: 3.8

The GPA is below the graduation requirement.
See your academic advisor.

Sample Run 3:
Enter the GPA: 1.95

Let us look at these sample runs. Clearly, the output in Sample Run 1 is correct. In
Sample Run 2, the input is 3.8 and the output indicates that this GPA is below the
graduation requirement. However, a student with a GPA of 3.8 would graduate with
some type of honor. So, the output in Sample Run 2 is incorrect. In Sample Run 3, the
input is 1.95, and the output does not show any warning message. Therefore, the output
in Sample Run 3 is also incorrect. It means that the if...else statement in Lines 9 to 13
is incorrect. Let us look at these statements, that is:

if (gpa >= 2.0) //Line 9
if (gpa >= 3.9) //Line 10
cout << "Dean\'s Honor List." << endl; //Line 11

else //Line 12

cout << "The GPA is below the graduation "
<< "requirement. \nSee your "
<< "academic advisor." << endl; //Line 13

Selection: if and if...else | 213

Following the rule of pairing an else with an if, the else in Line 12 is paired with the
if in Line 10. In other words, using the correct indentation, the code is:

if (gpa >= 2.0) //Line 9
if (gpa >= 3.9) //Line 10
cout << "Dean\'s Honor List." << endl; //Line 11

else //Line 12

cout << "The GPA is below the graduation "
<< "requirement. \nSee your "
<< "academic advisor." << endl; //Line 13

Now, we can see that the if statement in Line 9 is a one-way selection. Therefore, if the
input number is less than 2.0, no action will take place, that is, no warning message will
be printed. Now, suppose the input is 3.8. Then, the expression in Line 9 evaluates to
true, so the expression in Line 10 is evaluated, which evaluates to £alse. This means the
output statement in Line 13 executes, resulting in an unsatisfactory result.

In fact, the program should print the warning message only if the GPA is less than 2.0, and
it should print the message:

Dean's Honor List.
it the GPA is greater than or equal to 3.9.

To achieve that result, the else in Line 12 needs to be paired with the if in Line 9. To
pair the else in Line 12 with the if in Line 9, you need to use a compound statement, as
follows:

if (gpa >= 2.0) //Line 9
{
if (gpa >= 3.9) //Line 10
cout << "Dean\'s Honor List." << endl; //Line 11
}
else //Line 12

cout << "The GPA is below the graduation "
<< "requirement. \nSee your "
<< "academic advisor."™ << endl; //Line 13

The correct program is as follows:

//Correct GPA program.

#include <iostream> //Line 1
using namespace std; //Line 2
int main () //Line 3
{ //Line 4
double gpa; //Line 5
cout << "Enter the GPA: "; //Line 6
cin >> gpa; //Line 7

cout << endl; //Line 8

214 | Chapter 4: Control Structures | (Selection)

if (gpa >= 2.0) //Line 9
{ //Line 10
if (gpa >= 3.9) //Line 11
cout << "Dean\’ s Honor List." << endl; //Line 12
} //Line 13
else //Line 14

cout << "The GPA is below the graduation "
<< "requirement. \nSee your "
<< "academic advisor." << endl; //Line 15

return 0; //Line 16
} //Line 17

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1:
Enter the GPA: 3.91

Dean’ s Honor List.

Sample Run 2:
Enter the GPA: 3.8

Sample Run 3:
Enter the GPA: 1.95

The GPA is below the graduation requirement.
See your academic advisor.

In cases such as this one, the general rule is that you cannot look inside of a block (that is,
inside the braces) to pair an else with an if. The else in Line 14 cannot be paired with
the if in Line 11 because the if statement in Line 11 is enclosed within braces, and the
else in Line 14 cannot look inside those braces. Therefore, the else in Line 14 is paired
with the if in Line 9.

In this book, the C++ programming concepts and techniques are presented in a logical
order. When these concepts and techniques are learned one at a time in a logical order,
they are simple enough to be understood completely. Understanding a concept or
technique completely before using it will save you an enormous amount of debugging
time.

Input Failure and the if Statement

In Chapter 3, you saw that an attempt to read invalid data causes the input stream to enter a
fail state. Once an input stream enters a fail state, all subsequent input statements associated
with that input stream are ignored, and the computer continues to execute the program,
which produces erroneous results. You can use if statements to check the status of an input
stream variable and, if the input stream enters the fail state, include instructions that stop
program execution.

Selection: if and if...else | 215

In addition to reading invalid data, other events can cause an input stream to enter the fail
state. Two additional common causes of input failure are the following:

e Attempting to open an input file that does not exist

e Attempting to read beyond the end of an input file

One way to address these causes of input failure is to check the status of the
input stream variable. You can check the status by using the input stream variable as the
logical expression in an if statement. If the last input succeeded, the input stream
variable evaluates to true; if the last input failed, it evaluates to false.

The statement:

if (cin)
cout << "Input is OK." << endl;

prints:
Input is OK.

if the last input from the standard input device succeeded. Similarly, if infile is an
ifstream variable, the statement:

if (!infile)
cout << "Input failed." << endl;

prints:
Input failed.
if the last input associated with the stream variable infile failed.

Suppose an input stream variable tries to open a file for inputting data into a program. If
the input file does not exist, you can use the value of the input stream variable, in
conjunction with the return statement, to terminate the program.

Recall that the last statement included in the function main is:
return 0;

This statement returns a value of 0 to the operating system when the program terminates.
A value of 0 indicates that the program terminated normally and that no error occurred
during program execution. Values of type int other than 0 can also be returned to the
operating system via the return statement. The return of any value other than 0,
however, indicates that something went wrong during program execution.

The return statement can appear anywhere in the program. Whenever a return
statement executes, it immediately exits the function in which it appears. In the case of
the function main, the program terminates when the return statement executes. You
can use these properties of the return statement to terminate the function main
whenever the input stream fails. This technique is especially useful when a program tries
to open an input file. Consider the following statements:

216 | Chapter 4: Control Structures | (Selection)

ifstream infile;
infile.open("inputdat.dat"); //open inputdat.dat

if (!infile)

{
cout << "Cannot open the input file. "
<< "The program terminates." << endl;
return 1;
}

Suppose that the file inputdat.dat does not exist. The operation to open this file fails,
causing the input stream to enter the fail state. As a logical expression, the file stream
variable infile then evaluates to false. Because infile evaluates to false, the
expression !infile (in the if statement) evaluates to true, and the body of the if
statement executes. The message:

Cannot open the input file. The program terminates.

is printed on the screen, and the return statement terminates the program by returning a
value of 1 to the operating system.

Let’s now use the code that responds to input failure by including these features in
the Programming Example: Student Grade from Chapter 3. Recall that this program
calculates the average test score based on data from an input file and then outputs the
results to another file. The following programming code is the same as the code from
Chapter 3, except that it includes statements to exit the program if the input file does
not exist.

//Program to calculate the average test score.

#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
using namespace std;

int main ()

{
ifstream inFile; //input file stream variable
ofstream outFile; //output file stream variable

double testl, test2, test3, test4, testb5;
double average;

string firstName;
string lastName;

inFile.open("test.txt"); //open the input file

if (!inFile)

Selection: if and if...else | 217

{
cout << "Cannot open the input file. "
<< "The program terminates." << endl;
return 1;
}

outFile.open ("testavg.out"); //open the output file

outFile << fixed << showpoint;
outFile << setprecision(2);

cout << "Processing data" << endl;

inFile >> firstName >> lastName;
outFile << "Student name: " << firstName
<< " " <L lastName << endl;

inFile >> testl >> test2 >> test3
>> testd >> testh;

outFile << "Test scores: " << setw(4) << testl
<< setw(4) << test2 << setw(4) << test3
<< setw(4) << testd << setw(4) << test5
<< endl;

average = (testl + test2 + test3 + test4 + test5) / 5.0;

outFile << "Average test score: " << setw(6)
<< average << endl;

inFile.close();
outFile.close();

return 0;

Confusion hetween the Equality Operator (==) and the
Assignment Operator (=)

Recall that if the decision-making expression in the if statement evaluates to true, the
statement part of the if statement executes. In addition, the expression is usually a logical
expression. However, C++ allows you to use any expression that can be evaluated to either
true or false as an expression in the if statement. Consider the following statement:

if (x = 5)
cout << "The value is five." << endl;

The expression—that is, the decision maker—in the if statement is x = 5. The
expression x = 5 is called an assignment expression because the operator = appears in
the expression and there is no semicolon at the end.

This expression is evaluated as follows. First, the right side of the operator = is evaluated,
which evaluates to 5. The value 5 is then assigned to x. Moreover, the value 5—that is, the

218 | Chapter 4: Control Structures | (Selection)

new value of x—also becomes the value of the expression in the if statement—that is, the
value of the assignment expression. Because 5 is nonzero, the expression in the if statement
evaluates to true, so the statement part of the if statement outputs: The value is five.

No matter how experienced a programmer is, almost everyone makes the mistake of
using = in place of == at one time or another. One reason why these two operators are
often confused is that most programming languages use = as an equality operator. Thus,
experience with other programming languages can create confusion. Sometimes the error
is merely typographical, another reason to be careful when typing code.

Despite the fact that an assignment expression can be used as an expression, using the
assignment operator in place of the equality operator can cause serious problems in a
program. For example, suppose that the discount on a car insurance policy is based on the
insured’s driving record. A driving record of 1 means that the driver is accident-free and
receives a 25% discount on the policy. The statement:

if (drivingCode == 1)
cout << "The discount on the policy is 25%." << endl;

outputs:
The discount on the policy is 25%.
only if the value of drivingCode is 1. However, the statement:

if (drivingCode = 1)
cout << "The discount on the policy is 25%." << endl;

always outputs:
The discount on the policy is 25%.

because the right side of the assignment expression evaluates to 1, which is nonzero and so
evaluates to true. Therefore, the expression in the if statement evaluates to true,
outputting the following line of text: The discount on the policy is 25%. Also, the
value 1 is assigned to the variable drivingCode. Suppose that before the if statement
executes, the value of the variable drivingCode is 4. After the if statement executes, not
only is the output wrong, but the new value also replaces the old driving code.

The appearance of = in place of == resembles a silent killer. It is not a syntax error, so the
compiler does not warn you of an error. Rather, it is a logical error.

Using = in place of == can cause serious problems, especially if it happens in a looping
statement. Chapter 5 discusses looping structures.

The appearance of the equality operator in place of the assignment operator can also cause
errors in a program. For example, suppose x, y, and z are int variables. The statement:

Xx=y + z;

Selection: if and if...else | 219

assigns the value of the expression y + z to x. The statement:
X =y + z;

compares the value of the expression y + z with the value of x; the value of x remains the
same, however. If somewhere else in the program you are counting on the value of x
being y + z, a logic error will occur, the program output will be incorrect, and you will
receive no warning of this situation from the compiler. The compiler only provides
feedback about syntax errors, not logic errors. For this reason, you must use extra care
when working with the equality operator and the assignment operator.

Conditional Operator (?:)

NOTE The reader can skip this section without any discontinuation.

Certain if...else statements can be written in a more concise way by using C++’s
conditional operator. The conditional operator, written as ? :, is a ternary operator,
which means that it takes three arguments. The syntax for using the conditional operator is:

expressionl ? expression2 : expression3

This type of statement is called a conditional expression. The conditional expression is
evaluated as follows: If expressionl evaluates to a nonzero integer (that is, to true), the
result of the conditional expression is expression2. Otherwise, the result of the con-
ditional expression is expression3.

Consider the following statements:

if (a >= b)
max = a;
else
max = b;

You can use the conditional operator to simplify the writing of this if...else statement
as follows:

max = (a >=Db) ? a : b;

Program Style and Form (Revisited): Indentation

In the section “Program Style and Form” of Chapter 2, we specified some guidelines to
write programs. Now that we have started discussing control structures, in this section,
we give some general guidelines to properly indent your program.

As you write programs, typos and errors are unavoidable. If your program is properly
indented, you can spot and fix errors quickly, as shown by several examples in this

220 | Chapter 4: Control Structures | (Selection)

chapter. Typically, the IDE that you use will automatically indent your program. If for
some reason your IDE does not indent your program, you can indent your program
yourself.

Proper indentation can show the natural grouping of statements. You should insert a
blank line between statements that are naturally separate. In this book, the statements
inside braces, the statements of a selection structure, and an if statement within an if
statement are all indented four spaces to the right. Throughout the book, we use four
spaces to indent statements, especially to show the levels of control structures within
other control structures. You can also use four spaces for indentation.

There are two commonly used styles for placing braces. In this book, we place braces
on a line by themselves. Also, matching left and right braces are in the same column,
that is, they are the same number of spaces away from the left side of the program.
This style of placing braces easily shows the grouping of the statements and also
matches left and right braces. You can also follow this style to place and indent
braces.

In the second style of placing braces, the left brace need not be on a line by itself.
Typically, for control structures, the left brace is placed after the last right parenthesis of
the (logical) expression, and the right brace is on a line by itself. This style might save
some space. However, sometimes this style might not immediately show the grouping or
the block of the statements.

No matter what style of indentation you use, you should be consistent within your
programs, and the indentation should show the structure of the program.

Using Pseudocode to Develop, Test,
and Debug a Program

There are several ways to develop a program. One method involves using an informal
mixture of C++ and ordinary language, called pseudocode or just pseudo. Sometimes
pseudo provides a useful means to outline and refine a program before putting it into
formal C++ code. When you are constructing programs that involve complex nested
control structures, pseudo can help you quickly develop the correct structure of the
program and avoid making common errors.

One usetul program segment determines the larger of two integers. If x and y are integers,
using pseudo, you can quickly write the following:

a. if (x > y) then
x is larger

b. if (y > x) then
y 1s larger

Using Pseudocode to Develop, Test, and Debug a Program | 221

If the statement in (a) is true, then x is larger. If the statement in (b) is true, then y is
larger. However, for this code to work in concert to determine the larger of two integers,
the computer needs to evaluate both expressions:

(x> y) and (y > x)

even if the first statement is true. Evaluating both expressions is a waste of computer
time.

Let’s rewrite this pseudo as follows:

if (x > y) then
x is larger
else
y is larger

Here, only one condition needs to be evaluated. This code looks okay, so let’s put it
into C++.

#include <iostream>
using namespace std;

int main ()

{
if (x > y)

Wait...once you begin translating the pseudo into a C++ program, you should
immediately notice that there is no place to store the value of x or y. The variables
were not declared, which is a very common oversight, especially for new program-
mers. If you examine the pseudo, you will see that the program needs three variables,
and you might as well make them self~-documenting. Let’s start the program code
again:

#include <iostream>
using namespace std;

int main ()

{
int numl, num2, larger; //Line 1
if (numl > num?2); //Line 2; error
larger = numl; //Line 3
else //Line 4
larger = num2; //Line 5
return O0;
}

Compiling this program will result in the identification of a common syntax error
(in Line 2). Recall that a semicolon cannot appear after the expression in the

222 | Chapter 4: Control Structures | (Selection)

if...else statement. However, even if you corrected this syntax error, the program still
would not give satisfactory results because it tries to use identifiers that have no values.
The variables have not been initialized, which is another common error. In addition,
because there are no output statements, you would not be able to see the results of the
program.

Because there are so many mistakes in the program, you should try a walk-through to see
whether it works at all. You should always use a wide range of values in a walk-through to
evaluate the program under as many different circumstances as possible. For example, does
this program work if one number is zero, if one number is negative and the other number is
positive, if both numbers are negative, or if both numbers are the same? Examining the
program, you can see that it does not check whether the two numbers are equal. Taking all
of these points into account, you can rewrite the program as follows:

//Program: Compare Numbers
//This program compares two integers and outputs the largest.

#include <iostream>
using namespace std;

int main ()

{
int numl, num2;
cout << "Enter any two integers: ";
cin >> numl >> num2;
cout << endl;
cout << "The two integers entered are " << numl
<< " and " << num2 << endl;
if (numl > num2)
cout << "The larger number is " << numl << endl;
else if (num2 > numl)
cout << "The larger number is " << num2 << endl;
else
cout << "Both numbers are equal." << endl;
return 0;
}

Sample Run: In this sample run, the user input is shaded.

Enter any two integers: 78 90
The two integers entered are 78 and 90
The larger number is 90

One thing you can learn from the preceding program is that you must first develop a
program using paper and pencil. Although a program that is first written on a piece of

switch Structures | 223

paper is not guaranteed to run successfully on the first try, this step is still a good starting
point. On paper, it is easier to spot errors and improve the program, especially with large
programs.

switch Structures

Recall that there are two selection, or branch, structures in C++. The first selection
structure, which is implemented with if and if...else statements, usually requires
the evaluation of a (logical) expression. The second selection structure, which does
not require the evaluation of a logical expression, is called the switch structure.
C++’s switch structure gives the computer the power to choose from among many
alternatives.

A general syntax of the switch statement is:

switch (expression)

{

case valuel:
statementsl
break;

case value2:
statements?2
break;

case valuen:
statementsn
break;

default:
statements

In C++, switch, case, break, and default are reserved words. In a switch
structure, first the expression is evaluated. The value of the expression is then
used to perform the actions specified in the statements that follow the reserved
word case. Recall that in a syntax, shading indicates an optional part of the
definition.

Although it need not be, the expression is usually an identifier. Whether it is an
identifier or an expression, the value can be only integral. The expression is
sometimes called the selector. Its value determines which statement is selected for
execution. A particular case value should appear only once. One or more statements
may follow a case label, so you do not need to use braces to turn multiple
statements into a single compound statement. The break statement may or may
not appear after each statement. Figure 4-4 shows the flow of execution of the
switch statement.

224

Chapter 4: Control Structures | (Selection)

®
+

expression

QT - EmR R

|
false

true—> statements2 —>m—>
false
|
false

true—> statementsn pummma break pumma
false

<© &

'

®
}

FIGURE 4-4 switch statement

The switch statement executes according to the following rules:

1.

When the value of the expression is matched against a case
value (also called a label), the statements execute until either a
break statement is found or the end of the switch structure is
reached.

If the value of the expression does not match any of the case values,
the statements following the default label execute. If the switch
structure has no default label and if the value of the expression
does not match any of the case values, the entire switch statement is

skipped.

A break statement causes an immediate exif from the switch structure.

switch Structures | 225

Consider the following statements, in which grade is a variable of type char:

switch (grade)

{

case 'A':
cout << "The grade point is 4.0.";
break;

case 'B':
cout << "The grade point is 3.0.";
break;

case 'C':
cout << "The grade point is 2.0.";
break;

case 'D':
cout << "The grade point is 1.0.";
break;

case 'F':
cout << "The grade point is 0.0.";
break;

default:
cout << "The grade is invalid.";

}

In this example, the expression in the switch statement is a variable identifier. The
variable grade is of type char, which is an integral type. The possible values of grade
are 'A', 'B', 'C', 'D', and 'F'. Each case label specifies a different action to take,
depending on the value of grade. If the value of grade 1s 'A', the output is:

The grade point is 4.0.

EXAMPLE 4-22

The following program illustrates the effect of the break statement. It asks the user to
input a number between 0 and 10.

//Program: Effect of break statements in a switch structure
#include <iostream>
using namespace std;

int main ()

{
int num;
cout << "Enter an integer between 0 and 7: "; //Line 1
cin >> num; //Line 2

cout << endl; //Line 3

226

Sample Runs: These outputs were obtained by executing the preceding program several

| Chapter 4: Control Structures | (Selection)

cout << "The number you entered is " << num
<< endl;

switch (num)
{
case 0:
case 1:
cout <<
case 2:
cout <<
case 3:
cout <<
break;
case 4:
break;
case 5:
cout <<
case 6:
case 7:
cout <<
break;
default:
cout <<

}
cout <<

return 0;

"Learning to use ";

"C++'s

LLIFY
4

"switch structure." << endl;

"This program shows the effect ";

"of the break statement." << endl;

"The number is out of range." << endl;

"Out of the switch structure." << endl;

times. In each of these sample runs, the user input is shaded.

Sample Run 1:

Enter an integer between 0 and 7: 0

The number you entered is 0
Learning to use C++'s switch structure.
Out of the switch structure.

Sample Run 2:

Enter an integer between 0 and 7: 2

The number you entered is 2
C++'s switch structure.
Out of the switch structure.

Sample Run 3:

Enter an integer between 0 and 7: 4

The number you entered is 4
Out of the switch structure.

//Line
//Line

//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line

//Line

//Line

24

25

switch Structures | 227

Sample Run 4:
Enter an integer between 0 and 7: 5

The number you entered is 5
This program shows the effect of the break statement.
Out of the switch structure.

Sample Run 5:
Enter an integer between 0 and 7: 7

The number you entered is 7
of the break statement.
Out of the switch structure.

Sample Run 6:
Enter an integer between 0 and 7: 8

The number you entered is 8
The number is out of range.
Out of the switch structure.

A walk-through of this program, using certain values of the switch expression num,
can help you understand how the break statement functions. If the value of num is 0,
the value of the switch expression matches the case value 0. All statements following
case 0: execute until a break statement appears.

The first break statement appears in Line 13, just before the case value of 4. Even
though the value of the switch expression does not match any of the case values (that
is, 1, 2, or 3), the statements following these values execute.

When the value of the switch expression matches a case value, all statements execute
until a break is encountered, and the program skips all case labels in between. Similarly,
if the value of num is 3, it matches the case value of 3, and the statements following this
label execute until the break statement is encountered in Line 13. If the value of num is
4, it matches the case value of 4. In this situation, the action is empty because only the
break statement, in Line 15, follows the case value of 4.

Although a switch structure’s case values (labels) are limited, the switch statement
expression can be as complex as necessary. For example, consider the following
switch statement:

switch (score / 10)
{

case 0:

case 1:

case 2:

case 3:

228 | Chapter 4: Control Structures | (Selection)

case 4:
case 5:
grade
break;
case 6:
grade =
break;
case 7:
grade
break;
case 8:
grade
break;
case 9:
case 10:
grade
break;
default:
cout << "Invalid test score." << endl;

I
|

|
o

I
Q

1
w

I
>

}

Assume that score is an int variable with values between 0 and 100. If score is 75,
score / 10 =75 /10 =17, and the grade assigned is "C"'. If the value of score is between
0 and 59, the grade is 'F'. If score is between 0 and 59, then score /10150, 1, 2, 3, 4,
or 5. Each of these values corresponds to the grade "F'.

Therefore, in this switch structure, the action statements of case 0, case 1, case 2,
case 3, case 4, and case 5 are all the same. Rather than write the statement grade =
'F'; followed by the break statement for each of the case values of 0, 1, 2, 3, 4, and 5,
you can simplify the programming code by first specifying all of the case values (as shown
in the preceding code) and then specifying the desired action statement. The case values
of 9 and 10 follow similar conventions.

In addition to being a variable identifier or a complex expression, the switch expression
can evaluate to a logical value. Consider the following statements:

switch (age >= 18)

{

case 1:
cout << "0Old enough to be drafted." << endl;
cout << "0Old enough to vote." << endl;
break;

case O0:
cout << "Not old enough to be drafted."™ << endl;
cout << "Not old enough to vote." << endl;

}

If the value of age is 25, the expression age >= 18 evaluates to 1—that is, true. If
the expression evaluates to 1, the statements following the case label 1 execute. If the
value of age is 14, the expression age >= 18 evaluates to 0—that is, false—and the
statements following the case label 0 execute.

switch Structures | 229

You can use true and false, instead of 1 and 0, respectively, in the case labels, and
rewrite the preceding switch statement as follows:

switch (age >= 18)

{

case true:
cout << "Old enough to be drafted." << endl;
cout << "0Old enough to vote." << endl;
break;

case false:
cout << "Not old enough to be drafted." << endl;
cout << "Not old enough to vote." << endl;

}

As you can see from the preceding examples, the switch statement is an elegant way to
implement multiple selections. You will see the use of a switch statement in the program-
ming example at the end of this chapter. Even though no fixed rules exist that can be applied
to decide whether to use an if...else structure or a switch structure to implement
multiple selections, the following considerations should be remembered. If multiple selec-
tions involve a range of values, you should use either an if...else structure or a switch
structure, wherein you convert each range to a finite set of values.

For instance, in Example 4-23, the value of grade depends on the value of score. If
score is between 0 and 59, grade is "F'. Because score is an int variable, 60 values
correspond to the grade of 'F'. If you list all 60 values as case values, the switch
statement could be very long. However, dividing by 10 reduces these 60 values to only 6
values: 0, 1, 2, 3, 4, and 5.

If the range of values consists of infinitely many values and you cannot reduce them to a
set containing a finite number of values, you must use the if...else structure. For
example, if score happens to be a double variable, the number of values between 0 and
60 is infinite. However, you can use the expression static_cast<int> (score) / 10
and still reduce this infinite number of values to just six values.

Avoiding Bugs by Avoiding Partially Understood Concepts
and Techniques (Revisited)

Earlier in this chapter, we discussed how a partial understanding of a concept or
technique can lead to errors in a program. In this section, we give another example to
illustrate the problem of using partially understood concepts and techniques. In Example
4-23, we illustrate how to assign a grade based on a test score between 0 and 100. Next,
consider the following program that assigns a grade based on a test score:

//Grade program with bugs.
#include <iostream> //Line 1

using namespace std; //Line 2

230 | Chapter 4: Control Structures | (Selection)

int main()

{

int testScore;

cout << "Enter the test score:
cin >> testScore;

cout << endl;

switch (testScore / 10)

{

case
case
case
case
case
case 5:
cout
case 6:
cout
case 7:
cout
case 8:
cout
case 9:
case 10:
cout
default:
cout

S W N E o

}

return 0;

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1:

<<

<<

<<

<<

<<

<<

"The

"The

"The

"The

"The

"Invalid test

Enter the test score:

Invalid test score.

Sample Run 2:

Enter the test score:

Invalid test score.

Sample Run 3:

Enter the test score:

The grade is
The grade is
The grade is
Invalid test

grade is
grade is
grade is

grade is

grade is

110

=70

7/5)

A.

<<

<<

<<

<<

<<

endl;
endl;
endl;

endl;

endl;

score." << endl;

//Line
//Line
//Line

//Line
//Line
//Line

//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//LIne
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line

//Line
//Line

Terminating a Program with the assert Function | 231

From these sample runs, it follows that if the value of testScore is less than 0 or
greater than 100, the program produces correct results, but if the value of testScore
is between 0 and 100, say 75, the program produces incorrect results. Can you
see why?

As in Sample Run 3, suppose that the value of testScore is 75. Then, testScore $ 10 =7,
and this value matched the case label 7. So, as we indented, it should print The grade is C.
However, the output is:

The grade is C.

The grade is B.

The grade is A.
Invalid test score.

But why? Clearly only at most one cout statement is associated with each case label.
The problem is a result of having only a partial understanding of how the switch
structure works. As we can see, the switch statement does not include any break
statement. Therefore, after executing the statement(s) associated with the matching case
label, execution continues with the statement(s) associated with the next case label,
resulting in the printing of four unintended lines.

To output results correctly, the switch structure must include a break statement after
each cout statement, except the last cout statement. We leave it as an exercise for you to
modify this program so that it outputs correct results.

Once again, we can see that a partially understood concept can lead to serious errors in a
program. Therefore, taking time to understand each concept and technique completely
will save you hours of debugging time.

Terminating a Program with the assert Function

Certain types of errors that are very difficult to catch can occur in a program. For
example, division by zero can be difficult to catch using any of the programming
techniques you have examined so far. C++ includes a predefined function, assert, that
is useful in stopping program execution when certain elusive errors occur. In the case of
division by zero, you can use the assert function to ensure that a program terminates
with an appropriate error message indicating the type of error and the program location
where the error occurred.

Consider the following statements:

int numerator;
int denominator;
int quotient;
double hours;
double rate;
double wages;
char ch;

232 | Chapter 4: Control Structures | (Selection)

quotient = numerator / denominator;

2. if (hours > 0 && (0 < rate && rate <= 15.50))
wages = rate * hours;

3. if ('A' <= ch && ch <= '2")

In the first statement, if the denominator is 0, logically you should not perform the
division. During execution, however, the computer would try to perform the division. If
the denominator is 0, the program would terminate with an error message stating that
an illegal operation has occurred.

The second statement is designed to compute wages only if hours is greater than 0 and
rate is positive and less than or equal to 15.50. The third statement is designed to
execute certain statements only if ch is an uppercase letter.

For all of these statements (for that matter, in any situation in which certain conditions
must be met), if conditions are not met, it would be useful to halt program execution
with a message indicating where in the program an error occurred. You could handle
these types of situations by including output and return statements in your program.
However, C++ provides an effective method to halt a program if required conditions are
not met through the assert function.

The syntax to use the assert function is:

assert (expression) ;

Here, expression is any logical expression. If expression evaluates to true, the next
statement executes. If expression evaluates to false, the program terminates and indicates
where in the program the error occurred.

The specification of the assert function is found in the header file cassert. Therefore,
for a program to use the assert function, it must include the following statement:

#include <cassert>
A statement using the assert function is sometimes called an assert statement.

Returning to the preceding statements, you can rewrite statement 1 (quotient =
numerator / denominator;) using the assert function. Because quotient should
be calculated only if denominator is nonzero, you include an assert statement before
the assignment statement as follows:

assert (denominator) ;
quotient = numerator / denominator;

Now, if denominator is 0, the assert statement halts the execution of the program
with an error message similar to the following:

Assertion failed: denominator, file c:\temp\assert
function\assertfunction.cpp, line 20

Programming Example: Cable Company Billing | 233

This error message indicates that the assertion of denominator failed. The error message
also gives the name of the file containing the source code and the line number where the
assertion failed.

You can also rewrite statement 2 using an assertion statement as follows:

assert (hours > 0 && (0 < rate && rate <= 15.50));
if (hours > 0 && (0 < rate && rate <= 15.50))
wages = rate * hours;

If the expression in the assert statement fails, the program terminates with an error
message similar to the following:

Assertion failed: hours > 0 && (0 < rate && rate <= 15.50), file
c:\temp\assertfunction\assertfunction.cpp, line 26

During program development and testing, the assert statement is very useful for enfor-
cing programming constraints. As you can see, the assert statement not only halts the
program, but also identifies the expression where the assertion failed, the name of the file
containing the source code, and the line number where the assertion failed.

Although assert statements are useful during program development, after a program has
been developed and put into use, if an assert statement fails for some reason, an end
user would have no idea what the error means. Therefore, after you have developed and
tested a program, you might want to remove or disable the assert statements. In a very
large program, it could be tedious, and perhaps impossible, to remove all of the assert
statements that you used during development. In addition, if you plan to modify a
program in the future, you might like to keep the assert statements. Therefore, the
logical choice is to keep these statements but to disable them. You can disable assert
statements by using the following preprocessor directive:

#define NDEBUG

This preprocessor directive #define NDEBUG must be placed before the directive
#include <cassert>.

PROGRAMMING EXAMPLE: Cable Company Billing

) . This programming example demonstrates a program that calculates a customer’s bill
6 for a local cable company. There are two types of customers: residential and business.
There are two rates for calculating a cable bill: one for residential customers and one

Wateh for business customers. For residential customers, the following rates apply:

the Video
e Bill processing fee: $4.50
e Basic service fee: $20.50

e Premium channels: $7.50 per channel

PROBLEM
ANALYSIS
AND
ALGORITHM
DESIGN

234 | Chapter 4: Control Structures | (Selection)

For business customers, the following rates apply:

e Bill processing fee: $15.00
e Basic service fee: $75.00 for first 10 connections, $5.00 for each
additional connection

® Premium channels: $50.00 per channel for any number of
connections

The program should ask the user for an account number (an integer) and a customer
code. Assume that R or r stands for a residential customer, and B or b stands for a
business customer

Input The customer’s account number, customer code, number of premium channels
to which the user subscribes, and, in the case of business customers, number of
basic service connections.

Output Customer’s account number and the billing amount.

The purpose of this program is to calculate and print the billing amount. To calculate
the billing amount, you need to know the customer for whom the billing amount is
calculated (whether the customer is residential or business) and the number of
premium channels to which the customer subscribes. In the case of a business
customer, you also need to know the number of basic service connections and the
number of premium channels. Other data needed to calculate the bill, such as the bill
processing fees and the cost of a premium channel, are known quantities. The
program should print the billing amount to two decimal places, which is standard
for monetary amounts. This problem analysis translates into the following algorithm:

1. Set the precision to two decimal places.

2. Prompt the user for the account number and customer type.

3. Based on the customer type, determine the number of premium
channels and basic service connections, compute the bill, and print

the bill:
a. If the customer type is R or r,
i. Prompt the user for the number of premium channels.
ii. Compute the bill.
iii. Print the bill.
b. If the customer type is B or b,

i. Prompt the user for the number of basic service connections
and number of premium channels.

ii. Compute the bill.
iii. Print the bill.

Variables

Named
Constants

Formulas

Programming Example: Cable Company Billing | 235

Because the program will ask the user to input the customer account number,
customer code, number of premium channels, and number of basic service
connections, you need variables to store all of this information. Also, because the
program will calculate the billing amount, you need a variable to store the billing
amount. Thus, the program needs at least the following variables to compute and
print the bill:

int accountNumber; //variable to store the customer's
//account number
char customerType; //variable to store the customer code
int numOfPremChannels; //variable to store the number
//of premium channels to which the
//customer subscribes
int numOfBasicServConn; //variable to store the
//number of basic service connections
//to which the customer subscribes
double amountDue; //variable to store the billing amount

As you can see, the bill processing fees, the cost of a basic service connection, and the
cost of a premium channel are fixed, and these values are needed to compute the bill.
Although these values are constants in the program, the cable company can change
them with little warning. To simplify the process of modifying the program later,
instead of using these values directly in the program, you should declare them as
named constants. Based on the problem analysis, you need to declare the following
named constants:

//Named constants - residential customers
const double RES BILL PROC FEES = 4.50;
const double RES BASIC_SERV_COST = 20.50;
const double RES COST PREM CHANNEL = 7.50;

//Named constants - business customers
const double BUS BILL PROC FEES = 15.00;
const double BUS BASIC_SERV_COST = 75.00;
const double BUS BASIC CONN COST = 5.00;
const double BUS_COST_ PREM CHANNEL = 50.00;

The program uses a number of formulas to compute the billing amount. To compute
the residential bill, you need to know only the number of premium channels to
which the user subscribes. The following statement calculates the billing amount for a
residential customer:

amountDue = RES BILL PROC FEES + RES BASIC SERV COST
+ numOfPremChannels * RES _COST PREM CHANNEL;

To compute the business bill, you need to know the number of basic service
connections and the number of premium channels to which the user subscribes. If
the number of basic service connections is less than or equal to 10, the cost of the

236 | Chapter 4: Control Structures | (Selection)

basic service connections is fixed. If the number of basic service connections
exceeds 10, you must add the cost for each connection over 10. The following
statement calculates the business billing amount:

if (numOfBasicServConn <= 10)
amountDue = BUS BILL PROC_FEES + BUS BASIC SERV_COST
+ numOfPremChannels * BUS_COST_PREM_ CHANNEL;
else
amountDue = BUS BILL PROC_FEES + BUS BASIC SERV COST
+ (numOfBasicServConn - 10)
* BUS BASIC CONN COST
+ numOfPremChannels * BUS_COST_PREM CHANNEL;

MAIN Based on the preceding discussion, you can now write the main algorithm.

ALGORITHW 1. To output floating-point numbers in a fixed decimal format with

a decimal point and trailing zeros, set the manipulators £ixed and
showpoint. Also, to output floating-point numbers with two
decimal places, set the precision to two decimal places. Recall
that to use these manipulators, the program must include the
header file iomanip.

Prompt the user to enter the account number.
Get the customer account number.
Prompt the user to enter the customer code.

Get the customer code.

S

If the customer code is r or R,
a. Prompt the user to enter the number of premium channels.
b. Get the number of premium channels.
c. Calculate the billing amount.
d. Print the account number and the billing amount.
7. If the customer code is b or B,
a. Prompt the user to enter the number of basic service connections.
b. Get the number of basic service connections.
c. Prompt the user to enter the number of premium channels.
d. Get the number of premium channels.
e. Calculate the billing amount.
f. Print the account number and the billing amount.
8. [If'the customer code is something other than r, R, b, or B, output an

€Iror message.

For Steps 6 and 7, the program uses a switch statement to calculate the bill for the
desired customer.

Programming Example: Cable Company Billing | 237

COMPLETE PROGRAM LISTING

//***
// BAuthor: D. S. Malik

//

// Program: Cable Company Billing

// This program calculates and prints a customer's bill for
// a local cable company. The program processes two types of

// customers: residential and business.
//***

#include <iostream>
#include <iomanip>

using namespace std;

//Named constants - residential customers
const double RES BILL_ PROC FEES = 4.50;
const double RES BASIC SERV COST = 20.50;
const double RES COST PREM CHANNEL = 7.50;

//Named constants — business customers
const double BUS BILL PROC FEES = 15.00;
const double BUS BASIC SERV COST = 75.00;
const double BUS BASIC_CONN_COST = 5.00;
const double BUS_COST_PREM CHANNEL = 50.00;

int main ()
{
//Variable declaration
int accountNumber;
char customerType;
int numOfPremChannels;
int numOfBasicServConn;
double amountDue;

cout << fixed << showpoint; //Step 1
cout << setprecision(2); //Step 1

cout << "This program computes a cable "

<< "bill." << endl;
cout << "Enter account number (an integer): "; //Step
cin >> accountNumber; //Step
cout << endl;

wN

cout << "Enter customer type: "

<< "R or r (Residential), "

<< "B or b (Business): "; //Step 4
cin >> customerType; //Step 5
cout << endl;

238

Chapter 4: Control Structures | (Selection)

swit
{

case
case

case
case

ch (customerType)

er:
IRI:
cout << "Enter the number"
<< " of premium channels: ";
cin >> numOfPremChannels;
cout << endl;

amountDue = RES BILL_PROC_FEES
+ RES_BASIC_SERV_COST
+ numOfPremChannels *
RES_COST_PREM_CHANNEL;

cout << "Account number: "
<< accountNumber
<< endl;

cout << "Amount due: $"
<< amountDue

<< endl;
break;
lbl:
IBI:
cout << "Enter the number of basic "
<< "service connections: ";

cin >> numOfBasicServConn;
cout << endl;

cout << "Enter the number"

<< " of premium channels: ";
cin >> numOfPremChannels;
cout << endl;

if (numOfBasicServConn<= 10)
amountDue = BUS BILL PROC FEES
+ BUS_BASIC_SERV_COST
+ numOfPremChannels *
BUS_COST PREM CHANNEL;

else
amountDue = BUS_BILL_ PROC_FEES
+ BUS_BASIC_SERV_COST

//Step 6

//Step 6a
//Step 6b

//Step 6¢c

//Step 6d

//Step 6d

~

//Step

//Step 7a
//Step 7b

//Step Tc
//Step 7d

//Step Te

+ (numOfBasicServConn - 10) *

BUS_BASIC_CONN_COST
+ numOfPremChannels *
BUS_COST PREM CHANNEL;

cout << "Account number: "
<< accountNumber << endl;

cout << "Amount due: $" << amountDue
<< endl;

break;

//Step 7f

//Step 7£

Quick Review | 239

default:
cout << "Invalid customer type." << endl; //Step 8
} //end switch

return 0;

}
Sample Run: In this sample run, the user input is shaded.

This program computes a cable bill.
Enter account number (an integer): 12345

Enter customer type: R or r (Residential), B or b (Business): Db

Enter the number of basic service connections: 16

Enter the number of premium channels: 8

Account number: 12345
Amount due: $520.00

QUICK REVIEW

1. Control structures alter the normal flow of control.

2. The two most common control structures are selection and repetition.

3. Selection structures incorporate decisions in a program.

4. The relational operators are == (equality), < (less than), <= (less than or equal
to), > (greater than), >= (greater than or equal to), and != (not equal to).

5. Including a space between the relational operators ==, <=, >=, and !=

creates a syntax error.
6. Characters are compared using a machine’s collating sequence.

7. Logical expressions evaluate to 1 (or a nonzero value) or 0. The logical
value 1 (or any nonzero value) is treated as true; the logical value 0 is
treated as false.

8. In C++, int variables can be used to store the value of a logical expression.
9. In C++, bool variables can be used to store the value of a logical expression.
10. In C++, the logical operators are ! (not), && (and), and || (or).

1. There are two selection structures in C++.

12. One-way selection takes the following form:

if (expression)
statement

If expression is true, the statement executes; otherwise, the computer
executes the statement following the if statement.

240

| Chapter 4: Control Structures | (Selection)

13. Two-way selection takes the following form:
if (expression)
statementl
else
statement2
If expression is true, then statementl executes; otherwise,
statement2 executes.

14. The expression in an if or if...else structure is usually a logical expression.
15. Including a semicolon before the statement in a one-way selection creates
a semantic error. In this case, the action of the if statement is empty.

16. Including a semicolon before statementl in a two-way selection creates a

syntax error.

17. There is no stand-alone else statement in C++. Every else has a related if.

18. An else is paired with the most recent if that has not been paired with
any other else.

19. A sequence of statements enclosed between curly braces, { and }, is called a
compound statement or block of statements. A compound statement is
treated as a single statement.

20. You can use the input stream variable in an if statement to determine the
state of the input stream.

21. Using the assignment operator in place of the equality operator creates a
semantic error. This can cause serious errors in the program.

22. The switch structure is used to handle multiway selection.

23. The execution of a break statement in a switch statement immediately
exits the switch structure.

24. If certain conditions are not met in a program, the program can be
terminated using the assert function.

EXERCISES

1.

Mark the following statements as true or false:

a. The result of a logical expression cannot be assigned to an int variable.

b. In a one-way selection, if a semicolon is placed after the expression in
an if statement, the expression in the if statement is always true.

c. Every if statement must have a corresponding else.
d. The expression in the if statement:

if (score 30)
grade = 'A';

always evaluates to true.

Exercises

The expression:
(ch >= "A' && ch <= '2")

evaluates to false if either ch < "A' or ch>="'2".
Suppose the input is 5. The output of the code:

cin >> num;
if (num > 5)
cout << num;
num = 0;
else
cout << "Num is zero" << endl;
is: Num is zero
The expression in a switch statement should evaluate to a value of the

simple data type.
The expression ! (x> 0) is true only if x is a negative number.
In C++, both ! and != are logical operators.

The order in which statements execute in a program is called the flow of
control.

Evaluate the following expressions:

a.
b.
c.
d.

e.

f.

5+ 6 ==13+7
2% 6 - 4>=9 -1

TUr >= 't
TAY <= '3!
Y = T4

6.28 / 3 <3 -1.2

Suppose that %, y, and z are int variables, and x = 10, y = 15, and z = 20.
Determine whether the following expressions evaluate to true or false:

a.
b.
c.
d.

e.

'(x > 10)

x<=5 || y< 15

(x !'=5) && (y != z)

x>=z || (x +y >= z)

(x <=y =-2) && (y>=12z) || (z - 2 != 20)

Suppose that strl, str2, and str3 are string variables, and strl =
"English", str2 = "Computer Science”, and str3 = "Programming”.
Evaluate the following expressions:

a.
b.

C.

strl >= str2

strl != "english"
str3 < str2

str2 >= "Chemistry"

241

242 | Chapter 4: Control Structures | (Selection)

5. Suppose that x, y, z, and w are int variables, and x =3,y =4,z=7,andw= 1.
What is the output of the following statements?

a. cout << "x == y: " << (x == y) << endl;

h. cout << "x != z: " << (x != z) << endl;

c. cout << "y ==z - 3: " << (y == z - 3) << endl;
d. cout << "!(z > w): " << Il (z > w) << endl;

e. cout << "x + y < z: "< (x + y < z) << endl;

6. Which of the following are relational operators?

a. < h. <= c. = d =! e. <>

7. What is the output of the following statements?

a. if ("+' < '"x)
cout << "+ ",
cout << "%%" << endl;

h. if (10 <= 2 * 5)
cout << "10 ";
cout << "2 * 5",
cout << endl;
c. if ('a' < 'A")
cout << 'a';
cout << 'A';
cout << endl;

d. if ("C++" >= "C--")
cout << "C++" << endl;
cout << "C--" << endl;

e. if ("Sam" <= "Tom")
cout << "Sam Tom" << endl;
cout << "Tom Sam" << endl;

f. if (6 == 2 * 4 - 2)
cout << 3 * 4 / 6 — 8 << endl;
cout << "**" << endl;

8. Which of the following are logical (Boolean) operators?
a. ! bh. !'= ¢ $S

9. What is the output of the following statements?

a. if ('R" < '$S" && '&'" <= "4#")
cout << "S#v;
cout << "R&";
cout << endl;

h. if ('4" > '3" || 2 < -10)
cout << "1 2 3 4" << endl;
cout << "$8" << endl;

Exercises

c. if ("Jack"™ <= "John" && "Business" >= "Accounting")
cout << "Jack Accounting" << endl;
cout << "John Business" << endl;

What is the output of the following code?

int num = 10; //Line 1

double temp = 4.5; //Line 2

bool found; //Line 3

found = (num == 2 * static cast<int> (temp) + 1); //Line 4
cout << "The value of found is: "™ << found << endl; //Line 5

How does the output in Exercise 10 change if the statement in Line 4 is
replaced by the following statement?

found = (num == 2 * static cast<int>(temp + 1)); //Line 4

What is the output of the following program?

#include <iostream>
using namespace std;

int main()

{
int x;
int a = 265;

cout << (x = 25) << endl;

cout << (x == 90) << endl;

cout << (x > 10) << endl;

cout << (3 * x < a) << endl;

cout << (10 * x == a - 15) << endl;

return 0;

}

Correct the following code so that it prints the correct message:

if (score >= 60)

cout << "You pass." << endl;
else;

cout << "You fail." << endl;

Write C++ statements that output Male if the gender is 'M', Female if
the gender is 'F', and invalid gender otherwise.

If the number of items bought is less than 5, then the shipping charges are
$5.00 for each item bought; if the number of items bought is at least 5, but
less than 10, then the shipping charges are $2.00 for each item bought; if
the number of items bought is at least 10, there are no shipping charges.
Correct the following code so that it computes the correct shipping
charges.

243

244 | Chapter 4: Control Structures | (Selection)

if (0 < numOfItemsBought || numOfItemsBought <> 5)
shippingCharges = 5.00 * numOfItemsBought;

else if (5 <= numOfItemsBought && numOfItemsBought < 10);
shippingCharges = 2.00 * numOfItemsBought;

else
shippingCharges = 0.00;

16. What is the output of the following C++ code?
int x = 10;
int y = 20;
if (x < 20 && y > 20)
{

X =2 * x;
y=y/ 2;
cout << x << " " << y << " " < x - y << endl;
}
else
{
x=y / %
cout <K x <K " " K y<KLK""Kx* x+y* y<< endl;

}

17. What is the output of the following program?

#include <iostream>
using namespace std;

int main()

{
int myNum = 10;
int yourNum = 30;

if (yourNum % myNum == 3)
{
3;

yourNum
myNum = 1;

}

else if (yourNum % myNum == 2)

{
yourNum = 2;
myNum = 2;

}

else

{
yourNum = 1;
myNum = 3;

}
cout << myNum << " " << yourNum << endl;

return 0;

20.

21.

22,

23.

Exercises

a. What is the output of the program in Exercise 17, if myNum = 5 and
yourNum = 127

b. What is the output of the program in Exercise 17, if myNum = 30 and
yourNum = 337

Suppose that sale and bonus are double variables. Write an if...else
statement that assigns a value to bonus as follows: If sale is greater than
$20,000, the value assigned to bonus is 0.10; if sale is greater than
$10,000 and less than or equal to $20,000, the value assigned to bonus
is 0.05; otherwise, the value assigned to bonus is 0.

Suppose that overSpeed and fine are double variables. Assign the value to
fine as follows: If 0 < overSpeed <= 5, the value assigned to £ine is $20.00; if
5< overSpeed <= 10, the value assigned to fine is $75.00; if 10 < overSpeed
<= 15, the value assigned to fine is $150.00; if overSpeed > 15, the value
assigned to fine is $150.00 plus $20.00 per mile over 15.

Suppose that score is an int variable. Consider the following i £ statements:
if (score >= 90);

cout << "Discount = 10%" << endl;
a. What is the output if the value of score is 95? Justify your answer.

b. What is the output if the value of score is 85?7 Justity your answer.

Suppose that score is an int variable. Consider the following if statements:

i. if (score == 70)

cout << "Grade is C." << endl;
ii. if (score ="70)

cout << "Grade is C." << endl;

Answer the following questions:

a. What is the output in (i) and (ii) if the value of score is 70? What is
the value of score after the if statement executes?

b. What is the output in (i) and (ii) if the value of score is 807 What is
the value of score after the if statement executes?

Rewrite the following expressions using the conditional operator. (Assume
that all variables are declared properly.)

a. if (x >=vy)
zZ =X - y;
else
zZ =y - X;
bh. if (hours >= 40.0)

wages = 40 * 7.50 + 1.5 * 7.5 * (hours - 40);
else
wages = hours * 7.50;

245

246 | Chapter 4: Control Structures | (Selection)

c. if (score >= 60)
str = "Pass";
else
str = "Fail";

24. Rewrite the following expressions using an if...else statement. (Assume
that all variables are declared properly.)
a. (x<5)? y=10 : vy = 20;
b. (fuel >= 10) ? drive = 150 : drive = 30;
c. (booksBought >= 3) ? discount = 0.15 : discount = 0.0;
25. Suppose that you have the following conditional expression. (Assume that
all the variables are properly declared.)

(0 < backyard && backyard <= 5000) ? fertilizingCharges = 40.00
: fertilizingCharges = 40.00 + (backyard - 5000) * 0.01;

a. What is the value of fertilizingCharges if the value of backyard

is 3000?

b. What is the value of fertilizingCharges if the value of backyard
is 5000?

c. What is the value of fertilizingCharges if the value of backyard
is 6500?

26. State whether the following are valid switch statements. If not, explain
why. Assume that n and digit are int variables.

a. switch (n <= 2)

{

case 0:
cout << "Draw." << endl;
break;

case 1:
cout << "Win." << endl;
break;

case 2:
cout << "Lose." << endl;
break;

}

h. switch (digit / 4)

{

case 0,

case 1:
cout << "low." << endl;
break;

case 1,

case 2:
cout << "middle." << endl;
break;

case 3:
cout << "high." << endl;

}

217.

c. switch (n % 6)
{
case
case
case
case
case 5:
cout << n;
break;

case 0:
cout << endl;
break;

S w N

d. switch (n % 10)
{
case
case
case
case

@ o BN

cout << "Even";
break;

case 1:

case 3:

case 5:

case 7:
cout << "Odd";
break;

}

Exercises

Suppose that alpha is an int variable. Consider the following C++ code:

cin >> alpha;
switch (alpha % 6)
{
case 0:
alpha--;
break;
case 1l: case 2:
alpha = alpha * 2;
break;
case 3:
break;
case 4:
alpha = alpha - 5;
case 5:
alpha++;
break;
default:
alpha = alpha / 3;
}

247

248 | Chapter 4: Control Structures | (Selection)

a. What is the output if the input is 8?
b. What is the output if the input is 3?
c. What is the output if the input is 17?
d. What is the output if the input is 24?

28. Suppose that beta is an int variable. Consider the following C++ code:

cin >> beta;
switch (beta % 7)

{
case 0:
case 1:
beta = beta * beta;
break;
case 2:
beta++;
break;
case 3:
beta = static cast<int> (sqrt(beta * 1.0));
break;
case 4:
beta = beta + 4;
case 6:
beta = beta--;
break;
default:
beta = -10;
}

a. What is the output if the input is 11?
b. What is the output if the input is 12°?
c. What is the output if the input is 0?

d. What is the output if the input is 16?

29. Suppose that num is an int variable. Consider the following C++ code:

cin >> num;
if (num >= 0)
switch (num)
{
case 0:
num = static cast<int> (pow(num, 3.0));
break;
case 2:
num = -++num;
break;
case 4:
num = num — 4;
break;
case 5:
num = num * 4;

Exercises | 249

case 6:
num = num / 6;
break;
case 10:
num--;
break;
default:
num = -20;
}
else
num = num + 10;

a. What is the output if the input is 5?
b. What is the output if the input is 262
c. What is the output if the input is 2?

d. What is the output if the input is -5?

In the following code, correct any errors that would prevent the program
from compiling or running:

include <jiostream>

main ()

{
int numl, num2;
bool found;

cout << "Enter two integers: ;
cin >> numl >> num2;
cout << endl;

if (numl >= num2) && num2 > 0
switch (num % num2)
{
case 1
found = (num / num2) >= 6;
break;
case 2: case 3
numl = num2 / 2;
brake;
default:
num2 = numl * num2;
}
else
{
found = (2 * num2 < numl);
if found
cin >> num2
num 1 = num2 — numl;
temp = (numl + num2) / 10;

250

31.

32.

| Chapter 4: Control Structures | (Selection)

if num?2

numl num2 ;
num2 = temp;

}

cout << numl << " " << num2 << endl;

After correcting the code, answer the following questions. (If needed, insert prompt
lines to inform the user for the input.)

a. What is the output if the input is 10 8 67
b. What is the output if the inputis 4 9 11?

The following program contains errors. Correct them so that the program
will run and output w = 21.

#include <iostream>
using namespace std;

const int SECRET = 5

main ()
{
int x, y, w, z;
z = 9;
if z > 10
x =12; y =5, w=x + y + SECRET;
else

x=12; v =4, w X + y + SECRET;

cout << "w = " << w << endl:;

}

Write the missing statements in the following program so that it prompts
the user to input two numbers. If one of the numbers is 0, the program
should output a message indicating that both numbers must be nonzero. It
the first number is greater than the second number, it outputs the first
number divided by the second number; if the first number is less than the
second number, it outputs the second number divided by the first number;
otherwise, it outputs the product of the numbers.

#include <iostream>
using namespace std;

int main ()
{

double firstNum, secondNum;

cout << "Enter two nonzero numbers: ";

33.

34.

Programming Exercises

cin >> firstNum >> secondNum;
cout << endl;

//Missing statements

return 0;

Suppose that classStanding is a char variable, and gpa and dues are
double variables. Write a switch expression that assigns the dues as following:
If classStanding is 'f', the dues are $150.00; if classStanding is 's’
(if gpa is at least 3.75, the dues are $75.00; otherwise, dues are 120.00); if
classStanding is 'j' (if gpa is at least 3.75, the dues are $50.00;
otherwise, dues are $100.00); if classStanding is "n' (if gpa is at least
3.75, the dues are $25.00; otherwise, dues are $75.00). (Note that the code
"£' stands for first year students, the code 's' stands for second year
students, the code '3 stands for juniors, and the code 'n' stands for seniors.)

Suppose that billingAmount is a double variable, which denotes the
amount you need to pay to the department store. if you pay the full
amount, you get $10.00 or 1% of the billingAmount, whichever is
smaller, as a credit on your next bill; if you pay at least 50% of the
billingAmount, the penalty is 5% of the balance; if you pay at least 20%
of the billingAmount and less than 50% of the billingAmount, the
penalty 1s 10% of the balance; otherwise, the penalty 1s 20% of the balance.
Design an algorithm that prompts the user to enter the billing amount and
the desired payment. The algorithm then calculates and outputs the credit
or the remaining balance. If the amount is not paid in full, the algorithm
should also output the penalty amount.

PROGRAMMING EXERCISES

251

1.

Write a program that prompts the user to input a number. The program
should then output the number and a message saying whether the number is
positive, negative, or zero.

Write a program that prompts the user to input three numbers. The
program should then output the numbers in ascending order.

Write a program that prompts the user to input an integer between 0 and 35. If
the number is less than or equal to 9, the program should output the number;
otherwise, it should output A for 10, B for 11, C for 12...and 2 for 35. (Hint:
Use the cast operator, static cast<char> (), for numbers >= 10.)

The statements in the following program are in incorrect order. Rearrange
the statements so that they prompt the user to input the shape type
(rectangle, circle, or cylinder) and the appropriate dimension of

252 | Chapter 4: Control Structures | (Selection)

the shape. The program then outputs the following information about the
shape: For a rectangle, it outputs the area and perimeter; for a circle, it
outputs the area and circumference; and for a cylinder, it outputs the
volume and surface area. After rearranging the statements, your program
should be properly indented.

using namespace std;
#include <iostream>

int main ()

{
string shape;
double height;

#include <string>

cout << "Enter the shape type: (rectangle, circle, cylinder) ";
cin >> shape;
cout << endl;

if (shape == "rectangle")
{
cout << "Area of the circle ="
<< PI * pow(radius, 2.0) << endl;

cout << "Circumference of the circle: "
<< 2 * PI * radius << endl;

cout << "Enter the height of the cylinder: ";
cin >> height;
cout << endl;

cout << "Enter the width of the rectangle: ";
cin >> width;
cout << endl;

cout << "Perimeter of the rectangle = "
<< 2 * (length + width) << endl;
double width;
}

cout << "Surface area of the cylinder: "
<< 2 * PI * radius * height + 2 * PI * pow(radius, 2.0)

<< endl;
}
else if (shape == "circle")
{

cout << "Enter the radius of the circle: ";
cin >> radius;
cout << endl;

Programming Exercises | 253

cout << "Volume of the cylinder = "
<< PI * pow(radius, 2.0)* height << endl;
double length;

}
return 0;
else if (shape == "cylinder")
{
double radius;
cout << "Enter the length of the rectangle: ";
cin >> length;
cout << endl;
#include <iomanip>
cout << "Enter the radius of the base of the cylinder: ";
cin >> radius;
cout << endl;
const double PI = 3.1416;
cout << "Area of the rectangle ="
<< length * width << endl;
else

cout << "The program does not handle " << shape << endl;
cout << fixed << showpoint << setprecision(2):;

#include <cmath>

Write a program to implement the algorithm you designed in Exercise 21 of
Chapter 1.

In a right triangle, the square of the length of one side is equal to the sum
of the squares of the lengths of the other two sides. Write a program that
prompts the user to enter the lengths of three sides of a triangle and then
outputs a message indicating whether the triangle is a right triangle.

A box of cookies can hold 24 cookies, and a container can hold 75 boxes
of cookies. Write a program that prompts the user to enter the total
number of cookies, the number of cookies in a box, and the number of
cookie boxes in a container. The program then outputs the number of
boxes and the number of containers to ship the cookies. Note that each
box must contain the specified number of cookies, and each container
must contain the specified number of boxes. If the last box of cookies
contains less than the number of specified cookies, you can discard it and
output the number of leftover cookies. Similarly, if the last container
contains less than the number of specified boxes, you can discard it and
output the number of leftover boxes.

254

| Chapter 4: Control Structures | (Selection)

The roots of the quadratic equation ax” + bx + ¢ = 0, a # 0 are given by the
following formula:

—b+ Vb2 —4dac
2a

In this formula, the term b* — 4acis called the discriminant. If b> — 4ac = 0,
then the equation has a single (repeated) root. If b* —4ac > 0, the
equation has two real roots. If b”—4ac<0, the equation has two
complex roots. Write a program that prompts the user to input the
value of a (the coefficient of x%), b (the coefficient of x), and ¢ (the
constant term) and outputs the type of roots of the equation. Further-
more, if b°—4ac>0, the program should output the roots of the
quadratic equation. (Hint: Use the function pow from the header file
cmath to calculate the square root. Chapter 3 explains how the func-
tion pow is used.)

Write a program that mimics a calculator. The program should take as input
two integers and the operation to be performed. It should then output the
numbers, the operator, and the result. (For division, if the denominator is
zero, output an appropriate message.) Some sample outputs follow:

3+4 =17
13 * 5 = 65

Redo Exercise 9 to handle floating-point numbers. (Format your output to
two decimal places.)

Redo Programming Exercise 20 of Chapter 2, taking into account that your
parents buy additional savings bonds for you as follows:

a. If you do not spend any money to buy savings bonds, then because you
had a summer job, your parents buy savings bonds for you in an
amount equal to 1% of the money you save after paying taxes and
buying clothes, other accessories, and school supplies.

b. If you spend up to 25% of your net income to buy savings bonds, your
parents spend $0.25 for each dollar you spend to buy savings bonds,
plus money equal to 1% of the money you save after paying taxes and
buying clothes, other accessories, and school supplies.

c. If'you spend more than 25% of your net income to buy savings bonds,
your parents spend $0.40 for each dollar you spend to buy savings
bonds, plus money equal to 2% of the money you save after paying
taxes and buying clothes, other accessories, and school supplies.

Write a program that implements the algorithm given in Example 1-3
(Chapter 1), which determines the monthly wages of a salesperson.

Programming Exercises

Write a program that implements the algorithm that you designed in
Exercise 34 of this chapter.

The number of lines that can be printed on a paper depends on the paper
size, the point size of each character in a line, whether lines are double-
spaced or single-spaced, the top and bottom margin, and the left and right
margins of the paper. Assume that all characters are of the same point size,
and all lines are either single-spaced or double-spaced. Note that 1 inch =
72 points. Moreover, assume that the lines are printed along the width of
the paper. For example, if the length of the paper is 11 inches and width is
8.5 inches, then the maximum length of a line is 8.5 inches. Write a
program that calculates the number of characters in a line and the number
of lines that can be printed on a paper based on the following input from
the user:

a. The length and width, in inches, of the paper

b. The top, bottom, left, and right margins

c. The point size of a line

d. If the lines are double-spaced, then double the point size of each

character

Worite a program that calculates and prints the bill for a cellular telephone
company. The company ofters two types of service: regular and premium.
Its rates vary, depending on the type of service. The rates are computed as
follows:

Regular service: $10.00 plus first 50 minutes are free. Charges for
over 50 minutes are $0.20 per minute.
Premium service: $25.00 plus:

a. For calls made from 6:00 a.m. to 6:00 p.m., the first 75 minutes are free;
charges for more than 75 minutes are $0.10 per minute.

b. For calls made from 6:00 p.m. to 6:00 a.m., the first 100 minutes are
free; charges for more than 100 minutes are $0.05 per minute.

Your program should prompt the user to enter an account number, a
service code (type char), and the number of minutes the service was
used. A service code of r or R means regular service; a service code of
p or P means premium service. Treat any other character as an error.
Your program should output the account number, type of service,
number of minutes the telephone service was used, and the amount
due from the user.

For the premium service, the customer may be using the service during
the day and the night. Therefore, to calculate the bill, you must ask the
user to input the number of minutes the service was used during the day
and the number of minutes the service was used during the night.

255

256

| Chapter 4: Control Structures | (Selection)

Write a program to implement the algorithm that you designed in Exercise
22 of Chapter 1. (Assume that the account balance is stored in the file
Ch4_Ex16_Data.txt.) Your program should output account balance before
and after withdrawal and service charges. Also save the account balance after
withdrawal in the file Ch4_Ex16_Output.txt.

A new author is in the process of negotiating a contract for a new romance
novel. The publisher is offering three options. In the first option, the author
is paid $5,000 upon delivery of the final manuscript and $20,000 when the
novel is published. In the second option, the author is paid 12.5% of the net
price of the novel for each copy of the novel sold. In the third option, the
author is paid 10% of the net price for the first 4000 copies sold, and 14% of
the net price for the copies sold over 4000. The author has some idea about
the number of copies that will be sold and would like to have an estimate of
the royalties generated under each option. Write a program that prompts
the author to enter the net price of each copy of the novel and the estimated
number of copies that will be sold. The program then outputs the royalties
under each option and the best option the author could choose. (Use
appropriate named constants to store the special values such as royalties
rates and fixed royalties.)

Samantha and Vikas are looking to buy a house in a new development.
After looking at various models, the three models they like are colonial,
split-entry, and single-story. The builder gave them the base price and
the finished area in square feet of the three models. They want to know
the model(s) with the least price per square foot. Write a program that
accepts as input the base price and the finished area in square feet of the
three models. The program outputs the model(s) with the least price per
square foot.

One way to determine how healthy a person is by measuring the body fat
of the person. The formulas to determine the body fat for female and male
are as follows:

Body fat formula for women:
Al = (body weight x 0.732) + 8.987
A2 = wrist measurement (at fullest point) / 3.140
A3 = waist measurement (at navel) x 0.157
A4 = hip measurement (at fullest point) x 0.249
A5 = forearm measurement (at fullest point) x 0.434
B=A1+A2-A3- A4 + A5
Body fat = body weight — B
Body fat percentage = body fat x 100 / body weight

Programming Exercises | 257

Body fat formula for men:
Al = (body weight x 1.082) + 94.42
A2 = wrist measurement X 4.15
B=A1-A2
Body fat = body weight — B
Body fat percentage = body fat X 100 / body weight

Write a program to calculate the body fat of a person.

This page intentionally left blank

CONTROL STRUCTURES ||
(REPETITION

IN THIS CHAPTER, YOU WILL:

Learn about repetition (looping) control structures

Explore how to construct and use counter-controlled,
sentinel-controlled, flag-controlled, and EOF-controlled
repetition structures

Examine break and continue statements
Discover how to form and use nested control structures
Learn how to avoid bugs by avoiding patches

Learn how to debug loops

260 | Chapter 5: Control Structures Il (Repetition)

In Chapter 4, you saw how decisions are incorporated in programs. In this chapter, you
will learn how repetitions are incorporated in programs.

Why Is Repetition Needed?

Suppose you want to add five numbers to find their average. From what you have learned
so far, you could proceed as follows (assume that all variables are properly declared):

cin >> numl >> num2 >> num3 >> num4 >> numb5; //read five numbers
sum = numl + num2 + num3 + num4 + num5; //add the numbers
average = sum / 5; //£find the average

But suppose you want to add and average 100, 1000, or more numbers. You would have
to declare that many variables and list them again in cin statements and, perhaps, again in
the output statements. This takes an exorbitant amount of space and time. Also, if you
want to run this program again with difterent values or with a difterent number of values,
you have to rewrite the program.

Suppose you want to add the following numbers:
53794
Consider the following statements, in which sum and num are variables of type int:

1. sum = 0;
2. cin >> num;

3. sum = sum + num;

The first statement initializes sum to 0. Let us execute statements 2 and 3. Statement 2
stores 5 in num; statement 3 updates the value of sum by adding num to it. After statement 3,
the value of sum is 5.

Let us repeat statements 2 and 3. After statement 2 (after the programming code reads the
next number):

num = 3
After statement 3:
sum = sum + num = 5 + 3 = 8

At this point, sum contains the sum of the first two numbers. Let us again repeat statements
2 and 3 (a third time). After statement 2 (after the code reads the next number):

num = 7
After statement 3:
sum = sum + num = 8 + 7 = 15

Now, sum contains the sum of the first three numbers. If you repeat statements 2 and 3
two more times, sum will contain the sum of all five numbers.

while Looping (Repetition) Structure | 261

If you want to add 10 numbers, you can repeat statements 2 and 3 ten times. And if you want to
add 100 numbers, you can repeat statements 2 and 3 one hundred times. In either case, you do not
have to declare any additional variables, as you did in the first code. You can use this C++ code to
add any set of numbers, whereas the earlier code requires you to drastically change the code.

There are many other situations in which it is necessary to repeat a set of statements. For
example, for each student in a class, the formula for determining the course grade is the same.
C++ has three repetition, or looping, structures that let you repeat statements over and over
until certain conditions are met. This chapter introduces all three looping (repetition)
structures. The next section discusses the first repetition structure, called the while loop.

while Looping (Repetition) Structure

In the previous section, you saw that sometimes it is necessary to repeat a set of statements
several times. One way to repeat a set of statements is to type the set of statements in the
program over and over. For example, if you want to repeat a set of statements 100 times,
you type the set of statements 100 times in the program. However, this solution of
repeating a set of statements is impractical, if not impossible. Fortunately, there is a better
way to repeat a set of statements. As noted earlier, C++ has three repetition, or looping,
structures that allow you to repeat a set of statements until certain conditions are met.
This section discusses the first looping structure, called a while loop.

The general form of the while statement is:

while (expression)
statement

In C++, while is a reserved word. Of course, the statement can be either a simple
or compound statement. The expression acts as a decision maker and is usually a
logical expression. The statement is called the body of the loop. Note that the
parentheses around the expression are part of the syntax. Figure 5-1 shows the flow
of execution of a while loop.

®
2 |

DUICSNIP»> — true — EENEICINE

I
false

:

FIGURE 5-1 while loop

262 | Chapter 5: Control Structures Il (Repetition)

The expression provides an entry condition. If it initially evaluates to true, the
statement executes. The loop condition—the expression—is then reevaluated. If it again
evaluates to true, the statement executes again. The statement (body of the loop)
continues to execute until the expression is no longer true. A loop that continues to
execute endlessly is called an infinite loop. To avoid an infinite loop, make sure that the loop’s
body contains statement(s) that assure that the exit condition—the expression in the while
statement—will eventually be false.

Consider the following C++ program segment: (Assume that i is an int variable.)

i=20; //Line 1
while (i <= 20) //Line 2
{
cout << i << " "; //Line 3
i=1i+45; //Line 4
}

cout << endl;
Sample Run:
05 10 15 20

In Line 1, the variable i is set to 0. The expression in the while statement (in
Line 2), i <= 20, is evaluated. Because the expression 1 <= 20 evaluates to true, the
body of the while loop executes next. The body of the while loop consists of the
statements in Lines 3 and 4. The statement in Line 3 outputs the value of i, which is 0.
The statement in Line 4 changes the value of i to 5. After executing the statements in
Lines 3 and 4, the expression in the while loop (Line 2) is evaluated again. Because 1
is 5, the expression 1 <= 20 evaluates to true and the body of the while loop executes
again. This process of evaluating the expression and executing the body of the while
loop continues until the expression, 1 <= 20 (in Line 2), no longer evaluates to true.

The variable i (in Line 2, Example 5-1) in the expression is called the loop control variable.
Note the following from Example 5-1:

a. Within the loop, 1 becomes 25 but is not printed because the entry
condition is false.

b. If you omit the statement:
i=1+25;

from the body of the loop, you will have an infinite loop, continually
printing rows of zeros.

while Looping (Repetition) Structure | 263

¢. You must initialize the loop control variable 1 before you execute the
loop. If the statement:

i=20;
(in Line 1) is omitted, the loop may not execute at all. (Recall that
variables in C++ are not automatically initialized.)

d. In Example 5-1, if the two statements in the body of the loop are
interchanged, it may drastically alter the result. For example, consider
the following statements:

i= 0;
while (i <= 20)
{
i=1+5;
cout << 1 << " ",
}

cout << endl;

Here, the output is:

5 10 15 20 25

Typically, this would be a semantic error because you rarely want a
condition to be true for 1 <= 20 and yet produce results for 1 > 20.

e. If you put a semicolon at the end of the while loop, (after the logical
expression), then the action of the while loop is empty or null. For
example, the action of the following while loop is empty.

i=0;

while (i <= 20);
{

i=1+5;

cout << 1 << " ";
}

cout << endl;

The statements within the braces do not form the body of the while loop.

Designing while Loops

As in Example 5-1, the body of a while executes only when the expression, in the
while statement, evaluates to true. Typically, the expression checks whether a
variable(s), called the loop control variable (LCV), satisfies certain conditions. For
example, in Example 5-1, the expression in the while statement checks whether
i <= 20. The LCV must be properly initialized before the while loop, and it should

264 | Chapter 5: Control Structures Il (Repetition)

eventually make the expression evaluate to false. We do this by updating or
reinitializing the LCV in the body of the while loop. Therefore, typically, while loops
are written in the following form:

//initialize the loop control variable (s)

while (expression) //expression tests the LCV

{

//update the loop control variable(s)

}

For instance, in Example 5-1, the statement in Line 1 initializes the LCV i to 0. The
expression, 1 <= 20, in Line 2, checks whether i is less than or equal to 20, and the
statement in Line 4 updates the value of 1.

Consider the following C++ program segment:

i = 20; //Line 1
while (1 < 20) //Line 2
{
cout << i« " "; //Line 3
i =1+ 5; //Line 4
}
cout << endl; //Line 5

It is easy to overlook the difference between this example and Example 5-1. In this example, in
Line 1, i is set to 20. Because i is 20, the expression i < 20 in the while statement (Line 2)
evaluates to false. Because initially the loop entry condition, i < 20, is false, the body of
the while loop never executes. Hence, no values are output, and the value of i remains 20.

The next few sections describe the various forms of while loops.

Case 1: Counter-Controlled while Loops

Suppose you know exactly how many times certain statements need to be executed. For
example, suppose you know exactly how many pieces of data (or entries) need to be read.
In such cases, the while loop assumes the form of a counter-controlled while loop.
Suppose that a set of statements needs to be executed N times. You can set up a counter

while Looping (Repetition) Structure | 265

(initialized to O before the while statement) to track how many items have been read.
Before executing the body of the while statement, the counter is compared with N. If
counter < N, the body of the while statement executes. The body of the loop
continues to execute until the value of counter >= N. Thus, inside the body of the
while statement, the value of counter increments after it reads a new item. In this case,
the while loop might look like the following:

counter = 0; //initialize the loop control variable

while (counter < N) //test the loop control variable
{

counter++; //update the loop control variable

}

If N represents the number of data items in a file, then the value of N can be determined
several ways. The program can prompt you to specify the number of items in the file; an
input statement can read the value; or you can specify the first item in the file as the number
of items in the file, so that you need not remember the number of input values (items). This
is useful if someone other than the programmer enters the data. Consider Example 5-3.

Students at a local middle school volunteered to sell fresh baked cookies to raise funds to
increase the number of computers for the computer lab. Each student reported the number
of boxes he/she sold. We will write a program that will output the total number of boxes of
cookies sold, the total revenue generated by selling the cookies, and the average number of
boxes sold by each student. The data provided is in the following form:

studentName numOf BoxesSold

Consider the following program:

//Program: Counter-Controlled Loop

//This program computes and outputs the total number of boxes of
//cookies sold, the total revenue, and the average number of
//boxes sold by each volunteer.

#include <iostream> //Line 1
#include <string> //Line 2
#include <iomanip> //Line 3
using namespace std; //Line 4

int main () //Line 5

266 | Chapter 5: Control Structures Il (Repetition)

{ //Line 6
string name; //Line 7
int numOfVolunteers; //Line 8
int numOfBoxesSold; //Line 9
int totalNumOfBoxesSold; //Line 10
int counter; //Line 11
double costOfOneBox; //Line 12
cout << fixed << showpoint << setprecision(2); //Line 13

cout << "Line 14: Enter the number of "

<< "volunteers: "; //Line 14
cin >> numOfVolunteers; //Line 15
cout << endl; //Line 16
totalNumOfBoxesSold = 0; //Line 17
counter = 0; //Line 18
while (counter < numOfVolunteers) //Line 19
{ //Line 20
cout << "Line 21: Enter the volunteer’ s name"
<< " and the number of boxes sold: "; //Line 21
cin >> name >> numOfBoxesSold; //Line 22
cout << endl; //Line 23
totalNumOfBoxesSold = totalNumOfBoxesSold
+ numOfBoxesSold; //Line 24
counter++; //Line 25
} //Line 26
cout << "Line 27: The total number of boxes sold: "
<< totalNumOfBoxesSold << endl; //Line 27
cout << "Line 28: Enter the cost of one box: "; //Line 28
cin >> costOfOneBox; //Line 29
cout << endl; //Line 30

cout << "Line 31: The total money made by selling "
<< "cookies: $"
<< totalNumOfBoxesSold * costOfOneBox << endl; //Line 31

if (counter != 0) //Line 32
cout << "Line 33: The average number of "
<< "boxes sold by each volunteer: "

<< totalNumOfBoxesSold / counter << endl; //Line 33

else //Line 34
cout << "Line 35: No input." << endl; //Line 35

return 0; //Line 36

} //Line 37

Sample Run: In this sample run, the user input is shaded.

Line 14: Enter the number of volunteers: 5

Line 21: Enter the volunteer’ s name and the number of boxes sold: Sara 120

while Looping (Repetition) Structure | 267

Line 21: Enter the volunteer’ s name and the number of boxes sold: Lisa 128

Line 21: Enter the volunteer’ s name and the number of boxes sold: Cindy 359
Line 21: Enter the volunteer’ s name and the number of boxes sold: Nicole 267
Line 21: Enter the volunteer’ s name and the number of boxes sold: Blair 165

Line 27: The total number of boxes sold: 1039
Line 28: Enter the cost of one box: 3.50

Line 31: The total money made by selling cookies: $3636.50
Line 33: The average number of boxes sold by each volunteer: 207

This program works as follows. The statements in Lines 7 to 12 declare the variables used in the
program. The statement in Line 14 prompts the user to enter the number of student volunteers.
The statement in Line 15 inputs this number into the variables numOfvVolunteers. The
statements in Lines 17 and 18 initializes the variables totalNumOfBoxesSold and
counter. (The variable counter is the loop control variable.)

The while statement in Line 19 checks the value of counter to determine how
many students’ data have been read. If counter is less than numOfVolunteers, the
while loop proceeds for the next iteration. The statement in Line 21 prompts
the user to input the student’s name and the number of boxes sold by the student.
The statement in Line 22 input the student’s name in the variable name and the
number of boxes sold by the student into the variable numOfBoxesSold. The
statement in Line 24 updates the value of totalNumOfBoxesSold by adding
the value of numOfBoxesSold to the previous value and the statement in Line 25
increments the value of counter by 1. The statement in Line 27 outputs the total
number of boxes sold, the statement in Line 28 prompts the user to inputs the cost of
one box of cookies, and the statement in Line 29 inputs the cost in the variable
costOfOneBox. The statement in Line 31 outputs the total money made by selling
cookies, and the statements in Lines 32 through 35 output the average number of
boxes sold by each volunteer.

Note that totalNumOfBoxesSold is initialized to 0 in Line 17 in this program. In Line
22, after reading the number of boxes sold by a student, the program adds it to the sum of
all the boxes sold before the current number of boxes sold. The first numOfBoxesSold
read will be added to zero (because totalNumOfBoxesSold is initialized to 0), giving
the correct sum of the first number. To find the average, divide totalNumOfBoxesSold
by counter. If counter is 0, then dividing by zero will terminate the program and you
will get an error message. Therefore, before dividing totalNumOfBoxesSold by coun-
ter, you must check whether or not counter is 0.

Notice that in this program, the statement in Line 5 initializes the LCV counter to 0.
The expression counter < numOfVolunteers in Line 19 evaluates whether counter is
less than numOfVolunteers. The statement in Line 25 updates the value of counter.

268 | Chapter 5: Control Structures Il (Repetition)

Case 2: Sentinel-Controlled while Loops

You do not always know how many pieces of data (or entries) need to be read, but you
may know that the last entry is a special value, called a sentinel. In this case, you read
the first item before the while statement. If this item does not equal the sentinel, the
body of the while statement executes. The while loop continues to execute as long as
the program has not read the sentinel. Such a while loop is called a sentinel-
controlled while loop. In this case, a while loop might look like the following:

cin >> variable; //initialize the loop control variable
while (variable != sentinel) //test the loop control variable
{
cin >> variable; //update the loop control variable
}

The program in Example 5-3 computes and outputs the total number of boxes of cookies
sold, the total money made, and the average number of boxes sold by each student.
However, the program assumes that the programmer knows the exact number of
volunteers. Now suppose that the programmer does not know the exact number of
volunteers. Once again, assume that the data is in the following form: student’s name
followed by a space and the number of boxes sold by the student. Because we do not
know the exact number of volunteers, we assume that =1 will mark the end of the data.
So consider the following program:

//Program: Sentinel-Controlled Loop

//This program computes and outputs the total number of boxes of
//cookies sold, the total revenue, and the average number of
//boxes sold by each volunteer.

#include <iostream> //Line 1
#include <string> //Line 2
#include <iomanip> //Line 3
using namespace std; //Line 4
const string SENTINEL = "-1"; //Line 5
int main () //Line 6
{ //Line 7

string name; //Line 8

int numOfVolunteers; //Line 9

while Looping (Repetition) Structure | 269

int numOfBoxesSold; //Line 10
int totalNumOfBoxesSold; //Line 11
double costOfOneBox; //Line 12
cout << fixed << showpoint << setprecision(2); //Line 13

cout << "Line 14: Enter volunteers data ending "

<< "with -1: " << endl; //Line 14
totalNumOfBoxesSold = 0; //Line 15
numOfVolunteers = 0; //Line 16
cin >> name; //Line 17
while (name != SENTINEL) //Line 18
{ //Line 19

cin >> numOfBoxesSold; //Line 20
totalNumOfBoxesSold = totalNumOfBoxesSold

+ numOfBoxesSold; //Line 21

numOfVolunteers++; //Line 22

cin >> name; //Line 23

} //Line 24

cout << endl; //Line 25

cout << "Line 26: The total number of boxes sold: "

<< totalNumOfBoxesSold << endl; //Line 26
cout << "Line 27: Enter the cost of one box: "; //Line 27
cin >> costOfOneBox; //Line 28
cout << endl; //Line 29

cout << "Line 30: The total money made by selling "
<< "cookies: $"
<< totalNumOfBoxesSold * costOfOneBox << endl; //Line 30

if (numOfVolunteers != 0) //Line 31
cout << "Line 32: The average number of "
<< "boxes sold by each volunteer: "
<< totalNumOfBoxesSold / numOfVolunteers

<< endl; //Line 32

else //Line 33
cout << "Line 34: No input." << endl; //Line 34
return 0; //Line 35

//Line 36

270 | Chapter 5: Control Structures Il (Repetition)

Sample Run: In this sample run, the user input is shaded.

Line 14: Enter volunteers data ending with -1:
Sara 120

Lisa 128
Cindy 359
Nicole 267
Blair 165
Abby 290

Amy 190

Megan 450
Elizabeth 280
Meredith 290

Leslie 430
Chelsea 378
-1

Line 26: The total number of boxes sold: 3347
Line 27: Enter the cost of one box: 3.50

Line 30: The total money made by selling cookies: $11714.50
Line 32: The average number of boxes sold by each volunteer: 278

This program works as follows. The statements in Lines 8 to 12 declare the variables used in
the program. The statement in Line 14 prompts the user to enter the data ending with -1.
The statements in Lines 15 and 16 initialize the variables totalNumOfBoxesSold and
numOfVolunteers. The statement in Line 17 reads the first name and stores it in name.
The while statement in Line 18 checks whether name is not equal to SENTINEL. (The
variable name is the loop control variable.) If name is not equal to SENTINEL, the body of
the while loop executes. The statement in Line 20 reads and stores the number of boxes
sold by the student in the variable numOfBoxesSold and the statement in Line 21 updates
the value of totalNumOfBoxesSold by adding numOfBoxesSold to it. The statement
in Line 22 increments the value of numOfVolunteers by 1, and the statement in Line 23
reads and stores the next name into name. The statements in Lines 20 through 23 repeat
until the program reads the SENTINEL. The statement in Line 26 outputs the total number
of boxes sold, the statement in Line 27 prompts the user to input the cost of one box of
cookies, and the statement in Line 28 inputs the cost in the variable costOfOneBox. The
statement in Line 30 outputs the total money made by selling cookies, and the statements in
Lines 31 through 34 output the average number of boxes sold by each volunteer.

Notice that the statement in Line 17 initializes the LCV name. The expression name !=
SENTINEL in Line 18 checks whether the value of name is equal to SENTINEL. The
statement in Line 23 reinitializes the LCV name.

Next, consider another example of a sentinel-controlled while loop. In this example, the
user is prompted to enter the value to be processed. If the user wants to stop the program,
he or she can enter the sentinel.

while Looping (Repetition) Structure | 271

Telephone Digits

The following program reads the letter codes A to Z and prints the corresponding
telephone digit. This program uses a sentinel-controlled while loop. To stop the
program, the user is prompted for the sentinel, which is #. This is also an example of a
nested control structure, in which if...else, switch, and the while loop are nested.

//**

// Program: Telephone Digits
// This is an example of a sentinel-controlled loop. This
// program converts uppercase letters to their corresponding

// telephone digits.
//**

#include <iostream>

using namespace std;

int main ()

{
char letter; //Line 1

cout << "Program to convert uppercase "
<< "letters to their corresponding "
<< "telephone digits."™ << endl; //Line 2

cout << "To stop the program enter #."

<< endl; //Line 3
cout << "Enter a letter: "; //Line 4
cin >> letter; //Line 5
cout << endl; //Line 6
while (letter != "#'") //Line 7
{
cout << "The letter you entered is: "
<< letter << endl; //Line 8
cout << "The corresponding telephone "
<< "digit is: "; //Line 9
if (letter >= 'A' && letter <= 'Z") //Line 10
switch (letter) //Line 11
{
case 'A':
case 'B':
case 'C':
cout << 2 <<endl; //Line 12

break; //Line 13

| Chapter 5: Control Structures Il (Repetition)

case
case
case

case
case
case

case
case
case

case
case
case

case
case
case
case

case
case
case

case
case
case
case

}

else

IDI:
IEI:
IFI:
cout << 3 <<

break;

IGI:
IHV:
III:
cout << 4 <<

break;

IJI:
IKV:
ILI:
cout << 5 <<

break;

IMI:
INV:
'O':
cout << 6 <<

break;

lPl:
IQI:
IRI:
ISV:
cout << 7 <<

break;

ITI:
IUI:
IVV:
cout << 8 <<

break;

IWI:
le:
IYI:
IZI:
cout << 9 <<

cout << "Invalid

cout <<
<<
<<
<<
cout <<
<<

cout <<

"\nEnter another uppercase "

"corresponding telephone digit."

"letter to find its "

endl;

"To stop the program enter #."
endl;

"Enter a letter: ";

cin >> letter;

cout <<

endl;

} //end while

return 0;

endl;

endl;

endl;

endl;

endl;

endl;

endl;

input." << endl;

//Line
//Line

//Line
//Line

//Line
//Line

//Line
//Line

//Line
//Line

//Line
//Line

//Line

//Line
//Line

//Line
//Line
//Line

//Line
//Line

14
15

16
17

18
19

20
21

22
23

24
25

26

27
28

29
30
31

32
33

while Looping (Repetition) Structure | 273

Sample Run: In this sample run, the user input is shaded.

Program to convert uppercase letters to their corresponding telephone
digits.

To stop the program enter #.

Enter a letter: A

The letter you entered is: A

The corresponding telephone digit is: 2

Enter another uppercase letter to find its corresponding telephone digit.
To stop the program enter #.

Enter a letter: D

The letter you entered is: D

The corresponding telephone digit is: 3

Enter another uppercase letter to find its corresponding telephone digit.
To stop the program enter #.
Enter a letter: #

This program works as follows. The statements in Lines 2 and 3 tell the user what to do. The
statement in Line 4 prompts the user to input a letter; the statement in Line 5 reads and stores
that letter into the variable letter. The while loop in Line 7 checks that the letter is #. If
the letter entered by the user is not #, the body of the while loop executes. The statement in
Line 8 outputs the letter entered by the user. The if statement in Line 10 checks whether
the letter entered by the user is uppercase. The statement part of the if statement is the
switch statement (Line 11). If the letter entered by the user is uppercase, the expression
in the i f statement (in Line 10) evaluates to true and the switch statement executes; if the
letter entered by the user is not uppercase, the else statement (Line 27) executes. The
statements in Lines 12 through 26 determine the corresponding telephone digit.

Once the current letter is processed, the statements in Lines 29 and 30 again inform
the user what to do next. The statement in Line 31 prompts the user to enter a letter; the
statement in Line 32 reads and stores that letter into the variable 1etter. (Note that the
statement in Line 29 is similar to the statement in Line 2 and that the statements in Lines
30 through 33 are the same as the statements in Lines 3 through 6.) After the statement in
Line 33 (at the end of the while loop) executes, the control goes back to the top of the while
loop and the same process begins again. When the user enters #, the program terminates.

Notice that in this program, the variable letter is the loop control variable. First, it is
initialized in Line 5 by the input statement, and then it is updated in Line 32. The
expression in Line 7 checks whether letter is #.

NOTE In the program in Example 5-5, you can write the statements between Lines 10 and 28
using a switch structure. (See Programming Exercise 3 at the end of this chapter.)

Case 3: Flag-Controlled while Loops

A flag-controlled while loop uses a bool variable to control the loop. Suppose
found is a bool variable. The flag-controlled while loop takes the following form:

274 | Chapter b: Control Structures Il (Repetition)

found = false; //initialize the loop control variable
while (!found) //test the loop control variable
{

if (expression)
found = true; //update the loop control variable

}

The variable found, which is used to control the execution of the while loop, is called a
flag variable.

Example 5-6 further illustrates the use of a flag-controlled while loop.

Number Guessing Game

The following program randomly generates an integer greater than or equal to 0 and less
than 100. The program then prompts the user to guess the number. If the user guesses
the number correctly, the program outputs an appropriate message. Otherwise, the
program checks whether the guessed number is less than the random number. If the
guessed number is less than the random number generated by the program, the program
outputs the message “Your guess is lower than the number. Guess again!”; otherwise, the
program outputs the message “Your guess is higher than the number. Guess again!”. The
program then prompts the user to enter another number. The user is prompted to guess
the random number until the user enters the correct number.

To generate a random number, you can use the function rand of the header file
cstdlib. For example, the expression rand () returns an int value between 0 and
32767. Therefore, the statement:

cout << rand() << ", " << rand() << endl;

will output two numbers that appear to be random. However, each time the program is
run, this statement will output the same random numbers. This is because the function
rand uses an algorithm that produces the same sequence of random numbers each time the
program is executed on the same system. To generate different random numbers each time
the program is executed, you also use the function srand of the header file cstdlib. The
function srand takes as input an unsigned int, which acts as the seed for the algorithm.
By specitying different seed values, each time the program is executed, the function rand
will generate a different sequence of random numbers. To specify a different seed, you can
use the function time of the header file ctime, which returns the number of seconds
elapsed since January 1, 1970. For example, consider the following statements:

while Looping (Repetition) Structure | 275

srand (time (0));
num = rand() % 100;

The first statement sets the seed, and the second statement generates a random number
greater than or equal to 0 and less than 100. Note how the function time is used. It is
used with an argument, that is, parameter, which is 0.

The program uses the bool variable isGuessed to control the loop. The bool variable
isGuessed is initialized to false. It is set to true when the user guesses the correct
number.

//Flag-controlled while loop.
//Number guessing game.

#include <iostream>
#include <cstdlib>
#include <ctime>

using namespace std;
int main()

{

//declare the variables

int num; //variable to store the random
//number
int guess; //variable to store the number

//guessed by the user
bool isGuessed; //boolean variable to control

//the loop
srand (time (0)) ; //Line 1
num = rand() % 100; //Line 2
isGuessed = false; //Line 3
while (!isGuessed) //Line 4
{ //Line 5

cout << "Enter an integer greater"
<< " than or equal to 0 and "

<< "less than 100: "; //Line 6
cin >> guess; //Line 7
cout << endl; //Line 8
if (guess == num) //Line 9
{ //Line 10
cout << "You guessed the correct "
<< "number." << endl; //Line 11
isGuessed = true; //Line 12
} //Line 13
else if (guess < num) //Line 14

cout << "Your guess is lower than the "
<< "number.\n Guess again!"
<< endl; //Line 15

276 | Chapter 5: Control Structures Il (Repetition)

else //Line 16
cout << "Your guess is higher than "
<< "the number.\n Guess again!"

<< endl; //Line 17

} //end while //Line 18

return 0;

}
Sample Run: In this sample run, the user input is shaded.

Enter an integer greater than or equal to 0 and less than 100: 45

Your guess is higher than the number.
Guess again!
Enter an integer greater than or equal to 0 and less than 100: 20

Your guess is lower than the number.
Guess again!
Enter an integer greater than or equal to 0 and less than 100: 35

Your guess is higher than the number.
Guess again!
Enter an integer greater than or equal to 0 and less than 100: 28

Your guess is lower than the number.
Guess again!
Enter an integer greater than or equal to 0 and less than 100: 32

You guessed the correct number.

The preceding program works as follows: The statement in Line 2 creates an integer
greater than or equal to 0 and less than 100 and stores this number in the variable num.
The statement in Line 3 sets the bool variable isGuessed to false. The expression in
the while loop at Line 4 evaluates the expression !isGuessed. If isGuessed is
false, then !isGuessed is true and the body of the while loop executes; if
isGuessed is true, then !isGuessed is false, so the while loop terminates.

The statement in Line 6 prompts the user to enter an integer greater than or equal to 0
and less than 100. The statement in Line 7 stores the number entered by the user in the
variable guess. The expression in the if statement in Line 9 determines whether
the value of guess is the same as num, that is, if the user guessed the number correctly.
If the value of guess is the same as num, the statement in Line 11 outputs the message:

You guessed the correct number.

The statement in Line 12 sets the variable isGuessed to true. The control then goes
back to Line 3. Because done is true, !isGuessed is false and the while loop
terminates. If the expression in Line 9 evaluates to false, then the else statement in
Line 14 determines whether the value of guess is less than or greater than num and
outputs the appropriate message.

while Looping (Repetition) Structure | 277

Case 4: EOF-Controlled while Loops

If the data file is frequently altered (for example, if data is frequently added or deleted), it’s
best not to read the data with a sentinel value. Someone might accidentally erase the sentinel
value or add data past the sentinel, especially if the programmer and the data entry person are
different people. Also, it can be difficult at times to select a good sentinel value. In such
situations, you can use an end-of-file (EOF)-controlled while loop.

Until now, we have used an input stream variable, such as cin, and the extraction
operator, >>, to read and store data into variables. However, the input stream variable
can also return a value after reading data, as follows:

1. If the program has reached the end of the input data, the input stream
variable returns the logical value false.

2. If the program reads any faulty data (such as a char value into an int
variable), the input stream enters the fail state. Once a stream enters the fail
state, any further I/O operations using that stream are considered to be null
operations; that is, they have no effect. Unfortunately, the computer does
not halt the program or give any error messages. It just continues executing
the program, silently ignoring each additional attempt to use that stream. In
this case, the input stream variable returns the value false.

3. In cases other than (1) and (2), the input stream variable returns the
logical value true.

You can use the value returned by the input stream variable to determine whether the
program has reached the end of the input data. Because the input stream variable returns the
logical value true or false, in a while loop, it can be considered a logical expression.

The following is an example of an EOF-controlled while loop:

cin >> variable; //initialize the loop control variable
while (cin) //test the loop control variable
{

cin >> variable; //update the loop control variable

}

Notice that here, the variable cin acts as the loop control variable.

eof Function

In addition to checking the value of an input stream variable, such as cin, to determine
whether the end of the file has been reached, C++ provides a function that you can use
with an input stream variable to determine the end-of-file status. This function is called

278 | Chapter 5: Control Structures Il (Repetition)

eof. Like the I/O functions—such as get, ignore, and peek, discussed in Chapter 3—
the function eof is a member of the data type istream.

The syntax to use the function eof is:

istreamVar.eof ()

in which istreamvVar is an input stream variable, such as cin.

Suppose you have the declaration:

ifstream infile;

Further suppose that you opened a file using the variable infile. Consider the expression:
infile.eof ()

This is a logical (Boolean) expression. The value of this expression is true if the program has
read past the end of the input file, infile; otherwise, the value of this expression is false.

This method of determining the end-of-file status (that is, using the function eof) works
best if the input is text. The earlier method of determining the end-of-file status works
best if the input consists of numeric data.

Suppose you have the declaration:

ifstream infile;
char ch;

infile.open ("inputDat.dat") ;

The following while loop continues to execute as long as the program has not reached

the end of the file:
infile.get (ch);

while (!infile.eof())
{
cout << ch;
infile.get (ch);
}

As long as the program has not reached the end of the input file, the expression:
infile.eof ()

is false and so the expression:

!infile.eof ()

in the while statement is true. When the program reads past the end of the input file,
the expression:

infile.eof ()

while Looping (Repetition) Structure | 279

becomes true, so the expression:
linfile.eof ()

in the while statement becomes false and the loop terminates.

NOTE In the Windows console environment, the end-of-file marker is entered using Ctrl+z
(hold the Ctrl key and press z). In the UNIX environment, the end-of-file marker is
entered using Ctr+d (hold the Ctrl key and press d).

EXAMPLE 5-7

The following code uses an EOF-controlled while loop to find the sum of a set of
numbers:

int sum = 0;
int num;

cin >> num;

while (cin)

{

sum = sum + num; //Add the number to sum
cin >> num; //Get the next number

}

cout << "Sum = " << sum << endl;

EXAMPLE 5-8

Suppose we are given a file consisting of students’ names and their test scores, a number
between 0 and 100 (inclusive). Each line in the file consists of a student name followed by
the test score. We want a program that outputs each student’s name followed by the test
score followed by the grade. The program also needs to output the average test score for
the class. Consider the following program:

// This program reads data from a file consisting of students'

// names and their test scores. The program outputs each student's
// name followed by the test score followed by the grade. The

// program also outputs the average test score for all the students.

#include <iostream> //Line 1
#include <fstream> //Line 2
#include <string> //Line 3
#include <iomanip> //Line 4
using namespace std; //Line 5

280

| Chapter 5: Control Structures Il (Repetition)

int main()

{

//Declare variables to manipulate data
string firstName;
string lastName;
double testScore;
char grade = ' ';
double sum = 0;
int count = 0;

//Declare stream variables
ifstream inFile;
ofstream outFile;

//Open input file
inFile.open ("Ch5 stData.txt");

if (!inFile)
{
cout << "Cannot open input file. "
<< "Program terminates!" << endl;
return 1;
}
//Open output file
outFile.open("Ch5_stData.out");

outFile << fixed << showpoint << setprecision(2):;

inFile >> firstName >> lastName; //read the name
inFile >> testScore; //read the test score

while (inFile)

{
sum = sum + testScore; //update sum
count++; //increment count

//determine the grade

switch (static cast<int> (testScore) / 10)
{

case
case
case
case
case
case

= W hNhBEe o

(6]

grade = 'F';
break;

case 6:
grade
break;

1
v}

case 7:
grade
break;

I
(@]

//Line
//Line

//Line
//Line
//Line
//Line
//Line
//Line

//Line
//Line

//Line

//Line
//Line

//Line
//Line
//Line

//Line
//Line

Line
Line

//Line
//Line
Line
Line

//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line

//Line
//Line
//Line

//Line
//Line
//Line

o)

10
11
12
13

14
15

16

17
18

19
20
21

22

23

24
25

26
27
28
29

30
31
32
33
34
35
36
37
38
39

40
41
42

43
44
45

while Looping (Repetition) Structure | 281

case 8: //Line 46
grade = 'B'; //Line 47
break; //Line 48

case 9: //Line 49

case 10: //Line 50
grade = 'A'; //Line 51
break; //Line 52

default: //Line 53
cout << "Invalid score." << endl; //Line 54

} //end switch //Line 55

outFile << left << setw(1l2) << firstName
<< setw(l2) << lastName
<< right << setw(4) << testScore
<< setw(2) << grade << endl; //Line 56

inFile >> firstName >> lastName; //read the name Line 57

inFile >> testScore; //read the test score Line 58
} //end while //Line 59
outFile << endl; //Line 60
if (count != 0) //Line 61
outFile << "Class Average: " << sum / count
<<endl; //Line 62
else //Line 63
outFile << "No data." << endl; //Line 64
inFile.close(); //Line 65
outFile.close(); //Line 66
return 0; //Line 67
} //Line 68
Sample Run:
Input File:

Steve Gill 89

Rita Johnson 91.5
Randy Brown 85.5
Seema Arora 76.5
Samir Mann 73
Samantha McCoy 88.5

Output File:

Steve Gill 89.00 B
Rita Johnson 91.50 A
Randy Brown 85.50 B
Seema Arora 76.50 C
Samir Mann 73.00 C
Samantha McCoy 88.50 B

Class Average: 84.00

282 | Chapter 5: Control Structures Il (Repetition)

The preceding program works as follows. The statements in Lines 8 to 13 declare and
initialize variables needed by the program. The statement in Lines 14 and 15 declares
inFile to be an ifstream variable and outFile to be an ofstream variable. The
statement in Line 16 opens the input file using the variable inFile. If the input file does
not exist, the statements in Lines 17 to 21 output an appropriate message and terminate
the program. The statement in Line 22 opens the output file using the variable outFile.
The statement in Line 23 sets the output of floating-point numbers to two decimal places
in a fixed form with trailing zeros.

The statements in Lines 24 and 25 and the while loop in Line 26 read each student’s first
name, last name, and test score and then output the name followed by the test score
followed by the grade. Specifically, the statement in Lines 24 and 57 reads the first and last
name; the statement in Lines 25 and 58 reads the test score. The statement in Line 28
updates the value of sum. (After reading all the data, the value of sum stores the sum of all
the test scores.) The statement in Line 29 updates the value of count. (The variable
count stores the number of students in the class.) The switch statement from Lines 30
to 55 determines the grade from testScore and stores it in the variable grade. The
statement in Line 56 outputs a student’s first name, last name, test score, and grade.

The if...else statement in Lines 61 to 64 outputs the class average and the statements
in Lines 65 and 66 close the files.

The Programming Example: Checking Account Balance, available on the Web site
accompanying this book, further illustrates how to use an EOF-controlled while loop
in a program.

More on Expressions in while Statements

In the examples of the previous sections, the expression in the while statement is quite
simple. In other words, the while loop is controlled by a single variable. However, there
are situations when the expression in the while statement may be more complex.

For example, the program in Example 5-6 uses a flag-controlled while loop to imple-
ment the Number Guessing Game. However, the program gives as many tries as the user
needs to guess the number. Suppose you want to give the user no more than five tries to
guess the number. If the user does not guess the number correctly within five tries, then
the program outputs the random number generated by the program as well as a message
that you have lost the game. In this case, you can write the while loop as follows (assume
that noOfGuesses is an int variable initialized to 0):

while ((noOfGuesses < 5) && (!isGuessed))
{
cout << "Enter an integer greater than or equal to 0 and "
<< "less than 100: ";
cin >> guess;
cout << endl;

Programming Example: Fibonacci Number | 283

noOfGuesses+t++;
if (guess == num)
{

cout << "Winner!. You guessed the correct number."
<< endl;
isGuessed = true;
}
else if (guess < num)
cout << "Your guess i1s lower than the number.\n"
<< "Guess again!"™ << endl;
else
cout << "Your guess is higher than the number.\n"
<< "Guess again!" << endl;
} //end while

You also need the following code to be included after the while loop in case the user
cannot guess the correct number in five tries:

if (!isGuessed)
cout << "You lose! The correct number is " << num << endl;

Programming Exercise 16 at the end of this chapter asks you to write a complete C++
program to implement the Number Guessing Game in which the user has, at most, five
tries to guess the number.

As you can see from the preceding while loop, the expression in a while statement can
be complex. The main objective of a while loop is to repeat certain statement(s) until
certain conditions are met.

PROGRAMMING EXAMPLE: Fibonacci Number

Watch
the Video

So far, you have seen several examples of loops. Recall that in C++, while loops are
used when a certain statement(s) must be executed repeatedly until certain conditions are
met. Followingisa C++ program that uses a while loop to find a Fibonacci number.

Consider the following sequence of numbers:
i, 1, 2, 3, 5, 8, 13, 21, 34,

This sequence is called the Fibonacci sequence. Given the first two numbers of the
sequence (say, a; and ay), the nth number a,, n >= 3, of this sequence is given by:

ay = ap—1 + ay—2

Thus:
a3=a2+a1:1—|—1=2,
d4:d3+d2:2+1:3,

and so on.

PROBLEM
ANALYSIS
AND
ALGORITHM
DESIGN

Variables

284 | Chapter 5: Control Structures Il (Repetition)

Note that a, = 1 and a; = 1. However, given any first two numbers, using this
process, you can determine the nth number, a,n >= 3, of the sequence. We will
again call such a sequence a Fibonacci sequence. Suppose a, = 6 and a; = 3.

Then:
a3:az—1—a1:6+3:9;a4:a3+a2:9+6:15

Next, we write a program that determines the nth Fibonacci number given the first
two numbers.

Input The first two Fibonacci numbers and the desired Fibonacci number.

Output The nth Fibonacci number.

To find, say, the tenth Fibonacci number of a sequence, you must first find ay and ag,
which requires you to find a; and ag, and so on. Therefore, to find a;4, you must first
find as, a4, as, ..., ag. This discussion translates into the following algorithm:

Get the first two Fibonacci numbers.

2. Get the desired Fibonacci number. That is, get the position, 1, of
the Fibonacci number in the sequence.

3. Calculate the next Fibonacci number by adding the previous two
elements of the Fibonacci sequence.

4. Repeat Step 3 until the nth Fibonacci number is found.
5. Output the nth Fibonacci number.

Note that the program assumes that the first number of the Fibonacci sequence is less
than or equal to the second number of the Fibonacci sequence, and both numbers are
nonnegative. Moreover, the program also assumes that the user enters a valid value
for the position of the desired number in the Fibonacci sequence; that is, it is a
positive integer. (See Programming Exercise 12 at the end of this chapter.)

Because the last two numbers must be known in order to find the current
Fibonacci number, you need the following variables: two variables—say,
previousl and previous?2 to hold the previous two numbers of the Fibonacci
sequence; and one variable—say, current—to hold the current Fibonacci
number. The number of times that Step 2 of the algorithm repeats depends on
the position of the Fibonacci number you are calculating. For example, if you
want to calculate the tenth Fibonacci number, you must execute Step 3 eight
times. (Remember—the user gives the first two numbers of the Fibonacci
sequence.) Therefore, you need a variable to store the number of times Step 3
should execute. You also need a variable to track the number of times Step 3 has
executed, the loop control variable. You therefore need five variables for the data
manipulation:

int previousl; //variable to store the first Fibonacci number
int previous2; //variable to store the second Fibonacci number

Programming Example: Fibonacci Number | 285

int current; //variable to store the current
//Fibonacci number
int counter; //loop control variable

int nthFibonacci; //variable to store the desired
//Fibonacci number

To calculate the third Fibonacci number, add the values of previousl and previous2
and store the result in current. To calculate the fourth Fibonacci number, add the value
of the second Fibonacci number (that is, previous?2) and the value of the third Fibonacci
number (that is, current). Thus, when the fourth Fibonacci number is calculated, you
no longer need the first Fibonacci number. Instead of declaring additional variables, which
could be too many, after calculating a Fibonacci number to determine the next Fibonacci
number, current becomes previous2 and previous2 becomes previousl.
Therefore, you can again use the variable current to store the next Fibonacci number.
This process is repeated until the desired Fibonacci number is calculated. Initially,
previousl and previous?2 are the first two elements of the sequence, supplied by the
user. From the preceding discussion, it follows that you need five variables.

MAIN 1. Prompt the user for the first two numbers—that is, previousl and
ALGORITHM previous2.

Read (input) the first two numbers into previousl and previous?2.
Output the first two Fibonacci numbers. (Echo input.)

Prompt the user for the position of the desired Fibonacci number.

U

Read the position of the desired Fibonacci number into
nthFibonacci.
a. if (nthFibonacci == 1)
the desired Fibonacci number is the first Fibonacci number.
Copy the value of previousl into current.
b. else if (nthFibonacci == 2)
the desired Fibonacci number is the second Fibonacci number.
Copy the value of previous2 into current.

o

c. else calculate the desired Fibonacci number as follows:

Because you already know the first two Fibonacci numbers of
the sequence, start by determining the third Fibonacci number.

c.1. Initialize counter to 3 to keep track of the calculated
Fibonacci numbers.

c.2. Calculate the next Fibonacci number, as follows:
current = previous2 + previousl;

c.3. Assign the value of previous2 to previousl.

c.4. Assign the value of current to previous2.

c.5. Increment counter.

286 | Chapter 5: Control Structures Il (Repetition)

Repeat Steps c.2 through c.5 until the Fibonacci number you want is calculated.

The following while loop executes Steps c.2 through c¢.5 and determines the

nth Fibonacci number.

while (counter <= nthFibonacci)

{

}

current = previous?2 + previousl;
previousl = previous2;
previous2 = current;

counter++;

7. Output the nthFibonacci number, which is current.

COMPLETE PROGRAM LISTING

//***

// Authors:
//
// Program:

D.S. Malik

nth Fibonacci number

// Given the first two numbers of a Fibonacci sequence,

// program determines and outputs the desired number of the

// Fibonacci sequence.

//***

#include <iostream>

using namespace std;

int main ()

{

//Declare variables
int previousl;
int previous2;
int current;
int counter;
int nthFibonacci;

cout << "Enter the first two Fibonacci "

<< "numbers: "; //Step
cin >> previousl >> previous2; //Step
cout << endl;
cout << "The first two Fibonacci numbers are "

<< previousl << " and " << previous2

<< endl; //Step
cout << "Enter the position of the desired "

<< "Fibonacci number: "; //Step
cin >> nthFibonacci; //Step
cout << endl;
if (nthFibonacci == 1) //Step

current = previousl;

for Looping (Repetition) Structure | 287

else if (nthFibonacci == 2) //Step 6.b
current = previous2;

else //Step 6.c

{
counter = 3; //Step 6.c.1

//Steps 6.c.2 - 6.c.5
while (counter <= nthFibonacci)

{
current = previous2 + previousl; //Step 6.c.2
previousl = previous2; //Step 6.c.3
previous2 = current; //Step 6.c.4
counter++; //Step 6.c.5
} //end while
} //end else
cout << "The Fibonacci number at position "
<< nthFibonacci << " is " << current
<< endl; //Step 7

return 0;
} //end main

Sample Runs: In these sample runs, the user input is shaded.
Sample Run 1:
Enter the first two Fibonacci numbers: 12 16

The first two Fibonacci numbers are 12 and 16
Enter the position of the desired Fibonacci number: 10

The Fibonacci number at position 10 is 796
Sample Run 2:

Enter the first two Fibonacci numbers: 1 1

The first two Fibonacci numbers are 1 and 1
Enter the position of the desired Fibonacci number: 15

The Fibonacci number at position 15 is 610

for Looping (Repetition) Structure

The while loop discussed in the previous section is general enough to implement
most forms of repetitions. The C++ for looping structure discussed here is a specialized
form of the while loop. Its primary purpose is to simplify the writing of counter-controlled
loops. For this reason, the for loop is typically called a counted or indexed for loop.

288 | Chapter 5: Control Structures Il (Repetition)

The general form of the for statement is:

for (initial statement; loop condition; update statement)
statement

The initial statement, loop condition, and update statement (called for
loop control statements) enclosed within the parentheses control the body (statement)
of the for statement. Figure 5-2 shows the flow of execution of a for loop.

initial
statement
|<

: |

o update
true —— NI —>

loop
condition

|
false

|
®
l

FIGURE 5-2 for loop

The for loop executes as follows:

1. The initial statement executes.

2. The loop condition is evaluated. If the 1oop condition evaluates
to true:

i. Execute the for loop statement.
ii. Execute the update statement (the third expression in the parentheses).

3. Repeat Step 2 until the 1loop condition evaluates to false.

The initial statement usually initializes a variable (called the for loop control, or
for indexed, variable).

In C++, for is a reserved word.

NOTE As the name implies, the initial statement in the £ox loop is the first statement to
execute; it executes only once.

for Looping (Repetition) Structure | 289

The following for loop prints the first 10 nonnegative integers:

for (i = 0; i < 10; i++)
cout << 1 << " ",
cout << endl;

The initial statement, i = 0;, initializes the int variable 1 to 0. Next, the loop
condition, i < 10, is evaluated. Because 0 < 10 is true, the print statement executes and
outputs 0. The update statement, i++, then executes, which sets the value of 1 to 1.
Once again, the 1oop condition is evaluated, which is still true, and so on. When 1
becomes 10, the loop condition evaluates to false, the for loop terminates, and
the statement following the for loop executes.

A for loop can have either a simple or compound statement.

The following examples further illustrate how a for loop executes.

1. The following for loop outputs Hello! and a star (on separate lines)
five times:

for (i = 1; 1i <= 5; i++)

{
cout << "Hello!" << endl;
cout << "*¥" << endl;

}

2. Consider the following for loop:

for (i = 1; 1i <= 5; i++)
cout << "Hello!" << endl;
cout << "¥" << endl;

This loop outputs Hello! five times and the star only once. Note that
the for loop controls only the first output statement because the two
output statements are not made into a compound statement. Therefore,
the first output statement executes five times because the for loop body
executes five times. After the for loop executes, the second output
statement executes only once. The indentation, which is ignored by the
compiler, is nevertheless misleading.

290 | Chapter 5: Control Structures Il (Repetition)

The following for loop executes five empty statements:

for (i = 0; 1 < 5; i++); //Line 1
cout << "*" << endl; //Line 2

The semicolon at the end of the for statement (before the output statement, Line 1)
terminates the for loop. The action of this for loop is empty, that is, null.

The preceding examples show that care is required in getting a for loop to perform the
desired action.

The following are some comments on for loops:

e Ifthe loop condition isinitially false, the loop body does not execute.

e The update expression, when executed, changes the value of the
loop control variable (initialized by the initial expression), which even-
tually sets the value of the loop condition to false. The for loop
body executes indefinitely if the 1oop condition is always true.

e C++ allows you to use fractional values for loop control variables of the
double type (or any real data type). Because different computers can
give these loop control variables different results, you should avoid using
such variables.

e A semicolon at the end of the for statement (just before the body of the
loop) is a semantic error. In this case, the action of the for loop is empty.

e In the for statement, if the loop condition is omitted, it is assumed
to be true.

e In a for statement, you can omit all three statements—initial
statement, loop condition, and update statement. The follow-
ing is a legal for loop:

for (;7)
cout << "Hello" << endl;

This is an infinite for loop, continuously printing the word Hello.

Following are more examples of for loops.

You can count backward using a £or loop if the for loop control expressions are set correctly.

For example, consider the following for loop:

for (i = 10; i >= 1; i--)
cout << " " << 1i;
cout << endl;

for Looping (Repetition) Structure | 291

The output is:
10987654321

In this for loop, the variable i is initialized to 10. After each iteration of the loop, i is
decremented by 1. The loop continues to execute as long as 1 >= 1.

You can increment (or decrement) the loop control variable by any fixed number. In the
following for loop, the variable is initialized to 1; at the end of the for loop, i is
incremented by 2. This for loop outputs the first 10 positive odd integers.

for (1 =1; 1 <= 20; 1 =1 + 2)
cout << " " << i;
cout << endl;

Suppose that i is an int variable.

1. Consider the following for loop:
for (1 = 10; 1 <= 9; i++)
cout << i << " ";
cout << endl;

In this for loop, the initial statement sets i to 10. Because initially the loop
condition (i <= 9) is false, nothing happens.

2. Consider the following for loop:
for (i = 9; i >= 10; i--)
cout << 1 << " ";
cout << endl;

In this for loop, the initial statement sets 1 to 9. Because initially the loop condition
(i >=10) is false, nothing happens.

3. Consider the following for loop:

for (1 = 10; i <= 10; i++) //Line 1
cout << 1 << " v; //Line 2
cout << endl; //Line 3

In this for loop, the initial statement sets 1 to 10. The loop condition (i <= 10)
evaluates to true, so the output statement in Line 2 executes, which outputs 10.

292

| Chapter 5: Control Structures Il (Repetition)

Next, the update statement increments the value of 1 by 1, so the value of i becomes
11. Now the loop condition evaluates to false and the for loop terminates. Note
that the output statement in Line 2 executes only once.

Consider the following for loop:

for (i = 1; i <= 10; i++); //Line 1
cout << 1 << " ", //Line 2
cout << endl; //Line 3

This for loop has no effect on the output statement in Line 2. The semicolon at the
end of the for statement terminates the for loop; the action of the for loop is thus
empty. The output statement is all by itself and executes only once.

Consider the following for loop:
for (1 =1; ; i++)
cout << 1 << " ";
cout << endl;

In this for loop, because the Loop condition is omitted from the for statement,
the loop condition is always true. This is an infinite loop.

In thi