

Vayu Education of India
2/25, Ansari Road, Darya Ganj, New Delhi-110 002

• Shadab Saifi (Illustrator) • Ayaz Uddin (Editor)

Copyright © Vayu Education of India

First Edition: 2022

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording orotherwise, without the prior permission of the copyright owners.

DISCLAIMER
Errors, if any, are purely unintentional and readers are requested to communicate such errors tothe publisher to avoid discrepancies in future.

Published by:
AN ISO 9001:2008 CERTIFIED COMPANY
VAYU EDUCATION OF INDIA
2/25, ANSARI ROAD, DARYA GANJ, NEW DELHI-110 002
PH.: 011-41564440, MOB. 09910115201

Contents

1.0 OBJECTIVES .. 31.1 INTRODUCTION ... 31.2 WHAT IS COMPUTER? ... 31.2.1 Concept of Digits, Byte & Word... 41.3 WHAT IS COMPUTER SOFTWARE? ... 41.3.1 Opearting Systems .. 51.3.2 Hardware vs. System vs. Application .. 61.3.3 Services Provided by OS for Application Programs ... 61.3.4 Various Classification of OS .. 61.4. MEMORY UNITS .. 71.4.1 Introduction .. 71.4.2 Basic Units of Measurement .. 81.4.3 Memory Hierarchy ... 91.4.4 Cache Memory .. 91.4.5 RAM, ROM, PROM, EPROM ... 91.4.6 Primary Vs. Secondary Memory ... 101.4.7 Auxiliary Storage Devices-Magnetic Tape, Floppy Disk, Hard Disk, PAN-Drive ... 101.4.8 Optical Disks: CD-R Drive, CD-RW disks, DVD, Blue ray Discs 121.5 VON NEUMANN ARCHITECTURE ... 131.6 FLYNN'S CLASSIFICATION OF COMPUTER .. 131.6.1 Single Instruction Single Data (SISD) ... 131.6.2 Multiple Instruction Single Data (MISD) ... 141.6.3 Multiple Instruction Multiple Data (MIMD) .. 141.7 NUMBER SYSTEMS ... 141.7.1 Binary Number System .. 141.7.2 Octal Number System... 161.7.3 Hexadecimal Number System ... 171.7.4 Binary Arithmetic ... 191.7.5 BCD Addition ... 231.7.6 Alphanumeric Code ... 231.8 REVIEW QUESTIONS .. 241.9 SUMMARY .. 251.10 CHECK YOUR PROGRESS 1 .. 25

2.0 OBJECTIVES .. 26

vi Zero to Mastery in Computer Architecture and Organisation

2.1 INTRODUCTION... 262.1 LOGIC GATES .. 272.1.1 Basic or Fundamentals Gates .. 272.1.2 Universal Gate .. 292.1.3 Derived Gates .. 302.1.4 Positive and Negative Logic .. 322.2 BOOLEAN ALGEBRA ... 332.2.1 De Morgan's Theorems .. 362.3 GLOSSARY.. 382.4 ANSWERS TO CHECK YOUR PROGRESS QUESTIONS .. 38

3.0 OBJECTIVES .. 393.1 COMBINATIONAL LOGIC ... 393.2 SEQUENTIAL LOGIC OR CIRCUIT ... 393.3 TYPES OF COMBINATIONAL CIRCUIT ... 413.3.1 Multiplexer or Data Selector .. 413.3.2 Demultiplexer ... 423.3.3 Decoder .. 433.3.4 En-coder ... 453.3.5 Counters .. 463.4 TYPES OF SEQUENTIAL CIRCUIT .. 483.4.1 RS Flip Flop ... 483.4.2 D flip flop... 503.4.3 JK Flip-flop .. 503.4.4 T Flip Flop ... 513.5 REGISTER.. 523.5.1 Data Register ... 523.5.2 Shift Register ... 533.6 ADDER .. 573.6.1 Half Adder .. 583.6.2 Full Adder ... 593.7 GLOSSARY.. 603.8 REVIEW QUESTIONS .. 61

4.0 OBJECTIVE .. 624.1 BASICS OF COMPUTER ORGANIZATION & ARCHITECTURE .. 624.2 MICRO-ARCHITECTURE ... 644.3 INPUT/OUTPUT .. 644.4 HIGH-LEVEL PROGRAMMING LANGUAGE .. 654.4.1 High Level Language Vs Lower Level Language ... 654.5 CENTRAL PROCESSING UNIT ... 664.5.1 The Control Unit ... 664.6 MIPS/MFLOPS AND CPU PERFORMANCE ... 664.6.1 Using MIPS and MFLOPS as Performance Metrics .. 684.7 ORGANIZATIONAL STRUCTURE ... 704.7.1 Pre-bureaucratic Structures ... 70

Contents vii

4.7.2 Bureaucratic Structures .. 704.7.3 Post-bureaucratic .. 714.7.4 Functional Structure ... 714.7.5 Divisional Structure ... 714.7.6 Matrix Structure .. 714.8 GLOSSARY.. 724.9 REVIEW QUESTIONS .. 73

5.0 OBJECTIVE .. 775.1 INTRODUCTION ... 775.2 WHAT IS ISA... 775.3 WHAT ARE THE ELEMENTS OF AN INSTRUCTION? ... 785.4 CLASSIFICATION OF INSTRUCTION SET ARCHITECTURE ... 805.4.1 Complex Instruction Set Computer (CISC) ... 805.4.2 Risc(Reduced Instruction Set Computer) ... 835.5 CISC/RISC DESIGN ISSUES ... 855.6 RISC VERSUS CISC .. 855.7 COMPARISON OF RISC AND CISC .. 865.8 INTRODUCTION TO SOME OTHER IMPORTANT INSTRUCTION SETARCHITEC TURES ... 905.9 GLOSSARY.. 925.10 REVIEW QUESTIONS .. 92

6.0 OBJECTIVES .. 936.1 ADDRESSING MODES .. 936.1.1 Immediate Addressing ... 946.1.2 Direct or Absolute Addressing .. 946.1.3 Implied Addressing .. 956.1.4 Relative Addressing ... 956.1.5 Indirect Addressing.. 956.1.6 Indexed Addressing ... 966.2 INSTRUCTIONS ... 996.2.1 Data Transfer Instructions ... 996.2.2 Data Manipulation Instructions/Data Processing Instructions 1006.2.3 Program Control Instructions ... 1026.3 MISCELLANEOUS/PRIVILEGE .. 1036.4 INSTRUCTION SET AND FORMAT DESIGN ISSUES .. 1056.5 INSTRUCTION SET: OPERATIONS .. 1066.6 MAJOR SYSTEMS ACQUISITION MANUAL (MSAM) ... 1066.6.1 Major Systems Acquisition Management .. 1066.6.2 Major Systems Acquisition Process Structure ... 1076.7 MODELING AND SIMULATION... 1086.7.1 Msam Using Simulation .. 1086.8 GLOSSARY.. 1086.9 REVIEW QUESTIONS .. 109

viii Zero to Mastery in Computer Architecture and Organisation

7.0 OBJECTIVE .. 1137.1 INTRODUCTION ... 1137.2 CPU ARCHITECTURE ... 1137.3 ORGANIZATION OF CPU .. 1177.3.1 Register Set .. 1177.3.2 Arithmetic Unit ... 1227.3.3 Control Unit .. 1237.4 CPU DATAPATH ... 1317.4.1 One-bus Organization ... 1327.4.2 Two Bus Organization ... 1337.4.3 Three-Bus Organization .. 1337.4.4 Single Cycle Datapath Vs Multicycle Datapath .. 1347.5 GLOSSARY.. 1347.6 REVIEW QUESTIONS .. 135

8.0 OBJECTIVES .. 1378.1 ADDRESSING MODES .. 1378.1.1 Immediate Mode ... 1398.1.2 Direct (Absolute) Mode .. 1398.1.3 Indirect Mode .. 1408.1.4 Indexed Mode ... 1418.1.5 Other Modes .. 1418.2 INSTRUCTION FORMATS .. 1438.3 INSTRUCTION CYCLE(FETCH – EXECUTE- DECODE-RELOAD CYCLE) 1448.3.1 Instruction cycle in Other Architectures of CPU ... 1478.4 GLOSSARY.. 1488.5 REVIEW QUESTIONS .. 149

9.0 OBJECTIVES .. 1509.1 EXTERNAL DEVICES .. 1509.2 INPUT VS OUTPUT MODULE ... 1519.3 MODES OF TRANSFERS ... 1529.3.1 Programmed I/O .. 1529.3.2 Interrupt Driven I/O .. 1529.3.3 Direct Memory Access .. 1569.4 MEMORY HIERARCHY AND ITS NEED MEMORY .. 1599.5 THE MEMORY HIERARCHY ... 1599.6 MAIN MEMORY... 1629.7 CACHE MEMORY.. 1679.7.1 Principle of Locality ... 1699.7.2 Cache Operation – overview ... 1699.7.3 Cache Performance ... 1709.7.4 Cache Memory Organization .. 1719.7.5 Cache Write ... 174

Contents ix

9.8 SECONDRY MEMORY .. 1749.9 GLOSSARY.. 1779.10 REVIEW QUESTIONS.. 178

10.0 OBJECTIVES .. 18110.1 INTRODUCTION TO PARALLELISM ... 18110.1.1 Goals of Parallelism ... 18210.1.2 Uses of Parallelism ... 18210.1.3 Why Use Parallel Computing ... 18310.1.4 Techniques of Concurrency ... 18410.2 AMDAHL’S LAW ... 18410.3 INSTRUCTION-LEVEL PARALLELISM (ILP) .. 18610.4 PROCESSOR-LEVEL PARALLELISM (PLP) ... 18810.5 PARALLEL COMPUTER MEMORY ARCHITECTURES... 18910.5.1 Shared Memory ... 18910.5.2 Distributed Memory ... 19110.5.3 Hybrid Distributed-Shared Memory .. 19210.6 DESIGN LIMITATION OF PARALLEL APPLICATIONS .. 19310.7 GLOSSARY.. 19510.8 REVIEW QUESTIONS .. 196

11.0 OBJECTIVE .. 19811.1 INTRODUCTION ... 19811.2 VARIOUS CATEGORIES OF INSTRUCTION ... 19911.3 TIMING CONTROL.. 20311.3.1 Bus Request and Bus Grant Timings in Minimum ModeSystem of 8086 .. 20511.3.2 Memory Write Timing in Maximum mode of 8086 ... 20611.3.3 RQ/GT Timings in Maximum Mode .. 20611.4 INSTRCTION FORMATS ... 20711.4.1 General Instruction Format ... 20711.4.2 Three Instruction Formats ... 20911.5 GLOSSARY.. 21311.6 REVIEW QUESTIONS .. 214

12.0 OBJECTIVES .. 21512.1 INTRODUCTION ... 21512.2 INTERRUPT TYPES ... 21612.2.1 Maskable Interrupt(MI) .. 21712.2.2 Non-maskable Interrupt .. 21712.2.3 Inter-Processor Interrupt .. 21712.2.4 Software Interrupt ... 21712.2.5 Spurious Interrupt .. 21712.3 TYPES OF INTERRUPTS ... 217

x Zero to Mastery in Computer Architecture and Organisation

12.3.1 Level-triggered .. 21712.3.2 Edge-triggered ... 21712.3.3 Hybrid Interrupt ... 21812.3.4 Message-signaled Interrupt ... 21812.3.5 Doorbell ... 21912.4 ITERURRUPT IN 8086 ... 21912.4.1 Advantages of Interrupts ... 21912.4.2 Interrupt Latency .. 22012.4.3 Interrupt Response Time.. 22012.5 STACK ORGANIZATION ... 22012.5.1 Register Stack .. 22112.5.2 Memory Stack .. 22212.5.3 Reverse Polish Notation .. 22312.6 GLOSSARY.. 22412.7 REVIEW QUESTIONS .. 225

13.0 OBJECTIVES .. 22613.1 INTRODUCTION ... 22713.2 PROBLEMS WITH THE MEMORY SYSTEM .. 22713.3 CACHE MEMORY.. 22913.4 CACHE ORGANIZATION .. 23113.4.1 Direct Mapping ... 23113.4.2 Two-way Set-associative Cache .. 23313.4.3 Associtative Mapping .. 23413.5 REPLACEMENT ALGORITHMS.. 23513.6 WRITE STRATEGIES ... 23613.6.1 Write-through ... 23613.6.2 Write-through with Buffered Write ... 23613.6.3 Copy-back .. 23613.7 WHAT IS VIRTUAL MEMORY ... 23713.7.1 Virtual Memory Organization - Demand Paging .. 23813.8 ADDRESS TRANSLATION ... 23913.9 PAGE TABLE .. 23913.10 PAGE REPLACEMENT ... 24113.11 CONTROL MEMORY& MICRO-PROGRAM SEQUENCER: .. 24113.11.1 Why Control Memory... 24313.12 DEFINING A MICROINSTRUCTION FORMAT... 24413.13 WHAT IS MICRO-OPERATION ... 24413.14 WHAT IS ADDREES SEQUENCING? ... 24513.15 WHAT ARE COMPUTER REGISTERS .. 24513.15.1 Register Transfer Language (RTL) .. 24613.16 GLOSSARY.. 24613.17 REVIEW QUESTIONS .. 247

SPECIAL BONUS!
Want These 3 Bonus Books for free?

Get FREE, unlimited access to these
and all of our new books by joining

our community!

SCAN w/ your camera TO JOIN!

OR Visit

freebie.kartbucket.com

After going through this chapter you will be able to understand:-
• Concept of Computer, Bytes & Word.
• Software and its Classification
• Memory features & Classification
• Von Neumann & Flynn Classification of Computer
• Understand the Decimal, Binary, Octal and Hexadecimal Number Systems convert from one

Number System into Another
• Apply Arithmetic Operations to Binary Numbers
• Understand BCD Codes and Alpha Numeric Codes Learn the Operations of Logic Gates
• Apply the Basic Laws of Boolean Algebra
• Apply De Morgan's theorems to Boolean Expressions

Computer is one of the major components of an Information Technology network and gaining
increasing popularity. Today, computer technology has permeated every sphere of existence of modern
man. In this chapter, we will introduce to you the computer Concept of computer, Software and its
types, Memory, Flynn classification, the binary number system and its relationship to other
systems such as decimal, hexadecimal, and octal, Arithmetic operations with binary numbers are also
discussed to provide a basis for understanding how computers and many other types of digital systems
work. Binary Coded Decimal (BCD), and alpha numeric codes are also introduced. Binary logic gates
are explained with the help of logic diagram, block diagram and truth table. Basic laws of Boolean
algebra are given. De- Morgan's theorems are also stated and proved, how does it work and what is it?

Computer is defined in the Oxford dictionary as "An automatic electronic apparatus for making
calculations or controlling operations that are expressible in numerical or logical terms".
A device that accepts data, processes the data according to the Instructions provided by the user, and

4 Zero to Mastery in Computer Architecture and Organisation

finally returns the results to the user and usually consists of input, output, storage, arithmetic, logic, and
control units. The computer can store and manipulate large quantities of data at very high speed

The basic function performed by a computer is the execution of a program. A program is a sequence
of instructions, which operates on data to perform certain tasks.

In modern digital computers data is represented in binary form by using two symbols 0 and 1,
which are called binary digits or bits. But the data which we deal with consists of numeric data and
characters such as decimal digits 0 to 9, alphabets A to Z, arithmetic operators (e.g. +, -, etc.), relations
operators (e.g. =, >, etc.), and many other special characters (e.g.;,@,{,],etc.). Thus, collection of
eight bits is called a Byte. Thus, one byte is used to represent one character internally. Most computers
use two bytes or four bytes to represent numbers (positive and negative) internally. Another term, which
is commonly used in computer, is a Word. A word may be defined as a unit of information, which a
computer can process, or transfer at a time. A word, generally, is equal to the number of bits transferred
between the central processing unit and the main memory in a single step. It may also be defined as the
basic unit of storage of integer data in a computer. Normally, a word may be equal to 8, 16, 32 or 64 bits.
The terms like 32 bit computer, 64 bit computers etc. basically points out the word size of the computer.

Computer software, or just software, is a collection of computer programs and related data that
provide the instructions for telling a computer what to do and how to do it.

Or
 Software is a conceptual entity which is a set of computer programs, procedures, and associated

documentation concerned with the operation of a data processing system.
Or
Software is a set of programs, procedures, algorithms and its documentation.
Therefore, we can say software refers to one or more computer programs and data held in the

storage of the computer for some purpose.
Types of Software: Basically there are THREE categories of software:

(a) System Software: System software provides the basic functions for computer usage and helps
run the computer hardware and system. It includes a combination of the following:

• Device drivers
• Operating systems
• Servers
• Utilities
• Window systems

System software is responsible for managing a variety of independent hardware components,
so that they can work together harmoniously. Its purpose is to unburden the application software
programmer from the often complex details of the particular computer being used, including such
accessories as communications devices, printers, device readers, displays and keyboards, and also to
partition the computer's resources such as memory and processor time in a safe and stable manner.

Introduction to Computer 5

(b) Programming Software: Programming software usually provides tools to assist a programmer
in writing computer programs, and software using different programming languages in a more
convenient way. The tools include:

• Compilers
• Debuggers
• Interpreters
• Linkers
• Text editors

An Integrated development environment (IDE) is a single application that attempts to manage all
these functions.

(c) Application Software: Application software is developed to aid in any task that benefits from
computation. It is a broad category, and encompasses software of many kinds, including the
internet browser, this category includes:

• Business software
• Computer-aided design
• Databases
• Decision making software
• Image editing
• Industrial automation
• Mathematical software
• Medical software
• Molecular modeling software
• Simulation software
• Spreadsheets
• Video games
• Word processing

An operating system (OS) is software, consisting of programs and data, which runs on computers,
manages computer hardware resources, and provides common services for execution of various
application software.

Or
An operating system is similar to a government... Like a government, the operating system performs

no useful function by itself. (A. Silberschatz, P. Galvin)
Or
 The most fundamental of all systems programs is the operating system, which controls all the

computer's resources and provides the basis upon which the application programs can be written. (A.S.
Tanenbaum)

6 Zero to Mastery in Computer Architecture and Organisation

Examples: Solaris, HP-UX, AIX, Linux, BSD, MAC OS X, Windows (Microsoft), MAC OS (Apple),
OS/2 (IBM), MVS (IBM), OS/390 (IBM), BS 2000 (Siemens) VxWorks, Embedded Linux, Embedded
BSD,TinyOS

• From the operating system perspective, the hardware is mainly characterized by the machine
instruction set.

• The operating system is part of the system software which includes system libraries and tools.
• Applications are build on top of the system software.

Fig:1.1 View of H/W, S/S & A/S

• Loading of programs
• Execution of programs (management of processes)
• High-level input/output operations
• Logical file systems (open (), write (),)
• Control of peripheral devices
• Interprocess communication primitives
• Network interfaces
• Checkpoint and restart primitives

Real-time Operating System
A real-time operating system is a multitasking operating system that aims at executing real-time

applications. Real-time operating systems often use specialized scheduling algorithms so that they can

Introduction to Computer 7

achieve a deterministic nature of behavior. The main object of real-time operating systems is their quick
and predictable response to events. They either have an event-driven or a time-sharing design. An
event-driven system switches between tasks based on their priorities while time-sharing operating systems
switch tasks based on clock interrupts.
Multi-user vs. Single-user

A multi-user operating system allows multiple users to access a computer system concurrently.
Time-sharing system can be classified as multi-user systems as they enable a multiple user access to
a computer through the sharing of time.

Single-user operating systems, as opposed to a multi-user operating system, are usable by a single
user at a time. Being able to have multiple accounts on a Windows operating system does not make
it a multi-user system. Rather, only the network administrator is the real user. But for a Unix-like
operating system, it is possible for two users to login at a time and this capability of the OS makes it a
multi-user operating system.
Multi-tasking vs. Single-tasking

When a single program is allowed to run at a time, the system is grouped under a single-tasking
system, while in case the operating system allows the execution of multiple tasks at one time, it is
classified as a multi-tasking operating system. Multi-tasking can be of two types namely, pre-
emptive or co-operative.

In pre-emptive multitasking, the operating system slices the CPU time and dedicates one slot to
each of the programs. Unix-like operating systems such as Solaris and Linux support pre-emptive
multitasking. Cooperative multitasking is achieved by relying on each process to give time to the
other processes in a defined manner. MS Windows prior to Windows 95 used to support cooperative
multitasking.
Distributed

A distributed operating system manages a group of independent computers and makes them appear
to be a single computer. The development of networked computers that could be linked and communicate
with each other, gave rise to distributed computing. Distributed computations are carried out on more
than one machine. When computers in a group work in cooperation, they make a distributed system.
Embedded

Embedded operating systems are designed to be used in embedded computer systems. They are
designed to operate on small machines like PDAs with less autonomy. They are able to operate with a
limited number of resources. They are very compact and extremely efficient by design. Windows CE
and Minix 3 are some examples of embedded operating systems.

The computer system essentially comprises three important parts - input device, central processing
unit (CPU) and the output device. The CPU itself is made of three components namely, the arithmetic
logic unit (ALU), memory unit, and the control unit.

8 Zero to Mastery in Computer Architecture and Organisation

In addition to these, auxiliary storage/secondary storage devices are used to store data and instructions
on a long-term basis.

Fig. 1.2: CPU and Other Devices
All storage devices are characterized with the following features:
• Speed
• Volatility
• Access method
• Portability
• Cost and capacity
• Latency
• Band-Width

All information in the computer is handled using electrical components like the integrated circuits,
semiconductors, all of which can recognize only two states-presence or absence of an electrical signal.
Two symbols used to represent these two states are 0 and 1, and are known as BITS (an abbreviation
for BInary DigiTS). 0 represents the absence of a signal, 1 represents the presence of a signal. A BIT is,
therefore, the smallest unit of data in a computer and can either store a 0 or 1.

Since a single bit can store only one of the two values, there can possibly be only four unique
combinations: 00 01 10 11

Bits are, therefore, combined together into larger units in order to hold greater range of values.
BYTES are typically a sequence of eight bits put together to create a single computer alphabetical or

numerical character. More often referred to in larger multiples, bytes may appear as Kilobytes (1,024
bytes), Megabytes (1,048,576 bytes), Giga Bytes (1,073,741,824), Tera Bytes (approx. 1,099,511,000,000
bytes), or PetaBytes (approx. 1,125,899,900,000,000 bytes).

Bytes are used to quantify the amount of data digitally stored (on disks, tapes) or transmitted (over
the internet), and are also used to measure the memory and document size.

Introduction to Computer 9

Memory hierarchy starts with a small, expensive, and relatively fast unit, called the cache, followed
by a larger, less expensive, and relatively slow main memory unit. Cache and main memory are built
using solid-state semiconductor material (typically CMOS transistors). It is customary to call the fast
memory level the primary memory. The solid-state memory is followed by larger, less expensive, and
far slower magnetic memories that consist typically of the (hard) disk and the tape. It is customary to
call the disk the secondary memory, while the tape is conventionally called the tertiary memory. The
objective behind designing a memory hierarchy is to have a memory system that performs as if it
consists entirely of the fastest unit and whose cost is dominated by the cost of the slowest unit.

Fig. 1.3: Depicts a typical memory hierarchy
Table 1.0 provides typical values of the memory hierarchy parameters

Cache memory owes its introduction to Wilkes back in 1965. At that time, Wilkes distinguished
between two types of main memory: The conventional and the slave memory. In Wilkes terminology,
a slave memory is a second level of unconventional high-speed memory, which nowadays corresponds
to what is called cache memory (the term cache means a safe place for hiding or storing things).

The idea behind using a cache as the first level of the memory hierarchy is to keep the information
expected to be used more frequently by the CPU in the cache memory.

Computer's Primary memory can be classified into two types - RAM and ROM.

10 Zero to Mastery in Computer Architecture and Organisation

RAM or Random Access Memory: It is characterize by following features:
• It is the central storage unit in a computer system.
• It is the place in a computer where the operating system, application programs and the data in

current use are kept temporarily so that they can be accessed by the computer's processor
• The more RAM a computer has, the more data a computer can manipulate.
• Random access memory, also called the Read/Write memory, is the temporary memory of a

computer.
• It is said to be 'volatile' since its contents are accessible only as long as the computer is on. The

contents of RAM are cleare once the computer is turned off.
ROM or Read Only Memory: It is characterize by following features:
• It is a special type of memory which can only be read and contents of which are not lost even

when the computer is switched off. It typically contains manufacturer's instructions.
• ROM also stores an initial program called the 'bootstrap loader' whose function is to start the

computer software operating, once the power is turned on.
• Read-only memories can be: manufacturer-programmed or user-programmed.
• Manufacturer-programmed ROMs have data burnt into the circuitry.
• User programmed ROMs can have the user load and then store read-only programs.
• PROM or Programmable ROM is the name given to such ROMs.

Information once stored on the ROM or PROM chip cannot be altered.
However, another type of memory called EPROM (Erasable PROM) allows a user to erase the

information stored on the chip and reprogram it with new information. EEPROM (Electrically EPROM)
and UVEPROM (Ultra Violet EPROM) are two types of EPROM's.

RAM is volatile memory having a limited storage capacity. Secondary/auxiliary storage is storage
other than the RAM. These include devices that are peripheral and are connected and controlled by the
computer to enable permanent storage of programs and data.

Magnetic medium was found to be fairly inexpensive and long lasting medium and, therefore,
became the preferred choice for auxiliary storage. Floppy disks and hard disks fall under this category.
The newer forms of storage devices are optical storage devices like CDs, DVDs, Pen drive, Zip drive
etc.

The Magnetic Storage Exploits duality of magnetism and electricity. It converts electrical signals
into magnetic charges, captures magnetic charge on a storage medium and then later regenerates electrical
current from stored magnetic charge. Polarity of magnetic charge represents bit values zero and one.
Magnetic Disk

The Magnetic Disk is Flat, circular platter with metallic coating that is rotated beneath read/write
heads. It is a Random access device; read/write head can be moved to any location on the platter.

Introduction to Computer 11

Floppy Disk
These are small removable disks that are plastic coated with magnetic

recording material. Floppy disks are typically 3.5 in size (diameter) and can
hold 1.44 MB of data. This portable storage device is a rewritable media and can
be reused a number of times.
Hard Disk

Another form of auxiliary storage is a hard disk. A hard disk consists of one or more rigid metal
plates coated with a metal oxide material that allows data to be magnetically recorded on the surface of
the platters. The hard disk platters spin at a high rate of speed, typically 5400 to 7200 revolutions per
minute (RPM).

Storage capacities of hard disks for personal computers range from 10 GB to 120 GB (one billion
bytes are called a gigabyte).

Fig. 1.5: Hard Disk
PAN-Drive: A USB flash drive consists of a flash memory data storage device integrated with a

USB (Universal Serial Bus) interface. USB flash drives are typically removable and rewritable, and
physically much smaller than a floppy disk. Most weigh less than 30 g. Storage capacities in 2012 can
be as large as 256 GB with steady improvements in size and price per capacity expected.

Fig. 1.6: Pan-Drive

Fig 1.4:Floppy Disk

12 Zero to Mastery in Computer Architecture and Organisation

Optical Mass Storage Devices Store bit values as variations in light reflection. They have higher area
density & longer data life than magnetic storage. They are also Standardized and relatively inexpensive.
Uses: read-only storage with low performance requirements, applications with high capacity requirements
& where portability in a standardized format is needed.

Example of the Optical Drives CD's (Compact Disk)
Storage: 700 MB storage
Types:
• CD-ROM (read only)
• CD-R: (record) to a CD
• CD-RW: can write and erase CD to reuse it (re-writable)
• DVD(Digital Video Disk)
CD: Compact Disk (CD): It is portable disk having data storage capacity between 650-700 MB. It

can hold large amount of information such as music, full-motion videos, and text etc. It contains digital
information that can be read, but cannot be rewritten. Separate drives exist for reading and writing CDs.
Since it is a very reliable storage media, it is very often used as a medium for distributing large amount
of information to large number of users. In fact today most of the software is distributed through CDs.

DVD Digital Versatile Disk (DVD): It is similar to a CD but has larger storage capacity and
enormous clarity. Depending upon the disk type it can store several Gigabytes of data(as opposed to
around 650MB of a CD). DVDs are primarily used to store music or movies and can be played back on
your television or the computer too. They are not rewritable media. It's also termed DVD (Digital Video
Disk)
DVD-ROM

- Over 4 GB storage (varies with format)
- DVD- ROM (read only)
- Many recordable formats (e.g., DVD-R, DVD-RW; ..)
- Are more highly compact than a CD.
- Special laser is needed to read them

Blu-ray Technology
The name is derived from the blue-violet laser used to read and write data. It was developed by the

Blu-ray Disc Association with more than 180 members. Some companies with the technology are Dell,
Sony, LG.The Data capacity is very largebecause Blu-ray uses a blue laser(405 nanometers) instead of
a red laser(650nanometers) this allows the data tracks on the disc to be very compact. This allows for
more than twice as small pits as on a DVD. Because of the greatly compact data Bluray can hold almost
5 times more data than a single layer DVD. Close to 25 GB!.Just like a DVD Blu-ray can also be
recorded in Dual-Layer format. This allows the disk to hold up to 50 GB.

The Variations in the formats are as follows:
• BD-ROM (read-only) - for pre-recorded content
• BD-R (recordable) - for PC data storage

Introduction to Computer 13

• BD-RW (rewritable) - for PC data storage
• BD-RE (rewritable) - for HDTV recording

Most of today's computer designs are based on concepts developed by John von Neumann referred
to as the VON NEUMANN ARCHITECTURE. Von Neumann proposed that there should be a unit
performing arithmetic and logical operation on the data. This unit is termed as Arithmetic Logic (ALU).
One of the ways to provide instruction to such computer will be by connecting various logic components
in such a fashion, that they produce the desired output for a given set of inputs. The process of
connecting various logic components in specific configuration to achieve desired results is called
Programming. This programming since is achieved by providing instruction within hardware by various
connections is termed as Hardwired and when the programming is performed on software components
is known as soft-wired.

The following figure shows the basic structure of von Neumann machine. A von Neumann machine
has only a single path between the main memory and control unit (CU). This feature/ constraint is
referred to as von Neumann bottleneck.

Several other architectures have been suggested for modern computers.
A von Neumann architecture for computer consist of following attributes
• Treats Program and Data equally
• One port to Memory
• Simplified Hardware
• "von Neumann Bottleneck" (rate at which data and program can get into the CPU is limited by the

bandwidth of the interconnect)

Fig. 1.7:von Neumann Machine

According to Flynn's classification of computer can be categorized into following categories

The classical von Neumann machine can be regarded as a Single-Instruction-Single -Data machine
in that at a time only a single instruction is being executed, and only a single piece of data is being
operated upon. This is arises of the problem, since we often want to execute the same instruction on
many different pieces of data, and the von Neumann machine requires us to fetch the same instruction
many times, once for each piece of data. In fact the situation is much worse since a von Neumann

14 Zero to Mastery in Computer Architecture and Organisation

machine will usually require us to create a loop, and so we will need to execute many instructions for
each piece of data.

This can slow the machine down many times over what the arithmetic unit is capable of performing
operations.

The Multiple Instruction Single Data (MISD) architecture is the most uncommon, In this architecture,
the same data stream flows through a linear array of processors, executing different instructions on the
single Data stream. This kind of architecture is also known as a systolic array for pipelined execution
of specific algorithms.

The most general form of von Neumann architecture is the Multiple-Instruction-Multiple-Data
machine. A MIMD machine is consist of a number of separate processors connected together through
some interconnection network. The actual format of interconnection between the processors can take
many forms, depending on the type of problem, which the machine is designed to solve. This is the
most common architecture chosen for multiple processor machines because modern processors have
the control logic for parallel systems built in. Therefore, this is attractive since software, replacement
parts and additions to the system are easily accessible.

A number system relates quantities and symbols. The base or radix of a number system represents
the number of digits or basic symbols in that particular number system. In decimal system the base
is 10, because of use the numbers 0,1,2,3,4,5,6,7,8 and 9.

A binary number system is a code that uses only two basic symbols. The digits can be any two
distinct characters, but it should be 0 or 1. The binary equivalent for some decimal numbers are given
below

Decimal 0 1 2 3 4 5 6 7 8 9 10 11
Binary 0 01 10 11 100 101 110 111 1000 1001 1010 1011
Each digit in a binary number has a value or weight. The LSB has a value of 1. The second from the

right has a value of 2, the next 4, etc.,
16 8 4 2 1
24 23 22 21 20
Binary to decimal conversion:
(1001)2 = X101001 =1×23 + 0 × 22 + 0 x 21 +1 × 20
= 8 + 0 + 0 + 1 (1001)2 = (9)10

Introduction to Computer 15

Fractions:
For fractions the weights of the digit positions are written from right of the binary point and weights

are given as follows.
2-1 2-2 2-3 2-4 2-5

E.g.:
(0.0110)2 = X10= 0 × 2-1 + 1 × 2-2 + 1 × 2-3 + 0 × 2-4

= 0 × 0.5 + 1 × 0.25 + 1 × 0.125 + 0 × 0.0625
= (0.375)10

E.g.:
(1011.101)2 = X10= 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 + 1 × 2-1 + 0 × 2-2 + 1 × 2-3

= 8 + 0 + 2 + 1 + 0.5 + 0 + 0.125= (11.625)10Decimal to binary conversion: (Double Dabble method)
In this method the decimal number is divided by 2 progressively and the remainder is written after

each division. Then the remainders are taken in the reverse order to form the binary number.
E.g.:

(12)10 = X2

(12)10 = (1100)2
E.g.:

(21)2 = X2

(21)2 = (10101)2
Fractions:

The fraction is multiplied by 2 and the carry in the integer position is written after each multiplication.
Then they are written in the forward order to get the corresponding binary equivalent.

16 Zero to Mastery in Computer Architecture and Organisation

E.g.:
(0.4375)10 = X22 × 0.4375 = 0.8750 0
2 × 0.8750 = 1.750 1
2 × 0. 750 = 1.5 1

2 × 0.5 = 1.0 1
(0.4375)10 = (0.0111)2

Octal number system has a base of 8 i.e., it has eight basic symbols. First eight decimal digits 0,
1,2,3,4,5,6,7 are used in this system.
Octal to decimal conversion:

In the octal number system each digit corresponds to the powers of 8. The weight of digital position
in octal number is as follows

84 83 82 81 80 8-1 8-2 8-3
To convert from octal to decimal multiply each octal digit by its weight and add the resulting

products.
E.g.:

(48)8 = X1048 = 4 × 81 + 7 × 80
= 32 + 7
= 39

(48)8 = (39)10

(22.34)8 = X1022.34 = 2 × 81 + 2 × 80 + 3 × 8-1 + 4 × 8-2
= 16 + 2 + 3 × 1/8 + 4 × 1/64
= (18.4375)

(22.34)8 = (18.4375)10
Decimal to octal conversion

Here the number is divided by 8 progressively and each time the remainder is written and finally the
remainders are written in the reverse order to form the octal number. If the number has a fraction part,
that part is multiplied by 8 and carry in the integer part is taken. Finally the carries are taken in the
forward order.
E.g.:

(19.11)10 = X8

Introduction to Computer 17

0.11 × 8 = 0.88 0
0.88 × 8 = 7.04 7
0.04 × 8 = 0.32 0
0.32 × 8 = 2.56 2
0.56 × 8 = 4.48 4 (19.11)10 = (23.07024)8

Octal to binary conversion
Since the base of octal number is 8, i.e., the third power of 2, each octal number is converted into

its equivalent binary digit of length three.
E.g.:

(57.127)8 = X2
5 7 . 1 2 7
101 111 . 001 010 111

(57.127)8 = (101111001010111)2
Binary to octal

The given binary number is grouped into a group of 3 bits, starting at the octal point and each group
is converted into its octal equivalent.
E.g.:

(1101101.11101)2 = X8
001 101 101 . 111 010
1 5 5 . 7 2
(1101101.11101)2 = (155.72)8

The hexadecimal number system has a base of 16. It has 16 symbols from 0 through 9 and A
through F.

Decimal Hexadecimal Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100

18 Zero to Mastery in Computer Architecture and Organisation

5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

Binary to hexadecimal:
The binary number is grouped into bits of 4 from the binary point then the corresponding

hexadecimal equivalent is written.
E.g.:

(100101110 . 11011)2 = X16

0001 0010 1110 . 1101 1000
1 2 E . D 8
(100101110 . 11011)2 = (12E . D8)16

Hexadecimal to binary
Since the base of hexadecimal number is 16, i.e., the fourth power of 2, each hexadecimal

number is converted into its equivalent binary digit of length four.
E.g.:

(5D. 2A)16 = X25 D . 2 A
0101 1101 . 0010 1010
(5D. 2A)16 = (01011101.00101010)2

Decimal to hexadecimal
The decimal number is divided by 16 and carries are taken after each division and then written in the

reverse order. The fractional part is multiplied by 16 and carry is taken in the forward order.
E.g.:

(2479.859)10 = X16

Introduction to Computer 19

16 × 0.859 = 13.744 => 13 (D)
16 × 0.744 = 11.904 => 11 (B)
16 × 0.904 = 14.464 => 14 (E)
16 × 0.464 = 7.424 => 7
16 × 0.424 = 6.784 => 6
(2479.859)10 = (9AF.DBE76)16

Hexadecimal to decimal
Each digit of the hexadecimal number is multiplied by its weight and then added.

E.g.:
(81.21)16 = X10= 8 x 161 + 1 x 160 + 2 x 16-1 + 1 x 16-2

= 8 x 16 + 1 x 1 + 2/16 + 1/162
= (129.1289)10(81.21) 16 = (129.1289)10

Binary Addition
To perform the binary addition we have to follow the binary table given below.
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0 plus a carry-over of 1
Carry-overs are performed in the same manner as in decimal arithmetic. Since 1 is the largest digit

in the binary system, any sum greater than 1 requires that a digit be considered over.
111 1010 11.01
110 1101 101.11

1001 10111 1001.00
E.g.
Binary Subtraction

To perform the binary subtraction the following binary subtraction table should be followed.

20 Zero to Mastery in Computer Architecture and Organisation

0 – 0 = 0
1 – 0 = 1
1 – 1 = 0
0 – 1 = 1 with a borrow of 1 is equivalent to 10 – 1 = 1

E.g.:
111
010
101

E.g.:
110.01
100.10
001.11

1's complement:
To obtain 1's complement of a binary number each bit of the number is subtracted from 1.

E.g.:
Binary number 1's Complement
0101 1010
1001 0110
1101 0010
0001 1110

Thus 1's complement of a binary number is the number that results when we change each 0 to a 1
and each 1 to a 0.
1's complement subtraction

Instead of subtracting the second number from the first, the 1's complement of the second number
is added to the first number. The last carry which is said to be a END AROUND CARRY, is added to
get the final result.
E.g.:

7 —— 111 +
 – 3 100 +
 4 1011 +

 –1
 100 (result)

If there is no carry in the 1's complement subtraction, it indicates that the result is a negative and
number will be in its 1's complement form. So complement it to get the final result.

Introduction to Computer 21

E.g.:
 8 ———— 1000 +
– 10 1's complement 0101
 4 1101 1's complement

0010 (Result)
The following points should be noted down when we do 1's complement subtraction.
1. Write the first number (minuend) as such.
2. Write the 1's complement of second number(subtrahend)
3. Add the two numbers.
4. The carry that arises from the addition is said to be "end around carry".
5. End-around carry should be added with the sum to get the result.
6. If there is no end around carry find out the 1's complement of the sum and put a negative sign

before the result as the result is negative.
2's Complement:

2's complement results when we add '1' to 1's complement of the given number i.e.,
2's complement =1's complement + 1

Binary Number 1's complement 2's complement
1010 010 0110
0101 1010 1011
1001 0110 0111
0001 1110 1111

Steps:
1. Write the first number as such
2. Write down the 2's complement of the second number.
3. Add the two numbers.
4. If there is a carry, discard it and the remaining part (sum) will be the result (positive).
5. If there is no carry, find out the 2's complement of the sum and put negative sign before the result

as the result is negative.
E.g.:1

10 – 1010 ——— 1010 +
8 1000 2's complement 1000

 10010
 Therefore Result is (0010)2E.g.:2

5 - 0101 ——— 0101 +
12 1100 2's complement 0100
4 1001 2's complement 1001 Therefore Result is (-0111)2

22 Zero to Mastery in Computer Architecture and Organisation

Binary Multiplication
The table for binary multiplication is given below
0 × 0 = 0
0 × 1 = 0
1 × 0 = 0
1 × 1 = 1

E.g.:
1011 × 110
1011 ×
 110
 0000
 1011
1011
1000010

E.g.:
101.01 × 11.01
101.01 ×
11.01
 101 01
 00000
 10101
10101
10001.0001

Binary division
The table for binary division is as follows.
0 ÷ 1 = 0
1 ÷ 1 = 1
Asthere fore resultis (-0111)2n the decimal system division by zero is meaning less.

E.g.: 1) 1100 11

2) 1001 ÷ 10

Introduction to Computer 23

100.1
10 ? 1001 ? 10A 1010 10 0

Binary Coded Decimal(BCD) is a way to express each of the decimal digits with a binary code.
There are only ten code groups in the BCD system. The 8421 code is a type of BCD code. In BCD each
decimal digit , 0 through 9 is represented by a binary code of four bits. The designation of 8421
indicates the binary weights of the four bits (23,22,21,20). The largest 4-bit code is 1001. The numbers
1010, 1011, 1100, 1101, 1110, and 1111 are called forbidden numbers. The following table represents
the decimal and 8421 equivalent numbers.

Decimal digit 0 1 2 3 4 5 6 7 8 9
BCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

In 8421 addition, if there is a carry or if it results in a forbidden group, then 0110 (decimal
equivalent 6) should be added in order to bring the result to the 8421 mode again.
E.g.:
 8+1000 +

7 0111
15 1111

+ 0110
00010101

E.g.:
18+ 0001 1000 +

2 0000 0010
20 0001 1010
+ 0000 0110

0010 0000

Computers, printers and the other devices must process both alphabetic and numeric information.
Serial coding systems have been developed to represent alphanumeric information as a series of 1's and
0's. The characters to be coded are alphabets(26), numerals (10) and special characters such as +,-, /
,*, $ etc,

24 Zero to Mastery in Computer Architecture and Organisation

In order to code a character, string of binary digits is used. In order to ensure uniformity
in coding, two standard codes have been used.

1. ASCII: American Standard Code for Information Interchange.
2. EBCDIC: Extended Binary Coded Decimal Interchange Code. It is an 8 bit code.
ASCII is 7-bit code of the form X6, X5, X4, X3, X2, X1, X0 and is used to code two types of

information. One type is the printable character such as alphabets, digits and special characters. The
other type is known as control characters which represent the coded information to control the operation
of the digital computer and are not printed.
Check Your Progress 1

1. 2×101 + 8×100 is equal to
(a) 10 (b) 280 (c) 2.8 (d) 28

2. The binary number 1101 is equal to the decimal number
(a) 13 (b) 49 (c) 11 (d) 3

3. The decimal 17 is equal to the binary number
(a) 10010 (b) 11000 (c) 10001 (d) 01001

4. The sum of 11010 + 01111 equals
(a) 101001 (b) 0101010 (c) 110101 (d) 101000

5. The difference of 110 - 010 equals
(a) 001 (b) 010 (c) 101 (d) 100

6. The 1's complement of 10111001 is
(a) 01000111 (b) 01000110 (c) 11000110 (d) 10101010

7. The 2's complement of 11001000 is
(a) 00110111 (b) 00110001 (c) 01001000 (d) 00111000

8. The binary number 101100111001010100001 can be written in octal as
(a) 54712308 (b) 54712418 (c) 26345218 (d) 231625018

9. The binary number 10001101010001101111 can be written in hexadecimal as
(a) AD46716 (b) 8C46F16 (c) 8D46F16 (d) AE46F16

10. The BCD number for decimal 473 is
(a) 111011010 (b) 1110111110101001 (c) 010001110011 (d) 010011110011

Q.1 Describe BITS, BYTES, WORD.
Q.2 Discuss Von Neumann classification of Computer.
Q.3 What are the parameters that characteristics SIMD computers?
Q.4 How System Software differ to Application Software?
Q.5 Briefy explain the characteristics of memory devices in a memory hierarchy.
Q.6 Write the features of RAM, ROM.
Q.7 What is the purpose of cache?

Introduction to Computer 25

Q.8 How is it used?
Q.9 How the memories represented on memory hierarchy?

Q.10 What are SISD, SIMD, MISD, MIMD, and differentiate each?

Byte consist of 8 bits
Word may be defined as a unit of information, which a computer can process, or transfer at a time.
Software's may be Application, System & Programmed
Memory may be Primary(RAM,ROM) & Auxiliary (TAPE,DISK)
Flynn Classification computer may be SISD,SIMD,MISD,MIMD
Von Neumann computer have three main components and have single path between main memory

& Components
Binary Number is a weighted number in which the weight of each whole number digit is a positive

power of 2 and the weight of each fractional digit is a negative power of 2.
1's Complement of a binary number is derived by changing 1s to 0s and 0s to 1s
2's Complement of a binary number can be derived by adding 1 to the 1's complement.
Octal Number system consists of eight digits, 0 through 7.
Hexadecimal number system consists of 16 digits and characters, 0 through 9 followed by

A through F.
ASCII is a 7-bit alphanumeric code that is widely used in computer systems for input/output of

information.

1. (d) 2. (a) 3. (c) 4. (a)
5. (d) 6. (b) 7. (d) 8. (b)
9. (c) 10. (c)

26 Zero to Mastery in Computer Architecture and Organisation

After going through this chapter you will be able to understand:-
• Concept of Discrete System
• Logic gates: AND,OR,NOT,NOR,NAND,XOR
• Concept of Boolean Algebra
• Concept of De-Morgan Theory

A system is simply any entity which generates output from input. A system may have any given
number of input and output ports. The name "port" is derived from the analogy with shipping. We may
make use of the mathematical concept of a function to describe how each possible input value causes a
particular output value. The statement of system function then serves to define a particular system.

By Time-Discrete System (Figure 2.1) is meant one whose output changes only at regular, discrete
intervals of time. The intervals may be thought of as ending with each tick of a system clock. Regardless
of any change to the input, no change of output will take place until the clock ticks. Any system which
does not wait for the tick of a clock is called a continuous system.

Fig. 2.1: Time discrete System
Digital systems use an internal representation of abstract quantities by first assigning it a distinct

integer value and then representing each digit separately. In contrast, Analog systems represent a
varying abstract quantity (e.g. temperature) by varying a physical quantity which serves as its analog. If
such a system is implemented using electrical technology the physical analog may be a current or
voltage Binary representation has a distinct advantage which greatly simplifies implementation. The
machine need only physically represent two digit values, 0 and 1.

Digital systems are thus not able to internally represent any value an abstract quantity may take.

Logic Gates & Boolean Algebra 27

Before encoding it must be quantized, Quantization means the selection of the nearest allowed value.The
computer is a special type of Time-discrete Digital System and is programmable.

Before discussing the Logic Gates we need to understand following common terms used in description:
Bit: A binary digit; can have a value of 0 or 1
Logic Diagram: A diagram showing an interconnection of logic symbols.
Truth Table: The truth table gives the input-output relation of a logic gate or logic circuit in tabular

form. It specifies the output bit(s) for each possible input bit combination. A circuit with n binary inputs
has 2n different input combinations. A binary value of 0 is sometimes referred to as L (low) or F
(false).A binary value of 1 is sometimes referred to as H (high) or T (true). A truth table of n binary
inputs has 2n minterms and an output is specified for each.

Min Terms: are easily deducible from a truth table, by writing down the pattern which produces
each 1 of function value and expressed as Sum of Product.

Max Terms: are also easily deducible from a truth table, by writing down the pattern which produces
each 0 of function value and expressed as Product of Sum.

 Logic gates are devices which implement systems with binary input and output values. The presence
or absence of a potential, at either input or output, is used to infer the truth or otherwise of a proposition.

OR
A logic gate is an idealized or physical device implementing a Boolean function, that is, it performs

a logical operation on one or more logic inputs and produces a single logic output.
OR
A logic gate is simply an electronic circuit which operates a one or more signals to produce an

output signal. The output is high only for certain combination of input signals. Gates can be classified
into following three categories:

(a) Basic or Fundamentals Gates : AND,OR,NOT
(b) Universal Gates: means that they can be used to make all the others Example NOR,NAND Gates
(c) Derived Gates: X-OR,X-NOR

An AND gate (Figure 2.2) has a high output only when all inputs are high. The output is low when
any one input is low. The is AND operation is also expressed by A^B. Therefore we can say if neither or
only one input to the AND gate is HIGH, a LOW output results. In another sense, the function of AND
effectively finds the minimum between two binary digits, just as the OR function finds the maximum.

Fig. 2.2: AND gate

28 Zero to Mastery in Computer Architecture and Organisation

Boolean expression for AND gate operation is
Y=A . B

A B Y=A.B
0 0 0
0 1 0
1 0 0
1 1 1

 Truth Table 2.0: AND gate
OR-Gate

An OR gate (Figure 2.2) produces a high output when any or the entire inputs are high. The output
is low only when all the inputs are low. In another sense, the function of OR effectively finds the
maximum between two binary digits, just as the complementary AND function finds the minimum
The OR operation is also expressed by AVB.

Fig. 2.3: OR gate
The Boolean expression for an OR gate is
Y=A+B

A B Y = A + B
0 0 0
0 1 1
1 0 1
1 1 1

 Truth Table:2.1: OR Gate
 NOT gate:

A NOT gate (Figure 2.3) is also called an inverter. The circuit has one input and one output. The
output is the complement of the input. If the input signal is high, the output is low and vice versa.

Fig. 2.4: NOT gate

Logic Gates & Boolean Algebra 29

The Boolean expression for NOT gate is
Y = A

A Y = A
0 1
1 0

Truth Table:2.2 Not Gate
If two NOT gates are cascaded then the output will be same as the input and the circuit is called

Buffer Circuit.

NAND- Gate
A NAND (Figure 2.4) gate has two or more input signals but only one output signal. All input signals

must be high to get a low output. When one AND gate is combined with a NOT gate, a NAND gate is
obtained.

Fig. 2.5: NAND gate

A B Y = A . B
0 0 1
0 1 1
1 0 1
1 1 0

Truth Table: 2.3: NAND Gate
 NOR- Gate:

NOR gate (Fig. 2.5) has two or more input signals and one output signal. It consists of one OR gate
followed by an inverter. A NOR gate produces a high output only when all the inputs are low.

30 Zero to Mastery in Computer Architecture and Organisation

Fig. 2.6: NOR gate
A B Y=A+B
0 0 1
0 1 0
1 0 0
1 1 0

Truth Table:2.4 NOR Gate
NAND or NOR to implement a combinational logic system usually turns out to be more efficient in

the sense of minimizing production cost, which is of course the most important sense of all.

XOR gate
XOR (Figure 2.6) gate is an abbreviation of exclusive OR gate. It has two inputs and one output.

For a two input XOR gate, the output is high when the inputs are different and the output is low when
the inputs are same. In general, the output of an XOR gate is high when the number of its high inputs
is odd. The Boolean expression of the XOR gate is

A.B+B

a) Logic diagram

b) Logic symbol
Fig. 2.7 XOR gate

Logic Gates & Boolean Algebra 31

A B Y = A B
0 0 0
0 1 1
1 0 1
1 1 0
Truth Table:2.5:XOR Gate

From the truth table of XOR (Table2.5) we note that the operator value is 1
(true) when:
A.B=1
A.B=1
These two are called minterms. We know that any Boolean function may be written as either
• Standard sum of products (minterms)
• Standard product of sums (maxterms)
Minterms are easily deducible from a truth table, simply by writing down the pattern which produces

each 1 of function value. In X-OR the value of the function is 1 if the first minterm is 1 OR the second
OR the third and so on.

Uses of XOR gate: The exclusive-or operator is so useful because…
(i) It inverts (complements) a bit and It is equivalent to binary (modulo 2) addition

(ii) Binary to Gray Converter

Fig. 2.8: Binary to Gray Converter
The Figure 2.7 shows the way to convert binary number to gray number using XOR gates. Since

mod-2 addition is involved in the conversion, XOR gate is used for this purpose.
(iii) Gray to Binary Converter: XOR gate is also used to convert gray code to a binary number.

The circuit diagram for this operation is shown in the Figure 2.8.

32 Zero to Mastery in Computer Architecture and Organisation

Fig. 2.9: Gray to Binary Converter
(iv) Parity Checker: Parity checker can be designed using XOR gates as given in the Figure 2.9.

Here the parity of the word ABCD is checked. The circuit adds the bits of ABCD. A final sum of 0
implies even parity and a sum of 1 means odd parity.

Fig. 2.10: Parity checker

The binary signal at the inputs and outputs of any gate has one of the two values, except during
transition. One signal value represents logic-1 and the other logic-0. Since two signal values are assigned
to two logic values, there exists two different assignments of signal level to logic value, as shown in
Figure. 2.10 The higher signal level is designated by H and the lower signal level is designated by L.
Choosing the high-level H to represent logic-1 defines a positive logic system. Choosing the low-level L
to represent logic-1 defines a negative logic system.

Fig. 2.11: Signal assignment & Logic Polarity

Logic Gates & Boolean Algebra 33

The basic rules for simplifying and combining logic gates are called Boolean algebra in honour of
George Boole (1815 - 1864) who was a self-educated English mathematician who developed many of
the key ideas.

Boolean variables are variables with range {1,0}. Boolean expressions are equivalent to prepositional
formula. They are formed by combining operators and variables, exactly as for ordinary algebra, and
evaluate to {1,0} as do Boolean variables which may be regarded as primitive expressions. Boolean
functions, like Boolean variables, evaluate to the range {1,0} only. They may be specified by…

• Boolean expression
• Truth table
The Truth Table is a unique specification, i.e. there is only one per function. There are, however,

often many expressions for each function. For this reason it is best to initially specify a requirement as
a truth table and then proceed to a Boolean expression.

Boolean functions are important to computer architecture because they offer a means of specifying
the behaviour of systems in a manner which allows a modular approach to design. Algebraic laws may
be employed to transform expressions.

The following set of example will allow you to understand the basic rules:
Example: 1

Consider the AND gate where one of the inputs is 1. By using the truth table, investigate the possible
outputs and hence simplify the expression A · 1.

Solution From the truth table for AND, we see that if A is 1 then 1 · 1 = 1, while if A is 0 then 0 · 1
= 0. This can be summarised in the rule that A · 1 = A, i.e.,

Fig: 2.12
Example: 2

Consider the AND gate where one of the inputs is 0. By using the truth table, investigate the possible
outputs and hence simplify the expression A · 0.

Solution From the truth table for AND, we see that if A is 1 then 1 · 0 = 0, while if A is 0 then 0 · 0
= 0. This can be summarised in the rule that A · 0 = 0

Fig: 2.13
Example: 3

Obtain the rules for simplifying the logical expressions

A

34 Zero to Mastery in Computer Architecture and Organisation

(a) A + 0 which corresponds to the logic gate
(b) A+ 1 which corresponds to the logic gate

Solution: 3 (a)
From the truth table for OR, we see that if A is 1 then 1 + 0 = 1, while if A is 0 then 0 + 0 = 0. This

can be summarised in the rule that A + 0 = A

Fig 2.14
3(b) From the truth table for OR we see that if A is 1 then 1 + 1 = 1, while if A is 0 then 0 + 1 = 1.

This can be summarised in the rule that A + 1 = 1

Fig: 2.15

Example: 4
Obtain the rules for simplifying the logical expressions:

(a) A + A which corresponds to the logic gate
(b) A · A which corresponds to the logic gate

Solution 4 (a)
From the truth table for OR, we see that if A is 1 then A+A = 1+1 = 1, while if A is 0 then A+A= 0+0

= 0. This can be summarised in the rule that A + A = A

Fig. 2.16
4(b) From the truth table for AND, we see that if A is 1 then A · A = 1 · 1 = 1, while if A is 0 then

A · A = 0 · 0 = 0. This can be summarised in the rule that A · A = A

Fig 2.17
Example: 5

Obtain the rules for simplifying the logical expressions:
(a) A + A' which corresponds to the logic gate x
(b) A · A' which corresponds to the logic gate

Logic Gates & Boolean Algebra 35

Solution 5 (a)
From the truth table for OR, we see that if A is 1 then A + A' = 1 + 0 = 1, while if A is 0 then A + A'

= 0 + 1 = 1. This can be summarised in the rule that A + A' = 1

Fig. 2.18 (a)

5 (b) From the truth table for AND, we see that if A is 1 then A · A' = 1 · 0 = 0, while if A is 0 then
A · A' = 0 · 1 = 0. This can be summarised in the rule that A · A' = 0

Fig. 2.18 (b)
Example: 6

Simplify the logical expression (A')' represented by the following circuit diagram.

Fig. 2.19
Solution From the truth table for NOT we see that if A is 1 then (A')' = (1')' = (0)' = 1, while if A is

0 then (A')' = (0')' = (1)' = 0. This can be summarised in the rule that (A')' = A

Fig. 2.20
The Boolean identities are given as:
Commutative law:
A + B = B + A
B + A = A + B
Associative law:
A + (B + C) = (A + B) + C
A. (B.C) = (A.B).C
Distributive law
A. (B + C) = A.B + A.C
Other laws of Boolean algebra:

36 Zero to Mastery in Computer Architecture and Organisation

1. A + 0 = A
2. A + 1 = 1
3. A + A = A
4. A + A = 1
5. A .0 = 0
6. A .1 = A
7. A .A = A
8. A . A = 0
 =
9. A = A
10. A + A.B =A
11. A.(A + B) = A
12. (A + B).(A+C) = A + B.C
13. A + A .B =A + B
14. A.(A +B) = A.B
15. (A + B).(A + C) = A.C + A .B
16. (A + C).(A + B) = A.B + A .C

I Theorem statement:
The complement of a sum is equal to the product of the complements.
A+B =A.B

II Theorem Statement:
The complement of a product is equal to the sum of the complements.
Case 3: A = 1, B = 0
L.H.S A+B=1+0= 1+0
R.H.S A.B = 1. 0 = 0.1 = 0
Case 4:
A = 1, B = 1
L.H.S = A+B=1+1= 1=0
R.H.S = A.B= 1. 1 = 0.0= 0

Logic Gates & Boolean Algebra 37

 A B _
A + B

_ _
A . B

0 0
1
1

0 1
0
1

1 0
0
0

1 0
0
0

Truth table 2.6

 A B _
A . B

_ _
A + B

0 0
1
1

0 1
0
1

1 1
1
0

1 1
1
0

Truth table 2.7

1. An inverter performs an operation known as
(a) Complementation (b) assertion (c) Inversion
(d) both answers (a) & (b)

2. The output of gate is LOW when at least one of its inputs is HIGH. It is true for
(a) AND (b) NAND (c) OR
(d) NOR

3. The output of gate is HIGH when at least one of its inputs is LOW. It is true for
(a) AND (b) OR (c) NAND
(d) NOR

4. The output of a gate is HIGH if and only if all its inputs are HIGH. It is true for
(a) XOR (b) AND (c) OR
(d) NAND

5. The output of a gate is LOW if and only if all its inputs are HIGH. It is true for

38 Zero to Mastery in Computer Architecture and Organisation

(a) AND (b) XNOR (c) NOR
(d) NAND

6. Which of the following gates cannot be used as an inverter?
(a) NAND (b) AND (c) NOR
(d) None of the above

7. The complement of a variable is always
(a) 0 (b) 1 (c) equal to the variable
(d) the inverse of the variable

8. Which one of the following is not a valid rule of Boolean algebra? (a) A + 1 = 1
(b) A = A (c) A.A = A (d) A + 0 = AA

9. Which of the following rules states that if one input of an AND gate is always 1 , the output is
equal to the other input ?

(a) A + 1 = 1 (b) A + A = A (c) A.A = A
(d) A . 1 = A

Alphanumeric : Consisting of numerals, letters, and other characters.
ASCII : American Standard Code for Information Interchange.
BCD : Binary Coded Decimal ; a digit code in which each of the decimal digits , 0 through 9, is

represented by a group of four bits.
Binary : Describes a number system that has a base of two and utilizes 1 and 0 as its digits.
Boolean algebra : The mathematics of logic circuits.
Gate : A logic circuit that performs a specified logic operation , such as AND, OR or NOT.
Hexadecimal : Describes a number system with a base of 16
Octal : Describes a number system with a base of 8.
Parity : Parity is based on the number of 1's in a binary word. If the number of 1's in a word is

odd, then it is a odd parity word and if the number of 1's is even, then it is an even parity word.
Truth table : A table showing the inputs and corresponding output levels of a logic circuit.
Universal gate : Either a NAND gate or a NOR gate.

1.(d) 2.(d) 3.(c) 4.(b) 5.(d) 6.(b) 7.(d) 8.(b) 9.(d)

Combinational & Sequential Circuits 39

At the end of this unit you will be able to describe:
• What are Combinational & Sequential Circuits and their differences?
• What are latches flip-flops and gates?
• Combinational and sequential circuits and their applications thereof.
• Some of the useful circuits of a computer system such as Multiplexers, De-Multiplexer, Decoders,

En-coder, Adder, Shift Register etc.
• How a very basic mathematical operation; the addition is performed by a computer.

Combinational logic consists of logic gates (sometimes also referred to as combinatorial logic)
and is a type of digital logic which is implemented by boolean circuits, where the output is a pure
function of the present input only.

Or
Implementing a truth function by use of combining logical operators is known as combinational

logic.
A combinational circuit performs a specific information-processing operation assigned logically by

a set of Boolean functions. Combinatorial Circuits are circuits which can be considered to have the
following generic structure

 n inputs m outputsCombinationalcircuit
Fig. 3.1: Logic Diagram of combinational Circuit

Sequential circuits contain logic gates as well as memory cells. Their outputs depend on the
present inputs and also on the states of memory elements. Since the outputs of sequential circuits

40 Zero to Mastery in Computer Architecture and Organisation

depend not only on the present inputs but also on past inputs, the circuit behavior must be specified by
a time sequence of inputs and memory states. The general structure of Sequential circuit is given as:

Combinational Logic+ Memory Elements

Fig. 3.2: Logic Diagram of Sequential Circuit
Points to Remember

*Unlike combinational logic, sequential circuits have state, which means basically, sequential circuits
have memory.

*The main difference between sequential circuits and combinational circuits is that sequential circuits
compute their output based on input and state, and that the state is updated based on a clock.
Combinational logic circuits implement Boolean functions, so they are functions only of their inputs,
and are not based on clocks.

*In Practical computer circuits normally contain a mixture of combinational and sequential
logic. For example, the part of an arithmetic logic unit, or ALU, that does mathematical calculations is
constructed using combinational logic. Other circuits used in computers, such as half adders, full
adders, half subtractors, full subtractors, multiplexers, demultiplexers, encoders and decoders are also
made by using combinational logic.

Differences between Combinational & Sequential Logic Circuits
Combinational Circuit Sequential Circuit

1. Outputs depend only on its current inputs. Outputs depend not only on the current
inputs but also on the past sequences of
inputs.

2. A combinational circuit may contain Sequential logic circuits contain
an arbitrary number of logic gates combinational logic in addition to memory
and inverters but no feedback loops. elements formed with feedback loops.

3. A feedback loop is a connection from the The behavior of sequential circuits is
output of one gate to propagate back into formally described with state transition
the input of that same gate. tables and diagrams.

4. The function of a combinational circuit rep-
resented by a logic diagram is formally des-
cribed using logic expressions and truth tables.

Table: 3.0 Difference between combinational & sequential logic

Combinational & Sequential Circuits 41

A multiplexer is a combinational logic circuit, which has many inputs and only one Output.
(Multiplexer means "Many to one").

OR
In electronics, a multiplexer or Data selector is a device that selects one of several analog or

digital input signals and forwards the selected input into a single line. A multiplexer of 2n inputs has n
select lines, which are used to select which input line to send to the output.

• Multiplexing: combining many signals into a single transmission circuit or channel
• Multiplexer: An electronic device that accomplishes multiplexing
Figure 3.3 shows a four data input multiplexer. D3, D2, D1 and D0 are data inputs. A and B are

control inputs. Y is the output of the multiplexer. (Note that the multiplexer can be obtained by modifying
a decoder circuit).

When control input AB=00, Gate=0 is enabled and hence Y=D0. Similarly if AB=10,
Gate 2 is enabled and hence Y=D2 and so on. The truth table and schematic diagram of multiplexer

is shown in below

Fig:3.3 Multiplexer
A B Y
0 0 D0
0 1 D1
1 0 D2
1 1 D3

Table 3.1: Truth table for multiplexer (MUX) with four inputs

• Multiplexers are mainly used to increase the amount of data that can be sent over the network
within a certain amount of time and bandwidth.

42 Zero to Mastery in Computer Architecture and Organisation

• The multiplexer is also used to switch between channels. It is simply a multi-way switch. An
example of a MUX is the channel selector on a television. The source of information for the
channel to the system which builds images on the screen is switched between the many available
TV broadcast channels.

• Another common use of a MUX is to share a single available channel between multiple sources.
For example, there might be only a single telephone cable between two countries. Multiple telephone
connections are possible over the single cable if a MUX is connected at the source and its inverse,
a DEMUX, at the sink. The sources are rapidly switched in and out such that packets of each
conversation are transmitted in sequence. The DEMUX must know this sequence in order to
route each packet to the correct receiver. This is known as time-multiplexing. The users are
unaware that only one physical channel exists. They are said to be exploiting virtual channels.

• MUXs are used in computers for selecting one of a number of binary signals or for sharing limited
numbers of physical channels.

Points to Remember
1. Defined as a circuit which connects one of input data lines to one output line. In (Means a

"Multiplexer" converts multiple input to a single output.)
 2. The data source selected for connection is determined by a set of n input select lines.
3. Architecture consists of a decoder plus an ORing element.
4. Data lines Di are ANDed with decoder minterms to provide selection of data sources.
5. Demonstration of multiplexing action as provided by a mechanical switch.
6. May also be employed as a SOP Boolean function generator of the input select lines (the data

inputs specify the truth table values.)

A demultiplexer performs a function opposite to that of a multiplexer. It has one data input and
several output lines. Based on the value of the control input, one of the output lines will become active
and will output the data input across it. Figure 3.4 shows a 1 to 4 demultiplexer. D is the data input Y3,
Y2, Y1 and Y0. ie. Y0=D. Similarly when the control input AB=10, Y2=D.

OR
A DEMUX performs the inverse function of the MUX. A single input value is routed to an output

channel selected by the two select control inputs. Figure 3.4 shows the combinational logic required. Its
truth table is shown in Table 3.2

Combinational & Sequential Circuits 43

Fig:3.4: De-Multiplexer
D A B Y3 Y2 Y1 Y0
D 0 0 D D
D 0 1 D
D 1 0
D 1 1 D

Truth Table3.2: 2 By 4 De-multiplexer
A DEMUX may be used to route data to the currently addressed system simply by connecting

Points to Remember
1. Defined as a circuit which connects one input data line to one of 2n output lines
2. The output line selected for connection is determined by a set of n output select lines.
3. Demonstration of demultiplexing action as provided by a mechanical switch.
4. A DeMUX circuit can be realized from a decoder circuit by utilizing the decoder enable input line

E as the DeMUX data input line.

A decoder has several output lines and control input lines. Based on the value of the control input (or
select input), one of the output lines will become active.

If there are four control input lines, then the decoder can have up to a maximum of sixteen (2
power 4) output lines When the control input AB=00, the AND gate G0 is enabled and its output Y0 is
high. Suppose AB=10, then G2 is enabled and hence Y2 will be high.

OR
In digital electronics, a decoder can take the form of a multiple-input, multiple-output logic circuit

that converts coded inputs into coded outputs, where the input and output codes are different. e.g. n-to-
2n, binary-coded decimal decoders. Enable inputs must be on for the decoder to function, otherwise its
outputs assume a single "disabled" output code word. The Decoding is necessary in applications such as
data multiplexing, 7 segment display and memory address decoding,

44 Zero to Mastery in Computer Architecture and Organisation

A 2-bit decoder has an input consisting of two signals, one for each bit of a binary word, and four
separate outputs, one for each input value. Figure 3.5 shows a schematic diagram and the truth table of
a 2-bit decoder and fig 3.6 show 3-8 line Decoder.

Fig. 3.5: 2-to-4-Line Decoder with Enable Input

Fig. 3.6: 3 by 8 line De-coder

• It is widely used as address decoder in a computer system. (The outputs of a decoder can
become the select inputs to the memory locations. In such case, the control inputs become the
address of the memory location).

• Decoder circuit is used in every important CLC except the encoder.
• The most important use of decoders is in bus communication,

1. Defined as a circuit which translates an n-bit input code word into a larger m bit output word
2. Architecture consists of an array of m ANDing elements (active-high outputs use AND gates;

active-low outputs use NAND gates)
3. For simple decoders, the outputs are minterms of the input select line variables.
4. The enable signal E must be in the active state to enable the decoder.

Combinational & Sequential Circuits 45

5. Simple decoders may also be employed as a SOP Boolean generator of the n select lines.
Sum desired minterms by attaching an ORing element to the corresponding decoder outputs
(each output line contributes one minterm.)

An encoder is a digital circuit that generates the binary code corresponding to the input number.
An octal-to-Binary encoder takes an octal input (in some symbolic form) and generates its binary
equivalent as output. Similarly, a Decimal-to-Binary encoder takes a decimal input and generates
an equivalent binary output. Figure 3.7 shows an Octal-to-Binary encoder using OR gates. (A Decimal-
to-Binary encoder has ten input lines and uses four OR gates at the output).

Fig. 3.7: Show Octal to binary Encoder

Truth table 3.3 : 8-3 binary encoder (8 inputs and 3 outputs)

• Defined as a circuit which translates an n bit data-word into a smaller m-bit code-word.
• Used to do bit compression.
• Architecture consists of a linear array of m ORing elements.

46 Zero to Mastery in Computer Architecture and Organisation

A counter is a sequential circuits that counts the number of incoming clock pulses. It consists of
an array of flip-flops.

Or
In digital logic and computing, a counter is a device which stores (and sometimes displays) the

number of times a particular event or process has occurred, often in relationship to a clock signal.
In the following sections, negative edge triggered JK flip-flops are used for discussions on the

working of the various types of counters.
Basically there are two types of counters. "Parallel counters (or) Synchronous counters" and "Ripple

counters (or) Asynchronous counters".
Asynchronous Binary Up Counter: Let us consider a three bit counter for simplicity. It must have

a count sequence 000
001…111, as shown in the table below. Q0, Q1, Q2 are outputs of the flip-flops are cleared with a

PC RESET input such that Q2Q1Q0=000. Thereafter with every clock, the output increments as shown.

Fig. 3.8: Asynchronous Binary Up Counter

Combinational & Sequential Circuits 47

After every eight clocks the count sequence repeats itself. From the count sequences table given
above it can be seen that Q0 toggles with every clock. Hence the CK pulse is directly applied to the first
flip-flop. But Q(i) toggles whenever Q(i-1) makes a negative transition that is when Q(i-1) changes from
1 to 0. Hence the clocks for subsequent flip-flops are obtained from the Q(i) output of the previous flip-
flop.

Note that in an asynchronous counter the J and K inputs are always kept high so that the flip-flop
toggles when a clock arrives.
Asynchronous Binary down Counter

A binary down counter counts with every clock and hence it is initially SET with DCSET input.

Fig. 3.9:Asynchronous Binary down Counter
The counter state table is given below. It can be seen from the count sequence table that
Q0 toggles with every clock. Hence the first flip-flop is clocked directly. For the other flip-flops

Q(i) toggles only when Q(i-1) makes a positive transition. That is when Q(i-1) makes a negative transition.
Hence the clocks are derived from the complementary outputs for these flipflops.

For convenience, a three bit natural binary counter is treated in the above discussions.
The same logic can be extended to 4-bit (or) 5-bit counter or an n-bit counter.

48 Zero to Mastery in Computer Architecture and Organisation

Synchronous Binary Counter
In a synchronous counter, the flip-flops are all clocked simultaneously. Hence the J and K inputs

are made high only when necessary. (Recall that in asynchronous counters, J and K inputs are always
high, that is the flip-flops are in toggle mode and when a clock arrives the flip-flop toggles).

Truth Table:3.4: Synchronous Binary Encoder

A careful study of the count sequence table will reveal that a flip-flop toggles only when the outputs
of the previous flip-flops are high. ie. Q(i) toggles only when Q(i-1) AND Q(i-2) AND Q(i-3) … AND
Q(0)=1.

This fact is made use of in realizing a synchronous counter.

Latches & Flip Flops: latches and flip-flops are the building blocks of sequential circuits both
latches and flip-flops are circuit elements whose output depends not only on the current inputs, but also
on previous inputs and outputs. The difference between a latch and a flip-flop is that a latch does not
have a clock signal, whereas a flip-flop always does and latches can be built from gates and flip-flops
can be built from latches.

A flip flop is a bi stable device, that is, it can remain in one of the two stable states which are
designated as "0" and "1" states. It is the fundamental logic circuit used for storing information in digital
systems. Different types of shift registers and counters are designed only using flip flops, which can be
built using NOR gates or NAND gates. A flip flop has two outputs, one of which is the complement of
the other. They are called Normal and complement outputs.

The RS Flip flop can be implemented in many ways. One such implementation is shown in Figure
3.7 There are two inputs to the RS Flip Flop. These lines are used to control the output of the flip-flop.
The working of the flip-flop is as follows:

Combinational & Sequential Circuits 49

Case: 1
When S=0 and R=0. Now both the NAND gates A and B output logic 1. Hence the outputs of C and

D depend only on the feedback inputs (secondary inputs). The primary inputs, that is outputs of gates
A and B are don't cares now. In other words the entire circuit behaves as a latch. Thus the circuit will
"hold on" to its previous output. This state is called "HOLD" state.

Fig: 3.10:RS Flip Flop
Figure shows an RS Flip Flop constructed with four NAND gates A, B, C and D.
It has two inputs S and R and two outputs Q and Q'. (The state of any flip-flop is known by the

state of a output only).
Case: 2
When S=0 and R=1. Now gate A will output 1 and B will output as 0. The output of D
that is Q' will be 1, making both inputs to gate cas 0. Hence Q will be in a 1 state. This state of the

flip flop is known as "RESET" state.
Case: 3
When S = 1 and R = 1. This input condition is prohibited. This is because when both S and R are

equal to 1, gates A and B will output 0', which will force both Q and Q' to 1. This is against the principle
of operation of a flip flop. Moreover, if the inputs are now changed, the next state of the flip flop is
unpredictable. The next state actually depends on which gate is faster to change its present state. This
prohibited state is also called "RACE" condition.

Case 4:
When S=1 and R=0. This is just the reverse of case 2. On similar arguments we can see that now

Q=1 and Q'=0. This state of the flip-flop is known as "SET" state.
The above stated input output relations are represented below on in truth table.

Truth Table:3.5: RS Flip Flop

50 Zero to Mastery in Computer Architecture and Organisation

The disadvantages of an RS flip-flops are twofold…
• Both inputs must be considered when writing the memory
• There is no means of synchronization

In the RS Flip flop the condition R=1 and S=1 is forbidden. This state can be avoided by connecting
an inverter between S and R inputs. The flip flop with this modified connection is called a D flip flop.

When the clock is 0 and the D input does not affect the output. So when the clock is 0, D is treated
as don't care. The value of D is prevented from reading the output until a clock pulse occurs. When the
clock is high, both the AND gates are enabled and the value of D appears at Q.

When the clock goes low and last value is retained by Q. This Flip-flop is also called as a delay Flip-
flop or data flip-flop.

Fig:3.11: (a) D-Flip-Flop and (b)Truth Table

A flip-flop is a refinement of the SR flip-flop in that the in determinate condition of the SR type is
defined in the JK type inputs J and K behave like inputs S and R to set and clear the Flip-flop, respectively.
When inputs J and K are both equal to 1, a clock transition switches the outputs of the flip-flop to their
complement state.

The graphic symbol and characteristic table of the JK flip-flop are shown in Figure. 3.12.
The J input is equivalent to the S (set) input of the SR flip-flop, and the K input is equivalent to the

R (clear) input. Instead of the indeterminate condition, the JK flip-flop has a complement condition Q
(t+1) = Q' (t) when both J and K are equal to 1.

Combinational & Sequential Circuits 51

Fig:3.12(a) J-K Flip Flop Graphic Symbol &(b) Truth Table

Another type of flip flop is the toggle flip flop. This flip flop is obtained from a JK flip flop when
inputs J and K are connected to provide a single input designated by t. The T flip flop has only two
conditions. When T=0 (J=K=0) a clock transition does not change the state of the flip flop. When
T=1(J=K=1) a clock transition complements the state of the flip flop.

These conditions can be expressed by a characteristics equation.

Fig 3.13: (a) T-Flip-Flop Graphic Symbol & (b) Truth Table

Flip-flops are clocked, latches are only enabled. This is an easy way to remember the difference.
Flip-flops usually have an enable connection too, so that they may avoid communication on any given
clock tick. They offer synchronous communication through use of a shared clock.

"D" is for Data, "T" is for Toggle! "D" is also for Delay since data at the input of a D flip-flop cannot
be input to a second one until the following clock tick. A delay is therefore afforded in passing data along

52 Zero to Mastery in Computer Architecture and Organisation

a string of flip-flops of one clock period per device. The JK flip-flop allows a number of different
processes to be programmed, some with asynchronous and some with synchronous effect. It may be
thought of as the most primitive possible programmable processor.

A register is simply a collection of flip-flops wide enough to contain one complete word of data.
Registers are read onto, and written from, a data bus, which is of width equal to that of the registers
themselves. Some means must be provided to enable the connection of any one particular register to the
bus and to ensure that it either reads or writes the bus but not both simultaneously.

 These are basic building blocks for construction of combinational and sequential circuits.
There are following types of register on the basis of Data Transmission:
Serial-in to Parallel-Out (SIPO): the register is loaded with serial data, one bit at a time, with the

stored data being available in parallel form.
Serial-in to Serial-Out (SISO): the data is shifted serially "IN" and "OUT" of the register, one bit

at a time in either a left or right direction under clock control.
Parallel-in to Serial-Out (PISO): the parallel data is loaded into the register simultaneously and is

shifted out of the register serially one bit at a time under clock control.
Parallel-in to Parallel-Out (PIPO): the parallel data is loaded simultaneously into the register, and

transferred together to their respective outputs by the same clock pulse.
The effect of data movement from left to right through a register can be presented graphically as

Fig. 3.14: Graphical Representation of SISD,SIMD,MISD,MIMD

The data register is one of the most common components of contemporary computers. Its function,
on any clock tick, may be defined by previously setting or clearing the following control inputs…

• R/W (Read/Write)
• En (Enable)
R/W means "read not write" when set and therefore "write not read" when clear or Re-set. It is

Combinational & Sequential Circuits 53

standard. An serves to decide whether a read or write operation is to be allowed or not. Remember that,
unlike the data inputs, control inputs are asynchronous. They must be set up prior to the clock tick
when the operation is required.

The Shift Register is another type of sequential logic circuit that is used for the storage or transfer
of data in the form of binary numbers and then "shifts" the data out once every clock cycle, hence the
name shift register. It basically consists of several single bit "D-Type Data Latches", one for each bit
(0 or 1) connected together in a serial or daisy-chain arrangement so that the output from one data
latch becomes the input of the next latch and so on. The data bits may be fed in or out of the register
serially, i.e. one after the other from either the left or the right direction, or in parallel, i.e. all together.
The number of individual data latches required to make up a single Shift Register is determined by the
number of bits to be stored with the most common being 8-bits wide, i.e. eight individual data latches.
Applications of Shift Register

Shift Registers are used for data storage or data movement and are used in calculators or computers
to store data such as two binary numbers before they are added together, or to convert the data from
either a serial to parallel or parallel to serial format. The individual data latches that make up a single
shift register are all driven by a common clock (Clk) signal making them synchronous devices.

The directional movement of the data through a shift register can be either to the left, (left shifting)
to the right, (right shifting) left-in but right-out, (rotation) or both left and right shifting within the same
register thereby making it bidirectional.

There is following types of shift register:
(a) 4-bit Serial-in to Parallel-out Shift Register: The operation is as follows. Let's assume that

all the flip-flops (FFA to FFD) have just been RESET (CLEAR input) and that all the outputs
QA to QD are at logic level "0" i.e, no parallel data output. If a logic "1" is connected to the
DATA input pin of FFA then on the first clock pulse the output of FFA and therefore the
resulting QA will be set HIGH to logic "1" with all the other outputs still remaining LOW at logic
"0". Assume now that the DATA input pin of FFA has returned LOW again to logic "0" giving us
one data pulse or 0-1-0.

Fig. 3.15: 4-bit Serial-in to Parallel-out Shift Register
The second clock pulse will change the output of FFA to logic "0" and the output of FFB and QB

54 Zero to Mastery in Computer Architecture and Organisation

HIGH to logic "1" as its input D has the logic "1" level on it from QA. The logic "1" has now moved or
been "shifted" one place along the register to the right as it is now at QA. When the third clock pulse
arrives this logic "1" value moves to the output of FFC (QC) and so on until the arrival of the fifth clock
pulse which sets all the outputs QA to QD back again to logic level "0" because the input to FFA has
remained constant at logic level "0".

The effect of each clock pulse is to shift the data contents of each stage one place to the right, and
this is shown in the following table until the complete data value of 0-0-0-1 is stored in the register. This
data value can now be read directly from the outputs of QA to QD. Then the data has been converted
from a serial data input signal to a parallel data output. The truth table and following waveforms show
the propagation of the logic "1" through the register from left to right as follows.

Basic Movement of Data through a Shift Register
Clock Pulse No QA QB QC QD

0 0 0 0 0
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
5 0 0 0 0

Fig. 3.16: Basic Movement of Data through a Shift Register

Combinational & Sequential Circuits 55

Note that after the fourth clock pulse has ended the 4-bits of data (0-0-0-1) are stored in the register
and will remain there provided clocking of the register has stopped. In practice the input data to the
register may consist of various combinations of logic "1" and "0". Commonly available SIPO IC's
include the standard 8-bit 74LS164 or the 74LS594.
Serial-in to Serial-out (SISO)

This shift register is very similar to the SIPO above, except were before the data was read directly
in a parallel form from the outputs QA to QD, this time the data is allowed to flow straight through the
register and out of the other end. Since there is only one output, the DATA leaves the shift register one
bit at a time in a serial pattern, hence the name Serial-in to Serial-Out Shift Register or SISO.

The SISO shift register is one of the simplest of the four configurations as it has only three connections,
the serial input (SI) which determines what enters the left hand flip-flop, the serial output (SO) which is
taken from the output of the right hand flip-flop and the sequencing clock signal (Clk). The logic circuit
diagram below shows a generalized serial-in serial-out shift register.

(b) 4-bit Serial-in to Serial-out Shift Register: You may think what's the point of a SISO shift
register if the output data is exactly the same as the input data. Well this type of Shift Register also acts
as a temporary storage device or as a time delay device for the data, with the amount of time delay
being controlled by the number of stages in the register, 4, 8, 16 etc or by varying the application of the
clock pulses.

Fig. 3.17: 4-bit Serial-in to Serial-out Shift Register
Commonly available IC's include the 74HC595 8-bit Serial-in/Serial-out Shift Register all with 3-

state outputs.
Parallel-in to Serial-out (PISO)

The Parallel-in to Serial-out shift register acts in the opposite way to the serial-in to parallel-out one
above. The data is loaded into the register in a parallel format i.e. all the data bits enter their inputs
simultaneously, to the parallel input pins PA to PD of the register. The data is then read out sequentially
in the normal shift-right mode from the register at Q representing the data present at PA to PD. This data
is outputted one bit at a time on each clock cycle in a serial format. It is important to note that with this
system a clock pulse is not required to parallel load the register as it is already present, but four clock
pulses are required to unload the data.

56 Zero to Mastery in Computer Architecture and Organisation

(c) 4-bit Parallel-in to Serial-out Shift Register:

Fig. 3.18: 4-bit Parallel-in to Serial-out Shift Register
As this type of shift register converts parallel data, such as an 8-bit data word into serial format, it

can be used to multiplex many different input lines into a single serial DATA stream which can be sent
directly to a computer or transmitted over a communications line. Commonly available IC's include the
74HC166 8-bit Parallel-in/Serial-out Shift Registers.

Parallel-in to Parallel-out (PIPO)
The final mode of operation is the Parallel-in to Parallel-out Shift Register. This type of register also

acts as a temporary storage device or as a time delay device similar to the SISO configuration above.
The data is presented in a parallel format to the parallel input pins PA to PD and then transferred together
directly to their respective output pins QA to QA by the same clock pulse. Then one clock pulse loads
and unloads the register. This arrangement for parallel loading and unloading is shown below.

4-bit Parallel-in to Parallel-out Shift Register
The PIPO shift register is the simplest of the four configurations as it has only three connections,

the parallel input (PI) which determines what enters the flip-flop, the parallel output (PO) and the
sequencing clock signal (Clk).

Fig. 3.19: 4-bit Parallel-in to Parallel-out Shift Register

Combinational & Sequential Circuits 57

Similar to the Serial-in to Serial-out shift register, this type of register also acts as a temporary
storage device or as a time delay device, with the amount of time delay being varied by the frequency of
the clock pulses. Also, in this type of register there are no interconnections between the individual flip-
flops since no serial shifting of the data is required.
Universal Shift Register

Today, high speed bi-directional "universal" type Shift Registers such as the TTL 74LS194, 74LS195
or the CMOS 4035 are available as a 4-bit multi-function devices that can be used in either serial-to-
serial, left shifting, right shifting, serial-to-parallel, parallel-to-serial, and as a parallel-to-parallel multifunction
data register, hence the name "Universal". These devices can perform any combination of parallel and
serial input to output operations but require additional inputs to specify desired function and to pre-load
and reset the device.

4-bit Universal Shift Register 74LS194

Fig. 3.20: 4-bit Universal Shift Register 74LS194
Universal shift registers are very useful digital devices. They can be configured to respond to

operations that require some form of temporary memory, delay information such as the SISO or PIPO
configuration modes or transfer data from one point to another in either a serial or parallel format.
Universal shift registers are frequently used in arithmetic operations to shift data to the left or right for
multiplication or division

Digital computers perform a variety of information processing tasks. Among the functions encountered
are the various arithmetic operations. The most basic arithmetic operation is the addition of two binary
digits. This simple addition consists of four possible elementary operations:

58 Zero to Mastery in Computer Architecture and Organisation

0 + 0 = 0,0 + 1 = 1, 1 + 0 = I, and 1 + 1 = 10. The first three operations produce a sum of one digit,
but when both augend and addend bits are equal to 1, the binary sum consists of two digits. The higher
significant bit of this result is called a carry. When the augend and addend numbers contain more
significant digits, the carry obtained from the addition of two bits is added to the next higher order pair
of significant bits. A combinational circuit that performs the addition of two bits is called a half-adder.
One that performs the addition of three bits (two significant bits and a previous carry) is a full adder.
The names of the circuits stem from the fact that two half adders can be employed to implement a full
adder.

From the verbal explanation of a half adder, we find that this circuit needs two binary inputs and
two binary outputs. The input variables designate the augend and addend bits; the output variables
produce the sum and carry. We assign symbols x and y to the two iaputs and S (for sum) and C (for
carry) to the outputs. The truth table for the half adder is listed in Table 3-7.

The C output is 1 only when both inputs are 1. The S output represents the least significant bit of the sum.
The simplified Boolean functions for the two outputs can be obtained directly from the truth table.

The simplified sum of products expressions are
S = x'y + xy'
C = xy
The logic diagram of the half adder implemented a sum of products is shown in Fig. 3.22. It can be

also implemented with an exclusive-OR and an AND gate as shown in Fig. 3.22(b).
This form is used to show that two half adders can be used to construct a full adder.

 Table 3.6 Addition Rule in Binary Number System

Table 3.7 Truth Table for Half Adder

Fig. 3.21Block Diagram

Combinational & Sequential Circuits 59

xy S

C

x
y’
x’
F
x
y

S

C
(a) S = xy’ + x’y C = xy

 (a) (b)
Fig. 3.22: Logic Diagram of Half Adder with X-OR & AND Gate (b) with AND & OR Gate

In the half-adder diagram there are two inputs to the half-adder and two outputs. If either of the
inputs is a 1 but not both, then the output on the S line will be a 1. If both inputs are 1s, the output on the
C line will be a 1. For all other states, there be a 0 output on the carry line. These relationships may be
written in Boolean form as follows.

S = XY' + X'Y
C = XY

The adder circuit is capable of adding the content of two registers. It must include provision for
handling carries as well as an addend and augends bits. So there must be three inputs to each stage of
a multi digit adder, except the stage for the least significant bits. One for each input from the numbers
being added, one for any carry that might have been generated or propagated by the previous stage.

There are three inputs to the full-adder X and Y inputs from the respective digits of the registers to
be added, the Ci input, which is for any carry generated by the previous stage. The two outputs are S,
which is the output value for that stage of the addition, and C0, which produces the carry to be added
into the next stage. The Boolean expressions for the input output relationships for each of the two
outputs are as follows:

60 Zero to Mastery in Computer Architecture and Organisation

Fig. 3.23: Logic Diagram & Truth Table of Full Adder
Points to Remember about Adder

In electronics, an adder or summer is a digital circuit that performs addition of numbers.
In modern computers adders reside in the arithmetic logic unit (ALU) where other operations are

performed.
Although adders can be constructed for many numerical representations, such as Binary-coded

decimal or excess-3, the most common adders operate on binary numbers.

Combinational logic consists of logic gates and is a type of digital logic which is implemented by
boolean circuits, where the output is a pure function of the present input only.

 Sequential circuits contain logic gates as well as memory cells. Their outputs depend on the
present inputs and also on the states of memory elements. Multiplexer is a combinational logic circuit,
which has many inputs and only one output.

Demultiplexer performs a function opposite to that of a multiplexer. It has one data input and
several output lines.

Combinational & Sequential Circuits 61

Decoder is digital circuit that has several output lines and control input lines. Based on the value of
the control input (or select input), one of the output lines will become active.

Encoder is a digital circuit that generates the binary code corresponding to the input number
Counter is a sequential circuits that counts the number of incoming clock pulses.

Latches & Flip Flops: latches and flip-flops are the building blocks of sequential circuits both
latches and flip-flops are circuit elements whose output depends not only on the current inputs, but also
on previous inputs and outputs. The difference between a latch and a flip-flop is that a latch does not
have a clock signal, whereas a flip-flop always does and latches can be built from gates and flip-flops
can be built from latches.

Register is simply a collection of flip-flops wide enough to contain one complete word of data.
Shift Register is another type of sequential logic circuit that is used for the storage or transfer of

data in the form of binary numbers and then "shifts" the data out once every clock cycle.
Half Adder is combinational circuit that performs the addition of two bits is called a half-adder.
Full Adder is performs the addition of three bits (two significant bits and a previous carry)

Q.1 What are Combinational & Sequential Circuits Differentiates
Q2 How do we know, if given a circuit, whether it is a Combinational Circuit or a Sequential Circuit?

Q.3 How you will identify that the circuits is combinational or sequential?
Q.4 Explain MULTIPLEXER.
Q.5 Implement an AND gate using multiplexer?
Q.6 Write about En-coder & De-coder.
Q.7 Implement D- fillip flip from

- RS flip flop;
- Multiplexer.

Q.8 Design a 2bit up/down counter with clear using gates.
Q.9 How full Adder is implemented by TWO Half Adder?

Q.10 What is the difference between a latch and a flip flop?
Q.11 What is the race around condition? How can it be overcome?

62 Zero to Mastery in Computer Architecture and Organisation

This chapter is about the computer organization & architecture. the purpose of it is to prepare
clear & complete understanding of nature & characteristics of modern computer systems. The main
objectives this chapter is as follows:

• Understand the concept of Computer Organization
• Understand the concept of Computer Architecture
• Differences between Organization & Architecture
• Concept of ISA and Micro-architecture
• Role of High level Languages
• I/O Devices Communication
• Concept of MIPS/MFLOPS/C.P.U Performance
• Overview of Organizational Structure

Computer Organization: refers to the operational units & their interconnections that realize the
architectural specifications, Therefore Computer organization deals with structural relationships
that are not visible to the programmer (like clock frequency or the size of the physical memory).

Computer Architecture or Digital Computer Organization: It is referring to those attributes of
system that are visible to Programmer. In other words, we can also say that the computer architecture
refers to the attributes that have a direct impact on logical execution of Program (like the size of a
data type - 32 bits to an integer)

OR
It may also be defined as the science and art of selecting and interconnecting hardware components

to create computers that meet functional, performance and cost goals
OR
In computer science and computer engineering, computer architecture or digital computer

organization is the conceptual design and fundamental operational structure of a computer system.

Multilevel View Point of Machine 63

It forms a blueprint and functional description of requirements and design implementations for the
various parts of a computer, focusing largely on the way by which the central processing unit (CPU)
performs internally and accesses addresses in memory

OR
A different definition of computer architecture is built on Four basic viewpoints:

(i) Structure,
(ii) Organization,
(iii) Implementation, and
(iv) Performance

In this definition, the structure defines the interconnection of various hardware components, the
organization defines the dynamic interplay and management of the various components, the
implementation defines the detailed design of hardware components, and the performance specifies
the behavior of the computer system

There is a concept of levels in computer architecture. The basic idea is that there are many levels at
which a computer can be considered, from the highest level, where the user is running programs, to the
lowest level, consisting of transistors and wires

Highest Level(RepresentRunningProgram)

Lowest Level(RepresentTransisters &Wires)
Fig. 4.1: Levels of Computer Architecture

Computer architecture comprises at least Three main subcategories:
• Instruction Set Architecture: or ISA, is the abstract image of a computing system that is seen

by a machine language (or assembly language) programmer, including the instruction set, word
size, memory address modes, processor registers, and address and data formats.

• Micro Architecture: also known as Computer organization is a lower level, more concrete and
detailed, description of the system that involves how the constituent parts of the system are
interconnected and how they interoperate in order to implement the ISA. The size of a computer's
cache for instance, is an organizational issue that generally has nothing to do with the ISA.

• System Design which includes all of the other hardware components within a computing system
such as:

64 Zero to Mastery in Computer Architecture and Organisation

1. System interconnects such as computer buses and switches
2. Memory controllers and hierarchies
3. CPU off-load mechanisms such as Direct Memory access (DMA)
4. Issues like multiprocessing.

In computer engineering micro architecture (sometimes abbreviated to µarch or uarch), also
called computer organization, is the way a given instruction set architecture (ISA) is implemented on
a processor. A given ISA may be implemented with different micro architectures. Implementations
might vary due to different goals of a given design or due to shifts in technology. Computer architecture
is the combination of micro-architecture and instruction set design

OR
The Micro-Architecture is the architecture that includes the constituent parts of the processor and

how these interconnect and interoperate to implement the ISA.
The micro-architecture of a machine is usually represented as (more or less detailed) diagrams that

describe the interconnections of the various micro architectural elements of the machine, which
may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even
larger elements. These diagrams generally separate the data path (where data is placed) and the control
path (which can be said to steer the data).

Each micro-architectural element is in turn represented by describing the interconnections of
logic gates used to implement it. Each logic gate is in turn represented by a circuit diagram describing
the connections of the transistors used to implement it in some particular logic family. Machines with
different micro-architectures may have the same instruction set architecture, and thus be capable of
executing the same programs. New micro-architectures and/or circuitry solutions, along with advances
in semiconductor manufacturing, are allows newer generations of processors to achieve higher
performance while using the same ISA.

In principle, a single micro-architecture could execute several different ISAs with only minor changes
to the microcode.

In computing, input/output, or I/O, refers to the communication between an information processing
system (such as a computer), and the outside world, possibly a human, or another information processing
system. Inputs are the signals or data received by the system, and outputs are the signals or data sent
from it. The term can also be used as part of an action; to "perform I/O" is to perform an input or
output operation. I/O devices are used by a person (or other system) to communicate with a computer.
For instance, a keyboard or a mouse may be an input device for a computer, while monitors and printers
are considered output devices for a computer. Devices for communication between computers, such as
modems and network cards, typically serve for both input and output.

Multilevel View Point of Machine 65

Note that the designation of a device as either input or output depends on the perspective. Mouse
and keyboards take as input physical movement that the human user outputs and convert it into signals
that a computer can understand. The output from these devices is input for the computer. Similarly,
printers and monitors take as input signals that a computer outputs. They then convert these signals into
representations that human users can see or read. For a human user the process of reading or seeing
these representations is receiving input. These interactions between computers and humans is studied in
a field called human-computer interaction.

In computer architecture, the combination of the CPU and main memory (i.e. memory that the CPU
can read and write to directly, with individual instructions) is considered the brain of a computer, and
from that point of view any transfer of information from or to that combination, for example to or from
a disk drive, is considered I/O. The CPU and its supporting circuitry provide memory-mapped I/O that
is used in low-level computer programming in the implementation of device drivers. An I/O algorithm is
one designed to exploit locality and perform efficiently when data reside on secondary storage, such as
a disk drive.

A high-level programming language is a programming language with strong abstraction from the
details of the computer. In comparison to low-level programming languages, it may use natural language
elements, be easier to use, or be more portable across platforms. Such languages hide the details of CPU
operations such as memory access models and management of scope.

This greater abstraction and hiding of details is generally intended to make the language user-
friendly, as it includes concepts from the problem domain instead of those of the machine used. A high-
level language isolates the execution semantics of computer architecture from the specification of the
program, making the process of developing a program simpler and more understandable with respect to
a low-level language. The amount of abstraction provided defines how "high-level" a programming
language is.

The first high-level programming language to be designed for a computer was Plankalkül, created
by Konrad Zuse. However, it was not implemented in his time and his original contributions were
isolated from other developments.

High level language is a language that supports the human and the application sides of the programming
(typical features: ability to logic structuring of the algorithm, cross-platform independence, problem-
oriented syntax/semantic, etc.).

• The term "high-level language" does not imply that the language is superior to low-level
programming languages-in fact, in terms of the depth of knowledge of how computers work
required to productively program in a given language, the inverse may be true.

• Rather, "high-level language" refers to the higher level of abstraction from machine language.
• Rather than dealing with registers, memory addresses and call stacks, high-level languages deal

with variables, arrays, objects, complex arithmetic or boolean expressions, subroutines and
functions, loops,

66 Zero to Mastery in Computer Architecture and Organisation

• Features such as string handling routines, object-oriented language features and file input/output
may also be present.

Low level language is a language that supports the machine side of the programming or does not
provide human side of the programming (typical features: lack of identifiers, lack of cross-platform
independence, full access to the processor architecture, etc.)

The central processing unit (CPU) is the portion of a computer system that carries out the instructions
of a computer program, and is the primary element carrying out the functions of the computer or other
processing device. The central processing unit carries out each instruction of the program in sequence,
to perform the basic arithmetical, logical, and input/output operations of the system. This term has been
in use in the computer industry at least since the early 1960s

Fig. 4.2: Computer Processor

The control unit of the CPU contains circuitry that uses electrical signals to direct the entire computer
system to carry out, stored program instructions.

The control unit does not execute program instructions; rather, it directs other parts of the system
to do so. The control unit must communicate with both the arithmetic/logic unit and memory.

MIPS (Million Instructions Per Second)
It is unfortunate that the term MIPS is used as a processor benchmark as well as a shorthand form

of a company name, so first I better make the distinction clear. The company responsible for the CPU
designs in the N64 is MTI, an abbreviation for MIPS Technologies Inc

Multilevel View Point of Machine 67

MIPS
The processor benchmark called MIPS has nothing to do with the company name. In the context

of CPU performance measurement, MIPS stands for 'Million Instructions Per Second'. The MIPS
rating of a CPU refers to how many low-level machine code instructions a processor can execute in
one second. Unfortunately, using this number as a way of measuring processor performance is completely
pointless because no two chips use exactly the same kind of instructions, execution method, etc. For
example: on one chip, a single instruction may do many things when executed (CISC = Complex
Instruction Set Computing), whereas on another chip a single instruction may do very little but is
dealt with more efficiently (RISC = Reduced Instruction Set Computing). Also, different instructions
on the same chip often do vastly different amounts of work (eg. a simple arithmetic instruction might
take just 1 clock cycle to complete, whereas doing something like floating point division or a square root
operation might take 20 to 50 clock cycles).

MIPS numbers are often very high because of how processors work, but in fact the number tells
one absolutely nothing about what the processor can actually do or how it works (ie. a processor with
a lower MIPS rating may actually be a better chip because its instructions are doing more work per
clock cycle). There are dozens of different processor and system benchmarks, such as SPEC, Linpack,
MFLOP, STREAM, Viewperf, etc.An example: imagine a 32bit processor running at 400MHz. It might
be rated at 400MIPS. Now consider a 64bit processor running at 200MHz. It might be rated at 200MIPS
(assume a simple design in each case). But suppose my task involves 64bit fp processing (eg. computational
fluid dynamics, or audio processing, etc.): the 32bit processor would take many more clock cycles to
complete a single 64bit fp multiply since its registers are only of a 32bit word length. The 32bit CPU
would take at least twice as long to carry out such an operation. Thus, for 64bit operations, the 32bit
processor would be much slower than the 64bit processor. Now think of it the other way round:
suppose one's task only involved 32bit operations. Unless the 64bit registers in the 64bit CPU could be
treated as two 32bit registers, the 32bit CPU would be much faster. It all depends on the processing
requirements.

The situation in real life is far more complicated though, because real CPUs rarely do one thing at a
time and in just one clock cycle. Simple arithmetic operations may take 1 cycle, an integer multiply
might take 2 cycles, a fp multiply might take 5 clock cycles, a complex square root operation in a CISC
design take 20 cycles, and so on. Worse, some CPUs are designed to do more than one of the same kind
of operation at once, ie. they have more than one of a particular kind of processing unit.

So that's the MIPS benchmark dealt with, ie. it's useless, so ignore it.
MFLOPS

It is popular alternative approach to measure execution time is million floating-point operations per
second, or MFLOPS (megaflops). The formula for MFLOPS is simply

MFLOPS is fine, but it misses one very important point: memory bandwidth. A fast CPU may
sound impressive, and people will always talk in terms of theoretical peak performance, etc., but in

68 Zero to Mastery in Computer Architecture and Organisation

reality a CPU's best possible performance totally depends on the rate at which it can access data from
the various kinds of memory (L1 / L2 cache and main RAM). A fast CPU in a system with low memory
bandwidth will not perform anywhere near its theoretical peak (eg. 500MHz Alpha).

To measure CPU performance in MIPS, or million instructions per second. For a given program,
MIPS is given by:

6
Instruction countMIPS= Execution time×10

Since,
Instruction count×CPIExecution time = Clock rate

Equation 1 becomes

6
Clock rateIMPS= CPI×10

Since MIPS is a rate of operations per unit time, CPU performance can be specified as the inverse
of execution time, with faster machines having a higher MIPS rating. How-ever, according to the
Patterson and Hennessy, there are problems with using MIPS as a performance metric.

• MIPS is dependent on the instruction set of the CPU, making it difficult to compare the MIPS
ratings of processors with different instruction sets.

• MIPS can vary inversely to performance.
Consider the MIPS rating of a processor with an optional floating-point unit. Since it generally takes

more clock cycles per floating-point instruction that per integer instruction, floating-point programs
using the optional hardware instead of software floating-point routines take less time but have a lower
MIPS rating. A software floating-point routine executes simpler instructions, resulting in a higher MIPS
rating, but it executes so many more instructions that the overall execution time is longer.

We can see similar anomalies with optimizing compilers as the following example demonstrates.
Example Let us assume that you have profiled your code and the instruction mix is detailed in

Table 1. We now want to build an optimizing compiler for the CPU. The compiler discards 50% of the
ALU instructions although it cannot reduce loads, stores, or branches.

Assuming a 20-ns clock cycle time (or a 50-MHz clock), what is the MIPS rating for the optimized
code versus the un-optimized code? Does the MIPS rating agree with the ranking of execution time?

The optimized code is 13% faster, but its MIPS rating is lower! As this example shows, MIPS can
fail to give a true picture of performance in that it does not track execution time.

Multilevel View Point of Machine 69

Table 4.1 The instruction mix and CPIs of individual instructions
Operation frequency CPI
ALU Operations 43% 1
Loads 21% 2
Stores 12% 2
Branches 24% 2

Answer. We use the CPU performance formula to computer the CPI of the unoptim code as
CPIunoptimized = .43 × 1 + .21 × 2 + .12 × 2 + .25 × 2 = 1.57

So,
MIPSunoptimized = 6

50 31.851.5 10
The performance of the unoptimized code, in terms of execution time, is given by:
CUP = Timeunoptimized = Instruction Countunoptimized × 1.57 × (20 × 10–9)

 = 31.4 × 10–9 × Instruction CountunoptimizedFor the optimized code,

CPIoptimized =
43 1 .21 2 .12 .24 22 .431 2

= 1.73
since 50% of the ALU operations have been discarded (.43/2) and the instruction cow reduced by

the missing ALU instruction. Thus,
MIPSoptimized = 6

50 28.901.73 10
The performance of the optimized code, in terms of execution time, is
CPU timeoptimized = (.785 × Instructioncountunoptimized) × 1.73 × (20 × 10–9)

 = 27.2 × 10–9 × Instruction countunoptimized

70 Zero to Mastery in Computer Architecture and Organisation

Another popular alternative to measure execution time is million floating-point operations per second,
or (MFLOPS) The formula for MFLOPS is simply.

6
Number of floating-point operationsin a programMFLOPS= Execution time×10

The MFLOPS rating is dependent on the machine and on the program, and since MFLOPS are
intended to measure floating-point performance, they are not applicable outside that range. For example,
compilers have a MFLOPS rating of nearly zero no matter how fast the CPU is since compilers rarely
use floating-point arithmetic. When comparing the performance of different machines, MFLOPS is not
dependable because the set of floating-point operations is not consistent across machines.

An organizational structure consists of activities such as task allocation, coordination and supervision,
which are directed towards the achievement of organizational aims. It can also be considered as the
viewing glass or perspective through which individuals see their organization and its environment.

An organization can be structured in many different ways, depending on their objectives.
The structure of an organization will determine the modes in which it operates and performs.

Organizational structure allows the expressed allocation of responsibilities for different functions
and processes to different entities such as the branch, department, workgroup and individual.

Organizational structure affects organizational action in two big ways. First, it provides the foundation
on which standard operating procedures and routines rest. Second, it determines which individuals get
to participate in which decision-making processes, and thus to what extent their views shape the
organization's actions.

Pre-bureaucratic (entrepreneurial) structures lack standardization of tasks. This structure is most
common in smaller organizations and is best used to solve simple tasks. The structure is totally centralized.
The strategic leader makes all key decisions and most communication is done by one on one conversations.
It is particularly useful for new (entrepreneurial) business as it enables the founder to control growth
and development.

Weber (1948, p. 214) gives the analogy that "the fully developed bureaucratic mechanism compares
with other organizations exactly as does the machine compare with the non-mechanical modes of
production. Precision, speed, unambiguity, … strict subordination, reduction of friction and of material
and personal costs- these are raised to the optimum point in the strictly bureaucratic administration." It
have a certain degree of standardization. They are better suited for more complex or larger scale
organizations.

The Weberian characteristics of bureaucracy are:
• Clear defined roles and responsibilities

Multilevel View Point of Machine 71

• A hierarchical structure
• Respect for merit.

The term of post bureaucratic is used in two senses in the organizational literature: one generic and
one much more specific. In the generic sense the term post bureaucratic is often used to describe a
range of ideas developed since the 1980s that specifically contrast themselves with Weber's ideal type
bureaucracy. Another smaller group of theorists have developed the theory of the Post-Bureaucratic
Organization, provide a detailed discussion which attempts to describe an organization that is fundamentally
not bureaucratic. Charles Heckscher has developed an ideal type, the post-bureaucratic organization, in
which decisions are based on dialogue and consensus rather than authority and command, the organization
is a network rather than a hierarchy, open at the boundaries (in direct contrast to culture management);
there is an emphasis on meta-decision making rules rather than decision making rules.

Employees within the functional divisions of an organization tend to perform a specialized set of
tasks, for instance the engineering department would be staffed only with software engineers. This
leads to operational efficiencies within that group. However it could also lead to a lack of communication
between the functional groups within an organization, making the organization slow and inflexible.

As a whole, a functional organization is best suited as a producer of standardized goods and services
at large volume and low cost. Coordination and specialization of tasks are centralized in a functional
structure, which makes producing a limited amount of products or services efficient and predictable.
Moreover, efficiencies can further be realized as functional organizations integrate their activities vertically
so that products are sold and distributed quickly and at low cost. For instance, a small business could
start making the components it requires for production of its products instead of procuring it from an
external organization. But not only beneficial for organization but also for employees faiths.

Also called a "product structure", the divisional structure groups each organizational function into a
division. Each division within a divisional structure contains all the necessary resources and functions
within it. Divisions can be categorized from different points of view. One might make distinctions on a
geographical basis (a US division and an EU division, for example) or on product/service basis (different
products for different customers: households or companies). In another example, an automobile company
with a divisional structure might have one division for SUVs, another division for subcompact cars, and
another division for sedans.

Each division may have its own sales, engineering and marketing departments.

The matrix structure groups employees by both function and product. This structure can combine
the best of both separate structures. A matrix organization frequently uses teams of employees to
accomplish work, in order to take advantage of the strengths, as well as make up for the weaknesses,
of functional and decentralized forms. An example would be a company that produces two products,
"product a" and "product b". Using the matrix structure, this company would organize functions within

72 Zero to Mastery in Computer Architecture and Organisation

the company as follows: "product a" sales department, "product a" customer service department, "product
a" accounting, "product b" sales department, "product b" customer service department, "product b"
accounting department. Matrix structure is amongst the purest of organizational structures, a simple
lattice emulating order and regularity demonstrated in nature.

• Weak/Functional Matrix: A project manager with only limited authority is assigned to oversee
the cross- functional aspects of the project. The functional managers maintain control over
their resources and project areas.

• Balanced/Functional Matrix: A project manager is assigned to oversee the project. Power is
shared equally between the project manager and the functional managers. It brings the best
aspects of functional and projectized organizations. However, this is the most difficult system
to maintain as the sharing power is delicate proposition.

• Strong/Project Matrix: A project manager is primarily responsible for the project. Functional
managers provide technical expertise and assign resources as needed.

Among these matrixes, there is no best format; implementation success always depends on
organization's purpose and function

Computer Organization: refers to the operational units & their interconnections that realize the
architectural specifications, ThereforeComputer organization deals with structural relationships that are
not visible to the programmer (like clock frequency or the size of the physical memory).

Computer Architecture or Digital Computer Organization: It is referring to those attributes of
system that are visible to Programmer. Instruction Set Architecture: or ISA, is the abstract image of a
computing system that is seen by a machine language (or assembly language) programmer, including
the instruction set, word size, memory address modes, processor registers, and address and data formats.

System Design which includes all of the other hardware components within a computing system
Micro architecture also called computer organization, is the way a given instruction set architecture

(ISA) is implemented on a processor
Input/Output, or I/O, refers to the communication between an information processing system

(such as a computer), and the outside world, possibly a human, or another information processing
system.

High-Level Programming Language is a programming language with strong abstraction from
the details of the computer.

MIPS : It is used as a processor benchmark but it is very effective to calculate execution time, it is
Million Instructions per Second

MFLOPS It is popular alternative to measure execution time is Million Floating-Point Operations
Per Second.

An organizational structure consists of activities such as task allocation, coordination and supervision,
which are directed towards the achievement of organizational aims.

Multilevel View Point of Machine 73

Q.1 Write about Computer Architecture.
Q.2 How you could explains differences between Computer Architecture & Organization?
Q.3 What is an ISA, Differentiate between ISA Micro-architecture?
Q.4 How High Level Languages are useful in design of computer?
Q.5 Write about MIPS and MFLOPS.
Q.6 Discuss Organizational Structure.

After going through this chapter you should able to:
• Describe the characteristics of Instruction set
• Discussion of various elements of instruction
• ISAs Classification- CISC,RISC
• Operations on Instruction Set

Instruction set architecture is part of processor that is visible to the programmer or compiler
designer. They are the parts of processor design that needed to understand in order to write assembly
language such as machine language instructions & registers. The ISAs serve as boundary between
Hardware & Software.

 An Instruction Set is a set of programming instructions, which allow a computer system to
carry about commands necessary for operation

OR
An instruction set, or instruction set architecture (ISA), is the part of the computer architecture

related to programming, including the native data types, instructions, registers, addressing modes, memory
architecture, interrupt & exception handling, and external I/O.

OR
Instruction set architecture is part of processor that is visible to programmer or complier designer.

These are part of processor design that needed to be understood in order to write assembly language,
such as machine language instructions and registers.

OR
Instruction set is collection of machine language instructions that are a particular processor

understands and executes, In other words in ISA A set of assembly language mnemonic represents the
machine code of particular computer, therefore if we define all instructions of computer, we can say
that we have defined the INSTRUCTION SET.

78 Zero to Mastery in Computer Architecture and Organisation

Instruction set architecture is distinguished from the micro-architecture, which is the set of processor
design techniques used to implement the instruction set. Computers with different micro-architectures
can share a common instruction set architecture(ISA). For example, the Intel Pentium and the AMD
Athlon implement nearly identical versions of the x86 instruction set, but have radically different internal
designs.

This concept can be extended to unique ISAs like TIMI (Technology-Independent Machine Interface)
present in the IBM System/38 and IBM AS/400. TIMI is an ISA that is implemented by low-level
software translating TIMI code into "native" machine code, and functionally resembles that is now
referred to as a virtual machine. It was designed to increase the longevity of the platform and applications
written for it, allowing the entire platform to be moved to very different hardware without having to
modify any software except that which translates TIMI into native machine code, and the code that
implements services used by the resulting native code. This allowed IBM to move the AS/400
platform from an older CISC architecture to the newer POWER architecture without having to rewrite
or recompile any parts of the OS or software associated with it other than the aforementioned
low-level code. Some virtual machines that support bytecode for Smalltalk, the Java virtual machine,
and Microsoft's Common Language Runtime virtual machine as their ISA implement it by translating the
bytecode for commonly used code paths into native machine code, and executing less-frequently-used
code paths by interpretation.
Facts to Know:

It should be noted that instructions available in a computer are machine dependent that is the
different processors have different instruction sets

A instruction set can have different Instruction format, the instruction format represent:
(a) The instruction length
(b) The type
(c) Length and position of operation code in instruction and
(d) The number and length of operand addresses etc.

Each instruction have several fields the most common fields of instruction format are
OPCODE(What operation to perform): An operation code filed terms as opcode that specifies the

operation to be performed.
Or
The opcode field of an instruction is group of bits that define various processor operations such as

LOAD, STORE, ADD and SHIFT to be performed on some data stored in the register or in memory.
OPERANDS: An address field of operand on which data processing to be performed. The operand

can reside in the memory or a processor register or can be incorporated within the operand field of
instruction as immediate constant, Therefore a mode field is needed that specifies the way the operand
or its address to be determined.

Instruction Set Architecture 79

A sample instruction format is given as:
0 5 6 7 8 31

Opcode Addresing Mode Operand

Instruction Lengh
Fig. 5.1: Instruction format of 32 Bits

Please note the following points from the Figure
• The opcode size is 6 bits, therefore in general it has 26 =32 operations (However instruction

designer develop much more operations)
• There is only one operand address machine
• There are two bits for addressing modes, therefore there are 22 = 4 different addressing modes

possible for this machine
Last field (8-31 bits=24) here is operand or address of operand field
• In case of immediate operand the maximum size of unsigned operand or address the maximum

size of unsigned operator would be 224
• In case of an address of operand in the memory, then maximum physical memory size supported

by machine is 224 = 16MB
• The Opcode field of an instruction is a group of bits that define the various processor operations

such as LOAD,ADD and SHIFT to be perform on same data stored in register or memory
• The operand address field can be data ,or can refer to data-that is address of data or can be labels

which may be address of instruction you want to execute next, An operand address can be:
• Memory Address
• CPU register address
• I/O device address

• An ISA includes a specification of the set of opcodes (machine language), and the native commands
implemented by a particular processor.

Points to Remember:
1. The ISA is the interface between the software and hardware.
2. It is the set of instructions that bridges the gap between high level languages and the hardware.
3. For a processor to understand a command, it should be in binary and not in High Level Language.

The ISA encodes these values.
4. The ISA also defines the items in the computer that are available to a programmer. For example,

it defines data types, registers, addressing modes, memory organization etc.
5. Register are high Addressing modes are the ways in which the instructions locate their operands.

80 Zero to Mastery in Computer Architecture and Organisation

There are many computer architecture classification methods based on different criteria such as
cost, capacity (memory size, data word length and size of the secondary storage), performance, instruction
set, component base and others. On the basis of Instruction Set computer architectures can be classified
into Two Categories:

(i) COMPLEX INSTRUCTION SET COMPUTER (CISC)
(ii) REDUCED INSTRUCTION SET COMPUTER (RISC)

The processor we will be considering in this book is the MIPS processor. The MIPS processor,
designed in 1984 by researchers at Stanford University, is a RISC (Reduced Instruction Set Computer)
processor. Compared with their CISC (Complex Instruction Set Computer) counterparts (such as the
Intel Pentium processors), RISC processors typically support fewer and much simpler instructions.

CISC, which stands for Complex Instruction Set Computer, is a philosophy for designing chips that
are easy to program and which make efficient use of memory. Each instruction in a CISC instruction
set might perform a series of operations inside the processor. This reduces the number of instructions
required to implement a given program, and allows the programmer to learn a small but flexible set of
instructions.

Since the earliest machines were programmed in assembly language and memory was slow and
expensive, the CISC philosophy made sense, and was commonly implemented in such large computers
as the PDP-11 and the DECsystem.

Most common microprocessor designs-- including the Intel(R) 80x86 and Motorola 68K series--
also follow the CISC philosophy.
 CISC:Use Microcode

The earliest processor designs used dedicated hardwired logic to decode and execute each instruction.
That was appropriate for simple designs with few registers, but made architectures more complex and
hard to build. Developers of computer systems took another approach; they built simple logic to control
the data paths between the various elements of the processor, and used microcode instruction set to
control the data path logic. In those systems, the main processor has some built-in ROM, which
contains groups of microcode instructions, corresponding to each machine-language instruction (a
macrocode instruction).

Because instructions could be retrieved much faster from a local ROM than from main memory,
designers put as many instructions as possible into microcode. Microcode implementation allows using
the same programming model among different hardware configurations, beside the advantage of easily
modifying the instruction set. Some machines were optimized for scientific computing, others were
optimized for business computing; however, since they all shared the same instruction set, programs
could be moved from one machine to another without re-compilation (but with a possible increase or
decrease in performance depending on the underlying hardware.) This kind of flexibility and power
made micro-coding the preferred way to build new computers for some time.

This type of implementation is known as a micro-programmed implementation. In a micro-
programmed system, the main processor has some built-in memory (typically ROM) which contains

Instruction Set Architecture 81

groups of microcode instructions which correspond with each machine-language instruction. When a
machine language instruction arrives at the central processor, the processor executes the corresponding
series of microcode instructions.

Because instructions could be retrieved up to 10 times faster from a local ROM than from main
memory, designers began to put as many instructions as possible into microcode. There are some real
advantages to a micro-coded implementation:

• since the microcode memory can be much faster than main memory, an instruction set can be
implemented in microcode without losing much speed over a purely hardwired implementation.

• new chips are easier to implement and require fewer transistors than implementing the same
instruction set with dedicated logic

CISC:Build"rich"instruction sets
One of the consequences of using a micro-programmed design is that designers could build more

functionality into each instruction. This not only cut down on the total number of instructions required
to implement a program, and therefore made more efficient use of a slow main memory, but it also made
the assembly-language programmer's life simpler.

Soon, designers were enhancing their instruction sets with instructions aimed specifically at the
assembly language programmer. Such enhancements included string manipulation operations, special
looping constructs, and special addressing modes for indexing through tables in memory.
For example:

ABCD Add Decimal with Extend
ADD AAdd Address
ADD XAdd with Extend
ASL Arithmetic Shift Left
CAS Compare and Swap Operands
NBCD Negate Decimal with Extend
EORI Logical Exclusive OR Immediate
TAS Test Operand and Set
CISC: Build high-level Instruction sets
Once designers started building programmer-friendly instruction sets, the logical next step was to

build instruction sets which map directly from high-level languages. Not only does this simplify the
compiler writer's task, but it also allows compilers to emit fewer instructions per line of source code.

Modern CISC microprocessors, such as the 68000, implement several such instructions, including
routines for creating and removing stack frames with a single call.
For example:

DBcc Test Condition, Decrement and Branch
ROXL Rotate with Extend Left
RTR Returnand Restore Codes
SBCD Subtract Decimal with Extend

82 Zero to Mastery in Computer Architecture and Organisation

SWAP Swap register Words
CMP2 Compare Register against Upper and Lower Bounds
The rise of CISC
CISC Design Decisions:
Use micro code
build rich instruction sets
buildhigh-level instruction sets
Taken together, these three decisions led to the CISC philosophy which drove all
computer designs until the late 1980s, and is still in major use today

Disadvantages of CISC
CISC philosophy had its own problems, including:
• Earlier generations of a processor family generally were contained as a subset in every new

version --- so instruction set & chip hardware become more complex with each generation of
computers.

• So that as many instructions as possible could be stored in memory with the least possible
wasted space, individual instructions could be of almost any length---this means that different
instructions will take different amounts of clock time to execute, slowing down the overall
performance of the machine.

• Many specialized instructions aren't used frequently enough to justify their existence ---
approximately 20% of the available instructions are used in a typical program.

• CISC instructions typically set the condition codes as a side effect of the instruction. Not only
does setting the condition codes take time, but programmers have to remember to examine the
condition code bits before a subsequent instruction changes them.

• Complex instruction decoding scheme, an increased size of the control unit, and increased logic
delays.

Points to Remember about CISC architecture
• Many different formats are possible For example the DEC VAX architecture supplies addressing

modes which auto-increment or auto-decrement an array index after, or before, carrying out an
operation.

• 2-operand format, register to memory and memory to register instructions,
• multiple addressing modes for memory,
• variable length instructions and many clock cycles per instruction
• The result is a complex processor executing instructions rather more slowly than its RISC
• CISC Large instruction set to suit broad range of applications
• Number of instructions are reduced by having multiple operations within a single instruction
• Multiple operations lead to many different kinds of instructions that access memory
• In turn making instruction length variable and fetch-decode execute time unpredictable - making

it more complex

Instruction Set Architecture 83

• hardware handles the complexity(Hardwired Organization)
• CISC architecture Use less instructions to execute same code is executed by RISC

but instructions are complicated
• Instruction Set: large set of instruction with variable size (16 to 64)
• Addressing Modes: 12-24
• General Purpose registers: 8-24
• Clock rate: 33-50MHz in 1992
• A CISC system has complex instructions such as direct addition between data in two memory

locations.Eg.8085 Motivations for complexity.
• The motivations towards complexity are largely due to attempts to continue the upgrading of

existing, successful products. They may be summarized…
• Speed up specified application operations via hardware implementation
• Reduce semantic gap via hardware implementation of programming language statements
• Maintain upwards compatibility in product line
• Reduce size of machine code software because of high memory cost

RISC started as a notion in the 1980s and has eventually led to the development of the first RISC
machine, the IBM 801 minicomputer, real-life manifestation appeared in the Berkeley RISC-I and the
Stanford MIPS machines, which were introduced in the mid-1980s.The launching of the RISC notion
announces the start of a new paradigm in the design of computer architectures. This paradigm promotes
simplicity in computer architecture design.

The Complex Instruction Set has a number of disadvantages, These include a complex instruction
decoding scheme, an increased size of the control unit, and increased logic delays. These drawbacks
prompted a team of computer architects to adopt the principle of "less is actually more" RISC
processors implement small instruction sets capable of running faster than CISC instructions.
RISC Characteristics

The essential goal of RISC architecture involves an attempt to reduce execution time by simplifying
the instruction set of the computer. The major characteristics of a RISC processor are:

• Relatively few instructions.
• Relatively few addressing modes.
• Instruction Set:Small set of instruction with fixed size (32-bit)
• Addressing Modes: 3-5
• General Purpose registers: 32-192
• Clock rate: 50-150MHz in 1993
• load store architecture used
• pipelining can be implemented easily.Eg.ATMEL AVR
• Memory access limited to load and store instructions.

84 Zero to Mastery in Computer Architecture and Organisation

• Hardwired rather than micro programmed control.
• Single-cycle instruction execution This objective could only be achieved by pipelining

Small instruction set, Load/store architecture Fixed length coding and hardware decoding,
Delayed branching and one clock per instruction.

• The phases in the execution path are typically: instruction fetch, decoding, operand fetch, execution,
memory access and write back of the operation results.

• The whole benefit of a RISC architecture can be defeated if the compiler is not sophisticated
enough to rearrange instructions in the optimal order

• RISC architectures try to maximize the cooperation between hardware and software.
• Optimizing compilers are one of the essential components of RISC systems. This act of shifting

the burden of code optimization from the hardware to the compiler was one of the key advances
of the RISC revolution.

• RISC processors depend on a complex memory hierarchy in order to work at full speed.
• RISC Processors can be classified according to many measures that affect the performance, like

the word size, data path width, pipeline depth, cache structure as split versus common or on-chip
versus off-chip, bus structure as Harvard versus Princeton, pre fetch buffers and write buffers,
register files as common versus private, register management as score boarding versus register
renaming and units chaining capability.

A typical RISC processor architecture includes register-to-register operations, with only simple
load and store operations for memory access.

Thus the operand is code into a processor register with a load instruction. All computational tasks
are performed among the data stored in processor registers and with the help of store instructions
results are transferred to the memory. This architectural feature simplifies the instruction set and
encourages the optimization of register manipulation. Almost all instructions have simple register addressing
so only a few addressing modes are utilised. Other addressing modes may be included, such as immediate
operands and relative mode.

An advantage of RISC instruction format is that it is easy to decode.
An important feature of RISC processor is its ability to execute one instruction per clock cycle.

This is done by a procedure referred to as pipelining. A load or store instruction may need two clock
cycles because access to memory consumes more time than register operations. Other characteristics
attributed to RISC architecture are:

• A relatively large number of register in the processor unit.
• Use of overlapped register windows to speed-up procedure call and return.
• Efficient instruction pipeline.
• Compiler support for efficient translation of high-level language programs into machine language

programs.

Instruction Set Architecture 85

The design of the instruction set for the processor is very important in terms of computer architecture.
It's the instruction set of a particular computer that determines the way that machine language programs
are constructed. Computer hardware is improvised by various factors, such as upgrading existing
models to provide more customer applications adding instructions that facilitate the translation from
high-level language into machine language programs and striving to develop machines that move functions
from software implementation into hardware implementation. A computer with a large number of
instructions is classified as a complex instruction set computer, abbreviated as CISC.

An important aspect of computer architecture is the design of the instruction set for the processor,
some of points are discussed here:-

• The instruction set determines the way that machine language programs are constructed
• Many computers have instructions sets of about 100 - 250 instructions
• These computers employ a variety of data types and a large number of addressing modes -

complex instruction set computer (CISC)
• A RISC uses fewer instructions with simple constructs so they can be executed much faster

within the CPU without having to use memory as often
• The essential goal of a CISC architecture is to attempt to provide a single
• machine instruction for each statement that is written in a high-level language
• The goal of RISC architecture is to reduce execution time by simplifying the instructions set

Many of the techniques used in RISC processors can be implemented in CISC designs. It is
possible to rewire the processor in order to execute most of the instructions in one cycle, or it is possible
to use a pipelined micro engine in order to speed up execution. The micro engine could be a RISC kernel
giving all the advantages of RISC without its disadvantages. However, RISC features can be introduced
in CISC processors only at the expense of much more hardware. It is possible to program the pipeline
of a CISC processor to use the dead time between the load and store of one instruction argument in
memory. The micro engine works in this case following a load/store model, and it dynamically reschedules
the operations needed by the macrocode. This dynamical rescheduling is too expensive compared to the
software scheduling used in RISC processors. Software scheduling must be done only once and then it
runs without complex hardware. Dynamic scheduling needs much more hardware logic.

CISC designers move complexity from software to hardware, making tradeoffs in favor of decreased
code size, at the expense of a higher cycle per seconds (CPI). While RISC designers move complexity
from hardware to software, making tradeoffs in favor of a lower CPI, at the expense of increased code
size. CISC processors can still be made competitive to RISC processors if the cycle time is reduced, but
RISC processors are better positioned to achieve greater reductions in the clock cycle time in the long
run. The cycle time is determined by the following factors: pipelining depth, amount of logic in each
stage and the VLSI technology used. RISC processors can achieve larger reductions in the clock cycle
time with a lower investment in design time. Reducing the clock cycle time of CISC processors is
possible, but much more difficult. The question is which design philosophy will be capable of climbing

86 Zero to Mastery in Computer Architecture and Organisation

Closure of the semantic gap and applications support look very good in the catalogue and have
proved popular. However, once the CISC machine language is implemented, an application may not run
faster than it would on a RISC. The reasons are twofold. Firstly, the powerful instructions take time to
translate into a sequence of primitive operations. Secondly, all that CISC complexity could have been
exchanged for a larger register file, to gain greater benefit from locality, or even for another separate
processor. The latter would reap benefit if parallelism exists at the problem level and hence at the
algorithmic level.

To summarize, the advantages of RISC are improvements in…
• Performance for structured software via exploitation of temporal locality
• Reliability and freedom from design errors
• Design and development path
• Compiler/architecture interface

Those factors which a CISC maintains in its favour are…
• Code length
• Application specific performance
• Upwards compatibility with older machines

It must be emphasized that RISC machines demonstrate several innovations. Each must be considered
separately. Research is still under way to discover which truly offer the greatest rewards. The reader is
strongly encouraged to read [Colwell et al. 85] for an up-to-date account of these matters.

Although there is great controversy over the RISC vs CISC issue, several new machines are now
available visibly benefiting from RISC architecture. These include the Acorn Archimedes, SUN 4 and
IBM RT. The only arguable disadvantages to a RISC are that the size of object module is increased and
that programming at machine level is slightly more work. It is not harder work since the machine
language is simpler. Neither of these is of great importance to someone whose primary concern is
performance and who programs in a high level language (as most do).

Apart from an uncompetitive performance, CISC has a more serious disadvantage. The design and
development paths are long and risky. By the time some have reached the market they are almost out
of date. The cost of development is high and rapidly rising. The greater complexity also impacts reliability.
By contrast the development of RISC designs is short and cheap. For example the Acorn ARM processor
was developed on a very short time scale and the very first chip made was reported to function perfectly.
It was designed on an Acorn home micro using their own software. The cost and reliability of the chip
set make it very competitive. Designing optimized code generators for a RISC is generally easier than
for a CISC. Part of the motivation behind the RISC concept is that existing compilers were not making
sufficient use of complex instructions.

Let us examine relative advantages & disadvantages of RISC and CISC architecture of
processor with a suitable example

The simplest way to examine the advantages and disadvantages of RISC architecture is by contrasting
it with it's predecessor: CISC (Complex Instruction Set Computers) architecture

Instruction Set Architecture 87

Multiplying Two Numbers in Memory
On the right is a diagram representing the storage scheme for a generic computer. The main memory

is divided into locations numbered from (row) 1: (column) 1 to (row) 6: (column) 4. The execution unit
is responsible for carrying out all computations. However, the execution unit can only operate on data
that has been loaded into one of the six registers (A, B, C, D, E, or F). Let's say we want to find the
product of two numbers - one stored in location 2:3 and another stored in location 5:2 - and then store
the product back in the location 2:3.

Fig: 5.2 Multiplication of two number
The CISC Approach

The primary goal of CISC architecture is to complete a task in as few lines of assembly as possible.
This is achieved by building processor hardware that is capable of understanding and executing a series
of operations. For this particular task, a CISC processor would come prepared with a specific instruction
(we'll call it "MULT"). When executed, this instruction loads the two values into separate registers,
multiplies the operands in the execution unit, and then stores the product in the appropriate register.
Thus, the entire task of multiplying two numbers can be completed with one instruction:
MULT 2:3, 5:2

MULT is what is known as a "complex instruction." It operates directly on the computer's memory
banks and does not require the programmer to explicitly call any loading or storing functions. It closely
resembles a command in a higher level language. For instance, if we let "a" represent the value of 2:3 and
"b" represent the value of 5:2, then this command is identical to the C statement "a = a * b."

88 Zero to Mastery in Computer Architecture and Organisation

One of the primary advantages of this system is that the compiler has to do very little work to
translate a high-level language statement into assembly. Because the length of the code is relatively short,
very little RAM is required to store instructions. The emphasis is put on building complex instructions
directly into the hardware.
The RISC Approach

RISC processors only use simple instructions that can be executed within one clock cycle. Thus,
the "MULT" command described above could be divided into three separate commands: "LOAD," which
moves data from the memory bank to a register, "PROD," which finds the product of two operands
located within the registers, and "STORE," which moves data from a register to the memory banks. In
order to perform the exact series of steps described in the CISC approach, a programmer would need to
code four lines of assembly:

LOAD A, 2:3
LOAD B, 5:2
PROD A, B
STORE 2:3, A
At first, this may seem like a much less efficient way of completing the operation. Because there are

more lines of code, more RAM is needed to store the assembly level instructions. The compiler must
also perform more work to convert a high-level language statement into code of this form.

CISC RISC
1. Emphasis on hardware Emphasis on software
2. Includes multi-clock single-clock,
3. complex instructions reduced instruction only
4. Memory-to-memory: Register to register:

"LOAD" and "STORE"
5. incorporated in instructions "LOAD" and "STORE"

are independent instructions
6. Small code sizes, Low cycles per second,
7. high cycles per second Large code sizes
8. Transistors used for storing Spends more transistors

complex instructions on memory registers

However, the RISC strategy also brings some very important advantages. Because each instruction
requires only one clock cycle to execute, the entire program will execute in approximately the same
amount of time as the multi-cycle "MULT" command. These RISC "reduced instructions" require less

Instruction Set Architecture 89

transistors of hardware space than the complex instructions, leaving more room for general purpose
registers. Because all of the instructions execute in a uniform amount of time (i.e. one clock), pipelining
is possible.

Separating the "LOAD" and "STORE" instructions actually reduces the amount of work that the
computer must perform. After a CISC-style "MULT" command is executed, the processor automatically
erases the registers. If one of the operands needs to be used for another computation, the processor
must re-load the data from the memory bank into a register. In RISC, the operand will remain in the
register until another value is loaded in its place.
The Performance Equation

The following equation is commonly used for expressing a computer's performance ability:

The CISC approach attempts to minimize the number of instructions per program, sacrificing
the number of cycles per instruction. RISC does the opposite, reducing the cycles per instruction at
the cost of the number of instructions per program.
RISC Roadblocks

Despite the advantages of RISC based processing, RISC chips took over a decade to gain a foothold
in the commercial world. This was largely due to a lack of software support.

Although Apple's Power Macintosh line featured RISC-based chips and Windows NT was RISC
compatible, Windows 3.1 and Windows 95 were designed with CISC processors in mind. Many
companies were unwilling to take a chance with the emerging RISC technology. Without commercial
interest, processor developers were unable to manufacture RISC chips in large enough volumes to make
their price competitive.

Another major setback was the presence of Intel. Although their CISC chips were becoming
increasingly unwieldy and difficult to develop, Intel had the resources to plow through development and
produce powerful processors. Although RISC chips might surpass Intel's efforts in specific areas, the
differences were not great enough to persuade buyers to change technologies.
The Overall RISC Advantage

Today, the Intel x86 is arguable the only chip which retains CISC architecture. This is primarily due
to advancements in other areas of computer technology. The price of RAM has decreased dramatically.
In 1977, 1MB of DRAM cost about $5,000. By 1994, the same amount of memory cost only $6 (when
adjusted for inflation). Compiler technology has also become more sophisticated, so that the RISC use
of RAM and emphasis on software has become ideal.

90 Zero to Mastery in Computer Architecture and Organisation

EXAMPLE 2:
Example for RISC vs. CISC

Consider the program fragments:

The total clock cycles for the CISC version might be:(2 move × 1 cycle) + (1 mul × 30 cycles) = 32 cycles
While the clock cycles for the RISC version is:(3 Move × 1 cycle) + (5 adds × 1 cycle) + (5 loops × 1 cycle) = 13 cycles

CISC mov ax, 10mov bx, 5mol bx, ax
RISC Begin

mov ax, 0mov bx, 10mov ax, 5add ax, bxloop Begin

Fig: 5.3: Comparison of operations in CISC/RISC

Besides CISC, RISC following instruction set architecture are implemented in computer organization:-
Very Long Instruction Word or VLIW: is a special kind of a self drained pipelined scalar CPU
architecture which is closely related to "Explicitly Parallel Instruction Computing" concepts and is
specifically designed to take advantage of instruction level parallelism (ILP) which is a methodology to
perform and measure the multiple simultaneous operations in a computer program. The VLIW is a
typical compiler based instruction set architecture where the computing operations in parallel are
accomplished based on a fixed schedule determined when programs are compiled, therefore the processor
is not burdened to schedule the computing operations as the responsibity of the scalability and the
computing operations lies more with the compiler. Most of the VLIW based CPUs are primarily suitable
as embedded media processors which have applications in the consumer electronic devices. Some of
the examples of the current VLIW CPUs include the TriMedia media processors by NXP (previously
Philips Semiconductors), the SHARC DSP by Analog Devices, the C6000 DSP family by Texas
Instruments, and the ST Microelectronics ST200 family (based on the Lx architecture) etc.

MISC (Minimal Instruction Set Computer): is a Instruction Set Architecture which is generally
more of stack based rather than depending upon registers and that has a very limited number of basic
operations and corresponding opcodes. Being stack based, the MISC has a reduced size of operand
specifies where most of the instructions operate on the top most stack entries. The MISC enables a
smaller and faster instruction decode unit, therefore facilitating overall faster operation of the individual
instructions. The MISC normally lacks on instruction-level parallelism because of the inherent sequential
dependencies of the instructions in the architecture.One well known example of the MISC based
Instruction Set Architecture is INMOS transputer, designed by a british semiconductor company, INMOS
Inc. based in Bristol.The transputer or Transistor computer was one of the first general purpose
microprocessors designed specifically to be used in parallel processing computing systems. Some examples
of the other instruction sets architectures which are very similar to the MISC are Forth, a structured
imperative stack-based and procedure oriented computer programming language, and JVM (Java Virtual

Instruction Set Architecture 91

Machine) which conceptually represents the instruction set architecture of a stack-oriented capability
architecture using a form of computer intermediate language, commonly referred to as Java bytecode.

EPIC (Explicitly Parallel Instruction Computing): Explicitly Parallel Instruction Computing
(EPIC) is an Instruction Set Architecture which is similar to a form of "Very Long Instruction Word"
(VLIW) architecture in principle , where one instruction word contains multiple instructions. The EPIC
architecture is based on the explicit instruction-level parallelism, which is compiler based at the decision
level to decide upon the type of the instructions to be executed in parallel. Unlike the VLIW instruction
sets, the EPIC are backward compatible between implementations. The EPIC ISA has been used while
development of Intel's IA-64 architecture by Intel and HP. The Itanium and Itanium 2 line of server
processors from Intel implement the EPIC ISA.

Vector Processor: Vector processor is an Instruction Set Architecture which enables the CPU to
run mathematical operations on multiple data elements simultaneously. The Vector processors pipeline
the instructions as well as the data itself as a batch in the CPU mamory thereby reducing the processing
latency. The Vector processor is mainly used in the supercomputers or high-end machines such as
modern video game consoles, consumer computer video graphics hardware etc.

SISD (Single Instruction, Single Data stream) Single Instruction, Single Data (SISD) refers to
an Instruction Set Architecture in which a single processor (one CPU) executes exactly one instruction
stream at a time and also fetches or stores one item of data at a time to operate on data stored in a single
memory unit .Most of the CPU design, based on the von Neumann architecture, from the beginning till
recent times are based on the SISD. The SISD model is a typical non-pipelined architecture with the
general-purpose registers, as well as dedicated special registers such as the Program Counter (PC), the
Instruction Register (IR), Memory Address Registers (MAR) and Memory Data Registers (MDR).

Single Instruction, Multiple Data (SIMD): is an Instruction Set Architecture that have a single
control unit (CU) and more than one processing element (PE) that operates like a von Neumann machine
by executing a single instruction stream over PEs, handled through the CU. The CU generates the
control signals for all of the PEs and by which executes the same operation on different data streams.
The SIMD architecture, in effect, is capable of achieving data level parallelism just like with vector
processor. Some of the examples of the SIMD based systems include IBM's AltiVec and SPE for
PowerPC, HP's PA-RISC Multimedia Acceleration eXtensions (MAX), Intel's MMX and iwMMXt,
SSE, SSE2, SSE3 and SSSE3, AMD's 3DNow! etc.

MISD (Multiple Instructions, Single Data Stream): is an Instruction Set Architecture for parallel
computing where many functional units perform different operations by executing different instructions
on the same data set. This type of architecture is common mainly in the fault-tolerant computers
executing the same instructions redundantly in order to detect and mask errors.

MIMD(Multiple Instruction, Multiple Data Streams): Multiple Instruction stream, Multiple Data
stream (MIMD) is an Instruction Set Architecture for parallel computing that is typical of the computers
with multiprocessors. Using the MIMD, each processor in a multiprocessor system can execute
asynchronously different set of the instructions independently on the different set of data elements. The
MIMD based computer systems can used the shared memory in a memory pool or work using distributed
memory across heterogeneous network computers in a distributed environment. The MIMD architectures
is primarily used in a number of application areas such as computer-aided design/computer-aided
manufacturing, simulation, modeling, communication switches etc.

Orthogonal Instruction Set: is an Instruction Set Architecture where any instruction can use data

92 Zero to Mastery in Computer Architecture and Organisation

of any type via any of the addressing mode without restrictions on the type of registers to be used ,
thereby working on a very limited set on operational codes and addressing modes. Most of the CISC
based computers generally also follow the orthogonal instruction set where an instruction could access
either registers or computer main memory, generally in various different ways. Examples of some other
computer systems following the Orthogonal instruction set are PDP-11, VAX-11 etc.

INSTRUCTION SET: is a set of programming instructions, which allow a computer system to
carry about commands necessary for operation

INSTRUCTION SET ARCHITECTURE (ISA): is the part of the computer architecture related to
programming,

OPCODE: operation code filed that specifies the operation to be performed.
OPERANDS: An address field of operand on which data processing to be performed.
CISC: COMPLEX INSTRUCTION SET COMPUTER
RISC: REDUCED INSTRUCTION SET COMPUTER

Q.1 List the reasons of increased complexity in ISA?
Q.2 What are the problems in CISC which encourage the development of RISC.
Q.3 Differentiate between:

(a) RISC vs CISC
(b) Hardwired Vs Micro programmed
(c) Opcode vs Operand

Q.4 What do you understand by Instruction set Architecture? Discuss various designing issues
instruction format.

Q.5 What is load-store architecture Explain?
Q.6 Fill in the Blank:

(i) ISA stands for________________________.
(ii) CISC______________________________
(iii) RISC______________________________
(iv) MIPS______________________________
(v) SISD______________________________
(vi) SIMD_____________________________
(vii) MISD____________________________
(viii) MIMD____________________________
(ix) EPIC____________________________
(x) MAR_____________________________
(xi) MDR____________________________

Addressing Modes & Instructions 93

• Identify the various types of ISAs on the basis of Addresses in Instruction Sets,
• Identify the various types of ISAs on the basis of Instructions
• Instruction Set and Format Design Issues
• Instruction Set: Operations
• Major Systems Acquisition Manual

The various addressing modes that are defined in a given instruction set architecture define how
machine language instructions in that architecture identify the operand (or operands) of each instruction.
An addressing mode specifies how to calculate the effective memory address of an operand by using
information held in registers and/or constants contained within a machine instruction or elsewhere.
Many of the instructions which a computer actually executes during the running of a program concern
the movement of data to and from memory. It is not possible simply to specify fixed addresses within
each instruction, as this would require the location of data to be known at the time when the program
was written. This is not possible due to following for several reasons.

• When a program is read from disk, it will be put in memory in a position which cannot be
predicted in advance. Hence, the location of any data in the program cannot be known in advance.

• Similarly, data which has been previously archived to files on disk or tape will be loaded into
memory at a position which cannot be known in advance.

• If the data we wish to use will be read from an input device, then we cannot know in advance
where in memory it will be stored.

• Many calculations involve performing the same operation repeatedly on a large quantity of data
(for example, modifying an image which consists of over a million pixels). If each instruction
operated on a fixed memory location, then the program would have to contain the same instruction
many times, once for each pixel.

We therefore need different strategies for specifying the location of data.
Description of addressing mode or scheme is given below:-

94 Zero to Mastery in Computer Architecture and Organisation

• The data itself, rather than an address, is given as the operand(s) of the instruction.
• In this mode operand is the data in the operand field of instruction
• No address field at all, therefore no additional memory access required

Fig. 6:1: Immediate Addressing
• This address mode is used to initialize the value of a variable
• Advantage of this mode is no additional memory is required for executing the instruction
Example: LOAD IMMEDIATE 7 : is actual the value 7 that put into the CPU register

• A fixed address is specified.
• In this mode operand field of instruction specifies the direct address of the intended operand
• Provide limited address space
• The effective address in this scheme is defined as address of operand
• Only one memory reference is required to fetch the operand

Main Memory Main Memory

Addressing Modes & Instructions 95

Fig. 6.2: Direct Addressing Mode
Example if the instruction LOAD 500 uses direct addressing ,then it will result in loading of contents

the of memory cell 500 to into CPU register In this example memory cell 500 contain 7 as in diagram
then value 7 will be loaded to CPU register

The location of the data is implied by the instruction itself, so no operands need to be given. For
example, a computer might have the instruction INCA, increment the accumulator.

The location of the data is specified relative to the current value of the program Counter. This is
useful for specifying the location of data which is given as part of the program.

In this mode of addressing the operand field of instruction specifies the address of the intended
operand Example: if instruction LOAD I 500 uses indirect addressing scheme and contain the value 50A
and memory location 50 A contains 7 then the value 7 will loaded in to the CPU register

Fig. 6.3: Indirect Addressing

Main Memory

96 Zero to Mastery in Computer Architecture and Organisation

In this mode of addressing the operand field of instruction contains an address and index register,
which contain the offset . in this mode generally address is used to address the consecutive locations of
memory (which store the elements of array) .the index register is special CPU register that contain the
indexed value .Index register is used to iterative applications therefore vale of index register incremented
or decremented

Fig. 6.4: Indexed Addressing
The location of the data is calculated as the sum of an address specified by one of the previous

methods, and the value of an index register. This allows an array of data (for example, an image) to be
accessed repeatedly by the same sequence of instructions.
Points to Remember

• The addressing mode specifies a rule for interpreting or modifying the address field of the instruction
before the operand is actually referenced

• The decoding step in the instruction cycle determines the operation to be performed, the addressing
mode of the instruction, and the location of the operands

• Two addressing modes require no address fields - the Implied mode and Immediate mode
• Implied Mode: the operands are specified implicitly in the definition of the instruction complement

accumulator or zero-address instructions
• Immediate Mode: the operand is specified in the instruction
• Register Mode: the operands are in registers
• RegisterIndirect Mode: the instruction specifies a register that contains the address of the

operand
• Auto Increment or Auto Decrement Mode: similar to the register indirect mode
• Direct Address Mode: the operand is located at the specified address given
• Indirect Address Mode: the address specifies the effective address of the operand
• Relative Address Mode: the effective address is the summation of the address field and the

content of the PC

Addressing Modes & Instructions 97

• Indexed Addressing Mode: the effective address is the summation of an index register and the
address field

• Base Register Address Mode: the effective address is the summation of a base register and the
address field

PC - 200

R1 - 400

XR - 100

AC

Address Memory
200
201
202

399
400

500

600

702

800

ModeLoad to AC
Address - 500
Next Instruction

450
700

800

900

325

300

Fig: 6.5 Numerical Example of Addressing Modes

AddressingMode EffectiveAddress
Contentof AC

Direct address
Immediate operand
Indirect address
Relative address
Indexed address
Register
Register indirect
Autoincrement
Authdecrement

800
500
300
325
900
400
700
700
450

500
201
800
702
600
—
400
400
399

Fig. 6.6: Tabular list of Numerical Example

98 Zero to Mastery in Computer Architecture and Organisation

Table 6.0: Typical Addressing Mode

 In general not all of above modes are used for all applications. However some of the common areas
where compilers of HLL use them are as:-

Table 6.1: Summary of various addressing Modes
Addressing Mode Possible Use
Immediate For moving and initialisation of variables
Direct Used for global variables & less often for local variables
Register Frequently used for storing local variables of procedure
Register indirect For holding pointers to structure in programming languages C
Index To access member of an Array
Auto-index mode For pushing or popping the parameter of procedure
Base register Employed to re-locate the program in the memory specially in multi programming
Index Accessing iterative local variables such as array
Stack Used for local variables
Relative addressing The location of the data is specified relative to the current value of the program

Counter
Implied The location of the data is implied by the instruction itself, so no operands need

to be given

Addressing Modes & Instructions 99

Computer instructions are translation of high level language code to machine level language programs.
Thus these point of view instructions can be classified under the following categories

TYPES OF INSTRUCTIONS

Data TransferInstruction
Data ProcessingInstructions Program ControlInstructions

Miscellaneous/Privileged
Fig. 6.7: Types of Instructions

• There are Four main categories of computer instructions:
• Data Transfer
• Data Manipulation
• Program Control
• Miscellaneous/Privileged

Transfer data from one location to another without changing the binary information content.
The most common transfers are between :

(i) Processor register and Memory
(ii) Processor register and I/O
(iii) Processor Register themselves
(iv) These instructions need:

(a) The location of source & destination operands and
(b) The mode of addressing for each operand

Below list of some instruction are given as:-
Load (LD) : Load the contents from memory to register
Input (IN): Transfer the contents from input devices
Store (ST): Store the information from register to memory location
Output (OUT): Transfer the contents from output devices
Move (MOV): Data transfer from register to another or between the CPU register and memory
Push (PUSH): Transfer data from a processor register to top of memory stack
Exchange (XCH): Swap the information between the two registers or a register and memory word
Pop (POP): Transfer data from top of stack to processor register

100 Zero to Mastery in Computer Architecture and Organisation

Set(SET): Causes the specified operand to be replace by 1s
Clear(CLEAR): Causes the specified operand to be replace by 1s
• Some assembly language conventions modify the mnemonic symbol to differentiate between

addressing modes
• LDI - load immediate

Table: 6.2: Eight Addressing Modes for Load Instructions
Mode Assembly Convention Register Transfer
Direct address LD ADR AC M(ADR)
Indirect address LD @ADR AC M[M[ADR]]
Relative address LD SADR AC M[PC + ADR]
Immediate operand LD #NBR AC NBR
Index addressing LD ADR (X) AC M[ADR + KR]
Register LD R1 AC R2
Register indirect LD (R1) AC M[R]
Autoincrement LD (R1)+ AC M[M1], R1 + 1

perform arithmetic, logic, and/or shift operation
• Arithmetic instructions:

• Increment INC
• Divide DIV
• Decrement DEC
• Add w/carry ADDC
• Add ADD
• Sub. w/borrow SUBB
• Subtract SUB
• Negate (2's comp) NEG
• Multiply MUL

• Some computers have different instructions depending upon the data type
• ADDI Add two binary integer numbers
• ADDF Add two floating point numbers
• ADDD Add two decimal numbers in BCD

• Logical and bit manipulation instructions:
• Clear CLR Clear carry CLRC
• Complement COM Set carry SETC
• AND AND Comp. carry COMC

Addressing Modes & Instructions 101

• OR OR Enable inter. EI
• Exclusive-OR XOR Disable inter. DI
• Clear selected bits - AND instruction
• Set selected bits - OR instruction
• Complement selected bits - XOR instruction

EXAMPLE
Logical AND,OR,NOT,XOR operate on binary data stored in the registers if two register contains

the data:
R1 = 10110111
R2 = 11110000
Then,
R1 AND R2 = 10110000, thus AND operation is used as mask that selects certain bits in a word and

zeros out the remaining bits
• Shift instructions

• Logical shift right SHR
• Rotate right ROR
• Logical shift left SHL
• Rotate left ROL
• Arithmetic shift right SHRA
• ROR thru carry RORC
• Arithmetic shift left SHLA
• ROL thru carry ROLC

Example: logical shifts LOGICAL SHIFT LEFT and LOGICAL SHIFT RIGHT inserts the ZEROS
to end bit position and other bits of a word are shifted left or right respectively.

Fig:6.8: Logical Shift

102 Zero to Mastery in Computer Architecture and Organisation

• Provide decision-making capabilities and change the program path
• Typically, the program counter is incremented during the fetch phase to the location of the next

instruction
• A program control type of instruction may change the address value in the program counter and

cause the flow of control to be altered
• This provides control over the flow of program execution and a capability for branching to

different program segments
• Branch (BR): may conditional or unconditional used for implement of loops
• Return RET: used for RETurning from subprogram
• Jump (JMP): unconditional branch is used to implement simple loops
• Compare (CMP): is used to compare two or more sequence or variables
• Skip (SKP): zero address instruction and used to skip the next instruction to be execute in the

sequence
• Test TST: used for test the condition
• Call (CALL): used for CALLing subprogram
• TST and CMP cause branches based upon four status bits: C, S, Z, and V

Table:6.3: Conditional Branch Instructions
Mnemonic Branch condition Tested condition
BZ Branch if zero Z = 1
BNZ Branch if not zero Z = 0
BC Branch if carry C = 1
BNC Branch if no carry C = 0
BP Branch if plus S = 0
BM Branch if minus S = 1
BV Branch if overflow V = 1
BNV Branch if no overflow V = 0

Unsigned compare conditions (A – B)
BHI Branch if higher A > B
BHE Branch if higher or equal A B
BLO Branch if lower A < B
BLOE Branch if lower or equal A B
BE Branch if equal A – B
BNE Branch if not equal A B

Signed compare conditions (A – B)
BGT Branch if greater than A > B
BGE Branch if greater or equal A B
BLT Branch if less than A < B
BLE Branch if less of qual A B
BE Branch if equal A = B
BNE Branch if not equal A B

Addressing Modes & Instructions 103

Table describe some important opcodes categories:
• The first 4 categories are universally supported.
• The latter 4 categories are application dependent

Table:6.4: instruction Categories

These instructions do not fit in any of above categories.
I/O instructions: start I/O, stop I/O, test I/O
Interrupt & state swapping Instructions
Most of computer instructions are divided into TWO categories, Privileged and Non-Privileged

A processor running in privileged mode can be execute all instructions from the instruction set while
a processor is running in user mode can execute only a sub set of instructions I/O instructions are
example of privileged while clock, interrupt are another one

Some Important points to Remember
• A call subroutine instruction consists of an operation code together with an address that specifies

the beginning of the subroutine
• Execution of CALL:

• Temporarily store return address
• Transfer control to the beginning of the subroutine - update PC
SP SP – 1

M[SP] PC
PC effective address

• Execution of RET:
• Transfer return address from the temporary location to the PC

 PC M[SP]
 SP SP + 1`

104 Zero to Mastery in Computer Architecture and Organisation

• Program Interrupt: refers to the transfer of program control to a service routine as a result of
interrupt request

• Control : returns to the original program after the service program is executed
• An interrupt procedure is similar to a subroutine call except:

• The interrupt is usually initiated by an internal or external signal rather than an instruction
• The address of the interrupt service routine is determined by the hardware rather than the

address field of an instruction
• All information necessary to define the state of the CPU is stored rather than just the return

address
• The interrupted program should resume exactly as if nothing had happened
• The state of the CPU at the end of the execute cycle is determined from:

• The content of the PC
• The content of all processor registers
• The content of certain status conditions

• The program status word (PSW) is a register that holds the status and controlflag conditions
• Not all computers store the register contents when responding to an interrupt
• The CPU does not respond to an interrupt until the end of an instruction execution
• The control checks for any interrupt signals before entering the next fetch phase
• Three types of interrupts:

• External interrupts
• Internal interrupts
• Software interrupts

• External interrupts come from I/O devices, timing devices, or any other external source
• Internal interrupts arise from illegal or erroneous use of an instruction or data,also called traps
• Internal interrupts are synchronous while external ones are asynchronous
• Both are initiated from signals that occur in the hardware of the CPU
• A software interrupt is initiated by executing an Instruction Register, (MDR) and Memory Address

Register (MAR). The MDR and MAR are used exclusively by the CPU and are not directly
accessible to programmers.

• In order to perform a write operation into a specified memory location, the MDR and MAR are
used as follows:

• The word to be stored into the memory location is first loaded by the CPU into MDR.
• The address of the location into which the word is to be stored is loaded by the CPU into a

MAR.
• A write signal is issued by the CPU.

• Similarly, to perform a memory read operation, the MDR and MAR are used as follows:
• The address of the location from which the word is to be read is loaded into the MAR.

Addressing Modes & Instructions 105

Completeness: for initial design, primary concern is that the instruction set should be complete
which means there is no missing functionality that is it should instructions for basic operations that can
be used for creating any possible execution and control operation

Orthogonal: The secondary concern is that the instructions be orthogonal , that is not un-necessary
redundant

Instruction Length: it is significant issue of formet design, determine size of instrument
Significance: It is basic issue of format design,it determines the richness and flexibility of machine
Basic Tardeoff: smaller instruction(less space) verse desire more powerful instruction repertoire
Normally programmer desire:-

(a) More opcodes and operands: as it result in smaller programs
(b) More addressing modes: for greater flexibility in implementing function like table manipulations,

multiple branching
• Following factors must be considered for deciding about the instruction length:-

Memory Size: if larger range is to be addressed, then more bits may required in address field
Memory Organization: if addressed field is virtual memory then the memory range which is

addressed by the instruction is larger than physical memory size
Memory Transfer Length: instructions should be equal to data bus length or multiple of it
Memory Transfer: The data transfer rate from the memory ideally should be equivalent to processor

speed, to do it one approach is use to cache memory, second one is to keep instruction to short
Example of Instruction Format
MIPS-2000: it is microprocessor developed by MIPS computer systems in 1990. It have
five stage CPU pipe line

Fig:6.9: Pipeline
Note from the Fig:
• All stages are distinct & independent, means the second stage of execution of instruction 1should

not hider instruction 2
• Over all efficiency of system becomes better

106 Zero to Mastery in Computer Architecture and Organisation

The MOPIS architecture contain 32 bits the instruction format is given below:
Table 6.5: A sample instruction format of MIPS Instruction

op rs rt rd shamt funct
6 Bits 5-Bits 5-Bits 5-Bits 5-Bits 5-Bits
Meaning: op opcodes
rs: first register source operand
rt: second register source operand
rd: destination register operand, store the result
shmat: used in case of shift operation
funct: select the specific variant of operation

Multiple Instruction, Single Data (MISD) is an Instruction Set Architecture for parallel computing
where many functional units perform different operations by executing different instructions on the
same data set. This type of architecture is common mainly in the fault-tolerant computers executing the
same instructions redundantly in order to detect and mask errors.

NEON technology: is a set of 128-bit SIMD (single instruction, multiple data) media processing
extensions that provides standardized acceleration for next-generation media and signal processing
applications. It features a comprehensive instruction set, separate register file and independent execution
hardware. NEON technology supports 8-, 16-, 32- and 64-bit integer, and single precision floating-
point, SIMD operations for handling audio/video processing as well as graphics and gaming processing.
The RealView Development Suite Professional contains the state-of-the-art vectorizing NEON compiler
that generates NEON instructions from standard C or C++. This can increase the performance of
applications by 400 percent.

Major Systems Acquisition Manual (MSAM) defines the policy and process for major systems
acquisition projects. Detailed procedures are provided for applying a uniform and disciplined approach
to acquisition planning and project management from mission analysis and requirements generation
through design, development, production, and deployment

It provides definitions of acquisition categories, acquisition phases, and principal decision milestones.

Addressing Modes & Instructions 107

Fig. 6.10: Management Interfaces
Project Managers (PMs) are required to integrate the three primary management areas shown in

Figure 6.9 Management Interfaces into a coherent strategy to achieve specificcost, schedule, and
performance parameters for their assigned projects.

Requirements Management is the "Sponsor and Technical Authority managed" process with the
Sponsor defining mission needs and translating them into sponsor requirements and the Technical Authority
ensuring proper Coast Guard technical standards and resources are incorporated. Business planning
will identify the deficiencies (gaps) that exist between current Coast Guard functional capabilities and
the required capabilities of current or projected missions. The sponsor is responsible for developing a
Mission Need Statement (MNS), derived from business planning activities that describes specific functional
capabilities required to accomplish Coast Guard missions that can only be met with materiel solutions.
The sponsor is responsible for developing a Concept of Operations (CONOPS) that describes a proposed
asset, system or capability in terms of the user needs it will fulfill; the environment in which it will
operate; its relationship to existing assets or systems; and the ways it will be used.

The overall acquisition lifecycle is composed of a pre-acquisition phase (Project Identification)
and four distinct acquisition phases: Need; Analyze/Select; Obtain; and Produce/Deploy/Support.

 Fig. 6.11 Major Systems Acquisition Life Cycle Framework
The major systems acquisition life cycle is intended to be flexible and may be tailored, with the

ADA's approval, to meet the specific circumstances of each acquisition project.
The sponsor identifies and refines specific asset or systems requirements and articulates them in the

Operational Requirements Document (ORD).

108 Zero to Mastery in Computer Architecture and Organisation

Major System Acquisition Management is the "Project Manager-owned" process of planning
project activities and organizing a project staff to achieve cost, schedule, and performance requirements
identified in the ORD and funded in the budget.

Capital Investment Planning is the planning, programming, budgeting, and execution process
that is a calendar-driven budgetary process and owned by the Assistant Commandant for Resources
(CG-8). Capital investment planning has two interdependent functions - providing project budget
planning (for funding and personnel) and establishing affordability constraints. Project resource
planning and management is coordinated by the PM in collaboration with the Sponsor, Technical Authorities
and the Commandant (CG-8) staff.

A model is a representation of a system, entity, phenomenon, or process that can be used in an
experimental environment to gain a better understanding of the system that it is designed to represent.
Models can be physical (e.g., scale model aircraft for wind tunnel testing), logical (process or flow
charts) or mathematical (e.g., a mathematical model of a specific system created to conduct computer
simulations).

Simulation is an exercise of a model (or experiment on the model) over time. It is used to learn
specific characteristics about the system that has been built or being built without having to go through
expensive testing on the real system or having to wait for real systems to test. Simulations can also be
used with real-world systems to replicate a specific environment of operations. One advantage of
simulations over real-life is that simulations can be repeated, consistently, any number of times to
provide a set of identical tests to a model or real world system.

It provides vision, policy, procedures, and standards for the administration and management of
systems. Major objectives for the use of models and simulation in acquisition are to reduce time, resources,
and risk associated with the entire acquisition process, and to increase the quality, military worth, and
supportability of fielded systems.

Project Managers and Sponsors are to identify and fund necessary of resources in the early phases
of each project to support cost effective analysis of their respective acquisition activities.

ADDRESSING MODES: specifies how to calculate the effective memory address of an operand
by using information held in registers and/or constants contained within a machine instruction or elsewhere

IMMEDIATE ADDRESSING: data itself, rather than an address, is given as the operand(s) of the
instruction

DIRECT OR ABSOLUTE ADDRESSING: A fixed address is specified
IMPLIED ADDRESSING: location of the data is implied by the instruction itself, so no operands

need to be given.

Addressing Modes & Instructions 109

RELATIVE ADDRESSING: location of the data is specified relative to the current value of the
program counter.

INDIRECT ADDRESSING: A memory location is given which holds another memory location.
This second memory location holds the actual data.

INDEXED ADDRESSING: The location of the data is calculated as the sum of an address specified
by one of the previous methods, and the value of an index register

DATA TRANSFER INSTRUCTIONS: transfer data from one location to another without changing
the binary information content

DATA MANIPULATION INSTRUCTIONS: perform arithmetic, logic, and/or shift operation
PROGRAM CONTROL INSTRUCTIONS: Provide decision-making capabilities and change the

program path
MSAM: Major Systems Acquisition Manual
SIMD: Single Instruction, Multiple Data Stream
VLIW :Very Long Instruction Word
MISC: Minimal Instruction Set Computer
EPIC: Explicitly Parallel Instruction Computing
SISD: Single Instruction, Single Data stream
MISD: Multiple Instructions, Single Data stream
MIMD: Multiple Instruction, Multiple Data stream

Q.1 Categorize the following operations with Respective Instruction Type
(a) MOV
(b) DIV
(c) STORE
(d) XOR
(e) BRN
(f) COMPARE
(g) TRAP

Q.2 Discuss the following Addressing Modes:-
(a) Immediate Addressing
(b) Direct Addressing
(c) In-direct Addressing
(d) Register Indirect Addressing
(e) Stack Addressing

Q.3 Differentiate between:
(a) SISD Vs SIMD

110 Zero to Mastery in Computer Architecture and Organisation

(b) Data Processing Instruction vs Data Control Instructions
(c) Opcode vs Operand

Q.5 What do you understand by Instruction set Architecture? Discuss various designing issues
instruction format.

Q.6 What is load-store architecture Explain?
Q.7 State True and False

(i) Instruction set is collection of all instructions a CPU can execute
(ii) Instruction can take different format
(iii) Immediate addressing is best suited for initialization of variables
(iv) Memory access is faster than register access
(v) A machine can use most one addressing schemes/modes
(vi) Long instruction execute faster than short instruction

8. Discuss the various elements of Instructions.
9. Explain the concept of MSAM? Discuss process structure.
10 Differentiate between Model and Simulation.

(i) True (ii) True (iii) False (iv) False
(v) False (vi) False

After going through this chapter you should able to understand the concepts of:
 CPU Architecture types (accumulator, register, stack, memory/ register)
 Detailed data path of a typical register based CPU,
 Fetch-Decode-Execute cycle (typically 3 to 5 stage);
 Microinstruction sequencing,
 Implementation of control unit,
 Performance Enhancement with pipelining.
 Hardwired control design method,
 Micro Programmed Control Unit.

A computer system may typically be broken down into a number of components called devices,
each of which implements, or cooperates in implementing, one or other system function. A minimum of
one device is required to implement each function devices must be able to communicate with each other.
The form of communication channel employed is the bus.

A CPU may have following Two types of Architecture
(i) Non-Pipelined
(ii) Pipelined

Pipe-lined Architecture:- In pipelined architecture of computers and other digital electronic devices
to increase their instruction throughput (the number of instructions that can be executed in a unit of
time). The fundamental idea in this architecture is to split the processing of a computer instruction into
a series of independent steps, with storage at the end of each step. A pipelined architecture consists
of following features:-

114 Zero to Mastery in Computer Architecture and Organisation

• The function/interconnection modules are cascadable to form a pipelined processor
• Programmable to do every wanted computation.
• Synchronization is done using a clock-signal
• The clock signal can control the customizing inputs of the various function/interconnection modules.
• In Each cycle, only one of the modules is needed, so the other modules can simply be disabled, by

using low-level customizing inputs.
How Pipe-lined processor Works

Modern CPUs are driven by a clock. The CPU consists internally of logic and register (flip flops).
When the clock signal arrives, the flip flops take their new value and the logic then requires a period of
time to decode the new values. Then the next clock pulse arrives and the flip flops again take their new
values, and so on. By breaking the logic into smaller pieces and inserting flip flops between the pieces of
logic, the delay before the logic gives valid outputs is reduced. In this way the clock period can be
reduced.

 For example, the classic RISC pipeline is broken into five stages with a set of flip flops between
each stage.

1. Instruction fetch
2. Instruction decode and register fetch
3. Execute
4. Memory access
5. Register write back

Fig. 7.1: RISC Pipeline: I clock; Instruction Fetch(IF), II Clock: Instruction Decode and RegisterFetch(ID)III clock: Execute(EX),IV clock: Memory access,(MEM) and V clock: Register write back(WB)

Central Processing Architecture and Data Path 115

Processors with pipelining are organized inside into stages which can semi-independently work on
separate jobs. Each stage is organized and linked into a ‘chain’ so each stage’s output is fed to another
stage until the job is done. This organization of the processor allows overall processing time to be
significantly reduced.

A Deeper Pipeline means that there are more stages in the pipeline, and therefore, Fewer Logic
Gates in Each Stage. This generally means that the processor’s frequency can be increased as the
cycle time is lowered. This happens because there are fewer components in each stage of the pipeline,
so the propagation delay is decreased for the overall stage.

Non-Pipelined Architecture : In this architecture of CPU instructions are executed Serially, and
CPU doesn’t supply clock to entire circuit, therefore it is supposed that the waveform will be relatively
stable and circuit will be low power. This CPU uses Asynchronous architecture therefore it needs
complete-detection. Some other characteristics feature of Non-Pipelined architecture are given below:-

• A non-pipelined processor executes only a single instruction at a time.
• This architecture prevents branch delays and problems with serial instructions being executed

concurrently.
• design is simpler and cheaper to manufacture.
• The instruction latency in a non-pipelined processor is slightly lower than in a pipelined equivalent.

This is because extra flip flops must be added to the data path of a pipelined processor.
• A non-pipelined processor will have a stable instruction bandwidth.

Pipelined Vs Non Pipelined
 Pipelining enables us to be executing many instructions at the same time. Therefore it allows

execution to be done in fewer cycles while In Non-pipelined one instruction is executed at a time. When
one instruction is completed the next is executed, therefore it is slower

• A non-pipeline architecture is inefficient because some CPU components (modules) are idle while
another module is active during the instruction cycle while Pipelining does not completely
cancel out idle time in a CPU but making those modules work in parallel improves program
execution significantly

Example
Let’s assume that each execution stage in the processor requires a single clock cycle. Figure 7.1

uses a grid to represent a six-stage non-pipelined processor, when instruction [I-1] has finished stage
S6, instruction [I-2] begins.

Twelve clock cycles are required to execute the two instructions. In other words, for k execution
stages, n instructions require (n * k) cycles to process.

Of course, Figure 7.2 represents a major waste of CPU resources because each stage is used only
one-sixth of the time.

116 Zero to Mastery in Computer Architecture and Organisation

 S1 S2 S3 S4 S5 S6
1 I-1
2 I-1
3 I-1
4 I-1
5 I-1
6 I-1
7 I-2
8 I-2
9 I-2
10 I-2
11 I-2
12 I-2

Fig.7.2: Non-Piped line execution of Instruction I-1 & I-2
If, on the other hand, a processor supports pipelining, as in Figure 7.2, a new instruction can enter

stage S1 during the second clock cycle. Meanwhile, the first instruction has entered stage S2. This
enables the overlapped execution of the two in struction s. Two instructions, [I-1] and [I-2], are shown
progressing through the pipeline. [I-2] enters stage S1 as soon as [I-1] has moved to stage S2. As a
result, only seven clock cycles are required to execute the two instructions.

When the pipeline is full, all six stages are in use all the time.
 S1 S2 S3 S4 S5 S6
1 I-1
2 I-2 I-1
3 I-2 I-1
4 I-2 I-1
5 I-2 I-1
6 I-2 I-1
7 I-2
8
9
10
11
12

Fig.7.3:Pipe- lined Execution of Instruction I-1 & I-2
In general, for k execution stages, n instructions require k + (n - 1) cycles to process. Whereas the

non-pipelined processor we showed earlier required 12 cycles to process 2 instructions, the pipelined
processor can process 7 instructions in the same amount of time.

Central Processing Architecture and Data Path 117

A typical CPU organization has following Three major components:
(1) Register set,
(2) Arithmetic logic unit (ALU), and
(3) Control unit (CU)

The instruction execution takes place in the CPU registers. The register set differs from one computer
architecture to another. It is usually a combination of Two Types of register set

(a) General-purpose Register or Processor Register:-General-purpose registers are used for any
purpose, hence the name general purpose. A general purpose of register has following
characteristics:-

• In computer architecture, a processor register (or general purpose register) is a small amount
of storage available on the CPU whose contents can be accessed more quickly than storage
available elsewhere.

• Typically, this specialized storage is not considered part of the normal memory range for the
machine.

• Most, but not all, modern computers adopt the Load-Store Architecture. Under this
architecture, data is loaded from some larger memory — be it cache or RAM — into registers,
manipulated or tested in some way (using machine instructions for arithmetic/logic/comparison)
and then stored back into memory, possibly at some different location.

• Processor registers are at the top of the memory hierarchy, and provide the fastest way for
a CPU to access data.

• General purpose registers are used to store data temporarily either 8 bit data or 4 bit data
according to their size. Example: B,C,D,E,H,L in 8085

(b) Special Purpose Register:-Special-purpose registers have specific functions within the CPU.
For example; the program counter (PC) is a special-purpose register that is used to hold the
address of the instruction to be executed next. Another example of special-purpose registers is the
instruction register (IR), which is used to hold the instruction that is currently executed. The
ALU provides the circuitry needed to perform the arithmetic, logical and shift operations demanded
of the instruction set.

Difference between General Purpose Register & Special Purpose Register
• General purpose is responsible for any type of data so long as it is necessary to be hold by the

register. It ranges from 12-32 while Special purpose register is a temporary memory that holds
specific data during processing by the processor.

118 Zero to Mastery in Computer Architecture and Organisation

• General purpose registers are used to store data temporarily either 8 bit data or 4 bit data
according to their size whereas special registers is used for holding the results of any arithmetic
or logic operations carried out by the arithmetic logic unit

• A special register is the most valuable register that is use for store the large scale data in the
memory at a time. So we can easily manage the data as per requirement.

• General purpose registers are used to store temporary data. Example B,C,D,E,H,L in 8085 on the
other hand special purpose registers hold the program state. Example Stack pointer(SP),Program
Counter(PC) etc.

• General purpose registers are used by programmer to store data where as the special purpose
registers are used by CPU for temporary storage of the data for calculations and other purposes.

• General purpose registers are symmetric and interchangeable and the special purpose registers
are symmetric not interchangeable.

Categories of registers
Registers are normally measured by the number of bits they can hold, for example, an “8-

bit register” or a “32-bit register”. A processor often contains several kinds of registers, that can be
classified accordingly to their content or instructions that operate on them:

• User-Accessible Registers - The most common division of user-accessible registers is into data
registers and address registers.

• Data Registers are used to hold numeric values such as integer and floating-point values. In
some older and low end CPUs, a special data register, known as the accumulator, is used implicitly
for many operations.

• Address Registers hold addresses and are used by instructions that indirectly access memory.
• Conditional Registers hold truth values often used to determine whether some instruction should

or should not be executed.
• General Purpose Registers (GPRs) can store both data and addresses, i.e., they are combined

Data/Address registers.
• Floating Point Registers (FPRs) store floating point numbers in many architectures.
• Constant Registers hold read-only values such as zero, one, or pi.
• Vector Registers hold data for vector processing done by SIMD instructions (Single Instruction,

Multiple Data).
• Special Purpose Registers (SPR) hold program state; they usually include the program counter (or

instruction pointer), stack pointer, and status register (or processor status word).
• In some architecture, Model-Specific Registers (also called machine-specific registers) store

data and settings related to the processor itself. Because their meanings are attached to the design
of a specific processor, they cannot be expected to remain standard between processor generations.

• Registers related to fetching information from RAM, a collection of storage registers located on
separate chips from the CPU (unlike most of the above, these are generally not architectural
registers):These registers are:-

Central Processing Architecture and Data Path 119

• Memory Address Register (MAR):- Connected to the address lines of the system bus. It
specifies the address of memory location from which data or instruction is to be accessed (for
read operation) or to which the data is to be stored (for write operation).

• Memory Buffer Register (MBR):- Connected to the data lines of the system bus. It specifies
which data is to be accessed (for read operation) or to which data is to be stored (for write
operation).

• Memory Data Register (MDR): is the register that contains the data to be stored in the computer
storage (e.g. RAM), or the data after a fetch from the computer storage. It acts like a buffer and
holds anything that is copied from the memory ready for the processor to use it.

• Memory Type Range Registers (MTRR): Registers in the Pentium Pro and Pentium II processors
that can be used to specify a strategy for communication with the external memory and caches
for a number of physical address ranges.

• Hardware registers are similar, but occur outside CPUs.
• Program Status Word (PSW):- Condition registers, or flags, are used to maintain status

information. Some architectures contain a special program status word (PSW) register. The
PSW contains bits that are set by the CPU to indicate the current status of an executing program.
These indicators are typically for arithmetic operations, interrupts, memory protection information,
or processor status.

• Control and Status Registers - It has three types:
Program Counter (PC):- Holds address of next instruction to be fetched, after the Execution of an

on-going Instruction.
Instruction Register (IR):- Here the instruction are loaded before their execution
Index Register: In index addressing, the address of the operand is obtained by adding a constant

to the content of a register, called the index register. The index register holds an address displacement.
Segment Pointers: In order to support segmentation, the address issued by the processor should

consist of a segment number (base) and a displacement (or an offset) within the segment. A segment
register holds the address of the base of the segment.

Stack Pointer: A stack is a data organization mechanism in which the last data item stored is the
first data item retrieved. Two specific operations can be performed on a stack. These are the Push and
the Pop operations. A specific register, called the Stack Pointer (SP), is used to indicate the stack
location that can be addressed. In the stack PUSH operation, the SP value is used to indicate the location
(called the top of the stack). After storing (pushing) this value, the SP is incremented In the stack push
operation, the SP value is used to indicate the location (called the top of the stack) in which the value is
to be stored (in our example it is location 1023). After storing (pushing) this value the SP isincremented
to indicate to location 1024.

120 Zero to Mastery in Computer Architecture and Organisation

Stack operation push

Stack operationpop
Fig.7.4: Push & Pop Operations

In the stack pop operation, the SP is first decremented to become 1021. The value stored at this
location (DD in our example) is retrieved (popped out) and stored in the shown register grows low in
memory).

Stack Machine: ‘Stack machine’ commonly refers to computers which use a Last-in, First-out
stack to hold short-lived temporary values while executing individual program statements. The instruction
set carries out most ALU actions with postfix (Reverse Polish notation) operations that work only on the
expression stack, not on data registers or main memory cells.
Block diagram of Stack Machine

A block diagram of Stack Machine’s consists components like:
• Data Bus,
• Data Stack (DS),
• Return Stack (RS),
• Arithmetic/Logic Unit (ALU)
• Top of Stack Register (TOS),
• Program Counter (PC),
• program memory with a Memory Address Register (MAR),
• control logic with an Instruction Register (IR), and
• Input/Output section (I/O).

Central Processing Architecture and Data Path 121

Fig.7.5 Block Diagram of Stack Machine

Accumulator: is a register in which intermediate arithmetic and logic results are stored. Without a
register like an accumulator, it would be necessary to write the result of each calculation (addition,
multiplication, shift, etc.) to main memory and to be read right back again for use in the next operation.
We know that access to main memory is slower than access to a register like the accumulator because
the technology used for the large main memory is slower (but cheaper) than that used for a register.
This is a model of a generic zero-address computer.

The canonical example for accumulator use is summing a list of numbers. The accumulator is
initially set to zero, then each number in turn is added to the value in the accumulator. Only when all
numbers have been added is the result held in the accumulator written to main memory or to another,
non-accumulator, CPU register.

An accumulator machine, also called a 1-operand Machine, or a CPU with accumulator-based
architecture, is a kind of CPU in which—although it may have several registers—the CPU always
stores the results of most calculations in one special register—typically called “the” accumulator of that
CPU. Historically almost all early computers were accumulator machines; and many microcontrollers
still popular as of 2010 (such as the 68HC12, the PICmicro, the 8051 and several others) are basically
accumulator machines.

122 Zero to Mastery in Computer Architecture and Organisation

An accumulator-based processor, which has Five 16-bit registers: Program Counter (PC),
Instruction Register (IR), Address Register(AR), Accumulator (AC), and Data Register (DR) as shown
in fig. 7.6

Fig. 7.6: Accumulator based Machine
80X86 Registers

The architecture of 80X86 Processor consists of Three register groups. These are
• General-purpose Registers,
• Segment Registers, and the Instruction Pointer (Program Counter) and
• Flag Register.
 The first set consists of general purpose registers A, B, C, D, SI (source index), DI (Destination

Index), SP (Stack Pointer), and BP (Base Pointer).
The second set of registers consists of CS (Code Segment), SS (Stack Segment), and four data

segment registers DS, ES, FS, and GS.
The third set of registers consists of the instruction pointer (program counter) and the flags (status)

register.

The Arithmetic Logic Unit (ALU) and the Control Unit (CU) together are termed as the Central
Processing Unit (CPU). The CPU is the most important component of a computer’s hardware. The ALU
performs the arithmetic operations such as addition, subtraction, multiplication and division, and the
logical operations such as: “Is A =B?” (Where A and B are both numeric and alphanumeric data), “Is a
given character equal to M (for male) or F (for female)?” The control unit interprets instructions and
produces the respective control signals. All the arithmetic and logical Operations are performed in the
CPU in special storage areas called Registers.

Central Processing Architecture and Data Path 123

The control unit is the main component that directs the system operations by sending control
signals to the datapath. These signals control the flow of data within the CPU and between the CPU and
external units such as memory and I/O. Control buses generally carry signals between the control unit
and other computer components in a clock-driven manner. The system clock produces a continuous
sequence of pulses in a specified duration and frequency. A sequence of steps t0 , t1 , t2 , . . . , are used
to execute a certain instruction.

The op-code field of a fetched instruction is decoded to provide the control signal generator with
information about the instruction to be executed. Step information generated by a logic circuit module is
used with other inputs to generate control signals. The signal generator can be specified simply by a set
of Boolean equations for its output in terms of its inputs. Figure 7.7 shows a block diagram that
describes how timing is used in generating control signals.

Fig.7.7: Timing of control signals
To execute instructions, a processor must generate the control signals used to perform the processor’s

actions in the proper sequence. This sequence of actions can either be executed by another processor’s
software or in hardware. Hardware.

The signals generating methods fall into two categories:
(i) Hardwired control, in which the instruction bits directly generate the signals. In hardwired

control, fixed logic circuits that correspond directly to the Boolean expressions are used to generate
the control signals.

124 Zero to Mastery in Computer Architecture and Organisation

(ii) Microprogrammed Control in which a dedicated microcontroller executes a microprogram to
generate the signals.

In microprogrammed control, the control signals associated with operations are stored in special
memory units inaccessible by the programmer as control words. A control word is a microinstruction
that specifies one or more microoperations. A sequence of microinstructions is called a microprogram,
which is stored in a ROM or RAM called a Control Memory (CM).
Hard wired vs Micro-programmed Control

Hardwired control is faster than microprogrammed control. However, hardwired control could be
very expensive and complicated for complex systems. Hardwired control is more economical for small
control units. It should also be noted that micro programmed control could adapt easily to changes in
the system design. We can easily add new instructions without changing hardware. Hardwired control
will require a Re-design of the entire systems in the case of any change.
Hard-Wired Control Implementation

• It is implemented as logic circuits (gates, flip-flops, decoders etc.) in the hardware.
• This organization is very complicated if we have a large control unit.
• In this organization, if the design has to be modified or changed, requires changes in the wiring

among the various components. Thus the modification of all the combinational circuits may be
very difficult
Hard wired Control organization’s architecture consists of consist of :

• Instruction Register
• Number of Control Logic Gates,
• Two Decoders
• 4-bit Sequence Counter

Opcode Address
OtherInputs

ControlOutput
ControlUnitValue

ClockClock (CLR)Inrement (INR)4 bitSequence Counter(SC)

3 × 8DecoderD1 D2 D3 D4 D5 D6 D7 D8

I

T13 T14 T5 T64 × 16Decoder

Fig. 7.8: Architecture of Hard-wired Organization

Central Processing Architecture and Data Path 125

How it is Works
An instruction read from memory is placed in the Instruction Register (IR).
The instruction register is divided into three parts:
• bit,
• operation code, and
• address part.
First 12-bits (0-11) to specify an address, next 3-bits specify the operation code (opcode) field of

the instruction and last left most bit specify the addressing mode I.
I = 0 for direct address
I = 1 for indirect address
First 12-bits (0-11) are applied to the control logic gates.
The operation code bits (12 – 14) are decoded with a 3 x 8 decoder.
The eight outputs (D0 through D7) from a decoder goes to the control logic gates to perform

specific operation.
Last bit 15 is transferred to a I flip-flop designated by symbol I.
The 4-bit Sequence Counter (SC) can count in binary from 0 through 15.
The counter output is decoded into 16 timing pulses T0 through T15.
The sequence counter can be incremented by INR input or clear by CLR input synchronously.
Example
Consider the case where SC is incremented to provide timing signalsT0, T1, T 2 , T3, and T4 in

sequence. At time T4 , SC is cleared to 0 if decoder output D3 is active. This is expressed symbolically
by the statement:

D3 T4 : SC
The timing diagram shows the time relationship of the control signals

Fig. 7.9: Timing Diagram

126 Zero to Mastery in Computer Architecture and Organisation

Microprogrammed control Organization
Microprogrammed control is a control mechanism to generate control signals by using a memory

called Control Storage (CS), which contains the control signals.
Maurice Wilkes invented “microprogram” in 1953. He realised an idea that made a control unit

easier to design and is more flexible. His idea is that a control unit can be implemented as a memory
which contains patterns of the control bits and part of the flow control for sequencing those
patterns. Microprogram control organization works to control sequence patterns of control bits. Using
microprogram, a control organization can be implemented for a complex instruction set which is impossible
to do by hardwired.
Some Important Terms

- Micro-Instructions: The instructions that make micro-program are called micro-instructions.
A micro-instruction consists of:

• One or more micro-operations to be executed.
• Address of next microinstruction to be executed.

- Micro-Operations: The operations performed on the data stored inside the registers are called
micro-operations.

- Micro-Programs: Microprogramming is the concept for generating control signals using programs.
These programs are called micro-programs.

- Micro-Code: Micro-program is a group of microinstructions. The micro-program can also be
termed as micro-code.

- Control Memory: Micro-programs are stored in the read only memory (ROM). That memory is
called control memory

Microprogrammed control seems to be advantageous to CISC machines, since CISC requires
systematic development of sophisticated control signals, there is no intrinsic difference between these 2
control mechanism.

Microprogrammed control unit composed of microprogram PC, micro memory, output buffer
and a sequencing unit.

Micro Memory (sometime called micro store) contains bit patterns that are used to control the
datapath. Each word of micro memory is separated into several fields: internal control, external control,
conditional, next address.

1. Internal control bits are the signals that control the datapath.
2. External control bits are the signals that control external unit such as memory (read, write),

interrupt acknowledge etc.
3. Conditionals are the bits that are used to determine the flow of microprogram; loop, branching,

next instruction etc. Its input comes from the datapath (usually from the conditional code register).
Next address determines the next microword to be executed.

A microprogram is executed as follow :
1. A word from microprogram at the location specified by the microPC is read out, control bits are

latched at the output buffer which is connected to the datapath.

Central Processing Architecture and Data Path 127

2. If conditional field is specified and the test for conditional is true, the next address of microprogram
will come from the next address field otherwise the microPC will be incremented (execute the
next microword).

Fig.7.10: Micro controlled Organization
Figure 7.10 shows the general configuration of a microprogrammed control. The Control Memory

is assumed to be a ROM within which all control information is permanently stored. The Control Address
Register (CAR) specifies the address of the microinstruction. The Control Data Register (CDR), which is
optional, may hold the microinstruction currently being executed by the datapath and the control unit.

One of the functions of the control word is to determine the address of the next microinstruction to
be executed. This microinstruction may be the next one in sequence, or it may be located somewhere
else in the control memory. Therefore, one or more bits that specify how to determine the address of the
next microinstruction must be present in the current microinstruction.

The next address may also be a function of status and external control inputs. While a microinstruction
is being executed, the next-address generator produces the next address. This address is transferred to
the CAR on the next clock pulse and is used to read the next microinstruction to be executed from

128 Zero to Mastery in Computer Architecture and Organisation

ROM. Thus, the microinstructions contain bits for activating microoperations in the datapath and bits
that specify the sequence of microinstructions executed. The next-address generator, in combination
with the CAR, is sometimes called a microprogram sequencer, as it determines the sequence of instructions
thatis read from control memory.

The address of the next microinstruction can be specifiedin several ways, depending on the sequencer
inputs.Typical functions of a microprogram sequencer are incrementing the CAR by one and loading the
CAR. Possible sources for the load operation include an address from control memory, an externally
provided address, and an initial address to start control unit operation. The CDR holds the present
microinstruction while the next address is being computed and the next microinstruction is being read
from memory. The CDR breaks up a long combinational delay path through the control memory and the
datapath. Insertion of this register is just like inserting a pipeline platform, it allows the system to use a
higher clock frequency and hence perform processing faster.

The inclusion of a CDR in a system, however, complicates the sequencing of microinstructions,
particularly when decision making based on status bits is involved. Hence, for simplicity, we omit the
CDR and take the microinstructions directly from the ROM outputs. The ROM operates as a combinational
circuit, with the address as the input and the corresponding microinstruction as the output.

The contents of the specified word in ROM remain on the output lines of the ROM as long as the
address value is applied to the inputs. No read/write signal is needed, as it is with RAM. Each clock pulse
executes the microoperations specified by the microinstruction and also transfers a new address to the
CAR, which, in this case, is the only component in the control that receives clock pulses and stores state
information. The next-address generator and the control memory are combinational circuits. Thus, the
state of the control unit is given by the contents of the CAR.The status bits enter the next-address
generator and affect the determination of the next state. Unless the status bits bypass the control unit
and directly control the microoperations being executed in the datapath, they can do no more than select
the next microoperation by affecting the address generated by the nextaddress generator.
Micro-program Word Length

Based on 3 factors
• Maximum number of simultaneous micro-operations supported
• The way control information is represented orencoded
• The way in which the next micro-instruction address is specified

Micro-instruction Types
• Each micro-instruction specifies single (or few) micro-operations to be performed (vertical micro-

programming)
• Each micro-instruction specifies many different micro-operations to be performed in

parallel(horizontal micro-programming)
Horizontal microprogram allows each control bit to be independent from other therefore enables

maximum simultaneous events and also offers great flexibility. It is also waste a lot bit. For each field of
microword, there may be a group of bits that are not activated at the same time therefore they can be

Central Processing Architecture and Data Path 129

“encoded” to use a fewer bit. A decoder is required to “decode” these bits and to connect them to the
datapath. This approach is called vertical microprogram.
Vertical Micro-programming

• Width is narrow
• n control signals encoded into log2 n bits
• Limited ability to express parallelism
• Considerable encoding of control information requires external memory word decoder to identify

the exact control line being manipulated

Fig. 7.11: Vertical Micro Programming
Horizontal Micro-programming

• Wide memory word
• High degree of parallel operations possible
• Little encoding of control information

Fig. 7.12 Horizontal Micro-Programming
Microprogram becomes obsolete mainly because the present design emphasises the performance

and microprogram is slower than hardwired. The change in instruction set design toward a minimum
number of clock per instruction simplifies the instruction set to the point that microprogram is not really
required. Also the design of hardwired control unit can be mostly automated as opposed to microprogram
which must be “written” and “debug”. Hence, for the current instruction set architecture, hardwired
control unit offers a lower engineering cost.

130 Zero to Mastery in Computer Architecture and Organisation

Advantages
- The design of micro-program control unit is less complex becausemicro-programs are implemented

using software routines.
- The micro-programmed control unit is more flexible because designmodifications, correction and

enhancement is easily possible.
- The new or modified instruction set of CPU can be easily implementedby simply rewriting or

modifying the contents of control memory.
- The fault can be easily diagnosed in the micro-program control unitusing diagnostics tools by

maintaining the contents of flags, registersand counters.
Disadvantages

- The micro-program control unit is slower than hardwired control unit.That means to execute an
instruction in micro-program control unitrequires more time.

- The micro-program control unit is expensive than hardwired controlunit in case of limited hardware
resources.

- The design duration of micro-program control unit is more thanhardwired control unit for smaller
CPU.

CPU Organization–Summary
1.(a) A CPU can be defined as a general purpose instruction set processor responsible for program

execution.
(b) A CPU consists of address bus, data bus and control bus.
(c) A computer with one CPU is called microprocessor and with more than one CPU in called

multiprocessor.
(d) The address bus in used to transfer addresses from the CPU to main memory or to I/O devices
(e) Data bus is the main path by which information is transferred to and from the CPU
(f) Control bus is used by CPU to control various devices connected and to synchronise their operations

with those of the CPU.
2. (a) A control unit take the instructions one by one to execute. It takes data from input devices and

store it in memory. And also sends data from memory to the output device.
(b) All arithmetic and logical operations are carried out by Arithmetic Logical Unit
(c) A control unit and the arithmetic logical unit together is known as CPU
(d) can be : Hardwired & Microprogrammed

3. (a) The accumulator is the main register of the ALU
(b) In execution of the most of the instructions the accumulator is used to store a input data or output

result.
(c) Instructions register holds the opcode of the current instruction
(d) Memory address register holds the address of the current instructions.

4. A accumulator based CPU consists of (a) data processing unit (b) program control unit and (c)
memory and I/O interface unit.

Central Processing Architecture and Data Path 131

(a) (i) In the data processing unit, data is processed to get some results.
(ii) the accumulator in the main operand register of the ALU.

(b) (i) Program control unit controls various parts of CPU.
(ii) Program counter holds the address of the next instructions to be read from memory after the

current instruction is executed.
(iii) Instruction register holds the opcode of the current instruction.
(iv) Control circuits hold the responsibility of every operation of the CPU.

(c) (i) Data registers of the memory and I/O interface unit acts as a buffer between the CPU and
main memory.

(ii) Address register contains the address of the present instructions obtained from the program
control unit.

5. (a) Stack pointer and flag register are special registers of CPU.
(b) Stack pointers holds the address of the most recently entered item into the stack.
(c) Flag registers indicates the status which depends on the results of the operation.

6. (a) Micro operations are the operations executed on data stored in registers.
(b) A set of micro operations specified by an instruction is known as macro operation.

7. (a) A sequence of operations involved in processing an instruction constitutes an instruction cycle
(b) Fetch cycle in defined as the time required for getting the instruction code from main memory to

CPU
(c) Executed cycle is the time required to decode and execute an instruction.
(d) Fetch cycle requires a fixed time slot and execute cycle requires variable time slot.

8. (a) a word length indicates the number of bits the CPU can process at a time.
(b) A memory size indicates the total storage capacity of the CPU.
(c) Word length is the indication of bit length of each register.

9. A computer is said to be operated based on stored program concept if it stores the instructions as
well as data of a program in main memory when they are waiting to execute.

10. A stored program in main memory is executed instruction after instruction in a successive method
by using program counter.

The CPU can be divided into a Data Section and a Control Section. The data section, which is also
called the Datapath, contains the registers and the ALU. The datapath is capable of performing certain
operations on data items. The control section is basic all the control unit, which issues control signals to the
datapath. Internal to the CPU, data move from one register to another and between ALU and registers.

Internal data movements are performed via local buses, which may carry data, instructions, and
addresses

Simple architecture of datapath consists of components like memory (stores the current instruction),
PC or Program Counter (stores the address of current instruction), and ALU (executes current instruction).
The interconnection of these simple components to form a basic datapath is illustrated in Fig. 7.12.

132 Zero to Mastery in Computer Architecture and Organisation

Fig. 7.13: Interconnection of various components in DataPath
In computer organization Data move from registers to memory and I/O devices, often by means of

a system bus. Internal data movement among registers and between the ALU and registers may be
carried out using different organizations including one-bus, two-bus, or three-bus organizations.
Dedicated datapaths may also be used between components that transfer data between themselves more
frequently. For example, the contents of the PC are transferred to theMAR to fetch a new instruction at
the beginning of each instruction cycle. Hence, a dedicated datapath from the PC to the MAR could be
useful in speeding up this part of instruction execution.

Using one bus, the CPU registers and the ALU use a single bus to move outgoing and incoming data.
Since a bus can handle only a single data movement within one clock cycle, two-operand operations will
need two cycles to fetch the operands for the ALU. Additional registers may also be needed to buffer
data for the ALU.

This bus organization is the simplest and least expensive, but it limits the amount of data transfer that
can be done in the same clock cycle, which will slow down the overall performance. Figure 7.14 shows
a one-bus datapath consisting of a set of general-purpose registers, a memory address register (MAR), a
memory data register (MDR), an instruction register (IR), a program counter (PC), and an ALU.

Fig.7.14: one bus data Path

Central Processing Architecture and Data Path 133

Using two buses is a faster solution than the one-bus organization. In this case, general-purpose
registers are connected to both buses. Data can be transferred from twodifferent registers to the input
point of the ALU at the same time. Therefore, a twooperandoperation can fetch both operands in the
same clock cycle.

Fig. 7.15: Two-Bus Organization
An additional buffer register may be needed to hold the output of the ALU when the two buses are

busy carrying the two operands. In some cases, one of the buses may be dedicated for moving data into
registers (in-bus), while the other is dedicated for transferring data out of the registers (out-bus). In this
case, the additional buffer register may be used, as one of the ALU inputs, to hold one of the operands.
The ALU output can be connected directly to the in-bus, which will transfer the result into one of the
registers. Figure 7.15 shows a two-bus organization with in-bus and out-bus.

In a three-bus organization, two buses may be used as source buses while the third is used as
destination. The source buses move data out of registers (out-bus), and the destination bus may move
data into a register (in-bus). Each of the two out-buses is connected to an ALU input point. The output
of the ALU is connected directly to the in-bus. As can be expected, the more buses we have, the more
data we can move within a single clock cycle. However, increasing the number of buses will also
increase the complexity of the hardware.

Fig. 7.16: shows an example of a three-bus datapath

134 Zero to Mastery in Computer Architecture and Organisation

A single-cycle datapath executes in one cycle all instructions. This clearly impacts CPI in a beneficial
way, namely, CPI = 1 cycle for all instructions. we use the single-cycle datapath components to create
a multi-cycle datapath, where each step in the fetch-decode-execute sequence takes one cycle. This
approach has Two advantages over the single-cycle datapath:

1. Each functional unit (e.g., Register File, Data Memory, ALU) can be used more than once in the
course of executing an instruction, which saves hardware (and, thus, reduces cost); and

2. Each instruction step takes one cycle, so different instructions have different execution times. In
contrast, the single-cycle datapath that we designed previously required every instruction to take
one cycle, so all the instructions move at the speed of the slowest.

Pipe-lined Architecture:- In pipelined architecture of computers many instructions executed in
singe cycle to increase their instruction throughput

Non-Pipelined Architecture : In this architecture of CPU instructions are executed serially, and
CPU doesn’t supply clock to entire circuit

User-accessible Registers - The most common division of user-accessible registers is into data
registers and address registers.

Data Registers are used to hold numeric values such as integer and floating-point values.
Address Registers hold addresses and are used by instructions that indirectly access memory.
Conditional Registers hold truth values often used to determine whether some instruction should

or should not be executed.
General Purpose Registers (GPRs) can store both data and addresses, i.e., they are combined

Data/Address registers.
Floating Point Registers (FPRs) store floating point numbers in many architectures.
Constant Registers hold read-only values such as zero, one, or pi.
Vector Registers hold data for vector processing done by SIMD instructions (Single Instruction,

Multiple Data).
Special Purpose Registers (SPR) hold program state; they usually include the program

counter , stack pointer, and status register
Instruction Registers store the instruction currently being executed
Memory Address Register (MAR):- Connected to the address lines of the system bus.
Memory Buffer Register (MBR):- Connected to the data lines of the system bus. It specifies

which data is to be accessed (for read operation) or to which data is to be stored (for write operation).
Memory Data Register(MDR): is the register that contains the data to be stored in the computer

storage (e.g. RAM), or the data after a fetch from the computer storage.
Memory Type Range Registers (MTRR): can be used to specify a strategy for communication

with the external memory and caches for a number of physical address ranges.

Central Processing Architecture and Data Path 135

Memory Type Range Registers (MTRR): Registers in the Pentium Pro and Pentium II processors
that can be used to specify a strategy for communication with the external memory and caches for a
number of physical address ranges.

Hardware Registers are similar, but occur outside CPUs.
Program Status Word (PSW).:-. The PSW contains bits that are set by the CPU to indicate the

current status of an executing program.
Program Counter (PC):- Holds address of next instruction to be fetched, after the Execution of an

on-going Instruction.
Instruction Register (IR):- Here the instruction are loaded before their execution
Index Register:. The index register holds an address displacement.
Segment Pointers: A segment register holds the address of the base of the segment.
Stack Pointer: A stack pointer holds the address of stack
Stack Machine: commonly refers to computers which use a Last-in, First-out stack to hold short-

lived temporary values while executing individual program statements.
Accumulator is a register in which intermediate arithmetic and logic results are stored.
Arithmetic Unit :performs the arithmetic operations such as addition, subtraction, multiplication

and division, and the logical operations
Control Unit: is the main component that directs the system operations by sending control signals

to the datapath
Hardwired control, in which the instruction bits directly generate the signals.
Microprogrammed control in which a dedicated microcontroller executes a micro program to

generate the signals.
Micro-Instructions: The instructions that make micro-program are called micro-instructions.
Micro-Operations: The operations performed on the data stored inside the registers .
 Micro-Programs: Microprogramming is the concept for generating control signals using programs.
Micro-Code: Micro-program is a group of microinstructions. The micro-program can also be

termed as micro-code.
 Control Memory: Micro-programs are stored in the read only memory (ROM). That memory is

called control memory.
Datapath: The data section, which is also called the datapath, contains the registers and the ALU.

Q.1 How pipe-lining enhance the performance of CPU and How it is works?
Q.2 What are the basic differences between Non-pipes lined and pipelined architecture of CPU.
Q.3 Define the following types of Registers(i) GPR(ii) SPR(iii) MAR(iv)MDR(v)MTRR(vi)PC
Q.4 Describes the Stack Machine and Accumulator machines.
Q.5 Write the Hard-wired and Micro-programmed control organization with detailed architecture.

136 Zero to Mastery in Computer Architecture and Organisation

Q.6 Differentiate between :
(i) Hard-wired & Micro-programmed
(ii) Horizontal & vertical Micro-programming
(iii) MDR and MBR
(iv) Micro-Program, Micro-Instruction & Micro-operation
(v) Single vs. Multi cycle Datapath

Q.7 During which stage of the instruction execution cycle is the program counter incremented?
Q.8 Define pipelined execution.
Q.9 In a 5-stage non-pipelined processor, how many clock cycles would it takes to execute 2

instructions?
Q.10 What do you mean by DataPath? Discuss various organizations of Datapath.

After going through this chapter you should able to understand the concepts of:
• Concept of Addressing Modes: ZERO,ONE,ONE & HALF,TWOTHREE
• Modes: Immediate, Direct, In-Direct, Indexed, Auto Increment,
• Instruction Format
• Instruction Cycle: Fetch, Decode, Execute, Reload

Information involved in any operation performed by the CPU needs to be addressed. In computer
terminology, such information is called the operand. Therefore, any instruction issued by the processor
must carry at least two types of information.

These are the operation to be performed, encoded in what is called the op-code field, and the
address information of the operand on which the operation is to be performed, encoded in what is called
the address field.

Instructions can be classified based on the number of operands as:
(a) Three-address,
(b) Two-address,
(c) One-and-half-address,
(d) One-address, and
(e) Zero-address.

We explain these classes together with simple examples in the following paragraphs:
A three-address instruction takes the form operation add-1, add-2, add-3. In this form, each of

add-1, add-2, and add-3 refers to a register or to a memory location. Consider, for example, the instruction
ADD R1, R2, R3.

An example of a three-address instruction that refers to memory locations may take the form ADD
A,B,C. The instruction adds the contents of memory location A to the contents of memory location
B and stores the result in memory location C.

138 Zero to Mastery in Computer Architecture and Organisation

A Two-address Instruction takes the form operation add-1, add-2. In this form, each of add-1 and
add-2 refers to a register or to a memory location. Consider, for example, the instruction ADD R1, R2.
This instruction adds the contents of register

R1 to the contents of register R2 and stores the results in register R2. The original contents of
register R2 are lost due to this operation while the original contents of register R1 remain intact. This
instruction is equivalent to a three-address instruction of the form ADD R1,R2,R2. A similar instruction
that uses memory locations instead of registers can take the form ADD A,B. In this case, the contents of
memory location A are added to the contents of memory location B and the result is used to override the
original contents of memory location B.

The operation performed by the three-address instruction ADD A,B,C can be performed by the two
two-address instructions MOVE B,C and ADD A,C. This is because the first instruction moves the
contents of location B into location C and the second instruction adds the contents of location A to those
of location C (the contents of location B) and stores the result in location C.

A One-address Instruction takes the form ADD R1. In this case the instruction implicitly refers to
a register, called the Accumulator Racc, such that the contents of the accumulator is added to the
contents of the register R1 and the results are stored back into the accumulator Racc. If a memory
location is used instead of a register then an instruction of the form ADD B is used. In this case, the
instruction adds the content of the accumulator Racc to the content of memory location B and stores the
result back into the accumulator Racc. The instruction ADD R1 is equivalent to the three-address
instruction ADD R1,Racc,Racc or to the two-address instruction ADD R1,Racc.Between the two- and the one-address instruction, there can be a One-and-Half Address
Instruction. Consider, for example, the instruction ADD B, R1. In this case, the instruction adds the
contents of register R1 to the contents of memory location B and stores the result in register R1. Owing
to the fact that the instruction uses two types of addressing, that is, a register and a memory location, it
is called a one-and-half-address instruction. This is because register addressing needs a smaller number
of bits than those needed by memory addressing.

It is interesting to indicate that there exist Zero-address Instructions. These are the instructions
that use stack operation. A stack is a data organization mechanism in which the last data item stored is
the first data item retrieved. Two specific operations can be performed on a stack. These are the push
and the pop operations.

Instruction Class Example
Three-address ADD R1, R2, R3ADD A,B,C
Two-address ADD R1, R2ADD A, B
One-and-half-address ADD B, R1One-address Add R1
Zero-address ADD (SP) +, (SP)

Fig. 8.1: Varioustypes of Addressing Modes

Addressing Mode, Instruction Format, Type and I/o Techniques 139

The different ways in which operands can be addressed are called the addressing modes. Addressing
modes differ in the way the address information of operands is specified. The simplest addressing mode
is to include the operand itself in the instruction, that is, no address information is needed. This is called
immediate addressing. A more involved addressing mode is to compute the address of the operand by
adding a constant value to the content of a register. This is called indexed addressing. Between these two
addressing modes there exist a number of other addressing modes including absolute addressing, direct
addressing, and indirect addressing. A number of different addressing modes are explained below.

According to this addressing mode, the value of the operand is (immediately) available in the
instruction itself. Consider, for example, the case of loading the decimal value 1000 into a register Ri.This operation can be performed using an instruction such as the following: LOAD #1000, Ri. In this
instruction, the operation to be performed is to load a value into a register. The source operand is
(immediately) given as 1000, and the destination is the register Ri. It should be noted that in order to indicate that the value 1000 mentioned in the instruction is the
operand itself and not its address (immediate mode), it is customary to prefix the operand by the special
character (#). As can be seen the use of the immediate addressing mode is simple.

The use of immediate addressing leads to poor programming practice. This is because a change in
the value of an operand requires a change in every instruction that uses the immediate value of such an
operand. A more flexible addressing mode is explained below.

According to this addressing mode, the address of the memory location that holds the operand is
included in the instruction. Consider, for example, the case of loading the value of the operand stored
in memory location 1000 into register Ri. This operation can be performed using an instruction such as
LOAD 1000, Ri. In this instruction, the source operand is the value stored in the memory location
whose address is 1000, and the destination is the register Ri. Note that the value 1000 is not prefixed
with any special characters, indicating that it is the (direct or absolute) address of the source operand.

Figure 8.2 shows an illustration of the direct addressing mode. For example, if the content of the
memory location whose address is 1000 was (2345) at the time when the instruction LOAD 1000, Ri is
executed, then the result of executing such instruction is to load the value (2345) into register Ri. Direct
(absolute) addressing mode provides more flexibility compared to the immediate mode. However, it
requires the explicit inclusion of the operand address in the instruction. A more flexible addressing
mechanism is provided through the use of the indirect addressing mode. This is explained below.

 Fig.8.2: Illustration of Direct Addressing Mode

140 Zero to Mastery in Computer Architecture and Organisation

In the indirect mode, what is included in the instruction is not the address of the operand, but rather
a name of a register or a memory location that holds the (effective) address of the operand. In order to
indicate the use of indirection in the instruction, it is customary to include the name of the register or the
memory location in parentheses. Consider, for example, the instruction LOAD (1000), Ri. This instruction
has the memory location 1000 enclosed in parentheses, thus indicating indirection.

The meaning of this instruction is to load register Ri with the contents of the memory location
whose address is stored at memory address 1000. Because indirection can be made through either a
register or a memory location, therefore, we can identify two types of indirect addressing. These are
register indirect addressing, if a register is used to hold the address of the operand, and memory indirect
addressing, if a memory location is used to hold the address of the operand. The two types are illustrated
in Figure 8.3

Fig.8.3 Illustration of In-Direct Addressing Mode

Addressing Mode, Instruction Format, Type and I/o Techniques 141

In this addressing mode, the address of the operand is obtained by adding a constant to the content
of a register, called the index register. Consider, for example, the instruction LOAD X(Rind), Ri. This
instruction loads register Ri with the contents of the memory location whose address is the sum of the
contents of register Rind and the value X. Index addressing is indicated in the instruction by including
the name of the index register in parentheses and using the symbol X to indicate the constant to be
added. Figure 8.4 illustrates indexed addressing. As can be seen, indexing requires an additional level of
complexity over register indirect addressing.

Fig.8.4: Illustration of Indexed Addressing Mode

The addressing modes presented above represent the most commonly used modes in most processors.
They provide the programmer with sufficient means to handle most general programming tasks. However,
a number of other addressing modes have been used in a number of processors to facilitate execution of
specific programming tasks. These additional addressing modes are more involved as compared to
those presented above. Among these addressing modes the relative, autoincrement, and the
autodecrement modes represent the most well-known ones. These are explained below.
8.1.5.1 Relative Mode

Recall that in indexed addressing, an index register, Rind, is used.
Relative addressing is the same as indexed addressing except that the Program Counter (PC) replaces

the index register. For example, the instruction LOAD X(PC), Ri loads register Ri with the contents of
the memory location whose address is the sum of the contents of the program counter (PC) and the
value X. Figure 8.5 illustrates the relative addressing mode.

142 Zero to Mastery in Computer Architecture and Organisation

Fig.8.5 Relative Addressing Mode
8.1.5.2 Autoincrement Mode

This addressing mode is similar to the register indirect addressing mode in the sense that the effective
address of the operand is the content of a register, call it the autoincrement register, that is included in
the instruction, However, with autoincrement, the content of the autoincrement register is automatically
incremented after accessing the operand.
8.1.5.3 Autodecrement

Mode Similar to the autoincrement, the autodecrement mode uses a register to hold the address of
the operand. However, in this case the content of the autodecrement register is first decremented and
the new content is used as the effective address of the operand.

Table 8.0: Summary of Various Address Mode

Addressing Mode, Instruction Format, Type and I/o Techniques 143

• It is the function of the control unit within the CPU to interpret each instruction code
• The bits of the instruction are divided into groups called fields
• The most common fields are:

- Operation code
- Address field – memory address or a processor register
- Mode field – specifies the way the operand or effective address is determined

• A register address is a binary number of k bits that defines one of 2k registers in the CPU
• The instructions may have several different lengths containing varying number of addresses
• The number of address fields in the instruction format of a computer depends on the internal

organization of its registers
• Most computers fall into one of the three following organizations:

- Single accumulator organizationo General register organizationo Stack organization
• Single accumulator org. uses one address field

ADD X : AC AC + M[X]
• The general register org. uses three address fields

ADD R1, R2, R3: R1 R2 + R3
• Can use two rather than three fields if the destination is assumed to be one of the source registers
• Stack org. would require one address field for PUSH/POP

operations and none for operation-type instructions
PUSH X
ADD

• Some computers combine features from more than one organizational structure
Example:

X = (A+B) * (C + D)
Three-address instructions:

ADD R1, A, B R1 M[A] + M[B]
ADD R2, C, D R2 M[C] + M[D]
MUL X, R1, R2 M[X] R1 * R2

Two-address instructions:
MOV R1, A R1 M[A]
ADD R1, B R1 R1 + M[B]
MOV R2, C R2 M[C]
ADD R2, D R2 R2 + D
MUL R1, R2 R1 R1 * R2
MOV X, R1 M[X] R1

144 Zero to Mastery in Computer Architecture and Organisation

One-address instructions
LOAD A AC M[A]
ADD B AC AC + M[B]
STORE T M[T] AC
LOAD C AC M[C]
ADD D AC AC + M[D]
MUL T AC AC * M[T]
STORE X M[X] AC

Zero-address instructions
PUSH A TOS A
PUSH B TOS B
ADD TOS (A +B)
PUSH C TOS C
PUSH D TOS D
ADD TOS (C + D)
MUL TOS (C + D) * (A + B)
POP X M[X] TOS

RISC instructions
LOAD R1, A R1 M[A]
LOAD R2, B R2 M[B]
LOAD R3, C R3 M[C]
LOAD R4, D R4 M[D]
ADD R1, R1, R2 R1 R1 + R2
ADD R3, R3, R4 R3 R3 + R4
MUL R1, R1, R3 R1 R1 * R3
STORE X, R1 M[X] R1

Once a computer has been powered on it performs a continuous cycle of the following:
a. Fetch next instruction from memory
b. Decode the instruction
c. Execute the instruction
An instruction as the name instructs the computer what to do. In simple terms,every line of a

program that we as users write instructs the computer to perform a seriesof operations.
What is Fetch Cycle: In fetch cycle the next instruction is fetched from the memory address that

is currently stored in the Program Counter (PC), and stored in the Instruction register (IR). At the end
of the fetch operation, the PC points to the next instruction that will be read at the next cycle.

Addressing Mode, Instruction Format, Type and I/o Techniques 145

Fig. 8.6: Steps of Instruction Cycle
Fetch Cycle Steps

1. The address in the CPU register IP is transmitted via the address bus to the memory unit’s MAR:
IP MAR

2. IP is incremented to point at the next program instruction, ready for the next cycle (IP point at
individual bytes [= 8 bits] in memory):

IP ++
3. Memory selects addressed location and copies its contents onto the data bus: CPU loads received

data into IR:
(MAR) IR

4. CPU starts decoding the instruction in IR

Fig. 8.7: Illustration of Fetch Cycle

146 Zero to Mastery in Computer Architecture and Organisation

The fetch cycle begins with retrieving the address stored in the Program Counter). The address
stored in the PC is some valid address in the memory holding the instruction to be executed. (In case
this address does not exist we would end up causing an interrupt or exception).The Central Processing
Unit completes this step by fetching the instruction stored at this address from the memory and
transferring this instruction to a special register – Instruction Register (IR) to hold the instruction to be
executed. The program counter is incremented to point to the next address from which the new instruction
is to be fetched.
Decode Cycle

The decode cycle is the decoder is used for interpreting the instruction that was fetched in the
Cycle.

The operands are retrieved from the addresses if the need be.
• Part or all of the instruction in the IR is extracted to determine what is to be done
• Part of the instruction may contain

- Data
- A memory address to get data from
- A memory address to put data

Execute Cycle
This cycle as the name suggests, simply executes the instruction that was fetched and decoded.

Execute Cycle
LOAD ACC memory

Fig. 8.8: Illustrate the Execution Cycle

Addressing Mode, Instruction Format, Type and I/o Techniques 147

Example of Fetch-Decode-Execute-Reset Cycle
The following is an algorithm that shows the steps in the instruction cycle. At the end the cycle is

reset and the algorithm repeated.
Step:1 Load the address that is in the program counter (PC) into the memory address register
(MAR).
Increment the PC by 1.
Step:2 Load the instruction that is in the memory address given by the MAR into the memory data

register (MDR).
Step: 3 Load the instruction that is now in the MDR into the current instruction register (CIR).
Step:4 Decode the instruction that is in the CIR.
Step:5 If the instruction is a jump instruction then
Step:6a. Load the address part of the instruction into the PC
 b. Reset by going to step 1.
Step:7 Execute the instruction.
Step:8 Reset by going to step 1.
Steps 1 to 3 are the fetch part of the cycle. Steps 4 for decode part of cycle, 6a and 7 are the

execute part of the cycle and steps 6b and 8 are the reset part of cycle.
Step 1 simply places the address of the next instruction into the memory address register so that the

control unit can fetch the instruction from the right part of the memory. The program counter is then
incremented by 1 so that it contains the address of the next instruction, assuming that the instructions
are in consecutive locations.

The memory data register is used whenever anything is to go from the central processing unit to
main memory, or vice versa. Thus the next instruction is copied from memory into the MDR and is
then copied into the current instruction register.

Now that the instruction has been fetched the control unit can decode it and decide what has to be
done. This is the execute part of the cycle. If it is an arithmetic instruction, this can be executed and the
cycle restarted as the PC contains the address of the next instruction in order. However, if the instruction
involves jumping to an instruction that is not the next one in order, the PC has to be loaded with the
address of the instruction that is to be executed next. This address is in the address part of the current
instruction, hence the address part is loaded into the PC before the cycle is reset and starts all over
again.

Using the above architecture for a microprocessor illustrates that basically an instruction can be in
one of three phases. It could be being fetched (from memory), decode (by the control unit) or being
executed (by the control unit). An alternative is to split the processor up into three parts, each of which
handles one of the three stages. This would result in the situation

shown in Fig. 8.8, which shows how this process, known as pipelining, works.
Instruction 1
Instruction 2 Instruction 1

148 Zero to Mastery in Computer Architecture and Organisation

Instruction 3 Instruction 2 Instruction 1
Instruction 4 Instruction 3 Instruction 2
Instruction 5 Instruction 4 Instruction 3

Fig. 8.8: illustrate execution of Instruction in Pipe-Lining
This helps with the speed of throughput unless the next instruction in the pipe is not the next one

that is needed. Suppose Instruction 2 is a jump to Instruction 10. Then Instructions 3, 4 and 5 need to
be removed from the pipe and Instruction 10 needs to be loaded into the fetch part of the pipe. Thus,
the pipe will have to be cleared and the cycle restarted in this case. The result is shown in Fig. 8.9

Instruction 1
Instruction 2 Instruction 1
Instruction 3 Instruction 2 Instruction 1
Instruction 4 Instruction 3 Instruction 2
Instruction 10
Instruction 11 Instruction 10
Instruction 12 Instruction 11 Instruction 10

Fig.8.9 Illustrate the jumping of Instruction 2 to Instruction 10

Three-address Instruction takes the form operation add-1, add-2, add-3. In this form, each of
add-1, add-2, and add-3 refers to a register or to a memory location.

Two-address Instruction takes the form operation add-1, add-2. In this form, each of add-1 and
add-2 refers to a register or to a memory location.

One-address Instruction takes the form ADD R1.
One-and-half Address Instruction. Between the two- and the one-address
Zero-address Instructions. These are the instructions that use stack operation.
Immediate Mode the value of the operand is (immediately) available in the instruction itself.
Direct (Absolute) Mode: The address of the memory location that holds the operand is included in

the instruction
Indirect Mode: what is included in the instruction is not the address of the operand, but rather a

name of a register
Indexed Mode: the address of the operand is obtained by adding a constant to the content of a

register, called the index register
Relative Addressing: is the same as indexed addressing except that the Program Counter (PC)

replaces the index register.
Instruction Format: It is the function of the control unit within the CPU to interpret each instruction

code
Fetch Cycle: Next instruction is fetched from the memory address that is currently stored in the

Program Counter (PC), and stored in the Instruction register (IR)
Execute Cycle: Fetched & Decoded Instruction is executed

Addressing Mode, Instruction Format, Type and I/o Techniques 149

Q.1 What are various addressing Modes discuss Direct, In-Direct and Indexed Modes.
Q.2 Discuss with Example:

(a) Three Address
(b) Two Address
(c) One & Half Address Address
(d) One Address
(e) Zero Address

Q.3 What do you understand with Instruction Format? Write various types of Instructions.
Q.4 Discuss the Fetch-Decode-Execution cycle with suitable Example.
Q.5 Differentiate between : Direct and In-direct Addressing Mode.

150 Zero to Mastery in Computer Architecture and Organisation

After going through this chapter you should able to understand the concepts of:
• I/O Modules
• Data Transfer Technique- Programmed I/O, Interrupt Driven I/O,DMA
• DMA: Controller, DMA Transfer
• Memory Hierarchy and its Needs
• Main Memory-RAM,ROM
• RAM:SRAM,DRAM
• ROM:PROM,EPROM,EEPROM
• Cache Memory
• Secondary Memory

I/O operations are accomplished through external devices that provide a means of exchanging data
between external environment and computer. An external device attaches to the computer by a link to an
I/O module. An external device linked to an I/O module is called peripheral device or peripheral. External
Devices can be categorized as

1. Human readable: suitable for communicating with computer user. For example - video display
terminals and printers.

2. Machine readable: suitable for communicating with equipment. For example - sensor, actuators
used in robotics application.

3. Communication: suitable for communicating with remote devices. They may be human readable
device such as terminal and machine readable device such as another computer.

Following steps determine secure and fast data transfer
Control Signal – determines the function that the device will perform. e.g. send data to I/O module

(READ or INPUT), receive data from I/O module (WRITE or OUTPUT), report status or perform
some control function such as position a disk head.

 Data Signal – send or receive the data from I/O module.
 Status Signal – it indicates the status of signal. E.g. READY/NOT READY

I/O Techniques and Memory Hierarchy 151

1. Control Logic: associated with the device controls on specific operation as directed from I/O
module.

2. Transducer: converts the data from electrical to other form of energy during output and from
other forms of electrical during input.

3. Buffer: is associated with transducer to temporarily hold data during data transmission from I/O
module and external environment. Buffer size of 8 to 16 bits is common

Fig. 9.1: Control signal and Data Bus in I/O Module

An external environment supplies the instruction and data; therefore, an input module is needed.
The main responsibility of input module will be to put the data in the form of signals that can be

recognized by the system. Similarly, we need another component, which will report the results in the
results in proper format and form. This component is called output module. These components are
referred together as input/output (I/O) components.

Memory

I/OModule
Bus

DeviceInterface
DeviceInterface
DeviceInterface

External
Sensor
And
Control

PROCESSOR
Fig. 9.2: I/O Device Interfaces

152 Zero to Mastery in Computer Architecture and Organisation

In addition, to transfer the information, the computer system internally needs the system
interconnections. Most common input/output devices are keyboard, monitor and printer, and the most
common interconnection structure is the Bus structure.

Are these two components sufficient for a working computer? No, because input devices can bring
instructions or data only sequentially and a program may not be executed sequentially as jump instructions
are normally encountered in programming. In addition, more than one data elements may be required at
a time. Therefore, a temporary storage area is needed in a computer to store temporarily the instructions
and the data. This component is referred to as Memory.

 It was pointed out by von- Neumann that the same memory can be used or storing data and
instructions. In such cases the data can be treated as data on which processing can be performed, while
instructions can be treated as data, which can be used for the generation of control signals.

The memory unit stores all the information in a group of memory cells, also called memory locations,
as binary digits. Each memory location has a unique address and can be addressed independently. The
contents of the desired memory locations are provided to the central processing unit by referring to the
address of the memory location.

There are basically THREE modes of data transfer between CPU and Memory:
(i) Programmed I/O
(ii) Interrupt Driven I/O
(iii) DMA

The simplest strategy for handling communication between the CPU and an I/O module is programmed
I/O. Using this strategy, the CPU is responsible for all communication with I/O modules, by executing
instructions which control the attached devices, or transfer data.

For example, if the CPU wanted to send data to a device using programmed I/O, it would first issue
an instruction to the appropriate I/O module to tell it to expect data. The CPU must then wait until the
module responds before sending the data. If the module is slower than the CPU, then the CPU may also
have to wait until the transfer is complete.

This can be very inefficient. Another problem exists if the CPU must read data from a device such
as a keyboard. Every so often the CPU must issue an instruction to the appropriate I/O module to see if
any keys have been pressed. This is also extremely inefficient.

Consequently this strategy is only used in very small microprocessor controlled devices.

Virtually all computers provide a mechanism ‘y’ which other modules (I/O, memory) may interrupt
the normal processing of the CPU.

I/O Techniques and Memory Hierarchy 153

Table 9.0: Lists the most common classes of interrupts
Program Generated by some condition that occurs as a result of an instruction execution, such as arithmetic

overflow, division by zero, attempt to execute an illegal machine instruction, and reference
outside a

user’s
allowed memory space.

Timer Generated by a timer within the processor, This allows the operating system to perform certain
functions on a regular basis.

I/O Generated by an I/O controller, to signal normal completion of an operation or to signal a variety
of error conditions.

Hardwarc Failure Generated by a failurc such as power failurc or memory parity crror.
Interrupts are provided primarily as a way to improve processing efficiency. For example, most

external devices are much slower than the processor. Support that Input/Output Instructions (I/O
instructions) are used to transfer data between the computer and peripheral devices. The two basic I/O
instructions used are the INPUT and OUTPUT instructions.

The INPUT instruction is used to transfer data from an input device to the processor. Examples of
input devices include a keyboard or a mouse. Input devices are interfaced with a computer through
dedicated input ports. Computers can use dedicated addresses to address these ports. Suppose that the
input port through which a keyboard is connected to a computer carries the unique address 1000.
Therefore, execution of the instruction INPUT 1000 will cause the data stored in a specific register in
the interface between the keyboard and the computer, call it the input data register, to be moved into a
specific register (called the accumulator) in the computer. Similarly, the execution of the instruction
OUTPUT 2000 causes the data stored in the accumulator to be moved to the data output register in the
output device whose address is 2000.

Advantages of Interrupt driven I/O over Progammed I/O Mode:
• Interrupt driven I/O strategy allows the CPU to carry on with its other operations until the module

is ready to transfer data. When the CPU wants to communicate with a device, it issues an
instruction to the appropriate I/O module, and then continues with other operations. When the
device is ready, it will interrupt the CPU. The CPU can then carry out the data transfer as before.

• This also removes the need for the CPU to continually poll input devices to see if it must read
any data. When an input device has data, then the appropriate I/O module can interrupt the CPU
to request a data transfer.

How Interrupt driven I/O interrupt the CPU
An I/O module interrupts the CPU simply by activating a control line in the control bus. The

sequence of events is as follows.
1. The I/O module interrupts the CPU.
2. The CPU finishes executing the current instruction.
3. The CPU acknowledges the interrupt.
4. The CPU saves its current state.
5. The CPU jumps to a sequence of instructions which will handle the interrupt.

154 Zero to Mastery in Computer Architecture and Organisation

The situation is somewhat complicated by the fact that most computer systems will have several
peripherals connected to them. This means the computer must be able to detect which device an
interrupt comes from, and to decide which interrupt to handle if several occur simultaneously. This
decision is usually based on interrupt priority.

Some devices will require response from the CPU more quickly than others, for example, an
Interrupt from a disk drive must be handled more quickly than an interrupt from a keyboard.
Many systems use multiple interrupt lines. This allows a quick way to assign priorities to different

devices, as the interrupt lines can have different priorities. However, it is likely that there will be more
devices than interrupt lines, so some other method must be used to determine which device an interrupt
comes from. Most systems use a system of vectored interrupts. When the CPU acknowledges an
interrupt, the relevant device places a word of data (a vector) on the data bus. The vector identifies the
device which requires attention, and is used by the CPU to look up the address of the appropriate
interrupt handing routine.
Memory Mapped and Isolated I/O

Whether a system uses programmed or interrupt driven I/O, it must still periodically send instructions
to the I/O modules. Two methods are used for to implement this:

(a) Memory-mapped I/O and
(b) Isolated I/O

With memory-mapped I/O, the I/O modules appear to the CPU as though they occupy locations in
main memory. To send instructions or transfer data to an I/O module, the CPU reads or writes data to
these memory locations. This will reduce the available address space for main memory, but as most
modern systems use a wide address bus this is not normally a problem.

With isolated I/O, the I/O modules appear to occupy their own address space, and special instructions
are used to communicate with them. This gives more address space for both memory and I/O modules,
but will increase the total number of different instructions. It may also reduce the flexibility with which
the CPU may address the I/O modules if less addressing modes are available for the special I/O instructions.
Multiple Interrupts

The above discussion so far has only discussed the occurrence of a single interrupt. However, that
multiple interrupts can occur. For example, a program may be receiving data from a communications
line and printing results.

The printer will generate an interrupt every time that it completes a print operation. The communication
line controller will generate an interrupt every time a unit of data arrives. The unit could either be a single
character or a block, depending on the nature of the communications

discipline. In any case, it is possible for a communication interrupt to occur while a printer interrupt
is being processed.

Two approaches can be taken to dealing with multiple interrupts.
The first approach is to disable interrupts while an interrupt is being processed. A disabled interrupt

simply means that the processor can and will ignore that interrupt request signal. If an interrupt occurs
during this time, it generally remains pending and will be checked by the processor after the processor
has enabled interrupts.

I/O Techniques and Memory Hierarchy 155

A second approach is to define priorities for interrupts and to allow an interrupt of higher priority
to cause a lower-priority interrupt handler to be itself interrupted
Priority Interrupt

A priority interrupt establishes a priority to decide which condition is to be serviced first when two
or more requests arrive simultaneously. The system may also determine which conditions are permitted
to interrupt the computer while another interrupt is being serviced. Higher-priority interrupt levels are
assigned to requests, which if delayed or interrupted, could have serious consequences.

Devices with high- speed transfers are given high priority, and slow devices receive low priority.
When two devices interrupt the computer at the same time, the computer services the device, with the
higher priority first. Establishing the priority of simultaneous interrupts can be done by software or
hardware.

We can use a polling procedure to identify the highest-priority.
Daisy-Chaining Priority

The daisy-chaining method has a serial connection of all devices that request an interrupt. The
device with the highest priority is kept in the first position, followed by lower-priority devices and so on.
This method of connection is shown in Fig. 9.3.

Fig. 9.3: Daisy-chain priority interrupt
The interrupt request line is common to all devices and forms a wired logic connection. If any

device has its interrupt signal in the low-level state, the interrupt line goes to the low-level state and
enables the interrupt input in the CPU. When no interrupts are pending, the interrupt line stays in the
high-level state and as a result CPU does not recognize any interrupt.

This is equivalent to a negative logic OR operation. The CPU responds to an interrupt request by
enabling the interrupt acknowledge line.

156 Zero to Mastery in Computer Architecture and Organisation

 This signal is received by device 1 at its PI (priority in) input. The acknowledge signal passes on to
the next device through the PO (priority out) output only if device 1 is not requesting an

interrupt. If device I has a pending interrupt, it blocks the acknowledge signal from the next device
by placing a 0 in the PO output. It then proceeds to insert its own interrupt vector address (VAD) into
the data bus for the CPU to use during the interrupt cycle.

A device with PI=0 input generates a 0 in its PO output to inform the next-lower-priority device that
the acknowledge signal has been blocked. A device that makes a request for an interrupt and has a I in
its Pi input will intercept the acknowledge signal by placing a 0 in its PO output.

If the device does not have pending interrupts, it transmits the acknowledge signal to the next
device by placing a 1 in its PO output. Thus the device with PI = 1 and PO = 0 is the one with the highest
priority that is requesting an interrupt, and this device places its VAD on the data bus. The daisy chain
arrangement gives the highest priority to the device that receives the interrupt acknowledge signal from
the CPU. The farther the device is from the first position, the lower is its priority.

Although interrupt driven I/O is much more efficient than program controlled I/O, all data is still
transferred through the CPU. This will be inefficient if large quantities of data are being transferred
between the peripheral and memory. The transfer will be slower than necessary, and the CPU will be
unable to perform any other actions while it is taking place ,For this reason Direct Memory Access
controller is used to bypass the CPU and provide a direct connection between the peripherals and
memory, thus transferring the data as fast as possible
DMA Controller

 Many systems therefore use an additional strategy, known as direct memory access (DMA). DMA
uses an additional piece of hardware - a DMA controller. The DMA controller can take over the system
bus and transfer data between an I/O module and main memory without the intervention of the CPU.
Whenever the CPU wants to transfer data, it tells the DMA controller the direction of the transfer, the I/
O module involved, the location of the data in memory, and the size of the block of data to be transferred.
It can then continue with other instructions and the DMA controller will interrupt it when the transfer is
complete.

The CPU and the DMA controller cannot use the system bus at the same time, so some way must
be found to share the bus between them. One of two methods is normally used.
Burst mode

The DMA controller transfers blocks of data by halting the CPU and controlling the system bus for
the duration of the transfer. The transfer will be as quick as the weakest link in the I/O module/bus/
memory chain, as data does not pass through the CPU, but the CPU must still be halted while the
transfer takes place.
Cycle stealing

The DMA controller transfers data one word at a time, by using the bus during a part of an instruction
cycle when the CPU is not using it, or by pausing the CPU for a single clock cycle on each instruction.
This may slow the CPU down slightly overall, but will still be very efficient.

I/O Techniques and Memory Hierarchy 157

1. Channel I/OThis is a system traditionally used on mainframe computers, but is becoming more
common on smaller systems. It is an extension of the DMA concept, where the DMA controller
becomes a full-scale computer system itself which handles all communication with the I/O modules.

2. I/O InterfacesThe interface of an I/O module is the connection to the peripheral(s) attached to
it. The interface handles synchronisation and control of the peripheral, and the actual transfer of
data. For example, to send data to a peripheral, the sequence of events would be as follows.

(a) The I/O module sends a control signal to the peripheral requesting permission to send data.
(b) The peripheral acknowledges the request.
(c) The I/O module sends the data (this may be either a word at a time or a block at a time

depending on the peripheral).
(d) The peripheral acknowledges receipt of the data. This process of synchronisation is known as

handshaking.
The internal buffer allows the I/O module to compensate for some of the difference in the speed at

which the interface can communicate with the peripheral, and the speed of the system bus.
I/O interfaces can be divided into two main types.

3. Parallel interfacesThere are multiple wires connecting the I/O module to the peripheral, and bits
of data are transferred simultaneously, as they are over the data bus. This type of interface is used
for high speed peripherals such as disk drives.

4. Serial interfacesOnly a single wire connects the I/O module to the peripheral, and data must be
transferred one bit at a time. This is used for slower peripherals such as printers and keyboards.

5. I/O FunctionThus far, we have discussed the operation of the computer a s controlled by the
CPU, and we have looked primarily at the interaction of CPU and memory. The discussion has
only alluded to the role of the I/O component. An I/O module can exchange data directly with the
CPU. Just as the CPU can initiate a read or write with memory, designating the address of a
specific location, the CPU can also read data form or write data to an I/O module. In this latter
case, the CPU identifies a specific device that is controlled by a particular I/O module.
In some cases, it is desirable to allow I/O exchanges to occur directly with memory. In such a
case, the CPU grants to an I/O module the authority to read from or write to memory, so that the
I.O memory transfer can occur without tying up the CPU. During such a transfer, the I/O module
issues read or write commands to memory, relieving the CPU of responsibility for the exchange.
This operation is known as direct memory access (DMA), an it will be examined in detail in
chapter 6. For now, all that we need to know is that the interconnection structure of the computer
may need to allow for direct memory – I/O interaction.This section introduces the concepts of
input/output devices, modules and interfaces. It considers the various strategies used for
communication between the CPU and I/O modules, and the interface between an I/O module and
the device(s) connected to it.

158 Zero to Mastery in Computer Architecture and Organisation

DMA Transfer
There are three independent channels for DMA transfers. Each channel receives its trigger for the

transfer through a large multiplexer that chooses from among a large number of signals. When these
signals activate, the transfer occurs. The DMAxTSELx bits of the DMA Control Register 0 (DMACTL0).
The DMA controller receives the trigger signal but will ignore it under certain conditions. This is necessary
to reserve thememory bus for reprogramming and non-maskable interrupts etc. The controller also
handles conflicts for simultaneous triggers. The priorities can be adjusted using the DMA Control Register
1 (DMACTL1). When multiple triggers happen simultaneously, they occur in order of module priority.
The DMA trigger is then passed to the module whose trigger activated. The DMA channel will copy the
data from the starting memorylocation or block to the destination memory location or block. There are
many variations on this, and they are controlled by the DMA Channel x Control Register

(DMAxCTL):Single Transfer - each trigger causes a single transfer. The module will disable itself
when DMAxSZ number of transfers have occurred (setting it to zero prevents transfer).

The DMAxSA and DMAxDA registers set the addresses to be transferred to and from.
The DMAxCTL register also allows these addresses to be incremented or decremented by 1 or 2

bytes with each transfer. This transfer halts the CPU.
Block Transfer - an entire block is transferred on each trigger. The module disables itself when this

block transfer is complete. This transfer halts the CPU, and will transfer each memory location one at a
time. This mode disables the module when the transfer is complete.

Burst-Block Transfer - this is very similar to Block Transfer mode except that the CPU and the
DMA transfer can interleave their operation. This reduces the CPU to 20% while the DMA is going on,
but the CPU will not be stopped altogether. The interrupt occurs when the block has completely transferred.
This mode disables the module when the transfer is complete.

Repeated Single Transfer - the same as Single Transfer mode above except that the module is not
disabled when the transfer is complete.

Repeated Block Transfer - the same as Block Transfer mode above except that the module is not
disabled when the transfer is complete.

Repeated Burst-Block Transfer - the same as Burst Block Transfer mode above except that the
module is not disabled when the transfer is complete.

Writing to flash requires setting the DMAONFETCH bit. If this is not done, the results of the DMA
operation are “unpredictable.” Also, the behavior and settings of the DMA module should only be modified
when the module is disabled. The setting and triggers are highly configurable, allowing both edge and
level triggering. The variety of settings is detailed in the DMA chapter of the users guide. Also, it is
important to note that interrupts will not be acknowledged during the DMA transfer because the CPU is
not active. Each DMA channel has its own flag, but the interrupt vector is shared with the DAC. This
necessitates some software checking to handle interrupts with both modules enabled.

I/O Techniques and Memory Hierarchy 159

In this section we discusses the memory hierarchy - the different types and performance levels of
memory found on a typical 80x86 computer system. Many programmers tend to view memory as this
big nebulous block of storage that holds values for future use. From a semantic point of view, this is a
reasonable view. However, from a performance point of view there are many different kinds of memory
and using the wrong one or using one form improperly can have a dramatically negative impact on the
performance of a program. This chapter discusses the memory hierarchy and how to best use it within
your programs.

Most modern programs can benefit greatly from a large amount of very fast memory. A physical
reality, however, is that as a memory device gets larger, it tends to get slower. For example, cache
memories are very fast but are also small and expensive. Main memory is inexpensive and large, but is
slow.

The memory hierarchy is a mechanism of comparing the cost and performance of the various
places we can store data and instructions.

Registers
Level One Cache
Level Two cache

Main Memory
NUMA

Virtual Memory
File Storage

Network Storage
Near-Line Storage
Off-Line Storage

Hard Copy

IncreasingCost,IncreasingSpeed,DecreasingSize.

DecreasingCost,DecreasingSpeed,IncreasingSize.

Fig. 9.4: The Memory Hierarchy
In the Fig 9.4 memory hierarchy is shown here at the top level of the memory hierarchy are the

CPU’s General Purpose Registers. The registers provide the fastest access to data possible on the
80x86 CPU. The register file is also the smallest memory object in the memory hierarchy (with just eight
general purpose registers available).

160 Zero to Mastery in Computer Architecture and Organisation

Working our way down, the Level One Cache system is the next highest performance subsystem
in the memory hierarchy. On the 80x86 CPUs, the Level One Cache is provided on-chip by Intel and
cannot be expanded. The size is usually quite small (typically between 4Kbytes and 32Kbytes), though
much larger than the registers available on the CPU chip. Although the Level One Cache size is fixed on
the CPU and you cannot expand it, the cost per byte of cache memory is much lower than that of the
registers because the cache contains far more storage than is available in all the combined registers.

The Level Two Cache is present on some CPUs, on other CPUs it is the system designer’s task to
incorporate this cache (if it is present at all). For example, most Pentium II, III, and IV CPUs have a
level two cache as part of the CPU package, but many of Intel’s Celeron chips do no. The Level Two
Cache is generally much larger than the level one cache (e.g., 256 or 512KBytes versus 16 Kilobytes).
On CPUs where Intel includes the Level Two Cache as part of the CPU package, the cache is not
expandable. It is still lower cost than the Level One Cache because we amortize the cost of the CPU
across all the bytes in the Level Two Cache. On systems where the Level Two Cache is external, many
system designers let the end user select the cache size and upgrade the size. For economic reasons,
external caches are actually more expensive than caches that are part of the CPU package, but the cost
per bit at the transistor level is still equivalent to the in-package caches.

Below the Level Two Cache system in the memory hierarchy falls the main memory subsystem.
This is the general-purpose, relatively low-cost memory found in most computer systems. Typically,
this is DRAM or some similar inexpensive memory technology.

Below main memory is the NUMA category. NUMA, which stands for NonUniform Memory
Access is a bit of a misnomer here. NUMA means that different types of memory have different access
times. Therefore, the term NUMA is fairly descriptive of the entire memory hierarchy. However here,
we’ll use the term NUMA to describe blocks of memory that are electronically similar to main memory
but for one reason or another operate significantly slower than main memory. A good example is the
memory on a video display card. Access to memory on video display cards is often much slower than
access to main memory. Other peripheral devices that provide a block of shared memory between the
CPU and the peripheral probably have similar access times as this video card example. Another example
of NUMA includes certain slower memory technologies like Flash Memory that have significant slower
access and transfers times than standard semiconductor RAM. We’ll use the term NUMA in this chapter
to describe these blocks of memory that look like main memory but run at slower speeds.

Most modern computer systems implement a Virtual Memory scheme that lets them simulate
main memory using storage on a disk drive. While disks are significantly slower than main memory, the
cost per bit is also significantly lower. Therefore, it is far less expensive (by three orders of magnitude)
to keep some data on magnetic storage rather than in main memory. A Virtual Memory subsystem is
responsible for transparently copying data between the disk and main memory as needed by a program.

File Storage also uses disk media to store program data. However, it is the program’s responsibility
to store and retrieve files data. In many instances, this is a bit slower than using Virtual Memory, hence
the lower position in the memory hierarchy.

Below File Storage in the memory hierarchy comes Network Storage. At this level a program is
keeping data on a different system that connects the program’s system via a network. With Network
Storage you can implement Virtual Memory, File Storage, and a system known as Distributed Shared
Memory (where processes running on different computer systems share data in a common block of
memory and communicate changes to that block across the network).

I/O Techniques and Memory Hierarchy 161

Virtual Memory, File Storage, and Network Storage are examples of so-called on-line memory
subsystems. Memory access via these mechanism is slower than main memory access, but when a
program requests data from one of these memory devices, the device is ready and able to respond to the
request as quickly as is physically possible. This is not true for the remaining levels in the memory
hierarchy.

The Near-Line and Off-Line Storage subsystems are not immediately ready to respond to a program’s
request for data. An Off-Line Storage system keeps its data in electronic form (usually magnetic or
optical) but on media that is not (necessarily) connected to the computer system while the program that
needs the data is running. Examples of Off-Line Storage include magnetic tapes, disk cartridges,
optical disks, and floppy diskettes. When a program needs data from an off-line medium, the program
must stop and wait for a someone or something to mount the appropriate media on the computer
system. This delay can be quite long .

 Hard Copy storage is simply a print-out (in one form or another) of some data. If a program
requests some data and that data is present only in hard copy form, someone will have to manually enter
the data into the computer. Paper (or other hard copy media) is probably the least expensive form of
memory, at least for certain data types.
Application of the concept

IO processor manages data transfers between auxiliary memory and main memory. The cache
organization is concerned with the transfer of information between main memory and CPU. Each is
involved with a different level in the memory hierarchy system. The main reason for having two or three
levels of memory hierarchy is economics.

CUP
Cache

MainMemory DiskCntrl

Fig.9.5: Memory Organization
As the storage capacity of the memory increases the cost per bit for storing binary information

decreases and the access time of the memory becomes longer. Auxiliary memory has a large storage
capacity, inexpensive but has low access speed compared to main memory. The cache memory is very
small relatively expensive and has very high access speed. The overall goal of using a memory hierarchy
is to obtain the highest possible average access speed while minimizing the total cost of the entire
memory system.

The memory hierarchy in most computers is:
1. Processor Registers - fastest possible access (usually 1 CPU cycle), only hundreds of bytes in size
2. Level 1 (L1) cache - often accessed in just a few cycles, usually tens of kilobytes
3. Level 2 (L2) cache - higher latency than L1 by 2× to 10×, often 512 KiB or more.

162 Zero to Mastery in Computer Architecture and Organisation

4. Main Memory - may take hundreds of cycles, but can be multiple gigabytes. Access times may
not be unifor m, in the case of a NUMA machine.

5. Disk Storage - millions of cycles latency if not cached, but very large
6. Tertiary Storage - several seconds latency, can be huge

Main memory is the second major subsystem in a computer. It consists of a collection of storage
locations, each with a unique identifier, called an address. Data is transferred to and from memory in
groups of bits called words.

A word can be a group of 8 bits, 16 bits, 32 bits or 64 bits (and growing).
If the word is 8 bits, it is referred to as a byte. The term “byte” is so common in computer science

that sometimes a 16-bit word is referred to as a 2-byte word, or a 32-bit word is referred to as a 4-byte
word.

Fig. 9.6: Main Memory Addressing
Details

Main memory is a temporary area for holding data, instructions, and information.
Main Memory is also known as main store or primary storage. The main store (main memory) is

needed:
• To store the program currently being executed
• To hold data produced as the program is run
• To hold other data such as the contents of the screen.The backing store is needed:
• For long-term storage of data and programs
• For data and programs where there is not enough room in the main store

Address Space AND Memory Address
To access a word in memory requires an identifier. Although programmers use a name to identify a

word (or a collection of words), at the hardware level each word is identified by an address. The total

I/O Techniques and Memory Hierarchy 163

number of uniquely identifiable locations in memory is called the address space. For example, a memory
with 64 kilobytes and a word size of 1 byte has an address space that ranges from 0 to 65,535.

1. Each memory location has an address
• A unique number, much like a mailbox

2. RAM
• Memory where any cell can be accessed independently

3. Referred to by number
• Programming languages use a symbolic (named) address, such as Hours or Salary

Fig. 9.7: Memory cells arranged by address
RAM: Random Access Memory

• RAM is the main memory of a computer. It is used to temporarily store all information currently
in use by the CPU.

• The RAM is a read-write memory thus information can be read and written to it. When you first
turn your computer on, the RAM is empty since it is volatile. Volatile means that everything stored
in RAM will be lost each time the computer is switched off.

• RAM will contain no data/information until you open or load a program. These programs are
originally permanently stored in the external storage devices, like a hard disk or a floppy disk.

• When you open up the program, part of it is copied from the external device to the RAM, which
is directly connected to the CPU. This is because if the CPU was to directly access this program
from the external storage device, it would be extremely slow

• Computers use dynamic RAM as the main memory of the computer. This type of memory looses
its content very quickly; therefore it needs to be refreshed thousands of times each second.

• The RAM is useful because it can feed information to the central processor at extremely high
speeds. However, programs cannot be permanently stored on the RAM because

- RAM, unlike hard drives, is not big enough to store all the programs a computer system
contains.

164 Zero to Mastery in Computer Architecture and Organisation

- RAM is expensive
- RAM is volatile.

• A memory unit is a collection of storage cells together with associated circuits to transfer information
in and out of storage and stores binary data in groups of bits called words

• A word can represent an instruction code or alphanumeric characters
• Each word in memory is assigned an address from 0 to 2k –1, where k is the number of address

lines
• A decoder inside the memory accepts an address opens the paths needed to select the bits of the

specified word
• The memory capacity is stated as the total number of bytes that can be stored

 Refer to the number of bytes using one of the following
- K (kilo) = 210 M (mega) = 220
- G (giga) = 230 64K = 210, 2M = 221, and 4G = 232

• In random-access memory (RAM) the memory cells can be accessed for information from any
desired random location

• The process of locating a word in memory is the same and requires an equal amount of time no
matter where the cells are located physically in memory

• Communication between memory and its environment is achieved via data input and output lines,
address selections lines, and control lines

- The n data input lines provide the information to be stored in memory
- The n data output lines supply the information coming out of memory
- The k address lines provide a binary number of k bits that specify a specific word or location
- The two control lines specify the direction of transfer – either read or write

n data input lines

k address lines
Read
Write

Memory unit2 wordsk

n bits per word

n data output lines
Fig. 9.8: Address line, I/O lines in Memory unit

I/O Techniques and Memory Hierarchy 165

Steps to Write to Memory
• Apply the binary address of the desired word into the address lineso Apply the data bits that are to

be stored in memory on the data lineso Activate the write input
Steps to Read from Memory

• Apply the binary address of the desired word into the address lines
• Activate the read input
Further RAM may be classified in to TWO categories : Static RAM and Dynamic RAM

Static RAM (SRAM)
- Each cell stores bit with a six-transistor circuit Retains value indefinitely, as long as it is kept

powered
- Relatively insensitive to disturbances such as electrical noise
- Faster and more expensive than DRAM

Fig. 9.9: Architecture of Static RAM
Explanation of SRAM

Storage cells in static RAM memory are made of flip-flops and therefore do not require refreshing
in order to keep their data. This is in contrast to DRAM, discussed below. The problem with the use of
flip-flops for storage cells is that each cell requires at least 6 transistors to build, and the cell holds only
1 bit of data. In recent years, the cells have been made of 4 transistors, which still is too many. The use
of 4-transistor cells plus the use of CMOS technology has given birth to a high-capacity SRAM, but its
capacity is far below DRAM.
Dynamic RAM (DRAM)

• Each cell stores bit with a capacitor and transistor
• Value must be refreshed every 10-100 ms

166 Zero to Mastery in Computer Architecture and Organisation

• Sensitive to disturbances
• Slower and cheaper than SRAM

Fig. 9.10: Architecture of DRAM
Explanation of DRAM

Since the early days of the computer, the need for huge, inexpensive read/write memory has been a
major preoccupation of computer designers. In 1970, Intel Corporation introduced the first dynamic
RAM (random access memory). Its density (capacity) was 1024 bits and it used a capacitor to store
each bit. Using a capacitor to store data cuts down the number of transistors needed to build the cell;
however, it requires constant refreshing due to leakage. This is in contrast to SRAM (static RAM),
whose individual cells are made of flip-flops. Since each bit in SRAM uses a single flip-flop, and each
flip-flop requires 6 transistors, SRAM has much larger memory cells and consequently lower density.
The use of capacitors as storage cells in DRAM results in much smaller net memory cell size.
ROM: Read only Memory

• The ROM is a Read-Only Memory. This means that you can only read its contents, but you
cannot write over it and you cannot change or alter it in any way.

• ROM is used to store those programs essential for the normal running of a computer system such
as the Bootstrap Loader. The Bootstrap Loader is a small program that is executed after pressing
the ‘on’ button of a computer. Its function is to load Windows and run it; thereafter the user can
start using the computer system.

• The ROM is also used to store certain information not needed to be changed. As one can imagine,
ROM stores programs and information, which ideally are not lost when the computer is switched
off, consequently ROM is nonvolatile. Non-volatile means that all information/programs stored
on ROM will not be lost on switching off the computer.

• Note that any information or programs stored on ROM are permanently fixed during the manufacture
of the ROM integrated circuit. ROMs are very cheap and reliable, but unfortunately, they are
read-only.

I/O Techniques and Memory Hierarchy 167

• The binary information stored in a ROM is permanent during the hardware production·
• RAM is a general-purpose device whose contents can be altered
• The information in ROM forms the required interconnection pattern
• ROMs come with special internal electronic fuses that can be programmed for a specific

configuration
• An m x n ROM is an array of binary cells organized into m words of n bits each
• A ROM has k address lines to select one of m words in memory and n output lines, one for each

bit of the word
• May have one or more enable inputs for expansion
• The outputs are a function of only the present input (the address), so it is a combinational circuit

constructed of decoders and OR gates
• Programs stored in ROM cannot be erased by viruses since they cannot be changed once they are

produced.
- PROM (Programmable ROM) is a memory Integrated Circuit which is manufactured blank

so that the user is then able to store the desired programs on it. The disadvantage of PROM is
that it can only be programmed once, if you make a mistake programming the chip, you will
have to start all over.

- EPROM stands for Erasable and Programmable ROM. Like PROM, EPROM is also
manufactured blank so that the user can write in its contents, but it also has the additional
feature of being erasable. To erase an EPROM, UV light is used. Thus the advantage of EPROM
is that this kind of ROM can be reused.

- EEPROM (Electrically Erasable Programmable ROM) EEPROM has several advantages
over EPROM, such as the fact that its method of erasure is electrical and therefore instant, as
opposed to the 20-minute erasure time required for UV-EPROM. In addition, in EEPROM one
can select which byte to be erased, in contrast to UV-EPROM, in which the entire contents of
ROM are erased. However, the main advantage of EEPROM is that one can program and erase
its contents while it is still in the system board. It does not require physical removal of the
memory chip from its socket. In other words, unlike UV-EPROM, EEPROM does not require
an external erasure and programming device. To utilize EEPROM fully, the designer must
incorporate the circuitry to program the EEPROM into the system board . In general, the cost
per bit for EEPROM is much higher than for UV-EPROM.

Cache memory provides system designers with a way of exploiting high-speed processors without
incurring the cost of large high-speed memory systems. The word cache is pronounced “cash” or
“cash-ay” and is derived from the French word meaning hidden. Cache memory is hidden from the
programmer and appears as part of the system’s memory space. There’s nothing mysterious about
cache memory it’s simply a quantity of very high-speed memory that can be accessed rapidly by the
processor. Cache memory operates on exactly the same principle by locating frequently accessed
information in the cache memory rather than in the much slower main memory.

168 Zero to Mastery in Computer Architecture and Organisation

Details
A block of cache memory sits on the processor’s address and data buses in parallel with the much

larger main memory. Note that the implication of parallel in the previous sentence is that data in the
cache is also maintained in the main memory

Fig. 9.11: Typical Cache Organization

The address from the CPUinterrogates both the cacheand main memory

If the data is in the cacheis tetched from thererather than the main store

Typically 64 M - + Gbytos

Typically 64K to 512 Mbytes

Fig. 9.12: Structure of Cache Memory

I/O Techniques and Memory Hierarchy 169

The probability of accessing the next item of data in memory isn’t a random function. Because of
the nature of programs and their attendant data structures, the data required by a processor is often
highly clustered. This aspect of memories is called the locality of reference and makes the use of cache
memory possible

The cache is usually filled from main memory when instructions or data are fetched into the CPU.
Often the main memory will supply a wider data word to the cache than the CPU requires, to fill the
cache more rapidly.

The amount of information which is replaces at one time in the cache is called the line size for the
cache. This is normally the width of the data bus between the cache memory and the main memory. A
wide line size for the cache means that several instruction or data words are loaded into the cache at one
time, providing a kind of prefetching for instructions or data. Since the cache is small, the effectiveness
of the cache relies on the following properties of most programs:

• Temporal locality: If a particular instruction or data item is used now, there is a good chance that
it will be used again in the near future. Short loops are a common program structure, especially
for the innermost sets of nested loops. This means that the same small set of instructions is used
over and over. Generally, several operations are performed on the same data values, or variables.

• Spatial locality: If a particular instruction or data item is used now, there is a good chance that
the instructions or data items that are located in memory immediately following or preceding this
item will soon be used. most programs are highly sequential; the next instruction usually comes
from the next memory location. Data is usually structured, and data in these structures normally
are stored in contiguous memory locations.

1. CPU requests contents of memory location
2. Check cache for this data
3. If present, get from cache (fast)
4. If not present, read required block from main memory to cache
5. Then deliver from cache to CPU
6. Cache includes tags to identify which block of main memory is in each cache slot

170 Zero to Mastery in Computer Architecture and Organisation

START

Receive addressRA from CPU

Is blockcontaining RAin cache?
No

Yes
Fetch RA wordand deliverto CPU

Allocate cacheline for mainmemory block

Deliver RA wordto CPU
Load mainmemory blockinto cache line

DONE

Access mainmemory for blockcontaining RA

Fig. 9.13: Cache Read Operation Flow-Chart

Hit: data appears in some block in the upper level
1. Hit Rate: the fraction of memory access found in the upper level
2. Hit Time: Time to access the upper level which consists of Upper level access time + Time to

determine hit/miss
Miss: data needs to be retrieve from a block in the lower level
Miss Rate = 1 - (Hit Rate)

1. Miss Penalty: time to replace a block from lower level, including time to replace in CPU:
• Time to replace a block in the upper level + Time to deliver the block the processor

Access time : time to lower level = f (latency to lower level)
Transfer time : time to transfer block = f (Bandwidth between upper & lower levels)
Memory access time = hit time + miss rate * miss penalty

• To improve performance, i.e., reduce memory time, we need to reduce:
1. hit time,
2. miss rate,
3. miss penalty.

I/O Techniques and Memory Hierarchy 171

• As L1 caches are in the critical path of instruction execution,
hit time is the most important parameter.

• When one parameter is improved, others might suffer
Compulsory miss

• block has never been in cache (during this execution of a program)
• always occurs on first access to a block

Capacity miss
• block was in cache, but was discarded to make room for other block
• reduces with cache size

Conflict miss
• block discarded because too many map to same set• reduces with level of associatively.

There are Three main different organization techniques used for cache memory.
(i) DIRECT
(ii) FULLY ASSOCITATIVE
(iii) SET-ASSCIATIVE

The three techniques are discussed below. These techniques differ in two main aspects:
1. The criterion used to place, in the cache, an incoming block from the main memory.
2. The criterion used to replace a cache block by an incoming block (on cache full).

Direct Mapping This is the simplest among the three techniques. Its simplicity stems from the fact
that it places an incoming main memory block into a specific fixed cache block location. The placement
is done based on a fixed relation between the incoming block number, i, the cache block number, j, and
the number of cache blocks, N:

 j= i mod N
Example 1

Consider, for example, the case of a main memory consisting of 4K blocks, a cache memory
consisting of 128 blocks, and a block size of 16 words. Figure 6.4 shows the division of the main
memory and the cache according to the direct-mapped cache technique. As the figure shows, there are
a total of 32 main memory blocks that map to a given cache block. For example, main memory blocks
0, 128, 256, 384, . . . ,3968 map to cache block 0. We therefore call the direct-mapping technique a
many-to-one mapping technique.

172 Zero to Mastery in Computer Architecture and Organisation

Fig. 9.14: Mapping main memory blocks to cache blocks
The main advantage of the direct-mapping technique is its simplicity in determining where to

place an incoming main memory block in the cache. Its main disadvantage is the inefficient use of the
cache. This is because according to this technique, a number of main memory blocks may
compete for a given cache block even if there exist other empty cache blocks. This disadvantage
should lead to achieving a low cache hit ratio.

According to the direct-mapping technique the MMU interprets the address issued by the
processor by dividing the address into three fields as shown in Figure 9.14.

Fig. 9.15: Direct Mapped Address Field
Fully Associative Mapping According to this technique, an incoming main memory block can

be placed in any available cache block. Therefore, the address issued by the processor need only
have two fields. These are the Tag and Word fields.
Facts of Fully Associative Mapping

• A main memory block can load into any line of cache
• Memory address is interpreted as tag and word
• Tag uniquely identifies block of memory
• Every line’s tag is examined for a match
• Cache searching gets expensive

I/O Techniques and Memory Hierarchy 173

The first uniquely identifies the block while residing in the cache. The second field identifies the
element within the block that is requested by the processor. The MMU interprets the address issued by
the processor by dividing it into two fields as shown in Figure 9.15.

Fig. 9.16: Associative-mapped address fields
The main advantage of the associative-mapping technique is the efficient use of the cache. This

stems from the fact that there exists no restriction on where to place incoming main memory blocks.
Any unoccupied cache block can potentially be used to receive those incoming main memory blocks.

The main disadvantage of the technique, however, is the hardware overhead required to perform
the associative search conducted in order to find a match between the tag field and the tag memory

A compromise between the simple but inefficient direct cache organization and the involved but
efficient associative cache organization can be achieved by conducting the search over a limited set of
cache blocks while knowing ahead of time where in the cache an incoming main memory block is to be
placed.

This is the basis for the set-associative mapping technique explained below
Set-Associative Mapping In the set-associative mapping technique, the cache is divided into a

number of sets. Each set consists of a number of blocks. A given main memory block maps to a specific
cache set based on the equation s=i MOD S, where S is the number of sets in the cache, i is the main
memoryblock number, and s is the specific cache set to which block i maps.

However, an incoming block maps to any block in the assigned cache set. Therefore, the address
issued by the processor is divided into three distinct fields. These are the Tag, Set, and Word fields.

The Set field is used to uniquely identify the specific cache set that ideally should hold the targeted
block. The Tag field uniquely identifies the targeted block within the determined set. The Word field
identifies the element (word) within the block that is requested by the processor.

According to the set-associative mapping technique, the MMU interprets the address issued by the
processor by dividing it into three fields as shown in Figure .9.16.

Fig. 9.17: Set Associative Memory

174 Zero to Mastery in Computer Architecture and Organisation

An overall qualitative comparison among the three mapping techniques is shown in Table9.3 Owing
to its moderate complexity and moderate cache utilization, the set-associative technique is used in the
Intel Pentium line of processors.

Table. 9.3: Comparison Among Cache Mapping Techniques
Mapping Similicity Associative Expected Raplacement
technique tage search cache utilization technique
Direct Yes None Low Not needed
Associative No Involved High Yes
Set-associative Moderate Moderate Moderate Yes

Cache memories normally allow one of two things to happen when data is written into a memory
location for which there is a value stored in cache:

• Write through cache — both the cache and main memory are updated at the same time. This
may slow down the execution of instructions which write data to memory, because of the relatively
longer write time to main memory. Buffering memory writes can help speed up memory writes if
they are relatively infrequent, however.

• Write back cache — here only the cache is updated directly by the CPU; the cache memory
controller marks the value so that it can be written back into memory when the word is removed
from the cache. This method is used because a memory location may often be altered several
times while it is still in cache without having to write the value into main memory. This method is
often implemented using an “ALTERED” bit in the cache. The ALTERED bit is set whenever a
cache value is written into by the processor. Only if the ALTERED bit is set is it necessary to
write the value back into main memory (i.e., only values which have been altered must be written
back into main memory). The value should be written back immediately before the value is
replaced in the cache.

You are now clear that the operating speed of primary memory or main memory should be as fast
as possible to match with the CPU speed. These high-speed storage devices are very expensive and
hence the cost per unit of storage is also very high. Again the storage capacity of the main memory is
also very limited. Often it is necessary to store hundreds of millions of bytes of data for the CPU to
process. Therefore additional memory is required in all the computer systems. This memory is called
auxiliary storage, backup storage or secondary storage. In this type of memory the cost per bit of
storage is low. However, the operating speed is slower than that of the primary storage. Huge volume of
data are stored here on permanent basis and transferred to the primary storage as and when required.
Most widely used secondary storage devices are

• magnetic tapes,
• floppy disk,
• magnetic disk,
• optical disks.

I/O Techniques and Memory Hierarchy 175

Magnetic Tape
Magnetic Tape: Magnetic tapes are used for large computers like mainframe computers where large

volume of data is stored for a longer time. In PC also you can use tapes in the form of cassettes. The
storage of data in tapes is inexpensive. Tapes consist of magnetic materials that store data permanently.
It can be 12.5 mm to 25 mm wide plastic film-type and 500 meter to 1200 meter long, which is coated
with magnetic material. The tape unit is connected to the central processor and information is fed into or
read from the tape through the processor. It is similar to a cassette tape recorder.
Advantages of Magnetic Tape

1. Compact: A 10-inch diameter reel of tape is 2400 feet long and is able to hold 800, 1600 or 6250
characters in each inch of its length. The maximum capacity of such tape is 180 million characters
Thus data are stored much more compactly on tape.

2. Economical: The cost of storing data is very less as compared to other storage devices.
3. Fast: Copying of data is easier and fast.
4. Long term Storage and Re-usability: Magnetic tapes can be used for long term storage and a

tape can be used repeatedly with out loss of data.

Floppy Disks
floppy disk is a secondary storage device. It is a circular piece of plastic material coated with

particles, which are magnetized. This thin plastic sheet is protected from outside by a plastic cover to
prevent the sensitive data stored on them. The commonly used floppy disks are of 3.5 “ diameter.
Floppies are used to store data and transfer them from one computer to another. Due to their size and
portability they are the most popular storage mediums in offices and at homes.

Fig. 9.18: Floppy Disks

176 Zero to Mastery in Computer Architecture and Organisation

The data inside the floppies are stored in tracks and sectors. The entire floppy is divided into
circular segments called tracks. Each track is given a unique number. The outermost track is referred as
0 and the track inner to them is 1 and so on. Each track is further divided into segments called sectors.
The number of segments in each track has the same capacity. In a typical 3.5” floppy disk the number
of tracks and sectors and their storage capacity is denoted below:

1.44 MB = 1.474560 bytes = 512 bytes X 2 sides = 80 tracks X 18sectors
Thus these floppy disks are called high-density disks as they can hold 1.44 MB data.The outer

plastic cover has read / write hole covered by a metal sheet. This metal cover automatically opens when
the floppy is inserted inside the floppy disk drive. If we wish to protect our floppy and don’t want
anyone to write his or her data then this read/write notch on one edge of the floppy disk should be
closed. After this the floppy becomes write protected.

The following guidelines should be taken care off while handling with floppy disks:
• Magnetized items should be kept away from them
• Never bend or fold them.
• The touching of its surface must be avoided.
• The floppies should not be heaped/stacked one over the other.
• Heavy objects should not be kept on the floppies.
• Floppies should be kept away from heat & moisture.
• Floppies must be kept in cases to prevent them from dust.
• Very often formatting of floppies should be avoided.

Hard Disk
A hard disk is fixed inside the cabinet of CPU (Central Processing Unit). It is made up of many rigid

metal platters coated to store data magnetically. The hard disk rotates while recording data. This rotation
speed is measured in the unit of revolutions per minute (rpm). The normal speed of hard disks is
3600 revolutions per second. The read/write head of the hard disks moves across its surface. The
storage capacity of the hard disks is many times more than the floppy disks

Fig. 9.19: Hard-Disk

I/O Techniques and Memory Hierarchy 177

Due to large storage capacity it is preferred to store all important data into the hard disks of the
computers. The data stored in the hard disks are retrieved faster as compared to the floppy disks as they
are installed inside the computers.

Optical Disk
With every new application and software there is greater demand for memory capacity. It is the

necessity to store large volume of data that has led to the development of optical disk storage medium.
Optical disks read and write the data using light and not the magnetization as in above storage devices.
Optical disks can be divided into the following categories:

1. Compact Disk/Read Only Memory (CD-ROM): CD-ROM disks are made of reflective metals.
CD-ROM is written during the process of manufacturing by high power laser beam. Here the
storage density is very high, storage cost is very low and access time is relatively fast. Each disk
is approximately 4 ½ inches in diameter and can have over 600 MB of data. As the CD-ROM can
be read only we cannot write or make changes into the data contained in it.

2. Write Once, Read Many (WORM): The inconvenience that we cannot write anything onto a
CD-ROM is avoided in WORM. A WORM allows the user to write data permanently on to the
disk. Once the data is written it can never be erased without physically damaging the disk. Here
data can be recorded from keyboard, video scanner, OCR equipment and other devices. The
advantage of WORM is that it can store vast amount of data amounting to gigabytes (10' bytes).
Any document in a WORM can be accessed very fast, say less than 30 seconds.

3. Erasable Optical Disk: These are optical disks where data can be written, erased and re-written.
This makes use of a laser beam to write and re-write the data. These disks may be used as
alternatives to traditional disks. Erasable optical disks are based on a technology known as magneto-
optico (MO). To write a data bit on to the erasable optical disk the MO drive’s laser beam heats a
tiny, precisely defined point on the disk’s surface and magnetizes it.

Control Signal – determines the function that the device will perform.
Data Signal – send or receive the data from I/O module.
Status Signal – it indicates the status of signal. E.g. READY/NOT READYProgrammed I/O: The

simplest strategy for handling communication between the CPU and an I/O module
Interrupt Driven I/O: Interrupt the CPU when ever Transfer is required
DMA: Direct Memory Access: allow the data transfer without intervention of CPU
Direct Memory Access controller: is used to bypass the CPU and provide a direct connection

between the peripherals and memory
Cache Memory: High Speed Memory, placed between CPU and Main Memory
Cache Organization: DIRECT, Fully Associative and Set-Associative
Main Memory: is semiconductor memory, High Speed Memory
RAM: Read Only Memory: Volatile nature
SRAM: Static RAM: Each cell stores bit with a six-transistor circuit Retains value indefinitely, as

long as it is kept powered

178 Zero to Mastery in Computer Architecture and Organisation

DRAM: Dynamic RAM: Each cell stores bit with a capacitor and transistor and Value must be
refreshed every 10-100 ms

ROM: Read Only Memory: Non-Volatile nature
PROM (Programmable ROM) is a memory Integrated Circuit which is manufactured blank so

that the user is then able to store the desired programs on it.
EPROM stands for Erasable and Programmable ROM
EEPROM (Electrically Erasable Programmable ROM)

Q.1 How the external devices provides the facility of data exchanging?
Q.2 Discuss the all three types of data transfer mode with their relative advantages and

disadvantages of each.
Q.3 Discuss the need of Memory Hierarchy.
Q.4 Explain the concept of cache memory in computer organization.
Q.5 What is role of cache memory in effective Data Transferring?
Q.6 Why DMA is Beneficial to other modes of Data Transfer?
Q.7 Discuss Various features of SRAM, DRAM.
Q.8 What is Role of DMA controller in Data Transfer?
Q.9 Write relative advantages of Interrupt driven I/O mode.

Q.10 Why Secondary Memory are placed in lower in Memory Hierarchy?
Q.11 Discuss the cache organization in detail.
Q.12 Write Short Note On:-

(i) Miss and Hit
(ii) Cache Write
(iii) SRAM vs DRAM
(iv) I/O Module
(v) Bus
(vi) Burst Mode
(vii) Multiple and Priory Interrupt
(viii) Vectored Interrupt
(ix) Memory Mapped Isolated I/O Interrupt
(x) Types of ROM
(xi) Types of Secondary Memory
(xii) Daisy Chaining Priority
(xiii) WORM
(xiv) Control, Data Signal
(xv) Cycle Stealing
(xvi) Bootstrap Loader

After going through this chapter you should able to understand the concepts of:
• Concept of Parallelism
• Goals of Parallelism:
• Use of Parallelism
• Techniques’ of Concurrency
• Instruction Level Parallelism (ILP)

- Pipelining
- Superscalar

• Processor Level Parallelism(PLP)
- Array Computer
- Multiprocessor

• Need of Parallel Computing
• Amdahl’s Law
• Memory Architecture of Parallel Computer

- Shared Memory-UMA,NUMA
- Distributed Memory
- Hybrid-Distributed Shared Memory

Traditionally, computer software has been written for Serial Computation. To solve a problem, an
algorithm is constructed and implemented as a serial steam of instructions. These instructions are
executed on a central processing unit on one computer. Only one instruction may execute at a time—
after that instruction is finished, the next is executed.

182 Zero to Mastery in Computer Architecture and Organisation

Fig:10.1: Parallel Computing in Computer
• The compute resources can include:

- A single computer with multiple processors;
- An arbitrary number of computers connected by a network;
- A combination of both.

• The computational problem usually demonstrates characteristics such as the ability to be:
- Broken apart into discrete pieces of work that can be solved simultaneously;
- Execute multiple program instructions at any moment in time;
- Solved in less time with multiple compute resources than with a single compute resource.

• The purpose of parallel processing is to speedup the computer processing capability or in words,
it increases the computational speed.

• Increases throughput, i.e. amount of processing that can be accomplished during a given interval
of time.

• Improves the performance of the computer for a given clock speed.
• Two or more ALUs in CPU can work concurrently to increase throughput.
• The system may have two or more processors operating concurrently.

• Historically, parallelism has been considered to be “the high end of computing”, and has been
used to model difficult scientific and engineering problems found in the real world. Some examples:

- Atmosphere, Earth, Environment
- Physics - applied, nuclear, particle, condensed matter, high pressure, fusion, photonics
- Bioscience, Biotechnology, Genetics
- Chemistry, Molecular Sciences

Concept of Parallelism 183

- Geology, Seismology
- Mechanical Engineering - from prosthetics to spacecraft
- Electrical Engineering, Circuit Design, Microelectronics
- Computer Science, Mathematics

• Today, commercial applications provide an equal or greater driving force in the development of
faster computers. These applications require the processing of large amounts of data in sophisticated
ways. For example:

- Databases, Data Mining
- Oil exploration
- Web Search Engines, Web Based Business Services
- Medical imaging and Diagnosis
- Pharmaceutical Design
- Management of National and Multi-national Corporations
- Financial and Economic Modeling
- Advanced Graphics and Virtual Reality, Particularly in the Entertainment Industry
- Networked Video and Multi-media Technologies
- Collaborative Work Environments

• Save time and/or money: In theory, throwing more resources at a task will shorten its time to
completion, with potential cost savings. Parallel clusters can be built from cheap, commodity
components.

• Solve larger problems: Many problems are so large and/or complex that it is impractical or
impossible to solve them on a single computer, especially given limited computer memory

• Provide concurrency: A single compute resource can only do one thing at a time. Multiple
computing resources can be doing many things simultaneously.

• Use of non-local resources: Using computer resources on a wide area network, or even the
Internet when local compute resources are scarce.

• Limits to serial computing: Both physical and practical reasons pose significant constraints to
simply building ever faster serial computers:

- Transmission speeds - the speed of a serial computer is directly dependent upon how fast
data can move through hardware. Absolute limits are the speed of light (30 cm/nanosecond)
and the transmission limit of copper wire (9 cm/nanosecond). Increasing speeds necessitate
increasing proximity of processing elements.

- Limits to miniaturization - processor technology is allowing an increasing number of
transistors to be placed on a chip. However, even with molecular or atomic-level components,
a limit will be reached on how small components can be.

- Economic limitations - it is increasingly expensive to make a single processor faster. Using a
larger number of moderately fast commodity processors to achieve the same (or better)
performance is less expensive.

184 Zero to Mastery in Computer Architecture and Organisation

• Overlap: Execution of multiple operations by heterogenous functional units.
• Parallelism : Execution of multiple operations by homogenous functional units

Throughput Enhancement
A computer’s performance is measured by the time taken for executing a program.
The program execution involves performing instruction cycles, which includes Two types of

operations:
• Internal Micro-operations: performed inside the hardware functional units such as the processor,

memory, I/O etc.
• Transfer of Information: between different functional hardware units for Instruction fetch,

operand fetch, I/O operation etc.
Instruction Level Parallelism (ILP)

• Pipelining
• Superscalar

Processor Level Parallelism
• Array Computer
• Multiprocessor

• States that potential program speedup is defined by the Fraction of code (P) that can be parallelized:
speed up = 1

0p
• If none of the code can be parallelized, P = 0 and the speedup = 1 (no speedup).
• If all of the code is parallelized, P = 1 and the speedup is infinite (in theory).
• If 50% of the code can be parallelized, maximum speedup = 2, meaning the code will run twice as

fast.
• Introducing the number of processors performing the parallel fraction of work, the relationship

can be modeled by:

speed up =
1

P S
N

where P = parallel fraction, N = number of processors and S = serial fraction.
• It soon becomes obvious that there are limits to the scalability of parallelism. For example:

Concept of Parallelism 185

 speedup

 N P = .50 P = .90 P = .99
 ----- ------- ------- -------
 10 1.82 5.26 9.17
 100 1.98 9.17 50.25
 1000 1.99 9.91 90.99
 10000 1.99 9.91 99.02
 100000 1.99 9.99 99.90

Fig. 10.2: (A graphical representation of Amdahl’s law. The speed-up of a program fromparallelization is limited by how much of the program can be parallelized. For example, if 90% ofthe program can be parallelized, the theoretical maximum speed-up using parallel computingwould be 10x no matter how many processors are used)
Some facts related to this rule are listed below

1. Amdahl’s law, also known as Amdahl’s argument, is named after computer architect Gene
Amdahl, and is used to find the maximum expected improvement to an overall system when only
part of the system is improved.

2. It is often used in parallel computing to predict the theoretical maximum speedup using multiple
processors.

3. The speedup of a program using multiple processors in parallel computing is limited by the time
needed for the sequential fraction of the program.

4. Amdahl’s law is a model for the relationship between the expected speedup of parallelized
implementations of an algorithm relative to the serial algorithm, under the assumption that the
problem size remains the same when parallelized.

186 Zero to Mastery in Computer Architecture and Organisation

5. The law is concerned with the speedup achievable from an improvement to a
computation that affects a proportion P of that computation where the improvement has a speedup
of S. (For example, if an improvement can speed up 30% of the computation, P will be 0.3; if the
improvement makes the portion affected twice as fast, S will be 2.)

• Amdahl’s law states that the overall speedup of applying the improvement will be:
• Old Running Time/New Running Time = 1 /((1-P)+P/S)
• To see how this formula was derived, assume that the running time of the old computation was

1, for some unit of time. The running time of the new computation will be the length of time the
unimproved fraction takes, (1 “ P), plus the length of time the improved fraction takes.

• The length of time for the improved part of the computation is the length of the improved part’s
former running time divided by the speedup, making the length of time of the improved part P/
S. The final speedup is computed by dividing the old running time by the new running time,
which is what the above formula does.

• In the case of parallelization, Amdahl’s law states that if P is the proportion of a program that
can be made parallel (i.e. benefit from parallelization), and (1 “ P) is the proportion that cannot
be parallelized (remains serial), then the maximum speedup that can be achieved by using N
processors is :

 1/(1-P)+P/N.
•P can be estimated by using the measured speedup SU on a specific number of processors NP

using
 Estimated= (1/SU – 1) / (1/NP-1).

•P estimated in this way can then be used in Amdahl’s law to predict speedup for a different
number of processors.

• Instruction-level parallelism (ILP) is a measure of how many of the operations in a computer
program can be performed simultaneously.

• Micro-architectural techniques that are used to exploit ILP include:
• Instruction pipelining where the execution of multiple instructions can be partially overlapped.

SUPERSCALAR execution in which multiple execution units are used to execute multiple
instructions in parallel. In typical superscalar processors, the instructions executing simultaneously
are adjacent in the original program order.

• A superscalar CPU architecture implements a form of parallelism called instruction-level
parallelism within a single processor.

• It therefore allows faster CPU throughput than would otherwise be possible at a given clock rate.
Points to Remember

• A superscalar processor executes more than one instruction during a clock cycle by simultaneously
dispatching multiple instructions to redundant functional units on the processor.

• Each functional unit is not a separate CPU core but an execution resource within a single CPU
such as an arithmetic logic unit, a bit shifter, or a multiplier.

Concept of Parallelism 187

• Superscalar CPU is typically also pipelined.
• Instructions are issued from a sequential instruction stream
• CPU hardware dynamically checks for data dependencies between instructions at run time (versus

software checking at compile time)
• The CPU accepts multiple instructions per clock cycle
• Pipelining and Superscalar architecture are considered different performance enhancement

techniques.
Instruction Pipeline

• An instruction pipeline reads consecutive instructions from memory while previous instructions
are being executed in other segments.

• Computer needs to process each instruction with the following sequence of steps.
- Fetch the instruction from memory
- Decode the instruction
- Calculate the effective address
- Fetch the operands from memory
- Execute the instruction
- Store the result in the proper place

Fetch Instruction

Decode & Calculateeffective Address

Branch?

Fetch Operand

Yes

Update PC

No

Interrupt ?

Execute Instruction

Interrupt
handling NoYes

Empty
Pipe

Fig. 10.3: Various stages of Instruction Cycle

188 Zero to Mastery in Computer Architecture and Organisation

Four Segment Pipeline

Fig. 10.4: Vaious Instruction in Four Segmented Pipe-line
Pipeline Conflicts

1. Resource conflicts caused by access to memory by two segments at the same time. These may
be resolved by using separate instruction and data memories.

2. Data Dependency conflicts arise when an instruction depends on the result of a previous instruction,
but this result is not yet available.

3. Branch Difficulties arise from branch and other instructions that change the value of PC.
The superscalar technique is associated with several identifying characteristics (within a

given CPU core):
• Instructions are issued from a sequential instruction stream.

- CPU hardware dynamically checks for data dependencies between instructions at run time
(versus software checking at compile time)

- The CPU accepts multiple instructions per clock cycle.
• Available performance improvement from superscalar techniques is limited by Two key areas:

- The degree of intrinsic parallelism in the instruction stream, i.e. limited amount of instruction-
level parallelism, and

- The complexity and time cost of the dispatcher and associated dependency checking logic.
- The branch instruction processing.

• Multiprocessing is the use of two or more central processing units (CPUs) within a single
computer system.

Concept of Parallelism 189

• The term also refers to the ability of a system to support more than one processor and/or the
ability to allocate tasks between them.

• Multiprocessing sometimes refers to the execution of multiple concurrent software processes in
a system as opposed to a single process at any one instant.

• The terms multitasking or multiprogramming are more appropriate to describe this concept,
which is implemented mostly in software, whereas multiprocessing is more appropriate to
describe the use of multiple hardware CPUs.

• A system can be both multiprocessing and multiprogramming, only one of the two, or neither of
the two.

• In a Multiprocessing system, all CPUs may be equal, or some may be reserved for special
purposes.

• In Multiprocessing, the processors can be used to execute a single sequence of instructions in
multiple contexts

• In a Single Instruction Stream, Single Data Stream or SISD, one processor sequentially processes
instructions, each instruction processes one data item.

• Single-Instruction, Multiple-Data or SIMD, often used in vector processing
• Multiple sequences of instructions in a single context multiple-instruction, single-data or MISD,

used to describe pipelined processors.
• Multiple sequences of instructions in multiple contexts (multiple-instruction, multiple-data or

MIMD.
Advantages of multiprocessor system are as follows:
• Reduced Cost: Multiple processors share the same resources. Separate power supply or mother

board for each chip is not required. This reduces the cost.
• Increased Reliability: The reliability of system is also increased. The failure of one processor

does not affect the other processors though it will slow down the machine. Several mechanisms
are required to achieve increased reliability. If a processor fails, a job running on that processor
also fails. The system must be able to reschedule the failed job or to alert the user that the job was
not successfully completed.

• Increased Throughput: An increase in the number of processes completes the work in less
time. It is important to note that doubling the number of processors does not halve the time to
complete a job. It is due to the overhead in communication between processors and contention
for shared resources etc

General Characteristics
• Shared memory parallel computers vary widely, but generally have in common the ability for all

processors to access all memory as global address space.
• Multiple processors can operate independently but share the same memory resources.
• Changes in a memory location effected by one processor are visible to all other processors.
• Shared memory machines can be divided into Two main classes based upon memory access

times: UMA and NUMA

190 Zero to Mastery in Computer Architecture and Organisation

Fig.10.5: Shared Memory (UMA)

Uniform Memory Access (UMA)
• Most commonly represented by Symmetric Multiprocessor(SMP) Machines
• Identical processors
• Equal access and access times to memory
• Sometimes called CC-UMA - Cache Coherent UMA. Cache coherent means if one processor

updates a location in shared memory, all the other processors know about the update. Cache
coherency is accomplished at the hardware level.

Non-Uniform Memory Access (NUMA)
• Often made by physically linking two or more SMPs
• One SMP can directly access memory of another SMP
• Not all processors have equal access time to all memories
• Memory access across link is slower
• If cache coherency is maintained, then may also be called CC-NUMA - Cache Coherent NUMA

Fig.10.6: Shared Memory (NUMA)

Concept of Parallelism 191

Advantages
• Global address space provides a user-friendly programming perspective to memory
• Data sharing between tasks is both fast and uniform due to the proximity of memory to CPUs

Disadvantages
• Primary disadvantage is the lack of scalability between memory and CPUs. Adding more

CPUs can geometrically increases traffic on the shared memory-CPU path, and for cache coherent
systems, geometrically increase traffic associated with cache/memory management.

• Programmer responsibility for synchronization constructs that ensure “correct” access of global
memory.

• Expense: it becomes increasingly difficult and expensive to design and produce shared memory
machines with ever increasing numbers of processors.

General Characteristics
• Like shared memory systems, distributed memory systems vary widely but share a common

characteristic. Distributed memory systems require a communication network to connect inter-
processor memory.

Fig.10.7: Distributed Memory
• Processors have their own local memory. Memory addresses in one processor do not map to

another processor, so there is no concept of global address space across all processors.
• Because each processor has its own local memory, it operates independently. Changes it makes to

its local memory have no effect on the memory of other processors. Hence, the concept of cache
coherency does not apply.

• When a processor needs access to data in another processor, it is usually the task of the programmer
to explicitly define how and when data is communicated. Synchronization between tasks is likewise
the programmer’s responsibility.

• The network “fabric” used for data transfer varies widely, though it can can be as simple as
Ethernet.

192 Zero to Mastery in Computer Architecture and Organisation

Advantages
• Memory is scalable with number of processors. Increase the number of processors and the size

of memory increases proportionately.
• Each processor can rapidly access its own memory without interference and without the overhead

incurred with trying to maintain cache coherency.
• Cost effectiveness: can use commodity, off-the-shelf processors and networking.

Disadvantages
• The programmer is responsible for many of the details associated with data communication

between processors.
• It may be difficult to map existing data structures, based on global memory, to this memory

organization.
• Non-uniform memory access (NUMA) times

• The largest and fastest computers in the world today employ both shared and distributed
memory architectures.

Fig.10.8: Hybrid-distributed-shred memory
• The shared memory component is usually a cache coherent SMP machine. Processors on a given

SMP can address that machine’s memory as global.
• The distributed memory component is the networking of multiple SMPs. SMPs know only about

their own memory - not the memory on another SMP. Therefore, network communications are
required to move data from one SMP to another.

• Current trends seem to indicate that this type of memory architecture will continue to prevail and
increase at the high end of computing for the foreseeable future.

• Advantages and Disadvantages: whatever is common to both shared and distributed memory
architectures.

Concept of Parallelism 193

In general, parallel applications are much more complex than corresponding serial applications,
perhaps an order of magnitude. Not only do you have multiple instruction streams executing at the same
time, but you also have data flowing between them.

• The costs of complexity are measured in programmer time in virtually every aspect of the software
development cycle:

- Design
- Coding
- Debugging
- Tuning
- Maintenance

• Adhering to “good” software development practices is essential when when working with parallel
applications - especially if somebody besides you will have to work with the software.

Some General Parallel Terminology
Some of the more commonly used terms associated with parallel computing are listed below:-

Task
A logically discrete section of computational work. A task is typically a program or program-like set

of instructions that is executed by a processor.
Parallel Task

A task that can be executed by multiple processors safely (yields correct results)
Serial Execution

Execution of a program sequentially, one statement at a time. In the simplest sense, this is what
happens on a one processor machine. However, virtually all parallel tasks will have sections of a parallel
program that must be executed serially.
Parallel Execution

Execution of a program by more than one task, with each task being able to execute the same or
different statement at the same moment in time.
Pipelining

Breaking a task into steps performed by different processor units, with inputs streaming through,
much like an assembly line; a type of parallel computing.
Shared Memory

From a strictly hardware point of view, describes a computer architecture where all processors
have direct (usually bus based) access to common physical memory. In a programming sense, it describes
a model where parallel tasks all have the same “picture” of memory and can directly address and access
the same logical memory locations regardless of where the physical memory actually exists.

194 Zero to Mastery in Computer Architecture and Organisation

Symmetric Multi-Processor (SMP)
Hardware architecture where multiple processors share a single address space and access to all

resources; shared memory computing.
Distributed Memory

In hardware, refers to network based memory access for physical memory that is not common. As
a programming model, tasks can only logically “see” local machine memory and must use communications
to access memory on other machines where other tasks are executing.
Communications

Parallel tasks typically need to exchange data. There are several ways this can be accomplished,
such as through a shared memory bus or over a network, however the actual event of data exchange is
commonly referred to as communications regardless of the method employed.
Synchronization

The coordination of parallel tasks in real time, very often associated with communications. Often
implemented by establishing a synchronization point within an application where a task may not proceed
further until another task(s) reaches the same or logically equivalent point.

Synchronization usually involves waiting by at least one task, and can therefore cause a parallel
application’s wall clock execution time to increase.
Granularity

In parallel computing, granularity is a qualitative measure of the ratio of computation to
communication.

• Coarse: relatively large amounts of computational work are done between communication events
• Fine: relatively small amounts of computational work are done between communication events

Observed Speedup
Observed speedup of a code which has been parallelized, defined as:

wall-clock time of serial execution
wall-clock time of parallel execution

One of the simplest and most widely used indicators for a parallel program’s performance.
Parallel Overhead

The amount of time required to coordinate parallel tasks, as opposed to doing useful work. Parallel
overhead can include factors such as:

• Task start-up time
• Synchronizations
• Data communications
• Software overhead imposed by parallel compilers, libraries, tools, operating system, etc.
• Task termination time

Concept of Parallelism 195

Massively Parallel
Refers to the hardware that comprises a given parallel system - having many processors. The

meaning of “many” keeps increasing, but currently, the largest parallel computers can be comprised of
processors numbering in the hundreds of thousands.
Embarrassingly Parallel

Solving many similar, but independent tasks simultaneously; little to no need for coordination between
the tasks.
Scalability

Refers to a parallel system’s (hardware and/or software) ability to demonstrate a proportionate
increase in parallel speedup with the addition of more processors. Factors that contribute to scalability
include:

• Hardware - particularly memory-cpu bandwidths and network communications
• Application algorithm
• Parallel overhead related
• Characteristics of your specific application and coding

Multi-core Processors
Multiple processors (cores) on a single chip.

Cluster Computing
Use of a combination of commodity units (processors, networks or SMPs) to build a parallel

system.
Supercomputing / High Performance Computing

Use of the world’s fastest, largest machines to solve large problems

Parallelism: Executing two or more operations at the same time is known as Parallelism.
Parallel computing is the simultaneous use of multiple compute resources to solve a computational

problem
Amdahl’s Law This rule states that a small portion of the program which cannot be parallelized will

limit the overall speed-up available from parallelization
Instruction-level parallelism (ILP) is a measure of how many of the operations in a computer

program can be performed simultaneously
Superscalar in which multiple execution units are used to execute multiple instructions in parallel
Instruction Pipeline reads consecutive instructions from memory while previous instructions are

being executed in other segments
Multiprocessing is the use of two or more central processing units (CPUs) within a single computer

system

196 Zero to Mastery in Computer Architecture and Organisation

Task : It is typically a program or program-like set of instructions that is executed by a processor.
Parallel Task A task that can be executed by multiple processors safely (yields correct results)
Serial Execution: Execution of a program sequentially, one statement at a time.
Parallel Execution: Execution of a program by more than one task, with each task being able to

execute the same or different statement at the same moment in time.
Pipelining: Breaking a task into steps performed by different processor units, with inputs streaming

through, much like an assembly line; a type of parallel computing.
Shared Memory: From a strictly hardware point of view, describes a computer architecture

where all processors have direct (usually bus based) access to common physical memory.
Symmetric Multi-Processor (SMP): where multiple processors share a single address space and

access to all resources
Distributed Memory: refers to network based memory access for physical memory that is not

common.
Parallel Overhead: The amount of time required to coordinate parallel tasks.
Massively Parallel: Refers to the hardware that comprises a given parallel system - having many

processors. Embarrassingly Parallel: Solving many similar, but independent tasks simultaneously;
little to no need for coordination between the tasks.

Scalability: Refers to a parallel system’s ability to demonstrate a proportionate increase in parallel
speedup with the addition of more processors.

Multi-core Processors: Multiple processors (cores) on a single chip.
Cluster Computing: Use of a combination of commodity units (processors, networks or SMPs)

to build a parallel system.
Supercomputing / High Performance Computing : Use of the world’s fastest, largest machines

to solve large problems

Q.1 What is parallelism? How parallel computation is beneficial over serial computation?
Q.2 What are objectives/goals of parallelism implementation?
Q.3 What are main two types of parallelism can be implemented in computer organization?
Q.4 How Instruction Level Parallelism (ILP) implemented?
Q.5 Discuss processor level implementation with overview of multi-processor system.
Q.6 Explain implementation of pipe-lined and Superscalar architecture.
Q.7 Write the Memory distribution in parallel architecture.
Q.8 Write the various designing issues of parallel architecture.
Q.9 Explain and Discuss various categories of Memory in parallel computer.

Q.10 Differentiate Between
(i) ILP Vs PLP
(ii) UMA Vs NUMA

Concept of Parallelism 197

(iii) Serial Vs Parallel Computation
(iv) Pipe-lining Vs Super scaling

Q.11 Write Short Notes:
(i) Performance Enhancement in Parallel Computing
(ii) Multi Processor Systems
(iii) Distributed Memory
(iv) Superscalar Execution
(v) limitations of Serial Computing
(vi) Amdahl Law for Parallelism

198 Zero to Mastery in Computer Architecture and Organisation

After going through this chapter you should able to understand the concepts of:
• Concept of Instruction Code

• Operation Part
• Memory Address
• Instruction Set

• Various Categories of Instruction
• Data Transfer Instructions
• Arithmetic Instructions
• Logical and bit Manipulation Instructions
• String Transfer Instructions
• Processor Execution Instructions
• Processor Control Instructions

• Timing Control
• Instruction Format

• General Instruction Format
• Three Instruction Format
• R-Type
• J-Type
• I-Type

We all know that without our instructions a computer can do nothing. Hence we need to instruct the
computer to perform a specific operation.

(a) The collection of bits that instruct the computer to perform a specific operation is called an
Instruction Code.

Instruction Code and Instruction Format 199

(b) Operation part is the most basic part of an instruction code. The operation code of an instruction
is a group of bits that define such operations as add, subtract, multiply, shift and complement.

(c) The total number of operations available in the computer determines the number of bits required
for the operation code of an instruction. The operation code must consist of at least n bits for a
given 2n (or less) distinct operations.

(d) An ‘operation’ is a binary code that instructs the computer to perform a specific operation. The
control unit gets the instruction from memory and interprets the operation code bits. It then
issues a sequence of control signals to initiate micro-operations in internal computer registers.
For every operation code, the control issues a sequence of micro-operations required for the
hardware implementation of the specified operation.

This operation should be performed on some data stored in processor registers or on the data stored
in the memory. Hence an instruction code must specify the operation and the registers or the memory
words where the operands are to be found, as well as the registers or the memory word where the
operands are stored.

Memory words can be specified in instruction codes by their address. Processor registers can be
specified by assigning to the instruction another binary code of K bits that specifies one of 2K registers.
There are many variations for arranging the binary code of instructions. Each computer has its own
particular instruction code format called its Instruction Set.

I. Data Transfer Instructions: Most of CPU Instructions are Data transfer Instructions. The data
transfer instructions move data between memory and the general-purpose and segment registers.
They also perform specific operations such as conditional moves, stack access, and data
conversion.

PUSH — Copy specified word to top of stack.
POP — Copy word from top of stack to specific location.
PUSHA (80186/80188 only) — Copy all registers stack.
POPA (80186/80l88 only) ————— Copy words f stack to all registers.
XCHG ——————Exchange bytes or exchange words.
XLAT —Translate a byte in AL using a table in memory.

Simple input and output port transfer instructions
IN —Copy a byte or word from specified port to accumulator.
OUT— Copy a byte or word from accumulator specified port.

Special address transfer instructions
LEA — Load effective address of operand in specified register.
LDS — Load DS register and other specified register from memory.
LES — Load ES register and other specified register from memory.

200 Zero to Mastery in Computer Architecture and Organisation

Flag Transfer Instructions
LAHF Load (copy to) — AH with the low byte the flag register.
SAHF Store (copy) — AH register to low byte of register.
PUSHF — Copy flag register to top of stack.
POPF — Copy word at top of stack to flag register

II. Arithmetic Instructions: Arithmetic instructions perform basic binary integer computations on
byte, word, and double word integers located in memory and/or the general purpose registers

ADD — Add specified byte to byte or specified word to word.
ADC — Add byte + byte + carry flag or word + word + carry flag.
INC — Increment specified byte or specified by 1.
AAA — ASCII adjust after addition.
DAA — Decimal (BCD) adjust after addition.
SUB — Subtract byte from byte or word from word.
SBB — Subtract byte and carry flag from byte word and carry flag from word.
DEC — Decrement specified byte or specified word by l.
NEG Negate – invert each bit of a specified byte or word and add 1 (form 2’s complement).
CMP Compare two specified bytes or two specified word
AAS ASCII adjust after subtraction.
DAS Decimal (BCD) adjust after subtraction.

Multiplication Instructions
MUL — Multiply unsigned byte by byte or unsigned word by word
IMUL — Multiply signed byte by byte or signed word by word
AAM — ASCII adjust after multiplication

Division Instructions
DIV — Divide unsigned word by byte or unsigned double word by word
IDIV — Divide signed word by byte or signed double word by word
AAD — ASCII adjust before division
CBW — Fill upper byte of word with copies of sign bit of lower byte
CWD — Fill upper word of double word with copies of sign bit of lower word

III. Logic and Bit Manipulation Instructions (AND, OR, XOR)Logic instructions: The logical
instructions perform basic AND, OR, XOR, and NOT logical operations on byte, word, and
double word values. The bit and instructions test and modify individual bits in the bits in word and
double word operands.

NOT — Invert each bit in a byte or word
AND — AND the content of a byte or a word with another byte or word
OR — OR the content of a byte or a word with another byte or word

Instruction Code and Instruction Format 201

XOR — Exclusive OR the content of a byte or a word with another byte or word
Shift Instructions

SHL/SAL — Shift bits of word or byte left, put zero(s) in LSB(s)
SHR — Shift bits of word or byte right, put zero(s) in MSB(s)
SAR — Shift bits of word or byte right, copy old MSB into new MSB

Rotate Instructions
ROL — Rotate bits of byte or word left, MSB to LSB and to CF
ROR — Rotate bits of byte or word right, LSB to MSB and to CF
RCL — Rotate bits of byte or word left, MSB to CF and CF to LSB
RCR — Rotate bits of byte or word right, LSB to CF and CF to MSB
DAA — Decimal (BCD) adjust after addition.
SUB — Subtract byte from byte or word from word.
SBB — Subtract byte and carry flag from byte word and carry flag from word.
DEC — Decrement specified byte or specified word by l.
NEG — Negate – invert each bit of a specified byte or word and add 1 (form 2’s complement).
CMP — Compare two specified bytes or two specified word
AAS — ASCII adjust after subtraction.
DAS — Decimal (BCD) adjust after subtraction.

IV. String Instructions A string is a series of bytes or a series of words in sequential memory
locations. A string often consists of ASCII character codes. In the list, a “/” is used to separate
different mnemonics for the same instruction. Use the mnemonic which most clearly describes
the function of the instruction in a specific application. A “B” In a mnemonic is used to specifically
indicate that a string of bytes is to be acted upon. A “W” In the mnemonic is used to indicate that
a string of words Is to be acted upon.

REP — An instruction prefix. Repeat following instruction until CX =0
REPE/REPZ —An instruction prefix. Repeat instruction until CX = 0 or zero Flag ZF!=1
REPNE/REPNZ — An instruction prefix. Repeat until CX = 0 or ZF = 1
MOVS/MOVSB/MOVSW — Move byte or word from one string to another
COMPS/COMPSB/COMPSW — Compare two string bytes or two string words
INS/INSB/INSW (80186/80188) — Input string byte or word from port
OUTS/OUTSB/OUTSW (80186/80l88) — output string byte or word to port
SCAS/SCASB/SCASW — Scan a string. Compare a string byte with a byte in AL or a string
word with a word in AX
LODS/LODSB/LODSW — load string byte into AL or string word into AX
STOS/STOSB/STOSW — Store byte from AL or word from AX into string

V. Program Execution Transfer Instructions Instructions are used to tell the 8086 to start fetching
instructions from some new address, rather than continuing in sequence.

202 Zero to Mastery in Computer Architecture and Organisation

Unconditional Transfer Instructions
CALL — Call a procedure (subprogram), save return address on stack
RET — Return from procedure to calling program
JMP — Go to specified address to get next instruction

Conditional Transfer Instructions
A “/”is used to separate two mnemonics which represent the same instruction. Use the mnemonic

which most dearly describes the decision condition in a specific program. These instructions are often
used after a compare instruction. The terms below and above refer to unsigned binary numbers. Above
means larger in magnitude. The terms greater than or less than refer to signed binary numbers. Greater
than means more positive.

JA/JNBE — Jump if above/Jump if not below or equal
JAE/JNB — Jump if above or equal/Jump if not below
JB/JNAE — Jump if below/Jump if not above or equal
JBE/JNA — Jump if below or equal/Jump if not above
JC — Jump if carry flag CF 1
JE/JZ — Jump if equal/Jump if zero flag ZF = 1
JG/JNLE — Jump if greater/Jump if not less than or equal
JGE/JNL — Jump if greater than or equal Jump if not less than
JL/JNGE — Jump if less than/Jump if not greater than or equal
JLE/JNG — Jump if less than or equal/Jump if not greater than
JNC — Jump if no carry (CF = 0)
JNE/JNZ — Jump if not equal/lump if not ’ zero (ZF = 0)
JNO — Jump if no overflow (overflow flag OF = 0)
JNP/JPO — Jump if not parity/Jump if parity odd (PF = 0)
JNS — Jump if not sign (sign flag SF=0)
JO — Jump if overflow flag OF=1
JP/JPE — Jump if parity/Jump if parity even (PF =1)
JS — Jump if sign (SF = 1)

Iteration Control Instructions
These instructions can be used to execute a series of instructions some number of times. Here

mnemonics separated by a “/” represent the same instruction. Use the one that best fits the specific
application.

LOOP — Loop through a sequence of instructions until CX= 0
LOOPE/LOOPZ — Loop through a sequence instructions while ZF= l and CX != 0
LOOPNE/LOOPNZ — Loop through a sequence instructions while ZF=0 and CX != 0
JCXZ — Jump to specified address if CX=0

Instruction Code and Instruction Format 203

Interrupt Instructions
INT— Interrupt program execution call service procedure
INTO — Interrupt program execution OF =1
IRET — Return from interrupt se procedure to main program
High-level Language Interface Instructions:
ENTER (80l86/80188 only) — Enter procedure
LEAVE (80l86/80188 only) — Leave procedure
BOUND (80l86/80188 only) —Check effective address within specified array bounds

VI. Processor Control Instructions: Executed to control processors operations
Flag set/clear Instructions:
STC — Set carry flag CF to 1
CLC — Clear carry flag CF to 0
CMC — Complement the state of the carry flag CF
STD — Set direction flag DF to l (decrement string pointers)
CLD — Clear direction flag DF to 0
STI — Set interrupt enable flag to 1 (enable INTR input)
CLI — Clear interrupt enable flag to 0 (disable INTR input)

Execution Control Instructions
HLT — Halt (do nothing) until interrupt or reset
WAIT — Wait (do nothing) until signal on the test pin is low
ESC — Escape to external coprocessor such as 8087 or 8089
LOCK — An instruction prefix. Prevents another processor from taking the bus while the adjacent

instruction executes
NOP — No action except fetch and decode

Write Cycle Timing Diagram for Minimum Mode
• The working of the minimum mode configuration system can be better described in terms of the

timing diagrams rather than qualitatively describing the operations.
• The opcode fetch and read cycles are similar. Hence the timing diagram can be categorized in two

parts, the first is the timing diagram for read cycle and the second is the timing diagram for write
cycle.

• The read cycle begins in T1 with the assertion of address latch enable (ALE) signal and also M /
IO signal. During the negative going edge of this signal, the valid address is latched on the local
bus.

• The BHE and A0 signals address low, high or both bytes. From T1 to T4 , the M/IO signal
indicates a memory or I/O operation.

204 Zero to Mastery in Computer Architecture and Organisation

• At T2, the address is removed from the local bus and is sent to the output. The bus is then
tristated.
The read (RD) control signal is also activated in T2.

• The read (RD) signal causes the address device to enable its data bus drivers. After RD goes low,
the valid data is available on the data bus.

 Fig. 11.1: Write Cycle diagram for Minimum Mode

• The addressed device will drive the READY line high. When the processor returns the read signal
to high level, the addressed device will again tri-state its bus drivers.

• A write cycle also begins with the assertion of ALE and the emission of the address. The M/IO
signal is again asserted to indicate a memory or I/O operation. In T2, after sending the address in
T1, the processor sends the data to be written to the addressed location.

• The data remains on the bus until middle of T4 state. The WR becomes active at the beginning of
T2 (unlike RD is somewhat delayed in T2 to provide time for floating).

• The BHE and A0 signals are used to select the proper byte or bytes of memory or I/O word to be
read or write.

• The M/IO, RD and WR signals indicate the type of data transfer.

Instruction Code and Instruction Format 205

Fig. 11.2: Bus Request and Bus Grant Timings in Minimum mode system
Hold Response sequence: The HOLD pin is checked at leading edge of each clock pulse. If it is

received active by the processor before T4 of the previous cycle or during T1 state of the current cycle,
the CPU activates HLDA in the next clock cycle and for succeeding bus cycles, the bus will be given to
another requesting master.

The control of the bus is not regained by the processor until the requesting master does not drop the
HOLD pin low. When the request is dropped by the requesting master, the HLDA is dropped by the
processor at the trailing edge of the next clock.

Memory Read Timing Diagram in Maximum Mode of 8086

Fig. 11.3: Memory Read Time in Maximum Mode

206 Zero to Mastery in Computer Architecture and Organisation

high

Data out D – D15 0A – A15 0

BHE S – S7 3

ActiveInactiveActive

Clk
ALE

S – S2 3

ADD/STATUS

ADD/DATA
AMWC or AIOWC
MWTC or IOWC

DT / R
DEN

T1 T2 T3 T4 T1

Fig. 11.4: Memory Write Time in Maximum Mode

Clk

RQ / GT

Another masterrequest bus access
CPU grant bus Master releases

Fig. 11.5: RQ/GT Timings in Maximum Mode
 The request/grant response sequence contains a series of three pulses. The request/grant pins are

checked at each rising pulse of clock input.

Instruction Code and Instruction Format 207

• When a request is detected and if the condition for HOLD request is satisfied, the processor
issues a grant pulse over the RQ/GT pin immediately during T4 (current) or T1 (next) state.

• When the requesting master receives this pulse, it accepts the control of the bus, it sends a release
pulse to the processor using RQ/GT pin.

normally defines the location that contains the operand. The Instruction formats vary between
microprocessors and minicomputers and mainframe computers. As the machine instructions are generally
longer in larger computers with their larger memory words, the instruction format or how the instruction
is translated differs. Each instruction is composed of fields. The lengths of instructions and the lengths
and positions of the fields differ depending on the instruction and the computer. An operation (function)
code is part of all instructions. How the remainder of the instruction is translated and the names assigned
to the parts vary. Let’s take a look at two examples of computer instruction formats, one for a
microcomputer and one for a mainframe. We begin with the op (function) code, which is common to
both; only the length differs. A typical machine instruction begins with the specification of an operation
to be performed, the operation (op) code. The op code tells the computer/processor what basic operation
to perform. The op code, a part of every instruction, is usually located at the beginning of each instruction
format. Following the op code is information, if needed, to define the location of the data or the
operand on which the operation is to be performed. This location in memory, called the operand
address, at the start of the operation (the source), or that will contain the modified operand upon
completion of the operation (the destination). The remainder of the instruction and how it is structured
differs from one computer or computer type to another. The designators in each field and the positions
of the fields within the instruction determine how the instruction will affect the operand, registers,
memory, and general flow of data in and out of the computer.

Opdcode Field Address Field
• Op-field: specifies the operation to be performed;
• Address-field: provides operands or the CPU register/MM addresses of the operands.

Example:
x = (A + B) * (C + D)

whereA, B, C, D and X are five main memory locations representing five variables;
• 3-address format:
Assume variables A, B, C, D, and X are stored in MM locations labeled by their names.

ADD R1 A B # R1 [A] + [B]
ADD R2 C D # R2 [C] + [D]
MUL X R1 R2 # X [R1] [R2]

Note: here we assume an instruction 2OP dst srcl src means:

208 Zero to Mastery in Computer Architecture and Organisation

dst [srcl] * [src2]
where src1 and src2 are the source operand, dst is the destination operand, and * represents the

operation specified in Op-code field OP.
• 2-Address Format:

MOV R1 A # R1[A]
ADD R1 B # R1[B] + [R1]
MOV R2 C # R2[C]
ADD R2 D # R2[D] + [R2]
MUL R2 R1 # R2 [R1] [R2]
MOV X R2 # X[R2]

• Note: here we assume an instruction OP dst src means:
• dst [dst] * [stc]
• where src is the source operand, dst is the destination operand, and * represents the operation

specified in Op-code field OP.
• 1-Address Format:
Always use an implied accumulator (AC).

MOV R1 # R1[A]
LOAD A # AC[A]
ADD B # AC[AC] + [B]
STORE R # R[AC]
LOAD C # AC[C]
ADD D # AC[AC] + [D]
MUL R # AC[AC] × [R]
STORE X # X[AC]

• 0-Address Format:
used in stack-organized computer.
First, the given notation of the operation is converted into “reversed Polish notation (RPN)” :
(A + B) × (C + D) AB + CD + × then execute this program:

PUSH A
PUSH B
ADD
PUSH C
PUSH D
ADD
MUL
POP X

Instruction Code and Instruction Format 209

Fig. 11.6: PUSH and POP Operation
• Stack A last-in, first-out (LIFO) data structure.
• Queue A first-in, first-out (FIFO) data structure.

Fig. 11.7: Two Operations-LIFO, FIFO

• R-type (register type)

Fig. 11.8: R-Type Instruction Format

210 Zero to Mastery in Computer Architecture and Organisation

where
• op: operation of the instruction;
• rs: the first register for source operand;
• rt: the second register for source operand;
• rd: the register for destination operand;
• shamt: shift amount;
• funct: function, selecting the variant of the operations in op field.

Format of Arithmetic Instruction
2 bits 6 bits 4 bits 4 bits 4 bits 12 bits
00 OPCODE S-reg S-reg D-reg 000

Fig. 11.9: Format of Arithmetic Instruction
The first two bits are always 00, indicating that the instruction is an Arithmetic or Register transfer

type of instruction. S-reg is the source register. D-reg is the destination register. The last 12 bits are
always 0, as they are not used.

Note:
• The destination register is specified first (on the left) in assembly form, but last (on the right) in

the actual binary form.
• In all R-type instructions (arithmetic, logical, shift, etc.), the operations are specified by the

function field (6 least significant bits) in the binary instruction, with the opcode field (6 most
significant bits) equal to zero.

Operation Sll Srl jr mfhi mflo mult multu div divu
funct 0 2 8 16 18 24 25 26 27
Operation add addu sub subu and or slt slti
funct 32 33 34 35 36 37 42 43

Examples:
• Addition

$ 0, $ 1, $ 2add t s s
0 17 18 8 0 32
000000 10001 10010 01000 00000 100000

• Subtraction
$ 0, $ 1, $ 2sub t s s

0 17 18 8 0 34

Instruction Code and Instruction Format 211

• Set-if-less-than
$ 0, $ 1, $ 2sub t s s

0 17 18 8 0 42
• Jump-to-register

$jr ra
0 31 0 0 0 8

• I-type

Fig. 11.10: I-Type Instruction Format
where

op: operation of the instruction;
rs: source register;
rt: destination register;
address: 16-bit field for the offset, or an immediate operand.

Conditional Branch and Immediate format\
2 buts 6 buts 4 bits 4 buts 16 buts
01 OPCODE B-reg D-reg Address

Fig. 11.11: Format of Conditional & Immediate
The first two bits are always 01, indicating that the instruction is a Conditional Branch and Immediate

type of instruction. B-reg is the base register. D-reg is the destination register. The last 16 bits may be an
address or an immediate data.

• When the last 16 bits contain data, the D-reg is always 0000.
• The Address may at times be treated as data, which is direct addressing.
• An indirect Address is calculated as :

Effective Address = Content (B-reg) + Address
• Conditional Branch checks for B and D reg to cause a branch, to a specified Address, or not

212 Zero to Mastery in Computer Architecture and Organisation

Examples:
• load word

1 $ 0, ($ 3)w t Astart s
120010 = 00000100101100002 assuming Astart is
35 19 8 1200
100011 10011 01000 0000 0100 1011 0000

• Save word
1 $ 0, ($ 3)w t Astart s
43 19 8 1200
101011 10011 01000 0000 0100 1011 0000

• Brance-if-equal
$ 1, $ 2, 100beq s s

4 17 18 100
• Brance-if-not-equal

$ 1, $ 2, 100bne s s
5 17 18 100

• Add (immediate)
$ 1, $ 1, 100addi t s

8 17 9 100
• Set-if-less-then (immediate)

$ 1, $ 1, 100slti t s
10 17 9 100

• J-type

Fig. 11.12: J-Type instruction Format

Instruction Code and Instruction Format 213

Unconditional Jump Format
2 bits 6 bits 24 bits
10 OPCODE Address

The first two bits are always 10, indicating that the instruction is an Unconditional Jump type of
instruction, with a jump to the specified Address.

Examples:
• Jump

10000J
000010 100000

• Jump-and-link
10000jal

000011 10000

Instruction Code: is collection of bits that instruct the computer to perform a specific operation.
Operation is a binary code that instructs the computer to perform a specific operation
Instruction Set: is the instruction code format of for specific computer
Data Transfer Instructions: The data transfer instructions move data between memory and the

general-purpose and segment registers
 Arithmetic Instructions: perform basic binary integer computations on byte, word, and double

word integers located in memory and/or the general purpose registers
Logic and Bit Manipulation Instructions (AND, OR, XOR) Logic Instructions: The logical

instructions perform basic AND, OR, XOR, and NOT logical operations on byte, word, and double
word values. The bit and instructions test and modify individual bits in the bits in word and double word
operands.

String Instructions: Works on series of Bytes or words
Program Execution Transfer Instructions: are used to start fetching instructions from some

new address, rather than continuing in sequence
Iteration Control Instructions: can be used to execute a series of instructions some number of

times.
Processor Control Instructions: Executed to control processors operations
Operation (op) code. tells the computer/processor what basic operation to perform
Address-field: provides operands or the CPU register/MM addresses of the operands.
Stack A last-in, first-out (LIFO) data structure.
Queue A first-in, first-out (FIFO) data structure.

214 Zero to Mastery in Computer Architecture and Organisation

Q.1 Define & differentiate between Instruction, Instruction Code, Instruction Format, & Instruction
Set

Q.2 Write the various types of Data Transfer Instructions.
Q.3 How arithmetic Instruction works on Data? Write any 5 Instructions with description of each.
Q.4 How the logical and Bit Instructions works discuss all logical and bit Instructions with Syntax.
Q.5 What is String Instructions? Write any 4 String instructions.
Q.6 What are Three, Two One and Zero Address Format? How each are differ from other?

Differentiate Between
(i) PUSH and PUSHA
(ii) POP and POPA
(iii) ADD and ADC
(iv) DIV and IDIV
(v) Shift and Rotate
(vi) CALL and JMP
(vii) LOOP and LOOPE

 (viii) R-Type,J-Type and I-Type Instruction Format
(ix) LIFO AND FIFO

Write Short Note On
(i) Timing and Control Diagram
(ii) Format of Arithmetic Instructions
(iii) Conditional Branch and immediate Format
(iv) Interrupt Instructions
(v) High-level language interface instructions.

Interrupt and Stack Organisation 215

• Concept of Interrupt
• Interrupt Types

• Synchronous
• Asynchronous

• Maskable Interrupt
• Non-maskable Interrupt (NMI)
• Inter-processor Interrupt (IPI)
• Software Interrupt
• Spurious Interrupt
• Interrupt Latency
• Interrupt Response Time
• Stack Organization

• Register Stack
• Memory Stack

• Reverse Polish Notation

What is an Interrupt?
It is usually necessary for the processor to be capable of switching between a numbers of distinct

processes upon receipt of appropriate signals. Each process generates its own signal demanding attention.
These signals are known as interrupt requests since they each ask the processor to interrupt the process
currently running. Therefore In computing, an interrupt is an asynchronous signal indicating the need
for attention or a synchronous event in software indicating the need for a change in execution.

 Or
An interrupt (also known as an exception or trap) is an event that causes the CPU to stop executing

the current program and start executing a special piece of code called an interrupt handler or interrupt
service routine (ISR). The ISR typically does some work, and then resumes the interrupted program.

216 Zero to Mastery in Computer Architecture and Organisation

• Interrupt are Similar to a procedure call:
1. can occur between any two instructions of the program
2. is transparent to the running program (usually)
3. is typically not explicitly requested by the program
4. calls a routine at an address determined by the type of interrupt, not by the program
5. atomically changes some processor mode bits in the Machine Status Register (MSR)

There are TWO Types of Interrupt based on relation with instruction in Microprocessors
1. Synchronous (instruction-related)

• illegal instruction
• privileged instruction
• bus error (“machine check”)
• divide by 0 (on most processors),
• floating-point errors
• virtual memory page fault
• system call (into operating system)

2. Asynchronous: (not instruction-related)
• external hardware device
• timer expiration
• reset
• power failure
• on-chip debugging (on 823)

• A hardware Interrupt causes the processor to save its state of execution and begin execution of
an interrupt handler.

• Software interrupts are usually implemented as instructions in the instruction set, which cause a
context switch to an interrupt handler similar to a hardware interrupt.

• Interrupts are a commonly used technique for computer multitasking, especially in real-time
computing. Such a system is said to be interrupt-driven.

• An act of interrupting is referred to as an Interrupt Request (IRQ).
Hardware Interrupts were introduced as a way to avoid wasting the processor’s valuable time

in polling loops, waiting for external events. They may be implemented in hardware as a distinct system
with control lines, or they may be integrated into the memory subsystem.

Interrupts can be categorized into:
(i) Maskable interrupt
(ii) Non-maskable interrupt (NMI)
(iii) Inter-processor interrupt (IPI)
(iv) Software interrupt, and
(v) Spurious interrupt.

Interrupt and Stack Organisation 217

is a hardware interrupt that may be ignored by setting a bit in an interrupt mask register’s (IMR) bit-
mask. The processor can inhibit certain types of interrupts by use of a special interrupt mask bit. This
mask bit is part of the flags/condition code register, or a special interrupt register. In the 8086
microprocessor if this bit is clear, and an interrupt request occurs on the Interrupt Request input, it is
ignored.

(NMI) is a hardware interrupt that lacks an associated bit-mask, so that it can never be ignored.
NMIs are often used for timers, especially watchdog timers. These are associated with high priority
tasks which cannot be ignored (like memory parity or bus faults). In general, most processors support
the Non-Maskable Interrupt (NMI). This interrupt has absolute priority, and when it occurs, the processor
will finish the current memory cycle, then branch to a special routine written to handle the interrupt
request.

(IPI) is a special case of interrupt that is generated by one processor to interrupt another processor
in a multiprocessor system.

is an interrupt generated within a processor by executing an instruction. Software interrupts are
often used to implement system calls because they implement a subroutine call with a CPU ring
level change.

is a hardware interrupt that is unwanted. They are typically generated by system conditions such
as electrical interference on an interrupt line or through incorrectly designed hardware.

A level-triggered interrupt is a class of interrupts where the presence of an un-serviced interrupt
is indicated by a particular state, high level or low level, of the interrupt request line. A device wishing to
signal an interrupt drives line to its active level, and then holds it at that level until serviced. It ceases
asserting the line when the CPU commands it to or otherwise handles the condition that caused it to
signal the interrupt.

An edge-triggered interrupt is a class of interrupts that are signalled by a level transition on the
interrupt line, either a falling edge (high to low) or a rising edge (low to high). A device wishing to signal
an interrupt drives a pulse onto the line and then releases the line to its inactive state. If the pulse is too
short to be detected by polled I/O then special hardware may be required to detect the edge.

218 Zero to Mastery in Computer Architecture and Organisation

Multiple devices may share an edge-triggered interrupt line if they are designed to. The interrupt
line must have a pull-down or pull-up resistor so that when not actively driven it settles to one particular
state. Devices signal an interrupt by briefly driving the line to its non-default state, and let the line float
(do not actively drive it) when not signalling an interrupt. This type of connection is also referred to
as open collector. The line then carries all the pulses generated by all the devices. (This is analogous to
the pull cord on some buses and trolleys that any passenger can pull to signal the driver that they are
requesting a stop.) However, interrupt pulses from different devices may merge if they occur close in
time. To avoid losing interrupts the CPU must trigger on the trailing edge of the pulse (e.g. the rising
edge if the line is pulled up and driven low). After detecting an interrupt the CPU must check all the
devices for service requirements.

Edge-triggered interrupts do not suffer the problems that level-triggered interrupts have with
sharing. Service of a low-priority device can be postponed arbitrarily, and interrupts will continue to be
received from the high-priority devices that are being serviced. If there is a device that the CPU does not
know how to service, it may cause a spurious interrupt, or even periodic spurious interrupts, but it does
not interfere with the interrupt signalling of the other devices. However, it is fairly easy for an edge
triggered interrupt to be missed - for example if interrupts have to be masked for a period - and unless
there is some type of hardware latch that records the event it is impossible to recover. Such problems
caused many “lockups” in early computer hardware because the processor did not know it was expected
to do something. More modern hardware often has one or more interrupt status registers that latch the
interrupt requests; well written edge-driven interrupt software often checks such registers to ensure
events are not missed.

The elderly Industry Standard Architecture (ISA) bus uses edge-triggered interrupts, but does
not mandate that devices be able to share them. The parallel port also uses edge-triggered interrupts.
Many older devices assume that they have exclusive use of their interrupt line, making it electrically
unsafe to share them. However, ISA motherboards include pull-up resistors on the IRQ lines, so well-
behaved devices share ISA interrupts just fine.

Some systems use a hybrid of level-triggered and edge-triggered signalling. The hardware not only
looks for an edge, but it also verifies that the interrupt signal stays active for a certain period of time.

A common use of a hybrid interrupt is for the NMI (non-maskable interrupt) input. Because NMIs
generally signal major – or even catastrophic – system events, a good implementation of this signal tries
to ensure that the interrupt is valid by verifying that it remains active for a period of time. This 2-step
approach helps to eliminate false interrupts from affecting the system.

A message-signalled interrupt does not use a physical interrupt line. Instead, a device signals its
request for service by sending a short message over some communications medium, typically a computer.
The message might be of a type reserved for interrupts, or it might be of some pre-existing type such as
a memory write.

Message-signalled interrupts behave very much like edge-triggered interrupts, in that the interrupt is
a momentary signal rather than a continuous condition. Interrupt-handling software treats the two in

Interrupt and Stack Organisation 219

much the same manner. Typically, multiple pending message-signalled interrupts with the same message
(the same virtual interrupt line) are allowed to merge, just as closely-spaced edge-triggered interrupts
can merge.

Message-signalled interrupt vectors can be shared, to the extent that the underlying communication
medium can be shared. No additional effort is required.

Because the identity of the interrupt is indicated by a pattern of data bits, not requiring a separate
physical conductor, many more distinct interrupts can be efficiently handled. This reduces the need for
sharing. Interrupt messages can also be passed over a serial bus, not requiring any additional lines.

In a push button analogy applied to computer systems, the term doorbell or doorbell interrupt is
often used to describe a mechanism whereby a software system can signal or notify a hardware device
that there is some work to be done. Typically, the software system will place data in some well known
and mutually agreed upon memory location(s), and “ring the doorbell” by writing to a different memory
location. This different memory location is often called the doorbell region, and there may even be
multiple doorbells serving different purposes in this region. It’s this act of writing to the doorbell region
of memory that “rings the bell” and notifies the hardware device that the data is ready and waiting. The
hardware device would now know that the data is valid and can be acted upon. It would typically write
the data to a hard disk drive, or send it over a network, or encrypt it, etc.

There are two main types of interrupt in the 8086 microprocessor, internal and external hardware
interrupts. Hardware interrupts occur when a peripheral device asserts an interrupt input pin of the
microprocessor. Whereas internal interrupts are initiated by the state of the CPU (e.g. divide by zero
error) or by an instruction.

Provided the interrupt is permitted, it will be acknowledged by the processor at the end of the
current memory cycle. The processor then services the interrupt by branching to a special service
routine written to handle that particular interrupt. Upon servicing the device, the processor is then
instructed to continue with what is was doing previously by use of the “return from interrupt” instruction.

The status of the programme being executed must first be saved. The processors registers will be
saved on the stack, or, at very least, the programme counter will be saved. Preserving those registers
which are not saved will be the responsibility of the interrupt service routine. Once the programme
counter has been saved, the processor will branch to the address of the service routine.

Interrupts are used to ensure adequate service response times by the processing. Sometimes, with
software polling routines, service times by the processor cannot be guaranteed, and data may be lost.
The use of interrupts guarantees that the processor will service the request within a specified time
period, reducing the likelihood of lost data.

220 Zero to Mastery in Computer Architecture and Organisation

The time interval from when the interrupt is first asserted to the time the CPU recognises it. This
will depend much upon whether interrupts are disabled, prioritized and what the processor is currently
executing. At times, a processor might ignore requests whilst executing some indivisible instruction
stream (read-write-modify cycle). The figure that matters most is the longest possible interrupt latency
time.

The time interval between the CPU recognising the interrupt to the time when the first instruction of
the interrupt service routine is executed. This is determined by the processor architecture and clock
speed.

The Operation of an Interrupt sequence on the 8086 Microprocessor:
1. External interface sends an interrupt signal, to the Interrupt Request (INTR) pin, or an internal

interrupt occurs.
2. The CPU finishes the present instruction (for a hardware interrupt) and sends Interrupt

Acknowledge (INTA) to hardware interface.
3. The interrupt type N is sent to the Central Processor Unit (CPU) via the Data bus from the

hardware interface.
4. The contents of the flag registers are pushed onto the stack.
5. Both the interrupt (IF) and (TF) flags are cleared. This disables the INTR pin and the trap or

single-step feature.
6. The contents of the code segment register (CS) are pushed onto the Stack.
7. The contents of the instruction pointer (IP) are pushed onto the Stack.
8. The interrupt vector contents are fetched, from (4 x N) and then placed into the IP and from (4

x N +2) into the CS so that the next instruction executes at the interrupt service procedure
addressed by the interrupt vector.

9. While returning from the interrupt-service routine by the Interrupt Return (IRET) instruction, the
IP, CS and Flag registers are popped from the Stack and return to their state prior to the interrupt

The CPU of most computers comprises of a stack or last-in-first-out (LIFO) list where in information
is stored in such a manner that the item stored last is the first to be retrieved. The operation of a stack can
be compared to a stack of trays. The last tray placed on top of the stack is the first to be taken off.

The stack in digital computers is essentially a memory unit with an address register that can count
only (after an initial value is loaded into it). A Stack Pointer (SP) is the register where the address for the
stack is held because its value always points at the top item in the stack. The physical registers of a stack
are always available for reading or writing unlike a stack of trays where the tray itself may be taken out
or inserted because it is the content of the word that is inserted or deleted.

A stack has only two operations i.e. the insertion and deletion of items. The operation insertion is
called push (or push-down) because it can be thought of as the result of pushing a new item on top. The

Interrupt and Stack Organisation 221

deletion operation is called pop (or pop-up) because it can be thought of as the result of removing one
item so that the stack pops up. In actual, nothing is exactly pushed or popped in a computer stack.
These operations are simulated by incrementing or decrementing the stack pointer register.

There are two ways to place a stack. Either it can be placed in a portion of a large memory or it can
be organized as a collection of a finite number of memory words or registers. The organization of a 64-
word register stack is exhibited. A binary number whose value is equal to the address of the word that
is currently on top of the stack is contained by the stack pointer register. Three items are placed in the
stack - A, B and C in that order. Item C is on top of the stack so that the content of SP is now 3. To
remove the top item, the stack is popped by reading the memory word at address 3 and decrementing
the content of SP. Item B is now on top of the stack since SP holds address 2. To insert a new item, the
stack is pushed by incrementing SP and writing a word in the next-higher location in the stack. Note that
item C has been read out but not physically removed.

This does not matter because when the stack is pushed, a new item is written in its place.
In a 64-word stack, the stack pointer contains 6 bits because 26 = 64. Since SP has only six bits, it

cannot exceed a number greater than 63 (111111 in binary). When 63 is incremented by l, the result is 0
since 111111 + 1 = 1000000 in binary, but SP can accommodate only the six least significant bits.
Similarly, when 000000 is decremented by 1, the result is 111111. The 1-bit register FULL is set to 1
when the stack is full, and the one-bit register EMTY is set to 1 when the stack is empty of items.

DR is the data register that holds the binary data to be written into or read out of the stack. Initially,
SP is cleared to 0, EMTY is set to 1, and FULL is cleared to 0, so that SP points to the word at address
0 and the stack is marked empty and not full. If the stack is not full (if FULL = 0), a new item is inserted
with a push operation. The push operation is implemented with the following sequence of micro-
operations:

SP SP + 1 Increment stack pointer
M[SP] DR Write item on top of the stack
If (SP = 0) then (FULL l) Check if stack is full
The stack pointer is incremented so that it points to the address of the next-higher word. The word

from DR is inserted into the top of the stack by the memory write operation. The M[SP] denotes the
memory word specified by the address presently available in SP whereas the SP holds the address the
top of the stack. The storage of the first item is done at address 1 whereas as the last item is store at
address 0. If SP reaches 0, the stack is full of items, so FULL is set to 1. This condition is reached if the
top item prior to the last push was in location 63 and after incrementing SP, the last item is stored in
location 0. Once an item is stored in location 0, there are no more empty registers in the stack. If an item
is written in the stack, obviously the stack cannot be empty, so EMTY is cleared to 0.

A new item is deleted from the stack if the stack is not empty (if EMTY < > 0). The pop operation
consists of the following sequence of micro-operations:

DR M[SP] Read item from the top of stack
SP SP – 1 Decrement stack pointer

222 Zero to Mastery in Computer Architecture and Organisation

If (SP == 0) then (FULL 1) Check if stack is empty
EMTY 0 Mark the stack not full
DR. reads the top item from the stack. Then the stack pointer is decremented. If its value attains

zero, the stack is empty, so EMTY is set to 1. This condition is reached if the item read was in location
1. Once this item is read out, SP is decremented and it attain reaches the value 0, which is the initial value
of SP. Note that if a pop operation reads the item from location 0 and then SP is decremented, SP
changes to 111111, which is equivalent to decimal 63. In this configuration, the word in address 0
receives the last item in the stack. Note also that an erroneous operation will result if the stack is pushed
when FULL = 1 or popped when EMPTY = 1.

As shown in Fig. 12.1, stack can exist as a stand-alone unit or can be executed in a random-access
memory attached to a CPU. The implementation of a stack in the CPU is done by assigning a portion of
memory. A portion of memory is assigned to a stack operation and a processor register is used as a stack
pointer to execute stack in the CPU.

The address of the next instruction in the program is located by the program counter PC while an
array of data is pointed by address register AR. The top of the stack is located by the stack pointer SP. The
three registers are connected to a common address bus, which connects the three registers and either one
can provide an address for memory. PC is used during the fetch phase to read an instruction. AR is used
during the execute phase to read an operand. SP is used to push or pop items into or from the stack.

PC

AR

SP

Memory unit Address

Program
Instruction

Data
Operands

Stack

DR

1000

2000

3000

3997
3998
3999
4000
4001

Fig. 12.1: Computer Memory with program, data, and slack segments

Interrupt and Stack Organisation 223

Fig 12.0 displays the initial value of SP at 4001 and the growing of stack with decreasing addresses.
Thus the first item stored in the stack is at address 4000, the second item is stored at address 3999, and
the last address that can be used for the stack is 3000. No checks are provided for checking stack limits.

We assume that the items in the stack communicate with a data register DR. A new item is inserted
with the push operation as follows:

SP SP – 1
M[SP] DR
The stack pointer is decremented so that it points at the address of the next word. A memory write

operation inserts the word form DR into the top of the stack. A new item is deleted with a pop operation
as follows:

DR M[SP]
SP SP + 1
The top item is read from the stack into DR. The stack pointer is then incremented to point at the

next item in the stack.
Most computers are not equipped with hardware to check for stack overflow (full stack) or underflow

(empty stack). The stack limits can be checked by using two processor registers: one to hold the upper
limit (3000 in this case), and the other to hold the lower limit (40001 in this case). After a push operation,
SP is compared with the upper-limit register and after a pop operation, SP is compared with the lower-
limit register.

Reverse Polish Notation is a way of expressing arithmetic expressions that avoids the use of brackets
to define priorities for evaluation of operators. In ordinary notation, one might write (3 + 5) * (7 - 2) and
the brackets tell us that we have to add 3 to 5, then subtract 2 from 7, and multiply the two results
together. In RPN, the numbers and operators are listed one after another, and an operator always acts on
the most recent numbers in the list.

The numbers can be thought of as forming a stack, like a pile of plates. The most recent number
goes on the top of the stack.

An operator takes the appropriate number of arguments from the top of the stack and replaces them
by the result of the operation. In this notation the above expression would be

3 5 + 7 2 - *
Reading from left to right, this is interpreted as follows:
• Push 3 onto the stack.
• Push 5 onto the stack. The stack now contains (3, 5).
• Apply the + operation: take the top two numbers off the stack, add them together, and put the

result back on the stack. The stack now contains just the number 8.
• Push 7 onto the stack.
• Push 2 onto the stack. It now contains (8, 7, 2).
• Apply the - operation: take the top two numbers off the stack, subtract the top one from the one

below, and put the result back on the stack. The stack now contains (8, 5).

224 Zero to Mastery in Computer Architecture and Organisation

• Apply the * operation: take the top two numbers off the stack, multiply them together, and put the
result back on the stack. The stack now contains just the number 40.

Polish Notation was devised by the Polish philosopher and mathematician Jan Lucasiewicz (1878-
1956) for use in symbolic logic. In his notation, the operators preceded their arguments, so that the
expression above would be written as

* + 3 5 - 7 2
The ‘reversed’ form has however been found more convenient from a computational point of view.

Interrupt: is an event that causes the CPU to stop executing the current program and start executing
a special piece of code called an interrupt handler.

Synchronous Interrupt: related to Instructions
Asynchronous Interrupt: Not Related to Instructions
ISR: Interrupt Service Routine
IMR: Interrupt Mask Register
Maskable Interrupt (MI): is a hardware interrupt that may be ignored by setting a bit in an interrupt

mask register’s (IMR) bit-mask.
Non-maskable interrupt (NMI): is a hardware interrupt that lacks an associated bit-mask, so that

it can never be ignored
Inter-Processor Interrupt (IPI): is a special case of interrupt that is generated by one processor

to interrupt another processor in a multiprocessor system.
Software interrupt: is an interrupt generated within a processor by executing an instruction
Spurious interrupt: is a hardware interrupt that is unwanted.
Level-Triggered Interrupt: is a class of interrupts where the presence of an un-serviced interrupt

is indicated by a particular state, high level or low level, of the interrupt request line
Edge-Triggered Interrupt: is a class of interrupts that are signalled by a level transition on the

interrupt line, either a falling edge (high to low) or a rising edge (low to high)
Hybrid Interrupt: Hybrid of level-triggered and edge-triggered signalling
Message-Signalled Interrupt: A device signals its request for service by sending a short message

over some communications medium.
Doorbell Interrupt :is used to describe a mechanism whereby a software system can signal or

notify a hardware device that there is some work to be done.
Interrupt Latency: The time interval from when the interrupt is first asserted to the time the CPU

recognises
Interrupt Response Time: The time interval between the CPU recognising the interrupt to the

time when the first instruction of the interrupt service routine is executed
Stack Organization: The CPU of most computers comprises of a stack or last-in-first-out (LIFO)

list where in information is stored in such a manner that the item stored last is the first to be retrieved.
Register Stack: Stack is implemented in Register

Interrupt and Stack Organisation 225

Memory Stack: stack is implemented in some portion of memory
Reverse Polish Notation: is a way of expressing arithmetic expressions that avoids the use of

brackets to define priorities for evaluation of operators
Address Sequencing: It is the procedure for ensuring that received address messages concerning

a call attempt are processed in the correct order

Q.1 What are Interrupts? How Interrupts is similar to Procedure?
Q.2 Discuss the various categories of Interrupt.
Q.3 What are various Types of Interrupt? Explain each in detail.
Q.4 What do you understand with term of ‘Stack Organisation’ Explain?
Q.5 Discuss the Register and memory Stack Organization.

Write the Differences Between
(i) Synchronous Interrupt and Asynchronous Interrupt
(ii) Software Interrupt and Hardware Interrupt
(iii) Maskable Vs Non-Maskable Interrupt
(iv) Interrupt Latency and Interrupt Response Time
(v) Register stack Vs Memory Stack

Write Short Note on
(i) Interrupt service Routine
(ii) Inter Process Interrupt
(iii) Spurious Interrupt
(iv) Edge-Triggered Interrupt
(v) Door Bell Interrupt
(vi) Reverse Polish Notation
(vi) Address Sequencing

226 Zero to Mastery in Computer Architecture and Organisation

• Memory System
• Main Memory
• Secondary Memory

• Memory Hierarchy
• Cache Memory

• Direct Mapping
• Two Way Associative Mapping
• Associative Mapping

• Replacement Algorithm
• LRU
• FIFO
• LFU

• Writing Strategies
• Write Through
• Copy Back

• Virtual Memory
• Page Table
• Demand Paging

Address Translation
• Control Memory
• Micro-Program Sequencer
• Micro-Instruction Format
• Micro-Operation

Memory System and Micro-Instruction Sequencer and Format 227

• Computer Register
• RTL

 Basically there is TWO main Types of Memory in computer organization:
• Main Memory: It has following characteristic features

• fast, random access,
• expensive,
• Located close (but not inside) the CPU.
• Is used to store program and data which are currently manipulated by the CPU.

• Secondary Memory: It has following characteristic features
• slow,
• cheap,
• direct access,
• Located remotely from the CPU.

What do we need
We need memory to fit very large programs and to work at a speed comparable to that of the

microprocessors, but the Main problem is:
• microprocessors are working at a very high rate and they need large memories;
• memories are much slower than microprocessors;

Facts
• the larger a memory, the slower it is;
• the faster the memory, the greater the cost/bit.

A Solution
It is possible to build a composite memory system which combines a small, fast memory and a large

slow main memory and which behaves (most of the time) like a large fast memory.
The two level principles above can be extended into a hierarchy of many levels including the secondary

memory (disk store).
The effectiveness of such a memory hierarchy is based on property of programs called the principle

of locality

228 Zero to Mastery in Computer Architecture and Organisation

Fig. 13.1: Memory Hierarchy
Some typical characteristics of memories in the Hierarchy:

1. Processor Registers:
• 32 registers of 32 bits each = 128 bytes
• access time = few nanoseconds

2. On-chip Cache Memory:
• capacity = 8 to 32 Kbytes
• access time = ~10 nanoseconds

3. Off-chip Cache Memory:
· capacity = few hundred Kbytes
· access time = tens of nanoseconds

4. Main Memory:
• capacity = tens of Mbytes
• access time = ~100 nanoseconds

5. Hard Disk:
• capacity = few Gbytes
• access time = tens of milliseconds

The key to the success of a memory hierarchy is if data and instructions can be distributed across
the memory so that most of the time they are available, when needed, on the top levels of the hierarchy.

• The data which is held in the registers is under the direct control of the compiler or of the
assembler programmer.

• The contents of the other levels of the hierarchy are managed automatically:
• migration of data/instructions to and from caches is performed under hardware control;
• migration between main memory and backup store is controlled by the operating system (with

hardware support).

Memory System and Micro-Instruction Sequencer and Format 229

 A cache memory is a small, very fast memory that retains copies of recently used information from
main memory. It operates transparently to the programmer, automatically deciding which values to keep
and which to overwrite.

Fig. 13.2: Cache Memory
• The processor operates at its high clock rate only when the memory items it requires are held in

the cache.
• The overall system performance depends strongly on the proportion of the memory accesses

which can be satisfied by the cache
• An access to an item which is in the cache: hit
• An access to an item which is not in the cache: miss.
• The proportion of all memory accesses that are satisfied by the cache: hit rate
• The proportion of all memory accesses that are not satisfied by the cache: miss rate
• The miss rate of a well-designed cache: few %
• Cache space (~KBytes) is much smaller than main memory (~MBytes);
• Items have to be placed in the cache so that they are available there when (and possibly only

when) they are needed.
• How can this work?

The answer is: locality
During execution of a program, memory references by the processor, for both instructions and

data, tend to cluster: once an area of the program is entered, there are repeated references to a small set
of instructions (loop, subroutine) and data (components of a data structure, local variables or parameters

230 Zero to Mastery in Computer Architecture and Organisation

on the stack).
Temporal locality (locality in time): If an item is referenced, it will tend to be referenced again

soon.
Spacial locality (locality in space): If an item is referenced, items whose addresses are close by

will tend to be referenced soon.
Problems concerning cache memories:

• How many caches?
• How to determine at a read if we have a miss or hit?
• If there is a miss and there is no place for a new slot in the cache which information should be

replaced?
• How to preserve consistency between cache and main memory at write?

Separate Data and Instruction Caches
• The figure shows architecture with a unified instruction and data cache.
• It is common also to split the cache into one dedicated to instructions and one dedicated to data.

Advantages of unified caches:
• They are able to better balance the load between instruction and data fetches depending on the

dynamics of the program execution;
• Design and implementation are cheaper.

 Advantages of split caches (Harvard Architectures)
• Competition for the cache between instruction processing and execution units is eliminated
Instruction fetch can proceed in parallel with memory access from the execution unit.

Fig. 13.3: unified instruction & Data Cache

Memory System and Micro-Instruction Sequencer and Format 231

Example:
 A cache of 64 Kbytes
• Data transfer between cache and main memory is in blocks of 4 bytes; we say the cache is

organized in lines of 4 bytes;
• A main memory of 16 Mbytes; each byte is addressable by a 24-bit address (224=16M)
• the cache consists of 214 (16K) lines - the main memory consists of 222 (4M) blocks

Questions:
• When we bring a block from main memory into the cache where (in which line) do we put it?
• When we look for the content of a certain memory address
• In which cache line do we look for it?
• How do we know if we have found the right
• Information (hit) or not (miss)?

Fig. 13.4: Direct Mapping

232 Zero to Mastery in Computer Architecture and Organisation

If we had a miss, the block will be placed in the cache line which corresponds to the 14 bits field in
the memory address of the respective block

memory block is mapped into a unique cache line, depending on the memory address of the respective
block.

• A memory address is considered to be composed of Three fields:
1. The least significant bits (2 in our example)

Identify the byte within the block;
2. The rest of the address (22 bits in our example)

Identify the block in main memory; for the cache logic, this part is interpreted as two fields:
2a. the least significant bits (14 in our example) specify the cache line;
2b. the most significant bits (8 in our example) represent the tag, which is stored in the cache

together with the line.
• Tags are stored in the cache in order to distinguish among blocks which fit into the same cache

line.
Advantages

• simple and cheap;
• the tag field is short; only those bits have to be stored which are not used to address the cache

(compare with the following approaches);
• Access is very fast.

Disadvantage
• a given block fits into a fixed cache location a given cache line will be replaced whenever there is

a reference to another memory block which fits to the same line, regardless what the status of the
other cache lines is.
This can produce a low hit ratio, even if only a very small part of the cache is effectively used.

Memory System and Micro-Instruction Sequencer and Format 233

Fig. 13.5: Two-Way Associative Mapping
If we had a miss, the block will be placed in one of the two cache lines belonging to that set which

corresponds to the 13 bits field in the memory address. The replacement algorithm decides which line to
use.

• A memory block is mapped into any of the lines of a set. The set is determined by the memory
address, but the line inside the set can be any one.

• If a block has to be placed in the cache the particular line of the set will be determined according
to a replacement algorithm.

• The memory address is interpreted as three fields by the cache logic, similar to direct mapping.
However, a smaller number of bits (13 in our example) are used to identify the set of lines in the
cache; correspondingly, the tag field will be larger (9 bits in our example).

• Several tags (corresponding to all lines in the set) have to be checked in order to determine if
we have a hit or miss. If we have a hit, the cache logic finally points to the actual line in the
cache.

• The number of lines in a set is determined by the designer;

234 Zero to Mastery in Computer Architecture and Organisation

• 2 lines/set: two-way set associative mapping
• 4 lines/set: four-way set associative mapping
• Set associative mapping keeps most of the advantages of direct mapping:

• short tag field
• fast access
• relatively simple

• Set associative mapping tries to eliminate the main shortcoming of direct mapping; a certain
flexibility is given concerning the line to be replaced when a new block is read into the cache.

• Cache hardware is more complex for set associative mapping than for direct mapping.
• In practice 2 and 4-way set associative mapping are used with very good results. Larger sets do

not produce further significant performance improvement.
• if a set consists of a single line Direct Mapping;
• If there is one single set consisting of all lines Associative Mapping.

Fig. 13.6: Associative Mapping

Memory System and Micro-Instruction Sequencer and Format 235

If we had a miss, the block will be placed in one of the 214 cache lines. The replacement algorithm
decides which line to use.

• A memory block can be mapped to any cache line.
• If a block has to be placed in the cache the particular line will be determined according to a

replacement algorithm.
• The memory address is interpreted as two fields by the cache logic. The lest significant bits (2 in

our example) identify the byte within the block; All the rest of the address (22 bits in our example)
is interpreted by the cache logic as a tag.

• All tags, corresponding to every line in the cache memory, have to be checked in order to determine
if we have a hit or miss. If we have a hit, the cache logic finally points to the actual line in the
cache. The cache line is retrieved based on a portion of its content (the tag field) rather than its
address. Such a memory structure is called associative memory.

Advantages
• Associative mapping provides the highest flexibility concerning the line to be replaced when a

new block is read into the cache.
Disadvantages

• Complex
• The tag field is long
• fast access can be achieved only using high Performance associative memories for the cache,

which is difficult and expensive.

When a new block is to be placed into the cache, the block stored in one of the cache lines has to be
replaced.

• With direct mapping there is no choice.
• With associative or set-associative mapping a replacement algorithm is needed in order to determine

which block to replace (and, implicitly, in which cache line to place the block)
• with set-associative mapping, the candidate lines are those in the selected set
• with associative mapping, all lines of the cache are potential candidates
Random Replacement: One of the candidate lines is selected randomly.
All the other policies are based on information concerning the usage history of the blocks in the

cache.
 Least Recently Used (LRU): The candidate line is selected which holds the block that has been in

the cache the longest without being referenced.
 First-in-first-out (FIFO): The candidate line is selected which holds the block that has been in

the cache the longest.
 Least Frequently Used (LFU): The candidate line is selected which holds the block that has got

the fewest references.
• Replacement algorithms for cache management have to be implemented in hardware in order to

be effective.

236 Zero to Mastery in Computer Architecture and Organisation

• LRU is the most efficient: relatively simple to implement and good results.
• FIFO is simple to implement.
• Random replacement is the simplest to implement and results are surprisingly good.

The problem
How to keep cache content and the content of main memory consistent without losing too much

performance?
Problems arise when a write is issued to a memory address, and the content of the respective

address is potentially changed.

All write operations are passed to main memory; if the addressed location is currently hold in the
cache, the cache is updated so that it is coherent with the main memory.

For writes, the processor always slows down to main memory speed.

The same as write-through, but instead of slowing the processor down by writing directly to main
memory, the write address and data are stored in a high-speed write buffer; the write buffer transfers
data to main memory while the processor continues its task.

• higher speed,
• more complex hardware

• Write operations update only the cache memory which is not kept coherent with main memory;
cache lines have to remember if they have been updated; if such a line is replaced from the cache,
its content has to be copied back to memory.

• good performance (usually several writes are performed on a cache line before it is replaced and
has to be copied into main memory),

• complex hardware
• Cache coherence problems are very complex and difficult to solve in multiprocessor systems.

Some Cache Architectures
Intel 80486
• a single on-chip cache of 8 Kbytes
• line size: 16 bytes
• 4-way set associative organization
Pentium
• two on-chip caches, for data and instructions.
• each cache: 8 Kbytes
• line size: 32 bytes
• 2-way set associative organization

Memory System and Micro-Instruction Sequencer and Format 237

An imaginary memory area supported by some operating systems (for example, Windows but
not DOS) in conjunction with the hardware. You can think of virtual memory as an alternate set of
memory addresses. Programs use these virtual addresses rather than real addresses to store instructions
and data. When the program is actually executed, the virtual addresses are converted into real memory
addresses.
How it is Implemented

The address space needed and seen by programs is usually much larger than the available main
memory.

Only one part of the program fits into main memory, the rest is stored on secondary memory (hard
disk).

• In order to be executed or data to be accessed, a certain segment of the program has to be first
loaded into main memory; in this case it has to replace another segment already in memory.

• Movement of programs and data, between main memory and secondary storage, is performed
automatically by the operating system. These techniques are called virtual-memory techniques.

• The binary address issued by the processor is a virtual (logical) address; it considers a virtual
address space, much larger than the physical one available in main memory.

Fig. 13.7: virtual Memory Organization

238 Zero to Mastery in Computer Architecture and Organisation

If a virtual address refers to a part of program or data that is currently in the physical memory
(cache, main memory), then the appropriate location is accessed immediately using the respective
physical address; if this is not the case, the respective program/data has to be transferred first from
secondary memory.

• A special hardware unit, Memory Management Unit (MMU), translates virtual addresses into
physical ones.

• The virtual programme space (instructions + data) is divided into equal, fixed-size chunks called
pages.

• Physical main memory is organized as a sequence of frames; a page can be assigned to an
available frame in order to be stored (page size = frame size).

• The page is the basic unit of information which is moved between main memory and disk by the
virtual memory system.

• Common page sizes are: 2 - 16Kbytes.
Demand Paging

• The program consists of a large amount of pages which are stored on disk; at any one time, only
a few pages have to be stored in main memory.

• The operating system is responsible for loading/ replacing pages so that the number of page faults
is minimized.

• We have a page fault when the CPU refers to a location in a page which is not in main memory;
this page has then to be loaded and, if there is no available frame, it has to replace a page which
previously was in memory.

Fig. 13.8: Demand Paging

Memory System and Micro-Instruction Sequencer and Format 239

• Accessing a word in memory involves the translation of a virtual address into a physical one:
• virtual address: page number + offset
• physical address: frame number + offset

• Address translation is performed by the MMU using a page table.
Example:

• Virtual memory space: 2 Gbytes
(31 address bits; 231 = 2 G)

• Physical memory space: 16 Mbytes (224=16M)
• Page length: 2Kbytes (211 = 2K), therefore,

Total number of pages: 220 = 1M and
Total number of frames: 213 = 8K

virtual address20bit 11bit
13bit 11bit

page tableCtrl frame nrbits in mem.

physical address
main memory

2 Kbytes
Entry 0Entry 1

Entry 2 –120

Frame 0Frame 1

Frame 2 -13

page nmbr. offset

If page faultthen OS is activated in order to loadmissed page
Fig. 13.9: Address Translation in Cache Memory

Is the data structure used by a virtual memory system in a computer operating system to store the
mapping between virtual addresses and physical addresses. Virtual addresses are those unique to the
accessing process. Physical addresses are those unique to the hardware, i.e., RAM.

• The page table has one entry for each page of the virtual memory space.
• Each entry of the page table holds the address of the memory frame which stores the respective

page, if that page is in main memory.

240 Zero to Mastery in Computer Architecture and Organisation

• Each entry of the page table also includes some control bits which describe the status of the page:
• Whether the page is actually loaded into main memory or not;
• If since the last loading the page has been modified;
• Information concerning the frequency of access, etc.

Problems
• The page table is very large (number of pages in virtual memory space is very large).
• Access to the page table has to be very fast, therefore the page table has to be stored in very fast

memory, on chip.
A special cache is used for page table entries, called translation lookaside buffer (TLB); it works

in the same way as an ordinary memory cache and contains those page table entries which have been
most recently used.

• The page table is often too large to be stored in main memory so that Virtual memory techniques
are used to store the page table itself only part of the page table is stored in main memory at a
given moment.
The page table itself is distributed along the memory hierarchy:

• TLB (cache)
• Main memory
• Disk

Memory Reference with Virtual Memory and TLB
request access tovirtual address

Yes

Check TLB

Page tableentry inTLB? (pag es surely inmain memory)No
Access page table(if entry not inmain memory, apage fault isproduced and OSloads missed partof the page table)

No

YesOS activated:
update TLB- loads missedpages into mainmemory;- if memory isfull, replacesan “old” page;- updates pagetable

generate physicaladdress
access cacheand, if miss,main memory

Fig. 13.10: Memory Reference with Virtual Memory and TLB

Memory System and Micro-Instruction Sequencer and Format 241

• Memory access is solved by hardware except the page fault sequence which is executed by the
OS software.

• The hardware unit which is responsible for translation of a virtual address into a physical one is
the Memory Management Unit (MMU).

• When a new page is loaded into main memory and there is no free memory frame, an existing
page has to be replaced.

The decision on which page to replace is based on the same speculations like those for replacement
of blocks in cache memory; LRU strategy is often used to decide on which page to replace.

• When the content of a page, which is loaded into main memory, has been modified as result of a
write, it has to be written back on the disk after its replacement.

One of the control bits in the page table is used in order to signal that the page has been modified.
Summary

• A memory system has to fit very large programs and still to provide fast access.
• A hierarchical memory system can provide needed performance, based on the locality of reference.
• Cache memory is an essential component of the memory system; it can be a single cache or

organized as separate data and instruction caches.
• Cache memories can be organized with Direct Mapping, Set Associative Mapping, and Associative

Mapping
• When a new block is brought into the cache, another one has to be replaced; in order to decide on

which one to replace different strategies can be used: Random, LRU, FIFO, LFU, etc.
• In order to keep the content of the cache coherent with main memory, certain write strategies

have to be used: write-through, write-through with buffered write, copy-back.
• The address space seen by programs is a virtual one and is much larger than the available physical

space.
• Demand paging is based on the idea that only a part of the pages is in main memory at a certain

moment; the OS loads pages into memory when needed.
• The MMU translates a virtual address into a physical one; this is solved using the page table.
• The page table itself is distributed along the memory hierarchy: TLB (cache), main memory, disk.

We know that there are mainly two different types of control units:
• Microprogrammed and
• Hardwired.
In microprogrammed control, the control signals associated with operations are stored in special

memory units inaccessible by the programmer as control words. A control word is a microinstruction
that specifies one or more microoperations.

242 Zero to Mastery in Computer Architecture and Organisation

A sequence of microinstructions is called a microprogram, which is stored in a ROM or RAM called
a Control Memory (CM). The idea of microprogrammed control is to store the control signals associated
with the implementation of a certain instruction as a microprogram in a special memory called a Control
Memory (CM).

Microinstructions are fetched from CM the same way program instructions are fetched from main
memory.

Fig. 13.11: Fetching Micro-instruction (Control Word)
A microprogram sequencer for generating in a proper sequence the addresses of the successive

microinstructions used in executing a given machine instruction includes a PROM next address generator
that produces the successive addresses.

 The successive addresses are utilized as the successive microinstructions. Each address produced
includes a normal next address, but this normal next address may be alterable by address alteration
signals that are generated in response to a number of sensed conditions within the computer and in
response to predetermined machine instruction register bits. The address alteration of a normal next
address, if required, is accomplished within the same clock period in which the normal next address is
initially formed, permitting jump or branch instructions to be performed as rapidly as normal instructions.

No mapping PROM, microsequencer counter, no microsequencer incrementer are needed to
implement the present invention.A microprogram sequencer for generating in a proper sequence, including
required branching, the addresses of the successive microinstructions used in executing a given machine
instruction by a computer of the type in which status signals are produced which represent the status of
various components of the computer, and in which the operation of the various components is
synchronized by a clock which generates a periodic clock signal demarking successively occurring
machine cycle clock periods, said microprogram sequencer comprising in combination:

Address Generator Memory means for producing during a current machine cycle period a first
set of output signals including a first code set of signals designating a normal next input address for said
address generator memory means;

Selector means receiving as inputs applied status signals, instruction signals, and predetermined
ones of the set of output signals produced by said address generator memory means, and responsive to
the received signals during the current machine cycle period for selectively producing address alteration
signals during the current machine cycle period;

means for logically combining said address alteration signals and said first code set of signals
designating a normal next address during the current machine cycle period to selectively alter the first
code set of signals to represent an altered next input address, any alteration of the first code set of
signals being established before the end of the current machine cycle period; and means for applying the

Memory System and Micro-Instruction Sequencer and Format 243

first code set of signals to said address generator memory means during the current machine cycle
period as the input address thereto, said address generator memory means being responsive to such
application of the first code set of signals, whether altered or unaltered, for producing during the next
successive machine cycle period a selectively corresponding second set of output signals including a
second code set of signals designating the next successive normal input address for said address generator
memory means.

Microprogram Sequencer Block Diagram
R (Am2909A Only)

Registerenable
RE Address REG/Holding REG

D and RConnectedOn am2911AOnly
4

4

4 44D
DirectInputs 4 Clock

4 × 4 File

Microprogramcounter Register
S0
S1

Or3Or2Or1Or0

Zero

x1x0 x2 x3
Multiplexer

D AR F PC

OutputControl
OE Y0 Y1 Y2 Y3 Cn Cn+4

Incrementer

4

Stack Pointer

PUP File enable
4

Fig. 13.12: Block Diagram of Micro-Control Sequencer

Control memory is a Random Access Memory (RAM) consisting of addressable storage registers.
It is primarily used in mini and mainframe computers. It is used as a temporary storage for data. Access

244 Zero to Mastery in Computer Architecture and Organisation

to control memory data requires less time than to main memory; this speeds up CPU operation by
reducing the number of memory references for data storage and retrieval. Access is performed as part
of a control section sequence while the master clock oscillator is running.

We can choose the number of fields a microinstruction should have and which control signals
should be affected by each field. In choosing the format:

(a) simplify the representation
Ex: The mnemonics Add, Subt and Func can represent the function to be performed by ALU.
(b) try to make it easier to write and understand microprogram.
Ex: It is useful to have one field controlling the ALU, two fields to determine the two sources for the

ALU, and one field to determine the destination of ALU result
(c) make it difficult to write inconsistent microinstructions.
Ex: From the three write signals RegWrite, MemWrite and IRWrite only one must be asserted in a

given cycle. If the mnemonics of these three signals share the same microinstruction field, we
can place only one mnemonics to that field, restricting these three signals to one at a time.

In selecting the microinstruction format for MIPS subset multi clock cycle implementation, we can
assume that signals that are never asserted simultaneously may share the same field.

We can thus define the following 8 fields:

Fig. 13.13: Instruction Format for MIPS
Field names and their functions:

1. ALU Control: Specify the operation to be performed by ALU.
2. SRC1: Specify the source for the 1st ALU operand.
3. SRC2: Specify the source for 2nd ALU operand.
4. ALU Dest.: Specify the register to be written from ALU result.
5. Memory: Specify read/write and the address source for memory.
6. Memory Reg.: Specify the reg. Destination (for a memory read) or the source of value to be

written (for a memory write).
7. PCWrite Contr.: Specify the update of PC.
8. Sequencing: Specify how to choose the next microinstruction to be executed.

Micro operations: operations executed on data stored in one or more registers. The sequence of
micro operations to be performed stored in binary form in the registers. The result of the operation may
be:

Memory System and Micro-Instruction Sequencer and Format 245

• Replace the previous Binary Information of a Register or
• Transferred to another Register

It is the procedure for ensuring that received address messages concerning a call attempt are
processed in the correct order. In serial data devices, such as EEPROM, Flash and Hard Drives where
data is exchanged serially; addresses need to be sent with the data for each byte or block of data.

In parallel data devices, such as DRAM, an address is sent with every byte. With address sequencing,
if the data is sequential and not scattered (see “defragmentation” for hard drives or the use of the TRIM
command for SSDs and Flash), special read/write commands that do not need to resend address data
can be used. This can speed up data access and, for DRAM, save on battery life by not needing to send
an address each time.

Micro-Instruction are stored in control Memory in form of groups and each group is specifying
routine each computer instruction has own routine in the control memory to generate part of instruction
.each instruction has own microinstruction in given location of control memory

When the execution of instruction is completed, control must be return to fetch routine, this done
by executing un-conditional branch microinstruction to the first address of fetch routine

The address sequencing capabilities are required in the following Four situations:
• Incrementing of control Address Register
• Unconditional branch or conditional branch depending on status bit
• Mapping process from the bits of instruction to the address of control memory
• A facility to routine call and return

Computer registers are binary storage device, that group are of various flip-flops and designated by
capital letters (sometimes followed by numerals):

• R1: processor register
• MAR: Memory Address Register (holds an address for a memory unit)
• PC: Program Counter
• IR: Instruction Register
• SR: Status Register
• The individual flip-flops in an n-bit register are numbered in sequence from 0 to n-1 (from the

right position toward the left position)

Fig. 13.14: Block Diagram of Register

246 Zero to Mastery in Computer Architecture and Organisation

A symbolic notation to describe the micro operation transfers among registers:
Examples

• Information transfer from one register to another is described by a replacement operator:
 R2 R1

• This statement denotes a transfer of the content of register R1 into register R2)
• The transfer happens in one clock cycle
• The content of the R1 (source) does not change
• The content of the R2 (destination) will be lost and replaced by the new data transferred from R1

• Conditional transfer occurs only under a control condition
• Representation of a (conditional) transfer

 P: R2 R1
• A binary condition (P equals to 0 or 1) determines when the transfer occurs
• The content of R1 is transferred into R2 only if P is 1

Table: 13.0 Represent Basic Symbols of Register Transfers
Basic Symbols for Register Transfer

Symbos Description Examples
Letters and Denotes a register Mar, R2
numerals
Parenthesis () Denotes a part of R2(0-7), R2(L)

a register
Arrow Denotes transfer R2 R2

of information
Comma, Separates two R2 R1, R1 R2

microoperations

Memory: is used to store Data and Instructions in Binary Form
Memory Hierarchy: is the arrangement of various categories of memories based on size, cost &

Speed
Main Memory: is Semiconductor, fast Memory and located close to CPU
Secondary Memory: Direct Accessed, Cheap, Slow and Located remotely to CPU
Cache memory: is a small, very fast memory that retains copies of recently used information from

main memory
Cache hit: An access to an item which is in the cache
Cache miss: An access to an item which is not in the cache
Cache hit-rate: The proportion of all memory accesses that are satisfied by the cache

Memory System and Micro-Instruction Sequencer and Format 247

Cache miss-rate: The proportion of all memory accesses that are not satisfied by the cache
Temporal locality (locality in time): If an item is referenced, it will tend to be referenced again

soon.
Spacial locality (locality in space): If an item is referenced, items whose addresses are close by

will tend to be referenced soon.
Least Recently Used (LRU): The candidate line is selected which holds the block that has been in

the cache the longest without being referenced.
 First-in-First-Out (FIFO): The candidate line is selected which holds the block that has been in

the cache the longest.
 Least frequently used (LFU): The candidate line is selected which holds the block that has got

the fewest references.
Virtual Memory: use virtual addresses rather than real addresses to store instructions and data
Address Translation: It is the translation of a virtual address into a physical one
Page Table: is the data structure used by a virtual memory system in a computer operating system to

store the mapping between virtual addresses and physical addresses
Control Word: is a microinstruction that specifies one or more microoperations.
Micro-Program: A sequence of microinstructions
Control Memory: storation of the control signals in a special memory called a control memory

(CM).
Microprogram Sequencer: for generating in a proper sequence the addresses of the successive

microinstructions used in executing a given machine instruction includes a PROM next address generator
that produces the successive addresses

Micro Operations: operations executed on data stored in one or more registers
Adress Sequencing:It is the procedure for ensuring that received address messages concerning a

call attempt are processed in the correct order.
Computer Registers: are binary storage device

Q.1 Discuss the main Problems with the Memory System in detail.
Q.2 What is Cache Memory? How it is differ from Main Memory?
Q.3 Discuss the-Cache hit, miss, hit-rate & miss-rate.
Q.4 Write the various cache mapping algorithms.
Q.5 Comapre advantages and dis-advantages of various cache mapping algorithms.
Q.6 What do you understand with Micro-program sequencer Explain with Block Diagram?

Write Short Note On:
(i) Page Replacement in cache
(ii) Advantages and Dis-advantages of Direct Mapping
(iii) Page Replacement-LRU,FFIFO,LFU

248 Zero to Mastery in Computer Architecture and Organisation

(iv) Virtual Memory
(v) Page-Table
(vi) Address Translation
(vii) Control Word
(viii) Control Memory
(ix) Instruction Format
(x) Micro-Program
(xi) Micro-operations
(xii) Address Sequencing
(xiii) Computer Register
(xiv) RTL
Differentiate Between Following:

(i) Main Memory Vs Secondary Memory
(ii) Cache hit and miss
(iii) Cache hit-rate & miss-rate
(iv) Temporal and Spacial Locality
(v) Write through and write through buffer write
(vi) Write through and Copy Back
(vii) Micro-operation and Micro-Program
(viii) Micro-Instruction and Micro-Operation

Index 249

A
Accumulator 121
Accumulator machine 121
ADD 200
Addition 23
Address line 164
Addressing Modes 93, 137
Addressing Modes & Instructions 93
Advantages of Interrupts 219
Alphanumeric Code 23
Amdahl’s law 185
Analog systems 26
Application Programs 6
Application Software 5
Applications of De-Coder 44
Applications of Multiplexer 41
Architecture 62
Arithmetic Unit 122
ASCII 38
Associative-mapped address fields 173
Associtative Mapping 234
Asynchronous Binary down Counter 47
Asynchronous Binary Up Counter 46
Autodecrement 142
Autoincrement Mode 142
Auxiliary Storage Devices 10
B
Basic Or Fundamentals Gates 27
Basic Units of Measurement 8
BCD 38
BCD Addition 23, 38

Binary Arithmetic 19
Binary Number System 14
BITS 8
Blue ray Discs 12
Boolean Algebra 33
Boolean algebra 38
Bureaucratic structures 70
Bus Request and Bus Grant Timings in Minimum

mode 205
Byte & Word 4
BYTES 8
C
Cache Memory 167
Cache Memory 9, 229
Cache Memory Organization 171
Cache Operation 169
Cache Organization 231
Cache Performance 170
CD-RW disks 12
Central Processing Architecture 113
Central processing unit 66
Chain 115
CISC Approach 87
CISC Design Decisions 82
CISC/RISC Design Issues 85
Combinational & Sequential Circuits 39
Combinational Logic 39
Communications 194
Comparison of RISC and CISC 86
Complement Subtraction 21
Complex Instruction Set Computer 80
Computer Software 4

250 Zero to Mastery in Computer Architecture and Organisation

Concept of Digits 4
Concept of Parallelism 181
Control Memory& Micro-Program Sequencer 241
Control Unit 123
Copy-back 236
Counters 46
CPU Architecture 113
CPU DataPath 131
CPU Performance 66
CWD 200
D
D flip flop 50
Data Path 113
Data Transfer Instructions 99
De Morgan's Theorems 36
DEC 200
Decimal to binary conversion 15
Decode Cycle 146
Decoder 43
Defining a Microinstruction Format 244
Demultiplexer 42
Derived Gates 30
Design Limitation of Parallel Applications 193
Digital systems 26
Direct 139
Direct Mapping 231
Direct Memory Access 156
Direct or absolute addressing 94
Distributed Memory 191
Divisional structure 71
DMA Controller 156
Dynamic RAM 165
E
Economic Limitations 183
Elements of an Instruction 78
Embedded 7
EN-CODER 45
EPROM 9
Execute Cycle 146
External Devices 150
F
Facts 227

Fetch Cycle Steps 145
Floppy Disk 11
Floppy Disk Drive 175
Flynn's Classification of Computer 13
Functional structure 71
G
General Instruction Format 207
H
Hard Disk 11
Hardware Interrupts 216
Hardware vs. System vs. Application 6
Hexadecimal 38
Hexadecimal to binary 18
High-level language 65
High-level programming language 65
Higher MIPS rating 68
Horizontal microprogram 128
human-computer interaction 65
Hybrid Distributed-Shared Memory 192
Hybrid Interrupt 218
Hybrid-distributed-shred memory 192
I
I/O Function 157
I/O lines in Memory unit 164
I/O Techniques and Memory Hierarchy 150
Idle 115
Immediate addressing 94
Immediate Mode 139
Implied addressing 95
IMUL 200
INC 200
Indexed addressing 96
Indexed Mode 141
Indirect addressing 95
Indirect Mode 140
Input vs Output Module 151
Input/output 64
Instrction Formats 207
Instruction Code and Instruction Format 198
Instruction cycle in Other Architectures of CPU 147
Instruction Format 137, 143
Instruction Pipeline 187

Index 251

Instruction Register 117
Instruction Set and Format Design Issues 105
Instruction Set Architecture 77
Instruction Set: Operations 106
Instruction-level parallelism 186
Inter-Processor Interrupt 217
Interrupt and Stack Organisation 215
Interrupt Types 216
Iteration Control Instructions 202
Iterurrupt in 8086 219
J
JK Flip-flop 50
L
Large control unit 124
Limits to miniaturization 183
Logic Gates & Boolean Algebra 26
Logical terms 3
M
Magnetic Tape 175
Main Memory 162, 228
Major Systems Acquisition Manual 106
manufacturer-programmed 10
Mapping main memory blocks to cache blocks 172
Maskable Interrupt 217
Matrix structure 71
Max Terms 27
Memory cells arranged by address 163
Memory Hierarchy 9, 159
Memory Mapped and Isolated I/O 154
Memory System and Micro-Instruction Sequencer

and 226
Memory Units 7
Memory Write Timing in Maximum mode of 8086

206
Message-signaled Interrupt 218
MFLOPS 67
Micro Architecture 63, 64
Microprogrammed Control 124
Min Terms 27
MIPS 67
Miscellaneous/Privilege 103

Modeling and Simulation 108
Msam Using Simulation 108
Multilevel View Point of Machine 62
Multiple Instruction Multiple Data 14
Multiple Instruction Single Data 14
Multiplexer or Data Selector 41
Multiplying Two Numbers in Memory 87
N
NEG Negate 200
Non-maskable Interrupt 217
Number Systems 14
O
Octal Number System 16
Opearting Systems 5
Operands 78
Optical Disk 177
OR-Gate 28
Organization of CPU 117
Organizational Structure 70
Other Modes 141
Output from Input 26
P
Page Replacement 241
Page Table 226
Parallel Computer Memory Architectures 189
Parallel computing 185
Parity 38
Pipeline Conflicts 188
Pipelined Vs Non Pipelined 115
Points to Remember 40, 42, 43, 44, 45, 79
POP 199
POPA 199
Port 26
Positive And Negative Logic 32
Post-bureaucratic 71
Pre-bureaucratic structures 70
Primary Vs. Secondary Memory 10
Principle of Locality 169
Priority Interrupt 155
Problems with the Memory System 227
Process Structure 107

252 Zero to Mastery in Computer Architecture and Organisation

Processor Registers 161
Product of Sum 27
Program Control Instructions 102
Programming Software 5
PROM 9
PUSH 199
PUSH X 143
PUSHA 199
R
RAM 9
Reduced Instruction Set Computer 83
Register Set 117
Relative addressing 95
Relative Mode 141
Replacement Algorithms 235
RISC VERSUS CISC 85
ROM 9
ROM or Read Only Memory 10
RQ/GT Timings in Maximum Mode 206
S
SBB 200
Secondary Memory 9
Secondry Memory 174
Segment Pointers 119
Sequential Logic or Circuit 39
Services provided 6
Single-tasking 7
Single-user 7
Software Interrupt 217
Solve larger problems 183
Some Important Terms 126
Special address transfer instructions 199
Special Purpose Register 117
Special Purpose Registers 118
Stack Organization 220
Static RAM 165
Steps to Read from Memory 165
Steps to Write to Memory 165
Sub 200
Sum of Product 27
Synchronization 194
System 3

System Software 4
T
T Flip Flop 51
Techniques of Concurrency 184
The Control Unit 66
Time-discrete Digital System 27
Timing Control 203
Truth table 38
Two-Way Associative Mapping 233
Type and I/O Techniques 137
Types of Interrupts 217
Types of Sequential Circuit 48
Types of Software 4
U
Universal Gate 27, 29, 38
Use of non-local resources 183
Using MIPS and MFLOPS as Performance Metrics

68
V
Various classification of OS 6
Vertical microprogram 129
W
What are Computer Registers 245
What is Fetch Cycle 144
What is ISA 77
What is Virtual Memory 237
Why Control Memory 243
Why Use Parallel Computing 183
Write Cycle diagram for Minimum Mode 204
Write Strategies 236
Write-through with Buffered Write 236
X
XCHG 199
XLAT 199
Z
Zero-address Instructions 138

SPECIAL BONUS!
Want These 3 Bonus Books for free?

Get FREE, unlimited access to these
and all of our new books by joining

our community!

SCAN w/ your camera TO JOIN!

OR Visit

freebie.kartbucket.com

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 7.500 x 9.250 inches / 190.5 x 234.9 mm
 Shift: none
 Normalise (advanced option): 'original'
 Keep bleed margin: no

 D:20220228105015

 32

 D:20220228105011
 666.0000
 Blank
 540.0000

 Tall
 1
 0
 No
 771
 335
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 20.1600
 Top

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0b
 Quite Imposing Plus 4
 1

 224
 259
 258
 259

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut top edge by 34.56 points
 Shift: none
 Normalise (advanced option): 'original'
 Keep bleed margin: no

 D:20220228105124

 32

 D:20220228105011
 666.0000
 Blank
 540.0000

 Tall
 1
 0
 No
 771
 335
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Smaller
 34.5600
 Top

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0b
 Quite Imposing Plus 4
 1

 230
 259
 258
 259

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 7.500 x 9.250 inches / 190.5 x 234.9 mm
 Shift: none
 Normalise (advanced option): 'original'
 Keep bleed margin: no

 D:20220228105134

 32

 D:20220228105011
 666.0000
 Blank
 540.0000

 Tall
 1
 0
 No
 771
 335
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 34.5600
 Top

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0b
 Quite Imposing Plus 4
 1

 241
 259
 258
 259

 1

 HistoryItem_V1
 Nup

 Create a new document
 Trim unused space from sheets: no
 Allow pages to be scaled: yes
 Margins and crop marks: none
 Sheet size: 7.500 x 9.250 inches / 190.5 x 234.9 mm
 Sheet orientation: tall
 Scale by 97.00 %
 Align: centre

 D:20220228105328

 0.0000
 10.0000
 20.0000
 0
 Corners
 0.3000
 Fixed
 0
 0
 3
 6
 0.9700
 0
 0
 1
 0.0000
 1

 D:20220228105324
 666.0000
 Blank
 540.0000

 Tall
 749
 303
 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 1
 0

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0b
 Quite Imposing Plus 4
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 Page size: same as page 1

 D:20220301171151

 Blanks
 Always
 1
 1
 1
 1210
 295
 0
 1
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 1

 CurrentAVDoc

 SameAsPage
 AfterCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0b
 Quite Imposing Plus 4
 1

 83
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 Page size: same as page 1

 D:20220301171211

 Blanks
 Always
 1
 1
 1
 1210
 295
 0
 1
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 1

 CurrentAVDoc

 SameAsPage
 AfterCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0b
 Quite Imposing Plus 4
 1

 85
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 Page size: same as page 1

 D:20220301171400

 Blanks
 Always
 1
 1
 1
 1210
 295
 0
 1
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 1

 CurrentAVDoc

 SameAsPage
 AfterCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0b
 Quite Imposing Plus 4
 1

 121
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 2
 Page size: same as page 1

 D:20220312175707

 Blanks
 Always
 2
 1
 1
 1210
 295
 0
 1
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 1

 CurrentAVDoc

 SameAsPage
 AfterCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0b
 Quite Imposing Plus 4
 1

 10
 2

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 Page size: same as page 1

 D:20220312175733

 Blanks
 Always
 1
 1
 1
 1210
 295

 0
 1
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 1

 CurrentAVDoc

 SameAsPage
 AfterCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0b
 Quite Imposing Plus 4
 1

 264
 1

 1

 HistoryList_V1
 qi2base

		2022-03-12T21:32:53+0000
	Preflight Ticket Signature

