

 C++: Introduction and
Professional Programming

FRED RAY

Table of Contents

1 The first program 1
1.1 What is a program ?? 1
1.2 The “Hello World” program in C3
1.3 The “Hello World” program in C++4
1.4 Internal details when programming 5
1.5 designations in the lecture 5
1.6 Newer C++ compilers 6

2 Simple data types 7
2.1 variable 7

2.1.1 inflation variables7
2.1.2 Designation of variables 8th

2.2 constants 9
2.2.1 integer constants 9
2.2.2 floating point constants 9
2.2.3 Character constants (character constants) 9
2.2.4 Character string constants (string constants)9
2.2.5 Symbolic Constants (Macros) 10
2.2.6 Constant with variable names 11

3 operators 13
3.1 assignment operator 13
3.2 Arithmetic Operators 14

3.2.1 un ̈are operators14

3.2.2 I ̈are operators14
i

ii TABLE OF
CONTENTS

3.3 comparison operators 15
3.4 Logical Operators 17
3.5 Bit-Oriented Operators 17

3.5.1 un ¨are bit-oriented
e operators 17

3.5.2 Am ¨are bit-oriented
e operators 18

3.6 Operations with predefined functions 19
3.6.1 Mathematical Functions 19
3.6.2 functions nfu ̈ right

character strings 21
3.7 Increment and decrement operators 22

3.7.1 Pr ¨afixed notation 22
3.7.2 postfix notation 22

3.8 Compound assignments 22
3.9 W morenow addition e

constants 23

4 control
structures 25

4.1 Simple instruction 25
4.2 block 25
4.3 branches 27
4.4 derightZdialing cycle 33
4.5 repellent cycle 38
4.6 Non-shedding cycle 38
4.7 Multiway selection (switch statement) 42

4.8 Incededcontrolbresult 43

5 Structured data
types 45

5.1 fields 45
5.1.1 One-dimensional fields 45
5.1.2 Multidimensional Fields 51

5.2 structures 52
5.3 union 56
5.4 record choiceyp 57
5.5 General type definitions 58

6

pointer
59

TABLE OF CONTENTS iii

6.1 agreement of pointers 59
6.2 pointer operators 60
6.3 Pointers and Arrays - Pointer Arithmetic61
6.4 Dynamic arrays using pointer variables62
6.5 pointers to structures 67
6.6 reference 68

7 functions 71
7.1 definition and declaration 71
7.2 parameters bresult73
7.3 Ru ¨ckg valuesbefore n

functions 74
7.4 fields as parameters 76
7.5 Declarations and header files, libraries79

7.5.1 Example: printvec 80

7.5.2 Example: students 82
7.5.3 A simple library using student as an example83

7.6 The main program 84
7.7 Recursive Functions 86
7.8 egg nbigbiggers Example:

bisection 86

8 The data type class 93
8.1 Class declaration data and methods94
8.2 The constructors 94
8.3 The Destroyer 96
8.4 The assignment operator 96
8.5 The print operator 97
8.6 data encapsulation 99

9 File input and output 103
9.1 Copy files 104
9.2 Data input and output via file105
9.3 Switching input/output 105

10 output formatting 107

IV TABLE OF
CONTENTS

11 tips and
tricks 109

11.1 Pr aprocessor command
109

11.2 timing in the program 110
11.3 profiling 111
11.4 debugging 111

Chapter 1

The first program

1.1 What is a program ??

Actually, everyone already knows programs, but
one often understands different contents by them.

• party manifesto ↔ ideas

• theater program ↔ scheduling

• music score ↔ strict sequence of instructions

• Windows program↔ interactive action with the computer

programnisttheresLo¨senbeforenGave
upinouchfenm computermediums ownSoftware
and includes all four aspects in the above list.
Aet typicalu¨ exerciseebcomplythe fol lowingnSentence:

1

2 CHAPTER 1. THE FIRST
PROGRAM

What should I do ??

ideaim head or on paper. (What should the computer do?)

program idea

ideafu ↓̈rightcomputer
processing
Formulate idea in↓ a programming language.
source file fu¨right the
computerandtranslation Zen

Draft. (How can the computer realize the idea?)

Edit source text/source file. (What expressions may I use?)

Compile [and link] file. (translation into processor language)

Structogram

program code

exportaudibleprogram

program
↓
 mcode

exportearRemarks:

Test program with different data sets

program test

1. The learning process in programming typically
proceeds from the bottom up in the previous
overview.

2. softwaree =exportaudiblesProgram + program code
+ ideas

Tmore typicalOnfcomment:aberightI meant that completely
differently.

1.2. THE “HELLO WORLD” PROGRAM IN
C 3

1.2 The “Hello World” program in C

idea: The simplest program that only writes a

message on the screen.

source code (HelloWorld.c):

•

Start, end of comment

predefined
functions/Variab
les/ constants

• Beginning of the main program
• simple instruction

•

 block statementsource code inputand

compile, execute programear:

0. Turn on computer, log in
Log in:
passwd:

1. Tterminalor file managerOopenand change to

the working directorysel.
LINUX> cd progs

2. Enter source text in the source file, editor of your own choice.

LINUX> editHelloWorld.c or
LINUX> xemacs HelloWorld.c.

3. Compile source file. LINUX> gcc HelloWorld.c

4. programmexportear.

LINUX>a.out
or

LINUX>./a.out
or

WIN98> ./a.exe

Remarks:

LINUX> gcc HelloWorld.c
generated oneexportaudiblesProgram with the default name
a.out .

casestheresexportaudibleeProgram, e.g. myprog should be
called:
LINUX> gcc -o myprog
HelloWorld.c LINUX>
myprog

Tueeconcretee command line to the
compileistuh¨ngiGbeforemvconsiderdeten
compiler.

4 CHAPTER 1. THE FIRST
PROGRAM

1.3 The “Hello World” program in C++

Idea and
structogram as in section 1.2
source code (HelloWorld.cc):

comment to line-
in

predefined
classes and
methods

• Beginning of the main
program

• simple instruction
•

 block statementsource code
inputU.Ni.ecompile, execute
programear:

0./1. as in § 1.2.
2. Edit source file.

LINUX> edit HelloWorld.cc

3. Compile source file.
LINUX> g++ HelloWorld.cc

4.

programmexpo
rtear.
LINUX>a.out

or
LINUX>./a.out

orWIN
98> ./a.exe

Remarks:

ofrightC source code of HelloWorld.c can also be
written in C++ andbreplacedwill:
LINUX> g++ HelloWorld.c
However, the source text line #include
<stdio.h> is then absolutely necessary.

• C instructionsare a subset of the C++ instructions.
• The C comment/* */ can also be used in C++.

ofrightc++ how // goortnot to the
syntax of C andshould therefore not be used in
C programs. Otherwise there is a portability
problem, ie not every C compiler can compile
the source code.

Programming tip:

Esgivet(nearly)alwaysrightmehrightals
oneMonequalsince one ideaim computer
programto realize.
=⇒ Find your own programming style (and improve it).

1.4. INTERNAL DETAILS WHEN
PROGRAMMING 5

1.4 Internal details when programming

derighteasy geachangesecallfto compile
LINUX> g++ -v HelloWorld.cc
generateda layoungereScreen output showing
several stages of compilingrens indicates. Here are
some tips on how to look at each phase to better
understand the process:

a) Preprocessing:

header files(*.hh and *.h) are added to the
source fileGt(+ macrodefinitions, conditional
compilation)
LINUX> g++ -E HelloWorld.cc > HelloWorld.ii
The addition > HelloWorld.ii directs the screen
output to the HelloWorld.ii file. This
HelloWorld.ii file can be viewed with an editor
and is a long C++ source code file.

b) ü bsubstitutein assembly code:

Here a source text file in the (processor-
specific) programminglanguage assembler
generated.
LINUX> g++ -S HelloWorld.cc
The resulting HelloWorld.s file can be viewed
with the editor.

c) Generate object code:

Now a file is created which contains the direct
control commands, ie numbers, for the
processor.

LINUX> g++ -c HelloWorld.cc
The file HelloWorld.o can no longer be viewed
in the normal text editor, but with
LINUX> hex HelloWorld.o

d) links:

Vbindall object files and necessary libraries for
executionMr-ble program a.out .
LINUX> g++ HelloWorld.o

1.5 designations in the lecture

Commands in a command line under LINUX:
LINUX> g++ [-o myprog] file name.cc
The square brackets [] mark optional parts in

commands, commandsor definitions. Each file
name consists of the free waavailableBase
name (file name) and the suffix (.cc) which
identifies the file type.

6 CHAPTER 1. THE FIRST
PROGRAM

• Some file types after

the
suffix:SuffixFileTyp
e

c C source file
. H C header file (also C++), source

file with predefined program
modules

.cc[.cpp] C++ source code file

.hh[.hpp]C++ -Header file

. O object file

.a Library file (Library)

A
statementhow < type> means that
this placeholder must be replaced by an
expression of the appropriate type.

1.6 Newer C++ compilers

Since the first version of this script, newer
versions of the header files are available alongside
the old header files, such as iostream instead of
iostream.h. In some cases compilers like g++ then
deliver annoying, multi-line warnings when
compiling the source text on page 4. This error
message can be removed using LINUX> g++ -
Wno-deprecated HelloWorld.cc
oppress¨cctwearth.

atinright(recommended)
use of the new header files achanget
himselfourright smallprogram in :

I wantinnscopee operator, please refer8 do not
have to write down every timeeat,henceI prefer
the variant:

Chapter 2

Simple data types

2.1 variable

2.1.1 variable definition

Every meaningful program processes data in some form.
This data is saved in variables.

Tueevariable i)is a symbolic
representationsentation(identifier/name)
fu¨rightennstorage space of data.

ii) is described by type and storage class.
iii) The contents of the variables, ie the data in

the memory space, change during program
execution.

General form of variable declaration:
[< storage class >] <type> <identifier1> [, identifier2] ;

TypeMemory
Content val
uesto bytes (g++)

char 1 Character sign 'H', 'e', 'n'

boolean 1 boolean variable false, true [C++ only]

internal 4-32767.2 31

short [int]2whole Numbers-32767

long [int]4-32767.2 31

float 4 Floating point numbers 1.1, -1.56e-32
double81.1, -1.56e-32, 5.68e+287

unsigned[int] 4 of coursecommone
numbers 32767,32769,23 1 1

long long [int]8whole Numbers2 31,
263 1
longdouble 12 Floating point numbers 5.68e+287, 5.68e+420

7

Remarks:
• Character data stores exactly one ASCII or special

character.

The memory requirement of
types of the integer group (int) can depend on the
compiler and the operating system (16/32 bit). It is
therefore advisable to read the relevant compiler
instructions or to determine the actual number of
bytes required with the sizeof operator using
sizeof(<type>) or sizeof(<variable>). See also
the following example:

Wirightare usually the base type int fu¨rightthe
appropriate subrange of integers and unsigned int
fu¨rightn / Aof thecommone
numbersvuse.theMarking unsigned can also be
linkedcan be used with other integer types.

2.1.2 Designation of variables

Variable names start with letters or

underscores, the following characters can also be
numbers. The use of spaces and operator characters (
3) in names is not permitted, nor are variable names
allowed to be keywords of the C++ syntax (see Ref.).

C/C++ is case sensitive, ie,
ToteHosen and toteHosen are different identifiers!

According to the original C standard, the first 8
characters of a variable identifier are significant,
ie a2345678A and a2345678B would no longer be
perceived as different identifiers. Compilers now
see more characters as significant (C9X standard:
63 characters).

2.2 constants

Most programs, including HelloWorld.cc, use
unchangeable values, so-called constants, during
the course of the program.

2.2.1 integer constants

Decimal constants (base10): 100 // int; 100
512L// long; 512
128053 // long; 128053

octal constants(Base 8): 020// int; 16
01000L // long; 512
0177// int; 127

Hexadecimal constants (base16): 0x15 // int; 21
0x200// int; 512
0x1ffffl // long; 131071

2.2.2 floating point constants

Floating point constants are always
interpreted as double. Some examples
infollowing: 17631.0e-78

1E+10 // 1000000000
0

1. // 1
.78 // 0.78
0.78

-.2e-3 // -0.0002
-3.25

2.2.3 character constants(character constants)

The character constant contains the character between the two ' :

'a', 'A', '@', '1'// ASCII
character
'' // spaces
'_'//underline/underscore
'\'' // prime sign '
'\\'// backslash character \
'\n'// new line
'\0'// Null character NUL

2.2.4 string constants(string constants)

Thestringincludesthecharactersbetweenthetwo

 " :
"Hello World\n"
""// empty string
"A"//String "A"

Each character string is automatically
terminated with the (character) character
'\0'("Hey,hererightHortinright thongouchf!”).thererightist
'A'unequalH "A",wmooseconsists of the characters 'A' and
'\0' and thus 2 bytes for storagebOnerequired.

2.2.5 Symbolic Constants (Macros)

If one of the constants used in the previous sections is
required more than once, a symbolic name is assigned to
this constant, e.g
#define NL '\n'
#defineN5

#defineHELLO"Hello World\n"
or in general
#define<identifier> <constant>
Remarks:

ofrightPrëprocessrightreplaces every occurrence of in the

rest of the source code
<identifier> with <constant>, ie, off

cout << HELLO;

will

cout << "Hello World\n";

ü usuallyironno lower-case letters are used in these
identifiers because, for example, MAX AUTO is then
immediately recognizable as a symbolic constant.

2.2.6 Constant with variable names

wei.ea variable declarationadditionalHwith the

ending¨sselwortconst geis marked, this variable
can only be initialized in the declaration part and
never again afterwards, ie it acts as a constant.

difference:
#define N 5 Eswill no disk space fu¨rightN
benorequired,since N in ge

all source code is replaced by 5.
const int N =5; Variable N is saved, the program works with
it

her.

Chapter 3

Expressione,Operators
and mathematical
functions

• expression¨ckeconsist of operands and operators.

• arevariables, constantsorrightexpression again¨cke.

• operators fuearnActions with operands.

3.1 assignment operator

The assignment operator <operand_A> =
<operand_B> assigns the value of the right
operand to the left operand, which must be a
variable.
For example, in the result of the statement sequence

the value of x is 0 and the value of y is 4. where x,
y, 0,x+4 operands, where the latter is also an
expression consisting of the operands x, 4 and the
operator +. Both x = 0 and y = x + 4 are
expressions. First the trailing semicolon ; converts
these expressions into statements to be executed!

Esk̈onnenalsoHmultiple assignments
occur. The following three assignments are
aequivalent.

13

3.2 arithmeticoperators

3.2.1 U.N äreoperator

atwel lren operatorskickstonly one operand.

operatorDescriptionExample
- negation -a

3.2.2 I ̈areoperators

atamaren operatorstwo operands occur. The result type of the
operation ha¨ngtbeforenenn operatorsaway.

operato
r

description example

+ addition b + a
- subtraction b - a
* multiplication b * a
/ Division (! with integer

values !)
b/a

% remainder in integer division b % a

Dividing integers calculates the integer part of the
division, ie 8 / 3 returns 2 as the result. However, if the result is
2.666666, at least one of the operators must be converted to a
floating-point number, as can be seen in the example.

3.3. COMPARISON OPERATORS 15

Concerning.inrightpriori ty rulenwas¨right
operators may beouchfyoue
literaturevprovedyoueoldThe rule “point calculations
before dash calculations” also applies in C/C++.
Analogueto thebecome school expr¨ckein round brackets (
<expression>) firstcalculated.

3.3 comparison operators

Vcomparison operatorsare bina¨reoperators. The result
value is always oneInteger value, where FALSE returns 0
and TRUE returns non-zero.

operato
r

description example

> bigsweeter b > a
>= bigsweetrightorrightsame b >= 3.14
< smaller a <b/3 Ex330.cc
<= Smaller or equal b*a <= c
== equal (! with floating point

numbers!)
a == b

!= not equal (! with floating point
numbers!)

a != 3.14

A typical error occurs when testing for equality by
using instead of theequalsoperators == the
assignment operator = is written. The compiler
accepts both source texts, possibly (depending on
the compiler) a warning is issued if the code is
incorrect.

in theincorrectn codekickstthe
unknownwisheNebeffecton,thereßenrightWero
f the variable i in the test geat thet will, woweari.e
following,correct code nonehas side effects.

3.4. LOGICAL OPERATORS 17

3.4 Logical Operators

Esgivetnowright aandn / Arenlogicaln Operator:

operator description example

! logical negation ! (3>4) // TRUE

U.Ni.etwo bina¨relogicale Operators:
operato
r

description example

&& logicalAND (3>4)&& (3<=4
)

// FALSE

|| logical OR (3>4) || (3<=4
)

// TRUE

Tueetruth tables fu¨rightthe logical AND and
the logical OR areknown from algebra (otherwise, see
literature).

3.5 bit-orientedoperators

eggn bitis the smallest information unit with exactly two mosamen conditionfind:

wouldticëscht bit set

≡
 (0

≡
 (0

false true

A byte consists of 8 bits, so a short int number is 16 bits
long. WhenOperators in bit operations usually occur in
integer expressions¨ckeon.

3.5.1 U.Närebit-oriented operators

operatorDescriptionExample
~ binaovercomplement,bitwironnegat ionnof the operand ~k

3.5.2 Amärebit-oriented operators

operatorDescriptionExample
& bitwise AND theoperands k & l

| bitwiseOR k | l
^ bitwise exclusiveOR k^l

<< Left shift bits from
<op1> by <op2> digits

>> Right shift of bits from
<op1> by <op2> digits

k<<2// = k*4

k >>2// = k/4

Truth table:x an
d

x & and x | and x^y

0 0 0 0 0
0 L 0 L L
L 0 0 L L
L L L L 0

These operators are demonstrated in the following
examples:

l = 5; // 0..000L0L = 5
k = 6; // 0..000LL0 = 6

TueeBit operations are nuplusHwhen testing
whether an even or odd in-terger number is
available. The least significant bit can be used with
integer numbers to differentiate between even and
odd numbers (see also the bit representation of the
numbers 5 and 6 in the above code). Therefore, if
this bit is ORed with a set bit, the least significant
bit remains unchanged for odd numbers. This is
exploited in the following code.

3.6 Operations with predefinedfunctions

3.6.1 Mathematicalfunctions

The header file math.h contains, among other things,
the definitions of the mathematical functions and
constants summarized in Table 3.1:
Rounding a real number x can be achieved with
ceil(x+0.5) (ignoring the rounding rules in eg, 4.5).

Function/ConstantDescription

square(x) square rootbeforenx:√2 x (x 0)
exp(x) ex
log(x) of courselocalright logarithmbeforenx:loge x (x
> 0)
pow(x,y) Exponentiation (x > 0 if y is not an integer)

fabs(x) absolute value of x: x

fmod(x,y) real remainder of x/y(y = 0)

cell(x) n / Anexteal le number x

floor(x) n / Anexteal le number x

sin(x), cos(x), tan(x) trigonometric functions
asin(x),acos(x) trig inverse functions
(x [1, 1])assigning(x) trig inverse
function

M_E Euler's number e
M_PI p

Table 3.1: Mathematical functions

foot¨rightyoue PermittedässigsinceThe programmer is
responsible for the operations, ie the domain of the arguments.
Otherwise program aborẗwhichor produce nonsensical results.

The functions from math.h are stored in a special mathematical
library, so the compiling and linking command must take this
library libm.a into account, ie
LINUX> g++ Ex361.cc [-lm]

3.6.2 functionsnfu¨rightcharacter strings

The header file string.h contains, among other
things, the definitions of the following functions for
strings:

FunctionDescription
strcat(s1,s2)Attachmentlengthnbeforen s2an s1
strcmp(s1,s2)Lexicographical comparison of strings s1
and s2 strcpy(s1,s2) Copies s2 to s1
strlen(s) Number of characters in string s (= sizeof(s1)-1)
strchr(s,c) Finds character c in string s

tabell3.2: Classic functions fu¨rightthongs

detailsandbhethese functions (and others) ko¨nenby means of
LINUX> man 3
string LINUX> man

strcmp can be
obtained.

3.7 Increment and decrement operators

3.7.1 Präfix notation

3.7.2 postfix notation

Pre¨-U.Ni.epostfixed notation should
economicalvusedwearth,mostlytbusedone
thisefu¨rightan index variable in cycles (§ 4).

3.8 Compound assignments

value assignmentsthe form

<lvalue> = <lvalue> <operator> <expression>

knockout¨nen to

verkurtwil l .

<lvalue> <operator>= <expression>

Here <operator> ∈ {+,-,*,/,%,&,|,^,<<,>>} from § 3.2
and § 3.5 .

3.9. OTHER USEFUL CONSTANTS 23

3.9 Continueenow¨additionalconstants

foot¨right system dependentpendinge number
ranges,Exactlyopportunitiesetc.
istyoueselectionlenrightfol-ing constants quite helpful.

FunctionDescription
FLT_DIG numberlgoodvalidrightdeci
mals fu¨rightfloatFLT_MIN Smallest
representablepositive number
FLT_MAX
bigate,representableepositive
numberFLT_EPSILON Smallest positive
number with 1.0 + ε = 1.0

(Job advertisementfake)
DBL_ howifinfu¨rightdouble

LDBL_ howifinfu¨rightlong doubles
Table 3.3: A few constants from float.h

FunctionDescription
INT_MINSmallest representable
integer number
INT_MAX bigate,representableep
ositive integer SHRT_
howif infu¨rightshort int

LONG_ howifinfu¨rightlon
g int
LLONG_ howifinfu¨righ
tlong long int

Table 3.4: A few constants from limits.h

Wmoreconstants knockout¨nenunder the gabusynLinux
distributions di-directly in the files /usr/lib/gcc-lib/i686-pc-
linux-gnu/3.2.3/include/float.h and
/usr/include/limits.hto be checked. The corresponding
header files can also be created with the command
LINUX> find /usr -name float.h -print
be searched.

Chapter 4

control structures

4.1 Simple instruction

A simple statement is made up of an expression
and the semicolon at the end of a statement:

<expression> ;
Examples: cout << "Hello World"

<< endl; i = 1 ;

4.2 block

The block (also compound statement) is a
summary of agreements and statements using
curly brackets:

{
<statement_1>

...
<statement_n>

}

25

Structogram:

In C, the declaration part must immediately

follow the beginning of the block. In C++ you
canseveraleVparts of the agreementim block
exist, shehimeatnnowrightbefore
enrightrespective first use of the variable
names. From gru¨nden derightHowever, this
should not be exploited for the sake of clarity
in the program.

• The closing bracket at the end of the block “}” is not
followed by a semicolon.

• A block can always be used in place of a statement.

• Blo¨ckekönnenbanyinto each otherrightbe nested.

The variables declared in a block
are only visible there, ie the variable does not
exist outside the block (locality). Conversely,
variables of the superordinate block can be
accessed.

4.3 branches

The general form of branching (also alternative) is
if (<logical expression>)

<statement
_A> else

<statement_B>
U.Ni.e e.gchoicetin turns in turnalsapplice. deright else
-Branchcannwignoredbecome (simple alternative).
Structogram:

As is so often the case, a concrete problem can be
programmed in various ways.

Example: We consider the calculation of the Heaviside
function

y(x)= 1x ≥ 0
0x <0

and present four variants of implementation.

Option A: simple alternative

variant b: dual alternative

variante c:double alternative with Blo¨ckin

variant d: decision operator.
Stepping in a double alternativein each branch
only one value assignment to the same variable (as
in versions b) and c)), then the decision operator
<log. expression> ? <expression A> : <expression B>

be used.
Example: Another example is the calculation of
the signum function (sign function)

y(x) =

1 x >0
0 x= 0
��-1x < 0

and we present several
variants of implementation.
Structogram:

We consider two implementation variants, the
framework program is identical to the framework
program on page 28.

Option A: nesting of alternatives
varianteb:casesenright else branchnowrightouchs
onewfester if-else statementbe-stands, variant a can be
slightly modified.

In general, such a multipath decision can be
if (<logical expression_1>)

<statement_1>
else if (<logical expression_2>)

<instruction_2>
...

else if (<logical expression_(n-1)>)
<statement_(

n-1)> else
<statement_n>

written, with the else branch being optional.

Example: Determining the minimum
and maximum of two numbers to be entered.
Structogram:

Example: Determining the
minimum of three numbers to be entered.
Structogram:

4.4 derightZcounting cycles(for loop)

At theZacooling cyclesstands for the number of
cyclesufea priori, thefracture test is done before
running a cycle. The general form is

for (<expression_1>; <expression_2>; <expression_3>)
<statement>

Ambest be the zacooling cyclesan one example allowedfeeds.

Example:Esis tthe sum of the first 5 natulocaln
numbers tocalculate.

in theabove program example, i is the running
variable of Zaoil cycle,wmooseinitialized with i = 1
(<expression_1>), continued with i = i+1
(<expression_3>). does noti.ein i<= n
(<expression_2>) regarding the upper limit of the
loop capacity¨ufeIs tested. Inside the loop sum =
sum + i; (instruction) theactual calculation steps of
the cycle. The summation variable sum must be
initialized before entering the cycle.
A compact version of this summation loop (correct
but very difficult to read) would be:
for (isum = 0, i = 1; i <= n; isum += i, i++)
A distinction is made between the end of an
instruction “;” and the separator “,” in a list of
expressions. These lists are processed from left to
right.

The <expression_2> is always a logical expression (3.3-
3.4) and <expression_3>
is an arithmetic expression for manipulating the run
variables, e.g
i++
j = d-
2 d
+= 2
x =x+h// float type
k =2*k// doubling

l =l/4// Quartering - be careful with integers
Structogram:

The control variable can be a simple
variableout 2.1 be eg, int or

double .

Be careful when using
floating point numbers (float, double)
asvariable. The correct abort test may not be
easy to implement there due to the internal
number representation.

Structogram:

Example: It is the
double sum

nkn

sum= 1

i2

k=1 i=1

tk

= tk
k=1

was¨rightn to be
entered to be
calculatedto.

Wmoresimple examples calculate the sum of the
first even natulocalnNumbers and the Za¨hlen
onecountdowns.

The following examples illustrate the problem of
the limited accuracy of floating-point numbers in
connection with cycles and some tips on how to
work around them.

Example: Output of the discrete nodes
xi of the interval [0, 1], which is in
nequal subintervals, i.e.,

x= iHi=0, . . . ,n WithH=1 − 0
n

Structogram:

Dafloating point numbernnowright
onelimitedenumberlgoodvalidright
digitsbsit,canit (mostly) happens that the last node
xn is not output. Only for = 2k , k cannin
our example a correct processing of the Zacooling
cyclesguaranteetwearth. select ionee are

1. Ä changeGinsabort testsinxi <= xe + h/2.0 ,
but xn is still in error.

for (xi = far; xi < = car + h/2.0; xi += h)
{

cout << xi << endl;
}

2. Cycle with int
control variable
for (i = 0; i <= n;
i++)

{
xi = xa + i*h;
cout << xi << endl;

}

Tueecommon summation of minor and majorouterrightNumbers can
also

inaccuracysidesfuear. In the example, the sum

s1 :=

n

i=1

1/i

2with the

(theoretically identical) sum

2:= S1 1

2for big

(65,000, 650,000)

The numerical result in s2 is more accurate
because all small numbers are there firstare added,
which at s1 because of the
restrictionsgoodnnumberlgoodvalidrightDigits
no longer contribute to the summation kocan. At
the same time is closedbnote,that the computation
of 1.0/(i*i) ends in an overflow, since

i*i can no longer be represented in int numbers.
On the other hand, the calculation of1.0/i/i
complete¨ndiGimRange of floating point
numbers.

4.5 Repelling cycle (while loop)

At therejecting cycle is the number of passagesufenot fixed a
priorithe abort test is performed before running a cycle.
The general form is

while (<logical expression>)
<statement>

Example: determineinnrounded upn
buildinglogarithms(Bases2) one a-reading number.
Structogram:

Comment:If the very first
test in the rejecting cycle is FALSE, then the statement block
inside the cycle is never executed (the cycle is rejected).

4.6 Non-rejecting cycle (do-while loop)

At thenon-rejecting cycle is the number of passagesufenot fixed
a-priori, the termination test takes place after a cycle has been
run through. Thus passairthe non-rejecting cycle uses the
instructions inside the cycle at least once.

The general form is
of the

<statement>
while (<logical expression>) ;

Structogram:

Example: A character is read from the keyboard until
an x
is entered.

Consider weathera somewhat more demanding
example, namely the Losolutioncan be determined
from sin(x) = x/2 with x ∈ (0, π). For this one
considers

youeEquivalent zero problem: Determine the zero x0 ∈ (0, π) of the

Function f(x) := sin(x)x/2 = 0 .
Analytically:No practical Losolutionegpresent .
graphicsch:The function f(x) is graphed and the
LoResolution interval reduced manually (halved).
This process is continued untiluntil x0 can be

determined accurately enough, ie, to a
predetermined number of digits.

f(x) =sin(x)-x/20.25

0.2

0

–0.2

0.3

0.2

0.2

0.15

–0.4

0.1

–0.6

–0.8

0.1

0.05

-1

0 2

–1.2 0 2

–1.4

–0.05

–1.6

Numeric: The above graphical procedure can be applied
to a purely numerical
rics VExperienced im computer andbendure we
arth (enright MAPLE -

callffsolve(sin(x)=x/2,x=0.1..3
returns as Naapproximation resultx0 = 1.895494267). We are

developing a program to determine theZero of f (x) := sin(x) x/2 in
the interval [a, b] by bisecting the interval, where
it is assumed for simplification that f (a) > 0 and f
(b) < 0. The midpoint of the interval is denoted by
c := (a + b)/2. then

knockout¨nenWe ubhethe Lo¨sunGstate the following:

x0∈ [c, b] if f (c) > 0 .

�x0∈ [a, c]i f f(c) < 0

By redefining the interval limits a and
b, the zero search can be reduced to the smaller
(halved) interval. We demonstrate the
implementation using a non-repellent cycle.
Structogram:

The above bisection can also be realized by means of a
rejecting cycle.

Since floating-point numbers only work with
limited accuracy, an abort test f (c) = 0 usually
results in an endless program. That's a break test
like |f(c)| < ε with a given accuracy 0 < ε 1 is
preferable.

Likent:Behindcooling cyclesn(for) which
executes at least one cycleto hearknockouẗnen as
well asbyHdifferentiron end(while)to thesalso by
non-rejecting cycles (do
while)equivalentstexpressed¨cctwearth.thiseA¨equivalentE.
g.cannbeggVuseinrightapplironingin4.8 are lost.
If in a zacooling cyclesinrightAway-

brokent alwaysFALSEE
resultsie.inrightloopcörphe
willNoeexecutedtouches,then istinright

appropriatedifferentiron end cycleafterH
howbeforerightaequivalent. Howeveristthe not
deviron endcycle no longer aequivalent,there the
loop körpheis also processed once in this case. See
the example file Loops.cc.

4.7 Multiway selection (switch statement)

Tueeaddit ionalegselection ermpossiblet
oneindividualsreactnouchf specificWgeta variable.

switch (<expression>)
{

case <const_expression_1>:
<statement_

1> [break;]
...
case <const_expression_n> :

<statement_
n> [break;]

default:
<statement_default>

}

Example:outputeinrightnumber¨rtrightwas¨rightthe
integer inputs {1, 2, 3}.
Above switch statementkcouldealsoHwedt onemultiple
vbranching(Sincee31)be implemented, however, in the switch
statement, the individual

4.8. UNCONDITIONAL PASS OF CONTROL
43

branchesexplicit andbheleave the break; statement. Without break; will
togetherplusHenrightgo to the next branch¨rige
blockprocessedruns.

4.8 Unconditional Tax
Instructions
rungsudownhille

breakThe na is immediately
aborted¨chstaexteriornswitch whiledo-while,
for statement.

continueCancellation of the current and
start of the nanextncycle of a while,do-while,
for loop.

goto <brand> Continuation of the program at the with
<brand> : <statement>
marked spot.

Comment :Except for break in the switch
statement, the above statements should be used
very sparingly (better not at all), since they run
counter to structured programming and produce
the dreaded spaghetti code.
in theInternship are above instructions for
Lo¨sunGof exercises etc. not allowed.

Chapter 5

Structured data types

Wirightin this chapter new Mpossiblesidesof data
storageear.

array:
Grouping of elements of the same type.

Structure (struct):
Grouping of components of different types.

union (union):
ü bstorageseveral components of different
types in the same memory space.

recordpaymentType(number)
basic dataypwedtfree wapalpablemWcrop area.

5.1 fields (arrays)

5.1.1 One-dimensional fields

Data (elements) of the same type are combined in
a field. The general convention of a static field is

<type> <identifier>[dimension];
where the square brackets “[” and “]” are an
essential part of the agreement. A one-dimensional
array is mathematically equivalent to a vector.

45

The square brackets are used in the declaration part
of the dimension declarationx[N] and in the
instruction part access to individual array elements
x[3] . The field can already be initialized during
the declaration:
double x[N] = {9,7,6,5,7}

Attention :The numbering of the array elements
begins with 0. Therefore, onlyon array elements
xi, i = 0, . . . , N 1 can be accessed. Otherwise,
mysterious program behavior, inexplicable
miscalculations and sudden program crashes are to
be expected, the cause of which is not obvious
because they may only appear in remote program
parts.
Typical mistake
//Typical error
{

const int N = 123;
int ij[N] , i;

...
for (i = 1; i <= N;i++)// !! WRONG!!

{
cout << ij[i] << endl;

}
}
The array elements ij1, ij2, ij3, ij4 and the meaningless
value of ij5 become
spent, howevernot the very first array element ij0 .
The dimension of a static field must be known at
compile time, so only constants or expressions
consisting of constants can appear as a dimension.
{

const intN=5, M=1;
int size;

floatx[5];//Correct
short i[N];//Correct
charc[N-M+1];//Correct
intij[size];// !! WRONG!!

}

Example: An interesting special case of
the field is the character string (string). We
initialize the string with the word "math" and print
it out in normal type and character by character.
Tueestring
ha¨ttealsoHWithchar
word[L] = "math"; or
char word[] = "math";
initializetwill kcan,where in the latter case the La¨ngeof field word
ouchsthe la¨ngeenrightCharacter string constant is determined.

Example: Calculation of

L2-norm of a vector, i.e.,

ǁ x ǁL2

:= N−1 2

i=0

Als small exampleserveeU.NsyoueFibonaci
sequence of numbers,wmooseandbheyoue two-
staged recursion

f(n): = f(n − 1) + f(n −2) n= 2, . . .

is defined with the initial conditions f
(0) = 0, f (1) = 1. To check, we can use Binet's or
de Moivre1's formula.

 1 1 + √5 !n 1 − √5 !n!

1http://www.ee.surrey.ac.uk/Personal/R.Knott/Fib onacci/fibFormula.html

http://www.ee.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibFormula.html

As a further example, the minimum
and maximum of a vector are to be determined
and the corresponding vector elements are to be
swapped with one another (similar to pivoting).
This includes the two subtasks:

a) Determine minimum and maximum (and
mark the positions). Structogram:

b) VexchangeMin/Max Entryage. At Vectorlange0 or at
identicalNo swapping is necessary for vector
elements.

Structogram:

At theVexchange
futouches
the obvious first

idea x[kmin] =
x[kmax]
x[kmax] =
x[kmin]

not to success. Why?

5.1.2 Multidimensional Fields

Tueeentryägeenrightso farrightbconsidered1D-
Folder areimSpoakbehind each otherstored
(linear memory model), for example, is the row
vector

as

x0 x1 x2 x3 x4

 double x[5];

agreed and saved as

x0 x1 x2 x3 x4

where each cell is 8 bytes long.

A two-dimensional (static)
array, for example, a matrix A with N = 4 rows and M
= 3 columns

A00 A01
A02A10

A11
A12

AN× MA20A21A22
A30A31A32

can also only be stored linearly in memory, i.e.,

A00 A01 A02 A10 A11 A12 A20 A21 A22 A30 A31 A32

This results in two options for the 2D field
declaration: Variant 1: As a 2D array.
doubleA[N][M];// Declaration
A[3][1] =5.0;// Initialize A(3,1)

Variant 2 : As a 1D array.
doubleA[N*M]; //
Declaration A[3*M+1]
=5.0;// Initialize A(3,1)

Example: As an example we consider the
multiplication of the matrix AN×M consisting of N =
4 rows and M = 3 columns with a row vectoruM the
Lange M . The result is a row vector f N of La¨nge N ,ie,

f :=AN×M uM .The components of f = [f0, f1,
. . . , fN−1]T bcalculate

to

M−1

be := hey,j · andj ∀i =0, . . . , N − 1.
j=0

hoherdimensionalefolderkönnendeclared and used
analogous to version 1will. In variant 2 double
B[L,N,M]; be accessed using B[i*M*N+j*M+k].

5.2 structures

The structure defines a new data type which
combines components of different types. The type
declaration

struct <struct_identifier>
{

<data declaration>
};

allows the declaration of variables of this type
<struct_identifier> <var_identifier>;

Example:We declare a data type to store
the persosimilardata of a student.
The assignmentrobbi = arni; copies the complete
dataset from avariables to the other. The
component firstname of the variable arni (of the
type Student) is accessed via
on it.firstname
The data is saved in the form

matriculatio
n

sketch Surname First name

awayHa¨ngiGbeforen compiler settingsor. -
optionsknockout¨nen smallerunused-
teSpEicherlu¨ckin betweenenn
componentsimSpoakperformn(Dateaal ignme
ntst fu¨rightfaster data access).

Tueestructure student can easily
fu¨rightStudents who have several majorsprove, to
be expanded.

Tueestructure student incl̈altalready have
fields as components. On the other hand
könenthiseData types can in turn be arranged into
fields.
structuresnknockout¨nen in turnat thee
structureddatatypesals componentscontain.

In the example above, line.p2 is a variable of the
Point3D type, whose data can be accessed using
the . Operators can be accessed.

5.3 union

AlleseUnion components are on the same storage
area ubhe-shown overlapping. The type declaration

union <union_identifier>
{
<data declaration>
};

allows the declaration of variables of this type
[union] <union_identifier><var_identifier>;
Components of the union are accessed like a structure.

The memory requirement of aunion

judgetafter the
bigatenComponet (here
sizeof(double) = 8). The
union is used to store

spacesaving should be
reserved for experienced
programmers because of
the possibility of errors
(ie, no

5.4. ENUM TYPE 57

5.4 recordpayment type

ofrightrecordchoiceypist
onebasicypwedtfriiwowpalpablemWcrop
areathes may beillustrated by the days of the
week.

day weekday; // variable of

enum
weekday = monday; // data init

C++ has a predefined type bool, which takes the values false and
true
acceptncan. InCla¨ßt himselfthesby definition

enum bool {false,true}
inanalogrightWiron reach,wobegg falsebyH 0U.Ni.e
truebyH 1representativepresentedwhich conforms to
§ 2.1.1 and § 3.3.

5.5 General type definitions

The general type definition
typedef <type_definition> <type_identifier>

is the consequent advancement to freely definable types.

The program example below illustrates the
definition of the three new types Boolean, Text
and Point3D.
Interestingly, a variable of type Text is now
always a character string variable with a (max.)
length of 100. Note also the initialization of the
variable p. Even a constant of the type Point3d can
be declared and initialized with it.

Chapter 6

pointer

Up until now, we've always accessed variables
directly, meaning it didn't care where the data was
stored in memory. A new type of variable, the
pointer, stores addresses considering the type of
data stored there.

6.1 agreement of pointers

If the pointer to an object of type int is denoted by p, then
int *p;

whose declaration, or general is made by
[storage class] <type> *<identifier>;

defines a pointer to the data type <type>.

SOknockouẗnenyouefollowing pointer variables are defined

6.2 pointer operators

derightwell¨re reference operator(address operator)
&

<variable>determines the address
of the variable in the operand.
derightwell¨redereference operator(access operator)

*<pointers>

allows (indirect) access to the data pointed to by the
pointer. The data can be manipulated like a variable.
In the example aboveacts *pint as an int variable
and accordingly all operations defined for it can be
performed with it.

Attention : In the program fragment
{

double *px;
*px =3.1; // WRONG!

}
willalthough storage space fu¨rightreserves the
pointer (8 bytes), but the value of px is still undefined
and so the value 3.1 is converted to a
dafu¨rightnotdesignated memory area written
=⇒mysterio¨seprogram stepreU.Ni.e-error.
There is a special pointer constant 0 (NULL in C)
which refers to the (hexadecimal) memory address
0x0 (= nil) and which can be tested for as a pointer
variable.

6.3. POINTERS AND FIELDS - POINTER
ARITHMETICS 61

6.3 Pointers and Arrays - Pointer Arithmetic

Arrays use the linear memory model, ie an
element that follows in the index is also physically
stored in the immediately following memory area.
This fact allows pointer variables to be interpreted
as field identifiers and vice versa.
{

const int N = 10;
int f[N],*pint;// array and pointer

pint =&f[0];// init pointer
}
Field identifiers are always treated as pointers,
hence the program line

identical with

pint = &f[0];

pint = f;

consequentialGtherefore set the
expression¨cke f[1], *(f+1),*(pint+1),

pint[1] represents the identical access to array element f1.

 f0 f1

pint

The address represented by (pint+1).will result
in (address in pint) + sizeof(int) . In this case, int
designates the data type on which thePointer pin
points. Access to other array elements fi, i = 0 . . .
N 1 is analogous.
The following operators are applicable to pointers:

• Comparison operators: == , != , < , > , <= , >=

• Addition + and subtraction -

increase ++ ,decrement -- and compound operators
+= , -=

To demonstrate, we consider an example in
which an array is first defined and initialized in a
conventional way and then output using pointer operations.

6.4 Dynamic arrays using pointer variables

Until nowreferred a pointer to already provided
(allocated) memory fu¨ronesimple variable, structure, field.
foot¨rightHowever, a pointer can also be added to the
typeorigrightSpoak areadynamicHallocatetwearth.Mr
Jerezandbone usesthe new conclusion¨sselwortnew . The
memory allocated in this way can be changed usingdelete
to be released again.

The statement px = new double[n]; allocates
n*sizeof(double) bytes forenn pointer px.
danachcanntheresdynamicefeld px how one
staticfeldbe treated. However, dynamic fields make better
use of the existing storage space, since this can be released
with the delete command and used again for other
purposes.

danger:The above dynamic field declaration is
only fu¨rightC++ goodvalid.In Cmueatnother commands
are used - here are the differences.

C++C
#include <malloc.h>

px = newdouble[n];px = (double*)
malloc(n*sizeof(double)); delete []px; free(px);

eggnbetweenone-dimensionaldynamic field
latet himself on the one handbyH one one-dimensional

dynamic field (analogous to variant 2 in 5.1.2) as well as
by a pointer to a field of pointers. This looks like this for a
matrix with n rows and m columns.

First the pointer must be allocated to the line
pointer, only then can the memory for the
individual lines be requested. When deallocating
memory, all rows must also be freed again. For the
case n = 3 and m = 4, the figure shows how the
data is stored in memory.

...

Attention:There is no guarantee that the individual
rows of the matrix are arranged consecutively in
memory. Thus, the storage of the dynamic 2D
array differs from the storage of the static 2D
array, although the syntax of the element access
b[i][j] is identical. On the other hand, this matrix
storage is more flexible, since the rows can also
have different lengths (sparse matrices or matrices
with a profile).

showrightknockouẗnenturn appear in
structures or general types. Here, however, gras possibleeCare
should be taken when using the dynamic fields, since
fu¨rightstatic variables otherwise uncritical operations

plomoreHto miraculömprogram
inreceivewasearnknockoutcan.

What does the data store look like at times (A), (B) and
(C)?

• robbi does not have its own dynamic fields.

delete [] arni.pfirstname;
thus also releases the memory area addressed
by robbi.pfirstname and thus robbi.pfirstname
points to a memory area that is no longer
reserved, which the program may use as it sees
fit.

tiny = new char[5];
taket himselfennfriibecomenSpoak
placeU.Ni.eandbhe writesheyn spa¨ter.

Under LINUX-gcc, at time (C)
robbi.pfirstname points to the same address as

the pointer tiny, so that the data from
robbi.pfirstname can be output using
cout << robbi.pfirstname << endl;
gives the output tiny.

way out:
Eshimeatnwas¨rightrobbi

own dynamic fields are allocated and the
contents of the dynamic fields of arni
mueatnbe copied to this. (see assignment
operators and copy constructors
fu¨rightclassesalso§ 11).

6.5. POINTERS TO STRUCTURES 67

6.5 pointers to structures

We consider the structure Student (5.2) and
define a pointer to it.
Tuee accesses(*pg).firstname and pg->firstname
are vo¨lliGaequivalent. All-thing improves the
latterclearly the readability of a program,
especially if the pointer represents a dynamic
array of type Student. This is particularly evident
when accessing array elements of firstname (ie,
single characters). Access to the 0th character is
via

or

pg->firstname[0]
(*pg).firstname[0]

or or *pg->firstname
*(*pg).firstname

and accessing the 3rd character using

or

pg->firstname[3]
(*pg).firstname[3]

or
or

*(pg->firstname+3)
*

((*pg).firstname+3)

Note that pg->firstname represents a
pointer to type char and the dereferencing operator
* is performed before the + addition. Conjecture
and test what you get when you use *pg-
>firstname+3.

6.6 reference

AeReference is an alias (pseudoname) fu¨righta variable
and can do the samehow these are used. References
(unlike pointers) do not represent an object of their own,
ie no additional memory is required for them.

6.6. REFERENCE 69

referencesnbecome houchfigureto the
parameterbresultanfunctions used, they-he 7.2.
Another useful application is the reference to an
array element, structure element or inner data of a
complicated data structure as shown below,
derived from the example on page 54.

Chapter 7

functions

7.1 definition and declaration

Purpose of a function:

ofsOearliern will oneprogram
partlinothernprogram sectionsn
againinrequired.To the program andbmore evidentand
more manageable toodesign, this part of the
program is programmed once as a function and
called up in the rest of the program with its
function name.

Alreadycompleted functions
könenwas¨rightother programs of other
programmers available¨gunGare provided,
analogous to the use of

pow(x,y) and strcmp(s1,s2) in§ 3.6.

In the general form of the function definition with

<storage class><type> <function_name> (parameter_list)
{
<agreements>
<instructions>

}
putVagreementU.Ni.eappl ice
partennfunct ional co¨rphethererightU.Ni.e
<type> laysthe type of Ru¨cvaluefixed. The
combination <function_name>and
(parameter_list) uniquely identifies a function and
is therefore used ascalled signature of a function.
The function definition becomes fu¨righteach
function exactly once benorequired.
The difference is the function declaration

<storage class><type><function_name> (parameter_list) ;
ineach source file nötiGwmooseyoueFunction <function_name>
calls.

71

Structogram:

Example: We write the calculation of sgn(x)

from page 29 as a function.

Remarks:The sgn() function is uniquely described
by its signature.
thesHatfu¨rightdeclarationnU.Ni.edefinitelynb
eforenfunctionsnyoue Consequences:

7.2. PARAMETER TRANSFER 73

(i) Some more (or even more) identical function declarations
double sgn(double x);
are allowed in the example above.

(ii) togetheradditioneFunction declarations with
other parameter lists arebelieves, e.g.:
double sgn(double*
x); double sgn(int
x);
since the arguments differ from the initial
definition. However, we have not yet defined
these new functions.

(iii) Ae togetheradditionedeclarat ionn(see § 7.2)
double sgn(double& x);
is not allowed because the signature is as
under (i). Therefore, the compiler cannot
figure out whether the function under (iii) or
the function under (i) is in the statement
y = sgn(x);
meantis.

(iv) Different functions with the same name are
identified by their different parameter lists, see
item (iii).

(v) derightRu¨cvalueof a function cannot be used
to identify itare tightened, the declarations

double sgn(int
x); int
sgn(int x);

knockout¨nennottdifferencesnwearth(samee
signature)U.Ni.ethereforerightleantthecom
piler from this source text.

7.2 parametersdownhille

When designing a program, we distinguish three
types of parameters of a function:

INPUTParameter data is used in the function but not

verachanges,that is, they are constant within
the function.

INOUTParameter data is used in the function and verachanges.
OUTPUT parameter data are initialized in the

function and, if applicableverachanges.

Programmatically we will not
distinguish between INOUT and OUTPUT
parametersdifferentiate. There are generally three
Moequalsidesthe programtechnicalnPassing
parameters

1. ü bresultenrightData of a variable (by value).

2. ü bresultthe address of a variable (by address)

3. ü bresultenrightreferencese.gouchf
onevariablee(engl. :by reference), whereby
an address is transferred in a hidden manner.

Comment:
Wifuse a variable in the function as a
constant¨tztwill, then shouldthey are also treated
as such, ie pure INPUT parameters should always
be marked as const in the parameter list. This
increases security against unintentional data
manipulation.

7.3 Rureturn valueeof functions

Each function has a function result of data type
<type> . As types are allowedbe used:

• simple data types (§ 2.1.1),

• structures (§ 5.2), classes,

• pointer (§ 6.1),

• References (§ 6.6),

jedocHno fields and functions - therefor¨rightbut
pointer to a field or aFunction and references to
fields.
derightRu¨cvalue(function result)will with
return <result> ;
antherescalling program andbresult. A special case are
functions of the kind
void f(<parameter_list>)
fu¨rightwhich no Ru¨cvalue(voii.e =empty)is expected,
so with
return ;
inthe calling program back¨cswept will.

Wirightlook at the mpossiblesidesenrightparametersbresultam exampleenrightsgn function
with variable double a .

ü
bresultar
t

paramete
r list

call

effect of
use

recommendatio
nx++ (*x)++

by value double x sgn(a) internal —- INPUT [c]
const

double x
not allowed —- INPUT C [simple data

types]

by
address

double*
x

sgn(&a
)

internal internal/externa
l

INOU
T

C

const
double*

x

internal not allowed INPUT C [complex data
types]

double*
const x

not allowed internal/externa
l

INOU
T

[c]

by
reference

double&
x

sgn(a) internal/externa
l

—- INOU
T

C++

const
double&

x

not allowed —- INPUT C++

tabell7 .1:
Mpossiblesidesenrightparametersbres

ult

The ”by-reference” variant double &const x is rejected by the compiler and the ”by-
address” variant const double* const x , ie,Pointers and data you¨fenlocally not
verachangetwearth,is tpractically meaningless.

examplesfu¨rightFunction results:

floatf1(...) float
number [struct] studentf2(...)
structure student int*f3(...)

 Pointer to int number
[struct] Students*f4(...) Pointer to Structure
Student
internal(*f5(...)) [] Pointer to array of int
numbers

internal(*f6(...)) () Pointer to a function that has the
result type int

Remarks:
AefunctionnrepresentfseveraleRu¨cdelivery
instructions return[<result>]; besit,eg, one in each
branch of an alternative. However, this is no longer
clean structured programming.

= Each function should have exactly one return
statement at the end of the function
bodybsit(Defaul t i.ewas¨righttheresInternship).

7.4 fields as parameters

Staticefields ko¨nenanalogous to their declaration as
function parameters ubresultwearth.
HoweversmueatnAllesedimensions,except the
honextndimension, to be known at compile time.

As a first example, we consider the
output of a (static or dynamic) 1D field, ie, a vector
x of length n.

7.4. FIELDS AS PARAMETERS 77

Structogram:

AlsnnextsLet's consider the output of a 2D static array,
ie, aMatrix with MCOL columns and NROW rows.
The number of columns must be defined as a global
constant here, otherwise the following function
cannot be compiled.

Unfortunately können
weatheryouefunctionn
PrintMat_fixnowrightwas¨right static2D
Folder(Matrices)apply, and then only fu¨rightthose
with NCOL=3 columns - yesa matrix double aa[7]
[9] can no longer be output with this function.
However, we can interpret the 2D field as a 1D field
of length NROW*MCOL and thus generalize the
function in such a way that any static 2D fields and
dynamic 1D fields that can be interpreted as 2D
fields (as in version 2 on page 52) can be handed
over.

Since the PrintMat function expects a 1D array (i.e.
a pointer), from the static2D Feld a one
pointerouchfyoue first
rowenrightmotherxandbresultwearth. Therefore,
a[0] appears in the corresponding call line.

7.5 Declarations and header files,
libraries

Normally, the source code of a computer program is
composedconsists of (substantially) more than one

source text file. With it functions, data structures
(and global constants, variables) and macros from
other source text files

(name.cc)usedtwearthkcan,busedmomnheader files(name.hh,
name.h) which the declarations fu¨rightcontain the source text
file name.cc.

7.5.1 Example: printvec

We want to use the PrintVec and PrintMat
functions programmed in 7.4 in another code (ie, main program).
First we copy the definitions of the two functions (and everything
else that is needed for compiling) into the new file printvec.cc.

The file printvec.cc is now compiled (without linking it!)
LINUX> g++ -c printvec.cc

whereby the object file printvec.o is created. The main
program in

Ex751-old.cc bOnebusytwellrightthe declarations of the two functions.
Compiling the main file
LINUX> g++ -c Ex751-old.cc

creates the object file Ex751-old.o which has to be linked with
the other object file to the finished program a.out
LINUX> g++ Ex751-old.o printvec.o

satofficialscompile and link latetcan also be expressed in a command
line¨ckin
LINUX> g++ Ex751-old.cc printvec.cc

whereby some compilers expect the main() main program in the first
source text file (here Ex751-old.cc).

Tueedeclarationsnimmain
programmwas¨rightyouefunctionsnouchsprintvec.cc
scream-We use the header file printvec.hh

U.Ni.e weather substituteenndeclaration partlimmain
programmbyHyouebeforenPrePer-processor instruction

#include "printvec.hh"

which automatically inserts the content of printvec.hh before
compiling Ex751.cc.
Tueeanfuapproxchen" " around the file name indicates that
the hea-derfile printvec.hh in the same directoryhow to find
the source file Ex751.cc.
The command
LINUX> g++ Ex751.cc printvec.cc

in turn generates the program a.out.

7.5.2 Example: students

Wirightknockouẗnenalso self-defined data
structures, eg the data structuresSave Student,
Student Mult from 5.2 and Student2 from 6.4 and
global constants in a header file student.hh.

The new function Copy Student2 is defined in
student.cc, where the function
corpheouchsEx643-correct .cc copyt would.

Since the Student2 structure is used,
the header file student.hh must also be included in
student.cc. The new Copy Student2 function can
now be used in the main program Ex752.cc to copy
a structure. Of course, the main program needs the
header file student.hh for this.
The command
LINUX> g++ Ex752.cc student.cc

finally creates the program a.out.

7.5.3 A simple library using student as an example

umthe repeated compiling
togetheradditionalrightSource files and the ones
with themLibraries are used to avoid possibly long
lists of object files when linking. At the same time,
libraries have the advantage that you can make your
compiled functions (along with the header files)
available to others in a compact form without
having to reveal your programming secrets
(intellectual property). This is demonstrated using
the (very simple) example from §7.5.2.

• Generate the object file student.o (compile)
LINUX> g++ -c student.cc

Generating/updating the library libstud.a

(archiving) from/with the object file student.o.
The library identifier stud is freely selectable.
LINUX> ar r libstud.a student.o

TueeArchiving options (here, only r)
ko¨nenwith the usedcompilers vary.

Compile the main program and

link with the library from the current directory
LINUX> g++ Ex752.cc -L. -lstud

The following steps are necessary to compile and
link the program without using a library.

g++ -c student.cc

−−−−−−−−−−−→
g++ -c Ex752.cc

student.o
��

g++ Ex752.o student.o
−−−−−−−−−−−−−−→

Ex752.cc −−−−−−−−−−→Ex752.o�

awayku¨rzeni.eis also modaily:

Ex752.cc, student.ccg++

Ex752.cc student.cc

When using the libstud.a library, the process is as follows

student.cc g++ -c

student.cc
g++ -c

student.o −a−right−right−−left−b−St−and−i.e−.a→

libstud.a��

g++ Ex752.o
−−−−−−−−→

Ex752.cc

−E−x−75−2−c→c

Ex752.o

� -L. -lstud

wowsbeggalready existing library in turn abkurtwearthcan:

Ex752.cc, libstud.ag++ Ex752.cc -

L. -lstud

a.out

7.6 The main program

Tueesyntax used so far fu¨rightthe main program

Main()
{
...

}

is always used by the compileras int main()
{
...
return 0;

}

understood, since for functions without type
specification theType int used as default
willwedtthe standard ru¨cvalue 0A Ru¨cvalue
0bedeu-tes that the main program was processed
without errors.
The program processing can be stopped at any time,
also in functions, with the instruction
exit(<int_value>); be aborted. The value
<int_value> is then the return value of the program
and can be used for error diagnosis.

TheresThe program above breaks off when n <
0hrunGimmediately from andreturns error code 10.
The exit statement can also be used in fun()will.
As with other functions, the main program can also
be called with parameters, but in

int main(int argc, char* argv[])
the parameter list (more precisely, the types of
parameters) prescribed, where

• argv[0] the program name and

argv[1] . . . argv[argc-1] the arguments when
calling the program as character stringsandbresult.

7.6. THE MAIN PROGRAM 85

• Esgil t always argc≥1,i .eathe program name always
ubresultwill.

Tueefunctionn atoi(char*) (= ASCII to int)
converts the ubdevoted Sign-concatenate to an
integer and is declared in stdlib.h. By means of the
analogfunctionn atod(char*) latet himself one float
numberas parameters andbresult. After compiling
and linking, the program can a.out using
LINUX> a.out
or.
LINUX> a.out 5
be started. In the formercase the value of n is read
from the keyboard,imsecond case, the value 5 from
the command line ubtaken andn assigned. An
elegant, and real C++-Lsolution,regarding the handover

of command line parameters can be found in [Str00,
pp.126].

7.7 Recursive Functions

functionsnknockouẗneninC/C++ can be called
recursively.

Example: The power to be realized.

xkwith x ∈

, k∈

can also as

= x· xk−1 k >01k= 0

7.8 eggnbigoutersExample: Bisection

The example on page 39 was about determining
the zero of f (x) := sin(x) x/2 in the interval (a,b),
with a = 0 and b = 1. Provided that f (a) > 0 > f (b)
this problem can be solved (for continuous
functions) using bisection. The bisection algorithm
essentially consists of the steps for each interval [a,
b].

(i) c := (a + b)/2

(ii) is|f(c)| close enough to 0 ?
(iii) Inwhich interval haelevenemußi .eHsearch further ?

thesist one classicrecursion,wobeggpunkt(iii)youen
/ Anexterecursionn initiatesU.Ni.ePoint (ii) is
intended to guarantee the cancellation of the
recursion. Formally knockoutcanweatherthesput it
like that¨cken:

x0 := Bisect(a, b, ε) :=

c :=(a + b)/2if |f (c)| < ε
Bisect(c, b, ε)else if f (c) > 0

��Bisect(b, c,
e) otherwise,casesf(c) < 0

Structogram:

thesgives the function definition fu¨rightBisect() which with
x0 = Bisect(a,b,1e-6);

calledn willU.Ni.eto version 1 of the bisection program
futouches

To make the program a bit more flexible, we will fix the
in Bisect1()
programmed function f(x) by the global function

substitute. a t the same
timeiGknockoutcouldnwe replace the function
parameter eps with a globalReplace constant EPS
with bale, resulting in version 2.

Tueeflexibilityätthe bisection function
läßtcontinue to riseheynby entering the function
f(x) to be evaluated as a variable in the parameter
list ubresult.A functionnas a parameter/argument is
always used as a pointer ubresult,ie , a functionas
an argument, like the declaration fu¨rightf6 built on
page 76being. Specifically, this means:
double (*func)(double) is a pointer to a function func
with a
double variablesalsargumentsnU.Ni.edouble
as the type of the Ru¨creciprocal. This allows us
the function declaration and definition of
Bisect3()

The fourth argument (eps) in the Bisect3() parameter list is
optionalArgument which is not used when calling the
functionbresultwearthgot to. In this case, the default value
specified in the function declaration is automatically
assigned to this optional argument. In our case, the call
would be in the main program
x0 = Bisect3(f,a,b,1e-12)
youeRecursion at |f (c)| < ε := 10−12 cancel, waduring
x0 = Bisect3(f,a,b)

beautifulbegg|f(c)| < ε :=
10−6 stops. We could now add
another function
declare and define, and call the bisection algorithm in version 3.
with it:

x0 = Bisect3(g,a,b,1e-12)

Comment:Da weatherourealsargumentsnin
Bisect3andbdevotedfunctionn funcis a pure
INPUT parameter, we should mark it with const.
However, the correct labeling of the first argument
is in Bisect3

double Bisect3(double (* const func)(double), const
double a, const double b, const
double eps=1e-6);

a bit confusing at the beginning.

ourrightProgram works
satisfactorily fu¨rightf (x) = sin(x) x/2 and
yieldsfootrightthe input parameters a = 1 and b = 2
the correct solution x0 = 1.89549, the same for a =
0 and b = 2, however, the (trivial) solution x0 = 0 is
not found here because a = 0 is entered would. With
the inputs a = 0, b = 1 or a = 1, b = 0.1 (x0 := 0 [a,
b]) the program aborts after a while with a
segmentation fault, since the recursion does not
abort and at some point the fu The memory (stack)
reserved for function calls is no longer sufficient.

knockouẗnenwe secure our program in such a
way that, for example, the existing zerox0 = 0 as
well asin[0, 1]to thesin [1, 0.1] is found? Which
cases can occur with regard to the function values f
(a) and f (b) (preliminary assumption: a < b)?

(i) f (a)>0 > f(b) (ie, f(a) > 0 and f(b) < 0), e.g., a = 1, b
= 2

=⇒ Standard case in
Bisect3().

(ii) f(a) > 0 and f(b) > 0, e.g., a = 0.5, b = 1.5, respectively

f(a) < 0 and f (b) < 0, eg, a=1, b= 0.5

possibly
nonezero =cancel.
(EskönnenThere may be zeros in the interval,
which we do not find with the bisection method
ko¨nen!)

(iii)f (a) = 0 or f (b) = 0, better |f (a)| < ε
etc.

or =⇒

= aor b are the zero,
aand b are a zero.

(iv) f(a) < 0 < f(b), e.g. a = −1, b = 0.1
Swap a andb =⇒ Case (i).

(v) a =b =⇒ included in (ii) and (iii).
b < a =⇒fuMrton (i) or (iv).

thisecase distinction fuMrtus to the
following structural diagram andversion 4.

Structogram:

To

thescroendnFinally we define further functions in
the program h(x) = 3 ex, t(x) = 1 x2, ask the user
which math. function fu¨rthe root search is to be
used and calculate the root(s) in the given interval.
This selection can easily be implemented with a
switch statement and leads to version 5 of the
program.

Comment:The three functions
Bisect[1-3]() differ in their parameter lists.
Therefore all three functions can be used under the
name Bisect(), since their signatures differ and thus
the compiler knows exactly which Bisect() function
should be used.

Chapter 8

The data type class (class)

ofrightdatayp student2ouchs6.4
incl.̈altdynamicedata structuresnthrough
whichInitialization and copying of the
corresponding variables must be specially
implemented each time (see also 7.5.2). A great
advantage, among many others, of the class concept
in C++ is that data structures with dynamic
components can also be handled in the main
program like simple data types. Of course, this
requires some preliminary work.

Ae class(class) is a data type with
associatedothernmethodn (functions) and
willsimilarHcreated in a structure and can be used
analogously.The methods of a class always have
access to the data of this class.

Starting from the
structure Student2 we derive a class Students. We
save all declarations of the class in the header file
studenten.hh and all definitions in studenten.cc. A
modified variant with regard to the pointer
initialization can be found in the studs.hh and
studs.cc files.

93

8.1 Class declaration data and methods

Here is the declaration of the Students class with the
absolutely necessary methods.
TueelistedhonorednmethodnLet's look at them in the order given.

8.2 The constructors

Constructors are used for the initial initialization of data in a class. In
general, a class should have at least the following constructors.

• Definition of the default constructor (no arguments)

8.2. THE CONSTRUCTORS 95

In the construction student :: denotes the scope operator
::the acces¨rigksinceenrightMethod Students() on class Students

and is part of the signature of this method
(function). The default constructor is used in
the main program with students robbi;
called up automatically, so that all data from robbi is
initialized with 0 or the zero pointer.

•

Definition of a parameter constructor
With the parameter constructor, a variable of type Students
declared, defined and initialized at the same
time. Students
arni("Arni","Black",812,7981579); It would
also be possible:

parameter constructorsnknockout¨nencontain optional
parameters whoseStandard values are already
specified in the declaration (Page 94). Thus, a
variable definition of the students type would also be
about students arni("Arni","Schwarz");
goodvalid.

• Definition of the copy constructor

The copy constructor allows definition in
terms of another variable of the same class, as
in
students mike(arni);

8.3 The Destroyer

Every classbsitsexactlyand adestructor,which
when leaving the Guvalid-range of a variable (end
of block, end of function) is called automatically.
The main task of the destructor is mostly to free
dynamic memory of the class.

8.4 The assignment operator

Constructors always access uninitialized data. To
assign the data of arni to the already initialized
(with default values) variable robbi, ie, robbi = arni;
, an assignment operator has to be defined,

8.5. THE PRINT OPERATOR 97

wmooseessentially from the functional
co¨rpseriouslycomposed of destructor and copy
constructor. However, here is before
uberpuovens,whether the right side of the
assignment (ubdevotedvariable)nottidenticalH to
thelinkinpageof assignment (this) is.

Wsuppurationeari.ebe here on the keyword
overloading of operators in theLiterature [SK98,
§16], [Str00, $11] referenced.

8.5 The print operator

eggnnot absolutely necessary, but right
nowadditionalrightoperator is the print operator
fu¨righta class, which the data output using
cout << robbi <<endl;
ermosamen target.

The declaration in students.hh
allows, thanks to the friend identifier, to use the Students class to
define a new method of the ostream class (declared in
iostream.h). The definition is then:

Wellrightk̈onnenwe use the example Ex643-correct.cc (or Ex752.cc) from
6.4much easier to write and extend.
The command line
LINUX> g++ Ex851.cc students.cc

generatedtheresexportaudibleeProgram.

8.6 data encapsulation

The data in studentshave been classified as public,
meaning anyone can access this data, as with
mike.pfirstname . To protect this data from
unwantedaccess to schu¨tzenand possibly nachtra
the data layout¨glicH
at then tokcan,capsuletmomnyouedatenso into the class
that they only ubheaccess methods are available.
The relatedequaleClassification is by the
syllogism¨sselwortprivate specified. So that
achanget himselfthe declarationpart of the class
students in

// students2
.hh #include
<iostream.h>

class students
{
// Data in students are private
now!! private:
long int register;

int skz;
char *pname, *pfirstname;

// Methods in
students public:
//constructors, Destructor, Access operator
...

// Output operator
friend ostream & operator<<(ostream & s, const students &
orig);

// methods to access the private data
// Methods for data manipulation

in students void SetFirstName(const char
firstname[]);
void SetName(const char name[]);
void SetMatrikel(const
longinternal mat_nr); void
SetSKZ(constintskz_nr);

// Methods that don't manipulate data

in students const long int& GetMatrikel() const;
const int& GetSKZ()
const; const char*
GetFirstName() const;
const char* GetName()
const;

};
There are two const declarations in the above
methods. A const at the end of the declaration line
indicates that the data in Student will not be
modified by the corresponding method, eg,
GetSKZ. The const at the beginning of the line
belongs to the result type and indicates that the data
referred to with the reference int& must not be
changed. This ensures that the data cannot be
manipulated unintentionally using pointers or
references.

The access methods are defined as follows:

thisenew access methods könen howfol lowtto be used:
Some access functions, eg SetSKZ and GetSKZ, are so short
that a function call is actually not worthwhile because of the
effort involved in passing the parameters. In this case, the
declaration and definition of a method are linked in the
header file, and the method/function is defined inline. These
inline lines replace the function call each time.

Chapter 9

File input and output

The objects cin and cout used for I/O are (in
iostream.h)predefined variables of class type
stream. In order to read from or write to files, new
stream variables are now created, namely of the
type ifstream for the input and of the type ofstream
for the output. The file name is transferred when the
variable is created (C++ constructor).

103

9.1 Copy files

The following program copies an input
file to an output file, but without spaces, tabs, line
breaks.
On the other hand, if you want to copy the file
identically, you have to read in and out character by
character. The get and put methods from the
corresponding stream classes are used for this.

9.2. DATA INPUT AND OUTPUT VIA FILE 105

9.2 Data input and output via file

Data input and output via file and terminal
can be used in combination.

9.3 Switching input/output

sometimeslis a problemabhabusysSwitching

between file IO and terminal IO wu¨desswheor

nnecessary.Unfortunately, in this case you have tolike to work on
the types istream and ostream.

Aevery comfortable
Monequalsinceof switching the input/output
usingCommand line parameters can be found in the
examples.

output formatting

Tueeoutputeandbhestreamings(<<)cannvmostfor
mattwearth. Ae smallA selection of formatting is
given here, more on this in the literature.

We use thosevariables double da =

1.0/3.0
, db =
21./2,

dc = 1234.56789;

Standard output:
cout << da << endl << db << endl << dc << endl << endl;

mehrightgoodvalideDigits (here 12) in the output:
cout.precision(
12); c out <<
...

Fixed number (here 6) of
decimal places:
cout.precision(6);
cout.setf(ios::fixed,
ios::floatfield); c out << ...

Output with exponent:
cout.setf(ios::scientific,
ios::floatfield); c out << ...

Ru¨ckputouchfstandar
d
edi t ionand:cout.setf(0,
ios::floatfield); c out <<
...

alignmentG(right-
hand¨end)U.N.i.eWildcard (16
characters):cout.setf(ios::right,
ios::adjustfield); cout.width(16);
cout << da <<
endl;
cout.width(16)
; cout << db
<< endl;
cout.width(16)
; cout << dc
<< endl;

107

108 CHAPTER 10. OUTPUT
FORMATTING

Aegeneral Lo¨sunGusing standard manipulators is in
[Str00,
§ 1.4.6.2, pp.679].

Hexadecimal output of
integers: cout.setf(ios::hex,
ios::basefield); cout <<
"127 = " << 127 << endl;

tips and tricks

11.1 Praprocessor commands

Wirightalready know the Praprocessor appice
#include <math.h>

which inserts the content of the file
math.h at the appropriate place in the source file
before the actual compilation. Similarly, certain
parts of the source code can be included or ignored
when compiling, depending on the dependency of
the test (analogous to an alternative as in 4.3) which
is carried out with a preprocessor variable.
variablenensPreprocessorswearthby means of
#define MY_DEBUG
definetand we könnenalsoHtest ing,whether they are defined:
#ifdef MY_DEBUG

cout << "In debug mode"
<< endl; #endif
Analog can with
#ifndef
MY_DEBU
G#define
MY_DEBU
G #endif

zunächsttestedtwearth,whether the
variable MY_DEBUG has already been defined. If
not, then it is defined now. This technique will

haufigurebusedaroundto prevent the declarations
of a header file from being included more than once
in the same source text.

109

OnerightPreprocessor variablencannalsoH onebe
assigned value
#define SEE_PI 5
wmoosethen in Praprocessor tests(orrightin the
program as a constant)can be used:
#if (SEE_PI==5)

cout << " PI = " <<
M_PI << endl; #else
// empty or
statements #endif
AeHouchfrightenedapplendingbexistsinenright
allocation oneWfirst to onePrePer-processor
variable if not already defined
#ifndef M_PI
#define M_PI
3.14159 #endif
Deswfesterknockout¨nenmacrosdefined with
parameters
MAX(x,y) (x>y ? x #define : y)
and used in the source code.

cout << MAX(1.456 , a) << endl;
mehrightandbhePraprocessorcommandistetc.
in[God98th]U.Ni.e[Str00,$A.11] toFind.

11.2 timing in the program

To theperimeterGbeforen
C++giveHHoursn somefunctions,wmoose it
allowyoue runningto determine the time of certain
program sections (or the entire code). The
corresponding declarations are provided in the
header file time.h.

11.3. PROFILING 111

Esknockout¨nenany number of time measurements
can be made in the program (at some pointbut these
in turn slow down the program!). Each of these
time measurements needs a start and an end, but the
times of different measurements can be
accumulated (by simply adding them up).

In the Ex1121.cc file, the function value of a
polynomial of degree 20 at the

positione x ie, s = Σ20 a.k ·xk,bcalculated.Tuee21Coefficients ak and
the value x

are provided in the file input.1121. The function
value is calculated in two mathematically identical
ways in the program. Variant 1 uses the pow
function, while variant 2 calculates the value of xk
by continuous multiplication.
The different runtime behavior (cause !?) can now
be proven by time measurement and improved by
progressively activating compiler options for
program optimization, e.g
LINUX>g++
Ex1121.ccLINUX>
g++ -O
Ex1121.ccLINUX>
g++ -O3
Ex1121.cc

LINUX>g++ -O3 -ffast-math
Ex1121.cc The program is
started by
usingLINUX>a.out <
input.1121

11.3 profiling

of courselicHkcouldeone in a program the time
measurement in each functionwrite to determine the
runtime behavior of the functions and methods.
However, this is not necessary since many
development environments already provide tools
for performance analysis, ie profiling. At a
minimum, the time spent in the functions and the
number of function calls are output (often
graphically). Sometimes this can be resolved down
to single lines of source code. In addition to the
professional (and fee-based) profiling and
debugging tools, simple (and free) commands for
this are also available under LINUX/UNIX.
LINUX>g++ -pg
Jacobi.cc
matvec.ccLINUX>a.out

LINUX>gprof -b
a.out >
outLINUX>

less out
The compiler switch -pg accommodates some
additional functions in the program so that the
runtime behavior can be analyzed by gprof after the
program run. The last command (can also be an
editor) displays the redirected output of this
analysis on the screen.

11.4 debugging

It is often necessary to follow the program flow step
by step and, if necessary, to have variable values
etc. output for control purposes. Next

enrightalways working, but annoyingend,method
...
cout << "AA" << variable << endl;
...
cout << "BB" << variable << endl;
...

areOften professional debugging tools are
availableavailable. Here is one again(free) program
under LINUX presented.
LINUX> g++ -g Ex1121.cc
LINUX> ddd a.out &
The handling of the various debuggers differs
greatly. With the ddd debugger, the input file can be
specified with set args < input.1121 and the test run
is started with run, which is stopped at previously
set break points. There, the program can be
followed step by step using the source code.

bibliography

[Cap01] Derek Capper. Introducing C++ for Scientists,
Engineers and Mathematicians. Springer, 2001.

[CF88] MatthewsClauss and Gu¨ntherightfisherman.
Programming with C. VerlagTechnique,
1988.

[Cor93] microsoft corp Get in the right wayin C++.
Microsoft Press, 1993. [Dav00] Stephen R Davis.
C++ furightdummies. boarding school Thomson
Publ.,

Bonn/Albany/Attenkirchen, 2nd edition, 2000.

[Erl99] HelmutErlenkotter.

CprogramnbeforenAbeginningan.

Rowohlt ,1999[God98] Edward Gode. ANSI C++:

short & good. O'Reilly, 1998.
[Her00]dietrightHerrmann. C++ fu¨rightnaturalist.

Addison-Wesley,Bonn, 4th edition, 2000.
[Her01]Dietmar Herrmann. Effective programming in C and
C++. vieweg,

5th edition, 2001.
[HT03] Andrew Huntand David Thomas. The Pragmatic
Programmer.

Hanser textbook, 2003.

[Jos94] Nicolai Josuttis. Object-oriented programming
in C++: from the class to the class library.
Addison-Wesley, Bonn/Paris/Reading,

3. edition, 1994.
[KPP02] Ulla Kirch-Prinz and Peter Prinz. Everything

about object-oriented programming. Galileo
Press, 2002.

[KPP03]Ulla Kirch-Prinz and Peter Prinz. C++ furightC
programmer. GalileoPress, Oct. 2003.

[Mey97] Scott Meyers. Programming C++ more
effectively. Addison-Wesley, 1997.

[Mey98] Scott Meyers. Programming effectively in C++.
Addison-Wesley, 3rd, updated edition, 1998.

[OT93] Andrew Oram and SteveTalbott. Managing projects
with make.

O'Reilly, 1993.

113

114 BIBLIOGRAPHY

[SB95] Gregory Satir and Doug Brown. C++:
The Core Language. O'Reilly, 1995.

[SK98] Martin Schader and Stefan Kuhlins.
Programming in C++. RowohltVieweg, 5th
revised edition, 1998.

[Str00] Bjarne Stroustrup. The C++ programming
language. Addison-Wesley,

4. updated edition, 2000.
[Str03]Thomas Strasser. Programming with style.

A systematic introduction. dpunkt, 2003.

index

#define, 109
#if, 110
#ifdef, 109
#ifndef, 109
#include, 109

abort test, 41
rejecting cycle, 38

abort test, 38
alternative, 27
Instruction, 3, 4, 25
argc, 84
argv[], 84
array, see field assembler, 5
atod(), 85
atoi(), 85
onzaestyp,45, 57
Expression, 13 edition

cost, 103
Files, 103
formatting, 107
new line, 9

char, 7
class, 93-101

data encapsulation, 99
declaration, 94 method

seeMethod, 93
compile, 20

conditional, 109
g++,4-6, 83, 111, 112
gcc, 3

debugging, 112
delete, 62

do-while loop, see non-rejecting cycle
double, 7

Notepad, 3 input

cin, 103
Files, 103

Decision operator, 29 enum, see enumeration
type

 false, 15, 17, 57
Library, 5, 6, 20, 80, 83 field, 45
update, 83 declaration, 46
generate, 83 Dimensions, 46
left, 83 dynamic, 62–66, 78

binalogarithm,38 allocate, 62
Bisection, 40 deallocate,64
(, 86 one-dimensional, 45,

62
), 91 field elements, 46

bit, 17 initialization, 46
blocks, 3, 4, 25 multidimensional,

51, 63
beginning, 25 Numbering, 46
end, 25 static, 45–52, 77
Location ̈t,26 Dimensions, 46

boolean, 7, 57 String, 47
break, 43 Fibonacci, 49

bytes, 17
115

find

116 IND
EX

Unix command 23
float, 7
float.h, 23, 37, 51

FLT DIG, 23
FLT EPSILON, 23, 37
FLT MAX, 23, 51
FLT MIN, 23

for loop, please refer Zaoil cycleFunction, 71–91
Define, 71
Declaration, 71, 80
functional co¨rphe,71
in-line, 101
parameters, see parameter return value,see function

on result recursively, see recursion signature,
71–73

function result,74
void, 74

Floating point number, 9, 14, 15
ü brun,37
Accuracy, 36, 41
running variable, 35

Header file, 3-6, 80, 101
in-line, 101

Heaviside, 28
if-then-else, see alternative inline, 101
int, 7

comment
C, 3, 4
C++, 4

Constant, 9–11
characters, 9

floating point number, 9
global, 88
integer, 9
mathematical, 20
thong, 9
symbolic, 10

running variable, 34
floating point number, 35
limits.h, 23

INT MAX, 23
INT MIN, 23

Left, 5, 20, 83
macro, 10
main(), 3, 4, 84
math.h, 20

acos(), 20
salted(), 20
atan(), 20
cell(), 20, 37
body(), 20
exp(), 20
fabs(), 20
floor(), 20
fmod(), 20
log(), 20
ME, 20
MPI, 20

pow(), 20
sin(), 20
sqrt(), 20
tan(), 20

Matrix, 52, 63, 64, 77, 78
Multiple choice, 42
method, 93

copy constructor, 95

Define, 101
declaration, 101
destructor, 96
in-line, 101
parameter constructor, 95
print operator, 97
Default constructor, 94

assignment operator, 97methods
access methods, 100

new, 62
non-shedding cycle, 38

abort test, 38
zeros, 39
object code, 5
object file, 6
operands, 13
operator, 13

arithmetic,14
bit-oriented, 17
more logical, 17

comparison operator, 15parameter

INDEX 117

by address, 75
by reference, 75
by value, 75
const, 75
Field, 76
function, 88
main(), 84
Matrix, 77, 78
optional argument, 89

Vector, 76 pointers, see pointers
Preprocessor,5,10,109
Profiling, 111 program

exportear,3, 4
Source file, 6, 80

compile, 3, 4, 83
edit, 3, 4 source text, see source file

reference, 68
recursion, 86

abort test, 86
function, 86
Segmentation fault, 90

Signum, 29, 72
sizeof(),8 memory

allocate, 62
deallocate,64
Segmentation fault, 90

string.h, 21
strcat(), 21
strchr(), 21
strcmp(), 21
strcpy(), 21

strlen(), 21 struct, see Structure Structure, 45, 52-55
in structures, 54
Pointer up, 67
Pointer in, 65

college student, 82
library, 83
Class, 94
structure, 53
Student2, 65, 82

suffix, 6

switch
Multiple choice, 42

time.h
clock(), 110

CLOCKS PER SEC, 110
true, 15, 17, 57
union, 45, 56
using namespace, 6
variable, 7–8

storage class, 7
type, 7

Vector, 45, 76
Branches, see alternative void, 74
truth table, 18

while loop,please refer more dismissivecycle
Zaoil cycle,33

abort test, 35
hands, 59–69

address operator, 60
Arithmetic, 61
on structure, 67
declaration, 59
Dereference operator, 60
in structure, 65

Null pointer, 60
reference operator, 60
undefined, 60
access operator, 60

assignment operator,16

