
www.dbooks.org

https://www.dbooks.org/

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

https://www.linkedin.com/company/redis-labs-inc/
http://www.youtube.com/c/Redislabs
https://developer.redislabs.com
https://university.redislabs.com

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Redis™

2nd Limited Edition

by Steve Suehring

www.dbooks.org

https://www.dbooks.org/

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Redis™ For Dummies®, 2nd Limited Edition

Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2021 by John Wiley & Sons, Inc., Hoboken, New Jersey

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
the prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, The Dummies Way, Dummies.com,
Making Everything Easier, and related trade dress are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be
used without written permission. All other trademarks are the property of their respective owners.
John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED,
THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT
THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR
A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS
WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, or how to create a custom For
Dummies book for your business or organization, please contact our Business Development
Department in the U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.com/go/
custompub. For information about licensing the For Dummies brand for products or services,
contact BrandedRights&Licenses@Wiley.com.

ISBN 978-1-119-82427-5 (pbk); ISBN 978-1-119-82428-2 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Publisher’s Acknowledgments

Some of the people who helped bring this book to market include the
following:

Project Editor: Elizabeth Kuball

Acquisitions Editor: Ashley Coffey

Editorial Manager: Rev Mengle

Business Development
Representative: Matt Cox

Production Editor:
Tamilmani Varadharaj

http://www.wiley.com
http://www.wiley.com/go/permissions
mailto:info@dummies.biz
http://www.wiley.com/go/custompub
http://www.wiley.com/go/custompub
mailto:BrandedRights&Licenses@Wiley.com

Table of Contents iii

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Table of Contents
INTRODUCTION.. 1

About This Book.. 1
Foolish Assumptions... 1
Icons Used in This Book.. 2
Where to Go from Here.. 2

CHAPTER 1:	 What Is Redis?... 3
Introducing NoSQL.. 3

Defining NoSQL.. 3
Identifying types of NoSQL databases.. 4
Knowing when to use NoSQL versus a relational
database... 6
Deciding when to use a NoSQL database..................................... 6

Seeing Where Redis Fits... 7
Data storage... 7
Data structure storage.. 8

Working with Multi-Model Application Requirements...................... 9
The single-model problem.. 9
The modules solution.. 9

CHAPTER 2:	 What Is Redis Used For?.. 11
Identifying How Redis Can Help You... 11

Real-time analytics... 11
Fraud detection.. 12
Gaming and leaderboards.. 12
Personalization with session management................................ 12
Recommendation management.. 13
Social apps.. 13
Search.. 13

Redis in the Real World... 14
Caching.. 14
Large data sets... 14
Full-text fuzzy search... 15
Geospatial and time-series data.. 15
Messaging/queuing... 15

www.dbooks.org

https://www.dbooks.org/

iv Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

CHAPTER 3:	 Getting Started with Redis.. 17
Understanding the Components of Redis.. 17

The server and the command-line interface.............................. 17
The client and drivers.. 18
Databases, memory, and persistence... 19

Deploying Redis... 20
Using Redis Enterprise Cloud... 20
Compiling Redis from source... 21
Using Redis in Docker.. 24
Homebrewing for macOS... 24

Taking the First Steps with Redis... 25
Installing the Redis command-line interface.............................. 25
Making your first connection.. 25

Working with Redis Clients... 26
Python... 27
Java.. 28
Node.js.. 29
Other languages... 29

CHAPTER 4:	 Using Multi-Model Redis: Data Models,
Structures, and Modules.. 31
Redis Data Models.. 32

Strings and bitmaps... 32
Lists.. 34
Sets.. 35
Hashes... 36
Sorted sets.. 37
HyperLogLog.. 38

Patterns and Data Structures.. 39
Pub/sub... 39
Geospatial indexes.. 40
Redis Streams... 41

Redis Modules... 41
RediSearch.. 41
RedisJSON... 41
RedisTimeSeries... 42
RedisGraph... 42
RedisBloom... 42
RedisAI... 43
RedisGears.. 43

Table of Contents v

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

CHAPTER 5:	 Redis Architecture and Topology.................................. 45
Understanding Clustering and High Availability.............................. 45

Redis Enterprise cluster architecture.. 46
High availability.. 46
Running Redis at scale.. 47
Redis on Flash.. 48

Examining Transactions and Durability.. 48
ACID... 48
Durability.. 50

CHAPTER 6:	 Using Redis Enterprise Software and Redis
Enterprise Cloud.. 51
Understanding Redis Enterprise Software and
Redis Enterprise Cloud... 51
Getting Started with Redis Enterprise Software
and RedisInsight.. 53

Meeting the prerequisites.. 53
Installing Redis Enterprise in a Docker container...................... 54
Understanding concepts and architecture................................. 58
Connecting with RedisInsight... 59

CHAPTER 7:	 A Simple Redis Application... 63
Getting Started.. 63

Prerequisites.. 63
Front-end application code.. 64

Creating a CRUD App.. 64
Cars (sets).. 65
Features (lists).. 66
Car descriptions (hashes).. 67

CHAPTER 8:	 Building an Application with RediSearch................ 69
Using RediSearch for Movie Data.. 69

Installing RediSearch... 69
Inserting data... 71

Working with Data and Indexes.. 72
Querying data... 72
Adding and viewing indexes... 73
Searching data.. 74

www.dbooks.org

https://www.dbooks.org/

vi Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

CHAPTER 9:	 Developing an Active-Active/Conflict-Free
Replicated Data Type Application................................. 77
Getting Acquainted with Conflict-Free Replicated Data Types...... 77

Defining conflict-free replicated data types............................... 78
Looking at how they’re different.. 78
Understanding why and where you need them........................ 78

Working with Conflict-Free Replicated Data Types......................... 79
Getting an overview of the application....................................... 79
Considering the prerequisites.. 80
Starting the containers.. 80
Testing the conflict-free replicated data type............................. 82

Watching Conflict-Free Replicated Data Types at Work................. 83
Setting up the example code environment................................ 83
Viewing the example with a healthy network............................ 84
Breaking the network connection between clusters................. 86
Viewing the example in a split network...................................... 86
Rejoining the network... 87
Looking at the example in a rejoined network.......................... 87

CHAPTER 10:	Ten Things You Can Do with Redis............................... 89

Introduction 1

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

NoSQL is a modern data persistence storage paradigm that
provides data persistence for environments where high
performance is a primary requirement. Within NoSQL,

data is stored in such a way as to make both writing and reading
quite fast, even under heavy load.

Redis and Redis Enterprise are market-leading, multi-model
NoSQL databases that bring NoSQL to organizations both big and
small. Redis is open source, and Redis Enterprise software adds
several enhancements that are important to the enterprise cus-
tomer. Redis Enterprise Cloud enables Redis Enterprise deploy-
ments on popular cloud providers like Amazon Web Services
(AWS), Google Cloud, and Microsoft Azure.

About This Book
This book provides a starting point for those new to NoSQL and
those who have heard about NoSQL but would like to see how it
might be used in their organization.

The book serves multiple audiences, with chapters geared towards
managers and chapters specifically for developers. You don’t need
to read this book from front to back, but you certainly can!

Foolish Assumptions
In writing this book, I assumed that you’re familiar with data-
bases, at least at a basic level. If you’re a developer, you should
have an environment available on which you can install things.
I show examples in later chapters using Redis that also utilize
Docker and GitHub, so having a development environment avail-
able will be helpful, but it isn’t required — you can follow along
even if you don’t run the examples yourself.

www.dbooks.org

https://www.dbooks.org/

2 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Icons Used in This Book
Throughout this book, I occasionally use special icons to call
attention to important information. Here’s what to expect:

The Remember icon points out information you should commit
to your nonvolatile memory, your gray matter, or your noggin —
along with anniversaries and birthdays!

You won’t find a map of the human genome here, but if you seek
to attain the seventh level of NERD-vana, perk up! The Technical
Stuff icon explains the jargon beneath the jargon!

Tips are appreciated, never expected, and I sure hope you’ll
appreciate the nuggets of information marked by the Tip icon.

The Warning icon points out the stuff your mother warned you
about. Well, probably not, but these paragraphs do offer practical
advice to help you avoid potentially costly or frustrating mistakes.

Where to Go from Here
There’s a lot more to Redis than is covered in this book. To con-
tinue exploring all the capabilities that Redis offers, visit https://
redislabs.com.

https://redislabs.com/
https://redislabs.com/

CHAPTER 1 What Is Redis? 3

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 1

IN THIS CHAPTER

»» Getting acquainted with NoSQL

»» Understanding what Redis brings to
the table

»» Creating a multi-model database with
Redis

What Is Redis?

In this chapter, I offer an overview of NoSQL, including the types
of NoSQL databases (such as key/value, document, column, and
graph). I also compare NoSQL to methods for traditional data

persistence. Finally, I introduce Redis, a popular multi-model
database server. Redis goes beyond a NoSQL database to provide
several advanced capabilities needed by modern applications.

Introducing NoSQL
The term NoSQL is used to describe a set of technologies for data
storage. In this section, I explain what NoSQL is, outline the
major types of NoSQL databases, and compare NoSQL to relational
databases.

Defining NoSQL
NoSQL describes technologies for data storage, but what exactly
does that mean? Is NoSQL an abbreviation for something?
I answer these and other pressing questions in this section.

Depending on whom you ask, NoSQL may stand for “not only
SQL” or it may not stand for anything at all. Regardless of any
disagreement over what NoSQL stands for, everyone agrees that
NoSQL is a robust set of technologies that enable data persistence

www.dbooks.org

https://www.dbooks.org/

4 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

with the high performance necessary for today’s Internet-scale
applications.

SQL is an abbreviation for Standard Query Language, a standard
language for manipulating data within a relational database.

Identifying types of NoSQL databases
There are four major types of NoSQL databases — key/value, col-
umn, document, and graph — and each has a particular use case
for which it’s most suited.

The following sections go into greater detail on the four types of
NoSQL.

Key/value
With a key/value storage format, data uses keys (identifiers that
are similar to a primary key in a relational database). The data
element itself is then the value that corresponds to the key.

Figure 1-1 illustrates the concept of key/value pairs using a phone
directory. In this example, a person’s name provides the key and
the value is then the corresponding phone number.

Column
With a column-oriented data store, data is arranged by column
rather than by row. The effect of this architectural design is that it
makes aggregate queries over large amounts of data much faster
to process.

Document
Document data storage in NoSQL uses a key as the basis for item
retrieval. The key then corresponds to a more complex data struc-
ture, called a document, which contains the data elements for a
given collection of data.

FIGURE 1-1: A phone directory is an example of a key/value pair data store.

CHAPTER 1 What Is Redis? 5

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Figure 1-2 shows an example of a document database in JavaScript
Object Notation (JSON) format. The example shows information
about a book, such as its unique identifier, title, author, and year.
Each of these items could then be parsed using a JSON parser into
key/value, as shown in the figure.

Graph
Graph databases use graph theory to store data relations in a
series of vertices with edges, making queries that work with data
in such a manner much faster. Figure 1-3 depicts relationships
between three different entities, each containing labels that help
to describe the entity.

FIGURE 1-2: A document database example containing information about a
book.

FIGURE 1-3: A graph database depicting relationships between data
elements.

www.dbooks.org

https://www.dbooks.org/

6 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Knowing when to use NoSQL versus
a relational database
Regardless of the type of NoSQL database, the patterns and tools
that you use to work with data are different from the patterns and
tools that you typically find with a relational database. The para-
digm for storage and the arrangement of the data typically require
a rethink of how applications are created.

Relational databases connect data elements through relations
between tables. These relations become quite complex for many
applications, and the resulting queries against the data become
equally complex. The inherent complexity leads to performance
issues for queries.

Many traditional databases include query tools and software to
directly manipulate data. With NoSQL, most access will be pro-
grammatic only, through applications that you write using the
tools and application programming interfaces (APIs) for the
NoSQL database.

A relational database has somewhat less flexibility than soft-
ware such as Redis that implements NoSQL. Whereas a relational
database thrives when data is consistent and well structured,
Redis and NoSQL thrive on the unstructured data that is found in
today’s modern applications, while also providing the flexibility
to structure data as needed. Redis can implement multiple rep-
resentations of a data model. You can find more information on
Redis as a multi-model database later in this chapter.

Deciding when to use a NoSQL
database
Comparing a NoSQL database to a relational database may have
you thinking about the specific uses for NoSQL. NoSQL excels
when fast access to large amounts of data is needed. NoSQL is
also excellent at enabling developers to work with a flexible data
model, as is frequently the case with modern applications. In
these scenarios, the data model may not be immediately or fully
known. However, developers need to get started programming the
application itself and can use NoSQL for flexible data models that
support both semi-structured and unstructured data.

CHAPTER 1 What Is Redis? 7

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

When it comes time to move to production, a NoSQL database
offers highly available replicated data. Unlike a traditional rela-
tional database, NoSQL data is replicated without need for pri-
mary read/write and secondary read-only nodes. Replicated
data is kept consistent by design, and NoSQL databases utilize a
shared-nothing approach to ensure high availability. Both tra-
ditional and NoSQL databases handle scaling through sharding
but the consistency model required for horizontal scaling requires
significant forethought and effort with a relational database.

Sharding is a means to partition or split data into smaller pieces
that are distributed to different computing resources. For instance,
data may be sharded according to the geographic location where it
is most frequently used and then stored in a data center close to
the users in order to decrease latency.

Read/write speed is typically much higher with NoSQL when
compared with a traditional relational database system. NoSQL
also thrives with unstructured data, whereas a relational database
needs to have a schema declared prior to any data being entered
into the system. Schema changes due to new requirements can
require significant rework with a traditional database. Queries
with a normalized relational data model can be quite time- and
resource-intensive, which is not usually acceptable for real-time
application needs. These complex queries don’t scale well either.

NoSQL thrives in the modern application development life cycle
and operates at Internet scale with ease. Look first to NoSQL data-
bases when you’re working with unstructured data that changes
frequently or needs to scale up and out, or when large volumes of
data are involved.

Seeing Where Redis Fits
Redis is a NoSQL database, but it’s also much more. Redis is a
multi-model database enabling search, messaging, streaming,
graph, and other capabilities beyond that of a simple data store.

Data storage
Redis keeps data in memory for fast access and persists data to
storage, in addition to replicating in-memory contents for high-
availability production scenarios.

www.dbooks.org

https://www.dbooks.org/

8 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

When discussing data storage, the concept of durability becomes
important. Durability is the ability to ensure that data is available
in the event of a failure of a database component. Redis supports
multiple modes for ensuring durability, accommodating most
data structures and environment-specific requirements.

Data structure storage
Redis supports several data structures. In fact, it may be helpful to
think of Redis as a data structures store rather than a simple key/
value NoSQL store.

Supported data structures include

»» Strings

»» Lists

»» Sets

»» Sorted Sets

»» Hashes

»» Bit Arrays

»» HyperLogLogs

»» Streams

»» Geospatial Indexes

Each data structure has a different use case or scenario for which
it is best suited.

Beyond these data structures, Redis also supports the Publish/
Subscribe (Pub/Sub) pattern and additional patterns that make
Redis suitable for modern data-intensive applications. Geo data
structures include commands that analyze geospatial data in
order to calculate distances, find members within a particular
distance from each other, and other analysis pertinent to
geographically-relevant data. This design enables reduced code
complexity, reduced network consumption, and overall faster
execution.

CHAPTER 1 What Is Redis? 9

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Working with Multi-Model Application
Requirements

Multi-model databases support multiple data models with a sin-
gle, integrated back-end server application. Redis provides full
multi-model functionality through Redis Modules. Redis Modules
are customized, prebuilt functionality that enable the addition of
data structures in a modular fashion. As such, Redis Modules open
the door to adding other data models, such as graph and full-
text search. Redis Modules also lead to other capabilities such as
improved JSON support, secondary indexes, linear algebra, SQL
support, and image processing. The use of Redis as a multi-model
database enables greater flexibility for application developers
within an organization.

The single-model problem
A single data model, a choice typically made at the beginning of a
project, can prove to be a development and performance bottle-
neck as the project and application evolve. At the very least, deci-
sions made about how to represent and interact with data can
incur technical debt that is difficult to pay back.

One approach to solve the technical debt issue is with a multi-
model database. However, multi-model databases frequently only
gloss over the issue by adding application-level or integration-
layer code to present the data using a different model. Redis takes
a different approach.

The modules solution
Redis modules make it possible to extend Redis functionality
using external modules, rapidly implementing new Redis com-
mands with features similar to what can be done inside the core
itself. Redis Modules is designed to plug into the open-source
Redis database, taking advantage of functionality such as in-
memory processing, scalability, and high availability. Through
its modularity of design, Redis provides capabilities necessary for
many different types of applications.

www.dbooks.org

https://www.dbooks.org/

CHAPTER 2 What Is Redis Used For? 11

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

IN THIS CHAPTER

»» Seeing how Redis can help you

»» Looking at a real-world example

What Is Redis Used For?

In this chapter, I give you an overview of some of the specific
ways that Redis can help. Chapter 1 shares a bit more about
specific components of Redis, including Redis Modules. This

chapter concludes with an example of how Redis is used for real-
time practical applications.

Identifying How Redis Can Help You
This section examines several popular use cases for Redis. Redis
has the necessary capabilities to meet user expectations for per-
formance and features. For example, benchmarks show that Redis
Enterprise in an ACID configuration is able to perform more than
500,000 operations per second with sub-millisecond latency
and can also achieve 50 million operations per second with the
same performance on only 26 compute nodes. The performance
of Redis — coupled with search features like autocomplete and
result highlighting — improves the entire user experience.

Real-time analytics
Redis is exceptionally good for real-time analytic calculations
like top scores, top-ranked contributors, top posts, and more.
Fast-paced calculations of the type needed for instant scoring in
a game or last-minute bidding in an auction can use Redis Sorted

12 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Sets. Sorted Sets keep track of ordering automatically, enabling
you to obtain top scores or the high bidder with native commands
like ZRANGE and ZREVRANGE. Because Sorted Sets do the work
behind the scenes when ZADD is used to add values, you no longer
need to expend resources sorting the result set.

Fraud detection
Detecting fraud in transactions is always important. As attacks
become more sophisticated, the need for specialized and instant
fraud detection becomes increasingly vital. As a customer nav-
igates through a shopping or financial transaction, a record of
that transaction can be captured in Redis Streams, fed into Redis
Bloom for fraud probability scoring, and coupled with RedisAI
to provide full analysis of the transaction. As transactions move
through the system, technologies such as Redis TimeSeries can
help spot trends that may indicate fraud.

Gaming and leaderboards
Although real-time analytics alluded to this use case, the high-
light around gaming and leaderboard tracking with Redis is the
ability to run at scale and increase data-set size without affect-
ing performance or needing to re-architect the application code.
Additionally, Internet-based gaming naturally enables players
from around the world who expect instant feedback. The high-
availability nature of Redis enables data to be geographically dis-
tributed to shorten the distance and, thus, the latency between
the player and their scoring status.

Sorted Sets are used for gaming and leaderboards. Commands
such as HSET help to store values in a structured manner for
easier retrieval. The resulting hash can then be associated with
a Sorted Set to take full advantage of the native capabilities for
sorting data automatically.

Personalization with session
management
A session is loaded when a user logs in or when they’re using
the application in order to track their activity. By nature, session-
related data needs to be readily available, with low latency to meet
performance requirements that users expect.

www.dbooks.org

https://www.dbooks.org/

CHAPTER 2 What Is Redis Used For? 13

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Redis is a great fit for such applications because data is available
in-memory and Hash data structure enables data to be stored in
multiple fields while facilitating the flexibility to use other data
structures. In the event of an outage, immediate failover is still
available even though the data is maintained within the low-
latency in-memory storage.

Recommendation management
Redis Sets enable easy tracking of items by simple tagging, which
facilitates a recommendation engine for products. For example,
data from users with similar purchases that is stored as a Redis
Set can be analyzed for common items by using the SINTER com-
mand to look for the intersection of products. The SADD com-
mand is used to tag each product with keywords to help with this
use case.

Social apps
End users expect real-time or near-real-time performance from
social apps. From chat to follows to comments to games, social
apps present a challenge for disk-based data stores. An in-
memory data store provides the performance necessary for these
applications.

Several features of Redis make implementation of social app fea-
tures possible:

»» Intelligent caching

»» Publish/subscribe (pub/sub) pattern for incoming data

»» Job and queue management

»» Built-in analytics

»» Native JSON-handling

JavaScript Object Notation (JSON) is a structured data format.
Because it’s native JavaScript, JSON-formatted data can be used
directly in an app without needing to be transformed into another
format.

Search
RediSearch is a powerful indexing, querying, and full-text
search engine for Redis. Allowing users to search data is difficult.

14 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Allowing users to search data while providing high performance
is even more difficult. With other, slower data stores, secondary
indexes frequently need to be added in order to provide adequate
performance. RediSearch enables full-text search experiences
with powerful indexing capabilities built in. RediSearch index-
ing is available across multiple languages (including Chinese,
English, French, German, Russian, Spanish, and several others).
With indexing, Redis no longer needs to execute a SCAN operation
for each query, which speeds up queries significantly. RediSearch
enables fast creation of indexes on datasets (Hashes), and
RediSearch uses an incremental indexing approach for rapid index
creation and deletion. The indexes let you query data at lightning
speed, perform complex aggregations, and filter by properties,
numeric ranges, and geographical distance.

Redis in the Real World
This section looks at some common use cases for Redis related
to e-commerce. For example, many e-commerce sites provide
search capabilities and need to do so in a high-performance envi-
ronment using autocomplete. Although this list certainly isn’t
exhaustive, it does highlight several popular ways to use Redis.

Caching
Providing fast response time is more important than ever.
However, responding quickly, even under high demand, can be
resource-intensive. This problem is often solved with caching.

Redis can be used as a means to cache data between the applica-
tion and the back-end data store, such as another relational or
NoSQL database. Doing so frees up the database for other opera-
tions while also enabling user-friendly fast response.

Large data sets
Redis handles caching well because of its native data types and its
efficient use of memory.

The performance of Redis means that recommendations and cus-
tomer analytics can be done in real time.

www.dbooks.org

https://www.dbooks.org/

CHAPTER 2 What Is Redis Used For? 15

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The use of Redis on Flash makes large data-set analysis cost-
effective. In this use case, Redis Enterprise Flash is used to extend
random access memory (RAM).

Full-text fuzzy search
The RediSearch module is used to extend the capabilities of Redis
and enable searching through relevant documents in the shortest
possible time. RediSearch can work up to 500 percent faster than
stand-alone search-engine products and includes features like
scoring, filtering, and query expansion.

Automatic suggestions based on the search are provided with
RediSearch, too. All this is done with the performance that you’d
expect from Redis.

RediSearch enriches search experiences with context-aware sug-
gestions and fuzzy searching. RediSearch stores data in RAM
and can be scaled onto multiple Redis instances. RediSearch also
allows for Fuzzy Suggestions, meaning you can get suggestions to
prefixes even if the user makes a typo in their prefix.

Geospatial and time-series data
Redis, with its native geospatial index, hash, sorted set, and
stream data types (see Chapter 1), is an excellent choice for geo-
spatial and time-series data. These data types may be used for
location-based recommendations and promotions.

Another geospatial and time-series use case is collection of data
from Internet of Things (IoT) devices. These devices and related
sensors are constantly generating data and doing so in a manner
where their location matters. For example, a traffic sensor not-
ing that the flow of traffic has slowed may be able to relay the
message to open additional lanes or that there is another issue
that needs attention. RedisTimeSeries helps with sequencing of
events and facilitates trace-back of events in the exact order in
which those events occurred.

Messaging/queuing
A related use of Redis is handling fast-moving data. In the pre-
ceding example, if you have data being generated by millions of
sensors, that data needs to be analyzed and processed. It can be
collected, streamed, and ingested by Redis using its native pub/
sub mechanism.

CHAPTER 3 Getting Started with Redis 17

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

IN THIS CHAPTER

»» Identifying the components of Redis

»» Exploring the deployment of Redis

»» Installing Redis and making your first
connection

»» Working with Redis clients

Getting Started with
Redis

This chapter begins an in-depth examination of Redis.
Included in the chapter is a look at the various Redis com-
ponents and how those components can help you. The

chapter concludes with an example of how Redis is used for pro-
duction applications.

Understanding the Components of Redis
Like other server software, Redis has several components working
together to provide robust solutions. Understanding these com-
ponents and the overall architecture of Redis is the focus of this
section.

The server and the command-line
interface
Redis runs as server-side software (primarily on Unix-based
operating systems, like Linux and macOS) and through the Win-
dows Subsystem for Linux (version 2). The Redis server is down-
loaded and installed in just a few steps, and then it’s ready to use.

www.dbooks.org

https://www.dbooks.org/

18 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The installation process for Redis is fully documented in the Quick
Start guide available at https://developer.redislabs.com/
create.

The server listens for connections from clients — either pro-
grammatically or through the command-line interface (CLI). Like
the CLI for other database servers, the CLI for Redis enables direct
interaction with the data on the server.

The client and drivers
Numerous client libraries are available, supporting many pro-
gramming languages. Through these clients and drivers, you
interact programmatically with data found on the Redis server.

For example, if your organization uses Python for its program-
ming language of choice, you’ll probably integrate with Redis
through the redis-py package, though you have the opportunity
to use more than a dozen other Python-related packages for Redis
integration, too.

The clients and drivers are typically shared under an open-source
license, though the license varies by project. See https://redis.
io/clients for more information.

I won’t list all 200 or so supported languages, but featured client
libraries for several popular languages include the following:

»» C: The official Redis client for the C language is hiredis. Also
see hiredis-vip for cluster-related C language support.

»» C#: Two popular clients include ServiceStack.Redis and
StackExchange.Redis.

»» Go: Clients for Google Go and connectors are available; one
is Go-Redis and the other is Redigo.

»» Java: Three popular clients include Jedis, Lettuce, and
Redisson, all of which serve slightly different needs.

»» Node.js: Two clients, ioredis and node-redis, offer a rich
feature set for using Node.js with Redis.

»» PHP: PHP has several clients with PHP; PhpRedis is a
recommended client.

https://developer.redislabs.com/create
https://developer.redislabs.com/create
https://redis.io/clients
https://redis.io/clients

CHAPTER 3 Getting Started with Redis 19

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Databases, memory, and persistence
There is no formal database creation step with Redis. There isn’t
a formal table creation step with Redis either. The SET command
is used to create data within the current database.

Those familiar with formalized database creation and definition
may be uncomfortable with the seemingly informal process of
Redis database creation and data handling. However, it’s through
this flexibility that the true power of Redis is found.

Data is stored in random access memory (RAM) on the Redis server.
This means that as data is added, additional RAM is used. Redis on
Flash (see Chapter 4) provides a method for supplementing RAM
with flash-based memory. Redis writes the contents of the data-
base to disk at varying (and configurable) intervals, depending on
the amount of data that changes during the interval. Persisting
data to disk ensures durability in the event of a software or hard-
ware failure that renders the server unavailable. Other means for
providing durability, such as clustering for high availability, are
common with Redis in a production environment.

CREATING AND QUERYING DATA
The SET command adds a key to the database in Redis. For example,
to create a key for various pieces of furniture in your living room, you
might do this:

SET furniture:couch:color green

SET furniture:recliner:color brown

SET furniture:chair:color: tan

Alternatively, you could retrieve all keys with the KEYS command:

KEYS furniture*

Note: The KEYS command used in the preceding example is not typi-
cally recommended for production usage. Use it for debugging only.

www.dbooks.org

https://www.dbooks.org/

20 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Deploying Redis
There are numerous options for working with Redis, largely
depending on the goal for the deployment. Redis enables you to
install and start using the software quickly on multiple platforms.
This section shows some of the ways that you can deploy Redis.

Using Redis Enterprise Cloud
Redis offers a free 30MB plan with major cloud vendors such as Ama-
zon Web Services (AWS), Google Cloud, and Microsoft Azure. When
you sign up for Redis Enterprise Cloud at https://redislabs.com/
try-free you’ll receive an email with instructions on how to activate
the free plan.

After activation, follow these steps:

1.	 Choose a cloud provider and a region for the deployment
of Redis Enterprise Cloud (see Figure 3-1), and scroll down
to continue on this page.

In Figure 3-1, the us-east-1 region for AWS is selected.

2.	 Choose the size to use for the deployment, and click
Create.

The free 30MB option is available along with other, paid,
options. If you’re just getting started with Redis, the free
30MB option enables you to quickly get a sense of its

FIGURE 3-1:  Choosing a cloud provider and region.

https://redislabs.com/try-free/
https://redislabs.com/try-free
https://redislabs.com/try-free

CHAPTER 3 Getting Started with Redis 21

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

capabilities. Figure 3-2 shows the 30MB option selected with
a subscription name of Product-Test. The 30MB option
creates a single subscription with up to 30 connections.

3.	 Select and configure various parameters related to the
database, and click Activate.

These parameters include the database name, protocol,
whether replication is enabled or disabled, access control and
security, the data eviction policy, alerts, and the module(s) to
include. Figure 3-3 shows the creation of a database called
ProductDB with the other options left at their default.

After you click Activate, the database configuration param-
eters are shown.

Now you’re ready to connect to the database endpoint and begin
working with the database and integrating your application. You
can find more information about this next step in the “Taking the
First Steps with Redis” section, later in this chapter.

Compiling Redis from source
Redis can be compiled from source code. This option is useful
when you have extended needs that aren’t available in a pre-
packaged option. It’s also very helpful when you want to use
new features or an early release of Redis. Compiling from source
is typically done on a Linux environment; the examples in this
section use Debian Linux, though other distributions will have a
similar, if not the same, process.

FIGURE 3-2:  Creating a Redis Enterprise Cloud subscription.

www.dbooks.org

https://www.dbooks.org/

22 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

You can download the source code from https://redis.io/
download. Redis source code is downloaded as a compressed .tar
archive. After you’ve downloaded the file, follow these steps:

1.	 Uncompress and unarchive the software with the tar
command.

For example, at the time of writing, the latest version of Redis
was 6.2.2, making the command as follows:

tar -zxvf redis-6.2.2.tar.gz

Adjust the command, as necessary, to match the version of
Redis that you’ve downloaded.

Running the tar command with the options shown results in
the source code being uncompressed into its own directory.
In the example with version 6.2.2, the source code is placed
into a directory called redis-6.2.2.

2.	 Change the directory into the source code directory and
begin the compile process.

You have some options when it comes to how the compile
and the resulting software behave. For example, you can
configure Redis to work with systemd. Doing so requires that
systemd-related development libraries are available. More
information about systemd integration and the other options
for compiling Redis are found in the README.md file, which
can be viewed with any text editor or terminal pager.

FIGURE 3-3:  Creating a database as part of a Redis Enterprise Cloud
subscription.

https://redis.io/download
https://redis.io/download

CHAPTER 3 Getting Started with Redis 23

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Using the default option, changing into the Redis source code
directory is accomplished with the cd command, and
compiling Redis is done with the make command.

cd redis-6.2.2
make

As before, adjust the command, as necessary, to match the
version of Redis that you downloaded.

The compile process begins. If all goes well, you’ll receive a
message indicating that it’s a good idea to run make test
next. However, if the compile process doesn’t work correctly,
an error and possibly a backtrace will be shown.

A common reason for errors during the compile process is
missing one or more dependencies. The dependency or
dependencies will need to be installed. After you’ve done
that, it’s a good idea to clean up any cached files from the
previously failed compile attempt by executing the make
dist-clean command.

3.	 After the compile has worked, run the tests included
with the source code.

Running the tests can be done with the following command:

make test

The test process will take longer than the compile process,
but you’ll have more confidence that the installation will work
correctly.

With the compile and testing complete, the Redis server is ready.
When compiled from source, the server is located in the src
directory. You can also install the software into the /usr/local/
bin directory with the following command:

sudo make install

However, if you’re merely testing Redis, running from the src
directory, like this, works fine and doesn’t require sudo privileges:

cd src && ./redis-server

www.dbooks.org

https://www.dbooks.org/

24 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The server starts and runs on port 6379 by default. You can stop
the server by pressing Ctrl+C.

Using Redis in Docker
Assuming that you have Docker installed, you can pull the lat-
est version of the Redis Docker image from DockerHub with the
command:

docker pull redis

After the image has been pulled, run Redis in the container with
the docker run command. In this example, a container execution
called product-test will be executed:

sudo docker run --name product-test -d redis -p
6379:6379

More information about installing Redis in Docker can be found at
https://hub.docker.com/_/redis. If you need to install Docker
itself, more information can be found at www.docker.com.

Homebrewing for macOS
Redis can also be installed natively on a Mac using Homebrew.
Installing Redis in a Homebrew environment is as simple as using
the following command:

brew install redis

Additional information about Homebrew can be found at https://
brew.sh.

Homebrew will download and install the packages necessary for
Redis on the Mac. After it’s installed, you have a couple of options
for how Redis will run on the Mac. You can have Redis start auto-
matically on boot, or you can run it manually.

To start Redis and then have it start automatically on boot, run
the following command:

brew services start redis

https://hub.docker.com/_/redis
https://www.docker.com/
https://brew.sh/
https://brew.sh/

CHAPTER 3 Getting Started with Redis 25

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

To run Redis manually, run the following:

redis-server /usr/local/etc/redis.conf

The path /usr/local/etc/redis.conf is used to specify the con-
figuration file for Redis. If you have a configuration file in a dif-
ferent location, change the path accordingly. The default redis.
conf file installed by Homebrew includes a set of defaults, such
as the IP address and port to bind for the server, among other
options. More information on the redis.conf configuration file
can be found at https://redis.io/topics/config.

Taking the First Steps with Redis
The previous section shows four of the ways to install the Redis
server, but you had no interaction with the server other than
starting it. The Redis CLI is a primary means to ensure that the
server is running. This section shows how to install the Redis CLI
and how to make your first connection.

Installing the Redis command-line
interface
The Redis CLI enables you to interact with the Redis server.
Installing the Redis CLI depends on the method that you used to
install Redis. If you’ve installed Redis from source, then the Redis
CLI is available within the src directory and is started with the
following command:

./src/redis-cli.

Making your first connection
Connecting to an instance typically means using the CLI in order to
test the connectivity, create an initial database, and so on. The CLI
is accessed through the redis-cli command that’s installed with
the server. The CLI provides a set of commands that enable you to
work with the Redis server. Similar to a CLI that you may encoun-
ter in Terminal on macOS or Linux or the Command Prompt in
Windows, the Redis CLI is the work environment that’s used for
executing commands when not working programmatically.

www.dbooks.org

https://redis.io/topics/config
https://www.dbooks.org/

26 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

If you’re accessing a cloud-based instance, you’ll need to install
a CLI to access Redis Enterprise. When connecting to a remote
instance (an instance that isn’t located on the same server as the
CLI), the command looks like this:

redis-cli -h <hostname> -p <port>

The <hostname> is the name of the database endpoint URL to
which you’re connecting, and the <port> parameter is the port
number of the instance.

For all but development purposes, you’ll usually connect to a
server running on a different host or IP address. Therefore, the
redis-cli command will typically be used with the -h argument.
If the server is listening on a port other than the default 6379, the
port option can also be specified.

Credentials can also be specified with the --user and --pass
option or --askpass to be prompted for a password. Numerous
other options are available that affect the behavior of the redis-
cli command. You can find these options by using the --help
option.

After you’ve connected, the command prompt will change. For
example, connecting to the Redis server that is running on the
localhost will change the command prompt to:

127.0.0.1:6379>

If you receive a message such as Connection refused, that means
the Redis server either isn’t running or isn’t running on the port
or IP address specified.

In addition to connecting with the CLI, the Redis Dashboard for
Grafana also enables dashboard creation in Grafana in order to
monitor Redis performance and specific data sources.

Working with Redis Clients
This section examines initial programmatic connections for just
a few of the languages that are commonly used with Redis. The
focus of the section is on making the initial connections with each

CHAPTER 3 Getting Started with Redis 27

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

of the languages examined. Further details and deeper examples
are found in later chapters.

Python
The primary client software for interaction between Python and
Redis is the redis-py package, which can be found at https://
redis.io/clients#python.

Beginning with version 4 of redis-py, Python versions lower than
3 are no longer supported. If you need support for an earlier ver-
sion of Python, you should use an earlier version of redis-py. Two
ways to set up the redis-py package are using setuptools or pip.
Using setuptools means downloading the redis-py package from
its home page and running the following command:

python setup.py install

If you prefer, you can use pip to install the redis-py package with
the following command:

pip install redis

Regardless of which method you use, testing the connection using
Python can be accomplished with a simple program, such as the
following:

import redis

redis_connection = redis.Redis(host='localhost',

port=6379,db=0)

redis_connection.set('productName','Smart Watch')

print(redis_connection.get('productName'))

That simple program connects to a Redis endpoint running on
port 6379 of the local computer. With the connection created,
a single key-value pair is set, with the key being productName
set to the value of Smart Watch. That key is then retrieved and
printed.

www.dbooks.org

https://redis.io/clients#python
https://redis.io/clients#python
https://www.dbooks.org/

28 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Java
A number of client connectors are available for using Redis with
Java. A connector called Lettuce is popular and can be downloaded
and installed through Gradle, Ivy, or Maven, or simply down-
loaded as a binary. More information about connecting with Java
and Lettuce can be found at https://lettuce.io, and other Java
clients can be found at https://redis.io/clients.

Assuming that the dependencies have been resolved, connecting
to Redis by using Jedis includes importing the relevant classes,
creating a connection pool, and then writing the code for the spe-
cific application being created. For example:

 import redis.clients.jedis.*;

 // Create a Jedis connection pool
 JedisPool jedisPool = new JedisPool(new

JedisPoolConfig(), "localhost", 6379);

 // Get the pool and use the database
 try (Jedis jedis = jedisPool.getResource()) {

 jedis.set("mykey", "Hello from Jedis");
 String value = jedis.get("mykey");
 System.out.println(value);

 jedis.zadd("vehicles", 0, "car");
 jedis.zadd("vehicles", 0, "bike");
 Set<String> vehicles = jedis.zrange("vehicles",

0, -1);
 System.out.println(vehicles);

 }

 // close the connection pool
 jedisPool.close();

https://lettuce.io/
https://redis.io/clients

CHAPTER 3 Getting Started with Redis 29

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Node.js
Node.js enables rapid development and can be used with Redis.
The recommended client for use with Node.js is node-redis,
which can be installed with the following command:

npm install redis

The Redis client software for node-redis will be installed, and
a simple program can be created to test the connectivity of the
node-redis client. This program is a variation of the example
shown within the node-redis documentation found at https://
github.com/NodeRedis/node-redis and assumes that the Redis
server is running on localhost with the default port of 6379. If that
isn’t the case, the createClient() function can be adjusted to
connect to a different host or port or both, as follows:

const redis = require("redis");
const client = redis.createClient();

client.on("error", function(error) {
 console.error(error);
});

client.set("productName","Watchy Watch",redis.

print);
client.get("productName",redis.print);

Other languages
Redis includes clients for numerous development languages.
Many of these languages include their own package management
interfaces as well. For example, the Predis implementation for
PHP is available through Packagist. Where prepackaged clients
are not available, compiling from source is always an option. The
end result is that Redis is widely supported with mature and sta-
ble client software. More information can be found at https://
redis.io/clients.

www.dbooks.org

https://github.com/NodeRedis/node-redis
https://github.com/NodeRedis/node-redis
https://redis.io/clients
https://redis.io/clients
https://www.dbooks.org/

CHAPTER 4 Using Multi-Model Redis: Data Models, Structures, and Modules 31

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

IN THIS CHAPTER

»» Getting acquainted with the primary
data models

»» Utilizing patterns and data structures

»» Working with modules

Using Multi-Model Redis:
Data Models, Structures,
and Modules

Data models represent how the data is stored within a data-
base. An implication of choosing a data model is that your
application will then be tied to that model. Further, most

existing database management systems are organized around a
single data model that determines how data can be organized,
stored, and manipulated.

Relational models frequently fail to reflect the application or
problem domain very well. Instead, relational models emphasize
other aspects of data storage. With the rise of NoSQL technologies
like Redis, the data model can be a reflection of the application
itself.

A multi-model database like Redis enables the data to be repre-
sented for multiple use cases simultaneously. Using Redis Mod-
ules, data models such as graph and full-text search can be added,
and new models can be added through the modularity. This means
that the data can be used in the manner most appropriate for the
application both today and in the future.

32 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In this chapter, I dive into the data models and types, showing
examples of their use.

Redis Data Models
Using a data store of any kind requires making decisions about
how to represent the data within the data store. This model then
controls how data is added to the database and how it’s retrieved.

Data is stored in Redis using keys. Keys can be just about anything
because they’re binary safe. For example, you could use an image
as a key. Most keys are simple strings, though.

Redis has a variety of commands for working with data of dif-
ferent types. A couple of notable commands are encountered in
this section, including SET and GET. The SET command creates or
changes a value that corresponds to a given key. The GET com-
mand retrieves the value associated with the given key.

Values are overwritten with the SET command. That means if
you call SET twice for the same key, the last value will be the one
that’s stored and retrieved.

The values that correspond to a given key can be formatted in
many ways to create a data model specific to the needs of the
organization. This section examines the primary data models in
Redis.

Strings and bitmaps
The simplest value type in Redis is a string. A value can be added
to the database with the SET command. When using the SET com-
mand, a key and a value are the minimum requirements in order
to create the entry. For example, to create a key called user with
a value of steve, you simply need to execute this command from
the Redis command-line interface (CLI):

> SET user "steve"

www.dbooks.org

https://www.dbooks.org/

CHAPTER 4 Using Multi-Model Redis: Data Models, Structures, and Modules 33

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Even though double quotes were used for this string value, they
aren’t strictly necessary when the value is a single word. With
that command, a simple string value of steve has been stored in
the database and can be retrieved with the GET command:

> GET user

This command retrieves the following value:

"steve"

Numerous other commands can be executed, and some make
sense in a certain context. For example, a common way to use
simple string values is as a counter. In these cases, commands
like INCR (short for increment) can be used. Consider this example:

SET logincount 1

In this command, a new key called logincount is created and set
to the value of 1. Then you call INCR on that key:

INCR logincount

When INCR is executed, the new value is returned immediately:

(integer) 2

Of course, you can always retrieve the value with the GET command:

GET logincount

Doing so returns the following:

"2"

You can manipulate numerous other commands and work with
string and string-like data in Redis, though you can’t use com-
mands intended for numeric data on string data.

Closely related to strings are bitmaps, which are a form of string
storage. Using a bitmap, you can represent many data elements
that are simply on (1) or off (0). This is useful for operations

34 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

where you only need to know those two possible values, such as
whether a user is active or inactive. Because it can be only one of
two values, you can represent that data efficiently.

The largest size for a single string value is 512MB. This means that
you can store 232 possible values inside one string value in Redis.
This size limit will be increasing and may have already increased
by the time you’re reading this. Check the latest Redis documen-
tation for the current size limit for string values.

There are commands specific to working with bitmaps available
in Redis. These commands include SETBIT and GETBIT, which are
used to create or change a value and retrieve a value, respectively.
Other commands include BITOP and BITFIELD.

Lists
Lists are a way to store related data. In some contexts, lists are
called arrays, but in Redis, a list is a linked list, which means
operations to write to the list are very fast. However, depending
on where in the list the item is located, its performance is not as
fast for read operations. Although not always appropriate because
of repeated values, a set (discussed later) can sometimes be used
when read speed is crucial.

Lists use one key holding several ordered values, and values are
stored as strings. You can add values to the head or tail (called left
and right in Redis) of a list and you retrieve values by their index.
Values within a list can repeat, meaning you may have the same
value at a different index within the list.

You can push a value onto a list with the LPUSH and RPUSH com-
mands, which place values onto a list either on the left (or head)
or on the right (or tail) of the list. For example, creating a two-
item list looks like this:

LPUSH users steve bob

The list now contains two items, indexed beginning at 0. An indi-
vidual item can be retrieved using the LINDEX command. For
example, retrieving the first item in the list looks like this:

LINDEX users 0

www.dbooks.org

https://www.dbooks.org/

CHAPTER 4 Using Multi-Model Redis: Data Models, Structures, and Modules 35

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Retrieving the second item looks like this:

LINDEX users 1

If you try to retrieve an index that doesn’t exist, you’ll receive
(nil) as the output.

All items or just a slice of items can be retrieved with the LRANGE
command. The LRANGE command expects to receive the first and
last indexes to retrieve, by number. If you want to retrieve all
items in the users list, it looks like this:

LRANGE users 0 -1

Note the use of the -1 as the second value. The -1 means “to the
end of the list.”

The output from the LRANGE command for the users table is as
follows:

1) "bob"
2) "steve"

Also, notably, because LPUSH was used, the last item, bob, becomes
the top of the list, or item 1. If this list had been created with
RPUSH, then bob would be the bottom of the list, or item 2.

Sets
From an application standpoint, sets are somewhat like lists, in
that you use a single key to store multiple values. Unlike lists,
though, sets are not retrieved by index number and are not sorted.
Instead, you query to see if a member exists in the set. Also unlike
lists, sets can’t have repeating members within the same key.

Redis manages the internal storage for sets. The result is that you
don’t work with set values in the same way that you do lists. For
example, you can’t push and pop to the front and back of a set the
way you can with a list.

You can add a value to a set with the SADD command:

SADD fruit apple

36 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

You can list all members of a set with the SMEMBERS command:

SMEMBERS fruit

Given that the key called fruit exists, the command returns a list
of all members in that set. In this case, the only item returned is
as follows:

1) "apple"

You can determine whether a given value exists in a set with the
SISMEMBER command. For example, to see if a value called "apple"
exists in the fruit key, you would use the following command:

SISMEMBER fruit apple

If the member exists in the set, an integer 1 is returned. If the
member does not exist, an integer 0 is returned.

Hashes
Hashes are used to store collections of key/value pairs. Contrast a
hash with a simple string data type where there is one value cor-
responding to one key. A hash has one key, but then within that
structure are more fields and values.

You might use a hash to store the current state of an object in an
application. For example, when storing information about a house
for sale, a logical structure might look like this:

houseID: 5150
numBedrooms: 3
squareFeet: 2700
hvac: forced air

Representing this structure with a Redis hash looks like this:

HSET house:5150 numBedrooms 3 squareFeet 2700
hvac "forced air"

www.dbooks.org

https://www.dbooks.org/

CHAPTER 4 Using Multi-Model Redis: Data Models, Structures, and Modules 37

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Individual fields within the overall house:5150 hash are retrieved
with the HGET command. To retrieve the numBedrooms field value,
use this command:

HGET house:5150 numBedrooms

The result is as follows:

"3"

Sorted sets
Sorted sets are used to store data that needs to be ranked, such as
a leaderboard. Like a hash, a single key stores several members.
The score for each of the members is a number. For example, if
you were tracking the number of followers for a group of users,
the data might look like this:

User Followers:

steve: 31

owen: 2

jakob: 13

Within Redis, this data can be re-created as a sorted set with the
following command:

ZADD userFollowers 31 steve 2 owen 13 jakob

The ZRANGE command is used to retrieve the resulting sorted set.
Like the LRANGE command, which is used to retrieve values from
a list, the ZRANGE command accepts the beginning and ending
number for retrieval. For example, you can retrieve all members
of a sorted set like this:

ZRANGE userFollowers 0 -1

When that command is executed, the members are retrieved, but
not the corresponding scores. To retrieve both the member names
and their scores, add the WITHSCORES argument to the command,
like this:

ZRANGE userFollowers 0 -1 WITHSCORES

38 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

When that command is executed against the previously entered
data set, the result is:

1) "owen"
2) "2"
3) "jakob"
4) "13"
5) "steve"
6) "31"

As you can see from the output of ZRANGE, the members and their
scores are ranked by score value, lowest to highest. You can also
retrieve the members and their scores in reverse order (that is,
highest to lowest) with the ZREVRANGE command:

ZREVRANGE userFollowers 0 -1 WITHSCORES

The score for an individual member can be incremented by any
valid number with the ZINCRBY command. For example, to incre-
ment the username jakob by 20, the command would be as follows:

ZINCRBY userFollowers 20 jakob

The resulting score is returned, so in this case the returned value
represents the original 13 followers plus 20 more:

"33"

The result of the ZRANGE or ZREVRANGE will reflect the change to
the number of followers, too.

Another way of working with data in a sorted set is to use the
ZRANK command to determine where within the sorted set a given
member resides.

HyperLogLog
HyperLogLog is a specialized but highly useful data type in Redis. A
HyperLogLog is used to keep an estimated count of unique items.
You might use the HyperLogLog data type for tracking an overall
count of unique visitors to a website.

The HyperLogLog data type maintains an internal hash to deter-
mine whether it has seen the value already. If it has, then the
value is not entered into the database.

www.dbooks.org

https://www.dbooks.org/

CHAPTER 4 Using Multi-Model Redis: Data Models, Structures, and Modules 39

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The PFADD command is used to both create a key and add items to
a HyperLogLog key:

PFADD visitors 127.0.0.1

If this is the first time that the value 127.0.0.1 has been seen in the
visitors key, then an integer value of 1 is returned to indicate a
successful addition to that database. A 0 is returned if the value
already exists.

The PFCOUNT command is used to provide an estimate of the num-
ber of unique items within a HyperLogLog.

Patterns and Data Structures
Earlier, I introduced the basic data types in Redis. But there are
also common ways to use Redis, incorporating these data types. I
examine some of these patterns in this section.

Pub/sub
Redis can also act as a fast and efficient means to exchange mes-
sages in a publisher/subscriber (pub/sub) pattern. When used in
such a way, a publisher creates a key-value pair, and zero or more
clients subscribe to receive messages.

Creation of the channel to which clients will subscribe is as simple
as using the PUBLISH command to create a value. For example,
the following command creates or publishes to a channel called
weather with a message of temp:85f:

PUBLISH weather temp:85f

The message is published to the channel called weather regard-
less of whether any clients are subscribed. If a client is subscribed,
the client will receive a message like the following:

1) "message"
2) "weather"
3) "temp:85f"

40 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Clients subscribe to a channel with the SUBSCRIBE command. It’s
assumed that the client knows the format of messages and is able
to parse the messages received correctly. Messages are opaque to
Redis.

Like other data types in Redis, pub/sub publisher channels can be
split to create a hierarchical structure by convention. For exam-
ple, creating a weather channel by zip code might look like this:

PUBLISH weather:54481 temp:85f

Clients can then subscribe to the specific zip code for weather
updates. Clients can also subscribe in a wildcard pattern to all
weather subkeys, with the PSUBSCRIBE command:

PSUBSCRIBE weather:[*]

Geospatial indexes
Geospatial indexing is a common pattern used for encoding data
that relies on latitude and longitude. This pattern and resultant
data makes working with spatial data very easy and fast. After it’s
added to the data set, you can calculate things like the distance
between two data points using built-in functions.

Creating a data set of locations of radio towers might look like
this:

GEOADD towers -89.500 44.500 tower1
GEOADD towers -88.000 44.500 tower2

You can then calculate the distance between those two towers
using the GEODIST command:

GEODIST towers tower1 tower2

The GEODIST command returns values in meters by default, but it
can be changed to other measures, such as miles, like this:

GEODIST towers tower1 tower2 mi

www.dbooks.org

https://www.dbooks.org/

CHAPTER 4 Using Multi-Model Redis: Data Models, Structures, and Modules 41

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Redis Streams
Streams are modeled after a log data structure, where data is
appended like a logfile. This distinction is important for Redis
Streams because data is append-only; therefore, data can only be
added to or read from a stream.

Streams are created through the XADD command, with other com-
mands similar to that of sorted sets such as the XRANGE command.
You can also view pending messages and perform other powerful
operations on streams.

Redis Modules
Redis has several modules that further enhance the capability
of Redis. This section examines seven such modules: RediSearch,
RedisJSON, RedisTimeSeries, RedisGraph, RedisBloom, RedisAI,
and RedisGears.

RediSearch
RediSearch is a full-text search engine that features document
storage within Redis while enabling high-performance search
capabilities. RediSearch 2.0 enables real-time secondary indexing
and powerful querying to create a full-text search engine.

The RediSearch module enables weighted search results, the use
of Boolean logic, autocomplete functionality, and several other
common features. The use of fuzzy-logic search technology helps
to enhance search results for users, especially when combined
with autocomplete suggestions.

RediSearch can also perform concurrent queries and concurrent
indexing, which further enhances performance.

RedisJSON
RedisJSON stores JSON documents in their native format, enabling
in-memory manipulation of the corresponding data and data
structures. This storage scheme promotes high-velocity use cases
without sacrificing performance. For example, user personaliza-
tion (much of which can be consumed natively in JSON format)
is one such use case. Entire documents, such as data like product

42 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

catalogs and third-party feeds, can also be stored in order to
facilitate a content management scenario. Hierarchical data can
be stored as a single compound object, eliminating the need for
multiple requests. RedisJSON is unique and distinct from docu-
ment and JSON data manipulation through Lua, offering signifi-
cant improvement over other types of storage.

Behind the scenes, the ECMA-404 standard is used as the native
format for RedisJSON.

RedisTimeSeries
Storing time-series data is another common task for a database
and is also common for NoSQL databases, notably for use cases
such as IoT, stock prices, and telemetry. The RedisTimeSeries
module is a high-performance way to store and work with data
that is ordered by time.

Data stored with the RedisTimeSeries module can be best thought
of like a list but with the added bonus of having a time stamp
associated with the data. Time-series-based data facilitates easy
metadata retrieval and summarized data queries (such as finding
the minimum or maximum time stamp, counting, and so on).

With RedisTimeSeries, you can ingest and query millions of sam-
ples and events at the speed of Redis. Use a variety of queries for
visualization and monitoring with built-in connectors to popular
tools like Grafana, Prometheus, and Telegraf.

RedisGraph
RedisGraph is a module that implements a graph database within
Redis. Graph databases provide a method for implementation of
graph theory through data. A common example when discussing
graph database use cases revolves around identifying relation-
ships between social media users.

With a graph database, each endpoint or node can have zero or
more properties. Nodes are then connected to each other through
an edge. Like nodes, edges can also have properties of their own.

RedisBloom
The RedisBloom module extends Redis core to support additional
probabilistic data structures. Specifically, RedisBloom facilitates

www.dbooks.org

https://www.dbooks.org/

CHAPTER 4 Using Multi-Model Redis: Data Models, Structures, and Modules 43

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

the use of four probabilistic data structures in Redis, including
a Bloom filter, a cuckoo filter, a count-min sketch, and top-k.
Bloom and cuckoo filters provide information on whether an item
exists within a set. The count-min sketch and top-k data struc-
ture are used to count frequent items, with count-min sketch
determining the frequency of items in a stream and top-k pro-
viding a list of items that appear most frequently.

RedisAI
RedisAI is a Redis module for executing Deep Learning/Machine
Learning models and managing their data. RedisAI uses tensors
as a means for modeling machines and deep-learning problems.
Some common use cases for the RedisAI module include speech
recognition and natural language processing, object detection and
visual inspection, and filtering of extremely scaled data, such as
social network data.

RedisGears
RedisGears is an engine for data processing in Redis. RedisGears
supports batch and event-driven processing for Redis data. To
use RedisGears, you write functions that describe how your data
should be processed. You then submit this code to your Redis
deployment for remote execution.

RedisGears provides a means to execute Python functions and
entire Python scripts inside of Redis. Executing functions and
scripts not only speeds up processing but also simplifies archi-
tecture, enabling serverless architectures.

CHAPTER 5 Redis Architecture and Topology 45

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

IN THIS CHAPTER

»» Making sense of clustering and high
availability

»» Looking at transactions and durability

Redis Architecture
and Topology

This chapter focuses on Redis in a production environment,
including those elements that organizations need in order
to run a highly available enterprise-grade database.

The chapter begins with a look at clustering capabilities of Redis
and Redis Enterprise and then turns to high availability. Finally,
the chapter wraps up with a discussion of transactions and dura-
bility in Redis.

Much of the chapter highlights the features that Redis Enterprise
brings to a production deployment.

Understanding Clustering and High
Availability

A production environment typically requires a certain level of
performance and redundancy. Database performance is fulfilled
through a number of means, including clustering and sharding.

www.dbooks.org

https://www.dbooks.org/

46 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

A database shard is a portion of a larger database. Pieces of a data
set are split among multiple servers, with each server responsi-
ble for a subset of the data. Doing so splits the load among the
servers.

Redis Enterprise cluster architecture
Redis Enterprise has clustering capabilities built in. With a Redis
cluster, portions of a database are shared throughout a set of servers.
Redis Enterprise cluster uses a shared-nothing approach — each
server within a cluster is responsible only for its own set of data.

Cluster management is performed at a different layer of the Redis
cluster architecture. This means that requests can be served as
quickly as they would be if the server weren’t running in a cluster.

Redis Enterprise cluster is linearly scalable with a multi-tenant
and symmetric architecture.

Within a Redis cluster, a given server is referred to as a node. Each
node can be a primary (master) or a secondary (replica) node.

The Redis Enterprise cluster consists of several components:

»» Redis Shard: Data is stored and managed at this layer and is
the same core as a single instance of open-source Redis.

»» Zero-Latency Proxy: Each node of the cluster uses a proxy
to provide stateless and multi-threaded communication
between client and node.

»» Cluster Manager: The Cluster Manager is responsible
for management of overall cluster health and monitoring,
including rebalancing, resharding, provisioning, and
de-provisioning nodes, and so on.

»» REST API: The secure representational state transfer (REST)
application programming interface (API) is used for manage-
ment of the cluster.

High availability
Providing high availability in the case of network splits involves
running three replicas of the same data simultaneously. In the
event of a network failure, the two remaining nodes that can
communicate become authoritative.

CHAPTER 5 Redis Architecture and Topology 47

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

High availability enables Redis to achieve 99.999 percent uptime.

Organizations using open-source Redis to achieve high availa-
bility find the expense of random access memory (RAM) makes
doing so costlier and more complex overall. Redis Enterprise
provides high availability without needing a third live replica —
instead, it uses a third, much smaller server for quorum resolu-
tion in the case of network splits. Providing high availability in
this way avoids the need for expensive RAM, which, in any sce-
nario, means direct cost savings.

Redis Enterprise uses in-memory replication between the mas-
ter and replica. Replication with Redis Enterprise is optimized
even more than the open-source Redis. Benchmarks show that
Redis Enterprise replication is 37 percent faster than the standard
open-source Redis.

Behind the scenes, Redis Enterprise monitors at both the node
level and the cluster level. Node monitoring ensures that pro-
cesses related to node performance are working correctly. If a
node becomes unavailable or unresponsive, the node watchdog
begins the shard failover process.

Cluster monitoring with Redis Enterprise watches the health of
nodes from an overall view and monitors for network health as
well.

Redis Enterprise also supports multi-availability-zone (AZ)
deployments.

Running Redis at scale
From an architectural perspective, a fully scaled and production-
level Redis deployment has several characteristics. The key to
running Redis at scale is using Redis Enterprise, which makes
enterprise-level deployments easy by providing many of the
components needed for such an architecture.

Redis Enterprise supports both scaling vertically and scaling
horizontally, and the choice is not mutually exclusive. Production
environments use scaling to share the load or increase compute
capability based on demand. Linear scaling is achieved without
the need for nonlinear overhead. Redis Enterprise splits work-
load across processing cores and nodes and optimizes perfor-
mance across multiple levels, including connection management,

www.dbooks.org

https://www.dbooks.org/

48 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

request scheduling, and execution. This performance optimiza-
tion is applied regardless of data type or model.

Scaling up is used when there is available capacity within a server
or cluster, while scaling out deploys more servers or compute
resources and shards the data onto those newly deployed servers.

Redis Enterprise can also scale proxies when necessary. This typi-
cally isn’t required because proxies are deployed in a redundant
configuration and are highly performant on their own. However,
when extra capacity at the proxy level is required, Redis Enter-
prise can do it.

Redis Enterprise also allows for read replicas using a feature
called replica-of. The replica-of feature creates another database
that can then also be sharded and configured differently from the
original. Redis Enterprise further enhances performance by auto-
matically resharding and rebalancing the workload.

Redis on Flash
Redis on Flash (RoF), available with Redis Enterprise Software
and Redis Enterprise Cloud, enables the database to be stored
not only in RAM but also on dedicated flash memory such as a
solid-state drive (SSD). With RoF, keys and data are maintained in
RAM, while less frequently used values are placed in flash. Spe-
cifically, hot values are maintained in RAM and warm values in
flash. Redis intelligently chooses which values to place in flash
with the implementation of a least recently used (LRU) algorithm.

Examining Transactions and Durability
Having the ability to undo a data write in the event of a problem
is key to providing reliable data. This section examines durability
and transaction support in Redis.

ACID
Atomicity, consistency, isolation, and durability (ACID) describes
overall architectural properties of transactional systems, as typi-
cally seen with databases, including NoSQL.

CHAPTER 5 Redis Architecture and Topology 49

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Redis supports all capabilities required to be ACID-compliant.
This support is accomplished through various methods:

»» Atomicity: Redis provides transaction-related commands,
including WATCH, MULTI, and EXEC. These commands ensure
that operations on the database are indivisible and
irreducible.

»» Consistency: Only permitted writes are allowed to be
performed through the validation provided by Redis.

»» Isolation: Being single-threaded, each single command or
transaction using MULTI/EXEC is thereby isolated.

»» Durability: Redis can be configured to respond to a client
write to confirm that a write operation has been written to
disk.

Using Redis with the confirmation for writes can affect perfor-
mance. The next section discusses durability in more detail.

A CLOSER LOOK AT ACID
ACID is a concept that stretches back many years across multiple iter-
ations of database architectures. ACID describes fundamental charac-
teristics that are needed for enterprise database systems:

•	Atomicity: The ability to ensure that a write or change to data is
either fully written to the database or not committed at all. In
other words, no partial writes that could lead to inconsistencies in
the data.

•	Consistency: The data is correct both before and after a transac-
tion occurs.

•	 Isolation: Isolation helps to ensure consistency by requiring con-
current transactions to be separate from each other.

•	Durability: Durability is data persistence that ensures that when a
transaction is complete, it can be retrieved in the event of a system
failure.

www.dbooks.org

https://www.dbooks.org/

50 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Durability
Redis Enterprise is a fully durable database. There are two meth-
ods for providing data persistence in Redis:

»» Append-Only File (AOF): With AOF and the every-write
setting, Redis replies to the client after the write operation
has been successfully written to disk, guaranteeing
durability.

AOF applies to every shard of the database and can be
configured to write to the database file every second or on
every write. Writing every second is fast but not as safe,
while writing to the disk on every database write operation
means slower performance. The benefit is ensuring durabil-
ity by writing to the disk for every database write operation.

Redis Enterprise handles AOF differently from the open-
source version of Redis. With Redis Enterprise, AOF is
optimized to increase performance. One of the ways this is
done is by configuring data persistence at the replica of each
shard of the database. Performance isn’t impacted because
the master shard isn’t affected. However, replication latency
can adversely affect the performance requirements for data
persistence. Redis Enterprise provides the ability to enable
data persistence on both the master and the replica shards.

»» Snapshot: Snapshots are point-in-time copies of the
database. Snapshots apply to all shards within a database
and are used primarily for durability rather than as a backup.

Both AOF and snapshot, along with the enhancements available
to each through Redis Enterprise, help to ensure that transactions
and the data remain durable and available at all times.

Another method for providing a level of durability is through in-
memory persistence, which can be both safer and faster.

CHAPTER 6 Using Redis Enterprise Software and Redis Enterprise Cloud 51

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 6

IN THIS CHAPTER

»» Getting acquainted with Redis Enterprise
Software and Redis Enterprise Cloud

»» Using Redis Enterprise Software and
RedisInsight

Using Redis Enterprise
Software and Redis
Enterprise Cloud

Redis Enterprise Software and Redis Enterprise Cloud provide
enhanced, enterprise-ready implementations of Redis. This
chapter explains Redis Enterprise Software and Redis

Enterprise Cloud and the enhancements that make them appeal-
ing for so many production workloads today.

Understanding Redis Enterprise Software
and Redis Enterprise Cloud

In a modern enterprise environment, performance and reliability
are requirements of all applications. Redis Enterprise is the over-
all name for the enhanced versions of Redis that are focused on
the needs of enterprise users.

www.dbooks.org

https://www.dbooks.org/

52 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

There are three primary means to deploy Redis Enterprise:

»» Redis Enterprise software can be deployed locally within
your data center or cloud provider and can be deployed in a
multi-cloud or hybrid on-premises/cloud architecture.

»» Redis Enterprise VPC and Redis Enterprise Cloud are fully
managed services operated by Redis Labs. Redis Enterprise
VPC enables you to run Redis Enterprise within your own
virtual private cloud (VPC) on Amazon Web Services (AWS),
but Redis Enterprise Cloud runs on instances that are owned
by Redis Labs. Redis Enterprise Cloud is available on all
major cloud providers.

Both methods for deployment result in a high-performance
implementation of Redis. The difference between the two is with
the management of the underlying platform. With Redis Enter-
prise software, you manage the infrastructure; with Redis
Enterprise Cloud, the platform is managed by Redis Labs.

You can find more information about Redis Enterprise Cloud,
including deploying an instance, in Chapter 3.

Regardless of how Redis Enterprise is deployed, you receive the
same benefits:

»» Seamless scaling

»» Always-on availability with instant automatic failover

»» Multi-model functionality through modules such as
RediSearch, RedisJSON, RedisBloom, and others

»» Full durability and snapshots

»» Stellar performance

CAP THEOREM AND CRDT
CAP theorem states that it’s impossible for a network-based service
(such as a server or data shared across a network) to simultaneously
provide more than two out of the following three guarantees:

CHAPTER 6 Using Redis Enterprise Software and Redis Enterprise Cloud 53

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Getting Started with Redis Enterprise
Software and RedisInsight

Getting started with Redis Enterprise means selecting a platform,
either hosted through Redis Enterprise Cloud or as downloadable
software. This section looks at those first steps to begin using
Redis Enterprise software. Getting started with Redis Enterprise
Cloud is covered in Chapter 3.

Regardless of which method you choose to get started, you need to
sign up at Redis Labs at https://redislabs.com.

Meeting the prerequisites
After you have an account at Redis Labs, you can choose which
method you’ll use for installing Redis Enterprise: the cloud or
locally. If you’re looking to test Redis Enterprise through Redis
Cloud, you’ll still want to install the command-line interface (CLI)
so that you can access the instance after it has been deployed.

•	Consistency

•	Availability

•	Partition tolerance

Ideally, you would be able to provide consistency and availability of
data in a way that was tolerant of network partitions, but in reality,
doing so means making trade-offs between the three properties.

Redis Enterprise works with CAP theorem properties. To ensure avail-
ability, Redis Enterprise replicates or copies data across multiple data
centers so that an incoming request can be handled by any of the
data centers.

Redis Enterprise must also be able to maintain consistency while
keeping data available. Redis Enterprise uses conflict-free replicated
data types (CRDTs) to maintain consistency and availability of data.
Because CRDTs are available across data centers, data within Redis
Enterprise is able to handle network partitions, or divisions within the
network that might otherwise make some or all of the data
inaccessible.

www.dbooks.org

https://redislabs.com/
https://www.dbooks.org/

54 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

For downloadable software, you should have at least 2GB of ran-
dom access memory (RAM) and 10GB of hard-disk space available
for a non-production deployment.

Installing Redis Enterprise locally means selecting one of the fol-
lowing supported platforms for Redis Enterprise:

»» Docker on macOS or Windows

»» Kubernetes

»» Oracle Linux

»» Red Hat

»» Ubuntu

Redis Enterprise software can be downloaded from https://
redislabs.com/redis-enterprise-software/download-
center/software. After you’ve downloaded Redis Enterprise,
you’ll be able to install it on your chosen platform.

Installing Redis Enterprise in a Docker
container
Redis Enterprise can be installed on a number of platforms, some
of which are discussed in Chapter 3. This section shows deploy-
ment using Docker. Docker makes it easy to develop, test, and
deploy an application by placing applications into distinct con-
tainers from which they can be deployed and tested.

Redis Enterprise can be run inside a Docker container. To do so,
first you have to install Docker. After Docker has been installed,
executing a simple command will run Redis Enterprise within a
container. For example, on a Linux system, here’s the command
to run Redis Enterprise in a container:

$ docker run -d --cap-add sys_resource --name rp
-p 8443:8443 -p 9443:9443 -p 12000:12000
redislabs/redis

Docker will then download the necessary components and pull
the image from DockerHub and begin running Redis inside the
container.

https://redislabs.com/redis-enterprise-software/download-center/software
https://redislabs.com/redis-enterprise-software/download-center/software
https://redislabs.com/redis-enterprise-software/download-center/software

CHAPTER 6 Using Redis Enterprise Software and Redis Enterprise Cloud 55

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Though using Docker is beyond the scope of what I cover in this
book, it’s worth noting that the command shown launches Docker
with its run subcommand. The run subcommand accepts several
options, a few of which are used here to make Docker go into the
background (-d), add Linux capabilities (--cap-add), and then
execute a container named rp (--name), exposing three ports:
8443, 9443, and 12000 (-p).

After installation, Redis Enterprise requires some setup. The setup
process is accomplished through a web browser by connecting to
https://localhost:8443.

Because there is almost certainly no Secure Sockets Layer (SSL)
certificate installed for localhost, you may receive a warning from
your web browser because it can’t verify the validity of the SSL
connection.

If you continue through the warning, you’ll get to a setup screen
like the one shown in Figure 6-1. When you reach this screen, fol-
low these steps:

1.	 Click Setup.

The process of node configuration, shown in Figure 6-2,
begins.

In Figure 6-2, the values are left at their defaults with the
exception of the cluster name, which is set to producttest.
example.com.

FIGURE 6-1: Beginning the setup process for Redis Enterprise software.

www.dbooks.org

https://localhost:8443/
https://www.dbooks.org/

56 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

2.	 Click Next.

The Cluster Authentication page appears (see Figure 6-3).

FIGURE 6-2: Setting properties for the cluster.

FIGURE 6-3: Optionally including a cluster key.

CHAPTER 6 Using Redis Enterprise Software and Redis Enterprise Cloud 57

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

3.	 Enter a cluster key if you want. Either way, click Next.

The Set Admin Credentials screen appears. Figure 6-4 shows
the email address being set to redisadmin@example.com
and a password being set as well.

4.	 Set the email and password, and click Next.

The Create New Database screen (see Figure 6-5) appears.

FIGURE 6-4: Configuring credentials for cluster administration.

FIGURE 6-5: Creating a database, either Redis or memcached.

www.dbooks.org

mailto:redisadmin@example.com
https://www.dbooks.org/

58 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

5.	 Select Redis Database and click Next.

The Create Database screen (see Figure 6-6) appears.

In Figure 6-6, a database name of productdb is created with a
1GB memory limit. The Default Database Access field also
has a password filled in. Other values are left at their default
but can be customized based on your needs.

6.	 Fill out the fields as needed, and click Activate.

After clicking Activate, the database is created.

Understanding concepts
and architecture
Redis Enterprise is set up in a clustered environment, with multi-
ple identical nodes ready to serve requests. The nodes themselves
include two layers:

»» Management layer: The management layer enables
administration of the cluster with things like the Cluster
Manager to manage placement of shards and failure
detection and mitigation.

FIGURE 6-6: Setting properties for a database as part of the cluster.

CHAPTER 6 Using Redis Enterprise Software and Redis Enterprise Cloud 59

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Data access layer: The data access layer manages connections
to the data itself, with clients connecting to the primary shard and
then secondary shards being maintained by the primary shard.

In-memory replication is used for synchronization, with wide-
area network (WAN) replication also available for maintaining
synchronization across data centers. Shard management is invis-
ible to the clients and is managed completely by the master shard.

Connecting with RedisInsight
RedisInsight provides an intuitive and efficient GUI for Redis,
allowing you to interact with your databases and manage your
data — with built-in support for most popular Redis modules.
It provides tools to analyze the memory, profile the performance
of your database usage, and guide you toward better Redis usage.
RedisInsight is available on multiple platforms and can be installed
in a variety of ways, including through its own installer. Addi-
tional information, including a link to the RedisInsight installer,
is available at https://docs.redislabs.com/latest/ri.

When RedisInsight is installed, it will listen for connections on
port 8001 by default. Follow these steps:

1.	 Navigate to https://localhost:8001.

A welcome page appears where you can select a path
depending on whether you already have a database or you
need to create one (see Figure 6-7). This section assumes that
you already have a Redis database.

2.	 Select I Already Have a Database.

You’re presented with several additional options depending
on whether you’ll be working with an individual database, a
cloud database, a cluster, or an Amazon ElastiCache database
(see Figure 6-8).

RedisInsight can auto-discover databases. If you click Connect
to Your Redis Enterprise Cluster, you get the screen shown in
Figure 6-9.

As shown in Figure 6-9, the cluster port for the recently
deployed Redis Enterprise cluster is used, along with the
credentials created for that deployment. RedisInsight is able
to discover the producttest database that was added earlier
in this chapter, and that database then becomes available for
addition to RedisInsight (see Figure 6-10).

www.dbooks.org

https://docs.redislabs.com/latest/ri
https://localhost:8001/
https://www.dbooks.org/

60 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FIGURE 6-7: Choosing whether there is an existing database or a database
needs to be created.

FIGURE 6-8: Various options for working with a database in RedisInsight.

CHAPTER 6 Using Redis Enterprise Software and Redis Enterprise Cloud 61

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

With a database discovered and added to RedisInsight, you
can then manage and interact with the data, better under-
stand resource usage, develop queries, and perform other tasks.
Figure 6-11 shows the Overview page within RedisInsight. Notice
the summary and graphs to give a quick, dashboard-style over-
view of the database. The various actions that are possible are also
shown in Figure 6-11, including accessing a data browser, the CLI,
several modules, and much more.

RedisInsight provides a rich, task-centric experience tailored
to modern application development and administrative needs.
For example, memory analysis can be performed to improve the
performance of the application. Slowlog analysis, or trouble-
shooting slow performance of queries, can also be done through
RedisInsight. See https://developer.redislabs.com/explore/
redisinsight for more details on the tasks that can be accom-
plished with RedisInsight.

FIGURE 6-9: Configuring auto-discovery settings.

www.dbooks.org

https://developer.redislabs.com/explore/redisinsight
https://developer.redislabs.com/explore/redisinsight
https://www.dbooks.org/

62 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FIGURE 6-10: An auto-discovered database in RedisInsight.

FIGURE 6-11: The Overview screen in RedisInsight.

CHAPTER 7 A Simple Redis Application 63

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 7

IN THIS CHAPTER

»» Beginning to build a Redis application

»» Using three common data types

A Simple Redis
Application

In this chapter, you take a look at a basic application created to
run on Node.js demonstrating basic create-read-update-
delete (CRUD) operations.

The application isn’t meant to show everything that’s possible
with Redis. Instead, it demonstrates the foundations to help kick-
start your development.

Getting Started
This section looks at what you need to begin building a Redis
application in Node.js. If you don’t want to set up your own devel-
opment environment, you can build this application using the free
plan available with Redis Enterprise Cloud.

Prerequisites
Redis has created a simple Redis application that can be found on
GitHub. The application stores information about cars as an exam-
ple and is meant to show how CRUD operations can be achieved
with Redis as a storage engine. The application is built in Node.js.

www.dbooks.org

https://www.dbooks.org/

64 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Follow the instructions in the GitHub repo at https://github.
com/RedisLabs/redis-for-dummies to set up the application.

Front-end application code
The primary location for the front-end code is the file called
index.js. This file sets up the application for our use. The index.
js file uses a Node.js HTTP server that has routes backed by Redis
calls.

The remaining code in index.js is used to route or direct clients
to the proper location.

Even though the file is index.js, there is no default web page for
this application.

Creating a CRUD App
This section looks at usage for three of the common Redis data
types: sets, lists, and hashes. As you work through this section,
you may want to use MONITOR from the Redis command-line
interface (CLI) in order to see what’s happening.

Within the code repository, you’ll find a shell script called
sample.sh. The sample.sh script creates sample data that will be
used in this section. To execute sample.sh, you need to have the
Redis server and the Node.js application running. With the Redis
server and Node.js running, execute the sample.sh script:

./sample.sh

When you run the script, it will generate sample data records by
running curl commands against the Node.js server. You’ll receive
output like the following, though the values for the id field in the
car descriptions may be different:

Adding cars

Added a ford-explorer
Added a toyota im
Added a saab 93 aero
Added a family truckster

https://github.com/RedisLabs/redis-for-dummies
https://github.com/RedisLabs/redis-for-dummies

CHAPTER 7 A Simple Redis Application 65

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Done adding cars.

Adding car descriptions

{"id":"cjhvatfuc00005mfj2zycewid"} <-- Added SUV
{"id":"cjhvatfv500015mfj8nzqk34c"} <-- Added

Hatchback
{"id":"cjhvatfvo00025mfjyfxuyp6o"} <-- Added Sedan
{"id":"cjhvatfw700035mfjaupal85f"} <-- Added

Station Wagon
Done Adding car descriptions.

Adding features

Added power-steering
Added climate-control
Added car-play
Added disc-brakes
Done adding features.

With the sample data created, you can look at how to query each
data type with curl.

I describe the script throughout the rest of this chapter. In general
terms, the application maps verbs from representational state
transfer (REST) calls to Redis commands.

You can add your own sample data or use data from another
source for these examples, too.

Cars (sets)
The sample data script added a few cars to the Redis instance.
These were added as a set.

Sets are unsorted collections of unique members. To access them,
you query to see if a given value exists.

Retrieving the members of a set through the Node applica-
tion is accomplished by sending a GET HTTP request to the car’s
URL. This results in an SMEMBERS call to the car set. Here’s an
example:

curl http://localhost:3000/cars/

www.dbooks.org

https://www.dbooks.org/

66 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The SMEMBERS command is executed by the server when you make
that request. Then you receive the following response:

["family-truckster","saab-93-aero","toyota-
im","ford-explorer"]

Other operations are possible, too. For example, an HTTP PUT
method (executing a SADD Redis command) was used to create
the original data (in the sample.sh script). You can also execute
an HTTP DELETE method (executing an SREM Redis command) to
remove a member from the set.

Features (lists)
Another collection of data added by the sample script was
features — that is, features you may find in a car. The features
were added as a list. Reading data using the application means
sending a GET request. In this case, retrieving all features looks
like this:

curl http://localhost:3000/features/

Behind the scenes, the LRANGE command is executed with 0 and –1
for the indices, thereby retrieving all values. So, the Redis com-
mand is

LRANGE features 0 -1

Because lists are numerically indexed, you can retrieve based
on position within the list. The application supports both start
and end index, beginning with 0 for the first item in the list. For
example, retrieving all the items beginning with the third item
looks like this:

curl http://localhost:3000/features/2

As before, the LRANGE command is executed on the server. Instead
of beginning with the 0 index, this time the command begins with
index 2 and continues to the end of the list, with the Redis com-
mand being the following:

LRANGE features 2 -1

CHAPTER 7 A Simple Redis Application 67

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

You can also set an end index. Retrieving only the third item looks
like this:

curl http://localhost:3000/features/2/2

This time, LRANGE is executed with the same beginning and end-
ing index (2). The full Redis command is as follows:

LRANGE features 2 2

The LRANGE command reads data but other CRUD operations are
supported for lists in this application. To fulfill the create por-
tion of the CRUS acronym, send a POST request (using LPUSH); to
update, send a PUT request (LSET); and to delete, use the DELETE
method (LREM).

Car descriptions (hashes)
The sample script adds data to the hash data structure in the
Redis instance. When the data is added, the first argument in the
ZSCORE/HGETALL is the key, containing the unique ID. Working
with hash data means creating and requesting that unique ID.

Retrieving the details of a car by its ID looks like this:

curl http://localhost:3000/cardescriptions/
cjhvatfuc00005mfj2zycewid

The unique ID will be different for your database.

When an ID is used in this manner, the ZSCORE command is exe-
cuted by the server against cardescriptions:collection. This
is followed by the HGETALL command. In all, it looks like this:

ZSCORE cardescriptions:collection cjhvatfuc00005
mfj2zycewid

HGETALL cardescriptions:details:cjhvatfuc00005mfj2
zycewid

The keys used in this chapter are very large. Large keys work well
in heavily used applications in order to help avoid overlapping
keys. However, you can use more compact unique IDs in your
application.

www.dbooks.org

https://www.dbooks.org/

68 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

You can see all unique IDs by sending this request:

curl http://localhost:3000/cardescriptions/

Behind the scenes, the ZREVRANGEBYSCORE command is executed
when the call to /cardescriptions/ is made, so this will show
all the items in the sorted set. The entire command is as follows:

ZREVRANGEBYSCORE cardescriptions +inf -inf

Like other data types in this application, you can also create
(ZADD/HMSET), patch (HMSET), and delete data (UNLINK/ZREM)
stored in hashes.

CHAPTER 8 Building an Application with RediSearch 69

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 8

IN THIS CHAPTER

»» Exploring RediSearch with a sample
application

»» Querying and indexing data

Building an Application
with RediSearch

RediSearch is a powerful indexing, querying, and full-text
search engine for Redis, available on-premises and as a
managed service in the cloud. In this chapter, I walk you

through an application demonstrating RediSearch. The applica-
tion uses sample data related to movies. The chapter features
RedisInsight, a free web-based management interface for Redis.
RedisInsight is used to explore and interact with data through an
intuitive and efficient GUI, with built-in support for most popular
Redis modules.

Using RediSearch for Movie Data
Before you can use RediSearch, you have to install it. After instal-
lation, some sample data will be inserted into the database. This
section covers both of these tasks.

Installing RediSearch
RediSearch can be installed into an existing Redis instance by
compiling from source. The RediSearch module is also available

www.dbooks.org

https://www.dbooks.org/

70 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

with Redis Enterprise Cloud or Redis Enterprise Software. Finally,
RediSearch can also be installed using Docker. This section focuses
on a Windows-based Docker installation and assumes that Docker
has already been installed.

The Docker command to install RediSearch is as follows:

docker run -it --name redis-search-2 -p 6379:6379
redislabs/redisearch:2.0.2

When you run this command, the container is downloaded and
a single Redis instance running RediSearch is installed. Data can
now be visualized using RedisInsight.

You can download RedisInsight from https://docs.redislabs.
com/latest/ri. Chapter 6 includes additional information about
RedisInsight, including how to make the initial connection to the
database. For this example, RedisInsight will be connected to a
single Redis instance through the Connect to a Redis Database
option. When you select that option, the Add Redis Database dia-
log (see Figure 8-1) appears. Using the sample added earlier in
this section, the Host should be set to localhost, the Port should
be set to 6379, and the Name should be set to redis-search-2.
(You can leave the Username and Password fields blank for this
example, but for an instance that could be accessed from outside
this single machine, you’ll need to set them.)

FIGURE 8-1: Adding a Redis database to RedisInsight.

https://docs.redislabs.com/latest/ri
https://docs.redislabs.com/latest/ri

CHAPTER 8 Building an Application with RediSearch 71

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Inserting data
You can insert data for the sample application through the
command-line interface (CLI) accessed from within RedisInsight.
From the My Redis Databases page of RedisInsight (shown in
Figure 8-2), click the redis-search-2 database.

When you access the CLI through RedisInsight, you can enter a
command within the text box at the bottom of the page. Whatever
you enter in the text box will be executed when you press Enter.
For the movies example, add the following three movies through
the CLI; press Enter after each HSET command:

HSET movie:11003 title "The Godfather" plot "The
aging patriarch of an organized crime dynasty
transfers control of his clandestine empire to
his reluctant son." release_year 1972 genre
"Drama" rating 9.2 votes 1563839 imdb_id
tt0068646

HSET movie:11004 title "Heat" plot "A group of
professional bank robbers start to feel the heat
from police when they unknowingly leave a clue

FIGURE 8-2: Viewing databases available in RedisInsight.

www.dbooks.org

https://www.dbooks.org/

72 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

at their latest heist." release_year 1995 genre
"Thriller" rating 8.2 votes 559490 imdb_id
tt0113277

HSET "movie:11005" title "Star Wars: Episode VI -
Return of the Jedi" genre "Action" votes 906260
rating 8.3 release_year 1983 plot "The Rebels
dispatch to Endor to destroy the second Empire's
Death Star." ibmdb_id "tt0086190"

The end result of adding those three movies to the database
through the RedisInsight CLI is shown in Figure 8-3.

Working with Data and Indexes
This section continues the movies database example being devel-
oped to demonstrate RediSearch. Within the section, the data you
just inserted will be queried, an index will be added, and the data
will be searched.

Querying data
You can query data through RedisInsight through the CLI or by
using the Browser tool in RedisInsight. For example, to retrieve the
title of the movie with key 11003, use the HMGET command, like this:

HMGET movie:11003 title

FIGURE 8-3: Inserting data using the CLI in RedisInsight.

CHAPTER 8 Building an Application with RediSearch 73

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The result is:

1) "The Godfather"

Querying through the Browser, which you can navigate to by
clicking the Browser tool in RedisInsight, provides a richer expe-
rience. You can simply click a given key, such as movie:11004, to
retrieve all the values for that entry (see Figure 8-4).

The Browser enables you to change and delete individual fields
within a key or the entire entry itself.

Adding and viewing indexes
With core Redis data structures, you have to manage the index
manually, adding significant amounts of code to the application.
However, with RediSearch, an index can simply be defined and
associated with data. Redis will then manage the index and the
query engine can be used to search or query the data using sec-
ondary indexes.

Moving forward with the example, indexes are necessary for each
field that will be searchable and are created through the CLI with
the FT.CREATE command. For example, to create an index on

FIGURE 8-4: Querying data through the Browser in RedisInsight.

www.dbooks.org

https://www.dbooks.org/

74 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

movie title, genre, rating, and year of release, the following com-
mand is used:

FT.CREATE idx:movie ON hash PREFIX 1 "movie:"
SCHEMA title TEXT SORTABLE release_year NUMERIC
SORTABLE rating NUMERIC SORTABLE genre TAG
SORTABLE

When executed through the CLI, the result of this command is a
simple:

"OK"

The command FT.INFO is used to display detailed information
about the index, including its definition and various statistics
about the number of documents indexed, the resources needed to
create the index, and more. For example, the following command
will display the index information for the newly created index:

FT.INFO idx:movie

Because indexes consume memory and resources, you should
carefully consider which fields are necessary to be searched
within the application.

Figure 8-5 shows RedisInsight in use for the movie index.

Searching data
With the previous steps complete, it’s time to search the sample
data. With RedisInsight, clicking RediSearch displays a search text
box where you can conduct a search of the index created in the
previous step. For example, Figure 8-6 shows a search that has
been executed for the movie Heat.

You can also search using the FT.SEARCH command through
the CLI. You can find more information on querying with FT.
SEARCH at https://oss.redislabs.com/redisearch/master/
Commands/#ftsearch.

https://oss.redislabs.com/redisearch/master/Commands/#ftsearch
https://oss.redislabs.com/redisearch/master/Commands/#ftsearch

CHAPTER 8 Building an Application with RediSearch 75

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FIGURE 8-5: Using RediSearch for the movie index in RedisInsight.

FIGURE 8-6: Using RediSearch within RedisInsight to search for a movie.

www.dbooks.org

https://www.dbooks.org/

CHAPTER 9 Developing an Active-Active/Conflict-Free Replicated Data Type Application 77

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 9

IN THIS CHAPTER

»» Understanding conflict-free replicated
data types

»» Getting started with conflict-free
replicated data types

»» Seeing conflict-free replicated data types
in action

Developing an Active-
Active/Conflict-Free
Replicated Data Type
Application

In this chapter, you develop an application using the Active-
Active mode of Redis Enterprise implemented via conflict-
free-replicated data types (CRDTs). I start by defining CRDTs

and explain how they differ from other replication methods.

Getting Acquainted with Conflict-Free
Replicated Data Types

This section provides some background on CRDTs. I start by
defining them. Then I explain how CRDTs differ from other rep-
lication methods. Finally, I offer some thoughts on where and
when you’ll use CRDTs.

78 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Defining conflict-free replicated
data types
CRDTs are a special data structure that enables multiple copies
of data to be stored across multiple locations in such a way that
each copy can be updated independently. The conflict-free part is
due to the fact that this data type can resolve any inconsistencies
without intervention.

Looking at how they’re different
CRDTs differ from other replication methods in that there
doesn’t need to be extensive communication between copies —
or nodes — involved in a CRDT. When a conflict between two
nodes occurs, the condition for choosing which data to use is not
based on the wall clock; instead, it’s based on a mathematically
derived set of rules.

Conflicts are resolved at the database level with CRDTs and are
consensus free. This resolution is done without user intervention.

The end result is that CRDTs are faster and provide fault toler-
ance. Application development is also easier, making the process
quicker.

Understanding why and
where you need them
CRDTs are valuable for high-volume data that requires a shared
state. Additionally, CRDTs can use geographically dispersed (also
called geolocal) servers in order to reduce latency. With Active-
Active databases, applications can read and write to the same data
set from different geographical locations seamlessly and with
latency less than 1 ms, without changing the way the application
connects to the database.

The geographic dispersal enables high availability even dur-
ing network or regional network failures. Disaster recovery also
occurs in real time.

Active–Active databases support Lua scripts. However, only the
resulting write commands, known as the effects, of the scripts
are replicated rather than the entire Lua script. This is known as
effects replication mode.

www.dbooks.org

https://www.dbooks.org/

CHAPTER 9 Developing an Active-Active/Conflict-Free Replicated Data Type Application 79

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Several data types can be used as CRDTs in Redis, including:

»» Bitfield

»» Float counters

»» Geospatial

»» Hashes (hash fields are treated as strings or counters)

»» HyperLogLog

»» Integer counters

»» Lists

»» Sets

»» Sorted Sets

»» Strings

»» Streams

Working with Conflict-Free
Replicated Data Types

In this section, you begin to build the application. You install pre-
requisites and get a good understanding of where you’re headed
with the application.

Getting an overview of the application
To set up a demonstration in a reasonable amount of time and
with a reasonable amount of effort, you’ll be creating an envi-
ronment that simulates a much larger architecture. The overall
premise is to use Docker containers for the simulation.

The application being demonstrated runs as a single node and
works great with CRDTs. The end result shows how CRDT-based
data converges.

The application simulates a geo-replicated topology to reduce
latency. It’s worth noting that replication occurs across clusters
and not across individual shards or nodes.

80 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Considering the prerequisites
The application uses Docker to make it easy to see the Active–
Active nature of the application and of Redis itself. You need to
install Docker before continuing.

The installation of Docker is beyond the scope of this chapter, but
you can find instructions at https://docs.docker.com/install.

The application discussed in this chapter also requires the use
of multiple Redis Enterprise instances, each of which runs in a
Docker container. The application requires more resources than
those required for Chapter 8. For example, the application in this
chapter requires 8GB of random access memory (RAM) for each
instance of Redis Enterprise.

The example application also uses Node.js. You may have already
installed Node.js, but if not, you can get more information on
installing it at https://node.js.org.

Finally, the files for the application itself are contained on
GitHub and can be found at https://github.com/RedisLabs/
redis-for-dummies. Within that repository, the directory
/crdt-application/ contains the files for the application in this
chapter.

Starting the containers
To start Docker and the Redis Enterprise containers, follow these
steps:

1.	 Run create_redis_enterprise_clusters.sh.

You may need to make the script executable, depending on
your platform. This typically entails running chmod 700
<scriptname.sh> from a Command Prompt or Terminal
window.

Running the script creates two networks (one for each
cluster) and two clusters:

•	 172.18.0.2: Runs Redis on port 12000 and an administra-
tive port of 9443. The administrative port is forwarded to
port 8443 on your local development environment.

www.dbooks.org

https://docs.docker.com/install
https://node.js.org/
https://github.com/RedisLabs/redis-for-dummies
https://github.com/RedisLabs/redis-for-dummies
https://www.dbooks.org/

CHAPTER 9 Developing an Active-Active/Conflict-Free Replicated Data Type Application 81

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

•	 172.19.0.2: Runs Redis on port 12002 and an administra-
tive port of 9445. The administrative port for this cluster is
forwarded to port 8445 on your local development
environment.

The create_redis_enterprise_clusters.sh script also
connects the two networks so they can communicate.

The creation script takes a few minutes to execute, depending
largely on the amount of resources such as CPU and RAM
available and whether Docker needs to download the image.
You can test whether the instances are up and running by
pointing a web browser to http://localhost:8443 and
http://localhost:8445. If you see a setup prompt, the
instances are working.

Do not follow the prompt. You’ll set up the clusters automati-
cally using a script.

Although there is a user interface for creating the clusters, you’ll
do so automatically via the command line in the next step.

2.	 Run setup_redis_enterprise_clusters.sh.

This script configures two clusters in each Docker container.
The clusters have the sample username of r@r.com and a
password of test.

Don’t use these clusters in a production environment or in an
environment that may be otherwise compromised. The
clusters should be used for testing only and have very little
security hardening.

3.	 Run join_redis_enterprise_clusters_crdb.sh.

You may need to change the permissions on this script, just
as with the previous scripts executed in this section. See the
tip earlier in this section for more details.

The join_redis_enterprise_clusters_crdb.sh script
accesses the Redis API to join the clusters. This same task
could be accomplished through the user interface, too, but
using the API makes it easy.

The final outcome of the script will be to join the two clusters in a
conflict-free replicated database (CRDB) spanning both clusters.

http://localhost:8443/
http://localhost:8445/
mailto:r@r.com

82 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Testing the conflict-free
replicated data type
The first step in testing the CRDB is to connect to each cluster.
Follow these steps:

1.	 Execute the following command to connect to the first
cluster:

redis-cli -p 12000

This command invokes the Redis command-line interface
(CLI) and attempts to connect using port 12000.

If you receive a > prompt, you’re connected and you can
execute the following commands within the CLI:

SET test hi
EXIT

2.	 Execute the following command to connect to the second
cluster:

redis-cli -p 12002

As before, if you’re connected, you’ll see a > prompt.

When you’re done within the CLI, type EXIT to end your CLI
session. This command was included in the previous example
but is not shown in subsequent examples.

3.	 Retrieve the previously set test key and then change the
test key by running the following commands:

GET test
"hi"
SET test howdy

4.	 Connect back to the first cluster:

redis-cli -p 12000

www.dbooks.org

https://www.dbooks.org/

CHAPTER 9 Developing an Active-Active/Conflict-Free Replicated Data Type Application 83

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

5.	 At the prompt, retrieve the test key:

GET test
"howdy"
EXIT

If these tests are successful, the clusters are communicating
properly.

Watching Conflict-Free Replicated
Data Types at Work

The code example illustrates a simulated Internet of Things (IoT)
configuration that tracks cars as they enter a monitored street.
In the configuration, multiple sensors are simulated in order to
report cars passing by to track which roads they’re on and which
position marker on the road they’ve passed.

In the simulation, each sensor can be connected to the geographi-
cally closest cluster to achieve the lowest latency.

As simulated cars pass a marker, they’re idempotently added to a
set using the SADD command and then added to a hash that con-
tains an incrementing counter (HINCRBY) to indicate how many
markers have been passed.

Setting up the example code
environment
The sample code requires its own environment installed through
Node.js. It’s worth noting that the example code shows just one
way to use CRDTs. There are numerous others, and the example
commands can usually be executed in cluster mode or when using
them on a single cluster or even in a single instance.

The instructions here give the most common example command.
See the README file within the example code for specific details,
updates, and notes about the example code.

84 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

From within the /cdrt-application/ directory, execute the
following:

npm install

Viewing the example with a
healthy network
Behind the scenes, several Redis commands are executed by the
code. These commands add a set and perform other related com-
mands in order to achieve the desired result.

The example code runs the following commands:

SADD all-roads {passed road from command line}
MULTI
SADD roads:{passed road from command line} {passed

plate}
HINCRBY road-marker:{passed road from command

line} {passed plate} 1
EXEC

You can view the commands in real time on the first cluster by
executing the following from within another window:

redis-cli -p 12000
> MONITOR

Connect to the second cluster by changing the port to 12002
instead of 12000 in order to see the commands being executed on
the second cluster.

The client can be connected to either cluster. On the first cluster,
execute the following:

node car.js marker 91street --plate 1234
--connection ./rp2.json

{
 "entered": "91street",
 "onRoadPreviously": false,
 "marker": 1
}

www.dbooks.org

https://www.dbooks.org/

CHAPTER 9 Developing an Active-Active/Conflict-Free Replicated Data Type Application 85

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

On the second cluster, execute the following:

node car.js marker 91street --plate 1234
--connection ./rp1.json

{
 "entered": "91street",
 "onRoadPreviously": true,
 "marker": 2
}

Note how the incremented value is coordinated across the clusters.

Now add another car:

node car.js marker 118avenue --plate 4567
--connection ./rp2.json

node car.js marker 118avenue --plate 4567
--connection ./rp1.json

Viewing the roads on either cluster shows synchronization in
action. To view the roads, run the following command:

node car.js viewroads --connection ./rp1.json
{
 "118avenue": {
 "4567": "2"
 },
 "91street": {
 "1234": "2"
 }
}
node car.js viewroads --connection ./rp2.json
{
 "118avenue": {
 "4567": "2"
 },
 "91street": {
 "1234": "2"
 }
}

86 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

As you can see from the results, both clusters are the same and,
thus, synchronized. Behind the scenes, the viewroads command
executes the following:

SMEMBERS all-roads

Then it executes the following for each member of the road set:

HGETALL road-marker:{a member from the previous
set}

Breaking the network connection
between clusters
In this section, you use Docker to simulate a break in the network
connection. Execute the following script, after making it execut-
able if necessary:

split_network.sh

After that command has been executed, the client software from
the example code is still communicating with each cluster, but
the clusters themselves are no longer communicating with each
other.

Viewing the example in a split network
Now you’ll execute commands to demonstrate how the example
operates in a split network configuration.

Run the following commands:

node car.js marker 118avenue --plate 4567
--connection ./rp1.json

node car.js marker 91street --plate 1234
--connection ../rp2.json

Then run viewroads:

node car.js viewroads --connection ./rp1.json
{
 "118avenue": {
 "4567": "3"

www.dbooks.org

https://www.dbooks.org/

CHAPTER 9 Developing an Active-Active/Conflict-Free Replicated Data Type Application 87

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 },
 "91street": {
 "1234": "2"
 }
}
node car.js viewroads --connection ./rp2.json
{
 "118avenue": {
 "4567": "2"
 },
 "91street": {
 "1234": "3"
 }
}

Now that the two networks are split, the clusters no longer main-
tain synchronization with each other. Updates can continue on
each cluster while the network is split. However, the clusters can
rejoin at any time, and no updates will be lost when the clusters
rejoin.

Rejoining the network
Reconnect the networks with the rejoin_network.sh script,
making it executable if necessary:

rejoin_network.sh

It will take a few seconds for the clusters to discover that they’re
reconnected, after which time the clusters will reconnect and
synchronize without any intervention. All data will be converged
using CRDT semantics, and no data will be lost.

Looking at the example in a
rejoined network
Now let’s look at the example in a network that has been recon-
nected after a split.

Execute the following:

node car.js viewroads --connection ./rp2.json
{

88 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 "118avenue": {
 "4567": "3"
 },
 "91street": {
 "1234": "3"
 }
}
node car.js viewroads --connection ./rp1.json
{
 "118avenue": {
 "4567": "3"
 },
 "91street": {
 "1234": "3"
 }
}

Now pass a marker on each road to see how the data is synchro-
nized again:

node car.js marker 91street --plate 1234
--connection ./rp2.json

{
 "entered": "91street",
 "onRoadPreviously": true,
 "marker": 4
}
node car.js marker 91street --plate 1234

--connection ./rp1.json
{
 "entered": "91street",
 "onRoadPreviously": true,
 "marker": 5
}

The example in this chapter is just one of many ways that a CRDT
can be used. The underlying and essential elements of Redis are
the same when using them on their own or with a single cluster.

www.dbooks.org

https://www.dbooks.org/

CHAPTER 10 Ten Things You Can Do with Redis 89

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 10
Ten Things You Can Do
with Redis

T
his whole book is about what Redis can do for you. This
chapter lists ten things you can do with Redis.

A single Redis cluster can be used to do any of these ten things,
regardless of whether it’s a transactional or analytical workload.

»» Use it as your primary database. Redis is not just a NoSQL
database. It goes well beyond NoSQL to implement numer-
ous features for today’s enterprise customers. Redis is more
than simple key-value storage — it provides multiple data
models and multiple methods to access data.

Redis can be utilized by the entire application stack within an
organization.

»» Cache the most frequently used pieces of data. Load data
from slower data sources into Redis and provide near-
instant response times. Redis keeps data in random access
memory (RAM) to make retrieval fast.

»» Use it for session storage. Session storage requires very fast
response times, both for writing data as users progress
through an application and for reading that information back.
For example, Redis is frequently used for shopping carts.

90 Redis For Dummies, 2nd Limited Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Redis is an excellent fit for session storage due to its native
data-type storage that mirrors the kind of storage needed
for storing session data.

»» Decouple services. Redis Streams and the publish/subscribe
(pub/sub) pattern enable service decoupling. Services can write
to and read from Redis Streams or can publish and subscribe to
messages using Redis as the facilitator of the pub/sub pattern.

»» Provide rate limiting. Redis can be used to rate-limit users
and end points to protect and improve the availability of
API-based services. The high-performance, real-time nature
of Redis means that tracking can be done in real time along
with the users and end points.

»» Ingest data quickly. Redis is known for its capability to work
with large amounts of data at speed. Consuming or taking in
data in large quantities and then processing it or handing it off
for further processing makes Redis a great choice for data
ingestion. For example, financial applications that work with
stock prices to store, aggregate, and query stock prices and
financial information at high speeds are a great fit for Redis.

»» Build real-time leaderboards. Native data types that
promote sorting and counting operations enable Redis to be
used as the back end for real-time leaderboards.

»» Build a store finder. Redis includes geo-based data types
that natively handle geospatial data like latitude and
longitude calculations. A store finder is another use case
where Redis is the compelling solution.

»» Perform analytics efficiently. Data that needs to be pro-
cessed can be stored in Redis in a compact manner. Data that
may take terabytes in another storage medium can be
processed in such a way that it requires significantly less
resources when you use Redis. For example, probabilistic data
structures can be used that then help to maintain counts,
frequencies, and percentiles very efficiently. This use is
frequently found in Internet of Things (IoT) sensor applications.

»» Index large amounts of data. Redis handles large amounts
of data well. As an organization and its application portfolio
grow, so does the amount of data. Redis has the flexibility
and extensibility (through modules) to store data for multiple
consumers and the performance and efficiency to store
large amounts of data for established and new organizations
alike.

www.dbooks.org

https://www.dbooks.org/

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

https://redislabs.com/cloud

www.dbooks.org

https://Dummies.com
https://www.dbooks.org/

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Where to Go from Here

	Chapter 1 What Is Redis?
	Introducing NoSQL
	Defining NoSQL
	Identifying types of NoSQL databases
	Knowing when to use NoSQL versus a relational database
	Deciding when to use a NoSQL database

	Seeing Where Redis Fits
	Data storage
	Data structure storage

	Working with Multi-Model Application Requirements
	The single-model problem
	The modules solution

	Chapter 2 What Is Redis Used For?
	Identifying How Redis Can Help You
	Real-time analytics
	Fraud detection
	Gaming and leaderboards
	Personalization with session management
	Recommendation management
	Social apps
	Search

	Redis in the Real World
	Caching
	Large data sets
	Full-text fuzzy search
	Geospatial and time-series data
	Messaging/queuing

	Chapter 3 Getting Started with Redis
	Understanding the Components of Redis
	The server and the command-line interface
	The client and drivers
	Databases, memory, and persistence

	Deploying Redis
	Using Redis Enterprise Cloud
	Compiling Redis from source
	Using Redis in Docker
	Homebrewing for macOS

	Taking the First Steps with Redis
	Installing the Redis command-line interface
	Making your first connection

	Working with Redis Clients
	Python
	Java
	Node.js
	Other languages

	Chapter 4 Using Multi-Model Redis: Data Models, Structures, and Modules
	Redis Data Models
	Strings and bitmaps
	Lists
	Sets
	Hashes
	Sorted sets
	HyperLogLog

	Patterns and Data Structures
	Pub/sub
	Geospatial indexes
	Redis Streams

	Redis Modules
	RediSearch
	RedisJSON
	RedisTimeSeries
	RedisGraph
	RedisBloom
	RedisAI
	RedisGears

	Chapter 5 Redis Architecture and Topology
	Understanding Clustering and High Availability
	Redis Enterprise cluster architecture
	High availability
	Running Redis at scale
	Redis on Flash

	Examining Transactions and Durability
	ACID
	Durability

	Chapter 6 Using Redis Enterprise Software and Redis Enterprise Cloud
	Understanding Redis Enterprise Software and Redis Enterprise Cloud
	Getting Started with Redis Enterprise Software and RedisInsight
	Meeting the prerequisites
	Installing Redis Enterprise in a Docker container
	Understanding concepts and architecture
	Connecting with RedisInsight

	Chapter 7 A Simple Redis Application
	Getting Started
	Prerequisites
	Front-end application code

	Creating a CRUD App
	Cars (sets)
	Features (lists)
	Car descriptions (hashes)

	Chapter 8 Building an Application with RediSearch
	Using RediSearch for Movie Data
	Installing RediSearch
	Inserting data

	Working with Data and Indexes
	Querying data
	Adding and viewing indexes
	Searching data

	Chapter 9 Developing an Active-Active/Conflict-Free Replicated Data Type Application
	Getting Acquainted with Conflict-Free Replicated Data Types
	Defining conflict-free replicated data types
	Looking at how they’re different
	Understanding why and where you need them

	Working with Conflict-Free Replicated Data Types
	Getting an overview of the application
	Considering the prerequisites
	Starting the containers
	Testing the conflict-free replicated data type

	Watching Conflict-Free Replicated Data Types at Work
	Setting up the example code environment
	Viewing the example with a healthy network
	Breaking the network connection between clusters
	Viewing the example in a split network
	Rejoining the network
	Looking at the example in a rejoined network

	Chapter 10 Ten Things You Can Do with Redis
	EULA

