

Oracle PL/SQL Programming

Download at WoweBook.Com

Download at WoweBook.Com

FIFTH EDITION

Oracle PL/SQL Programming

Steven Feuerstein
with Bill Pribyl

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Download at WoweBook.Com

Oracle PL/SQL Programming, Fifth Edition
by Steven Feuerstein with Bill Pribyl

Copyright © 2009 Steven Feuerstein and Bill Pribyl. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Deborah Russell and Julie Steele
Production Editor: Loranah Dimant
Production Services: Newgen, Inc.

Indexer: Ellen Troutman Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
September 1995: First Edition.
September 1997: Second Edition.
September 2002: Third Edition.
August 2005: Fourth Edition.
September 2009: Fifth Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Oracle PL/SQL Programming, the image of ants, and related trade dress are trade-
marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

Oracle® and all Oracle-based trademarks and logos are trademarks or registered trademarks of Oracle
Corporation, Inc., in the United States and other countries. O’Reilly Media, Inc., is independent of
Oracle Corporation. Java™ and all Java-based trademarks and logos are trademarks or registered trade-
marks of Sun Microsystems, Inc., in the United States and other countries. O’Reilly Media, Inc., is
independent of Sun Microsystems, Inc. Microsoft®, Windows®, and all Microsoft-based trademarks
and logos are trademarks or registered trademarks of Microsoft, Inc., in the United States and other
countries. O’Reilly Media, Inc. is independent of Microsoft, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-51446-4

[M]

1252945074

Download at WoweBook.Com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

To my father, Sheldon Feuerstein, whose intellec-
tual curiosity, personal integrity, and devotion to

family inspire me daily.

—Steven Feuerstein

To my father.

—Bill Pribyl

Download at WoweBook.Com

Download at WoweBook.Com

Table of Contents

Preface . xxvii

Part I. Programming in PL/SQL

1. Introduction to PL/SQL . 3
What Is PL/SQL? 3
The Origins of PL/SQL 4

The Early Years of PL/SQL 4
Improved Application Portability 5
Improved Execution Authority and Transaction Integrity 5
Humble Beginnings, Steady Improvement 6

So This Is PL/SQL 7
Integration with SQL 7
Control and Conditional Logic 8
When Things Go Wrong 9

About PL/SQL Versions 10
Oracle Database 11g New Features 12

Resources for PL/SQL Developers 17
The O’Reilly PL/SQL Series 17
PL/SQL on the Internet 18

Some Words of Advice 19
Don’t Be in Such a Hurry! 20
Don’t Be Afraid to Ask for Help 21
Take a Creative, Even Radical Approach 22

2. Creating and Running PL/SQL Code . 23
Navigating the Database 23
Creating and Editing Source Code 24
SQL*Plus 25

Starting Up SQL*Plus 26
Running a SQL Statement 28

vii

Download at WoweBook.Com

Running a PL/SQL Program 28
Running a Script 30
What Is the “Current Directory”? 31
Other SQL*Plus Tasks 32
Error Handling in SQL*Plus 36
Why You Will Love and Hate SQL*Plus 37

Performing Essential PL/SQL Tasks 38
Creating a Stored Program 38
Executing a Stored Program 41
Showing Stored Programs 42
Managing Grants and Synonyms for Stored Programs 43
Dropping a Stored Program 44
Hiding the Source Code of a Stored Program 44

Editing Environments for PL/SQL 45
Calling PL/SQL from Other Languages 46

C: Using Oracle’s Precompiler (Pro*C) 47
Java: Using JDBC 48
Perl: Using Perl DBI and DBD::Oracle 49
PHP: Using Oracle Extensions 50
PL/SQL Server Pages 51
And Where Else? 52

3. Language Fundamentals . 53
PL/SQL Block Structure 53

Anonymous Blocks 54
Named Blocks 56
Nested Blocks 57
Scope 58
Qualify all References to Variables and Columns in SQL Statements 59
Visibility 61

The PL/SQL Character Set 64
Identifiers 66

Reserved Words 68
Whitespace and Keywords 69

Literals 70
NULLs 71
Embedding Single Quotes Inside a Literal String 72
Numeric Literals 73
Boolean Literals 73

The Semicolon Delimiter 74
Comments 75

Single-Line Comment Syntax 75
Multiline Comment Syntax 75

viii | Table of Contents

Download at WoweBook.Com

The PRAGMA Keyword 76
Labels 77

Part II. PL/SQL Program Structure

4. Conditional and Sequential Control . 81
IF Statements 81

The IF-THEN Combination 82
The IF-THEN-ELSE Combination 84
The IF-THEN-ELSIF Combination 85
Avoiding IF Syntax Gotchas 86
Nested IF Statements 88
Short-Circuit Evaluation 89

CASE Statements and Expressions 90
Simple CASE Statements 91
Searched CASE Statements 93
Nested CASE Statements 95
CASE Expressions 95

The GOTO Statement 97
The NULL Statement 98

Improving Program Readability 99
Using NULL After a Label 99

5. Iterative Processing with Loops . 101
Loop Basics 101

Examples of Different Loops 102
Structure of PL/SQL Loops 103

The Simple Loop 104
Terminating a Simple Loop: EXIT and EXIT WHEN 105
Emulating a REPEAT UNTIL Loop 106
The Intentionally Infinite Loop 106

The WHILE Loop 108
The Numeric FOR Loop 109

Rules for Numeric FOR Loops 110
Examples of Numeric FOR Loops 111
Handling Nontrivial Increments 112

The Cursor FOR Loop 112
Example of Cursor FOR Loops 114

Loop Labels 115
The CONTINUE Statement 116
Tips for Iterative Processing 119

Use Understandable Names for Loop Indexes 119

Table of Contents | ix

Download at WoweBook.Com

The Proper Way to Say Goodbye 120
Obtaining Information About FOR Loop Execution 121
SQL Statement as Loop 122

6. Exception Handlers . 125
Exception-Handling Concepts and Terminology 125
Defining Exceptions 127

Declaring Named Exceptions 128
Associating Exception Names with Error Codes 129
About Named System Exceptions 132
Scope of an Exception 134

Raising Exceptions 135
The RAISE Statement 136
Using RAISE_APPLICATION_ERROR 137

Handling Exceptions 138
Built-in Error Functions 139
Combining Multiple Exceptions in a Single Handler 144
Unhandled Exceptions 145
Propagation of Unhandled Exceptions 145
Continuing Past Exceptions 148
Writing WHEN OTHERS Handling Code 150

Building an Effective Error Management Architecture 152
Decide on Your Error Management Strategy 153
Standardize Handling of Different Types of Exceptions 154
Organize Use of Application-Specific Error Codes 157
Use Standardized Error Management Programs 157
Work with Your Own Exception “Objects” 159
Create Standard Templates for Common Error Handling 162

Making the Most of PL/SQL Error Management 164

Part III. PL/SQL Program Data

7. Working with Program Data . 167
Naming Your Program Data 167
Overview of PL/SQL Datatypes 169

Character Data 170
Numbers 170
Dates, Timestamps, and Intervals 172
Booleans 172
Binary Data 172
ROWIDs 173
REF CURSORs 173

x | Table of Contents

Download at WoweBook.Com

Internet Datatypes 174
“Any” Datatypes 174
User-Defined Datatypes 174

Declaring Program Data 175
Declaring a Variable 175
Declaring Constants 176
The NOT NULL Clause 177
Anchored Declarations 177
Anchoring to Cursors and Tables 179
Benefits of Anchored Declarations 180
Anchoring to NOT NULL Datatypes 181

Programmer-Defined Subtypes 182
Conversion Between Datatypes 183

Implicit Data Conversion 183
Explicit Datatype Conversion 185

8. Strings . 191
String Datatypes 191

The VARCHAR2 Datatype 192
The CHAR Datatype 193
String Subtypes 194

Working with Strings 195
Specifying String Constants 195
Using Nonprintable Characters 197
Concatenating Strings 198
Dealing with Case 199
Traditional Searching, Extracting, and Replacing 202
Padding 204
Trimming 206
Regular Expression Searching, Extracting, and Replacing 207
Working with Empty Strings 218
Mixing CHAR and VARCHAR2 Values 219

String Function Quick Reference 222

9. Numbers . 231
Numeric Datatypes 231

The NUMBER Type 232
The PLS_INTEGER Type 237
The BINARY_INTEGER Type 238
The SIMPLE_INTEGER Type 239
The BINARY_FLOAT and BINARY_DOUBLE Types 241
The SIMPLE_FLOAT and SIMPLE_DOUBLE Types 246
Numeric Subtypes 246

Table of Contents | xi

Download at WoweBook.Com

Number Conversions 247
The TO_NUMBER Function 247
The TO_CHAR Function 251
The CAST Function 256
Implicit Conversions 257

Numeric Operators 259
Numeric Functions 260

Rounding and Truncation Functions 260
Trigonometric Functions 261
Numeric Function Quick Reference 261

10. Dates and Timestamps . 267
Datetime Datatypes 267

Declaring Datetime Variables 270
Choosing a Datetime Datatype 271

Getting the Current Date and Time 272
Interval Datatypes 274

Declaring INTERVAL Variables 275
When to Use INTERVALs 276

Datetime Conversions 278
From Strings to Datetimes 279
From Datetimes to Strings 281
Working with Time Zones 284
Requiring a Format Mask to Match Exactly 287
Easing Up on Exact Matches 288
Interpreting Two-Digit Years in a Sliding Window 288
Converting Time Zones to Character Strings 290
Padding Output with Fill Mode 291

Date and Timestamp Literals 291
Interval Conversions 292

Converting from Numbers to Intervals 293
Converting Strings to Intervals 294
Formatting Intervals for Display 295

Interval Literals 295
CAST and EXTRACT 297

The CAST Function 297
The EXTRACT Function 299

Datetime Arithmetic 300
Date Arithmetic with Intervals and Datetimes 300
Date Arithmetic with DATE Datatypes 301
Computing the Interval Between Two Datetimes 302
Mixing DATEs and TIMESTAMPs 304
Adding and Subtracting Intervals 305

xii | Table of Contents

Download at WoweBook.Com

Multiplying and Dividing Intervals 306
Using Unconstrained INTERVAL Types 306

Date/Time Function Quick Reference 308

11. Records . 311
Records in PL/SQL 311

Benefits of Using Records 312
Declaring Records 314
Programmer-Defined Records 315
Working with Records 318
Comparing Records 325
Trigger Pseudo-Records 326

12. Collections . 327
Collections Overview 328

Collections Concepts and Terminology 328
Types of Collections 330
Collection Examples 331
Where You Can Use Collections 335
Choosing a Collection Type 340

Collection Methods (Built-ins) 341
The COUNT Method 343
The DELETE Method 343
The EXISTS Method 345
The EXTEND Method 345
The FIRST and LAST Methods 346
The LIMIT Method 347
The PRIOR and NEXT Methods 348
The TRIM Method 349

Working with Collections 350
Declaring Collection Types 350
Declaring and Initializing Collection Variables 355
Populating Collections with Data 359
Accessing Data Inside a Collection 364
Using String-Indexed Collections 365
Collections of Complex Datatypes 370
Multilevel Collections 374
Working with Collections in SQL 382

Nested Table Multiset Operations 387
Testing Equality and Membership of Nested Tables 389
Checking for Membership of an Element in a Nested Table 390
Performing High-Level Set Operations 390
Handling Duplicates in a Nested Table 392

Table of Contents | xiii

Download at WoweBook.Com

Maintaining Schema-Level Collections 393
Necessary Privileges 393
Collections and the Data Dictionary 394

13. Miscellaneous Datatypes . 395
The BOOLEAN Datatype 395
The RAW Datatype 396
The UROWID and ROWID Datatypes 397

Getting ROWIDs 398
Using ROWIDs 398

The LOB Datatypes 400
Working with LOBs 401

Understanding LOB Locators 403
Empty Versus NULL LOBs 405
Writing into a LOB 407
Reading from a LOB 409
BFILEs Are Different 410
SecureFiles Versus BasicFiles 415
Temporary LOBs 417
Native LOB Operations 421
LOB Conversion Functions 425

Predefined Object Types 426
The XMLType Type 426
The URI Types 430
The Any Types 431

Part IV. SQL in PL/SQL

14. DML and Transaction Management . 439
DML in PL/SQL 440

A Quick Introduction to DML 440
Cursor Attributes for DML Operations 444
RETURNING Information from DML Statements 445
DML and Exception Handling 446
DML and Records 447

Transaction Management 450
The COMMIT Statement 451
The ROLLBACK Statement 451
The SAVEPOINT Statement 452
The SET TRANSACTION Statement 453
The LOCK TABLE Statement 454

Autonomous Transactions 454

xiv | Table of Contents

Download at WoweBook.Com

Defining Autonomous Transactions 455
Rules and Restrictions on Autonomous Transactions 456
Transaction Visibility 457
When to Use Autonomous Transactions 458
Building an Autonomous Logging Mechanism 459

15. Data Retrieval . 463
Cursor Basics 464

Some Data Retrieval Terms 465
Typical Query Operations 466
Introduction to Cursor Attributes 467
Referencing PL/SQL Variables in a Cursor 470
Choosing Between Explicit and Implicit Cursors 471

Working with Implicit Cursors 471
Implicit Cursor Examples 472
Error Handling with Implicit Cursors 473
Implicit SQL Cursor Attributes 476

Working with Explicit Cursors 477
Declaring Explicit Cursors 479
Opening Explicit Cursors 482
Fetching from Explicit Cursors 483
Column Aliases in Explicit Cursors 484
Closing Explicit Cursors 485
Explicit Cursor Attributes 487
Cursor Parameters 489

SELECT...FOR UPDATE 492
Releasing Locks with COMMIT 494
The WHERE CURRENT OF Clause 495

Cursor Variables and REF CURSORs 496
Why Cursor Variables? 497
Similarities to Static Cursors 498
Declaring REF CURSOR Types 498
Declaring Cursor Variables 499
Opening Cursor Variables 500
Fetching from Cursor Variables 501
Rules for Cursor Variables 504
Passing Cursor Variables as Arguments 507
Cursor Variable Restrictions 509

Cursor Expressions 509
Using Cursor Expressions 510
Restrictions on Cursor Expressions 512

Table of Contents | xv

Download at WoweBook.Com

16. Dynamic SQL and Dynamic PL/SQL . 513
NDS Statements 514

The EXECUTE IMMEDIATE Statement 514
The OPEN FOR Statement 517
About the Four Dynamic SQL Methods 523

Binding Variables 525
Argument Modes 526
Duplicate Placeholders 527
Passing NULL Values 528

Working with Objects and Collections 529
Dynamic PL/SQL 531

Build Dynamic PL/SQL Blocks 532
Replace Repetitive Code with Dynamic Blocks 534

Recommendations for NDS 535
Use Invoker Rights for Shared Programs 535
Anticipate and Handle Dynamic Errors 536
Use Binding Rather Than Concatenation 538
Minimize the Dangers of Code Injection 540

When to Use DBMS_SQL 543
Parse Very Long Strings 543
Obtain Information About Query Columns 544
Meet Method 4 Dynamic SQL Requirements 546
Minimize Parsing of Dynamic Cursors 552

Oracle Database 11g New Features 554
DBMS_SQL.TO_REFCURSOR Function 554
DBMS_SQL.TO_CURSOR Function 556
Enhanced Security for DBMS_SQL 558

Part V. PL/SQL Application Construction

17. Procedures, Functions, and Parameters . 565
Modular Code 566
Procedures 567

Calling a Procedure 568
The Procedure Header 569
The Procedure Body 570
The END Label 570
The RETURN Statement 571

Functions 571
Structure of a Function 571
The RETURN Datatype 573
The END Label 575

xvi | Table of Contents

Download at WoweBook.Com

Calling a Function 575
Functions Without Parameters 576
The Function Header 577
The Function Body 577
The RETURN Statement 578

Parameters 579
Defining Parameters 580
Actual and Formal Parameters 581
Parameter Modes 582
Explicit Association of Actual and Formal Parameters in PL/SQL 585
The NOCOPY Parameter Mode Qualifier 589
Default Values 589

Local or Nested Modules 590
Benefits of Local Modularization 591
Scope of Local Modules 594
Sprucing Up Your Code with Local Modules 594

Module Overloading 595
Benefits of Overloading 596
Restrictions on Overloading 599
Overloading with Numeric Types 600

Forward Declarations 601
Advanced Topics 602

Calling Your Function From Inside SQL 602
Table Functions 605
Deterministic Functions 615

Go Forth and Modularize! 616

18. Packages . 617
Why Packages? 617

Demonstrating the Power of the Package 618
Some Package-Related Concepts 621
Diagramming Privacy 623

Rules for Building Packages 624
The Package Specification 624
The Package Body 626
Initializing Packages 627

Rules for Calling Packaged Elements 632
Working with Package Data 633

Global Within a Single Oracle Session 633
Global Public Data 634
Packaged Cursors 635
Serializable Packages 639

When to Use Packages 642

Table of Contents | xvii

Download at WoweBook.Com

Encapsulate Data Access 642
Avoid Hardcoding Literals 645
Improve Usability of Built-in Features 647
Group Together Logically Related Functionality 648
Cache Static Session Data 649

Packages and Object Types 650

19. Triggers . 651
DML Triggers 652

DML Trigger Concepts 653
Creating a DML Trigger 655
DML Trigger Example: No Cheating Allowed! 660
Multiple Triggers of the Same Type 665
Who Follows Whom 666
Mutating Table Errors 668
Compound Triggers: Putting It All In One Place 669

DDL Triggers 673
Creating a DDL Trigger 673
Available Events 676
Available Attributes 676
Working with Events and Attributes 678
Dropping the Undroppable 681
The INSTEAD OF CREATE Trigger 682

Database Event Triggers 683
Creating a Database Event Trigger 683
The STARTUP Trigger 685
The SHUTDOWN Trigger 685
The LOGON Trigger 685
The LOGOFF Trigger 686
The SERVERERROR Trigger 686

INSTEAD OF Triggers 690
Creating an INSTEAD OF Trigger 690
The INSTEAD OF INSERT Trigger 692
The INSTEAD OF UPDATE Trigger 694
The INSTEAD OF DELETE Trigger 695
Populating the Tables 695
INSTEAD OF Triggers on Nested Tables 696

AFTER SUSPEND Triggers 697
Setting Up for the AFTER SUSPEND Trigger 698
Looking at the Actual Trigger 700
The ORA_SPACE_ERROR_INFO Function 701
The DBMS_RESUMABLE Package 702
Trapped Multiple Times 703

xviii | Table of Contents

Download at WoweBook.Com

To Fix or Not to Fix? 704
Maintaining Triggers 705

Disabling, Enabling, and Dropping Triggers 705
Creating Disabled Triggers 706
Viewing Triggers 706
Checking the Validity of Triggers 707

20. Managing PL/SQL Code . 709
Managing Code in the Database 710

Overview of Data Dictionary Views 711
Display Information About Stored Objects 712
Display and Search Source Code 713
Use Program Size to Determine Pinning Requirements 715
Obtain Properties of Stored Code 715
Analyze and Modify Trigger State Through Views 716
Analyze Argument Information 717
Analyze Identifier Usage (Oracle Database 11g’s PL/Scope) 719

Managing Dependencies and Recompiling Code 721
Analyzing Dependencies with Data Dictionary Views 722
Fine-Grained Dependency (Oracle Database 11g) 726
Remote Dependencies 727
Limitations of Oracle’s Remote Invocation Model 730
Recompiling Invalid Program Units 731

Compile-Time Warnings 735
A Quick Example 735
Enabling Compile-Time Warnings 736
Some Handy Warnings 738

Testing PL/SQL Programs 746
Typical, Tawdry Testing Techniques 747
General Advice for Testing PL/SQL Code 751
Automated Testing Options for PL/SQL 752
Testing with utPLSQL 753
Testing with Quest Code Tester for Oracle 755

Tracing PL/SQL Execution 756
DBMS_APPLICATION_INFO 759
Quest Error Manager Tracing 761
The DBMS_TRACE Facility 763

Debugging PL/SQL Programs 766
The Wrong Way to Debug 767
Debugging Tips and Strategies 769

Protecting Stored Code 774
Restrictions on and Limitations of Wrapping 774
Using the Wrap Executable 775

Table of Contents | xix

Download at WoweBook.Com

Dynamic Wrapping with DBMS_DDL 775
Guidelines for Working with Wrapped Code 776

Introduction to Edition-Based Redefinition (Oracle Database 11g Release
2) 777

21. Optimizing PL/SQL Performance . 781
Tools to Assist in Optimization 783

Analyzing Memory Usage 783
Identifying Bottlenecks in PL/SQL Code 783
Calculating Elapsed Time 788
Choosing the Fastest Program 790
Avoiding Infinite Loops 792
Performance-Related Warnings 793

The Optimizing Compiler 793
Insights on How the Optimizer Works 795
Runtime Optimization of Fetch Loops 798

Data Caching Techniques 799
Package-Based Caching 800
Deterministic Function Caching 805
Function Result Cache (Oracle Database 11g) 807
Caching Summary 819

Bulk Processing for Multirow SQL 820
High Speed Querying with BULK COLLECT 821
High Speed DML with FORALL 828

Improving Performance With Pipelined Table Functions 838
Replacing Row-Based Inserts with Pipelined Function-Based Loads 839
Tuning Merge Operations with Pipelined Functions 846
Asynchronous Data Unloading with Parallel Pipelined Functions 848
Performance Implications of Partitioning and Streaming Clauses in Par-
allel Pipelined Functions 851
Pipelined Functions and the Cost-Based Optimizer 853
Tuning Complex Data Loads with Pipelined Functions 859
A Final Word on Pipelined Functions 866

Specialized Optimization Techniques 866
Using the NOCOPY Parameter Mode Hint 867
Using the Right Datatype 870

Stepping Back for the Big Picture on Performance 871

22. I/O and PL/SQL . 873
Displaying Information 873

Enabling DBMS_OUTPUT 874
Write Lines to the Buffer 874
Read the Contents of the Buffer 875

xx | Table of Contents

Download at WoweBook.Com

Reading and Writing Files 876
The UTL_FILE_DIR Parameter 877
Work with Oracle Directories 879
Open Files 880
Is the File Already Open? 882
Close Files 882
Read from Files 883
Write to Files 885
Copy Files 888
Delete Files 889
Rename and Move Files 890
Retrieve File Attributes 890

Sending Email 891
Oracle Prerequisites 893
Configuring Network Security 893
Send a Short (32,767 or Less) Plaintext Message 894
Include “Friendly” Names in Email Addresses 896
Send a Plaintext Message of Arbitrary Length 897
Send a Message with a Short (< 32,767) Attachment 898
Send a Small File (< 32767) as an Attachment 900
Attach a File of Arbitrary Size 900

Working with Web-Based Data (HTTP) 903
Retrieve a Web Page in “Pieces” 903
Retrieve a Web Page into a LOB 905
Authenticate Using HTTP Username/Password 906
Retrieve an SSL-Encrypted Web Page (Via HTTPS) 906
Submit Data to a Web Page via GET or POST 908
Disable Cookies or Make Cookies Persistent 912
Retrieve Data from an FTP Server 912
Use a Proxy Server 913

Other Types of I/O Available in PL/SQL 913
Database Pipes, Queues, and Alerts 914
TCP Sockets 914
Oracle’s Built-in Web Server 914

Part VI. Advanced PL/SQL Topics

23. Application Security and PL/SQL . 919
Security Overview 919
Encryption 921

Key Length 922
Algorithms 923

Table of Contents | xxi

Download at WoweBook.Com

Padding and Chaining 924
The DBMS_CRYPTO Package 925
Encrypting Data 926
Encrypting LOBs 929
SecureFiles 930
Decrypting Data 930
Performing Key Generation 932
Performing Key Management 932
Cryptographic Hashing 938
Using Message Authentication Codes 940
Using Transparent Data Encryption (TDE) 941
Transparent Tablespace Encryption 944

Row-Level Security 945
Why Learn About RLS? 947
A Simple RLS Example 949
Using Dynamic Policies 953
Using Column-Sensitive RLS 957
RLS Debugging 960

Application Contexts 964
Using Application Contexts 965
Security in Contexts 966
Contexts as Predicates in RLS 967
Identifying Non-Database Users 970

Fine-Grained Auditing 972
Why Learn About FGA? 973
A Simple FGA Example 974
Access How Many Columns? 976
Checking the Audit Trail 977
Using Bind Variables 978
Using Handler Modules 979

24. PL/SQL Architecture . 981
Who (or What) is DIANA? 981
How Does Oracle Execute PL/SQL Code? 982

An Example 983
Compiler Limits 986

The Default Packages of PL/SQL 987
Execution Authority Models 990

The Definer Rights Model 990
The Invoker Rights Model 995
Combining Rights Models 997

Conditional Compilation 998
Examples of Conditional Compilation 999

xxii | Table of Contents

Download at WoweBook.Com

The Inquiry Directive 1000
The $IF Directive 1004
The $ERROR Directive 1005
Synchronizing Code with Packaged Constants 1006
Program-Specific Settings with Inquiry Directives 1006
Working with Postprocessed Code 1008

PL/SQL and Database Instance Memory 1009
PGA, UGA, and CGA 1010
Cursors, Memory, and More 1011
Tips on Reducing Memory Use 1013
What to Do if You Run Out of Memory 1024

Native Compilation 1027
When to Run Interpreted Mode 1027
When to Go Native 1028
Native Compilation and Database Release 1028

What You Need to Know 1029

25. Globalization and Localization in PL/SQL . 1031
Overview and Terminology 1033
Unicode Primer 1034

National Character Set Datatypes 1036
Character Encoding 1036
Globalization Support Parameters 1037
Unicode Functions 1038

Character Semantics 1045
String Sort Order 1049

Binary Sort 1050
Monolingual Sort 1050
Multilingual Sort 1053

Multilingual Information Retrieval 1054
IR and PL/SQL 1056

Date/Time 1059
Timestamp Datatypes 1059
Date/Time Formatting 1060

Currency Conversion 1064
Globalization Development Kit for PL/SQL 1066

UTL_118N Utility Package 1066
UTL_LMS Error-Handling Package 1069
GDK Implementation Options 1070

26. Object-Oriented Aspects of PL/SQL . 1073
Introduction to Oracle’s Object Features 1073
Object Types by Example 1075

Table of Contents | xxiii

Download at WoweBook.Com

Creating a Base Type 1076
Creating a Subtype 1078
Methods 1079
Invoking Supertype Methods in Oracle Database 11g 1084
Storing, Retrieving, and Using Persistent Objects 1085
Evolution and Creation 1093
Back to Pointers? 1095
Generic Data: The ANY Types 1102
I Can Do It Myself 1106
Comparing Objects 1110

Object Views 1115
A Sample Relational System 1116
Object View with a Collection Attribute 1118
Object Subview 1121
Object View with Inverse Relationship 1122
INSTEAD OF Triggers 1123
Differences Between Object Views and Object Tables 1125

Maintaining Object Types and Object Views 1127
Data Dictionary 1127
Privileges 1128

Concluding Thoughts from a (Mostly) Relational Developer 1130

27. Calling Java from PL/SQL . 1133
Oracle and Java 1133
Getting Ready to Use Java in Oracle 1135

Installing Java 1135
Building and Compiling Your Java Code 1136
Setting Permissions for Java Development and Execution 1137

A Simple Demonstration 1139
Finding the Java Functionality 1140
Building a Custom Java Class 1140
Compiling and Loading into Oracle 1142
Building a PL/SQL Wrapper 1144
Deleting Files from PL/SQL 1145

Using loadjava 1146
Using dropjava 1148
Managing Java in the Database 1148

The Java Namespace in Oracle 1148
Examining Loaded Java Elements 1149

Using DBMS_JAVA 1150
LONGNAME: Converting Java Long Names 1151
GET_, SET_, and RESET_COMPILER_OPTION: Getting and Setting
(a Few) Compiler Options 1151

xxiv | Table of Contents

Download at WoweBook.Com

SET_OUTPUT: Enabling Output from Java 1152
EXPORT_SOURCE, EXPORT_RESOURCE, and EXPORT_CLASS:
Exporting Schema Objects 1153

Publishing and Using Java in PL/SQL 1155
Call Specs 1155
Some Rules for Call Specs 1157
Mapping Datatypes 1157
Calling a Java Method in SQL 1159
Exception Handling with Java 1160
Extending File I/O Capabilities 1163
Other Examples 1167

28. External Procedures . 1171
Introduction to External Procedures 1172

Example: Invoking an Operating System Command 1172
Architecture of External Procedures 1174

The Oracle Net Configuration 1176
Specifying the Listener Configuration 1176
Security Characteristics of the Configuration 1178

Setting Up Multithreaded Mode 1179
Creating an Oracle Library 1182
Writing the Call Specification 1183

The Call Spec: Overall Syntax 1184
Parameter Mapping: The Example Revisited 1186
Parameter Mapping: The Full Story 1188
More Syntax: The PARAMETERS Clause 1189
PARAMETERS Properties 1190

Raising an Exception from the Called C Program 1193
Nondefault Agents 1196
Maintaining External Procedures 1199

Dropping Libraries 1199
Data Dictionary 1200
Rules and Warnings 1200

A. Regular Expression Metacharacters and Function Parameters 1203

B. Number Format Models . 1209

C. Date Format Models . 1213

Index . 1219

Table of Contents | xxv

Download at WoweBook.Com

Download at WoweBook.Com

Preface

Millions of application developers and database administrators around the world use
software provided by Oracle Corporation to build complex systems that manage vast
quantities of data. At the heart of much of Oracle’s software is PL/SQL—a program-
ming language that provides procedural extensions to Oracle’s version of SQL (Struc-
tured Query Language) and serves as the programming language within the Oracle
Developer toolset (most notably Forms Developer and Reports Developer).

PL/SQL figures prominently as an enabling technology in almost every new product
released by Oracle Corporation. Software professionals use PL/SQL to perform many
kinds of programming functions, including:

• Implementing crucial business rules in the Oracle Server with PL/SQL-based stored
procedures and database triggers

• Generating and managing XML documents entirely within the database

• Linking web pages to an Oracle database

• Implementing and automating database administration tasks—from establishing
row-level security to managing rollback segments within PL/SQL programs

PL/SQL was modeled after Ada,* a programming language designed for the U.S. De-
partment of Defense. Ada is a high-level language that emphasizes data abstraction,
information hiding, and other key elements of modern design strategies. As a result of
this very smart design decision by Oracle, PL/SQL is a powerful language that incor-
porates many of the most advanced elements of procedural languages, including:

• A full range of datatypes from number to string, and including complex data struc-
tures such as records (which are similar to rows in a relational table), collections
(which are Oracle’s version of arrays), and XMLType (for managing XML docu-
ments in Oracle and through PL/SQL)

* The language was named “Ada” in honor of Ada Lovelace, a mathematician who is regarded by many to
have been the world’s first computer programmer. Visit http://www.adahome.com for more information about
Ada.

xxvii

Download at WoweBook.Com

http://www.adahome.com

• An explicit and highly readable block structure that makes it easy to enhance and
maintain PL/SQL applications

• Conditional, iterative, and sequential control statements, including a CASE state-
ment and three different kinds of loops

• Exception handlers for use in event-based error handling

• Named, reusable code elements such as functions, procedures, triggers, object
types (akin to object-oriented classes), and packages (collections of related pro-
grams and variables)

PL/SQL is integrated tightly into Oracle’s SQL language: you can execute SQL state-
ments directly from your procedural program without having to rely on any kind of
intermediate API (Application Programming Interface) such as JDBC (Java Database
Connectivity) or ODBC (Open Database Connectivity). Conversely, you can also call
your own PL/SQL functions from within a SQL statement.

Oracle developers who want to be successful in the 21st century must learn to use
PL/SQL to full advantage. This is a two-step process. First, you must become familiar
with and learn how to use the language’s ever-expanding set of features; and second,
after gaining competence in the individual features, you must learn how to put these
constructs together to build complex applications.

For these reasons and more, Oracle developers need a solid, comprehensive resource
for the base PL/SQL language. You need to know the basic building blocks of PL/SQL,
but you also need to learn by example so that you can avoid some of the trial and error.
As with any programming language, PL/SQL has a right way and many wrong ways
(or at least “not as right” ways) to handle just about any task. It is my hope that this
book will help you learn how to use the PL/SQL language in the most effective and
efficient way possible.

Objectives of This Book
What, specifically, will this book help you do?

Take full advantage of PL/SQL
Oracle’s reference manuals may describe all the features of the PL/SQL language,
but they don’t tell you how to apply the technology. In fact, in some cases, you’ll
be lucky to even understand how to use a given feature after you’ve made your way
through the railroad diagrams. Books and training courses tend to cover the same
standard topics in the same limited way. In this book, I’ll venture beyond the basics
to the far reaches of the language, finding the nonstandard ways that a particular
feature can be tweaked to achieve a desired result.

Use PL/SQL to solve your problems
You don’t spend your days and nights writing PL/SQL modules so that you can
rise to a higher plane of existence. You use PL/SQL to solve problems for your

xxviii | Preface

Download at WoweBook.Com

company or your customers. In this book, I try hard to help you tackle real-world
problems, the kinds of issues developers face on a daily basis (at least those prob-
lems that can be solved with mere software). To do this, I’ve packed the book with
examples—not just small code fragments, but substantial application components
that you can apply immediately to your own situations. There is a good deal of
code in the book itself, and much more on the accompanying web site. In a number
of cases, I use the code examples to guide you through the analytical process needed
to come up with a solution. In this way you’ll see, in the most concrete terms, how
to apply PL/SQL features and undocumented applications of those features to a
particular situation.

Write efficient, maintainable code
PL/SQL and the rest of the Oracle products offer the potential for incredible de-
velopment productivity. If you aren’t careful, however, this capability will simply
let you dig yourself into a deeper, darker hole than you’ve ever found yourself in
before. I would consider this book a failure if it only helped programmers write
more code in less time; I want to help you develop the skills and techniques to
build applications that readily adapt to change and that are easily understood and
maintained. I want to teach you to use comprehensive strategies and code archi-
tectures that allow you to apply PL/SQL in powerful, general ways to the problems
you face.

Structure of This Book
Both the authors and O’Reilly Media are committed to providing comprehensive, useful
coverage of PL/SQL over the life of the language. This fifth edition of Oracle PL/SQL
Programming describes the features and capabilities of PL/SQL up through Oracle Da-
tabase 11g Release 2. I assume for this edition that Oracle Database 11g is the baseline
PL/SQL version. However, where appropriate, I reference specific features introduced
(or only available) in other, earlier versions. For a list of the main characteristics of the
various releases, see the section “About PL/SQL Versions” on page 10 in
Chapter 1.

PL/SQL has improved dramatically since the release of Version 1.0 in the Oracle 6
database so many years ago. Oracle PL/SQL Programming has also undergone a series
of major transformations to keep up with PL/SQL and provide ever-improving coverage
of its features.

The fifth edition offers the following new content:

Oracle Database 11g new features for PL/SQL
As explained above, this book incorporates all new PL/SQL features in Oracle
Database 11g Releases 1 and 2. The major features are summarized in Chapter 1,
along with references to the chapters where these features are discussed in detail.

Preface | xxix

Download at WoweBook.Com

Optimizing PL/SQL Performance
Chapter 21 is new in the fifth edition. It collects together previous content in this
book on optimizing the performance of PL/SQL code, and then adds lots of new
information not previously available in Oracle PL/SQL Programming.

I am very happy with the results and hope that you will be too. There is more infor-
mation than ever before, but I think we managed to present it without losing that
“trademark” sense of humor and conversational tone that readers have told me for years
make the book readable, understandable, and highly useful.

One comment regarding the “voice” behind the text. You may notice that in some parts
of this book we use the word “we,” and in others “I.” One characteristic of this book
(and one for which readers have expressed appreciation) is the personal voice that’s
inseparable from the text. Consequently, even with the addition of coauthors to the
book (and, in the third, fourth, and fifth editions, significant contributions from several
other people), we’ve decided to maintain the use of “I” when an author speaks in his
own voice.

Rather than leave you guessing as to which lead author is represented by the “I” in a
given chapter, we thought we’d offer this quick guide for the curious; you’ll find ad-
ditional discussion of our contributors under the Acknowledgments.

Chapter Author Chapter Author

Preface Steven 15 Steven

1 Steven 16 Steven

2 Bill and Steven 17 Steven

3 Steven and Bill 18 Steven

4 Steven, Chip, and Jonathan 19 Darryl and Steven

5 Steven and Bill 20 Steven

6 Steven 21 Steven and Adrian

7 Chip, Jonathan, and Steven 22 Bill and Steven

8 Chip, Jonathan, and Steven 23 Arup

9 Chip, Jonathan, and Steven 24 Bill, Steven, and Chip

10 Chip, Jonathan, and Steven 25 Ron

11 Steven 26 Bill and Steven

12 Steven and Bill 27 Bill and Steven

13 Chip and Jonathan 28 Bill and Steven

14 Steven

xxx | Preface

Download at WoweBook.Com

About the Contents
The fifth edition of Oracle PL/SQL Programming is divided into six parts:

Part I, Programming in PL/SQL
I start from the very beginning in Chapter 1: where did PL/SQL come from? What
is it good for? I offer a very quick review of some of the main features of the
PL/SQL language. Chapter 2 is designed to help you get PL/SQL programs up and
running as quickly as possible: it contains clear, straightforward instructions for
executing PL/SQL code in SQL*Plus and a few other common environments.
Chapter 3 reviews fundamentals of the PL/SQL language: what makes a PL/SQL
statement, an introduction to the block structure, how to write comments in
PL/SQL, and so on.

Part II, PL/SQL Program Structure
Chapter 4 through Chapter 6 explore conditional (IF and CASE) and sequential
(GOTO and NULL control statements; loops and the CONTINUE statement in-
troduced for loops in Oracle Database 11g; and exception handling in the PL/SQL
language. This section of the book will teach you to construct blocks of code that
correlate to the complex requirements of your applications.

Part III, PL/SQL Program Data
Just about every program you write will manipulate data, and much of that data
will be local to (defined in) your PL/SQL procedure or function. Chapter 7 through
Chapter 13 concentrate on the various types of program data you can define in
PL/SQL, such as numbers, strings, dates, timestamps, records, and collections.
You will learn about the new datatypes introduced in Oracle Database 11g
(SIMPLE_INTEGER, SIMPLE_FLOAT, and SIMPLE_DOUBLE), as well as the
many binary, date, and timestamp types introduced in other recent releases. These
chapters also cover the various built-in functions provided by Oracle that allow
you to manipulate and modify data.

Part IV, SQL in PL/SQL
Chapter 14 through Chapter 16 address one of the central elements of PL/SQL
code construction: the connection to the underlying database, which takes place
through the SQL language. These chapters show you how to define transactions
that update, insert, merge, and delete tables in the database; how to query infor-
mation from the database for processing in a PL/SQL program; and how to execute
SQL statements dynamically, using native dynamic SQL (NDS).

Part V, PL/SQL Application Construction
This is where it all comes together. You know about declaring and working with
variables, and you’re an expert in error handling and loop construction. Now, in
Chapter 17 through Chapter 22, you’ll learn about the building blocks of applica-
tions, which include procedures, functions, packages, and triggers, and how to
move information into and out of PL/SQL programs. Chapter 20 discusses man-
aging your PL/SQL code base, including testing and debugging programs and

Preface | xxxi

Download at WoweBook.Com

managing dependencies; it also provides an overview of the edition-based redefi-
nition capability introduced in Oracle Database 11g Release 2. Chapter 21, new in
the fifth edition, focuses on how you can use a variety of tools and techniques to
get the best performance out of your PL/SQL programs. Chapter 22 covers I/O
techniques for PL/SQL, from DBMS_OUTPUT (writing output to the screen) and
UTL_FILE (reading and writing files) to UTL_MAIL (sending mail) and
UTL_HTTP (retrieving data from a web page).

Part VI, Advanced PL/SQL Topics
A language as mature and rich as PL/SQL is full of features that you may not use
on a day-to-day basis, but that may make the crucial difference between success
and failure. Chapter 23 explores the security-related challenges we face as we build
PL/SQL programs. Chapter 24 contains an exploration of the PL/SQL architecture,
including PL/SQL’s use of memory. Chapter 25 provides guidance for PL/SQL
developers who need to address issues of globalization and localization. Chap-
ter 26 offers an guide to the object-oriented features of Oracle (object types and
object views).

Appendixes A through C summarize the details of regular expression syntax and num-
ber and date formats.

In this fifth edition, the chapters on invoking Java and C code from PL/SQL applica-
tions, which were part of the hardcopy fourth edition, have been moved to the book’s
web site.

If you are new to PL/SQL, reading this book from beginning to end should improve
your PL/SQL skills and deepen your understanding of the language. If you’re already
a proficient PL/SQL programmer, you’ll probably want to dip into the appropriate
sections to extract particular techniques for immediate application. Whether you use
this book as a teaching guide or as a reference, I hope it will help you use PL/SQL
effectively.

What This Book Does Not Cover
Long as this book is, it doesn’t contain everything. The Oracle environment is huge
and complex, and in this book we’ve focused our attention on the core PL/SQL lan-
guage itself. The following topics are therefore outside the scope of this book and are
not covered, except in an occasional and peripheral fashion:

The SQL language
I assume that you already have a working knowledge of the SQL language, and
that you know how to write SELECTs, UPDATEs, INSERTs, MERGEs, and
DELETEs.

xxxii | Preface

Download at WoweBook.Com

Administration of Oracle databases
While database administrators (DBAs) can use this book to learn how to write the
PL/SQL needed to build and maintain databases, this book does not explore all
the nuances of the Data Definition Language (DDL) of Oracle’s SQL.

Application and database tuning
I don’t cover detailed tuning issues in this book, although Chapter 21 does discuss
the many tools and techniques that will help you to optimize the performance of
your PL/SQL programs.

Oracle tool-specific technologies independent of PL/SQL
This book does not attempt to show you how to build applications in a tool like
Oracle’s Forms Developer, even though the implementation language is PL/SQL.
I have chosen to focus on core language capabilities, centered on what you can do
with PL/SQL from within the database. However, most everything covered in this
book is applicable to PL/SQL inside Forms Developer and Reports Developer.

Conventions Used in This Book
The following conventions are used in this book:

Italic
Used for file and directory names and for emphasis when introducing a new term.

Constant width
Used for code examples.

Constant width bold
Indicates user input in examples showing an interaction. Also, in some code ex-
amples, highlights the statements being discussed.

Constant width italic
In some code examples, indicates an element (e.g., a parameter) that you supply.

UPPERCASE
In code examples, generally indicates PL/SQL keywords or certain identifiers used
by Oracle Corporation as built-in function and package names.

lowercase
In code examples, generally indicates user-defined items such as variables, param-
eters, etc.

Punctuation
In code examples, enter exactly as shown.

Indentation
In code examples, helps to show structure but is not required.

--
In code examples, a double hyphen begins a single-line comment that extends to
the end of a line.

Preface | xxxiii

Download at WoweBook.Com

/* and */
In code examples, these characters delimit a multiline comment that can extend
from one line to another.

.
In code examples and related discussions, a dot qualifies a reference by separating
an object name from a component name. For example, dot notation is used to
select fields in a record and to specify declarations within a package.

[]
In syntax descriptions, square brackets enclose optional items.

{ }
In syntax descriptions, curly brackets enclose a set of items from which you must
choose only one.

|
In syntax descriptions, a vertical bar separates the items enclosed in curly brackets,
as in {TRUE | FALSE}.

...
In syntax descriptions, ellipses indicate repeating elements. An ellipsis also shows
that statements or clauses irrelevant to the discussion were left out.

Indicates a tip, suggestion, or general note. For example, I’ll tell you if
a certain setting is version-specific.

Indicates a warning or caution. For example, I’ll tell you if a certain
setting has some kind of negative impact on the system.

Which Platform or Version?
In general, all the discussions and examples in this book apply regardless of the machine
and/or operating system you are using. In those cases in which a feature is in any way
version-dependent—for example, if you can use it only in Oracle Database 11g (or in
a specific release such as Oracle Database 11g Release 2)—I note that in the text.

There are many versions of PL/SQL, and you may find that you need to use multiple
versions in your development work. Chapter 1 describes the various versions of
PL/SQL and what you should know about them; see “About PL/SQL Ver-
sions” on page 10.

xxxiv | Preface

Download at WoweBook.Com

About the Code
All of the code referenced in this book is available from:

http://www.oreilly.com/catalog/9780596514464

Click on the Examples link to go to the book’s web companion. You will also find
information about all of Steven’s books and accompanying resources at:

http://www.stevenfeuerstein.com/

As mentioned earlier, you will also find the contents of some of the chapters from earlier
editions that we removed or condensed in the different editions of the book. These may
be especially helpful to readers who are running older versions of Oracle.

You might also want to visit PL/SQL Obsession (Steven Feuerstein’s PL/SQL portal) at:

http://www.ToadWorld.com/SF

where you will find training materials, code downloads, and more.

To find a particular example on the book’s web site, look for the filename cited in the
text. For many examples, you will find filenames in the following form provided as a
comment at the beginning of the example shown in the book, as illustrated here:

/* File on web: fullname.pkg */

If the code snippet in which you are interested does not have a “File on web” comment,
then you should check the corresponding chapter code file.

A chapter code file contains all the code fragments and examples that do not merit their
own file, but may prove useful to you for copy-and-paste operations. These files also
contain the DDL statements to create tables and other objects on which the code may
depend.

Each chapter code file is named chNN_code.sql, where NN is the number of the chapter.

Finally, the hr_schema_install.sql script will create the standard Oracle Human Re-
sources demonstration tables, such as employees and departments. These tables are
used in examples throughout the book.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Answering a question by citing this book and quoting example code does
not require permission. On the other hand, selling or distributing a CD-ROM of ex-
amples from O’Reilly books does require permission. Incorporating a significant

Preface | xxxv

Download at WoweBook.Com

http://www.oreilly.com/catalog/9780596514464
http://www.stevenfeuerstein.com/
http://www.ToadWorld.com/SF

amount of example code from this book into your product’s documentation does re-
quire permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: Oracle PL/SQL Programming, Fifth Edition,
by Steven Feuerstein with Bill Pribyl. Copyright 2009 Steven Feuerstein and Bill Pribyl,
978-0-596-51446-4.

If you think your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

Comments and Questions
We have tested and verified the information in this book and in the source code to the
best of our ability, but given the amount of text and the rapid evolution of technology,
you may find that features have changed or that we have made mistakes. If so, please
notify us by writing to:

O’Reilly Media, Inc.
1005 Gravenstein Highway
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

You can also send messages electronically. To be put on the mailing list or request a
catalog, send email to:

info@oreilly.com

xxxvi | Preface

Download at WoweBook.Com

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
mailto:info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

As mentioned in the previous section, we have a web site for this book where you can
find code, updated links, chapters from previous editions of the book, and errata
(previously reported errors and corrections are available for public view). You can ac-
cess this web site at:

http://www.oreilly.com/catalog/9780596514464

For more information about this book and others, see the O’Reilly web site:

http://www.oreilly.com

Acknowledgments
Since Oracle PL/SQL Programming was first published in 1995, it has had a busy and
productive history as the “go to” text on how to use the PL/SQL language. For that, I
first of all express our appreciation to all our readers.

Maintaining Oracle PL/SQL Programming as an accurate, readable, and up-to-date
reference to PL/SQL has been, from the start, a big (all right, I admit it—sometimes
overwhelming) job; it certainly would not have been possible without the help of many
Oracle specialists, friends, and family, and of course the incredible staff at O’Reilly
Media.

You will find below rather detailed thank yous for those who helped pull together the
fifth edition of Oracle PL/SQL Programming. Following that, you will find an acknowl-
edgment of the many people who were instrumental in the earlier editions.

First and foremost, I thank those who contributed chapters and/or substantial content
for the book; listed alphabetically, they are Adrian Billington, Chip Dawes, Jonathan
Gennick, Ron Hardman, Darryl Hurley, and Arup Nanda. As of this edition, Chip
Dawes has taken over responsibility for updating a half-dozen chapters. Jonathan wrote
or substantially updated six chapters in past editions. Darryl has updated the fine
chapter on database triggers for several editions and contributed insights on Oracle’s
internationalization features. Arup Nanda wrote the excellent chapter on security. Ron
Hardman stepped up to the plate and wrote the chapter on globalization and localiza-
tion. Adrian Billington provided excellent material in Chapter 21 on pipelined table
functions.

New to the fifth edition, I have also invited each of our contributors to say a few words
about themselves:

Adrian Billington is a consultant in application design, development, and perform-
ance tuning who has been working with Oracle databases since 1999. He is the man
behind oracle-developer.net, a web site full of SQL and PL/SQL features, utilities, and
techniques for Oracle developers. Adrian is also an Oracle ACE and a member of the

Preface | xxxvii

Download at WoweBook.Com

mailto:bookquestions@oreilly.com
http://www.oreilly.com/catalog/9780596514464
http://www.oreilly.com
http://oracle-developer.net

OakTable Network. He would like to thank James Padfield (Padders), Tom Kyte, and
Steven Feuerstein for inspiring him to become a better developer during his impres-
sionable early years as an Oracle professional. He lives in the UK with his wife Anji and
three children, Georgia, Oliver, and Isabella.

Chip Dawes has been building and maintaining systems on relational databases since
1988 and with Oracle since 1990. He is currently a consultant with Piocon Technolo-
gies, a Chicago-based consultancy. He enjoys working with, lecturing on, and writing
about Oracle database administration, PL/SQL programming, and Business Intelli-
gence systems. Chip is an Oracle Certified Professional and has earned computer sci-
ence and aerospace engineering degrees from St. Louis University.

Jonathan Gennick is an experienced technology professional who is well-known for
his Oracle database expertise. His past experience encompasses both software devel-
opment and database administration. As a developer, he has always enjoyed trouble-
shooting and debugging. He loves working with SQL and PL/SQL, and is well-known
for his books and articles on those topics. In his off hours, Jonathan enjoys a rather
low-tech approach to life. He serves actively in his local church where you’ll often find
him putting together crazy props such as floor-sized crossword puzzles for the class he
teaches each week. He is an avid mountain-biker, riding even in the dead of winter on
very cool, studded bicycle tires imported from Finland. He assists in cooking lunch at
his local school. And he serves his local community as an Emergency Medical Techni-
cian for the Alger County Ambulance Service.

Ron Hardman owns AcademyOnDemand.NET, a software company for the K-12
education community. He also consults around the world on Oracle Text and Oracle
globalization technologies, and has been working with Oracle both as an employee and
as a customer for more than 13 years. Ron is an Oracle ACE and teaches Oracle Text,
Application Express (APEX), and PL/SQL classes at his offices in Colorado Springs,
Colorado. He enjoys writing about more than technology, and he will release his first
historical fiction title in the spring of 2010 through his FoxRunPress.com publishing
company.

Darryl Hurley has been working with Oracle technology for 20-plus years, focusing
on PL/SQL and DBA work. He lives in Richmond, BC, Canada with his lovely wife
Vanessa and beautiful daughter Bianca. He can be reached at opp@implestrat.com.

Arup Nanda has been an Oracle DBA since 1993, touching all aspects of the job—
modeling, performance troubleshooting, PL/SQL coding, backups, disaster recovery,
and more. He works as a Lead DBA at a major corporation, has written about 300
articles, coauthored four books, and presented several times at conferences. He offers
training sessions, engages in special projects like audits and DR, and writes about Ora-
cle technology. He was Oracle Magazine’s 2003 DBA of the Year and is an OCP, an
OTN ACE Director, and a member of the OakTable Network. He lives in Connecticut,
USA, with his wife Anu and son Anish.

xxxviii | Preface

Download at WoweBook.Com

http://foxrunpress.com
mailto:opp@implestrat.com

With such a big book, we needed lots of reviewers, especially because we asked them
to test each code snippet and program in the book to keep to an absolute minimum
the number of errors that made it into the printed version. I am deeply grateful to the
following men and women of the Oracle PL/SQL world, who took time away from the
rest of their lives to help make Oracle PL/SQL Programming the best book that it could
be.

For this fifth edition, I first thank our full-book reviewers: Robert A. G. Cook and
Edward Wiles. They actually read and reviewed all the chapters and measurably im-
proved the quality of the book.

Next, I offer my deep appreciation to Bryn Llewellyn, Oracle’s PL/SQL Product Man-
ager, and other members of the PL/SQL development team, most notably Charles
Wetherell. Bryn provided crucial information and feedback on Oracle Database 11g’s
new features and answered endless questions about various PL/SQL features with bot-
tomless patience. There is no doubt that my understanding of PL/SQL and the accuracy
with which I present it owe a great debt to Bryn.

I also give thanks to our other, deeply appreciated technical reviewers: Patrick Barel,
Daniel Cronk, Shelley Johnson, Dwayne King, Andrew McIlwrick, Dan Norris, Alex
Nuitjen, Drew Smith, Mark Vilrokx, and Daniel Wong. From a non-Oracle perspective,
grateful thoughts go to Joel Finkel, my favorite jack-of-all-trades who makes up for the
narrow specialization that simultaneously benefits and constrains my capabilities when
it comes to computers and software.

Of course, that’s just the technical content. Once I feel that we’ve got our treatment of
PL/SQL “right,” it’s time for the remarkable crew at O’Reilly Media, led by my good
friend, Deborah Russell, to transform our many chapters and code examples into a
book worthy of the O’Reilly imprint. Many thanks to Julie Steele, editor and Loranah
Dimant, production editor for the book; Rob Romano, who created the excellent fig-
ures; and the rest of the crew.

I have now had the pleasure and honor of working with Deborah Russell for 16 years,
since I started cranking out pages for the first edition of Oracle PL/SQL Programming
back in 1993. Surely, Debby, you must know more about PL/SQL than almost any
developer in the world. If you ever need a programming job, be sure to give me a call!
It has been a real joy to work with Debby, and I look forward to producing at least ten
more editions of this book with her guiding the way.

And here are the many people we thanked (and continue to be grateful to) for their
contributions to the first four editions of this book:

Sohaib Abassi, Steve Adams, Don Bales, Cailein Barclay, John Beresniewicz, Tom
Berthoff, Sunil Bhargava, Jennifer Blair, Dick Bolz, Bryan Boulton, Per Brondum, Boris
Burshteyn, Eric Camplin, Joe Celko, Gary Cernosek, Barry Chase, Geoff Chester, Ivan
Chong, Dan Clamage, Gray Clossman, Avery Cohen, John Cordell, Steve Cosner, Tony
Crawford, Ervan Darnell, Lex de Haan, Thomas Dunbar, Bill Dwight, Steve Ehrlich,

Preface | xxxix

Download at WoweBook.Com

Larry Elkins, Bruce Epstein, R. James Forsythe, Mike Gangler, Beverly Gibson, Steve
Gillis, Eric Givler, Rick Greenwald, Radhakrishna Hari, Gerard Hartgers, Donald
Herkimer, Steve Hilker, Bill Hinman, Gabriel Hoffman, Chandrasekharan Iyer, Ken
Jacobs, Hakan Jakobsson, Giovanni Jaramillo, Dwayne King, Marcel Kratochvil,
Thomas Kurian, Tom Kyte, Ben Lindsey, Peter Linsley, Vadim Loevski, Leo Lok, Debra
Luik, James Mallory, Raj Mattamal, Nimish Mehta, Ari Mozes, Steve Muench, Jeff
Muller, Kannan Muthukkaruppan, James Padfield, Rakesh Patel, Karen Peiser, Fred
Polizo, Dave Posner, Patrick Pribyl, Nancy Priest, Shirish Puranik, Chris Racicot, Sri
Rajan, Mark Richter, Chris Rimmer, Alex Romankevich, Bert Scalzo, Pete Schaffer,
Scott Sowers, JT Thomas, David Thompson, Edward Van Hatten, Peter Vasterd, Andre
Vergison, Zona Walcott, Bill Watkins, Charles Wetherell, Solomon Yakobson, Ming
Hui Yang, and Tony Ziemba.

Finally, I thank my wife, Veva Silva, and two sons, Christopher Tavares Silva and Eli
Silva Feuerstein, for their support and tolerance of so much of my time and attention.

xl | Preface

Download at WoweBook.Com

PART I

Programming in PL/SQL

This first part of this book introduces PL/SQL, explains how to create and run PL/SQL
code, and presents language fundamentals. Chapter 1 asks the fundamental questions:
Where did PL/SQL come from? What is it good for? What are the main features of the
PL/SQL language? Chapter 2 is designed to get you and up and running PL/SQL pro-
grams as quickly as possible; it contains clear, straightforward instructions for execut-
ing PL/SQL code in SQL*Plus and a few other common environments. Chapter 3
answers basic questions about the language structure and keywords: What makes up
a PL/SQL statement? What is the PL/SQL block structure all about? How do I write
comments in PL/SQL?

Chapter 1, Introduction to PL/SQL
Chapter 2, Creating and Running PL/SQL Code
Chapter 3, Language Fundamentals

Download at WoweBook.Com

Download at WoweBook.Com

CHAPTER 1

Introduction to PL/SQL

PL/SQL stands for “Procedural Language extensions to the Structured Query Lan-
guage.” SQL is the now-ubiquitous language for both querying and updating—never
mind the name—of relational databases. Oracle Corporation introduced PL/SQL to
overcome some limitations in SQL and to provide a more complete programming sol-
ution for those who sought to build mission-critical applications to run against the
Oracle database. This chapter introduces PL/SQL, its origins, and its various versions.
It offers a quick summary of PL/SQL in the latest Oracle releases, Oracle Database
11g Release 1 and Release 2. Finally, it provides a guide to additional resources for
PL/SQL developers and some words of advice.

What Is PL/SQL?
Oracle’s PL/SQL language has several defining characteristics:

It is a highly structured, readable, and accessible language
If you are new to programming, PL/SQL is a great place to start. You will find that
it is an easy language to learn and is rich with keywords and structure that clearly
express the intent of your code. If you are experienced in other programming lan-
guages, you will very easily adapt to the new syntax.

It is a standard and portable language for Oracle development
If you write a PL/SQL procedure or function to execute from within the Oracle
database sitting on your laptop, you can move that same procedure to a database
on your corporate network and execute it there without any changes (assuming
compatibility of Oracle versions, of course!). “Write once, run everywhere” was
the mantra of PL/SQL long before Java appeared. For PL/SQL, though, “every-
where” means “everywhere there is an Oracle database.”

It is an embedded language
PL/SQL was not designed to be used as a standalone language, but instead to be
invoked from within a host environment. So, for example, you can run PL/SQL
programs from within the database (through, say, the SQL*Plus interface).

3

Download at WoweBook.Com

Alternatively, you can define and execute PL/SQL programs from within an Oracle
Developer form or report (this approach is called client-side PL/SQL). You cannot,
however, create a PL/SQL executable that runs all by itself.

It is a high-performance, highly integrated database language
These days, you have a number of choices when it comes to writing software to
run against the Oracle database. You can use Java and JDBC; you can use Visual
Basic and ODBC; you can go with Delphi, C++, and so on. You will find, however,
that it is easier to write highly efficient code to access the Oracle database in
PL/SQL than it is in any other language. In particular, Oracle offers certain PL/SQL-
specific enhancements such as the FORALL statement that can improve database
performance by an order of magnitude or more.

The Origins of PL/SQL
Oracle Corporation has a history of leading the software industry in providing declar-
ative, non-procedural approaches to designing both databases and applications. The
Oracle Server technology is among the most advanced, powerful, and stable relational
databases in the world. Its application development tools, such as Oracle Forms, offer
high levels of productivity by relying heavily on a “paint-your-screen” approach in
which extensive default capabilities allow developers to avoid heavy customized pro-
gramming efforts.

The Early Years of PL/SQL
In Oracle’s early years, the declarative approach of SQL, combined with its ground-
breaking relational technology, was enough to satisfy developers. But as the industry
matured, expectations rose, and requirements became more stringent. Developers nee-
ded to get “under the skin” of the products. They needed to build complicated formulas,
exceptions, and rules into their forms and database scripts.

In 1988, Oracle Corporation released Oracle Version 6, a major advance in its relational
database technology. A key component of that version was the so-called “procedural
option” or PL/SQL. At roughly the same time, Oracle released its long-awaited upgrade
to SQL*Forms Version 2.3 (the original name for the product now known as Oracle
Forms or Forms Developer). SQL*Forms V3.0 incorporated the PL/SQL engine for the
first time on the tools side, allowing developers to code their procedural logic in a
natural, straightforward manner.

This first release of PL/SQL was very limited in its capabilities. On the server side, you
could use PL/SQL only to build “batch-processing” scripts of procedural and SQL
statements. You could not construct a modular application or store business rules in
the server. On the client side, SQL*Forms V3.0 did allow you to create procedures and
functions, although support for functions was not documented, and was therefore not
used by many developers for years. In addition, this release of PL/SQL did not

4 | Chapter 1: Introduction to PL/SQL

Download at WoweBook.Com

implement array support and could not interact with the operating system (for input
or output). It was a far cry from a full-fledged programming language.

But for all its limitations, PL/SQL was warmly, even enthusiastically, received in the
developer community. The hunger for the ability to code a simple IF statement inside
SQL*Forms was strong. The need to perform multi-SQL statement batch processing
was overwhelming.

What few developers realized at the time was that the original motivation and driving
vision behind PL/SQL extended beyond the desire for programmatic control within
products like SQL*Forms. Very early in the life cycle of Oracle’s database and tools,
Oracle Corporation had recognized two key weaknesses in their architecture: lack of
portability and problems with execution authority.

Improved Application Portability
The concern about portability might seem odd to those of us familiar with Oracle
Corporation’s marketing and technical strategies. One of the hallmarks of the Oracle
solution from the early 1980s was its portability. At the time that PL/SQL came along,
the C-based database ran on many different operating systems and hardware platforms.
SQL*Plus and SQL*Forms adapted easily to a variety of terminal configurations. Yet
for all that coverage, there were still many applications that needed the more sophis-
ticated and granular control offered by such host languages as COBOL, C, and FOR-
TRAN. As soon as a developer stepped outside the port-neutral Oracle tools, the
resulting application would no longer be portable.

The PL/SQL language was (and is) intended to widen the range of application require-
ments that can be handled entirely in operating system-independent programming
tools. Today, Java and other programming languages offer similar portability. Yet
PL/SQL stands out as an early pioneer in this field and, of course, it continues to allow
developers to write highly portable application code.

Improved Execution Authority and Transaction Integrity
An even more fundamental issue than portability was execution authority. The data-
base and the SQL language let you tightly control access to, and changes in, any par-
ticular database table. For example, with the GRANT command, you can make sure
that only certain roles and users can perform an UPDATE on a given table. On the other
hand, this GRANT command can’t ensure that the full set of UPDATEs performed by
a user or application is done correctly. In other words, the database can’t guarantee the
integrity of a transaction that spans more than one table, as is common with most
business transactions.

The PL/SQL language provides tight control and management over logical transactions.
One way PL/SQL does this is with the implementation of execution authority. Instead
of granting to a role or user the authority to update a table, you grant privileges only

The Origins of PL/SQL | 5

Download at WoweBook.Com

to execute a procedure, which controls and provides access to the underlying data
structures. The procedure is owned by a different Oracle database schema (the “de-
finer” of the program), which, in turn, is granted the actual update privileges on those
tables needed to perform the transaction. The procedure therefore becomes the “gate-
keeper” for the transaction. The only way that a program (whether it’s an Oracle Forms
application or a Pro*C executable) can execute the transfer is through the procedure.
In this way, the overall application transaction integrity is guaranteed.

Starting with Oracle8i Database, Oracle added considerable flexibility to the execution
authority model of PL/SQL by offering the AUTHID clause. With AUTHID, you can
continue to run your programs under the definer rights model described earlier, or you
can choose AUTHID CURRENT_USER (invoker rights), in which case the programs
run under the authority of the invoking (current) schema. Invoker rights is just one
example of how PL/SQL has matured and become more flexible over the years.

Humble Beginnings, Steady Improvement
As powerful as SQL is, it simply does not offer the flexibility and power developers
need to create full-blown applications. Oracle’s PL/SQL language ensures that we can
stay entirely within the operating system-independent Oracle environment and still
write highly efficient applications that meet our users’ requirements.

PL/SQL has come a long way from its humble beginnings. With PL/SQL 1.0, it was
not uncommon for a developer to have to tell his or her manager, “You can’t do that
with PL/SQL.” Today, that statement has moved from fact to excuse. If you are ever
confronted with a requirement and find yourself saying, “There’s no way to do that,”
please don’t repeat it to your manager. Instead, dig deeper into the language, or explore
the range of PL/SQL packages offered by Oracle. It is extremely likely that PL/SQL
today will, in fact, allow you to do pretty much whatever you need to do.

Over the years, Oracle Corporation has demonstrated its commitment to PL/SQL, its
flagship proprietary programming language. With every new release of the database,
Oracle has also made steady, fundamental improvements to the PL/SQL language itself.
It has added a great variety of supplied (or built-in) packages that extend the PL/SQL
language in numerous ways and directions. It has introduced object-oriented capabil-
ities, implemented a variety of array-like data structures, enhanced the compiler to both
optimize our code and provide warnings about possible quality and performance issues,
and in general improved the breadth and depth of the language.

The next section presents some examples of PL/SQL programs that will familiarize you
with the basics of PL/SQL programming.

6 | Chapter 1: Introduction to PL/SQL

Download at WoweBook.Com

So This Is PL/SQL
If you are completely new to programming or to working with PL/SQL (or even SQL,
for that matter), learning PL/SQL may seem an intimidating prospect. If this is the case,
don’t fret! I am confident that you will find it easier than you think. There are two
reasons for my optimism:

• Computer languages in general are not that hard to learn, at least compared to a
second or third “human language.” The reason? It’s simply that computers are not
particularly smart (they “think”—perform operations—rapidly, but not at all cre-
atively). We must rely on a very rigid syntax in order to tell a computer what we
want it to do. So the resulting language is also rigid (no exceptions!) and therefore
easier for us to pick up.

• PL/SQL truly is an easy language, compared to other programming languages. It
relies on a highly structured “block” design with different sections, all identified
with explicit, self-documenting keywords.

Let’s look at a few examples that demonstrate some key elements of both PL/SQL
structure and functionality.

Integration with SQL
One of the most important aspects of PL/SQL is its tight integration with SQL. You
don’t need to rely on any intermediate software “glue” such as ODBC (Open Database
Connectivity) or JDBC (Java Database Connectivity) to run SQL statements in your
PL/SQL programs. Instead, you just insert the UPDATE or SELECT into your code, as
shown here:

 1 DECLARE
 2 l_book_count INTEGER;
 3
 4 BEGIN
 5 SELECT COUNT(*)
 6 INTO l_book_count
 7 FROM books
 8 WHERE author LIKE '%FEUERSTEIN, STEVEN%';
 9
10 DBMS_OUTPUT.PUT_LINE (
11 'Steven has written (or co-written) ' ||
12 l_book_count ||
13 ' books.');
14
15 -- Oh, and I changed my name, so...
16 UPDATE books
17 SET author = REPLACE (author, 'STEVEN', 'STEPHEN')
18 WHERE author LIKE '%FEUERSTEIN, STEVEN%';
19 END;

Let’s take a more detailed look at this code in the following table:

So This Is PL/SQL | 7

Download at WoweBook.Com

Line(s) Description

1–3 This is the declaration section of this so-called “anonymous” PL/SQL block, in which I declare an integer variable to
hold the number of books that I have authored or coauthored. (I’ll say much more about the PL/SQL block structure
in Chapter 3.)

4 The BEGIN keyword indicates the beginning of my execution section—the code that will be run when I pass this
block to SQL*Plus.

5–8 I run a query to determine the total number of books I have authored or coauthored. Line 6 is of special interest: the
INTO clause shown here is actually not part of the SQL statement but instead serves as the “bridge” from the database
to local PL/SQL variables.

10–13 I use the DBMS_OUTPUT.PUT_LINE built-in procedure (i.e., a procedure in the DBMS_OUTPUT package supplied by
Oracle) to display the number of books.

15 This single-line comment explains the purpose of the UPDATE.

16–18 I have decided to change the spelling of my first name to “Stephen”, so I issue an update against the books table. I
take advantage of the built-in REPLACE function to locate all instances of “STEVEN” and replace them with “STEPHEN”.

Control and Conditional Logic
PL/SQL offers a full range of statements that allow us to very tightly control which lines
of our programs execute. These statements include:

IF and CASE statements
These implement conditional logic; for example, “If the page count of a book is
greater than 1000, then....”

A full complement of looping or iterative controls
These include the FOR loop, the WHILE loop, and the simple loop.

The GOTO statement
Yes, PL/SQL even offers a GOTO that allows you to branch unconditionally from
one part of your program to another. That doesn’t mean, however, that you should
actually use it.

Here is a procedure (a reusable block of code that can be called by name) that demon-
strates some of these features:

 1 PROCEDURE pay_out_balance (
 2 account_id_in IN accounts.id%TYPE)
 3 IS
 4 l_balance_remaining NUMBER;
 5 BEGIN
 6 LOOP
 7 l_balance_remaining := account_balance (account_id_in);
 8
 9 IF l_balance_remaining < 1000
10 THEN
11 EXIT;
12 ELSE
13 apply_balance (account_id_in, l_balance_remaining);
14 END IF;

8 | Chapter 1: Introduction to PL/SQL

Download at WoweBook.Com

15 END LOOP;
16 END pay_out_balance;

Let’s take a more detailed look at this code in the following table:

Line(s) Description

1–2 This is the header of a procedure that pays out the balance of an account to cover outstanding bills. Line 2 is the
parameter list of the procedure, in this case consisting of a single incoming value (the identification number of the
account).

3–4 This is the declaration section of the procedure. Notice that instead of using a DECLARE keyword, as in the previous
example, the keyword IS (or AS) is used to separate the header from the declarations.

6–15 Here is an example of a simple loop. This loop relies on an EXIT statement (see line 11) to terminate the loop; FOR
and WHILE loops specify the termination condition differently.

7 Here, I call to the account_balance function to retrieve the balance for this account. This is an example of a call to a
reusable program within another reusable program. Line 13 demonstrates the calling of another procedure within
this procedure.

9–14 Here is an IF statement that can be interpreted as follows: if the account balance has fallen below $1,000, stop
allocating funds to cover bills. Otherwise, apply the balance to the next charge.

When Things Go Wrong
The PL/SQL language offers a powerful mechanism for both raising and handling er-
rors. In the following procedure, I obtain the name and balance of an account from its
ID. I then check to see if the balance is too low; if it is, I explicitly raise an exception,
which stops my program from continuing:

 1 PROCEDURE check_account (
 2 account_id_in IN accounts.id%TYPE)
 3 IS
 4 l_balance_remaining NUMBER;
 5 l_balance_below_minimum EXCEPTION;
 6 l_account_name accounts.name%TYPE;
 7 BEGIN
 8 SELECT name
 9 INTO l_account_name
10 FROM accounts
11 WHERE id = account_id_in;
12
13 l_balance_remaining := account_balance (account_id_in);
14
15 DBMS_OUTPUT.PUT_LINE (
16 'Balance for ' || l_account_name ||
17 ' = ' || l_balance_remaining);
18
19 IF l_balance_remaining < 1000
20 THEN
21 RAISE l_balance_below_minimum;
22 END IF;
23
24 EXCEPTION

So This Is PL/SQL | 9

Download at WoweBook.Com

25 WHEN NO_DATA_FOUND
26 THEN
27 -- No account found for this ID
28 log_error (...);
29
30 WHEN l_balance_below_minimum
31 THEN
32 log_error (...);
33 RAISE;
34 END;

Let’s take a more detailed look at the error-handling aspects of this code in the following
table:

Line(s) Description

5 I declare my own exception, called l_balance_below_minimum. Oracle provides a set of predefined exceptions, such
as DUP_VAL_ON_INDEX, but I need something specific to my application, so I must define it myself in this case.

8–11 This query retrieves the name for the account. If there is no account for this ID, the database raises the predefined
NO_DATA_FOUND exception, causing the program to stop.

19–22 If the balance is too low, I explicitly raise my own exception because I have encountered a serious problem with this
account.

24 The EXCEPTION keyword denotes the end of the executable section and the beginning of the exception section in
which errors are handled.

25–28 This is the error-handling section for the situation in which the account is not found. If NO_DATA_FOUND was the
exception raised, it is trapped here, and the error is logged with the log_error procedure.

30–33 This is the error-handling section for the situation in which the account balance has gotten too low (my application-
specific exception). If l_balance_below_minimum is raised, it’s trapped here, and the error is logged. Then, due to
the seriousness of the error, I raise the same exception again, propagating that error out of the current procedure and
into the PL/SQL block that called it.

Chapter 6 takes you on an extensive tour of PL/SQL’s error-handling mechanisms.

There is, of course, much more that can be said about PL/SQL—which is why you have
hundreds more pages of material to study in this book! These initial examples should,
however, give you a feel for the kind of code you will write with PL/SQL, some of its
most important syntactical elements, and the ease with which one can write—and
read—PL/SQL code.

About PL/SQL Versions
Each version of the Oracle database comes with its own corresponding version of
PL/SQL. As you use more up-to-date versions of PL/SQL, an increasing array of func-
tionality will be available to you. One of our biggest challenges as PL/SQL programmers
is simply “keeping up.” We need to constantly educate ourselves about the new features
in each version—figuring out how to use them and how to apply them to our

10 | Chapter 1: Introduction to PL/SQL

Download at WoweBook.Com

applications, and determining which new techniques are so useful that we should
modify existing applications to take advantage of them.

Table 1-1 summarizes the major elements in each of the versions (past and present) of
PL/SQL in the database. (Note that in early versions of the database, PL/SQL version
numbers differed from database release numbers, but since Oracle8 Database, they
have been identical.) The table offers a very high-level glimpse of the new features
available in each version. Following the table, you will find more detailed descriptions
of “what’s new” in PL/SQL in the latest Oracle version, Oracle Database 11g.

The Oracle Developer product suite also comes with its own version of
PL/SQL, and it generally lags behind the version available in the Oracle
database itself. This chapter (and the book as a whole) concentrates on
server-side PL/SQL programming.

Table 1-1. Oracle database and corresponding PL/SQL versions

Oracle Database release PL/SQL version highlights

6.0 The initial version of PL/SQL (1.0) was used primarily as a scripting language in SQL*Plus (it was
not yet possible to create named, reusable, and callable programs) and also as a programming
language in SQL*Forms 3.

7.0 This major upgrade (2.0) to PL/SQL 1.0 added support for stored procedures, functions, packages,
programmer-defined records, PL/SQL tables (now known as collections), and many package
extensions.

7.1 This PL/SQL version (2.1) supported programmer-defined subtypes, enabled the use of stored
functions inside SQL statements, and offered dynamic SQL with the DBMS_SQL package. With
PL/SQL 2.1, you could execute SQL DDL statements from within PL/SQL programs.

7.3 This PL/SQL version (2.3) provided enhanced functionality of collections, offered improved
remote dependency management, added file I/O capabilities to PL/SQL with the UTL_FILE
package, and completed the implementation of cursor variables.

8.0 The new version number (8.0) for PL/SQL reflected Oracle’s effort to synchronize version numbers
across related products. PL/SQL 8.0 is the version of PL/SQL that supported enhancements of
Oracle8 Database, including large objects (LOBs), object-oriented design and development,
collections (VARRAYs and nested tables), and the Oracle/Advanced Queuing facility (Oracle/AQ).

8.1 The first of Oracle’s i series, the corresponding release of PL/SQL offered a truly impressive set
of added functionality, including a new version of dynamic SQL, support for Java in the database,
the invoker rights model, the execution authority option, autonomous transactions, and high-
performance “bulk” DML and queries.

9.1 Oracle 9i Database Release 1 came fairly quickly on the heels of its predecessor. The first release
of this version included support for inheritance in object types, table functions and cursor
expressions (allowing for parallelization of PL/SQL function execution), multilevel collections,
and the CASE statement and CASE expression.

9.2 Oracle 9i Database Release 2 put a major emphasis on XML (Extensible Markup Language) but
also had some treats for PL/SQL developers, including associative arrays that can be indexed by
VARCHAR2 strings in addition to integers, record-based DML (allowing you to perform an insert

About PL/SQL Versions | 11

Download at WoweBook.Com

Oracle Database release PL/SQL version highlights
using a record, for example), and many improvements to UTL_FILE (which allows you to read/
write files from within a PL/SQL program).

10.1 Oracle Database 10g Release 1 was unveiled in 2004 and focused on support for grid computing,
with an emphasis on improved/automated database management. From the standpoint of PL/
SQL, the most important new features, an optimized compiler and compile-time warnings, were
transparently available to developers:

10.2 Oracle Database 10g Release 2, released in 2005, offered a small number of new features for PL/
SQL developers, most notably support for preprocessor syntax that allows you to conditionally
compile portions of your program, depending on Boolean expressions you define.

11.1 Oracle Database 11g Release 1 arrived in 2007. The most important feature for PL/SQL developers
was the function result cache, but there are also some other goodies like compound triggers,
the CONTINUE statement, and native compilation that produces machine code.

11.2 Oracle Database 11g Release 2 became available in the fall of 2009. The most important new
feature overall is the edition-based redefinition capability, which allow administrators to “hot
patch” applications while they are being executed by users.

Oracle Database 11g New Features
Oracle Database 11g offers a number of new features that improve the performance
and usability of PL/SQL. It also rounds out some “rough edges” of the language. Here
is a summary of the most important changes for PL/SQL developers (all features are
available in both Release 1 and Release 2 unless otherwise noted).

Edition-based redefinition capability (Release 2 only)

Historically, applications built on Oracle Database had to be taken offline while the
application’s database objects were patched or upgraded. Oracle Database 11g Release
2 introduces revolutionary new capabilities that allow online application upgrades with
uninterrupted availability of the application. Existing sessions can continue to use the
pre-upgrade application until their users decide to finish; and, at the same time, new
sessions can use the post-upgrade application. When there are no sessions using the
pre-upgrade application any longer, it can be retired. The application as a whole there-
fore enjoys hot rollover from the pre-upgrade version to the post-upgrade version.

This new capability relies on a number of database features, but the biggest one is
edition-based redefinition. While application architects will be responsible for most of
the edition-based redefinition tasks, this capability will also be of great interest to
developers.

The edition-based redefinition capability is introduced in Chapter 20.

12 | Chapter 1: Introduction to PL/SQL

Download at WoweBook.Com

FORCE option with CREATE TYPE (Release 2 only)

You can now specify that you want to force the “CREATE OR REPLACE” of a new
type, even if it has other types that depend on it. In earlier versions, such an attempt
would raise the ORA-02303 exception.

See Chapter 26 for more information on the FORCE option.

Function result cache

Prior to the release of Oracle Database 11g, package-based caching offered the best,
most flexible option for caching data for use in a PL/SQL program. Sadly, the circum-
stances under which it can be used are quite limited, since the data source must be
static, and memory consumption grows with each session connected to the Oracle
database.

Recognizing the performance benefit of this kind of caching, Oracle implemented the
function result cache in Oracle Database 11g Release 1 and enhanced it in Release 2.
This feature offers a caching solution that overcomes the weaknesses of package-based
caching and offers performance that is almost as fast. When you turn on the function
result cache for a function, you get the following benefits:

• The Oracle database stores both inputs and the return value in a separate cache
for each function. The cache is shared among all sessions connected to this instance
of the database; it is not duplicated for each session.

• Whenever the function is called, the database checks to see if it has already cached
the same input values. If so, then the function is not executed. The values in the
cache are simply returned.

• Whenever changes are made to tables that are identified as dependencies for the
cache, the database automatically invalidates the cache. Subsequent calls to the
function will then repopulate the cache with consistent data.

You will definitely want to seek out opportunities to apply this outstanding feature,
which is described in much more detail in Chapter 21.

CONTINUE statement

Oracle Database 11g offers a new feature for loops: the CONTINUE statement. Use
this statement to exit the current iteration of a loop and immediately continue on to
the next iteration of that loop. This statement comes in two forms, just like EXIT: the
unconditional CONTINUE and the conditional CONTINUE WHEN.

Here is a simple example of using CONTINUE WHEN to skip over loop body execu-
tion for even numbers:

BEGIN
 FOR l_index IN 1 .. 10
 LOOP
 CONTINUE WHEN MOD (l_index, 2) = 0;

About PL/SQL Versions | 13

Download at WoweBook.Com

 DBMS_OUTPUT.PUT_LINE ('Loop index = ' || TO_CHAR (l_index));
 END LOOP;
END;

The CONTINUE statement is described in detail in Chapter 5.

Sequences in PL/SQL expressions

You can now reference the sequence_name.CURRVAL and sequence_name.NEXTVAL
elements natively in PL/SQL. A SELECT FROM SYS.dual is no longer necessary.

See Chapter 14 for more details.

Dynamic SQL enhancements

The PL/SQL development team has greatly increased the interoperability between the
two types of dynamic SQL (DBMS_SQL and native dynamic SQL), as well as improved
the completeness of feature coverage. You can, for example, now convert between a
DBMS_SQL cursor number and a cursor variable. You can also EXECUTE IMMEDI-
ATE a CLOB.

Oracle Database 11g also has enhanced the security of DBMS_SQL. The package now
protects against the situation in which a program that uses DBMS_SQL and raises an
exception allows an attacker to use the unclosed cursor to compromise the security of
the database. Security enhancements include the generation of unpredictable (probably
randomized) cursor numbers, restriction of the use of DBMS_SQL whenever an invalid
cursor number is passed to a DBMS_SQL program, and rejection of a DBMS_SQL
operation when the current user attempting to use the cursor has changed from the
user that opened the cursor.

See Chapter 16 for information about these features.

New native compilation and SIMPLE datatypes

The PL/SQL native compiler now generates native machine code directly, instead of
translating PL/SQL code to C code and having the C compiler generate that machine
code. Working with native compilation is now also simpler: an individual developer
can compile PL/SQL units for native execution without any intervention by a DBA.
With natively compiled code, you can expect to see substantial improvement in exe-
cution speed, perhaps by as much as an order of magnitude. With native compilation
turned on, you can also benefit from improved performance with several new, speci-
alized numeric datatypes: SIMPLE_INTEGER, SIMPLE_FLOAT, and
SIMPLE_DOUBLE.

Native compilation is described in Chapter 24. The new numeric types are described
in Chapter 9.

14 | Chapter 1: Introduction to PL/SQL

Download at WoweBook.Com

SecureFiles

The terminology for the LOB implementation has changed in Oracle Database 11g.
Oracle has re-engineered the implementation of LOBs using a technology called Se-
cureFiles. SecureFiles improves many aspects of managing LOBs, including disk format,
caching, locking, redo, and space management algorithms. This updated technology
significantly improves performance and allows LOBs to be deduplicated, compressed,
and encrypted using simple parameter settings.

For more information on using SecureFiles, see Chapters 13 and 23.

Trigger enhancements

You can now create a compound trigger that allows you to combine what were previ-
ously distinct triggers (BEFORE and AFTER events) into a single body of code with
separate event sections. This trigger will make it easier to maintain complex trigger
logic, especially for mutating table trigger errors. You can also now explicitly specify
the order of executions when you have more than one trigger defined on the same event
(and the same database object).

Compound triggers are described in detail in Chapter 19.

Automatic subprogram inlining

A new level of compiler optimization (3) now implements automated subprogram in-
lining, which means that the compiler replaces a local subprogram call (to a subprogram
declared in the same PL/SQL unit) with a copy of the code implementing that subpro-
gram. This optimization reduces runtime execution since a “lookup” to find and exe-
cute that subprogram is no longer needed.

Chapter 21 describes the optimization levels and other aspects of PL/SQL
performance.

PL/Scope

PL/Scope is a compiler-driven tool that collects and organizes data about user-defined
identifiers from PL/SQL source code, and makes that information available through
the ALL_IDENTIFIERS data dictionary view. PL/Scope makes it much easier to build
automatic, sophisticated quality assurance and search processes for your applications.
You will most likely take advantage of PL/Scope through the PL/SQL editor you are
using, but you can also write (somewhat complex) queries against ALL_IDENTIFIERS
to “mine” your code base.

See Chapter 20 for a more detailed description of PL/Scope.

About PL/SQL Versions | 15

Download at WoweBook.Com

PL/SQL hierarchical profiler

In Oracle Database 11g, Oracle complements the existing PL/SQL Profiler
(DBMS_PROFILER) with a new hierarchical profiler. By using the supplied
DBMS_HPROF package, you can obtain information about the dynamic execution
profile of your PL/SQL code, organized by subprogram calls. This profiler accounts for
SQL and PL/SQL execution times separately. Each subprogram-level summary in the
dynamic execution profile includes key data, including the number of calls to a sub-
program, how much time is spent in the subprogram, how much time is spent in the
subprogram’s subtree (any subprograms it calls), and detailed parent-children
information.

Chapter 21 discusses both the traditional profiler and the hierarchical profiler.

Fine-grained dependency tracking

Prior to Oracle Database 11g, dependency information was recorded only with the
granularity of the object as a whole. If any change at all was made to that object, all
dependent program units were marked INVALID, even if the change did not affect that
program unit. In Oracle Database 11g, Oracle has fine-tuned its dependency tracking
down to the element within an object. In the case of tables, for example, the Oracle
database now records that a program unit depends on specific columns within a table.
With fine-grained dependency tracking, the database can avoid the recompilation that
was required in earlier versions of the database, making it easier for you to evolve your
application code base.

See Chapter 20 for more discussion of fine-grained dependency tracking.

Supertype invocation from subtype

One restriction in Oracle’s object-oriented functionality that has been lifted in Oracle
Database 11g is the ability to invoke a method of a supertype that is overridden in the
current (or higher-level) subtype. Prior to Oracle Database 11g, if you overrode a su-
pertype’s method in a subtype, there was no way that you could call the supertype’s
method in an instance of the subtype. This is now possible. In Oracle’s implementation
of supertype invocation, you don’t simply refer to the supertype with a generic
SUPERTYPE keyword, as is done in some other object-oriented languages. Instead,
you must specify the specific supertype from the hierarchy. This approach is more
flexible (you can invoke whichever supertype method you like, but it also means that
you must hardcode the name of the supertype in your subtype’s code.

See the further discussion of this feature in Chapter 26.

16 | Chapter 1: Introduction to PL/SQL

Download at WoweBook.Com

Resources for PL/SQL Developers
O’Reilly published the first edition of this book back in 1995. At that time, Oracle
PL/SQL Programming made quite a splash. It was the first independent (i.e., not em-
anating from Oracle) book on PL/SQL, and it fulfilled a clear and intensely felt need of
developers around the world. Since that time, resources—books, development envi-
ronments, utilities, and web sites—for PL/SQL programmers have proliferated. (Of
course, this book is still by far the most important and valuable of these resources!)

The following sections describe very briefly many of these resources. By taking full
advantage of these resources, many of which are available either free or at a relatively
low cost, you will greatly improve your development experience (and resulting code).

The O’Reilly PL/SQL Series
Over the years, the Oracle PL/SQL series from O’Reilly has grown to include quite a
long list of books. Here we’ve summarized the books currently in print. Please check
out the Oracle area of the O’Reilly web site for much more complete information.

Oracle PL/SQL Programming, by Steven Feuerstein with Bill Pribyl
The 1,200-page tome you are reading now. The desk-side companion of a great
many professional PL/SQL programmers, this book is designed to cover every fea-
ture in the core PL/SQL language. The current version covers through Oracle Da-
tabase 11g Release 2.

Learning Oracle PL/SQL, by Bill Pribyl with Steven Feuerstein
A comparatively gentle introduction to the language, ideal for new programmers
and those who know a language other than PL/SQL.

Oracle PL/SQL Best Practices, by Steven Feuerstein
A relatively short book that describes dozens of best practices that will help you
produce high-quality PL/SQL code. Having this book is kind of like having a “les-
sons learned” document written by an in-house PL/SQL expert. The second edition
features completely rewritten content that teaches best practices by following the
challenges of a development team writing code for the make-believe company,
MyFlimsyExcuse.com.

Oracle PL/SQL Developer’s Workbook, by Steven Feuerstein with Andrew Odewahn
Contains a series of questions and answers intended to help PL/SQL programmers
develop and test their understanding of the language. Covers PL/SQL features
through Oracle8i Database, but of course most of those exercises apply to later
versions of the database as well.

Oracle Built-in Packages, by Steven Feuerstein, Charles Dye, and John Beresniewicz
A reference guide to the prebuilt packages that Oracle supplies with the core
database server. The use of these packages can often simplify the difficult and tame
the impossible. This book covers features through Oracle8 Database, but the in-

Resources for PL/SQL Developers | 17

Download at WoweBook.Com

http://oracle.oreilly.com
http://oreilly.com/catalog/9780596001803/
http://oreilly.com/catalog/9780596514105/
http://myflimsyexcuse.com
http://oreilly.com/catalog/9781565926745/
http://oreilly.com/catalog/9781565923751/

depth explanations of and examples for the included packages is still very helpful
in later releases.

Oracle PL/SQL for DBAs, by Arup Nanda and Steven Feuerstein
The PL/SQL language becomes and more important to Oracle DBAs with each
new version of the database. There are two main reasons for this. First, large
amounts of DBA functionality are made available through a PL/SQL package API.
To use this functionality, you must also write and run PL/SQL programs. Second,
it is critical that DBAs have a working knowledge of PL/SQL so that they can
identify problems in the code built by developers. This book offers a wealth of
material that will help DBAs get up to speed quickly on fully leveraging PL/SQL
to get their jobs done.

Oracle PL/SQL Language Pocket Reference, by Steven Feuerstein, Bill Pribyl, and Chip
Dawes

A small but very useful quick-reference book that might actually fit in your coat
pocket. It summarizes the syntax of the core PL/SQL language through Oracle
Database 11g.

Oracle PL/SQL Built-ins Pocket Reference, by Steven Feuerstein, John Beresniewicz, and
Chip Dawes

Another helpful and concise guide summarizing built-in functions and packages
through Oracle8 Database.

PL/SQL on the Internet
There are also many online resources for PL/SQL programmers. This list focuses pri-
marily on those resources to which the coauthors provide or manage content.

Steven Feuerstein’s PL/SQL Obsession web site
PL/SQL Obsession is Steven’s online portal for PL/SQL resources, including all of
his training presentations and supporting code, freeware utilities (some listed be-
low), video recordings, and more. See http://www.ToadWorld.com/SF.

I Love PL/SQL And
“I Love PL/SQL And” is a web site that makes it very easy for any PL/SQL developer
to communicate to the PL/SQL development team her priorities regarding future
changes to the PL/SQL language. Provided by Steven with the support and coop-
eration of Bryn Llewellyn, the PL/SQL Product Manager, this site lets you choose
from a list of commonly-requested enhancements and send an email to Bryn adding
your vote to those features most important to you. See www.iloveplsqland.net.

Oracle Technology Network
Join the Oracle Technology Network (OTN), which “provides services and re-
sources that developers need to build, test, and deploy applications” based on
Oracle technology. Boasting membership in the millions, OTN is a great place to
download Oracle software, documentation, and lots of sample code. See the main

18 | Chapter 1: Introduction to PL/SQL

Download at WoweBook.Com

http://oreilly.com/catalog/9780596005870/
http://oreilly.com/catalog/9780596514044/
http://oreilly.com/catalog/9781565924567/
http://www.ToadWorld.com/SF
http://www.iloveplsqland.net

page at http://otn.oracle.com. The PL/SQL page on OTN may be found at http://
www.oracle.com/technology/tech/pl_sql/index.html.

PL/Net.org
PLNet.org is a repository of open source software, maintained by Bill Pribyl, that
is written in PL/SQL or is otherwise for the benefit of PL/SQL developers. You can
read more about the project’s background or check out the Frequently Asked
Questions (FAQs). You will also be directed to a number of utilities, such as
utPLSQL, the unit-testing framework for PL/SQL developers. Check out http://
plnet.org.

Open Directory Project
Courtesy of the “dmoz” (Directory Mozilla) project, here you can find a choice set
of links to PL/SQL sites. There is also a subcategory called “Tools” with a fairly
comprehensive set of links to both commercial and noncommercial developer
tools. See http://dmoz.org/Computers/Programming/Languages/PL-SQL/.

Quest Error Manager
The Quest Error Manager (QEM) is a framework that will help you standardize
the management of errors in a PL/SQL-based application. With QEM, you can
register, raise, and report on errors through an API that makes it easy for all de-
velopers to perform error management in the same way, with a minimum amount
of effort. Error information is logged into the instance (general information about
the error) and context (application-specific name-value pairs) tables. Go to http://
toadworld.com/Downloads/ExclusiveToadWorldFreeware/tabid/78/Default.aspx.

Quest CodeGen Utility
Quest CodeGen Utility is a very flexible code generator and repository for reusable
code. With CodeGen, you can generate table APIs that will automatically execute
the most common SQL operations against your tables (using the most advanced
features of PL/SQL and with very robust error management). You can also generate
all sorts of useful PL/SQL code from the “PL/SQL by Feuerstein” script library.
Check out http://toadworld.com/Downloads/ExclusiveToadWorldFreeware/tabid/
78/Default.aspx.

Some Words of Advice
Since 1995, when the first edition of this book was published, I have had the oppor-
tunity to train, assist, and work with tens of thousands of PL/SQL developers. In the
process, I have learned an awful lot from our students and readers, and have also gained
some insights into the way we all do our work in the world of PL/SQL. I hope that you
will not find it too tiresome if I share some advice with you on how you can work more
effectively with this powerful programming language.

Some Words of Advice | 19

Download at WoweBook.Com

http://otn.oracle.com
http://www.oracle.com/technology/tech/pl_sql/index.html
http://www.oracle.com/technology/tech/pl_sql/index.html
http://plnet.org
http://plnet.org
http://dmoz.org/Computers/Programming/Languages/PL-SQL/.
http://toadworld.com/Downloads/ExclusiveToadWorldFreeware/tabid/78/Default.aspx
http://toadworld.com/Downloads/ExclusiveToadWorldFreeware/tabid/78/Default.aspx
http://toadworld.com/Downloads/ExclusiveToadWorldFreeware/tabid/78/Default.aspx
http://toadworld.com/Downloads/ExclusiveToadWorldFreeware/tabid/78/Default.aspx

Don’t Be in Such a Hurry!
We are almost always working under tight deadlines, or playing catch-up from one
setback or another. We have no time to waste, and lots of code to write. So let’s get
right to it—right?

Wrong. If we dive too quickly into the depths of code construction, slavishly converting
requirements to hundreds, thousands, or even tens of thousands of lines of code, we
will end up with a total mess that is almost impossible to debug and maintain. Don’t
respond to looming deadlines with panic; you are more likely to meet those deadlines
if you do some careful planning.

I strongly encourage you to resist these time pressures and make sure to do the following
before you start a new application, or even a specific program in an application:

Construct test cases and test scripts before you write your code
You should determine how you want to verify a successful implementation before
you write a single line of a program. By doing this, you are more likely to get the
interface of your programs correct, and be able to thoroughly identify what it is
your program needs to do.

Establish clear rules for how developers will write the SQL statements in the application
In general, I recommend that individual developers not write a whole lot of SQL.
Instead, those single-row queries and inserts and updates should be “hidden” be-
hind prebuilt and thoroughly tested procedures and functions (this is called data
encapsulation). These programs can be optimized, tested, and maintained much
more effectively than SQL statements (many of them redundant) scattered
throughout your code.

Establish clear rules for how developers will handle exceptions in the application
All developers on a team should raise, handle, and log errors in the same way. The
best way to do this is to create a single error-handling package that hides all the
details of how an error log is kept, determines how exceptions are raised and
propagated up through nested blocks, and avoids hardcoding of application-
specific exceptions. Make sure that all developers use this package and that they
do not write their own complicated, time-consuming, and error-prone
error-handling code.

Use “stepwise refinement” (a.k.a. top-down design) to limit the complexity of the require-
ments you must deal with at any given time

If you use this approach, you will find that the executable sections of your modules
are shorter and easier to understand, which makes your code easier to maintain
and enhance over time. Local or nested modules play a key role in following this
design principle.

These are just a few of the important things to keep in mind before you start writing all
that code. Just remember: in the world of software development, haste not only makes
waste, it virtually guarantees a generous offering of bugs and lost weekends.

20 | Chapter 1: Introduction to PL/SQL

Download at WoweBook.Com

Don’t Be Afraid to Ask for Help
Chances are, if you are a software professional, you are a fairly smart individual. You
studied hard, you honed your skills, and now you make a darn good living writing code.
You can solve almost any problem you are handed, and that makes you proud. Un-
fortunately, your success can also make you egotistical, arrogant, and reluctant to seek
out help when you are stumped. This dynamic is one of the most dangerous and de-
structive aspects of software development.

Software is written by human beings; it is important, therefore, to recognize that human
psychology plays a key role in software development. The following is an example.

Joe, the senior developer in a team of six, has a problem with his program. He studies
it for hours, with increasing frustration but cannot figure out the source of the bug. He
wouldn’t think of asking any of his peers to help because they all have less experience
then he does. Finally, though, he is at wits’ end and “gives up.” Sighing, he picks up
his phone and touches an extension: “Sandra, could you come over here and take a
look at my program? I’ve got a problem I simply cannot figure out.” Sandra stops by
and, with the quickest glance at Joe’s program, points out what should have been
obvious to him long ago. Hurray! The program is fixed, and Joe expresses gratitude,
but in fact he is secretly embarrassed.

Thoughts like “Why didn’t I see that?” and “If I’d only spent another five minutes doing
my own debugging I would have found it” run though Joe’s mind. This is understand-
able but also very thick-headed. The bottom line is that we are often unable to identify
our own problems because we are too close to our own code. Sometimes, all we need
is a fresh perspective, the relatively objective view of someone with nothing at stake. It
has nothing to do with seniority, expertise, or competence.

We strongly suggest that you establish the following guidelines in your organization:

Reward admissions of ignorance
Hiding what you don’t know about an application or its code is very dangerous.
Develop a culture that welcomes questions and requests for help.

Ask for help
If you cannot figure out the source of a bug in 30 minutes, immediately ask for
help. You might even set up a “buddy system,” so that everyone is assigned a person
who is expected to be asked for assistance. Don’t let yourself (or others in your
group) go for hours banging your head against the wall in a fruitless search for
answers.

Set up a formal peer code review process
Don’t let any code go to QA or production without being read and critiqued (in a
positive, constructive manner) by one or more other developers in your group.

Some Words of Advice | 21

Download at WoweBook.Com

Take a Creative, Even Radical Approach
We all tend to fall into ruts, in almost every aspect of our lives. People are creatures of
habit: you learn to write code in one way; you assume certain limitations about a prod-
uct; you turn aside possible solutions without serious examination because you just
know it cannot be done. Developers become downright prejudiced about their own
programs, and often not in positive ways. They are often overheard saying things like:

• “It can’t run any faster than that; it’s a pig.”

• “I can’t make it work the way the user wants; that’ll have to wait for the next
version.”

• “If I were using X or Y or Z product, it would be a breeze. But with this stuff,
everything is a struggle.”

But the reality is that your program can almost always run a little faster. And the screen
can, in fact, function just the way the user wants it to. And although each product has
its limitations, strengths, and weaknesses, you should never have to wait for the next
version. Isn’t it so much more satisfying to be able to tell your therapist that you tackled
the problem head-on, accepted no excuses, and crafted a solution?

How do you do this? Break out of the confines of your hardened views and take a fresh
look at the world (or maybe just your cubicle). Reassess the programming habits you’ve
developed. Be creative—step away from the traditional methods, from the often limited
and mechanical approaches constantly reinforced in our places of business.

Try something new: experiment with what may seem to be a radical departure from
the norm. You will be surprised at how much you will learn and grow as a programmer
and problem solver. Over the years, I have surprised myself over and over with what is
really achievable when I stopped saying “You can’t do that!” and instead simply nodded
quietly and murmured, “Now, if I do it this way....”

22 | Chapter 1: Introduction to PL/SQL

Download at WoweBook.Com

CHAPTER 2

Creating and Running PL/SQL Code

Even if they never give a second thought to tasks such as system design or unit testing,
all PL/SQL programmers must be familiar with some basic operational tasks:

• Navigate the database.

• Create and edit PL/SQL source code.

• Compile the PL/SQL source code, correcting any code errors (and, optionally,
warnings) noted by the compiler.

• Execute the compiled program from some environment.

• Examine results of program execution (screen output, changes to tables, etc.).

Unlike standalone languages such as C, PL/SQL is hosted inside an Oracle execution
environment (it is an “embedded language”), so there are some unexpected nuances to
all of these tasks: some are pleasant surprises; others, consternations. This chapter will
show you how to accomplish these tasks at the most basic level (using SQL*Plus), with
a brief tour of the nuances sprinkled in. It concludes with some drive-by examples of
making calls to PL/SQL from inside several common programming environments such
as PHP and C. For more detailed information about compilation and other more ad-
vanced tasks, see Chapter 20.

Navigating the Database
Everybody who chooses to write PL/SQL programs does so to work with the contents
of an Oracle database. It is, therefore, no surprise that you will need to know how to
“get around” the Oracle database where your code is going to run. You will want to
examine the data structures (tables, columns, sequences, user-defined types, etc.) in
the database, as well as the signatures of any existing stored programs you will be
invoking. You will probably also need to know something about the actual contents
(columns, constraints, etc.) of the tables.

There are two distinct approaches you can take to database navigation:

23

Download at WoweBook.Com

1. Use an IDE (integrated development environment, a fancy name for a fancy editor)
like Toad, SQL Developer, PL/SQL Developer, SQL Navigator, etc. They all offer
visual browsers which support point and click navigation.

2. Run scripts in a command-line environment like SQL*Plus that queries the contents
of data dictionary views like ALL_OBJECTS or USER_OBJECTS (demonstrated
later in this chapter).

I strongly recommend that you use a graphical IDE. If you have been around Oracle
long enough, you might be addicted to and fairly productive with your scripts. For the
rest of us, a graphical interface is much easier to work with and understand—and much
more productive—than scripts.

Chapter 20 also offers examples of using several data dictionary views for working with
your PL/SQL code base.

Creating and Editing Source Code
These days, programmers have many, many choices for code editors, from the simplest
text editor to the most exotic development environments. And they do make very dif-
ferent choices. One of the authors of this book, Steven Feuerstein, is rather addicted
to the Toad IDE. He is a very typical user, familiar with perhaps only 10% of all the
functionality and buttons, but relying heavily on those features. Bill Pribyl, on the other
hand, describes himself as “something of an oddball in that I like to use a fairly plain
text editor to write PL/SQL programs. My one concession is that it automatically in-
dents code as I type, and it displays keywords, comments, literals, and variables in
different colors.”

The most sophisticated programmer’s editors will do much more than indentation and
keyword coloring; they will also offer graphical debuggers, perform keyword comple-
tion, preview subprograms of packages as you type their name, display subprogram
parameters, and highlight the specific row and column where the compiler reported an
error. Some editors also have “hyperlinking” features that allow you to quickly browse
to the declaration of a variable or subprogram. But the need for most of these features
is common across many compiled languages.

What is unique about PL/SQL is the fact the source code for stored programs must be
loaded into the database before it can be compiled and executed. This in-database copy
can usually be retrieved by a programmer who has sufficient permissions. We can im-
mediately recognize a host of code management issues, including:

• How and where does a programmer find the “original” copy of a stored program?

• Does it live on disk or does it just live in the database?

• How and how often do we perform backups?

• How do we manage multi-developer access to the code? That is, do we use a soft-
ware version control system?

24 | Chapter 2: Creating and Running PL/SQL Code

Download at WoweBook.Com

These questions should be answered before you begin development of an application,
most preferably by making choices about which software tools will do this work for
you. While there is no single set of tools or processes that work best for all development
teams, I can tell you that I always store the “original” source code in files—I strongly
suggest that you not use the RDBMS as your code repository.

In the next section I will demonstrate how you can use SQL*Plus to accomplish many
basic tasks for PL/SQL development. These same tasks can be completed in your IDE.

SQL*Plus
The granddaddy of Oracle frontends, Oracle’s SQL*Plus provides a command-line in-
terpreter for both SQL and PL/SQL. That is, it accepts statements from the user, sends
them off to the Oracle server, and displays the results.

Often maligned for its user interface, SQL*Plus is one of my favorite Oracle tools. I
actually like the lack of fancy gizmos and menus. Ironically, when I started using Oracle
(circa 1986), this product’s predecessor was boldly named UFI—User Friendly Inter-
face. Two decades later, even the latest version of SQL*Plus is still unlikely to win any
user friendliness awards, but at least it doesn’t crash very often.

Oracle has, over the years, offered different versions of SQL*Plus, including:

As a console program
This is a program that runs from a shell or command prompt* (an environment
that is sometimes called a console).

As a pseudo-GUI program
This form of SQL*Plus is available only on Microsoft Windows. I call it a “pseudo-
GUI” because it looks pretty much like the console program but with bitmapped
fonts; few other features distinguish it from the console program. Beware: Oracle
has been threatening to desupport this product for years, and it hasn’t really been
updated since Oracle8i Database.

Via iSQL*Plus
This program executes from a web browser connected to a middle-tier machine
running Oracle’s HTTP server and iSQL*Plus server.

Starting with Oracle Database 11g, Oracle ships only the console program (sqlplus.exe).

Figure 2-1 is a screenshot of a SQL*Plus console-style session.

Usually, I prefer the console program because:

• It tends to draw the screen faster, which can be significant for queries with lots of
output.

* Oracle calls this the “command-line interface” version of SQL*Plus, but I find that somewhat confusing,
because two of the three styles provide a command-line interface.

SQL*Plus | 25

Download at WoweBook.Com

• It has a more complete command-line history (on Microsoft Windows platforms,
at least).

• It has a much easier way of changing visual characteristics such as font, color, and
scroll buffer size.

• It is available virtually everywhere that Oracle server or client tools are installed.

Figure 2-1. SQL*Plus in a console session

Starting Up SQL*Plus
To start the console version of SQL*Plus, you can simply type “sqlplus” at the operating
system prompt (designated by “OS>”):

OS> sqlplus

This works for both Unix-based and Microsoft operating systems. SQL*Plus should
display a startup banner and then prompt you for a username and password.

SQL*Plus: Release 11.1.0.6.0 - Production on Fri Nov 7 10:28:26 2008

Copyright (c) 1982, 2007, Oracle. All rights reserved.

Enter user-name: bob
Enter password: swordfish

Connected to:
Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 - 64bit

SQL>

26 | Chapter 2: Creating and Running PL/SQL Code

Download at WoweBook.Com

Seeing the “SQL>” prompt is your cue that your installation is set up properly. (The
password won’t echo on the screen.)

You can also launch SQL*Plus with the username and password on the command line:

OS> sqlplus bob/swordfish

I do not recommend this, because some operating systems provide a way for other users
to see your command-line arguments, which would allow them to read your password.
On multiuser systems, you can instead use the /NOLOG option to start SQL*Plus
without connecting to the database, and then supply the username and password via
the CONNECT command.

OS> sqlplus /nolog

SQL*Plus: Release 11.1.0.6.0 - Production on Fri Nov 7 10:28:26 2008

Copyright (c) 1982, 2007, Oracle. All rights reserved.
SQL> CONNECT bob/swordfish
SQL> Connected.

If the computer you’re running SQL*Plus on also has a properly configured Oracle
Net† installation, and you have been authorized by the database administrator to con-
nect to remote databases (that is, database servers running on other computers), you
can connect to these other databases from SQL*Plus. Doing so requires knowing an
Oracle Net connect identifier (also known as a service name) that you must supply along
with your username and password. A connect identifier could look like this:

hqhr.WORLD

To use this identifier, you can append it to your username and password, separated by
an at-sign (@):

SQL> CONNECT bob/swordfish@hqhr.WORLD
SQL> Connected.

When starting the pseudo-GUI version of SQL*Plus, supplying your credentials is
straightforward, although it calls the connect identifier a host string (see Figure 2-2). If
you want to connect to a database server running on the local machine, just leave the
“Host String” field blank.

Once you have SQL*Plus running, you can do all kinds of things; here are the most
common:

• Run a SQL statement.

• Compile and store a PL/SQL program in the database.

• Run a PL/SQL program.

• Issue a SQL*Plus-specific command.

• Run a script that contains a mix of the above.

† Oracle Net is the current name for the product previously known as Net8 and SQL*Net.

SQL*Plus | 27

Download at WoweBook.Com

We’ll take a look at these in the following sections.

Running a SQL Statement
In the console version of SQL*Plus, the query:

SELECT isbn, author, title FROM books;

produces output similar to that shown in Figure 2-1.‡

The default terminator in SQL*Plus for SQL statements is the semicolon, but you can
change that terminator character.

Running a PL/SQL Program
So, here we go (drum roll please). Let’s type a short PL/SQL program into SQL*Plus:

SQL> BEGIN
 2 DBMS_OUTPUT.PUT_LINE('Hey look, ma!');
 3 END;
 4 /

PL/SQL procedure successfully completed.

SQL>

Oops. Although it has successfully completed, this particular program was supposed
to invoke PL/SQL’s built-in program that echoes back some text. SQL*Plus’s somewhat
annoying behavior is to suppress such output by default. To get it to display properly,
you must use a SQL*Plus command to turn on SERVEROUTPUT:

Figure 2-2. The GUI login screen of SQL*Plus

‡ Well, I cheated a bit in that figure because I used some column formatting commands. If this were a book
about SQL*Plus or how to display database data, I would expound on the many ways SQL*Plus lets you
control the appearance of the output by setting various formatting and display preferences. You can take my
word for it, though; there are more options than you can shake a stick at.

28 | Chapter 2: Creating and Running PL/SQL Code

Download at WoweBook.Com

SQL> SET SERVEROUTPUT ON
SQL> BEGIN
 2 DBMS_OUTPUT.PUT_LINE('Hey look, Ma!');
 3 END;
 4 /
Hey look, Ma!

PL/SQL procedure successfully completed.

SQL>

I generally put the SERVEROUTPUT command in my startup file (see “Loading your
own custom environment automatically on startup” on page 35), causing it to be
enabled until one of the following occurs:

• You disconnect, log off, or otherwise end your session.

• You explicitly set SERVEROUTPUT to OFF.

• The Oracle database discards session state either at your request or because of a
compilation error (see “Recompiling Invalid Program Units” on page 731).

• In Oracle versions through Oracle9i Database Release 2, you issue a new CON-
NECT statement; in subsequent versions, SQL*Plus automatically reruns your
startup file after each CONNECT.

When you enter SQL or PL/SQL statements into the console or pseudo-GUI SQL*Plus,
the program assigns a number to each line after the first. There are two benefits to the
line numbers: first, it helps you designate which line to edit with the built-in line editor
(which you might actually use one day); and second, if the database detects an error in
your code, it will usually report the error accompanied by a line number. You’ll have
plenty of opportunities to see that behavior in action.

To tell SQL*Plus that you’re done entering a PL/SQL statement, you must usually in-
clude a trailing slash (see line 4 in the previous example). Although mostly harmless,
the slash has several important characteristics:

• The meaning of the slash is “execute the most recently entered statement,” re-
gardless of whether the statement is SQL or PL/SQL.

• The slash is a command unique to SQL*Plus; it is not part of the PL/SQL language,
nor is it part of SQL.

• It must appear on a line by itself; no other commands can be included on the line.

• In most versions of SQL*Plus prior to Oracle9i Database, if you accidentally pre-
cede the slash with any spaces, it doesn’t work! Beginning with Oracle9i Database,
SQL*Plus conveniently overlooks leading whitespace. Trailing space doesn’t mat-
ter in any version.

As a convenience feature, SQL*Plus offers PL/SQL users an EXECUTE command,
which saves typing the BEGIN, END, and trailing slash. So the following is equivalent
to the short program I ran earlier:

SQL*Plus | 29

Download at WoweBook.Com

SQL> EXECUTE DBMS_OUTPUT.PUT_LINE('Hey look, Ma!')

A trailing semicolon is optional, but I prefer to omit it. As with most SQL*Plus com-
mands, EXECUTE can be abbreviated and is case-insensitive, so most interactive use
gets reduced to:

SQL> EXEC dbms_output.put_line('Hey look, Ma!')

Running a Script
Almost any statement that works interactively in SQL*Plus can be stored in a file for
repeated execution. The easiest way to run such a script is to use the SQL*Plus “at-
sign” (@) command.§ For example, this runs all the commands in the file abc.pkg:

SQL> @abc.pkg

The file must live in my current directory (or on SQLPATH somewhere).

If you prefer words to at-signs, you can use the equivalent START command:

SQL> START abc.pkg

and you will get identical results. Either way, this command causes SQL*Plus to do the
following:

1. Open the file named abc.pkg.

2. Sequentially attempt to execute all of the SQL, PL/SQL, and SQL*Plus statements
in the file.

3. When complete, close the file and return you to the SQL*Plus prompt (unless the
file invokes the EXIT statement, which will cause SQL*Plus to quit).

For example:

SQL> @abc.pkg

Package created.

Package body created.

SQL>

The default behavior is to display only the output from the individual statements on
the screen; if you want to see the original source from the file, use the SQL*Plus com-
mand SET ECHO ON.

In my example, I’ve used a filename extension of pkg. If I leave off the extension, this
is what happens:

SQL> @abc
SP2-0310: unable to open file "abc.sql"

§ START, @, and @@ commands are available in the non-browser versions of SQL*Plus. In iSQL*Plus, you can
use the “Browse” and “Load Script” buttons for a similar result.

30 | Chapter 2: Creating and Running PL/SQL Code

Download at WoweBook.Com

As you can see, the default file extension is sql. By the way, the “SP2-0310” is the Oracle-
supplied error number, and “SP2” means that it is unique to SQL*Plus. (For more details
about SQL*Plus error messages, refer to Oracle’s SQL*Plus User’s Guide and Reference.)

What Is the “Current Directory”?
Any time you launch SQL*Plus from an operating system command prompt, SQL*Plus
treats the operating system’s then-current directory as its own current directory. In
other words, if I were to start up using:

C:\BOB\FILES> sqlplus

then any file operations inside SQL*Plus (such as opening or running a script) will
default to the directory C:\BOB\FILES.

If you use a shortcut or menu option to launch SQL*Plus, the current directory is the
directory the operating system associates with the launch mechanism. So how would
you change the current directory once you’re inside SQL*Plus? It depends on the ver-
sion. In the console program, you can’t do it. You have to exit, change directories in
the operating system, and restart SQL*Plus. In the GUI version, though, completing a
File → Open or File → Save menu command will have the side effect of changing the
current directory.

If your script file is in another directory, you can precede the filename with the path:‖

SQL> @/files/src/release/1.0/abc.pkg

The idea of running scripts in other directories raises an interesting question. What if
abc.pkg is located in this other directory and, in turn, calls other scripts? It might contain
the lines:

REM Filename: abc.pkg
@abc.pks
@abc.pkb

(Any line beginning with REM is a comment or “remark” that SQL*Plus ignores.) Ex-
ecuting the abc.pkg script is supposed to run abc.pks and abc.pkb. But because I have
not included path information, where will SQL*Plus look for these other files? Let’s see:

C:\BOB\FILES> sqlplus
...
SQL> @/files/src/release/1.0/abc.pkg
SP2-0310: unable to open file "abc.pks"
SP2-0310: unable to open file "abc.pkb"

It looks only in the directory where I started.

‖ As a pleasant surprise, you can use forward slashes as directory delimiters on both Unix-Linux and Microsoft
operating systems. This allows your scripts to port more easily between operating systems.

SQL*Plus | 31

Download at WoweBook.Com

To address this problem, Oracle created the @@ command. This double at-sign means
during this call, “pretend I have changed the current directory to be that of the currently
executing file.” So, the preferred way of writing the calls in the abc.pkg script is:

REM Filename: abc.pkg
@@abc.pks
@@abc.pkb

Now I get:

C:\BOB\FILES> sqlplus
...
SQL> @/files/src/release/1.0/abc.pkg

Package created.

Package body created.

…just as I was hoping.

Other SQL*Plus Tasks
There are dozens of commands specific to SQL*Plus, but I have space to mention only
a few more that are particularly important or particularly confusing. For a thorough
treatment of this venerable product, get a copy of Jonathan Gennick’s book Oracle
SQL*Plus: The Definitive Guide (O’Reilly) or, for quick reference, his Oracle SQL*Plus
Pocket Reference (O’Reilly).

Setting your preferences

You can change the behavior of SQL*Plus, as you can with many command-line envi-
ronments, by changing the value of some of its built-in variables and settings. You have
already seen one example, the SET SERVEROUTPUT statement. There are many op-
tions on the SQL*Plus SET command, such as SET SUFFIX (changes the default file
extension) and SET LINESIZE n (sets the maximum number of characters in each dis-
played line before wrapping). To see all the SET values applicable to your current ses-
sion, use the command:

SQL> SHOW ALL

SQL*Plus can also create and manipulate its own in-memory variables, and it sets aside
a few special variables that will affect its behavior. Actually, there are two separate types
of variables in SQL*Plus: DEFINEs and bind variables. To assign a value to a DEFINE
variable, you can use the DEFINE command:

SQL> DEFINE x = "the answer is 42"

To view the value of x, specify:

SQL> DEFINE x
DEFINE X = "the answer is 42" (CHAR)

32 | Chapter 2: Creating and Running PL/SQL Code

Download at WoweBook.Com

http://oreilly.com/catalog/9780596007461/
http://oreilly.com/catalog/9780596007461/
http://oreilly.com/catalog/9781565929418/
http://oreilly.com/catalog/9781565929418/

You would refer to such a variable using an ampersand (&). SQL*Plus does a simple
substitution before sending the statement to the Oracle database, so you will need
single-quote marks around the variable when you want to use it as a literal string.

SELECT '&x' FROM DUAL;

For bind variables, you first declare the variable. You can then use it in PL/SQL, and
display it using the SQL*Plus PRINT command:

SQL> VARIABLE x VARCHAR2(10)
SQL> BEGIN
 2 :x := 'hullo';
 3 END;
 4 /

PL/SQL procedure successfully completed.

SQL> PRINT :x

X

hullo

This can get a little bit confusing because there are now two different “x” variables, one
that has been defined and one that has been declared.

SQL> SELECT :x, '&x' FROM DUAL;
old 1: SELECT :x, '&x' FROM DUAL
new 1: SELECT :x, 'the answer is 42' FROM DUAL

:X 'THEANSWERIS42'
-------------------------------- ----------------
hullo the answer is 42

Just remember that DEFINEs are always character strings expanded by SQL*Plus, and
declared variables are used as true bind variables in SQL and PL/SQL.

Saving output to a file

Frequently, you will want to save output from a SQL*Plus session to a file—perhaps
because you are generating a report, or because you want a record of your actions, or
because you are dynamically generating commands to execute later. An easy way to do
this in SQL*Plus is to use its SPOOL command:

SQL> SPOOL report
SQL> @run_report

 ...output scrolls past and gets written to the file report.lst...

SQL> SPOOL OFF

The first command, SPOOL report, tells SQL*Plus to save everything from that point
forward into the file report.lst. The file extension of .lst is the default and can be over-
ridden by supplying your own extension in the SPOOL command:

SQL*Plus | 33

Download at WoweBook.Com

SQL> SPOOL report.txt

SPOOL OFF tells SQL*Plus to stop saving the output and to close the file.

Exiting SQL*Plus

To exit SQL*Plus and return to the operating system, use the EXIT command:

SQL> EXIT

If you happen to be spooling when you exit, SQL*Plus will stop spooling and close the
spool file.

What happens if you modify some table data during your session but then exit before
ending the transaction with an explicit transaction control statement? By default, ex-
iting SQL*Plus forces a COMMIT, unless your sessions end with a SQL error, and you
have issued the SQL*Plus’ WHENEVER SQLERROR EXIT ROLLBACK command
(see the later section, “Error Handling in SQL*Plus” on page 36).

To disconnect from the database but remain connected to SQL*Plus, use the command
DISCONNECT, which will look something like this in action:

SQL> DISCONNECT
Disconnected from Personal Oracle Database 10g Release 10.1.0.3.0 - Production
With the Partitioning, OLAP and Data Mining options
SQL>

You don’t have to use DISCONNECT to change connections—you can just issue a
CONNECT instead, and SQL*Plus will drop the first connection before connecting
you to the new one. However, there is a good reason why you might want to disconnect
before reconnecting: if you happen to be using operating system authentication,# the
script might reconnect itself automatically…maybe to the wrong account. I’ve seen it
happen.

Editing a statement

SQL*Plus keeps the most recently issued statement in a buffer, and you can edit this
statement using either the built-in line editor or an external editor of your choosing.
To start with, I’ll show how to set and use an external editor.

Use the EDIT command to have SQL*Plus save the current command buffer to a file,
temporarily pause SQL*Plus, and invoke the editor:

SQL> EDIT

By default, the file will be saved with the name afiedt.buf, but you can change that with
the SET EDITFILE command. Or, if you want to edit an existing file, just supply its
name as an argument to EDIT:

#Operating system authentication is a way that you can bypass the username/password prompt when you log
in to SQL*Plus.

34 | Chapter 2: Creating and Running PL/SQL Code

Download at WoweBook.Com

SQL> EDIT abc.pkg

Once you’ve saved the file and exited the editor, the SQL*Plus session will read the
contents of the newly edited file into its buffer, and then resume.

The default external editors that Oracle assumes are:

• ed for Unix, Linux, and relatives

• Notepad For Microsoft Windows variants

Although the selection of default editors is actually hardcoded into the sqlplus execut-
able file, you can easily change the current editor by assigning your own value to the
SQL*Plus _EDITOR variable. Here’s an example that I frequently use:

SQL> DEFINE _EDITOR = /bin/vi

where /bin/vi is the full path to an editor that’s popular among a handful of strange
people. I recommend using the editor’s full pathname here, for security reasons.

If you really want to use SQL*Plus’ built-in line editor (and it can be really handy), the
essential commands you need to know are:

L
Lists the most recent statement.

n
Makes the nth line of the statement the current line.

DEL
Deletes the current line.

C /old/new/
In the current line, changes the first occurrence of old to new. The delimiter (here
a forward slash) can be any arbitrary character.

n text
Makes text the current text of line n.

I
Inserts a line below the current line. To insert a new line prior to line 1, use a line
zero command (e.g., 0 text).

Loading your own custom environment automatically on startup

To customize your SQL*Plus environment and have it assign your preferences from one
session to the next, you will want to edit one or both of its auto-startup scripts. The
way SQL*Plus behaves on startup is:

1. It searches for the file $ORACLE_HOME/qlplus/admin/glogin.sql and, if found,
executes any commands it contains. This “global” login script applies to everyone
who executes SQL*Plus from that Oracle home, no matter which directory they
start in.

SQL*Plus | 35

Download at WoweBook.Com

2. Next, it runs the file login.sql in the current directory, if it exists.*

The startup script can contain the same kinds of statements as any other SQL*Plus
script: SET commands, SQL statements, column formatting commands, and the like.

Neither file is required to be present. If both files are present, glogin.sql executes, fol-
lowed by login.sql; in the case of conflicting preferences or variables, the last setting
wins.

Here are a few of my favorite login.sql settings:

REM Number of lines of SELECT statement output before reprinting headers
SET PAGESIZE 999

REM Width of displayed page, expressed in characters
SET LINESIZE 132

REM Enable display of DBMS_OUTPUT messages. Use 1000000 rather than
REM "UNLIMITED" for databases earlier than Oracle Database 10g Release 2
SET SERVEROUTPUT ON SIZE UNLIMITED FORMAT WRAPPED

REM Change default to "vi improved" editor
DEFINE _EDITOR = /usr/local/bin/vim

REM Format misc columns commonly retrieved from data dictionary
COLUMN segment_name FORMAT A30 WORD_WRAP
COLUMN object_name FORMAT A30 WORD_WRAP

REM set the prompt (works in SQL*Plus
from Oracle9i Database or later)
SET SQLPROMPT "_USER'@'_CONNECT_IDENTIFIER > "

Error Handling in SQL*Plus
The way SQL*Plus communicates success depends on the class of command you are
running. With most SQL*Plus-specific commands, you can calibrate success by the
absence of an error message. Successful SQL and PL/SQL commands, on the other
hand, usually result in some kind of positive textual feedback.

If SQL*Plus encounters an error in a SQL or PL/SQL statement, it will, by default, report
the error and continue processing. This behavior is desirable when you’re working
interactively. But when you’re executing a script, there are many cases in which you
want an error to cause SQL*Plus to terminate. Use the following command to make
that happen:

SQL> WHENEVER SQLERROR EXIT SQL.SQLCODE

* If it doesn’t exist, and you have set the environment variable SQLPATH to one or more colon-delimited
directories, SQL*Plus will search through those directories one at a time and execute the first login.sql that it
finds. As a rule, I don’t use SQLPATH because I am easily confused by this sort of skulking about.

36 | Chapter 2: Creating and Running PL/SQL Code

Download at WoweBook.Com

Thereafter in the current session, SQL*Plus terminates if the database server returns
any error messages in response to a SQL or PL/SQL statement. The SQL.SQLCODE
part means that, when SQL*Plus terminates, it sets its return code to a nonzero value,
which you can detect in the calling environment.† Otherwise, SQL*Plus always ends
with a 0 return code, which may falsely imply that the script succeeded.

Another form of this command is:

SQL> WHENEVER SQLERROR SQL.SQLCODE EXIT ROLLBACK

which means that you also want SQL*Plus to roll back any uncommitted changes prior
to exiting.

Why You Will Love and Hate SQL*Plus
In addition to the features you just read about, the following are some particular fea-
tures of SQL*Plus that you will come to know and love.

• With SQL*Plus, you can run “batch” programs, supplying application-specific ar-
guments on the sqlplus command line, and referring to them in the script using &1
(first argument), &2 (second argument), etc.

• SQL*Plus provides complete and up-to-date support for all SQL and PL/SQL state-
ments. This can be important when you’re using features unique to Oracle. Third-
party environments may not provide 100% coverage; for example, some have been
slow to add support for Oracle’s object types, which were introduced a number of
years ago.

• SQL*Plus runs on all of the same hardware and operating system platforms on
which the Oracle server runs.

But as with any tool, there are going to be some irritations:

• In console versions of SQL*Plus, the statement buffer is limited to the most recently
used statement; SQL*Plus offers no further command history.

• With SQL*Plus, there are no modern command-interpreter features such as auto-
matic completion of keywords or hints about which database objects are available
while typing in a statement.

• Online help consists of minimal documentation of the SQL*Plus command set.
(Use HELP command to get help on a specific command.)

• There is no ability to change the current directory once you’ve started SQL*Plus.
This can be annoying when opening or saving scripts if you don’t like typing full
pathnames. If you discover that you’re in an inconvenient directory, you have to
quit SQL*Plus, change directories, and restart SQL*Plus.

† Using, for example, $? in the Unix shell or %ERRORLEVEL% in Microsoft Windows.

SQL*Plus | 37

Download at WoweBook.Com

• Unless I break down and use what I consider the dangerous SQLPATH feature,
SQL*Plus looks only in the startup directory for login.sql; it would be better if it
would fall back to look in my home directory for the startup script.

The bottom line is that SQL*Plus is something of a “real programmer’s” tool that is
neither warm nor fuzzy. But it is ubiquitous, doesn’t crash, and is likely to be supported
as long as there is an Oracle Corporation.

Performing Essential PL/SQL Tasks
Let’s turn to the highlights of creating, running, deleting, and otherwise managing
PL/SQL programs, using SQL*Plus as the frontend. Don’t expect to be overwhelmed
with detail here; treat this section as a glimpse of topics that will be covered in much
greater detail in the chapters ahead.

Creating a Stored Program
To build a new stored PL/SQL program, you use one of SQL’s CREATE statements.
For example, if you want to create a stored function that counts words in a string, you
can do so using a CREATE FUNCTION statement:

CREATE FUNCTION wordcount (str IN VARCHAR2)
 RETURN PLS_INTEGER
AS
 declare local variables here
BEGIN
 implement algorithm here
END;
/

As with the simple BEGIN-END blocks shown earlier, running this statement from
SQL*Plus requires a trailing slash on a line by itself.

Assuming that the DBA has granted you Oracle’s CREATE PROCEDURE privilege
(which also gives you the privilege of creating functions), this statement causes Oracle
to compile and store this stored function in your schema; if your code compiles, you’ll
probably see a success message such as:

Function created.

If another database object, such as a table or package, named wordcount already exists
in your Oracle schema, CREATE FUNCTION will fail with the error message
ORA-00955: name is already used by an existing object. That is one reason that Oracle
provides the OR REPLACE option, which you will want to use probably 99% of the
time.

CREATE OR REPLACE FUNCTION wordcount (str IN VARCHAR2)
 RETURN PLS_INTEGER
AS
 same as before

38 | Chapter 2: Creating and Running PL/SQL Code

Download at WoweBook.Com

The OR REPLACE option avoids the side effects of dropping and recreating the pro-
gram; in other words, it preserves any object privileges you have granted to other users
or roles. Fortunately, it replaces only objects of the same type, and it won’t automati-
cally drop a table named wordcount just because you decided to create a function by
that name.

As with anonymous blocks used more than once, programmers generally store these
statements in files in the operating system. I could create a file wordcount.fun for this
function and use the SQL*Plus @ command to run it:

SQL> @wordcount.fun

Function created.

As mentioned earlier, SQL*Plus does not, by default, echo the contents of scripts. You
can SET ECHO ON to see the source code scroll past the screen, including the line
numbers that the database assigns; this setting can be helpful when troubleshooting.
Let’s introduce an error into the program by commenting out a variable declaration.

SQL> /* File on web: wordcount.fun */
SQL> SET ECHO ON
SQL> @wordcount.fun
SQL> CREATE OR REPLACE FUNCTION wordcount (str IN VARCHAR2)
 2 RETURN PLS_INTEGER
 3 AS
 4 /* words PLS_INTEGER := 0; ***Commented out for intentional error*** */
 5 len PLS_INTEGER := NVL(LENGTH(str),0);
 6 inside_a_word BOOLEAN;
 7 BEGIN
 8 FOR i IN 1..len + 1
 9 LOOP
 10 IF ASCII(SUBSTR(str, i, 1)) < 33 OR i > len
 11 THEN
 12 IF inside_a_word
 13 THEN
 14 words := words + 1;
 15 inside_a_word := FALSE;
 16 END IF;
 17 ELSE
 18 inside_a_word := TRUE;
 19 END IF;
 20 END LOOP;
 21 RETURN words;
 22 END;
 23 /

Warning: Function created with compilation errors.

SQL>

This message tells us that the function was created, but that there were compilation
errors that render it inoperable. We’ve succeeded in storing the source code in the
database; now we need to tease the details of the error out of the database. The quickest

Performing Essential PL/SQL Tasks | 39

Download at WoweBook.Com

way to see the full text of the error message is to use SQL*Plus’ SHOW ERRORS com-
mand, abbreviated as SHO ERR:

SQL> SHO ERR Errors for FUNCTION WORDCOUNT:

LINE/COL ERROR
-------- --
14/13 PLS-00201: identifier 'WORDS' must be declared
14/13 PL/SQL: Statement ignored
21/4 PL/SQL: Statement ignored
21/11 PLS-00201: identifier 'WORDS' must be declared

The compiler has detected both occurrences of the variable, reporting the exact line
and column numbers. To see more detail about any server-based error, you can look
it up by its identifier—PLS-00201 in this case—in Oracle’s Database Error Messages
document.

Behind the scenes, SHOW ERRORS is really just querying Oracle’s USER_ERRORS
view in the data dictionary. You can query that view yourself, but you generally don’t
need to (see the sidebar “Show Other Errors”).

Show Other Errors
Many Oracle programmers know only one form of the SQL*Plus command:

SQL> SHOW ERRORS

and they incorrectly believe that they must query the USER_ERRORS view directly to
see anything but the error messages from the most recent compile. However, you can
append to SHOW ERRORS an object category and a name, and it will display the latest
errors for any object:

SQL> SHOW ERRORS category [schema.]object

For example, to view the latest errors for the wordcount function, specify:

SQL> SHOW ERRORS FUNCTION wordcount

Use caution when interpreting the output:

No errors.

This message actually means one of three things: (1) the object did compile successfully;
(2) you gave it the wrong category (for example, function instead of procedure); or (3)
no object by that name exists.

The complete list of categories this command recognizes varies by version, but includes
the following:

40 | Chapter 2: Creating and Running PL/SQL Code

Download at WoweBook.Com

DIMENSION
FUNCTION
JAVA SOURCE
JAVA CLASS
PACKAGE
PACKAGE BODY
PROCEDURE
TRIGGER
TYPE
TYPE BODY
VIEW

It’s common practice to append a SHOW ERRORS command after every scripted
CREATE statement that builds a stored PL/SQL program. So, a “good practices” tem-
plate for building stored programs in SQL*Plus might begin with this form:

CREATE OR REPLACE program-type
AS
 your code
END;
/

SHOW ERRORS

(I don’t usually include SET ECHO ON in scripts, but rather type it at the command
line when needed.)

When your program contains an error that the compiler can detect, CREATE will still
cause the Oracle database to store the program in the database, though in an invalid
state. If, however, you mistype part of the CREATE syntax, the database won’t be able
to figure out what you are trying to do and won’t store the code in the database.

Executing a Stored Program
We’ve already looked at two different ways to invoke a stored program: wrap it in a
simple PL/SQL block or use the SQL*Plus EXECUTE command. You can also use
stored programs inside other stored programs. For example, you can invoke a function
such as wordcount in any location where you could use an integer expression. Here is
a short illustration of how I might test the wordcount function with a strange input
(CHR(9) is an ASCII “tab” character):

BEGIN
 DBMS_OUTPUT.PUT_LINE('There are ' || wordcount(CHR(9)) || ' words in a tab');
END;
/

I have embedded wordcount as part of an expression and supplied it as an argument
to DBMS_OUTPUT.PUT_LINE. Here, PL/SQL automatically casts the integer to a
string so it can concatenate it with two other literal expressions; the result is:

There are 0 words in a tab

Performing Essential PL/SQL Tasks | 41

Download at WoweBook.Com

You can also invoke many PL/SQL functions inside SQL statements. Here are several
examples of how you can use the wordcount function:

• Apply the function in a select list to compute the number of words in a table
column:

SELECT isbn, wordcount(description) FROM books;

• Use the ANSI-compliant CALL statement, binding the function output to a
SQL*Plus variable, and display the result:

VARIABLE words NUMBER
CALL wordcount('some text') INTO :words;
PRINT :words

• Same as above, but execute the function from a remote database as defined in the
database link test.newyork.ora.com:

 CALL wordcount@test.newyork.ora.com('some text') INTO :words;

• Execute the function, owned by schema bob, while logged in to any schema that
has appropriate authorization:

SELECT bob.wordcount(description) FROM books WHERE id = 10007;

Showing Stored Programs
Sooner or later you will want to get a list of the stored programs you own, and you may
also need to view the most recent version of program source that Oracle has saved in
its data dictionary. This is one task that you will find far easier if you use some kind of
GUI-based navigation assistant, but if you lack such a tool, it’s not too hard to write a
few SQL statements that will pull the desired information out of the data dictionary.

For example, to see a complete list of your programs (and tables, indexes, etc.), query
the USER_OBJECTS view, as in:

SELECT * FROM USER_OBJECTS;

This view shows name, type, creation time, latest compile times, status (valid or
invalid), and other useful information.

If all you need is the summary of a PL/SQL program’s callable interface in SQL*Plus,
the easiest command to use is DESCRIBE:

SQL> DESCRIBE wordcount
FUNCTION wordcount RETURNS BINARY_INTEGER
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 STR VARCHAR2 IN

DESCRIBE also works on tables, views, object types, procedures, and packages. To see
the complete source code of your stored programs, query USER_SOURCE or
TRIGGER_SOURCE. (Querying from these data dictionary views is discussed in fur-
ther detail in Chapter 20.)

42 | Chapter 2: Creating and Running PL/SQL Code

Download at WoweBook.Com

Managing Grants and Synonyms for Stored Programs
When you first create a PL/SQL program, normally no one but you or the DBA can
execute it. To give another user the authority to execute your program, issue a GRANT
statement:

GRANT EXECUTE ON wordcount TO scott;

To remove the privilege, use REVOKE:

REVOKE EXECUTE ON wordcount FROM scott;

You could also grant the EXECUTE privilege to a role:

GRANT EXECUTE ON wordcount TO all_mis;

Or, if appropriate, you could allow any user on the current database to run the program:

GRANT EXECUTE ON wordcount TO PUBLIC;

If you grant a privilege to an individual like Scott, and to a role of which the user is a
member, and also grant it to PUBLIC, the database remembers all three grants until
they are revoked. Any one of the grants is sufficient to permit the individual to run
the program, so if you ever decide you don’t want Scott to run it, you must revoke
the privilege from Scott, and revoke it from PUBLIC, and finally revoke it from the
all_mis role (or revoke that role from Scott).

To view a list of privileges you have granted to other users and roles, you can query the
USER_TAB_PRIVS_MADE data dictionary view. Somewhat counterintuitively,
PL/SQL program names appear in the table_name column:

SQL> SELECT table_name, grantee, privilege
 2 FROM USER_TAB_PRIVS_MADE
 3 WHERE table_name = 'WORDCOUNT';

TABLE_NAME GRANTEE PRIVILEGE
------------------------------ ------------------------------ -----------
WORDCOUNT PUBLIC EXECUTE
WORDCOUNT SCOTT EXECUTE
WORDCOUNT MIS_ALL EXECUTE

When Scott does have the EXECUTE privilege on wordcount, he will probably want
to create a synonym for the program to avoid having to prefix it with the name of the
schema that owns it:

SQL> CONNECT scott/tiger
Connected.
SQL> CREATE OR REPLACE SYNONYM wordcount FOR bob.wordcount;

Now he can execute the program in his programs by referring only to the synonym:

IF wordcount(localvariable) > 100 THEN...

This is a good thing, because if the owner of the function changes, only the synonym
(and not any stored program) needs modification.

Performing Essential PL/SQL Tasks | 43

Download at WoweBook.Com

It’s possible to create a synonym for a procedure, function, package, or user-defined
type. Synonyms for procedures, functions, or packages can hide not only the schema
but also the actual database; you can create a synonym for remote programs as easily
as local programs. However, synonyms can only hide schema and database identifiers;
you cannot use a synonym in place of a packaged subprogram.

Removing a synonym is easy:

DROP SYNONYM wordcount;

Dropping a Stored Program
If you really, truly don’t need a particular stored program any more, you can drop it
using SQL’s DROP statement:

DROP FUNCTION wordcount;

You can drop a package, which can be composed of up to two elements (a specification
and body), in its entirety:

DROP PACKAGE pkgname;

Or you can drop only the body without invalidating the corresponding specification:

DROP PACKAGE BODY pkgname;

Any time you drop a program that other programs call, the callers will be marked
INVALID.

Hiding the Source Code of a Stored Program
When you create a PL/SQL program as described above, the source code will be avail-
able in clear text in the data dictionary, and any DBA can view or even alter it. To
protect trade secrets or to prevent tampering with your code, you might want some
way to obfuscate your PL/SQL source code before delivering it.

Oracle provides a command-line utility called wrap that converts many CREATE state-
ments into a combination of plain text and hex. It’s not true encryption, but it does go
a long way toward hiding your code. Here are a few extracts from a wrapped file:

FUNCTION wordcount wrapped
0
abcd
abcd
...snip...
1WORDS:
10:
1LEN:
1NVL:
1LENGTH:
1INSIDE_A_WORD:
1BOOLEAN:
...snip...

44 | Chapter 2: Creating and Running PL/SQL Code

Download at WoweBook.Com

a5 b 81 b0 a3 a0 1c 81
b0 91 51 a0 7e 51 a0 b4
2e 63 37 :4 a0 51 a5 b a5
b 7e 51 b4 2e :2 a0 7e b4
2e 52 10 :3 a0 7e 51 b4 2e
d :2 a0 d b7 19 3c b7 :2 a0
d b7 :2 19 3c b7 a0 47 :2 a0

If you need true encryption—for example, to deliver information such as a password
that really needs to be secure—you should not rely on this facility.‡

To learn more about the wrap utility, see Chapter 20.

Editing Environments for PL/SQL
As I mentioned earlier. you can use a “lowest common denominator” editing and ex-
ecution environment like SQL*Plus or you can use a integrated development environ-
ment that offers extensive graphical interfaces to improve your productivity. This sec-
tion lists some of the most popular of the IDE tools. I do not recommend any particular
tool; you should carefully define the list of requirements and priorities you have for
such a tool and then see which of them best meets your needs.

Product Description

Toad Offered by Quest Software, Toad is far and away the most popular PL/SQL IDE. It is used by
hundreds of thousands of developers, in both its free and commercial versions. For more infor-
mation, see http://www.quest.com/toad-for-oracle/.

SQL Navigator Also offered by Quest Software, SQL Navigator is also used by tens of thousands of developers
who love the product’s interface and productivity features. For more information, see http://
www.quest.com/sql-navigator/.

PL/SQL Developer This product is sold by Allround Automations, and is a favorite of many PL/SQL developers. It is
built around a plug-in architecture, so third parties can offer extensions to the base product. For
more information, see http://www.allroundautomations.com/plsqldev.html.

SQL Developer After years of little or no support for PL/SQL editing, Oracle Corporation created SQL Developer
as a “fork” of the foundation JDeveloper tool. SQL Developer is free and increasingly robust. For
more information, see http://www.oracle.com/technology/software/products/sql/index.html.

There are many other PL/SQL IDEs out there, but those listed above certainly offer
choices from the best and most popular of these tools.

‡ Oracle does provide a way of incorporating true encryption into your own applications using the built-in
package DBMS_CRYPTO (or DBMS_OBFUSCATION_TOOLKIT) in releases before Oracle Database
10g; see Chapter 23 for information on DBMS_CRYPTO.

Editing Environments for PL/SQL | 45

Download at WoweBook.Com

http://www.quest.com/toad-for-oracle/
http://www.quest.com/sql-navigator/
http://www.quest.com/sql-navigator/
http://www.allroundautomations.com/plsqldev.html
http://www.oracle.com/technology/software/products/sql/index.html

Calling PL/SQL from Other Languages
Sooner or later, you will probably want to call PL/SQL from C, Java, Perl, PHP, or any
number of other places. This seems like a reasonable request, but if you’ve ever done
cross-language work before, you may be all too familiar with some of the intricacies of
mating up language-specific datatypes—especially composite datatypes like arrays,
records, and objects—not to mention differing parameter semantics or vendor exten-
sions to “standard” application programming interfaces (APIs) like Microsoft’s Open
Database Connectivity (ODBC).

I will show a few very brief examples of calling PL/SQL from the outside world. Let’s
say that I’ve written a PL/SQL function that accepts an ISBN expressed as a string and
returns the corresponding book title:

/* File on web: booktitle.fun */
FUNCTION booktitle (isbn_in IN VARCHAR2)
 RETURN VARCHAR2
IS
 l_title books.title%TYPE;
 CURSOR icur IS SELECT title FROM books WHERE isbn = isbn_in;
BEGIN
 OPEN icur;
 FETCH icur INTO l_title;
 CLOSE icur;
 RETURN l_title;
END;

In SQL*Plus, I could call this in several different ways. The shortest way would be as
follows:

SQL> EXEC DBMS_OUTPUT.PUT_LINE(booktitle('0-596-00180-0'))
Learning Oracle PL/SQL

PL/SQL procedure successfully completed.

Let’s see how I might call this function from the following environments:

• C, using Oracle’s precompiler (Pro*C)

• Java, using JDBC

• Perl, using Perl DBI and DBD::Oracle

• PHP

• PL/SQL Server Pages

These examples are very contrived—for example, the username and password are
hardcoded, and the programs simply display the output to stdout. Moreover, I’m not
even going to pretend to describe every line of code. Still, these examples will give you
an idea of some of the patterns you may encounter in different languages.

46 | Chapter 2: Creating and Running PL/SQL Code

Download at WoweBook.Com

C: Using Oracle’s Precompiler (Pro*C)
Oracle supplies at least two different C-language interfaces to Oracle: one called OCI
(Oracle Call Interface), which is largely the domain of rocket scientists, and the other
called Pro*C. OCI provides hundreds of functions from which you must code low-level
operations such as open, parse, bind, define, execute, fetch…and that’s just for a single
query. Because the simplest OCI program that does anything interesting is about 200
lines long, I thought I’d show a Pro*C example instead. Pro*C is a precompiler tech-
nology that allows you to construct source files containing a mix of C, SQL, and
PL/SQL. You run the following through Oracle’s proc program, and out will come C
code.

/* File on web: callbooktitle.pc */
#include <stdio.h>
#include <string.h>

EXEC SQL BEGIN DECLARE SECTION;
 VARCHAR uid[20];
 VARCHAR pwd[20];
 VARCHAR isbn[15];
 VARCHAR btitle[400];
EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE SQLCA.H;

int sqlerror();

int main()
{
 /* VARCHARs actually become a struct of a char array and a length */

 strcpy((char *)uid.arr,"scott");
 uid.len = (short) strlen((char *)uid.arr);
 strcpy((char *)pwd.arr,"tiger");
 pwd.len = (short) strlen((char *)pwd.arr);

 /* this is a cross between an exception and a goto */
 EXEC SQL WHENEVER SQLERROR DO sqlerror();

 /* connect and then execute the function */
 EXEC SQL CONNECT :uid IDENTIFIED BY :pwd;
 EXEC SQL EXECUTE
 BEGIN
 :btitle := booktitle('0-596-00180-0');
 END;
 END-EXEC;

 /* show me the money */
 printf("%s\n", btitle.arr);

 /* Disconnect from ORACLE. */
 EXEC SQL COMMIT WORK RELEASE;
 exit(0);

Calling PL/SQL from Other Languages | 47

Download at WoweBook.Com

}

sqlerror()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("\n% .70s \n", sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

As you can see, Pro*C is not an approach for which language purists will be pining
away. And trust me, you don’t want to mess with the C code that this generates.
Nevertheless, many companies find that Pro*C (or Pro*Cobol or any of several other
languages Oracle supports) serves a reasonable middle ground between, say, Visual
Basic (too slow and clunky) and OCI (too hard).

Oracle’s own documentation offers the best source of information regarding Pro*C.

Java: Using JDBC
As with C, Oracle provides a number of different approaches to connecting to the
database. The embedded SQL approach, known as SQLJ, is similar to Oracle’s other
precompiler technology, although a bit more debugger-friendly. A more popular and
Java-centric approach is known as JDBC, which doesn’t really stand for anything, but
the usual interpretation is “Java Database Connectivity.”

/* File on web: Book.java */
import java.sql.*;

public class Book
{
 public static void main(String[] args) throws SQLException
 {
 // initialize the driver and try to make a connection

 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver ());
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:o92",
 "scott", "tiger");

 // prepareCall uses ANSI92 "call" syntax
 CallableStatement cstmt = conn.prepareCall("{? = call booktitle(?)}");

 // get those bind variables and parameters set up
 cstmt.registerOutParameter(1, Types.VARCHAR);
 cstmt.setString(2, "0-596-00180-0");

 // now we can do it, get it, close it, and print it
 cstmt.executeUpdate();
 String bookTitle = cstmt.getString(1);
 conn.close();
 System.out.println(bookTitle);

48 | Chapter 2: Creating and Running PL/SQL Code

Download at WoweBook.Com

 }
}

This particular example uses the thin driver, which provides great compatibility and
ease of installation (all the network protocol smarts exists in a Java library), at some
expense of communications performance. An alternative approach would be to use
what’s known as the OCI driver. Don’t worry: there’s no rocket scientist programming
required to use it, despite the name!

Perl: Using Perl DBI and DBD::Oracle
Much beloved by the system administration community, Perl is something of the
mother of all open source languages. Now in Version 5.10, it does just about everything
and seems to run everywhere. And, with nifty auto-configuration tools such as CPAN
(Comprehensive Perl Archive Network), it’s a cinch to install community-supplied
modules such as the DataBase Interface (DBI) and the corresponding Oracle driver,
DBD::Oracle.

/* File on web: callbooktitle.pl */
#!/usr/bin/perl

use strict;
use DBI qw(:sql_types);

either make the connection or die
my $dbh = DBI->connect(
 'dbi:Oracle:o92',
 'scott',
 'tiger',
 {
 RaiseError => 1,
 AutoCommit => 0
 }
) || die "Database connection not made: $DBI::errstr";

my $retval;

make parse call to Oracle, get statement handle
eval {
 my $func = $dbh->prepare(q{
 BEGIN
 :retval := booktitle(isbn_in => :bind1);
 END;
 });

bind the parameters and execute
 $func->bind_param(":bind1", "0-596-00180-0");
 $func->bind_param_inout(":retval", \$retval, SQL_VARCHAR);
 $func->execute;

};

Calling PL/SQL from Other Languages | 49

Download at WoweBook.Com

if($@) {
 warn "Execution of stored procedure failed: $DBI::errstr\n";
 $dbh->rollback;
} else {
 print "Stored procedure returned: $retval\n";
}

don't forget to disconnect
$dbh->disconnect;

Perl is one of those languages in which it is shamelessly easy to write code that is im-
possible to read. It’s not a particularly fast or small language, either, but there are
compiled versions that at least address the speed problem.

For more information about Perl and Oracle, see Programming the Perl DBI by Alligator
Descartes (O’Reilly). There are also many excellent books on the Perl language, not to
mention the online information at http://www.perl.com (an O’Reilly site), http://www
.perl.org, and http://www.cpan.org.

PHP: Using Oracle Extensions
If you are the kind of person who might use the free and wildly popular web server
known as Apache, you might also enjoy using the free and wildly popular programming
language known as PHP. Commonly employed to build dynamic web pages, PHP can
also be used to build GUI applications or to run command-line programs. As you might
expect, Oracle is one of many database environments that work with PHP; Oracle
Corporation has, in fact, partnered with Zend, in order to provide a “blessed” distri-
bution of the Oracle database with PHP.§

This example uses the family of PHP functions known as OCI8. Don’t let the “8” in
the name fool you; it should work with everything from Oracle7 to Oracle Database
11g.

/* File on web: callbooktitle.php */
<?PHP
 // Initiate the connection to the o92 database
 $conn = OCILogon ("scott", "tiger", "o92");

 // Make parse call to Oracle, get statement identity
 $stmt = OCIParse($conn,
 "begin :res := booktitle('0-596-00180-0'); end;");

 // Show any errors
 if (!$stmt) {
 $err = OCIError();
 echo "Oops, you broke it: ".$err["message"];
 exit;
 }

§ Note that if you want support for PHP, you will need to get it from the user community or from a firm like
Zend. Oracle Corporation does not take support calls for PHP.

50 | Chapter 2: Creating and Running PL/SQL Code

Download at WoweBook.Com

http://www.perl.com
http://www.perl.org
http://www.perl.org
http://www.cpan.org

 // Bind 200 characters of the variable $result to placeholder :res
 OCIBindByName($stmt, "res", &$result, 200);

 // Execute
 OCIExecute($stmt);

 // Stuff the value into the variable
 OCIResult($stmt,$result);

 // Display on stdout
 echo "$result\n";

 // Relax
 OCILogoff($conn);
?>

When executed at the command line, it looks something like this:

$ php callbooktitle.php
Learning Oracle PL/SQL

By the way, these Oracle OCI functions are not available in PHP by default, but it
shouldn’t be too difficult for your system administrator to rebuild PHP with the Oracle
extensions.

You can find more information about PHP at http://www.php.net or in one of O’Reilly’s
many books on the subject. For PHP tips specific to Oracle, visit the Oracle Technology
Network web site at http://otn.oracle.com.

PL/SQL Server Pages
Although the PL/SQL Server Pages (PSP) environment is proprietary to Oracle, I
thought I would mention it because it’s a quick way to get a web page up and running.
PSP is another precompiler technology; it lets you embed PL/SQL into HTML pages.

/* File on web: favorite_plsql_book.psp */
<%@ page language="PL/SQL" %>
<%@ plsql procedure="favorite_plsql_book" %>
<HTML>
 <HEAD>
 <TITLE>My favorite book about PL/SQL</TITLE>
 </HEAD>
 <BODY>
 <%= booktitle('0-596-00180-0') %>
 </BODY>
</HTML>

That <%= %> construct means “process this as PL/SQL and return the result to the page.”
When properly installed on a web server connected to an Oracle database, this page
displays as in Figure 2-3.

I’m rather fond of PL/SQL Server Pages as a good way to put together data-driven web
sites fairly quickly.

Calling PL/SQL from Other Languages | 51

Download at WoweBook.Com

http://www.php.net
http://otn.oracle.com

For more information about PL/SQL Server Pages, see Learning Oracle PL/SQL
(O’Reilly) by the authors of the book you’re reading now.

And Where Else?
You’ve seen how to use PL/SQL in SQL*Plus and in a number of other common envi-
ronments and programming languages. There are still more places and ways that you
can use PL/SQL:

• Embedded in COBOL or FORTRAN and processed with Oracle’s precompiler.

• Called from Visual Basic, using some flavor of ODBC.

• Called from the Ada programming language, via a technology called SQL*Module.

• Executed automatically, as triggers on events in the Oracle database such as table
updates.

• Scheduled to execute on a recurring basis inside the Oracle database, via the
DBMS_SCHEDULER supplied package.

• The TimesTen database: an in-memory database acquired by Oracle Corporation,
its contents can now be manipulated with PL/SQL code, just like the relational
database.

I am not able, (un)fortunately, to address all these topics in this book.

Figure 2-3. Output from a PL/SQL Server Page

52 | Chapter 2: Creating and Running PL/SQL Code

Download at WoweBook.Com

CHAPTER 3

Language Fundamentals

Every language—whether human or computer—has a syntax, a vocabulary, and a
character set. In order to communicate within that language, you have to learn the rules
that govern its usage. Many of us are wary of learning a new computer language. Change
is often scary, but in general, programming languages are very simple tongues, and
PL/SQL is a relatively simple programming language. The difficulty of conversing in
languages based on bytes is not with the language itself, but with the compiler or com-
puter with which we are having the discussion. Compilers are, for the most part, rather
dull-witted. They are not creative, sentient beings. They are not capable of original
thought. Their vocabulary is severely limited. Compilers just happen to think their dull
thoughts very, very rapidly—and very inflexibly.

If I hear someone ask “gottabuck?,” I can readily interpret that sentence and decide
how to respond. On the other hand, if I instruct PL/SQL to “gimme the next half-dozen
records,” I will not get very far in my application. To use the PL/SQL language, you
must dot your i’s and cross your t’s—syntactically speaking. So, this chapter covers the
fundamental language rules that will help you converse with the PL/SQL compiler—
the PL/SQL block structure, character set, lexical units, and PRAGMA keyword.

PL/SQL Block Structure
In PL/SQL, as in most other procedural languages, the smallest meaningful grouping
of code is known as a block. A block is a unit of code that provides execution and
scoping boundaries for variable declarations and exception handling. PL/SQL allows
you to create anonymous blocks (blocks of code that have no name) and named
blocks, which may be packages, procedures, functions, triggers, or object types.

A PL/SQL block has up to four different sections, only one of which is mandatory:

Header
Used only for named blocks. The header determines the way the named block or
program must be called. Optional.

53

Download at WoweBook.Com

Declaration section
Identifies variables, cursors, and subblocks that are referenced in the execution and
exception sections. Optional.

Execution section
Statements the PL/SQL runtime engine will execute at runtime. Mandatory.

Exception section
Handles exceptions to normal processing (warnings and error conditions).
Optional.

Figure 3-1 shows the structure of the PL/SQL block for a procedure.

Figure 3-1. The PL/SQL block structure

Figure 3-2 shows a procedure containing all four sections of the elements of a block.
This particular block begins with the keyword PROCEDURE, and, like all blocks, ends
with the keyword END.

Anonymous Blocks
When someone wishes to remain anonymous, that person goes unnamed. Same with
the anonymous block in PL/SQL, which is shown in Figure 3-3: it lacks a header section
altogether, beginning instead with either DECLARE or BEGIN. That means that it
cannot be called by any other block—it doesn’t have a handle for reference. Instead,
anonymous blocks serve as containers that execute PL/SQL statements, usually in-
cluding calls to procedures and functions. Because an anonymous block can have its
own declaration and exception sections, developers often nest anonymous blocks to
provide a scope for identifiers and exception handling within a larger program.

54 | Chapter 3: Language Fundamentals

Download at WoweBook.Com

The general syntax of an anonymous PL/SQL block is as follows:

[DECLARE ... declaration statements ...]
BEGIN ... one or more executable statements ...
[EXCEPTION
 ... exception handler statements ...]
END;

The square brackets indicate an optional part of the syntax. You must have BEGIN and
END statements, and you must have at least one executable statement. Here are a few
examples:

• A bare minimum anonymous block:

BEGIN
 DBMS_OUTPUT.PUT_LINE(SYSDATE);
END;

• A functionally similar block, adding a declaration section:

DECLARE
 l_right_now VARCHAR2(9);
BEGIN
 l_right_now := SYSDATE;

Figure 3-2. A procedure containing all four sections

Figure 3-3. An anonymous block without declaration and exception sections

PL/SQL Block Structure | 55

Download at WoweBook.Com

 DBMS_OUTPUT.PUT_LINE (l_right_now);
END;

• The same block, but including an exception handler:

DECLARE
 l_right_now VARCHAR2(9);
BEGIN
 l_right_now := SYSDATE;
 DBMS_OUTPUT.PUT_LINE (l_right_now);
EXCEPTION
 WHEN VALUE_ERROR
 THEN
 DBMS_OUTPUT.PUT_LINE('I bet l_right_now is too small '
 || 'for the default date format!');
END;

Anonymous blocks execute a series of statements and then terminate, thus acting like
procedures. In fact, all anonymous blocks are anonymous procedures. They are used
in various environments where PL/SQL code is either executed directly or enclosed in
some program in that environment. Common examples include:

Database triggers
As discussed in Chapter 19, database triggers execute anonymous blocks when
certain events occur.

Ad hoc commands or script files
In SQL*Plus or similar execution environments, anonymous blocks run from hand-
entered blocks or from scripts that call stored programs. Also, the SQL*Plus EX-
ECUTE command translates its argument into an anonymous block by enclosing
it between BEGIN and END statements.

Compiled 3GL program
In Pro*C or OCI, anonymous blocks can be the means by which you can embed
calls to stored programs.

In each case, the enclosing object—whether it’s a trigger, a command-line environment,
or a compiled program—provides the context and possibly a means of naming the
program.

Named Blocks
While anonymous PL/SQL blocks are indispensable, the majority of code you write
will be in named blocks. You’ve seen a few short examples of stored procedures in this
book already (as in Figure 3-1), so you probably know that the difference is in the
header. A procedure header looks like this:

PROCEDURE [schema.]name [(parameter [, parameter ...])]
 [AUTHID {DEFINER | CURRENT_USER}]

A function header has similar syntax, but includes the RETURN keyword:

56 | Chapter 3: Language Fundamentals

Download at WoweBook.Com

FUNCTION [schema.]name [(parameter [, parameter ...])]
 RETURN return_datatype
 [AUTHID {DEFINER | CURRENT_USER}]
 [DETERMINISTIC]
 [PARALLEL ENABLE ...]
 [PIPELINED [USING...] | AGGREGATE USING...]

Because Oracle allows you to invoke some functions from within SQL statements, the
function header includes more optional components than the procedure header, cor-
responding to the functionality and performance dimensions of the SQL runtime
environment.

For a more complete discussion of procedures and functions, see Chapter 17.

Nested Blocks
PL/SQL shares with Ada and Pascal the additional definition of being a block-structured
language, that is, blocks may “nest” within other blocks. In contrast, the C language
has blocks, but standard C isn’t strictly block-structured, because its subprograms
cannot be nested.

Here’s a PL/SQL example showing a procedure containing an anonymous, nested
block:

PROCEDURE calc_totals
IS
 year_total NUMBER;
BEGIN
 year_total := 0;

 /* Beginning of nested block */
 DECLARE
 month_total NUMBER;
 BEGIN
 month_total := year_total / 12;
 END set_month_total;
 /* End of nested block */

END;

The /* and */ delimiters indicate comments (see “Comments” on page 75). You can
nest anonymous blocks within anonymous blocks to more than one level, as shown in
Figure 3-4.

Other terms you may hear for nested block are enclosed block, child block, or sub-
block; the outer PL/SQL block may be called the enclosing block or the parent block.

In general, the advantage of nesting a block is that it gives you a way to control both
scope and visibility in your code.

PL/SQL Block Structure | 57

Download at WoweBook.Com

Scope
In any programming language, the term scope refers to the way of identifying which
“thing” is referred to by a given identifier. If you have more than one occurrence of an
identifier, the language’s scoping rules define which one will be used. Carefully con-
trolling identifier scope not only will increase your control over runtime behavior but
also will reduce the likelihood of a programmer accidentally modifying the wrong
variable.

In PL/SQL, variables, exceptions, modules, and a few other structures are local to the
block that declares them. When the block stops executing, you can no longer reference
any of these structures. For example, in the earlier calc_totals procedure, I can reference
elements from the outer block, like the year_total variable, anywhere in the procedure;
however, elements declared within an inner block are not available to the outer block.

Every PL/SQL variable has a scope: the region of a program unit (block, subprogram,
or package) in which that variable can be referenced. Consider the following package
definition:

PACKAGE scope_demo
IS
 g_global NUMBER;

 PROCEDURE set_global (number_in IN NUMBER);
END scope_demo;

PACKAGE BODY scope_demo
IS
 PROCEDURE set_global (number_in IN NUMBER)
 IS
 l_salary NUMBER := 10000;
 l_count PLS_INTEGER;
 BEGIN

Figure 3-4. Anonymous blocks nested three levels deep

58 | Chapter 3: Language Fundamentals

Download at WoweBook.Com

 <<local_block>>
 DECLARE
 l_inner NUMBER;
 BEGIN
 SELECT COUNT (*)
 INTO l_count
 FROM employees
 WHERE department_id = l_inner AND salary > l_salary;
 END local_block;

 g_global := number_in;
 END set_global;
END scope_demo;

The scope_demo.g_global variable can be referenced from any block in any schema
that has EXECUTE authority on scope_demo.

The l_salary variable can be referenced only inside the set_global procedure.

The l_inner variable can be referenced only inside the local or nested block; note that
I have used the label “local_block” to give a name to that nested block.

Qualify all References to Variables and Columns in SQL Statements
None of the variables or column references in the last code example were qualified with
the scope name. Here is another version of the same package body, but this time with
qualified references (bold):

PACKAGE BODY scope_demo
IS
 PROCEDURE set_global (number_in IN NUMBER)
 IS
 l_salary NUMBER := 10000;
 l_count PLS_INTEGER;
 BEGIN

 <<local_block>>
 DECLARE
 l_inner PLS_INTEGER;
 BEGIN
 SELECT COUNT (*)
 INTO set_global.l_count
 FROM employees e
 WHERE e.department_id = local_block.l_inner
 AND e.salary > set_global.l_salary;
 END local_block;

 scope_demo.g_global := set_global.number_in;
 END set_global;
END scope_demo;

With these changes, every single reference to a column and variable is qualified by the
table alias, the package name, the procedure name, or the nested block label name.

PL/SQL Block Structure | 59

Download at WoweBook.Com

So now you know that you can do this—and why bother? There are several very good
reasons:

• Improve readability of your code.

• Avoid bugs that can arise when the names of variables are the same as the names
of columns.

• Take full advantage of Oracle Database 11g’s fine-grained dependency feature,
which is explained in Chapter 20.

Let’s take a closer look at the first two of these reasons. I'll describe the third in Chap-
ter 20.

Improve readability

Just about every SQL statement embedded in PL/SQL programs contains references to
both columns and variables. In small, simple SQL statements, it is relatively easy to
distinguish between these different references. In most applications, however, you will
find very long, extremely complex SQL statements that contain dozens or even hun-
dreds of references to columns and variables.

If you do not qualify these references, it is much harder to distinguish at a glance be-
tween variables and columns. With these qualifiers, the code self-documents quite
clearly the source of those references.

“Wait a minute,” I can hear my readers say. “We use clearly defined naming conven-
tions to distinguish between columns and variables. All our local variables start with
‘l_’ so we know immediately if the identifier is a local variable.”

That is a really good idea; we should all have (and follow) established conventions so
that the names of our identifiers reveal additional information about them (Is it a pa-
rameter or a variable? What is its datatype? etc.).

Yet while helpful, naming conventions are not sufficient to guarantee that over time
your identifiers will always be interpreted by the PL/SQL compiler as you intended.

Avoid bugs through qualifiers

If you do not qualify references to all PL/SQL variables in your embedded SQL state-
ments, code that works correctly today might in the future suddenly not work anymore.
And it could be very difficult to figure out what went wrong.

Consider again this embedded SQL statement that does not qualify its references:

SELECT COUNT (*)
 INTO l_count
 FROM employees
 WHERE department_id = l_inner AND salary > l_salary;

60 | Chapter 3: Language Fundamentals

Download at WoweBook.Com

Today, l_salary unambiguously refers to the l_salary variable declared in the set_global
procedure. I test my program—it works! And then it goes into production and everyone
is happy.

Two years go by, and then the users ask our DBA to add a column to the employees
table to record something described as “limited salary”. The DBA decides to name this
column “l_salary”.

Can you see the problem?

Within an embedded SQL statement, the Oracle database always attempts to resolve
unqualified identifier references first as columns in one of the specified tables. If it
cannot find a match, it then tries to resolve the reference as an in-scope PL/SQL variable.
With the column, l_salary, added to the employees table, my unqualified reference to
“l_salary” in the SELECT statement is no longer resolved to the PL/SQL variable. In-
stead, the database resolves it as the column in the table. The consequence?

My scope_demo package still compiles without any errors, but the WHERE clause of
that query is not going to behave as I expect. The database will not use the value of the
l_salary variable, but will instead compare the salary column’s value in a row of the
employees table to the value of the l_salary column in that same row.

This could be a very tricky bug to track down and fix!

Rather than rely solely on naming conventions to avoid “collisions” between identifiers,
you should also qualify references to all column names and variables in those embedded
SQL statements. Then your code will be much less likely to behave erratically in the
future as your underlying tables evolve.

Visibility
Once a variable is in scope, another important property is its visibility—that is, whether
you can refer to it using only its name, or whether you need to attach a prefix in front
of it.

“Visible” identifiers

First, I’d like to make an observation about the trivial case:

DECLARE
 first_day DATE;
 last_day DATE;
BEGIN
 first_day := SYSDATE;
 last_day := ADD_MONTHS (first_day, 6);
END;

Because both the first_day and last_day variables are declared in the same block where
they are used, I can conveniently refer to them using only their “unqualified” identifiers,

PL/SQL Block Structure | 61

Download at WoweBook.Com

which are also known as visible identifiers. A visible identifier might actually reference
any of the following:

• An identifier declared in the current block.

• An identifier declared in a block that encloses the current block.

• A standalone database object (table, view, sequence, etc.) or PL/SQL object (pro-
cedure, function, type) that you own.

• A standalone database object or PL/SQL object on which you have appropriate
privilege and that is the target of an Oracle synonym that you can see.

• A loop index variable (but it’s visible and in-scope only inside the loop body).

PL/SQL also allows the possibility of referring to in-scope items that are not directly
visible, as the next section describes.

Qualified identifiers

A common example of an identifier that isn’t visible is anything declared in a package
specification, such as a variable, datatype, procedure, or function. To refer to one of
these elements outside of that package, you merely need to prefix it with a dotted
qualifier, similar to the way you would qualify a column name with the name of its
table. For example:

price_util.compute_means
A program named compute_means inside the price_util package

math.pi
A constant named pi, declared and initialized in the math package

(Although the descriptions indicate what kinds of globals these are, you can’t neces-
sarily tell by looking—definitely an argument in favor of good naming conventions!)

You can use an additional qualifier to indicate the owner of the object. For example:

scott.price_util.compute_means

could refer to the compute_means procedure in the price_util package owned by the
Oracle user account scott.

Qualifying identifier names with module names

When necessary, PL/SQL offers many ways to qualify an identifier so that a reference
to the identifier can be resolved. Using packages, for example, you can create variables
with global scope. Suppose that I create a package called company_pkg and declare a
variable named last_company_id in that package’s specification, as follows:

PACKAGE company_pkg
IS
 last_company_id NUMBER;
 ...
END company_pkg;

62 | Chapter 3: Language Fundamentals

Download at WoweBook.Com

Then, I can reference that variable outside of the package, as long as I prefix the iden-
tifier name with the package name:

IF new_company_id = company_pkg.last_company_id THEN

By default, a value assigned to one of these package-level variables persists for the
duration of the current database session; it doesn’t go out of scope until the session
disconnects.

I can also qualify the name of an identifier with the module in which it is defined:

PROCEDURE calc_totals
IS
 salary NUMBER;
BEGIN
 ...
 DECLARE
 salary NUMBER;
 BEGIN
 salary := calc_totals.salary;
 END;
 ...
END;

The first declaration of salary creates an identifier whose scope is the entire procedure.
In the nested block, however, I declare another identifier with the same name. So when
I reference the variable “salary” inside the inner block, it will always be resolved first
against the declaration in the inner block, where that variable is visible without any
qualification. If I wish to make reference to the procedure-wide salary variable inside
the inner block, I must qualify that variable name with the name of the procedure
(cal_totals.salary).

This technique of qualifying an identifier also works in other contexts. Consider what
will happen when you run a procedure such as this (order_id is the primary key of the
orders table):

PROCEDURE remove_order (order_id IN NUMBER)
IS
BEGIN
 DELETE orders WHERE order_id = order_id; -- Oops!
END;

This code will delete everything in the orders table regardless of the order_id that you
pass in. The reason: SQL’s name resolution matches first on column names rather than
on PL/SQL identifiers. The WHERE clause “order_id = order_id” is always true, so
poof goes your data. One way to fix it would be:

PROCEDURE remove_order (order_id IN NUMBER)
IS
BEGIN
 DELETE orders WHERE order_id = remove_order.order_id;
END;

PL/SQL Block Structure | 63

Download at WoweBook.Com

This forces the parser to do the right thing. (It will even work if you happen to have a
packaged function called remove_order.order_id.)

PL/SQL goes to a lot of trouble and has established many rules for determining how
to resolve such naming conflicts. While it is good to be aware of such issues, you are
usually much better off never having to rely on these guidelines. Code defensively! If
you don’t want to qualify every variable to keep it unique, you will need to use careful
naming conventions to avoid these kinds of name collisions.

Nested programs

To conclude the discussion of nesting, scope, and visibility, PL/SQL also offers a par-
ticularly important feature known as a nested program. A nested program is a procedure
or function that appears completely inside the declaration section of the enclosing block.
Significantly, the nested program can reference any variables and parameters previously
declared in the outer block, as demonstrated in this example:

PROCEDURE calc_totals (fudge_factor_in IN NUMBER)
IS
 subtotal NUMBER := 0;

 /* Beginning of nested block (in this case a procedure). Notice
 | we're completely inside the declaration section of calc_totals.
 */
 PROCEDURE compute_running_total (increment_in IN PLS_INTEGER)
 IS
 BEGIN
 /* subtotal, declared above, is both in scope and visible */
 subtotal := subtotal + increment_in * fudge_factor_in;
 END;
 /* End of nested block */
BEGIN
 FOR month_idx IN 1..12
 LOOP
 compute_running_total (month_idx);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Fudged total for year: ' || subtotal);
END;

Nested programs can make your program more readable and maintainable, and also
allow you to reuse logic that appears in multiple places in the block. For more infor-
mation about this topic, see Chapter 17.

The PL/SQL Character Set
A PL/SQL program consists of a sequence of statements, each made up of one or more
lines of text. The precise characters available to you will depend on what database
character set you’re using. For example, Table 3-1 illustrates the available characters
in the US7ASCII character set.

64 | Chapter 3: Language Fundamentals

Download at WoweBook.Com

Table 3-1. Characters available to PL/SQL in the US7ASCII character set

Type Characters

Letters A–Z, a–z

Digits 0–9

Symbols ~ ! @ # $ % * () _ – + = | : ; " ' < > , . ? / ^

Whitespace Tab, space, newline, carriage return

Every keyword, operator, and token in PL/SQL is made from various combinations of
characters in this character set. Now you just have to figure out how to put them all
together!

And now for some real PL/SQL trivia: Oracle’s documentation—as well as earlier
editions of this book—list the ampersand, curly braces, and square brackets as part of
the default character set:

& { } []

While all characters are allowed in literal strings, Oracle does not seem to use these
particular five characters anywhere in the visible portions of PL/SQL. Moreover, there
is no direct way to use these characters in programmer-defined identifiers.

Regardless of your memory for such trivia, you’ll definitely want to remember that
PL/SQL is a case-insensitive language. That is, it doesn’t matter how you type keywords
and identifiers; uppercase letters are treated the same way as lowercase letters unless
surrounded by delimiters that make them a literal string. By convention, the authors
of this book prefer uppercase for built-in language keywords (and certain identifiers
used by Oracle as built-in function and package names), and lowercase for
programmer-defined identifiers.

A number of these characters—both singly and in combination with other characters—
have a special significance in PL/SQL. Table 3-2 lists these special symbols.

Table 3-2. Simple and compound symbols in PL/SQL

Symbol Description

; Semicolon: terminates declarations and statements

% Percent sign: attribute indicator (cursor attributes like %ISOPEN and indirect declaration attributes like
%ROWTYPE); also used as a wildcard symbol with the LIKE condition

_ Single underscore: single-character wildcard symbol in LIKE condition

@ At-sign: remote location indicator

: Colon: host variable indicator, such as :block.item in Oracle Forms

** Double asterisk: exponentiation operator

< > or != or ^=
or ~=

Ways to denote the “not equal” relational operator

|| Double vertical bar: concatenation operator

The PL/SQL Character Set | 65

Download at WoweBook.Com

Symbol Description

<< and >> Label delimiters

<= and >= Less than or equal, greater than or equal relational operators

:= Assignment operator

=> Association operator for positional notation

.. Double dot: range operator

-- Double dash: single-line comment indicator

/* and */ Beginning and ending multiline comment block delimiters

Characters are grouped together into lexical units, also called atomics of the language
because they are the smallest individual components. A lexical unit in PL/SQL is any
of the following:

• Identifier

• Literal

• Delimiter

• Comment

These are described in the following sections.

Identifiers
An identifier is a name for a PL/SQL object, including any of the following:

• Constant or variable

• Exception

• Cursor

• Program name: procedure, function, package, object type, trigger, etc.

• Reserved word

• Label

Default properties of PL/SQL identifiers are summarized below:

• Up to 30 characters in length

• Must start with a letter

• Can include $ (dollar sign), _ (underscore), and # (hash sign)

• Cannot contain any “whitespace” characters

66 | Chapter 3: Language Fundamentals

Download at WoweBook.Com

If the only difference between two identifiers is the case of one or more letters, PL/SQL
normally treats those two identifiers as the same.* For example, the following identifiers
are all considered by PL/SQL to be the same:

lots_of_$MONEY$
LOTS_of_$MONEY$
Lots_of_$Money$

The following strings are valid names of identifiers:

company_id#
primary_acct_responsibility
First_Name
FirstName
address_line1
S123456

The following identifiers are all illegal in PL/SQL:

1st_year -- Doesn't start with a letter
procedure-name -- Contains invalid character "-"
minimum_%_due -- Contains invalid character "%"
maximum_value_exploded_for_detail -- Too long
company ID -- Has embedded whitespace

Identifiers are the handles for objects in your program and one of your chief means of
communicating with other programmers. For this reason, many organizations adopt
naming conventions; if your project doesn’t require naming conventions, you will still
want to choose variable names carefully...even if you are the only person who will ever
see the code!

Although rarely done in practice, you can actually break some of these rules by sur-
rounding identifiers with double quotation marks. I don’t recommend programming
like this, but you may one day have to deal with some “clever” code such as:

SQL> DECLARE
 2 "pi" CONSTANT NUMBER := 3.141592654;
 3 "PI" CONSTANT NUMBER := 3.14159265358979323846;
 4 "2 pi" CONSTANT NUMBER := 2 * "pi";
 5 BEGIN
 6 DBMS_OUTPUT.PUT_LINE('pi: ' || "pi");
 7 DBMS_OUTPUT.PUT_LINE('PI: ' || pi);
 8 DBMS_OUTPUT.PUT_LINE('2 pi: ' || "2 pi");
 9 END;
 10 /

pi: 3.141592654
PI: 3.14159265358979323846
2 pi: 6.283185308

* The compiler accomplishes this internally by converting program text into uppercase during an early phase
of compilation.

Identifiers | 67

Download at WoweBook.Com

Notice that line 7 refers to pi without quotation marks. Because the compiler accom-
plishes its case-independence by defaulting identifiers and keywords to uppercase, the
variable that line 7 refers to is the one declared on line 3 as “PI”.

You may need to use the double-quote trick in SQL statements to refer to database
objects that exist with mixed-case names. I’ve seen this happen when a programmer
used Microsoft Access to create Oracle tables.

Reserved Words
Of course, you don’t get to (or have to) define all the identifiers in your programs. The
PL/SQL language recognizes certain identifiers (such as BEGIN, IF, and THEN) as
having special meaning.

PL/SQL provides two kinds of built-in identifiers:

• Reserved words

• Identifiers from the STANDARD package

In both cases you should not—and, in many cases, cannot—redefine the identifier for
your program’s own use.

Reserved words

The PL/SQL compiler reserves certain identifiers for its use only. In other words, you
cannot declare a variable with the name of that identifier. These are called reserved
words. For example, one very important reserved word is END, which terminates
blocks, IF statements, and loops. If you try to declare a variable named “end”:

DECLARE
 end VARCHAR2(10) := 'blip'; /* Will not work; "end" is reserved. */
BEGIN
 DBMS_OUTPUT.PUT_LINE (end);
END;
/

you will receive this error message from the compiler:

PLS-00103: Encountered the symbol "END" when expecting one of the following:...etc...

Identifiers from STANDARD package

In addition to avoiding identifiers that duplicate keywords, you should also avoid using
identifiers that, in effect, override names that Oracle Corporation has defined in a spe-
cial built-in package named STANDARD. STANDARD is one of two default packages
in PL/SQL; Oracle defines in this package many of the basic building blocks of the
PL/SQL language, including datatypes like PLS_INTEGER, exceptions like
DUP_VAL_ON_INDEX, and functions like UPPER, REPLACE, and TO_DATE.

68 | Chapter 3: Language Fundamentals

Download at WoweBook.Com

It may come as a surprise to many developers, but the identifiers defined in STANDARD
(and DBMS_STANDARD, the other default package) are not reserved words. You
can declare your own variables with the same name and your code will compile. You
will, however, create lots of confusion if you do this.

The STANDARD package is explored in detail in Chapter 24.

How to avoid using reserved words

Finding a valid name for your identifier should be the least of your problems, as there
are thousands and thousands of permutations of the legal characters. The question is:
how will you know if you inadvertently use a reserved word in your own program? First
of all, the compiler will let you know if you try to use a name for an identifier that is
actually reserved. If your curiosity compels you to investigate further, you could build
a query against the V$RESERVED_WORDS view, and then try to compile a dynami-
cally-constructed PL/SQL block that uses the reserved word as an identifier. I did pre-
cisely that; you will find the script in the reserved_words.sql file on the book’s web site.
The output from running this script is in reserved.txt

The results are very interesting. Here’s the overall summary:

Reserved Word Analysis Summary
Total count in V$RESERVED_WORDS = 1733
Total number of reserved words = 118
Total number of non-reserved words = 1615

In other words, the vast majority of words that Oracle includes in this view are not truly
reserved; that is, you can use them as the names of your own identifiers.

Generally, I recommend that you avoid using any words that Oracle Corporation uses
as part of its own technology. Better yet, use naming conventions that employ consis-
tent prefixes and suffixes, virtually guaranteeing that you will not encounter a true
PL/SQL reserved word.

Whitespace and Keywords
Identifiers must be separated by at least one space or by a delimiter, but you can format
your text by adding additional spaces, line breaks (newlines and/or carriage returns),
and tabs wherever you can put a space, without changing the meaning of your code.

The two statements shown here are therefore equivalent:

IF too_many_orders
THEN
 warn_user;
ELSIF no_orders_entered
THEN
 prompt_for_orders;
END IF;

IF too_many_orders THEN warn_user;

Identifiers | 69

Download at WoweBook.Com

ELSIF no_orders_entered THEN prompt_for_orders;
END IF;

You may not, however, place a space or carriage return or tab within a lexical unit, such
as the “not equals” symbol (!=). This statement results in a compile error:

IF max_salary ! = min_salary THEN -- yields PLS-00103 compile error

because the code contains a space between the ! and the =.

Literals
A literal is a value that is not represented by an identifier; it is simply a value. Here is a
smattering of literals you could see in a PL/SQL program:

Number
415, 21.6, 3.141592654f, 7D, NULL

String
'This is my sentence', '01-OCT-1986', q'!hello!', NULL

Time interval
INTERVAL '25-6' YEAR TO MONTH, INTERVAL '-18' MONTH, NULL

Boolean
TRUE, FALSE, NULL

The trailing “f” in number literal 3.14159f designates a 32-bit floating point number as
defined by the IEEE 754 standard, which Oracle partially supports beginning with
Oracle Database 10g Release 1. Similarly, 7D is the number 7 as represented in a 64-
bit float.

The string q'!hello!' bears some explanation. The ! is a user-defined delimiter, also
introduced in Oracle Database 10g; the leading q and the surrounding single quotes
tell the compiler that the ! is the delimiter, and the string represented is simply the word
hello.

The INTERVAL datatype allows you to manage amounts of time between dates or
timestamps. The first example above represents “25 years and 6 months after”; the
second represents “18 months before.”

Even though the database allows you to specify intervals using a literal format, you
cannot do so with DATE datatypes; notice that '01-OCT-1986' is listed as a string rather
than as an Oracle DATE. Yes, PL/SQL or SQL can implicitly convert '01-OCT-1986'
to and from Oracle’s internal date format,† but you will normally use built-in functions
to perform explicit conversions. For example:

TO_DATE('01-OCT-1986', 'DD-MON-YYYY')
TO_TIMESTAMP_TZ('01-OCT-1986 00:00:00 −6','DD-MON-YYYY HH24:MI:SS TZH')

† As long as the database or session has its NLS_DATE_FORMAT parameter set to DD-MON-YYYY.

70 | Chapter 3: Language Fundamentals

Download at WoweBook.Com

Both expressions return October 1, 1986, with zero hours, zero minutes, and zero
seconds; the first in the DATE datatype, and the second in the TIMESTAMP WITH
TIME ZONE datatype. The second expression also includes time zone information;
the −6 represents the number of hours’ difference from GMT (UCT).

Unlike identifiers, string literals in PL/SQL are case-sensitive. As you would probably
expect, the following two literals are different.

'Steven'
'steven'

So the following condition evaluates to FALSE:

IF 'Steven' = 'steven'

NULLs
The absence of a value is represented in the Oracle database by the keyword NULL.
As shown in the previous section, variables of almost all PL/SQL datatypes can exist
in a null state (the exception to this rule is any associative array type, instances of which
are never null). Although it can be challenging for a programmer to handle NULL
variables properly regardless of their datatype, strings that are null require special
consideration.

In Oracle SQL and PL/SQL, a null string is usually indistinguishable from a literal of
zero characters, represented literally as '' (two consecutive single quotes with no char-
acters between them). For example, the following expression will evaluate to TRUE in
both SQL and PL/SQL:

'' IS NULL

Assigning a zero-length string to a VARCHAR2(n) variable in PL/SQL also yields a
NULL result:

DECLARE
 str VARCHAR2(1) := '';
BEGIN
 IF str IS NULL -- will be TRUE

This behavior is consistent with the database’s treatment of VARCHAR2 table
columns.

Let’s look at CHAR data, though—it’s a little quirky. If you create a CHAR(n) variable
in PL/SQL and assign a zero-length string to it, the database blank-pads the empty
variable with space characters, making it not null:

DECLARE
 flag CHAR(2) := ''; -- try to assign zero-length string to CHAR(2)
BEGIN
 IF flag = ' ' ... -- will be TRUE
 IF flag IS NULL ... -- will be FALSE

Literals | 71

Download at WoweBook.Com

Strangely, PL/SQL is the only place you will see such behavior. In the database, when
you insert a zero-length string into a CHAR(n) table column, the database does not
blank-pad the contents of the column, but leaves it NULL instead!

These examples illustrate Oracle’s partial adherence to the 92 and 99 versions of the
ANSI SQL standard, which mandates a difference between a zero-length string and a
NULL string. Oracle admits this difference, and says they may fully adopt the standard
in the future. They’ve been issuing that warning for about 15 years, though, and it
hasn’t happened yet.

While NULL tends to behave as if its default datatype is VARCHAR2, the database will
try to implicitly cast NULL to whatever type is needed for the current operation.
Occasionally, you may need to make the cast explicit, using syntax such as
TO_NUMBER(NULL) or CAST(NULL AS NUMBER).

Embedding Single Quotes Inside a Literal String
An unavoidably ugly aspect of working with string literals occurs when you need to
put the delimiter itself inside the string. Until Oracle Database 10g was released, you
would write two single quotes next to each other if you wanted the string to contain a
single quote in that position. Some examples:

Literal (default delimiter) Actual value

'There''s no business like show business.' There's no business like show business.

'"Hound of the Baskervilles"' "Hound of the Baskervilles"

'''' '

'''hello''' 'hello'

'''''' ''

The examples show, for instance, that it takes six single quotes to designate a literal
containing two consecutive single quotes. In an attempt to simplify this type of con-
struct, Oracle Database 10g introduced user-defined delimiters. Start the literal with
“q” to mark your delimiter, and surround your delimited expression with single quotes.
The table below shows this feature in action:

Literal (delimiters highlighted) Actual value

q' (There's no business like show business.) ' There's no business like show business.

q' { "Hound of the Baskervilles" } ' "Hound of the Baskervilles"

q' ['] ' '

q' !'hello' ! ' 'hello'

q' |'' | ' ''

72 | Chapter 3: Language Fundamentals

Download at WoweBook.Com

As the examples show, you can use plain delimiters such as ! or |, or you can use
“mated” delimiters such as left and right parentheses, curly braces, and square brackets.

One final note: as you would expect, a double quote character does not have any special
significance inside a string literal. It is treated the same as a letter or number.

Numeric Literals
Numeric literals can be integers or real numbers (a number that contains a fractional
component). Note that PL/SQL considers the number 154.00 to be a real number of
type NUMBER, even though the fractional component is zero, and the number is ac-
tually an integer. Internally, integers and reals have a different representation, and there
is some small overhead involved in converting between the two.

You can also use scientific notation to specify a numeric literal. Use the letter E (upper-
or lowercase) to multiply a number by 10 to the nth power (e.g., 3.05E19, 12e-5).

Beginning with Oracle Database 10g, a real can be either an Oracle NUMBER type or
an IEEE 754 standard floating-point type. Floating-point literals are either BINARY
(32-bit) (designated with a trailing F) or BINARY DOUBLE (64-bit) (designated with
a D).

In certain expressions, you may use the following named constants, as prescribed by
the IEEE standard:

Description Binary float (32-bit) Binary double (64-bit)

“Not a number” (NaN); result of divide by
0 or invalid operation

BINARY_FLOAT_NAN BINARY_DOUBLE_NAN

Positive infinity BINARY_FLOAT_INFINITY BINARY_DOUBLE_INFINITY

Absolute maximum number that can be
represented

BINARY_FLOAT_MAX_NORMAL BINARY_DOUBLE_MAX_NORMAL

Smallest normal number; underflow
threshold

BINARY_FLOAT_MIN_NORMAL BINARY_DOUBLE_MIN_NORMAL

Maximum positive number that is less than
the underflow threshold

BINARY_FLOAT_MAX_SUBNORMAL BINARY_DOUBLE_MAX_
SUBNORMAL

Absolute minimum positive number that
can be represented

BINARY_FLOAT_MIN_SUBNORMAL BINARY_DOUBLE_MIN_SUBNORMAL

Boolean Literals
PL/SQL provides two literals to represent Boolean values: TRUE and FALSE. These
values are not strings; you should not put quotes around them. Use Boolean literals to
assign values to Boolean variables, as in:

Literals | 73

Download at WoweBook.Com

DECLARE
 enough_money BOOLEAN; -- Declare a Boolean variable
BEGIN
 enough_money := FALSE; -- Assign it a value
END;

You do not, on the other hand, need to refer to the literal value when checking the value
of a Boolean expression. Instead, just let that expression speak for itself, as shown in
the conditional clause of the following IF statement:

DECLARE
 enough_money BOOLEAN;
BEGIN
 IF enough_money
 THEN
 ...

A Boolean expression, variable, or constant may also evaluate to NULL, which is neither
TRUE nor FALSE. For more information, see Chapter 4, particularly the sidebar
“Three-Valued Logic” on page 82.

The Semicolon Delimiter
A PL/SQL program is made up of a series of declarations and statements. These are
defined logically, as opposed to physically. In other words, they are not terminated
with the physical end of a line of code; instead, they are terminated with a semicolon
(;). In fact, a single statement is often spread over several lines to make it more readable.
The following IF statement takes up four lines and is indented to reinforce the logic
behind the statement:

IF salary < min_salary (2003)
THEN
 salary := salary + salary * .25;
END IF;

There are two semicolons in this IF statement. The first semicolon indicates the end of
the single executable statement within the IF-END IF construct. The second semicolon
terminates the IF statement itself. This same statement could also be placed on a single
physical line and have exactly the same result:

IF salary < min_salary (2003) THEN salary := salary + salary*.25; END IF;

The semicolons are still needed to terminate each logical, executable statement, even
if they are nested inside one another. Unless you’re trying to create unreadable code, I
suggest that you not combine the different components of the IF statement on a single
line. I also recommend that you place no more than one statement or declaration on
each line.

74 | Chapter 3: Language Fundamentals

Download at WoweBook.Com

Comments
Inline documentation, otherwise known as comments, is an important element of a
good program. While this book offers many suggestions on how to make your program
self-documenting through good naming practices and modularization, such techniques
are seldom enough by themselves to communicate a thorough understanding of a
complex program.

PL/SQL offers two different styles for comments: single-line and multiline block
comments.

Single-Line Comment Syntax
The single-line comment is initiated with two hyphens (--), which cannot be separated
by a space or any other characters. All text after the double hyphen to the end of the
physical line is considered commentary and is ignored by the compiler. If the double
hyphen appears at the beginning of the line, the whole line is a comment.

Remember: the double hyphen comments out the remainder of a physical line, not a
logical PL/SQL statement. In the following IF statement, I use a single-line comment
to clarify the logic of the Boolean expression:

IF salary < min_salary (2003) -- Function returns min salary for year.
THEN
 salary := salary + salary*.25;
END IF;

Multiline Comment Syntax
While single-line comments are useful for documenting brief bits of code or ignoring
a line that you do not want executed at the moment, the multiline comment is superior
for including longer blocks of commentary.

Multiline comments start with a slash-asterisk (/*) and end with an asterisk-slash (*/).
PL/SQL considers all characters found between these two sequences of symbols to be
part of the comment, and they are ignored by the compiler.

The following example of multiline comments shows a header section for a procedure.
I use the vertical bars in the left margin so that, as the eye moves down the left edge of
the program, it can easily pick out the chunks of comments:

PROCEDURE calc_revenue (company_id IN NUMBER) IS
/*
| Program: calc_revenue
| Author: Steven Feuerstein
| Change history:
| 10-JUN-2009 Incorporate new formulas
| 23-SEP-2008 – Program created
|*/
BEGIN

Comments | 75

Download at WoweBook.Com

 ...
END;

You can also use multiline comments to block out lines of code for testing purposes.
In the following example, the additional clauses in the EXIT statement are ignored so
that testing can concentrate on the a_delimiter function:

EXIT WHEN a_delimiter (next_char)
/*
 OR
 (was_a_delimiter AND NOT a_delimiter (next_char))
*/
;

The PRAGMA Keyword
A programming notion that is truly derived from Greek is pragma, which means “deed”
or, by implication, an “action.” In various programming languages, a pragma is gen-
erally a line of source code prescribing an action you want the compiler to take. It’s like
an option that you give the compiler; it can result in different runtime behavior for the
program, but it doesn’t get translated directly into bytecode.

PL/SQL has a PRAGMA keyword with the following syntax:

PRAGMA instruction_to_compiler;

The PL/SQL compiler will accept such directives anywhere in the declaration section,
but most of them have certain additional requirements regarding placement.

PL/SQL offers several pragmas:

AUTONOMOUS_TRANSACTION
Tells the PL/SQL runtime engine to commit or roll back any changes made to the
database inside the current block without affecting the main or outer transaction.
See Chapter 14 for more information.

EXCEPTION_INIT
Tells the compiler to associate a particular error number with an identifier you have
declared as an exception in your program. Must follow the declaration of the
exception. See Chapter 6 for more information.

RESTRICT_REFERENCES
Tells the compiler the purity level (freedom from side effects) of a packaged pro-
gram. See Chapter 17 for more information.

SERIALLY_REUSABLE
Tells the PL/SQL runtime engine that package-level data should not persist be-
tween references to that data. See Chapter 18 for more information.

The following block demonstrates the use of the EXCEPTION_INIT pragma to name
a built-in exception that would otherwise have only a number:

76 | Chapter 3: Language Fundamentals

Download at WoweBook.Com

DECLARE
 no_such_sequence EXCEPTION;
 PRAGMA EXCEPTION_INIT (no_such_sequence, −2289);
BEGIN
 ...
EXCEPTION
 WHEN no_such_sequence
 THEN
 q$error_manager.raise_error ('Sequence not defined');
END;

Labels
A PL/SQL label is a way to name a particular part of your program. Syntactically, a
label has the format:

<<identifier>>

where identifier is a valid PL/SQL identifier (up to 30 characters in length and starting
with a letter, as discussed earlier in the section “Identifiers” on page 66). There is no
terminator; labels appear directly in front of the thing they’re labeling, which must be
an executable statement—even if it is merely the NULL statement.

BEGIN
 ...
 <<the_spot>>
 NULL;

Because anonymous blocks are themselves executable statements, a label can “name”
an anonymous block for the duration of its execution. For example:

<<insert_but_ignore_dups>>
BEGIN
 INSERT INTO catalog
 VALUES (...);
EXCEPTION
 WHEN DUP_VAL_ON_INDEX
 THEN
 NULL;
END insert_but_ignore_dups;

One reason you might label a block is to improve the readability of your code. When
you give something a name, you self-document that code. You also clarify your own
thinking about what that code is supposed to do, sometimes ferreting out errors in the
process.

Another reason to use a block label is to allow you to qualify references to elements
from an enclosing block that have duplicate names in the current, nested block. Here’s
a schematic example:

<<outerblock>>
DECLARE
 counter INTEGER := 0;

Labels | 77

Download at WoweBook.Com

BEGIN
 ...
 DECLARE
 counter INTEGER := 1;
 BEGIN
 IF counter = outerblock.counter
 THEN
 ...
 END IF;
 END;
END;

Without the block label, there would be no way to distinguish between the two “coun-
ter” variables. Again, though, a better solution would probably have been to use distinct
variable names.

A third function of labels is to serve as the target of a GOTO statement. See the dis-
cussion of GOTO in Chapter 4.

Although few programs I’ve seen or worked on require the use of labels, there is one
final use of this feature that is more significant than the previous three combined: a
label can serve as a target for the EXIT statement in nested loops. Here’s the example
code:

BEGIN
 <<outer_loop>>
 LOOP
 LOOP
 EXIT outer_loop;
 END LOOP;
 some_statement;
 END LOOP;
END;

Without the <<outer_loop>> label, the EXIT statement would have exited only the
inner loop and would have executed some_statement. But I didn’t want it to do that.
So, in this case, the label provides functionality that PL/SQL does not offer in any other
straightforward way.

78 | Chapter 3: Language Fundamentals

Download at WoweBook.Com

PART II

PL/SQL Program Structure

This part of the book presents the basic PL/SQL programming elements and statement
constructs. Chapters 4 through 6 describe conditional (IF and CASE) and sequential
control statements (e.g., GOTO and NULL); loops and the CONTINUE statement
introduced for loops in Oracle Database 11g; and exception handling in the PL/SQL
language. When you complete this section of the book you will know how to construct
blocks of code that correlate to the complex requirements in your applications.

Chapter 4, Conditional and Sequential Control
Chapter 5, Iterative Processing with Loops
Chapter 6, Exception Handlers

Download at WoweBook.Com

Download at WoweBook.Com

CHAPTER 4

Conditional and Sequential Control

This chapter describes two types of PL/SQL control statements: conditional control
statements and sequential control statements. Almost every piece of code you write
will require conditional control, which is the ability to direct the flow of execution
through your program based on a condition. You do this with IF-THEN-ELSE and
CASE statements. There are also CASE expressions; while not the same as CASE state-
ments, they can sometimes be used to eliminate the need for an IF or CASE statement
altogether. Far less often, you will need to tell PL/SQL to transfer control uncondi-
tionally via the GOTO statement, or explicitly to do nothing via the NULL statement.

IF Statements
The IF statement allows you to implement conditional branching logic in your pro-
grams. With it, you’ll be able to implement requirements such as:

• If the salary is between $10,000 and $20,000, apply a bonus of $1,500.

• If the collection contains more than 100 elements, truncate it.

The IF statement comes in three flavors, as shown in the following table:

IF type Characteristics
IF THEN END IF; This is the simplest form of the IF statement. The condition between IF and THEN determines

whether the set of statements between THEN and END IF should be executed. If the condition
evaluates to FALSE or NULL, the code is not executed.

IF THEN ELSE END IF; This combination implements an either/or logic: based on the condition between the IF
and THEN keywords, execute the code either between THEN and ELSE or between ELSE and
END IF. One of these two sections of executable statements is performed.

IF THEN ELSIF ELSE END IF; This last and most complex form of the IF statement selects a condition that is TRUE from
a series of mutually exclusive conditions and then executes the set of statements associated
with that condition. If you’re writing IF statements like this using any release from
Oracle9i Database Release 1 onwards, you should consider using searched CASE statements
instead.

81

Download at WoweBook.Com

The IF-THEN Combination
The general format of the IF-THEN syntax is as follows:

IF condition
THEN
 ... sequence of executable statements ...
END IF;

The condition is a Boolean variable, constant, or expression that evaluates to TRUE,
FALSE, or NULL. If condition evaluates to TRUE, the executable statements found after
the THEN keyword and before the matching END IF statement are executed. If con-
dition evaluates to FALSE or NULL, those statements are not executed.

Three-Valued Logic
Boolean expressions can return three possible results. When all values in a Boolean
expression are known, the result is either TRUE or FALSE. For example, there is no
doubt when determining the truth or falsity of an expression such as:

(2 < 3) AND (5 < 10)

Sometimes, however, you don’t know all values in an expression. That’s because da-
tabases allow for values to be NULL, or missing. What then, can be the result from an
expression involving NULLs? For example:

2 < NULL

Because you don’t know what the missing value is, the only answer you can give is “I
don’t know.” This is the essence of so-called three-valued logic—that you can have not
only TRUE and FALSE as a possible result, but also NULL.

To learn more about three-valued logic, I recommend Lex de Haan’s and Jonathan
Gennick’s Oracle Magazine article “Nulls, Nothing to Worry About...”, which you can
find at http://www.oracle.com/technology/oramag/oracle/05-jul/o45sql.html. You might
find C. J. Date’s book Database In Depth: Relational Theory for the Practitioner
(O’Reilly) helpful as well. I’ll also have more to say about three-valued logic as you go
through this chapter.

The following IF condition compares two different numeric values. Remember that if
one of these two values is NULL, then the entire expression returns NULL. In the
following example, the bonus is not given when salary is NULL:

IF salary > 40000
THEN
 give_bonus (employee_id,500);
END IF;

There are exceptions to the rule that a NULL in a Boolean expression leads to a NULL
result. Some operators and functions are specifically designed to deal with NULLs in
a way that leads to TRUE and FALSE (and not NULL) results. For example, you can
use IS NULL to test for the presence of a NULL:

82 | Chapter 4: Conditional and Sequential Control

Download at WoweBook.Com

http://www.oracle.com/technology/oramag/oracle/05-jul/o45sql.html
http://oreilly.com/catalog/9780596100124/

IF salary > 40000 OR salary IS NULL
THEN
 give_bonus (employee_id,500);
END IF;

In this example, “salary IS NULL” evaluates to TRUE in the event that salary has no
value, and otherwise to FALSE. Employees whose salaries are missing will now get
bonuses too. (As indeed they probably should, considering their employer was so in-
considerate as to lose track of their pay in the first place.)

Using operators such as IS NULL and IS NOT NULL, or functions such
as COALESCE and NVL2, are good ways to detect and deal with po-
tentially NULL values. For every variable that you reference in every
Boolean expression that you write, be sure to think carefully about the
consequences if that variable is NULL.

It’s not necessary to put the IF, THEN, and END IF keywords on their own lines. In
fact, line breaks don’t matter at all for any type of IF statement. You could just as easily
write:

IF salary > 40000 THEN give_bonus (employee_id,500); END IF;

Putting everything on one line is perfectly fine for simple IF statements such as the one
shown here. However, when writing IF statements of any complexity at all, you’ll find
that readability is much greater when you format the statement such that each keyword
begins a new line. For example, the following code would be very difficult to follow if
it were all crammed on a single line. Actually, it’s difficult to follow as it appears on
three lines:

IF salary > 40000 THEN INSERT INTO employee_bonus (eb_employee_id, eb_bonus_amt)
VALUES (employee_id, 500); UPDATE emp_employee SET emp_bonus_given=1 WHERE emp_
employee_id=employee_id; END IF;

Ugh! Who’d want to spend time figuring that out? It’s much more readable when for-
matted nicely:

IF salary > 40000
THEN
 INSERT INTO employee_bonus
 (eb_employee_id, eb_bonus_amt)
 VALUES (employee_id, 500);
 UPDATE emp_employee
 SET emp_bonus_given=1
 WHERE emp_employee_id=employee_id;
END IF;

This readability issue becomes even more important when using the ELSE and ELSIF
keywords, and when nesting one IF statement inside the other. Take full advantage of
indents and formatting to make the logic of your IF statements easily decipherable.
Future maintenance programmers will thank you.

IF Statements | 83

Download at WoweBook.Com

The IF-THEN-ELSE Combination
Use the IF-THEN-ELSE format when you want to choose between two mutually ex-
clusive actions. The format of this either/or version of the IF statement is as follows:

IF condition
THEN
 ... TRUE sequence of executable statements ...
ELSE
 ... FALSE/NULL sequence of executable statements ...
END IF;

The condition is a Boolean variable, constant, or expression. If condition evaluates to
TRUE, the executable statements found after the THEN keyword and before the ELSE
keyword are executed (the “TRUE sequence of executable statements”). If condition
evaluates to FALSE or NULL, the executable statements that come after the ELSE key-
word and before the matching END IF keywords are executed (the “FALSE/NULL
sequence of executable statements”).

The important thing to remember is that one of the two sequences of statements will
always execute, because IF-THEN-ELSE is an either/or construct. Once the appropriate
set of statements has been executed, control passes to the statement immediately fol-
lowing the END IF keyword.

Following is an example of the IF-THEN-ELSE construct that builds upon the IF-
THEN example shown in the previous section:

IF salary <= 40000
THEN
 give_bonus (employee_id, 0);
ELSE
 give_bonus (employee_id, 500);
END IF;

In this example, employees with a salary greater than $40,000 will get a bonus of $500
while all other employees will get no bonus at all. Or will they? What happens if salary,
for whatever reason, happens to be NULL for a given employee? In that case, the state-
ments following the ELSE will be executed, and the employee in question will get the
bonus that is supposed to go only to highly paid employees. That’s not good (well, it
was good in the last section, but not now)! If the salary could be NULL, you can protect
yourself against this problem using the NVL function:

IF NVL(salary,0) <= 40000
THEN
 give_bonus (employee_id, 0);
ELSE
 give_bonus (employee_id, 500);
END IF;

The NVL function will return zero any time salary is NULL, ensuring that any em-
ployees with a NULL salary also get a zero bonus (those poor employees).

84 | Chapter 4: Conditional and Sequential Control

Download at WoweBook.Com

Using Boolean Flags
Often, it’s convenient to use Boolean variables as flags so that you don’t need to evaluate
the same Boolean expression more than once. When doing so, remember that the result
of a Boolean expression can be assigned directly to a Boolean variable. For example,
rather than write:

IF :customer.order_total > max_allowable_order
THEN
 order_exceeds_balance := TRUE;
ELSE
 order_exceeds_balance := FALSE;
END IF;

you can instead (assuming neither variable could be NULL) write the following, much
simpler expression:

order_exceeds_balance
 := :customer.order_total > max_allowable_order;

Now, whenever you need to test whether an order’s total exceeds the maximum, you
can write the following, easily understandable, IF statement:

IF order_exceeds_balance
THEN
...

If you have not had much experience with Boolean variables, it may take you a little
while to learn how to integrate them smoothly into your code. It is worth the effort,
though. The result is cleaner, more readable code.

The IF-THEN-ELSIF Combination
This last form of the IF statement comes in handy when you have to implement logic
that has many alternatives; it is not an either/or situation. The IF-ELSIF formulation
provides a way to handle multiple conditions within a single IF statement. In general,
you should use ELSIF with mutually exclusive alternatives (i.e., only one condition can
be TRUE for any execution of the IF statement). The general format for this variation
of IF is:

IF condition-1
THEN
 statements-1
ELSIF condition-N
THEN
 statements-N
[ELSE
 else_statements]
END IF;

IF Statements | 85

Download at WoweBook.Com

Be very careful to use ELSIF, not ELSEIF. The inadvertent use of ELSEIF
is a fairly common syntax error. ELSE IF (two words) doesn’t work
either.

Logically speaking, the IF-THEN-ELSIF construct is one way to implement CASE
statement functionality in PL/SQL. Of course, if you are using Oracle9i Database on-
wards, you are probably better off actually using a CASE statement (discussed later in
this chapter).

Each ELSIF clause must have a THEN after its condition. Only the ELSE keyword does
not need the THEN keyword. The ELSE clause in the IF-ELSIF is the “otherwise” of
the statement. If none of the conditions evaluate to TRUE, the statements in the ELSE
clause are executed. But the ELSE clause is optional. You can code an IF-ELSIF that
has only IF and ELSIF clauses. In such a case, if none of the conditions are TRUE, no
statements inside the IF block are executed.

Following is an implementation of the complete bonus logic described at the beginning
of this chapter using the IF-THEN-ELSEIF combination:

IF salary BETWEEN 10000 AND 20000
THEN
 give_bonus(employee_id, 1500);
ELSIF salary BETWEEN 20000 AND 40000
THEN
 give_bonus(employee_id, 1000);
ELSIF salary > 40000
THEN
 give_bonus(employee_id, 500);
ELSE
 give_bonus(employee_id, 0);
END IF;

Avoiding IF Syntax Gotchas
Keep in mind these points about IF statement syntax:

Always match up an IF with an END IF
In all three variations of the IF statement, you must close off the executable state-
ments associated with the conditional structure with an END IF keyword.

You must have a space between the keywords END and IF
If you type ENDIF instead of END IF, the compiler will get confused and give you
the following hard-to-understand error messages:

ORA-06550: line 14, column 4:

PLS-00103: Encountered the symbol ";" when expecting one of the following:

86 | Chapter 4: Conditional and Sequential Control

Download at WoweBook.Com

The ELSIF keyword should not have an embedded “E”
If you type ELSEIF in place of ELSIF, the compiler will also get confused and not
recognize the ELSEIF as part of the IF statement. Instead, the compiler will interpret
ELSEIF as a variable or a procedure name.

Place a semicolon (;) only after the END IF keywords
The keywords THEN, ELSE, and ELSIF should not have a semicolon after them.
They are not standalone executable statements, and, unlike END IF, do not com-
plete a statement. If you include a semicolon after these keywords, the compiler
will issue messages indicating that it is looking for a statement of some kind before
the semicolon.

The conditions in the IF-ELSIF are always evaluated in the order of first condition to
last condition. If two conditions evaluate to TRUE, the statements for the first such
condition are executed. With respect to the current example, a salary of $20,000 will
result in a bonus of $1,500 even though that $20,000 salary also satisfies the condition
for a $1,000 bonus (BETWEEN is inclusive). Once a condition evaluates to TRUE, the
remaining conditions are not evaluated at all.

The CASE statement represents a better solution to the bonus problem than the IF-
THEN-ELSIF solution shown in this section. See “CASE Statements and Expres-
sions” on page 90.

Even though overlapping conditions are allowed in an IF-THEN-ELSIF statement, it’s
best to avoid them when possible. In my example, the original spec is a bit ambiguous
about how to handle boundary cases such as $20,000. Assuming that the intent is to
give the highest bonuses to the lowest-paid employees (which seems like a reasonable
approach to me), I would dispense with the BETWEEN operator and use the following
less-than/greater-than logic. Note that I’ve also dispensed with the ELSE clause just to
illustrate that it is optional:

IF salary >= 10000 AND salary <= 20000
THEN
 give_bonus(employee_id, 1500);
ELSIF salary > 20000 AND salary <= 40000
THEN
 give_bonus(employee_id, 1000);
ELSIF salary > 40000
THEN
 give_bonus(employee_id, 400);
END IF;

By taking steps to avoid overlapping conditions in an IF-THEN-ELSIF, I am eliminating
a possible (probable?) source of confusion for programmers who come after me. I also
eliminate the possibility of inadvertent bugs being introduced as a result of someone’s
reordering the ELSIF clauses. Note, though, that if salary is NULL, then no code will
be executed, because there is no ELSE section.

IF Statements | 87

Download at WoweBook.Com

The language does not require that ELSIF conditions be mutually exclusive. Always be
aware of the possibility that two or more conditions might apply to a given value, and
that consequently the order of those ELSIF conditions might be important.

Nested IF Statements
You can nest any IF statement within any other IF statement. The following IF state-
ment shows several layers of nesting:

IF condition1
THEN
 IF condition2
 THEN
 statements2
 ELSE
 IF condition3
 THEN
 statements3
 ELSIF condition4
 THEN
 statements4
 END IF;
 END IF;
END IF;

Nested IF statements are often necessary to implement complex logic rules, but you
should use them carefully. Nested IF statements, like nested loops, can be very difficult
to understand and debug. If you find that you need to nest more than three levels deep
in your conditional logic, you should review that logic and see if there is a simpler way
to code the same requirement. If not, then consider creating one or more local modules
to hide the innermost IF statements.

A key advantage of the nested IF structure is that it defers evaluation of inner conditions.
The conditions of an inner IF statement are evaluated only if the condition for the outer
IF statement that encloses them evaluates to TRUE. Therefore, one obvious reason to
nest IF statements is to evaluate one condition only when another condition is TRUE.
For example, in my code to award bonuses, I might write the following:

IF award_bonus(employee_id) THEN
 IF print_check (employee_id) THEN
 DBMS_OUTPUT.PUT_LINE('Check issued for ' || employee_id);
 END IF;
END IF;

This is reasonable, because I want to print a message for each bonus check issued, but
I don’t want to print a bonus check for a zero amount in cases where no bonus was
given.

88 | Chapter 4: Conditional and Sequential Control

Download at WoweBook.Com

Short-Circuit Evaluation
PL/SQL uses short-circuit evaluation, which means that PL/SQL need not evaluate all
of the expression in an IF statement. For example, when evaluating the expression in
the following IF statement, PL/SQL stops evaluation and immediately executes the
ELSE branch if the first operand is either FALSE or NULL:

IF condition1 AND condition2
THEN
 ...
ELSE
 ...
END IF;

PL/SQL can stop evaluation of the expression when condition1 is FALSE or NULL,
because the THEN branch is executed only when the result of the expression is TRUE,
and that requires both operands to be TRUE. As soon as one operand is found to be
other than TRUE, there is no longer any chance for the THEN branch to be taken.

I found something interesting while researching PL/SQL’s short-circuit
behavior. The behavior that you get depends on the expression’s con-
text. Consider the following statement:

my_boolean := condition1 AND condition2

Unlike the case with an IF statement, when condition1 is NULL, this
expression will not short-circuit. Why not? Because the result could be
either NULL or FALSE, depending on condition2. For an IF statement,
NULL and FALSE both lead to the ELSE branch, so a short-circuit can
occur. But for an assignment, the ultimate value must be known, and
short-circuiting, in this case, can (and will) occur only when condi-
tion1 is FALSE.

Similar to the case with AND, if the first operand of an OR operation in an IF statement
is TRUE, PL/SQL immediately executes the THEN branch:

IF condition1 OR condition2
THEN
 ...
ELSE
 ...
END IF;

This short-circuiting behavior can be useful when one of your conditions is particularly
expensive in terms of CPU or memory utilization. In such a case, be sure to place that
condition at the end of the set of conditions:

IF low_CPU_condition AND high_CPU_condition
THEN
 ...
END IF;

IF Statements | 89

Download at WoweBook.Com

The low_CPU_condition is evaluated first, and if the result is enough to determine the
end result of the AND operation (i.e., the result is FALSE), the more expensive condi-
tion will not be evaluated, and your application’s performance is the better for that
evaluation’s not happening.

However, if you are depending on that second condition’s being evalu-
ated, perhaps because you want the side effects from a stored function
that the condition invokes, then you have a problem and you need to
reconsider your design. I don’t believe it’s good to depend on side effects
in this manner.

You can achieve the effect of short-circuit evaluation in a much more explicit manner
using a nested IF statement:

IF low_CPU_condition
THEN
 IF high_CPU_condition
 THEN
 ...
 END IF;
END IF;

Now, high_CPU_condition is evaluated only if low_CPU_condition evaluates to TRUE.
This is the same effect as short-circuit evaluation, but it’s more obvious at a glance
what’s going on. It’s also more obvious that my intent is to evaluate
low_CPU_condition first.

Short-circuiting also applies to CASE statements and CASE expressions. These are de-
scribed in the next section.

CASE Statements and Expressions
The CASE statement allows you to select one sequence of statements to execute out of
many possible sequences. They have been part of the SQL standard since 1992, al-
though Oracle SQL didn’t support CASE until the release of Oracle8i Database, and
PL/SQL didn’t support CASE until Oracle9i Database Release 1. From this release
onwards, the following types of CASE statements are supported:

Simple CASE statement
Associates each of one or more sequences of PL/SQL statements with a value.
Chooses which sequence of statements to execute based on an expression that
returns one of those values.

Searched CASE statement
Chooses which of one or more sequences of PL/SQL statements to execute by
evaluating a list of Boolean conditions. The sequence of statements associated with
the first condition that evaluates to TRUE is executed.

90 | Chapter 4: Conditional and Sequential Control

Download at WoweBook.Com

NULL or UNKNOWN?
Earlier I stated that the result from a Boolean expression can be TRUE, FALSE, or
NULL. In PL/SQL that is quite true, but in the larger realm of relational theory it’s
considered incorrect to speak of a NULL result from a Boolean expression. Relational
theory says that a comparison to NULL, such as:

2 < NULL

yields the Boolean value UNKNOWN. And UNKNOWN is not the same as NULL.
That PL/SQL refers to UNKNOWN as NULL is not something you should lose sleep
over. I want you to be aware though, that UNKNOWN is the true third value in three-
valued logic. And now I hope you’ll never be caught (as I have been a few times!) using
the wrong term when discussing three-valued logic with experts on relational theory.

In addition to CASE statements, PL/SQL also supports CASE expressions. A CASE
expression is very similar in form to a CASE statement and allows you to choose which
of one or more expressions to evaluate. The result of a CASE expression is a single
value, whereas the result of a CASE statement is the execution of a sequence of PL/SQL
statements.

Simple CASE Statements
A simple CASE statement allows you to choose which of several sequences of PL/SQL
statements to execute based on the results of a single expression. Simple CASE state-
ments take the following form:

CASE expression
WHEN result1 THEN
 statements1
WHEN result2 THEN
 statements2
...
ELSE
 statements_else
END CASE;

The ELSE portion of the statement is optional. When evaluating such a CASE state-
ment, PL/SQL first evaluates expression. It then compares the result of expression with
result1. If the two results match, statements1 is executed. Otherwise, result2 is checked,
and so forth.

Following is an example of a simple CASE statement that uses the employee type as a
basis for selecting the proper bonus algorithm:

CASE employee_type
WHEN 'S' THEN
 award_salary_bonus(employee_id);
WHEN 'H' THEN
 award_hourly_bonus(employee_id);

CASE Statements and Expressions | 91

Download at WoweBook.Com

WHEN 'C' THEN
 award_commissioned_bonus(employee_id);
ELSE
 RAISE invalid_employee_type;
END CASE;

This CASE statement has an explicit ELSE clause; however, the ELSE is optional. When
you do not explicitly specify an ELSE clause of your own, PL/SQL implicitly uses the
following:

ELSE
 RAISE CASE_NOT_FOUND;

In other words, if you don’t specify an ELSE clause, and none of the results in the
WHEN clauses match the result of the CASE expression, PL/SQL raises a
CASE_NOT_FOUND error. This behavior is different from what I’m used to with IF
statements. When an IF statement lacks an ELSE clause, nothing happens when the
condition is not met. With CASE, the analogous situation leads to an error.

By now you’re probably wondering how, or even whether, the bonus logic shown earlier
in this chapter can be implemented using a simple CASE statement. At first glance, it
doesn’t appear possible. However, a bit of creative thought yields the following
solution:

CASE TRUE
WHEN salary >= 10000 AND salary <=20000
THEN
 give_bonus(employee_id, 1500);
WHEN salary > 20000 AND salary <= 40000
THEN
 give_bonus(employee_id, 1000);
WHEN salary > 40000
THEN
 give_bonus(employee_id, 500);
ELSE
 give_bonus(employee_id, 0);
END CASE;

The key point to note here is that the expression and result elements shown in the earlier
syntax diagram can be either scalar values or expressions that evaluate to scalar values.

If you look back to the earlier IF-THEN-ELSIF statement implementing this same bo-
nus logic, you’ll see that I specified an ELSE clause for the CASE implementation,
whereas I didn’t specify an ELSE for the IF-THEN-ELSIF solution. The reason for the
addition of the ELSE is simple: if no bonus conditions are met, the IF statement does
nothing, effectively resulting in a zero bonus. A CASE statement, however, will raise
an error if no conditions are met—hence the need to code explicitly for the zero bonus
case.

92 | Chapter 4: Conditional and Sequential Control

Download at WoweBook.Com

To avoid CASE_NOT_FOUND errors, be sure that it’s impossible for
one of your conditions not to be met.

While my previous CASE TRUE statement may look like a clever hack, it’s really an
explicit implementation of the searched CASE statement, which I talk about in the next
section.

Searched CASE Statements
A searched CASE statement evaluates a list of Boolean expressions and, when it finds
an expression that evaluates to TRUE, executes a sequence of statements associated
with that expression. Essentially, a searched CASE statement is the equivalent of the
CASE TRUE statement shown in the previous section.

Searched CASE statements have the following form:

CASE
WHEN expression1 THEN
 statements1
WHEN expression2 THEN
 statements2
...
ELSE
 statements_else
END CASE;

A searched CASE statement is a perfect fit for the problem of implementing the bonus
logic. For example:

CASE
WHEN salary >= 10000 AND salary <=20000 THEN
 give_bonus(employee_id, 1500);
WHEN salary > 20000 AND salary <= 40000 THEN
 give_bonus(employee_id, 1000);
WHEN salary > 40000 THEN
 give_bonus(employee_id, 500);
ELSE
 give_bonus(employee_id, 0);
END CASE;

As with simple CASE statements, the following rules apply:

• Execution ends once a sequence of statements has been executed. If more than one
expression evaluates to TRUE, only the statements associated with the first such
expression are executed.

• The ELSE clause is optional. If no ELSE is specified, and no expressions evaluate
to TRUE, then a CASE_NOT_FOUND exception is raised.

• WHEN clauses are evaluated in order, from top to bottom.

CASE Statements and Expressions | 93

Download at WoweBook.Com

Following is an implementation of my bonus logic that takes advantage of the fact that
WHEN clauses are evaluated in the order in which I write them. The individual ex-
pressions are simpler, but is the intent of the statement as easily grasped?

CASE
WHEN salary > 40000 THEN
 give_bonus(employee_id, 500);
WHEN salary > 20000 THEN
 give_bonus(employee_id, 1000);
WHEN salary >= 10000 THEN
 give_bonus(employee_id, 1500);
ELSE
 give_bonus(employee_id, 0);
END CASE;

If a given employee’s salary is $20,000, then the first expression and second expression
will evaluate to FALSE. The third expression will evaluate to TRUE, and that employee
will be awarded a bonus of $1,500. If an employee’s salary is $21,000, then the second
expression will evaluate to TRUE, and the employee will be awarded a bonus of $1,000.
Execution of the CASE statement will cease with the first WHEN condition that eval-
uates to TRUE, so a salary of $21,000 will never reach the third condition.

It’s arguable whether you should take this approach to writing CASE statements. You
should certainly be aware that it’s possible to write such a statement, and you should
watch for such order-dependent logic in programs that you are called upon to modify
or debug.

Order-dependent logic can be a subtle source of bugs when you decide to reorder the
WHEN clauses in a CASE statement. Consider the following searched CASE statement
in which, assuming a salary of $20,000, both WHEN expressions evaluate to TRUE:

CASE
WHEN salary BETWEEN 10000 AND 20000 THEN
 give_bonus(employee_id, 1500);
WHEN salary BETWEEN 20000 AND 40000 THEN
 give_bonus(employee_id, 1000);
...

Imagine the results if a future programmer unthinkingly decides to make the code neater
by reordering the WHEN clauses in descending order by salary. Don’t scoff at this
possibility! We programmers frequently fiddle with perfectly fine, working code to
satisfy some inner sense of order. Following is the CASE statement rewritten with the
WHEN clauses in descending order:

CASE
WHEN salary BETWEEN 20000 AND 40000 THEN
 give_bonus(employee_id, 1000);
WHEN salary BETWEEN 10000 AND 20000 THEN
 give_bonus(employee_id, 1500);
...

Looks good, doesn’t it? Unfortunately, because of the slight overlap between the two
WHEN clauses, I’ve introduced a subtle bug into the code. Now an employee with a

94 | Chapter 4: Conditional and Sequential Control

Download at WoweBook.Com

salary of $20,000 gets a bonus of $1,000 rather than the intended $1,500. There may
be cases where overlap between WHEN clauses is desirable, but avoid it when feasible.
Always remember that order matters, and resist the urge to fiddle with working code.
“If it ain’t broke, don’t fix it.”

Since WHEN clauses are evaluated in order, you may be able to squeeze
some extra efficiency out of your code by listing the most likely WHEN
clauses first. In addition, if you have WHEN clauses with “expensive”
expressions (e.g., requiring lots of CPU and memory), you may want to
list those last in order to minimize the chances that they will be evalu-
ated. See “Nested IF Statements” on page 88 for an example of this issue.

Use searched CASE statements when you want to use Boolean expressions as a basis
for identifying a set of statements to execute. Use simple CASE statements when you
can base that decision on the result of a single expression.

Nested CASE Statements
CASE statements can be nested just as IF statements can. For example, the following
rather difficult-to-follow implementation of my bonus logic uses a nested CASE
statement:

CASE
WHEN salary >= 10000 THEN
 CASE
 WHEN salary <= 20000 THEN
 give_bonus(employee_id, 1500);
 WHEN salary > 40000 THEN
 give_bonus(employee_id, 500);
 WHEN salary > 20000 THEN
 give_bonus(employee_id, 1000);
 END CASE;
WHEN salary < 10000 THEN
 give_bonus(employee_id,0);
END CASE;

Any type of statement may be used within a CASE statement, so I could replace the
inner CASE statement with an IF statement. Likewise, any type of statement, including
CASE statements, may be nested within an IF statement.

CASE Expressions
CASE expressions do for expressions what CASE statements do for statements. Simple
CASE expressions let you choose an expression to evaluate based on a scalar value that
you provide as input. Searched CASE expressions evaluate a list of expressions to find
the first one that evaluates to TRUE, and then return the results of an associated
expression.

CASE Statements and Expressions | 95

Download at WoweBook.Com

CASE expressions take the following two forms:

Simple_Case_Expression :=
 CASE expression
 WHEN result1 THEN
 result_expression1
 WHEN result2 THEN
 result_expression2
 ...
 ELSE
 result_expression_else
 END;
Searched_Case_Expression :=
 CASE
 WHEN expression1 THEN
 result_expression1
 WHEN expression2 THEN
 result_expression2
 ...
 ELSE
 result_expression_else
 END;

A CASE expression returns a single value, the result of whichever result_expression is
chosen. Each WHEN clause must be associated with exactly one expression (no state-
ments). Do not use semicolons or END CASE to mark the end of the CASE expression.
CASE expressions are terminated by a simple END.

Following is an example of a simple CASE expression being used with the
DBMS_OUTPUT package to output the value of a Boolean variable. (Recall that the
PUT_LINE program is not overloaded to handle Boolean types.) In this example, the
CASE expression converts the Boolean value into a character string, which PUT_LINE
can then handle:

DECLARE
 boolean_true BOOLEAN := TRUE;
 boolean_false BOOLEAN := FALSE;
 boolean_null BOOLEAN;
 FUNCTION boolean_to_varchar2 (flag IN BOOLEAN) RETURN VARCHAR2 IS
 BEGIN
 RETURN
 CASE flag
 WHEN TRUE THEN 'True'
 WHEN FALSE THEN 'False'
 ELSE 'NULL'
 END;
 END;
BEGIN
 DBMS_OUTPUT.PUT_LINE(boolean_to_varchar2(boolean_true));
 DBMS_OUTPUT.PUT_LINE(boolean_to_varchar2(boolean_false));
 DBMS_OUTPUT.PUT_LINE(boolean_to_varchar2(boolean_null));
END;

96 | Chapter 4: Conditional and Sequential Control

Download at WoweBook.Com

A searched CASE expression can be used to implement my bonus logic, returning the
proper bonus value for any given salary:

DECLARE
 salary NUMBER := 20000;
 employee_id NUMBER := 36325;
 PROCEDURE give_bonus (emp_id IN NUMBER, bonus_amt IN NUMBER) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(emp_id);
 DBMS_OUTPUT.PUT_LINE(bonus_amt);
 END;
BEGIN
 give_bonus(employee_id,
 CASE
 WHEN salary >= 10000 AND salary <= 20000 THEN 1500
 WHEN salary > 20000 AND salary <= 40000 THEN 1000
 WHEN salary > 40000 THEN 500
 ELSE 0
 END);
END;

You can use a CASE expression anywhere you can use any other type of expression or
value. The following example uses a CASE expression to compute a bonus amount,
multiplies that amount by 10, and assigns the result to a variable that is displayed via
DBMS_OUTPUT:

DECLARE
 salary NUMBER := 20000;
 employee_id NUMBER := 36325;
 bonus_amount NUMBER;
BEGIN
 bonus_amount :=
 CASE
 WHEN salary >= 10000 AND salary <= 20000 THEN 1500
 WHEN salary > 20000 AND salary <= 40000 THEN 1000
 WHEN salary > 40000 THEN 500
 ELSE 0
 END * 10;
 DBMS_OUTPUT.PUT_LINE(bonus_amount);
END;

Unlike with the CASE statement, no error is raised in the event that no WHEN clause
is selected in a CASE expression. Instead, when no WHEN conditions are met, a CASE
expression will return NULL.

The GOTO Statement
The GOTO statement performs unconditional branching to another executable state-
ment in the same execution section of a PL/SQL block. As with other constructs in the
language, if you use GOTO appropriately and with care, your programs will be stronger
for it.

The GOTO Statement | 97

Download at WoweBook.Com

The general format for a GOTO statement is:

GOTO label_name;

where label_name is the name of a label identifying the target statement. This GOTO
label is defined in the program as follows:

<<label_name>>

You must surround the label name with double enclosing angle brackets (<< >>).
When PL/SQL encounters a GOTO statement, it immediately shifts control to the first
executable statement following the label. Following is a complete code block contain-
ing both a GOTO and a label:

BEGIN
 GOTO second_output;
 DBMS_OUTPUT.PUT_LINE('This line will never execute.');
 <<second_output>>
 DBMS_OUTPUT.PUT_LINE('We are here!');
END;

There are several restrictions on the GOTO statement:

• At least one executable statement must follow a label.

• The target label must be in the same scope as the GOTO statement.

• The target label must be in the same part of the PL/SQL block as the GOTO.

Contrary to popular opinion (including mine), the GOTO statement can come in
handy. There are cases where a GOTO statement can simplify the logic in your pro-
gram. On the other hand, because PL/SQL provides so many different control con-
structs and modularization techniques, you can almost always find a better way to do
something than with a GOTO.

The NULL Statement
Usually when you write a statement in a program, you want it to do something. There
are cases, however, when you want to tell PL/SQL to do absolutely nothing, and that
is where the NULL statement comes in handy. The NULL statement has the following
format:

NULL;

Well, you wouldn’t want a do-nothing statement to be complicated, would you? The
NULL statement is simply the reserved word NULL followed by a semicolon (;) to
indicate that this is a statement and not a NULL value. The NULL statement does
nothing except pass control to the next executable statement.

Why would you want to use the NULL statement? There are several reasons, described
in the following sections.

98 | Chapter 4: Conditional and Sequential Control

Download at WoweBook.Com

Improving Program Readability
Sometimes, it’s helpful to avoid any ambiguity inherent in an IF statement that doesn’t
cover all possible cases. For example, when you write an IF statement, you do not have
to include an ELSE clause. To produce a report based on a selection, you can code:

IF :report_mgr.selection = 'DETAIL'
THEN
 exec_detail_report;
END IF;

What should the program be doing if the report selection is not 'DETAIL'? One might
assume that the program is supposed to do nothing. But because this is not explicitly
stated in the code, you are left to wonder if perhaps there was an oversight. If, on the
other hand, you include an explicit ELSE clause that does nothing, you state very
clearly, “Don’t worry, I thought about this possibility and I really want nothing to
happen:”

IF :report_mgr.selection = 'DETAIL'
THEN
 exec_detail_report;
ELSE
 NULL; -- Do nothing
END IF;

My example here was of an IF statement, but the same principle applies when writing
CASE statements and CASE expressions. Similarly, if you want to temporarily remove
all the code from a function or procedure, and yet still invoke that function or
procedure, you can use NULL as a placeholder. Otherwise, you cannot compile a
function or procedure without having any lines of code within it.

Using NULL After a Label
In some cases, you can pair NULL with GOTO to avoid having to execute additional
statements. Most of you will never have to use the GOTO statement; there are very few
occasions where it is truly needed. If you ever do use GOTO, however, you should
remember that when you GOTO a label, at least one executable statement must follow
that label. In the following example, I use a GOTO statement to quickly move to the
end of my program if the state of my data indicates that no further processing is
required:

PROCEDURE process_data (data_in IN orders%ROWTYPE,
 data_action IN VARCHAR2)
IS
 status INTEGER;
BEGIN
 -- First in series of validations.
 IF data_in.ship_date IS NOT NULL
 THEN
 status := validate_shipdate (data_in.ship_date);
 IF status != 0 THEN GOTO end_of_procedure; END IF;

The NULL Statement | 99

Download at WoweBook.Com

 END IF;

 -- Second in series of validations.
 IF data_in.order_date IS NOT NULL
 THEN
 status := validate_orderdate (data_in.order_date);
 IF status != 0 THEN GOTO end_of_procedure; END IF;
 END IF;

 ... more validations ...

 <<end_of_procedure>>
 NULL;
END;

With this approach, if I encounter an error in any single section, I use the GOTO to
bypass all remaining validation checks. Because I do not have to do anything at the
termination of the procedure, I place a NULL statement after the label because at least
one executable statement is required there. Even though NULL does nothing, it is still
an executable statement.

100 | Chapter 4: Conditional and Sequential Control

Download at WoweBook.Com

CHAPTER 5

Iterative Processing with Loops

This chapter explores the iterative control structures of PL/SQL, otherwise known as
loops, which let you execute the same code repeatedly. It also describes the CON-
TINUE statement, introduced for loops in Oracle Database 11g. PL/SQL provides three
different kinds of loop constructs:

• The simple or infinite loop

• The FOR loop (numeric and cursor)

• The WHILE loop

Each type of loop is designed for a specific purpose with its own nuances, rules for use,
and guidelines for high-quality construction. As I explain each loop, I’ll provide a table
describing the following properties of the loop:

Property Description

How the loop is terminated A loop executes code repetitively. How do you make the loop stop executing its body?

When the test for termination
takes place

Does the test for termination take place at the beginning or end of the loop? What are the
consequences?

Reason to use this loop What are the special factors you should consider to determine if this loop is right for your
situation?

Loop Basics
Why are there three different kinds of loops? To provide you with the flexibility you
need to write the most straightforward code to handle any particular situation. Most
situations that require a loop could be written with any of the three loop constructs. If
you do not pick the construct that is best suited for that particular requirement, how-
ever, you could end up having to write many additional lines of code The resulting
module would also be harder to understand and maintain.

101

Download at WoweBook.Com

Examples of Different Loops
To give you a feeling for the way the different loops solve their problems in different
ways, consider the following three procedures. In each case, the procedure makes a call
to display_total_sales for a particular year, for each year number between the start and
end argument values.

The simple loop
It’s called simple for a reason: it starts simply with the LOOP keyword and ends
with the END LOOP statement. The loop will terminate if you execute an EXIT,
EXIT WHEN, or RETURN within the body of the loop (or if an exception is raised):

/* File on web: loop_examples.sql
PROCEDURE display_multiple_years (
 start_year_in IN PLS_INTEGER
 ,end_year_in IN PLS_INTEGER
)
IS
 l_current_year PLS_INTEGER := start_year_in;
BEGIN
 LOOP
 EXIT WHEN l_current_year > end_year_in;
 display_total_sales (l_current_year);
 l_current_year := l_current_year + 1;
 END LOOP;
END display_multiple_years;

The FOR loop
Oracle offers a numeric and cursor FOR loop. With the numeric FOR loop, you
specify the start and end integer values, and PL/SQL does the rest of the work for
you, iterating through each intermediate value, and then terminating the loop:

/* File on web: loop_examples.sql
PROCEDURE display_multiple_years (
 start_year_in IN PLS_INTEGER
 ,end_year_in IN PLS_INTEGER
)
 IS
 BEGIN
 FOR l_current_year IN start_year_in .. end_year_in
 LOOP
 display_total_sales (l_current_year);
 END LOOP;
 END display_multiple_years;

The cursor FOR loop has the same basic structure, but in this case you supply an
explicit cursor or SELECT statement in place of the low-high integer range:

/* File on web: loop_examples.sql
PROCEDURE display_multiple_years (
 start_year_in IN PLS_INTEGER
 ,end_year_in IN PLS_INTEGER
)
 IS

102 | Chapter 5: Iterative Processing with Loops

Download at WoweBook.Com

 BEGIN
 FOR l_current_year IN (
 SELECT * FROM sales_data
 WHERE year BETWEEN start_year_in AND end_year_in)
 LOOP
 -- This procedure is now accepted a record implicitly declared
 -- to be of type sales_data%ROWTYPE...
 display_total_sales (l_current_year);
 END LOOP;
 END display_multiple_years;

The WHILE loop
The WHILE loop is very similar to the simple loop; a critical difference is that it
checks the termination condition up front. It may not even execute its body a single
time:

/* File on web: loop_examples.sql
PROCEDURE display_multiple_years (
 start_year_in IN PLS_INTEGER
 ,end_year_in IN PLS_INTEGER
)
IS
 l_current_year PLS_INTEGER := start_year_in;
BEGIN
 WHILE (l_current_year <= end_year_in)
 LOOP
 display_total_sales (l_current_year);
 l_current_year := l_current_year + 1;
 END LOOP;
END display_multiple_years;

In this section, the FOR loop clearly requires the smallest amount of code. Yet I could
use it in this case only because I knew that I would run the body of the loop a specific
number of times. In many other situations, the number of times a loop must execute
varies, so the FOR loop cannot be used.

Structure of PL/SQL Loops
While there are differences among the three loop constructs, every loop has two parts:
the loop boundary and the loop body:

Loop boundary
This is composed of the reserved words that initiate the loop, the condition that
causes the loop to terminate, and the END LOOP statement that ends the loop.

Loop body
This is the sequence of executable statements inside the loop boundary that execute
on each iteration of the loop.

Figure 5-1 shows the boundary and body of a WHILE loop.

Loop Basics | 103

Download at WoweBook.Com

In general, think of a loop much as you would a procedure or a function. The body of
the loop is a black box, and the condition that causes loop termination is the interface
to that black box. Code outside the loop should not have to know about the inner
workings of the loop. Keep this in mind as you go through the different kinds of loops
and examples in the rest of the chapter.

The Simple Loop
The structure of the simple loop is the most basic of all the loop constructs. It consists
of the LOOP keyword, the body of executable code, and the END LOOP keywords,
as shown here:

LOOP
 executable statement(s)
END LOOP;

The loop boundary consists solely of the LOOP and END LOOP reserved words. The
body must consist of at least one executable statement. The following table summarizes
the properties of the simple loop:

Property Description

How the loop is terminated The simple loop is terminated when an EXIT statement is executed in the body of the loop. If
this statement is not executed, the simple loop becomes a true infinite loop.

When the test for
termination takes place

The test takes place inside the body of the loop, and then only if an EXIT or EXIT WHEN statement
is executed. Therefore, the body—or part of the body—of the simple loop always executes
at least once.

Reason to use this loop Use the simple loop when:

• You are not sure how many times you want the loop to execute.

• You want the loop to run at least once.

This loop is useful when you want to guarantee that the body (or at least part of the
body) will execute at least one time. Because there is no condition associated with the
loop boundary that determines whether or not it should execute, the body of the loop
will always execute the first time.

Figure 5-1. The boundary and body of the WHILE loop

104 | Chapter 5: Iterative Processing with Loops

Download at WoweBook.Com

The simple loop will terminate only when an EXIT (or its close cousin, EXIT WHEN)
statement is executed in its body, or when an exception is raised (and goes unhandled)
within the body of the loop.

Terminating a Simple Loop: EXIT and EXIT WHEN
Unless you want your loop to run “forever,” you can put an EXIT or EXIT WHEN
statement within the body of the loop. The syntax for these statements is as follows:

EXIT;
EXIT WHEN condition;

where condition is a Boolean expression.

The following example demonstrates how the EXIT forces the loop to immediately halt
execution and pass control to the next statement after the END LOOP statement. The
account_balance procedure returns the amount of money remaining in the account
specified by the account ID. If there is less than $1,000 left, the EXIT statement is
executed, and the loop is terminated. Otherwise, the program applies the balance to
the outstanding orders for that account.

LOOP
 balance_remaining := account_balance (account_id);
 IF balance_remaining < 1000
 THEN
 EXIT;
 ELSE
 apply_balance (account_id, balance_remaining);
 END IF;
END LOOP;

You can use an EXIT statement only within a LOOP.

PL/SQL also offers the EXIT WHEN statement, which supports conditional termina-
tion of the loop. Essentially, the EXIT WHEN combines an IF-THEN statement with
the EXIT statement. Using the same example, the EXIT WHEN changes the loop to:

LOOP
 /* Calculate the balance */
 balance_remaining := account_balance (account_id);

 /* Embed the IF logic into the EXIT statement */
 EXIT WHEN balance_remaining < 1000;

 /* Apply balance if still executing the loop */
 apply_balance (account_id, balance_remaining);
END LOOP;

Notice that the second form doesn’t require an IF statement to determine when it
should exit. Instead, that conditional logic is embedded inside the EXIT WHEN
statement.

The Simple Loop | 105

Download at WoweBook.Com

So when should you use EXIT WHEN, and when is the stripped-down EXIT more
appropriate?

• EXIT WHEN is best used when there is a single conditional expression that de-
termines whether or not a loop should terminate. The previous example demon-
strates this scenario clearly.

• In situations with multiple conditions for exiting or when you need to set a “return
value” coming out of the loop based on different conditions, you are probably
better off using an IF or CASE statement, with EXIT statements in one or more of
the clauses.

The following example demonstrates a preferred use of EXIT. It is taken from a function
that determines if two files are equal (i.e., contain the same content):

 ...
 IF (end_of_file1 AND end_of_file2)
 THEN
 retval := TRUE;
 EXIT;
 ELSIF (checkline != againstline)
 THEN
 retval := FALSE;
 EXIT;
 ELSIF (end_of_file1 OR end_of_file2)
 THEN
 retval := FALSE;
 EXIT;
 END IF;
END LOOP;

Emulating a REPEAT UNTIL Loop
PL/SQL does not provide a REPEAT UNTIL loop in which the condition is tested after
the body of the loop is executed and thus guarantees that the loop always executes at
least once. You can, however, emulate a REPEAT UNTIL with a simple loop, as follows:

LOOP
 ... body of loop ...
 EXIT WHEN boolean_condition;
END LOOP;

where boolean_condition is a Boolean variable or an expression that evaluates to a
Boolean value of TRUE or FALSE (or NULL).

The Intentionally Infinite Loop
Some programs, such as system monitoring tools, are not designed to be executed on
demand but should always be running. In such cases, you may actually want to use an
infinite loop:

106 | Chapter 5: Iterative Processing with Loops

Download at WoweBook.Com

LOOP
 data_gathering_procedure;
END LOOP;

Here, data_gathering_procedure goes out and, um, gathers data about the system. As
anyone who has accidentally run such an infinite loop can attest, it’s likely that the loop
will consume large portions of the CPU. The solution for this, in addition to ensuring
that your data gathering is performed as efficiently as possible, is to pause between
iterations.

LOOP
data_gathering_procedure;
 DBMS_LOCK.sleep(10); -- do nothing for 10 seconds
END LOOP;

During the sleep period, the program uses virtually no cycles.

Terminating an Intentionally Infinite Loop
As a practical matter, there will be times when you really do want to terminate inten-
tionally infinite loops. If you’re just working on an anonymous block in SQL*Plus,
typing the terminal interrupt sequence (usually Ctrl-C) will probably do the job. But
real programs generally run as stored procedures, and even killing the process that
submitted the program (such as SQL*Plus) won’t stop the background task. Aha, you
say, what about ALTER SYSTEM KILL SESSION? Nice idea, but in some versions of
the Oracle database this command doesn’t actually kill sessions that are stuck in a loop
(go figure).

So how can you put an executing program to sleep—permanently?

You may have to resort to operating system-level tools such as kill in Unix/Linux and
orakill.exe in Microsoft Windows. These commands require you to discover the system
process ID of the Oracle “shadow task,” which is not hard if you have privileges to read
V$SESSION and V$PROCESS views. But, even if the inelegance isn’t an issue for you,
your conscience could bother you for another reason: if you’re running in shared server
mode, you will probably end up killing other sessions as well. The best solution that
I’ve come up with is to insert into the loop a kind of “command interpreter” that uses
the database’s built-in interprocess communication, known as a database pipe:

DECLARE
 pipename CONSTANT VARCHAR2(12) := 'signaler';
 result INTEGER;
 pipebuf VARCHAR2(64);
BEGIN
 /* create private pipe with a known name */
 result := DBMS_PIPE.create_pipe(pipename);

 LOOP
 data_gathering_procedure;
 DBMS_LOCK.sleep(10);

 /* see if there is a message on the pipe */
 IF DBMS_PIPE.receive_message(pipename, 0) = 0
 THEN

The Simple Loop | 107

Download at WoweBook.Com

 /* interpret the message and act accordingly */
 DBMS_PIPE.unpack_message(pipebuf);
 EXIT WHEN pipebuf = 'stop';
 END IF;
 END LOOP;
END;

The DBMS_PIPE calls should have little impact on the overall CPU load.

A simple companion program can then kill the looping program by sending a “stop”
message down the pipe:

DECLARE
 pipename VARCHAR2(12) := 'signaler';
 result INTEGER := DBMS_PIPE.create_pipe(pipename);
BEGIN
 DBMS_PIPE.pack_message('stop');
END;

You can also send other commands down the pipe—for example, a command to in-
crease or decrease the sleep interval. By the way, this example uses a private pipe, so
the stop message needs to be sent by the same user account that is running the infinite
loop. Also note that the database’s namespace for private pipes is global across all
sessions that the current user is running. So, if you want to have more than one program
running the infinite loop, you need some extra logic to (1) create pipe names that are
unique across sessions; and (2) determine the correct pipe name(s) through which you
want to send the stop command.

The WHILE Loop
The WHILE loop is a conditional loop that continues to execute as long as the Boolean
condition defined in the loop boundary evaluates to TRUE. Because the WHILE loop
execution depends on a condition and is not fixed, you should use a WHILE loop if
you don’t know in advance the number of times a loop must execute.

Here is the general syntax for the WHILE loop:

WHILE condition
LOOP
 executable statement(s)
END LOOP;

where condition is a Boolean variable or an expression that evaluates to a Boolean value
of TRUE, FALSE, or NULL. Each time an iteration of the loop’s body is executed, the
condition is checked. If it evaluates to TRUE, then the body is executed. If it evaluates
to FALSE or NULL, then the loop terminates, and control passes to the next executable
statement following the END LOOP statement.

The following table summarizes the properties of the WHILE loop:

108 | Chapter 5: Iterative Processing with Loops

Download at WoweBook.Com

Property Description

How the loop is terminated The WHILE loop terminates when the Boolean expression in its boundary evaluates to FALSE
or NULL.

When the test for
termination takes place

The test for termination of a WHILE loop takes place in the loop boundary. This evaluation
occurs prior to the first and each subsequent execution of the body. The WHILE loop, therefore,
is not guaranteed to execute its loop even a single time.

Reason to use this loop Use the WHILE loop when:

• You are not sure how many times you must execute the loop body.

• You will want to conditionally terminate the loop.

• You don’t have to execute the body at least one time.

The WHILE loop’s condition is tested at the beginning of the loop’s iteration, before
the body of the loop is executed. There are two consequences to this preexecution test:

• All the information needed to evaluate the condition must be set before the loop
is executed for the first time.

• It is possible that the WHILE loop will not execute even a single time.

Here is an example of a WHILE loop from the datemgr.pkg file available on the book’s
web site. It shows a boundary condition consisting of a complex Boolean expression.
There are two reasons for the WHILE loop to stop: either I have run out of date masks
to attempt a conversion, or I have successfully performed a conversion (and
date_converted is now TRUE):

/* File on web: datemgr.pkg */
WHILE mask_index <= mask_count AND NOT date_converted
LOOP
 BEGIN
 /* Try to convert string using mask in table row */
 retval := TO_DATE (value_in, fmts (mask_index));
 date_converted := TRUE;
 EXCEPTION
 WHEN OTHERS
 THEN
 mask_index:= mask_index+ 1;
 END;
END LOOP;

The Numeric FOR Loop
There are two kinds of PL/SQL FOR loops: the numeric FOR loop and the cursor FOR
loop. The numeric FOR loop is the traditional and familiar “counted” loop. The num-
ber of iterations of the FOR loop is known when the loop starts; it is specified in the
range scheme found between the FOR and LOOP keywords in the boundary.

The Numeric FOR Loop | 109

Download at WoweBook.Com

The range scheme implicitly declares the loop index (if it has not already been declared),
specifies the start and end points of the range, and optionally dictates the order in which
the loop index proceeds (from lowest to highest or highest to lowest).

Here is the general syntax of the numeric FOR loop:

FOR loop index IN [REVERSE] lowest number .. highest number
LOOP
 executable statement(s)
END LOOP;

You must have at least one executable statement between the LOOP and END LOOP
keywords.

The following table summarizes the properties of the numeric FOR loop:

Property Description

How the loop is
terminated

The numeric FOR loop terminates unconditionally when the number of times specified in its range
scheme has been satisfied. You can also terminate the loop with an EXIT statement, but this is not
recommended.

When the test for termi-
nation takes place

After each execution of the loop body, PL/SQL increments (or decrements if REVERSE is specified) the
loop index and then checks its value. When it exceeds the upper bound of the range scheme, the
loop terminates. If the lower bound is greater than the upper bound of the range scheme, the loop
never executes its body.

Reason to use this loop Use the numeric FOR loop when you want to execute a body of code a fixed number of times and do
not want to halt that looping prematurely.

Rules for Numeric FOR Loops
Follow these rules when you use numeric FOR loops:

• Do not declare the loop index. PL/SQL automatically and implicitly declares it as
a local variable with datatype INTEGER. The scope of this index is the loop itself;
you cannot reference the loop index outside the loop.

• Expressions used in the range scheme (both for lowest and highest bounds) are
evaluated once, when the loop starts. The range is not reevaluated during the ex-
ecution of the loop. If you make changes within the loop to the variables that you
used to determine the FOR loop range, those changes will have no effect.

• Never change the values of either the loop index or the range boundary from within
the loop. This is an extremely bad programming practice. PL/SQL will either pro-
duce a compile error or ignore your instructions; in either case, you’ll have
problems.

• Use the REVERSE keyword to force the loop to decrement from the upper bound
to the lower bound. You must still make sure that the first value in the range spec-
ification (the lowest number in lowest number .. highest number) is less than the

110 | Chapter 5: Iterative Processing with Loops

Download at WoweBook.Com

second value. Do not reverse the order in which you specify these values when you
use the REVERSE keyword.

Examples of Numeric FOR Loops
These examples demonstrate some variations of the numeric FOR loop syntax:

• The loop executes 10 times; loop_counter starts at 1 and ends at 10:

FOR loop_counter IN 1 .. 10
LOOP
 ... executable statements ...
END LOOP;

• The loop executes 10 times; loop_counter starts at 10 and ends at 1:

FOR loop_counter IN REVERSE 1 .. 10
LOOP
 ... executable statements ...
END LOOP;

• Here is a loop that doesn’t execute even once. I specified REVERSE, so the loop
index, loop_counter, will start at the highest value and end with the lowest. I then
mistakenly concluded that I should switch the order in which I list the highest and
lowest bounds:

FOR loop_counter IN REVERSE 10 .. 1
LOOP
 /* This loop body will never execute even once! */
 ... executable statements ...
END LOOP;

Even when you specify a REVERSE direction, you must still list the lowest bound
before the highest bound. If the first number is greater than the second number,
the body of the loop will not execute at all. If the lowest and highest bounds have
the same value, the loop will execute just once.

• The loop executes for a range determined by the values in the variable and
expression:

FOR calc_index IN start_period_number ..
 LEAST (end_period_number, current_period)
LOOP
 ... executable statements ...
END LOOP;

In this example, the number of times the loop will execute is determined at runtime.
The boundary values are evaluated once, before the loop executes, and then applied
for the duration of loop execution.

The Numeric FOR Loop | 111

Download at WoweBook.Com

Handling Nontrivial Increments
PL/SQL does not provide a “step” syntax whereby you can specify a particular loop
index increment. In all variations of the PL/SQL numeric FOR loop, the loop index is
always incremented or decremented by one.

If you have a loop body that you want executed for a nontrivial increment (something
other than one), you will have to write some cute code. For example, what if you want
your loop to execute only for even numbers between 1 and 100? You can make use of
the numeric MOD function, as follows:

FOR loop_index IN 1 .. 100
LOOP
 IF MOD (loop_index, 2) = 0
 THEN
 /* We have an even number, so perform calculation */
 calc_values (loop_index);
 END IF;
END LOOP;

Or you can use simple multiplication inside a loop with half the iterations:

FOR even_number IN 1 .. 50
LOOP
 calc_values (even_number*2);
END LOOP;

In both cases, the calc_values procedure executes only for even numbers. In the first
example, the FOR loop executes 100 times; in the second example, it executes only 50
times.

Whichever approach you decide to take, be sure to document this kind of technique
clearly. You are, in essence, manipulating the numeric FOR loop to do something for
which it is not designed. Comments would be very helpful for the maintenance pro-
grammer who has to understand why you would code something like that.

The Cursor FOR Loop
A cursor FOR loop is a loop that is associated with (and actually defined by) an explicit
cursor or a SELECT statement incorporated directly within the loop boundary. Use
the cursor FOR loop only if you need to fetch and process each and every record from
a cursor, which is often the case with cursors.

The cursor FOR loop is one of my favorite PL/SQL features. It leverages fully the tight
and effective integration of the procedural constructs with the power of the SQL data-
base language. It reduces the volume of code you need to write to fetch data from a
cursor. It greatly lessens the chance of introducing loop errors in your programming—
and loops are one of the more error-prone parts of a program. Does this loop sound
too good to be true? Well, it isn’t—it’s all true!

112 | Chapter 5: Iterative Processing with Loops

Download at WoweBook.Com

Here is the basic syntax of a cursor FOR loop:

FOR record IN { cursor_name | (explicit SELECT statement) }
LOOP
 executable statement(s)
END LOOP;

where record is a record declared implicitly by PL/SQL with the %ROWTYPE attribute
against the cursor specified by cursor_name.

Don’t declare a record explicitly with the same name as the loop index
record. It is not needed (PL/SQL declares one for its use within the loop
implicitly) and can lead to logic errors. For tips on accessing information
about a cursor FOR loop’s record outside or after loop execution, see
“Obtaining Information About FOR Loop Execution” on page 121.

You can also embed a SELECT statement directly in the cursor FOR loop, as shown in
this example:

FOR book_rec IN (SELECT * FROM books)
LOOP
 show_usage (book_rec);
END LOOP;

You should, however, avoid this formulation because it results in the embedding of
SELECT statements in “unexpected” places in your code, making it more difficult to
maintain and enhance your logic.

The following table summarizes the properties of the cursor FOR loop where record is
a record declared implicitly by PL/SQL with the %ROWTYPE attribute against the
cursor specified by cursor_name:

Property Description

How the loop is terminated The cursor FOR loop terminates unconditionally when all of the records in the associated cursor
have been fetched. You can also terminate the loop with an EXIT statement, but this is not
recommended.

When the test for
termination takes place

After each execution of the loop body, PL/SQL performs another fetch. If the %NOTFOUND
attribute of the cursor evaluates to TRUE, then the loop terminates. If the cursor returns no
rows, then the loop never executes its body.

Reason to use this loop Use the cursor FOR loop when you want to fetch and process every record in a cursor.

You should use a cursor FOR loop whenever you need to unconditionally fetch all rows
from a cursor (i.e., there are no EXITs or EXIT WHENs inside the loop that cause early
termination). Let’s take a look at how you can use the cursor FOR loop to streamline
your code and reduce opportunities for error.

The Cursor FOR Loop | 113

Download at WoweBook.Com

Example of Cursor FOR Loops
Suppose I need to update the bills for all pets staying in my pet hotel, the Share-a-Din-
Din Inn. The following example contains an anonymous block that uses a cursor,
occupancy_cur, to select the room number and pet ID number for all occupants of the
Inn. The procedure update_bill adds any new changes to that pet’s room charges:

 1 DECLARE
 2 CURSOR occupancy_cur IS
 3 SELECT pet_id, room_number
 4 FROM occupancy WHERE occupied_dt = TRUNC (SYSDATE);
 5 occupancy_rec occupancy_cur%ROWTYPE;
 6 BEGIN
 7 OPEN occupancy_cur;
 8 LOOP
 9 FETCH occupancy_cur INTO occupancy_rec;
10 EXIT WHEN occupancy_cur%NOTFOUND;
11 update_bill
12 (occupancy_rec.pet_id, occupancy_rec.room_number);
13 END LOOP;
14 CLOSE occupancy_cur;
15 END;

This code leaves nothing to the imagination. In addition to defining the cursor (line 2),
you must explicitly declare the record for the cursor (line 5), open the cursor (line 7),
start up an infinite loop (line 8), fetch a row from the cursor set into the record (line
9), check for an end-of-data condition with the %NOTFOUND cursor attribute (line
10), and finally perform the update (line 11). When you are all done, you have to
remember to close the cursor (line 14).

If I convert this PL/SQL block to use a cursor FOR loop, then I have:

DECLARE
 CURSOR occupancy_cur IS
 SELECT pet_id, room_number
 FROM occupancy WHERE occupied_dt = TRUNC (SYSDATE);
BEGIN
 FOR occupancy_rec IN occupancy_cur
 LOOP
 update_bill (occupancy_rec.pet_id, occupancy_rec.room_number);
 END LOOP;
END;

Here you see the beautiful simplicity of the cursor FOR loop! Gone is the declaration
of the record. Gone are the OPEN, FETCH, and CLOSE statements. Gone is the need
to check the %NOTFOUND attribute. Gone are the worries of getting everything right.
Instead, you say to PL/SQL, in effect:

You and I both know that I want each row, and I want to dump that row into a record
that matches the cursor. Take care of that for me, will you?

And PL/SQL does take care of it, just the way any modern programming language
should.

114 | Chapter 5: Iterative Processing with Loops

Download at WoweBook.Com

As with all other cursors, you can pass parameters to the cursor in a cursor FOR loop.
If any of the columns in the select list of the cursor is an expression, remember that you
must specify an alias for that expression in the select list. Within the loop, the only way
to access a particular value in the cursor record is with the dot notation
(record_name.column_name, as in occupancy_rec.room_number), so you need a col-
umn name associated with the expression.

For more information about working with cursors in PL/SQL, check out Chapter 15.

Loop Labels
You can give a name to a loop by using a label. (I introduced labels in Chapter 3.) A
loop label in PL/SQL has the following format:

<<label_name>>

where label_name is the name of the label, and that loop label appears immediately
before the LOOP statement:

<<all_emps>>
FOR emp_rec IN emp_cur
LOOP
 ...
END LOOP;

The label can also appear optionally after the END LOOP reserved words, as the fol-
lowing example demonstrates:

<<year_loop>>
WHILE year_number <= 1995
LOOP

 <<month_loop>>
 FOR month_number IN 1 .. 12
 LOOP
 ...
 END LOOP month_loop;
 year_number := year_number + 1;

END LOOP year_loop;

The loop label is potentially useful in several ways:

• When you have written a loop with a large body (say one that starts at line 50, ends
on line 725, and has 16 nested loops inside it), use a loop label to tie the end of the
loop back explicitly to its start. This visual tag will make it easier for a developer
to maintain and debug the program. Without the loop label, it can be very difficult
to keep track of which LOOP goes with which END LOOP.

• You can use the loop label to qualify the name of the loop indexing variable (either
a record or a number). Again, this can be helpful for readability. Here is an example:

Loop Labels | 115

Download at WoweBook.Com

<<year_loop>>
FOR year_number IN 1800..1995
LOOP
 <<month_loop>>
 FOR month_number IN 1 .. 12
 LOOP
 IF year_loop.year_number = 1900 THEN ... END IF;
 END LOOP month_loop;
END LOOP year_loop;

• When you have nested loops, you can use the label both to improve readability
and to increase control over the execution of your loops. You can, in fact, stop the
execution of a specific named outer loop by adding a loop label after the EXIT
keyword in the EXIT statement of a loop, as follows:

EXIT loop_label;
EXIT loop_label WHEN condition;

While it is possible to use loop labels in this fashion, I recommend that you avoid
it. It leads to very unstructured logic (quite similar to GOTOs) that is hard to debug.
If you feel that you need to insert code like this, you should consider restructuring
your loop, and possibly switching from a FOR loop to a simple or WHILE loop.

The CONTINUE Statement
Oracle Database 11g offers a new feature for loops: the CONTINUE statement. Use
this statement to exit the current iteration of a loop, and immediately continue on to
the next iteration of that loop. This statement comes in two forms, just like EXIT: the
unconditional CONTINUE and the conditional CONTINUE WHEN.

Here is a simple example of using CONTINUE WHEN to skip over loop body execu-
tion for even numbers:

BEGIN
 FOR l_index IN 1 .. 10
 LOOP
 CONTINUE WHEN MOD (l_index, 2) = 0;
 DBMS_OUTPUT.PUT_LINE ('Loop index = ' || TO_CHAR (l_index));
 END LOOP;
END;
/

The output is:

Loop index = 1
Loop index = 3
Loop index = 5
Loop index = 7
Loop index = 9

Of course, you can achieve the same effect with an IF statement, but CONTINUE may
offer a more elegant and straightforward way to express the logic you need to
implement.

116 | Chapter 5: Iterative Processing with Loops

Download at WoweBook.Com

CONTINUE is likely to come in handy mostly when you need to perform “surgery”
on existing code, make some very targeted changes, and then immediately exit the loop
body to avoid side effects.

You can also use CONTINUE to terminate an inner loop and continue immediately
on to the next iteration of an outer loop’s body. To do this, you will need to give names
to your loops using labels. Here is an example:

BEGIN
 <<outer>>
 FOR outer_index IN 1 .. 5
 LOOP
 DBMS_OUTPUT.PUT_LINE (
 'Outer index = ' || TO_CHAR (outer_index));

 <<inner>>
 FOR inner_index IN 1 .. 5
 LOOP
 DBMS_OUTPUT.PUT_LINE (
 ' Inner index = ' || TO_CHAR (inner_index));
 CONTINUE outer;
 END LOOP inner;
 END LOOP outer;
END;
/

The output is:

Outer index = 1
 Inner index = 1
Outer index = 2
 Inner index = 1
Outer index = 3
 Inner index = 1
Outer index = 4
 Inner index = 1
Outer index = 5
 Inner index = 1

Is CONTINUE as Bad as GOTO?
When I first learned about the CONTINUE statement, my instinctive reaction was that
it represented another form of unstructured transfer of control, similar to GOTO, and
should therefore be avoided whenever possible (I’d been doing just fine without it for
years!). Charles Wetherell, a senior member of the PL/SQL development team, set me
straight as follows:

“From a long time ago (the era of Dijkstra’s ‘goto’ letter), exit and continue were dis-
cussed and understood to be structured transfers of control. Indeed, exit was directly
recognized in one of Knuth’s major programming language papers as a way to leave
politely from a computation that you needed to abandon.

“Böhm and Jacopini proved that any program that uses any arbitrary synchronous
control element (think of loop or goto) could be rewritten using only while loops, if

The CONTINUE Statement | 117

Download at WoweBook.Com

statements, and Boolean variables in a completely structured way. Furthermore, the
transformation between the bad unstructured version and the good structured version
of a program could be automated. That’s the good news. The bad news is that the new
‘good’ program might be exponentially larger than the old program because of the need
to introduce many Booleans and the need to copy code into multiple if statement arms.
In practice, real programs do not experience this exponential explosion. But one often
sees ‘cut-and-paste’ code copies to simulate the effects of continue and exit. ‘Cut-and-
paste’ causes maintenance headaches because if a change is needed, the programmer
must remember to make a change in every copy of the pasted code.

“The continue statement is valuable because it makes code shorter, makes code easier
to read, and reduces the need for Boolean variables whose exact meaning can be hard
to decipher. The most common use is a loop where the exact processing that each item
needs depends on detailed structural tests of the item. The skeleton of a loop might
look like this; notice that it contains an exit to decide when enough items have been
processed. Also notice that the last continue (after condition5) is not strictly necessary.
But by putting a continue after each action, it is easy to add more actions in any order
without breaking any other actions.

LOOP
 EXIT WHEN exit_condition_met;
 CONTINUE WHEN condition1;
 CONTINUE WHEN condition2;
 setup_steps_here;

 IF condition4 THEN
 action4_executed;
 CONTINUE;
 END IF;

 IF condition5 THEN
 action5_executed;
 CONTINUE; -- Not strictly required.
 END IF;
END LOOP;

“Without continue, I would have to implement the loop body like this:

LOOP
 EXIT WHEN exit_condition_met;

 IF condition1
 THEN
 NULL;
 ELSIF condition2
 THEN
 NULL;
 ELSE
 setup_steps_here;

 IF condition4 THEN
 action4_executed;
 ELSIF condition5 THEN
 action5_executed;
 END IF;

118 | Chapter 5: Iterative Processing with Loops

Download at WoweBook.Com

 END IF;
END LOOP;

“Even with this simple example, continue avoids numerous elsif clauses, reduces nest-
ing, and shows clearly which Boolean tests (and associated processing) are on the same
level. In particular, the nesting depth is much less when continue is used. PL/SQL
programmers can definitely write better code once they understand and use continue
correctly.”

Tips for Iterative Processing
Loops are very powerful and useful constructs, but they are structures that you should
use with care. Performance issues within a program often are traced back to loops, and
any problem within a loop is magnified by its repeated execution. The logic determining
when to stop a loop can be very complex. This section offers some tips on how to write
loops that are clean, easy to understand, and easy to maintain.

Use Understandable Names for Loop Indexes
Software programmers should not have to make Sherlock Holmes-like deductions
about the meaning of the start and end range values of the innermost FOR loops in
order to understand their purpose. Use names that self-document the purposes of var-
iables and loops. That way, other people will understand your code, and you will re-
member what your own code does when you review it three months later.

How would you like to try to understand—much less maintain—code that looks like
this?

FOR i IN start_id .. end_id
LOOP
 FOR j IN 1 .. 7
 LOOP
 FOR k IN 1 .. 24
 LOOP
 build_schedule (i, j, k);
 END LOOP;
 END LOOP;
END LOOP;

It is hard to imagine that someone would write code based on such generic integer
variable names (right out of Algebra 101), yet it happens all the time. The habits we
pick up in our earliest days of programming have an incredible half-life. Unless you are
constantly vigilant, you will find yourself writing the most abominable code. In the case
above, the solution is simple—use variable names for the loop indexes that are mean-
ingful and therefore self-documenting:

FOR focus_account IN start_id .. end_id
LOOP
 FOR day_in_week IN 1 .. 7

Tips for Iterative Processing | 119

Download at WoweBook.Com

 LOOP
 FOR month_in_biyear IN 1 .. 24
 LOOP
 build_schedule (focus_account, day_in_week, month_in_biyear);
 END LOOP;
 END LOOP;
END LOOP;

Now that I have provided descriptive names for those index variables, I discover that
the innermost loop actually spanned two sets of twelve months (12 × 2 = 24).

The Proper Way to Say Goodbye
One important and fundamental principle in structured programming is “one way in,
one way out;” that is, a program should have a single point of entry and a single point
of exit. A single point of entry is not an issue with PL/SQL: no matter what kind of loop
you are using, there is always only one entry point into the loop—the first executable
statement following the LOOP keyword. It is quite possible, however, to construct
loops that have multiple exit paths. Avoid this practice. Having multiple ways of ter-
minating a loop results in code that is much harder to debug and maintain.

In particular, you should follow these guidelines for loop termination:

• Do not use EXIT or EXIT WHEN statements within FOR and WHILE loops. You
should use a FOR loop only when you want to iterate through all the values (integer
or record) specified in the range. An EXIT inside a FOR loop disrupts this process
and subverts the intent of that structure. A WHILE loop, on the other hand, speci-
fies its termination condition in the WHILE statement itself.

• Do not use the RETURN or GOTO statements within a loop—again, these cause
the premature, unstructured termination of the loop. It can be tempting to use
these constructs because in the short run they appear to reduce the amount of time
spent writing code. In the long run, however, you (or the person left to clean up
your mess) will spend more time trying to understand, enhance, and fix your code
over time.

Let’s look at an example of loop termination issues with the cursor FOR loop. As you
have seen, the cursor FOR loop offers many advantages when you want to loop through
all of the records returned by a cursor. This type of loop is not appropriate, however,
when you need to apply conditions to each fetched record to determine if you should
halt execution of the loop. Suppose that you need to scan through each record from a
cursor and stop when a total accumulation of a column (like the number of pets) ex-
ceeds a maximum, as shown in the following code. Although you can do this with a
cursor FOR loop by issuing an EXIT statement inside the loop, it’s an inappropriate
use of this construct:

 1 DECLARE
 2 CURSOR occupancy_cur IS
 3 SELECT pet_id, room_number

120 | Chapter 5: Iterative Processing with Loops

Download at WoweBook.Com

 4 FROM occupancy WHERE occupied_dt = TRUNC (SYSDATE);
 5 pet_count INTEGER := 0;
 6 BEGIN
 7 FOR occupancy_rec IN occupancy_cur
 8 LOOP
 9 update_bill
10 (occupancy_rec.pet_id, occupancy_rec.room_number);
11 pet_count := pet_count + 1;
12 EXIT WHEN pet_count >= pets_global.max_pets;
13 END LOOP;
14 END;

The FOR loop explicitly states: “I am going to execute the body of this loop n times”
(where n is a number in a numeric FOR loop, or the number of records in a cursor FOR
loop). An EXIT inside the FOR loop (line 12) short-circuits this logic. The result is code
that’s difficult to follow and debug.

If you need to terminate a loop based on information fetched by the cursor FOR loop,
you should use a WHILE loop or a simple loop in its place. Then the structure of the
code will more clearly state your intentions.

Obtaining Information About FOR Loop Execution
FOR loops are handy and concise constructs. They handle lots of the “administrative
work” in a program; this is especially true of cursor FOR loops. There is, however, a
tradeoff: by letting the database do so much of the work for you, you have limited access
to information about the end results of the loop after it has been terminated.

Suppose that I want to know how many records I processed in a cursor FOR loop and
then execute some logic based on that value. It would be awfully convenient to write
code like this:

BEGIN
 FOR book_rec IN books_cur (author_in => 'FEUERSTEIN,STEVEN')
 LOOP
 ... process data ...
 END LOOP;
 IF books_cur%ROWCOUNT > 10 THEN ...

but if I try it, I get the runtime error ORA-01001: invalid cursor. This makes sense,
because the cursor is implicitly opened and closed by the database. So how can you get
this information from a loop that is closed? You need to declare a variable in the block
housing that FOR loop, and then set its value inside the FOR loop so that you can
obtain the necessary information about the FOR loop after it has closed. This technique
is shown below:

DECLARE
 book_count PLS_INTEGER := 0;
BEGIN
 FOR book_rec IN books_cur (author_in => 'FEUERSTEIN,STEVEN')
 LOOP
 ... process data ...

Tips for Iterative Processing | 121

Download at WoweBook.Com

 book_count := books_cur%ROWCOUNT;
 END LOOP;
 IF book_count > 10 THEN ...

SQL Statement as Loop
You actually can think of a SQL statement such as SELECT as a loop. After all, such a
statement specifies an action to be taken on a set of data; the SQL engine then “loops
through” the data set and applies the action. In some cases, you will have a choice
between using a PL/SQL loop and a SQL statement to do the same or similar work.
Let’s look at an example and then draw some conclusions about how you can decide
which approach to take.

I need to write a program to move the information for pets who have checked out of
the pet hotel from the occupancy table to the occupancy_history table. As a seasoned
PL/SQL developer, I immediately settle on a cursor FOR loop. For each record fetched
(implicitly) from the cursor (representing a pet who has checked out), the body of the
loop first inserts a record into the occupancy_history table and then deletes the record
from the occupancy table:

DECLARE
 CURSOR checked_out_cur IS
 SELECT pet_id, name, checkout_date
 FROM occupancy WHERE checkout_date IS NOT NULL;
BEGIN
 FOR checked_out_rec IN checked_out_cur
 LOOP
 INSERT INTO occupancy_history (pet_id, name, checkout_date)
 VALUES (checked_out_rec.pet_id, checked_out_rec.name,
 checked_out_rec.checkout_date);
 DELETE FROM occupancy WHERE pet_id = checked_out_rec.pet_id;
 END LOOP;
END;

This code does the trick. But was it necessary to do it this way? I can express precisely
the same logic and get the same result with nothing more than an INSERT-SELECT
FROM followed by a DELETE, as shown here:

BEGIN
 INSERT INTO occupancy_history (pet_id, NAME, checkout_date)
 SELECT pet_id, NAME, checkout_date
 FROM occupancy WHERE checkout_date IS NOT NULL;
 DELETE FROM occupancy WHERE checkout_date IS NOT NULL;
END;

What are the advantages to this approach? I have written less code, and my code will
run more efficiently because I have reduced the number of “context switches” (moving
back and forth between the PL/SQL and SQL execution engines). I execute just a single
INSERT and a single DELETE.

122 | Chapter 5: Iterative Processing with Loops

Download at WoweBook.Com

There are, however, disadvantages to the 100% SQL approach. SQL statements are
generally all-or-nothing propositions. In other words, if any one of those individual
rows from occupancy_history fails, then the entire INSERT fails; no records are inserted
or deleted. Also, the WHERE clause had to be coded twice. Although not a significant
factor in this example, it may well be when substantially more complex queries are
involved. The initial cursor FOR loop thus obviated the need to potentially maintain
complex logic in multiple places.

PL/SQL offers more flexibility as well. Suppose, for example, that I want to transfer as
many of the rows as possible, and simply write a message to the error log for any
transfers of individual rows that fail. In this case, I really do need to rely on the cursor
FOR loop, but with the added functionality of an exception section:

BEGIN
 FOR checked_out_rec IN checked_out_cur
 LOOP
 BEGIN
 INSERT INTO occupancy_history ...
 DELETE FROM occupancy ...
 EXCEPTION
 WHEN OTHERS THEN
 log_checkout_error (checked_out_rec);
 END;
 END LOOP;
END;
;

PL/SQL offers the ability to access and process a single row at a time, and to take action
(and, perhaps, complex procedural logic based on the contents of that specific record).
When that’s what you need, use a blend of PL/SQL and SQL. If, on the other hand,
your requirements allow you to use native SQL, you will find that you can use less code
and that it will run more efficiently.

You can continue past errors in SQL statements in two other ways: (1)
use the LOG ERRORS clause with inserts, updates, and deletes in
Oracle Database 10g Release 2 and later; and (2) use the SAVE EXCEP-
TIONS clause in your FORALL statements. See Chapter 21 for more
details.

Tips for Iterative Processing | 123

Download at WoweBook.Com

Download at WoweBook.Com

CHAPTER 6

Exception Handlers

It is a sad fact of life that many programmers rarely take the time to properly bullet-
proof their programs. Instead, wishful thinking often reigns. Most of us find it hard
enough—and more than enough work—to simply write the code that implements the
positive aspects of an application: maintaining customers, generating invoices, and so
on. It is devilishly difficult, from both a psychological standpoint and a resources per-
spective, to focus on the negative: for example, what happens when the user presses
the wrong key? If the database is unavailable, what should I do?

As a result, we write applications that assume the best of all possible worlds, hoping
that our programs are bug-free, that users will enter the correct data in the correct
fashion, and that all systems (hardware and software) will always be a “go.”

Of course, harsh reality dictates that no matter how hard you try, there will always be
one more bug in your application. And your users will somehow always find just the
right sequence of keystrokes to make a form implode. The challenge is clear: either you
spend the time up-front to properly debug and bulletproof your programs, or you fight
an unending series of rear-guard battles, taking frantic calls from your users and putting
out the fires.

You know what you should do. Fortunately, PL/SQL offers a powerful and flexible way
to trap and handle errors. It is entirely feasible within the PL/SQL language to build an
application that fully protects the user and the database from errors.

Exception-Handling Concepts and Terminology
In the PL/SQL language, errors of any kind are treated as exceptions—situations that
should not occur—in your program. An exception can be one of the following:

• An error generated by the system (such as “out of memory” or “duplicate value in
index”).

• An error caused by a user action.

• A warning issued by the application to the user.

125

Download at WoweBook.Com

PL/SQL traps and responds to errors using an architecture of exception handlers. The
exception handler mechanism allows you to cleanly separate your error processing code
from your executable statements. It also provides an event-driven model, as opposed
to a linear code model, for processing errors. In other words, no matter how a particular
exception is raised, it is handled by the same exception handler in the exception section.

When an error occurs in PL/SQL, whether it’s a system error or an application error,
an exception is raised. The processing in the current PL/SQL block’s execution section
halts, and control is transferred to the separate exception section of the current block,
if one exists, to handle the exception. You cannot return to that block after you finish
handling the exception. Instead, control is passed to the enclosing block, if any.

Figure 6-1 illustrates how control is transferred to the exception section when an ex-
ception is raised.

Figure 6-1. Exception-handling architecture

There are, in general, two types of exceptions:

System exception
An exception that is defined by Oracle and is usually raised by the PL/SQL runtime
engine when it detects an error condition. Some system exceptions have names,
such as NO_DATA_FOUND, while many others simply have numbers and
descriptions.

Programmer-defined exception
An exception that is defined by the programmer and is therefore specific to the
application at hand. You can associate exception names with specific Oracle errors
using the EXCEPTION_INIT pragma (a compiler directive, requesting a specific
behavior), or you can assign a number and description to that error using
RAISE_APPLICATION_ERROR.

126 | Chapter 6: Exception Handlers

Download at WoweBook.Com

The following terms will be used throughout this chapter:

Exception section
The optional section in a PL/SQL block (anonymous block, procedure, function,
trigger, or initialization section of a package) that contains one or more “handlers”
for exceptions. The structure of an exception section is very similar to a CASE
statement, which I discussed in Chapter 4.

Raise
Stops execution of the current PL/SQL block by notifying the runtime engine of
an error. The database itself can raise exceptions, or your own code can raise an
exception with either the RAISE or RAISE_APPLICATION_ERROR command.

Handle (used as a verb), handler (used as a noun)
“Traps” an error within an exception section. You can then write code in the han-
dler to process that error, which might involve recording the error occurrence in a
log, displaying a message to the user, or propagating an exception out of the current
block.

Scope
The portion of code (whether in a particular block or for an entire session) in which
an exception can be raised. Also, that portion of code for which an exception sec-
tion can trap and handle exceptions that are raised.

Propagation
The process by which exceptions are passed from one block to its enclosing block
if the exception goes unhandled in that block.

Unhandled exception
An exception is said to go “unhandled” when it propagates without being handled
out of the outermost PL/SQL block. Control then passes back to the host execution
environment, at which point that environment/program determines how to re-
spond to the exception (roll back the transaction, display an error, ignore it, etc.).

Un-named or anonymous exception
An exception that has an error code and a description associated with it, but does
not have a name that can be used in a RAISE statement or in an exception handler
WHEN clause.

Named exception
An exception that has been given a name, either by Oracle in one of its built-in
packages or by a developer. You can also associate a name with this exception
through the use of the EXCEPTION_INIT pragma, or leave it defined only by its
name (which can be used to both raise and handle the exception).

Defining Exceptions
Before an exception can be raised or handled, it must be defined. Oracle predefines
thousands of exceptions, mostly by assigning numbers and messages to those excep-

Defining Exceptions | 127

Download at WoweBook.Com

tions. Oracle also assigns names to a relative few of these thousands: the most com-
monly encountered exceptions.

These names are assigned in the STANDARD package (one of two default packages in
PL/SQL; DBMS_STANDARD is the other), as well as in other built-in packages such
as UTL_FILE and DBMS_SQL. The code Oracle uses to define exceptions like
NO_DATA_FOUND is the same that you will write to define or declare your own
exceptions. You can do this in two different ways, described in the following sections.

Declaring Named Exceptions
The exceptions that PL/SQL has declared in the STANDARD package (and other built-
in packages) cover internal or system-generated errors. Many of the problems a user
will encounter (or cause) in an application, however, are specific to that application.
Your program might need to trap and handle errors such as “negative balance in ac-
count” or “call date cannot be in the past.” While different in nature from “division by
zero,” these errors are still exceptions to normal processing and should be handled
gracefully by your program.

One of the most useful aspects of the PL/SQL exception-handling model is that it does
not make any structural distinction between internal errors and application-specific
errors. Once an exception is raised, it can and should be handled in the exception
section, regardless of the type or source of error.

Of course, to handle an exception, you must have a name for that exception. Because
PL/SQL cannot name these exceptions for you (they are specific to your application),
you must do so yourself by declaring an exception in the declaration section of your
PL/SQL block. You declare an exception by listing the name of the exception you want
to raise in your program followed by the keyword EXCEPTION:

exception_name EXCEPTION;

The following declaration section of the calc_annual_sales procedure contains two
programmer-defined exception declarations:

PROCEDURE calc_annual_sales
 (company_id_in IN company.company_id%TYPE)
IS
 invalid_company_id EXCEPTION;
 negative_balance EXCEPTION;

 duplicate_company BOOLEAN;
BEGIN
 ... body of executable statements ...
EXCEPTION
 WHEN NO_DATA_FOUND -- system exception
 THEN
 ...
 WHEN invalid_company_id
 THEN

128 | Chapter 6: Exception Handlers

Download at WoweBook.Com

 WHEN negative_balance
 THEN
 ...
END;

The names for exceptions are similar in format to (and “read” just like) Boolean variable
names, but can be referenced in only two ways:

• In a RAISE statement in the execution section of the program (to raise the excep-
tion), as in:

RAISE invalid_company_id;

• In the WHEN clauses of the exception section (to handle the raised exception), as
in:

WHEN invalid_company_id THEN

Associating Exception Names with Error Codes
Oracle has given names to just a handful of exceptions. Thousands of other error
conditions within the database are defined by nothing more than an error number and
a message. In addition, a developer can raise exceptions using
RAISE_APPLICATION_ERROR (covered in “Raising Exceptions” on page 135) that
consist of nothing more than an error number (between –20000 and –20999) and an
error message.

Exceptions without names are perfectly legitimate, but they can lead to code that is
hard to read and maintain. Suppose, for example, that I write a program in which I
know the database might raise a date-related error, such as ORA-01843: not a valid
month. I could write an exception handler to trap that error with code that looks like
this:

EXCEPTION
 WHEN OTHERS THEN
 IF SQLCODE = −1843 THEN

but that is very obscure code, begging for a comment—or some sort of clarity. I can
take advantage of the EXCEPTION_INIT statement to make this code’s meaning
transparent.

SQLCODE is a built-in function that returns the number of the last error
raised; it is discussed later in “Handling Exceptions” on page 138.

Using EXCEPTION_INIT

EXCEPTION_INIT is a compile-time command or pragma used to associate a name
with an internal error code. EXCEPTION_INIT instructs the compiler to associate an

Defining Exceptions | 129

Download at WoweBook.Com

identifier, declared as an EXCEPTION, with a specific error number. Once you have
made that association, you can then raise that exception by name and write an explicit
WHEN handler that traps the error.

With EXCEPTION_INIT, I can replace the WHEN clause shown in the previous ex-
ample with something like this:

PROCEDURE my_procedure
IS
 invalid_month EXCEPTION;
 PRAGMA EXCEPTION_INIT (invalid_month, −1843);
BEGIN
 ...
EXCEPTION
 WHEN invalid_month THEN

No more difficult to remember and understand hardcoded error numbers; instead, my
code now explains itself.

The pragma EXCEPTION_INIT must appear in the declaration section of a block; the
exception named must have already been defined in that same block, an enclosing
block, or a package specification. Here is the syntax in an anonymous block:

DECLARE
 exception_name EXCEPTION;
 PRAGMA EXCEPTION_INIT (exception_name, integer);

where exception_name is the name of an exception and integer is a literal integer value,
the number of the Oracle error with which you want to associate the named exception.
The error number can be any integer value with these constraints:

• It cannot be –1403 (one of the two error codes for NO_DATA_FOUND). If for
some reason you want to associate your own named exception with this error, you
need to pass 100 to the EXCEPTION_INIT pragma.

• It cannot be 0 or any positive number besides 100.

• It cannot be a negative number less than –1000000.

Let’s look at another example. In the following program code, I declare and associate
an exception for this error:

ORA-2292 integrity constraint (OWNER.CONSTRAINT) violated -
 child record found.

This error occurs if I try to delete a parent row while there are child rows still in that
table. (A child row is a row with a foreign key reference to the parent table.)

130 | Chapter 6: Exception Handlers

Download at WoweBook.Com

PROCEDURE delete_company (company_id_in IN NUMBER)
IS
 /* Declare the exception. */
 still_have_employees EXCEPTION;

 /* Associate the exception name with an error number. */
 PRAGMA EXCEPTION_INIT (still_have_employees, −2292);
BEGIN
 /* Try to delete the company. */
 DELETE FROM company
 WHERE company_id = company_id_in;
EXCEPTION
 /* If child records were found, this exception is raised! */
 WHEN still_have_employees
 THEN
 DBMS_OUTPUT.PUT_LINE
 ('Please delete employees for company first.');
END;

Recommended uses of EXCEPTION_INIT

You will find this pragma most useful in two circumstances:

• Giving names to otherwise anonymous system exceptions that you commonly ref-
erence in your code. In other words, Oracle did not predefine a name for the error;
you have only the number with which to work.

• Assigning names to the application-specific errors you raise using RAISE_APPLI-
CATION_ERROR (see “Raising Exceptions” on page 135). This allows you to
handle such errors by name, rather than simply by number.

In both cases, I recommend that you centralize your usage of EXCEPTION_INIT into
packages so that the definitions of exceptions are not scattered throughout your code.
Suppose, for example, that I am doing lots of work with dynamic SQL (described in
Chapter 16). I might then encounter “invalid column name” errors as I construct my
dynamic queries. I don’t want to have to remember what the code is for this error, and
it’s silly to define my pragmas in 20 different programs. So instead I predefine my own
“system exceptions” in my own dynamic SQL package:

CREATE OR REPLACE PACKAGE dynsql
IS
 invalid_table_name EXCEPTION;
 PRAGMA EXCEPTION_INIT (invalid_table_name, −903);
 invalid_identifier EXCEPTION;
 PRAGMA EXCEPTION_INIT (invalid_identifier, −904);

and now I can trap for these errors in any program as follows:

WHEN dynsql.invalid identifier THEN ...

I also suggest that you take this same approach when working with the –20,NNN error
codes passed to RAISE_APPLICATION_ERROR (described later in this chapter).
Avoid hardcoding these literals directly into your application; instead, build (or

Defining Exceptions | 131

Download at WoweBook.Com

generate) a package that assigns names to those error numbers. Here is an example of
such a package:

PACKAGE errnums
IS
 en_too_young CONSTANT NUMBER := −20001;
 exc_too_young EXCEPTION;
 PRAGMA EXCEPTION_INIT (exc_too_young, −20001);

 en_sal_too_low CONSTANT NUMBER := −20002;
 exc_sal_too_low EXCEPTION;
 PRAGMA EXCEPTION_INIT (exc_sal_too_low , −20002);
END errnums;

By relying on such a package, I can write code like the following, without embedding
the actual error number in the logic:

PROCEDURE validate_emp (birthdate_in IN DATE)
IS
 min_years CONSTANT PLS_INTEGER := 18;
BEGIN
 IF ADD_MONTHS (SYSDATE, min_years * 12 * −1) < birthdate_in
 THEN
 RAISE_APPLICATION_ERROR
 (errnums.en_too_young,
 'Employee must be at least ' || min_years || ' old.');
 END IF;
END;

About Named System Exceptions
Oracle gives names to a relatively small number of system exceptions by including
EXCEPTION_INIT pragma statements in built-in package specifications.

The most important and commonly used set of named exceptions may be found in the
STANDARD package in PL/SQL. Because this package is one of the two default pack-
ages of PL/SQL, you can reference these exceptions without including the package
name as a prefix. So, for instance, if I want to handle the NO_DATA_FOUND excep-
tion in my code, I can do so with either of these statements:

WHEN NO_DATA_FOUND THEN
WHEN STANDARD.NO_DATA_FOUND THEN

You can find predefined exceptions in other built-in packages such as DBMS_LOB, the
package used to manipulate large objects. Here is an example of one such definition in
that package’s specification:

invalid_argval EXCEPTION;
PRAGMA EXCEPTION_INIT(invalid_argval, −21560);

132 | Chapter 6: Exception Handlers

Download at WoweBook.Com

Because DBMS_LOB is not a default package, when I reference this exception, I need
to include the package name:

WHEN DBMS_LOB.invalid_argval THEN...

Many of the STANDARD-based predefined exceptions are listed in Table 6-1, each
with its Oracle error number, the value returned by a call to SQLCODE (a built-in
function that returns the current error code, described in “Built-in Error Func-
tions” on page 139), and a brief description. In all but one case (100, the ANSI standard
error number for NO_DATA_FOUND), the SQLCODE value is the same as the Oracle
error code.

Table 6-1. Some of the predefined exceptions in PL/SQL

Name of
exception/Oracle error/SQLCODE Description

CURSOR_ALREADY_OPEN
ORA-6511 SQLCODE=-6511

You tried to OPEN a cursor that was already open. You must CLOSE a cursor before
you try to OPEN or re-OPEN it.

DUP_VAL_ON_INDEX
ORA-00001 SQLCODE= –1

Your INSERT or UPDATE statement attempted to store duplicate values in a column
or columns in a row that is restricted by a unique index.

INVALID_CURSOR
ORA-01001 SQLCODE=–1001

You made reference to a cursor that did not exist. This usually happens when you
try to FETCH from a cursor or CLOSE a cursor before that cursor is OPENed.

INVALID_NUMBER
ORA-01722 SQLCODE =–1722

PL/SQL executes a SQL statement that cannot convert a character string successfully
to a number. This exception is different from the VALUE_ERROR exception because
it is raised only from within a SQL statement.

LOGIN_DENIED
ORA-01017 SQLCODE= –1017

Your program tried to log into the database with an invalid username-password
combination. This exception is usually encountered when you embed PL/SQL in a
3GL language.

NO_DATA_FOUND
ORA-01403 SQLCODE= +100

This exception is raised in three different scenarios: (1) You executed a SELECT INTO
statement (implicit cursor) that returned no rows. (2) You referenced an unini-
tialized row in a local associative array. (3) You read past end-of-file with the
UTL_FILE package.

NOT_LOGGED ON
ORA-01012 SQLCODE= –1012

Your program tried to execute a call to the database (usually with a DML statement)
before it had logged into the database.

PROGRAM_ERROR
ORA-06501 SQLCODE= –6501

PL/SQL encounters an internal problem. The message text usually also tells you to
“Contact Oracle Support.”

STORAGE_ERROR
ORA-06500 SQLCODE= –6500

Your program ran out of memory, or memory was in some way corrupted.

TIMEOUT_ON_RESOURCE
ORA-00051 SQLCODE=–51

A timeout occurred in the database while waiting for a resource.

TOO_MANY_ROWS
ORA-01422 SQLCODE= –1422

A SELECT INTO statement returned more than one row. A SELECT INTO must return
only one row; if your SQL statement returns more than one row, you should place
the SELECT statement in an explicit CURSOR declaration and FETCH from that cursor
one row at a time.

Defining Exceptions | 133

Download at WoweBook.Com

Name of
exception/Oracle error/SQLCODE Description

TRANSACTION_BACKED_OUT
ORA-00061 SQLCODE= –61

The remote part of a transaction is rolled back, either with an explicit ROLLBACK
command or as the result of some other action (such as a failed SQL/DML on the
remote database).

VALUE_ERROR
ORA-06502 SQLCODE= –6502

PL/SQL encountered an error having to do with the conversion, truncation, or
invalid constraining of numeric and character data. This is a very general and
common exception. If this type of error is encountered in a SQL DML statement
within a PL/SQL block, then the INVALID_NUMBER exception is raised.

ZERO_DIVIDE
ORA-01476 SQLCODE= –1476

Your program tried to divide by zero.

Here is an example of how you might use the exceptions table. Suppose that your
program generates an unhandled exception for error ORA-6511. Looking up this error,
you find that it is associated with the CURSOR_ALREADY_OPEN exception. Locate
the PL/SQL block in which the error occurs, and add an exception handler for
CURSOR_ALREADY_OPEN, as shown here:

EXCEPTION
 WHEN CURSOR_ALREADY_OPEN
 THEN
 CLOSE my_cursor;
END;

Of course, you would be even better off analyzing your code to determine proactively
which of the predefined exceptions might occur. You could then decide which of those
exceptions you want to handle specifically, which should be covered by the WHEN
OTHERS clause (discussed later in this chapter), and which would best be left
unhandled.

Scope of an Exception
The scope of an exception is that portion of the code that is “covered” by that exception.
An exception covers a block of code if it can be raised in that block. The following table
shows the scope for each of the different kinds of exceptions:

Exception type Description of scope

Named system
exceptions

These exceptions are globally available because they are not declared in or confined to any particular
block of code. You can raise and handle a named system exception in any block.

Named programmer-
defined exceptions

These exceptions can be raised and handled only in the execution and exception sections of the block
in which they are declared (and all nested blocks). If the exception is defined in a package specification,
its scope is every program whose owner has EXECUTE privilege on that package.

Anonymous system
exceptions

These exceptions can be handled in any PL/SQL exception section via the WHEN OTHERS section. If
they are assigned a name, then the scope of that name is the same as that of the named programmer-
defined exception.

134 | Chapter 6: Exception Handlers

Download at WoweBook.Com

Exception type Description of scope

Anonymous program-
mer-defined exceptions

These exceptions are defined only in the call to RAISE_APPLICATION_ERROR, and then are passed
back to the calling program.

Consider the following example of the exception overdue_balance declared in the pro-
cedure check_account. The scope of that exception is the check_account procedure,
and nothing else:

PROCEDURE check_account (company_id_in IN NUMBER)
IS
 overdue_balance EXCEPTION;
BEGIN
 ... executable statements ...
 LOOP
 ...
 IF ... THEN
 RAISE overdue_balance;
 END IF;
 END LOOP;
EXCEPTION
 WHEN overdue_balance THEN ...
END;

I can RAISE the overdue_balance inside the check_account procedure, but I cannot
raise that exception from a program that calls check_account. The following anony-
mous block will generate a compile error, as shown below:

DECLARE
 company_id NUMBER := 100;
BEGIN
 check_account (100);
EXCEPTION
 WHEN overdue_balance /* PL/SQL cannot resolve this reference. */
 THEN ...
END;

PLS-00201: identifier "OVERDUE_BALANCE" must be declared

The check_account procedure is a “black box” as far as the anonymous block is con-
cerned. Any identifiers—including exceptions—declared inside check_account are in-
visible outside of that program.

Raising Exceptions
There are three ways that an exception may be raised in your application:

• The database might raise the exception when it detects an error.

• You might raise an exception with the RAISE statement.

• You might raise an exception with the RAISE_APPLICATION_ERROR built-in
procedure.

Raising Exceptions | 135

Download at WoweBook.Com

I’ve already looked at how the database raises exceptions. Now let’s examine the dif-
ferent mechanisms you can use to raise exceptions.

The RAISE Statement
Oracle offers the RAISE statement so that you can, at your discretion, raise a named
exception. You can raise an exception of your own or a system exception. The RAISE
statement can take one of three forms:

RAISE exception_name;
RAISE package_name.exception_name;
RAISE;

The first form (without a package name qualifier) can be used to raise an exception you
have defined in the current block (or an outer block containing that block) or to raise
a system exception defined in the STANDARD package. Here are two examples, first
raising a programmer-defined exception:

DECLARE
 invalid_id EXCEPTION; -- All IDs must start with the letter 'X'.
 id_value VARCHAR2(30);
BEGIN
 id_value := id_for ('SMITH');
 IF SUBSTR (id_value, 1, 1) != 'X'
 THEN
 RAISE invalid_id;
 END IF;
 ...
END;

And then you can always raise a system exception as needed:

BEGIN
 IF total_sales = 0
 THEN
 RAISE ZERO_DIVIDE; -- Defined in STANDARD package
 ELSE
 RETURN (sales_percentage_calculation (my_sales, total_sales));
 END IF;
END;

The second form does require a package name qualifier. If an exception has been de-
clared inside a package (other than STANDARD) and you are raising that exception
outside that package, you must qualify your reference to that exception in your RAISE
statement, as in:

IF days_overdue (isbn_in, borrower_in) > 365
THEN
 RAISE overdue_pkg.book_is_lost;
END IF;

The third form of the RAISE statement does not require an exception name, but can
be used only within a WHEN clause of the exception section. Its syntax is simply:

136 | Chapter 6: Exception Handlers

Download at WoweBook.Com

RAISE;

Use this form when you want to re-raise (or propagate out) the same exception from
within an exception handler, as you see here:

EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 -- Use common package to record all the "context" information,
 -- such as error code, program name, etc.
 errlog.putline (company_id_in);
 -- And now propagate NO_DATA_FOUND unhandled to the enclosing block.
 RAISE;

This feature is useful when you want to log the fact that an error occurred, but then
pass that same error out to the enclosing block. That way, you record where the error
occurred in your application but still stop the enclosing block(s) without losing the
error information.

Using RAISE_APPLICATION_ERROR
Oracle provides the RAISE_APPLICATION_ERROR procedure (defined in the default
DBMS_STANDARD package) to raise application-specific errors in your application.
The advantage to using RAISE_APPLICATION_ERROR instead of RAISE (which can
also raise an application-specific, explicitly declared exception) is that you can associate
an error message with the exception.

When this procedure is run, execution of the current PL/SQL block halts immediately,
and any changes made to OUT or IN OUT arguments (if present and without the
NOCOPY hint) will be reversed. Changes made to global data structures, such as
packaged variables, and to database objects (by executing an INSERT, UPDATE,
MERGE, or DELETE) will not be rolled back. You must execute an explicit ROLLBACK
to reverse the effect of DML operations.

Here’s the header for this procedure (defined in package DBMS_STANDARD):

PROCEDURE RAISE_APPLICATION_ERROR (
 num binary_integer,
 msg varchar2,
 keeperrorstack boolean default FALSE);

where num is the error number and must be a value between –20,999 and –20,000 (just
think: Oracle needs all the rest of those negative integers for its own exceptions!);
msg is the error message and must be no more than 2K characters in length (any text
beyond that limit will be ignored); and keeperrorstack indicates whether you want to
add the error to any already on the stack (TRUE) or replace the existing errors (the
default, FALSE).

Raising Exceptions | 137

Download at WoweBook.Com

Oracle sets aside the range of –20999 and –20000 for use by its cus-
tomers, but watch out! Several built-in packages, including
DBMS_OUTPUT and DBMS_DESCRIBE, use error numbers between
–20005 and –20000. See the Oracle PL/SQL Packages and Types Refer-
ence for documentation of the usages of these error numbers.

Let’s take a look at one useful application of this built-in. Suppose that I need to support
error messages in different languages for my user community. I create a separate
error_table to store all these messages, segregated by the string_language value. I then
create a procedure to raise the specified error, grabbing the appropriate error message
from the table based on the language used in the current session:

/* File on web: raise_by_language.sp */
PROCEDURE raise_by_language (code_in IN PLS_INTEGER)
IS
 l_message error_table.error_string%TYPE;
BEGIN
 SELECT error_string
 INTO l_message
 FROM error_table
 WHERE error_number = code_in
 AND string_language = USERENV ('LANG');

 RAISE_APPLICATION_ERROR (code_in, l_message);
END;

Handling Exceptions
Once an exception is raised, the current PL/SQL block stops its regular execution and
transfers control to the exception section. The exception is then either handled by an
exception handler in the current PL/SQL block or passed to the enclosing block.

To handle or trap an exception once it is raised, you must write an exception handler
for that exception. In your code, your exception handlers must appear after all the
executable statements in your program but before the END statement of the block. The
EXCEPTION keyword indicates the start of the exception section and the individual
exception handlers:

DECLARE
 ... declarations ...
BEGIN
 ... executable statements ...
[EXCEPTION
 ... exception handlers ...]
END;

The syntax for an exception handler is as follows:

138 | Chapter 6: Exception Handlers

Download at WoweBook.Com

WHEN exception_name [OR exception_name ...]
THEN
 executable statements

or:

WHEN OTHERS
THEN
 executable statements

You can have multiple exception handlers in a single exception section. The exception
handlers are structured much like a conditional CASE statement, as shown in the fol-
lowing table:

Property Description
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN executable_statements1;

If the NO_DATA_FOUND exception is raised, then execute the first set of statements.

 WHEN payment_overdue
 THEN executable_statements2;

If the payment is overdue, then execute the second set of statements.

 WHEN OTHERS
 THEN executable_statements3;
END;

If any other exception is encountered, then execute the third set of statements.

An exception is handled if an exception that is named in a WHEN clause matches the
exception that was raised. Notice that the WHEN clause traps errors only by exception
name, not by error codes. If a match is found, then the executable statements associated
with that exception are run. If the exception that has been raised is not handled or does
not match any of the named exceptions, the executable statements associated with the
WHEN OTHERS clause (if present) will be run. Only one exception handler can catch
a particular error. After the statements for that handler are executed, control passes
immediately out of the block.

The WHEN OTHERS clause is optional; if it is not present, then any unhandled ex-
ception is immediately propagated back to the enclosing block (if any). The WHEN
OTHERS clause must be the last exception handler in the exception section. If you
place any other WHEN clauses after WHEN OTHERS, you will receive the following
compilation error:

PLS-00370: OTHERS handler must be last among the exception handlers of a block

Built-in Error Functions
Before exploring the nuances of error handling, let’s first review the built-in functions
Oracle provides to help you identify, analyze, and respond to errors that occur in your
PL/SQL application.

Handling Exceptions | 139

Download at WoweBook.Com

SQLCODE
SQLCODE returns the error code of the most recently raised exception in your
block. If there is no error, SQLCODE returns 0. SQLCODE also returns 0 when
you call it outside of an exception handler.

The Oracle database maintains a stack of SQLCODE values. Suppose, for example,
that function FUNC raises the VALUE_ERROR exception (–6502). Within the
exception section of FUNC, you call a procedure PROC that raises
DUP_VAL_ON_INDEX (–1). Within the exception section of PROC, SQLCODE
returns –1. When control propagates back up to the exception section of FUNC,
however, SQLCODE will still return –6502. Run the sqlcode_test.sql file (available
on the book’s web site) to see a demonstration of this behavior.

SQLERRM
SQLERRM is a function that returns the error message for a particular error code.
If you do not pass an error code to SQLERRM, it returns the error message asso-
ciated with the value returned by SQLCODE.

If SQLCODE is 0, SQLERRM returns this string:

ORA-0000: normal, successful completion

If SQLCODE is 1 (the generic user-defined exception error code), SQLERRM re-
turns this string:

User-Defined Exception

Here is an example of calling SQLERRM to return the error message for a particular
code:

 1 BEGIN
 2 DBMS_OUTPUT.put_line (SQLERRM (-1403));
 3* END;
SQL> /
ORA-01403: no data found

The maximum length string that SQLERRM will return is 512 bytes (in some earlier
versions of Oracle, only 255 bytes). Because of this restriction, Oracle Corporation
recommends that you instead call DBMS_UTILITY.FORMAT_ERROR_STACK
to ensure that you see the full error message string (this built-in will not truncate
until 2,000 bytes).

The oracle_error_info.pkg and oracle_error_info.tst files on the book’s web site
provide an example of how you can use SQLERRM to validate error codes.

DBMS_UTILITY.FORMAT_ERROR_STACK
This built-in function, like SQLERRM, returns the message associated with the
current error (i.e., the value returned by SQLCODE). It differs from SQLERRM in
two ways:

• It will return up to 1,899 characters of error message, thereby avoiding trunca-
tion issues.

140 | Chapter 6: Exception Handlers

Download at WoweBook.Com

• You cannot pass an error code number to this function; it cannot be used to
return the message for an arbitrary error code.

As a rule, you should call this function inside your exception handler logic to obtain
the full error message.

Note that even though the name of the function includes the word “stack,” it
doesn’t return a stack of errors leading back to the line on which the error was
originally raised. That job falls to DBMS_UTILITY.FORMAT_ERROR_
BACKTRACE.

DBMS_UTILITY.FORMAT_ERROR_BACKTRACE
Introduced in Oracle Database 10g, this function returns a formatted string that
displays a stack of programs and line numbers leading back to the line on which
the error was originally raised.

This function closed a significant gap in PL/SQL functionality. In Oracle9i Data-
base and earlier releases, once you handled an exception inside your PL/SQL block,
you were unable to determine the line on which the error had occurred (perhaps
the most important piece of information to developers). If you wanted to see this
information, you would have to allow the exception to go unhandled, at which
point the full error backtrace would be displayed on the screen or otherwise pre-
sented to the user. This situation is explored in more detail in the following section.

DBMS_UTILITY.FORMAT_CALL_STACK
This function returns a formatted string showing the execution call stack inside
your PL/SQL application. Its usefulness is not restricted to error management; you
will also find it handy for tracing the execution of your code. This program is
explored in more detail in Chapter 20.

More on DBMS_UTILITY.FORMAT_ERROR_BACKTRACE

You should call the DBMS_UTILITY.FORMAT_ERROR_BACKTRACE function in
your exception handler. It displays the execution stack at the point where an exception
was raised. Thus, you can call DBMS_UTILITY.FORMAT_ERROR_BACKTRACE
within an exception section at the top level of your stack and still find out where the
error was raised deep within the call stack.

Consider the following scenario: I define a procedure proc3, which calls proc2, which
in turns calls proc1. The proc1 procedure raises an exception:

CREATE OR REPLACE PROCEDURE proc1 IS
BEGIN
 DBMS_OUTPUT.put_line ('running proc1');
 RAISE NO_DATA_FOUND;
END;
/

CREATE OR REPLACE PROCEDURE proc2 IS
 l_str VARCHAR2 (30) := 'calling proc1';
BEGIN

Handling Exceptions | 141

Download at WoweBook.Com

 DBMS_OUTPUT.put_line (l_str);
 proc1;
END;
/

CREATE OR REPLACE PROCEDURE proc3 IS
BEGIN
 DBMS_OUTPUT.put_line ('calling proc2');
 proc2;
EXCEPTION
 WHEN OTHERS
 THEN
 DBMS_OUTPUT.put_line ('Error stack at top level:');
 DBMS_OUTPUT.put_line (DBMS_UTILITY.format_error_backtrace);
END;
/

The only program with an exception handler is the outermost program, proc3. I have
placed a call to the backtrace function in proc3’s WHEN OTHERS handler. When I
run this procedure I see the following results:

SQL> SET SERVEROUTPUT ON
SQL> BEGIN
 2 DBMS_OUTPUT.put_line ('Proc3 -> Proc2 -> Proc1 backtrace');
 3 proc3;
 4 END;
 5 /

Proc3 -> Proc2 -> Proc1 backtrace
calling proc2
calling proc1
running proc1
Error stack at top level:
ORA-06512: at "SCOTT.PROC1", line 4
ORA-06512: at "SCOTT.PROC2", line 5
ORA-06512: at "SCOTT.PROC3", line 4

As you can see, the backtrace function shows at the top of its stack the line in proc1 on
which the error was originally raised.

Often, an exception occurs deep within the execution stack. If you want that exception
to propagate all the way to the outermost PL/SQL block, it may have to be re-raised
within each exception handler in the stack of blocks.
DBMS_UTILITY.FORMAT_ERROR_BACKTRACE shows the trace of execution
back to the last RAISE in one’s session. As soon as you issue a RAISE of a particular
exception or re-raise the current exception, you restart the stack that the
DBMS_UTILITY.FORMAT_ERROR_BACKTRACE function produces. This means
that if you want to take advantage of this function, you should take one of the following
two approaches:

• Call the function in the exception section of the block in which the error was raised.
This way you have (and can log) that critical line number, even if the exception is
re-raised further up in the stack.

142 | Chapter 6: Exception Handlers

Download at WoweBook.Com

• Avoid exception handlers in intermediate programs in your stack, and call the
function in the exception section of the outermost program in your stack.

Just the line number, please

In a real-world application, the error backtrace could be very long. Generally, the per-
son doing the debugging or support doesn’t really want to have to deal with the entire
stack; he is mostly going to be interested only in that topmost entry. The developer of
the application might even want to display that critical information to the user so that
he can immediately and accurately report the problem to the support team.

In this case, it is necessary to parse the backtrace string and retrieve just the topmost
entry. I built a utility to do this called the BT package; you can download it from the
book’s web site. In this package, I provide a simple, clean interface as follows:

/* File on web: bt.pkg */
PACKAGE bt
IS
 TYPE error_rt IS RECORD (
 program_owner all_objects.owner%TYPE
 , program_name all_objects.object_name%TYPE
 , line_number PLS_INTEGER
);

 FUNCTION info (backtrace_in IN VARCHAR2)
 RETURN error_rt;

 PROCEDURE show_info (backtrace_in IN VARCHAR2);
END bt;

The record type, error_rt, contains a separate field for each element of the backtrace
that I want to retrieve (owner of the program unit, name of the program unit, and line
number within that program). Then, instead of calling and parsing the backtrace func-
tion in each exception section, I can call the bt.info function and report on the specifics
of the error.

Useful applications of SQLERRM

While it is true that you should use DBMS_UTILITY.FORMAT_ERROR_STACK in
place of SQLERRM, that doesn’t mean SQLERRM is totally irrelevant. In fact, you can
use it to answer the following questions:

• Is a particular number a valid Oracle error?

• What is the error message corresponding to an error code?

As mentioned earlier in this chapter, SQLERRM will return the error message for an
error code. If, however, you pass SQLERRM a code that is not valid, it does not raise
an exception. Instead, it returns a string in one of the following two forms:

Handling Exceptions | 143

Download at WoweBook.Com

If the number is negative:

ORA-NNNNN: Message NNNNN not found; product=RDBMS; facility=ORA

If the number is positive or less than −65535:

-N: non-ORACLE exception

You can use these facts to build functions to neatly return information about whatever
code you are currently working with. Here is the specification of a package with such
programs:

/* File on web: oracle_error_info.pkg */
PACKAGE oracle_error_info
IS
 FUNCTION is_app_error (code_in IN INTEGER)
 RETURN BOOLEAN;

 FUNCTION is_valid_oracle_error (
 code_in IN INTEGER
 , app_errors_ok_in IN BOOLEAN DEFAULT TRUE
 , user_error_ok_in IN BOOLEAN DEFAULT TRUE
)
 RETURN BOOLEAN;

 PROCEDURE validate_oracle_error (
 code_in IN INTEGER
 , message_out OUT VARCHAR2
 , is_valid_out OUT BOOLEAN
 , app_errors_ok_in IN BOOLEAN DEFAULT TRUE
 , user_error_ok_in IN BOOLEAN DEFAULT TRUE
);
END oracle_error_info;

You will find the complete implementation on the book’s web site.

Combining Multiple Exceptions in a Single Handler
You can, within a single WHEN clause, combine multiple exceptions together with an
OR operator, just as you would combine multiple Boolean expressions:

WHEN invalid_company_id OR negative_balance
THEN

You can also combine application and system exception names in a single handler:

WHEN balance_too_low OR ZERO_DIVIDE OR DBMS_LDAP.INVALID_SESSION
THEN

You cannot, however, use the AND operator because only one exception can be raised
at a time.

144 | Chapter 6: Exception Handlers

Download at WoweBook.Com

Unhandled Exceptions
If an exception is raised in your program, and it is not handled by an exception section
in either the current or enclosing PL/SQL blocks, that exception is unhandled. PL/SQL
returns the error that raised the unhandled exception all the way back to the application
environment from which PL/SQL was run. That environment (a tool like SQL*Plus,
Oracle Forms, or a Java program) then takes an action appropriate to the situation; in
the case of SQL*Plus, a ROLLBACK of any DML changes from within that top-level
block’s logic is automatically performed.

One key decision to make about your application architecture is whether you want to
allow unhandled exceptions to occur at all. They are handled differently by different
frontends, and in some cases none too gracefully. If your PL/SQL programs are being
called from a non-PL/SQL environment, you may want to design your outermost blocks
or programs to do the following:

• Trap any exception that might have propagated out to that point.

• Log the error so that a developer can analyze what might be the cause of the
problem.

• Pass back a status code, description, and any other information needed by the host
environment to make a determination about an appropriate action to take.

Propagation of Unhandled Exceptions
The scope rules for exceptions determine the block in which an exception can be raised.
The rules for exception propagation address the way in which an exception is handled
after it is raised.

When an exception is raised, PL/SQL looks for an exception handler in the current
block (anonymous block, procedure, or function) of the exception. If it does not find
a match, then PL/SQL propagates the exception to the enclosing block of that current
block. PL/SQL then attempts to handle the exception by raising it once more in the
enclosing block. It continues to do this in each successive enclosing block until there
are no more blocks in which to raise the exception (see Figure 6-2). When all blocks
are exhausted, PL/SQL returns an unhandled exception to the application environment
that executed the outermost PL/SQL block. An unhandled exception halts the execu-
tion of the host program.

Handling Exceptions | 145

Download at WoweBook.Com

Figure 6-2. Propagation of an exception through nested blocks

Losing exception information

The architecture of PL/SQL exception handling leads to an odd situation regarding
local, programmer-defined exceptions: you can lose crucial information (what error
occurred?) unless you are careful.

Consider the following situation. I declare an exception as follows:

BEGIN
 <<local_block>>
 DECLARE
 case_is_not_made EXCEPTION;
 BEGIN
 ...
 END local_block;

but neglect to include an exception section. The scope of the case_is_not_made ex-
ception is inside local_block’s execution and exception sections. If the exception is not
handled there and instead propagates to the enclosing block, then there is no way to
know that the case_is_not_made exception was raised. You really don’t know which
error was raised, only that some error was raised. That’s because all user-defined ex-
ceptions have an error code of 1 and an error message of “User Defined Exception”—
unless you use the EXCEPTION_INIT pragma to associate a different number with
that declared exception, and use RAISE_APPLICATION_ERROR to associate it with
a different error message.

As a consequence, when you are working with locally defined (and raised) exceptions,
you should include an exception handler specifically for that error by name.

Examples of exception propagation

Let’s look at a few examples of how exceptions propagate through enclosing blocks.
Figure 6-3 shows how the exception raised in the inner block, too_many_faults, is
handled by the next enclosing block. The innermost block has an exception section,

146 | Chapter 6: Exception Handlers

Download at WoweBook.Com

so PL/SQL first checks to see if too_many_faults is handled in this section. Because it
is not handled, PL/SQL closes that block and raises the too_many_faults exception in
the enclosing block, Nested Block 1. Control immediately passes to the exception sec-
tion of Nested Block 1. (The executable statements after Nested Block 2 are not exe-
cuted.) PL/SQL scans the exception handlers and finds that too_many_faults is handled
in this block, so the code for that handler is executed, and control passes back to the
main list_my_faults procedure.

Notice that if the NO_DATA_FOUND exception had been raised in the innermost
block (Nested Block 2), then the exception section for Nested Block 2 would have
handled the exception. Then control would pass back to Nested Block 1, and the ex-
ecutable statements that come after Nested Block 2 would be executed.

In Figure 6-4, the exception raised in the inner block is handled by the outermost block.
The outermost block is the only one with an exception section, so when Nested
Block 2 raises the too_many_faults exception, PL/SQL terminates execution of that
block and raises that exception in the enclosing block, Nested Block 1. Again, this block
has no exception section, so PL/SQL immediately terminates Nested Block 1 and passes

Figure 6-3. Propagation of exception handling to first nested block

Handling Exceptions | 147

Download at WoweBook.Com

control to the outermost block, the list_my_faults procedure. This procedure does have
an exception section, so PL/SQL scans the exception handlers, finds a match for
too_many_faults, executes the code for that handler, and then returns control to what-
ever program called list_my_faults.

Figure 6-4. Exception raised in nested block handled by outermost block

Continuing Past Exceptions
When an exception is raised in a PL/SQL block, normal execution is halted and control
is transferred to the exception section. You can never return to the execution section
once an exception is raised in that block. In some cases, however, the ability to continue
past exceptions is exactly the desired behavior.

Consider the following scenario: I need to write a procedure that performs a series of
DML statements against a variety of tables (delete from one table, update another,
insert into a final table). My first pass at writing this procedure might produce code
like the following:

PROCEDURE change_data IS
BEGIN
 DELETE FROM employees WHERE ... ;
 UPDATE company SET ... ;
 INSERT INTO company_history SELECT * FROM company WHERE ... ;
END;

148 | Chapter 6: Exception Handlers

Download at WoweBook.Com

This procedure certainly contains all the appropriate DML statements. But one of the
requirements for this program is that, although these statements are executed in se-
quence, they are logically independent of each other. In other words, even if the DE-
LETE fails, I want to go on and perform the UPDATE and INSERT.

With the current version of change_data, I can’t make sure that all three DML state-
ments will at least be attempted. If an exception is raised from the DELETE, for
example, the entire program’s execution will halt, and control will be passed to the
exception section, if there is one. The remaining SQL statements won’t be executed.

How can I get the exception to be raised and handled without terminating the program
as a whole? The solution is to place the DELETE within its own PL/SQL block. Consider
this next version of the change_data program:

PROCEDURE change_data IS
BEGIN
 BEGIN
 DELETE FROM employees WHERE ... ;
 EXCEPTION
 WHEN OTHERS THEN log_error;
 END;

 BEGIN
 UPDATE company SET ... ;
 EXCEPTION
 WHEN OTHERS THEN log_error;
 END;

 BEGIN
 INSERT INTO company_history SELECT * FROM company WHERE ... ;
 EXCEPTION
 WHEN OTHERS THEN log_error;
 END;
END;

With this new format, if the DELETE raises an exception, control is immediately passed
to the exception section. But what a difference! Because the DELETE statement is now
in its own block, it can have its own exception section. The WHEN OTHERS clause
in that section smoothly handles the error by logging the occurrence of the error,
without re-raising that or any other error. Control is then passed out of the DELETE’s
block and back to the enclosing change_data procedure. Since there is no longer an
“active” exception, execution continues in this enclosing block.

Execution in this enclosing block then continues to the next statement in the procedure.
A new anonymous block is then entered for the UPDATE statement. If the UPDATE
statement fails, the WHEN OTHERS in the UPDATE’s own exception section traps
the problem and returns control to change_data, which blithely moves on to the
INSERT statement (contained in its very own block).

Figure 6-5 shows this process for two sequential DELETE statements.

Handling Exceptions | 149

Download at WoweBook.Com

Figure 6-5. Sequential DELETEs, using two different approaches to scope

To summarize: an exception raised in the executable section will always be handled in
the current block—if there is a matching handler present. You can create a “virtual
block” around any statement(s) by prefacing it with a BEGIN and following it with an
EXCEPTION section and an END statement. In this way you can control the scope of
failure caused by an exception by establishing “buffers” of anonymous blocks in your
code.

You can also take this strategy a step further and move the code you want to isolate
into separate procedures or functions. Of course, these named PL/SQL blocks may also
have their own exception sections and will offer the same protection from total failure.
One key advantage of using procedures and functions is that you hide all the BEGIN-
EXCEPTION-END statements from the mainline program. The program is then easier
to read, understand, maintain, and reuse in multiple contexts.

There are other ways to continue past a DML exception. You can also use SAVE EX-
CEPTIONS with FORALL and LOG ERRORS in association with DBMS_ERROR-
LOG to continue past exceptions raised by DML.

Writing WHEN OTHERS Handling Code
Include the WHEN OTHERS clause in the exception section to trap any otherwise
unhandled exceptions. Because you have not explicitly handled any specific exceptions,
you will very likely want to take advantage of the built-in error functions, such as
SQLCODE and DBMS_UTILITY.FORMAT_ERROR_STACK, to give you informa-
tion about the error that has occurred.

Combined with WHEN OTHERS, SQLCODE provides a way for you to handle dif-
ferent, specific exceptions without having to use the EXCEPTION_INIT pragma. In

150 | Chapter 6: Exception Handlers

Download at WoweBook.Com

the next example, I trap two parent-child exceptions, –1 and –2292, and then take an
action appropriate to each situation:

PROCEDURE add_company (
 id_in IN company.ID%TYPE
 , name_in IN company.name%TYPE
 , type_id_in IN company.type_id%TYPE
)
IS
BEGIN
 INSERT INTO company (ID, name, type_id)
 VALUES (id_in, name_in, type_id_in);
EXCEPTION
 WHEN OTHERS
 THEN
 /*
 || Anonymous block inside the exception handler lets me declare
 || local variables to hold the error code information.
 */
 DECLARE
 l_errcode PLS_INTEGER := SQLCODE;
 BEGIN
 CASE l_errcode
 WHEN −1 THEN
 -- Duplicate value for unique index. Either a repeat of the
 -- primary key or name. Display problem and re-raise.
 DBMS_OUTPUT.put_line
 ('Company ID or name already in use. ID = '
 || TO_CHAR (id_in)
 || ' name = '
 || name_in
);
 RAISE;
 WHEN −2291 THEN
 -- Parent key not found for type. Display problem and re-raise.
 DBMS_OUTPUT.put_line (
 'Invalid company type ID: ' || TO_CHAR (type_id_in));
 RAISE;
 ELSE
 RAISE;
 END CASE;
 END; -- End of anonymous block.
END add_company;

You should use WHEN OTHERS with care, because it can easily “swallow up” errors
and hide them from the outer blocks and the user. Specifically, watch out for WHEN
OTHER handlers that do not re-raise the current exception or raise some other excep-
tion in its place. If WHEN OTHERS does not propagate out an exception, then the
outer blocks of your application will never know that an error occurred.

Oracle Database 11g offers a new warning to help you identify programs that may be
ignoring or swallowing up errors:

PLW-06009: procedure "string" OTHERS handler does not end in RAISE or RAISE_
APPLICATION_ERROR

Handling Exceptions | 151

Download at WoweBook.Com

Here is an example of using this warning:

/* File on web: plw6009.sql */
SQL> ALTER SESSION SET plsql_warnings = 'enable:all'
 2 /

SQL> CREATE OR REPLACE PROCEDURE plw6009_demo
 2 AS
 3 BEGIN
 4 DBMS_OUTPUT.put_line ('I am here!');
 5 RAISE NO_DATA_FOUND;
 6 EXCEPTION
 7 WHEN OTHERS
 8 THEN
 9 NULL;
 10 END plw6009_demo;
 11 /

SP2-0804: Procedure created with compilation warnings

SQL> SHOW ERRORS
Errors for PROCEDURE PLW6009_DEMO:

LINE/COL ERROR
-------- ---
7/9 PLW-06009: procedure "PLW6009_DEMO" OTHERS handler does not end
 in RAISE or RAISE_APPLICATION_ERROR

Building an Effective Error Management Architecture
PL/SQL error raising and handling mechanisms are powerful and flexible, but they have
some drawbacks that can present challenges to any development team that wants to
implement a robust, consistent, informative architecture for error management.

Here are the some of the challenges you will encounter:

• The EXCEPTION is an odd kind of structure in PL/SQL. A variable declared to be
EXCEPTION can only be raised and handled. It has at most two characteristics:
an error code and an error message. You cannot pass an exception as an argument
to a program; you cannot associate other attributes with an exception.

• It is very difficult to reuse exception-handling code. Directly related to the previous
challenge is another fact: you cannot pass an exception as an argument; you end
up cutting and pasting handler code, which is certainly not an optimal way to write
programs.

• There is no formal way to specify which exceptions may be raised by a program.
With Java on the other hand, this information becomes part of the specification of
the program. The consequence is that you must look inside the program imple-
mentation to see what might be raised—or hope for the best.

152 | Chapter 6: Exception Handlers

Download at WoweBook.Com

• Oracle does not provide any way for you to organize and categorize your applica-
tion-specific exceptions. It simply sets aside (for the most part) the 1,000 error
codes between –20,999 and –20,000. You are left to manage those values.

Let’s figure out how we can best meet most of these challenges.

Decide on Your Error Management Strategy
It is extremely important that you establish a consistent strategy and architecture for
error handling in your application before you write any code. To do that, you must
answer questions like these:

• How and when do I log errors so that they can be reviewed and corrected? Should
I write information to a file, to a database table, and/or to the screen?

• How and when do I report the occurrence of errors back to the user? How much
information should the user see and have to keep track of? How do I transform
often obscure database error messages into text that is understandable to my users?

Linked tightly to these very high-level questions are more concrete issues, such as:

• Should I include an exception-handling section in every one of my PL/SQL blocks?

• Should I have an exception-handling section only in the top-level or outermost
blocks?

• How should I manage my transactions when errors occur?

Part of the complexity of exception handling is that there is no single right answer to
any of these questions. It depends at least in part on the application architecture and
the way it is used (batch process versus user-driven transactions, for example). However
you answer these questions for your application, I strongly suggest that you “codify”
the strategy and rules for error handling within a standardized package. I address this
topic in a later section.

Here are some general principles you may want to consider:

• When an error occurs in your code, obtain as much information as possible about
the context in which the error was raised. You are better off with more information
than you really need, rather than with less. You can then propagate the exception
to outer blocks, picking up more information as you go.

• Avoid hiding errors with handlers that look like WHEN error THEN NULL; (or,
even worse: WHEN OTHERS THEN NULL;). There may be a good reason for
you to write code like this, but do make sure it is really what you want and docu-
ment the usage so that others will be aware of it.

• Rely on the default error mechanisms of PL/SQL whenever possible. Avoid writing
programs that return status codes to the host environment or calling blocks. The
only time you will want to use status codes is if the host environment cannot

Building an Effective Error Management Architecture | 153

Download at WoweBook.Com

gracefully handle Oracle errors (in which case, you might want to consider switch-
ing your host environment!).

Standardize Handling of Different Types of Exceptions
An exception is an exception is an exception? Not really. Some exceptions, for example,
indicate that the database is having very severe, low-level problems (such as
ORA-00600). Other exceptions, like NO_DATA_FOUND, happen so routinely that
we don’t even really necessarily think of them as errors, but more as a conditional
branching of logic (“If the row doesn’t exist, then do this...”). Do these distinctions
really matter? I think so, and Bryn Llewellyn, PL/SQL Product Manager as of the writing
of this book, taught me a very useful way to categorize exceptions:

Deliberate
The code architecture itself deliberately relies upon an exception in the way it
works. This means you must (well, should) anticipate and code for this exception.
An example is UTL_FILE.GET_LINE.

Unfortunate
This is an error, but one that is to be expected and may not even indicate that a
problem has occurred. An example is a SELECT INTO statement that raises
NO_DATA_FOUND.

Unexpected
This is a “hard” error indicating a problem in the application. An example is a
SELECT INTO statement that is supposed to return a row for a given primary key,
but instead raises TOO_MANY ROWS.

Let’s take a close look at the examples of these exception categories. Then I will discuss
how knowing about these categories can and should be useful to you.

Deliberate exceptions

PL/SQL developers can use UTL_FILE.GET_LINE to read the contents of a file, one
line at a time. When GET_LINE reads past the end of a file, it raises
NO_DATA_FOUND. That’s just the way it works. So if I want to read everything from
a file and “do stuff,” my program might look like this:

PROCEDURE read_file_and_do_stuff (
 dir_in IN VARCHAR2, file_in IN VARCHAR2
)
IS
 l_file UTL_FILE.file_type;
 l_line VARCHAR2 (32767);
BEGIN
 l_file := UTL_FILE.fopen (dir_in, file_in, 'R', max_linesize => 32767);

 LOOP
 UTL_FILE.get_line (l_file, l_line);
 do_stuff;

154 | Chapter 6: Exception Handlers

Download at WoweBook.Com

 END LOOP;
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 UTL_FILE.fclose (l_file);
 more_stuff_here;
END;

You may notice something a bit strange about my loop; it has no EXIT statement. Also,
I am running more application logic (more_stuff_here) in the exception section. I can
rewrite my loop as follows:

LOOP
 BEGIN
 UTL_FILE.get_line (l_file, l_line);
 do_stuff;
 EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 EXIT;
 END;

 UTL_FILE.flcose (l_file);
 more_stuff_here;
END LOOP;

Now I have an EXIT statement in my loop, but that sure is some awkward code.

This is the kind of thing you need to do when you work with code that deliberately
raises an exception as a part of its architecture. You’ll find more in the next few sections
about what I think you should about this.

Unfortunate and unexpected exceptions

I will cover these together because the two examples (NO_DATA_FOUND and
TOO_MANY_ROWS) are tightly linked together. Suppose I need to write a function
to return the full name of an employee (last comma first) for a particular primary key
value.

I could write it most simply as follows:

FUNCTION fullname (
 employee_id_in IN employees.employee_id%TYPE
)
 RETURN VARCHAR2
IS
 retval VARCHAR2 (32767);
BEGIN
 SELECT last_name || ',' || first_name
 INTO retval
 FROM employees
 WHERE employee_id = employee_id_in;

 RETURN retval;
END fullname;

Building an Effective Error Management Architecture | 155

Download at WoweBook.Com

If I call this program with an employee ID that is not in the table, the database will raise
the NO_DATA_FOUND exception. If I call this program with an employee ID that is
found in more than one row in the table, the database will raise the
TOO_MANY_ROWS exception.

One query, two different exceptions—should you treat them the same way? Perhaps
not. Do these two exceptions truly reflect similar kinds of problems?

NO_DATA_FOUND
With this exception I didn’t find a match. That could be a serious problem, but is
not necessarily the case. Perhaps I actually expect that most of the time I will not
get a match, and therefore will simply insert a new employee. It is, shall we say,
unfortunate that the exception was raised, but in this case it is not even an error.

TOO_MANY_ROWS
With this exception we have a serious problem on our hands: something has gone
wrong with our primary key constraint. I can’t think of a circumstance in which
this would be considered OK or simply “unfortunate.” No, it is time to stop the
program, and call attention to this very unexpected, “hard” error.

How to benefit from this categorization

I hope you agree that this characterization sounds useful. I suggest that when you are
about to build a new application, you decide as much as possible the standard approach
you (and everyone else on the team) will take for each type of exception. Then, as you
encounter (need to handle or write in anticipation of) an exception, decide into which
category it falls, and then apply the already-decided approach. In this way, you will all
write your code in a more consistent and productive manner.

Here are my guidelines for dealing with the three types of exceptions:

Deliberate
You will need to write code in anticipation of this exception. The critical best
practice in this case is to avoid putting application logic in the exception section. The
exception section should only contain code needed to deal with the error: log the
error data, re-raise the exception, etc. Programmers don’t expect application-
specific logic there, which means that it will be much harder to understand and
maintain.

Unfortunate
If there are circumstances under which a user of the code that raises
this exception would not interpret the situation as an error, then don’t propagate
this exception out unhandled. Instead, return a value or status flag that indicates
the exception was raised. You then leave it up to the user of the program to decide
if that program should terminate with an error. Better yet, why not let the caller of
your program tell it whether or not to raise an exception, and if not, what value
should be passed to indicate that the exception occurred?

156 | Chapter 6: Exception Handlers

Download at WoweBook.Com

Unexpected
Now we are down to the hard stuff. All unexpected errors should be logged, re-
cording as much of the application context as possible to help understand why it
occurred. The program should then terminate with an unhandled exception (usu-
ally the same) that was raised within the program, which can be done with the
RAISE statement, forcing the calling program to stop and deal with the error.

Organize Use of Application-Specific Error Codes
When you use RAISE_APPLICATION_ERROR to raise application-specific errors, it
is entirely up to you to manage the error codes and messages. This can get tricky and
messy (“Gee, which number should I use? Well, I doubt that anyone would be using
–20774!”).

To help manage your error codes and provide a consistent interface with which devel-
opers can handle server errors, consider building a table to store all the –20,NNN error
numbers you use, along with their associated exception names and error messages.
Developers can then view these already defined errors via a screen and choose the one
that fits their situation. See the msginfo.sql file on the book’s web site for one such
example of a table, along with code that will generate a package containing declarations
of each of the “registered” exceptions.

Another approach you can take is to avoid the –20,NNN range entirely for application-
specific errors. Why not use positive numbers instead? Oracle uses only 1 and 100 on
the positive side of the integer range. While it is possible that Oracle will, over time, use
other positive numbers, it is very unlikely. That leaves an awful lot of error codes for
us to use.

I took this approach when designing the Quest Error Manager (QEM), a freeware error
management utility (available at www.ToadWorld.com from the Downloads page).
With Quest Error Manager, you can define your own errors in a special repository table.
You can define an error by name and/or error code. The error codes can be negative or
positive. If the error code is positive, then when you raise that exception, QEM uses
RAISE_APPLICATION_ERROR to raise a generic exception (usually –20,000). The
information about the current application error code is embedded in the error message,
which can then be decoded by the receiving program.

You can also see a simpler implementation of this approach in the general error manager
package, errpkg.pkg, which is described in the next section “Use Standardized Error
Management Programs”.

Use Standardized Error Management Programs
Robust and consistent error handling is an absolutely crucial element of a properly
constructed application. This consistency is important for two very different audiences:
the user and the developer. If the user is presented with easy-to-understand,

Building an Effective Error Management Architecture | 157

Download at WoweBook.Com

http://www.toadworld.com

well-formatted information when an error occurs, she will be able to report that error
more effectively to the support team and will feel more comfortable using the applica-
tion. If the application handles and logs errors in the same way throughout the entire
application, the support and maintenance programmers will be able to fix and enhance
the code much more easily.

Sounds like a sensible approach, doesn’t it? Unfortunately, and especially in develop-
ment teams of more than a handful of people, the end result of exception handling is
usually very different from what I just described. A more common practice is that each
developer strikes out on his own path, following different principles, writing to different
kinds of logs, and so on. Without standardization, debugging and maintenance become
a nightmare. Here’s an example of the kind of code that typically results:

EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 v_msg := 'No company for id '||TO_CHAR (v_id);
 v_err := SQLCODE;
 v_prog := 'fixdebt';
 INSERT INTO errlog VALUES
 (v_err,v_msg,v_prog,SYSDATE,USER);

 WHEN OTHERS
 THEN
 v_err := SQLCODE;
 v_msg := SQLERRM;
 v_prog := 'fixdebt';
 INSERT INTO errlog VALUES
 (v_err,v_msg,v_prog,SYSDATE,USER);
 RAISE;

At first glance, this code might seem quite sensible, and in fact explains itself clearly:

If I don’t find a company for this ID, grab the SQLCODE value, set the program name
and message, and write a row to the log table. Then allow the enclosing block to continue
(it’s not a very severe error in this case). If any other error occurs, grab the error code and
message, set the program name, write a row to the log table, and then propagate out the
same exception, causing the enclosing block to stop (I don’t know how severe the error
is).

So what’s wrong with all that? The mere fact that I can actually explain everything that
is going on is an indication of the problem. I have exposed and hardcoded all the steps
I take to get the job done. The result is that (1) I write a lot of code, and (2) if anything
changes, I have to change a lot of code. Just to give you one example, notice that I am
writing to a database table for my log. This means that the log entry has become a part
of my logical transaction. If I need to roll back that transaction, I lose my error log.

There are several ways to correct this problem—for example, write to a file or use
autonomous transactions to save my error log without affecting my main transaction.
The problem is that, with the way I have written my code above, I have to apply my
correction in potentially hundreds of different programs.

158 | Chapter 6: Exception Handlers

Download at WoweBook.Com

Now consider a rewrite of this same exception section using a standardized package:

EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 errpkg.record_and_continue (
 SQLCODE, 'No company for id ' || TO_CHAR (v_id));

 WHEN OTHERS
 THEN
 errpkg.record_and_stop;
END;

My error-handling package hides all the implementation details; I simply decide which
of the handler procedures I want to use by viewing the specification of the package. If
I want to record the error and then continue, I call the record_and_continue the pro-
gram. If I want to record and then stop, clearly I want to use the record_and_stop the
program. How does it record the error? How does it stop the enclosing block (i.e., how
does it propagate the exception)? I don’t know, and I don’t care. Whatever it does, it
does it according to the standards defined for my application.

All I know is that I can now spend more time building the interesting elements of my
application, rather than worrying over the tedious, low-level administrivia.

The errpkg.pkg file available on the book’s web site contains a prototype of such a
standardized error-handling package. You will want to review and complete its imple-
mentation before using it in your application, but it will give you a very clear sense of
how to construct such a utility.

Alternatively, you can take advantage of a much more complete error management
utility (also free): the Quest Error Manager mentioned earlier. The most important
concept underlying my approach with QEM is that you trap and log information about
instances of errors, and not just the Oracle error. QEM consists of a PL/SQL package
and four underlying tables that store information about errors that occur in an
application.

Work with Your Own Exception “Objects”
Oracle’s implementation of the EXCEPTION datatype has some limitations, as de-
scribed earlier. An exception consists of an identifier (a name) with which you can
associate a number and a message. You can raise the exception, and you can handle it.
That’s it. Consider the way that Java approaches this same situation: all errors derive
from a single Exception class. You can extend that class, adding other characteristics
about an exception that you want to keep track of (error stack, context-sensitive data,
etc.). An object instantiated from an Exception class is like any other kind of object in
Java. You certainly can pass it as an argument to a method.

Building an Effective Error Management Architecture | 159

Download at WoweBook.Com

So PL/SQL doesn’t let you do that with its native exceptions. This fact should not stop
you from implementing your own exception “object.” You can do so with Oracle object
types or with a relational table of error information.

Regardless of implementation path, the key insight here is to distinguish between an
error definition (error code is −1403, name is “no data found,” cause is “implicit cursor
did not find at least one row”) and a particular instance of that error (I tried to select a
company for this name and did not find any rows.). There is, in other words, just one
definition of the NO_DATA_FOUND exception, but there are many different
instances or occurrences of that exception. Oracle does not distinguish between these
two representations of an error, but we certainly should—and we need to.

Here is an example of a simple exception object hierarchy to demonstrate the point.
First, the base object type for all exceptions:

/* File on web: exception.ot */
CREATE TYPE exception_t AS OBJECT (
 name VARCHAR2(100),
 code INTEGER,
 description VARCHAR2(4000),
 help_text VARCHAR2(4000),
 recommendation VARCHAR2(4000),
 error_stack CLOB,
 call_stack CLOB,
 created_on DATE,
 created_by VARCHAR2(100)
)
 NOT FINAL;
/

Next, I extend the base exception type for dynamic SQL errors by adding the sql_string
attribute. When handling errors for dynamic SQL, it is very important to grab the string
that is causing the problem, so it can be analyzed later.

CREATE TYPE dynsql_exception_t UNDER exception_t (
 sql_string CLOB)
 NOT FINAL;
/

Here is another subtype of exception_t, this time specific to a given application entity,
the employee. An exception that is raised for an employee-related error will include the
employee ID and the foreign key to the rule that was violated.

CREATE TYPE employee_exception_t UNDER exception_t (
 employee_id INTEGER,
 rule_id INTEGER);
/

The complete specification of an error object hierarchy will include methods on the
exception supertype to display error information or write it to the repository. I leave it
to the reader to complete the hierarchy defined in the exception.ot file.

160 | Chapter 6: Exception Handlers

Download at WoweBook.Com

If you do not want to work with object types, you can take the approach I developed
for the Quest Error Manager: I define a table of error definitions (Q$ERROR) and
another table of error instances (Q$ERROR_INSTANCE), which contains information
about specific occurrences of an error. All the context-specific data for an error instance
is stored in the Q$ERROR_CONTEXT table.

Here is an example of the kind of code you would write with the Quest Error Manager
API:

WHEN DUP_VAL_ON_INDEX
THEN
 q$error_manager.register_error (
 error_name_in => 'DUPLICATE-VALUE'
 ,err_instance_id_out => l_err_instance_id
);
 q$error_manager.add_context (
 err_instance_id_in => l_err_instance_id
 ,name_in => 'TABLE_NAME', value_in => 'EMPLOYEES'
);
 q$error_manager.add_context (
 err_instance_id_in => l_err_instance_id
 ,name_in => 'KEY_VALUE', value_in => l_employee_id
);
 q$error_manager.raise_error_instance (err_instance_id_in => l_err_instance_id);
END;

If the duplicate value error was caused by the unique name constraint, I obtain an error
instance ID or handle for the “DUPLICATE-VALUE” error. (That’s right. I use error
names here, entirely sidestepping issues related to error numbers). Then I add context
information for this instance (the table name and the primary key value that caused the
problem). Finally, I raise the error instance, causing this block to fail and propagating
the exception upwards.

Just as you can pass data from your application into the error repository through the
API, you can also retrieve error information with the get_error_info procedure. Here
is an example:

BEGIN
 run_my_application_code;
EXCEPTION
 WHEN OTHERS
 THEN
 DECLARE
 l_error q$error_manager.error_info_rt;
 BEGIN
 q$error_manager.get_error_info (l_error);
 DBMS_OUTPUT.put_line ('');
 DBMS_OUTPUT.put_line ('Error in DEPT_SAL Procedure:');
 DBMS_OUTPUT.put_line ('Code = ' || l_error.code);
 DBMS_OUTPUT.put_line ('Name = ' || l_error.NAME);
 DBMS_OUTPUT.put_line ('Text = ' || l_error.text);
 DBMS_OUTPUT.put_line ('Error Stack = ' || l_error.error_stack);

Building an Effective Error Management Architecture | 161

Download at WoweBook.Com

 END;
END;

These are just two of a number of different approaches to overcoming the limitations
of the EXCEPTION type in PL/SQL. The bottom line is that there is no reason to accept
the default situation, which is that you can only associate a code and message with the
occurrence of an error.

Create Standard Templates for Common Error Handling
You cannot pass an exception to a program, which makes it very difficult to share
standard error-handling sections among different PL/SQL blocks. You may find your-
self writing the same handler logic over and over again, particularly when working with
specific areas of functionality, such as file I/O with UTL_FILE. In these situations, you
should take the time to create templates or starting points for such handlers.

Let’s take a closer look at UTL_FILE (described further in Chapter 22). Prior to Oracle9i
Database Release 2, UTL_FILE defined a number of exceptions in its package specifi-
cation. However, Oracle neglected to provide error numbers for those exceptions via
the EXCEPTION_INIT pragma. Consequently, if you did not handle a UTL_FILE ex-
ception by name, it would be impossible via SQLCODE to figure out what had gone
wrong. Given this situation, you would probably want to set up a template for
UTL_FILE programs that looked in part like this:

/* File on web: utlflexc.sql */
DECLARE
 l_file_id UTL_FILE.file_type;

 PROCEDURE cleanup (file_in IN OUT UTL_FILE.file_type
 ,err_in IN VARCHAR2 := NULL)
 IS
 BEGIN
 UTL_FILE.fclose (file_in);

 IF err_in IS NOT NULL
 THEN
 DBMS_OUTPUT.put_line ('UTL_FILE error encountered:');
 DBMS_OUTPUT.put_line (err_in);
 END IF;
 END cleanup;
BEGIN
 -- Body of program here

 -- Then clean up before exiting...
 cleanup (l_file_id);
EXCEPTION
 WHEN UTL_FILE.invalid_path
 THEN
 cleanup (l_file_id, 'invalid_path');
 RAISE;
 WHEN UTL_FILE.invalid_mode
 THEN

162 | Chapter 6: Exception Handlers

Download at WoweBook.Com

 cleanup (l_file_id, 'invalid_mode');
 RAISE;
END;

The key elements of this template include:

• A reusable cleanup program that ensures that the current file is closed before losing
the handle to the file.

• The translation of the named exception to a string that can be logged or displayed
so that you know precisely which error was raised.

Starting with Oracle9i Database Release 2, UTL_FILE does assign error
codes to each of its exceptions, but you still need to make sure that files
are closed when an error occurs and report on the error as consistently
as possible.

Let’s take a look at another UTL_FILE-related need for a template. Oracle9i Database
Release 2 introduced the FREMOVE program to delete a file. UTL_FILE offers the
DELETE_FAILED exception, raised when FREMOVE is unable to remove the file.
After trying out this program, I discovered that FREMOVE may, in fact, raise any of
several exceptions, including:

UTL_FILE.INVALID_OPERATION
The file you asked UTL_FILE to remove does not exist.

UTL_FILE.DELETE_FAILED
You (or the Oracle process) do not have the necessary privileges to remove the file,
or the attempt failed for some other reason.

Thus, whenever you work with UTL_FILE.FREMOVE, you should include an excep-
tion section that distinguishes between these two errors, as in:

BEGIN
 UTL_FILE.fremove (dir, filename);
EXCEPTION
 WHEN UTL_FILE.delete_failed
 THEN
 DBMS_OUTPUT.put_line (
 'Error attempting to remove: ' || filename || ' from ' || dir);
 -- Then take appropriate action....

 WHEN UTL_FILE.invalid_operation
 THEN
 DBMS_OUTPUT.put_line (
 'Unable to find and remove: ' || filename || ' from ' || dir);
 -- Then take appropriate action....
END;

The fileIO.pkg available on the book’s web site offers a more complete implementation
of such a template, in the context of an encapsulation of UTL_FILE.FREMOVE.

Building an Effective Error Management Architecture | 163

Download at WoweBook.Com

Making the Most of PL/SQL Error Management
It will be very difficult to create applications that are easy to use and debug unless you
take a consistent, high-quality approach to dealing with errors.

Oracle PL/SQL’s error management capabilities allow you to define, raise and handle
errors in very flexible ways. Limitations in its approach, however, mean that you will
usually want to supplement the built-in features with your own application-specific
code and tables.

I suggest that you meet this challenge by taking the following steps:

1. Study and understand how error raising and handling work in PL/SQL. It is not
all completely intuitive. A prime example: an exception raised in the declaration
section will not be handled by the exception section of that block.

2. Decide on the overall error management approach you will take in your applica-
tion. Where and when do you handle errors? What information do you need to
save and how will you do that? How are exceptions propagated to the host envi-
ronment? How will you handle deliberate, unfortunate, and unexpected errors?

3. Build a standard framework to be used by all developers; that framework will
include underlying tables, packages, and perhaps object types, along with a well-
defined process for using these elements. Don’t resign yourself to PL/SQL’s limi-
tations. Work around them by enhancing the error management model.

4. Create templates that everyone on your team can use, making it easier to follow
the standard than to write one’s own error-handling code.

164 | Chapter 6: Exception Handlers

Download at WoweBook.Com

PART III

PL/SQL Program Data

Just about every program you write will manipulate data—and much of that data is
“local” to (i.e., defined in) your PL/SQL procedure or function. This part of the book
concentrates on the various types of program data you can define in PL/SQL, such as
numbers (including the datatypes introduced in Oracle Database 11g), strings, dates,
timestamps, records, collections, XML datatypes, and user-defined datatypes. Chap-
ters 7 through 13 also cover the various built-in functions provided by Oracle that allow
you to manipulate and modify data.

Chapter 7, Working with Program Data
Chapter 8, Strings
Chapter 9, Numbers
Chapter 10, Dates and Timestamps
Chapter 11, Records
Chapter 12, Collections
Chapter 13, Miscellaneous Datatypes

Download at WoweBook.Com

Download at WoweBook.Com

CHAPTER 7

Working with Program Data

Almost every PL/SQL block you write will define and manipulate program data. Pro-
gram data consists of data structures that exist only within your PL/SQL session (phys-
ically, within the Program Global Area, or PGA, for your session); they are not stored
in the database. Program data can be:

Variable or constant
The values of variables can change during a program’s execution. The values of
constants are static once they are set at the time of declaration.

Scalar or composite
Scalars are made up of a single value, such as a number or a string. Composite data
consists of multiple values, such as a record, a collection, or an object type instance.

Containerized
Containers may contain information obtained from the database, or data that was
never in the database and might not ever end up there.

Before you can work with program data inside your PL/SQL code, you must declare
data structures, giving them names and datatypes.

This chapter describes how you declare program data. It covers the rules governing the
format of the names you give them. It offers a quick reference to all the different types
of data supported in PL/SQL and explores the concept of datatype conversion. The
chapter finishes with some recommendations for working with program data. The re-
maining chapters in this part of the book describe specific types of program data.

Naming Your Program Data
To work with a variable or a constant, you must first declare it, and when you declare
it, you give it a name. Here are the rules that PL/SQL insists you follow when naming
your data structures (these are the same rules applied to names of database objects,
such as tables and columns):

167

Download at WoweBook.Com

• Names can be up to 30 characters in length.

• Names must start with a letter.

• After the first letter, names can then be composed of any of the following: letters,
numerals, $, #, and _.

• All names are case-insensitive (unless those names are placed within double
quotes).

Given these rules, the following names are valid:

l_total_count
first_12_years
total_#_of_trees
salary_in_$

These next two names are not only valid but considered identical by PL/SQL because
it is not a case-sensitive language:

ExpertsExchange
ExpertSexChange

The next three names are invalid, for the reasons indicated:

1st_account --Starts with a number instead of a letter
favorite_ice_cream_flavors_that_dont_contain_nuts --Too long
email_address@business_loc --Contains invalid character (@)

There are some exceptions to these rules (why am I not surprised?). If you embed a
name within double quotes when you declare it, you can bypass all the above rules
except the maximum length of 30 characters. For example, all of the following decla-
rations are valid:

DECLARE
 "truly_lower_case" INTEGER;
 " " DATE; -- Yes, a name consisting of five spaces!
 "123_go!" VARCHAR2(10);
BEGIN
 "123_go!" := 'Steven';
END;

Note that when you reference these strange names in your execution section, you will
need to do so within double quotes, as shown. Otherwise, your code will not compile.

Why would you use double quotes? There is little reason to do so in PL/SQL programs.
It is a technique sometimes employed when creating database objects because it pre-
serves case-sensitivity (in other words, if I CREATE TABLE “docs”, then the name of
the table is docs and not DOCS), but in general, you should avoid using double quotes
in PL/SQL.

Another exception to these naming conventions has to do with the names of Java ob-
jects, which can be up to 4K in length. See the Java chapter included on the book’s web
site for more details about this variation and what it means for PL/SQL developers.

168 | Chapter 7: Working with Program Data

Download at WoweBook.Com

Here are two key recommendations for naming your variables, constants, and types:

Ensure that each name accurately reflects its usage and is understandable at a glance
You might even take a moment to write down—in noncomputer terms—what a
variable represents. You can then easily extract an appropriate name from that
statement. For example, if a variable represents the “total number of calls made
about lukewarm coffee,” a good name for that variable might be to-
tal_calls_on_cold_coffee, or tot_cold_calls, if you are allergic to five-word variable
names. A bad name for that variable would be totcoffee, or t_#_calls_lwcoff, both
too cryptic to get the point across.

Establish consistent, sensible naming conventions
Such conventions usually involve the use of prefixes and/or suffixes to indicate
type and usage. For example, all local variables should be prefixed with “l_” while
global variables defined in packages have a “g_” prefix. All record types should
have a suffix of “_rt”, and so on. You can download a comprehensive set of naming
conventions from O’Reilly’s Oracle page at http://oracle.oreilly.com. Click on
“Oracle PL/SQL Best Practices,” then “Examples.” The download contains a
standards document for your use. (Currently, the direct URL is http://oreilly.com/
catalog/9780596514105/.)

Overview of PL/SQL Datatypes
Whenever you declare a variable or a constant, you must assign it a datatype. PL/SQL
is, with very few exceptions, a “statically typed programming language” (see the fol-
lowing sidebar for a definition). PL/SQL offers a comprehensive set of predefined scalar
and composite datatypes, and you can create your own user-defined types (also known
as abstract datatypes). Many of the PL/SQL datatypes are not supported by database
columns, such as Boolean and NATURAL, but within PL/SQL code, these datatypes
are quite useful.

Virtually all of these predefined datatypes are defined in the PL/SQL STANDARD
package. Here, for example, are the statements that define the Boolean datatype and
two of the numeric datatypes:

create or replace package STANDARD is

 type BOOLEAN is (FALSE, TRUE);

 type NUMBER is NUMBER_BASE;
 subtype INTEGER is NUMBER(38,);

When it comes to datatypes, PL/SQL supports the “usual suspects” and a whole lot
more. This section provides a quick overview of the various predefined datatypes. They
are covered in detail in Chapters 8 through 13, Chapter 15, and Chapter 26; you will
find detailed references to specific chapters in the following sections.

Overview of PL/SQL Datatypes | 169

Download at WoweBook.Com

http://oracle.oreilly.com
http://oreilly.com/catalog/9780596514105/
http://oreilly.com/catalog/9780596514105/

What Does “Static Typing” Mean?
A programming language uses static typing, also called strong typing, if type checking
is performed at compile-time as opposed to at runtime. Some programming languages
that use static typing include PL/SQL, Ada, C, and Pascal. A dynamically typed pro-
gramming language, like JavaScript, Perl, or Ruby performs most type checking at run-
time. Static typing can find type errors at compile time, which can increase the reliability
of the program. Static typing has the additional benefit of compiling to faster executing
programs. An optimizing compiler that knows the exact datatypes in use can find as-
sembler shortcuts more easily and produce more highly optimized machine code. Dy-
namic typing also has some advantages: for example, metaclasses and introspection are
easier to implement with dynamic typing.

Character Data
PL/SQL supports both fixed- and variable-length strings as both traditional character
and Unicode character data. CHAR and NCHAR are fixed-length datatypes;
VARCHAR2 and NVARCHAR2 are variable-length datatypes. Here is a declaration of
a variable-length string that can hold up to 2,000 characters:

DECLARE
 l_accident_description VARCHAR2(2000);

Chapter 8 explores the rules for character data, provides many examples, and explains
the built-in functions provided to manipulate strings in PL/SQL.

For very large character strings PL/SQL has the CLOB (Character Large Object) and
NCLOB (NLS Character Large Object) datatypes. For backward compatibility,
PL/SQL also supports the LONG datatype. These datatypes allow you to store and
manipulate very large amounts of data, in Oracle Database 11g, a LOB can hold up to
128 terabytes of information.

There are many rules restricting the use of LONGs. I recommend that
you avoid using LONGs (assuming that you are running Oracle8 Da-
tabase or later).

Chapter 13 explores the rules for large objects, provides many examples, and explains
the built-in functions and the DBMS_LOB package provided to manipulate large ob-
jects in PL/SQL.

Numbers
PL/SQL supports an increasing variety of numeric datatypes. NUMBER has long been
the workhorse of the numeric datatypes, and you can use it for decimal fixed- and

170 | Chapter 7: Working with Program Data

Download at WoweBook.Com

floating-point values, and for integers. Following is an example of some typical
NUMBER declarations:

/* File on web: numbers.sql */
DECLARE
 salary NUMBER(9,2); --fixed-point, seven to the left, two to the right
 raise_factor NUMBER; --decimal floating-point
 weeks_to_pay NUMBER(2); --integer
BEGIN
 salary := 1234567.89;
 raise_factor := 0.05;
 weeks_to_pay := 52;
END;

Because of its internal decimal nature, NUMBER is particularly useful when working
with monetary amounts. You won’t incur any rounding error as a result of binary rep-
resentation. For example, when you store 0.95, you won’t come back later to find only
0.949999968.

Prior to Oracle Database 10g, NUMBER was the only one of PL/SQL’s numeric data-
types to correspond directly to a database datatype. You can see this subtyping by
examining the package STANDARD. This exclusiveness is one reason you’ll find
NUMBER so widely used in PL/SQL programs.

Oracle Database 10g introduced two, binary floating-point types: BINARY_FLOAT
and BINARY_DOUBLE. Like NUMBER, these binary datatypes are supported in both
PL/SQL and the database. Unlike NUMBER, these binary datatypes are not decimal in
nature—they have binary precision—so you can expect rounding. The BI-
NARY_FLOAT and BINARY_DOUBLE types support the special values NaN (Not a
Number) as well as positive and negative infinity. Given the right type of application,
their use can lead to tremendous performance gains, as arithmetic involving these bi-
nary types is performed in hardware whenever the underlying platform allows.

Oracle Database 11g added two more variations on these floating-point types.
SIMPLE_FLOAT and SIMPLE_DOUBLE are like BINARY_FLOAT and BI-
NARY_DOUBLE, but they do not allow NULL values, nor do they raise an exception
when an overflow occurs.

PL/SQL supports several numeric types and subtypes that do not correspond to data-
base datatypes, but are nevertheless quite useful. Notable here are PLS_INTEGER and
SIMPLE_INTEGER. PLS_INTEGER is an integer type with its arithmetic implemented
in hardware. FOR loop counters are implemented as PLS_INTEGERs.
SIMPLE_INTEGER, introduced in Oracle Database 11g, has the same range of values
as PLS_INTEGER, but it does not allow NULL values, nor does it raise an exception
when an overflow occurs. SIMPLE_INTEGER, like SIMPLE_FLOAT and
SIMPLE_DOUBLE, is extremely speedy—especially with natively compiled code. I’ve
measured stunning performance improvements using SIMPLE_INTEGER compared
to other numeric datatypes.

Overview of PL/SQL Datatypes | 171

Download at WoweBook.Com

Chapter 9 explores the rules for numeric data, provides many examples, and explains
the built-in functions provided to manipulate numbers in PL/SQL.

Dates, Timestamps, and Intervals
Prior to Oracle9i Database, the Oracle world of dates was limited to the DATE datatype,
which stores both a date and a time (down to the nearest second). Oracle9i Database
introduced two sets of new, related datatypes: INTERVALs and TIMESTAMPs. These
datatypes greatly expand the capability of PL/SQL developers to write programs that
manipulate and store dates and times with very high granularity, and also compute and
store intervals of time.

Here is an example of a function that computes the age of a person as an interval with
month granularity:

/* File on web: age.fnc */
FUNCTION age (dob_in IN DATE)
 RETURN INTERVAL YEAR TO MONTH
IS
BEGIN
 RETURN (SYSDATE - dob_in) YEAR TO MONTH;
END;

Chapter 10 explores the rules for date-related data, provides many examples, and ex-
plains the built-in functions provided to manipulate dates, timestamps, and intervals
in PL/SQL.

Booleans
PL/SQL supports a three-value Boolean datatype. A variable of this type can have one
of only three values: TRUE, FALSE, and NULL.

Booleans help us write very readable code, especially involving complex logical ex-
pressions. Here’s an example of a Boolean declaration, along with an assignment of a
default value to that variable:

DECLARE
 l_eligible_for_discount BOOLEAN :=
 customer_in.balance > min_balance AND
 customer_in.pref_type = 'MOST FAVORED' AND
 customer_in.disc_eligibility;

Chapter 13 explores the rules for Boolean data and provides examples of usage.

Binary Data
Oracle supports several forms of binary data (unstructured data that is not interpreted
or processed by Oracle), including RAW, BLOB, and BFILE. The BFILE datatype stores
unstructured binary data in operating-system files outside the database. RAW is a

172 | Chapter 7: Working with Program Data

Download at WoweBook.Com

variable-length datatype like the VARCHAR2 character datatype, except that Oracle
utilities do not perform character set conversion when transmitting RAW data.

The datatype LONG RAW is still supported for backward compatibility, but PL/SQL
offers only limited support for LONG RAW data. In an Oracle database, a LONG RAW
column can be up to 2 GB long, but PL/SQL will only be able to access the first 32,760
bytes of a LONG RAW. If, for example, you try to fetch a LONG RAW from the
database into your PL/SQL variable which exceeds the 32,760 byte limit, you will en-
counter an ORA-06502 PL/SQL numeric or value error exception. To work with LONG
RAWs longer than PL/SQL’s limit, you need an OCI program; this is a good reason to
migrate your legacy code from LONG RAWs to BLOBs, which have no such limit.

Chapter 13 explores the rules for binary data, provides many examples, and explains
the built-in functions and the DBMS_LOB package provided to manipulate BFILEs and
other binary data in PL/SQL.

ROWIDs
Oracle provides two proprietary datatypes, ROWID and UROWID, used to represent
the address of a row in a table. ROWID represents the unique physical address of a
row in its table; UROWID represents the logical position of a row in an index-organized
table (IOT). ROWID is also a SQL pseudocolumn that can be included in SQL
statements.

Chapter 13 explores the rules for working with the ROWID and UROWID datatypes.

REF CURSORs
The REF CURSOR datatype allows developers to declare cursor variables. A cursor
variable can then be used with static or dynamic SQL statements to implement more
flexible programs. There are two forms of REF CURSORs: the strong REF CURSOR
and the weak REF CURSOR. PLSQL is a statically typed language, and the weak REF
CURSOR is one of the few dynamically typed constructs supported.

Here is an example of a strong REF CURSOR declaration. I associate the cursor variable
with a specific record structure (using a %ROWTYPE attribute):

DECLARE
 TYPE book_data_t IS REF CURSOR RETURN book%ROWTYPE;
 book_curs_var book_data_t;

And here are two weak REF CURSOR declarations in which I do not associate any
particular structure with the resulting variable. The second declaration (line 4) show-
cases SYS_REFCURSOR, a predefined weak REF CURSOR type.

DECLARE
 TYPE book_data_t IS REF CURSOR;
 book_curs_var book_data_t;
 book_curs_var_b SYS_REFCURSOR;

Overview of PL/SQL Datatypes | 173

Download at WoweBook.Com

Chapter 15 explores REF CURSORs and cursor variables in much more detail.

Internet Datatypes
Beginning with Oracle Database 9i, there is native support for several Internet-related
technologies and types of data, specifically XML (Extensible Markup Language) and
URIs (Universal Resource Identifiers). The Oracle database provides datatypes for
handling XML and URI data, as well as a class of URIs called DBUri-REFs that access
data stored within the database itself. The database also includes a set of datatypes used
to store and access both external and internal URIs from within the database.

The XMLType allows you to query and store XML data in the database using functions
like SYS_XMLGEN and the DBMS_XMLGEN package. It also allows you to use native
operators in the SQL language to search XML documents using the XPath language.

The URI-related types, including URIType and HttpURIType, are all part of an object
type inheritance hierarchy and can be used to store URLs to external web pages and
files, as well as to refer to data within the database.

Chapter 13 explores the rules for working with XMLType and URI types, provides
some examples, and explains the built-in functions and packages provided to manip-
ulate these datatypes.

“Any” Datatypes
Most of the time, our programming tasks are fairly straightforward and very specific to
the requirement at hand. At other times, however, we write more generic kinds of code.
For those situations, the “Any” datatypes might come in very handy.

The “Any” types were introduced in Oracle9i Database and are very different from any
other kind of datatype available in an Oracle database. They let you dynamically en-
capsulate and access type descriptions, data instances, and sets of data instances of any
other SQL type. You can use these types (and the methods defined for them, as they
are object types) to do things like determine the type of data stored in a particular nested
table without having access to the actual declaration of that table type!

The “Any” datatypes include AnyType, AnyData, and AnyDataSet.

Chapter 13 explores the rules for working with the “Any” datatypes and provides some
working examples of these dynamic datatypes.

User-Defined Datatypes
You can use Oracle built-in datatypes and other user-defined datatypes to create arbi-
trarily complex types of your own that model closely the structure and behavior of data
in your systems.

174 | Chapter 7: Working with Program Data

Download at WoweBook.Com

Chapter 26 explores this powerful feature in more detail and describes how to take
advantage of the support for object type inheritance in Oracle9i Database through
Oracle Database 11g.

Declaring Program Data
With few exceptions, you must declare your variables and constants before you use
them. These declarations are in the declaration section of your PLSQL program. (See
Chapter 3 for more details on the structure of the PL/SQL block and its declaration
section.)

Your declarations can include variables, constants, TYPEs (such as collection types or
record types), and exceptions. This chapter focuses on the declarations of variables and
constants. (See Chapter 11 for an explanation of TYPE statements for records and
Chapter 12 for collection types. See Chapter 6 to learn how to declare exceptions.)

Declaring a Variable
When you declare a variable, PL/SQL allocates memory for the variable’s value and
names the storage location so that the value can be retrieved and changed. The decla-
ration also specifies the datatype of the variable; this datatype is then used to validate
values assigned to the variable.

The basic syntax for a declaration is:

name datatype [NOT NULL] [:= | DEFAULT default_assignment];

where name is the name of the variable or constant to be declared, and datatype is the
datatype or subtype that determines the type of data that can be assigned to the variable.
You can include a NOT NULL clause, which tells the database to raise an exception if
no value is assigned to this variable. The [default_assignment] clause tells the database
to initialize the variable with a value; this is optional for all declarations except those
of constants. If you declare a variable NOT NULL, you must assign a value to it in the
declaration line.

The following examples illustrate declarations of variables of different datatypes:

DECLARE
 -- Simple declaration of numeric variable
 l_total_count NUMBER;

 -- Declaration of number that rounds to nearest hundredth (cent):
 l_dollar_amount NUMBER (10,2);

 -- A single datetime value, assigned a default value of the database server's
 -- system clock. Also, it can never be NULL
 l_right_now DATE NOT NULL DEFAULT SYSDATE;

 -- Using the assignment operator for the default value specification

Declaring Program Data | 175

Download at WoweBook.Com

 l_favorite_flavor VARCHAR2(100) := 'Anything with chocolate, actually';

 -- Two-step declaration process for associative array.
 -- First, the type of table:
 TYPE list_of_books_t IS TABLE OF book%ROWTYPE INDEX BY BINARY_INTEGER;

 -- And now the specific list to be manipulated in this block:
 oreilly_oracle_books list_of_books_t;

The DEFAULT syntax (see l_right_now in the previous example) and the assignment
operator syntax (see l_favorite_flavor in the previous example) are both equivalent and
can be used interchangeably. So which should you use? I like to use the assignment
operator (:=) to set default values for constants, and the DEFAULT syntax for variables.
In the case of a constant, the assigned value is not really a default but an initial (and
unchanging) value, so the DEFAULT syntax feels misleading to me.

Declaring Constants
There are just two differences between declaring a variable and declaring a constant:
for a constant, you include the CONSTANT keyword, and you must supply a default
value (which isn’t really a default at all, but rather is the only value). So the syntax for
the declaration of a constant is:

name CONSTANT datatype [NOT NULL] := | DEFAULT default_value;

The value of a constant is set upon declaration and may not change thereafter.

Here are some examples of declarations of constants:

DECLARE
 -- The current year number; it's not going to change during my session.
 l_curr_year CONSTANT PLS_INTEGER :=
 TO_NUMBER (TO_CHAR (SYSDATE, 'YYYY'));

 -- Using the DEFAULT keyword
 l_author CONSTANT VARCHAR2(100) DEFAULT 'Bill Pribyl';

 -- Declare a complex datatype as a constant
 -- this isn't just for scalars!
 l_steven CONSTANT person_ot :=
 person_ot ('HUMAN', 'Steven Feuerstein', 175,
 TO_DATE ('09-23-1958', 'MM-DD-YYYY'));

Unless otherwise stated, the information provided in the rest of this chapter for varia-
bles also applies to constants.

An unnamed constant is a literal value, such as 2 or ‘Bobby McGee’. A
literal does not have a name, although it does have an implied (unde-
clared) datatype.

176 | Chapter 7: Working with Program Data

Download at WoweBook.Com

The NOT NULL Clause
If you do assign a default value, you can also specify that the variable must be NOT
NULL. For example, the following declaration initializes the company_name variable
to PCS R US and makes sure that the name can never be set to NULL:

company_name VARCHAR2(60) NOT NULL DEFAULT 'PCS R US';

If your code executes a line like this:

company_name := NULL;

then PL/SQL will raise the VALUE_ERROR exception. In addition, you will receive a
compilation error with this next declaration, because the declaration does not include
an initial or default value:

company_name VARCHAR2(60) NOT NULL; -- must assign a value if declared NOT NULL!

Anchored Declarations
You can and often will declare variables using “hardcoded” or explicit datatypes, as
follows:

l_company_name VARCHAR2(100);

A better practice for data destined for or obtained from a database table or other PLSQL
program structure is to anchor your variable declaration to that object. When you “an-
chor” a datatype, you tell PL/SQL to set the datatype of your variable to the datatype
of an already defined data structure: another PL/SQL variable, a predefined TYPE or
SUBTYPE, a database table, or a specific column in a table.

PL/SQL offers two kinds of anchoring:

Scalar anchoring
Use the %TYPE attribute to define your variable based on a table’s column or some
other PL/SQL scalar variable.

Record anchoring
Use the %ROWTYPE attribute to define your record structure based on a table or
a predefined PL/SQL explicit cursor.

The syntax for an anchored datatype is:

variable name type attribute%TYPE [optional default value assignment];
variable name table_name | cursor_name%ROWTYPE [optional default value assignment];

where variable name is the name of the variable you are declaring, and type attribute is
either a previously declared PL/SQL variable name or a table column specification in
the format table.column.

This anchoring reference is resolved at the time the code is compiled; there is no runtime
overhead to anchoring. The anchor also establishes a dependency between the code
and the anchored element (the table, cursor, or package containing the variable

Declaring Program Data | 177

Download at WoweBook.Com

referenced). This means that if those elements are changed, the code in which the an-
choring takes place is marked INVALID. When it is recompiled, the anchor will again
be resolved, thereby keeping the code current with the anchored element.

Figure 7-1 shows how the datatype is drawn from both a database table and a PL/ SQL
variable.

Figure 7-1. Anchored declarations with %TYPE

Here is an example of anchoring a variable to a database column:

l_company_id company.company_id%TYPE;

You can also anchor against PL/SQL variables; this is usually done to avoid redundant
declarations of the same hardcoded datatype. In this case, the best practice is to create
a “reference” variable in a package and then reference that package variable in %TYPE
statements. (You could also create SUBTYPEs in your package; this topic is covered
later in the chapter.) The following example shows just a portion of a package intended
to make it easier to work with Oracle Advanced Queuing (AQ):

/* File on web: aq.pkg */
PACKAGE aq
IS

/* Standard datatypes for use with Oracle AQ. */
 v_msgid RAW (16);
 SUBTYPE msgid_type IS v_msgid%TYPE;
 v_name VARCHAR2 (49);
 SUBTYPE name_type IS v_name%TYPE;
 ...
END aq;

AQ message IDs are of type RAW(16). Rather than have to remember that (and hard-
code it into my application again and again), I can simply declare an AQ message ID
as follows:

DECLARE
 my_msg_id aq.msgid_type;
BEGIN

178 | Chapter 7: Working with Program Data

Download at WoweBook.Com

Then, if the database ever changes its datatype for a message ID, I can change the
SUBTYPE definition in the AQ package, and all declarations will be updated with the
next recompilation.

Anchored declarations provide an excellent illustration of the fact that PL/SQL is not
just a procedural-style programming language, but was designed specifically as an ex-
tension to the Oracle SQL language. A very thorough effort was made by Oracle Cor-
poration to tightly integrate the programming constructs of PL/SQL to the underlying
SQL database.

Anchored declarations offer some important benefits when it comes to writing appli-
cations that adapt easily to change over time.

Anchoring to Cursors and Tables
You’ve seen an example of anchoring to a database column and to another PL/SQL
variable. Now let’s take a look at the use of the %ROWTYPE anchoring attribute.

Suppose that I want to query a single row of information from the book table. Rather
than declare individual variables for each column in the table (which, of course, I should
do with %TYPE), I can simply rely on %ROWTYPE:

DECLARE
 l_book book%ROWTYPE;
BEGIN
 SELECT * INTO l_book
 FROM book
 WHERE isbn = '1-56592-335-9';
 process_book (l_book);
END;

Suppose, now, that I only want to retrieve the author and title from the book table. In
this case, I build an explicit cursor and then %ROWTYPE against that cursor:

DECLARE
 CURSOR book_cur IS
 SELECT author, title FROM book
 WHERE isbn = '1-56592-335-9';
 l_book book_cur%ROWTYPE;
BEGIN
 OPEN book_cur;
 FETCH book_cur INTO l_book; END;

Finally, here is an example of an implicit use of the %ROWTYPE declaration: the cursor
FOR loop.

BEGIN
 FOR book_rec IN (SELECT * FROM book)
 LOOP
 process_book (book_rec);
 END LOOP;
END;

Declaring Program Data | 179

Download at WoweBook.Com

Now let’s explore some of the benefits of anchored declarations.

Benefits of Anchored Declarations
Most of the declarations you have seen so far—character, numeric, date, Boolean—
specify explicitly the type of data for the variable being declared. In each of these cases,
the declaration contains a direct reference to a datatype and, in most cases, a constraint
on that datatype. You can think of this as a kind of hardcoding in your program. While
this approach to declarations is certainly valid, it can cause problems in the following
situations:

Synchronization with database columns
The PL/SQL variable “represents” database information in the program. If I declare
explicitly and then change the structure of the underlying table, my program may
not work properly.

Normalization of local variables
The PL/SQL variable stores calculated values used throughout the application.
What are the consequences of repeating (hardcoding) the same datatype and con-
straint for each declaration in all of our programs?

Let’s take a look at each of these scenarios in detail.

Synchronization with database columns

Databases hold information that needs to be stored and manipulated. Both SQL and
PL/SQL perform these manipulations. Your PL/SQL programs often read data from a
database into local program variables, and then write information from those variables
back into the database.

Suppose that I have a company table with a column called NAME and a datatype of
VARCHAR2(60). I can therefore create a local variable to hold this data as follows:

DECLARE
 cname VARCHAR2(60);

and then use this variable to represent this database information in my program. Now
consider an application that uses the company entity. There may be a dozen different
screens, procedures, and reports that contain this same PL/SQL declaration, VAR-
CHAR2(60), over and over again. And everything works just fine…until the business
requirements change, or the DBA has a change of heart. With a very small effort, the
definition of the name column in the company table changes to VARCHAR2(100) in
order to accommodate longer company names. Suddenly the database can store names
that will raise VALUE_ERROR exceptions when FETCHed into the cname variable.

My programs have now become incompatible with the underlying data structures. All
declarations of cname (and all the variations programmers employed for this data
throughout the system) must be modified and retested—otherwise, my application is

180 | Chapter 7: Working with Program Data

Download at WoweBook.Com

simply a ticking time bomb, just waiting to fail. My variable, which is a local represen-
tation of database information, is no longer synchronized with that database column.

Normalization of local variables

Another drawback to explicit declarations arises when working with PL/SQL variables
that store and manipulate calculated values not found in the database. Suppose that I
hire some programmers to build an application to manage my company’s finances. I
am very bottom line-oriented, so many different programs make use of a total_revenue
variable, declared as follows:

total_revenue NUMBER (10,2);

Yes, I like to track my total revenue down to the last penny. In 2002, when specifications
for the application were first written, the maximum total revenue I ever thought I could
possibly obtain was $99 million, so I used the NUMBER(10,2) declaration. Then, in
2005, business grew beyond my expectations and $99 million was not enough and we
increased the maximum to NUMBER(14,2). But then we had a big job of finding and
changing all the places where the variables where too small. I searched out any and all
instances of the revenue variables so that I could change the declarations. This was a
time-consuming and error-prone job—I initially missed a couple of the declarations,
and the full regression test had to find them for me. I had spread equivalent declarations
throughout the entire application. I had, in effect, denormalized my local data struc-
tures, with the usual consequences on maintenance. If only I had a way to define each
of the local total_revenue variables in relation to a single datatype.

If only I had used %TYPE!

Anchoring to NOT NULL Datatypes
When you declare a variable, you can also specify the need for the variable to be NOT
NULL. This NOT NULL declaration constraint is transferred to variables declared with
the %TYPE attribute. If I include a NOT NULL in my declaration of a source variable
(one that is referenced afterwards in a %TYPE declaration), I must also make sure to
specify a default value for the variables that use that source variable. Suppose that I
declare max_available_date NOT NULL in the following example:

DECLARE
 max_available_date DATE NOT NULL :=
 ADD_MONTHS (SYSDATE, 3);
 last_ship_date max_available_date%TYPE;

The declaration of last_ship_date then fails to compile, with the following message:

PLS_00218: a variable declared NOT NULL must have an initialization assignment.

If you use a NOT NULL variable in a %TYPE declaration, the new variable must have
a default value provided. The same is not true, however, for variables declared with

Declaring Program Data | 181

Download at WoweBook.Com

%TYPE where the source is a database column defined as NOT NULL. A NOT NULL
constraint from a database table is not automatically transferred to a variable.

Programmer-Defined Subtypes
With the SUBTYPE statement, PL/SQL allows you to define your own subtypes or
aliases of predefined datatypes, sometimes referred to as abstract datatypes. In PL/SQL,
a subtype of a datatype is a variation that specifies the same set of rules as the original
datatype, but that might allow only a subset of the datatype’s values.

There are two kinds of subtypes, constrained and unconstrained:

Constrained subtype
A subtype that restricts or constrains the values normally allowed by the datatype
itself. POSITIVE is an example of a constrained subtype of BINARY_ INTEGER.
The package STANDARD, which predefines the datatypes and the functions that
are part of the standard PL/SQL language, declares the subtype POSITIVE as
follows:

SUBTYPE POSITIVE IS BINARY_INTEGER RANGE 1 .. 2147483647;

A variable that is declared POSITIVE can store only integer values greater than zero.

Unconstrained subtype
A subtype that does not restrict the values of the original datatype in variables
declared with the subtype. FLOAT is an example of an unconstrained subtype of
NUMBER. Its definition in the STANDARD package is:

SUBTYPE FLOAT IS NUMBER;

In other words, an unconstrained subtype provides an alias or alternate name for
the original datatype.

PACKAGE utility
AS
 SUBTYPE big_string IS VARCHAR2(32767);
 SUBTYPE big_db_string IS VARCHAR2(4000);
END utility;

To make a subtype available, you first have to declare it in the declaration section of
an anonymous PL/SQL block, procedure, function, or package. You’ve already seen
the syntax for declaring a subtype used by PL/SQL in the STANDARD package. The
general format of a subtype declaration is:

SUBTYPE subtype_name IS base_type;

where subtype_name is the name of the new subtype, and base_type is the datatype on
which the subtype is based.

182 | Chapter 7: Working with Program Data

Download at WoweBook.Com

Be aware that an anchored subtype does not carry over the NOT NULL constraint to
the variables it defines. Nor does it transfer a default value that was included in the
original declaration of a variable or column specification.

Conversion Between Datatypes
There are many different situations in which you need to convert data from one data-
type to another. You can perform this conversion in two ways:

Implicitly
By allowing the PL/SQL runtime engine to take its “best guess” at performing the
conversion.

Explicitly
By calling a PL/SQL function or operator to do the conversion.

In this section I will first review how and when PL/SQL performs implicit conversions,
and then focus attention on the functions and operators available for explicit
conversions.

Implicit Data Conversion
Whenever PL/SQL detects that a conversion is necessary, it attempts to change the
values as required to perform the operation. You would probably be surprised to learn
how often PL/SQL performs conversions on your behalf. Figure 7-2 shows what kinds
of implicit conversions PL/SQL can perform.

With implicit conversions you can specify a literal value in place of data with the correct
internal format, and PL/SQL will convert that literal as necessary. In the following
example, PL/SQL converts the literal string ‘125’ to the numeric value 125 in the process
of assigning a value to the numeric variable:

DECLARE
 a_number NUMBER;
BEGIN
 a_number := '125';
END;

You can also pass parameters of one datatype into a module and then have PL/SQL
convert that data into another format for use inside the program. In the following pro-
cedure, the second parameter is a date. When I call that procedure, I pass a string value
in the form DD-MON-YY, and PL/SQL converts that string automatically to a date:

PROCEDURE change_hiredate
 (emp_id_in IN INTEGER, hiredate_in IN DATE)

change_hiredate (1004, '12-DEC-94');

Conversion Between Datatypes | 183

Download at WoweBook.Com

The implicit conversion from string to date datatype follows the
NLS_DATE_FORMAT specification. The danger here is that if the NLS_DATE_FOR-
MAT changes, your program breaks.

Limitations of implicit conversion

As shown in Figure 7-2, conversions are limited; PL/SQL cannot convert any arbitrary
datatype to any other datatype. Furthermore, some implicit conversions raise excep-
tions. Consider the following assignment:

DECLARE
 a_number NUMBER;
BEGIN
 a_number := 'abc';
END;

Figure 7-2. Implicit conversions performed by PL/SQL

PL/SQL cannot convert ‘abc’ to a number and so will raise the VALUE_ERROR ex-
ception when it executes this code. It is up to you to make sure that if PL/SQL is going
to perform implicit conversions, it is given values it can convert without error.

Drawbacks of implicit conversion

There are several drawbacks to implicit conversion:

184 | Chapter 7: Working with Program Data

Download at WoweBook.Com

• PL/SQL is generally a static typing language. When your program performs an
implicit conversion, you lose some of the benefits of the static typing, such as clarity
and safety of your code.

• Each implicit conversion PL/SQL performs represents a loss, however small, in the
control you have over your program. You do not expressly perform or direct the
performance of the conversion; you simply make an assumption that it will take
place and that it will have the intended effect. There is always a danger in making
this assumption. If Oracle changes the way and circumstances under which it per-
forms conversions or if the data itself no longer conforms to your (or the database’s)
expectations, your code is then affected.

• The implicit conversion that PL/SQL performs depends on the context in which
the code occurs. The conversion that PL/SQL performs is not necessarily the one
you might expect.

• Your code is easier to read and understand if you explicitly convert between data-
types where needed. Such conversions provide documentation of variances in
datatypes between tables or between code and tables. By removing an assumption
and a hidden action from your code, you remove a potential misunderstanding as
well.

I strongly recommend that you avoid allowing either the SQL or PL/SQL languages to
perform implicit conversions on your behalf, especially with datetime conversions. In-
stead, use conversion functions to guarantee that the right kinds of conversions take
place.

Explicit Datatype Conversion
Oracle provides a comprehensive set of conversion functions and operators to be used
in SQL and PL/SQL; a complete list is shown in Table 7-1. Most of these functions are
described in other chapters (for those, the table indicates the chapter number). For
functions not described elsewhere, brief descriptions are provided later in this chapter.

Table 7-1. The built-in conversion functions

Name Description Chapter

ASCIISTR Converts a string in any character set to an ASCII string in the database character set. 8, 25

CAST Converts one built-in datatype or collection-typed value to another built-in datatype
or collection-typed value; this very powerful conversion mechanism can be used as
a substitute for traditional functions like TO_DATE.

7, 9, 10

CHARTOROWID Converts a string to a ROWID. 7

CONVERT Converts a string from one character set to another. 7

FROM_TZ Adds time zone information to a TIMESTAMP value, thus converting it to a TIMESTAMP
WITH TIME ZONE value.

10

HEXTORAW Converts from hexadecimal to raw format. 7

Conversion Between Datatypes | 185

Download at WoweBook.Com

Name Description Chapter

MULTISET Maps a database table to a collection. 12

NUMTODSINTERVAL Converts a number (or numeric expression) to an INTERVAL DAY TO SECOND literal. 10

NUMTOYMINTERVAL Converts a number (or numeric expression) to an INTERVAL YEAR TO MONTH literal. 10

RAWTOHEX, RAWTONHEX Converts from a raw value to hexadecimal. 7

REFTOHEX Converts a REF value into a character string containing the hexadecimal represen-
tation of the REF value.

26

ROWIDTOCHAR,
ROWIDTONCHAR

Converts a binary ROWID value to a character string. 7

TABLE Maps a collection to a database table; this is the inverse of MULTISET. 12

THE Maps a single column value in a single row into a virtual database table. 12

TO_BINARY_FLOAT Converts a number or a string to a BINARY_FLOAT. 9

TO_BINARY_DOUBLE Converts a number or a string to a BINARY_DOUBLE. 9

TO_CHAR, TO_NCHAR
(number version)

Converts a number to a string (VARCHAR2 or NVARCHAR2, respectively). 9

TO_CHAR, TO_NCHAR
(date version)

Converts a date to a string. 10

TO_CHAR, TO_NCHAR
(character version)

Converts character data between the database character set and the national char-
acter set.

8

TO_BLOB Converts from a RAW value to a BLOB. 13

TO_CLOB, TO_NCLOB Converts from a VARCHAR2, NVARCHAR2, or NCLOB value to a CLOB (or NCLOB). 13

TO_DATE Converts a string to a date. 10

TO_DSINTERVAL Converts a character string of a CHAR, VARCHAR2, NCHAR, or NVARCHAR2 datatype
to an INTERVAL DAY TO SECOND type.

10

TO_LOB Converts from a LONG to a LOB. 13

TO_MULTI_BYTE Where possible, converts single-byte characters in the input string to their multibyte
equivalents.

8

TO_NUMBER Converts a string or a number (such as a BINARY_FLOAT) to a NUMBER. 9

TO_RAW Converts from a BLOB to a RAW. 13

TO_SINGLE_BYTE Converts multibyte characters in the input string to their corresponding single-byte
characters.

8

TO_TIMESTAMP Converts a character string to a value of type TIMESTAMP. 10

TO_TIMESTAMP_TZ Converts a character string to a value of type TO_TIMESTAMP_TZ. 10

TO_YMINTERVAL Converts a character string of a CHAR, VARCHAR2, NCHAR, or NVARCHAR2 datatype
to an INTERVAL YEAR TO MONTH type.

10

TRANSLATE ... USING Converts supplied text to the character set specified for conversions between the
database character set and the national character set.

8

UNISTR Takes as its argument a string in any character set and returns it in Unicode in the
database Unicode character set.

8, 25

186 | Chapter 7: Working with Program Data

Download at WoweBook.Com

The CHARTOROWID function

The CHARTOROWID function converts a string of either type CHAR or type
VARCHAR2 to a value of type ROWID. The specification of the CHARTOROWID
function is:

FUNCTION CHARTOROWID (string_in IN CHAR) RETURN ROWID
FUNCTION CHARTOROWID (string_in IN VARCHAR2) RETURN ROWID

In order for CHARTOROWID to successfully convert the string, it must be an 18-
character string of the format:

OOOOOFFFBBBBBBRRR

where OOOOOO is the data object number, FFF is the relative file number of the
database file, BBBBBB is the block number in the file, and RRR is the row number
within the block. All four numbers must be in base 64 format. If the input string does
not conform to the above format, PL/SQL raises the VALUE_ERROR exception.

The CAST function

The CAST function is a very handy and flexible conversion mechanism. It converts
from one (and almost any) built-in datatype or collection-typed value to another built-
in datatype or collection-typed value. CAST will be a familiar operator to anyone
working with object-oriented languages in which it is often necessary to “cast” an object
of one class into that of another.

With Oracle’s CAST function, you can convert an unnamed expression (a number, a
date, NULL, or even the result set of a subquery) or a named collection (a nested table,
for instance) to a datatype or named collection of a compatible type.

Figure 7-3 shows the supported conversion between built-in datatypes. Note the
following:

• You cannot cast LONG, LONG RAW, any of the LOB datatypes, or the Oracle-
supplied types.

• “DATE” in the figure includes DATE, TIMESTAMP, TIMESTAMP WITH TIME-
ZONE, INTERVAL DAY TO SECOND, and INTERVAL YEAR TO MONTH.

• To cast a named collection type into another named collection type, the elements
of both collections must be of the same type.

• You cannot cast a UROWID to a ROWID if the UROWID contains the value of a
ROWID of an index-organized table.

First let’s take a look at using CAST as a replacement for scalar datatype conversion.
You can use it in a SQL statement:

SELECT employee_id, cast (hire_date AS VARCHAR2 (30))
 FROM employee;

and you can use it in native PL/SQL syntax:

Conversion Between Datatypes | 187

Download at WoweBook.Com

DECLARE
 hd_display VARCHAR2 (30);
BEGIN
 hd_display := CAST (SYSDATE AS VARCHAR2);
END;

Figure 7-3. Casting built-in datatypes

A much more interesting application of CAST comes into play when you are working
with PL/SQL collections (nested tables and VARRAYs). For these datatypes, you use
CAST to convert from one type of collection to another. You can also use CAST to
manipulate (from within a SQL statement) a collection that has been defined as a
PL/SQL variable.

Chapter 12 covers these topics in more detail, but the following example should give
you a sense of the syntax and possibilities. First I create two nested table types and a
relational table:

CREATE TYPE names_t AS TABLE OF VARCHAR2 (100);

CREATE TYPE authors_t AS TABLE OF VARCHAR2 (100);

CREATE TABLE favorite_authors (name VARCHAR2(200))

I would then like to write a program that blends together data from the favorite_ authors
table with the contents of a nested table declared and populated in my program. Con-
sider the following block:

/* File on web: cast.sql */
 1 DECLARE
 2 scifi_favorites authors_t

188 | Chapter 7: Working with Program Data

Download at WoweBook.Com

 3 := authors_t ('Sheri S. Tepper', 'Orson Scott Card', 'Gene Wolfe');
 4 BEGIN
 5 DBMS_OUTPUT.put_line ('I recommend that you read books by:');
 6
 7 FOR rec IN (SELECT column_value favs
 8 FROM TABLE (CAST (scifi_favorites AS names_t))
 9 UNION
10 SELECT NAME
11 FROM favorite_authors)
12 LOOP
13 DBMS_OUTPUT.put_line (rec.favs);
14 END LOOP;
15 END;

On lines 2 and 3, I declare a local nested table and populate it with a few of my favorite
science fiction/fantasy authors. In lines 7 through 11, I use the UNION operator to
merge together the rows from favorite_authors with those of scifi_favorites. To do this,
I cast the PL/SQL nested table (local and not visible to the SQL engine) as a type of
nested table known in the database. Notice that I am able to cast a collection of type
authors_t to a collection of type names_t; this is possible because they are of compatible
types. Once the cast step is completed, I call the TABLE operator to ask the SQL engine
to treat the nested table as a relational table. Here is the output I see on my screen:

I recommend that you read books by:
Gene Wolfe
Orson Scott Card
Robert Harris
Sheri S. Tepper
Tom Segev
Toni Morrison

The CONVERT function

The CONVERT function converts strings from one character set to another character
set. The specification of the CONVERT function is:

FUNCTION CONVERT
 (string_in IN VARCHAR2,
 new_char_set VARCHAR2
 [, old_char_set VARCHAR2])
RETURN VARCHAR2

The third argument, old_char_set, is optional. If this argument is not specified, then
the default character set for the database instance is used.

The CONVERT function does not translate words or phrases from one language to
another. CONVERT simply substitutes the letter or symbol in one character set with
the corresponding letter or symbol in another character set. (Note that a character set
is not the same thing as a human language.)

Two commonly used character sets are WE8MSWIN1252 (Microsoft Windows 8-bit
Code Page 1252 character set) and AL16UTF16 (16-bit Unicode character set).

Conversion Between Datatypes | 189

Download at WoweBook.Com

The HEXTORAW function

The HEXTORAW function converts a hexadecimal string from type CHAR or
VARCHAR2 to type RAW. The specification of the HEXTORAW function is:

FUNCTION HEXTORAW (string_in IN CHAR) RETURN RAW
FUNCTION HEXTORAW (string_in IN VARCHAR2) RETURN RAW

The RAWTOHEX function

The RAWTOHEX function converts a value from type RAW to a hexadecimal string
of type VARCHAR2. The specification of the RAWTOHEX function is:

FUNCTION RAWTOHEX (binary_value_in IN RAW) RETURN VARCHAR2

RAWTOHEX always returns a variable-length string value, even if its mirror conversion
function is overloaded to support both types of input.

The ROWIDTOCHAR function

The ROWIDTOCHAR function converts a binary value of type ROWID to a string of
type VARCHAR2. The specification of the ROWIDTOCHAR function is:

FUNCTION ROWIDTOCHAR (row_in IN ROWID) RETURN VARCHAR2

The string returned by this function has the format:

OOOOOFFFBBBBBBRRR

where OOOOOO is the data object number, FFF is the relative file number of the
database file, BBBBBB is the block number in the file, and RRR is the row number
within the block. All four numbers are in base 64 format. For example:

AAARYiAAEAAAEG8AAB

190 | Chapter 7: Working with Program Data

Download at WoweBook.Com

CHAPTER 8

Strings

Variables with character datatypes store text and are manipulated by character func-
tions. Working with character data can range in difficulty from easy to quite challeng-
ing. In this chapter, I discuss PL/SQL’s core string functionality largely in the context
of single-byte character sets—for example, those that are commonly used in Western
Europe and the United States. If you are working with Unicode or with multibyte char-
acter sets, or are dealing with multiple languages, be sure to read about globalization
and localization issues in Chapter 25.

CLOB (character large object) and LONG, while arguably character
types, cannot be used in the same manner as the character types dis-
cussed in this chapter, and are more usefully thought of as large object
types. I discuss large object types in Chapter 13.

String Datatypes
Oracle supports four string datatypes, summarized in the following table. Which type
you should use depends on your answers to the following two questions:

• Are you working with variable-length or fixed-length strings?

• Do you want to use the database character set or the national character set?

 Fixed-length Variable-length

Database character set CHAR VARCHAR2

National character set NCHAR NVARCHAR2

You will rarely need or want to use the fixed-length CHAR and NCHAR datatypes in
Oracle-based applications; in fact, I recommend that you never use these types unless
there is a specific requirement for fixed-length strings. See “Mixing CHAR and VAR-
CHAR2 Values” on page 219 for a description of problems you may encounter when

191

Download at WoweBook.Com

mixing fixed- and variable-length string variables. (The NCHAR and NVARCHAR2
datatypes are discussed in Chapter 25.)

The VARCHAR2 Datatype
VARCHAR2 variables store variable-length character strings. When you declare a
variable-length string, you must also specify a maximum length for the string, which
can range from 1 to 32,767 bytes. You may specify the maximum length in terms of
characters or bytes, but either way the length is ultimately defined in bytes. The general
format for a VARCHAR2 declaration is:

variable_name VARCHAR2 (max_length [CHAR | BYTE]);

where:

variable_name
Is the name of the variable you want to declare.

max_length
Is the maximum length of the variable.

CHAR
Indicates that max_length is expressed in terms of characters.

BYTE
Indicates that max_length represents a number of bytes.

When you specify the maximum length of a VARCHAR2 string in terms of characters
(using the CHAR qualifier), the actual length in bytes is determined using the largest
number of bytes that the database character set uses to represent a character. For ex-
ample, the Unicode UTF-8 character set uses up to three bytes for some characters;
thus, if UTF-8 is your underlying character set, declaring a VARCHAR2 variable with
a maximum length of 100 characters is equivalent to declaring the same variable with
a maximum length of 300 bytes.

You’ll find the CHAR length qualifier most useful when working with
multibyte character sets such as Unicode UTF-8. Read more about
character semantics and character sets in Chapter 25.

If you omit the CHAR or BYTE qualifier when declaring a VARCHAR2 variable, then
whether the size is in characters or bytes depends on the NLS_LENGTH_SEMANTICS
initialization parameter. You can determine your current setting by querying
NLS_SESSION_PARAMETERS.

Following are some examples of VARCHAR2 declarations:

DECLARE
 small_string VARCHAR2(4);
 line_of_text VARCHAR2(2000);

192 | Chapter 8: Strings

Download at WoweBook.Com

 feature_name VARCHAR2(100 BYTE); -- 100 byte string
 emp_name VARCHAR2(30 CHAR); -- 30 character string

The maximum length allowed for PL/SQL VARCHAR2 variables is 32,767 bytes, a
much higher maximum than that for the VARCHAR2 datatype in the Oracle database
(2,000 bytes prior to Oracle8i Database, and 4,000 bytes in Oracle8i Database and
above). This size limit applies regardless of whether you declare a variable’s size in terms
of characters or bytes. As a result of PL/SQL’s much higher size limit, if you plan to
store a PL/SQL VARCHAR2 value in a VARCHAR2 database column, you must re-
member that only the first 2,000 or 4,000 bytes can be inserted, depending on which
release of the database you are using. Neither PL/SQL nor SQL automatically resolves
this inconsistency.

If you need to work with strings greater than 4,000 bytes in length,
consider storing those strings in CLOB (character large object) columns.
See Chapter 13 for information on CLOBs.

The CHAR Datatype
The CHAR datatype specifies a fixed-length character string. When you declare a fixed-
length string, you also specify a maximum length for the string, which can range from
1 to 32,767 bytes. (Again, this is much higher than that for the CHAR datatype in the
Oracle database, which is only 2,000, or 255 prior to Oracle8i Database.) You can
specify the length in terms of bytes or in terms of characters. For example, the following
two declarations create strings of 100 bytes and 100 characters, respectively:

feature_name CHAR(100 BYTE);
feature_name CHAR(100 CHAR);

The actual number of bytes in a 100-character string depends on the underlying data-
base character set. If you are using a variable-width character set, PL/SQL will allocate
enough bytes to the string to accommodate the specified number of worst-case char-
acters. For example, UTF-8 uses between one and three bytes per character, so PL/SQL
will assume the worst and allocate 3 bytes × 100 characters, for a total of 300 bytes.

If you leave off the BYTE or CHAR qualifier, the results will depend on the setting of
the NLS_LENGTH_SEMANTICS initialization parameter. When you compile your
program, this setting is saved together with your program and may be reused or over-
written during later recompilation. (Compilation settings are discussed in Chap-
ter 20.) Assuming the default setting, the following declaration results in a 100-byte
string:

feature_name CHAR(100);

If you do not specify a length for the string, PL/SQL declares a string of one byte.
Suppose you declare a variable as follows:

feature_name CHAR;

String Datatypes | 193

Download at WoweBook.Com

As soon as you assign a string of more than one character to the variable feature_name,
PL/ SQL will raise the generic VALUE_ERROR exception:

ORA-06502: PL/SQL:
 numeric or value error: character string buffer too small

Notice that the message does not indicate which variable was involved in the error. So
if you do get this error after declaring some new variables or constants, check your
declarations for a lazy use of CHAR. To avoid mistakes and to prevent future pro-
grammers from wondering about your intent, you should always specify a length when
you use the CHAR datatype. Several examples follow:

yes_or_no CHAR (1) DEFAULT 'Y';
line_of_text CHAR (80 CHAR); --Always a full 80 characters!
whole_paragraph CHAR (10000 BYTE); --Think of all the spaces...

Because CHAR is fixed-length, PL/SQL will right-pad any value assigned to a CHAR
variable with spaces to the maximum length specified in the declaration.

String Subtypes
PL/SQL supports several string subtypes, listed in Table 8-1, that you can use when
declaring character string variables. Many of these subtypes exist for the ostensible
purpose of providing compatibility with the ANSI SQL standard. It’s unlikely that
you’ll ever need to use these—I never do—but you should be aware that they exist.

Table 8-1. PL/SQL subtypes and their equivalents

Subtype Equivalent PL/SQL type

CHAR VARYING VARCHAR2

CHARACTER CHAR

CHARACTER VARYING VARCHAR2

NATIONAL CHAR NCHAR

NATIONAL CHAR VARYING NVARCHAR2

NATIONAL CHARACTER NCHAR

NATIONAL CHARACTER VARYING NVARCHAR2

NCHAR VARYING NVARCHAR2

STRING VARCHAR2

VARCHAR VARCHAR2

Each subtype listed in the table is equivalent to the base PL/SQL type shown in the
right column. For example, the following declarations all have the same effect:

feature_name VARCHAR2(100);
feature_name CHARACTER VARYING(100);
feature_name CHAR VARYING(100);
feature_name STRING(100);

194 | Chapter 8: Strings

Download at WoweBook.Com

The VARCHAR subtype deserves special mention. For years now Oracle Corporation
has been threatening to change the meaning of VARCHAR (to something not equiva-
lent to VARCHAR2) and warning against its use. I agree with Oracle’s recommenda-
tion: If there is a possibility of VARCHAR’s behavior being changed by Oracle (or the
ANSI committee), it’s senseless to depend on its current behavior. Don’t use
VARCHAR; use VARCHAR2.

Working with Strings
Working with strings is largely a matter of manipulating those strings using Oracle’s
rich library of built-in string functions. To that end, I recommend that you become
broadly familiar with the functions Oracle has to offer. In the subsections that follow,
I’ll begin by showing you how to write string constants, and then introduce you to the
string manipulation functions that I have come to find most important in my own work.

Specifying String Constants
One way to get strings into your PL/SQL programs is to issue a SELECT statement that
returns character string values. Another way is to place string constants directly into
your code. You write such constants by enclosing them within single quotes:

'Brighten the corner where you are.'

If you want to embed a single quote within a string constant, you can do so by typing
the single quote twice:

'Aren''t you glad you''re learning PL/SQL with O''Reilly?'

If your program will be dealing with strings that contain embedded single quote char-
acters, a more elegant approach is to specify your own string delimiters. Do this using
the q prefix (uppercase Q may also be specified). For example:

q'!Aren't you glad you're learning PL/SQL with O'Reilly?!'

or:

q'{Aren't you glad you're learning PL/SQL with O'Reilly?}'

When you use the q prefix, you still must enclose the entire string within single quotes.
The character immediately following the first quotation mark—an exclamation point
(!) in the first of my two examples—then becomes the delimiter for the string. Thus,
the first of my q-prefixed strings consists of all characters between the two exclamation
points.

Special rule: If your start delimiter character is one of [, {, <, or (, then
your end delimiter character must be], }, >, or), respectively.

Working with Strings | 195

Download at WoweBook.Com

Normally, string constants are represented using the database character set. If such a
string constant is assigned to an NCHAR or NVARCHAR2 variable, the constant will
be implicitly converted to the national character set (see Chapter 25). The database
performs such conversions when necessary, and you rarely need to worry about them.
Occasionally, however, you may find yourself faced with the need to explicitly specify
a string constant to be represented in the national character set. You can do so using
the n prefix:

n'Pils vom faß: 1€'

If you need a string in the national character set, and you also want to specify some
characters by their Unicode code point, you can use the u prefix:

u' Pils vom fa\00DF: 1\20AC'

00DF is the code point for the German letter “ß” while 20AC is the code point for the
Euro symbol. The resulting string constant is the same as for the preceding n-prefixed
example.

Using the assignment operator, you can store the value of a string constant within a
variable:

DECLARE
 jonathans_motto VARCHAR2(50);
BEGIN
 jonathans_motto := 'Brighten the corner where you are.';
END;

You can also pass string constants to built-in functions. For example, to find out the
number of characters in Jonathan’s motto, you can use the LENGTH function:

BEGIN
 DBMS_OUTPUT.PUT_LINE(
 LENGTH('Brighten the corner where you are.')
);
END;

Run this code, and you’ll find that the number of characters is 34.

While this is not strictly a PL/SQL issue, you’ll often find that ampersand (&) characters
cause problems if you’re executing PL/SQL code via SQL*Plus or SQL Developer. Both
tools use ampersands to prefix substitution variables. When an ampersand is encoun-
tered, these tools “see” the next word as a variable and prompt you to supply a value:

SQL> BEGIN
 2 DBMS_OUTPUT.PUT_LINE ('Generating & saving test data.');
 3 END;
 4 /
Enter value for saving:

There are several solutions to this problem. One that works well with SQL*Plus and
SQL Developer is to issue the command SET DEFINE OFF to disable the variable
substitution feature. Other solutions can be found in Jonathan Gennick’s book Oracle
SQL*Plus: The Definitive Guide (O’Reilly).

196 | Chapter 8: Strings

Download at WoweBook.Com

http://oreilly.com/catalog/9780596007461/
http://oreilly.com/catalog/9780596007461/

Using Nonprintable Characters
The built-in CHR function is especially valuable when you need to make reference to
a nonprintable character in your code. Suppose you have to build a report that displays
the address of a company. A company can have up to four address strings (in addition
to city, state, and zip code). Your boss wants each address string on a new line. You
can do that by concatenating all the address lines together into one, long text value,
and using CHR to insert linefeeds where desired. The location in the standard ASCII
collating sequence for the linefeed character is 10, so you can code:

SELECT name || CHR(10)
 || address1 || CHR(10)
 || address2 || CHR(10)
 || city || ', ' || state || ' ' || zipcode
 AS company_address
FROM company

And the results will end up looking like:

COMPANY_ADDRESS

Harold Henderson
22 BUNKER COURT
SUITE 100
WYANDANCH, MN 66557

Linefeed is the newline character for Linux and Unix systems. Windows
uses the carriage return character together with the new line CHR(12)||
CHR(10). In other environments, you may need to use some other
character.

What? You say your boss doesn’t want to see any blank lines? No problem. You can
eliminate those with a bit of cleverness involving the NVL2 function:

SELECT name
 || NVL2(address1, CHR(10) || address1, '')
 || NVL2(address2, CHR(10) || address2, '')
 || CHR(10) || city || ', ' || state || ' ' || zipcode
 AS company_address
FROM company

Now the query returns a single formatted column per company. The NVL2 function
returns the third argument when the first is NULL, and otherwise returns the second
argument. In this example, when address1 is NULL, the empty string ('') is returned,
and likewise for the other address columns. In this way, blank address lines are not
returned so that the address will be scrunched down to:

COMPANY_ADDRESS

Harold Henderson
22 BUNKER COURT

Working with Strings | 197

Download at WoweBook.Com

SUITE 100
WYANDANCH, MN 66557

The ASCII function, in essence, does the reverse of CHR: it returns the decimal repre-
sentation of a given character in the database character set. For example, execute the
following code to display the decimal code for the letter ‘J’:

BEGIN
 DBMS_OUTPUT.PUT_LINE(ASCII('J'));
END;

And you’ll find that, in UTF-8 at least, the underlying representation of ‘J’ is the value
74.

Watch for an interesting use of CHR later in the section “Traditional
Searching, Extracting, and Replacing” on page 202.

Concatenating Strings
There are two mechanisms for concatenating strings together: the CONCAT function
and the concatenation operator—represented by two vertical bar characters ||. By far
the more commonly used approach is the concatenation operator. Why, you may be
asking yourself, are there two mechanisms? Well...there may be issues in translating
the vertical bars in code between ASCII and EBCDIC servers, and some keyboards
make typing the vertical bars a feat of finger agility. If you find it difficult to work with
the vertical bars, use the CONCAT function, which takes two arguments as follows:

CONCAT (string1, string2)

CONCAT always appends string2 to the end of string1 and returns the result. If either
string is NULL, CONCAT returns the non-NULL argument all by its lonesome. If both
strings are NULL, CONCAT returns NULL. If the input strings are non-CLOB, the
resulting string will be VARCHAR2. If one or more input strings is a CLOB, then the
resulting datatype will be a CLOB as well. If one string is an NCLOB, the resulting
datatype will be an NCLOB. In general, the return datatype will be the one that pre-
serves the most information. Here are some examples of uses of CONCAT (where
--> means that the function returns the value shown):

CONCAT ('abc', 'defg') --> 'abcdefg'
CONCAT (NULL, 'def') --> 'def'
CONCAT ('ab', NULL) --> 'ab'
CONCAT (NULL, NULL) --> NULL

Notice that you can concatenate only two stings together with the database function.
With the concatenation operator, you can combine several strings. For example:

DECLARE
 x VARCHAR2(100);
BEGIN

198 | Chapter 8: Strings

Download at WoweBook.Com

 x := 'abc' || 'def' || 'ghi';
 DBMS_OUTPUT.PUT_LINE(x);
END;

The output is:

abcdefghi

To perform the identical concatenation using CONCAT, you would need to nest one
call to CONCAT inside another:

x := CONCAT(CONCAT('abc','def'),'ghi');

You can see that the || operator not only is much easier to use than CONCAT, but also
results in much more readable code.

Dealing with Case
Letter case is often an issue when working with strings. For example, you might want
to compare two strings regardless of case. There are different approaches you can take
to dealing with this problem depending partly on the database release you are running
and partly on the scope that you want your actions to have.

Forcing a string to all upper- or lowercase

One way to deal with case issues is to use the built-in UPPER and LOWER functions.
These functions let you force case conversion on a string for a single operation. For
example:

DECLARE
 name1 VARCHAR2(30) := 'Andrew Sears';
 name2 VARCHAR2(30) := 'ANDREW SEARS';
BEGIN
 IF LOWER(name1) = LOWER(name2) THEN
 DBMS_OUTPUT.PUT_LINE('The names are the same.');
 END IF;
END;

In this example, both strings are passed through LOWER so the comparison ends up
being between 'andrew sears' and 'andrew sears'.

Making comparisons case-insensitive

Starting with Oracle Database 10g Release 2 you can use the initialization parameters
NLS_COMP and NLS_SORT to render all string comparisons case-insensitive. Set the
NLS_COMP parameter to LINGUISTIC, which will tell the database to use
NLS_SORT for string comparisons. Then set NLS_SORT to a case-insensitive setting,
like BINARY_CI or XWEST_EUROPEAN_CI. The trailing _CI specifies Case Insen-
sitivity. Here’s a simple, SQL-based example that illustrates the kind of problem you
can solve using NLS_COMP. The problem is to take a list of names and determine
which should come first:

Working with Strings | 199

Download at WoweBook.Com

SELECT LEAST ('JONATHAN','Jonathan','jon') FROM dual

On my system the call to LEAST that you see here returns 'JONATHAN'. That’s be-
cause the uppercase characters sort lower than the lowercase characters. By default,
NLS_COMP is set to BINARY, meaning that string comparisons performed by func-
tions such as LEAST are based on the underlying character code values.

You might like to see LEAST ignore case and return ‘jon’ instead of ‘JONATHAN’. To
that end, you can change NLS_COMP to specify that a linguistic sort (sensitive to the
NLS_SORT settings) be performed:

ALTER SESSION SET NLS_COMP=LINGUISTIC

Next, you must change NLS_SORT to specify the sorting rules that you want. The
default NLS_SORT value is often BINARY, but it may be otherwise depending on how
your system is configured. For this example, use the sort BINARY_CI. The _CI suffix
specifies a case-insensitive sort:

ALTER SESSION SET NLS_SORT=BINARY_CI

Now, try that call to LEAST one more time:

SELECT LEAST ('JONATHAN','Jonathan','jon') FROM dual

This time, the result is ‘jon’. This seems like a simple exercise, but this result is not so
easy to achieve without the linguistic sorting I’ve just described.

And it’s not just functions that are affected by linguistic sorting. Simple string com-
parisons are affected as well. For example:

BEGIN
 IF 'Jonathan' = 'JONATHAN' THEN
 DBMS_OUTPUT.PUT_LINE('It is true!');
 END IF;
END;

With NLS_COMP and NLS_SORT set as I’ve described, the expression ‘Jonathan’ =
‘JONATHAN’ in this example evaluates to TRUE.

NLS_COMP and NLS_SORT settings affect all string manipulation that
you do. The settings “stick” until you change them, or until you termi-
nate your session.

Oracle also supports accent-insensitive sorting, which you can get by appending _AI
(rather than _CI) to a sort name. To find a complete list of linguistic sort names, refer
to the Oracle Database Globalization Support Guide. That guide also explains the op-
eration of NLS_COMP and NLS_SORT in detail. Also refer to Chapter 25 of this book,
which presents more information on the various NLS parameters at your disposal.

200 | Chapter 8: Strings

Download at WoweBook.Com

Case-insensitivity and indexes

When dealing with strings, you often want to do case-insensitive searching and com-
parisons. But when you implement this nifty technique, you find that your application
stops using indexes and starts performing poorly. Take care that you don’t inadver-
tently negate the use of indexes in your SQL. Let’s look at an example using the dem-
onstration table hr.employees to illustrate. The employees table has the index
emp_name_ix on columns last_name, first_name. My code includes the following
SQL:

SELECT * FROM employee WHERE last_name = lname

Initially the code is using the emp_name_ix index, but when I set
NLS_COMP=LINGUISTIC and NLS_SORT=BINARY_CI to enable case-insensitivity
I stop using the index and start doing full table scans instead—oops! One solution is
to create a function-based, case-insensitive index, like this:

CREATE INDEX last_name_ci ON EMPLOYEES (NLSSORT(last_name, 'NLS_SORT=BINARY_CI'))

Now when I do my case-insensitive query, I use the case-insensitive index and keep my
good performance.

Capitalizing each word in a string

A third case-related function, after UPPER and LOWER, is INITCAP. This function
forces the initial letter of each word in a string to uppercase, and all remaining letters
to lowercase. For example:

DECLARE
 name VARCHAR2(30) := 'MATT williams';
BEGIN
 DBMS_OUTPUT.PUT_LINE(INITCAP(name));
END;

The output will be:

Matt Williams

It’s wonderfully tempting to use INITCAP to properly format names, and all will be
fine until you run into a case like:

DECLARE
 name VARCHAR2(30) := 'JOE mcwilliams';
BEGIN
 DBMS_OUTPUT.PUT_LINE(INITCAP(name));
END;

which generates this output:

Joe Mcwilliams

Joe McWilliams may not be so happy to see his last name written as “Mcwilliams,”
with a lowercase “w”. INITCAP is handy at times but do remember that it doesn’t yield
correct results for words or names having more than just an initial capital letter.

Working with Strings | 201

Download at WoweBook.Com

Traditional Searching, Extracting, and Replacing
Frequently, you’ll find yourself wanting to search a string for a bit of text. Starting with
Oracle Database 10g, you can use regular expressions for these textual manipulations;
see the section later in this chapter on regular expressions for the full details. If you’re
not yet using Oracle Database 10g or later, you can use an approach that is backward-
compatible to older database versions. The INSTR function returns the character po-
sition of a substring within a larger string. The following code finds the locations of all
the commas in a list of names:

DECLARE
 names VARCHAR2(60) := 'Anna,Matt,Joe,Nathan,Andrew,Aaron,Jeff';
 comma_location NUMBER := 0;
BEGIN
 LOOP
 comma_location := INSTR(names,',',comma_location+1);
 EXIT WHEN comma_location = 0;
 DBMS_OUTPUT.PUT_LINE(comma_location);
 END LOOP;
END;

The output is:

5
10
14
21
28
34

The first argument to INSTR is the string to search. The second is the substring to look
for, in this case a comma. The third argument specifies the character position at which
to begin looking. After each comma is found, the loop begins looking again one char-
acter further down the string. When no match is found, INSTR returns zero, and the
loop ends.

Having found the location of some text in a string, a natural next step is to extract it. I
don’t care about those commas. Let’s extract the names instead. For that, I’ll use the
SUBSTR function:

DECLARE
 names VARCHAR2(60) := 'Anna,Matt,Joe,Nathan,Andrew,Aaron,Jeff';
 names_adjusted VARCHAR2(61);
 comma_location NUMBER := 0;
 prev_location NUMBER := 0;
BEGIN
 --Stick a comma after the final name
 names_adjusted := names || ',';
 LOOP
 comma_location := INSTR(names_adjusted,',',comma_location+1);
 EXIT WHEN comma_location = 0;
 DBMS_OUTPUT.PUT_LINE(
 SUBSTR(names_adjusted,

202 | Chapter 8: Strings

Download at WoweBook.Com

 prev_location+1,
 comma_location-prev_location-1));
 prev_location := comma_location;
 END LOOP;
END;

The list of names that I get is:

Anna
Matt
Joe
Nathan
Andrew
Aaron
Jeff

The keys to the preceding bit of code are twofold. First, a comma is appended to the
end of the string to make the loop’s logic easier to write. Every name in names_adjusted
is followed by a comma. That simplifies life. Then, each time the loop iterates to
DBMS_OUTPUT.PUT_LINE, the two variables named prev_location and
comma_location point to the character positions on either side of the name to print.
It’s then just a matter of some simple math and the SUBSTR function. Three arguments
are passed:

names_adjusted
The string from which to extract a name.

prev_location+1
The character position of the first letter in the name. Remember that prev_location
will point to just before the name to display, usually to a comma preceding the
name. That’s why I add 1 to the value.

comma_location-prev_location-1
The number of characters to extract. I subtract the extra 1 to avoid displaying the
trailing comma.

All this searching and extracting is fairly tedious. Sometimes I can reduce the com-
plexity of my code by cleverly using some of the built-in functions. Let’s try the
REPLACE function to swap those commas with newlines:

DECLARE
 names VARCHAR2(60) := 'Anna,Matt,Joe,Nathan,Andrew,Aaron,Jeff';
BEGIN
 DBMS_OUTPUT.PUT_LINE(
 REPLACE(names, ',', chr(10))
);
END;

And the output is (!):

Anna
Matt
Joe
Nathan

Working with Strings | 203

Download at WoweBook.Com

Andrew
Aaron
Jeff

By using REPLACE I was able to avoid all that looping. I got the same results with code
that is more simple and elegant. Of course, you won’t always be able to avoid loop
processing by using REPLACE, but it’s good to know about alternative algorithms.
With programming, there are always several ways to get the results you want!

Padding
Occasionally it’s helpful to force strings to be a certain size. You can use LPAD and
RPAD to add spaces (or some other character) to either end of a string in order to make
the string a specific length. The following example uses the two functions to display a
list of names two-up in a column, with the leftmost name being flush left and the
rightmost name appearing flush right:

DECLARE
 a VARCHAR2(30) := 'Jeff';
 b VARCHAR2(30) := 'Eric';
 c VARCHAR2(30) := 'Andrew';
 d VARCHAR2(30) := 'Aaron';
 e VARCHAR2(30) := 'Matt';
 f VARCHAR2(30) := 'Joe';
BEGIN
 DBMS_OUTPUT.PUT_LINE(RPAD(a,10) || LPAD(b,10));

Negative String Positioning
Some of Oracle’s built-in string functions, notably SUBSTR and INSTR, allow you to
determine the position from which to begin extracting or searching by counting back-
wards from the right end of a string. For example, to extract the final 10 characters of
a string:

SUBSTR('Brighten the corner where you are',-10)

This function call returns “re you are”. The key is the use of a −10 as the starting
position. By making the starting position negative, you instruct SUBSTR to count
backwards from the end of the string.

INSTR adds an interesting twist to all of this. Specify a negative starting index, and
INSTR will:

1. Count back from the end of the string to determine from whence to begin
searching,

2. Then search backwards from that point towards the beginning of the string.

Step 1 is the same as for SUBSTR, but Step 2 proceeds in quite the opposite direction.
For example, to find the occurrence of “re” that is second from the end:

INSTR('Brighten the corner where you are','re',-1,2)

To help illustrate these concepts, here are the letter positions in the string:

204 | Chapter 8: Strings

Download at WoweBook.Com

 111111111122222222223333
 123456789012345678901234567890123
INSTR('Brighten the corner where you are','re',-1,2)

The result is 24. The fourth parameter, a 2, requests the second occurrence of “re”. The
third parameter is −1, so the search begins at the last character of the string (first char-
acter prior to the closing quote). The search progresses backwards towards the begin-
ning, past the “re” at the end of “are” (the first occurrence) until reaching the occurrence
of “re” at the end of “where”.

There is one, subtle case in which INSTR with a negative position will search forward.
Here’s an example:

INSTR('Brighten the corner where you are','re',-2,1)

The −2 starting position means that the search begins with the “r” in “are”. The result
is 32. Beginning from the “r” in “are”, INSTR looks forward to see whether it is pointing
at an occurrence of “re”. And it is, so INSTR returns the current position in the string,
which happens to be the 32nd character. Thus, the “re” in “are” is found even though
it extends past the point at which INSTR began searching.

 DBMS_OUTPUT.PUT_LINE(RPAD(c,10) || LPAD(d,10));
 DBMS_OUTPUT.PUT_LINE(RPAD(e,10) || LPAD(f,10));
END;

The output is:

Jeff Eric
Andrew Aaron
Matt Joe

The default padding character is the space. If you like, you can specify a fill character
as the third argument. Change the lines of code to read:

 DBMS_OUTPUT.PUT_LINE(RPAD(a,10,'.') || LPAD(b,10,'.'));
 DBMS_OUTPUT.PUT_LINE(RPAD(c,10,'.') || LPAD(d,10,'.'));
 DBMS_OUTPUT.PUT_LINE(RPAD(e,10,'.') || LPAD(f,10,'.'));

And the output changes to:

Jeff............Eric
Andrew.........Aaron
Matt.............Joe

Your fill “character” can even be a string of characters:

 DBMS_OUTPUT.PUT_LINE(RPAD(a,10,'-~-') || LPAD(b,10,'-~-'));
 DBMS_OUTPUT.PUT_LINE(RPAD(c,10,'-~-') || LPAD(d,10,'-~-'));
 DBMS_OUTPUT.PUT_LINE(RPAD(e,10,'-~-') || LPAD(f,10,'-~-'));

And now the output looks like:

Jeff-~--~--~--~-Eric
Andrew-~---~--~Aaron
Matt-~--~--~--~--Joe

Working with Strings | 205

Download at WoweBook.Com

Fill characters, or strings are laid down from left to right, always, even when RPAD is
used. You can see that that’s the case if you study carefully the 10-character “column”
containing Joe’s name.

One possible problem to think about when using LPAD and RPAD is the possibility
that some of your input strings may already be longer than (or equal to) the width that
you desire. For example, change the column width to four characters:

 DBMS_OUTPUT.PUT_LINE(RPAD(a,4) || LPAD(b,4));
 DBMS_OUTPUT.PUT_LINE(RPAD(c,4) || LPAD(d,4));
 DBMS_OUTPUT.PUT_LINE(RPAD(e,4) || LPAD(f,4));

Now the output looks like:

JeffEric
AndrAaro
Matt Joe

Notice particularly the second row: both “Andrew” and “Aaron” were truncated to just
four characters.

Trimming
What LPAD and RPAD giveth, TRIM, LTRIM, and RTRIM taketh away. For example:

DECLARE
 a VARCHAR2(40) := 'This sentence has too many periods......';
 b VARCHAR2(40) := 'The number 1';
BEGIN
 DBMS_OUTPUT.PUT_LINE(RTRIM(a,'.'));
 DBMS_OUTPUT.PUT_LINE(
 LTRIM(b, 'ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz')
);
END;

And the output is:

This sentence has too many periods
1

As you can see, RTRIM removed all the periods. The second argument to that function
was a period and specifies the character(s) to trim. My use of LTRIM is a bit absurd,
but it demonstrates that you can specify an entire set of characters to trim. I asked that
all letters and spaces be trimmed from the beginning of the string b, and I got what I
asked for.

The default is to trim spaces from the beginning or end of the string. Specifying
RTRIM(a) is the same as asking for RTRIM(a,' '). The same goes for LTRIM(a) and
LTRIM(a,' ').

The other trimming function is just plain TRIM. Oracle added TRIM when Oracle8i
Database was released in order to make the database more compliant with the ISO SQL
standard. TRIM works a bit differently from LTRIM and RTRIM, as you can see:

206 | Chapter 8: Strings

Download at WoweBook.Com

DECLARE
 x VARCHAR2(30) := '.....Hi there!.....';
BEGIN
 DBMS_OUTPUT.PUT_LINE(TRIM(LEADING '.' FROM x));
 DBMS_OUTPUT.PUT_LINE(TRIM(TRAILING '.' FROM x));
 DBMS_OUTPUT.PUT_LINE(TRIM(BOTH '.' FROM x));

 --The default is to trim from both sides
 DBMS_OUTPUT.PUT_LINE(TRIM('.' FROM x));

 --The default trim character is the space:
 DBMS_OUTPUT.PUT_LINE(TRIM(x));
END;

The output is:

Hi there!.....
.....Hi there!
Hi there!
Hi there!
.....Hi there!.....

One function, yet you can trim from either side, or from both sides. However, you can
specify only a single character to remove. You cannot, for example, write:

TRIM(BOTH ',.;' FROM x)

Instead, to solve this particular problem, you can use a combination of RTRIM and
LTRIM:

RTRIM(LTRIM(x,',.;'),',.;')

If you want to trim a set of characters, your options are RTRIM and LTRIM.

Regular Expression Searching, Extracting, and Replacing
Oracle Database 10g introduced a very powerful change to string-manipulation: sup-
port for regular expressions. And I’m not talking the mundane, regular expression
support involving the LIKE predicate that you find in other database management sys-
tems. Oracle has given us a well-thought-out and powerful feature set—just what
PL/SQL needed.

Regular expressions form a sort of pattern language for describing and manipulating
text. Those of you familiar with Perl doubtless know a bit about the topic already, as
Perl has done more to spread the use of regular expressions than perhaps any other
language. Regular expression support in Oracle Database 10g followed closely the
Portable Operating System Interface (POSIX) regular expression standard. Oracle Da-
tabase 10g Release 2 added support for many nonstandard, but quite useful operators
from the world of Perl, and Oracle Database 11g augmented these features with yet
more capabilities.

Working with Strings | 207

Download at WoweBook.Com

Detecting a pattern

Regular expressions give you a pattern language you can use to describe text that you
want to find and manipulate. To illustrate, let’s revisit the example used throughout
the earlier section on “Traditional Searching, Extracting, and Replacing” on page 202:

DECLARE
 names VARCHAR2(60) := 'Anna,Matt,Joe,Nathan,Andrew,Aaron,Jeff';

I will assign myself the task of determining programmatically whether names represents
a list of comma-delimited elements. I can do that using the REGEXP_LIKE function,
which detects the presence of a pattern in a string:

DECLARE
 names VARCHAR2(60) := 'Anna,Matt,Joe,Nathan,Andrew,Jeff,Aaron';
 names_adjusted VARCHAR2(61);
 comma_delimited BOOLEAN;
BEGIN
 --Look for the pattern
 comma_delimited := REGEXP_LIKE(names,'^([a-z A-Z]*,)+([a-z A-Z]*){1}$');

 --Display the result
 DBMS_OUTPUT.PUT_LINE(
 CASE comma_delimited
 WHEN true THEN 'We have a delimited list!'
 ELSE 'The pattern does not match.'
 END);
END;

The result is:

We have a delimited list!

To understand what’s going on here, you must begin with the expression defining the
pattern you seek. The general syntax for the REGEXP_LIKE function is:

REGEXP_LIKE (source_string, pattern [,match_modifier])

Where source_string is the character string to be searched; pattern is the regular ex-
pression pattern to search for in source_string; and match_modifier is one or more
modifiers that apply to the search. If REGEXP_LIKE finds pattern in source_string, then
it returns the Boolean TRUE; otherwise, it returns FALSE.

A recap of my thought process as I put the example together follows.

[a-z A-Z]
Each entry in my list of names must consist of only letters and spaces. Square-
brackets define a set of characters on which to match. I use a-z to gives us all
lowercase letters, and I use A-Z to give all uppercase letters. The space sits in be-
tween those two parts of the expression. So any lowercase character, any uppercase
character, or a space would match this pattern.

208 | Chapter 8: Strings

Download at WoweBook.Com

[a-z A-Z]*
The asterisk is a quantifier, specifying that I want to see zero or more characters in
each list item.

[a-z A-Z]*,
Each list item must terminate with a comma. An exception is the final item, but I
can safely ignore that nuance for now.

([a-z A-Z]*,)
I use parentheses to define a subexpression that matches some number of charac-
ters terminated by a comma. I define this subexpression because I want to specify
that the entire thing repeats.

([a-z A-Z]*,)+
The plus sign is another quantifier, and applies to the preceding element, which
happens to be the subexpression. In contrast to the *, the + requires “one or more.”
A comma-delimited list consists of one or more of my subexpressions.

([a-z A-Z]*,)+([a-z A-Z]*)
I add another subexpression: ([a-z A-Z]*). This is almost a duplicate of the first,
but it doesn’t include the comma. The final list item is not terminated by a comma.

([a-z A-Z]*,)+([a-z A-Z]*){1}
I add the quantifier {1} to allow for exactly one list element with no trailing comma.

^([a-z A-Z]*,)+([a-z A-Z]*){1}$
Finally, I use ^ and $ to anchor my expression to the beginning and end, respec-
tively of the target string. I do this to require that the entire string, rather than some
subset of the string, match my pattern.

Using REGEXP_LIKE, I examine the names string to see whether it matches the pattern.
And it does:

We have a delimited list!

REGEXP_LIKE is optimized to detect the mere presence of a pattern within a string.
Other functions let you do even more. Keep reading!

Locating a pattern

You can use REGEXP_INSTR to locate occurrences of a pattern within a string. The
general syntax for REGEXP_INSTR is:

REGEXP_INSTR (source_string, pattern [,beginning_position [,occurrence [,return_option
 [,match_modifier [,subexpression]]]]]])

Where source_string is the character string to be searched; pattern is the regular ex-
pression pattern to search for in source_string; beginning_position is the character po-
sition at which to begin the search; occurrence is the ordinal occurrence desired (1 =
first, 2 = second, etc.); return_option is either 0 for the beginning position or 1 for the
ending position; and match_modifier is one or more modifiers that apply to the search,
such as i for case insensitivity. Beginning with Oracle Database 11g, you can also specify

Working with Strings | 209

Download at WoweBook.Com

a subexpression (1 = first subexpression, 2 = second subexpression, etc.), which causes
REGEXP_INST to return the starting position for the specified subexpression. A sub-
expression is a part of the pattern enclosed in parentheses.

For example, to find the first occurrence of a name beginning with the letter A and
ending with a consonant, you might specify:

DECLARE
 names VARCHAR2(60) := 'Anna,Matt,Joe,Nathan,Andrew,Jeff,Aaron';
 names_adjusted VARCHAR2(61);
 comma_delimited BOOLEAN;
 j_location NUMBER;
BEGIN
 --Look for the pattern
 comma_delimited := REGEXP_LIKE(names,'^([a-z]*,)+([a-z]*)$', 'i');

 --Only do more if we do, in fact, have a comma-delimited list.
 IF comma_delimited THEN
 j_location := REGEXP_INSTR(names, 'A[a-z]*[^aeiou],|A[a-z]*[^aeiou]$');
 DBMS_OUTPUT.PUT_LINE(j_location);
 END IF;
END;

Execute this code and you’ll find that the first A name ending with a consonant, which
happens to be Andrew, begins at position 22. Here’s how I worked out the pattern:

A
I begin with the letter A. No need to worry about commas, because I already know
at this point that I am working with a delimited list.

A[a-z]*
I follow that A with some number of letters or spaces. The * allows for zero or more
such characters following the A.

A[a-z]*[^aeiou]
I add [^aeiou] because I want my name to end with anything but a vowel. The
caret ̂ creates an exclusion set—any character except a vowel will match. Because
I specify no quantifier, exactly one such nonvowel is required.

A[a-z]*[^aeiou],
I require a comma to end the pattern. Otherwise, I’d have a match on the “An” of
“Anna.” While adding the comma solves that problem, it introduces another, be-
cause my pattern now will never match Aaron at the end of the string. Uh, oh...

A[a-z]*[^aeiou],|A[a-z]*[^aeiou]$
Here I’ve introduced a vertical-bar (|) into the mix. The | indicates alternation: I
am now looking for a match with either pattern. The first pattern ends with a
comma, whereas the second does not. The second pattern accommodates the pos-
sibility that the name I’m looking for is the final name in the list. The second pattern
is thus anchored to the end of the string by the dollar sign ($).

210 | Chapter 8: Strings

Download at WoweBook.Com

Writing regular expressions is not easy! As a beginner, you’ll dis-
cover subtleties to regular expression evaluation that will trip you
up. I spent quite a bit of time working out just this one example,
and went down several dead-end paths before getting it right. Don’t
despair, though. Writing regular expressions does become easier
with practice.

While REGEXP_INSTR has its uses, I am often more interested in returning the text
matching a pattern than I am in simply locating it.

Extracting text matching a pattern

Let’s use a different example to illustrate regular expression extraction. Phone numbers
are a good example because they follow a pattern, but often there are several variations
on this pattern. The phone number pattern includes the area code (three digits) fol-
lowed by the exchange (three digits) followed by the local number (four digits). So, a
phone number is a string of ten digits. But there are many optional and alternative ways
to represent the number. The area code may be enclosed within parentheses and is
usually, but not always, separated from the rest of the phone number with a space, dot,
or dash character. The exchange is usually, but not always, separated from the rest of
the phone number with a space, dot, or dash character. Thus, a legal phone number
may include any of the following:

7735555253
773-555-5253
(773)555-5253
(773) 555 5253
773.555.5253

This kind of loosey-goosey pattern is easy work using regular expressions, but very hard
without them. I’ll use REGEXP_SUBSTR to extract a phone number from a string
containing contact information:

DECLARE
 contact_info VARCHAR2(200) := '
 address:
 1060 W. Addison St.
 Chicago, IL 60613
 home 773-555-5253
 ';
 phone_pattern VARCHAR2(90) :=
 '\(?\d{3}\)?[[:space:]\.\-]?\d{3}[[:space:]\.\-]?\d{4}';
BEGIN
 DBMS_OUTPUT.PUT_LINE('The phone number is: '||
 REGEXP_SUBSTR(contact_info,phone_pattern,1,1));
END;

This code shows me the phone number:

 The phone number is: 773-555-5253

Working with Strings | 211

Download at WoweBook.Com

Whoa! That phone pattern is pretty intimidating with all those punctuation characters
strung together. Let me break it down into manageable pieces:

\(?
My phone pattern starts with an optional open parentheses character. Because the
parentheses characters are metacharacters (have special meaning), I need to es-
cape the open parenthesis by preceding it with a backslash. The question mark is
a quantifier, specifying that the pattern allows zero or one of the preceding char-
acter. This portion of the pattern specifies an optional open parentheses character.

\d{3}
The \d is one of those Perl-influenced operators introduced with Oracle Database
10g Release 2 and specifies a digit. The curly brackets are a quantifier, specifying
that the pattern allows an exact number of preceding characters—in this case,
three. This portion of the pattern specifies three digits.

\)?
This portion of the pattern specifies an optional close parenthesis character.

[[:space:]\.\-]?
The square brackets define a set of characters on which to match—in this case a
whitespace character or a dot or a dash. The [:space:] notation is the POSIX char-
acter class for whitespace characters in our NLS character set—any whitespace
character will match. A dot and dash are metacharacters, so I need to escape them
in my pattern by preceding each with a backslash. Finally, the question mark
specifies that the pattern allows zero or one of the preceding characters. This por-
tion of the pattern specifies an optional whitespace, dot, or dash character.

\d{3}
As described previously, this portion of the pattern specifies three digits.

[[:space:]\.\-]?
As described previously, this portion of the pattern specifies an optional white-
space, dot, or dash character.

\d{4}
As described previously, this portion of the pattern specifies four digits.

When you code with regular expressions, commenting your code becomes more im-
portant to someone (including yourself six months from now) wanting to understand
your cleverness.

The general syntax for REGEXP_SUBSTR is:

REGEXP_SUBSTR (source_string, pattern [,position [,occurrence
 [,match_modifier [,subexpression]]]]])

REGEXP_SUBSTR returns a string containing the portion of the source string matching
the pattern or subexpression. If no matching pattern is found, a NULL is returned.
source_string is the character string to be searched; pattern is the regular expression
pattern to search for in source_string; position is the character position at which to begin

212 | Chapter 8: Strings

Download at WoweBook.Com

the search; occurrence is the ordinal occurrence desired (1 = first, 2 = second, etc.); and
match_modifier is one or more modifiers that apply to the search.

Beginning with Oracle Database 11g, you can also specify which subexpression to return
(1 = first subexpression, 2 = second subexpression, etc.). A subexpression is a part of
the pattern enclosed in parentheses. Subexpressions are useful when you need to match
on the whole pattern but want only a portion of that patterned extracted. If I want to
find the phone number, but only extract the area code, I enclose the area code portion
of the pattern in parentheses, making it a subexpression:

DECLARE
 contact_info VARCHAR2(200) := '
 address:
 1060 W. Addison St.
 Chicago, IL 60613
 home 773-555-5253
 work (312) 555-1234
 cell 224.555.2233
 ';
 phone_pattern VARCHAR2(90) :=
 '\(?(\d{3})\)?[[:space:]\.\-]?\d{3}[[:space:]\.\-]?\d{4}';
 contains_phone_nbr BOOLEAN;
 phone_number VARCHAR2(15);
 phone_counter NUMBER;
 area_code VARCHAR2(3);
BEGIN
 contains_phone_nbr := REGEXP_LIKE(contact_info,phone_pattern);
 IF contains_phone_nbr THEN
 phone_counter := 1;
 DBMS_OUTPUT.PUT_LINE('The phone numbers are:');
 LOOP
 phone_number := REGEXP_SUBSTR(contact_info,phone_pattern,1,phone_counter);
 EXIT WHEN phone_number IS NULL; -- NULL means no more matches
 DBMS_OUTPUT.PUT_LINE(phone_number);
 phone_counter := phone_counter + 1;
 END LOOP;
 phone_counter := 1;
 DBMS_OUTPUT.PUT_LINE('The area codes are:');
 LOOP
 area_code := REGEXP_SUBSTR(contact_info,phone_pattern,1,phone_counter,'i',1);
 EXIT WHEN area_code IS NULL;
 DBMS_OUTPUT.PUT_LINE(area_code);
 phone_counter := phone_counter + 1;
 END LOOP;
 END IF;
END;

This snippet of code extracts the phone numbers and area codes:

 The phone numbers are:
 773-555-5253
 (312) 555-1234
 224.555.2233
 The area codes are:
 773

Working with Strings | 213

Download at WoweBook.Com

 312
 224

Counting regular expression matches

Sometimes, you just want a count of how many matches your regular expression has.
Prior to Oracle Database 11g, you had to loop through and count each match. Now
you can use the new function REGEXP_COUNT to tally up the number of matches.
The general syntax for REGEXP_COUNT is:

REGEXP_COUNT (source_string, pattern [,position [,match_modifier]])

Where source_string is the character string to be searched; pattern is the regular ex-
pression pattern to search for in source_string; position is the character position at which
to begin the search; and match modifier is one or more modifiers that apply to the search.

DECLARE
 contact_info VARCHAR2(200) := '
 address:
 1060 W. Addison St.
 Chicago, IL 60613
 home 773-555-5253
 work (312) 123-4567';
 phone_pattern VARCHAR2(90) :=
 '\(?(\d{3})\)?[[:space:]\.\-]?(\d{3})[[:space:]\.\-]?\d{4}';
BEGIN
 DBMS_OUTPUT.PUT_LINE('There are '
 ||REGEXP_COUNT(contact_info,phone_pattern)
 ||' phone numbers');
END;

The result is:

There are 2 phone numbers

Replacing text

Regular expression search and replace is one of the best regular expression features.
Your replacement text can refer to portions of your source text (called back referen-
ces), enabling you to manipulate text in very powerful ways. Imagine that you’re faced
with the problem of displaying a comma-delimited list of names two to a line. One way
to do that is to replace every second comma with a newline character. Again, this is
hard to do with standard REPLACE, but easy using REGEXP_REPLACE.

The general syntax for REGEXP_REPLACE is:

REGEXP_REPLACE (source_string, pattern [,replacement_string
 [,position [,occurrence [,match_modifier]]])

Where source_string is the character string to be searched; pattern is the regular ex-
pression pattern to search for in source_string; replacement_string is the replace text for
pattern; position is the character position at which to begin the search; and
match_modifier is one or more modifiers that apply to the search.

214 | Chapter 8: Strings

Download at WoweBook.Com

Let’s look at an example.

DECLARE
 names VARCHAR2(60) := 'Anna,Matt,Joe,Nathan,Andrew,Jeff,Aaron';
 names_adjusted VARCHAR2(61);
 comma_delimited BOOLEAN;
 extracted_name VARCHAR2(60);
 name_counter NUMBER;
BEGIN
 --Look for the pattern
 comma_delimited := REGEXP_LIKE(names,'^([a-z]*,)+([a-z]*){1}$', 'i');

 --Only do more if we do, in fact, have a comma-delimited list.
 IF comma_delimited THEN
 names := REGEXP_REPLACE(
 names,
 '([a-z A-Z]*),([a-z A-Z]*),',
 '\1,\2' || chr(10));
 END IF;

 DBMS_OUTPUT.PUT_LINE(names);
END;

The output from this bit of code is:

Anna,Matt
Joe,Nathan
Andrew,Jeff
Aaron

I’ll begin my explanation of this bit of wizardry by pointing out that I passed three
arguments to REGEXP_REPLACE:

names
The source string

'([a-z A-Z]*),([a-z A-Z]*),'
An expression specifying the text that I want to replace. More on this in just a bit.

'\1,\2 ' || chr(10)
My replacement text. The \1 and \2 are back references and are what makes my
solution work. I’ll talk more about these in just a bit too.

The expression I’m searching for consists of two subexpressions enclosed within pa-
rentheses, plus two commas. Here’s an explanation of how that expression works:

([a-z A-Z]*)
I want to begin by matching a name.

,
I want that name to be terminated by a comma.

([a-z A-Z]*)
Then I want to match another name.

Working with Strings | 215

Download at WoweBook.Com

,
And I again want to match the terminating comma.

Remember that my goal is to replace every second comma with a newline. That’s why
I wrote my expression to match two names and two commas. There’s a reason, too,
why I kept the commas out of the subexpressions.

Following is the first match that will be found for my expression upon invoking
REGEXP_REPLACE:

Anna,Matt,

The two subexpressions will correspond to “Anna” and “Matt” respectively. The key
to my solution is that you can reference the text matching a given subexpression via a
back reference. The two back references in my replacement text are \1 and \2, and they
refer to the text matched by the first and second subexpressions. Here’s how that plays
out:

'\1,\2' || chr(10) --our replacement text
'Anna,\2' || chr(10) --fill in the value matched
 by the first subexpression
'Anna,Matt' || chr(10) --fill in the value matched
 by the second subexpression

I hope you can begin to see the power at your disposal here. I don’t even use the commas
from the original text. I use only the text matching the two subexpressions, the names
“Anna” and “Matt”, and I insert those into a new string formatted with one comma
and one newline.

I can do even more! I can easily change our replacement text to use a tab (an ASCII 9)
rather than a comma:

names := REGEXP_REPLACE(
 names,
 '([a-z A-Z]*),([a-z A-Z]*),',
 '\1' || chr(9) || '\2' || chr(10));

And now I get my results in two, nice, neat columns:

Anna Matt
Joe Nathan
Andrew Jeff
Aaron

I think regular expression search and replace is a wonderful thing. It’s fun. It’s powerful.
You can do a lot with it.

Groking greediness

Greediness is an important concept to understand when writing regular expressions.
Consider the problem of extracting just the first name, and its trailing comma, from our
comma-delimited list of names. Recall that the list looks like this:

names VARCHAR2(60) := 'Anna,Matt,Joe,Nathan,Andrew,Jeff,Aaron';

216 | Chapter 8: Strings

Download at WoweBook.Com

One solution that you might think of is to look for a series of characters ending in a
comma:

.*,

Let’s try this solution to see how it works:

DECLARE
 names VARCHAR2(60) := 'Anna,Matt,Joe,Nathan,Andrew,Jeff,Aaron';
BEGIN
 DBMS_OUTPUT.PUT_LINE(REGEXP_SUBSTR(names, '.*,'));
END;

My output is:

Anna,Matt,Joe,Nathan,Andrew,Jeff,

Well! This is certainly not what we were after. What happened? I was a victim of
greediness. Not the sort of greediness your mother chastised you about, but rather a
greediness of the regular-expression sort: each element of a regular expression will
match as many characters as it possibly can. When you and I see:

.*,

our natural tendency often is to think in terms of stopping at the first comma and re-
turning “Anna,”. However, the database looks for the longest run of characters it can
find that terminate with a comma; the database stops not at the first comma, but at the
last.

In Oracle Database 10g Release 1, when regular expression support was first intro-
duced, you had limited options for dealing with greediness problems. You may be able
to reformulate an expression to avoid the problem. For example, you can use '[^,]*,’
to return the first name and its trailing comma from your delimited string. Sometimes
though, you are forced to change your whole approach to solving a problem, often to
the point of using a completely different combination of functions than you first
intended.

Starting with Oracle Database 10g Release 2 you get some relief from greed, in the form
of nongreedy quantifiers inspired by those found in Perl. By adding a question-mark
(?) to the quantifier for the period (.), changing that quantifier from an * to *?, I can
request the shortest run of characters that precedes a comma, as follows:

DECLARE
 names VARCHAR2(60) := 'Anna,Matt,Joe,Nathan,Andrew,Jeff,Aaron';
BEGIN
 DBMS_OUTPUT.PUT_LINE(REGEXP_SUBSTR(names, '(.*?,)'));
END;

The output now is:

Anna,

The nongreedy quantifiers match as soon as they can, not as much as they can.

Working with Strings | 217

Download at WoweBook.Com

Learning more about regular expressions

Regular expressions can seem deceptively simple, but end up being a surprisingly deep
topic. They are simple enough that you’ll be able to use them after just reading this
chapter (I hope!), and yet there’s so much more to learn. I’d like to recommend the
following sources from Oracle and O’Reilly:

Oracle Database Application Developer’s Guide-Fundamentals
Chapter 4 of this Oracle manual is the definitive source of information on regular
expression support in Oracle.

Oracle Regular Expression Pocket Reference
A fine introduction to regular expressions written by Jonathan Gennick and Peter
Linsley. Peter is one of the developers for Oracle’s regular expression implemen-
tation.

Mastering Oracle SQL
Contains an excellent chapter introducing regular expressions in the context of
Oracle SQL. Aside from regular expressions, this book by Sanjay Mishra and Alan
Beaulieu is an excellent read if you want to hone your SQL skills.

Mastering Regular Expressions
Jeffrey Friedl’s book stands tall as the definitive font of wisdom on using regular
expressions. To really delve deeply into the topic, this is the book to read.

Finally, you’ll find in Appendix A a table describing each of the regular expression
metacharacters supported in Oracle’s implementation of regular expressions.

Working with Empty Strings
One issue that often causes great consternation, especially to people who come to Ora-
cle after working with other databases, is that the Oracle database treats empty strings
as NULLs. This is contrary to the ISO SQL standard, which recognizes the difference
between an empty string and a string variable that is NULL.

The following code demonstrates the Oracle database’s behavior:

/* File on web: empty_is_null.sql */
DECLARE
 empty_varchar2 VARCHAR2(10) := '';
 empty_char CHAR(10) := '';
BEGIN
 IF empty_varchar2 IS NULL THEN
 DBMS_OUTPUT.PUT_LINE('empty_varchar2 is NULL');
 END IF;

 IF '' IS NULL THEN
 DBMS_OUTPUT.PUT_LINE(''''' is NULL');
 END IF;

 IF empty_char IS NULL THEN
 DBMS_OUTPUT.PUT_LINE('empty_char is NULL');

218 | Chapter 8: Strings

Download at WoweBook.Com

 ELSIF empty_char IS NOT NULL THEN
 DBMS_OUTPUT.PUT_LINE('empty_char is NOT NULL');
 END IF;
END;

The output is:

empty_varchar2 is NULL
'' is NULL
empty_char is NOT NULL

You’ll notice in this example that the CHAR variable is not considered NULL. That’s
because CHAR variables, as fixed-length character strings, are never truly empty. The
CHAR variable in this example is padded with blanks until it is exactly 10 characters
in length. The VARCHAR2 variable, however, is NULL, as is the zero-length string
literal.

You have to really watch for this behavior in IF statements that compare two VAR-
CHAR2 values. Recall that a NULL is never equal to a NULL. Consider a program that
queries the user for a name, and then compares that name to a value read in from the
database:

DECLARE
 user_entered_name VARCHAR2(30);
 name_from_database VARCHAR2(30);
 ...
BEGIN
...
IF user_entered_name <> name_from_database THEN
...

If the user had entered an empty string instead of a name, the IF condition shown in
this example would never be TRUE. That’s because a NULL is never not-equal, nor
equal, to any other value. One alternative approach to this IF statement is the following:

IF (user_entered_name <> name_from_database)
 OR (user_entered_name IS NULL) THEN

This is just one way of dealing with the “empty string is NULL” issue; it’s impossible
to provide a solution that works in all cases. You must think through what you are
trying to accomplish, recognize that any empty strings will be treated as NULLs, and
code appropriately.

Mixing CHAR and VARCHAR2 Values
If you use both fixed-length (CHAR) and variable-length (VARCHAR2) strings in your
PL/SQL code, you should be aware of how the database handles the interactions be-
tween these two datatypes, as described in the following sections.

Working with Strings | 219

Download at WoweBook.Com

Database-to-variable conversion

When you SELECT or FETCH data from a CHAR database column into a VARCHAR2
variable, the trailing spaces are retained. If you SELECT or FETCH from a VARCHAR2
database column into a CHAR variable, PL/SQL automatically pads the value with
spaces out to the maximum length. In other words, the type of the variable, not the
column, determines the variable’s resulting value.

Variable-to-database conversion

When you INSERT or UPDATE a CHAR variable into a VARCHAR2 database column,
the SQL kernel does not trim the trailing blanks before performing the change. When
the following PL/SQL is executed, the company_name in the new database record is
set to “ACME SHOWERS........” (where . indicates a space). It is, in other words, pad-
ded out to 20 characters, even though the default value was a string of only 12
characters.

DECLARE
 comp_id# NUMBER;
 comp_name CHAR(20) := 'ACME SHOWERS';
BEGIN
 SELECT company_id_seq.NEXTVAL
 INTO comp_id#
 FROM dual;
 INSERT INTO company (company_id, company_name)
 VALUES (comp_id#, comp_name);
END;

On the other hand, when you INSERT or UPDATE a VARCHAR2 variable into a
CHAR database column, the SQL kernel automatically pads the variable-length string
with spaces out to the maximum (fixed) length specified when the table was created,
and places that expanded value into the database.

String comparisons

Suppose your code contains a string comparison such as the following:

IF company_name = parent_company_name ...

PL/SQL must compare company_name to parent_company_name. It performs the
comparison in one of two ways, depending on the types of the two variables:

• If a comparison is made between two CHAR variables, then PL/SQL uses blank-
padding comparison.

• If at least one of the strings involved in the comparison is variable-length, then
PL/SQL performs non-blank-padding comparison.

The following code snippet illustrates the difference between these two comparison
methods:

220 | Chapter 8: Strings

Download at WoweBook.Com

DECLARE
 company_name CHAR(30)
 := 'Feuerstein and Friends';
 char_parent_company_name CHAR(35)
 := 'Feuerstein and Friends';
 varchar2_parent_company_name VARCHAR2(35)
 := 'Feuerstein and Friends';
BEGIN
 --Compare two CHARs, so blank-padding is used
 IF company_name = char_parent_company_name THEN
 DBMS_OUTPUT.PUT_LINE ('first comparison is TRUE');
 ELSE
 DBMS_OUTPUT.PUT_LINE ('first comparison is FALSE');
 END IF;

 --Compare a CHAR and a VARCHAR2, so nonblank-padding is used
 IF company_name = varchar2_parent_company_name THEN
 DBMS_OUTPUT.PUT_LINE ('second comparison is TRUE');
 ELSE
 DBMS_OUTPUT.PUT_LINE ('second comparison is FALSE');
 END IF;
END;

The output is:

first comparison is TRUE
second comparison is FALSE

The first comparison is between two CHAR values, so blank-padding is used: PL/SQL
blank-pads the shorter of the two values out to the length of the longer value. It then
performs the comparison. In this example, PL/SQL adds five spaces to the end of the
value in company_name and then performs the comparison between company_name
and char_parent_company_name. The result is that both strings are considered equal.
Note that PL/SQL does not actually change the company_name variable’s value. It
copies the value to another memory structure and then modifies this temporary data
for the comparison.

The second comparison involves a VARCHAR2 value, so PL/SQL performs a non-
blank-padding comparison. It makes no changes to any of the values, uses the existing
lengths, and performs the comparison. In this case, the first 22 characters of both strings
are the same, “Feuerstein and Friends”, but the fixed-length company_name is padded
with eight space characters, whereas the variable-length VARCHAR2 company_name
is not. Because one string has trailing blanks and the other does not, the two strings
are not considered equal.

The fact that one VARCHAR2 value causes non-blank-padding comparisons is also
true of expressions involving more than two variables, as well as of expressions involv-
ing the IN operator. For example:

IF menu_selection NOT IN
 (save_and_close, cancel_and_exit, 'OPEN_SCREEN')
 THEN ...

Working with Strings | 221

Download at WoweBook.Com

If any of the four strings in this example (menu_selection, the two named constants,
and the single literal) is declared VARCHAR2, then exact comparisons without mod-
ification are performed to determine if the user has made a valid selection. Note that a
literal like OPEN_SCREEN is always considered a fixed-length CHAR datatype.

Character functions and CHAR arguments

A character function is a function that takes one or more character values as parameters
and returns either a character value or a number value. When a character function
returns a character value, that value is always of type VARCHAR2 (variable length),
with the exceptions of UPPER and LOWER. These functions convert to uppercase and
lowercase, respectively, and return CHAR values (fixed length) if the strings they are
called on to convert are fixed-length CHAR arguments.

String Function Quick Reference
As I have already pointed out, PL/SQL provides a rich set of string functions that allow
you to get information about strings and modify the contents of those strings in very
high-level, powerful ways. The following list gives you an idea of the power at your
disposal and will be enough to remind you of syntax. For complete details on a given
function, see Oracle’s SQL Reference manual.

ASCII(single_character)
Returns the NUMBER code that represents the specified character in the database
character set.

ASCIISTR(string1)
Takes a string in any character set and converts it into a string of ASCII characters.
Any non-ASCII characters are represented using the form \XXXX, where XXXX
represents the Unicode value for the character.

For information on Unicode, including the underlying bytecodes
used to represent characters in the Unicode character set,
visit http://unicode.org.

CHR(code_location)
Returns a VARCHAR2 character (length 1) that corresponds to the location in the
collating sequence provided as a parameter. This is the reverse of ASCII. One var-
iation is useful when working with national character set data:

CHR(code_location USING NCHAR_CS)
Returns an NVARCHAR2 character from the national character set.

222 | Chapter 8: Strings

Download at WoweBook.Com

http://unicode.org

COMPOSE(string1)
Takes a Unicode string as input and returns that string in its fully normalized form.
For example, you can use the unnormalized representation 'a\0303' to specify the
character 'a' with a "~" on top (i.e., ã). COMPOSE('a\0303') will then return
'\00E3', which is the Unicode code point (in hexadecimal) for the character ã.

In Oracle9i Database Release 1, COMPOSE must be called from a
SQL statement; it cannot be used in a PL/SQL expression. From
Oracle9i Database Release 2 onwards, you can invoke COMPOSE
from a PL/SQL expression.

CONCAT(string1, string2)
Appends string2 to the end of string1. You’ll get the same results as from the ex-
pression string1 || string2. I find the || operator so much more convenient that I
almost never invoke the CONCAT function.

CONVERT(string1, target_char_set)
Converts a string from the database character set to the specified target character
set. You may optionally specify a source character set:

CONVERT(string1, target_char_set, source_character_set)

DECOMPOSE(string1)
Takes a Unicode string as input and returns that string with any precomposed
characters decomposed into their separate elements. This is the opposite of COM-
POSE. For example, DECOMPOSE('ã') yields 'a~' (See COMPOSE).

Two variations are available:

DECOMPOSE(string1 CANONICAL)
Results in canonical decomposition, which gives a result that may be reversed
using COMPOSE. This is the default.

DECOMPOSE(string1)
Results in decomposition in what is referred to as compatibility mode. Recom-
position using COMPOSE may not be possible.

Like COMPOSE, DECOMPOSE cannot be invoked directly
from a PL/SQL expression in Oracle9i Database Release 1;
you must invoke it from a SQL statement. From Oracle9i Da-
tabase Release 2 onwards, this restriction is removed.

GREATEST(string1, string2, ...)
Takes one or more strings as input, and returns the string that would come last
(i.e., that is the greatest) if the inputs were sorted in ascending order. Also see the
LEAST function, which is the opposite of GREATEST.

String Function Quick Reference | 223

Download at WoweBook.Com

INITCAP(string1)
Reformats the case of the string argument, setting the first letter of each word to
uppercase and the remainder of the letters to lowercase. This is sometimes called
title case. A word is a set of characters separated by a space or non-alphanumeric
character (such as # or _). For example, INITCAP('this is lower') gives 'This Is
Lower'.

INSTR(string1, string2)
Returns the position at which string2 is found within string1; otherwise, returns 0.

Several variations are available:

INSTR(string1, string2, start_position)
Begins searching for string2 at the column in string1 indicated by start_posi-
tion. The default start position is 1, so INSTR(string1, string2, 1) is equivalent
to INSTR(string1, string2).

INSTR(string1, string2, negative_start_position)
Begins searching from the end of string1 rather than from the beginning.

INSTR(string1, string2, start_position, nth)
Finds the nth occurrence of string2 after the start_position.

INSTR(string1, string2, negative_start_position, nth)
Finds the nth occurrence of string2, counting from the end of string1.

INSTR treats a string as a sequence of characters. The variations INSTRB, INSTR2,
and INSTR4 treat a string as a sequence of bytes, Unicode code units, and Unicode
code points, respectively. The variation INSTRC treats a string as a series of com-
plete, Unicode characters. For example: 'a\0303', which is the decomposed equiv-
alent of '\00E3', or ã, is treated and counted as a single character. INSTR, however,
sees 'a\0303' as two characters.

LEAST(string1, string2, ...)
Takes one or more strings as input and returns the string that would come first
(i.e., that is the least) if the inputs were sorted in ascending order. Also see GREAT-
EST, which is the opposite of LEAST.

LENGTH(string1)
Returns the number of characters in a string. The variations LENGTHB,
LENGTH2, and LENGTH4 return the number of bytes, the number of Unicode
code units, and the number of Unicode code points, respectively. The variation
LENGTHC returns the number of complete Unicode characters, normalizing (e.g.,
changing 'a\0303' to '\00E3') where possible.

LENGTH typically does not return zero. Remember that the Oracle database treats
an empty string ('') as a NULL, so LENGTH('') is the same as trying to take the
length of a NULL, and the result is NULL. The sole exception is when LENGTH
is used against a CLOB. It is possible for a CLOB to hold zero bytes and yet not be
NULL. In this one case, LENGTH returns zero.

224 | Chapter 8: Strings

Download at WoweBook.Com

LOWER(string1)
Converts all letters in the specified string to lowercase. This is the opposite of
UPPER. The return datatype is the same as the input datatype (CHAR, VAR-
CHAR2, CLOB). See also NLS_LOWER.

LPAD(string1, padded_length)
Returns the value from string1, but padded on the left with enough spaces to make
the result padded_length characters long. There is one variation, shown next.

LPAD(string1, padded_length, pad_string)
Appends enough full or partial occurrences of pad_string to bring the total
length up to padded_length. For example, LPAD('Merry Christmas!', 25,
'Ho! ') results in 'Ho! Ho! HMerry Christmas!'.

LPAD is the opposite of RPAD.

LTRIM(string1)
Removes, or trims, space characters from the left, or leading edge of string1. Also
see TRIM (ISO standard) and RTRIM. There is one variation:

LTRIM(string1, trim_string)
Removes any characters found in trim_string from the left end of string1.

NCHR(code_location)
Returns an NVARCHAR2 character (length 1) that corresponds to the location in
the national character set collating sequence specified by the code_location param-
eter. The CHR function’s USING NCHAR_CS clause provides the same function-
ality as NCHR.

NLS_INITCAP(string1)
Returns a version of string1, which should be of type NVARCHAR2 or NCHAR,
setting the first letter of each word to uppercase and the remainder of the letters to
lowercase. This is sometimes called title case. The return value is a VARCHAR2.
A word is a set of characters separated by a space or nonalphanumeric character.

You may specify a linguistic sorting sequence that affects the definition of “first
letter:”

NLS_INITCAP(string1, 'NLS_SORT=sort_sequence_name')
When using this syntax, sort_sequence_name should be a valid, linguistic sort
name as described in the Oracle Database Globalization Support Guide, Ap-
pendix A, under the heading “Linguistic Sorts.”

The following example illustrates the difference between INITCAP and
NLS_INITCAP:

BEGIN
 DBMS_OUTPUT.PUT_LINE(INITCAP('ijzer'));
 DBMS_OUTPUT.PUT_LINE(NLS_INITCAP('ijzer','NLS_SORT=XDUTCH'));
END;

String Function Quick Reference | 225

Download at WoweBook.Com

The output is:

Ijzer
IJzer

In the Dutch language, the character sequence “ij” is treated as a single character.
NLS_INITCAP correctly recognizes this as a result of the NLS_SORT specification,
and uppercases the word “ijzer” (Dutch for “iron”) appropriately.

NLS_LOWER(string1) and NLS_LOWER(string1, 'NLS_SORT=sort_sequence_name')
Returns string1 in lowercase in accordance with language-specific rules. See
NLS_INITCAP for a description of how the NLS_SORT specification can affect
the results.

NLS_UPPER(string1) and NLS_UPPER(string1, 'NLS_SORT=sort_sequence_name')
Returns string1 in uppercase in accordance with language-specific rules. See
NLS_INITCAP for a description of how the NLS_SORT specification can affect
the results.

NLSSORT(string1) and NLSSORT(string1, 'NLS_SORT=sort_sequence_name')
Returns a string of bytes that can be used to sort a string value in accordance with
language-specific rules. The string returned is of the RAW datatype. For example,
to compare two strings using French sorting rules:

IF NLSSORT(x, 'NLS_SORT=XFRENCH') > NLSSORT(y, 'NLS_SORT=XFRENCH') THEN...

When you omit the second parameter, the function uses the default sort sequence
that you have established for your session. For a list of sort sequences, see the
Oracle Globalization Support Guide, Appendix A, under the heading “Linguistic
Sorts.”

REGEXP_COUNT, REGEXP_INSTR, REGEXP_LIKE, REGEXP_REPLACE,
REGEXP_SUBSTR

Refer to Appendix A of this book for these regular-expression functions.

REPLACE(string1, match_string, replace_string)
Returns a string in which all occurrences of match_string in string1 are replaced by
replace_string. REPLACE is useful for searching a pattern of characters, and then
changing all instances of that pattern in a single function call.

REPLACE(string1, match_string)
Returns string1 with all occurrences of match_string removed.

RPAD(string1, padded_length)
Returns the value from string1, but padded on the right with enough spaces to
make the result padded_length characters long. There is one variation:

RPAD(string1, padded_length, pad_string)
Appends enough full or partial occurrences of pad_string to bring the total
length up to padded_length. For example, RPAD('Merry Christmas! ', 25,
'Ho! ') results in ‘Merry Christmas! Ho! Ho!'.

RPAD pads on the right, while its complement, LPAD, pads on the left.

226 | Chapter 8: Strings

Download at WoweBook.Com

RTRIM(string1)
Removes, or trims, space characters from the right, or trailing edge of string1. See
also TRIM (ISO standard) and LTRIM. There is one variation:

RTRIM(string1, trim_string)
Removes any characters found in trim_string from the trailing edge of string1.

SOUNDEX(string1)
Returns a character string that is the “phonetic representation” of the argument.
For example:

SOUNDEX ('smith') --> 'S530'
SOUNDEX ('SMYTHE') --> ''S530'
SOUNDEX ('smith smith') --> 'S532'
SOUNDEX ('smith z') --> 'S532'
SOUNDEX ('feuerstein') --> 'F623'
SOUNDEX ('feuerst') --> 'F623'

Keep the following SOUNDEX rules in mind when using this function:

• The SOUNDEX value always begins with the first letter in the input string.

• SOUNDEX uses only the first five consonants in the string to generate the return
value.

• Only consonants are used to compute the numeric portion of the SOUNDEX
value. Except for leading vowels, all vowels are ignored.

• SOUNDEX is not case-sensitive; uppercase and lowercase letters return the
same SOUNDEX value.

The SOUNDEX function is useful for ad hoc queries, and any other kinds of
searches where the exact spelling of a database value is not known or easily
determined.

The SOUNDEX algorithm is English-centric and may not work
well (or at all) for other languages.

SUBSTR(string1, start, length)
Returns a substring from string1, beginning with the character at position start and
going for length characters. If the end of string1 is encountered before length
characters are found, then all characters from start onward are returned. The fol-
lowing variations exist:

SUBSTR(string1, start)
Returns all characters beginning from position start through to the end of
string1.

SUBSTR(string1, negative_start, length)
Counts backwards from the end of string1 to determine the starting position
from which to begin returning length characters.

String Function Quick Reference | 227

Download at WoweBook.Com

SUBSTR(string1, negative_start)
Returns the last ABS(negative_start) characters from the string.

SUBSTR treats a string as a sequence of characters. The variations SUBSTRB,
SUBSTR2, and SUBSTR4 treat a string as a sequence of bytes, Unicode code units,
and Unicode code points, respectively. The variation SUBSTRC treats a string as
a series of complete, Unicode characters. For example: 'a\0303', which is the de-
composed equivalent of '\00E3', or ã, is treated and counted as a single character.
SUBSTR, however, sees 'a\0303' as two characters.

TO_CHAR(national_character_data)
Converts data in the national character set to its equivalent representation in the
database character set. See also TO_NCHAR.

TO_CHAR may also be used to convert date and time values, as
well as numbers, into human-readable form. These uses of
TO_CHAR are described in Chapter 9 (for numbers) and Chap-
ter 10 (for dates and times).

TO_MULTI_BYTE(string1)
Translates single-byte characters to their multibyte equivalents. Some multibyte
character sets, notably UTF-8, provide for more than one representation of a given
character. In UTF-8, for example, letters such as 'G' can be represented using one
byte or using three bytes. TO_MULTI_BYTE lets you convert from the single to
the multibyte representation. TO_MULTI_BYTE is the opposite of
TO_SINGLE_BYTE.

TO_NCHAR(database_character_data)
Converts data in the database character set to its equivalent representation in the
national character set. See also TO_CHAR and TRANSLATE...USING.

TO_NCHAR may also be used to convert date and time values, as
well as numbers, into human-readable form. These uses of
TO_NCHAR are described in Chapter 9 (for numbers) and Chap-
ter 10 (for dates and times).

TO_SINGLE_BYTE(string1)
Translates multibyte characters to their single-byte equivalents. This is the oppo-
site of TO_MULTI_BYTE.

TRANSLATE(string1, search_set, replace_set)
Replaces every instance in string1 of a character from search_set with the corre-
sponding character from replace_set. For example:

TRANSLATE ('abcd', 'ab', '12') --> '12cd'

228 | Chapter 8: Strings

Download at WoweBook.Com

If the search set contains more characters than the replace set, then the “trailing”
search characters that have no match in the replace set are not included in the
result. For example:

TRANSLATE ('abcdefg', 'abcd', 'zyx') --> 'zyxefg'

The letter ‘d’ is removed, because it appears in search_set without a corresponding
entry in result_set. TRANSLATE swaps individual characters, while REPLACE
swaps strings.

TRANSLATE(text USING CHAR_CS) and TRANSLATE(text USING NCHAR_CS)
Translates character data to either the database character set (CHAR_CS) or the
national character set (NCHAR_CS). The output datatype will be either VAR-
CHAR2 or NVARCHAR2, depending on whether you are converting to the data-
base or the national character set, respectively.

TRANSLATE...USING is an ISO standard SQL function. Starting
with Oracle9i Database Release 1, you can simply assign a VAR-
CHAR2 to an NVARCHAR2 (and vice versa), and the database will
handle the conversion implicitly. If you want to make such a
conversion explicit, you can use TO_CHAR and TO_NCHAR to
convert text to database and national character sets, respectively.
Oracle Corporation recommends the use of TO_CHAR and
TO_NCHAR over TRANSLATE...USING, because those func-
tions support a greater range of input datatypes.

TRIM(FROM string1)
Returns a version of string1 that omits any leading and trailing spaces. Variations
include:

TRIM(LEADING FROM ...)
Trims only leading spaces.

TRIM(TRAILING FROM ...)
Trims only trailing spaces.

TRIM(BOTH FROM ...)
Explicitly specifies the default behavior of trimming both leading and trailing
spaces.

TRIM(...trim_character FROM string1)
Removes occurrences of trim_character, which may be any one character that
you want to specify.

Oracle added the TRIM function in Oracle8i Database to increase compliance with
the ISO SQL standard. TRIM comes close to combining the functionality of LTRIM
and RTRIM into one function. The difference is that with TRIM, you can specify
only one trim character. When using LTRIM or RTRIM, you can specify a set of
characters to trim.

String Function Quick Reference | 229

Download at WoweBook.Com

UNISTR(string1)
Returns string1 converted into Unicode. This is the opposite of ASCIISTR. You
can represent nonprintable characters in the input string using the \XXXX nota-
tion, where XXXX represents the Unicode code point value for a character. For
example:

BEGIN
 DBMS_OUTPUT.PUT_LINE(
 UNISTR('The symbol \20AC is the Euro.')
);
END;

The symbol € is the Euro.

UNISTR gives you convenient access to the entire universe of Unicode characters,
even those you cannot type directly from your keyboard. Chapter 25 discusses
Unicode in more detail.

UPPER(string1)
Returns a version of string1 with all letters made uppercase. The return datatype
is the same as the datatype of string1 (CHAR, VARCHAR2 or CLOB). UPPER is
the opposite of LOWER. See also NLS_UPPER.

230 | Chapter 8: Strings

Download at WoweBook.Com

CHAPTER 9

Numbers

Where would we be without numbers? While those of us who are math-challenged
might prefer a text-only view of the world, the reality is that much of the data in any
database is numeric. How much inventory do we have? How much money do we owe?
At what rate is our business growing? These are just some of the questions that we
expect to answer using numbers from databases.

When working with numbers in PL/SQL, you need to have at least a passing familiarity
with the following:

• The numeric datatypes at your disposal. It also helps to know in what situations
they are best used.

• Conversion between numbers and their textual representations. How else do you
expect to get those numbers into and out of your database?

• PL/SQL’s rich library of built-in numeric functions. After all, you don’t want to
reinvent the wheel.

Each of these topics is discussed in this chapter. I’ll begin by looking at the datatypes
themselves.

Numeric Datatypes
Like the Oracle database, PL/SQL offers a variety of numeric datatypes to suit different
purposes:

NUMBER
A true decimal datatype that is ideal for working with monetary amounts. NUM-
BER is also the only one of PL/SQL’s numeric types to be implemented in a com-
pletely platform-independent fashion. Anything you do with NUMBERs should
work the same regardless of the underlying hardware.

231

Download at WoweBook.Com

PLS_INTEGER and BINARY_INTEGER
Integer datatypes conforming to your hardware’s underlying, integer representa-
tion. Arithmetic is performed using your hardware’s native, machine instructions.
You cannot store values of these types in the database.

SIMPLE_INTEGER
Introduced with Oracle Database 11g. Has the same range as BINARY_INTEGER,
but does not allow for NULLs and does not raise an exception if an overflow occurs.
The SIMPLE_INTEGER datatype results in significantly faster execution times for
natively compiled code.

BINARY_FLOAT and BINARY_DOUBLE
Single- and double-precision, IEEE-754, binary floating-point types. I don’t rec-
ommend these types for monetary amounts. They are useful, however, when you
need fast, floating-point arithmetic.

SIMPLE_FLOAT and SIMPLE_DOUBLE
Introduced with Oracle Database 11g. Have the same range as BINARY_FLOAT
and BINARY_DOUBLE, but do not allow for NULLs, do not raise an exception if
an overflow occurs, and do not support special literals or predicates such as
BINARY_FLOAT_MIN_NORMAL, IS NAN, or IS NOT INFINITE. These SIM-
PLE datatypes result in significantly faster execution times for natively compiled
code.

In practice, you may encounter other numeric types, such as FLOAT, INTEGER, and
DECIMAL. These are really nothing more than alternate names for the core numeric
types just listed. I’ll talk about these alternate names in “Numeric Sub-
types” on page 246.

The NUMBER Type
The NUMBER datatype is by far the most common numeric datatype you’ll encounter
in the world of Oracle and PL/SQL programming. Use it to store integer, fixed-point,
or floating-point numbers of just about any size. Prior to Oracle Database 10g, NUM-
BER was the only numeric datatype supported directly by the Oracle database engine
(later versions also support BINARY_FLOAT and BINARY_DOUBLE). NUMBER is
implemented in a platform-independent manner, and arithmetic on NUMBER values
yields the same result no matter what hardware platform you run on.

The simplest way to declare a NUMBER variable is simply to specify the keyword
NUMBER:

DECLARE
 x NUMBER;

Such a declaration results in a floating-point NUMBER. The Oracle database will al-
locate space for up to the maximum of 40 digits, and the decimal point will float to
best accommodate whatever values you assign to the variable. NUMBER variables can

232 | Chapter 9: Numbers

Download at WoweBook.Com

hold values as small as 10−130 (1.0E - 130) and as large as 10126 - 1 (1.0E126 - 1). Values
smaller than 10−130 will get rounded down to 0, and calculations resulting in values
larger than or equal to 10126 will be undefined, causing runtime problems but not
raising an exception. This range of values is demonstrated by the following code block:

DECLARE
 tiny_nbr NUMBER := 1e-130;
 test_nbr NUMBER;
 -- 1111111111222222222233333333334
 -- 1234567890123456789012345678901234567890
 big_nbr NUMBER := 9.999999999999999999999999999999999999999e125;
 -- 1111111111222222222233333333334444444
 -- 1234567890123456789012345678901234567890123456
 fmt_nbr VARCHAR2(50) := '9.999EEEE';
BEGIN
 DBMS_OUTPUT.PUT_LINE('tiny_nbr =' || TO_CHAR(tiny_nbr, '9.9999EEEE'));
 -- NUMBERs that are too small round down to zero
 test_nbr := tiny_nbr / 1.0001;
 DBMS_OUTPUT.PUT_LINE('tiny made smaller =' || TO_CHAR(test_nbr, fmt_nbr));
 -- NUMBERs that are too large throw an error
 DBMS_OUTPUT.PUT_LINE('big_nbr =' || TO_CHAR(big_nbr, fmt_nbr));
 test_nbr := big_nbr * 1.0001; -- too big
 DBMS_OUTPUT.PUT_LINE('big made bigger =' || TO_CHAR(test_nbr, fmt_nbr));
END;

Output from this block is:

tiny_nbr = 1.0000E-130
tiny made smaller = .000E+00
big_nbr = 9.99999999999999999999999999999999999999900E+125
big made bigger =###

If you try to explicitly assign a number that is too large to your NUMBER variable,
you’ll raise a numeric overflow or underflow exception. But, if you assign calculation
results that exceed the largest legal value, no exception is raised. If your application
really needs to work with such large numbers, you will have to code validation routines
that anticipate out-of-range values, or consider using BINARY_DOUBLE, which can
be compared to BINARY_DOUBLE_INFINITY. Using binary datatypes has rounding
implications, so be sure to read the sections on binary datatypes later in this chapter.
For most applications, these rounding errors will probably cause you to choose the
NUMBER datatype.

Often, when you declare a variable of type NUMBER, you will want to constrain its
precision and scale, as follows

NUMBER (precision, scale)

Such a declaration results in a fixed-point number. The precision is the total number
of significant digits in the number. The scale dictates the number of digits to the right
(positive scale) or left (negative scale) of the decimal point, and also affects the point
at which rounding occurs. Both the precision and the scale values must be literal, integer

Numeric Datatypes | 233

Download at WoweBook.Com

values; you cannot use variables or constants in the declaration. Legal values for pre-
cision range from 1 to 38, and legal values for scale range from −84 to 127.

When declaring fixed-point numbers, the value for scale is usually less than the value
for precision. For example, you might declare a variable holding a monetary amount as
NUMBER(9,2), which allows values up to and including 9,999,999.99. Figure 9-1
shows how to interpret such a declaration.

Figure 9-1. A typical fixed-point NUMBER declaration

As this figure illustrates, a declaration of NUMBER(9,2) results in a fixed-point number
consisting of seven digits to the left of the decimal point and two digits to the right of
the decimal point. Values stored in the variable will be rounded to a maximum of two
decimal places, as shown in Table 9-1.

Table 9-1. Rounding of NUMBER(9,2) values

Original value Rounded value that is actually stored

1,234.56 1,234.56

1,234,567.984623 1,234,567.98

1,234,567.985623 1,234,567.99

1,234,567.995623 1,234,568.00

10,000,000.00 Results in an ORA-06502, numeric or value error, because the precision is too large for the variable

−10,000,000.00 Same error as for 10,000,000.00

The last two values in the table result in an exception because they require more sig-
nificant digits to represent than the variable can handle. Values in the tens of millions
require at least eight significant digits to the left of the decimal point. You can’t round
such values to fit into only seven digits, so you get overflow errors.

234 | Chapter 9: Numbers

Download at WoweBook.Com

Things get more interesting when you declare a variable with a scale that exceeds the
variable’s precision or when you use a negative value for scale. Figure 9-2 illustrates
the effect of a scale exceeding a variable’s precision.

The variable illustrated in this figure has the same number of significant digits as the
variable in Figure 9-1, but those significant digits are used differently. Because the
scale is 11, those nine significant digits can represent only absolute values less than
0.01. Values are rounded to the nearest hundred-billionth. Table 9-2 shows the results
of storing some carefully chosen example values into a NUMBER(9,11) variable.

Table 9-2. Rounding of NUMBER(9,11) values

Original value Rounded value that is actually stored

0.00123456789 0.00123456789

0.000000000005 0.00000000001

0.000000000004 0.00000000000

0.01 Too large a number for the variable; requires a significant digit in the hundredth’s position; results in an
ORA-06502 error

−0.01 Same as for 0.01

Negative scale values extend the decimal point out to the right, in the opposite direction
of the positive scale. Figure 9-3 illustrates a variable declared NUMBER(9,-11).

Figure 9-2. The effect of scale exceeding precision

Numeric Datatypes | 235

Download at WoweBook.Com

Figure 9-3. The effect of negative scale

Again I’ve used nine significant digits, but look where the decimal point is now! Rather
than representing small values down to the hundred-billionth, the smallest value I can
now represent precisely is 100 billion. Values less than 100 billion are rounded up or
down to the nearest 100 billion, as illustrated in Table 9-3.

Table 9-3. Rounding of NUMBER(9,-11) values

Original value Rounded value that is actually stored

50,000,000,000.123 100,000,000,000

49,999,999,999.999 0

150,000,975,230,001 150,000,000,000,000

100,000,000,000,000,000,000 or 1 × 1020 Too large a number for the variable; requires a significant digit in the hundred-
quintillion’s position; results in an ORA-06502 error

−100,000,000,000,000,000,000 or −1 × 1020 Also results in an ORA-06502 error

As Figure 9-3 and Table 9-3 illustrate, negative scales allows me to represent some very
large numbers, but only at the sacrifice of precision in the less-significant digits. Any
absolute value less than 50 trillion is rounded to zero when stored in a NUMBER(9,-11)
variable.

When declaring NUMBER variables using precision and scale, bear in mind that scale
is optional and defaults to zero. For example, the following declarations are equivalent:

x NUMBER(9,0);
x NUMBER(9);

Both of these declarations result in integer variables (i.e., zero digits past the decimal
point) containing nine significant digits. The range of integer values that can be repre-
sented using nine significant digits is −999,999,999 through 999,999,999.

236 | Chapter 9: Numbers

Download at WoweBook.Com

When used for fixed-point values, the range of NUMBER is constrained by the values
that you are allowed to specify for precision and scale, as demonstrated in the following
code block:

DECLARE
 low_nbr NUMBER(38,127);
 high_nbr NUMBER(38,-84);
BEGIN
 /* 127 is largest scale, so begin with 1 and move
 decimal point 127 places to the left. Easy. */
 low_nbr := 1E-127;
 DBMS_OUTPUT.PUT_LINE('low_nbr = ' || low_nbr);

 /* −84 is smallest scale value. Add 37 to normalize
 the scientific-notation, and we get E+121. */
 high_nbr := 9.9999999999999999999999999999999999999E+121;
 DBMS_OUTPUT.PUT_LINE('high_nbr = ' || high_nbr);
END;

The output is:

low_nbr =
1.00
000000000000000E-127
high_nbr =
9.9999999999999999999999999999999999999000
000000000000000E+121

As before, low_nbr represents the low end of the positive range and high_nbr the high
end. One difference is that when working with fixed-point numbers, you are limited
to 38 significant digits.

Given the wide range and versatility of the NUMBER datatype, it’s no wonder that it’s
so widely used. Using simply NUMBER in your declarations, you can represent float-
ing-point values. By constraining those numbers using precision and scale, you can
represent fixed-point decimal numbers. By setting scale to zero or omitting it entirely,
you can represent integer values. One datatype covers all the bases.

The PLS_INTEGER Type
The PLS_INTEGER datatype stores signed integers in the range −2,147,483,648
through 2,147,483,647. Values are represented using your hardware platform’s native
integer format.

Following is an example of some PLS_INTEGER declarations:

DECLARE
 loop_counter PLS_INTEGER;
 days_in_standard_year CONSTANT PLS_INTEGER := 365;
 emp_vacation_days PLS_INTEGER DEFAULT 14;

The PLS_INTEGER datatype was designed for speed. Prior to Oracle Database 10g,
PLS_INTEGER was the only integer datatype that used native machine arithmetic. All

Numeric Datatypes | 237

Download at WoweBook.Com

other numeric datatypes used the C language arithmetic library used with the NUMBER
datatype. When you perform arithmetic using PLS_INTEGER values, the Oracle soft-
ware uses native machine arithmetic. As a result, it’s faster to manipulate PLS_INTE-
GER values than it is to manipulate integers in the NUMBER datatype. Because
PLS_INTEGER values are integers, you generally won’t run into any compatibility is-
sues as you move from one hardware platform to the next.

I recommend that you consider using PLS_INTEGER whenever you’re faced with in-
tensive, integer arithmetic. Bear in mind, however, that if your use of PLS_INTEGER
results in frequent conversions to and from the NUMBER type, you may be better off
using NUMBER to begin with. You’ll gain the greatest efficiency when you use PLS_IN-
TEGER for integer arithmetic (and for loop counters) in cases where you can avoid
conversions back and forth to the NUMBER type. When this datatype is used in integer
arithmetic, the resulting values are rounded to whole numbers, as shown in this
example:

DECLARE
 int1 PLS_INTEGER;
 int2 PLS_INTEGER;
 int3 PLS_INTEGER;
 nbr NUMBER;
BEGIN
 int1 := 100;
 int2 := 49;
 int3 := int2/int1;
 nbr := int2/int1;
 DBMS_OUTPUT.PUT_LINE('integer 100/49 =' || TO_CHAR(int3));
 DBMS_OUTPUT.PUT_LINE('number 100/49 =' || TO_CHAR(nbr));
 int2 := 50;
 int3 := int2/int1;
 nbr := int2/int1;
 DBMS_OUTPUT.PUT_LINE('integer 100/50 =' || TO_CHAR(int3));
 DBMS_OUTPUT.PUT_LINE('number 100/50 =' || TO_CHAR(nbr));
END;

This gives the following output:

integer 100/49 =0
number 100/49 =.49
integer 100/50 =1
number 100/50 =.5

If the resultant value of integer arithmetic is out of the range of valid values
(−2,147,483,648 through 2,147,483,647), you will encounter a numeric overflow error.

The BINARY_INTEGER Type
The BINARY_INTEGER datatype also allows you to store signed integers in a binary
format. The semantics of this datatype changed in Oracle Database 10g Release 1.
Beginning with that release, BINARY_INTEGER is equivalent to PLS_INTEGER. In
Oracle9i Database Release 2 and earlier releases, BINARY_INTEGER differed from

238 | Chapter 9: Numbers

Download at WoweBook.Com

PLS_INTEGER in that Oracle implemented it using platform-independent library
code.

Curiously, the package STANDARD looks like it constrains the BINARY_INTEGER
type to the values −2,147,483,647 through 2,147,483,647, but I have encountered no
exceptions assigning values from −2,147,483,648 through 2,147,483,647, which is a
slightly larger range on the negative side.

subtype BINARY_INTEGER is INTEGER range '-2147483647'..2147483647;

I don’t recommend using BINARY_INTEGER for new work. The only reason to use
BINARY_INTEGER for new work is if you need your code to run on releases of Oracle
prior to 7.3 (before PLS_INTEGER was introduced). I hope you’re not running any-
thing that old!

The SIMPLE_INTEGER Type
The SIMPLE_INTEGER datatype is new to Oracle Database 11g. This datatype is a
performance-enhanced version of PLS_INTEGER with a few caveats. The SIMPLE_IN-
TEGER datatype has the same range of values as PLS_INTEGER (−2,147,483,648
through 2,147,483,647), but it does not support NULL values nor does it check for
overflow conditions. So, you may be wondering why you would want to use this seem-
ingly defective clone of PLS_INTEGER. Well, if you compile your code natively and
your situation is such that your variable will never be NULL nor will it overflow, then
the SIMPLE_INTEGER type will scream with better performance. Consider this
example:

/* File on web: simple_integer_demo.sql */
-- First create a compute intensive procedure using PLS_INTEGER
CREATE OR REPLACE PROCEDURE pls_test (iterations IN PLS_INTEGER)
AS
 int1 PLS_INTEGER := 1;
 int2 PLS_INTEGER := 2;
 begints timestamp;
 endts timestamp;
BEGIN
 begints := SYSTIMESTAMP;

 FOR cnt IN 1 .. iterations
 LOOP
 int1 := int1 + int2 * cnt;
 END LOOP;

 endts := SYSTIMESTAMP;
 DBMS_OUTPUT.put_line(iterations
 || ' iterations had run time of:'
 || TO_CHAR (endts - begints));
END;
/

-- Next create the same procedure using SIMPLE_INTEGER

Numeric Datatypes | 239

Download at WoweBook.Com

CREATE OR REPLACE PROCEDURE simple_test (iterations IN SIMPLE_INTEGER)
AS
 int1 SIMPLE_INTEGER := 1;
 int2 SIMPLE_INTEGER := 2;
 begints timestamp;
 endts timestamp;
BEGIN
 begints := SYSTIMESTAMP;

 FOR cnt IN 1 .. iterations
 LOOP
 int1 := int1 + int2 * cnt;
 END LOOP;

 endts := SYSTIMESTAMP;
 DBMS_OUTPUT.put_line(iterations
 || ' iterations had run time of:'
 || TO_CHAR (endts - begints));
END;
/

-- first recompile the procedures to as interpreted
ALTER PROCEDURE pls_test COMPILE PLSQL_CODE_TYPE=INTERPRETED;
/

ALTER PROCEDURE simple_test COMPILE PLSQL_CODE_TYPE=INTERPRETED
/

-- compare the run times
BEGIN pls_test(123456789); END;
/
123456789 iterations had run time of:+000000000 00:00:06.375000000

BEGIN simple_test(123456789); END;
/
123456789 iterations had run time of:+000000000 00:00:06.000000000

-- recompile with to native code
ALTER PROCEDURE pls_test COMPILE PLSQL_CODE_TYPE=NATIVE
/

ALTER PROCEDURE simple_test COMPILE PLSQL_CODE_TYPE= NATIVE
/

-- compare the run times
BEGIN pls_test(123456789); END;
/
123456789 iterations had run time of:+000000000 00:00:03.703000000

BEGIN simple_test(123456789); END;
/
123456789 iterations had run time of:+000000000 00:00:01.203000000

You can see from this example that SIMPLE_INTEGER gave a slight performance edge
with interpreted code (6% in this test on a Microsoft Windows server). Both

240 | Chapter 9: Numbers

Download at WoweBook.Com

PLS_INTEGER and SIMPLE_INTEGER are faster when compiled natively, but the
native SIMPLE_INTEGER was over 300% faster than the native PLS_INTEGER! As a
learning exercise, try this test with a NUMBER type also—I found SIMPLE_INTEGER
over 1000% faster than NUMBER. On a Linux server running Oracle Database 11g
Release 2, I measured similarly large performance differences using SIMPLE_INTEGER
(often several hundred percent faster than alternative numeric types).

The BINARY_FLOAT and BINARY_DOUBLE Types
Oracle Database 10g introduced two, new floating-point types: BINARY_FLOAT and
BINARY_DOUBLE. These types conform to the single- and double-precision floating-
point types defined in the IEEE-754 floating-point standard. They are implemented by
both PL/SQL and the database engine itself, so you can use them in table definitions
as well as in your PL/SQL code. Table 9-4 compares these new types to the venerable
NUMBER type.

Table 9-4. Comparison of floating-point types

Characteristic BINARY_FLOAT BINARY_DOUBLE NUMBER

Maximum absolute value 3.40282347E+38F 1.7976931348623157E+308 9.999...999E+121
(38 9s total)

Minimum absolute value 1.17549435E-38F 2.2250748585072014E-308 1.0E-127

Number of bytes used for the value 4 (32 bits) 8 (64 bits) varies from 1 to 20

Number of length bytes 0 0 1

Representation Binary, IEEE-754 Binary, IEEE-754 Decimal

Literal suffix f d None

To write literals of these new types, you apply a suffix, either f or d depending on
whether you want your literal to be interpreted as a BINARY_FLOAT or as a
BINARY_DOUBLE. For example:

DECLARE
 my_binary_float BINARY_FLOAT := .95f;
 my_binary_double BINARY_DOUBLE := .95d;
 my_number NUMBER := .95;

There are also some special literals you can use when working with the IEEE-754 float-
ing-point types. The following are supported by both PL/SQL and SQL:

BINARY_FLOAT_NAN and BINARY_DOUBLE_NAN
Represents “not a number” in single or double precision, respectively.

BINARY_FLOAT_INFINITY, BINARY_DOUBLE_INFINITY
Represents infinity in single or double precision, respectively.

This next batch of literals is supported only by PL/SQL:

Numeric Datatypes | 241

Download at WoweBook.Com

BINARY_FLOAT_MIN_NORMAL, BINARY_FLOAT_MAX_NORMAL
Defines the normal range of values you should plan on storing in single- and
double-precision variables, respectively.

BINARY_FLOAT_MIN_SUBNORMAL, BINARY_FLOAT_MAX_SUBNORMAL
Defines what is referred to as the subnormal range of values. Subnormal values are
a part of the IEEE-754 standard that’s designed to reduce problems caused by
underflow to zero.

Finally, there are some predicates to use with these datatypes:

IS NAN and IS NOT NAN
Determines whether an IEEE-754 value is not-a-number.

IS INFINITE and IS NOT INFINITE
Determines whether an IEEE-754 value represents infinity.

It’s very important to understand that these BINARY types are indeed binary. I do not
recommend them for any situation in which exact, decimal representation is critical.
The following code block illustrates why, for example, I would not use the new, binary
types to represent monetary values:

BEGIN
 DBMS_OUTPUT.PUT_LINE(0.95f); --BINARY_FLOAT
 DBMS_OUTPUT.PUT_LINE(0.95d); --BINARY_DOUBLE
 DBMS_OUTPUT.PUT_LINE(0.95); --NUMBER
 END;

This example gives us:

9.49999988E-001
9.4999999999999996E-001
.95

Just as some fractions, such as 1/3, are not possible to represent precisely as decimal
numbers, you’ll often encounter cases where decimal numbers cannot be represented
precisely as binary values. The decimal value 0.95 is just one such case. When dealing
with money, use NUMBER.

Be careful when mixing floating-point types in comparisons. For
example:

BEGIN
 IF 0.95f = 0.95d
 THEN
 DBMS_OUTPUT.PUT_LINE('TRUE');
 ELSE
 DBMS_OUTPUT.PUT_LINE('FALSE');
 END IF;

 IF ABS(0.95f - 0.95d) < 0.000001d
 THEN
 DBMS_OUTPUT.PUT_LINE('TRUE');
 ELSE
 DBMS_OUTPUT.PUT_LINE('FALSE');

242 | Chapter 9: Numbers

Download at WoweBook.Com

 END IF;
END;

Which results in:

FALSE
TRUE

This output of FALSE and TRUE, respectively, illustrates the kind of
subtle problem you can run into when representing decimal values in
binary form. The BINARY_DOUBLE representation of 0.95 has more
digits than the BINARY_FLOAT version, and thus the two values do
not compare as equal. The second comparison is TRUE because, to
compensate for the fact that 0.95 cannot be represented precisely in
binary, we arbitrarily accept the two values being compared as equal
whenever the magnitude of their difference is less than one
one-millionth.

When would you want to use the IEEE-754 types? One reason to use them is
performance, and another is conformance to IEEE standards. If you are performing
extensive, numeric computations, you may see a significant increase in performance
from using the IEEE-754 types. I ran the following code block, which reports the time
needed to compute the area of 500,000 circles and to compute 5,000,000 sines. Both
tasks are performed twice, once using BINARY_DOUBLE and once using NUMBER:

/* File on web: binary_performance.sql */
DECLARE
 bd BINARY_DOUBLE;
 bd_area BINARY_DOUBLE;
 bd_sine BINARY_DOUBLE;
 nm NUMBER;
 nm_area NUMBER;
 nm_sine NUMBER;
 pi_bd BINARY_DOUBLE := 3.1415926536d;
 pi_nm NUMBER := 3.1415926536;
 bd_begin TIMESTAMP(9);
 bd_end TIMESTAMP(9);
 bd_wall_time INTERVAL DAY TO SECOND(9);
 nm_begin TIMESTAMP(9);
 nm_end TIMESTAMP(9);
 nm_wall_time INTERVAL DAY TO SECOND(9);
BEGIN
 --Compute area 5,000,000 times using binary doubles
 bd_begin := SYSTIMESTAMP;
 bd := 1d;
 LOOP
 bd_area := bd * bd * pi_bd;
 bd := bd + 1d;
 EXIT WHEN bd > 5000000;
 END LOOP;
 bd_end := SYSTIMESTAMP;

 --Compute area 5,000,000 times using NUMBERs
 nm_begin := SYSTIMESTAMP;

Numeric Datatypes | 243

Download at WoweBook.Com

 nm := 1;
 LOOP
 nm_area := nm * nm * 2 * pi_nm;
 nm := nm + 1;
 EXIT WHEN nm > 5000000;
 END LOOP;
 nm_end := SYSTIMESTAMP;

 --Compute and display elapsed, wall-clock time
 bd_wall_time := bd_end - bd_begin;
 nm_wall_time := nm_end - nm_begin;
 DBMS_OUTPUT.PUT_LINE('BINARY_DOUBLE area = ' || bd_wall_time);
 DBMS_OUTPUT.PUT_LINE('NUMBER area = ' || nm_wall_time);

 --Compute sine 5,000,000 times using binary doubles
 bd_begin := SYSTIMESTAMP;
 bd := 1d;
 LOOP
 bd_sine := sin(bd);
 bd := bd + 1d;
 EXIT WHEN bd > 5000000;
 END LOOP;
 bd_end := SYSTIMESTAMP;

 --Compute sine 5,000,000 times using NUMBERs
 nm_begin := SYSTIMESTAMP;
 nm := 1;
 LOOP
 nm_sine := sin(nm);
 nm := nm + 1;
 EXIT WHEN nm > 5000000;
 END LOOP;
 nm_end := SYSTIMESTAMP;

 --Compute and display elapsed, wall-clock time for sine
 bd_wall_time := bd_end - bd_begin;
 nm_wall_time := nm_end - nm_begin;
 DBMS_OUTPUT.PUT_LINE('BINARY_DOUBLE sine = ' || bd_wall_time);
 DBMS_OUTPUT.PUT_LINE('NUMBER sine = ' || nm_wall_time);
END;

My results, which were reasonably consistent over multiple runs, look like this:

BINARY_DOUBLE area = +00 00:00:02.792692000
NUMBER area = +00 00:00:08.942327000
BINARY_DOUBLE sine = +00 00:00:04.149930000
NUMBER sine = +00 00:07:37.596783000

Be careful with benchmarks, including those I show above! As this example illustrates,
the range of possible performance gains from using an IEEE-754 type over NUMBER
is quite vast. Using BINARY_DOUBLE, you can compute the area of a circle 5 million
times in approximately 40% of the time as when using NUMBER. If you decide to
compute sine 5 million times, however, you can get that done in 0.9% of the time. The
gain you get in a given situation depends on the computations involved. The message

244 | Chapter 9: Numbers

Download at WoweBook.Com

to take away here is not that IEEE-754 will get things done a fixed percentage faster
than NUMBER. It is that the potential performance improvement from using IEEE-754
over NUMBER is well worth considering and investigating when you’re performing
extensive calculations.

There are, however, a few areas in which Oracle’s implementation of binary floating-
point does not conform perfectly to the IEEE-754 standard. For example, Oracle co-
erces −0 to +0, whereas the IEEE-754 standard does not call for that behavior. If con-
formance is important to your application, check the section on “Datatypes” in Oracle’s
SQL Reference manual for the precise details on how and when Oracle diverges from
the IEEE-754 standard.

Mixing the Floating-Point Types
Oracle enforces an order of precedence on the implicit conversion of floating-point
types. From highest to lowest priority, that precedence is BINARY_DOUBLE,
BINARY_FLOAT, and NUMBER. When you write an expression containing a mix of
these types, the database attempts to convert all values in the expression to the highest
precedence type found in the expression. For example, if you mix BINARY_FLOAT
and NUMBER, Oracle first converts all values to BINARY_FLOAT.

If you don’t want the database to perform these implicit conversions, you should use
the functions TO_NUMBER, TO_BINARY_FLOAT and TO_BINARY_DOUBLE.
For example:

DECLARE
 nbr NUMBER := 0.95;
 bf BINARY_FLOAT := 2;
 nbr1 NUMBER;
 nbr2 NUMBER;
BEGIN
 --Default precedence, promote to binary_float
 nbr1 := nbr * bf;

 --Demote BINARY_FLOAT to NUMBER instead
 nbr2 := nbr * TO_NUMBER(bf);

 DBMS_OUTPUT.PUT_LINE(nbr1);
 DBMS_OUTPUT.PUT_LINE(nbr2);
END;

This results in:

1.89999998
1.9

To avoid the ambiguity and possible errors involving implicit conversions, I recom-
mend explicit conversions, such as with the functions TO_NUMBER,
TO_BINARY_FLOAT, and TO_BINARY_DOUBLE.

Numeric Datatypes | 245

Download at WoweBook.Com

The SIMPLE_FLOAT and SIMPLE_DOUBLE Types
The SIMPLE_FLOAT and SIMPLE_DOUBLE datatypes are new to Oracle Database
11g. These datatypes are performance-enhanced versions of the BINARY_FLOAT and
BINARY_DOUBLE datatypes—but they do have even more caveats than the
SIMPLE_INTEGER type. The SIMPLE_FLOAT and SIMPLE_DOUBLE datatypes
have the same range of values as BINARY_FLOAT and BINARY_DOUBLE, but they
do not support NULL values, the special IEEE literals (BINARY_FLOAT_NAN,
BINARY_DOUBLE_INFINITY, etc.), nor the special IEEE predicates (IS NAN, IS
INFINITY, etc.). They also do not check for overflow conditions. Like the
SIMPLE_INTEGER type, under the right conditions, these speedy cousins will make
your code much faster when they are compiled natively.

Numeric Subtypes
Oracle also provides several numeric subtypes. Most of the time, these subtypes are
simply alternate names for the basic types I have just discussed. These alternate names
offer compatibility with ISO SQL, SQL/DS, and DB2 datatypes, and usually have the
same range of legal values as their base type. Sometimes, subtypes offer additional
functionality by restricting values to a subset of those supported by their base type.
These subtypes are described in Table 9-5.

Table 9-5. Predefined numeric subtypes

Subtype Compatibility Corresponding Oracle datatype/notes

DEC (precision, scale) ANSI NUMBER (precision, scale)

DECIMAL (precision, scale) IBM NUMBER (precision, scale)

DOUBLE PRECISION ANSI NUMBER, with 126 binary digits of precision

FLOAT ANSI, IBM NUMBER, with 126 binary digits of precision

FLOAT (binary_precision) ANSI, IBM NUMBER, with a binary_precision of up to 126 (the default)

INT ANSI NUMBER(38)

INTEGER ANSI, IBM NUMBER(38)

NATURAL N/A PLS_INTEGER,a but allows only nonnegative values (0 and higher)

NATURALN N/A Same as NATURAL, but with the additional restriction of never being NULL

NUMERIC (precision, scale) ANSI NUMBER (precision, scale)

POSITIVE N/A PLS_INTEGER,a but allows only positive values (1 and higher)

POSITIVEN N/A Same as POSITIVE, but with the additional restriction of never being NULL

REAL ANSI NUMBER, with 63 binary digits of precision

SIGNTYPE N/A PLS_INTEGER,a limited to the values −1, 0, and 1

SMALLINT ANSI, IBM NUMBER (38)
a BINARY_INTEGER prior to Oracle Database 10g

246 | Chapter 9: Numbers

Download at WoweBook.Com

The NUMERIC, DECIMAL, and DEC datatypes can declare only fixed-point numbers.
DOUBLE PRECISION and REAL are equivalent to NUMBER. FLOAT allows floating
decimal points with binary precisions that range from 63 to 126 bits. I don’t find it all
that useful to define a number’s precision in terms of bits rather than digits. I also don’t
find much use for the ISO/IBM compatible subtypes, and I don’t believe you will either.

The subtypes that I sometimes find useful are the PLS_INTEGER subtypes. NATURAL
and POSITIVE are both subtypes of PLS_INTEGER. These subtypes constrain the val-
ues you can store in a variable, and their use can make a program more self-document-
ing. For example, if you have a variable whose values must always be nonnegative, you
can declare that variable to be NATURAL (0 and higher) or POSITIVE (1 and higher),
improving the self-documenting aspect of your code.

Number Conversions
Computers work with numbers best when those numbers are in some kind of binary
format. We humans, on the other hand, prefer to see our numbers in the form of char-
acter strings containing digits, commas, and other punctuation. PL/SQL allows you to
convert numbers back and forth between human- and machine-readable form. You’ll
usually perform such conversions using the TO_CHAR and TO_NUMBER functions.

When working with the IEEE-754, binary floating-point types, use
TO_BINARY_FLOAT and TO_BINARY_DOUBLE. To simplify the
discussion that follows, I’ll generally refer only to TO_NUMBER. Please
assume that any unqualified references to TO_NUMBER also apply to
the TO_BINARY_FLOAT and TO_BINARY_DOUBLE functions.

The TO_NUMBER Function
The TO_NUMBER function explicitly converts both fixed- and variable-length strings
as well as IEEE-754 floating point types to the NUMBER datatype using an optional
format mask. Use TO_NUMBER whenever you need to convert character string rep-
resentations of numbers into their corresponding numeric value. Invoke
TO_NUMBER as follows:

TO_NUMBER(string [,format [,nls_params]])

where:

string
Is a string or BINARY_DOUBLE expression containing the representation of a
number.

Number Conversions | 247

Download at WoweBook.Com

When using TO_BINARY_FLOAT and TO_BINARY_DOUBLE,
you may use the strings ‘INF’ and ‘-INF’ to represent positive and
negative infinity. You may also use ‘NaN’ to represent “not a num-
ber.” These special strings are case-insensitive.

format
Is an optional format mask that specifies how TO_NUMBER should interpret the
character representation of the number contained in the first parameter if it is a
string expression.

nls_params
Is an optional string specifying various NLS parameter values. You can use this to
override your current, session-level NLS parameter settings.

Using TO_NUMBER with no format

In many straightforward cases, you can use TO_NUMBER to convert strings to num-
bers without specifying any format string at all. For example, all of the following con-
versions work just fine:

DECLARE
 a NUMBER;
 b NUMBER;
 c NUMBER;
 d NUMBER;
 e BINARY_FLOAT;
 f BINARY_DOUBLE;
 g BINARY_DOUBLE;

 n1 VARCHAR2(20) := '-123456.78';
 n2 VARCHAR2(20) := '+123456.78';
BEGIN
 a := TO_NUMBER('123.45');
 b := TO_NUMBER(n1);
 c := TO_NUMBER(n2);
 d := TO_NUMBER('1.25E2');
 e := TO_BINARY_FLOAT('123.45');
 f := TO_BINARY_DOUBLE('inf');
 g := TO_BINARY_DOUBLE('NAN');
END;

Generally, you should be able to use TO_NUMBER without specifying a format when
the following conditions apply:

• Your number is represented using only digits and a single decimal point.

• Any sign is leading, and must be either minus (-) or plus (+). If no sign is present,
the number is assumed to be positive.

• Scientific notation is used—for example, 1.25E2.

248 | Chapter 9: Numbers

Download at WoweBook.Com

If your character strings don’t meet these criteria or if you need to round values to a
specific number of decimal digits, then you need to invoke TO_NUMBER with a format
model.

Using TO_NUMBER with a format model

Using TO_NUMBER with a format model enables you to deal with a much wider range
of numeric representations than TO_NUMBER would otherwise recognize. Ta-
ble B-1 (in Appendix B) gives a complete list of all supported number format model
elements. For example, you can specify the location of group separators and the cur-
rency symbol:

a := TO_NUMBER('$123,456.78','L999G999D99');

You don’t necessarily need to specify the exact number of digits in your format model.
TO_NUMBER is forgiving in this respect as long as your model contains more digits
than are in your actual value. For example, the following will work:

a := TO_NUMBER('$123,456.78','L999G999G999D99');

However, if you have more digits to the left or to the right of the decimal point than
your format allows, the conversion will fail with an ORA-06502: PL/SQL: numeric or
value error. The first of the following conversions will fail because the string contains
ten digits to the left of the decimal, while the format calls for only nine. The second
conversion will fail because there are too many digits to the right of the decimal point:

a := TO_NUMBER('$1234,567,890.78','L999G999G999D99');
a := TO_NUMBER('$234,567,890.789','L999G999G999D99');

You can force leading zeros using the 0 format element:

a := TO_NUMBER('001,234','000G000');

You can recognize angle-bracketed numbers as negative numbers using the PR element:

a := TO_NUMBER('<123.45>','999D99PR');

However, not all format elements can be used to convert strings to numbers. Some
elements, such as RN for Roman numerals, are output only. The following attempt to
convert the Roman numeral representation of a value to a number will fail:

a := TO_NUMBER('cxxiii','rn');

EEEE is another output-only format, but that’s OK because you don’t need it to convert
values that are correctly represented in scientific notation. You can simply do:

a := TO_NUMBER('1.23456E-24');

Passing NLS settings to TO_NUMBER

Many of the number format model elements listed in Table B-1 ultimately derive their
meaning from one of the NLS parameters. For example, the G element represents
the numeric group separator, which is the second character in the

Number Conversions | 249

Download at WoweBook.Com

NLS_NUMERIC_CHARACTERS setting in effect when the conversion takes place.
You can view current NLS parameter settings by querying the
NLS_SESSION_PARAMETERS view:

SQL> SELECT * FROM nls_session_parameters;

PARAMETER VALUE
------------------------- ---------------
NLS_LANGUAGE AMERICAN
NLS_TERRITORY AMERICA
NLS_CURRENCY $
NLS_ISO_CURRENCY AMERICA
NLS_NUMERIC_CHARACTERS .,
NLS_CALENDAR GREGORIAN
NLS_DATE_FORMAT DD-MON-RR

Some NLS parameter settings are by default dependent on others. For example, set
NLS_TERRITORY to AMERICA, and Oracle defaults NLS_NUMERIC_CHARAC-
TERS TO “.,”. If you need to, you can then override the NLS_NU-
MERIC_CHARACTERS setting (using an ALTER SESSION command, for example).

On rare occasions, you may want to override specific NLS parameter settings for a
single call to TO_NUMBER. In the following example, I invoke TO_NUMBER and
specify NLS settings corresponding to NLS_TERRITORY=FRANCE:

 a := TO_NUMBER('F123.456,78','L999G999D99',
 'NLS_NUMERIC_CHARACTERS='',.'''
 || ' NLS_CURRENCY=''F'''
 || ' NLS_ISO_CURRENCY=FRANCE');

Because my NLS parameter string is so long, I’ve broken it up into three separate strings
concatenated together so that our example fits nicely on the page. Note my doubling
of quote characters. The setting I want for NLS_NUMERIC_CHARACTERS is:

NLS_NUMERIC_CHARACTERS=',.'

I need to embed this setting into our NLS parameter string, and to embed quotes within
a string I must double them, so I end up with:

'NLS_NUMERIC_CHARACTERS='',.'''

The three NLS parameters set in this example are the only three you can set via
TO_NUMBER. I don’t know why that is. It certainly would be much more convenient
if you could simply do the following:

a := TO_NUMBER('F123.456,78','L999G999D99','NLS_TERRITORY=FRANCE');

But unfortunately, NLS_TERRITORY is not something you can set via a call to
TO_NUMBER. You are limited to specifying NLS_NUMERIC_CHARACTERS,
NLS_CURRENCY, and NLS_ISO_CURRENCY.

250 | Chapter 9: Numbers

Download at WoweBook.Com

For detailed information on setting the various NLS parameters, see
Oracle’s Globalization Support Guide, which is part of the Oracle
Database 11g documentation set.

Avoid using the third argument to TO_NUMBER; I believe it’s better to rely on session
settings to drive the way in which PL/SQL interprets format model elements such as L,
G, and D. Instead of your having to hardcode such information throughout your pro-
grams, session settings can be controlled by the user outside the bounds of your code.

The TO_CHAR Function
The TO_CHAR function is the converse of TO_NUMBER, and converts numbers to
their character representations. Using an optional format mask, you can be quite spe-
cific about the form those character representations take. Invoke TO_CHAR as follows:

TO_CHAR(number [,format [,nls_params]])

where:

number
Is a number that you want to represent in character form. This number may be any
of PL/SQL’s numeric types: NUMBER, PLS_INTEGER, BINARY_INTEGER,
BINARY_FLOAT, BINARY_DOUBLE, SIMPLE_INTEGER, SIMPLE_FLOAT,
and SIMPLE_DOUBLE.

format
Is an optional format mask that specifies how TO_CHAR should present the num-
ber in character form.

nls_params
Is an optional string specifying various NLS parameter values. You can use this to
override your current session-level NLS parameter settings.

If you want your results to be in the national character set, you can use
TO_NCHAR in place of TO_CHAR. In that case, be certain you provide
your number format string in the national character set as well. Other-
wise, you may receive output consisting of all number signs: #.

Using TO_CHAR with no format

As with TO_NUMBER, you can invoke TO_CHAR without specifying a format mask:

DECLARE
 b VARCHAR2(30);
BEGIN
 b := TO_CHAR(123456789.01);
 DBMS_OUTPUT.PUT_LINE(b);
END;

Number Conversions | 251

Download at WoweBook.Com

The output is:

123456789.01

Unlike the situation with TO_NUMBER, you aren’t likely to find this use of TO_CHAR
very useful. At the very least, you may want to format your numeric output with group
separators to make it more readable.

Using TO_CHAR with a format model

When converting numbers to their character string equivalents, you’ll most often in-
voke TO_CHAR with a format model. For example, you can output a monetary amount
as follows:

DECLARE
 b VARCHAR2(30);
BEGIN
 b := TO_CHAR(123456789.01,'L999G999G999D99');
 DBMS_OUTPUT.PUT_LINE(b);
END;

The output (in the United States) is:

$123,456,789.01

The format model elements in Table B-1 (in Appendix B) give you a lot of flexibility,
and you should experiment with them to learn the finer points of how they work. The
following example specifies that leading zeros be maintained, but the B format element
is used to force any zero values to blanks. Notice that the B element precedes the number
elements (the 0s) but follows the currency indicator (the L):

DECLARE
 b VARCHAR2(30);
 c VARCHAR2(30);
BEGIN
 b := TO_CHAR(123.01,'LB000G000G009D99');
 DBMS_OUTPUT.PUT_LINE(b);

 c := TO_CHAR(0,'LB000G000G009D99');
 DBMS_OUTPUT.PUT_LINE(c);
END;

The output is:

$000,000,123.01

You see only one line of output from this example, and that’s from the first conversion.
The second conversion involves a zero value, and the B format element causes
TO_CHAR to return that value as a blank string, even though the format otherwise
specifies that leading zeros be returned. As an experiment, try this same example on
your system, but leave off the B.

252 | Chapter 9: Numbers

Download at WoweBook.Com

Not all combinations of format elements are possible. For example, you
can’t use LRN to place a currency symbol in front of a value expressed
in Roman numerals. Oracle doesn’t document every such nuance. It
takes some experience and some experimenting to get a feel for what’s
possible and what’s not.

The V format element

The V format element is unusual enough to warrant a special explanation. The V ele-
ment allows you to scale a value, and its operation is best explained through an illus-
tration, which you’ll find in Figure 9-4.

Why would you ever need such functionality? Look no further than the stock market
for an example. The standard trading unit for stocks is 100 shares, and stock sales are
sometimes reported in terms of the number of 100-share units sold. Thus, a sales figure
of 123 actually represents 123 units of 100 shares, or 12,300 shares. The following
example shows how V can be used to scale a value such as 123 in recognition of the
fact that it really represents 100s:

DECLARE
 shares_sold NUMBER := 123;
BEGIN
 DBMS_OUTPUT.PUT_LINE(
 TO_CHAR(shares_sold,'999G9V99')
);
END;

Figure 9-4. The V number format element

The output is:

12,300

Notice that the format model in this example includes the G element to specify the
location of the group separator (the comma) in the displayed number. You can specify

Number Conversions | 253

Download at WoweBook.Com

group separators only to the left of the V element, not to the right. This is unfortunate.
Consider the following, perfectly reasonable format model:

TO_CHAR(123.45,'9G99V9G999');

You would hope to get the result formatted as 1,234,500. However, the G to the right
of the V is invalid. You can use 9G99V9999 to get a result of 1,234500, or you can use
999V9999 to get a result of 1234500. Neither result is as readable as you would like it
to be.

You probably won’t use the V element very often, but it’s worth knowing about this
bit of interesting functionality.

Rounding when converting numbers to character strings

When converting character strings to numbers, you’ll get an error any time you have
more digits to the left or right of the decimal point than the format model allows. When
converting numbers to characters, however, you’ll get an error only if the number re-
quires more digits to the left of the decimal point than the format model allows. If you
specify fewer decimal digits (i.e., digits to the right of the decimal point) in your format
model than the number requires, the number will be rounded so that the fractional
portion fits your model.

When a conversion fails because the model doesn’t specify enough digits to the left of
the decimal point, TO_CHAR returns a string of number signs (#). For example, the
following conversion fails because 123 doesn’t fit into two digits:

DECLARE
 b VARCHAR2(30);
BEGIN
 b := TO_CHAR(123.4567,'99.99');
 DBMS_OUTPUT.PUT_LINE(b);
END;

It’s perfectly OK, however, for your model not to include enough digits to cover the
fractional portion of a value. In such cases, rounding occurs. For example:

BEGIN
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(123.4567,'999.99'));
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(123.4567,'999'));
END;

123.46
123

Digits 5 and higher are rounded up, which is why 123.4567 is rounded up to 123.46.
Digits less than 5 are rounded down, so 123.4xxx will always be rounded down to 123.

254 | Chapter 9: Numbers

Download at WoweBook.Com

Dealing with spaces when converting numbers to character strings

A reasonably common problem encountered when converting numbers to character
strings is that TO_CHAR always leaves room for the minus sign even when numbers
are positive. By default, TO_CHAR will leave one space in front of a number for use
by a potential minus sign (-):

DECLARE
 b VARCHAR2(30);
 c VARCHAR2(30);
BEGIN
 b := TO_CHAR(-123.4,'999.99');
 c := TO_CHAR(123.4,'999.99');
 DBMS_OUTPUT.PUT_LINE(':' || b || ' ' || TO_CHAR(LENGTH(b)));
 DBMS_OUTPUT.PUT_LINE(':' || c || ' ' || TO_CHAR(LENGTH(c)));
END;

The output is:

:-123.40 7
: 123.40 7

Notice that both converted values have the same length, seven characters, even though
the positive number requires only six characters when displayed in character form. That
leading space can be a big help if you are trying to get columns of numbers to line up.
However, it can be a bit of a pain if for some reason you need a compact number with
no spaces whatsoever.

Use the PR element, and your positive numbers will have one leading
space and one trailing space to accommodate the potential enclosing
angle brackets. Spaces will be left to accommodate whatever sign indi-
cator you choose in your format model.

There are a couple of approaches you can take if you really need your numbers con-
verted to characters without leading or trailing spaces. One approach is to use the TM
format model element to get the “text minimum” representation of a number:

DECLARE
 b VARCHAR2(30);
 c VARCHAR2(30);
BEGIN
 b := TO_CHAR(-123.4,'TM9');
 c := TO_CHAR(123.4,'TM9');
 DBMS_OUTPUT.PUT_LINE(':' || b || ' ' || TO_CHAR(LENGTH(b)));
 DBMS_OUTPUT.PUT_LINE(':' || c || ' ' || TO_CHAR(LENGTH(c)));
END;

The output is:

:-123.4 6
:123.4 5

Number Conversions | 255

Download at WoweBook.Com

The TM approach works, but doesn’t allow you to specify any other formatting infor-
mation. You can’t, for example, specify TM999.99 in order to get a fixed two decimal
digits. If you need to specify other formatting information or if TM is not available in
your release of PL/SQL, you’ll need to trim the results of the conversion:

DECLARE
 b VARCHAR2(30);
 c VARCHAR2(30);
BEGIN
 b := LTRIM(TO_CHAR(-123.4,'999.99'));
 c := LTRIM(TO_CHAR(123.4,'999.99'));
 DBMS_OUTPUT.PUT_LINE(':' || b || ' ' || TO_CHAR(LENGTH(b)));
 DBMS_OUTPUT.PUT_LINE(':' || c || ' ' || TO_CHAR(LENGTH(c)));
END;

The output is:

:-123.40 7
:123.40 6

Here I’ve used LTRIM to remove any potential leading spaces, and I’ve successfully
preserved our fixed two digits to the right of the decimal point. Use RTRIM if you are
placing the sign to the right of the number (e.g., via the MI element) or TRIM if you
are using something like PR that affects both sides of the number.

Passing NLS settings to TO_CHAR

As with TO_NUMBER, you have the option of passing a string of NLS parameter
settings to TO_CHAR. For example:

BEGIN
 DBMS_OUTPUT.PUT_LINE(
 TO_CHAR(123456.78,'999G999D99','NLS_NUMERIC_CHARACTERS='',.''')
);
END;

The output is:

123.456,78

The three NLS parameters you can set this way are NLS_NUMERIC_CHARACTERS,
NLS_CURRENCY, and NLS_ISO_CURRENCY. See “Passing NLS settings to
TO_NUMBER” on page 249 for an example of all three being set at once.

The CAST Function
The CAST function is used to convert numbers to strings and vice versa. The general
format of the CAST function is as follows:

CAST (expression AS datatype)

256 | Chapter 9: Numbers

Download at WoweBook.Com

The following example shows CAST being used first to convert a NUMBER to a
VARCHAR2 string, and then to convert the characters in a VARCHAR2 string into
their corresponding numeric value:

DECLARE
 a NUMBER := −123.45;
 a1 VARCHAR2(30);
 b VARCHAR2(30) := '-123.45';
 b1 NUMBER;
 b2 BINARY_FLOAT;
 b3 BINARY_DOUBLE;
BEGIN
 a1 := CAST (a AS VARCHAR2);
 b1 := CAST (b AS NUMBER);
 b2 := CAST (b AS BINARY_FLOAT);
 b3 := CAST (b AS BINARY_DOUBLE);
 DBMS_OUTPUT.PUT_LINE(a1);
 DBMS_OUTPUT.PUT_LINE(b1);
 DBMS_OUTPUT.PUT_LINE(b2);
 DBMS_OUTPUT.PUT_LINE(b3);
END;

The output is:

−123.45
−123.45
−1.23449997E+002
−1.2345E+002

CAST has the disadvantage of not supporting the use of number format models. An
advantage to CAST, however, is that it is part of the ISO SQL standard, whereas the
TO_CHAR and TO_NUMBER functions are not. If writing 100% ANSI-compliant
code is important to you, you should investigate the use of CAST. Otherwise, I rec-
ommend using the traditional TO_NUMBER and TO_CHAR functions.

Because PL/SQL is not part of the ISO standard, it is by definition not
possible to write 100% ISO-compliant PL/SQL code, so CAST seems to
bring no real benefit to PL/SQL number conversions. CAST can, how-
ever, be used in the effort to write 100% ISO-compliant SQL statements
(such as SELECT, INSERT, etc.).

Implicit Conversions
A final method of handling conversions between numbers and strings is to just leave it
all to PL/SQL. Such conversions are referred to as implicit conversions, because you
don’t explicitly specify them in your code. Following are some straightforward implicit
conversions that will work just fine:

DECLARE
 a NUMBER;
 b VARCHAR2(30);

Number Conversions | 257

Download at WoweBook.Com

BEGIN
 a := '-123.45';
 b := −123.45;
...

As I mentioned in Chapter 7, I have several problems with implicit conversions. I’m a
strong believer in maintaining control over my code, and when you use an implicit
conversion you are giving up some of that control. You should always know when
conversions are taking place, and the best way to do that is to code them explicitly.
Don’t just let them happen. If you rely on implicit conversions, you lose track of when
conversions are occurring, and your code is less efficient as a result. Explicit conversions
also make your intent clear to other programmers, making your code more self-
documenting and easier to understand.

Another problem with implicit conversions is that while they may work just fine (or
seem to) in simple cases, sometimes they can be ambiguous. Consider the following:

DECLARE
 a NUMBER;
BEGIN
 a := '123.400' || 999;

What value will the variable “a” hold when this code executes? It all depends on how
PL/SQL evaluates the expression on the right side of the assignment operator. If
PL/SQL begins by converting the string to a number, you’ll get the following result:

a := '123.400' || 999;
a := 123.4 || 999;
a := '123.4' || '999';
a := '123.4999';
a := 123.4999;

On the other hand, if PL/SQL begins by converting the number to a string, you’ll get
the following result:

a := '123.400' || 999;
a := '123.400' || '999';
a := '123.400999';
a := 123.400999;

Which is it? Do you know? Even if you do know, do you really want to leave future
programmers guessing and scratching their heads when they look at your code? It would
be much clearer, and therefore better, to write the conversion explicitly:

a := TO_NUMBER('123.400' || TO_CHAR(999));

This expression, by the way, represents how the database will evaluate the original
example. Isn’t it much easier to understand at a glance now that I’ve expressed the
conversions explicitly?

258 | Chapter 9: Numbers

Download at WoweBook.Com

Beware Implicit Conversions!
In “The BINARY_FLOAT and BINARY_DOUBLE Types” on page 241, I showed some
code (binary_performance.sql) that I used to compare the performance of
BINARY_DOUBLE against NUMBER. When I first wrote that test, I coded the loops
to compute area as follows:

DECLARE
 bd BINARY_DOUBLE;
 ...
BEGIN
 ...
 FOR bd IN 1..1000000 LOOP

 bd_area := bd**2 * pi_bd;
 END LOOP;
 ...

I was dumbfounded when my results initially showed that computations involving
NUMBER were much faster than those involving BINARY_DOUBLE. I couldn’t un-
derstand this, as I “knew” that the BINARY_DOUBLE arithmetic was all done in hard-
ware, and therefore should have been faster than NUMBER.

What I failed to discern, until someone at Oracle Corporation pointed out my blunder,
was that my FOR loop (shown above) resulted in the implicit declaration of a
PLS_INTEGER loop variable named bd. This new declaration of bd had a scope en-
compassing the loop block, and masked my declaration of bd as a BINARY_DOUBLE.
Further, I wrote the constant value as 2, rather than as 2d, thereby making it a NUM-
BER. Thus, bd was first implicitly converted to a NUMBER, then raised to the power
of 2, and the resulting NUMBER then had to be implicitly converted again into a BI-
NARY_DOUBLE in order to be multiplied by pi_bd. No wonder my results were so
poor! Such are the dangers inherent in implicit conversions.

Numeric Operators
PL/SQL implements several operators that are useful when working with numbers. The
operators that can be used with numbers are shown in Table 9-6 in order of precedence.
The operators with lower precedence evaluate first while those with a higher precedence
evaluate latter. For full details on a particular operator, consult Oracle’s SQL Refer-
ence manual.

Table 9-6. Numeric operators and precedence

Operator Operation Precedence

** Exponentiation 1

+ Identity 2

− Negation 2

Numeric Operators | 259

Download at WoweBook.Com

Operator Operation Precedence

* Multiplication 3

/ Division 3

+ Addition 4

− Subtraction 4

= Equality 5

< Less than 5

> Greater than 5

<= Less than or equal 5

>= Greater than or equal 5

<>, !=, ~=, ^= Not equal 5

IS NULL Nullity 5

BETWEEN Inclusive range 5

NOT Logical negation 6

AND Conjunction 7

OR Inclusion 8

Numeric Functions
PL/SQL implements several functions that are useful when working with numbers.
You’ve already seen the conversion functions TO_CHAR, TO_NUMBER,
TO_BINARY_FLOAT, and TO_BINARY_DOUBLE. The next few subsections briefly
describe several other useful functions. For full details on a particular function, consult
Oracle’s SQL Reference manual.

Rounding and Truncation Functions
There are four different numeric functions that perform rounding and truncation ac-
tions: CEIL, FLOOR, ROUND, and TRUNC. It is easy to get confused about which
to use in a particular situation. Table 9-7 compares these functions, and Figure 9-5
illustrates their use for different values and decimal place rounding.

Table 9-7. Comparison of functions that perform rounding and truncation actions

Function Summary

CEIL Returns the smallest integer that is greater than or equal to the specified value. This integer is the “ceiling” over
your value.

FLOOR Returns the largest integer that is less than or equal to the specified value. This integer is the “floor” under your value.

260 | Chapter 9: Numbers

Download at WoweBook.Com

Function Summary

ROUND Performs rounding on a number. You can round with a positive number of decimal places (the number of digits to
the right of the decimal point) and also with a negative number of decimal places (the number of digits to the left
of the decimal point).

TRUNC Truncates a number to the specified number of decimal places. TRUNC simply discards all values beyond the decimal
places provided in the call.

Figure 9-5. Impact of rounding and truncation functions

Trigonometric Functions
Many trigonometric functions are available from PL/SQL. When using them, be aware
that all angles are expressed in radians, not in degrees. You can convert between radians
and degrees as follows:

radians = pi * degrees / 180 -- From degrees to radians
degrees = radians * 180 / pi -- From radians to degrees

PL/SQL does not implement a function for π (pi) itself. However, you can obtain the
value for π through the following call:

ACOS (-1)

The inverse cosine (ACOS) of −1 is defined as exactly π. Of course, because π is a never-
ending decimal number, you always have to work with an approximation. Use the
ROUND function if you want to round the results of ACOS(−1) to a specific number
of decimal places.

Numeric Function Quick Reference
The following list briefly describes each of PL/SQL’s built-in numeric functions. Where
applicable, functions are overloaded for different numeric types. For example:

ABS
Is overloaded for BINARY_DOUBLE, BINARY_FLOAT, NUMBER,
SIMPLE_INTEGER, SIMPLE_FLOAT, SIMPLE_DOUBLE, and PLS_INTEGER,
because you can take the absolute value of both floating-point and integer values.

Numeric Functions | 261

Download at WoweBook.Com

BITAND
Is overloaded for PLS_INTEGER and INTEGER (a subtype of NUMBER), because
the function is designed to AND only integer values.

CEIL
Is overloaded for BINARY_DOUBLE, BINARY_FLOAT, and NUMBER, because
CEIL is a function that doesn’t really apply to integers.

To check for what types a given function is overloaded, describe the built-in package
SYS.STANDARD, like this:

SQL> DESCRIBE SYS.STANDARD
...full output trimmed for brevity...

FUNCTION CEIL RETURNS NUMBER
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 N NUMBER IN
FUNCTION CEIL RETURNS BINARY_FLOAT
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 F BINARY_FLOAT IN
FUNCTION CEIL RETURNS BINARY_DOUBLE
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 D BINARY_DOUBLE IN

Almost all the functions in the following list are defined in the built-in package.
SYS.STANDARD. BIN_TO_NUM is the one exception that I’ve noticed. For complete
documentation of a given function, refer to Oracle’s SQL Reference manual.

ABS(n)
Returns the absolute value of n.

ACOS(n)
Returns the inverse cosine of n, where n must be between −1 and 1. The value
returned by ACOS is between 0 and −π.

ASIN(n)
Returns the inverse sine, where n must be between −1 and 1. The value returned
by ASIN is between −π/2 and −π/2.

ATAN(n)
Returns the inverse tangent, where the number n must be between -infinity and
infinity. The value returned by ATAN is between −π/2 and −π/2.

ATAN2(n, m)
Returns the inverse tangent of n/m, where the numbers n and m must be between
-infinity and infinity. The value returned by ATAN is between −π and −π. The
result of ATAN2(n,m) is defined to be identical to ATAN(n/m).

262 | Chapter 9: Numbers

Download at WoweBook.Com

BIN_TO_NUM(b1, b2,...bn)
Converts the bit vector represented by b1 through bn into a number. Each of b1
through bn must evaluate to either 0 or 1. For example, BIN_TO_NUM(1,1,0,0)
yields 12.

BITAND(n, m)
Performs a logical AND between n and m. For example, BITAND(12,4) yields 4,
indicating that the value 12 (binary 1100) has the 4-bit set. Similarly,
BITAND(12,8) yields 8, indicating that the 8-bit is also set.

You’ll find it easiest to work with BITAND if you confine yourself to positive in-
tegers. Values of type PLS_INTEGER, a good type to use in conjunction with
BITAND, can store powers of two up to 230, giving you 30 bits to work with.

CEIL(n)
Returns the smallest integer greater than or equal to n. For a comparison of CEIL
with several other numeric functions, see Table 9-7 and Figure 9-5.

COS(n)
Returns the cosine of the angle n, which must be expressed in radians. If your angle
is specified in degrees, then you should convert it to radians as described in
“Trigonometric Functions” on page 261.

COSH(n)
Returns the hyperbolic cosine of n. If n is a real number, and i is the imaginary
square root of −1, then the relationship between COS and COSH can be expressed
as follows: COS (i * n) = COSH (n).

EXP(n)
Returns the value e raised to the nth power, where n is the input argument. The
number e (approximately equal to 2.71828) is the base of the system of natural
logarithms.

FLOOR(n)
Returns the largest integer that is less than or equal to n. For a comparison of
FLOOR with several other numeric functions, see Table 9-7 and Figure 9-5.

GREATEST(n1, n2,...n3)
Returns the largest number among the list of input numbers; e.g., GREATEST (1,
0, −1, 20) yields 20.

LEAST(n1, n2,...n3)
Returns the lowest number among the list of input numbers; e.g., LEAST (1, 0,
−1, 20) yields −1.

LN(n)
Returns the natural logarithm of n. The argument n must be greater than or equal
to 0. If you pass LN a negative argument, you will receive the following error:

ORA-01428: argument '-1' is out of range

Numeric Functions | 263

Download at WoweBook.Com

LOG(b, n)
Returns the base b logarithm of n. The argument n must be greater than or equal
to 0. The base b must be greater than 1. If you pass LOG an argument that violates
either of these rules, you will receive the following error:

ORA-01428: argument '-1' is out of range

MOD(n, m)
Returns the remainder of n divided by m. The remainder is computed using a for-
mula equivalent to n-(m*FLOOR(n/m)) when n and m are both positive or both
negative, and n-(m*CEIL(n/m)) when the signs of n and m differ. For example,
MOD(10, 2.8) yields 1.6. If m is zero, then n is returned unchanged.

You can use MOD to determine quickly if a number is odd or even:

FUNCTION is_odd (num_in IN NUMBER) RETURN BOOLEAN
IS
BEGIN
 RETURN MOD (num_in, 2) = 1;
END;

FUNCTION is_even (num_in IN NUMBER) RETURN BOOLEAN
IS
BEGIN
 RETURN MOD (num_in, 2) = 0;
END;

NANVL(n, m)
Returns m if n is NaN (not a number); otherwise returns n. The value returned will
be in the type of the argument with the highest numeric precedence:
BINARY_DOUBLE, BINARY_FLOAT, or NUMBER, in that order.

POWER(n, m)
Raises n to the power m. If n is negative, then m must be an integer. The following
example uses POWER to calculate the range of valid values for a PLS_INTEGER
variable (−231 −1 through 231 −1):

POWER (-2, 31) - 1 .. POWER (2, 31) - 1

The result is:

−2147483648 .. 2147483647

REMAINDER(n, m)
Returns the “remainder” of n divided by m. The remainder is defined as:

n - (m*ROUND(n/m))

For example: REMAINDER(10, 2.8) yields −1.2. Compare with MOD.

ROUND(n)
Returns n rounded to the nearest integer. For example:

ROUND (153.46) --> 153

264 | Chapter 9: Numbers

Download at WoweBook.Com

ROUND(n, m)
Returns n rounded to m decimal places. The value of m can be less than zero. A
negative value for m directs ROUND to round digits to the left of the decimal point
rather than to the right. Here are some examples:

ROUND (153.46, 1) --> 153.5
ROUND (153, −1) --> 150

For a comparison of ROUND with several other numeric functions, see Fig-
ure 9-5 and Table 9-7 in “Rounding and Truncation Functions” on page 260.

SIGN(n)
Returns either a −1, 0, or +1, depending on whether n is less than zero, equal to
zero, or greater than zero, respectively.

SIN(n)
Returns the sine of the specified angle, which must be expressed in radians. If your
angle is specified in degrees, then you should convert it to radians as described in
“Trigonometric Functions” on page 261.

SINH(n)
Returns the hyperbolic sine of n. If n is a real number, and i is the imaginary square
root of −1, then the relationship between SIN and SINH can be expressed as fol-
lows: SIN (i * n) = i * SINH (n).

SQRT(n)
Returns the square root n, which must be greater than or equal to 0. If n is negative,
you will receive the following error:

ORA-01428: argument '-1' is out of range

TAN(n)
Returns the tangent of the angle n, which must be expressed in radians. If your
angle is specified in degrees, then you should convert it to radians as described in
“Trigonometric Functions” on page 261.

TANH(n)
Returns the hyperbolic tangent of n. If n is a real number, and i is the imaginary
square root of −1, then the relationship between TAN and TANH can be expressed
as follows: TAN (i * n) = i * TANH (n).

TRUNC(n)
Truncates n to an integer. For example, TRUNC(10.51) yields the result 10.

TRUNC(n, m)
Truncates n to m decimal places. For example, TRUNC(10.789, 2) yields 10.78.

The value of m can be less than zero. A negative value for this argument directs
TRUNC to truncate or zero-out digits to the left of the decimal point rather than
to the right. For example, TRUNC(1264, −2) yields 1200.

For a comparison of TRUNC with several other numeric functions, see Table 9-7
and Figure 9-5.

Numeric Functions | 265

Download at WoweBook.Com

Download at WoweBook.Com

CHAPTER 10

Dates and Timestamps

Most applications require the storage and manipulation of dates and times. Dates are
quite complicated: not only are they highly formatted data, but there are myriad rules
for determining valid values and valid calculations (leap days and years, daylight savings
time changes, national and company holidays, date ranges, etc.). Fortunately, the Ora-
cle database and PL/SQL provide a set of true datetime datatypes that store both date
and time information using a standard, internal format.

For any datetime value, the database stores some or all of the following information:

• Year

• Month

• Day

• Hour

• Minute

• Second

• Time zone region

• Time zone hour offset from UTC

• Time zone minute offset from UTC

Support for true datetime datatypes is only half the battle. You also need a language
that can manipulate those values in a natural and intelligent manner—as actual dates
and times. To that end, Oracle provides you with support for SQL standard interval
arithmetic, datetime literals, and a comprehensive suite of functions with which to
manipulate date and time information.

Datetime Datatypes
For a long time, the only datetime datatype available was DATE. Oracle9i Database
shook things up by introducing three new TIMESTAMP and two new INTERVAL
datatypes offering significant, new functionality while also bringing Oracle into closer

267

Download at WoweBook.Com

compliance with the ISO SQL standard. I’ll talk more about the INTERVAL datatypes
later in this chapter. The four datetime datatypes are:

DATE
Stores a date and time, resolved to the second. Does not include time zone.

TIMESTAMP
Stores date and time without respect to time zone. Except for being able to resolve
time to the billionth of a second (9 decimal places of precision), TIMESTAMP is
the equivalent of DATE.

TIMESTAMP WITH TIME ZONE
Stores the time zone along with the date and time value allowing up to 9 decimal
places of precision.

TIMESTAMP WITH LOCAL TIME ZONE
Stores a date and time with up to 9 decimal places of precision. This datatype is
sensitive to time zone differences. Values of this type are automatically converted
between the database time zone and the local (session) time zone. When values are
stored in the database, they are converted to the database time zone, but the local
(session) time zone is not stored. When a value is retrieved from the database, that
value is converted from the database time zone to the local (session) time zone.

The nuances of these types, especially the TIMESTAMP WITH LOCAL TIME ZONE
type, can be a bit difficult to understand at first. To help illustrate, let’s look at the use
of TIMESTAMP WITH LOCAL TIME ZONE in a calendaring application for users
across multiple time zones. My database time zone is Coordinated Universal Time
(UTC). (See the sidebar “Coordinated Universal Time” on page 270 for a description
of UTC.) User Jonathan in Michigan (Eastern Daylight Time: UTC −4:00) has sched-
uled a conference call for 4:00–5:00 p.m. his time on Thursday. Donna in Denver
(Mountain Daylight Time: UTC −6:00) needs to know this meeting is at 2:00–3:00 p.m.
her time on Thursday. Selva in India (Indian Standard Time: UTC +5:30) needs to
know this meeting is at 1:30-2:30 a.m. his time on Friday morning. Figure 10-1 shows
how the meeting start time varies as it moves from a user in one time zone through the
database to another user in a different time zone.

Figure 10-1 shows user Jonathan in the Eastern Daylight Time Zone, which is four
hours behind UTC or UTC –4:00. Jonathan enters the meeting start time as 16:00 using
24-hour notation. This value gets converted to the database time zone (UTC) when the
row is inserted. 20:00 is the value stored in the database. Donna is in Denver where
daylight savings time is also observed as Mountain Daylight Time and is 6 hours behind
Coordinated Universal Time (UTC –6:00). When Donna selects the start time, the
value is converted to her session time zone and is displayed as 14:00. Selva is in India,
which does not observe Daylight Savings Time—India Standard Time is five hours and
30 minutes ahead of UTC (UTC + 5:30). When Selva selects the meeting start time the
value is converted to his session time zone and is displayed as 1:30 a.m. Friday.

268 | Chapter 10: Dates and Timestamps

Download at WoweBook.Com

By delegating the time zone management to the database via the TIMESTAMP WITH
LOCAL TIME ZONE datatype, you don’t have to burden your application with the
complex rules surrounding time zones and daylight savings time (which sometimes
change—as they did in the United States in 2007), nor do you have to burden your
users with figuring out the time zone conversion. The correct time for the meeting is
presented to each user simply and elegantly.

Sometimes you want the database to automatically change the display of the time and
sometimes you don’t. When you don’t want the display of the timestamp to vary based
on session settings, use the TIMESTAMP or TIMESTAMP WITH TIME ZONE
datatypes.

Figure 10-1. Effect of different datetime datatypes

Datetime Datatypes | 269

Download at WoweBook.Com

Coordinated Universal Time
Coordinated Universal Time, abbreviated UTC, is measured using highly accurate and
precise atomic clocks, and forms the basis of our worldwide system of civil time. Time
zones, for example, are all defined with respect to how far they are in terms of hours
and minutes from UTC. UTC is atomic time, and is periodically adjusted through the
mechanism of leap seconds to keep it in sync with time as determined by the rotation
of the earth.

You may be familiar with Greenwich Mean Time (GMT) or Zulu Time. For most prac-
tical purposes, these references are equivalent to UTC.

Why the acronym UTC and not CUT? The standards body couldn’t agree on whether
to use the English acronym CUT or the French acronym TUC, so they compromised
on UTC, which matches neither language. See http://www.boulder.nist.gov/timefreq/
general/misc.htm#Anchor-14550.

For more information on UTC, see the National Institute of Standards and Technology
document on UTC at http://physics.nist.gov/GenInt/Time/world.html.

Declaring Datetime Variables
Use the following syntax to declare a datetime variable:

var_name [CONSTANT] datetime_type [{:= | DEFAULT} initial_value]

Replace datetime_type with any one of the following:

DATE
TIMESTAMP [(precision)]
TIMESTAMP [(precision)] WITH TIME ZONE
TIMESTAMP [(precision)] WITH LOCAL TIME ZONE

The precision in these declarations refers to the number of decimal digits allocated for
recording values to the fraction of a second. The default precision is 6, which means
that you can track time down to 0.000001 seconds. The allowable range for precision
is 0 through 9, giving you the ability to store very precise time-of-day values.

Functions such as SYSTIMESTAMP that return timestamp values al-
ways return only six digits of subseconds precision.

Following are some example declarations:

DECLARE
 hire_date TIMESTAMP (0) WITH TIME ZONE;
 todays_date CONSTANT DATE := SYSDATE;
 pay_date TIMESTAMP DEFAULT TO_TIMESTAMP('20050204','YYYYMMDD');
BEGIN

270 | Chapter 10: Dates and Timestamps

Download at WoweBook.Com

http://www.boulder.nist.gov/timefreq/general/misc.htm#Anchor-14550
http://www.boulder.nist.gov/timefreq/general/misc.htm#Anchor-14550
http://physics.nist.gov/GenInt/Time/world.html

 NULL;
END;
/

To specify a default, initial_value, you can use a conversion function such as
TO_TIMESTAMP, or you can use a date or timestamp literal. Both are described in
“Datetime Conversions” on page 278.

A TIMESTAMP(0) variable behaves like a DATE variable.

Choosing a Datetime Datatype
With such an abundance of riches, I won’t blame you one bit if you ask for some
guidance as to which datetime datatype to use when. To a large extent, the datatype
you choose depends on the level of detail that you want to store:

• Use one of the TIMESTAMP types if you need to track time down to a fraction of
a second.

• Use TIMESTAMP WITH LOCAL TIME ZONE if you want the database to auto-
matically convert a time between the database and session time zones.

• Use TIMESTAMP WITH TIME ZONE if you need to keep track of the session
time zone in which the data was entered.

• You can use TIMESTAMP in place of DATE. A TIMESTAMP that does not contain
subsecond precision takes up 7 bytes of storage just like a DATE datatype does.
When your TIMESTAMP does contain subsecond data, it takes up 11 bytes of
storage.

Other considerations might also apply:

• Use DATE when it’s necessary to maintain compatibility with an existing appli-
cation written before any of the TIMESTAMP datatypes were introduced.

• In general, you should use datatypes in your PL/SQL code that correspond to, or
are at least compatible with, the underlying, database tables. Think twice, for ex-
ample, before reading a TIMESTAMP value from a table into a DATE variable,
because you might lose information (in this case, the fractional seconds and per-
haps time zone).

• If you’re using a version older than Oracle9i Database, then you have no choice
but to use DATE.

• When adding or subtracting years and months, you get different behavior from
using ADD_MONTHS, which operates on values of type DATE, than from using
interval arithmetic on the timestamp types. See “When to Use INTER-
VALs” on page 276 for more on this critical, yet subtle issue.

Datetime Datatypes | 271

Download at WoweBook.Com

Be careful when using the DATE and TIMESTAMP datatypes together.
Date arithmetic differs significantly between the two. Be careful when
applying Oracle’s traditional, built-in date functions (such as
ADD_MONTHS or MONTHS_BETWEEN) to values from any of the
timestamp types. See “Datetime Arithmetic” on page 300 for more on
this topic.

Getting the Current Date and Time
In any language, it’s important to know how to get the current date and time. How to
do that is often one of the first questions to come up, especially in applications that
involve dates in any way, as most applications do.

Up through Oracle8i Database, you had one choice for getting the date and time in
PL/SQL: you used the SYSDATE function, and that was it. Beginning with Oracle9i
Database, you have all the functions in Table 10-1 at your disposal, and you need to
understand how they work and what your choices are.

Table 10-1. Comparison of functions that return current date and time

Function Time zone Datatype returned

CURRENT_DATE Session DATE

CURRENT_TIMESTAMP Session TIMESTAMP WITH TIME ZONE

LOCALTIMESTAMP Session TIMESTAMP

SYSDATE Database server DATE

SYSTIMESTAMP Database server TIMESTAMP WITH TIME ZONE

So which function should you use in a given situation? The answer depends on several
factors, which you should probably consider in the following order:

1. Whether you are using a release prior to Oracle8i Database or need to maintain
compatibility with such a release. In either case, your choice is simple: use
SYSDATE.

2. Whether you are interested in the time on the database server or for your session.
If for your session, then use a function that returns session time zone. If for the
database server, then use a function that returns the database time zone.

3. Whether you need the time zone to be returned as part of the current date and
time. If so, then call either SYSTIMESTAMP or CURRENT_TIMESTAMP.

If you decide to use a function that returns the time in the session time zone, be certain
that you have correctly specified your session time zone. The functions
SESSIONTIMEZONE and DBTIMEZONE will report your session and database time
zones respectively. To report on the time in the database time zone, you must alter your

272 | Chapter 10: Dates and Timestamps

Download at WoweBook.Com

session time zone to DBTIMEZONE and then use one of the session time zone func-
tions. The following example illustrates some of these functions.

BEGIN
 DBMS_OUTPUT.PUT_LINE('Session Timezone='||SESSIONTIMEZONE);
 DBMS_OUTPUT.PUT_LINE('Session Timestamp='||CURRENT_TIMESTAMP);
 DBMS_OUTPUT.PUT_LINE('DB Server Timestamp='||SYSTIMESTAMP);
 DBMS_OUTPUT.PUT_LINE('DB Timezone='||DBTIMEZONE);
 EXECUTE IMMEDIATE 'ALTER SESSION SET TIME_ZONE=DBTIMEZONE';
 DBMS_OUTPUT.PUT_LINE('DB Timestamp='||CURRENT_TIMESTAMP);
 -- Revert session timezone to local setting
 EXECUTE IMMEDIATE 'ALTER SESSION SET TIME_ZONE=LOCAL';
END;

The output is:

Session Timezone=-04:00
Session Timestamp=23-JUN-08 12.48.44.656003000 PM −04:00
DB Server Timestamp=23-JUN-08 11.48.44.656106000 AM −05:00
DB Timezone=+00:00
DB Timestamp=23-JUN-08 04.48.44.656396000 PM +00:00

In this example, the session starts in U.S. Eastern Daylight Time (–4:00) while the server
is on U.S. Central Daylight Time (–5:00). Although the database server is in Central
Daylight Time, the database time zone is GMT (+00:00). To get the time in the database
time zone, I first set the session time zone to match the database time zone, then call
the session time zone function CURRENT_TIMESTAMP. Finally, I revert my session
time zone back to the regular local setting that I started with.

What if there’s no function to return a value in the datatype that you need? For example,
what if you need the server time in a TIMESTAMP variable? You can let the database
implicitly convert the types for you. But even better would be to use an explicit con-
version with CAST. For example:

DECLARE
 ts1 TIMESTAMP;
 ts2 TIMESTAMP;
BEGIN
 ts1 := CAST(SYSTIMESTAMP AS TIMESTAMP);
 ts2 := SYSDATE;
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(ts1,'DD-MON-YYYY HH:MI:SS AM'));
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(ts2,'DD-MON-YYYY HH:MI:SS AM'));
END;

The output is:

24-FEB-2002 06:46:39 PM
24-FEB-2002 06:46:39 PM

The call to SYSTIMESTAMP uses CAST to make the conversion from TIMESTAMP
WITH TIME ZONE to TIMESTAMP explicit. The call to SYSDATE allows the con-
version from DATE to TIMESTAMP to happen implicitly.

Getting the Current Date and Time | 273

Download at WoweBook.Com

Be aware of hardware and operating-system limitations if you are using
these timestamp functions for subsecond timing purposes. The CUR-
RENT_TIMESTAMP, LOCALTIMESTAMP, and SYSTIMESTAMP
functions return values in either the TIMESTAMP WITH TIME ZONE
or TIMESTAMP datatypes. These datatypes allow you to resolve time
down to the billionth of a second.

That’s all well and good, but think about where that time comes from.
The database gets the time from the operating system via a call to Get-
TimeOfDay (Unix/Linux), GetSystemTime (Microsoft Windows), or
other similar calls on other operating systems. The operating system, in
turn, depends at some level on the hardware. If your operating system
or underlying hardware tracks time only to the hundredth of a second,
the database won’t be able to return results any more granular than that.
For example, when using Linux on an Intel x86 processor you can re-
solve time only to the millionth of a second (6 digits), whereas you can
see resolution only to the thousandth of a second when the database
runs on Microsoft Windows XP or Vista on the same hardware. In ad-
dition, while the operating system may report a timestamp with 6 digits
of decimal precision, this number may not represent an accuracy of 1
microsecond.

Interval Datatypes
The datetime datatypes let you record specific points in time. Interval datatypes, first
introduced in Oracle9i Database, are all about recording and computing quantities of
time. To better understand what the interval datatypes represent, step back a bit and
think about the different kinds of datetime data you deal with on a daily basis:

Instants
An instant is a point in time with respect to a given granularity. When you plan to
wake up at a given hour in the morning, that hour represents an instant. The gran-
ularity, then, would be to the hour, or possibly to the minute. DATE and all the
TIMESTAMP datatypes allow you to represent instants of time.

Intervals
An interval refers not to a specific point in time, but to a specific amount, or quan-
tity, of time. You use intervals all the time in your daily life. You work for eight
hours a day (you hope), you take an hour for lunch (in your dreams!), and so forth.
Oracle Database’s two INTERVAL types allow you to represent time intervals.

Periods
A period (our definition) refers to an interval of time that begins or ends at a specific
instant. For example: “I woke up at 8:00 a.m. today and worked for eight hours.”
Here, the 8-hour interval beginning at 8:00 a.m. today would be considered a pe-
riod. The Oracle database has no datatype to directly support periods, nor does
the SQL standard define one.

274 | Chapter 10: Dates and Timestamps

Download at WoweBook.Com

The database supports two interval datatypes. Both were introduced in Oracle9i
Database, and both conform to the ISO SQL standard:

INTERVAL YEAR TO MONTH
Allows you to define an interval of time in terms of years and months.

INTERVAL DAY TO SECOND
Allows you to define an interval of time in terms of days, hours, minutes, and
seconds (including fractional seconds).

Why Two INTERVAL Datatypes?
I was initially puzzled about the need for two INTERVAL datatypes. I noticed that
between the two datatypes, all portions of a TIMESTAMP value were accounted for,
but the decision to treat year and month separately from days, hours, minutes, and
seconds seemed at first rather arbitrary. Why not simply have one INTERVAL type
that covers all possibilities? It turns out that we can blame this state of affairs on the
long-dead Roman Emperor Julius Caesar, who designed our calendar and determined
most of our month lengths.

The reason for having two INTERVAL types with a dividing line at the month level is
that months are the only datetime component for which the length of time in question
varies. Think about having an interval of 1 month and 30 days. How long is that, really?
Is it less than two months? The same as two months? More than two months? If the
one month is January, then 30 days gets you past February and into March, resulting
in a 61-day interval that is a bit more than “two months” long. If the one month is
February, then the interval is exactly two months (but only 59 or 60 days). If the one
month is April, then the interval is slightly less than two months, for a total of 60 days.

Rather than sort out and deal with all the complications differing month lengths pose
for interval comparison, date arithmetic, and normalization of datetime values, the ISO
SQL standard breaks the datetime model into two parts, year and month, and every-
thing else. (For more, see C. J. Date’s A Guide to the SQL Standard, Addison-Wesley).

Declaring INTERVAL Variables
Compared to other PL/SQL variable declarations, the syntax for declaring INTERVAL
variables is a bit unusual. You not only have multiple-word type names, but in one case
you specify not one, but two precisions:

var_name INTERVAL YEAR [(year_precision)] TO MONTH

or:

var_name INTERVAL DAY [(day_precision)] TO SECOND [(frac_sec_prec)]

where:

var_name
Is the name of the INTERVAL variable that you want to declare.

Interval Datatypes | 275

Download at WoweBook.Com

year_precision
Is the number of digits (from 0 to 4) that you want to allow for a year value. The
default is 2.

day_precision
Is the number of digits (from 0 to 9) that you want to allow for a day value. The
default is 2.

frac_sec_prec
Is the number of digits (from 0 to 9) that you want to allow for fractional seconds
(i.e., the fractional seconds precision). The default is 6.

It is the nature of intervals that you need only worry about precision at the extremes.
INTERVAL YEAR TO MONTH values are always normalized such that the number
of months is between 0 and 11. In fact, the database will not allow you to specify a
month greater than 11; an interval of 1 year, 13 months must be expressed as 2 years,
1 month. The year_precision fixes the maximum size of the interval. Likewise, the
day_precision in INTERVAL DAY TO SECOND fixes the maximum size of that
interval.

You don’t need to specify a precision for the hour, minute, and second values for an
INTERVAL DAY TO SECOND variable for the same reason you don’t specify a
precision for month in an INTERVAL YEAR TO MONTH. The intervals are always
normalized so that any values for hour, minute, and second are within the normal
ranges of 0–23 for hours, 0–59 for minutes, and 0–59 for seconds (excluding fractional
seconds).

The fractional second precision (frac_sec_prec) is necessary because INTERVAL DAY
TO SECOND values can resolve intervals down to the fraction of a second. INTERVAL
YEAR TO MONTH values don’t handle fractional months, so no fractional month
precision is necessary.

When to Use INTERVALs
Use the INTERVAL types whenever you need to work with quantities of time. I provide
two examples in this section, hoping to spark your natural creativity so that you can
begin to think about how you might use INTERVAL types in systems you develop.

Finding the difference between two datetime values

One use for INTERVAL types is when you need to look at the difference between two
datetime values. Consider the following example, which computes an employee’s
length of service:

/* File on web: interval_between.sql */
DECLARE
 start_date TIMESTAMP;
 end_date TIMESTAMP;
 service_interval INTERVAL YEAR TO MONTH;

276 | Chapter 10: Dates and Timestamps

Download at WoweBook.Com

 years_of_service NUMBER;
 months_of_service NUMBER;
BEGIN
 --Normally, we would retrieve start and end dates from a database.
 start_date := TO_TIMESTAMP('29-DEC-1988','dd-mon-yyyy');
 end_date := TO_TIMESTAMP ('26-DEC-1995','dd-mon-yyyy');

 --Determine and display years and months of service:
 service_interval := (end_date - start_date) YEAR TO MONTH;
 DBMS_OUTPUT.PUT_LINE(service_interval);

 --Use the new EXTRACT function to grab individual
 --year and month components.
 years_of_service := EXTRACT(YEAR FROM service_interval);
 months_of_service := EXTRACT(MONTH FROM service_interval);
 DBMS_OUTPUT.PUT_LINE(years_of_service || ' years and '
 || months_of_service || ' months');
END;

The line that performs the actual calculation to get years and months of service is:

service_interval := (end_date - start_date) YEAR TO MONTH;

The YEAR TO MONTH is part of the interval expression syntax. I talk more about
that syntax in “Datetime Arithmetic” on page 300. You can see, however, that com-
puting the interval is as simple as subtracting one timestamp from another. Had I not
used an INTERVAL type, I would have had to code something like the following:

months_of_service := ROUND(months_between(end_date, start_date));
years_of_service := TRUNC(months_of_service/12);
months_of_service := MOD(months_of_service,12);

I believe the non-INTERVAL solution is more complex to code and understand.

The INTERVAL YEAR TO MONTH type displays rounding behavior,
and it’s important you understand the ramifications of that. See “Date-
time Arithmetic” on page 300 for details about this issue.

Designating periods of time

For this example, I will explore a company with an assembly line. The time required
to assemble each product (called build time in this example) is an important metric.
Reducing this interval allows the assembly line to be more efficient, so management
wants to track and report on this interval. In my example, each product has a tracking
number used to identify it during the assembly process. The table I use to hold this
assembly information looks like this:

TABLE assemblies (
 tracking_id NUMBER NOT NULL,
 start_time TIMESTAMP NOT NULL,
 build_time INTERVAL DAY TO SECOND
);

Interval Datatypes | 277

Download at WoweBook.Com

Next, I need a PL/SQL function to return the build time for a given tracking_id. The
build time is calculated from the current timestamp minus the start time. I will cover
date arithmetic in greater detail later in this chapter. This build time function is:

FUNCTION calc_build_time (
 esn IN assemblies.tracking_id%TYPE
)
 RETURN DSINTERVAL_UNCONSTRAINED
IS
 start_ts assemblies.start_time%TYPE;
BEGIN
 SELECT start_time INTO start_ts FROM assemblies
 WHERE tracking_id = esn;
 RETURN LOCALTIMESTAMP-start_ts;
END;

When I pass intervals into and out of PL/SQL programs I need to use the unconstrained
keywords (see “Using Unconstrained INTERVAL Types” on page 306 for an explan-
ation). With the build time recorded in a table, I can analyze the data more easily. I can
calculate the minimum, maximum, and mean build time with simple SQL functions.
I could answer questions like “Do I build any faster on Monday vs. Wednesday?” or
how about first shift vs. second shift? But, I’m getting ahead of myself. This straight-
forward example simply demonstrates the basic concept of a day-to-second interval.
Your job as a clever developer is to put these concepts to use in creative ways.

Datetime Conversions
Now that you understand the Oracle database’s array of datetime datatypes, it’s time
to look at how you get dates into and out of datetime variables. Human-readable
datetime values are character strings such as “March 5, 2009” and “10:30 a.m.”, so this
discussion centers around the conversion of datetime values from character strings to
Oracle’s internal representation, and vice versa.

PL/SQL validates and stores dates that fall from January 1, 4712 B.C.E. through De-
cember 31, 9999 A.D. (Oracle documentation indicates a maximum date of December
31, 4712; run the showdaterange.sql script, available on the book’s web site, to verify
the range on your version.) If you enter a date without a time (many applications do
not require the tracking of time, so PL/SQL lets you leave it off), the time portion of
the value defaults to midnight (12:00:00 a.m.).

The database can interpret just about any date or time format you throw at it. Key to
that flexibility is the concept of a date format model, which is a string of special
characters that define a date’s format to the database. For example, if your input date
happens to be, for example, 15-Nov-1961, then that, rather obviously in this case,
corresponds to the date format dd-mon-yyyy. You then use the string 'dd-mon-yyyy' in
calls to conversion functions to convert dates to and from that format.

278 | Chapter 10: Dates and Timestamps

Download at WoweBook.Com

I show examples of several different format models in my conversion discussion, and
I provide a complete reference to all the format model elements in Appendix C.

From Strings to Datetimes
The first issue you’ll face when working with dates is that of getting date (and time)
values into your PL/SQL datetime variables. You do so by converting datetime values
from character strings to the database’s internal format. Such conversions can be done
implicitly via assignment of a character string directly to a datetime variable, or better
yet they should be done explicitly via one of Oracle’s built-in conversion functions.

Implicit conversion is risky, and I don’t recommend it. Following is an example of
implicit conversion from a character string to a DATE variable:

DECLARE
 birthdate DATE;
BEGIN
 birthdate := '15-Nov-1961';
END;

Such a conversion relies on the NLS_DATE_FORMAT setting and will work fine until
the day your DBA decides to change that setting. On that day, all your date-related
code will break. Changing NLS_DATE_FORMAT at the session level can also break
such code.

Rather than rely on implicit conversions and the NLS_DATE_FORMAT setting, it’s
far safer to convert dates explicitly via one of the built-in conversion functions, such as
TO_DATE:

DECLARE
 birthdate DATE;
BEGIN
 birthdate := TO_DATE('15-Nov-1961','dd-mon-yyyy');
END;

Notice here the use of the format string 'dd-mon-yyyy' as the second parameter in the
call to TO_DATE. That format string controls how the TO_DATE function interprets
the characters in the first parameter.

PL/SQL supports the following functions to convert strings to dates and timestamps:

TO_DATE(string[, format_mask[, nls_language]])
Converts a character string to a value of type DATE.

TO_DATE(number[, format_mask[, nls_language]])
Converts a number representing a Julian date into a value of type DATE.

TO_TIMESTAMP(string[, format_mask[, nls_language]])
Converts a character string to a value of type TIMESTAMP.

Datetime Conversions | 279

Download at WoweBook.Com

TO_TIMESTAMP_TZ(string[, format_mask[, nls_language]])
Converts a character string to a value of type TIMESTAMP WITH TIME ZONE.
Also use this function when your target is TIMESTAMP WITH LOCAL TIME
ZONE.

Not only do these functions make it clear in your code that a type conversion is occur-
ring, but they also allow you to specify the exact datetime format being used.

The second version of TO_DATE can be used only with the format mask
of J for Julian date. The Julian date is the number of days that have
passed since January 1, 4712 B.C. Only in this use of TO_DATE can a
number be passed as the first parameter of TO_DATE.

For all other cases the parameters are as follows:

string_in
Is the string variable, literal, named constant, or expression to be converted.

format_mask
Is the format mask to be used in converting the string. The format mask defaults
to the NLS_DATE_FORMAT setting.

nls_language
Optionally specifies the language to be used to interpret the names and abbrevia-
tions of both months and days in the string. Here’s the format of nls_language:

'NLS_DATE_LANGUAGE=language'

where language is a language recognized by your instance of the database. You can
determine the acceptable languages by checking the Oracle Globalization Support
Guide.

The format elements described in Appendix C apply when using the TO_ family of
functions. For example, the following calls to TO_DATE and TO_TIMESTAMP con-
vert character strings of varying formats to DATE and TIMESTAMP values:

DECLARE
 dt DATE;
 ts TIMESTAMP;
 tstz TIMESTAMP WITH TIME ZONE;
 tsltz TIMESTAMP WITH LOCAL TIME ZONE;
BEGIN
 dt := TO_DATE('12/26/2005','mm/dd/yyyy');
 ts := TO_TIMESTAMP('24-Feb-2002 09.00.00.50 PM');
 tstz := TO_TIMESTAMP_TZ('06/2/2002 09:00:00.50 PM EST',
 'mm/dd/yyyy hh:mi:ssxff AM TZD');
 tsltz := TO_TIMESTAMP_TZ('06/2/2002 09:00:00.50 PM EST',
 'mm/dd/yyyy hh:mi:ssxff AM TZD');
 DBMS_OUTPUT.PUT_LINE(dt);
 DBMS_OUTPUT.PUT_LINE(ts);
 DBMS_OUTPUT.PUT_LINE(tstz);

280 | Chapter 10: Dates and Timestamps

Download at WoweBook.Com

 DBMS_OUTPUT.PUT_LINE(tsltz);
END;

The output is:

26-DEC-05
24-FEB-02 09.00.00.500000 PM
02-JUN-02 09.00.00.500000 PM −05:00
02-JUN-02 09.00.00.500000 PM

Note the decimal seconds (.50) and the use of XFF in the format mask. The X format
element specifies the location of the radix character, in this case a period (.), separating
the whole seconds from the fractional seconds. I could just as easily have specified a
period, as in “.FF”, but I chose to use X instead. The difference is that when X is speci-
fied, the database determines the correct radix character based on the current
NLS_TERRITORY setting.

Any Oracle errors between ORA-01800 and ORA-01899 are related to date conversion.
You can learn some of the date conversion rule nuances by perusing the different errors
and reading about the documented causes of these errors. Some of these nuances are:

• A date literal passed to TO_CHAR for conversion to a date cannot be longer than
220 characters.

• You can’t include both a Julian date element (J) and the day of year element (DDD)
in a single format mask.

• You can’t include multiple elements for the same component of the date/time in
the mask. For example, the format mask YYYY-YYY-DD-MM is illegal because it in-
cludes two year elements, YYYY and YYY.

• You can’t use the 24-hour time format (HH24) and a meridian element (e.g., a.m.)
in the same mask.

As the preceding example demonstrates, The TO_TIMESTAMP_TZ function can con-
vert character strings that include time zone information. And while time zones seem
simple on the surface, they are anything but, as you’ll see in “Working with Time
Zones” on page 284.

From Datetimes to Strings
Getting values into datetime variables is only half the battle. The other half is getting
them out again in some sort of human-readable format. Oracle provides the TO_CHAR
function for that purpose.

The TO_CHAR function can be used to convert a datetime value to a variable-length
string. This single function works for DATE types as well as for all the types in the
TIMESTAMP family. TO_CHAR is also used to convert numbers to character strings,
as covered in Chapter 9. The following specification describes TO_CHAR for datetime
values:

Datetime Conversions | 281

Download at WoweBook.Com

FUNCTION TO_CHAR
 (date_in IN DATE
 [, format_mask IN VARCHAR2
 [, nls_language IN VARCHAR2]])
RETURN VARCHAR2

where:

date_in
Is the date to be converted to character format.

format_mask
Is the mask made up of one or more of the date format elements. See Appen-
dix C for a list of date format elements.

nls_language
Is a string specifying a date language.

Both the format_mask and nls_language parameters are optional.

If you want your results to be in the national character set, you can use
TO_NCHAR in place of TO_CHAR. Be certain you provide your date
format string in the national character set as well. Otherwise, you may
receive ORA-01821: date format not recognized errors.

If format_mask is not specified, the default date format for the database instance is
used. This format is 'DD-MON-RR', unless you have non-default NLS settings, such as
NLS_DATE_FORMAT. The best practice, as mentioned elsewhere in this chapter, is
to not rely on implicit conversions for dates. Changes to the server NLS settings and,
for client-side code, changes to the client NLS settings, will cause logic bugs to creep
into your programs if you rely on implicit conversions. As an example, in North America
you write a routine assuming that the date 03-04-09 is 4 March 2009, but if your ap-
plication is later deployed to Japan or Germany the implicit conversion will result in 3
April 2009 or 9 April 2003, depending on the NLS settings. If your application is always
explicit in datatype conversions, you will not encounter these logic bugs.

Here are some examples of TO_CHAR being used for date conversion:

• Notice that there are two blanks between month and day and a leading zero for
the fifth day:

TO_CHAR (SYSDATE, 'Month DD, YYYY') --> 'February 05, 1994'

• Use the FM fill mode element to suppress blanks and zeros:

TO_CHAR (SYSDATE, 'FMMonth DD, YYYY') --> 'February 5, 1994'

• Note the case difference on the month abbreviations of the next two examples.
You get exactly what you ask for with Oracle date formats!

TO_CHAR (SYSDATE, 'MON DDth, YYYY') --> 'FEB 05TH, 1994'
TO_CHAR (SYSDATE, 'fmMon DDth, YYYY') --> 'Feb 5TH, 1994'

282 | Chapter 10: Dates and Timestamps

Download at WoweBook.Com

• The TH format is an exception to the capitalization rules. Even if you specify low-
ercase “th” in a format string, The database will use uppercase TH in the output.

• Show the day of the year, day of the month, and day of the week for the date (with
fm used here as a toggle):

TO_CHAR (SYSDATE, 'DDD DD D ') --> '036 05 7'
TO_CHAR (SYSDATE, 'fmDDD fmDD D ') --> '36 05 7'

• Here’s some fancy formatting for reporting purposes:

TO_CHAR (SYSDATE, '"In month "RM" of year "YEAR')
 --> 'In month II of year NINETEEN NINETY FOUR'

• For TIMESTAMP variables, you can specify the time down to the millisecond using
the FF format element:

TO_CHAR (A_TIMESTAMP, 'YYYY-MM-DD HH:MI:SS.FF AM TZH:TZM')
 --> a value like: 2002-02-19 01:52:00.123457000 PM −05:00

Be careful when dealing with fractional seconds. The FF format element represents
fractional seconds in the output format model, and you’ll be tempted to use the number
of Fs to control the number of decimal digits in the output. Don’t do that! Instead, use
FF1 through FF9 to specify 1 through 9 decimal digits. For example, the following block
uses FF6 to request six decimal digits of precision in the output:

DECLARE
 ts TIMESTAMP WITH TIME ZONE;
BEGIN
 ts := TIMESTAMP '2002-02-19 13:52:00.123456789 −5:00';
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(ts,'YYYY-MM-DD HH:MI:SS.FF6 AM TZH:TZM'));
END;

The output is:

2002-02-19 01:52:00.123457 PM −05:00

Note the rounding that occurred. The number of seconds input was 00.123456789.
That value was rounded (not truncated) to six decimal digits: 00.123457.

It’s easy to slip up and specify an incorrect date format, and the introduction of TIME-
STAMP types has made this even easier. Format elements that are valid with TIME-
STAMP types are not valid for the DATE type. Look at the results in the following
example when FF, TZH, and TZM are used to convert a DATE value to a character
string:

DECLARE
 dt DATE;
BEGIN
 dt := SYSDATE;
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(dt,'YYYY-MM-DD HH:MI:SS.FF AM TZH:TZM'));
END;

The output is:

 dt := SYSDATE;
*

Datetime Conversions | 283

Download at WoweBook.Com

ORA-01821: date format not recognized
ORA-06512: at line 5

The error message you get in this case, ORA-01821: date format not recognized, is
confusing and misleading. The date format is just fine. The problem is that it’s being
applied to the wrong datatype. Watch for this kind of problem when you write code.
If you get an ORA-01821 error, check both the date format and the datatype that you
are trying to convert.

Working with Time Zones
The inclusion of time zone information makes the use of TO_TIMESTAMP_TZ more
complex than the TO_DATE and TO_TIMESTAMP functions. You may specify time
zone information in any of the following ways:

• Using a positive or negative displacement of some number of hours and minutes
from UTC time; for example, −5:00 is equivalent to U.S. Eastern Standard Time.
Displacements must fall into the range −12:59 and +13:59. (I showed examples of
this notation earlier in this chapter.)

• Using a time zone region name such as US/Eastern, US/Pacific, and so forth.

• Using a combination of time zone region name and abbreviation, as in US/Eastern
EDT for U.S. Eastern Daylight Savings Time.

Let’s look at some examples. I’ll begin with a simple example that leaves off time zone
information entirely:

TO_TIMESTAMP_TZ ('12312005 083015.50', 'MMDDYYYY HHMISS.FF')

The date and time in this example work out to be 31-Dec-2005 at 15 1/2 seconds past
8:30 a.m. Because no time zone is specified, the database will default to the current
session time zone. With the time zone intentionally omitted, this code is less clear than
it could be. If the application is designed to use the session time zone (as opposed to
an explicit time zone), a better approach would be to first fetch the session time zone
using the function SESSIONTIMEZONE and then explicitly use this value in the
TO_TIMESTAMP_TZ function call. Being explicit in your intent helps the developer
(who may be you) understand and correctly maintain this code two years down the
road when some new feature or bug fix occurs.

A Date or a Time?
Be aware that every datetime value is composed of both a date and a time. Forgetting
this duality may lead to errors in your code. As an example, suppose that I write
PL/SQL code to run on the first of the year, 2009:

IF SYSDATE = TO_DATE('1-Jan-2009','dd-Mon-yyyy')
THEN
 Apply2009PriceChange;
END IF;

284 | Chapter 10: Dates and Timestamps

Download at WoweBook.Com

The goal of this example is to run a routine to adjust prices for the new year, but the
chance of that procedure’s actually running is minimal. You’d need to run the code
block exactly at midnight, to the second. That’s because SYSDATE returns a time-of-
day value along with the date.

To make the code block work as expected, you can truncate the value returned by
SYSDATE to midnight of the day in question:

IF TRUNC(SYSDATE) = TO_DATE('1-Jan-2009','dd-Mon-yyyy');

Now, both sides of the comparison have a time of day, but that time of day is midnight.
The TO_DATE function also returns a time of day, which, because no time of day was
given, defaults to midnight (i.e., 00:00:00). Thus, no matter when on 1 Jan, 2009 you
run this code block, the comparison will succeed, and the Apply2009PriceChange pro-
cedure will run.

This use of TRUNCATE to remove the time portion of a date stamp works equally well
on timestamps.

Next, let’s represent the time zone using a displacement of hours and minutes from
UTC. Note the use of the TZH and TZM to denote the location of the hour and minute
displacements in the input string:

TO_TIMESTAMP_TZ ('1231200 083015.50 −5:00', 'MMDDYY HHMISS.FF TZH:TZM')

In this example, the datetime value is interpreted as being an Eastern Standard Time
value (regardless of your session time zone).

The next example shows the time zone being specified using a time zone region name.
The example specifies EST, which is the region name corresponding to Eastern Time
in the United States. Note the use of TZR in the format mask to designate where the
time zone region name appears in the input string.

TO_TIMESTAMP_TZ ('01-Nov-2009 01:30:00 EST',
 'dd-Mon-yyyy hh:mi:ss TZR')

This example is interesting in that it represents Eastern Time, not Eastern Standard
Time. The difference is that “Eastern Time” can refer to either Eastern Standard Time
or Eastern Daylight Time, depending on whether daylight savings time is in effect. And
it might be in effect! I’ve carefully crafted this example to make it ambiguous.
01-Nov-2009 is the date on which Eastern Daylight Time ends, and at 2:00 a.m. time
rolls back to 1:00 a.m. So on that date, 1:30 a.m. actually comes around twice! The
first time it’s 1:30 a.m. Eastern Daylight Time, and the second time it’s 1:30 a.m. East-
ern Standard Time. So what time is it, really, when I say it’s 1:30 a.m. on 01-Nov-2009?

Datetime Conversions | 285

Download at WoweBook.Com

If you set the session parameter ERROR_ON_OVERLAP_TIME to
TRUE (the default is FALSE), the database will give you an error when-
ever you specify an ambiguous time because of daylight savings time
changes. Note that daylight savings time is also called summer time in
some parts of the world.

The time zone region name alone doesn’t distinguish between standard time and day-
light savings time. To remove the ambiguity, you also must specify a time zone abbre-
viation, which I’ve done in the next two examples. Use the abbreviation EDT to specify
Eastern Daylight Time:

TO_TIMESTAMP_TZ ('01-Nov-2009 01:30:00.00 US/Eastern EDT',
 'dd-Mon-yyyy hh:mi:ssxff TZR TZD')

And use the abbreviation EST to specify Eastern Standard Time:

TO_TIMESTAMP_TZ ('01-Nov-2009 01:30:00.00 US/Eastern EST',
 'dd-Mon-yyyy hh:mi:ssxff TZR TZD')

To avoid ambiguity, I recommend that you either specify a time zone offset using hours
and minutes (as in −5:00) or use a combination of full region name and time zone
abbreviation as in US/Eastern EDT). If you use region name alone, and there’s ambi-
guity with respect to daylight savings time, the database will resolve the ambiguity by
assuming that standard time applies.

If you’re initially confused by the fact that EST, CST, or PST can be both
a region name and an abbreviation, you’re not alone. I was confused by
this too. Depending on your time zone file version EST, CST, MST, and
PST may appear as both region and abbreviation. You can further qual-
ify each of those region names using the same string of three characters
as a time zone abbreviation. The result (e.g., EST EST or CST CST) is
standard time for the region in question. The best practice is to use the
full region name, like US/Eastern or America/Detroit, instead of the
three-letter abbreviation EST. See Oracle’s Metalink Note 340512.1
Timestamps & time zones—Frequently Asked Questions for more
information.

You can get a complete list of the time zone region names and time zone abbreviations
that Oracle supports by querying the V$TIMEZONE_NAMES view. Any database user
can access that view. When you query it, notice that time zone abbreviations are not
unique (see the sidebar “A Time Zone Standard?” on page 287).

286 | Chapter 10: Dates and Timestamps

Download at WoweBook.Com

A Time Zone Standard?
As important as time zones are, you would think there would be some sort of interna-
tional standard specifying their names and abbreviations. Well, there isn’t one. Not
only are time zone abbreviations not standardized, but there is also some duplication.
For example, EST is used in the U.S. for Eastern Standard Time, and also in Australia
for Eastern Standard Time, and I assure you that the two Eastern Standard Times are
not at all the same! In addition, BST is the abbreviation for several time zones, including
those for Pacific/Midway and Europe/London, which are 12 hours different during
daylight savings time and 11 hours different during the rest of the year. This is why the
TO_TIMESTAMP functions do not allow you to specify time zone using the abbrevi-
ation alone.

Because there is no time zone standard, you might well ask the source of all those time
zone region names in V$TIMEZONE_NAMES. Oracle’s source for that information
can be found at ftp://elsie.nci.nih.gov/pub/. Look for files named something like
tzdataxxx.tar.gz where XXX is the version of the data. This archive usually has a file
named tz-link.htm which contains more information and links to other URLs related
to time zones.

Requiring a Format Mask to Match Exactly
When converting a character string to a datetime, the TO_* conversion functions nor-
mally make a few allowances:

• Extra blanks in the character string are ignored.

• Numeric values, such as the day number or the year, do not have to include leading
zeros to fill out the mask.

• Punctuation in the string to be converted can simply match the length and position
of punctuation in the format.

This kind of flexibility is great—until you want to actually restrict a user or even a batch
process from entering data in a nonstandard format. In some cases, it simply is not OK
when a date string has a caret (^) instead of a hyphen (-) between the day and month
numbers. For these situations, you can use the FX modifier in the format mask to
enforce an exact match between string and format model.

With FX, there is no flexibility in the interpretation of the string. It cannot have extra
blanks if none are found in the model. Its numeric values must include leading zeros if
the format model specifies additional digits. And the punctuation and literals must
exactly match the punctuation and quoted text of the format mask (except for case,
which is always ignored). In all of the following examples:

TO_DATE ('1-1-4', 'fxDD-MM-YYYY')
TO_DATE ('7/16/94', 'FXMM/DD/YY')
TO_DATE ('JANUARY^1^ the year of 94', 'FXMonth-dd-"WhatIsaynotdo"yy')

Datetime Conversions | 287

Download at WoweBook.Com

ftp://elsie.nci.nih.gov/pub/

PL/SQL raises one of the following errors:

ORA-01861: literal does not match format string
ORA-01862: the numeric value does not match the length of the format item

However, the following example succeeds because case is always irrelevant, and FX
does not change that:

TO_DATE ('Jan 15 1994', 'fxMON DD YYYY')

The FX modifier can be specified in upper-, lower-, or mixed-case; the effect is the same.

The FX modifier is a toggle, and can appear more than once in a format model. For
example:

TO_DATE ('07-1-1994', 'FXDD-FXMM-FXYYYY')

Each time it appears in the format, FX changes the effect of the modifier. In this ex-
ample, an exact match is required for the day number and the year number but not for
the month number.

Easing Up on Exact Matches
You can use FM (fill mode) in the format model of a call to a TO_DATE or TO_TIME-
STAMP function to fill a string with blanks or zeros so that a date string that would
otherwise fail the FX test will pass. For example:

TO_DATE ('07-1-94', 'FXfmDD-FXMM-FXYYYY')

This conversion succeeds, because FM causes the year 94 to be filled out with 00, so
the year becomes 0094 (probably not behavior you would ever want). The day 1 is filled
out with a single zero to become 01. FM is a toggle, just like FX.

Using FM as I’ve just described seems at first to defeat the purpose of FX. Why use
both? One reason is that you might use FX to enforce the use of specific delimiters while
using FM to ease up on the requirement that users enter leading zeros.

Interpreting Two-Digit Years in a Sliding Window
The last millennium change caused an explosion of interest in using four-digit years as
people suddenly realized the ambiguity inherent in the commonly used two-digit year.
For example, does 1-Jan-45 refer to 1945 or 2045? The best practice is to use unam-
biguous four-digit years. But, despite this realization, habits are tough to break, and
existing systems can be difficult to change, so you may find yourself still needing to
allow your users to enter dates using two-digit years rather than four-digit years. To
help, Oracle provides the RR format element to interpret two-digit years in a sliding
window.

288 | Chapter 10: Dates and Timestamps

Download at WoweBook.Com

In the following discussion, I use the term “century” colloquially. RR’s
20th century is composed of the years 1900–1999, and its 21st century
is composed of the years 2000–2099. I realize this is not the proper
definition of century, but it’s a definition that makes it easier to explain
RR’s behavior.

If the current year is in the first half of the century (years 0 through 49), then:

• If you enter a date in the first half of the century (i.e., from 0 through 49), RR returns
the current century.

• If you enter a date in the latter half of the century (i.e., from 50 through 99), RR
returns the previous century.

On the other hand, if the current year is in the latter half of the century (years 50 through
99), then:

• If you enter a date in the first half of the century, RR returns the next century.

• If you enter a date in the latter half of the century, RR returns the current century.

Confusing? I had to think about it for awhile too. The RR rules are an attempt to make
the best guess as to which century is intended when a user leaves off that information.
Here are some examples of the impact of RR. Notice that for year 88 and year 18,
SYSDATE returns a current date in the 20th and 21st centuries, respectively:

SELECT TO_CHAR (SYSDATE, 'MM/DD/YYYY') "Current Date",
 TO_CHAR (TO_DATE ('14-OCT-88', 'DD-MON-RR'), 'YYYY') "Year 88",
 TO_CHAR (TO_DATE ('14-OCT-18', 'DD-MON-RR'), 'YYYY') "Year 18"
 FROM dual;

 Current Date Year 88 Year 18
 ------------ ------- -------
 02/25/2002 1988 2018

When we reach the year 2050, RR will interpret the same dates differently:

SELECT TO_CHAR (SYSDATE, 'MM/DD/YYYY') "Current Date",
 TO_CHAR (TO_DATE ('10/14/88', 'MM/DD/RR'), 'YYYY') "Year 88",
 TO_CHAR (TO_DATE ('10/14/18', 'MM/DD/RR'), 'YYYY') "Year 18"
 FROM dual;

 Current Date Year 88 Year 18
 ------------ ------- -------
 02/25/2050 2088 2118

There are a number of ways you can activate the RR logic in your current applications.
The cleanest and simplest way is to change the default format mask for dates in your
database instance(s). In fact, Oracle has already done this for us. On a default Oracle
install, you will find your NLS_DATE_FORMAT equivalent to the result of:

ALTER SESSION SET NLS_DATE_FORMAT='DD-MON-RR';

Datetime Conversions | 289

Download at WoweBook.Com

Then, if you have not hardcoded the date format mask anywhere else in your screens
or reports, any two-digit years will be interpreted according to the windowing rules I’ve
just described.

Converting Time Zones to Character Strings
Time zones add complexity to the problem of converting datetime values to character
strings. Time zone information consists of the following elements:

• A displacement from UTC in terms of hours and minutes

• A time zone region name

• A time zone abbreviation

All these elements are stored separately in a TIMESTAMP WITH TIME ZONE
variable. The displacement from UTC is always present, but whether you can display
the region name or abbreviation depends on whether you’ve specified that information
to begin with. Look closely at this example:

DECLARE
 ts1 TIMESTAMP WITH TIME ZONE;
 ts2 TIMESTAMP WITH TIME ZONE;
 ts3 TIMESTAMP WITH TIME ZONE;
BEGIN
 ts1 := TO_TIMESTAMP_TZ('2002-06-18 13:52:00.123456789 −5:00',
 'YYYY-MM-DD HH24:MI:SS.FF TZH:TZM');
 ts2 := TO_TIMESTAMP_TZ('2002-06-18 13:52:00.123456789 US/Eastern',
 'YYYY-MM-DD HH24:MI:SS.FF TZR');
 ts3 := TO_TIMESTAMP_TZ('2002-06-18 13:52:00.123456789 US/Eastern EDT',
 'YYYY-MM-DD HH24:MI:SS.FF TZR TZD');

 DBMS_OUTPUT.PUT_LINE(TO_CHAR(ts1,
 'YYYY-MM-DD HH:MI:SS.FF AM TZH:TZM TZR TZD'));
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(ts2,
 'YYYY-MM-DD HH:MI:SS.FF AM TZH:TZM TZR TZD'));
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(ts3,
 'YYYY-MM-DD HH:MI:SS.FF AM TZH:TZM TZR TZD'));
 END;

The output is:

2002-06-18 01:52:00.123457000 PM −05:00 −05:00
2002-06-18 01:52:00.123457000 PM −04:00 US/EASTERN EDT
2002-06-18 01:52:00.123457000 PM −04:00 US/EASTERN EDT

Note the following with respect to the display of time zone information:

• For ts1, I specified time zone in terms of a displacement from UTC. Thus, when
ts1 was displayed, only the displacement could be displayed.

• In the absence of a region name for ts1, the database provided the time zone dis-
placement. This is preferable to providing no information at all.

290 | Chapter 10: Dates and Timestamps

Download at WoweBook.Com

• For ts2, I specified a time zone region. That region was translated internally into
an offset from UTC, but the region name was preserved. Thus, both the UTC offset
and the region name could be displayed.

• For ts2, the database correctly recognized that daylight savings time is in effect
during the month of June. As a result, the value of ts2 was implicitly associated
with the EDT abbreviation.

• For ts3, I specified a time zone region and an abbreviation, and both those values
could be displayed. No surprises here.

There’s a one-to-many relationship between UTC offsets and time zone regions; the
offset alone is not enough to get you to a region name. That’s why you can’t display a
region name unless you specify one to begin with.

Padding Output with Fill Mode
The FM modifier described in “Easing Up on Exact Matches” on page 288 can also be
used when converting from a datetime to a character string, to suppress padded blanks
and leading zeros that would otherwise be returned by the TO_CHAR function.

By default, the following format mask results in both padded blanks and leading zeros
(there are five spaces between the month name and the day number):

TO_CHAR (SYSDATE, 'Month DD, YYYY') --> 'April 05, 1994'

With the FM modifier at the beginning of the format mask, however, both the extra
blank and the leading zeros disappear:

TO_CHAR (SYSDATE, 'FMMonth DD, YYYY') --> April 5, 1994'

The modifier can be specified in upper-, lower-, or mixed-case; the effect is the same.

Remember that the FM modifier is a toggle, and can appear more than once in a format
model. Each time it appears in the format, it changes the effect of the modifier. By
default (that is, if FM is not specified anywhere in a format mask), blanks are not
suppressed, and leading zeros are included in the result value.

Date and Timestamp Literals
Date and timestamp literals, as well as the interval literals that appear later in this
chapter, are part of the ISO SQL standard and have been supported since Oracle9i
Database. They represent yet another option for you to use in getting values into
datetime variables. A date literal consists of the keyword DATE followed by a date (and
only a date) value in the following format:

DATE 'YYYY-MM-DD'

A timestamp literal consists of the keyword TIMESTAMP followed by a datetime value
in a very specific format:

Date and Timestamp Literals | 291

Download at WoweBook.Com

TIMESTAMP 'YYYY-MM-DD HH:MI:SS[.FFFFFFFFF] [{+|-}HH:MI]'

The FFFFFFFFF represents fractional seconds and is optional. If you specify fractional
seconds, you may use anywhere from one to nine digits. The time zone displacement
(+HH:MI) is optional and may use either a plus or a minus sign as necessary. The hours
are always with respect to a 24-hour clock.

If you omit the time zone displacement in a timestamp literal, the time
zone will default to the session time zone.

The following PL/SQL block shows several valid date and timestamp literals:

DECLARE
 ts1 TIMESTAMP WITH TIME ZONE;
 ts2 TIMESTAMP WITH TIME ZONE;
 ts3 TIMESTAMP WITH TIME ZONE;
 ts4 TIMESTAMP WITH TIME ZONE;
 ts5 DATE;
BEGIN
 --Two digits for fractional seconds
 ts1 := TIMESTAMP '2002-02-19 11:52:00.00 −05:00';

 --Nine digits for fractional seconds, 24-hour clock, 14:00 = 2:00 PM
 ts2 := TIMESTAMP '2002-02-19 14:00:00.000000000 −5:00';

 --No fractional seconds at all
 ts3 := TIMESTAMP '2002-02-19 13:52:00 −5:00';

 --No time zone, defaults to session time zone
 ts4 := TIMESTAMP '2002-02-19 13:52:00';

 --A date literal
 ts5 := DATE '2002-02-19';
END;

The format for date and timestamp literals is prescribed by the ANSI/ISO standards,
and cannot be changed by you or by the DBA. Thus, it’s safe to use timestamp literals
whenever you need to embed a specific datetime value (e.g., a constant) in your code.

Oracle allows the use of time zone region names in timestamp literals—
for example: TIMESTAMP '2002-02-19 13:52:00 EST'. However, this
functionality goes above and beyond the SQL standard.

Interval Conversions
An interval is composed of one or more datetime elements. For example, you might
choose to express an interval in terms of years and months, or you might choose to

292 | Chapter 10: Dates and Timestamps

Download at WoweBook.Com

speak in terms of hours and minutes. Table 10-2 lists the standard names for each of
the datetime elements used to express intervals. These are the names you must use in
conjunction with the conversion functions and expressions described in the subsections
that follow. The names are not case-sensitive when used with the interval conversion
functions. For example, YEAR, Year, and year are all equivalent.

Table 10-2. Interval element names

Name Description

YEAR Some number of years, ranging from 1 through 999,999,999

MONTH Some number of months, ranging from 0 through 11

DAY Some number of days, ranging from 0 to 999,999,999

HOUR Some number of hours, ranging from 0 through 23

MINUTE Some number of minutes, ranging from 0 through 59

SECOND Some number of seconds, ranging from 0 through 59.999999999

Converting from Numbers to Intervals
The NUMTOYMINTERVAL and NUMTODSINTERVAL functions allow you to con-
vert a single numeric value to one of the interval datatypes. You do this by associating
your numeric value with one of the interval elements listed in Table 10-2.

The function NUMTOYMINTERVAL (pronounced “num to Y M interval”) converts
a numeric value to an interval of type INTERVAL YEAR TO MONTH. The function
NUMTODSINTERVAL (pronounced “num to D S interval”) likewise converts a nu-
meric value to an interval of type INTERVAL DAY TO SECOND.

Following is an example of NUMTOYMINTERVAL being used to convert 10.5 to an
INTERVAL YEAR TO MONTH value. The second argument, Year, indicates that the
number represents some number of years.

DECLARE
 y2m INTERVAL YEAR TO MONTH;
BEGIN
 y2m := NUMTOYMINTERVAL (10.5,'Year');
 DBMS_OUTPUT.PUT_LINE(y2m);
END;

The output is:

+10-06

In this example, 10.5 years was converted to an interval of 10 years, 6 months. Any
fractional number of years (in this case 0.5) will be converted to an equivalent number
of months, with the result being rounded to an integer. Thus, 10.9 years will convert
to an interval of 10 years, 10 months.

The next example converts a numeric value to an interval of type INTERVAL DAY TO
SECOND:

Interval Conversions | 293

Download at WoweBook.Com

DECLARE
 an_interval INTERVAL DAY TO SECOND;
BEGIN
 an_interval := NUMTODSINTERVAL (1440,'Minute');
 DBMS_OUTPUT.PUT_LINE(an_interval);
END;

The output is:

+01 00:00:00.000000

PL/SQL procedure successfully completed.

As you can see, the database has automatically taken care of normalizing the input
value of 1440 minutes to an interval value of 1 day. This is great, because now you don’t
need to do that work yourself. You can easily display any number of minutes (or seconds
or days or hours) in a normalized format that makes sense to the reader. Prior to the
introduction of the interval datatypes, you would have needed to write your own code
to translate a minute value into the correct number of days, hours, and minutes.

Converting Strings to Intervals
The NUMTO functions are fine if you are converting numeric values to intervals, but
what about character string conversions? For those, you can use TO_YMINTERVAL
and TO_DSINTERVAL, depending on whether you are converting to an INTERVAL
YEAR TO MONTH or an INTERVAL DAY TO SECOND.

TO_YMINTERVAL converts a character string value into an INTERVAL YEAR TO
MONTH value, and is invoked as follows:

TO_YMINTERVAL('Y-M')

where Y represents some number of years, and M represents some number of months.
You must supply both values and separate them using a dash.

Likewise, TO_DSINTERVAL converts a character string into an INTERVAL DAY TO
SECOND value. Invoke TO_DSINTERVAL using the following format:

TO_DSINTERVAL('D HH:MI:SS.FF')

where D is some number of days, and HH:MI:SS.FF represents hours, minutes, seconds
and fractional seconds.

The following example shows an invocation of each of these functions:

DECLARE
 y2m INTERVAL YEAR TO MONTH;
 d2s1 INTERVAL DAY TO SECOND;
 d2s2 INTERVAL DAY TO SECOND;
BEGIN
 y2m := TO_YMINTERVAL('40-3'); --my age
 d2s1 := TO_DSINTERVAL('10 1:02:10');
 d2s2 := TO_DSINTERVAL('10 1:02:10.123'); --fractional seconds
END;

294 | Chapter 10: Dates and Timestamps

Download at WoweBook.Com

When invoking either function, you must supply all relevant values. You cannot, for
example, invoke TO_YMINTERVAL specifying only a year, or invoke
TO_DS_INTERVAL leaving off the seconds. You can, however, omit the fractional
seconds.

Formatting Intervals for Display
So far in this section on interval conversion, I’ve relied on the database’s implicit con-
version mechanism to format interval values for display. And that’s pretty much the
best that you can do. You can pass an interval to TO_CHAR, but TO_CHAR will ignore
any format mask. For example:

DECLARE
 y2m INTERVAL YEAR TO MONTH;
BEGIN
 y2m := INTERVAL '40-3' YEAR TO MONTH;
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(y2m,'YY "Years" and MM "Months"'));
END;

The output is the same as if no format mask had been specified:

+000040-03

If you’re not satisfied with the default conversion of intervals to character strings, you
can use the EXTRACT function:

DECLARE
 y2m INTERVAL YEAR TO MONTH;
BEGIN
 y2m := INTERVAL '40-3' YEAR TO MONTH;

 DBMS_OUTPUT.PUT_LINE(
 EXTRACT(YEAR FROM y2m) || ' Years and '
 || EXTRACT(MONTH FROM y2m) || ' Months'
);
END;

The output is:

40 Years and 3 Months

EXTRACT is described in more detail in “CAST and EXTRACT” on page 297.

Interval Literals
Interval literals are similar to timestamp literals and are useful when you want to embed
interval values as constants within your code. Interval literals take the following form:

INTERVAL 'character_representation' start_element TO end_element

Interval Literals | 295

Download at WoweBook.Com

where:

character_representation
Is the character string representation of the interval. See “Interval Conver-
sions” on page 292 for a description of how the two interval datatypes are repre-
sented in character form.

start_element
Specifies the leading element in the interval.

end_element
Specifies the trailing element in the interval.

Unlike the TO_YMINTERVAL and TO_DSINTERVAL functions, interval literals al-
low you to specify an interval using any sequence of datetime elements from Ta-
ble 10-2. There are only two restrictions:

• You must use a consecutive sequence of elements.

• You cannot transition from a month to a day within the same interval.

Following are several valid examples:

DECLARE
 y2ma INTERVAL YEAR TO MONTH;
 y2mb INTERVAL YEAR TO MONTH;
 d2sa INTERVAL DAY TO SECOND;
 d2sb INTERVAL DAY TO SECOND;
BEGIN
 /* Some YEAR TO MONTH examples */
 y2ma := INTERVAL '40-3' YEAR TO MONTH;
 y2mb := INTERVAL '40' YEAR;

 /* Some DAY TO SECOND examples */
 d2sa := INTERVAL '10 1:02:10.123' DAY TO SECOND;

 /* Fails in Oracle9i through 11gR2 because of a bug */
 --d2sb := INTERVAL '1:02' HOUR TO MINUTE;

 /* Following are two workarounds for defining intervals,
 such as HOUR TO MINUTE, that represent only a portion of the
 DAY TO SECOND range. */
 SELECT INTERVAL '1:02' HOUR TO MINUTE
 INTO d2sb
 FROM dual;

 d2sb := INTERVAL '1' HOUR + INTERVAL '02' MINUTE;
END;

296 | Chapter 10: Dates and Timestamps

Download at WoweBook.Com

In Oracle9i Database through Oracle Database 11g Release 2, expres-
sions such as INTERVAL '1:02' HOUR TO MINUTE that don’t specify a value
for each possible element will work from a SQL statement but not from
a PL/SQL statement. Furthermore, you’ll get an error about using the
keyword BULK in the wrong context. This is a bug that I hope to see
fixed in a future release.

One very convenient thing that the database will do for you is to normalize interval
values. In the following example, 72 hours and 15 minutes is normalized to 3 days, 0
hours, and 15 minutes:

DECLARE
 d2s INTERVAL DAY TO SECOND;
BEGIN
 SELECT INTERVAL '72:15' HOUR TO MINUTE INTO d2s FROM DUAL;
 DBMS_OUTPUT.PUT_LINE(d2s);
END;

The output is:

+03 00:15:00.000000

The database will normalize only the high-end value (hours in this example) of an
interval literal. An attempt to specify an interval of 72:75 (72 hours and 75 minutes)
results in an error.

CAST and EXTRACT
CAST and EXTRACT are standard SQL functions that are sometimes useful when
working with datetimes. CAST made its appearance in Oracle8 Database as a mecha-
nism for explicitly identifying collection types, and it was enhanced in Oracle8i Data-
base to enable conversion between built-in datatypes. With respect to date and time,
you can use CAST to convert datetime values to and from character strings. The EX-
TRACT function introduced in Oracle9i Database allows you to pluck an individual
datetime element from a datetime or interval value.

The CAST Function
With respect to date and time, you can use the CAST function to:

• Convert a character string to a datetime value.

• Convert a datetime value to a character string.

• Convert one datetime type (e.g., DATE) to another (e.g., TIMESTAMP).

When used to convert datetimes to and from character strings, CAST respects the NLS
parameter settings. Check your settings by querying V$NLS_PARAMETERS, and
change them with an ALTER SESSION command. The NLS settings for datetimes are:

CAST and EXTRACT | 297

Download at WoweBook.Com

NLS_DATE_FORMAT
When casting to or from a DATE

NLS_TIMESTAMP_FORMAT
When casting to or from a TIMESTAMP or a TIMESTAMP WITH LOCAL TIME
ZONE

NLS_TIMESTAMP_TZ_FORMAT
When casting to or from a TIMESTAMP WITH TIME ZONE

The following example illustrates the use of CAST for each of these datetime types.
The example assumes the default values of 'DD-MON-RR', 'DD-MON-RR HH.MI.SSXFF AM',
and 'DD-MON-RR HH.MI.SSXFF AM TZR' for NLS_DATE_FORMAT, NLS_TIME-
STAMP_FORMAT, and NLS_TIMESTAMP_TZ_FORMAT, respectively.

DECLARE
 tstz TIMESTAMP WITH TIME ZONE;
 string VARCHAR2(40);
 tsltz TIMESTAMP WITH LOCAL TIME ZONE;
BEGIN
 -- convert string to datetime
 tstz := CAST ('24-Feb-2009 09.00.00.00 PM US/Eastern'
 AS TIMESTAMP WITH TIME ZONE);
 -- convert datetime back to string
 string := CAST (tstz AS VARCHAR2);
 tsltz := CAST ('24-Feb-2009 09.00.00.00 PM'
 AS TIMESTAMP WITH LOCAL TIME ZONE);

 DBMS_OUTPUT.PUT_LINE(tstz);
 DBMS_OUTPUT.PUT_LINE(string);
 DBMS_OUTPUT.PUT_LINE(tsltz);
END;

The output is:

24-FEB-09 09.00.00.000000 PM US/EASTERN
24-FEB-09 09.00.00.000000 PM US/EASTERN
24-FEB-09 09.00.00.000000 PM

This example generates a TIMESTAMP WITH TIME ZONE from a character string,
converts that value to a VARCHAR2, and finally converts a character string to a TIME-
STAMP WITH LOCAL TIME ZONE.

You might be asking yourself when you should use CAST. CAST does have some over-
lap with the TO_DATE, TO_TIMESTAMP, and TO_TIMESTAMP_TZ functions.
However, the TO_TIMESTAMP function can take only a string as input, whereas
CAST can take a string or a DATE as input and convert it to TIMESTAMP. So, use
CAST when you have requirements that the TO_ functions can’t handle. However,
when there’s a TO_ function that will fit the need, you should use the TO_ function
as it generally leads to more readable code.

298 | Chapter 10: Dates and Timestamps

Download at WoweBook.Com

In a SQL statement, you can specify the size of a datatype in a CAST, as
in CAST (x AS VARCHAR2(40)). However, PL/SQL does not allow you to
specify the size of the target datatype.

The EXTRACT Function
The EXTRACT function is used to extract date components from a datetime value. Use
the following format when invoking EXTRACT:

EXTRACT (component_name, FROM {datetime | interval})

In this syntax, component_name is the name of a datetime element listed in Ta-
ble 10-3. Component names are not case-sensitive. Replace datetime or interval with a
valid datetime or interval value. The function’s return type depends on the component
you are extracting.

Table 10-3. Datetime component names for use with EXTRACT

Component name Return datatype

YEAR NUMBER

MONTH NUMBER

DAY NUMBER

HOUR NUMBER

MINUTE NUMBER

SECOND NUMBER

TIMEZONE_HOUR NUMBER

TIMEZONE_MINUTE NUMBER

TIMEZONE_REGION VARCHAR2

TIMEZONE_ABBR VARCHAR2

The following example shows EXTRACT being used to check whether the current
month is November:

BEGIN
 IF EXTRACT (MONTH FROM SYSDATE) = 11 THEN
 DBMS_OUTPUT.PUT_LINE('It is November');
 ELSE
 DBMS_OUTPUT.PUT_LINE('It is not November');
 END IF;
END;

Use EXTRACT when you need to use a datetime element to control program flow, as
in this example, or when you need a datetime element as a numeric value.

CAST and EXTRACT | 299

Download at WoweBook.Com

Datetime Arithmetic
Datetime arithmetic in an Oracle database can be reduced to the following types of
operations:

• Adding or subtracting an interval to or from a datetime value.

• Subtracting one datetime value from another in order to determine the interval
between the two values.

• Adding or subtracting one interval to or from another interval.

• Multiplying or dividing an interval by a numeric value.

For historical reasons, because of the way in which the database has been developed
over the years, I draw a distinction between datetime arithmetic involving the DATE
type and that involving the family of TIMESTAMP and INTERVAL types.

Date Arithmetic with Intervals and Datetimes
Arithmetic with day to second intervals is easy when working with the TIMESTAMP
family of datatypes. Simply create an INTERVAL DAY TO SECOND value and add or
subtract it. For example, to add 1500 days, 4 hours, 30 minutes, and 2 seconds to the
current date and time:

DECLARE
 current_date TIMESTAMP;
 result_date TIMESTAMP;
BEGIN
 current_date := SYSTIMESTAMP;
 result_date:= current_date + INTERVAL '1500 4:30:2' DAY TO SECOND;
 DBMS_OUTPUT.PUT_LINE(result_date);
END;

Date arithmetic with year and month values is not quite as straightforward. All days
can be measured as 24 hours or 1440 minutes or even 86,400 seconds, but not all
months have the same number of days. A month may have 28, 29, 30, or 31 days. (I’ll
ignore the goofy month when the Gregorian calendar was adopted). Because of this
disparity in the number of days in a month, simply adding one month to a date can
lead to an ambiguous resulting date. If you want to add one month to the last day of
May, should you get the last day of June or the invalid value 31 June? Well, it all depends
on what you need the dates or intervals to represent.

The Oracle database gives you the toolkit to build either result into your programs.
You, the intelligent, clever developer, get to decide which behavior your system should
implement. If you want an end of month to translate into an end of month (31 May +
1 month = 30 June), use the function ADD_MONTHS. If you do not want the database
to alter day-of-month values, use an INTERVAL YEAR TO MONTH value. Thus
31May2008 + INTERVAL '1' MONTH will result in 31Jun2008, causing the database
to throw an ORA-01839: date not valid for month specified error.

300 | Chapter 10: Dates and Timestamps

Download at WoweBook.Com

Date arithmetic using INTERVAL YEAR TO MONTH values is best reserved for those
datetimes that are kept truncated to the beginning of a month, or perhaps to the 15th
of the month—it is not appropriate for end-of-month values. If you need to add or
subtract a number of months (and also years—you have the same end of month prob-
lem if you add one year to 29Feb2008) from a datetime that may include end-of-month
values, look instead to the function ADD_MONTHS. This function, which returns a
DATE datatype, will handle the end–of-month disparity by converting the resultant
dates to the last day of the month instead of throwing an error. For example,
ADD_MONTHS('31-May-2008',1) will return 30-Jun-2008. The resulting DATE will
not have a time zone (or subsecond granularity), so if you need these components in
your result, you will need to code some extra logic to extract and reapply these com-
ponents to the computed results.

DECLARE
 end_of_may2008 TIMESTAMP;
 next_month TIMESTAMP;
BEGIN
 end_of_may2008 := TO_TIMESTAMP('31-May-2008', 'DD-Mon-YYYY');
 next_month := TO_TIMESTAMP(ADD_MONTHS(end_of_may2008, 1));
 DBMS_OUTPUT.PUT_LINE(next_month);
END;

The results are:

30-Jun-2008 00:00:00.000000

There is no SUBTRACT_MONTHS function, but you can call ADD_MONTHS with
negative month values. For example, use ADD_MONTHS(current_date, −1) in the above
example to go back one month to the last day of April.

Date Arithmetic with DATE Datatypes
Date arithmetic with DATE datatypes can use INTERVAL values or can use numeric
values representing days and fractions thereof. For example, to add one day to the
current date and time, specify:

SYSDATE + 1

And to add four hours to the current date and time:

SYSDATE + (4/24)

Notice here my use of 4/24 rather than 1/6. I use this approach to make it plain that I
am adding four hours to the value returned by SYSDATE. I could use 1/6, but then the
next person to maintain the code has to figure out what is intended by 1/6. By using
4/24, I make my intent of adding four hours more explicit. Even more explicitly, I can
use a meaningfully named constant like this:

DECLARE
 four_hours NUMBER := 4/24;
BEGIN
 DBMS_OUTPUT.PUT_LINE(

Datetime Arithmetic | 301

Download at WoweBook.Com

 'Now + 4 hours =' || TO_CHAR (SYSDATE + four_hours));
END;

Table 10-4 shows the fractional values that you can use to represent hours, minutes,
and seconds when working with DATEs. Table 10-4 also shows some easily
understandable expressions that you can use to build those values, in case you prefer
to use, say, 60/24/60 instead of 60/1440 to mean 60 minutes.

Table 10-4. Fractional values in date arithmetic

Value Expression Represents

1/24 1/24 One hour

1/1440 1/24/60 One minute

1/86400 1/24/60/60 One second

Use the values in Table 10-4 consistently, and your code will be easier to understand.
Once you learn three denominators, it becomes trivial to recognize that 40/86400
means 40 seconds. It’s not so easy though, to recognize that 1/21610 means the same
thing.

Computing the Interval Between Two Datetimes
You can compute the interval between two TIMESTAMP family values by simply sub-
tracting one value from the other. The result will always be of INTERVAL DAY TO
SECOND. For example:

DECLARE
 leave_on_trip TIMESTAMP := TIMESTAMP '2005-03-22 06:11:00.00';
 return_from_trip TIMESTAMP := TIMESTAMP '2005-03-25 15:50:00.00';
 trip_length INTERVAL DAY TO SECOND;
BEGIN
 trip_length := return_from_trip - leave_on_trip;

 DBMS_OUTPUT.PUT_LINE('Length in days hours:minutes:seconds
 is ' || trip_length);
END;

The output is:

Length in days hours:minutes:seconds is +03 09:39:00.000000

Intervals can be negative or positive. A negative interval indicates that you’ve subtracted
a more recent date from a date further in the past, as in:

18-Jun-1961 - 15-Nov-1961 = −150

Fundamentally, the sign of the result indicates the directionality of the interval. It’s
somewhat unfortunate that there is no absolute value function that applies to intervals
in the same way that the ABS function applies to numeric values.

302 | Chapter 10: Dates and Timestamps

Download at WoweBook.Com

If you compute the interval between two DATE values, the result is a number repre-
senting how many 24-hour periods (not quite the same as days) are between the two
values. If the number is an integer, then the difference is an exact number of days. If
the number is a fractional number, then the difference includes some number of hours,
minutes, and seconds as well. For example, here is the same computation as the one I
specified previously, but this time using DATEs:

BEGIN
 DBMS_OUTPUT.PUT_LINE (
 TO_DATE('25-Mar-2005 3:50 pm','dd-Mon-yyyy hh:mi am')
 - TO_DATE('22-Mar-2005 6:11 am','dd-Mon-yyyy hh:mi am')
);
END;

The output is:

3.40208333333333333333333333333333333333

The three days you can understand, but you probably wonder what exactly is repre-
sented by 0.40208333333333333333333333333333333333. Often the dates are
TRUNCed before subtracting them, or the resulting number is truncated. Correctly
translating a long decimal string into hours, minutes, and seconds is much easier using
the INTERVAL and TIMESTAMP types.

Also useful for computing intervals between two DATEs is the MONTHS_BETWEEN
function. The function syntax is:

FUNCTION MONTHS_BETWEEN (date1 IN DATE, date2 IN DATE)
 RETURN NUMBER

The following rules apply:

• If date1 comes after date2, MONTHS_BETWEEN returns a positive number.

• If date1 comes before date2, MONTHS_BETWEEN returns a negative number.

• If date1 and date2 are in the same month, MONTHS_BETWEEN returns a fraction
(a value between −1 and +1).

• If date1 and date2 both fall on the last day of their respective months,
MONTHS_BETWEEN returns a whole number (no fractional component).

• If date1 and date2 are in different months, and at least one of the dates is not the
last day of the month, MONTHS_BETWEEN returns a fractional number. The
fractional component is calculated on a 31-day month basis and also takes into
account any differences in the time component of date1 and date2.

Here are some examples of the uses of MONTHS_BETWEEN:

BEGIN
 --Calculate two ends of month, the first earlier than the second:
 DBMS_OUTPUT.PUT_LINE(
 MONTHS_BETWEEN ('31-JAN-1994', '28-FEB-1994'));

 --Calculate two ends of month, the first later than the second:

Datetime Arithmetic | 303

Download at WoweBook.Com

 DBMS_OUTPUT.PUT_LINE(
 MONTHS_BETWEEN ('31-MAR-1995', '28-FEB-1994'));

 --Calculate when both dates fall in the same month:
 DBMS_OUTPUT.PUT_LINE(
 MONTHS_BETWEEN ('28-FEB-1994', '15-FEB-1994'));

 --Perform months_between calculations with a fractional component:
 DBMS_OUTPUT.PUT_LINE(
 MONTHS_BETWEEN ('31-JAN-1994', '1-MAR-1994'));
 DBMS_OUTPUT.PUT_LINE(
 MONTHS_BETWEEN ('31-JAN-1994', '2-MAR-1994'));
 DBMS_OUTPUT.PUT_LINE(
 MONTHS_BETWEEN ('31-JAN-1994', '10-MAR-1994'));
END;

The output is:

−1
13
.4193548387096774193548387096774193548387
−1.03225806451612903225806451612903225806
−1.06451612903225806451612903225806451613
−1.32258064516129032258064516129032258065

If you think you detect a pattern here, you are right. As noted, MONTHS_BETWEEN
calculates the fractional component of the number of months by assuming that each
month has 31 days. Therefore, each additional day over a complete month counts for
1/31 of a month, and:

1 divided by 31 = .032258065--more or less!

According to this rule, the number of months between January 31, 1994 and February
28, 1994 is 1—a nice, clean integer. But the number of months between January 31,
1994 and March 1, 1994, has an additional .032258065 added to it. As with subtracting
DATEs, the TRUNC function is often used with MONTHS_BETWEEN.

Mixing DATEs and TIMESTAMPs
The result of a subtraction involving two TIMESTAMPs is a value of type INTERVAL
DAY TO SECOND. The result of a subtraction involving two DATEs is a numeric
value. Consequently, if you want to subtract one DATE from another and return an
INTERVAL DAY TO SECOND value, you will need to CAST your DATEs into TIME-
STAMPs. For example:

DECLARE
 dt1 DATE;
 dt2 DATE;
 d2s INTERVAL DAY(3) TO SECOND(0);
BEGIN
 dt1 := TO_DATE('15-Nov-1961 12:01 am','dd-Mon-yyyy hh:mi am');
 dt2 := TO_DATE('18-Jun-1961 11:59 pm','dd-Mon-yyyy hh:mi am');

304 | Chapter 10: Dates and Timestamps

Download at WoweBook.Com

 d2s := CAST(dt1 AS TIMESTAMP) - CAST(dt2 AS TIMESTAMP);

 DBMS_OUTPUT.PUT_LINE(d2s);
END;

The output is:

+149 00:02:00

If you mix DATEs and TIMESTAMPs in the same subtraction expression, PL/SQL will
implicitly cast the DATEs into TIMESTAMPs. For example:

DECLARE
 dt DATE;
 ts TIMESTAMP;
 d2s1 INTERVAL DAY(3) TO SECOND(0);
 d2s2 INTERVAL DAY(3) TO SECOND(0);
BEGIN
 dt := TO_DATE('15-Nov-1961 12:01 am','dd-Mon-yyyy hh:mi am');
 ts := TO_TIMESTAMP('18-Jun-1961 11:59 pm','dd-Mon-yyyy hh:mi am');

 d2s1 := dt - ts;
 d2s2 := ts - dt;

 DBMS_OUTPUT.PUT_LINE(d2s1);
 DBMS_OUTPUT.PUT_LINE(d2s2);
END;

The output is:

+149 00:02:00
−149 00:02:00

As with all datetime datatypes, it’s best to use explicit casting and not rely on implicit
datatype conversions.

Adding and Subtracting Intervals
Unlike the case with datetime values, it makes perfect sense to add one interval to
another. It also makes sense to subtract one interval from another. The one rule you
need to keep in mind is that whenever you add or subtract two intervals, they must be
of the same type. For example:

DECLARE
 dts1 INTERVAL DAY TO SECOND := '2 3:4:5.6';
 dts2 INTERVAL DAY TO SECOND := '1 1:1:1.1';

 ytm1 INTERVAL YEAR TO MONTH := '2-10';
 ytm2 INTERVAL YEAR TO MONTH := '1-1';

 days1 NUMBER := 3;
 days2 NUMBER := 1;
BEGIN
 DBMS_OUTPUT.PUT_LINE(dts1 - dts2);
 DBMS_OUTPUT.PUT_LINE(ytm1 – ytm2);

Datetime Arithmetic | 305

Download at WoweBook.Com

 DBMS_OUTPUT.PUT_LINE(days1 – days2);
END;

The output is:

+000000001 02:03:04.500000000
+000000001-09
2

This example shows the results of three interval subtractions. The first two involve
INTERVAL DAY TO SECOND and INTERVAL YEAR TO MONTH. The third shows
the subtraction of two numbers. Remember: when working with DATE types, the in-
terval between two DATE values is expressed as a NUMBER. Because months can have
28, 29, 30, or 31 days, if you add or subtract a day-to-second interval with a year-to-
month interval, the database will raise an ORA-30081: invalid datatype for datetime/
interval arithmetic exception.

Multiplying and Dividing Intervals
Multiplication and division have no application to dates, but you can multiply an in-
terval by a number and divide an interval by a number. Here are some examples:

DECLARE
 dts1 INTERVAL DAY TO SECOND := '2 3:4:5.6';
 dts2 INTERVAL YEAR TO MONTH := '2-10';
 dts3 NUMBER := 3;
BEGIN
 --Show some interval multiplication
 DBMS_OUTPUT.PUT_LINE(dts1 * 2);
 DBMS_OUTPUT.PUT_LINE(dts2 * 2);
 DBMS_OUTPUT.PUT_LINE(dts3 * 2);

 --Show some interval division
 DBMS_OUTPUT.PUT_LINE(dts1 / 2);
 DBMS_OUTPUT.PUT_LINE(dts2 / 2);
 DBMS_OUTPUT.PUT_LINE(dts3 / 2);
END;

The output is:

+000000004 06:08:11.200000000
+000000005-08
6
+000000001 01:32:02.800000000
+000000001-05
1.5

Using Unconstrained INTERVAL Types
Intervals can be declared with varying levels of precision, and values of different
precisions are not entirely compatible with each other. This becomes especially prob-
lematic when writing procedures and functions that accept INTERVAL values as

306 | Chapter 10: Dates and Timestamps

Download at WoweBook.Com

parameters. The following example should help to visualize the problem. Notice the
loss of precision when the value of dts is doubled via a call to the function dou-
ble_my_interval:

DECLARE
 dts INTERVAL DAY(9) TO SECOND(9);

 FUNCTION double_my_interval (
 dts_in IN INTERVAL DAY TO SECOND) RETURN INTERVAL DAY TO SECOND
 IS
 BEGIN
 RETURN dts_in * 2;
 END;
BEGIN
 dts := '1 0:0:0.123456789';
 DBMS_OUTPUT.PUT_LINE(dts);
 DBMS_OUTPUT.PUT_LINE(double_my_interval(dts));
END;

The output is:

+000000001 00:00:00.123456789
+02 00:00:00.246914

Not only have I lost digits in my fractional seconds, but I’ve also lost digits where the
number of days is concerned. Had dts been assigned a value of 100 days or more, the
call to double_my_interval would have failed with an ORA-01873: the leading precision
of the interval is too small error.

The issue here is that the default precision for INTERVAL types is not the same as the
maximum precision. Usually, the calling program supplies the precision for parameters
to a PL/SQL program, but with INTERVAL datatypes, the default precision of 2 is used.
To work around this problem, I can use an explicitly unconstrained INTERVAL
datatype:

YMINTERVAL_UNCONSTRAINED
Accepts any INTERVAL YEAR TO MONTH value with no loss of precision

DSINTERVAL_UNCONSTRAINED
Accepts any INTERVAL DAY TO SECOND value with no loss of precision

Using the DSINTERVAL_UNCONSTRAINED type, I can recode my earlier example
as follows:

DECLARE
 dts INTERVAL DAY(9) TO SECOND(9);

 FUNCTION double_my_interval (
 dts_in IN DSINTERVAL_UNCONSTRAINED) RETURN DSINTERVAL_UNCONSTRAINED
 IS
 BEGIN
 RETURN dts_in * 2;
 END;
BEGIN

Datetime Arithmetic | 307

Download at WoweBook.Com

 dts := '100 0:0:0.123456789';
 DBMS_OUTPUT.PUT_LINE(dts);
 DBMS_OUTPUT.PUT_LINE(double_my_interval(dts));
END;

The output is:

+000000100 00:00:00.123456789
+000000200 00:00:00.246913578

Notice that I used DSINTERVAL_UNCONSTRAINED twice: once to specify the type
of the formal parameter to double_my_interval, and once to specify the function’s
return type. As a result, I can now invoke the function on any INTERVAL DAY TO
SECOND value with no loss of precision or ORA-01873 errors.

Date/Time Function Quick Reference
Oracle implements a number of functions that are useful when working with datetime
values. You’ve seen many of them used earlier in this chapter. I don’t document them
all here, but I do provide a list in Table 10-5 to help you become familiar with what’s
available. I encourage you to refer to Oracle’s SQL Reference manual and read up on
those functions that interest you.

Avoid using Oracle’s traditional date functions with the new TIME-
STAMP types. Instead, use the new INTERVAL functionality whenever
possible. Use date functions only with DATE values.

Many of the functions in Table 10-5 accept DATE values as inputs. ADD_MONTHS
is an example of one such function. You must be careful when you consider using such
functions to operate on any of the new TIMESTAMP datatypes. While you can pass a
TIMESTAMP value to one of these functions, the database implicitly and silently
converts that value to a DATE. Only then does the function perform its operation. For
example:

DECLARE
 ts TIMESTAMP WITH TIME ZONE;
BEGIN
 ts := SYSTIMESTAMP;

 --Notice that ts now specifies fractional seconds
 --AND a time zone.
 DBMS_OUTPUT.PUT_LINE(ts);

 --Modify ts using one of the built-in date functions.
 ts := LAST_DAY(ts);

 --We've now LOST our fractional seconds, and the
 --time zone has changed to our session time zone.
 DBMS_OUTPUT.PUT_LINE(ts);
END;

308 | Chapter 10: Dates and Timestamps

Download at WoweBook.Com

The output is:

13-MAR-05 04.27.23.163826 PM −08:00
31-MAR-05 04.27.23.000000 PM −05:00

In this example, the variable ts contained a TIMESTAMP WITH TIME ZONE value.
That value was implicitly converted into a DATE when it was passed to LAST_DAY.
Because DATEs hold neither fractional seconds nor time zone offsets, those parts of
ts’s value were silently discarded. The result of LAST_DAY was assigned back to ts,
causing a second, implicit conversion, this time from DATE to TIMESTAMP WITH
TIME ZONE. This second conversion picked up the session time zone, and that’s why
you see −05:00 as the time zone offset in the final value.

This behavior is critical to understand! It’s critical to avoid too. I’m sure you can imagine
the kind of subtle program errors that can be induced by careless application of DATE
functions to TIMESTAMP values. Frankly, I can’t imagine why Oracle did not overload
the built-in DATE functions so that they also worked properly for TIMESTAMPs. Be
careful!

Table 10-5. Built-in datetime functions

Name Description

ADD_MONTHS Returns a DATE containing the specified DATE incremented by the specified number of
months. See the section “Adding and Subtracting Intervals” on page 305.

CAST Converts between datatypes—for example, between DATE and the various TIMESTAMP
datatypes. See the section “CAST and EXTRACT” on page 297.

CURRENT_DATE Returns a DATE containing the current date and time in the session time zone.

CURRENT_TIMESTAMP Returns a TIMESTAMP WITH TIME ZONE containing the current date and time in the session
time zone.

DBTIMEZONE Returns the time zone offset (from UTC) of the database time zone in the form of a character
string (e.g., '-05:00'). The database time zone is only used with TIMESTAMP WITH LOCAL
TIME ZONE datatypes.

EXTRACT Returns a NUMBER or VARCHAR2 containing the specific datetime element, such as hour,
year, or timezone_abbr. See the section “CAST and EXTRACT” on page 297.

FROM_TZ Converts a TIMESTAMP and time zone to a TIMESTAMP WITH TIME ZONE.

LAST_DAY Returns a DATE containing the last day of the month for the specified DATE.

LOCALTIMESTAMP Returns the current date and time as a TIMESTAMP value in the local time zone.

MONTHS_ BETWEEN Returns a NUMBER containing the quantity of months between two DATEs. See the section
“Computing the Interval Between Two Datetimes” on page 302 for an example.

NEW_TIME Shifts a DATE value from one time zone to another. This functionality exists to support
legacy code. For any new applications, use the TIMESTAMP WITH TIME ZONE or TIMESTAMP
WITH LOCAL TIME ZONE types.

NEXT_DAY Returns the DATE of the first weekday specified that is later than a specified DATE.

NUMTODSINTERVAL Converts a number of days, hours, minutes, or seconds (your choice) to a value of type
INTERVAL DAY TO SECOND.

Date/Time Function Quick Reference | 309

Download at WoweBook.Com

Name Description

NUMTOYMINTERAL Converts a number of years or months (your choice) to a value of type INTERVAL YEAR TO
MONTH.

ROUND Returns a DATE rounded to a specified level of granularity.

SESSIONTIMEZONE Returns a VARCHAR2 containing the time zone offset (from UTC) of the session time zone
in the form of a character string (e.g., '-05:00').

SYSDATE Returns the current date and time from the database server as a DATE value.

SYS_EXTRACT_UTC Converts a TIMESTAMP WITH TIME ZONE value to a TIMESTAMP having the same date and
time, but normalized to UTC.

SYSTIMESTAMP Returns the current date and time from the database server as a TIMESTAMP WITH TIME
ZONE value.

TO_CHAR Converts datetime values to their character string representations. See the section
“Datetime Conversions” on page 278.

TO_DATE Converts a character string to a value of type DATE. See the section “Datetime Conver-
sions” on page 278.

TO_DSINTERVAL Converts a character string to a value of INTERVAL DAY TO SECOND. See the section
“Interval Conversions” on page 292.

TO_TIMESTAMP Converts a character string to a value of type TIMESTAMP. See the section “Datetime
Conversions” on page 278.

TO_TIMESTAMP_TZ Converts a character string to a value of type TIMESTAMP WITH TIME ZONE. See the section
“Datetime Conversions” on page 278.

TO_YMINTERVAL Converts a character string to a value of INTERVAL YEAR TO MONTH. See the section
“Interval Conversions” on page 292.

TRUNC Truncates a DATE or TIMESTAMP value to a specified level of granularity returning a DATE
datatype.

TZ_OFFSET Returns a VARCHAR2 containing the time zone offset from UTC (e.g., '-05:00') for a given
time zone name, abbreviation, or offset.

310 | Chapter 10: Dates and Timestamps

Download at WoweBook.Com

CHAPTER 11

Records

A record is a composite data structure, which means that it is composed of more than
one element or component, each with its own value. Records in PL/SQL programs are
very similar in concept and structure to the rows of a database table. The record as a
whole does not have a value of its own; instead, each individual component or field
has a value, and the record gives you a way to store and access these values as a group.
Records can greatly simplify your life as a programmer, allowing you to write and
fmanage your code more efficiently by shifting from field-level declarations and ma-
nipulation to record-level operations.

Records in PL/SQL
Each row in a table has one or more columns of various datatypes. Similarly, a record
is composed of one or more fields. There are three different ways to define a
record, but once defined, the same rules apply for referencing and changing fields in a
record.

The block below demonstrates the declaration of a record that is based directly on an
underlying database table. Suppose that I have defined a table to keep track of my
favorite books:

CREATE TABLE books (
 book_id INTEGER,
 isbn VARCHAR2(13),
 title VARCHAR2(200),
 summary VARCHAR2(2000),
 author VARCHAR2(200),
 date_published DATE,
 page_count NUMBER
);

I can then easily create a record based on this table, populate it with a query from the
database, and then access the individual columns through the record’s fields:

DECLARE
 my_book books%ROWTYPE;

311

Download at WoweBook.Com

BEGIN
 SELECT *
 INTO my_book
 FROM books
 WHERE title = 'Oracle PL/SQL Programming, 5th Edition';

 IF my_book.author LIKE '%Feuerstein%'
 THEN
 DBMS_OUTPUT.put_line ('Our newest ISBN is ' || my_book.isbn);
 END IF;
END;

I can also define my own record type and use that as the basis for declaring records.
Suppose, for example, that I want to work only with the author and title of a book.
Rather than use %ROWTYPE to declare my record, I will instead create a record type:

DECLARE
 TYPE author_title_rt IS RECORD (
 author books.author%TYPE
 ,title books.title%TYPE
);
 l_book_info author_title_rt;
BEGIN
 SELECT author, title INTO l_book_info
 FROM books WHERE isbn = '0-596-00977-1';

Let’s take a look at some of the benefits of using records. Then I’ll examine in more
detail the different ways to define a record and finish up with examples of using records
in my programs.

Benefits of Using Records
The record data structure provides a high-level way of addressing and manipulating
data defined inside PL/SQL programs (as opposed to stored in database tables). This
approach offers several benefits, described in the following sections.

Data abstraction

When you abstract something, you generalize it, distancing yourself from the nitty-
gritty details and concentrating on the big picture. When you create modules, you
abstract the individual actions of the module into a name. The name (and program
specification) represents those actions.

When you create a record, you abstract all the different attributes or fields of the subject
of that record. You establish a relationship between those different attributes and give
that relationship a name by defining a record.

Aggregate operations

Once you have stored information in records, you can perform operations on whole
blocks of data at a time, rather than on each individual attribute. This kind of aggregate

312 | Chapter 11: Records

Download at WoweBook.Com

operation reinforces the abstraction of the record. Very often, you are not really inter-
ested in making changes to individual components of a record but instead to the object
that represents all of those different components.

Suppose that in my job I need to work with companies. I don’t really care about whether
a company has two lines of address information or three; instead, I want to work at the
level of the company itself, making changes to, deleting, or analyzing the status of a
company. In all of these cases I am talking about a whole row in the database, not any
specific column. The company record hides all that information from me, yet makes it
accessible if and when I need it. This orientation brings you closer to viewing your data
as a collection of objects, with rules applied to those objects.

Leaner, cleaner code

Using records also helps you to write cleaner code and less of it. When I use records, I
invariably produce programs that have fewer lines of code, are less vulnerable to change,
and need fewer comments. Records also cut down on variable sprawl; instead of de-
claring many individual variables, I declare a single record. This lack of clutter creates
aesthetically attractive code that requires fewer resources to maintain.

Use of PL/SQL records can have a dramatic, positive impact on your programs, both
in initial development and in ongoing maintenance. To ensure that I get the most out
of record structures, I have set the following guidelines for my code development:

Create corresponding cursors and records
Whenever I create a cursor in my programs, I also create a corresponding record
(except in the case of cursor FOR loops). I always FETCH into a record, rather
than into individual variables. In those few instances when this involves a little
extra work, I marvel at the elegance of the approach and compliment myself on
my commitment to principle. And starting with Oracle9i Database Release 2, I can
even use records with DML statements!

Create table-based records
Whenever I need to store table-based data within my programs, I create a new (or
use a predefined) table-based record to store that data. That way, I only have to
declare a single variable. Even better, the structure of that record will automatically
adapt to changes in the table with each compilation.

Pass records as parameters
Whenever appropriate, I pass records rather than individual variables as parame-
ters in my procedural interfaces. This way, my procedure calls are less likely to
change over time, making my code more stable.

Cursors are discussed in more detail in Chapter 15. They are, however, used so com-
monly with records that they appear in many of the examples below.

Records in PL/SQL | 313

Download at WoweBook.Com

Declaring Records
You can declare a record in one of three ways:

Table-based record
Use the %ROWTYPE attribute with a table name to declare a record in which each
field corresponds to—and has the same name as—a column in a table. In the fol-
lowing example, I declare a record named one_book with the same structure as
the books table:

DECLARE
 one_book books%ROWTYPE;

Cursor-based record
Use the %ROWTYPE attribute with an explicit cursor or cursor variable in which
each field corresponds to a column or aliased expression in the cursor SELECT
statement. In the following example, I declare a record with the same structure as
an explicit cursor:

DECLARE
 CURSOR my_books_cur IS
 SELECT * FROM books
 WHERE author LIKE '%FEUERSTEIN%';

 one_SF_book my_books_cur%ROWTYPE;

Programmer-defined record
Use the TYPE...RECORD statement to define a record in which each field is defined
explicitly (with its name and datatype) in the TYPE statement for that record; a
field in a programmer-defined record can even be another record. In the following
example, I declare a record TYPE containing some information about my book
writing career and an “instance” of that type, a record:

DECLARE
 TYPE book_info_rt IS RECORD (
 author books.author%TYPE,
 category VARCHAR2(100),
 total_page_count POSITIVE);

 steven_as_author book_info_rt;

Notice that when I declare a record based on a record TYPE, I do not use the
%ROWTYPE attribute. The book_info_rt element already is a TYPE.

The general format of the %ROWTYPE declaration is:

record_name [schema_name.]object_name%ROWTYPE
 [DEFAULT|:= compatible_record];

The schema_name is optional (if not specified, then the schema under which the code
is compiled is used to resolve the reference). The object_name can be an explicit cursor,

314 | Chapter 11: Records

Download at WoweBook.Com

cursor variable, table, view, or synonym. You can provide an optional default value,
which would be a record of the same or compatible type.

Here is an example of the creation of a record based on a cursor variable:

DECLARE
 TYPE book_rc IS REF CURSOR RETURN books%ROWTYPE;
 book_cv book_rc;

 one_book book_cv%ROWTYPE;
BEGIN
 ...

The other way to declare and use a record is to do so implicitly, with a cursor FOR
loop. In the following block, the book_rec record is not defined in the declaration
section; PL/SQL automatically declares it for me with the %ROWTYPE attribute
against the loop’s query:

BEGIN
 FOR book_rec IN (SELECT * FROM books)
 LOOP
 calculate_total_sales (book_rec);
 END LOOP;
END;

By far the most interesting and complicated way to declare a record is with the TYPE
statement, so let’s explore that feature in a bit more detail.

Programmer-Defined Records
Table- and cursor-based records are great when you need to create program data
matching those structures. Yet do these kinds of records cover all of our needs for
composite data structures? What if I want to create a record that has nothing to do with
either a table or a cursor? What if I want to create a record whose structure is derived
from several different tables and views? Should I really have to create a “dummy” cursor
just so I can end up with a record of the desired structure? For just these kinds of
situations, PL/SQL offers programmer-defined records, declared with the
TYPE...RECORD statement.

With the programmer-defined record, you have complete control over the number,
names, and datatypes of fields in the record. To declare a programmer-defined record,
you must perform two distinct steps:

1. Declare or define a record TYPE containing the structure you want in your record.

2. Use this record TYPE as the basis for declarations of your own actual records having
that structure.

Records in PL/SQL | 315

Download at WoweBook.Com

Declaring programmer-defined record TYPEs

You declare a record type with the TYPE statement. The TYPE statement specifies the
name of the new record structure, and the components or fields that make up that
record. The general syntax of the record TYPE definition is:

TYPE type_name IS RECORD
 (field_name1 datatype1 [[NOT NULL]:=|DEFAULT default_value],
 field_name2 datatype2 [[NOT NULL]:=|DEFAULT default_value],
 ...
 field_nameN datatypeN [[NOT NULL]:=|DEFAULT default_value]
);

where field_nameN is the name of the Nth field in the record, and datatypeN is the
datatype of that Nth field. The datatype of a record’s field can be any of the following:

• Hardcoded, scalar datatype (VARCHAR2, NUMBER, etc.).

• Programmer-defined SUBTYPE.

• Anchored declarations using %TYPE or %ROWTYPE attributes. In the latter case,
I have created a nested record—one record inside another.

• PL/SQL collection type; a field in a record can be a list or even a collection.

• REF CURSOR, in which case the field contains a cursor variable.

Here is an example of a record TYPE statement:

TYPE company_rectype IS RECORD (
 comp# company.company_id%TYPE
 , list_of_names DBMS_SQL.VARCHAR2S
 , dataset SYS_REFCURSOR
);

You can declare a record TYPE in a local declaration section or in a package specifica-
tion; the latter approach allows you to globally reference that record type in any
PL/SQL block compiled in the schema that owns the package or in the PL/SQL blocks
of any schema that has EXECUTE privileges on the package.

Declaring the record

Once you have created your own customized record types, you can use those types in
declarations of specific records. The actual record declarations have the following
format:

record_name record_type;

where record_name is the name of the record, and record_type is the name of a record
type that you have defined with the TYPE...RECORD statement.

To build a customer sales record, for example, I first define a record type called
customer_sales_rectype, as follows:

PACKAGE customer_sales_pkg
IS

316 | Chapter 11: Records

Download at WoweBook.Com

 TYPE customer_sales_rectype IS RECORD
 (customer_id customer.customer_id%TYPE,
 customer_name customer.name%TYPE,
 total_sales NUMBER (15,2)
);

This is a three-field record structure that contains the primary key and name informa-
tion for a customer, as well as a calculated, total amount of sales for the customer. I
can then use this new record type to declare records with the same structure as this type:

DECLARE
 prev_customer_sales_rec customer_sales_pkg.customer_sales_rectype;
 top_customer_rec customer_sales_pkg.customer_sales_rectype;

Notice that I do not need the %ROWTYPE attribute, or any other kind of keyword, to
denote this as a record declaration. The %ROWTYPE attribute is needed only for table
and cursor records.

You can also pass records based on these types as arguments to procedures; simply use
the record type as the type of the formal parameter as shown here:

PROCEDURE analyze_cust_sales (
 sales_rec_in IN customer_sales_pkg.customer_sales_rectype)

In addition to specifying the datatype, you can supply default values for individual fields
in a record with the DEFAULT or := syntax. Finally, each field name within a record
must be unique.

Examples of programmer-defined record declarations

Suppose that I declare the following subtype, a cursor, and an associative array data
structure.*

SUBTYPE long_line_type IS VARCHAR2(2000);

CURSOR company_sales_cur IS
 SELECT name, SUM (order_amount) total_sales
 FROM company c, orders o
 WHERE c.company_id = o.company_id;

TYPE employee_ids_tabletype IS
 TABLE OF employees.employee_id%TYPE
 INDEX BY BINARY_INTEGER;

I can then define the following programmer-defined record in that same declaration
section:

• A programmer-defined record that is a subset of the company table, plus a PL/SQL
table of employees. I use the %TYPE attribute to link the fields in the record directly

* Associative array is the latest name for what used to be called a “PL/SQL table” or an “index-by table,” as
explained in detail in Chapter 12.

Records in PL/SQL | 317

Download at WoweBook.Com

to the table. I then add a third field, which is actually an associative array of em-
ployee ID numbers.

TYPE company_rectype IS RECORD
 (company_id company.company_id%TYPE,
 company_name company.name%TYPE,
 new_hires_tab employee_ids_tabletype);

• A mish-mash of a record that demonstrates the different kinds of field declarations
in a record, including the NOT NULL constraint, the use of a subtype, the %TYPE
attribute, a default value specification, an associative array, and a nested record.
These varieties are shown here.

TYPE mishmash_rectype IS RECORD
 (emp_number NUMBER(10) NOT NULL := 0,
 paragraph_text long_line_type,
 company_nm company.name%TYPE,
 total_sales company_sales.total_sales%TYPE := 0,
 new_hires_tab employee_ids_tabletype,
 prefers_nonsmoking_fl BOOLEAN := FALSE,
 new_company_rec company_rectype
);

As you can see, PL/SQL offers tremendous flexibility in designing your own record
structures. Your records can represent tables, views, and SELECT statements in a
PL/SQL program. They can also be arbitrarily complex, with fields that are actually
records within records or associative arrays.

Working with Records
Regardless of how you define a record (based on a table, cursor, or explicit record TYPE
statement), you work with the resulting record in the same ways. You can work with
the data in a record at the “record level,” or you can work with individual fields of the
record.

Record-level operations

When you work at the record level, you avoid any references to individual fields in the
record. Here are the record-level operations currently supported by PL/SQL:

• You can copy the contents of one record to another, as long as they are defined
based on the same user-defined record types or compatible %ROWTYPE records
(they have the same number of fields and the same or implicitly-convertible
datatypes).

• You can assign a value of NULL to a record with a simple assignment.

• You can define and pass the record as an argument in a parameter list.

• You can RETURN a record back through the interface of a function.

Several record-level operations are not yet supported:

318 | Chapter 11: Records

Download at WoweBook.Com

• You cannot use the IS NULL syntax to see if all fields in the record have NULL
values. Instead, you must apply the IS NULL operator to each field individually.

• You cannot compare two records—for example, you cannot ask if the records (the
values of their fields) are the same or different, or if one record is greater than or
less than another. Unfortunately, to answer these kinds of questions, you must
compare each field individually. I cover this topic and provide a utility that
generates such comparison code in “Comparing Records” on page 325.

• Prior to Oracle9i Database Release 2, you could not insert into a database table
with a record. Instead, you had to pass each individual field of the record for the
appropriate column. For more information on record-based DML, see Chapter 14.

You can perform record-level operations on any records with compatible structures. In
other words, the records must have the same number of fields and the same or con-
vertible datatypes, but they don’t have to be the same type. Suppose that I have created
the following table:

CREATE TABLE cust_sales_roundup (
 customer_id NUMBER (5),
 customer_name VARCHAR2 (100),
 total_sales NUMBER (15,2)
)

Then the three records defined as follows all have compatible structures, and I can
“mix-and-match” the data in these records as shown:

DECLARE
 cust_sales_roundup_rec cust_sales_roundup%ROWTYPE;

 CURSOR cust_sales_cur IS SELECT * FROM cust_sales_roundup;
 cust_sales_rec cust_sales_cur%ROWTYPE;

 TYPE customer_sales_rectype IS RECORD
 (customer_id NUMBER(5),
 customer_name customer.name%TYPE,
 total_sales NUMBER(15,2)
);
 preferred_cust_rec customer_sales_rectype;
BEGIN
 -- Assign one record to another.
 cust_sales_roundup_rec := cust_sales_rec;
 preferred_cust_rec := cust_sales_rec;
END;

Let’s look at some other examples of record-level operations.

• In this example, I’ll assign a default value to a record. You can initialize a record
at the time of declaration by assigning it another, compatible record. In the fol-
lowing program, I assign an IN argument record to a local variable. I might do this
so that I can modify the values of fields in the record:

PROCEDURE compare_companies
 (prev_company_rec IN company%ROWTYPE)

Records in PL/SQL | 319

Download at WoweBook.Com

IS
 curr_company_rec company%ROWTYPE := prev_company_rec;
BEGIN
 ...
END;

• In this next initialization example, I create a new record type and record. I then
create a second record type using the first record type as its single column. Finally,
I initialize this new record with the previously defined record:

DECLARE
 TYPE first_rectype IS RECORD (var1 VARCHAR2(100) := 'WHY NOT');
 first_rec first_rectype;
 TYPE second_rectype IS RECORD (nested_rec first_rectype := first_rec);
BEGIN
 ...
END;

• I can also perform assignments within the execution section, as you might expect.
In the following example I declare two different rain_forest_history records and
then set the current history information to the previous history record:

DECLARE
 prev_rain_forest_rec rain_forest_history%ROWTYPE;
 curr_rain_forest_rec rain_forest_history%ROWTYPE;
BEGIN
 ... initialize previous year rain forest data ...

 -- Transfer data from previous to current records.
 curr_rain_forest_rec := prev_rain_forest_rec;

• The result of this aggregate assignment is that the value of each field in the current
record is set to the value of the corresponding field in the previous record. I could
also have accomplished this with individual direct assignments from the previous
to current records. This would have required multiple, distinct assignments and
lots of typing; whenever possible, use record-level operations to save time and make
your code less vulnerable to change.

• I can move data directly from a row in a table to a record in a program by fetching
directly into a record. Here are two examples:

DECLARE
 /*
 || Declare a cursor and then define a record based on that cursor
 || with the %ROWTYPE attribute.
 */
 CURSOR cust_sales_cur IS
 SELECT customer_id, customer_name, SUM (total_sales) tot_sales
 FROM cust_sales_roundup
 WHERE sold_on < ADD_MONTHS (SYSDATE, −3)
 GROUP BY customer_id, customer_name;
 cust_sales_rec cust_sales_cur%ROWTYPE;
BEGIN
 /* Move values directly into record by fetching from cursor */

320 | Chapter 11: Records

Download at WoweBook.Com

 OPEN cust_sales_cur;
 FETCH cust_sales_cur INTO cust_sales_rec;
 CLOSE cust_sales_cur;

In this next block, I declare a programmer-defined TYPE that matches the data
retrieved by the implicit cursor. Then I SELECT directly into a record based on
that type.

DECLARE
 TYPE customer_sales_rectype IS RECORD
 (customer_id customer.customer_id%TYPE,
 customer_name customer.name%TYPE,
 total_sales NUMBER (15,2)
);
 top_customer_rec customer_sales_rectype;
BEGIN
 /* Move values directly into the record: */
 SELECT customer_id, customer_name, SUM (total_sales)
 INTO top_customer_rec
 FROM cust_sales_roundup
 WHERE sold_on < ADD_MONTHS (SYSDATE, −3)
 GROUP BY customer_id, customer_name;

• I can set all fields of a record to NULL with a direct assignment.

/* File on web: record_assign_null.sql */
FUNCTION dept_for_name (
 department_name_in IN departments.department_name%TYPE
)
 RETURN departments%ROWTYPE
IS
 l_return departments%ROWTYPE;

 FUNCTION is_secret_department (
 department_name_in IN departments.department_name%TYPE
)
 RETURN BOOLEAN
 IS
 BEGIN
 RETURN CASE department_name_in
 WHEN 'VICE PRESIDENT' THEN TRUE
 ELSE FALSE
 END;
 END is_secret_department;
BEGIN
 SELECT *
 INTO l_return
 FROM departments
 WHERE department_name = department_name_in;

 IF is_secret_department (department_name_in)
 THEN
 l_return := NULL;
 END IF;

Records in PL/SQL | 321

Download at WoweBook.Com

 RETURN l_return;
END dept_for_name;

Whenever possible, try to work with records at the aggregate level: the record as a
whole, and not individual fields. The resulting code is much easier to write and main-
tain. There are, of course, many situations in which you need to manipulate individual
fields of a record. Let’s take a look at how you would do that.

Field-level operations

When you need to access a field within a record (to either read or change its value),
you must use dot notation, just as you would when identifying a column from a specific
database table. The syntax for such a reference is:

[[schema_name.]package_name.]record_name.field_name

You need to provide a package name only if the record is defined in the specification
of a package that is different from the one you are working on at that moment. You
need to provide a schema name only if the package is owned by a schema different from
that in which you are compiling your code.

Once you have used dot notation to identify a particular field, all the normal rules in
PL/SQL apply as to how you can reference and change the value of that field. Let’s take
a look at some examples.

The assignment operator (:=) changes the value of a particular field. In the first assign-
ment, total_sales is zeroed out. In the second assignment, a function is called to return
a value for the Boolean flag output_generated (it is set to TRUE, FALSE, or NULL):

BEGIN
 top_customer_rec.total_sales := 0;
 report_rec.output_generated := check_report_status (report_rec.report_id);
END;

In the next example I create a record based on the rain_forest_history table, populate
it with values, and then insert a record into that same table:

DECLARE
 rain_forest_rec rain_forest_history%ROWTYPE;
BEGIN
 /* Set values for the record */
 rain_forest_rec.country_code := 1005;
 rain_forest_rec.analysis_date := ADD_MONTHS (TRUNC (SYSDATE), −3);
 rain_forest_rec.size_in_acres := 32;
 rain_forest_rec.species_lost := 425;

 /* Insert a row in the table using the record values */
 INSERT INTO rain_forest_history
 (country_code, analysis_date, size_in_acres, species_lost)
 VALUES
 (rain_forest_rec.country_code,
 rain_forest_rec.analysis_date,
 rain_forest_rec.size_in_acres,
 rain_forest_rec.species_lost);

322 | Chapter 11: Records

Download at WoweBook.Com

 ...
END;

Notice that because the analysis_date field is of type DATE, I can assign any valid DATE
expression to that field. The same goes for the other fields, and this is even true for
more complex structures.

Starting with Oracle9i Database Release 2, you can also perform a record-level insert,
simplifying the above INSERT statement into nothing more than this:

INSERT INTO rain_forest_history
 (country_code, analysis_date, size_in_acres, species_lost)
VALUES rain_forest_rec;

Record-level DML (for both inserts and updates) is covered fully in Chapter 14.

Field-level operations with nested records

Suppose that I have created a nested record structure; that is, one of the fields in my
“outer” record is actually another record. In the following example I declare a record
TYPE for all the elements of a telephone number (phone_rectype), and then declare a
record TYPE that collects all the phone numbers for a person together in a single struc-
ture (contact_set_rectype).

DECLARE
 TYPE phone_rectype IS RECORD
 (intl_prefix VARCHAR2(2),
 area_code VARCHAR2(3),
 exchange VARCHAR2(3),
 phn_number VARCHAR2(4),
 extension VARCHAR2(4)
);

 -- Each field is a nested record...
 TYPE contact_set_rectype IS RECORD
 (day_phone# phone_rectype,
 eve_phone# phone_rectype,
 fax_phone# phone_rectype,
 home_phone# phone_rectype,
 cell_phone# phone_rectype
);

 auth_rep_info_rec contact_set_rectype;
BEGIN

Although I still use the dot notation to refer to a field with nested records, now I might
have to refer to a field that is nested several layers deep inside the structure. To do this
I must include an extra dot for each nested record structure, as shown in the following
assignment, which sets the fax phone number’s area code to the home phone number’s
area code:

auth_rep_info_rec.fax_phone#.area_code :=
 auth_rep_info_rec.home_phone#.area_code;

Records in PL/SQL | 323

Download at WoweBook.Com

Field-level operations with package-based records

Finally, here is an example demonstrating references to packaged records (and package-
based record TYPEs). Suppose that I want to plan out my summer reading (for all those
days I will be lounging about in the sand outside my Caribbean hideaway). I create a
package specification as follows:

CREATE OR REPLACE PACKAGE summer
IS
 TYPE reading_list_rt IS RECORD (
 favorite_author VARCHAR2 (100),
 title VARCHAR2 (100),
 finish_by DATE);

 must_read reading_list_rt;
 wifes_favorite reading_list_rt;
END summer;

CREATE OR REPLACE PACKAGE BODY summer
IS
BEGIN -- Initialization section of package
 must_read.favorite_author := 'Tepper, Sheri S.';
 must_read.title := 'Gate to Women''s Country';
END summer;

With this package compiled in the database, I can then construct my reading list as
follows:

DECLARE
 first_book summer.reading_list_rt;
 second_book summer.reading_list_rt;
BEGIN
 summer.must_read.finish_by := TO_DATE ('01-AUG-2009', 'DD-MON-YYYY');
 first_book := summer.must_read;

 second_book.favorite_author := 'Hobb, Robin';
 second_book.title := 'Assassin''s Apprentice';
 second_book.finish_by := TO_DATE ('01-SEP-2009', 'DD-MON-YYYY');
END;

I declare two local book records. I then assign a “finish by” date to the packaged must-
read book (notice the package.record.field syntax) and assign that packaged record to
my first book of the summer record. I then assign values to individual fields for the
second book of the summer.

Note that when you work with the UTL_FILE built-in package for file I/O in PL/SQL,
you follow these same rules. The UTL_FILE.FILE_TYPE datatype is actually a record
TYPE definition. So when you declare a file handle, you are really declaring a record of
a package-based TYPE:

DECLARE
 my_file_id UTL_FILE.FILE_TYPE;

324 | Chapter 11: Records

Download at WoweBook.Com

Comparing Records
How can you check to see if two records are equal (i.e., that each corresponding field
contains the same value)? It would be wonderful if PL/SQL would allow you to perform
a direct comparison, as in:

DECLARE
 first_book summer.reading_list_rt := summer.must_read;
 second_book summer.reading_list_rt := summer.wifes_favorite;
BEGIN
 IF first_book = second_book /* THIS IS NOT SUPPORTED! */
 THEN
 lots_to_talk_about;
 END IF;
END;

Unfortunately, you cannot do that. Instead, to test for record equality, you must write
code that compares each field individually. If a record doesn’t have many fields, this
isn’t too cumbersome. For the reading list record, you would write something like this:

DECLARE
 first_book summer.reading_list_rt := summer.must_read;
 second_book summer.reading_list_rt := summer.wifes_favorite;
BEGIN
 IF first_book.favorite_author = second_book.favorite_author
 AND first_book.title = second_book.title
 AND first_book.finish_by = second_book.finish_by
 THEN
 lots_to_talk_about;
 END IF;
END;

There is one complication to keep in mind. If your requirements indicate that two
NULL records are equal (equally NULL), you will have to modify each comparison to
something like this:

(first_book.favorite_author = second_book.favorite_author
 OR(first_book.favorite_author IS NULL AND
 second_book.favorite_author IS NULL)

Any way you look at it, this is pretty tedious coding. Wouldn’t it be great if you could
generate code to do this for you? In fact, it’s not all that difficult to do precisely that—
at least if the records you want to compare are defined with %ROWTYPE against a
table or view. In this case, you can obtain the names of all fields from the
ALL_TAB_COLUMNS data dictionary view and then format the appropriate code out
to the screen or to a file.

Better yet, you don’t have to figure all that out yourself. Instead, you can download
and run the “records equal” generator designed by Dan Spencer; you will find his
package on the book’s web site in the gen_record_comparison.pkg file.

Records in PL/SQL | 325

Download at WoweBook.Com

Trigger Pseudo-Records
When you are writing code inside database triggers for a particular table, the database
makes available to you two structures, OLD and NEW, which are pseudo-records.
These structures have the same format as table-based records declared with %ROW-
TYPE: they have a field for every column in the table:

OLD
This pseudo-record shows the values of each column in the table before the current
transaction started.

NEW
This pseudo-record reveals the new values of each column about to be placed in
the table when the current transaction completes.

When you reference OLD and NEW within the body of the trigger, you must preface
those identifiers with a colon; within the WHEN clause, however, do not use the colon.
Here is an example:

TRIGGER check_raise
 AFTER UPDATE OF salary
 ON employee
 FOR EACH ROW
WHEN (OLD.salary != NEW.salary) OR
 (OLD.salary IS NULL AND NEW.salary IS NOT NULL) OR
 (OLD.salary IS NOT NULL AND NEW.salary IS NULL)
BEGIN
 IF :NEW.salary > 100000 THEN ...

Chapter 19 offers a more complete explanation of how you can put the OLD and NEW
pseudo-records to use in your database triggers. In particular, that chapter describes
the many restrictions on how you can work with OLD and NEW.

326 | Chapter 11: Records

Download at WoweBook.Com

CHAPTER 12

Collections

A collection is a data structure that acts like a list or a single-dimensional array. Col-
lections are, in fact, the closest you can get in the PL/SQL language to traditional arrays.
This chapter will help you decide which of the three different types of collections (as-
sociative array, nested table, and VARRAY) best fit your program requirements and
show you how to define and manipulate those structures.

Here are some of the ways I’ve found collections handy:

Maintain in-program lists of data
Most generally, I use collections to keep track of lists of data elements within my
programs. Yes, you could use relational tables or global temporary tables (which
would involve many context switches) or delimited strings, but collections are very
efficient structures that can be manipulated with very clean, maintainable code.

Improve multirow SQL operations by an order of magnitude or more
You can use collections in conjunction with FORALL and BULK COLLECT to
dramatically improve the performance of multirow SQL operations. These “bulk”
operations are covered in detail in Chapter 21.

Cache database information
Collections are appropriate for caching database information that is static and
frequently queried in a single session (or simply queried repeatedly in a single pro-
gram) to speed up performance of those queries.

I have noticed over the years that relatively few developers know about and use col-
lections. This always comes as a surprise, because I find them to be so handy. A primary
reason for this limited usage is that collections are relatively complicated. Three dif-
ferent types of collections, multiple steps involved in defining and using them, usage
in both PL/SQL programs and database objects, more complex syntax than simply
working with individual variables: all of these factors conspire to limit usage of
collections.

I have organized this chapter to be comprehensive in my treatment of collections, avoid
redundancy in treatment of similar topics across different collection types, and offer

327

Download at WoweBook.Com

guidance in your usage of collections. The resulting chapter is rather long, but I’m
confident you will get lots out of it. Here is a quick guide to the remainder of its contents:

Collections overview
I start by providing an introduction to collections and some orientation: a descrip-
tion of the different types, an explanation of the terminology specific to collections,
a robust example of each type of collection, and guidelines for deciding which type
of collection to use. If you read no further than this section, you will likely be able
to start writing some basic collection logic. I strongly suggest, however, that you
do read more than this section!

Collection methods
Next, I explore the many methods (procedures and functions) that Oracle provides
to help you examine and manipulate the contents of a collection. Virtually every
usage of collections requires usage of these methods, so you want to make sure you
are comfortable with what they do and how they work.

Working with collections
Now it is time to build on all those “preliminaries” to explore some of the nuances
of working with collections, including the initialization process necessary for nes-
ted tables and VARRAYs, different ways to populate and access collection data,
the manipulation of collection columns through the SQL language, and string-
indexed collections.

Nested table multiset operations
Oracle Database 10g “filled out” the implementation of nested tables as “multisets”
by providing the ability to manipulate the contents of nested tables as sets (union,
intersection, minus, etc.). You can also compare two nested tables for equality and
inequality.

Maintaining schema-level collections
You can define nested table and VARRAY types within the database itself. The
database provides a number of data dictionary views you can use to maintain those
types.

Collections Overview
Let’s start with a review of collection concepts and terminology, a description of the
different types of collections, and a number of examples to get you going.

Collections Concepts and Terminology
The following explanations will help you understand collections and more rapidly es-
tablish a comfort level with these data structures.

328 | Chapter 12: Collections

Download at WoweBook.Com

Element and index value
A collection consists of multiple elements (chunks of data), each element of which
is located at a certain index value in the list. You will sometimes see an element
also referred to as a “row,” and an index value referred to as the “row number.”

Collection type
Each collection variable in your program must be declared based on a predefined
collection type. As I mentioned earlier, there are, very generally, three types of
collections: associative arrays, nested tables, and VARRAYs. Within those generic
types, there are specific types that you define with a TYPE statement in a block’s
declaration section. You can then declare and use instances of those types in your
programs.

Collection or collection instance
The term “collection” may refer to any of the following:

• A PL/SQL variable of type associative array, nested table, or VARRAY

• A table column of type nested table or VARRAY

Regardless of the particular type or usage, however, a collection is at its core a
single-dimensional list of homogeneous elements.

A collection instance is an instance of a particular type of collection.

Partly due to the syntax and names Oracle has chosen to support collections, you
will also find them referred to as arrays and tables.

Homogeneous elements
The datatype of each row element in a collection is the same; thus, its elements are
homogeneous. This datatype is defined by the type of collection used to declare the
collection itself. This datatype can, however, be a composite or complex datatype
itself; you can declare a table of records, for example. And starting with Oracle9i
Database, you can even define multilevel collections, in which the datatype of one
collection is itself a collection type, or a record or object whose attribute contains
a collection.

One-dimensional or single-dimensional
A PL/SQL collection always has just a single column of information in each row,
and is in this way similar to a one-dimensional array. You cannot define a collection
so that it can be referenced as follows:

my_collection (10, 44)

This is a two-dimensional structure and not currently supported with that tradi-
tional syntax. Instead, you can create multidimensional arrays by declaring col-
lections of collections, in which case the syntax you use will be something like this:

my_collection (44) (10)

Unbounded versus bounded
A collection is said to be bounded if there are predetermined limits to the possible
values for row numbers in that collection. It is unbounded if there are no upper or

Collections Overview | 329

Download at WoweBook.Com

lower limits on those row numbers. VARRAYs or variable-sized arrays are always
bounded; when you define them, you specify the maximum number of rows al-
lowed in that collection (the first row number is always 1). Nested tables and as-
sociative arrays are only theoretically bounded. I describe them as unbounded,
because from a theoretical standpoint, there is no limit to the number of rows you
can define in them.

Sparse versus dense
A collection (or array or list) is called dense if all rows between the first and last
row are defined and given a value (including NULL). A collection is sparse if rows
are not defined and populated sequentially; instead, there are gaps between defined
rows, as demonstrated in the associative array example in the next section. VAR-
RAYs are always dense. Nested tables always start as dense collections but can be
made sparse. Associative arrays can be sparse or dense, depending on how you fill
the collection.

Sparseness is a very valuable feature, as it gives you the flexibility to populate rows
in a collection using a primary key or other intelligent key data as the row number.
By doing so, you can define an order on the data in a collection or greatly enhance
the performance of lookups.

Indexed by integers
All collections support the ability to reference a row via the row number, an integer
value. The associative array TYPE declaration makes that explicit with its INDEX
BY clause, but the same rule holds true for the other collection types.

Indexed by strings
Starting with Oracle9i Database Release 2, it is possible to index an associative
array by string values (currently up to 32K in length) instead of by numeric row
numbers. This feature is not available for nested tables or VARRAYs.

Outer table
This refers to the enclosing table in which you have used a nested table or VARRAY
as a column’s datatype.

Inner table
This is the enclosed collection that is implemented as a column in a table; it is also
known as a nested table column.

Store table
This is the physical table that Oracle creates to hold values of the inner table (a
nested table column).

Types of Collections
As mentioned earlier, Oracle supports three different types of collections. While these
different types have much in common, they also each have their own particular char-
acteristics, which are summarized below.

330 | Chapter 12: Collections

Download at WoweBook.Com

Associative arrays
These are single-dimensional, unbounded, sparse collections of homogeneous el-
ements that are available only in PL/SQL. They were called PL/SQL tables in
PL/SQL 2 (which shipped with Oracle 7) and index-by tables in Oracle8 Database
and Oracle8i Database (because when you declare such a collection, you explicitly
state that they are “indexed by” the row number). In Oracle9i Database Release 1,
the name was changed to associative arrays. The motivation for the name change
was that starting with that release, the INDEX BY syntax could be used to “asso-
ciate” or index contents by VARCHAR2 or PLS_INTEGER.

Nested tables
These are also single-dimensional, unbounded collections of homogeneous ele-
ments. They are initially dense but can become sparse through deletions. Nested
tables can be defined in both PL/SQL and the database (for example, as a column
in a table). Nested tables are multisets, which means that there is no inherent order
to the elements in a nested table.

VARRAYs
Like the other two collection types, VARRAYs (variable-sized arrays) are also
single-dimensional collections of homogeneous elements. However, they are al-
ways bounded and never sparse. When you define a type of VARRAY, you must
also specify the maximum number of elements it can contain. Like nested tables,
they can be used in PL/SQL and in the database. Unlike nested tables, when you
store and retrieve a VARRAY, its element order is preserved.

Collection Examples
This section provides relatively simple examples of each different type of collection
with explanations of the major characteristics.

Using an associative array

In the following example, I declare an associative array type and then a collection based
on that type. I populate it with four rows of data and then iterate through the collection,
displaying the strings in the collection. A more thorough explanation appears after the
code.

 1 DECLARE
 2 TYPE list_of_names_t IS TABLE OF person.first_name%TYPE
 3 INDEX BY PLS_INTEGER;
 4 happyfamily list_of_names_t;
 5 l_row PLS_INTEGER;
 6 BEGIN
 7 happyfamily (2020202020) := 'Eli';
 8 happyfamily (-15070) := 'Steven';
 9 happyfamily (-90900) := 'Chris';
10 happyfamily (88) := 'Veva';
11
12 l_row := happyfamily.FIRST;

Collections Overview | 331

Download at WoweBook.Com

13
14 WHILE (l_row IS NOT NULL)
15 LOOP
16 DBMS_OUTPUT.put_line (happyfamily (l_row));
17 l_row := happyfamily.NEXT (l_row);
18 END LOOP;
19 END;

The output is:

Chris
Steven
Veva
Eli

Line(s) Description

2–3 Declare the associative array TYPE, with its distinctive INDEX BY clause. A collection based on this type contains a list
of strings, each of which can be as long as the first_name column in the person table.

4 Declare the happyfamily collection from the list_of_names_t type.

9–10 Populate the collection with four names. Notice that I can use virtually any integer value that I like. The row numbers
don’t have to be sequential in an associative array; they can even be negative! I hope, however, that you will never
write code with such bizarre, randomly selected index values. I simply wanted to demonstrate the flexibility of an
associative array.

12 Call the FIRST method (a function that is “attached” to the collection) to get the first or lowest defined row number
in the collection.

14–18 Use a WHILE loop to iterate through the contents of the collection, displaying each row. Line 17 shows the NEXT
method, which is used to move from the current defined row to the next defined row, “skipping over” any gaps.

Using a nested table

In the following example, I first declare a nested table type as a schema-level type. In
my PL/SQL block, I declare three nested tables based on that type. I put the names of
everyone in my family into the happyfamily nested table. I put the names of my children
in the children nested table. I then use the set operator, MULTISET EXCEPT (intro-
duced in Oracle Database 10g), to extract just the parents from the happyfamily nested
table; finally, I display the names of the parents. A more thorough explanation appears
after the code.

REM Section A
SQL> CREATE TYPE list_of_names_t IS TABLE OF VARCHAR2 (100);
 2 /
Type created.

REM Section B
 1 DECLARE
 2 happyfamily list_of_names_t := list_of_names_t ();
 3 children list_of_names_t := list_of_names_t ();
 4 parents list_of_names_t := list_of_names_t ();
 5 BEGIN
 6 happyfamily.EXTEND (4);

332 | Chapter 12: Collections

Download at WoweBook.Com

 7 happyfamily (1) := 'Eli';
 8 happyfamily (2) := 'Steven';
 9 happyfamily (3) := 'Chris';
 10 happyfamily (4) := 'Veva';
 11
 12 children.EXTEND;
 13 children (1) := 'Chris';
 14 children.EXTEND;
 15 children (2) := 'Eli';
 16
 17 parents := happyfamily MULTISET EXCEPT children;
 18
 19 FOR l_row IN parents.FIRST .. parents.LAST
 20 LOOP
 21 DBMS_OUTPUT.put_line (parents (l_row));
 22 END LOOP;
 23 END;

The output is:

Steven
Veva

Line(s) Description

Section A The CREATE TYPE statement creates a nested table type in the database itself. By taking this approach, I can declare
nested tables in any PL/SQL block that has SELECT authority on the type. I can also declare columns in relational
tables of this type.

2–4 Declare three different nested tables based on the schema-level type. Notice that in each case I also call a
constructor function to initialize the nested table. This function always has the same name as the type and is created
for us by Oracle. You must initialize a nested table before it can be used.

6 Call the EXTEND method to “make room” in my nested table for the members of my family. Here, in contrast to
associative arrays, I must explicitly ask for a row in a nested table before I can place a value in that row.

7–10 Populate the happyfamily collection with our names.

12–15 Populate the children collection. In this case, I extend a single row at a time.

17 To obtain the parents in this family, I simply take the children out of the happyfamily. This is straightforward in
releases from Oracle Database 10g onwards, where we have high-level set operators like MULTISET EXCEPT (very
similar to the SQL MINUS). Notice that I do not need to call the EXTEND method before filling parents. The database
will do this for me automatically, when populating a collection with set operators and SQL operations.

19–22 Because I know that my parents collection is densely filled from the MULTISET EXCEPT operation, I can use the
numeric FOR loop to iterate through the contents of the collection. This construct will raise a NO_DATA_FOUND
exception if used with a sparse collection.

Using a VARRAY

In the following example, I demonstrate the use of VARRAYs as columns in a relational
table. First, I declare two different schema-level VARRAY types. I then create a rela-
tional table, family, that has two VARRAY columns. Finally, in my PL/SQL code, I
populate two local collections and then use them in an INSERT into the family table.
A more thorough explanation appears after the code.

Collections Overview | 333

Download at WoweBook.Com

REM Section A
SQL> CREATE TYPE first_names_t IS VARRAY (2) OF VARCHAR2 (100);
 2 /
Type created.

SQL> CREATE TYPE child_names_t IS VARRAY (1) OF VARCHAR2 (100);
 2 /
Type created.

REM Section B
SQL> CREATE TABLE family (
 2 surname VARCHAR2(1000)
 3 , parent_names first_names_t
 4 , children_names child_names_t
 5);

Table created.

REM Section C
SQL>
 1 DECLARE
 2 parents first_names_t := first_names_t ();
 3 children child_names_t := child_names_t ();
 4 BEGIN
 5 parents.EXTEND (2);
 6 parents (1) := 'Samuel';
 7 parents (2) := 'Charina';
 8 --
 9 children.EXTEND;
 10 children (1) := 'Feather';
 11
 12 --
 13 INSERT INTO family
 14 (surname, parent_names, children_names)
 15 VALUES ('Assurty', parents, children);
 16 END;
SQL> /

PL/SQL procedure successfully completed.

SQL> SELECT * FROM family
 2 /

SURNAME
PARENT_NAMES
CHILDREN_NAMES
--
Assurty
FIRST_NAMES_T('Samuel', 'Charina')
CHILD_NAMES_T('Feather')

334 | Chapter 12: Collections

Download at WoweBook.Com

Line(s) Description

Section A Use CREATE TYPE statements to declare two different VARRAY types. Notice that with a VARRAY, I must specify
the maximum length of the collection. Thus, my declarations in essence dictate a form of social policy: you can
have at most two parents and at most one child.

Section B Create a relational table, with three columns: a VARCHAR2 column for the surname of the family and two
VARRAY columns, one for the parents and another for the children.

Section C,
lines 2–3

Declare two local VARRAYs based on the schema-level type. As with nested tables (and unlike with associative
arrays), I must call the constructor function of the same name as the TYPE to initialize the structures.

5–10 Extend and populate the collections with the names of parents and then the single child. If I try to extend to a
second row, the database will raise the ORA-06532: Subscript outside of limit error.

13–15 Insert a row into the family table, simply providing the VARRAYs in the list of values for the table. Oracle certainly
makes it easy for us to insert collections into a relational table!

Where You Can Use Collections
The following sections describe the different places in your code where a collection can
be declared and used. Because a collection type can be defined in the database itself
(nested tables and VARRAYs only), you can find collections not only in PL/SQL pro-
grams but also inside tables and object types.

Collections as components of a record

Using a collection type in a record is similar to using any other type. You can use
associative arrays, nested tables, VARRAYs, or any combination thereof in RECORD
datatypes. For example:

CREATE OR REPLACE TYPE color_tab_t IS TABLE OF VARCHAR2(100)
/

DECLARE
 TYPE toy_rec_t IS RECORD (
 manufacturer INTEGER,
 shipping_weight_kg NUMBER,
 domestic_colors color_tab_t,
 international_colors color_tab_t
);

Collections as program parameters

Collections can also serve as parameters in functions and procedures. The format for
the parameter declaration is the same as with any other (see Chapter 17 for more
details):

parameter_name [IN | IN OUT | OUT] parameter_type
 [[NOT NULL] [DEFAULT | := default_value]]

PL/SQL does not offer generic, predefined collection types (except in certain supplied
packages, such as DBMS_SQL and DBMS_UTILITY). This means that before you can

Collections Overview | 335

Download at WoweBook.Com

pass a collection as an argument, you must have already defined the collection type
that will serve as the parameter type. You can do this by:

• Defining a schema-level type with CREATE TYPE

• Declaring the collection type in a package specification

• Declaring that type in an outer scope from the definition of the module

Here is an example of using a schema-level type:

CREATE TYPE yes_no_t IS TABLE OF CHAR(1);
/
CREATE OR REPLACE PROCEDURE act_on_flags (flags_in IN yes_no_t)
IS
BEGIN
 ...
END act_on_flags;
/

Here is an example of using a collection type defined in a package specification: there
is only one way to declare an associative array of Booleans (and all other base datatypes),
so why not define them once in a package specification and reference them throughout
my application?

/* File on web: aa_types.pks */
CREATE OR REPLACE PACKAGE aa_types
IS
 TYPE boolean_aat IS TABLE OF BOOLEAN INDEX BY PLS_INTEGER;
 ...
END aa_types;
/

Notice that when I reference the collection type in my parameter list, I must qualify it
with the package name:

CREATE OR REPLACE PROCEDURE act_on_flags (
 flags_in IN aa_types.boolean_aat)
IS
BEGIN
 ...
END act_on_flags;
/

Finally, here is an example of declaring a collection type in an outer block and then
using it in an inner block:

DECLARE
 TYPE birthdates_aat IS VARRAY (10) OF DATE;
 l_dates birthdates_aat := birthdates_aat ();
BEGIN
 l_dates.EXTEND (1);
 l_dates (1) := SYSDATE;

 DECLARE
 FUNCTION earliest_birthdate (list_in IN birthdates_aat) RETURN DATE
 IS

336 | Chapter 12: Collections

Download at WoweBook.Com

 BEGIN
 ...
 END earliest_birthdate;
 BEGIN
 DBMS_OUTPUT.put_line (earliest_birthdate (l_dates));
 END;
END;

Collection as datatype of a function’s return value

In the next example, I have defined color_tab_t as the type of a function return value,
and also used it as the datatype of a local variable. The same restriction about scope
applies to this usage: types must be declared outside the module’s scope.

FUNCTION true_colors (whose_id IN NUMBER) RETURN color_tab_t
AS
 l_colors color_tab_t;
BEGIN
 SELECT favorite_colors INTO l_colors
 FROM personality_inventory
 WHERE person_id = whose_id;
 RETURN l_colors;
END;

(You’ll meet BULK COLLECT properly in Chapter 15.)

How would you use this function in a PL/SQL program? Because it acts in the place of
a variable of type color_tab_t, you can do one of two things with the returned data:

1. Assign the entire result to a collection variable.

2. Assign a single element of the result to a variable (as long as the variable is of a type
compatible with the collection’s elements).

Option #1 is easy. Notice, by the way, that this is another circumstance where you
don’t have to initialize the collection variable explicitly:

DECLARE
 color_array color_tab_t;
BEGIN
 color_array := true_colors (8041);
END;

With Option #2, I put a subscript after the function call, as follows::

DECLARE
 one_of_my_favorite_colors VARCHAR2(30);
BEGIN
 one_of_my_favorite_colors := true_colors (8041) (1);
END;

Note that this code has a small problem: if there is no record in the database table
where person_id is 8041, the attempt to read its first element will raise a
COLLECTION_IS_NULL exception. I must therefore trap and deal with this excep-
tion in a way that makes sense to the application.

Collections Overview | 337

Download at WoweBook.Com

Collection as “columns” in a database table

Using a nested table or VARRAY, you can store and retrieve nonatomic data in a single
column of a table. For example, the employee table used by the HR department could
store the date of birth for each employee’s dependents in a single column, as shown in
Table 12-1.

Table 12-1. Storing a column of dependents as a collection in a table of employees

Id (NUMBER) Name (VARCHAR2) Dependents_ages (Dependent_birthdate_t)

10010 Zaphod Beeblebrox 12-JAN-1763

 4-JUL-1977

 22-MAR-2021

10020 Molly Squiggly 15-NOV-1968

 15-NOV-1968

10030 Joseph Josephs

10040 Cepheus Usrbin 27-JUN-1995

 9-AUG-1996

 19-JUN-1997

10050 Deirdre Quattlebaum 21-SEP-1997

It’s not terribly difficult to create such a table. First I define the collection type:

CREATE TYPE Dependent_birthdate_t AS VARRAY(10) OF DATE;

Now I can use it in the table definition:

CREATE TABLE employees (
 id NUMBER,
 name VARCHAR2(50),
 ...other columns...,
 dependents_ages dependent_birthdate_t
);

I can populate this table using the following INSERT syntax, which relies on the type’s
default constructor (discussed later in this chapter) to transform a list of dates into values
of the proper datatype:

INSERT INTO employees VALUES (42, 'Zaphod Beeblebrox', ...,
 dependent_birthdate_t('12-JAN-1765', '4-JUL-1977', '22-MAR-2021'));

Now let’s look at an example of a nested table datatype as a column. When I create the
outer table personality_inventory, I must tell the database what I want to call the “store
table.”

CREATE TABLE personality_inventory (
 person_id NUMBER,
 favorite_colors color_tab_t,
 date_tested DATE,

338 | Chapter 12: Collections

Download at WoweBook.Com

 test_results BLOB)
NESTED TABLE favorite_colors STORE AS favorite_colors_st;

The NESTED TABLE…STORE AS clause tells the database that I want the store table
for the favorite_colors column to be called favorite_colors_st. There is no preset limit
on how large this store table, which is located “out of line” (or separate from the rest
of that row’s data to accommodate growth) can grow.

You cannot directly manipulate data in the store table, and any attempt to retrieve or
store data directly into favorite_colors_st will generate an error. The only path by which
you can read or write the store table’s attributes is via the outer table. (See the discussion
of collection pseudo-functions in “Working with Collections in SQL” on page 382 for
a few examples of doing so.) You cannot even specify storage parameters for the store
table; it inherits the physical attributes of its outermost table.

One chief difference between nested tables and VARRAYs surfaces when you use them
as column datatypes. Although using a VARRAY as a column’s datatype can achieve
much the same result as a nested table, VARRAY data must be predeclared to be of a
maximum size, and is actually stored “inline” with the rest of the table’s data. For this
reason, Oracle Corporation says that VARRAY columns are intended for “small” ar-
rays, and that nested tables are appropriate for “large” arrays.

Collections as attributes of an object type

In this example, I am modeling automobile specifications. Each Auto_spec_t object
will include a list of manufacturer’s colors in which you can purchase the vehicle.

CREATE TYPE auto_spec_t AS OBJECT (
 make VARCHAR2(30),
 model VARCHAR2(30),
 available_colors color_tab_t
);

Because there is no data storage required for the object type, it is not necessary to
designate a name for the companion table at the time I issue the CREATE TYPE ... AS
OBJECT statement.

When the time comes to implement the type as, say, an object table, you could do this:

CREATE TABLE auto_specs OF auto_spec_t
 NESTED TABLE available_colors STORE AS available_colors_st;

This statement requires a bit of explanation. When you create a “table of objects,” the
database looks at the object type definition to determine what columns you want. When
it discovers that one of the object type’s attributes, available_colors, is in fact a nested
table, the database treats this table as it did in earlier examples; in other words, it wants
to know what to name the store table. So the phrase:

...NESTED TABLE available_colors STORE AS available_colors_st

says that you want the available_colors column to have a store table named
available_colors_st.

Collections Overview | 339

Download at WoweBook.Com

See Chapter 25, Object-Oriented Aspects of PL/SQL, for more information about Oracle
object types.

Choosing a Collection Type
Which collection type makes sense for your application? In some cases, the choice is
obvious. In others, there may be several acceptable choices. This section provides some
guidance. Table 12-2 illustrates many of the differences between associative arrays,
nested tables, and VARRAYs.

As a PL/SQL developer, I find myself leaning toward using associative arrays as a first
instinct. Why is this? They involve the least amount of coding. You don’t have to ini-
tialize or extend them. They have historically been the most efficient collection type
(although this distinction will probably fade over time). However, if you want to store
your collection within a database table, you cannot use an associative array. The ques-
tion then becomes: nested table or VARRAY?

The following guidelines will help you make your choice; I recommend, however, that
you read the rest of the chapter first if you are not very familiar with collections already.

• If you need sparse collections (for example, for “data-smart” storage), your only
practical option is an associative array. True, you could allocate and then delete
elements of a nested table variable (as illustrated in the later section on NEXT and
PRIOR methods), but it is inefficient to do so for anything but the smallest
collections.

• If your PL/SQL application requires negative subscripts, you also have to use as-
sociative arrays.

• If you are running Oracle Database 10g or later, and you’d find it useful to perform
high-level set operations on your collections, choose nested tables over associative
arrays.

• If you want to enforce a limit to the number of rows stored in a collection, use
VARRAYs.

• If you intend to store large amounts of persistent data in a column collection, your
only option is a nested table. The database will then use a separate table behind
the scenes to hold the collection data, so you can allow for almost limitless growth.

• If you want to preserve the order of elements stored in the collection column and
if your dataset will be small, use a VARRAY. What is “small?” I tend to think in
terms of how much data you can fit into a single database block; if you span blocks,
you get row chaining, which decreases performance.

• Here are some other indications that a VARRAY would be appropriate: you don’t
want to worry about deletions occurring in the middle of the data set; your data
has an intrinsic upper bound; or you expect, in general, to retrieve the entire col-
lection simultaneously.

340 | Chapter 12: Collections

Download at WoweBook.Com

Table 12-2. Comparing Oracle collection types

Characteristic Associative array Nested table VARRAY

Dimensionality Single Single Single

Usable in SQL? No Yes Yes

Usable as column datatype
in a table?

No Yes; data stored “out of line”
(in separate table)

Yes; data stored “in line” (in
same table)

Uninitialized state Empty (cannot be null); el-
ements undefined

Atomically null; illegal to
reference elements

Atomically null; illegal to
reference elements

Initialization Automatic, when declared Via constructor, fetch,
assignment

Via constructor, fetch,
assignment

In PL/SQL elements, refer-
enced via

BINARY_INTEGER and any
of its subtypes
(-2,147,483,647 ..
2,147,483,647)

VARCHAR2 (Oracle9i Data-
base Release 2 and later)

Positive integer between 1 and
2,147,483,647

Sparse? Yes Initially, no; after deletions,
yes

No

Bounded? No Can be extended Yes

Can assign value to any
element at any time?

Yes No; may need to EXTEND first No; may need to EXTEND first,
and cannot EXTEND past upper
bound

Means of extending Assign value to element
with a new subscript

Use built-in EXTEND proce-
dure (or TRIM to condense),
with no predefined maximum

EXTEND (or TRIM), but only up
to declared maximum size

Can be compared for
equality?

No Yes, Oracle Database 10g and
later

No

Can be manipulated with
set operators

No Yes, Oracle Database 10g and
later

No

Retains ordering and sub-
scripts when stored in and
retrieved from database?

N/A No Yes

Collection Methods (Built-ins)
PL/SQL offers a number of built-in functions and procedures, known as collection
methods, that let you obtain information about and modify the contents of collections.
Table 12-3 contains the complete list of these programs.

Collection Methods (Built-ins) | 341

Download at WoweBook.Com

Table 12-3. Collection methods

Method (function or procedure) Description

COUNT function Returns the current number of elements in a collection.

DELETE procedure Removes one or more elements from the collection. Reduces COUNT if the
element is not already removed. With VARRAYs, you can delete only the
entire contents of the collection.

EXISTS function Returns TRUE or FALSE to indicate whether the specified element exists.

EXTEND procedure Increases the number of elements in a nested table or VARRAY. Increases
COUNT.

FIRST, LAST functions Returns the smallest (FIRST) and largest (LAST) subscript in use.

LIMIT function Returns the maximum number of elements allowed in a VARRAY.

PRIOR, NEXT functions Returns the subscript immediately before (PRIOR) or after (NEXT) a specified
subscript. You should always use PRIOR and NEXT to traverse a collection,
especially if you are working with sparse (or potentially sparse) collections.

TRIM procedure Removes collection elements from the end of the collection (highest defined
subscript).

These programs are referred to as methods because the syntax for using the collection
built-ins is different from the normal syntax used to call procedures and functions.
Collection methods employ a member method syntax that’s common in object-oriented
languages such as Java.

To give you a feel for member-method syntax, consider the LAST function. It returns
the greatest index value in use in the associative array. Using standard function syntax,
you might expect to call LAST as follows:

IF LAST (company_table) > 10 THEN ... /* Invalid syntax */

In other words, you’d pass the associative array as an argument. In contrast, by using
the member-method syntax, the LAST function is a method that “belongs to” the
object—in this case, the associative array. So the correct syntax for using LAST is:

IF company_table.LAST > 10 THEN ... /* Correct syntax */

The general syntax for calling these associative array built-ins is either of the following:

• An operation that takes no arguments:

table_name.operation

• An operation that takes a row index for an argument:

table_name.operation(index_number [, index_number])

The following statement, for example, returns TRUE if the 15th row of the
company_tab associative array is defined:

company_tab.EXISTS(15)

342 | Chapter 12: Collections

Download at WoweBook.Com

The collection methods are not available from within SQL; they can be used only in
PL/SQL programs.

The COUNT Method
Use COUNT to compute the number of elements defined in an associative array, nested
table, or VARRAY. If elements have been DELETEd or TRIMmed from the collection,
they are not included in COUNT.

The specification for COUNT is:

FUNCTION COUNT RETURN PLS_INTEGER;

Let’s look at an example. Before I do anything with my collection, I verify that it contains
some information:

DECLARE
 volunteer_list volunteer_list_ar := volunteer_list_ar('Steven');
BEGIN
 IF volunteer_list.COUNT > 0
 THEN
 assign_tasks (volunteer_list);
 END IF;
END;

Boundary considerations

If COUNT is applied to an initialized collection with no elements, it returns zero. It
also returns zero if it’s applied to an empty associative array.

Exceptions possible

If COUNT is applied to an uninitialized nested table or a VARRAY, it raises the
COLLECTION_IS_NULL predefined exception. Note that this exception is not pos-
sible for associative arrays, which do not require initialization.

The DELETE Method
Use DELETE to remove one, a range of, or all elements of an associative array, nested
table, or VARRAY. DELETE without arguments removes all of the elements of a col-
lection. DELETE(i) removes the ith element from the nested table or associative array.
DELETE(i,j) removes all elements in an inclusive range beginning with i and ending
with j. If the collection is a string-indexed associative array, then i and j are strings;
otherwise, i and j are integers.

When you do provide actual arguments in your invocation of DELETE, it actually keeps
a placeholder for the “removed” element, and you can later reassign a value to that
element.

Collection Methods (Built-ins) | 343

Download at WoweBook.Com

In physical terms, PL/SQL releases the memory only when your program deletes a
sufficient number of elements to free an entire page of memory (unless you DELETE all
the elements, which frees all the memory immediately).

When DELETE is applied to VARRAYs, you can issue DELETE only
without arguments (i.e., remove all rows). In other words, you cannot
delete individual rows of a VARRAY, possibly making it sparse. The
only way to remove a row from a VARRAY is to TRIM from the end of
the collection.

The following procedure removes everything but the last element in the collection. It
actually uses four collection methods: FIRST, to obtain the first defined row; LAST, to
obtain the last defined row; PRIOR, to determine the next-to-last row; and DELETE
to remove all but the last.

PROCEDURE keep_last (the_list IN OUT List_t)
AS
 first_elt PLS_INTEGER := the_list.FIRST;
 next_to_last_elt PLS_INTEGER := the_list.PRIOR(the_list.LAST);
BEGIN
 the_list.DELETE(first_elt, next_to_last_elt);
END;

Here are some additional examples:

• Delete all the rows from the names table:

names.DELETE;

• Delete the 77th row from the globals table:

globals.DELETE (77);

• Delete all the rows in the temperature readings table between the 0th row and the
−15,000th row, inclusively:

temp_readings.DELETE (-15000, 0);

Boundary considerations

If i and/or j refer to nonexistent elements, DELETE attempts to “do the right thing”
and will not raise an exception. For example, if you have defined elements in a nested
table in index values 1, 2, and 3, then DELETE(–5,1), will remove only the item in
position 1. DELETE(–5), on the other hand, will not change the collection.

Exceptions possible

If DELETE is applied to an uninitialized nested table or a VARRAY, it raises the
COLLECTION_ IS_NULL predefined exception.

344 | Chapter 12: Collections

Download at WoweBook.Com

The EXISTS Method
Use the EXISTS method with nested tables, associative arrays, and VARRAYs to de-
termine if the specified row exists within the collection. It returns TRUE if the element
exists, FALSE otherwise. It never returns NULL. If you have used TRIM or DELETE
to remove a row that existed previously, EXISTS for that row number returns FALSE.

In the following block, I check to see if my row exists, and if so I set it to NULL.

DECLARE
 my_list color_tab_t := color_tab_t();
 element PLS_INTEGER := 1;
BEGIN
 ...
 IF my_list.EXISTS(element)
 THEN
 my_list(element) := NULL;
 END IF;
END;

Boundary considerations

If EXISTS is applied to an uninitialized (atomically null) nested table or a VARRAY, or
an initialized collection with no elements, it simply returns FALSE. You can use EXISTS
beyond the COUNT without raising an exception.

Exceptions possible

There are no exceptions for EXISTS.

The EXTEND Method
Adding an element to a nested table or VARRAY requires a separate allocation step.
Making a “slot” in memory for a collection element is independent from assigning a
value to it. If you haven’t initialized the collection with a sufficient number of elements
(null or otherwise), you must first use the EXTEND procedure on the variable. Do not
use EXTEND with associative arrays.

EXTEND appends element(s) to a collection. EXTEND with no arguments appends a
single null element. EXTEND(n) appends n null elements. EXTEND(n,i) appends n
elements and sets each to the same value as the ith element; this form of EXTEND is
required for collections with NOT NULL elements.

Here is the overloaded specification of EXTEND:

PROCEDURE EXTEND (n PLS_INTEGER:=1);
PROCEDURE EXTEND (n PLS_INTEGER, i PLS_INTEGER);

In the following example, the push procedure extends my list by a single row and
populates it:

Collection Methods (Built-ins) | 345

Download at WoweBook.Com

PROCEDURE push (the_list IN OUT List_t, new_value IN VARCHAR2)
AS
BEGIN
 the_list.EXTEND;
 the_list(the_list.LAST) := new_value;
END;

I can also use EXTEND to add 10 new rows to my list, all with the same value. First I
extend a single row and populate explicitly. Then I extend again, this time by 9 rows,
and specify the row number with new_value as the initial value for all my new rows.

PROCEDURE push_ten (the_list IN OUT List_t, new_value IN VARCHAR2)
AS
 l_copyfrom PLS_INTEGER;
BEGIN
 the_list.EXTEND;
 l_copyfrom := the_list.LAST;
 the_list(l_copyfrom) := new_value;
 the_list.EXTEND (9, l_copyfrom);
END;

Boundary considerations

If you have DELETEd or TRIMmed from the end of a collection, EXTEND will “jump
over” (skip) the deleted elements when it assigns a new index. If n is null, EXTEND
will do nothing.

Exceptions possible

If EXTEND is applied to an uninitialized nested table or a VARRAY, it raises the
COLLECTION_IS_NULL predefined exception. An attempt to EXTEND a VARRAY
beyond its declared limit raises the SUBSCRIPT_BEYOND_LIMIT exception.

The FIRST and LAST Methods
Use the FIRST and LAST methods with nested tables, associative arrays, and VARRAYs
to return, respectively, the lowest and highest index values defined in the collection.
For string-indexed associative arrays, these methods return strings; “lowest” and
“highest” are determined by the ordering of the character set in use in that session. For
all other collection types, these methods return integers.

The specifications for these functions follow.

FUNCTION FIRST RETURN PLS_INTEGER | VARCHAR2;
FUNCTION LAST RETURN PLS_INTEGER | VARCHAR2;

For example, the following code scans from the start to the end of my collection:

FOR indx IN holidays.FIRST .. holidays.LAST
LOOP
 send_everyone_home (indx);
END LOOP;

346 | Chapter 12: Collections

Download at WoweBook.Com

Please remember that this kind of loop will only work (i.e., not raise a
NO_DATA_FOUND exception) if the collection is densely populated.

In the next example, I use COUNT to concisely specify that I want to append a row to
the end of an associative array. I use a cursor FOR loop to transfer data from the
database to an associative array of records. When the first record is fetched, the com-
panies collection is empty, so the COUNT operator will return 0.

FOR company_rec IN company_cur
LOOP
 companies ((companies.COUNT) + 1).company_id
 company_rec.company_id;
END LOOP;

Boundary considerations

FIRST and LAST return NULL when they are applied to initialized collections that have
no elements. For VARRAYs, which have at least one element, FIRST is always 1, and
LAST is always equal to COUNT.

Exceptions possible

If FIRST and LAST are applied to an uninitialized nested table or a VARRAY, they raise
the COLLECTION_ IS_NULL predefined exception.

The LIMIT Method
Use the LIMIT method to determine the maximum number of elements that can be
defined in a VARRAY. This function will return NULL if it is applied to initialized
nested tables or to associative arrays. The specification for LIMIT is:

FUNCTION LIMIT RETURN PLS_INTEGER;

The following conditional expression makes sure that there is still room in my VARRAY
before extending:

IF my_list.LAST < my_list.LIMIT
THEN
 my_list.EXTEND;
END IF;

Boundary considerations

There are no boundary considerations for LIMIT.

Exceptions possible

If LIMIT is applied to an uninitialized nested table or a VARRAY, it raises the
COLLECTION_ IS_NULL predefined exception.

Collection Methods (Built-ins) | 347

Download at WoweBook.Com

The PRIOR and NEXT Methods
Use the PRIOR and NEXT methods with nested tables, associative arrays, and VAR-
RAYs to navigate through the contents of a collection.

PRIOR returns the next-lower index value in use relative to i; NEXT returns the next
higher. In the following example, this function returns the sum of elements in a list_t
collection of numbers:

FUNCTION compute_sum (the_list IN list_t) RETURN NUMBER
AS
 row_index PLS_INTEGER := the_list.FIRST;
 total NUMBER := 0;
BEGIN
 LOOP
 EXIT WHEN row_index IS NULL;
 total := total + the_list(row_index);
 row_index := the_list.NEXT(row_index);
 END LOOP;
 RETURN total;
END compute_sum;

Here is that same program working from the last to the very first defined row in the
collection:

FUNCTION compute_sum (the_list IN list_t) RETURN NUMBER
AS
 row_index PLS_INTEGER := the_list.LAST;
 total NUMBER := 0;
BEGIN
 LOOP
 EXIT WHEN row_index IS NULL;
 total := total + the_list(row_index);
 row_index := the_list.PRIOR(row_index);
 END LOOP;
 RETURN total;
END compute_sum;

In this case, it doesn’t matter which direction you move through the collection. In other
programs, though, it can make a big difference.

Boundary considerations

If PRIOR and NEXT are applied to initialized collections that have no elements, they
return NULL. If i is greater than or equal to COUNT, NEXT returns NULL; if i is less
than or equal to FIRST, PRIOR returns NULL.

Through Oracle Database 11g, if the collection has elements, and i is
greater than COUNT, PRIOR returns LIMIT; if i is less than FIRST,
NEXT returns FIRST. However, do not rely on this behavior in future
database versions.

348 | Chapter 12: Collections

Download at WoweBook.Com

Exceptions possible

If PRIOR and NEXT are applied to an uninitialized nested table or a VARRAY, they
raise the COLLECTION_ IS_NULL predefined exception.

The TRIM Method
Use TRIM to remove n elements from the end of a nested table or VARRAY. Without
arguments, TRIM removes exactly one element. As I’ve already mentioned, confusing
behavior occurs if you combine DELETE and TRIM actions on a collection; for exam-
ple, if an element that you are trimming has previously been DELETEd, TRIM “repeats”
the deletion but counts this as part of n, meaning that you may be TRIMming fewer
actual elements than you think.

Attempting to TRIM an associative array will produce a compile-time
error.

The specification for TRIM is:

PROCEDURE TRIM (n PLS_INTEGER:=1);

The following function pops the last value off of a list and returns it to the invoking
block. The “pop” action is implemented by trimming the collection by a single row
after extracting the value.

FUNCTION pop (the_list IN OUT list_t) RETURN VARCHAR2
AS
 l_value VARCHAR2(30);
BEGIN
 IF the_list.COUNT >= 1
 THEN
 /* Save the value of the last element in the collection
 || so it can be returned
 */
 l_value := the_list(the_list.LAST);
 the_list.TRIM;
 END IF;
 RETURN l_value;
END;

Boundary considerations

If n is null, TRIM will do nothing.

Exceptions possible

The TRIM method will raise the SUBSCRIPT_BEYOND_COUNT predefined excep-
tion if you attempt to TRIM more elements than actually exist. If TRIM is applied to

Collection Methods (Built-ins) | 349

Download at WoweBook.Com

an uninitialized nested table or a VARRAY, it raises the COLLECTION_IS_NULL
predefined exception.

If you use TRIM and DELETE on the same collection, you can get some
very surprising results. Consider this scenario: if you DELETE an ele-
ment at the end of a nested table variable and then do a TRIM on the
same variable, how many elements have you removed? You might think
that you have removed two elements, but, in fact, you have removed
only one. The placeholder that is left by DELETE is what TRIM acts
upon. To avoid confusion, Oracle Corporation recommends using ei-
ther DELETE or TRIM, but not both, on a given collection.

Working with Collections
You now know about the different types of collections and the collection methods. You
have seen some examples of working with associative arrays, nested tables and VAR-
RAYs. Now it is time to dive into the details of manipulating collections in your pro-
grams. Topics in this section include:

• Exception handling with collections

• Declaring collection types

• Declaring and initializing collection variables

• Assigning values to collections

• Using collections of complex datatypes, such as collections of other collections

• Working with sequential and nonsequential associative arrays

• The power of string-indexed collections

• Working with PL/SQL collections inside SQL statements

Declaring Collection Types
Before you can work with a collection, you must declare it, and that declaration must
be based on a collection type. So the first thing you must learn to do is define a collection
type.

There are two ways to create user-defined collection types :

• You can declare the collection type within a PL/SQL program using the TYPE
statement. This collection type will then be available for use within the block in
which the TYPE is defined. If the TYPE is defined in a package specification, then
it is available to any program whose schema has EXECUTE authority on the
package.

• You can define a nested table type or VARRAY type as a schema-level object within
the Oracle database by using the CREATE TYPE command. This TYPE can then
be used as the datatype for columns in database tables and attributes of object

350 | Chapter 12: Collections

Download at WoweBook.Com

types, and to declare variables in PL/SQL programs. Any program in a schema with
EXECUTE authority on the TYPE can reference the TYPE.

Declaring an associative array collection type

The TYPE statement for an associative array has the following format:

TYPE table_type_name IS TABLE OF datatype [NOT NULL]
 INDEX BY index_type;

where table_type_name is the name of the collection you are creating, datatype is the
datatype of the single column in the collection, and index_type is the datatype of the
index used to organize the contents of the collection. You can optionally specify that
the collection be NOT NULL, meaning that every row in the table must have a value.

The rules for the table type name are the same as for any identifier in PL/SQL: the name
may be up to 30 characters in length; it must start with a letter; and it may include a
few special characters (hash sign, underscore, and dollar sign).

The datatype of the collection’s single column can be any of the following:

Scalar datatype
Any PL/SQL-supported scalar datatype, such as VARCHAR2, CLOB, POSITIVE,
DATE, or BOOLEAN.

Anchored datatype
A datatype inferred from a column, previously defined variable, or cursor expres-
sion using the %TYPE attribute. You can also define collections of records with
the %ROWTYPE declaration or with a user-defined record type.

Complex datatype
Starting with Oracle9i Database Release 2, you can also use object types and col-
lection types as the datatype of a collection. This means you can nest collections
within collections. This topic is covered in more detail in “Collections of Complex
Datatypes” on page 370.

The index_type of the collection determines the type of data you can use to specify the
location of the data you are placing in the collection. Prior to Oracle9i Database Release
2, the only way you could specify an index for an associative array (a.k.a. index-by
table) was:

INDEX BY PLS_INTEGER

Starting with Oracle9i Database Release 2, the INDEX BY datatype can be
BINARY_INTEGER, any of its subtypes, VARCHAR2(N) or %TYPE against a
VARCHAR2 column or variable. In other words, any of the following INDEX BY clau-
ses are now valid:

INDEX BY BINARY_INTEGER
INDEX BY PLS_INTEGER
INDEX BY POSITIVE
INDEX BY NATURAL

Working with Collections | 351

Download at WoweBook.Com

INDEX BY SIGNTYPE /* Only three index values - −1, 0 and 1 - allowed! */
INDEX BY VARCHAR2(32767)
INDEX BY table.column%TYPE
INDEX BY cursor.column%TYPE
INDEX BY package.variable%TYPE
INDEX BY package.subtype

Here are some examples of associative array type declarations:

-- A list of dates
TYPE birthdays_tt IS TABLE OF DATE INDEX BY PLS_INTEGER;

-- A list of company IDs
TYPE company_keys_tt IS TABLE OF company.company_id%TYPE NOT NULL
 INDEX BY PLS_INTEGER;

-- A list of book records; this structure allows you to make a "local"
-- copy of the book table in your PL/SQL program.
TYPE booklist_tt IS TABLE OF books%ROWTYPE
 INDEX BY NATURAL;

-- Each collection is organized by the author name.
TYPE books_by_author_tt IS TABLE OF books%ROWTYPE
 INDEX BY books.author%TYPE;

-- A collection of collections
TYPE private_collection_tt IS TABLE OF books_by_author_tt
 INDEX BY VARCHAR2(100);

Notice that in the above example I declared a very generic type of collection (list of
dates), but gave it a very specific name: birthdays_tt. There is, of course, just one way
to declare an associative array type of dates. Rather than have a plethora of collection
TYPE definitions that differ only by name scattered throughout your application, you
might consider creating a single package that offers a set of predefined, standard col-
lection types. Here is an example, available in the colltypes.pks file on the book’s web
site:

/* File on web: colltypes.pks */
PACKAGE collection_types
IS
 -- Associative array types
 TYPE boolean_aat IS TABLE OF BOOLEAN INDEX BY PLS_INTEGER;
 TYPE date_aat IS TABLE OF DATE INDEX BY PLS_INTEGER;
 TYPE pls_integer_aat IS TABLE OF PLS_INTEGER INDEX BY PLS_INTEGER;
 TYPE number_aat IS TABLE OF NUMBER INDEX BY PLS_INTEGER;
 TYPE identifier_aat IS TABLE OF VARCHAR2(30)
 INDEX BY PLS_INTEGER;
 TYPE vcmax_aat IS TABLE OF VARCHAR2(32767)
 INDEX BY PLS_INTEGER;

 -- Nested table types
 TYPE boolean_ntt IS TABLE OF BOOLEAN;
 TYPE date_ntt IS TABLE OF DATE;
 TYPE pls_integer_ntt IS TABLE OF PLS_INTEGER;
 TYPE number_ntt IS TABLE OF NUMBER;

352 | Chapter 12: Collections

Download at WoweBook.Com

 TYPE identifier_ntt IS TABLE OF VARCHAR2(30);
 TYPE vcmax_ntt IS TABLE OF VARCHAR2(32767)
END collection_types;
/

With such a package in place, you can grant EXECUTE authority to PUBLIC, and then
all developers can use the packaged TYPEs to declare their own collections. Here is an
example:

DECLARE
 family_birthdays collection_types.date_aat;

Declaring a nested table or VARRAY

As with associative arrays, you must define a type before you can declare an actual
nested table or VARRAY. You can define these types either in the database or in a
PL/SQL block.

To create a nested table datatype that lives in the database (and not just your PL/SQL
code), specify:

CREATE [OR REPLACE] TYPE type_name AS | IS
 TABLE OF element_datatype [NOT NULL];

To create a VARRAY datatype that lives in the database (and not just your PL/SQL
code), specify:

CREATE [OR REPLACE] TYPE type_name AS | IS
 VARRAY (max_elements) OF element_datatype [NOT NULL];

To drop a type, specify:

DROP TYPE type_name [FORCE];

To declare a nested table datatype in PL/SQL, use the declaration:

TYPE type_name IS TABLE OF element_datatype [NOT NULL];

To declare a VARRAY datatype in PL/SQL, use the declaration:

TYPE type_name IS VARRAY (max_elements)
 OF element_datatype [NOT NULL];

where:

OR REPLACE
Allows you to rebuild an existing type. By including REPLACE, rather than drop-
ping and re-creating the type, all existing grants of privileges will be preserved.

type_name
Is a legal SQL or PL/SQL identifier. This will be the identifier to which you refer
later when you use it to declare variables or columns.

element_datatype
Is the type of the collection’s elements. All elements are of a single type, which can
be most scalar datatypes, an object type, or a REF object type. If the elements are

Working with Collections | 353

Download at WoweBook.Com

objects, the object type itself cannot have an attribute that is a collection. In
PL/SQL, if you are creating a collection with RECORD elements, its fields can be
only scalars or objects. Explicitly disallowed collection datatypes are BOOLEAN,
NCHAR, NCLOB, NVARCHAR2, REF CURSOR, TABLE, and VARRAY (non-
SQL datatype).

NOT NULL
Indicates that a variable of this type cannot have any null elements. However, the
collection can be atomically null (uninitialized).

max_elements
Is the maximum number of elements allowed in the VARRAY. Once declared, this
cannot be altered.

FORCE
Tells the database to drop the type even if there is a reference to it in another type.
For example, if an object type definition uses a particular collection type, you can
still drop the collection type using the FORCE keyword.

To execute the CREATE TYPE statement, you must follow it with a
slash (/), just as if you were creating a procedure, function, or package.

Note that the only syntactic difference between declaring nested table types and de-
claring associative array types in a PL/SQL program is the absence of the INDEX BY
clause for nested table types.

The syntactic differences between nested table and VARRAY type declarations are:

• The use of the keyword VARRAY.

• The limit on VARRAY’s number of elements.

Changing nested table of VARRAY characteristics

If you have created a nested table or VARRAY type in the database, you can use the
ALTER TYPE command to change several of the type’s characteristics.

Use the ALTER TYPE ... MODIFY LIMIT syntax to increase the number of elements
of a VARRAY type. Here is an example:

ALTER TYPE list_vat MODIFY LIMIT 100 INVALIDATE;
/

When the element type of a VARRAY or nested table type is a variable character, RAW,
or numeric, you can increase the size of the variable character or RAW type or increase
the precision of the numeric type. Here is an example:

CREATE TYPE list_vat AS VARRAY(10) OF VARCHAR2(80);
/

354 | Chapter 12: Collections

Download at WoweBook.Com

ALTER TYPE list_vat MODIFY ELEMENT TYPE VARCHAR2(100) CASCADE;
/

The INVALIDATE and CASCADE options are provided to either invalidate all de-
pendent objects or propagate the change to both the type and any table dependents.

Declaring and Initializing Collection Variables
Once you have created your collection type, you can reference that collection type to
declare an instance of that type: the actual collection variable. The general format for
a collection declaration is:

collection_name collection_type [:= collection_type (...)];

where collection_name is the name of the collection, and collection_type is the name of
both the previously declared collection type and (if nested table or VARRAY) a con-
structor function of the same name.

A constructor has the same name as the type, and accepts as arguments a comma-
separated list of elements. When you are declaring a nested table or VARRAY, you
must initialize the collection before using it. Otherwise, you will receive this error:

ORA-06531: Reference to uninitialized collection

In the following example I create a general collection type to emulate the structure of
the company table. I then declare two different collections based on that type.

DECLARE
 TYPE company_aat IS TABLE OF company%ROWTYPE INDEX BY PLS_INTEGER;
 premier_sponsor_list company_aat;
 select_sponsor_list company_aat;
BEGIN
 ...
END;

If I declare a nested table or VARRAY, I can also immediately initialize the collection
by calling its constructor function. Here is an example:

DECLARE
 TYPE company_aat IS TABLE OF company%ROWTYPE;
 premier_sponsor_list company_aat := company_aat();
BEGIN
 ...
END;

I could also choose to initialize the nested table in my executable section:

DECLARE
 TYPE company_aat IS TABLE OF company%ROWTYPE;
 premier_sponsor_list company_aat;
BEGIN
 premier_sponsor_list:= company_aat();
END;

Working with Collections | 355

Download at WoweBook.Com

I simply must ensure that it is initialized before I try to use the collection. Associative
arrays do not need to be initialized before you assign values to them (and indeed cannot
be initialized in this way). As you can see, declaring collection variables, or instances
of a collection type, is no different from declaring other kinds of variables: simply pro-
vide a name, type, and optional default or initial value.

Let’s take a closer look at nested table and VARRAY initialization.

The previous example showed you how to initialize a collection by calling a constructor
function without any parameters. You can also provide an initial set of values. Suppose
now that I create a schema-level type named color_tab_t:

CREATE OR REPLACE TYPE color_tab_t AS TABLE OF VARCHAR2(30)

Next, I declare some PL/SQL variables based on that type.

DECLARE
 my_favorite_colors color_tab_t := color_tab_t();
 his_favorite_colors color_tab_t := color_tab_t('PURPLE');
 her_favorite_colors color_tab_t := color_tab_t('PURPLE', 'GREEN');

In the first declaration, the collection is initialized as empty; it contains no rows. The
second declaration assigns a single value, “PURPLE”, to row 1 of the nested table. The
third declaration assigns two values, “PURPLE” and “GREEN”, to rows 1 and 2 of that
nested table.

Because I have not assigned any values to my_favorite_colors in the call to the con-
structor, I will have to extend it before I can put elements into it. The his and her
collections already have been extended implicitly as needed by the constructor values
list.

Assignment via a constructor function is bound by the same constraints that you will
encounter in direct assignments. If, for example, your VARRAY has a limit of five ele-
ments and you try to initialize it via a constructor with six elements, the database will
raise the ORA-06532: Subscript outside of limit error.

Initializing implicitly during direct assignment

You can copy the entire contents of one collection to another as long as both are built
from the exact same collection type (two different collection types based on the same
datatype will not work). When you do so, initialization comes along “for free.”

Here’s an example illustrating the implicit initialization that occurs when I assign
wedding_colors to be the value of earth_colors.

DECLARE
 earth_colors color_tab_t := color_tab_t ('BRICK', 'RUST', 'DIRT');
 wedding_colors color_tab_t;
BEGIN
 wedding_colors := earth_colors;
 wedding_colors(3) := 'CANVAS';
END;

356 | Chapter 12: Collections

Download at WoweBook.Com

This code initializes wedding_colors and creates three elements that match those in
earth_colors. These are independent variables rather than pointers to identical values;
changing the third element of wedding_colors to CANVAS does not have any effect on
the third element of earth_colors.

This kind of direct assignment is not possible when datatypes are merely “type-
compatible.” Even if you have created two different types with the exact same defini-
tion, the fact that they have different names makes them different types. Thus, the
following block of code fails to compile:

DECLARE
 TYPE tt1 IS TABLE OF employees%ROWTYPE;
 TYPE tt2 IS TABLE OF employees%ROWTYPE;
 t1 tt1 := tt1();
 t2 tt2 := tt2();
BEGIN
 /* Fails with error "PLS-00382: expression is of wrong type" */
 t1 := t2;
END;

Initializing implicitly via FETCH

If you use a collection as a type in a database table, the Oracle database provides some
very elegant ways of moving the collection between PL/SQL and the table. As with
direct assignment, when you use FETCH or SELECT INTO to retrieve a collection and
drop it into a collection variable, you get automatic initialization of the variable. Col-
lections can turn out to be incredibly useful!

Although I mentioned this briefly in an earlier example, let’s take a closer look at how
you can read an entire collection in a single fetch. First, I want to create a table con-
taining a collection and populate it with a couple of values:

CREATE TABLE color_models (
 model_type VARCHAR2(12)
 , colors color_tab_t
)
 NESTED TABLE colors STORE AS color_model_colors_tab
/

BEGIN
 INSERT INTO color_models
 VALUES ('RGB', color_tab_t ('RED','GREEN','BLUE'));
END;
/

Now I can show off the neat integration features. With one trip to the database, I can
retrieve all the values of the colors column for a given row and deposit them into a local
variable:

DECLARE
 l_colors color_tab_t;
BEGIN
 /* Retrieve all the nested values in a single fetch.

Working with Collections | 357

Download at WoweBook.Com

 || This is the cool part.
 */
 SELECT colors INTO l_colors FROM color_models
 WHERE model_type = 'RGB';
 ...
END;

Pretty neat, huh? Here are a few important things to notice:

• The database, not the programmer, assigns the subscripts of l_colors when fetched
from the database.

• The database’s assigned subscripts begin with 1 (as opposed to 0, as in some other
languages) and increment by 1; this collection is always densely filled (or empty).

• Fetching satisfies the requirement to initialize the local collection variable before
assigning values to elements. I didn’t initialize l_colors with a constructor, but
PL/SQL knew how to deal with it.

You can also make changes to the contents of the nested table and just as easily move
the data back into a database table. Just to be mischievous, let’s create a Fuschia-Green-
Blue color model:

DECLARE
 color_tab color_tab_t;
BEGIN
 SELECT colors INTO color_tab FROM color_models
 WHERE model_type = 'RGB';

 FOR element IN 1..color_tab.COUNT
 LOOP
 IF color_tab(element) = 'RED'
 THEN
 color_tab(element) := 'FUSCHIA';
 END IF;
 END LOOP;

 /* Here is the cool part of this example. Only one insert
 || statement is needed -- it sends the entire nested table
 || back into the color_models table in the database. */

 INSERT INTO color_models VALUES ('FGB', color_tab);
END;

VARRAY integration

Does this database-to-PL/SQL integration work for VARRAYs too? You bet, although
there are a couple of differences.

First of all, realize that when you store and retrieve the contents of a nested table in the
database, the Oracle database makes no promises about preserving the order of the
elements. This makes sense because the server is just putting the nested data into a
store table behind the scenes, and we all know that relational databases don’t give two

358 | Chapter 12: Collections

Download at WoweBook.Com

hoots about row order. By contrast, storing and retrieving the contents of a VARRAY
do preserve the order of the elements.

Preserving the order of VARRAY elements is a fairly useful capability. It makes it pos-
sible to embed meaning in the order of the data, which is something you cannot do in
a pure relational database. For example, if you want to store someone’s favorite colors
in rank order, you can do it with a single VARRAY column. Every time you retrieve the
column collection, its elements will be in the same order as when you last stored it. In
contrast, abiding by a pure relational model, you would need two columns: one for an
integer corresponding to the rank and one for the color.

This order-preservation of VARRAYs suggests some possibilities for interesting utility
functions. For example, you could fairly easily code a tool that would allow the insertion
of a new “favorite” at the low end of the list by “shifting up” all the other elements.

A second difference between integration of nested tables and integration of VARRAYs
with the database is that some SELECT statements you could use to fetch the contents
of a nested table will have to be modified if you want to fetch a VARRAY. (See “Working
with Collections in SQL” on page 382 for some examples.)

Populating Collections with Data
A collection is empty after initialization. No elements are defined within it. A collection
is, in this way, very much like a relational table. An element is defined by assigning a
value to that element. This assignment can be done through the standard PL/SQL as-
signment operation, by fetching data from one or more relational tables into a collec-
tion, or by performing an aggregate assignment (in essence, copying one collection to
another).

If you are working with associative arrays, you can assign a value (of the appropriate
type) to any valid index value in the collection. If the index type of the associative array
is an integer, then the index value must be between −231 (and 231 – 1. The simple act
of assigning the value creates the element and deposits the value at that index.

In contrast to associative arrays, you can’t assign values to arbitrarily numbered sub-
scripts of nested tables and VARRAYs; instead, the indexes (at least initially) are mo-
notonically increasing integers, assigned by the PL/SQL engine. That is, if you initialize
n elements, they will have subscripts 1 through n—and those are the only rows to which
you can assign a value.

Before you try to assign a value to an index value in a nested table or VARRAY, you
must make sure that (1) the collection has been initialized, and (2) that index value has
been defined. Use the EXTEND operator, discussed earlier in this chapter, to make
new index values available in nested tables and VARRAYs.

Working with Collections | 359

Download at WoweBook.Com

Using the assignment operator

You can assign values to a collection with the standard assignment operator of PL/SQL,
as shown here:

countdown_test_list (43) := 'Internal pressure';
company_names_table (last_name_row + 10) := 'Johnstone Clingers';

You can use this same syntax to assign an entire record or complex datatype to an index
value in the collection, as you see here:

DECLARE
 TYPE emp_copy_t IS TABLE OF employees%ROWTYPE;
 l_emps emp_copy_t := emp_copy_t();
 l_emprec employees%ROWTYPE;
BEGIN
 l_emprec.last_name := 'Steven';
 l_emprec.salary := 10000;
 l_emps.EXTEND;
 l_emps (l_emps.LAST) := l_emprec;
END;

As long as the structure of data on the right side of the assignment matches that of the
collection type, the assignment will complete without error.

What index values can I use?

When you assign data to an associative array, you must specify the location (index
value) in the collection. The type of value, and valid range of values, you use to indicate
this location depend on how you defined the INDEX BY clause of the associative array,
and are explained in the following table:

INDEX BY clause Minimum value Maximum value
INDEX BY BINARY_INTEGER −231 231 − 1
INDEX BY PLS_INTEGER −231 231 − 1
INDEX BY SIMPLE_INTEGER −231 231 − 1
INDEX BY NATURAL 0 231 − 1
INDEX BY POSITIVE 1 231 − 1
INDEX BY SIGNTYPE −1 1
INDEX BY VARCHAR2(N) Any string within specified length Any string within specified length

You can also index by any subtype of the above, or use a type anchored to a VARCHAR2
database column (e.g., table_name.column_name%TYPE).

Aggregate assignments

You can also perform an “aggregate assignment” of the contents of an entire collection
to another collection of exactly the same type. Here is an example of such a transfer:

360 | Chapter 12: Collections

Download at WoweBook.Com

 1 DECLARE
 2 TYPE name_t IS TABLE OF VARCHAR2(100) INDEX BY PLS_INTEGER;
 3 old_names name_t;
 4 new_names name_t;
 5 BEGIN
 6 /* Assign values to old_names table */
 7 old_names(1) := 'Smith';
 8 old_names(2) := 'Harrison';
 9
10 /* Assign values to new_names table */
11 new_names(111) := 'Hanrahan';
12 new_names(342) := 'Blimey';
13
14 /* Transfer values from new to old */
15 old_names := new_names;
16
17 /* This statement will display 'Hanrahan' */
18 DBMS_OUTPUT.PUT_LINE (
19 old_names.FIRST || ': ' || old_names(old_names.FIRST));
20 END;

The output is:

111: Hanrahan

A collection-level assignment completely replaces the previously defined rows in the
collection. In the preceding example, rows 1 and 2 in old_names are defined before the
last, aggregate assignment.

After the assignment, only rows 111 and 342 in the old_names collection have values.

Assigning rows from a relational table

You can also populate rows in a collection by querying data from a relational table.
The assignment rules described earlier in this section apply to SELECT-driven assign-
ments. The following example demonstrates various ways you can copy data from a
relational table into a collection

I can use an implicit SELECT INTO to populate a single row of data in a collection:

DECLARE
 TYPE emp_copy_t IS TABLE OF employees%ROWTYPE;
 l_emps emp_copy_t := emp_copy_t();
BEGIN
 l_emps.EXTEND;
 SELECT *
 INTO l_emps (1)
 FROM employees
 WHERE employee_id = 7521;
END;

I can use a cursor FOR loop to move multiple rows into a collection, populating those
rows sequentially:

Working with Collections | 361

Download at WoweBook.Com

DECLARE
 TYPE emp_copy_t IS TABLE OF employees%ROWTYPE;
 l_emps emp_copy_t := emp_copy_t();
BEGIN
 FOR emp_rec IN (SELECT * FROM employees)
 LOOP
 l_emps.EXTEND;
 l_emps (l_emps.LAST) := emp_rec;
 END LOOP;
END;

I can also use a cursor FOR loop to move multiple rows into a collection, populating
those rows nonsequentially. In this case, I will switch to using an associative array, so
that I can assign rows randomly, that is, using the primary key value of each row in the
database as the row number in my collection:

DECLARE
 TYPE emp_copy_t IS TABLE OF employees%ROWTYPE INDEX BY PLS_INTEGER;
 l_emps emp_copy_t;
BEGIN
 FOR emp_rec IN (SELECT * FROM employees)
 LOOP
 l_emps (emp_rec.employee_id) := emp_rec;
 END LOOP;
END;

I can also use BULK COLLECT (described in Chapter 21) to retrieve all the rows of a
table in a single assignment step, depositing the data into any of the three types of
collections. When using a nested tables or VARRAY, you do not need to explicitly
initialize the collection. Here is an example:

DECLARE
 TYPE emp_copy_nt IS TABLE OF employees%ROWTYPE;
 l_emps emp_copy_nt;
BEGIN
 SELECT * BULK COLLECT INTO l_emps FROM employees;
END;

Advantage of nonsequential population of collection

For anyone used to working with traditional arrays, the idea of populating your col-
lection nonsequentially may seem strange. Why would you do such a thing? Consider
the following scenario.

In many applications, you will find yourself writing and executing the same queries
over and over again. In some cases, the queries are retrieving static data, such as codes
and descriptions that rarely (if ever) change. Well, if the data isn’t changing—especially
during a user session—then why would you want to keep querying the information
from the database? Even if the data is cached in the System Global Area (SGA), you still
need to visit the SGA, confirm that the query has already been parsed, find that infor-
mation in the data buffers, and finally return it to the session program area (the Program
Global Area, or PGA).

362 | Chapter 12: Collections

Download at WoweBook.Com

Here’s an idea: set as a rule that for a given static lookup table, a user will never query
a row from the table more than once in a session. After the first time, it will be stored
in the session’s PGA and be instantly available for future requests. This is very easy to
do with collections. Essentially, you use the collection’s index as an intelligent key.

Let’s take a look at an example. I have a hairstyles table that contains a numeric code
(primary key) and a description of the hairstyle (e.g., “Pageboy”). These styles are
timeless and rarely change.

Here is the body of a package that uses a collection to cache code-hairstyle pairs and
that minimizes trips to the database:

 1 PACKAGE BODY justonce
 2 IS
 3 TYPE desc_t
 4 IS
 5 TABLE OF hairstyles.description%TYPE
 6 INDEX BY PLS_INTEGER;
 7
 8 descriptions desc_t;
 9
10 FUNCTION description (code_in IN hairstyles.code%TYPE)
11 RETURN hairstyles.description%TYPE
12 IS
13 return_value hairstyles.description%TYPE;
14
15 FUNCTION desc_from_database
16 RETURN hairstyles.description%TYPE
17 IS
18 l_description hairstyles.description%TYPE;
19 BEGIN
20 SELECT description
21 INTO l_description
22 FROM hairstyles
23 WHERE code = code_in;
24 RETURN l_description;
25 END;
26 BEGIN
27 RETURN descriptions (code_in);
28 EXCEPTION
29 WHEN NO_DATA_FOUND
30 THEN
31 descriptions (code_in) := desc_from_database ();
32 RETURN descriptions (code_in);
33 END;
34 END justonce;

Working with Collections | 363

Download at WoweBook.Com

The table provides a description of the interesting aspects of this program:

Line(s) Description

3–8 Declare a collection type and the collection to hold my cached descriptions.

10–11 Header of my retrieval function. The interesting thing about the header is that it is not interesting at all. There is no
indication that this function is doing anything but the typical query against the database to retrieve the description
for the code. The implementation is hidden, which is just the way you want it.

15–25 That very traditional query from the database. But in this case, it is just a private function within my main function,
which is fitting because it is not the main attraction.

27 The entire execution section! Simply return the description that is stored in the row indicated by the code number.
The first time I run this function for a given code, the row will not be defined. So PL/SQL raises NO_DATA_FOUND
(see lines 28–31). For all subsequent requests for this code, however, the row is defined, and the function returns
the value immediately.

29–32 So the data hasn’t yet been queried in this session. Fine. Trap the error, look up the description from the database,
and deposit it in the collection. Then return that value. Now I am set to divert all subsequent lookup attempts.

So how much of a difference does this caching make? I ran some tests on my laptop
and found that it took just under two seconds to execute 10,000 queries against the
hairstyles table. That’s efficient, no doubt about it. Yet it took only 0.1 seconds to
retrieve that same information 10,000 times using the above function. That’s more than
an order of magnitude improvement—and that’s with a local database. The superiority
of the collection caching technique would be even greater in a real-world situation.

Here are some final notes on the collection caching technique:

• This technique is a classic tradeoff between CPU and memory. Each session has
its own copy of the collection (this is program data and is stored in the PGA). If
you have 10,000 users, the total memory required for these 10,000 small caches
could be considerable.

• Consider using this technique with any of the following scenarios: small, static
tables in a multiuser application; large, static tables in which a given user will access
only a small portion of the table; manipulation of large tables in a batch process
(just a single connect taking up possibly a lot of memory).

The concept and implementation options for caching are explored in much greater
depth in Chapter 21.

Accessing Data Inside a Collection
There generally isn’t much point to putting information into a collection unless you
intend to use or access that data. There are several things you need to keep in mind
when accessing data inside a collection:

• If you try to read an undefined index value in a collection, the database raises the
NO_DATA_FOUND exception. One consequence of this rule is that you should

364 | Chapter 12: Collections

Download at WoweBook.Com

avoid using numeric FOR loops to scan the contents of a collection unless you are
certain it is, and always will be, densely-filled (no undefined index values between
FIRST and LAST). If that collection is not densely filled, the database will fail with
NO_DATA_FOUND as soon as it hits a gap between the values returned by the
FIRST and LAST methods.

• If you try to read a row that is beyond the limit of EXTENDed rows in a table or
VARRAY, the database raises the following exception:

ORA-06533: Subscript beyond count

When working with nested tables and VARRAYs, you should always make sure
that you have extended the collection to encompass the row you want to assign or
read.

• If you try to read a row whose index is beyond the limit of the VARRAY type
definition, the database raises the following exception:

ORA-06532: Subscript outside of limit

Remember: you can always call the LIMIT method to find the maximum number
of rows that are allowed in a VARRAY. Because the subscript always starts at 1 in
this type of collection, you can then easily determine if you still have room for more
data in the data structure.

Beyond these cautionary tales, it is very easy to access individual rows in a collection:
simply provide the subscript (or subscripts—see “Collections of Complex Data-
types” on page 370 for the syntax needed for collections of collections) after the name
of the collection.

Using String-Indexed Collections
Oracle9i Database Release 2 greatly expanded the datatypes developers can specify as
the index type for associative arrays. VARCHAR2 offers the most flexibility and po-
tential. Since with this datatype I can index by string, I can essentially index by just
about anything, as long as it can be converted into a string of no more than 32,767 bytes.

Here is a block of code that demonstrates the basics:

/* File on web: string_indexed.sql */
DECLARE
 SUBTYPE location_t IS VARCHAR2(64);
 TYPE population_type IS TABLE OF NUMBER INDEX BY location_t;

 l_country_population population_type;
 l_continent_population population_type;

 l_count PLS_INTEGER;
 l_location location_t;
BEGIN
 l_country_population('Greenland') := 100000;
 l_country_population('Iceland') := 750000;

Working with Collections | 365

Download at WoweBook.Com

 l_continent_population('Australia') := 30000000;
 l_continent_population('Antarctica') := 1000;
 l_continent_population('antarctica') := 1001;

 l_count := l_country_population.COUNT;
 DBMS_OUTPUT.PUT_LINE ('COUNT = ' || l_count);

 l_location := l_continent_population.FIRST;
 DBMS_OUTPUT.PUT_LINE ('FIRST row = ' || l_location);
 DBMS_OUTPUT.PUT_LINE ('FIRST value = ' || l_continent_population(l_location));

 l_location := l_continent_population.LAST;
 DBMS_OUTPUT.PUT_LINE ('LAST row = ' || l_location);
 DBMS_OUTPUT.PUT_LINE ('LAST value = ' || l_continent_population(l_location));
END;

Here is the output from the script:

COUNT = 2
FIRST row = Antarctica
FIRST value = 1000
LAST row = antarctica
LAST value = 1001

Points of interest from this code follow:

• With a string-indexed collection, the values returned by calls to the FIRST, LAST,
PRIOR, and NEXT methods are strings and not integers.

• Notice that “antarctica” is last, coming after “Antarctica” and “Australia”. That’s
because lowercase letters have a higher ASCII code than uppercase letters. The
order in which your strings will be stored in your associative array will be deter-
mined by your character set.

• There is really no difference in syntax between using string-indexed and integer-
indexed collections.

• I carefully defined a subtype, location_t, which I then used as the index type in my
collection type declaration, and also to declare the l_location variable. You will
find that when you work with string indexed collections, especially multilevel col-
lections, subtypes will be very helpful reminders of precisely what data you are
using for your index values.

The following sections offer other examples demonstrating the usefulness of this
feature.

Simplifying algorithmic logic with string indexes

Careful use of string indexed collections can greatly simplify your programs; in essence,
you are transferring complexity from your algorithms to the data structure (and leaving
it to the database) to do the “heavy lifting.” The following example will give you a clear
sense of that transfer.

366 | Chapter 12: Collections

Download at WoweBook.Com

Through much of 2006 and 2007, I led the effort to build an automated testing tool for
PL/SQL, Quest Code Tester for Oracle. One key benefit of this tool is that it generates
a test package from your descriptions of the expected behavior of a program. As I
generate the test code, I need to keep track of the names of variables that I have declared,
so that I do not inadvertently declare another variable with the same name.

My first pass at building a “string tracker” package looked like this:

/* File on web: string_tracker0.pkg */
 1 PACKAGE BODY string_tracker
 2 IS
 3 SUBTYPE name_t IS VARCHAR2 (32767);
 4 TYPE used_aat IS TABLE OF name_t INDEX BY PLS_INTEGER;
 5 g_names_used used_aat;
 6
 7 PROCEDURE mark_as_used (variable_name_in IN name_t) IS
 8 BEGIN
 9 g_names_used (g_names_used.COUNT + 1) := variable_name_in;
10 END mark_as_used;
11
12 FUNCTION string_in_use (variable_name_in IN name_t) RETURN BOOLEAN
13 IS
14 c_count CONSTANT PLS_INTEGER := g_names_used.COUNT;
15 l_index PLS_INTEGER := g_names_used.FIRST;
16 l_found BOOLEAN := FALSE;
17 BEGIN
18 WHILE (NOT l_found AND l_index <= c_count)
19 LOOP
20 l_found := variable_name_in = g_names_used (l_index);
21 l_index := l_index + 1;
22 END LOOP;
23
24 RETURN l_found;
25 END string_in_use;
26 END string_tracker;

Here is an explanation of the interesting parts of this package body:

Line(s) Description

3–5 Declare a collection of strings indexed by integer, to hold the list of variable names that I have already used.

7–10 Append the variable name to the end of the array, so as to mark it as “used.”

12–25 Scan through the collection, looking for a match on the variable name. If found, then terminate the scan and return
TRUE. Otherwise, return FALSE (string is not in use).

Now, certainly, this is not a big, complicated package body. Still, I am writing more
code than is necessary, and consuming more CPU cycles than necessary. How do I
simplify things and speed them up? By using a string indexed collection.

Here’s my second pass at the string_tracker package:

Working with Collections | 367

Download at WoweBook.Com

/* File on web: string_tracker1.pkg */
 1 PACKAGE BODY string_tracker
 2 IS
 3 SUBTYPE name_t IS VARCHAR2 (32767);
 4 TYPE used_aat IS TABLE OF BOOLEAN INDEX BY name_t;
 5 g_names_used used_aat;
 6
 7 PROCEDURE mark_as_used (variable_name_in IN name_t) IS
 8 BEGIN
 9 g_names_used (variable_name_in) := TRUE;
10 END mark_as_used;
11
12 FUNCTION string_in_use (variable_name_in IN name_t) RETURN BOOLEAN
13 IS
14 BEGIN
15 RETURN g_names_used.EXISTS (variable_name_in);
16 END string_in_use;
17 END string_tracker;

First of all, notice that my package body has shrunk from 26 lines to 17 lines. A reduc-
tion of almost 33%. And in the process, my code has been greatly simplified. The table
below explains the changes:

Line(s) Description

3–5 This time, I declare a collection of Booleans indexed by strings. Actcually, it doesn’t really matter what kind of data
the collection holds. I could create a collection of Booleans, dates, numbers, XML documents, whatever. The only
thing that matters (as you will see below) is the index value.

7–10 Again, I mark a string as used, but in this version, the variable name serves as the index value, and not the value
appended to the end of the collection. I assign a value of TRUE to that index value, but as I note above, I could assign
whatever value I like: NULL, TRUE, FALSE. It doesn’t matter because...

12–16 To determine if a variable name has already been used, I simply call the EXISTS method for the name of the variable.
If an element is defined at that index value, then the name has already been used. In other words, I never actually
look at or care about the value stored at that index value.

Isn’t that simple and elegant? I no longer have to write code to scan through the col-
lection contents looking for a match. Instead, I zoom in directly on that index value
and instantly have my answer.

Here’s the lesson I took from the experience of building string_tracker: if as I write my
program I find myself writing algorithms to search element by element through a col-
lection to find a matching value, I should consider redesigning that collection (or cre-
ating a second collection) that uses string indexing to avoid the scan code. The result
is a program that is leaner and more efficient, as well as easier to maintain in the future.

Emulating primary keys and unique indexes

One very interesting application of string indexing is to emulate primary keys and
unique indexes of a relational table in collections. Suppose that I need to do some heavy
processing of employee information in my program. I need to go back and forth over

368 | Chapter 12: Collections

Download at WoweBook.Com

the set of selected employees, searching by the employee ID number, last name, and
email address.

Rather than query that data repeatedly from the database, I can cache it in a set of
collections and then move much more efficiently through the data. Here is an example
of the kind of code I would write:

DECLARE
 c_delimiter CONSTANT CHAR (1) := '^';

 TYPE strings_t IS TABLE OF employees%ROWTYPE
 INDEX BY employees.email%TYPE;

 TYPE ids_t IS TABLE OF employees%ROWTYPE
 INDEX BY PLS_INTEGER;

 by_name strings_t;
 by_email strings_t;
 by_id ids_t;

 ceo_name employees.last_name%TYPE
 := 'ELLISON' || c_delimiter || 'LARRY';

 PROCEDURE load_arrays
 IS
 BEGIN
 /* Load up all three arrays from rows in table. */
 FOR rec IN (SELECT *
 FROM employees)
 LOOP
 by_name (rec.last_name || c_delimiter || rec.first_name) := rec;
 by_email (rec.email) := rec;
 by_id (rec.employee_id) := rec;
 END LOOP;
 END;
BEGIN
 load_arrays;

 /* Now I can retrieve information by name or by ID. */

 IF by_name (ceo_name).salary > by_id (7645).salary
 THEN
 make_adjustment (ceo_name);
 END IF;
END;

Performance of string-indexed collections

What kind of price do you pay for using string indexing instead of integer indexing? It
depends entirely on how long your strings are. When you use string indexes, the
database takes your string and “hashes” (transforms) it into an integer value. So the
overhead is determined by the performance of the hash function.

Working with Collections | 369

Download at WoweBook.Com

What I have found in my testing (see the assoc_array_perf.tst script on the book’s web
site) is the following:

Compare String and Integer Indexing, Iterations = 10000 Length = 100
 Index by PLS_INTEGER Elapsed: 4.26 seconds.
 Index by VARCHAR2 Elapsed: 4.75 seconds.
Compare String and Integer Indexing, Iterations = 10000 Length = 1000
 Index by PLS_INTEGER Elapsed: 4.24 seconds.
 Index by VARCHAR2 Elapsed: 6.4 seconds.
Compare String and Integer Indexing, Iterations = 10000 Length = 10000
 Index by PLS_INTEGER Elapsed: 4.06 seconds.
 Index by VARCHAR2 Elapsed: 24.63 seconds.

The conclusion: with relatively small strings (100 characters or less), there is no sig-
nificant difference in performance between string and integer indexing. As the string
index value gets longer, however, the overhead of hashing grows substantially. So be
careful about what strings you use for indexes!

Other examples of string-indexed collections

As you saw in the example of retrieving employee information, it doesn’t take a whole
lot of code to build multiple, highly efficient entry points into cached data transferred
from a relational table. Still, to make it even easier for you to implement these techni-
ques in your application, I have built a utility to generate such code for you.

The genaa.sp file on the book’s web site accepts the name of your table as an argument,
and from the information stored in the data dictionary for that table (primary key and
unique indexes), generates a package to implement caching for that table. It populates
a collection based on the integer primary key and another collection for each unique
index defined on the table (indexed by PLS_INTEGER or VARCHAR2, depending on
the type(s) of the column(s) in the index).

In addition, the file, summer_reading.pkg, also available on the book’s web site, offers
an example of the use of VARCHAR2-indexed associative arrays to manipulate lists of
information within a PL/SQL program.

Collections of Complex Datatypes
Starting with Oracle9i Database Release 2, you can define collection types of arbitrarily
complex structures. All of the following structures are supported:

Collections of records based on tables with %ROWTYPE
These structures allow you to quickly and easily mimic a relational table within a
PL/SQL program.

Collections of user-defined records
The fields of the record can be scalars or complex datatypes in and of themselves.
For example, you can define a collection of records where the record TYPE contains
a field that is itself another collection.

370 | Chapter 12: Collections

Download at WoweBook.Com

Collections of object types and other complex types
The datatype of the collection can be an object type (Oracle’s version of an object-
oriented class, explored in Chapter 26) previously defined with the CREATE TYPE
statement. You can also easily define collections of LOBs, XML documents, etc.

Collections of collections (directly and indirectly)
You can define multilevel collections, including collections of collections and col-
lections of datatypes that contain, as an attribute or a field, another collection.

Let’s take a look at examples of each of these variations.

Collections of records

You define a collection of records by specifying a record type (through either
%ROWTYPE or a programmer-defined record type) in the TABLE OF clause of the
collection definition. This technique applies only to collection TYPEs that are declared
inside a PL/SQL program. Nested table and VARRAY TYPEs defined in the database
cannot reference %ROWTYPE record structures.

Here is an example of a collection of records based on a custom record TYPE:

PACKAGE compensation_pkg
IS
 TYPE reward_rt IS RECORD (
 nm VARCHAR2(2000), sal NUMBER, comm NUMBER);

 TYPE reward_tt IS TABLE OF reward_rt INDEX BY PLS_INTEGER;

END compensation_pkg;

With these types defined in my package specification, I can declare collections in other
programs like this:

DECLARE
 holiday_bonuses compensation_pkg.reward_tt;

Collections of records come in especially handy when you want to create in-memory
(PGA) collections that have the same structure (and, at least in part, data) as database
tables. Why would I want to do this? Suppose that I am running a batch process on
Sunday at 3:00 a.m. against tables that are modified only during the week. I need to do
some intensive analysis that involves multiple passes against the tables’ data. I could
simply query the data repetitively from the database, but that is a relatively slow, in-
tensive process.

Alternately, I can copy the data from the table or tables into a collection and then move
much more rapidly (and randomly) through my result set. I am, in essence, emulating
bidirectional cursors in my PL/SQL code.

If you decide to copy data into collections and manipulate them within your program,
you can choose between two basic approaches for implementing this logic:

Working with Collections | 371

Download at WoweBook.Com

• Embed all of the collection code in your main program.

• Create a separate package to encapsulate access to the data in the collection.

I generally choose the second approach for most situations. In other words, I find it
useful to create separate, well-defined, and highly reusable APIs (application program-
matic interfaces) to complex data structures and logic. Here is the package specification
for my bidirectional cursor emulator:

/* File on web: bidir.pkg */
PACKAGE bidir
IS
 FUNCTION rowforid (id_in IN employee.employee_id%TYPE)
 RETURN employee%ROWTYPE;

 FUNCTION firstrow RETURN PLS_INTEGER;
 FUNCTION lastrow RETURN PLS_INTEGER;

 FUNCTION rowCount RETURN PLS_INTEGER;

 FUNCTION end_of_data RETURN BOOLEAN;

 PROCEDURE setrow (nth IN PLS_INTEGER);

 FUNCTION currrow RETURN employee%ROWTYPE;

 PROCEDURE nextrow;
 PROCEDURE prevrow;
END;

So how do you use this API? Here is an example of a program using this API to read
through the result set for the employee table, first forward and then backward:

/* File on web: bidir.tst */
DECLARE
 l_employee employees%ROWTYPE;
BEGIN
 LOOP
 EXIT WHEN bidir.end_of_data;
 l_employee := bidir.currrow;
 DBMS_OUTPUT.put_line (l_employee.last_name);
 bidir.nextrow;
 END LOOP;

 bidir.setrow (bidir.lastrow);

 LOOP
 EXIT WHEN bidir.end_of_data;
 l_employee := bidir.currrow;
 DBMS_OUTPUT.put_line (l_employee.last_name);
 bidir.prevrow;
 END LOOP;
END;

372 | Chapter 12: Collections

Download at WoweBook.Com

An astute reader will now be asking: when is the collection loaded up with the data?
Or even better: where is the collection? There is no evidence of a collection anywhere
in the code I have presented.

Let’s take the second question first. The reason you don’t see the collection is that I
have hidden it behind my package specification. A user of the package never touches
the collection and doesn’t have to know anything about it. That is the whole point of
the API. You just call one or another of the programs that will do all the work of tra-
versing the collection (data set) for you.

Now, when and how is the collection loaded? This may seem a bit magical until you
read about packages in Chapter 18. If you look in the package body, you will find that
it has an initialization section as follows:

BEGIN -- Package initialization
 FOR rec IN (SELECT * FROM employees)
 LOOP
 g_employees (rec.employee_id) := rec;
 END LOOP;
 g_currrow := firstrow;
END;

Note that g_currrow is defined in the package body and therefore was
not listed in the specification above.

This means that the very first time I try to reference any element in the package speci-
fication, this code is run automatically, transferring the contents of the employee table
to my g_employees collection. When does that happen in my sample program shown
earlier? Inside my loop, when I call the bidir.end_of_data function to see if I am done
looking through my data set!

I encourage you to examine the package implementation. The code is very basic and
easy to understand; the benefits of this approach can be dramatic.

Collections of objects and other complex types

You can use an object type, LOB, XML document, and virtually any valid PL/SQL type
as the datatype of a collection TYPE statement. The syntax for defining these collections
is the same, but the way you manipulate the contents of the collections can be com-
plicated, depending on the underlying type.

For more information on Oracle object types, see Chapter 26.

Here is an example of working with a collection of objects:

/* File on web: object_collection.sql */
TYPE pet_t IS OBJECT (
 tag_no INTEGER,

Working with Collections | 373

Download at WoweBook.Com

 name VARCHAR2 (60),
 MEMBER FUNCTION set_tag_no (new_tag_no IN INTEGER) RETURN pet_t);

DECLARE
 TYPE pets_t IS TABLE OF pet_t;

 pets pets_t :=
 pets_t (pet_t (1050, 'Sammy'), pet_t (1075, 'Mercury'));
BEGIN
 FOR indx IN pets.FIRST .. pets.LAST
 LOOP
 DBMS_OUTPUT.put_line (pets (indx).name);
 END LOOP;
END;

And the output is:

Sammy
Mercury

Once I have my object type defined, I can declare a collection based on that type and
then populate it with instances of those object types. You can just as easily declare
collections of LOBs, XMLTypes, and so on. All the normal rules that apply to variables
of those datatypes also apply to individual rows of a collection of that datatype.

Multilevel Collections
Oracle9i Database Release 2 introduced the ability to nest collections within collec-
tions, a feature that is also referred to as multilevel collections. Let’s take a look at an
example and then discuss how you can use this feature in your applications.

Suppose that I want to build a system to maintain information about my pets. Besides
their standard information, such as breed, name, and so on, I would like to keep track
of their visits to the veterinarian. So I create a vet visit object type:

TYPE vet_visit_t IS OBJECT (
 visit_date DATE,
 reason VARCHAR2 (100)
)

Notice that objects instantiated from this type are not associated with a pet (i.e., a
foreign key to a pet table or object). You will soon see why I don’t need to do that. Now
I create a nested table of vet visits (we are supposed to go at least once a year):

TYPE vet_visits_t IS TABLE OF vet_visit_t;

With these data structures defined, I now declare my object type to maintain informa-
tion about my pets:

TYPE pet_t IS OBJECT (
 tag_no INTEGER,
 name VARCHAR2 (60),
 petcare vet_visits_t,
 MEMBER FUNCTION set_tag_no (new_tag_no IN INTEGER) RETURN pet_t)

374 | Chapter 12: Collections

Download at WoweBook.Com

This object type has three attributes and one member method. Any object instantiated
from this type will have associated with it a tag number, a name, and a list of visits to
the vet. You can also modify the tag number for that pet by calling the set_tag_no
program.

So I have now declared an object type that contains as an attribute a nested table. I
don’t need a separate database table to keep track of these veterinarian visits; they are
a part of my object.

Now let’s take advantage of the multilevel features of collections in the following
example.

 /* File on web: multilevel_collections.sql */
1 DECLARE
2 TYPE bunch_of_pets_t
 3 IS
 4 TABLE OF pet_t INDEX BY PLS_INTEGER;
 5
 6 my_pets bunch_of_pets_t;
 7 BEGIN
 8 my_pets (1) :=
 9 pet_t (
10 100
11 , 'Mercury'
12 , vet_visits_t (vet_visit_t ('01-Jan-2001', 'Clip wings')
13 , vet_visit_t ('01-Apr-2002', 'Check cholesterol')
14)
15);
16 DBMS_OUTPUT.put_line (my_pets (1).name);
17 DBMS_OUTPUT.put_line (my_pets (1).petcare (my_pets(1).petcare.LAST).reason);
18 DBMS_OUTPUT.put_line (my_pets.COUNT);
19 DBMS_OUTPUT.put_line (my_pets (1).petcare.LAST);
20 END;

The output from running this script is:

Mercury
Check cholesterol
1
2

The following table explains what’s going on in the code:

Line(s) Description

2–6 Declare a local associative array TYPE, in which each row contains a single pet object. I then declare a collection to
keep track of my “bunch of pets.”

8–15 Assign an object of type pet_t to index 1 in this associative array. As you can see, the syntax required when working
with nested, complex objects of this sort can be quite intimidating. So let’s parse the various steps required. To
instantiate an object of type pet_t, I must provide a tag number, a name, and a list of vet visits, which is a nested
table. To provide a nested table of type vet_visits_t, I must call the associated constructor (of the same name). I can
either provide a null or empty list, or initialize the nested table with some values. I do this in lines 8 and 9. Each row
in the vet_visits_t collection is an object of type vet_visit_t, so again I must use the object constructor and pass in
a value for each attribute (date and reason for visit).

Working with Collections | 375

Download at WoweBook.Com

Line(s) Description

16 Display the value of the name attribute of the pet object in row 1 of the my_pets associative array.

17 Display the value of the reason attribute of the vet visit object in row 2 of the nested table, which in turn resides in
index 1 of the my_pets associative array. That’s a mouthful, and it is a “line-full” of code.

18–19 Demonstrate how you can use the collection methods (in this case, COUNT and LAST) on both outer and nested
collections.

In this example I have the good fortune to be working with collections that, at each
level, actually have names: the my_pets associative array and the petcare nested table.
This is not always the case, as is illustrated in the next example.

Unnamed multilevel collections: emulation of multidimensional arrays

You can use nested, multilevel collections to emulate multidimensional arrays within
PL/SQL. Multidimensional collections are declared in stepwise fashion, adding a di-
mension at each step (quite different from the syntax used to declare an array in a 3GL).

I will start with a simple example and then step through the implementation of a generic
three-dimensional array package. Suppose that I want to record temperatures within
some three-dimensional space organized using some (X, Y, Z) coordinate system. The
following block illustrates the sequential declarations necessary to accomplish this.

DECLARE
 SUBTYPE temperature IS NUMBER;
 SUBTYPE coordinate_axis IS PLS_INTEGER;

 TYPE temperature_x IS TABLE OF temperature INDEX BY coordinate_axis;
 TYPE temperature_xy IS TABLE OF temperature_x INDEX BY coordinate_axis;
 TYPE temperature_xyz IS TABLE OF temperature_xy INDEX BY coordinate_axis;

 temperature_3d temperature_xyz;
BEGIN
 temperature_3d (1) (2) (3) := 45;
END;
/

Here, the subtype and type names are used to provide clarity as to the usage of the
contents of the actual collection (temperature_3d): the collection types
(temperature_X, temperature_XY, temperature_XYZ) as well as the collection indexes
(coordinate_axis).

Note that although my careful naming makes it clear what each of the collection types
contains and is used for, I do not have corresponding clarity when it comes to refer-
encing collection elements by subscript; in other words, in what order do I specify the
dimensions? It is not obvious from my code whether the temperature 45 degrees is
assigned to the point (X:1, Y:2, Z:3) or to (X:3, Y:2, Z:1).

Now let’s move on to a more general treatment of a three-dimensional array structure.

376 | Chapter 12: Collections

Download at WoweBook.Com

The multdim package allows you to declare your own three-dimensional array, as well
as set and retrieve values from individual cells. Here I create a simple package to en-
capsulate operations on a three-dimensional associative table storing VARCHAR2
elements indexed in all dimensions by PLS_INTEGER. The following declarations
constitute some basic building blocks for the package:

/* Files on web: multdim.pkg, multdim.tst, multdim2.pkg */
CREATE OR REPLACE PACKAGE multdim
IS
 TYPE dim1_t IS TABLE OF VARCHAR2 (32767) INDEX BY PLS_INTEGER;
 TYPE dim2_t IS TABLE OF dim1_t INDEX BY PLS_INTEGER;
 TYPE dim3_t IS TABLE OF dim2_t INDEX BY PLS_INTEGER;

 PROCEDURE setcell (
 array_in IN OUT dim3_t,
 dim1_in PLS_INTEGER,
 dim2_in PLS_INTEGER,
 dim3_in PLS_INTEGER,
 value_in IN VARCHAR2
);

 FUNCTION getcell (
 array_in IN dim3_t,
 dim1_in PLS_INTEGER,
 dim2_in PLS_INTEGER,
 dim3_in PLS_INTEGER
)
 RETURN VARCHAR2;

 FUNCTION EXISTS (
 array_in IN dim3_t,
 dim1_in PLS_INTEGER,
 dim2_in PLS_INTEGER,
 dim3_in PLS_INTEGER
)
 RETURN BOOLEAN;

I have defined the three collection types progressively as before:

Type dim1_t
A one-dimensional associative table of VARCHAR2 elements

Type dim2_t
An associative table of Dim1_t elements

Type dim3_t
An associative table of Dim2_t elements

Thus, three-dimensional space is modeled as cells in a collection of planes that are each
modeled as a collection of lines. This is consistent with common understanding, which
indicates a good model. Of course my collections are sparse and finite, while geometric
three-dimensional space is considered to be dense and infinite, so the model has

Working with Collections | 377

Download at WoweBook.Com

limitations. However, for my purposes, I am concerned only with a finite subset of
points in three-dimensional space, and the model is adequate.

I equip my three-dimensional collection type with a basic interface to get and set cell
values, as well as the ability to test whether a specific cell value exists in a collection.

Exploring the multdim API

Let’s look at the basic interface components. The procedure to set a cell value in a three-
dimensional array given its coordinates could not be much simpler:

PROCEDURE setcell (
 array_in IN OUT dim3_t,
 dim1_in PLS_INTEGER,
 dim2_in PLS_INTEGER,
 dim3_in PLS_INTEGER,
 value_in IN VARCHAR2
)
IS
BEGIN
 array_in(dim3_in)(dim2_in)(dim1_in) := value_in;
END;

Despite the simplicity of this code, there is significant added value in encapsulating the
assignment statement, as it relieves me of having to remember the order of reference
for the dimension indexes. It is not obvious when directly manipulating a dim3_t col-
lection whether the third coordinate is the first index or the last. Whatever is not ob-
vious in code will result in bugs sooner or later. The fact that all the collection indexes
have the same datatype complicates matters because mixed-up data assignments will
not raise exceptions but rather just generate bad results somewhere down the line. If
my testing is not thorough, these are the kinds of bugs that make it to production code
and wreak havoc on data and my reputation.

My function to return a cell value is likewise trivial but valuable:

FUNCTION getcell (
 array_in IN dim3_t,
 dim1_in PLS_INTEGER,
 dim2_in PLS_INTEGER,
 dim3_in PLS_INTEGER
)
 RETURN VARCHAR2
IS
BEGIN
 RETURN array_in(dim3_in)(dim2_in)(dim1_in);
END;

If there is no cell in array_in corresponding to the supplied coordinates, then getcell
will raise NO_DATA_FOUND. However, if any of the coordinates supplied are NULL,
then the following, less friendly VALUE_ERROR exception is raised:

ORA-06502: PL/SQL: numeric or value error: NULL index table key value

378 | Chapter 12: Collections

Download at WoweBook.Com

In a more complete implementation, I should enhance the module to assert a precon-
dition requiring all coordinate parameter values to be NOT NULL. At least the data-
base’s error message informs me that a null index value was responsible for the
exception. It would be even better, though, if the database did not use the
VALUE_ERROR exception for so many different error conditions.

With the EXISTS function, I get to some code that is a bit more interesting. EXISTS
will return TRUE if the cell identified by the coordinates is contained in the collection
and FALSE otherwise.

FUNCTION EXISTS (
 array_in IN dim3_t,
 dim1_in PLS_INTEGER,
 dim2_in PLS_INTEGER,
 dim3_in PLS_INTEGER
)
 RETURN BOOLEAN
IS
 l_value VARCHAR2(32767);
BEGIN
 l_value := array_in(dim3_in)(dim2_in)(dim1_in);
 RETURN TRUE;
EXCEPTION
 WHEN NO_DATA_FOUND THEN RETURN FALSE;
END;

This function traps the NO_DATA_FOUND exception raised when the assignment
references a nonexistent cell and converts it to the appropriate Boolean. This is a very
simple and direct method for obtaining my result, and illustrates a creative reliance on
exception handling to handle the “conditional logic” of the function. You might think
that you could and should use the EXISTS operator. You would, however, have to call
EXISTS for each level of nested collections.

Here is a sample script that exercises this package:

/* File on web: multdim.tst */
DECLARE
 my_3d_array multdim.dim3_t;
BEGIN
 multdim.setcell (my_3d_array, 1, 5, 800, 'def');
 multdim.setcell (my_3d_array, 1, 15, 800, 'def');
 multdim.setcell (my_3d_array, 5, 5, 800, 'def');
 multdim.setcell (my_3d_array, 5, 5, 805, 'def');

 DBMS_OUTPUT.PUT_LINE (multdim.getcell (my_3d_array, 1, 5, 800));
 /*
 Oracle11g Release 2 allows me to call PUT_LINE with a Boolean input!
 */
 DBMS_OUTPUT.PUT_LINE (multdim.EXISTS (my_3d_array, 1, 5, 800));
 DBMS_OUTPUT.PUT_LINE (multdim.EXISTS (my_3d_array, 6000, 5, 800));
 DBMS_OUTPUT.PUT_LINE (multdim.EXISTS (my_3d_array, 6000, 5, 807));

 /*
 If you are not on Oracle11g Release 2, then you can use this the

Working with Collections | 379

Download at WoweBook.Com

 procedure created in bpl.sp:

 bpl (multdim.EXISTS (my_3d_array, 1, 5, 800));
 bpl (multdim.EXISTS (my_3d_array, 6000, 5, 800));
 bpl (multdim.EXISTS (my_3d_array, 6000, 5, 807));
 */

 DBMS_OUTPUT.PUT_LINE (my_3d_array.COUNT);
END;

The multdim2.pkg file on the book’s web site contains an enhanced version of the
multdim package that implements support for “slicing” of that three-dimensional col-
lection, in which I fix one dimension and isolate the two-dimensional plane determined
by the fixed dimension. A slice from a temperature grid would give me, for example,
the range of temperatures along a certain latitude or longitude.

Beyond the challenge of writing the code for slicing, an interesting question presents
itself: will there be any differences between slicing out an XY plane, an XZ plane, or a
YZ plane in this fashion from a symmetric cube of data? If there are significant differ-
ences, it could affect how you choose to organize your multidimensional collections.

I encourage you to explore these issues and the implementation of the multdim2.pkg
package.

Extending string_tracker with multilevel collections

Let’s look at another example of applying multilevel collections: extending the
string_tracker package built-in the string indexing section to support multiple lists of
strings.

string_tracker is a handy utility, but it allows me to keep track of only one set of “used”
strings at a time. What if I need to track multiple lists, simultaneously? I can very easily
do this with multilevel collections.

/* File on web: string_tracker2.pks/pkb */
 1 PACKAGE BODY string_tracker
 2 IS
 3 SUBTYPE maxvarchar2_t IS VARCHAR2 (32767);
 4 SUBTYPE list_name_t IS maxvarchar2_t;
 5 SUBTYPE variable_name_t IS maxvarchar2_t;
 6
 7 TYPE used_aat IS TABLE OF BOOLEAN INDEX BY variable_name_t;
 8
 9 TYPE list_rt IS RECORD (
10 description maxvarchar2_t
11 , list_of_values used_aat
12);
13
14 TYPE list_of_lists_aat IS TABLE OF list_rt INDEX BY list_name_t;
15
16 g_list_of_lists list_of_lists_aat;
17
18 PROCEDURE create_list (

380 | Chapter 12: Collections

Download at WoweBook.Com

19 list_name_in IN list_name_t
20 , description_in IN VARCHAR2 DEFAULT NULL
21)
22 IS
23 BEGIN
24 g_list_of_lists (list_name_in).description := description_in;
25 END create_list;
26
27 PROCEDURE mark_as_used (
28 list_name_in IN list_name_t
29 , variable_name_in IN variable_name_t
30)
31 IS
32 BEGIN
33 g_list_of_lists (list_name_in)
34 .list_of_values (variable_name_in) := TRUE;
35 END mark_as_used;
36
37 FUNCTION string_in_use (
38 list_name_in IN list_name_t
39 , variable_name_in IN variable_name_t
40)
41 RETURN BOOLEAN
42 IS
43 BEGIN
44 RETURN g_list_of_lists (list_name_in)
45 .list_of_values.EXISTS (variable_name_in);
46 EXCEPTION
47 WHEN NO_DATA_FOUND
48 THEN
49 RETURN FALSE;
50 END string_in_use;
51 END string_tracker;

Here is an explanation of the multilevel collection-related changes to this package:

Line(s) Description

7 Once again, I have a collection type indexed by string to store the used strings.

9–12 Now I create a record to hold all the attributes of my list: the description and the list of used strings in that list. Notice
that I do not have the list name as an attribute of my list. That may seem strange, except that the list name is the
index value (see the next explanation).

14–16 Finally, I create a multilevel collection type: a list of lists, in which each element in this top level collection contains
a record, which in turn contains the collection of used strings.

33–34 Now the mark_as_used procedure uses both the list name and the variable name as the index values into their
respective collections:

g_list_of_lists (list_name_in)
 .list_of_values(variable_name_in) := TRUE;

Notice that if I mark a variable name as used in a new list, the database creates a new element in the g_list_of_lists
collection for that list. If I mark a variable name as used in a list previously created, it simply adds another element
to the nested collection.

Working with Collections | 381

Download at WoweBook.Com

Line(s) Description

44–45 Now to check to see if a string is used, I look to see if the variable name is defined as an element within an element
of the list of lists collection:

RETURN g_list_of_lists (list_name_in)
 .list_of_values.EXISTS (variable_name_in);

Finally, notice that in this third implementation of string_tracker I was very careful to
use named subtypes in each of my formal parameter declarations and especially in the
INDEX BY clause of the collection type declarations. By using subtypes instead of
hardcoded VARCHAR2 declarations, my code is much more self-documenting. If you
do not do this, you will find yourself scratching your head and asking “What am I using
for the index of that collection?”

How deeply can I nest collections?

As I played around with two- and three-dimensional arrays, I found myself wondering
how deeply I could nest these multilevel collections. So I decided to find out. I built a
small code generator that allows me to pass in the number of levels of nesting. It then
constructs a procedure that declares N collection TYPEs, each one being a TABLE OF
the previous table TYPE. Finally, it assigns a value to the string that is all the way at
the heart of the nested collections.

I was able to create a collection of at least 250 nested collections before my computer
ran into a memory error! I find it hard to believe that any PL/SQL developer will even
come close to that level of complexity. If you would like to run this same experiment
in your own system, check out the gen_multcoll.sp file available on the book’s web site.

Working with Collections in SQL
I’ve been working with Oracle’s SQL for more than 22 years and PL/SQL for more than
18, but my brain has rarely turned as many cartwheels over SQL’s semantics as it did
when I first contemplated the collection pseudo-functions introduced in Oracle8 Data-
base. These pseudo-functions exist to coerce database tables into acting like collections,
and vice versa. Because there are some manipulations that work best when data is in
one form versus the other, these functions give application programmers access to a
rich and interesting set of structures and operations.

The collection pseudo-functions are not available in PL/SQL proper,
only in SQL. You can, however, employ these operators in SQL state-
ments that appear in your PL/ SQL code, and it is extremely useful to
understand how and when to do so. You’ll see examples in the following
sections.

382 | Chapter 12: Collections

Download at WoweBook.Com

The three collection pseudo-functions are as follows:

CAST
Maps a collection of one type to a collection of another type. This can encompass
mapping a VARRAY to a nested table.

MULTISET
Maps a database table to a collection. With MULTISET and CAST, you can ac-
tually retrieve rows from a database table as a collection-typed column.

TABLE
Maps a collection to a database table. This is the inverse of MULTISET: it returns
a single column that contains the mapped table.

Oracle introduced these pseudo-functions to manipulate collections that live in the
database. They are important to your PL/SQL programs for several reasons, not
the least of which is that they provide an incredibly efficient way to move data between
the database and the application.

Yes, these pseudo-functions can be puzzling. But if you’re the kind of person who gets
truly excited by arcane code, these SQL extensions will make you jumping-up-and-
down silly.

The CAST pseudo-function

The CAST operator can be used in a SQL statement to convert from one built-in
datatype or collection type to another built-in datatype or collection type. In other
words, within SQL you can use CAST in place of TO_CHAR to convert from number
to string.

Another very handy use of CAST is to convert between types of collections. Here is an
example of casting a named collection. Suppose that I have created the color_ models
table based on a VARRAY type as follows:

TYPE color_nt AS TABLE OF VARCHAR2(30)

TYPE color_vat AS VARRAY(16) OF VARCHAR2(30)

TABLE color_models (
 model_type VARCHAR2(12),
 colors color_vat);

I can CAST the VARRAY colors column as a nested table and apply the pseudo-function
TABLE (explained shortly) to the result. An example is shown here.
COLUMN_VALUE is the name that the database gives to the column in the resulting
one-column virtual table. You can change it to whatever you want with a column alias:

SELECT COLUMN_VALUE my_colors
 FROM TABLE (SELECT CAST(colors AS color_nt)
 FROM color_models
 WHERE model_type = 'RGB')

Working with Collections | 383

Download at WoweBook.Com

CAST performs an on-the-fly conversion of the color_vat collection type to the color_nt
collection type. CAST cannot serve as the target of an INSERT, UPDATE, or DELETE
statement.

Starting with Oracle Database 10g, you do not need to explicitly CAST
a collection inside the TABLE operator. Instead, the database automat-
ically determines the correct type.

It is also possible to cast a “bunch of table rows”—such as the result of a subquery—
as a particular collection type. Doing so requires the MULTISET function, covered in
the next section.

The MULTISET pseudo-function

The MULTISET function exists only for use within CASTs. MULTISET allows you to
retrieve a set of data and convert it on the fly to a collection type. (Note that the SQL
MULTISET function is distinct from the PL/SQL MULTISET operators for nested ta-
bles, discussed in “Nested Table Multiset Operations” on page 387.)

The simplest form of MULTISET is this:

SELECT CAST (MULTISET (SELECT field FROM table) AS collection-type)
 FROM DUAL;

You can also use MULTISET in a correlated subquery in the select list:

SELECT outerfield,
 CAST(MULTISET(SELECT field FROM whateverTable
 WHERE correlationCriteria)
 AS collectionTypeName)
 FROM outerTable

This technique is useful for making joins look as if they include a collection. For ex-
ample, suppose that I had a detail table that listed, for each bird in my table, the coun-
tries where that species lives:

CREATE TABLE birds (
 genus VARCHAR2(128),
 species VARCHAR2(128),
 colors color_tab_t,
 PRIMARY KEY (genus, species)
);

CREATE TABLE bird_habitats (
 genus VARCHAR2(128),
 species VARCHAR2(128),
 country VARCHAR2(60),
 FOREIGN KEY (genus, species) REFERENCES birds (genus, species)
);

CREATE TYPE country_tab_t AS TABLE OF VARCHAR2(60);

384 | Chapter 12: Collections

Download at WoweBook.Com

I should then be able to smush the master and detail tables together in a single SELECT
that converts the detail records into a collection type. This feature has enormous sig-
nificance for client/server programs because the number of roundtrips can be cut down
without incurring the overhead of duplicating the master records with each and every
detail record:

DECLARE
 CURSOR bird_curs IS
 SELECT b.genus, b.species,
 CAST(MULTISET(SELECT bh.country FROM bird_habitats bh
 WHERE bh.genus = b.genus
 AND bh.species = b.species)
 AS country_tab_t)
 FROM birds b;
 bird_row bird_curs%ROWTYPE;
BEGIN
 OPEN bird_curs;
 FETCH bird_curs into bird_row;
 CLOSE bird_curs;
END;

As with the CAST pseudo-function, MULTISET cannot serve as the target of an
INSERT, UPDATE, or DELETE statement.

The TABLE pseudo-function

The TABLE operator casts or converts a collection-valued column into something you
can SELECT from. It sounds complicated, but this section presents an example that’s
not too hard to follow.

Looking at it another way, let’s say that you have a database table with a column of a
collection type. How can you figure out which rows in the table contain a collection
that meets certain criteria? That is, how can you select from the database table, putting
a WHERE clause on the collection’s contents? Wouldn’t it be nice if you could just say:

SELECT *
 FROM table_name
 WHERE collection_column
 HAS CONTENTS 'whatever'; -- INVALID! Imaginary syntax!

Logically, that’s exactly what you can do with the TABLE function. Going back to my
color_models database table, how could I get a listing of all color models that contain
the color RED? Here’s the real way to do it:

SELECT *
 FROM color_models c
 WHERE 'RED' IN
 (SELECT * FROM TABLE(c.colors));

which, in SQL*Plus, returns:

MODEL_TYPE COLORS
------------ -------------------------------------
RGB COLOR_TAB_T('RED', 'GREEN', 'BLUE')

Working with Collections | 385

Download at WoweBook.Com

The query means “go through the color_models table and return all rows whose list of
colors contains at least one RED element.” Had there been more rows with a RED
element in their colors column, these rows too would have appeared in my SQL*Plus
result set.

As shown previously, TABLE accepts a collection as its only argument, which can be
an alias-qualified collection column, as follows:

TABLE(alias_name.collection_name)

TABLE returns the contents of this collection coerced into a virtual database table.
Hence, you can SELECT from it. In my example, it is used in a subquery.

To repeat an earlier admonition, none of the collection pseudo-functions is available
from within PL/SQL, but PL/SQL programmers will certainly want to know how to
use these gizmos in their SQL statements!

You will also find the pseudo-functions, particularly TABLE, very handy when you are
taking advantage of the table function capability introduced in Oracle9i Database. A
table function is a function that returns a collection, and it can be used in the FROM
clause of a query. This functionality is explored in Chapter 17.

Personally, I find these features fascinating, and I enjoy the mental calisthenics required
to understand and use them. Maybe mine isn’t a global sentiment, but at least you must
admit that Oracle hasn’t let its language technology get tired!

Sorting contents of collections

One of the wonderful aspects of pseudo-functions is that you can apply SQL operations
against the contents of PL/SQL data structures (nested tables and VARRAYs, at least).
You can, for example, use ORDER BY to select information from the nested table in
the order you desire. Here, I populate a database table with some of my favorite authors:

TYPE names_t AS TABLE OF VARCHAR2 (100)

TYPE authors_t AS TABLE OF VARCHAR2 (100)

TABLE favorite_authors (name varchar2(200));

BEGIN
 INSERT INTO favorite_authors VALUES ('Robert Harris');
 INSERT INTO favorite_authors VALUES ('Tom Segev');
 INSERT INTO favorite_authors VALUES ('Toni Morrison');
END;

Now I would like to blend this information with data from my PL/SQL program:

DECLARE
 scifi_favorites authors_t
 := authors_t ('Sheri S. Tepper', 'Orson Scott Card', 'Gene Wolfe');
BEGIN
 DBMS_OUTPUT.put_line ('I recommend that you read books by:');

386 | Chapter 12: Collections

Download at WoweBook.Com

 FOR rec IN (SELECT COLUMN_VALUE favs
 FROM TABLE (CAST (scifi_favorites AS names_t))
 UNION
 SELECT NAME
 FROM favorite_authors)
 LOOP
 DBMS_OUTPUT.put_line (rec.favs);
 END LOOP;
END;

Notice that I can use UNION to combine data from my database table and collection.
I can also apply this technique only to PL/SQL data to sort the contents being retrieved:

DECLARE
 scifi_favorites authors_t
 := authors_t ('Sheri S. Tepper', 'Orson Scott Card', 'Gene Wolfe');
BEGIN
 DBMS_OUTPUT.put_line ('I recommend that you read books by:');

 FOR rec IN (SELECT COLUMN_VALUE Favs
 FROM TABLE (CAST (scifi_favorites AS names_t))
 ORDER BY COLUMN_VALUE)
 LOOP
 DBMS_OUTPUT.put_line (rec.favs);
 END LOOP;
END;

COLUMN_VALUE in the above query is the system-defined name of
the column created with the TABLE operator.

Nested Table Multiset Operations
The essential advance made in collections starting with Oracle Database 10g is that the
database treats nested tables more like the multisets that they actually are. The database
provides high-level set operations that can be applied to nested tables and only, for the
time being, to nested tables. Here is a brief summary of these set-level capabilities:

Operation Return value Description

= BOOLEAN Compares two nested tables, and returns TRUE if they have the same
named type and cardinality and if the elements are equal.

<> or != BOOLEAN Compares two nested tables, and returns FALSE if they differ in named
type, cardinality, or equality of elements.

[NOT] IN () BOOLEAN Returns TRUE [FALSE] if the nested table to the left of IN exists in the
list of nested tables in the parentheses.

x MULTISET EXCEPT [DISTINCT] y NESTED TABLE Performs a MINUS set operation on nested tables x and y, returning a
nested table whose elements are in x, but not in y. x, y, and the returned

Nested Table Multiset Operations | 387

Download at WoweBook.Com

Operation Return value Description
nested table must all be of the same type. The DISTINCT keyword forces
the elimination of duplicates from the returned nested table.

x MULTISET
INTERSECT [DISTINCT] y

NESTED TABLE Performs an INTERSECT set operation on nested tables x and y, returning
a nested table whose elements are in both x and y. x, y, and the returned
nested table must all be of the same type. The DISTINCT keyword forces
the elimination of duplicates from the returned nested table.

x MULTISET UNION [DISTINCT] y NESTED TABLE Performs a UNION set operation on nested tables x and y, returning a
nested table whose elements include all those in x as well as those in
y. x, y, and the returned nested table must all be of the same type. The
DISTINCT keyword forces the elimination of duplicates from the returned
nested table.

SET(x) NESTED TABLE Returns nested table x without duplicate elements.

x IS [NOT] A SET BOOLEAN Returns TRUE [FALSE] if the nested table x is composed of unique
elements.

x IS [NOT] EMPTY BOOLEAN Returns TRUE [FALSE] if the nested table x is empty.

e [NOT] MEMBER [OF] x BOOLEAN Returns TRUE [FALSE] if the expression e is a member of the nested table
x .

y [NOT] SUBMULTISET [OF] x BOOLEAN Returns TRUE [FALSE] if the nested table y contains only elements that
are also in nested table x.

In the following sections, I will take a closer look at many of these features. As I do so,
I’ll make frequent references to this nested table type:

/* File on web: 10g_strings_nt.sql */
TYPE strings_nt IS TABLE OF VARCHAR2(100);

I’ll also make repeated use of the following package:

/* File on web: 10g_authors.pkg */
CREATE OR REPLACE PACKAGE authors_pkg
IS
 steven_authors strings_nt
 := strings_nt ('ROBIN HOBB'
 , 'ROBERT HARRIS'
 , 'DAVID BRIN'
 , 'SHERI S. TEPPER'
 , 'CHRISTOPHER ALEXANDER'
);
 veva_authors strings_nt
 := strings_nt ('ROBIN HOBB'
 , 'SHERI S. TEPPER'
 , 'ANNE MCCAFFREY'
);

 eli_authors strings_nt
 := strings_nt ('SHERI S. TEPPER'
 , 'DAVID BRIN'
);

388 | Chapter 12: Collections

Download at WoweBook.Com

 PROCEDURE show_authors (
 title_in IN VARCHAR2
 , authors_in IN strings_nt
);
END;
/

CREATE OR REPLACE PACKAGE BODY authors_pkg
IS
 PROCEDURE show_authors (
 title_in IN VARCHAR2
 , authors_in IN strings_nt
)
 IS
 BEGIN
 DBMS_OUTPUT.put_line (title_in);

 FOR indx IN authors_in.FIRST .. authors_in.LAST
 LOOP
 DBMS_OUTPUT.put_line (indx || ' = ' || authors_in (indx));
 END LOOP;

 DBMS_OUTPUT.put_line ('_');
 END show_authors;
END;
/

Testing Equality and Membership of Nested Tables
Prior to Oracle Database 10g, the only way to tell if two collections were identical (i.e.,
had the same contents) was to compare the values of each row for equality (and if the
collection contained records, you would have to compare each field of each record);
see the example in 10g_coll_compare_old.sql for an example of this code. From Oracle
Database 10g onwards, with nested tables, you only need to use the standard =
and != operators as shown in the following example:

/* File on web: 10g_coll_compare.sql */
DECLARE
 TYPE clientele IS TABLE OF VARCHAR2 (64);

 group1 clientele := clientele ('Customer 1', 'Customer 2');
 group2 clientele := clientele ('Customer 1', 'Customer 3');
 group3 clientele := clientele ('Customer 3', 'Customer 1');
BEGIN
 IF group1 = group2
 THEN
 DBMS_OUTPUT.put_line ('Group 1 = Group 2');
 ELSE
 DBMS_OUTPUT.put_line ('Group 1 != Group 2');
 END IF;

 IF group2 != group3

Nested Table Multiset Operations | 389

Download at WoweBook.Com

 THEN
 DBMS_OUTPUT.put_line ('Group 2 != Group 3');
 ELSE
 DBMS_OUTPUT.put_line ('Group 2 = Group 3');
 END IF;
END;

Note that the equality check implemented for nested tables treats NULLs consistently
with other operators. It considers NULL to be “unknowable.” Thus, one NULL is never
equal to another NULL. As a consequence, if both of the nested tables you are com-
paring contain a NULL value at the same row, they will not be considered equal.

Checking for Membership of an Element in a Nested Table
In a variation on that theme, you can use the MEMBER operator to determine if a
particular element is in a nested table. Use SUBMULTISET to determine if an entire
nested table is contained in another nested table. Here is an example:

/* File on web: 10g_submultiset.sql */
BEGIN
 bpl (authors_pkg.steven_authors
 SUBMULTISET OF authors_pkg.eli_authors
 , 'Father follows son?');
 bpl (authors_pkg.eli_authors
 SUBMULTISET OF authors_pkg.steven_authors
 , 'Son follows father?');

 bpl (authors_pkg.steven_authors
 NOT SUBMULTISET OF authors_pkg.eli_authors
 , 'Father doesn''t follow son?');
 bpl (authors_pkg.eli_authors
 NOT SUBMULTISET OF authors_pkg.steven_authors
 , 'Son doesn''t follow father?');
END;
/

Here are the results of running this code:

SQL> @10g_submultiset
Father follows son? - FALSE
Son follows father? - TRUE
Father doesn't follow son? - TRUE
Son doesn't follow father? - FALSE

Performing High-Level Set Operations
Set operations like UNION, INTERSECT, and MINUS are extremely powerful and
helpful, precisely because they are such simple, high-level concepts. You can write a
very small amount of code to achieve great effects. Consider the following code, which
shows a variety of set operators at work:

/* File on web: 10g_union.sql */
 1 DECLARE

390 | Chapter 12: Collections

Download at WoweBook.Com

 2 our_authors strings_nt := strings_nt();
 3 BEGIN
 4 our_authors := authors_pkg.steven_authors
 5 MULTISET UNION authors_pkg.veva_authors;
 6
 7 authors_pkg.show_authors ('MINE then VEVA', our_authors);
 8
 9 our_authors := authors_pkg.veva_authors
10 MULTISET UNION authors_pkg.steven_authors;
11
12 authors_pkg.show_authors ('VEVA then MINE', our_authors);
13
14 our_authors := authors_pkg.steven_authors
15 MULTISET UNION DISTINCT authors_pkg.veva_authors;
16
17 authors_pkg.show_authors ('MINE then VEVA with DISTINCT', our_authors);
18
19 our_authors := authors_pkg.steven_authors
20 MULTISET INTERSECT authors_pkg.veva_authors;
21
22 authors_pkg.show_authors ('IN COMMON', our_authors);
23
24 our_authors := authors_pkg.veva_authors
25 MULTISET EXCEPT authors_pkg.steven_authors;
26
27 authors_pkg.show_authors (q'[ONLY VEVA'S]', our_authors);
28 END;

Here is the output from running this script:

SQL> @10g_union
MINE then VEVA
1 = ROBIN HOBB
2 = ROBERT HARRIS
3 = DAVID BRIN
4 = SHERI S. TEPPER
5 = CHRISTOPHER ALEXANDER
6 = ROBIN HOBB
7 = SHERI S. TEPPER
8 = ANNE MCCAFFREY
_
VEVA then MINE
1 = ROBIN HOBB
2 = SHERI S. TEPPER
3 = ANNE MCCAFFREY
4 = ROBIN HOBB
5 = ROBERT HARRIS
6 = DAVID BRIN
7 = SHERI S. TEPPER
8 = CHRISTOPHER ALEXANDER
_
MINE then VEVA with DISTINCT
1 = ROBIN HOBB
2 = ROBERT HARRIS
3 = DAVID BRIN
4 = SHERI S. TEPPER

Nested Table Multiset Operations | 391

Download at WoweBook.Com

5 = CHRISTOPHER ALEXANDER
6 = ANNE MCCAFFREY
_
IN COMMON
1 = ROBIN HOBB
2 = SHERI S. TEPPER
_
ONLY VEVA'S
1 = ANNE MCCAFFREY

Note that MULTISET UNION does not act precisely the same as the SQL UNION. It
does not reorder the data, and it does not remove duplicate values. Duplicates are
perfectly acceptable and, indeed, are significant in a multiset. If, however, you want to
remove duplicates, use MULTISET UNION DISTINCT.

Handling Duplicates in a Nested Table
So, a nested table can have duplicates (the same value stored more than once)—and
those duplicates will persist even beyond a MULTISET UNION operation. Sometimes
this is what you want; sometimes, you would much rather have a distinct set of values
with which to work. Oracle provides the following operators:

SET operator
Helps you transform a nondistinct set of elements in a nested table into a distinct
set. You can think of it as a “SELECT DISTINCT” for nested tables.

IS A SET and IS [NOT] A SET operators
Helps you answers questions like “Does this nested table contain any duplicate
entries?”

The following script exercises these features of Oracle Database 10g and later:

/* Files on web: 10g_set.sql, bpl2.sp */
BEGIN
 -- Add a duplicate author to Steven's list
 authors_pkg.steven_authors.EXTEND;
 authors_pkg.steven_authors(authors_pkg.steven_authors.LAST) := 'ROBERT HARRIS';

 distinct_authors :=
 SET (authors_pkg.steven_authors);

 authors_pkg.show_authors (
 'FULL SET', authors_pkg.steven_authors);

 bpl (authors_pkg.steven_authors IS A SET, 'My authors distinct?');
 bpl (authors_pkg.steven_authors IS NOT A SET, 'My authors NOT distinct?');
 DBMS_OUTPUT.PUT_LINE ('');

 authors_pkg.show_authors (
 'DISTINCT SET', distinct_authors);

 bpl (distinct_authors IS A SET, 'SET of authors distinct?');
 bpl (distinct_authors IS NOT A SET, 'SET of authors NOT distinct?');

392 | Chapter 12: Collections

Download at WoweBook.Com

 DBMS_OUTPUT.PUT_LINE ('');

END;
/

And here are the results of this script:

SQL> @10g_set
FULL SET
1 = ROBIN HOBB
2 = ROBERT HARRIS
3 = DAVID BRIN
4 = SHERI S. TEPPER
5 = CHRISTOPHER ALEXANDER
6 = ROBERT HARRIS
_
My authors distinct? - FALSE
My authors NOT distinct? - TRUE

DISTINCT SET
1 = ROBIN HOBB
2 = ROBERT HARRIS
3 = DAVID BRIN
4 = SHERI S. TEPPER
5 = CHRISTOPHER ALEXANDER
_
SET of authors distinct? - TRUE
SET of authors NOT distinct? - FALSE

Maintaining Schema-Level Collections
Here are some not-so-obvious bits of information that will assist you in using nested
tables and VARRAYS. This kind of housekeeping is not necessary or relevant when
working with associative arrays.

Necessary Privileges
When they live in the database, collection datatypes can be shared by more than one
database user (schema). As you can imagine, privileges are involved. Fortunately, it’s
not complicated; only one Oracle privilege—EXECUTE—applies to collection types.

If you are Scott, and you want to grant Joe permission to use color_tab_t in his pro-
grams, all you need to do is grant the EXECUTE privilege to him:

GRANT EXECUTE on color_tab_t TO JOE;

Joe can then refer to the type using schema.type notation. For example:

CREATE TABLE my_stuff_to_paint (
 which_stuff VARCHAR2(512),
 paint_mixture SCOTT.color_tab_t
)
NESTED TABLE paint_mixture STORE AS paint_mixture_st;

Maintaining Schema-Level Collections | 393

Download at WoweBook.Com

EXECUTE privileges are also required by users who need to run PL/SQL anonymous
blocks that use the object type. That’s one of several reasons that named PL/SQL mod-
ules—packages, procedures, functions—are generally preferred. Granting EXECUTE
on the module confers the grantor’s privileges to the grantee while executing the
module.

For tables that include collection columns, the traditional SELECT, INSERT,
UPDATE, and DELETE privileges still have meaning, as long as there is no requirement
to build a collection for any columns. However, if a user is going to INSERT or UPDATE
the contents of a collection column, that user must have the EXECUTE privilege on
the type because that is the only way to use the default constructor.

Collections and the Data Dictionary
The Oracle database offers several data dictionary views that provide information about
your nested table and VARRAY collection types (see Table 12-4). The shorthand dic-
tionary term for user-defined types is simply TYPE. Collection type definitions are
found in the USER_SOURCE view (or DBA_SOURCE, or ALL_SOURCE).

Table 12-4. Data dictionary entries for collection types

To answer the question ... Use this view As in

What collection types have I created? USER_TYPES SELECT type_name
 FROM user_types
 WHERE typecode ='COLLECTION’;

What was the original type definition of collection Foo_t? USER_SOURCE SELECT text
 FROM user_source
 WHERE name = ‘FOO_T’
 AND type = ‘TYPE’
 ORDER BY line;

What columns implement Foo_t? USER_TAB_ COLUMNS SELECT table_name,column_name
 FROM user_tab_columns
 WHERE data_type = ‘FOO_T’;

What database objects are dependent on Foo_t? USER_DEPENDENCIES SELECT name, type
 FROM user_dependencies
 WHERE referenced_name='FOO_T’;

394 | Chapter 12: Collections

Download at WoweBook.Com

CHAPTER 13

Miscellaneous Datatypes

In this chapter, I’ll explore all the native PL/SQL datatypes that have not yet been
covered. These include the BOOLEAN, RAW, and UROWID/ROWID types, as well
as the large object (LOB) family of types. I’ll also discuss some useful, predefined object
types, including XMLType, which allow you to store XML data in a database column,
the URI types, which allow you store Uniform Resource Identifier (URI) information,
and the Any types, which allow you to store, well, just about anything.

The terminology for the LOB implementation has changed in Oracle Database 11g.
Oracle has re-engineered the implementation of LOBs using a technology called
SecureFiles; the older pre-Oracle Database 11g LOB technology is now known as
BasicFiles. In this chapter I’ll also discuss SecureFiles and the performance benefits you
can reap by using this updated technology.

The BOOLEAN Datatype
Boolean values and variables are very useful in PL/SQL. Because a Boolean variable can
only be TRUE, FALSE, or NULL, you can use that variable to explain what is happening
in your code. With Booleans you can write code that is easily readable because it is
more English-like. You can replace a complicated Boolean expression involving many
different variables and tests with a single Boolean variable that directly expresses the
intention and meaning of the text.

Here is an example of an IF statement with a single Boolean variable (or function—you
really can’t tell the difference just by looking at this short bit of code):

IF report_requested
THEN
 print_report (report_id);
END IF;

The beauty of this technique is that it not only makes your code a bit more self-
documenting, it also has the potential to insulate your code from future change. For
example, consider the human interface that needs to precede the previous code

395

Download at WoweBook.Com

fragment. How do you know that a report was requested? Perhaps you ask the user to
answer a question with a Y or an N, or perhaps the user must place a check in a checkbox
or select an option from a drop-down list. The point is that it doesn’t matter. You can
freely change the human interface of your code, and, as long as that interface properly
sets the report_requested Boolean variable, the actual reporting functionality will con-
tinue to work correctly.

While PL/SQL supports a Boolean datatype, the Oracle database does
not. You can create and work with Boolean variables from PL/SQL, but
you cannot create tables having Boolean columns.

The fact that Boolean variables can be NULL has implications for IF...THEN...ELSE
statements. For example, look at the difference in behavior between the following two
statements:

IF report_requested
THEN
 NULL; --Executes if report_requested = TRUE
ELSE
 NULL; --Executes if report_requested = FALSE or IS NULL
END IF;

IF NOT report_requested
THEN
 NULL; --Executes if report_requested = FALSE
ELSE
 NULL; --Executes if report_requeste = TRUE or IS NULL
END IF;

If you need separate logic for each of the three possible cases, you can write a three-
pronged IF statement as follows:

IF report_requested
THEN
 NULL; --Executes if report_requested = TRUE
ELSIF NOT report_requested
THEN
 NULL; --Executes if report_requested = FALSE
ELSE
 NULL; --Executes if report_requested IS NULL
END IF;

For more details on the effects of NULLs in IF statements, refer back to Chapter 4.

The RAW Datatype
The RAW datatype allows you to store and manipulate relatively small amounts of
binary data. Unlike the case with VARCHAR2 and other character types, RAW data
never undergoes any kind of character set conversion when traveling back and forth

396 | Chapter 13: Miscellaneous Datatypes

Download at WoweBook.Com

between your PL/SQL programs and the database. RAW variables are declared as
follows:

variable_name RAW(maximum_size)

The value for maximum_size may range from 1 through 32767. Be aware that while a
RAW PL/SQL variable can hold up to 32,767 bytes of data, a RAW database column
can hold only 2,000 bytes.

RAW is not a type that you will use or encounter very often. It’s useful mainly when
you need to deal with small amounts of binary data. When dealing with the large
amounts of binary data found in images, sound files, and the like, you should look into
using the BLOB (binary large object) type. BLOB is described later in this chapter (see
“Working with LOBs” on page 401).

The UROWID and ROWID Datatypes
The UROWID and ROWID types allow you to work with database ROWIDs in your
PL/SQL programs. A ROWID is a row identifier—a binary value that identifies the
physical address for a row of data in a database table. A ROWID can be used to uniquely
identify a row in table, even if that table does not have a unique key. Two rows with
identical column values will have different ROWIDs or UROWIDs.

Beware! ROWIDs in a table can change. In early Oracle releases (Ora-
cle8 Database 8.0 and earlier) ROWIDs could not change during the life
of a row. But starting with Oracle8i Database new features were added
that violate this old rule. If row movement is enabled on a regular (heap
organized) table or for any index-organized table, updates can cause a
row’s ROWID or UROWID to change. In addition, if someone alters
the table to shrink, move, or perform some other operation that will
cause a row to change from one physical data block to another, the
ROWID will change.

With the caveat noted above, there can still sometimes be value in using ROWIDs.
Referencing ROWIDs in SELECT, UPDATE, MERGE, and DELETE statements can
lead to desirable improvements in processing speed, as access by ROWID is the fastest
way to locate or retrieve a specific row in a table—faster than a search by primary key.
Figure 13-1 contrasts the use of a ROWID in an UPDATE statement with the use of
column values such as those for a primary key.

Historically, the ROWID type came before UROWID. As Oracle added functionality
such as index-organized tables (IOTs) and gateways to other types of databases, Oracle
developed new types of ROWIDs and hence had to develop a new datatype capable of
holding them. Enter the UROWID datatype. The U in UROWID stands for Universal,
and a UROWID variable can contain any type of ROWID from any type of table.

The UROWID and ROWID Datatypes | 397

Download at WoweBook.Com

I recommend the use of UROWID for all new development involving
ROWIDs. The ROWID type provides backward compatibility but can’t
accommodate all types of ROWIDs now encountered in an Oracle
database. UROWID is safer because it accommodates any type of
ROWID, while still providing the desired access by rowid execution
plan.

Getting ROWIDs
You can get the ROWID for a given table row by including the keyword ROWID in
your select list. For example:

DECLARE
 employee_rowid UROWID;
 employee_salary NUMBER;
BEGIN
 --Retrieve employee information that we might want to modify
 SELECT rowid, salary INTO employee_rowid, employee_salary
 FROM employees
 WHERE last_name='Grubbs' AND first_name='John';
END;

Oracle calls the ROWID a pseudo-column because the ROWID value is not stored in
the same sense that other column values are, yet you can refer to the ROWID as if it
were a column. A ROWID is more akin to a pointer—it holds the physical address of
a row in a table.

Using ROWIDs
The main use of ROWIDs is in repeating access to a given database row. This use is
particularly beneficial when accessing the row is costly or frequent. Recall the example
from the previous section in which I retrieved the salary for a specific employee. What

Figure 13-1. ROWIDs take you directly to rows in a table

398 | Chapter 13: Miscellaneous Datatypes

Download at WoweBook.Com

if I later want to modify that salary? One solution would be to issue an UPDATE state-
ment with the same WHERE clause as the one I used in my original SELECT:

DECLARE
 employee_rowid UROWID;
 employee_salary NUMBER;
BEGIN
 --Retrieve employee information that we might want to modify
 SELECT rowid, salary INTO employee_rowid, employee_salary
 FROM employees
 WHERE last_name='Grubbs' AND first_name='John';

 /* Do a bunch of processing to compute a new salary */

 UPDATE employees
 SET salary = employee_salary
 WHERE last_name='Grubbs' AND first_name='John';
END;

While this code will certainly work, it has the disadvantage of having to repeat the same
access path for the UPDATE as was used for the SELECT. Most likely, one or more
indexes were accessed in order to find the employee row in question. But those indexes
were just accessed for the SELECT statement, so why go through all the work of looking
up the same ROWID twice? Internally, the purpose of accessing the index was to obtain
the ROWID so that the row could be accessed directly. By including ROWID in my
SELECT statement, I can simply supply that ROWID to the UPDATE statement, by-
passing the index lookup:

DECLARE
 employee_rowid UROWID;
 employee_salary NUMBER;
BEGIN
 --Retrieve employee information that we might want to modify
 SELECT rowid, salary INTO employee_rowid, employee_salary
 FROM employees
 WHERE last_name='Grubbs' AND first_name='John';

 /* Do a bunch of processing to compute a new salary */

 UPDATE employees
 SET salary = employee_salary
 WHERE rowid = employee_rowid;
END;

Recall my caveat about ROWIDs changing. If in my multiuser system the ROWID for
the John Grubbs row in the employee table in my example changes between the
SELECT and the UPDATE, my code will not execute as intended. Why is that? Well,
enabling row movement on a regular heap-organized table can allow a row’s ROWID
in that table to change. Row movement may be enabled because the DBA wants to do
online table reorganizations, or the table may be partitioned and row movement will
allow a row to migrate from one partition to another during an update.

The UROWID and ROWID Datatypes | 399

Download at WoweBook.Com

Often, a better way to achieve the same effect as using ROWID in an
UPDATE or DELETE statement is to use an explicit cursor to retrieve
data, and then use the WHERE CURRENT OF CURSOR clause to
modify or delete it. See Chapter 15 for detailed information on this
technique.

Using ROWIDs is a powerful technique to improve the performance of your PL/SQL
programs because they cut through to the physical management layer of the database.
Good application programs don’t usually get involved in how the data is physically
managed. Instead they let the database and administrative programs work with the
physical management and restrict application programs to logical management of data.
Therefore, I don’t generally recommend using ROWIDs in your application programs.

The LOB Datatypes
Oracle and PL/SQL support several variations of large object datatypes. LOBs can store
large amounts—from 8 to 128 terabytes—of binary data (such as images) or character
text data.

Through Oracle9i Database Release 2, LOBs could store only up to
4 gigabytes. Starting with Oracle Database 10g, the limit was increased
to a value between 8 and 128 terabytes that is dependent upon your
database block size.

Within PL/SQL you can declare LOB variables of the following datatypes:

BFILE
Binary file. Declares a variable that holds a file locator pointing to an operating-
system file outside the database. The database treats the data in the file as binary
data.

BLOB
Binary large object. Declares a variable that holds a LOB locator pointing to a large
binary object stored inside the database.

CLOB
Character large object. Declares a variable that holds a LOB locator pointing to a
large block of character data in the database character set, stored inside the
database.

NCLOB
National Language Support (NLS) character large object. Declares a variable that
holds a LOB locator pointing to a large block of character data in the national
character set, stored inside the database.

400 | Chapter 13: Miscellaneous Datatypes

Download at WoweBook.Com

LOBs can be categorized as internal or external. Internal LOBs (BLOBs, CLOBs, and
NCLOBs) are stored in the database and can participate in a transaction in the database
server. External LOBs (BFILEs) represent binary data stored in operating-system files
outside the database tablespaces. External LOBs cannot participate in transactions; in
other words, you cannot commit or roll back changes to a BFILE. Instead, you must
rely on the underlying filesystem for data integrity. Likewise, the database’s read con-
sistency model does not extend to BFILEs. Repeated reads of a BFILE may not give the
same results, unlike internal LOBs which do follow the database read consistency
model.

LONG and LONG RAW
If you’ve been around Oracle for a few years, you’ve probably noticed that so far I’ve
omitted any discussion of two datatypes: LONG and LONG RAW. This is intentional.
In the database, LONG and LONG RAW allow you to store large amounts (up to 2
gigabytes) of character and binary data, respectively. The maximum lengths of the
PL/SQL types, however, are much shorter: only 32,760 bytes, which is less than the
32,767 bytes supported by VARCHAR2 and RAW. Given this rather odd length limi-
tation, I recommend using VARCHAR2 and RAW, instead of LONG and LONG RAW,
in your PL/SQL programs.

If you’re retrieving LONG and LONG RAW columns that may contain more than
32,767 bytes of data, you won’t be able to store the returned values in VARCHAR2 or
RAW variables. This is an unfortunate restriction and a good reason to avoid LONG
and LONG RAW to begin with.

LONG and LONG RAW are obsolete types, maintained only for backward compati-
bility. Oracle doesn’t recommend their use, and neither do I. For new applications
where you have a choice, use CLOB and BLOB instead. For existing applications, Ora-
cle’s SecureFiles and Large Objects Developer’s Guide provides guidance for migrating
existing data from LONG to LOB columns.

Working with LOBs
The topic of working with large objects is, well, large, and I can’t begin to cover every
aspect of LOB programming in this chapter. What I can and will do, however, is provide
you with a good introduction to the topic of LOB programming aimed especially at
PL/SQL developers. I’ll discuss some of the issues to be aware of and show examples
of fundamental LOB operations. All of this, I hope, will provide you with a good foun-
dation for your future LOB programming endeavors.

Before getting into the meat of this section, please note that all LOB examples are based
on the following table definition (which can be found in the ch13_code.sql file on the
book’s web site):

TABLE waterfalls (
 falls_name VARCHAR2(80),

Working with LOBs | 401

Download at WoweBook.Com

 falls_photo BLOB,
 falls_directions CLOB,
 falls_description NCLOB,
 falls_web_page BFILE)

This table contains rows about waterfalls located in Michigan’s Upper Peninsula. Fig-
ure 13-2 shows the Dryer Hose, a falls near Munising frequented by ice climbers in its
frozen state.

Figure 13-2. The Dryer Hose in Munising, Michigan

The table implements one column for each of the four LOB types. Photos consist of
large amounts of binary data, so the falls_photo column is defined as a BLOB. Direc-
tions and descriptions are text, so those columns are CLOB and NCLOB, respectively.
Normally, you’d use either CLOB or NCLOB for both, but I wanted to provide an
example that used each LOB type. Finally, the master copy of the web page for each
waterfall is stored in an HTML file outside the database. I use a BFILE column to point

402 | Chapter 13: Miscellaneous Datatypes

Download at WoweBook.Com

to that HTML file. I’ll use these columns in our examples to demonstrate various facets
of working with LOB data in PL/SQL programs.

In my discussion of large objects, I’ll frequently use the acronym LOB
to refer to CLOBs, BLOBs, NCLOBs, and BFILEs in general. I’ll use
specific type names only when discussing something specific to a type.

Understanding LOB Locators
Fundamental to working with LOBs is the concept of a LOB locator. A LOB locator is
a pointer to large object data in a database. Let’s look at what happens when you select
a BLOB column into a BLOB PL/SQL variable:

DECLARE
 photo BLOB;
BEGIN
 SELECT falls_photo
 INTO photo
 FROM waterfalls
 WHERE falls_name='Dryer Hose';

What, exactly, is in the photo variable after the SELECT statement executes? Is the
photo itself retrieved? No. Only a pointer to the photo is retrieved. You end up with
the situation shown in Figure 13-3.

Figure 13-3. A LOB locator points to its associated large object data within the database

This is different from the way in which other datatypes work. Database LOB columns
store LOB locators, and those locators point to the real data stored in a LOB segment
elsewhere in the database. Likewise, PL/SQL LOB variables hold those same LOB lo-
cators, which point to LOB data within the database. To work with LOB data, you first
retrieve a LOB locator, and you then use a built-in package named DBMS_LOB to
retrieve and/or modify the actual LOB data. For example, to retrieve the binary photo
data from the falls_photo BLOB column used in the previous example, you would go
through the following steps:

Working with LOBs | 403

Download at WoweBook.Com

1. Issue a SELECT statement to retrieve the LOB locator for the photo you wish to
display.

2. Open the LOB via a call to DBMS_LOB.OPEN.

3. Make a call to DBMS_LOB.GETCHUNKSIZE to get the optimal chunk size to use
when reading (and writing) the LOB’s value.

4. Make a call to DBMS_LOB.GETLENGTH to get the number of bytes or characters
in the LOB value.

5. Make multiple calls to DBMS_LOB.READ in order to retrieve the LOB data.

6. Close the LOB.

Not all of these steps are necessary, and don’t worry if you don’t understand them fully
right now. I’ll explain all the steps and operations shortly.

The use of locators might initially appear clumsy. It’s a good approach, though, because
it obviates the need to return all the data for a given LOB each time that you fetch a
row from a table. Imagine how long a fetch would take if up to 128 terabytes of LOB
data need to be transferred. Imagine the waste if you have to access only a small fraction
of that data. With the Oracle database’s approach, you fetch locators (a quick opera-
tion) and then you retrieve only the LOB data that you need. In addition, LOBs are not
cached in the buffer cache by default, and LOBs do not generate undo like normal data.
LOBs generate redo like normal data, unless you specify the NOLOGGING option. So
loading 50 gigabytes of LOB data will not flush your buffer cache or flood your undo
tablespace and degrade overall performance. This separate cache and undo manage-
ment of LOBs gets ever better with SecureFiles in Oracle Database 11g…but more on
that later.

Oracle’s LOB Documentation
If you are working with LOBs, I strongly recommend that you familiarize yourself with
the following portions of Oracle’s documentation set:

• SecureFiles and Large Objects Developer’s Guide. Oracle Database 11g guide to
LOB programming.

• Application Developer’s Guide—Large Objects. Oracle Database 10g and earlier
guide to LOB programming.

• PL/SQL Packages and Types Reference. See the chapter on the DBMS_LOB
package.

• SQL Reference. The “Datatypes” section in Chapter 2, Basic Elements of Oracle
SQL, contains important information about LOBs.

This is not an exhaustive list of LOB documentation, but you’ll find all the essential
information in these sources.

404 | Chapter 13: Miscellaneous Datatypes

Download at WoweBook.Com

Empty Versus NULL LOBs
Now that you understand the distinction between a LOB locator and the value to which
it points, you need to wrap your mind around another key concept: the empty LOB.
An empty LOB is what you have when a LOB locator doesn’t point to any LOB data.
This is not the same as a NULL LOB, which is a LOB column (or variable) that doesn’t
hold a LOB locator. Clear as mud, right? Let’s look at some example code:

DECLARE
 directions CLOB;
BEGIN
 IF directions IS NULL THEN
 DBMS_OUTPUT.PUT_LINE('directions is NULL');
 ELSE
 DBMS_OUTPUT.PUT_LINE('directions is not NULL');
 END IF;
END;

directions is NULL

Here I have declared a CLOB variable, which is atomically NULL because I haven’t yet
assigned it a value. You’re used to this behavior, right? It’s the same with any other
datatype: declare a variable without assigning a value and comparisons to NULL, such
as variable IS NULL, evaluate to TRUE. In this regard, a LOB is similar to an object in
that it must be initialized before data can be added to it. See Chapter 26 for more
information on objects.

Let’s press ahead with the example and initialize the LOB. The following code uses a
call to EMPTY_CLOB to initialize (but not populate) the LOB variable.

First the code:

DECLARE
 directions CLOB;
BEGIN
 IF directions IS NULL THEN
 DBMS_OUTPUT.PUT_LINE('at first directions is NULL');
 ELSE
 DBMS_OUTPUT.PUT_LINE('at first directions is not NULL');
 END IF;
 DBMS_OUTPUT.PUT_LINE('Length = '
 || DBMS_LOB.GETLENGTH(directions));

 -- initialize the LOB variable
 directions := EMPTY_CLOB();

 IF directions IS NULL THEN
 DBMS_OUTPUT.PUT_LINE('after initializing, directions is NULL');
 ELSE
 DBMS_OUTPUT.PUT_LINE('after initializing, directions is not NULL');
 END IF;
 DBMS_OUTPUT.PUT_LINE('Length = '
 || DBMS_LOB.GETLENGTH(directions));
END;

Working with LOBs | 405

Download at WoweBook.Com

The output is:

at first directions is NULL
Length =
after initializing, directions is not NULL
Length = 0

You can see that at first the CLOB variable is atomically NULL. It comes as no surprise
then that the length of the NULL LOB is also NULL. After I initialize the CLOB variable
with the built-in function EMPTY_CLOB, my variable is no longer NULL because it
contains a value: the locator. DBMS_LOB.GETLENGTH shows that while initialized
(NOT NULL) the CLOB is empty. This difference is important to understand because
the way in which you test for the presence or absence of data is more complicated for
a LOB than it is for scalar datatypes.

A simple IS NULL test suffices for traditional scalar datatypes:

IF some_number IS NULL THEN
 --You know there is no data

If an IS NULL test on a NUMBER or a VARCHAR2 (or any other scalar type) returns
TRUE, you know that the variable holds no data. With LOBs, however, you not only
need to check for nullity (no locator), but you also need to check the length:

IF some_clob IS NULL THEN
 --There is no data
ELSIF DBMS_LOB.GETLENGTH(some_clob) = 0 THEN
 --There is no data
ELSE
 --Only now is there data
END IF;

As illustrated in this example, you can’t check the length of a LOB without first having
a locator. Thus, to determine whether a LOB holds data, you must first check for the
presence of a locator using an IS NULL test, and then check for a non-zero length or
perform both checks together like this:

IF NVL(DBMS_LOB.GETLENGTH(some_clob),0) = 0 THEN
 -- There is no data
ELSE
 -- There is data
END IF;

The bottom line is that you need to check for two conditions, not just one.

When working with BLOBs, use EMPTY_BLOB() to create an empty
BLOB. Use EMPTY_CLOB() for CLOBs and NCLOBs.

406 | Chapter 13: Miscellaneous Datatypes

Download at WoweBook.Com

Writing into a LOB
Once you have a valid LOB locator, you can write data into that LOB using one of these
procedures from the built-in DBMS_LOB package:

DBMS_LOB.WRITE
Allows you to write data randomly into a LOB.

DBMS_LOB.WRITEAPPEND
Allows you to append data to the end of a LOB.

Following is an extension of the previous examples in this chapter. It begins by creating
a LOB locator for the directions column in the waterfalls table. After creating the lo-
cator, I use DBMS_LOB.WRITE to begin writing directions to Munising Falls into the
CLOB column. I then use DBMS_LOB.WRITEAPPEND to finish the job:

/* File on web: munising_falls_01.sql */
DECLARE
 directions CLOB;
 amount BINARY_INTEGER;
 offset INTEGER;
 first_direction VARCHAR2(100);
 more_directions VARCHAR2(500);
BEGIN
 --Delete any existing rows for 'Munising Falls' so that this
 --example can be executed multiple times
 DELETE
 FROM waterfalls
 WHERE falls_name='Munising Falls';

 --Insert a new row using EMPTY_CLOB() to create a LOB locator
 INSERT INTO waterfalls
 (falls_name,falls_directions)
 VALUES ('Munising Falls',EMPTY_CLOB());

 --Retrieve the LOB locator created by the previous INSERT statement
 SELECT falls_directions
 INTO directions
 FROM waterfalls
 WHERE falls_name='Munising Falls';

 --Open the LOB; not strictly necessary, but best to open/close LOBs.
 DBMS_LOB.OPEN(directions, DBMS_LOB.LOB_READWRITE);

 --Use DBMS_LOB.WRITE to begin
 first_direction := 'Follow I-75 across the Mackinac Bridge.';
 amount := LENGTH(first_direction); --number of characters to write
 offset := 1; --begin writing to the first character of the CLOB
 DBMS_LOB.WRITE(directions, amount, offset, first_direction);

 --Add some more directions using DBMS_LOB.WRITEAPPEND
 more_directions := ' Take US-2 west from St. Ignace to Blaney Park.'
 || ' Turn north on M-77 and drive to Seney.'
 || ' From Seney, take M-28 west to Munising.';

Working with LOBs | 407

Download at WoweBook.Com

 DBMS_LOB.WRITEAPPEND(directions,
 LENGTH(more_directions), more_directions);

 --Add yet more directions
 more_directions := ' In front of the paper mill, turn right on H-58.'
 || ' Follow H-58 to Washington Street. Veer left onto'
 || ' Washington Street. You''ll find the Munising'
 || ' Falls visitor center across from the hospital at'
 || ' the point where Washington Street becomes'
 || ' Sand Point Road.';
 DBMS_LOB.WRITEAPPEND(directions,
 LENGTH(more_directions), more_directions);

 --Close the LOB, and we are done.
 DBMS_LOB.CLOSE(directions);
END;

In this example, I used both WRITE and WRITEAPPEND solely to demonstrate the
use of both procedures. Because my LOB had no data to begin with, I could have done
all the work using only WRITEAPPEND. Notice that I opened and closed the LOB;
while this is not strictly necessary, it is a good idea, especially if you are using Oracle
Text. Otherwise, any Oracle Text domain- and function-based indexes will be updated
with each WRITE or WRITEAPPEND call, rather than being updated once when you
call CLOSE.

In the section on BFILEs, I show how to read LOB data directly from
an external operating-system file.

When writing to a LOB, as I have done here, there is no need to update the LOB column
in the table. That’s because the LOB locator does not change. I did not change the
contents of falls_directions (the LOB locator). Rather, I added data to the LOB to which
the locator pointed.

LOB updates take place within the context of a transaction. I did not COMMIT in my
example code. You should issue a COMMIT after executing the PL/SQL block if you
want the Munising Falls directions to remain permanently in your database. If you issue
a ROLLBACK after executing the PL/SQL block, all the work done by this block will
be undone.

My example writes to a CLOB column. You write BLOB data in the same manner,
except that your inputs to WRITE and WRITEAPPEND should be of the RAW type
instead of the VARCHAR2 type.

The following SQL*Plus example shows one way you can see the data just inserted by
my example. The next section will show you how to retrieve the data using the various
DBMS_LOB procedures.

408 | Chapter 13: Miscellaneous Datatypes

Download at WoweBook.Com

SQL> SET LONG 2000
SQL> COLUMN falls_directions WORD_WRAPPED FORMAT A70
SQL> SELECT falls_directions
 2 FROM waterfalls
 3 WHERE falls_name='Munising Falls';
 4 /

FALLS_DIRECTIONS
--
Follow I-75 across the Mackinac Bridge. Take US-2 west from St. Ignace
to Blaney Park. Turn north on M-77 and drive to Seney. From Seney,
take M-28 west to Munising. In front of the paper mill, turn right on
H-58. Follow H-58 to Washington Street. Veer left onto Washington
Street. You'll find the Munising Falls visitor center across from the
hospital at the point where Washington Street becomes Sand Point Road.

Reading from a LOB
To retrieve data from a LOB, you use the DBMS_LOB.READ procedure. First, of
course, you must retrieve the LOB locator. When reading from a CLOB, you specify
an offset in terms of characters. Reading begins at the offset that you specify, and the
first character of a CLOB is always number 1. When you are working with BLOBs,
offsets are in terms of bytes. Note that when you are calling DBMS_LOB.READ, you
must specify the number of characters (or bytes) that you wish to read. Given that LOBs
are large, it’s reasonable to plan on doing more than one read to get at all the data.

The following example retrieves and displays the directions to Munising Falls. I have
carefully chosen the number of characters to read both to accommodate
DBMS_OUTPUT’s line-length restriction and to ensure a nice-looking line break in
the final output.

/* File on web: munising_falls_02.sql */
DECLARE
 directions CLOB;
 directions_1 VARCHAR2(300);
 directions_2 VARCHAR2(300);
 chars_read_1 BINARY_INTEGER;
 chars_read_2 BINARY_INTEGER;
 offset INTEGER;
BEGIN
 --Retrieve the LOB locator inserted previously
 SELECT falls_directions
 INTO directions
 FROM waterfalls
 WHERE falls_name='Munising Falls';

 --Begin reading with the first character
 offset := 1;

 --Attempt to read 229 characters of directions, chars_read_1 will
 --be updated with the actual number of characters read
 chars_read_1 := 229;
 DBMS_LOB.READ(directions, chars_read_1, offset, directions_1);

Working with LOBs | 409

Download at WoweBook.Com

 --If we read 229 characters, update the offset and try to
 --read 255 more.
 IF chars_read_1 = 229 THEN
 offset := offset + chars_read_1;
 chars_read_2 := 255;
 DBMS_LOB.READ(directions, chars_read_2, offset, directions_2);
 ELSE
 chars_read_2 := 0;
 directions_2 := '';
 END IF;

 --Display the total number of characters read
 DBMS_OUTPUT.PUT_LINE('Characters read = ' ||
 TO_CHAR(chars_read_1+chars_read_2));

 --Display the directions
 DBMS_OUTPUT.PUT_LINE(directions_1);
 DBMS_OUTPUT.PUT_LINE(directions_2);
END;

The output from this code is as follows:

Characters read = 414
Follow I-75 across the Mackinac Bridge. Take US-2 west from St. Ignace to Blaney
Park. Turn north on M-77 and drive to Seney. From Seney, take M-28 west to
Munising. In front of the paper mill, turn right on H-58. Follow H-58 to
Washington Street. Veer left onto Washington Street. You'll find the Munising
Falls visitor center across from the hospital at the point where Washington
Street becomes Sand Point Road.

The chars_read_1 (amount to read) parameter, which is the second parameter you pass
to DBMS_LOB.READ, is an IN OUT parameter, and DBMS_LOB.READ will update
it to reflect the number of characters (or bytes) actually read. You’ll know you’ve
reached the end of a LOB when the number of characters or bytes read is less than the
number you requested. It seems to me a bit inconvenient that the offset is not updated
in the same manner. When reading several sequential portions of a LOB, you must
update the offset each time based on the number of characters or bytes just read.

You can use DBMS_LOB.GET_LENGTH (lob_locator) to retrieve the
length of a LOB. The length is returned as a number of bytes for BLOBs
and BFILEs, and as a number of characters for CLOBs.

BFILEs Are Different
As mentioned earlier, the BLOB, CLOB, and NCLOB types represent internal LOBs,
meaning that they are stored within the database. A BFILE, on the other hand, is an
external LOB type. BFILEs are very different from internal LOBs in three important
ways:

410 | Chapter 13: Miscellaneous Datatypes

Download at WoweBook.Com

• The value of a BFILE is stored in an operating-system file, not within the database.

• BFILEs do not participate in transactions (i.e., changes to a BFILE cannot be rolled
back or committed). However, changes to a BFILE locator can be rolled back and
committed.

• From within PL/SQL and the Oracle database in general, you can only read BFILEs.
The database does not allow you to write BFILE data. You must generate the ex-
ternal files—to which BFILE locators point—completely outside of the database.

When you work with BFILEs in PL/SQL, you still work with a LOB locator. In the case
of a BFILE, however, the locator simply points to a file stored on the server. For this
reason, two different rows in a database table can have a BFILE column that points to
the same file.

A BFILE locator is composed of a directory alias and a filename. You use the BFILE-
NAME function, which I will describe shortly, to return a locator based on those two
pieces of information. A directory alias is simply a database-specific name for an oper-
ating-system directory. Directory aliases allow your PL/SQL programs to work with
directories in an operating system-independent manner. If you have the CREATE ANY
DIRECTORY privilege, you can create a directory alias (the directory must already exist
in the filesystem) and grant access to it as follows:

CREATE DIRECTORY bfile_data AS 'c:\PLSQL Book\Ch13_Misc_Datatypes\'

GRANT READ ON DIRECTORY bfile_data TO gennick;

Creating directory aliases and dealing with access to those aliases are more database
administration functions than PL/SQL issues, so I won’t go too deeply into those topics.
The examples here should be enough to get you started. To learn more about directory
aliases, talk to your DBA or read the section in Oracle’s SQL Reference on the CREATE
DIRECTORY command. To see directories that you have access to, query the
ALL_DIRECTORIES view.

Creating a BFILE locator

BFILE locators are trivial to create; you simply invoke the BFILENAME function and
pass it a directory alias and a filename. In the following example, I create a BFILE locator
for the HTML file containing the Tannery Falls web page. I then store that locator into
the waterfalls table.

DECLARE
 web_page BFILE;
BEGIN
 --Delete row for Tannery Falls so this example can
 --be executed multiple times
 DELETE FROM waterfalls WHERE falls_name='Tannery Falls';

 --Invoke BFILENAME to create a BFILE locator
 web_page := BFILENAME('BFILE_DATA','Tannery_Falls.htm');

Working with LOBs | 411

Download at WoweBook.Com

 --Save our new locator in the waterfalls table
 INSERT INTO waterfalls (falls_name, falls_web_page)
 VALUES ('Tannery Falls',web_page);
END;

A BFILE locator is simply a combination of directory alias and filename. The actual file
and directory don’t even need to exist. That is, the database allows you to create di-
rectory aliases for directories that do not yet exist, and BFILENAME allows you to
create BFILE locators for files that do not yet exist. There are times when it’s convenient
to do these things.

The directory name you specify in calls to BFILENAME is case-sensitive,
and its case must match that shown by the ALL_DIRECTORIES data
dictionary view. I first used lowercase bfile_data in my example, only
to be greatly frustrated by errors when I tried to access my external
BFILE data (as in the next section). In most cases, you’ll want to use all-
uppercase for the directory name in a call to BFILENAME.

Accessing BFILEs

Once you have a BFILE locator, you can access the data from an external file in much
the same manner as you would access a BLOB. The following example retrieves the
first 60 bytes of HTML from the Tannery Falls web page. The results, which
are of the RAW type, are cast to a character string using the built-in
UTL_RAW.CAST_TO_VARCHAR2 function.

DECLARE
 web_page BFILE;
 html RAW(60);
 amount BINARY_INTEGER := 60;
 offset INTEGER := 1;
BEGIN
 --Retrieve the LOB locator for the web page
 SELECT falls_web_page
 INTO web_page
 FROM waterfalls
 WHERE falls_name='Tannery Falls';

 --Open the locator, read 60 bytes, and close the locator
 DBMS_LOB.OPEN(web_page);
 DBMS_LOB.READ(web_page, amount, offset, html);
 DBMS_LOB.CLOSE(web_page);

 --Uncomment following line to display results in hex
 --DBMS_OUTPUT.PUT_LINE(RAWTOHEX(html));

 --Cast RAW results to a character string we can read
 DBMS_OUTPUT.PUT_LINE(UTL_RAW.CAST_TO_VARCHAR2(html));
END;

The output from this code will appear as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN

412 | Chapter 13: Miscellaneous Datatypes

Download at WoweBook.Com

The maximum number of BFILEs that can be opened within a session is established by
the database initialization parameter, SESSION_MAX_OPEN_FILES. This parameter
defines an upper limit on the number of files opened simultaneously in a session (not
just BFILEs, but all kinds of files, including those opened using the UTL_FILE package).

Remember that from within the Oracle database, you can only read BFILEs. The BFILE
type is ideal when you want to access binary data, such as a collection of images that
is generated outside the database environment. For example, you might upload a col-
lection of images from a digital camera to your server and create a BFILE locator to
point to each of those images. You could then access the images from your PL/SQL
programs.

Using BFILEs to load LOB columns

In addition to allowing you to access binary file data created outside the Oracle database
environment, BFILEs provide a convenient means to load data from external files into
internal LOB columns. Up through Oracle9i Database Release 1, you could use the
DBMS_LOB.LOADFROMFILE function to read binary data from a BFILE and store
it into a BLOB column. Oracle9i Database Release 2 introduced the following, much
improved, functions:

DBMS_LOB.LOADCLOBFROMFILE
Loads CLOBs from BFILEs. Takes care of any needed character set translation.

DBMS_LOB.LOADBLOBFROMFILE
Loads BLOBs from BFILEs. Does the same thing as DBMS_LOB.LOADFROM-
FILE, but with an interface that is consistent with that of LOADCLOBFROMFILE.

Imagine that I had directions to Tannery Falls in an external text file named
TanneryFalls.directions in a directory pointed to by the BFILE_DATA directory alias.
The following example shows how I could use DBMS_LOB.LOADCLOBFROMFILE
to load the directions into the falls_directions CLOB column in the waterfalls table:

/* File on web: munising_falls_03.sql */
DECLARE
 Tannery_Falls_Directions BFILE
 := BFILENAME('BFILE_DATA','TanneryFalls.directions');
 directions CLOB;
 destination_offset INTEGER := 1;
 source_offset INTEGER := 1;
 language_context INTEGER := DBMS_LOB.default_lang_ctx;
 warning_message INTEGER;
BEGIN
 --Delete row for Tannery Falls, so this example
 --can run multiple times.
 DELETE FROM waterfalls WHERE falls_name='Tannery Falls';

 --Insert a new row using EMPTY_CLOB() to create a LOB locator
 INSERT INTO waterfalls
 (falls_name,falls_directions)
 VALUES ('Tannery Falls',EMPTY_CLOB());

Working with LOBs | 413

Download at WoweBook.Com

 --Retrieve the LOB locator created by the previous INSERT statement
 SELECT falls_directions
 INTO directions
 FROM waterfalls
 WHERE falls_name='Tannery Falls';

 --Open the target CLOB and the source BFILE
 DBMS_LOB.OPEN(directions, DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.OPEN(Tannery_Falls_Directions);

 --Load the contents of the BFILE into the CLOB column
 DBMS_LOB.LOADCLOBFROMFILE
 (directions, Tannery_Falls_Directions,
 DBMS_LOB.LOBMAXSIZE,
 destination_offset, source_offset,
 NLS_CHARSET_ID('US7ASCII'),
 language_context, warning_message);

 --Check for the only possible warning message.
 IF warning_message = DBMS_LOB.WARN_INCONVERTIBLE_CHAR THEN
 DBMS_OUTPUT.PUT_LINE (
 'Warning! Some characters couldn''t be converted.');
 END IF;

 --Close both LOBs
 DBMS_LOB.CLOSE(directions);
 DBMS_LOB.CLOSE(Tannery_Falls_Directions);
END;

The real work in this snippet of code is done by the call to DBMS_LOB.LOADCLOB-
FROMFILE. That procedure reads data from the external file, performs any character
set translation that’s necessary, and writes the data to the CLOB column. I use the
DBMS_LOB.LOBMAXSIZE constant to specify the amount of data to load. I really
want all the data from the external file, and DBMS_LOB.LOBMAXSIZE is as much as
a CLOB will hold.

The destination and source offsets both begin at 1. I want to begin reading with the
first character in the BFILE, and I want to begin writing to the first character of the
CLOB. To facilitate multiple, sequential calls to LOADCLOBFROMFILE, the proce-
dure will update both these offsets to point one character past the most recently read
character. Because they are IN OUT parameters, I must use variables and not constants
in my procedure call.

The call to NLS_CHARSET_ID returns the character set ID number for the character
set used by the external file. The LOADCLOBFROMFILE procedure will then convert
the data being loaded from that character set to the database character set. The only
possible warning message LOADCLOBFROMFILE can return is that some characters
were not convertible from the source to the target character set. I check for this warning
in the IF statement following the load.

414 | Chapter 13: Miscellaneous Datatypes

Download at WoweBook.Com

A warning is not the same as a PL/SQL error; the load will still have
occurred, just as I requested.

The following SQL*Plus example shows the data loaded from my external file using
LOADCLOBFROMFILE:

SQL>SET LONG 2000
SQL> COLUMN falls_directions WORD_WRAPPED FORMAT A70
SQL> SELECT falls_directions
 2 FROM waterfalls
 3 WHERE falls_name='Tannery Falls';
 4 /

FALLS_DIRECTIONS
--
From downtown Munising, take Munising Avenue east. It will
shortly turn into H-58. Watch for Washington Street veering
off to your left. At that intersection you'll see a wooden
stairway going into the woods on your right. Go up that
stairway and follow the trail to the falls. Do not park
on H-58! You'll get a ticket. You can park on Nestor Street,
which is just uphill from the stairway.

SecureFiles Versus BasicFiles
SecureFiles, introduced with Oracle Database 11g, offer many improvements over the
older implementation of LOBs, which are now known as BasicFiles. These improve-
ments are internal and largely transparent to us as programmers—the same keywords,
syntax, and programming steps are used. The internal implementation of SecureFiles
involves improvements to many aspects of managing LOBs, including disk format,
caching, locking, redo, and space management algorithms. This updated technology
significantly improves performance and allows LOBs to be deduplicated, compressed,
and encrypted using simple parameter settings. In addition, a new logging level,
FILESYSTEM_LIKE_LOGGING, has been introduced to augment the existing
LOGGING and NOLOGGING options. This new logging level logs only metadata
changes, much as a journaled filesystem would do.

The SecureFiles features improve the performance of LOBs substantially. Oracle testing
reports 200% to 900% improvements. In a simple test loading PDF files on a Microsoft
Windows server, I experienced a decrease in load times of 80% to 90%—from 169
seconds down to 20 to 30 seconds (depending on the options used and how many times
I ran the load). I noted more moderate improvements on x86 Linux. Your experiences
may differ, but expect improvements!

To use SecureFiles with your LOBs, your database initialization parameter
DB_SECUREFILE must be set to PERMITTED (the default setting). In addition, the
tablespace that will store the LOBs must use Automatic Segment Space Management

Working with LOBs | 415

Download at WoweBook.Com

(ASSM). If you are not sure about your database, ask your DBA. If you are the DBA,
check in V$PARAMETER for initialization parameters and in DBA_TABLESPACES
for Segment Space Management settings.

While SecureFiles offers improvements, the default storage for Oracle
Database 11g (both Release 1 and Release 2) is still BasicFiles, so make
sure you specify SecureFiles if you want to use this technology.

Deduplication

With the SecureFiles deduplication option, the database will store only one copy of
each LOB. The database will generate a hash key for a LOB and compare it to existing
LOBs in that table or partition of a table storing only one copy of each identical LOB.
Note that deduplication does not work across partitions or subpartitions.

Compression

The SecureFiles compression option causes the database to compress the LOB both on
disk and in memory. Compression can be specified as MEDIUM (the default) or HIGH.
HIGH compression will consume more CPU during the compression step, but will
result in smaller LOBs. My simple test with PDF files showed that HIGH required about
25% longer to load than MEDIUM compression.

You can specify both deduplication and compression by including both options in the
LOB clause, like this:

TABLE waterfalls
(
 falls_name VARCHAR2 (80)
 , falls_photo BLOB
 , falls_directions CLOB
 , falls_description NCLOB
 , falls_web_page BFILE
)
LOB (falls_photo) STORE AS SECUREFILE (COMPRESS DEDUPLICATE)
LOB (falls_directions) STORE AS SECUREFILE (COMPRESS DEDUPLICATE)
LOB (falls_description) STORE AS SECUREFILE (COMPRESS DEDUPLICATE)

When you specify both options, deduplication occurs first, and then compression. Both
deduplication and compression are part of the Advanced Compression Option of the
database.

Encryption

As with deduplication and compression, you specify the SecureFiles encryption option
by telling the database to encrypt your LOB in the LOB clause of your CREATE TABLE
statement. You can optionally specify the encryption algorithm you want to use. The
valid algorithms, as of Oracle Database 11g, are 3DES168, AES128, AES192 (default),

416 | Chapter 13: Miscellaneous Datatypes

Download at WoweBook.Com

and AES256. You can use any combination of deduplication, compression, and en-
cryption, as shown in this example:

TABLE waterfalls
(
 falls_name VARCHAR2 (80)
 , falls_photo BLOB
 , falls_directions CLOB
 , falls_description NCLOB
 , falls_web_page BFILE
)
LOB (falls_photo) STORE AS SECUREFILE (COMPRESS DEDUPLICATE)
LOB (falls_directions) STORE AS SECUREFILE (ENCRYPT USING 'AES256')
LOB (falls_description) STORE AS SECUREFILE
 (ENCRYPT DEDUPLICATE COMPRESS HIGH
)

If your database has not been configured for transparent data encryption (TDE, de-
scribed in Chapter 23), you will have a couple of prerequisite steps to follow before you
can start encrypting your LOBs. First, you need to create a wallet. This is where the
master key will be stored. If you choose to use the default location for the wallet
($ORACLE_BASE/admin/$ORACLE_SID/wallet), you can create and open the wallet
in one step like this:

ALTER SYSTEM SET ENCRYPTION KEY AUTHENTICATED BY "My-secret!passc0de";

If you want to store your wallet in a nondefault location, you will need to specify this
location via the SQLNET.ORA file. If you want to store your wallet in the direc-
tory /oracle/wallet, include these lines in your SQLNET.ORA file:

ENCRYPTION_WALLET_LOCATION=(SOURCE=(METHOD=file)
 (METHOD_DATA=(DIRECTORY=/oracle/wallet)))

Once the wallet has been created, it will need to be opened again after each instance
restart. You open and close the wallet like this:

ALTER SYSTEM SET ENCRYPTION WALLET OPEN AUTHENTICATED BY "My-secret!passc0de";
-- now close the wallet
ALTER SYSTEM SET ENCRYPTION WALLET CLOSE;

Temporary LOBs
So far, we’ve been talking about permanently storing large amounts of unstructured
data by means of the various LOB datatypes. Such LOBs are known as persistent
LOBs. Many applications have a need for temporary LOBs that act like local variables
but do not exist permanently in the database. This section discusses temporary LOBs
and the use of the DBMS_LOB built-in package to manipulate them.

Starting with Oracle8i Database, the database supports the creation, freeing, access,
and update of temporary LOBs through the Oracle Call Interface (OCI) and
DBMS_LOB calls. The default lifetime of a temporary LOB is the lifetime of the session
that created it, but such LOBs may be explicitly freed sooner by the application.

Working with LOBs | 417

Download at WoweBook.Com

Temporary LOBs are ideal as transient workspaces for data manipulation, and because
no logging is done, and no redo records are generated, they offer better performance
than persistent LOBs do. In addition, whenever you rewrite or update a LOB, the Oracle
database copies the entire LOB to a new segment. By avoiding all the associated redo
logging, applications that perform lots of piecewise operations on LOBs should see
significant performance improvements with temporary LOBs.

A temporary LOB is empty when it is created: you don’t need to (and, in fact, you can’t)
use the EMPTY_CLOB and EMPTY_BLOB functions to initialize LOB locators for a
temporary LOB. By default, all temporary LOBs are deleted at the end of the session
in which they were created. If a process dies unexpectedly or if the database crashes,
then temporary LOBs are deleted, and the space for temporary LOBs is freed.

Temporary LOBs are just like persistent LOBs in that they exist on disk inside your
database. Don’t let the word “temporary” fool you into thinking that they are memory
structures. Temporary LOBs are written to disk, but instead of being associated with
a specific LOB column in a specific table, they are written to disk in your session’s
temporary tablespace. Thus, if you use temporary LOBs, you need to make sure that
your temporary tablespace is large enough to accommodate them.

Let’s examine the processes for creating and freeing temporary LOBs. Then I’ll explain
how you can test to see whether a LOB locator points to a temporary or a permanent
LOB. I’ll finish up by covering some of the administrative details to consider when
you’re working with temporary LOBs.

Creating a temporary LOB

Before you can work with a temporary LOB, you need to create it. One way to do this
is with a call to the DBMS_LOB.CREATETEMPORARY procedure. This procedure
creates a temporary BLOB or CLOB and its corresponding index in your default tem-
porary tablespace. The header is:

DBMS_LOB.CREATETEMPORARY (
 lob_loc IN OUT NOCOPY [BLOB | CLOB CHARACTER SET ANY_CS],
 cache IN BOOLEAN,
 dur IN PLS_INTEGER := DBMS_LOB.SESSION);

The parameters to DBMS_LOB.CREATETEMPORARY are listed in Table 13-1.

Table 13-1. CREATETEMPORARY parameters

Parameter Description

lob_loc Receives the locator to the LOB.

cache Specifies whether the LOB should be read into the buffer cache.

dur Controls the duration of the LOB. The dur argument can be one of these two named constants:

DBMS_LOB.SESSION
Specifies that the temporary LOB created should be cleaned up (memory freed) at the end of the session.
This is the default.

418 | Chapter 13: Miscellaneous Datatypes

Download at WoweBook.Com

Parameter Description
DBMS_LOB.CALL

Specifies that the temporary LOB created should be cleaned up (memory freed) at the end of the current
program call in which the LOB was created.

Another way to create a temporary LOB is to declare a LOB variable in your PL/SQL
code and assign a value to it. For example, the following code creates both a temporary
BLOB and a temporary CLOB:

DECLARE
 temp_clob CLOB;
 temp_blob BLOB;
BEGIN
 --Assigning a value to a null CLOB or BLOB variable causes
 --PL/SQL to implicitly create a session-duration temporary
 --LOB for you.
 temp_clob :=' http://www.nps.gov/piro/';
 temp_blob := HEXTORAW('7A');
END;

I don’t really have a strong preference as to which method you should use to create a
temporary LOB, but I do believe the use of DBMS_LOB.CREATETEMPORARY makes
the intent of your code a bit more explicit.

Freeing a temporary LOB

The DBMS_LOB.FREETEMPORARY procedure explicitly frees a temporary BLOB or
CLOB releasing the space from your default temporary tablespace. The header for this
procedure is:

PROCEDURE DBMS_LOB.FREETEMPORARY (
 lob_loc IN OUT NOCOPY
 [BLOB | CLOB CHARACTER SET ANY_CS]);

In the following example, I again create two temporary LOBs. Then I explicitly free
them:

DECLARE
 temp_clob CLOB;
 temp_blob BLOB;
BEGIN
 --Assigning a value to a null CLOB or BLOB variable causes
 --PL/SQL to implicitly create a session-duration temporary
 --LOB for you.
 temp_clob :='http://www.exploringthenorth.com/alger/alger.html';
 temp_blob := HEXTORAW('7A');

 DBMS_LOB.FREETEMPORARY(temp_clob);
 DBMS_LOB.FREETEMPORARY(temp_blob);
END;

After a call to FREETEMPORARY, the LOB locator that was freed (lob_loc in the pre-
vious specification) is marked as invalid. If an invalid LOB locator is assigned to another

Working with LOBs | 419

Download at WoweBook.Com

LOB locator through an assignment operation in PL/SQL, then the target of the as-
signment is also freed and marked as invalid.

PL/SQL will implicitly free temporary LOBs when they go out of scope
at the end of a block.

Checking to see whether a LOB is temporary

The ISTEMPORARY function tells you if the LOB locator (lob_loc in the following
specification) points to a temporary or a persistent LOB. The function returns an integer
value: 1 means that it is a temporary LOB, and 0 means that it is not (it’s a persistent
LOB instead).

DBMS_LOB.ISTEMPORARY (
 lob_loc IN [BLOB | CLOB CHARACTER SET ANY_CS])
 RETURN INTEGER;

Note that while this function returns true (1) or false (0) it does not return a BOOLEAN
datatype.

Managing temporary LOBs

Temporary LOBs are handled quite differently from normal, persistent, internal LOBs.
With temporary LOBs, there is no support for transaction management, consistent read
operations, rollbacks, and so forth. There are various consequences of this lack of
support:

• If you encounter an error when processing with a temporary LOB, you must free
that LOB and start your processing over again.

• You should not assign multiple LOB locators to the same temporary LOB. Lack of
support for consistent read and undo operations can cause performance degrada-
tion with multiple locators.

• If a user modifies a temporary LOB while another locator is pointing to it, a copy
(referred to by Oracle as a deep copy) of that LOB is made. The different locators
will then no longer see the same data. To minimize these deep copies, use the
NOCOPY compiler hint whenever you’re passing LOB locators as arguments.

• To make a temporary LOB permanent, you must call the DBMS_LOB.COPY pro-
gram and copy the temporary LOB into a permanent LOB.

• Temporary LOB locators are unique to a session. You cannot pass a locator from
one session to another (through a database pipe, for example) in order to make the
associated temporary LOB visible in that other session. If you need to pass a LOB
between sessions, use a permanent LOB.

420 | Chapter 13: Miscellaneous Datatypes

Download at WoweBook.Com

Oracle9i Database introduced a V$ view called V$TEMPORARY_LOBS that shows
how many cached and uncached LOBs exist per session. Your DBA can combine in-
formation from V$TEMPORARY_LOBS and the DBA_SEGMENTS data dictionary
view to see how much space a session is using for temporary LOBs.

Native LOB Operations
Almost since the day Oracle unleashed LOB functionality to the vast hordes of database
users, programmers and query-writers have wanted to treat LOBs as very large versions
of regular, scalar variables. In particular, users wanted to treat CLOBs as very large
character strings, passing them to SQL functions, using them in SQL statement
WHERE clauses, and so forth. To the dismay of many, CLOBs originally could not be
used interchangeably with VARCHAR2s. For example, in Oracle8 Database and Ora-
cle8i Database, you could not apply a character function to a CLOB column:

SELECT SUBSTR(falls_directions,1,60)
 FROM waterfalls

Starting in Oracle9i Database, you can use CLOBs interchangeably with VARCHAR2s
in a wide variety of situations:

• You can pass CLOBs to most SQL and PL/SQL VARCHAR2 functions— they are
overloaded with both VARCHAR2 and CLOB parameters.

• In PL/SQL, but not in SQL, you can use various relational operators such as less-
than (<), greater-than (>), and equals (=) with LOB variables.

• You can assign CLOB values to VARCHAR2 variables and vice versa. You can also
select CLOB values into VARCHAR2 variables and vice versa. This is because
PL/SQL now implicitly converts between the CLOB and VARCHAR2 types.

SQL semantics

Oracle refers to the capabilities introduced in the previous section as offering SQL
semantics for LOBs. From a PL/SQL developer’s standpoint, it means that you can
manipulate LOBs using native operators rather than a supplied package.

Following is an example showing some of the things you can do with SQL semantics:

DECLARE
 name CLOB;
 name_upper CLOB;
 directions CLOB;
 blank_space VARCHAR2(1) := ' ';
BEGIN
 --Retrieve a VARCHAR2 into a CLOB, apply a function to a CLOB
 SELECT falls_name, SUBSTR(falls_directions,1,500)
 INTO name, directions
 FROM waterfalls
 WHERE falls_name = 'Munising Falls';

Working with LOBs | 421

Download at WoweBook.Com

 --Uppercase a CLOB
 name_upper := UPPER(name);

 -- Compare two CLOBs
 IF name = name_upper THEN
 DBMS_OUTPUT.PUT_LINE('We did not need to uppercase the name.');
 END IF;

 --Concatenate a CLOB with some VARCHAR2 strings
 IF INSTR(directions,'Mackinac Bridge') <> 0 THEN
 DBMS_OUTPUT.PUT_LINE('To get to ' || name_upper || blank_space
 || 'you must cross the Mackinac Bridge.');
 END IF;
END;

The output is:

To get to MUNISING FALLS you must cross the Mackinac Bridge.

The small piece of code in this example does several interesting things:

• The falls_name column is a VARCHAR2 column, yet it is retrieved into a CLOB
variable. This is a demonstration of implicit conversion between the VARCHAR2
and CLOB types.

• The SUBSTR function is used to limit retrieval to only the first 500 characters of
the directions to Munising Falls. Further, the UPPER function is used to uppercase
the falls name. This demonstrates the application of SQL and PL/SQL functions
to LOBs.

• The IF statement that compares name to name_upper is a bit forced, but it dem-
onstrates that relational operators may now be applied to LOBs.

• The uppercased falls name, a CLOB, is concatenated with some string constants
and one VARCHAR2 string (blank_space). This shows that CLOBs may be
concatenated.

There are many restrictions and caveats that you need to be aware of when using this
functionality. For example, not every function that takes a VARCHAR2 input will ac-
cept a CLOB in its place; there are some exceptions. The regular expression functions
notably work with SQL semantics, while aggregate functions do not. Likewise, not all
relational operators are supported for use with LOBs. All of these restrictions and
caveats are described in detail in the section called “SQL Semantics and LOBs” in
Chapter 10 of the SecureFiles and Large Objects Developer’s Guide manual for Oracle
Database 11g. For Oracle Database 10g see Chapter 9, “SQL Semantics and LOBs,” of
the Application Developers Guide – Large Objects manual. If you’re using SQL seman-
tics, I strongly suggest that you take a look at this section of the manual for your
database.

422 | Chapter 13: Miscellaneous Datatypes

Download at WoweBook.Com

SQL semantics for LOBs apply only to internal LOBs: CLOBs, BLOBs,
and NCLOBs. SQL semantics support does not apply to BFILEs.

SQL semantics may yield temporary LOBs

One issue you will need to understand when applying SQL semantics to LOBs is that
the result is often the creation of a temporary LOB. Think about applying the UPPER
function to a CLOB:

DECLARE
 directions CLOB;
BEGIN
 SELECT UPPER(falls_directions)
 INTO directions
 FROM waterfalls
 WHERE falls_name = 'Munising Falls';
END;

Because they are potentially very large objects, CLOBs are stored on disk. The database
can’t uppercase the CLOB being retrieved because that would mean changing its value
on disk, in effect changing a value that you simply want to retrieve. Nor can the database
make the change to an in-memory copy of the CLOB because the value may not fit in
memory and also because what is being retrieved is only a locator that points to a value
that must be on disk. The only option is for the database software to create a temporary
CLOB in your temporary tablespace. The UPPER function then copies data from the
original CLOB to the temporary CLOB, uppercasing the characters during the copy
operation. The SELECT statement then returns a LOB locator pointing to the tempo-
rary CLOB, not to the original CLOB. There are two extremely important ramifications
to all this:

• You cannot use the locator returned by a function or expression to update the
original LOB. The directions variable in my example cannot be used to update the
persistent LOB stored in the database because it really points to a temporary LOB
returned by the UPPER function.

• Disk space and CPU resources are expended to create a temporary LOB, which
can be of considerable size. I’ll discuss this issue more in “Performance impact of
using SQL semantics” on page 424.

If I want to retrieve an uppercase version of the directions to Munising Falls while still
maintaining the ability to update the directions, I’ll need to retrieve two LOB locators:

DECLARE
 directions_upper CLOB;
 directions_persistent CLOB;
BEGIN
 SELECT UPPER(falls_directions), falls_directions
 INTO directions_upper, directions_persistent
 FROM waterfalls

Working with LOBs | 423

Download at WoweBook.Com

 WHERE falls_name = 'Munising Falls';
END;

Now I can access the uppercase version of the directions via the locator in direc-
tions_upper, and I can modify the original directions via the locator in direc-
tions_persistent. There’s no performance penalty in this case from retrieving the extra
locator. The performance hit comes from uppercasing the directions and placing them
into a temporary CLOB. The locator in directions_persistent is simply plucked as-is
from the database table.

In general, any character-string function to which you normally pass a VARCHAR2,
and that normally returns a VARCHAR2 value, will return a temporary CLOB when
you pass in a CLOB as input. Similarly, expressions that return CLOBs will most cer-
tainly return temporary CLOBs. Temporary CLOBs and BLOBs cannot be used to
update the LOBs that you originally used in an expression or function.

Performance impact of using SQL semantics

You’ll need to give some thought to performance when you are using the new SQL
semantics for LOB functionality. Remember that the “L” in LOB stands for “large,”
and that “large” can be as much as 128 terabytes (4 gigabytes prior to Oracle Database
10g). Consequently, you may encounter some serious performance issues if you indis-
criminately treat LOBs the same as any other type of variable or column. Have a look
at the following query, which attempts to identify all waterfalls for which a visit might
require a trip across the Mackinac Bridge:

SELECT falls_name
 FROM waterfalls
 WHERE INSTR(UPPER(falls_directions),'MACKINAC BRIDGE') <> 0;

Think about what the Oracle database must do to resolve this query. For every row in
the waterfalls table, it must take the falls_directions column, uppercase it, and place
those results into a temporary CLOB (residing in your temporary tablespace). Then it
must apply the INSTR function to that temporary LOB to search for the string ‘MACK-
INAC BRIDGE’. In my examples, the directions have been fairly short. Imagine, how-
ever, that falls_directions were truly a large LOB, and that the average column size were
one gigabyte. Think of the drain on your temporary tablespace as the database allocates
the necessary room for the temporary LOBs created when uppercasing the directions.
Then think of all the time required to make a copy of each CLOB in order to uppercase
it, the time required to allocate and deallocate space for temporary CLOBs in your
temporary tablespace, and the time required for the INSTR function to search charac-
ter-by-character through an average of 1 GB per CLOB. Such a query would surely
bring the wrath of your DBA down upon you.

424 | Chapter 13: Miscellaneous Datatypes

Download at WoweBook.Com

Oracle Text and SQL Semantics
If you need to execute queries that look at uppercase versions of CLOB values, and you
need to do so efficiently, Oracle Text may hold the solution. For example, you might
reasonably expect to write a query such as the following some day:

SELECT falls_name
 FROM waterfalls
 WHERE INSTR(UPPER(falls_directions), 'MACKINAC BRIDGE') <> 0;

If falls_directions is a CLOB column, this query may not be all that efficient. However,
if you are using Oracle Text, you can define a case-insensitive Oracle Text index on
that CLOB column, and then use the CONTAINS predicate to efficiently evaluate the
query:

SELECT falls_name
 FROM waterfalls
 WHERE
 CONTAINS(falls_directions,'mackinac bridge') > 0;

For more information on CONTAINS and case-insensitive indexes using Oracle Text,
see Oracle Corporation’s Text Application Developer’s Guide.

Because of all the performance ramifications of applying SQL semantics to LOBs, Ora-
cle’s documentation suggests that you limit such applications to LOBs that are 100 KB
or less in size. I myself don’t have a specific size recommendation to pass on to you;
you should consider each case in terms of your particular circumstances and how much
you need to accomplish a given task. I encourage you always to give thought to the
performance implications of using SQL semantics for LOBs, and possibly to run some
tests to experience these implications, so that you can make a reasonable decision based
on your circumstances.

LOB Conversion Functions
Oracle provides several conversion functions that are sometimes useful when working
with large object data, described in Table 13-2.

Table 13-2. LOB conversion functions

Function Description

TO_CLOB (character_data) Converts character data into a CLOB. The input to TO_CLOB can be any of the following character
types: VARCHAR2, NVARCHAR2, CHAR, NCHAR, CLOB, and NCLOB. If necessary (for example, if the
input is NVARCHAR2), input data is converted from the national character set into the database
character set.

TO_BLOB(raw_data) Similar to TO_CLOB, but converts RAW or LONG RAW data into a BLOB.

TO_NCLOB
(character_data)

Does the same as TO_CLOB, except that the result is an NCLOB using the national character set.

Working with LOBs | 425

Download at WoweBook.Com

Function Description

TO_LOB (long_data) Accepts either LONG or LONG RAW data as input, and converts that data to a CLOB or a BLOB,
respectively. TO_LOB may be invoked only from the select list of a subquery in an INSERT...
SELECT...FROM statement.

TO_RAW(blob_data) Takes a BLOB as input and returns the BLOB’s data as a RAW value.

The TO_LOB function is designed specifically to enable one-time conversion of LONG
and LONG RAW columns into CLOB and BLOB columns, because LONG and LONG
RAW are now considered obsolete. The TO_CLOB and TO_NCLOB functions pro-
vide a convenient mechanism for converting character large object data between the
database and national language character sets.

Predefined Object Types
Starting with Oracle9i Database Release 1, Oracle provides a collection of useful, pre-
defined object types:

XMLType
Use this to store and manipulate XML data.

URI types
Use these to store uniform resource identifiers (such as HTML addresses).

Any types
Use these to define a PL/SQL variable that can hold any type of data.

The following subsections discuss these predefined object types in more detail.

The XMLType Type
Oracle9i Database introduced a native object type called XMLType. You can use
XMLType to define database columns and PL/SQL variables containing XML docu-
ments. Methods defined on XMLType enable you to instantiate new XMLType values,
to extract portions of an XML document, and to otherwise manipulate the contents of
an XML document in various ways.

XML is a huge subject that I can’t hope to cover in detail in this book. However, if
you’re working with XML from PL/SQL, there are at least two things you need to know
about:

XMLType
A built-in object type that enables you to store XML documents in a database
column or in a PL/SQL variable. XMLType was introduced in Oracle9i Database
Release 1.

426 | Chapter 13: Miscellaneous Datatypes

Download at WoweBook.Com

XQuery
A query language used for retrieving and constructing XML documents. XQuery
was introduced in Oracle Database 10g Release 2.

Starting with these two technologies and exploring further, you’ll encounter many
other XML related topics that will likely prove useful: XPath for referring to portions
of an XML document, XML Schema for describing document structure, and so forth.

Using XMLType, you can easily create a table to hold XML data:

CREATE TABLE fallsXML (
 fall_id NUMBER,
 fall XMLType
);

The fall column in this table is of XMLType and can hold XML data. To store XML
data into this column, you must invoke the static CreateXML method, passing it your
XML data. CreateXML accepts XML data as input and instantiates a new XMLType
object to hold that data. The new object is then returned as the method’s result, and it
is that object that you must store in the column. CreateXML is overloaded to accept
both VARCHAR2 strings and CLOBs as input.

Use the following INSERT statements to create three XML documents in the falls table:

INSERT INTO fallsXML VALUES (1, XMLType.CreateXML(
 '<?xml version="1.0"?>
 <fall>
 <name>Munising Falls</name>
 <county>Alger</county>
 <state>MI</state>
 <url>
 http://michiganwaterfalls.com/munising_falls/munising_falls.html
 </url>
 </fall>'));

INSERT INTO fallsXML VALUES (2, XMLType.CreateXML(
 '<?xml version="1.0"?>
 <fall>
 <name>Au Train Falls</name>
 <county>Alger</county>
 <state>MI</state>
 <url>
 http://michiganwaterfalls.com/autrain_falls/autrain_falls.html
 </url>
 </fall>'));

INSERT INTO fallsXML VALUES (3, XMLType.CreateXML(
 '<?xml version="1.0"?>
 <fall>
 <name>Laughing Whitefish Falls</name>
 <county>Alger</county>
 <state>MI</state>
 <url>
 http://michiganwaterfalls.com/whitefish_falls/whitefish_falls.html

Predefined Object Types | 427

Download at WoweBook.Com

 </url>
 </fall>'));

You can query XML data in the table using various XMLType methods. The existsNode
method used in the following example allows you to test for the existence of a specific
XML node in an XML document. The built-in SQL EXISTSNODE function, also in the
example, performs the same test. Whether you use the method or the built-in function,
you identify the node of interest using an XPath expression.*

Both of the following statements produce the same output:

SQL> SELECT f.fall_id
 2 FROM fallsxml f
 3 WHERE f.fall.existsNode('/fall/url') > 0;

SQL> SELECT f.fall_id
 2 FROM fallsxml f
 3 WHERE EXISTSNODE(f.fall,'/fall/url') > 0;
 4 /

 FALL_ID

 1
 2

You can, of course, also work with XML data from within PL/SQL. In the following
example, I retrieve the fall column for Munising Falls into a PL/SQL variable that is
also of XMLType. Thus, I retrieve the entire XML document into my PL/SQL program,
where I can work further with it. After retrieving the document, I extract and print the
text from the /fall/url node.

<<demo_block>>
DECLARE
 fall XMLType;
 url VARCHAR2(100);
BEGIN
 --Retrieve XML for Munising Falls
 SELECT f.fall
 INTO demo_block.fall
 FROM fallsXML f
 WHERE f.fall_id = 1;

 --Extract and display the URL for Munising Falls
 url := fall.extract('/fall/url/text()').getStringVal;
 DBMS_OUTPUT.PUT_LINE(url);
END;

The output is:

http://michiganwaterfalls.com/munising_falls/munising_falls.html

* XPath is a syntax that describes parts of an XML document. Among other things, you can use XPath to specify
a particular node or attribute value in an XML document.

428 | Chapter 13: Miscellaneous Datatypes

Download at WoweBook.Com

Pay special attention to the following two lines:

SELECT f.fall INTO demo_block.fall
My variable name, fall, matches the name of the column in the database table. In
my SQL query, therefore, I qualify my variable name with the name of my PL/SQL
block.

url := fall.extract('/fall/url/text()').getStringVal;
To get the text of the URL, I invoke two of XMLType’s methods:

extract
Returns an XML document, of XMLType, containing only the specified frag-
ment of the original XML document. Use XPath notation to specify the frag-
ment you want returned.

getStringVal
Returns the text of an XML document.

In my example, I apply the getStringVal method to the XML document returned by the
extract method, thus retrieving the text for the Munising Fall’s URL. The extract
method returns the contents of the <url> node as an XMLType object, and getStringVal
then returns that content as a text string that I can display.

You can even index XMLType columns to allow for efficient retrieval of XML docu-
ments based on their content. You do this by creating a function-based index, for which
you need the QUERY REWRITE privilege. The following example creates a function-
based index on the first 80 characters of each falls name:

CREATE INDEX falls_by_name
 ON fallsxml f (
 SUBSTR(
 XMLType.getStringVal(
 XMLType.extract(f.fall,'/fall/name/text()')
),1,80
))

I had to use the SUBSTR function in the creation of this index. The getStringVal method
returns a string that is too long to index, resulting in an ORA-01450: maximum key
length (3166) exceeded error. Thus, when creating an index like this, I must use SUBSTR
to restrict the results to some reasonable length.

If you decide to use XMLType in any of your applications, be sure to consult Oracle
Corporation’s documentation for more complete and current information. The XML
DB Developer’s Guide for Oracle Database 11g Release 2 is an important, if not critical,
reference for developers working with XML. The SQL Reference also has some useful
information on XMLType and on the built-in SQL functions that support XML. The
Database PL/SQL Packages and Types Reference documents the programs, methods,
and exceptions for each of the predefined object types, as well as several pack-
ages that work with XML data, such as DBMS_XDB, DBMS_XMLSCHEMA, and
DBMS_XMLDOM.

Predefined Object Types | 429

Download at WoweBook.Com

The URI Types
The URI types, introduced in Oracle9i Database, consist of a supertype and a collection
of subtypes that provide support for storing URIs in PL/SQL variables and in database
columns. UriType is the supertype, and a UriType variable can hold any instance of
one of the subtypes:

HttpUriType
A subtype of UriType that is specific to HTTP URLs, which usually point to web
pages.

DBUriType
A subtype of UriType that supports URLs that are XPath expressions.

XDBUriType
A subtype of UriType that supports URLs that reference Oracle XML DB objects.
XML DB is Oracle’s name for a set of XML technologies built into the database.

To facilitate your work with URIs, the Oracle database also provides a UriFactory
package that automatically generates the appropriate URI type for whatever URI you
pass to it.

The URI types are created by the script named $ORACLE_HOME/rdbms/admin/
dbmsuri.sql. All the types and subtypes are owned by the user SYS.

Starting with Oracle Database 11g, you need to create and configure Access Control
Lists (ACLs) to allow network access. This security enhancement requires a few pre-
requisites before you can access the Internet. You have to create a network ACL, add
privileges to it, and then define the allowable destinations to which the ACL permits
access.

BEGIN
 -- create the ACL
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL(
 acl => 'oreillynet-permissions.xml'
 ,description => 'Network permissions for www.oreillynet.com'
 ,principal => 'WEBROLE'
 ,is_grant => TRUE
 ,privilege => 'connect'
 ,start_date => SYSTIMESTAMP
 ,end_date => NULL
);
 -- assign privileges to the ACL
 DBMS_NETWORK_ACL_ADMIN.ADD_PRIVILEGE (
 acl => 'oreillynet-permissions.xml'
 ,principal => 'WEBROLE'
 ,is_grant => TRUE
 ,privilege => 'connect'
 ,start_date => SYSTIMESTAMP
 ,end_date => null
);
 -- define the allowable destintions
 DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL (

430 | Chapter 13: Miscellaneous Datatypes

Download at WoweBook.Com

 acl => 'oreillynet-permissions.xml'
 ,host => 'www.orillynet.com'
 ,lower_port => 80
 ,upper_port => 80
);
 COMMIT; -- you must commit the changes.
END;

Now I can retrieve my web pages using HttpUriType:

DECLARE
 WebPageURL HttpUriType;
 WebPage CLOB;
BEGIN
 --Create an instance of the type pointing
 --to Steven's Author Bio page at OReilly
 WebPageURL := HttpUriType.createUri('http://www.oreillynet.com/pub/au/344');

 --Retrieve the page via HTTP
 WebPage := WebPageURL.getclob();

 --Display the page title
 DBMS_OUTPUT.PUT_LINE(REGEXP_SUBSTR(WebPage,'<title>.*</title>'));
END;

The output from this code example is:

<title>Steven Feuerstein</title>

For more information on the use of the UriType family, see Chapter 20, Accessing Data
Through URIs, of the XML DB Developer’s Guide for Oracle Database 11g Release 2.

The Any Types
Back in Chapter 7, I described PL/SQL as a statically typed language. For the most part
this is true—datatypes must be declared and checked at compile time. There are the
occasions when you really need the capabilities of dynamic typing and for those occa-
sions, the Any types were introduced with Oracle9i Database Release 1. These dynamic
datatypes enable you to write programs that manipulate data when you don’t know
the type of that data until runtime. Member functions support introspection, allowing
you to determine the type of a value at runtime and to access that value.

An introspection function is one that you can use in a program to ex-
amine and learn about variables declared by your program. In essence,
your program learns about itself—hence the term introspection.

The Any types are opaque, meaning that you cannot manipulate the internal structures
directly, but instead must use programs.

Predefined Object Types | 431

Download at WoweBook.Com

The following predefined types belong to this family:

AnyData
Can hold a single value of any type, whether it’s a built-in scalar datatype, a user-
defined object type, a nested table, a large object, a varying array (VARRAY), or
any other type not listed here.

AnyDataSet
Can hold a set of values of any type, as long as all values are of the same type.

AnyType
Can hold a description of a type. Think of this as an AnyData without the data.

The Any types are included with a starter database or can be created with the script
named dbmsany.sql found in $ORACLE_HOME/rdbms/admin, and are owned by the
user SYS.

In addition to creating the Any types, the dbmsany.sql script also creates a package
named DBMS_TYPES that defines a set of named constants, such as
TYPECODE_DATE. You can use these constants in conjunction with introspection
functions such as GETTYPE in order to determine the type of data held by a given
AnyData or AnyDataSet variable. The specific numeric values assigned to the constants
are not important; you should always reference the named constants, not their under-
lying values.

The following example creates two user-defined types representing two kinds of geo-
graphic features. The subsequent PL/SQL block then uses SYS.AnyType to define a
heterogeneous array of features (i.e., each array element can be of a different datatype).

First, I’ll create the following two geographic feature types:

/* File on web: ch13_anydata.sql */
TYPE waterfall AS OBJECT (
 name VARCHAR2(30),
 height NUMBER
)

TYPE river AS OBJECT (
 name VARCHAR2(30),
 length NUMBER
)

Next, I’ll execute the following PL/SQL code block:

DECLARE
 TYPE feature_array IS VARRAY(2) OF SYS.AnyData;
 features feature_array;
 wf waterfall;
 rv river;
 ret_val NUMBER;
BEGIN
 --Create an array where each element is of
 --a different object type
 features := feature_array(

432 | Chapter 13: Miscellaneous Datatypes

Download at WoweBook.Com

 AnyData.ConvertObject(
 waterfall('Grand Sable Falls',30)),
 AnyData.ConvertObject(
 river('Manistique River', 85.40))
);

 --Display the feature data
 FOR x IN 1..features.COUNT LOOP
 --Execute code pertaining to whatever object type
 --we are currently looking at.
 --NOTE! GetTypeName returns SchemaName.TypeName
 --so, replace PLUSER with the schema you are using.
 CASE features(x).GetTypeName
 WHEN 'PLUSER.WATERFALL' THEN
 ret_val := features(x).GetObject(wf);
 DBMS_OUTPUT.PUT_LINE('Waterfall: '
 || wf.name || ', Height = ' || wf.height || ' feet.');
 WHEN 'PLUSER.RIVER' THEN
 ret_val := features(x).GetObject(rv);
 DBMS_OUTPUT.PUT_LINE('River: '
 || rv.name || ', Length = ' || rv.length || ' miles.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Unknown type '||features(x).GetTypeName);
 END CASE;
 END LOOP;
END;

Finally, my output should appear as follows:

Waterfall: Grand Sable Falls, Height = 30 feet.
River: Manistique River, Length = 85.4 miles.

Let’s look at this code one piece at a time. The features are stored in a VARRAY, which
is initialized as follows:

features := feature_array(
 AnyData.ConvertObject(
 waterfall('Grand Sable Falls',30)),
 AnyData.ConvertObject(
 river('Manistique River, 85.40))
);

Working from the inside out and focusing on Grand Sable Falls, this code can be in-
terpreted as follows:

waterfall('Grand Sable Falls',30)
Invokes the constructor for the waterfall type to create an object of type waterfall.

AnyData.ConvertObject(
Converts (casts) the waterfall object into an instance of SYS.AnyData, allowing it
to be stored in myarray of SYS.AnyData objects.

feature_array(
Invokes the constructor for the array. Each argument to feature_array is of type
AnyData. The array is built from the two arguments I pass.

Predefined Object Types | 433

Download at WoweBook.Com

VARRAYs were discussed in Chapter 12, and you can read about object types in more
detail in Chapter 26.

The next significant part of the code is the FOR loop in which each object in the features
array is examined. A call to:

features(x).GetTypeName

returns the fully qualified type name of the current features object. For user-defined
objects, the type name is prefixed with the schema name of the user who created the
object. I had to include this schema name in my WHEN clauses; for example:

WHEN 'PLUSER.WATERFALL' THEN

If you’re running this example on your own system, be sure to replace the schema I
used (PLUSER) with the one that is valid for you. When creating TYPES that will be
used with introspection, consider the type’s owner carefully as that owner may need
to be statically included in the code.

For built-in types such as NUMBER, DATE, and VARCHAR2,
GetTypeName will return just the type name. Schema names apply only
to user-defined types (i.e., those created using CREATE TYPE).

Once I determined which datatype I was dealing with, I retrieved the specific object
using the following call:

ret_val := features(x).GetObject(wf);

In my example, I ignored the return code. There are two possible return code values:

DBMS_TYPES.SUCCESS
The value (or object, in this case) was successfully returned.

DBMS_TYPES.NO_DATA
No data was ever stored in the AnyData variable in question, so no data can be
returned.

Once I had the object in a variable, it was an easy enough task to write a
DBMS_OUTPUT statement specific to that object type. For example, to print infor-
mation about waterfalls, I used:

DBMS_OUTPUT.PUT_LINE('Waterfall: '
 || wf.name || ', Height = ' || wf.height || ' feet.');

434 | Chapter 13: Miscellaneous Datatypes

Download at WoweBook.Com

For more information on the “Any” family of types:

• See Chapter 26, which examines the Any datatypes from an object-oriented
perspective.

• Check out Oracle’s PL/SQL Packages and Types Reference, and the
Object-Relational Developer’s Guide.

• Try out the anynums.pkg and anynums.tst scripts on the book’s web site.

From an object-oriented design standpoint, there are better ways to deal
with multiple feature types than the method I used in this section’s
example. In the real world, however, not everything is ideal, and my
example does serve the purpose of demonstrating the utility of the
SYS.AnyData predefined object type.

Predefined Object Types | 435

Download at WoweBook.Com

Download at WoweBook.Com

PART IV

SQL in PL/SQL

This part of the book addresses a central element of PL/SQL code construction: the
connection to the underlying Oracle database, which takes places through SQL (Struc-
tured Query Language). Chapters 14 through 16 show you how to define transactions
that update, insert, merge, and delete tables in the database; query information from
the database for processing in a PL/SQL program; and execute SQL statements dy-
namically, using native dynamic SQL (NDS).

Chapter 14, DML and Transaction Management
Chapter 15, Data Retrieval
Chapter 16, Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

Download at WoweBook.Com

CHAPTER 14

DML and Transaction Management

PL/SQL is tightly integrated with the Oracle database via the SQL language. From
within PL/SQL, you can execute any Data Manipulation Language (DML)
statements—specifically INSERTs, UPDATEs, DELETEs, MERGEs, and, of course,
queries.

You cannot, however, execute Data Definition Language (DDL) state-
ments in PL/SQL unless you run them as dynamic SQL. This topic is
covered in Chapter 16.

You can also join multiple SQL statements together logically as a transaction, so that
they are either saved (“committed” in SQL parlance) together, or rejected in their en-
tirety (“rolled back”). This chapter examines the SQL statements available inside
PL/SQL to establish and manage transactions. It focuses on exploring the intersection
point of DML and PL/SQL, answering such questions as: How can you take full ad-
vantage of DML from within the PL/SQL language? And how do you manage transac-
tions that are created implicitly when you execute DML statements? See “Transaction
Management” on page 450.

To appreciate the importance of transactions in Oracle, it helps to consider the “ACID”
principle: a transaction has Atomicity, Consistency, Isolation, and Durability. These
concepts are defined as follows:

Atomicity
A transaction’s changes to a state are atomic: either they all happen or none
happens.

Consistency
A transaction is a correct transformation of state. The actions taken as a group do
not violate any integrity constraints associated with that state.

439

Download at WoweBook.Com

Isolation
Many transactions may be executing concurrently, but from any given transac-
tion’s point of view, other transactions appear to have executed before or after its
own execution.

Durability
Once a transaction completes successfully, the changes to the state are made per-
manent and survive any subsequent failures.

A transaction can either be saved by performing a COMMIT or erased by requesting a
ROLLBACK. In either case, the affected locks on resources are released (a ROLLBACK
TO might release only some locks). The session can then start a new transaction. The
default behavior in a PL/SQL program is that there is one transaction per session, and
all changes that you make are a part of that transaction. By using a feature called
autonomous transactions, however, you can create nested transactions within the main,
session-level transaction.

DML in PL/SQL
From within any PL/SQL block of code you can execute DML statements (INSERTs,
UPDATEs, DELETEs, and MERGEs) against any and all tables and views to which you
have access.

Access to these data structures is determined at the time of compilation
when you’re using the definer rights model. If you instead use the invoker
rights model with the AUTHID CURRENT_USER compile option, ac-
cess privileges are determined at runtime. See Chapter 24 for more
details.

A Quick Introduction to DML
It is outside the scope of this book to provide complete reference information about
the features of DML statements in the Oracle SQL language. Instead, I present a quick
overview of the basic syntax, and then explore special features relating to DML inside
PL/SQL, including:

• Examples of each DML statement

• Cursor attributes for DML statements

• Special PL/SQL features for DML statements, such as the RETURNING clause

For detailed information, I encourage you to peruse Oracle documentation or a SQL-
specific text.

440 | Chapter 14: DML and Transaction Management

Download at WoweBook.Com

Officially, the SELECT statement is considered a “DML” statement.
Routinely, however, when developers refer to “DML” they almost al-
ways mean those statements that modify the contents of a database ta-
ble. For the remainder of this chapter, DML will refer to the non-query
statements of SQL.

There are four DML statements available in the SQL language:

INSERT
Inserts one or more new rows into a table.

UPDATE
Updates the values of one or more columns in one or more rows in a table.

DELETE
Removes one or more rows from a table.

MERGE
Offers non-declarative support for an “upsert”—that is, if a row already exists for
the specified column values, do an update. Otherwise, do an insert.

The INSERT statement

There are two basic types of INSERT statements; here is the syntax:

• Insert a single row with an explicit list of values:

INSERT INTO table [(col1, col2, ..., coln)]
 VALUES (val1, val2, ..., valn);

• Insert one or more rows into a table as defined by a SELECT statement against one
or more other tables:

INSERT INTO table [(col1, col2, ..., coln)]
 SELECT ...;

Let’s look at some examples of INSERT statements executed within a PL/SQL block.
First, I insert a new row into the book table. Notice that I do not need to specify the
names of the columns if I provide a value for each column.

BEGIN
 INSERT INTO books
 VALUES ('1-56592-335-9',
 'Oracle PL/SQL Programming',
 'Reference for PL/SQL developers,' ||
 'including examples and best practice ' ||
 'recommendations.',
 'Feuerstein,Steven, with Bill Pribyl',
 TO_DATE ('01-SEP-1997','DD-MON-YYYY'),
 987);
END;

DML in PL/SQL | 441

Download at WoweBook.Com

I can also list the names of the columns and provide the values as variables (including
a retrieval of the next available value from a sequence), instead of as literal values:

DECLARE
 l_isbn books.isbn%TYPE := '1-56592-335-9';
 ... other declarations of local variables
BEGIN
 INSERT INTO books (
 book_id, isbn, title, summary, author,
 date_published, page_count)
 VALUES (
 book_id_sequence.NEXTVAL, l_isbn, l_title, l_summary, l_author,
 l_date_published, l_page_count);

Native PL/SQL Support for Sequences in Oracle Database 11g
Prior to Oracle Database 11g, if you wanted to get the next value from a sequence, you
had to execute the call to the NEXTVAL function from within a SQL statement. You
could do this directly inside the INSERT statement that needs the value, as in:

INSERT INTO table_name VALUES (sequence_name.NEXTVAL, ...);

or with a SELECT from the good old dual table, as in:

SELECT sequence_name.NEXTVAL INTO l_primary_key FROM SYS.dual;

From Oracle Database 11g onwards, however, you can now retrieve that next value
(and the current value as well) with a native assignment operator—for example:

l_primary_key := sequence_name.NEXTVAL;

The UPDATE statement

With the UPDATE statement you can update one or more columns in one or more
rows. Here is the basic syntax:

UPDATE table
 SET col1 = val1
 [, col2 = val2, ... colN = valN]
[WHERE where_clause];

The WHERE clause is optional; if you do not supply one, all rows in the table are
updated. Here are some examples of UPDATEs:

• Uppercase all the titles of books in the books table:

UPDATE books SET title = UPPER (title);

• Run a utility procedure that removes the time component from the publication
date of books written by specified authors (the argument in the procedure) and
uppercases the titles of those books. As you can see, you can run an UPDATE
statement standalone or within a PL/SQL block.

442 | Chapter 14: DML and Transaction Management

Download at WoweBook.Com

PROCEDURE remove_time (author_in IN VARCHAR2)
IS
BEGIN
 UPDATE books
 SET title = UPPER (title),
 date_published = TRUNC (date_published)
 WHERE author LIKE author_in;
END;

The DELETE statement

You can use the DELETE statement to remove one, some, or all the rows in a table.
Here is the basic syntax:

DELETE FROM table
 [WHERE where_clause];

The WHERE clause is optional in a DELETE statement. If you do not supply one, all
rows in the table are deleted. Here are some examples of DELETEs:

• Delete all the books from the books table:

DELETE FROM books;

• Delete all the books from the books table that were published prior to a certain
date and return the number of rows deleted:

PROCEDURE remove_books (
 date_in IN DATE,
 removal_count_out OUT PLS_INTEGER)
IS
BEGIN
 DELETE FROM books WHERE date_published < date_in;
 removal_count_out := SQL%ROWCOUNT;
END;

Of course, all these DML statements can become qualitatively more complex as you
deal with real-world entities. You can, for example, update multiple columns with the
contents of a subquery. Starting with Oracle9i Database, you can replace a table name
with a table function that returns a result set upon which the DML statement acts.

The MERGE statement

With the MERGE statement, you specify the condition on which a match is to be
evaluated, and then the two different actions to take for MATCHED and NOT
MATCHED. Here is an example:

PROCEDURE time_use_merge (dept_in IN employees.department_id%TYPE
)
IS
BEGIN
 MERGE INTO bonuses d
 USING (SELECT employee_id, salary, department_id
 FROM employees
 WHERE department_id = dept_in) s

DML in PL/SQL | 443

Download at WoweBook.Com

 ON (d.employee_id = s.employee_id)
 WHEN MATCHED
 THEN
 UPDATE SET d.bonus = d.bonus + s.salary * .01
 WHEN NOT MATCHED
 THEN
 INSERT (d.employee_id, d.bonus)
 VALUES (s.employee_id, s.salary * 0.2
END;

The syntax and details of MERGE are all SQL-based, and I won’t explore them further
in this book. The merge.sql file, however, contains a more comprehensive example.

Cursor Attributes for DML Operations
Oracle allows you to access information about the most recently executed implicit
cursor by referencing one of the following special implicit cursor attributes:

Implicit cursor attributes return information about the execution of the most recent
INSERT, UPDATE, DELETE, MERGE, or SELECT INTO statement. Cursor attributes
for SELECT INTOs are covered in Chapter 15. In this section, I’ll discuss how to take
advantage of the SQL% attributes for DML statements.

First of all, remember that the values of implicit cursor attributes always refer to the
most recently executed SQL statement, regardless of the block in which the implicit
cursor is executed. And before Oracle opens the first SQL cursor in the session, all the
implicit cursor attributes yield NULL. (The exception is %ISOPEN, which returns
FALSE.)

Table 14-1 summarizes the significance of the values returned by these attributes for
implicit cursors.

Table 14-1. Implicit SQL cursor attributes for DML statements

Name Description

SQL%FOUND Returns TRUE if one or more rows were modified (created, changed, removed) successfully

SQL%NOTFOUND Returns TRUE if no rows were modified by the DML statement

SQL%ROWCOUNT Returns number of rows modified by the DML statement

SQL%ISOPEN Always returns FALSE for implicit cursors (and, therefore, DML statements) because the Oracle database
opens and closes their cursors automatically

Now let’s see how we can use cursor attributes with implicit cursors.

• Use SQL%FOUND to determine if your DML statement affected any rows. For
example, from time to time an author will change his name and want a new name
used for all of his books. So I create a small procedure to update the name and then
report back via a Boolean variable whether any rows were modified:

444 | Chapter 14: DML and Transaction Management

Download at WoweBook.Com

PROCEDURE change_author_name (
 old_name_in IN books.author%TYPE,
 new_name_in IN books.author%TYPE,
 changes_made_out OUT BOOLEAN)
IS
BEGIN
 UPDATE books
 SET author = new_name_in
 WHERE author = old_name_in;

 changes_made_out := SQL%FOUND;
END;

• Use SQL%ROWCOUNT when you need to know exactly how many rows were
affected by your DML statement. Here is a reworking of the above name-change
procedure that returns a bit more information:

PROCEDURE change_author_name (
 old_name_in IN books.author%TYPE,
 new_name_in IN books.author%TYPE,
 rename_count_out OUT PLS_INTEGER)
IS
BEGIN
 UPDATE books
 SET author = new_name_in
 WHERE author = old_name_in;

 rename_count_out := SQL%ROWCOUNT;
END;

RETURNING Information from DML Statements
Suppose that I perform an UPDATE or DELETE, and then need to get information
about the results of that statement for future processing. Rather than perform a distinct
query following the DML statement, I can add a RETURNING clause to an INSERT,
UPDATE, DELETE, or MERGE and retrieve that information directly into variables in
my program. With the RETURNING clause, I can reduce network round trips, con-
sume less server CPU time, and minimize the number of cursors opened and managed
in the application.

Here are some examples that demonstrate the capabilities of this feature.

• The following very simple block shows how I use the RETURNING clause to re-
trieve a value (the new salary) that was computed within the UPDATE statement:

DECLARE
 myname employees.last_name%TYPE;
 mysal employees.salary%TYPE;
BEGIN
 FOR rec IN (SELECT * FROM employees)
 LOOP
 UPDATE employees
 SET salary = salary * 1.5

DML in PL/SQL | 445

Download at WoweBook.Com

 WHERE employee_id = rec.employee_id
 RETURNING salary, last_name INTO mysal, myname;

 DBMS_OUTPUT.PUT_LINE ('New salary for ' ||
 myname || ' = ' || mysal);
 END LOOP;
END;

• Suppose that I perform an UPDATE that modifies more than one row. In this case,
I can return information not just into a single variable, but into a collection using
the BULK COLLECT syntax. This technique is shown below in a FORALL
statement:

DECLARE
 names name_varray;
 new_salaries number_varray;
BEGIN
 populate_arrays (names, new_salaries);

 FORALL indx IN names.FIRST .. names.LAST
 UPDATE compensation
 SET salary = new_salaries (indx)
 WHERE last_name = names (indx)
 RETURNING salary BULK COLLECT INTO new_salaries;
 ...
END;

You can get lots more information about the FORALL (bulk bind) statement in Chap-
ter 21.

DML and Exception Handling
When an exception occurs in a PL/SQL block, the Oracle database does not roll back
any of the changes made by DML statements in that block. You are the manager of the
application’s logical transaction, so you decide what kind of behavior should occur.

Consider the following procedure:

PROCEDURE empty_library (
 pre_empty_count OUT PLS_INTEGER)
IS
BEGIN

 /* tabcount implementation available in ch14_code.sql */
 pre_empty_count := tabcount ('books');

 DELETE FROM books;
 RAISE NO_DATA_FOUND;
END;

Notice that I set the value of the OUT parameter before I raise the exception. Now let’s
run an anonymous block that calls this procedure, and examine the after-effects:

DECLARE
 table_count NUMBER := −1;

446 | Chapter 14: DML and Transaction Management

Download at WoweBook.Com

BEGIN
 INSERT INTO books VALUES (...);
 empty_library (table_count);
EXCEPTION
 WHEN OTHERS
 THEN
 DBMS_OUTPUT.put_line (tabcount ('books'));
 DBMS_OUTPUT.put_line (table_count);
END;

The output is:

0
−1

Notice that my rows remain deleted from the books table even though an exception
was raised; the database did not perform an automatic rollback. My table_count vari-
able, however, retains its original value.

So it is up to you to perform rollbacks—or rather, to decide if you want to perform a
rollback—in programs that perform DML. Here are some things to keep in mind in
this regard:

• If your block is an autonomous transaction (described later in this chapter), then
you must perform a rollback or commit (usually a rollback) when an exception is
raised.

• You can use savepoints to control the scope of a rollback. In other words, you can
roll back to a particular savepoint and thereby preserve a portion of the changes
made in your session. Savepoints are also explored later in this chapter.

• If an exception propagates past the outermost block (i.e., it goes “unhandled”),
then in most host execution environments for PL/SQL like SQL*Plus, a rollback is
automatically executed, reversing any outstanding changes.

DML and Records
You can use records inside INSERT and UPDATE statements. Here is an example that
demonstrates the use of records in both types of statements:

PROCEDURE set_book_info (book_in IN books%ROWTYPE)
IS
BEGIN
 INSERT INTO books VALUES book_in;
EXCEPTION
 WHEN DUP_VAL_ON_INDEX
 THEN
 UPDATE books SET ROW = book_in
 WHERE isbn = book_in.isbn;
END;

This enhancement offers some compelling advantages over working with individual
variables or fields within a record:

DML in PL/SQL | 447

Download at WoweBook.Com

Very concise code
You can “stay above the fray” and work completely at the record level. There is no
need to declare individual variables or decompose a record into its fields when
passing that data to the DML statement.

More robust code
By working with %ROWTYPE records and not explicitly manipulating fields in
those records, your code is less likely to require maintenance as changes are made
to the tables and views upon which the records are based.

In “Restrictions on record-based inserts and updates” on page 450, you will find a list
of restrictions on using records in DML statements. First, let’s take a look at how you
can take advantage of record-based DML for the two supported statements, INSERT
and UPDATE.

Record-based inserts

You can INSERT using a record with both single-row inserts and bulk inserts (via the
FORALL statement). You can also use records that are based on %ROWTYPE decla-
rations against the table to which the insert is made, or on an explicit record TYPE that
is compatible with the structure of the table.

Here are some examples.

• Insert a row into the books table with a %ROWTYPE record:

DECLARE
 my_book books%ROWTYPE;
BEGIN
 my_book.isbn := '1-56592-335-9';
 my_book.title := 'ORACLE PL/SQL PROGRAMMING';
 my_book.summary := 'General user guide and reference';
 my_book.author := 'FEUERSTEIN, STEVEN AND BILL PRIBYL';
 my_book.page_count := 1000;

 INSERT INTO books VALUES my_book;
END;

Notice that you do not include parentheses around the record specifier. If you use
this format:

INSERT INTO books VALUES (my_book); -- With parentheses, INVALID!

then you will get an ORA-00947: not enough values exception, since the program
is expecting a separate expression for each column in the table.

You can also use a record based on a programmer-defined record TYPE to perform
the INSERT, but that record type must be 100% compatible with the table
%ROWTYPE definition. You may not, in other words, INSERT using a record that
covers only a subset of the table’s columns.

448 | Chapter 14: DML and Transaction Management

Download at WoweBook.Com

• Perform record-based inserts with the FORALL statement. You can also work with
collections of records and insert all those records directly into a table within the
FORALL statement. See Chapter 21 for more information about FORALL.

Record-based updates

You can also perform updates of an entire row using a record. The following example
updates a row in the books table with a %ROWTYPE record. Notice that I use the
keyword ROW to indicate that I am updating the entire row with a record:

/* File on web: record_updates.sql */
DECLARE
 my_book books%ROWTYPE;
 BEGIN
 my_book.isbn := '1-56592-335-9';
 my_book.title := 'ORACLE PL/SQL PROGRAMMING';
 my_book.summary := 'General user guide and reference';
 my_book.author := 'FEUERSTEIN, STEVEN AND BILL PRIBYL';
 my_book.page_count := 1000;

 UPDATE books
 SET ROW = my_book
 WHERE isbn = my_book.isbn;
 END;

There are some restrictions on record-based updates:

• You must update an entire row with the ROW syntax. You cannot update a subset
of columns (although this may be supported in future releases). Any fields whose
values are left NULL will result in a NULL value assigned to the corresponding
column.

• You cannot perform an update using a subquery.

And, in case you are wondering, you cannot create a table column called ROW.

Using records with the RETURNING clause

DML statements can include a RETURNING clause that returns column values (and
expressions based on those values) from the affected row(s). You can return into a
record, or even a collection of records:

/* File on web: record_updates.sql */
 DECLARE
 my_book_new_info books%ROWTYPE;
 my_book_return_info books%ROWTYPE;
 BEGIN
 my_book_new_info.isbn := '1-56592-335-9';
 my_book_new_info.title := 'ORACLE PL/SQL PROGRAMMING';
 my_book_new_info.summary := 'General user guide and reference';
 my_book_new_info.author := 'FEUERSTEIN, STEVEN AND BILL PRIBYL';
 my_book_new_info.page_count := 1000;

DML in PL/SQL | 449

Download at WoweBook.Com

 UPDATE books
 SET ROW = my_book_new_info
 WHERE isbn = my_book_new_info.isbn
 RETURNING isbn, title, summary, author, date_published, page_count
 INTO my_book_return_info;
 END;

Notice that I must list each of my individual columns in the RETURNING clause.
Oracle does not yet support the * syntax.

Restrictions on record-based inserts and updates

As you begin to explore these new capabilities and put them to use, keep in mind the
following:

• You can use a record variable only (1) on the right side of the SET clause in
UPDATEs; (2) in the VALUES clause of an INSERT; or (3) in the INTO subclause
of a RETURNING clause.

• You must (and can only) use the ROW keyword on the left side of a SET clause.
In this case, you may not have any other SET clauses (i.e., you may not SET a row
and then SET an individual column).

• If you INSERT with a record, you may not pass individual values for columns.

• You cannot INSERT or UPDATE with a record that contains a nested record or
with a function that returns a nested record.

• You cannot use records in DML statements that are executed dynamically
(EXECUTE IMMEDIATE). This requires Oracle to support the binding of a PL/
SQL record type into a SQL statement, and only SQL types can be bound in this
way.

Transaction Management
The Oracle database provides a very robust transaction model, as you might expect
from a relational database. Your application code determines what constitutes a trans-
action, which is the logical unit of work that must be either saved with a COMMIT
statement or rolled back with a ROLLBACK statement. A transaction begins implicitly
with the first SQL statement issued since the last COMMIT or ROLLBACK (or with
the start of a session), or continues after a ROLLBACK TO SAVEPOINT.

PL/SQL provides the following statements for transaction management:

COMMIT
Saves all outstanding changes since the last COMMIT or ROLLBACK, and releases
all locks.

ROLLBACK
Reverses the effects of all outstanding changes since the last COMMIT or ROLL-
BACK, and releases all locks.

450 | Chapter 14: DML and Transaction Management

Download at WoweBook.Com

ROLLBACK TO SAVEPOINT
Reverses the effects of all changes made since the specified savepoint was estab-
lished, and releases locks that were established within that range of the code.

SAVEPOINT
Establishes a savepoint, which then allows you to perform partial ROLLBACKs.

SET TRANSACTION
Allows you to begin a read-only or read-write session, establish an isolation level,
or assign the current transaction to a specified rollback segment.

LOCK TABLE
Allows you to lock an entire database table in the specified mode. This overrides
the default row-level locking usually applied to a table.

These statements are explained in more detail in the following sections.

The COMMIT Statement
When you COMMIT, you make permanent any changes made by your session to the
database in the current transaction. Once you COMMIT, your changes will be visible
to other database sessions or users. The syntax for the COMMIT statement is:

COMMIT [WORK] [COMMENT text];

The WORK keyword is optional and can be used to improve readability.

The COMMENT keyword lets you specify a comment that is then associated with the
current transaction. The text must be a quoted literal and can be no more than 50
characters in length. The COMMENT text is usually employed with distributed trans-
actions, and can be handy for examining and resolving in-doubt transactions within a
two-phase commit framework. It is stored in the data dictionary along with the trans-
action ID.

Note that COMMIT releases any row and table locks issued in your session, such as
with a SELECT FOR UPDATE statement. It also erases any savepoints issued since the
last COMMIT or ROLLBACK.

Once you COMMIT your changes, you cannot roll them back with a ROLLBACK
statement.

The following statements are all valid uses of COMMIT:

COMMIT;
COMMIT WORK;
COMMIT COMMENT 'maintaining account balance'.

The ROLLBACK Statement
When you perform a ROLLBACK, you undo some or all changes made by your session
to the database in the current transaction. Why would you want to undo changes? From

Transaction Management | 451

Download at WoweBook.Com

an ad hoc SQL standpoint, the ROLLBACK gives you a way to erase mistakes you might
have made, as in:

DELETE FROM orders;

“No, no! I meant to delete only the orders before May 2005!” No problem—just issue
ROLLBACK. From an application coding standpoint, ROLLBACK is important be-
cause it allows you to clean up or restart from a clean state when a problem occurs.

The syntax for the ROLLBACK statement is:

ROLLBACK [WORK] [TO [SAVEPOINT] savepoint_name];

There are two basic ways to use ROLLBACK: without parameters or with the TO clause
to indicate a savepoint at which the ROLLBACK should stop. The parameterless
ROLLBACK undoes all outstanding changes in your transaction.

The ROLLBACK TO version allows you to undo all changes and release all acquired
locks that were issued since the savepoint identified by savepoint_name. (See the next
section on the SAVEPOINT statement for more information on how to mark a save-
point in your application.)

The savepoint_name is an undeclared Oracle identifier. It cannot be a literal (enclosed
in quotes) or variable name.

All of the following uses of ROLLBACK are valid:

ROLLBACK;
ROLLBACK WORK;
ROLLBACK TO begin_cleanup;

When you roll back to a specific savepoint, all savepoints issued after the specified
savepoint_name are erased, but the savepoint to which you roll back is not. This means
that you can restart your transaction from that point and, if necessary, roll back to that
same savepoint if another error occurs.

Immediately before you execute an INSERT, UPDATE, MERGE, or DELETE, PL/SQL
implicitly generates a savepoint. If your DML statement then fails, a rollback is auto-
matically performed to that implicit savepoint. In this way, only the last DML statement
is undone.

The SAVEPOINT Statement
SAVEPOINT gives a name to, and marks a point in, the processing of your transaction.
This marker allows you to ROLLBACK TO that point, undoing any changes and re-
leasing any locks issued after that savepoint, but preserving any changes and locks that
occurred before you marked the savepoint.

The syntax for the SAVEPOINT statement is:

SAVEPOINT savepoint_name;

452 | Chapter 14: DML and Transaction Management

Download at WoweBook.Com

where savepoint_name is an undeclared identifier. This means that it must conform to
the rules for an Oracle identifier (up to 30 characters in length, starting with a letter,
containing letters, numbers, and #, $, or _), but that you do not need to (and are not
able to) declare that identifier.

Savepoints are not scoped to PL/SQL blocks. If you reuse a savepoint name within the
current transaction, that savepoint is “moved” from its original position to the current
point in the transaction, regardless of the procedure, function, or anonymous block in
which the SAVEPOINT statements are executed. As a corollary, if you issue a savepoint
inside a recursive program, a new savepoint is executed at each level of recursion, but
you can only roll back to the most recently marked savepoint.

The SET TRANSACTION Statement
The SET TRANSACTION statement allows you to begin a read-only or read-write
session, establish an isolation level, or assign the current transaction to a specified
rollback segment. This statement must be the first SQL statement processed in a trans-
action, and it can appear only once. This statement comes in the following four flavors.

SET TRANSACTION READ ONLY;
This version defines the current transaction as read-only. In a read-only transac-
tion, all subsequent queries see only those changes that were committed before the
transaction began (providing a read-consistent view across tables and queries).
This statement is useful when you are executing long-running, multiple query re-
ports, and you want to make sure that the data used in the report is consistent.

SET TRANSACTION READ WRITE;
This version defines the current transaction as read-write and is the default setting

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE | READ COMMITTED;
This version defines how transactions that modify the database should be handled.
You can specify a serializable or read-committed isolation level. When you specify
SERIALIZABLE, a DML statement that attempts to modify a table already modi-
fied in an uncommitted transaction will fail. To execute this command, you must
set the database initialization parameter COMPATIBLE to 7.3.0 or higher.

If you specify READ COMMITTED, a DML statement that requires row-level locks
held by another transaction will wait until those row locks are released. This is the
default.

SET TRANSACTION USE ROLLBACK SEGMENT rollback_segname;
This version assigns the current transaction to the specified rollback segment and
establishes the transaction as read-write. This statement cannot be used with SET
TRANSACTION READ ONLY.

Transaction Management | 453

Download at WoweBook.Com

Rollback segments were deprecated in favor of automatic undo man-
agement, introduced in Oracle9i Database

The LOCK TABLE Statement
This statement allows you to lock an entire database table in the specified lock mode.
By doing this, you can share or deny access to that table while you perform operations
against it. The syntax for this statement is:

LOCK TABLE table_reference_list IN lock_mode MODE [NOWAIT];

where table_reference_list is a list of one or more table references (identifying either a
local table/view or a remote entity through a database link), and lock_mode is the mode
of the lock, which can be one of the following:

ROW SHARE
ROW EXCLUSIVE
SHARE UPDATE
SHARE
SHARE ROW EXCLUSIVE
EXCLUSIVE

If you specify the NOWAIT keyword, the database does not wait for the lock if the
table has already been locked by another user, and instead reports an error. If you leave
out the NOWAIT keyword, the database waits until the table is available (and there is
no set limit on how long the database will wait). Locking a table never stops other users
from querying or reading the table.

The following LOCK TABLE statements show valid variations:

LOCK TABLE emp IN ROW EXCLUSIVE MODE;
LOCK TABLE emp, dept IN SHARE MODE NOWAIT;
LOCK TABLE scott.emp@new_york IN SHARE UPDATE MODE;

Whenever possible, you should rely on Oracle’s default locking behav-
ior. Use of LOCK TABLE in your application should be done as a last
resort and with great care.

Autonomous Transactions
When you define a PL/SQL block as an autonomous transaction, you isolate the DML
in that block from the caller’s transaction context. That block becomes an independent
transaction that is started by another transaction, referred to as the main transaction.

454 | Chapter 14: DML and Transaction Management

Download at WoweBook.Com

Within the autonomous transaction block, the main transaction is suspended. You
perform your SQL operations, commit or roll back those operations, and resume the
main transaction. This flow of transaction control is illustrated in Figure 14-1.

Figure 14-1. Flow of transaction control between main, nested, and autonomous transactions

Defining Autonomous Transactions
There isn’t much involved in defining a PL/SQL block as an autonomous transaction.
You simply include the following statement in your declaration section:

PRAGMA AUTONOMOUS_TRANSACTION;

The pragma instructs the PL/SQL compiler to establish a PL/SQL block as autonomous
or independent. For the purposes of the autonomous transaction, a PL/SQL block can
be any of the following:

• Top-level (but not nested) anonymous PL/SQL blocks

• Functions and procedures, defined either in a package or as standalone programs

• Methods (functions and procedures) of an object type

• Database triggers

You can put the autonomous transaction pragma anywhere in the declaration section
of your PL/SQL block. You would probably be best off, however, placing it before any
data structure declarations. That way, anyone reading your code will immediately
identify the program as an autonomous transaction.

Autonomous Transactions | 455

Download at WoweBook.Com

This pragma is the only syntax change made to PL/SQL to support autonomous trans-
actions. COMMIT, ROLLBACK, the DML statements—all the rest is as it was before.
However, these statements have a different scope of impact and visibility when
executed within an autonomous transaction, and you will need to include a COMMIT
or ROLLBACK in your program.

Rules and Restrictions on Autonomous Transactions
While it is certainly very easy to add the autonomous transaction pragma to your code,
there are some rules and restrictions on the use of this feature.

• If an autonomous transaction attempts to access a resource held by the main trans-
action (which has been suspended until the autonomous routine exits), a deadlock
can occur in your program. Here is a simple example to demonstrate the problem.
I create a procedure to perform an update, and then call it after having already
updated all rows:

/* File on web: autondlock.sql */
PROCEDURE update_salary (dept_in IN NUMBER)
IS
 PRAGMA AUTONOMOUS_TRANSACTION;

 CURSOR myemps IS
 SELECT empno FROM emp
 WHERE deptno = dept_in
 FOR UPDATE NOWAIT;
BEGIN
 FOR rec IN myemps
 LOOP
 UPDATE emp SET sal = sal * 2
 WHERE empno = rec.empno;
 END LOOP;
 COMMIT;
END;

BEGIN
 UPDATE emp SET sal = sal * 2;
 update_salary (10);
END;

The results are not pretty:

ERROR at line 1:
ORA-00054: resource busy and acquire with NOWAIT specified

• You cannot mark all the subprograms in a package (or all methods in an object
type) as autonomous with a single PRAGMA declaration. You must indicate au-
tonomous transactions explicitly in each program’s declaration section in the
package body. One consequence of this rule is that you cannot tell by looking at
the package specification which (if any) programs will run as autonomous
transactions.

456 | Chapter 14: DML and Transaction Management

Download at WoweBook.Com

• To exit without errors from an autonomous transaction program that has executed
at least one INSERT, UPDATE, MERGE, or DELETE, you must perform an ex-
plicit commit or rollback. If the program (or any program called by it) has trans-
actions pending, the runtime engine will raise the exception shown below—and
then will roll back those uncommitted transactions.

ORA-06519: active autonomous transaction detected and rolled back

• The COMMIT and ROLLBACK statements end the active autonomous transac-
tion, but they do not force the termination of the autonomous routine. You can,
in fact, have multiple COMMIT and/or ROLLBACK statements inside your au-
tonomous block.

• You can roll back only to savepoints marked in the current transaction. When you
are in an autonomous transaction, therefore, you cannot roll back to a savepoint
set in the main transaction. If you try to do so, the runtime engine will raise this
exception:

ORA-01086: savepoint 'your savepoint' never established

• The TRANSACTIONS parameter in the database initialization file specifies the
maximum number of transactions allowed concurrently in a session. If you use lots
of autonomous transaction programs in your application, you might exceed this
limit, in which case you will see the following exception:

ORA-01574: maximum number of concurrent transactions exceeded

In this case, increase the value for TRANSACTIONS. The default value is 75.

Transaction Visibility
The default behavior of autonomous transactions is that once a COMMIT or a ROLL-
BACK occurs in the autonomous transaction, those changes are visible immediately in
the main transaction. But what if you want to hide those changes from the main trans-
action? You want them saved or undone—no question about that—but the information
should not be available to the main transaction. To achieve this, use SET TRANSAC-
TION as follows:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

The default isolation level of READ COMMITTED means that as soon as changes are
committed, they are visible to the main transaction.

As is usually the case with the SET TRANSACTION statement, you must call it before
you initiate your transactions (i.e., issue any SQL statements). In addition, the setting
affects your entire session, not just the current program. The autonserial.sql script on
the book’s web site demonstrates use of the SERIALIZABLE isolation level.

Autonomous Transactions | 457

Download at WoweBook.Com

When to Use Autonomous Transactions
Where would you find autonomous transactions useful in your applications? First, let’s
reinforce the general principle: you will want to define your program module as an
autonomous transaction whenever you want to isolate the changes made in that module
from the caller’s transaction context.

Here are some specific ideas:

Logging mechanism
On the one hand, you need to log an error to your database log table. On the other
hand, you need to roll back your core transaction because of the error. And you
don’t want to roll back over other log entries. What’s a person to do? Go autono-
mous! This is probably the most common motivation for PL/SQL developers to
use autonomous transactions and is explored at the end of this section.

Perform commits and rollbacks in your database triggers
If you define a trigger as an autonomous transaction, then you can commit and/or
roll back in that trigger, without affecting the transaction that fired the trigger. Why
is this valuable? You may want to take an action in the database trigger that is not
affected by the ultimate disposition of the transaction that caused the trigger to
fire. For example, suppose that you want to keep track of each action against a
table, whether or not the action completed. You might even want to be able to
detect which actions failed. See the autontrigger*.sql scripts on the book’s web site
for examples of how you can apply this technique.

Reusable application components
This usage goes to the heart of the value of autonomous transactions. As we move
more and more into the dispersed, multilayered world of the Internet, it becomes
ever more important to be able to offer standalone units of work (also known as
cartridges) that get their job done without any side effects on the calling environ-
ment. Autonomous transactions play a crucial role in this area.

Avoid mutating table trigger errors for queries
Mutating table trigger errors occur when a row-level trigger attempts to read from
or write to the table from which it was fired. If, however, you make your trigger an
autonomous transaction by adding the PRAGMA AUTONOMOUS_TRANSAC-
TION statement and committing inside the body of the trigger, then you will be
able to query the contents of the firing table—but you can only see already-
committed changes to the table. In other words, you will not see any changes made
to the table that caused the firing of the trigger. In addition, you will still not be
allowed to modify the contents of the table.

Call user-defined functions in SQL that modify tables
Oracle lets you call your own functions inside a SQL statement, provided that this
function does not update the database (and several other rules besides). If, how-
ever, you define your function as an autonomous transaction, you will then be able
to insert, update, merge, or delete inside that function as it is run from within a

458 | Chapter 14: DML and Transaction Management

Download at WoweBook.Com

query. The trcfunc.sql script on the book’s web site demonstrates an application
of this capability, allowing you to audit which rows of a table have been queried.

Retry counter
Suppose that you want to let a user try to get access to a resource N times before
an outright rejection; you also want to keep track of attempts between connections
to the database. This persistence requires a COMMIT, but one that should remain
independent of the main transaction. For an example of such a utility, see
retry.pkg and retry.tst on the book’s web site.

Building an Autonomous Logging Mechanism
A very common requirement in applications is to keep a log of errors that occur during
transaction processing. The most convenient repository for this log is a database table;
with a table, all the information is retained in the database, and you can use SQL to
retrieve and analyze the log.

One problem with a database table log, however, is that entries in the log become a
part of your transaction. If you perform a ROLLBACK (or if one is performed for you),
you can easily erase your log. How frustrating! You can get fancy and use savepoints
to preserve your log entries while cleaning up your transaction, but that approach is
not only fancy, it is complicated. With autonomous transactions, however, logging
becomes simpler, more manageable, and less error prone.

Suppose that I have a log table defined as follows:

/* File on web: log.pkg */
CREATE TABLE logtab (
 code INTEGER, text VARCHAR2(4000),
 created_on DATE, created_by VARCHAR2(100),
 changed_on DATE, changed_by VARCHAR2(100)
);

I can use it to store errors (SQLCODE and SQLERRM) that have occurred, or even for
nonerror-related logging.

So I have my table. Now, how should I write to my log? Here’s what you shouldn’t do:

EXCEPTION
 WHEN OTHERS
 THEN
 DECLARE
 v_code PLS_INTEGER := SQLCODE;
 v_msg VARCHAR2(1000) := SQLERRM;
 BEGIN
 INSERT INTO logtab VALUES (
 v_code, v_msg, SYSDATE, USER, SYSDATE, USER);
 END;
END;

Autonomous Transactions | 459

Download at WoweBook.Com

In other words, never expose your underlying logging mechanism by explicitly inserting
into it your exception sections and other locations. Instead, you should build a layer
of code around the table (this is known as encapsulation). There are three reasons to
do this:

• If you ever change your table’s structure, all those uses of the log table won’t be
disrupted.

• People can use the log table in a much easier, more consistent manner.

• You can then make that subprogram an autonomous transaction.

So here is my very simple logging package. It consists of two procedures:

PACKAGE log
IS
 PROCEDURE putline (code_in IN INTEGER, text_in IN VARCHAR2);
 PROCEDURE saveline (code_in IN INTEGER, text_in IN VARCHAR2);
END;

What is the difference between putline and saveline? The log.saveline procedure is an
autonomous transaction routine; log.putline simply performs the insert. Here is the
package body:

/* File on web: log.pkg */
PACKAGE BODY log
IS
 PROCEDURE putline (
 code_in IN INTEGER, text_in IN VARCHAR2)
 IS
 BEGIN
 INSERT INTO logtab
 VALUES (
 code_in,
 text_in,
 SYSDATE,
 USER,
 SYSDATE,
 USER
);
 END;

 PROCEDURE saveline (
 code_in IN INTEGER, text_in IN VARCHAR2)
 IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 BEGIN
 putline (code_in, text_in);
 COMMIT;
 EXCEPTION WHEN OTHERS THEN ROLLBACK;
 END;
END;

460 | Chapter 14: DML and Transaction Management

Download at WoweBook.Com

Here are some comments on this implementation that you might find helpful:

• The putline procedure performs the straight insert. You would probably want to
add some exception handling to this program if you applied this idea in your pro-
duction application.

• The saveline procedure calls the putline procedure (I don’t want any redundant
code), but does so from within the context of an autonomous transaction.

With this package in place, my error handler shown earlier can be as simple as this:

EXCEPTION
 WHEN OTHERS
 THEN
 log.saveline (SQLCODE, SQLERRM);
END;

No muss, no fuss. Developers don’t have to concern themselves with the structure of
the log table; they don’t even have to know they are writing to a database table. And
because I have used an autonomous transaction, they can rest assured that no matter
what happens in their application, the log entry has been saved.

Autonomous Transactions | 461

Download at WoweBook.Com

Download at WoweBook.Com

CHAPTER 15

Data Retrieval

One of the hallmarks of the PL/SQL language is its tight integration with the Oracle
database, both for changing data in database tables and for extracting information from
those tables. This chapter explores the many features available in PL/SQL to query data
from the database and make that data available within PL/SQL programs.

When you execute a SQL statement from PL/SQL, the Oracle database assigns a private
work area for that statement and also manages the data specified by the SQL statement
in the System Global Area (SGA). The private work area contains information about
the SQL statement and the set of data returned or affected by that statement.

PL/SQL provides a number of different ways to name this work area and manipulate
the information within it; all of these ways involve defining and working with cursors.
They include:

Implicit cursors
A simple and direct SELECT...INTO retrieves a single row of data into local pro-
gram variables. It’s the easiest (and often the most efficient) path to your data, but
it can often lead to coding the same or similar SELECTs in multiple places in your
code.

Explicit cursors
You can declare the query explicitly in your declaration section (local block or
package). In this way, you can open and fetch from the cursor in one or more
programs, with a granularity of control not available with implicit cursors.

Cursor variables
Offering an additional level of flexibility, cursor variables (declared from a REF
CURSOR type) allow you to pass a pointer to a query’s underlying result set from
one program to another. Any program with access to that variable can open, fetch
from, or close the cursor.

463

Download at WoweBook.Com

Cursor expressions
The CURSOR expression transforms a SELECT statement into a REF CURSOR
result set and can be used with table functions to improve the performance of
applications.

Dynamic SQL queries
Oracle allows you to construct and execute queries dynamically at runtime using
either native dynamic SQL (a.k.a., NDS, covered in Chapter 16) or DBMS_SQL.
Details on this built-in package are available in the Oracle documentation as well
as in Oracle Built-in Packages (O’Reilly).

This chapter explores implicit cursors, explicit cursors, cursor variables, and cursor
expressions in detail.

Cursor Basics
In its simplest form, you can think of a cursor as a pointer to the results of a query run
against one or more tables in the database. For example, the following cursor declara-
tion associates the entire employee table with the cursor named employee_cur:

CURSOR employee_cur IS SELECT * FROM employee;

Once I have declared the cursor, I can open it:

OPEN employee_cur;

Then I can fetch rows from it:

FETCH employee_cur INTO employee_rec;

Finally, I can close the cursor:

CLOSE employee_cur;

In this case, each record fetched from this cursor represents an entire record in the
employee table. You can, however, associate any valid SELECT statement with a cursor.
In the next example I have a join of three tables in my cursor declaration:

DECLARE
 CURSOR joke_feedback_cur
 IS
 SELECT J.name, R.laugh_volume, C.name
 FROM joke J, response R, comedian C
 WHERE J.joke_id = R.joke_id
 AND R.joker_id = C.joker_id;
BEGIN
 ...
END;

Here, the cursor does not act as a pointer into any actual table in the database. Instead,
the cursor is a pointer into the virtual table or implicit view represented by the SELECT
statement (SELECT is called a virtual table because the data it produces has the same
structure as a table—rows and columns—but it exists only for the duration of the

464 | Chapter 15: Data Retrieval

Download at WoweBook.Com

execution of the SQL statement). If the triple join returns 20 rows, each containing 3
columns, then the cursor functions as a pointer into those 20 rows.

Some Data Retrieval Terms
You have lots of options in PL/SQL for executing SQL, and all of them occur as some
type of cursor inside your PL/SQL program. Before diving into the details of the various
approaches, this section will familiarize you with the types and terminology of data
retrieval.

Static SQL
A SQL statement is static if it is fully specified, or fixed, at the time the code con-
taining that statement is compiled.

Dynamic SQL
A SQL statement is dynamic if it is constructed at runtime and then executed, so
you don’t completely specify the SQL statement in the code you write. You can
execute dynamic SQL either through the use of the built-in DBMS_SQL package
or with native dynamic SQL.

Result set
This is the set of rows identified by the database as fulfilling the request for data
specified by the SQL statement. The result set is cached in the SGA to improve the
performance of accessing and modifying the data in that set. The database main-
tains a pointer into the result set, which I will refer to in this chapter as the current
row.

Implicit cursor
PL/SQL declares and manages an implicit cursor every time you execute a SQL
DML statement (INSERT, UPDATE, MERGE, or DELETE) or a SELECT INTO
that returns a single row from the database directly into a PL/SQL data structure.
This kind of cursor is called “implicit” because the database automatically handles
many of the cursor-related operations for you, such as allocating a cursor, opening
the cursor, fetching records, and even closing the cursor (although this is not an
excuse to write code that relies on this behavior).

Explicit cursor
This is a SELECT statement that you declare as a cursor explicitly in your appli-
cation code. You then also explicitly perform each operation against that cursor
(open, fetch, close, etc.). You will generally use explicit cursors when you need to
retrieve multiple rows from data sources using static SQL.

Cursor variable
This is a variable you declare that references or points to a cursor object in the
database. As a true variable, a cursor variable can change its value (i.e., the cursor
or result set it points to) as your program executes. The variable can refer to dif-
ferent cursor objects (queries) at different times. You can also pass a cursor variable
as a parameter to a procedure or function. Cursor variables are very useful when

Cursor Basics | 465

Download at WoweBook.Com

passing result set information from a PL/SQL program to another environment,
such as Java or Visual Basic.

Cursor attribute
A cursor attribute takes the form %attribute_name and is appended to the name
of a cursor or cursor variable. The attribute returns information about the state of
the cursor, such as “is the cursor open?” and “how many rows have been retrieved
for this cursor?” Cursor attributes work in slightly different ways for implicit and
explicit cursors and for dynamic SQL. These variations are explored throughout
this chapter.

SELECT FOR UPDATE
This statement is a special variation of the normal SELECT, which proactively
issues row locks on each row of data retrieved by the query. Use SELECT FOR
UPDATE only when you need to reserve data you are querying to ensure that no
one changes the data while you are processing it.

Bulk processing
In Oracle8i Database and later, PL/SQL offers the BULK COLLECT syntax for
queries that allows you to fetch multiple rows from the database in a single or bulk
step.

Typical Query Operations
Regardless of the type of cursor, PL/SQL performs the same operations to execute a
SQL statement from within your program. In some cases, PL/SQL takes these steps for
you. In others, such as with explicit cursors, you will code and execute these steps
yourself.

Parse
The first step in processing a SQL statement is to parse it to make sure it is valid
and to determine the execution plan (using either the rule- or cost-based optimizer,
depending on how your DBA has set the OPTIMIZER_MODE parameter for your
database, database statistics, query hints, etc.).

Bind
When you bind, you associate values from your program (host variables) with
placeholders inside your SQL statement. With static SQL, the PL/SQL engine itself
performs these binds. With dynamic SQL, you must explicitly request a binding
of variable values if you want to use bind variables.

Open
When you open a cursor, the result set for the SQL statement is determined using
any bind variables that have been set. The pointer to the active or current row is
set to the first row. Sometimes you will not explicitly open a cursor; instead, the
PL/SQL engine will perform this operation for you (as with implicit cursors or
native dynamic SQL).

466 | Chapter 15: Data Retrieval

Download at WoweBook.Com

Execute
In the execute phase, the statement is run within the SQL engine.

Fetch
If you are performing a query, the FETCH command retrieves the next row from
the cursor’s result set. Each time you fetch, PL/SQL moves the pointer forward in
the result set. When you are working with explicit cursors, remember that FETCH
does nothing (does not raise an error) if there are no more rows to retrieve—you
must use cursor attributes to identify this condition.

Close
This step closes the cursor and releases all memory used by the cursor. Once closed,
the cursor no longer has a result set. Sometimes you will not explicitly close a
cursor; instead, the PL/SQL engine will perform this operation for you (as with
implicit cursors or native dynamic SQL).

Figure 15-1 shows how some of these different operations are used to fetch information
from the database into your PL/SQL program.

Figure 15-1. Simplified view of cursor fetch operation

Introduction to Cursor Attributes
This section describes each of the different cursor attributes at a high level. They are
explored in more detail for each of the kinds of cursors throughout this chapter, as well
as in Chapters 14 and 16.

PL/SQL offers a total of six cursor attributes, as shown in Table 15-1.

Cursor Basics | 467

Download at WoweBook.Com

Table 15-1. Cursor attributes

Name Description

%FOUND Returns TRUE if the record was fetched successfully, FALSE otherwise

%NOTFOUND Returns TRUE if the record was not fetched successfully, FALSE otherwise

%ROWCOUNT Returns the number of records fetched from cursor at that point in time

%ISOPEN Returns TRUE if cursor is open, FALSE otherwise

%BULK_ROWCOUNT Returns the number of records modified by the FORALL statement for each collection element

%BULK_EXCEPTIONS Returns exception information for rows modified by the FORALL statement for each collection element

To reference a cursor attribute, attach it with “%” to the name of the cursor or cursor
variable about which you want information, as in:

cursor_name%attribute_name

For implicit cursors, the cursor name is hardcoded as “SQL”, as in SQL%NOT-
FOUND.

The following sections offer brief descriptions of each cursor attribute.

The %FOUND attribute

The %FOUND attribute reports on the status of your most recent FETCH against the
cursor. This attribute evaluates to TRUE if the most recent FETCH against the cursor
returned a row, or FALSE if no row was returned.

If the cursor has not yet been opened, the database raises, the INVALID_CURSOR
exception.

In the following example, I loop through all the callers in the caller_cur cursor, assign
all calls entered before today to that particular caller, and then fetch the next record.
If I have reached the last record, then the explicit cursor’s %FOUND attribute is set to
FALSE, and I exit the simple loop. After my UPDATE statement, I check the implicit
cursor’s %FOUND attribute as well.

 FOR caller_rec IN caller_cur
 LOOP
UPDATE call
 SET caller_id = caller_rec.caller_id
 WHERE call_timestamp < SYSDATE;

 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE ('Calls updated for ' || caller_rec.caller_id);
 END IF;
 END LOOP;

468 | Chapter 15: Data Retrieval

Download at WoweBook.Com

The %NOTFOUND attribute

The %NOTFOUND attribute is the opposite of %FOUND. It returns TRUE if the most
recent FETCH against the cursor did not return a row, often because the final row has
already been fetched. If the cursor is unable to return a row because of an error, the
appropriate exception is raised.

If the cursor has not yet been opened, the database raises the INVALID_CURSOR
exception.

When should you use %FOUND and when should you use %NOTFOUND? Use
whichever formulation fits most naturally in your code. In the previous example, I
issued the following statement to exit my loop:

EXIT WHEN NOT caller_cur%FOUND;

An alternate and perhaps more readable formulation might use %NOTFOUND in-
stead, as follows:

EXIT WHEN caller_cur%NOTFOUND;

The %ROWCOUNT attribute

The %ROWCOUNT attribute returns the number of records fetched so far from a
cursor at the time the attribute is queried. When you first open a cursor, its
%ROWCOUNT is set to zero. If you reference the %ROWCOUNT attribute of a cur-
sor that is not open, you will raise the INVALID_CURSOR exception. After each record
is fetched, %ROWCOUNT is increased by one.

Use %ROWCOUNT to verify that the expected number of rows have been fetched (or
updated, in the case of DML) or to stop your program from executing after a certain
number of iterations.

Here is an example:

BEGIN
 UPDATE employees SET last_name = 'FEUERSTEIN';

 DBMS_OUTPUT.PUT_LINE (SQL%ROWCOUNT);
END;

The %ISOPEN attribute

The %ISOPEN attribute returns TRUE if the cursor is open; otherwise, it returns
FALSE. Here is an example of a common usage, making sure that cursors aren’t left
open when something unexpected occurs:

DECLARE
 CURSOR happiness_cur IS SELECT simple_delights FROM ...;
BEGIN
 OPEN happiness_cur;
 ...
 IF happiness_cur%ISOPEN THEN ...

Cursor Basics | 469

Download at WoweBook.Com

EXCEPTION
 WHEN OTHERS THEN
 IF happiness_cur%ISOPEN THEN
 close happiness_cur;
 END IF;
END;

The %BULK_ROWCOUNT attribute

The %BULK_ROWCOUNT attribute, designed for use with the FORALL statement,
returns the number of rows processed by each DML execution. This attribute has the
semantics of an associative array. It is covered in Chapter 21.

The %BULK_EXCEPTIONS attribute

The %BULK_EXCEPTIONS attribute, designed for use with the FORALL statement,
returns exception information that may have been raised by each DML execution. This
attribute (covered in Chapter 21) has the semantics of an associative array of records.

You can reference cursor attributes in your PL/SQL code, as shown in
the preceding example, but you cannot use those attributes inside a SQL
statement. For example, if you try to use the %ROWCOUNT attribute
in the WHERE clause of a SELECT:

SELECT caller_id, company_id FROM caller
 WHERE company_id = company_cur%ROWCOUNT;

you will get the compile error PLS-00229: Attribute expression within
SQL expression.

Referencing PL/SQL Variables in a Cursor
Since a cursor must be associated with a SQL statement, every cursor must reference
at least one table from the database and determine from that (and from the WHERE
clause) which rows will be returned in the active set. This does not mean, however,
that a PL/SQL cursor’s SELECT may return only database information.

The list of expressions that appears after the SELECT keyword and before the FROM
keyword is called the select list. In native SQL, this select list may contain both columns
and expressions (SQL functions on those columns, constants, etc.). In PL/SQL, the
select list of a SELECT may contain PL/SQL variables and complex expressions.

You can reference local PL/SQL program data (PL/SQL variables and constants), as
well as host language bind variables in the WHERE, GROUP BY, and HAVING clauses
of the cursor’s SELECT statement. You can and should also qualify a reference to a
PL/SQL variable with its scope name (procedure name, package name, etc.), especially
within a SQL statement. For more information on this topic, check out
“Scope” on page 58.

470 | Chapter 15: Data Retrieval

Download at WoweBook.Com

Choosing Between Explicit and Implicit Cursors
In years past, it was common for “Oracle gurus” (including yours truly) to solemnly
declare that you should never use implicit cursors for single-row fetches, and then ex-
plain that implicit cursors follow the ISO standard and always perform two fetches,
making them less efficient than explicit cursors (for which you can just fetch a single
time).

The first two editions of this book repeated that “wisdom,” but in the third edition we
broke from tradition (along with many others). The bottom line is that from Oracle8
Database onwards, as a result of very specific optimizations, it is very likely that your
implicit cursor will now run more—not less—efficiently than the equivalent explicit
cursor.

So does that mean that you should now always use implicit cursors, just as previously
you should “always” have used explicit cursors? Not at all. There are still good reasons
to use explicit cursors, including the following:

• In some cases, explicit cursors can still be more efficient. You should test your
critical, often-executed queries in both formats to see which will be better in that
particular situation.

• Explicit cursors offer much tighter programmatic control. If a row is not found, for
example, the database will not raise an exception, instead forcing the execution
block to shut down.

I suggest that the question to answer is not “implicit or explicit?,” but rather, “encap-
sulate or expose?” And the answer is (new wisdom revealed):

You should always encapsulate your single-row query, hiding the query behind a function
interface, and passing back the data through the RETURN clause.

In other words, don’t worry about explicit versus implicit. Instead, worry about how
you can tune and maintain your code if single-row queries are duplicated throughout
your code.

And stop worrying by taking the time to encapsulate them behind functions, preferably
package-based functions. Then you and all other developers on your team can simply
call the function whenever that data is needed. If Oracle ever changes its query behavior,
rendering your previous “best practice” less than best, just change the implementation
of that single function. Everyone’s code will immediately benefit!

Working with Implicit Cursors
PL/SQL declares and manages an implicit cursor every time you execute a SQL DML
statement (INSERT, UPDATE, MERGE, or DELETE) or a SELECT INTO that returns
data from the database directly into a PL/SQL data structure. This kind of cursor is
called implicit because the database implicitly or automatically handles many of the

Working with Implicit Cursors | 471

Download at WoweBook.Com

cursor-related operations for you, such as allocating memory for a cursor, opening the
cursor, fetching, and so on.

The implicit DML statements are covered in Chapter 14, DML and
Transaction Management. This chapter is concerned only with the im-
plicit SQL query.

An implicit cursor is a SELECT statement that has these special characteristics:

• The SELECT statement appears in the executable section of your block; it is not
defined in the declaration section, as explicit cursors are.

• The query contains an INTO clause (or BULK COLLECT INTO for bulk process-
ing). The INTO clause is a part of the PL/SQL (not the SQL) language and is the
mechanism used to transfer data from the database into local PL/SQL data
structures.

• You do not open, fetch, or close the SELECT statement; all of these operations are
done for you.

The general structure of an implicit query is as follows:

SELECT column_list
 [BULK COLLECT] INTO PL/SQL variable list
 ...rest of SELECT statement...

If you use an implicit cursor, the database performs the open, fetches, and close for you
automatically; these actions are outside your programmatic control. You can, however,
obtain information about the most recently executed SQL statement by examining the
values in the implicit SQL cursor attributes, as explained later in this chapter.

In the following sections, the term implicit cursor means a SELECT
INTO statement that retrieves (or attempts to retrieve) a single row of
data. In Chapter 21, I’ll discuss the SELECT BULK COLLECT INTO
variation that allows you to retrieve multiple rows of data with a single
implicit query.

Implicit Cursor Examples
A common use of implicit cursors is to perform a lookup based on a primary key. In
the following example, I look up the title of a book based on its ISBN number:

DECLARE
 l_title books.title%TYPE;
BEGIN
 SELECT title
 INTO l_title
 FROM books
 WHERE isbn = '0-596-00121-5';

472 | Chapter 15: Data Retrieval

Download at WoweBook.Com

Once I have fetched the title into my local variable, l_title, I can manipulate that
information—for example, by changing the variable’s value, displaying the title, or
passing the title on to another PL/SQL program for processing.

Here is an example of an implicit query that retrieves an entire row of information into
a record:

DECLARE
 l_book books%ROWTYPE;
BEGIN
 SELECT *
 INTO l_book
 FROM books
 WHERE isbn = '0-596-00121-5';

You can also retrieve group-level information from a query. The following single-row
query calculates and returns the total salary for a department. Once again, PL/SQL
creates an implicit cursor for this statement:

SELECT SUM (salary)
 INTO department_total
 FROM employees
 WHERE department_id = 10;

Because PL/SQL is so tightly integrated with the Oracle database, you can also easily
retrieve complex datatypes, such as objects and collections, within your implicit cursor.

All of these illustrate the use of implicit queries to retrieve a single row’s worth of
information. If you want to retrieve more than one row, you must use either an explicit
cursor for that query or the BULK COLLECT INTO clause (discussed in Chapter 21)
in your query.

As mentioned earlier, I recommend that you always “hide” single-row
queries like those shown above behind a function interface. This con-
cept was explored in detail in “Choosing Between Explicit and Implicit
Cursors” on page 471.

Error Handling with Implicit Cursors
The implicit cursor version of the SELECT statement is kind of a black box. You pass
the SQL statement to the SQL engine in the database, and it returns a single row of
information. You can’t get inside the separate operations of the cursor, such as the
open, fetch, and close stages. You are also stuck with the fact that the Oracle database
automatically raises exceptions from within the implicit SELECT for two common
outcomes:

• The query does not find any rows matching your criteria. In this case, the database
raises the NO_DATA_FOUND exception.

Working with Implicit Cursors | 473

Download at WoweBook.Com

• The SELECT statement returns more than one row. In this case, the database raises
the TOO_MANY_ROWS exception.

When either of these scenarios occurs (as well as any other exceptions raised when
executing a SQL statement), execution of the current block terminates and control is
passed to the exception section. You have no control over this process flow; you cannot
tell the database that with this implicit cursor you actually expect not to find any rows,
and it is not an error. Instead, whenever you code an implicit cursor (and, therefore,
are expecting to retrieve just one row of data), you should include an exception section
that traps and handles these two exceptions (and perhaps others, depending on your
application logic).

In the following block of code, I query the title of a book based on its ISBN number,
but I also anticipate the possible problems that arise:

DECLARE
 l_isbn books.isbn%TYPE := '0-596-00121-5';
 l_title books.title%TYPE;
BEGIN
 SELECT title
 INTO l_title
 FROM books
 WHERE isbn = l_isbn;
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 DBMS_OUTPUT.PUT_LINE ('Unknown book: ' || l_isbn);
 WHEN TOO_MANY_ROWS
 THEN
 /* This package defined in errpkg.pkg */
 errpkg.record_and_stop ('Data integrity error for: ' || l_isbn);
 RAISE;
END;

One of the problems with using implicit queries is that there is an awesome temptation
to make assumptions about the data being retrieved, such as:

• “There can never possibly be more than one row in the book table for a given ISBN;
we have constraints in place to guarantee that.”

• “There will always be an entry in the book table for Steven and Bill’s Oracle
PL/SQL Programming. I don’t have to worry about NO_DATA_FOUND.”

The consequence of such assumptions is often that we developers neglect to include
exception handlers for our implicit queries.

Now, it may well be true that today, with the current set of data, a query will return
only a single row. If the nature of the data ever changes, however, you may find that
the SELECT statement that formerly identified a single row now returns several. Your
program will raise an exception, the exception will not be properly handled, and this
could cause problems in your code.

474 | Chapter 15: Data Retrieval

Download at WoweBook.Com

You should, as a rule, always include handlers for NO_DATA_FOUND and
TOO_MANY_ROWS whenever you write an implicit query. More generally, you
should include error handlers for any errors that you can reasonably anticipate will
occur in your program. The action you take when an error does arise will vary. Consider
the code that retrieves a book title for an ISBN. In the function below, notice that my
two error handlers act very differently: NO_DATA_FOUND returns a value, while
TOO_MANY_ROWS logs the error and re-raises the exception, causing the function
to actually fail. (See Chapter 6 for more information about the errpkg.pkg package.)

FUNCTION book_title (isbn_in IN books.isbn%TYPE
)
 RETURN books.title%TYPE
IS
 return_value book.title%TYPE;
BEGIN
 SELECT title
 INTO return_value
 FROM books
 WHERE isbn = isbn_in;

 RETURN return_value;
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 RETURN NULL;
 WHEN TOO_MANY_ROWS
 THEN
 errpkg.record_and_stop ('Data integrity error for: '
 || isbn_in);
 RAISE;
END;

Here is the reasoning behind these varied treatments: the point of my function is to
return the name of a book, which can never be NULL. The function can also be used
to validate an ISBN (e.g., “does a book exist for this ISBN?”). For this reason, I really
don’t want my function to raise an exception when no book is found for an ISBN; that
may actually constitute a successful condition, depending on how the function is being
used. The logic may be, “If a book does not exist with this ISBN, then it can be used
for a new book,” which might be coded as:

IF book_title ('0-596-00121-7') IS NULL
THEN ...

In other words, the fact that no book exists for that ISBN is not an error and should
not be treated as one within my general lookup function.

On the other hand, if the query raises the TOO_MANY_ROWS exception, I have a
real problem: there should never be two different books with the same ISBN number.
So in this case, I need to log the error and then stop the application.

Working with Implicit Cursors | 475

Download at WoweBook.Com

Implicit SQL Cursor Attributes
The Oracle database allows you to access information about the most recently executed
implicit cursor by referencing the special implicit cursor attributes shown in Ta-
ble 15-2. The table describes the significance of the values returned by these attributes
for an implicit SQL query (SELECT INTO). Because the cursors are implicit, they have
no name, and therefore, the keyword “SQL” is used to denote the implicit cursor.

Table 15-2. Implicit SQL cursor attributes for queries

Name Description

SQL%FOUND Returns TRUE if one row (or more in the case of BULK COLLECT INTO) was fetched successfully, FALSE
otherwise (in which case the database will also raise the NO_DATA_FOUND exception).

SQL%NOTFOUND Returns TRUE if a row was not fetched successfully (in which case the database will also raise the
NO_DATA_FOUND exception), FALSE otherwise.

SQL%ROWCOUNT Returns the number of rows fetched from the specified cursor thus far. For a SELECT INTO, this will be 1 if
a row was found and 0 if the database raises the NO_DATA_FOUND exception.

SQL%ISOPEN Always returns FALSE for implicit cursors because the database opens and closes implicit cursors
automatically.

All the implicit cursor attributes return NULL if no implicit cursors have yet been exe-
cuted in the session. Otherwise, the values of the attributes always refer to the most
recently executed SQL statement, regardless of the block or program from which the
SQL statement was executed. For more information about this behavior, see “Cursor
Attributes for DML Operations” on page 444. You can also run the query_implicit_at-
tributes.sql script on the book’s web site to test out these values yourself.

Let’s make sure you understand the implications of this last point. Consider the fol-
lowing two programs:

PROCEDURE remove_from_circulation
 (isbn_in in books.isbn%TYPE)
IS
BEGIN
 DELETE FROM book WHERE isbn = isbn_in;
END;

PROCEDURE show_book_count
IS
 l_count INTEGER;
BEGIN
 SELECT COUNT (*)
 INTO l_count
 FROM books;

 -- No such book!
 remove_from_circulation ('0-000-00000-0');

476 | Chapter 15: Data Retrieval

Download at WoweBook.Com

 DBMS_OUTPUT.put_line (SQL%ROWCOUNT);
END;

No matter how many rows of data are in the book table, I will always see “0” displayed
in the output window. Because I call remove_from_circulation after my SELECT INTO
statement, the SQL%ROWCOUNT reflects the outcome of my silly, impossible
DELETE statement, and not the query.

If you want to make certain that you are checking the values for the right SQL statement,
you should save attribute values to local variables immediately after execution of the
SQL statement. I demonstrate this technique in the following example:

PROCEDURE show_book_count
IS
 l_count INTEGER;
 l_numfound PLS_INTEGER;
BEGIN
 SELECT COUNT (*)
 INTO l_count
 FROM books;

 -- Take snapshot of attribute value:
 l_numfound := SQL%ROWCOUNT;

 -- No such book!
 remove_from_circulation ('0-000-00000-0');

 -- Now I can go back to the previous attribute value.
 DBMS_OUTPUT.put_line (l_numfound);
END;

Working with Explicit Cursors
An explicit cursor is a SELECT statement that is explicitly defined in the declaration
section of your code and, in the process, assigned a name. There is no such thing as an
explicit cursor for INSERT, UPDATE, MERGE, and DELETE statements.

With explicit cursors, you have complete control over the different PL/SQL steps in-
volved in retrieving information from the database. You decide when to OPEN the
cursor, when to FETCH records from the cursor (and therefore from the table or tables
in the SELECT statement of the cursor), how many records to fetch, and when to
CLOSE the cursor. Information about the current state of your cursor is available
through examination of cursor attributes. This granularity of control makes the explicit
cursor an invaluable tool for your development effort.

Let’s look at an example. The following function determines (and returns) the level of
jealousy I should feel for my friends, based on their location.

 1 FUNCTION jealousy_level (
 2 NAME_IN IN friends.NAME%TYPE) RETURN NUMBER
 3 AS
 4 CURSOR jealousy_cur

Working with Explicit Cursors | 477

Download at WoweBook.Com

 5 IS
 6 SELECT location FROM friends
 7 WHERE NAME = UPPER (NAME_IN);
 8
 9 jealousy_rec jealousy_cur%ROWTYPE;
10 retval NUMBER;
11 BEGIN
12 OPEN jealousy_cur;
13
14 FETCH jealousy_cur INTO jealousy_rec;
15
16 IF jealousy_cur%FOUND
17 THEN
18 IF jealousy_rec.location = 'PUERTO RICO'
19 THEN retval := 10;
20 ELSIF jealousy_rec.location = 'CHICAGO'
21 THEN retval := 1;
22 END IF;
23 END IF;
24
25 CLOSE jealousy_cur;
26
27 RETURN retval;
28 EXCEPTION
29 WHEN OTHERS THEN
30 IF jealousy_cur%ISOPEN THEN
31 CLOSE jealousy_cur;
32 END IF;
33 END;

This PL/SQL block performs the following cursor actions:

Line(s) Action

4–7 Declare the cursor

9 Declare a record based on that cursor

12 Open the cursor

14 Fetch a single row from the cursor

16 Check a cursor attribute to determine if a row was found

18–22 Examine the contents of the fetched row to calculate my level of jealousy

25 Close the cursor

28–32 Precautionary code to make sure that I clean up after myself in case something unexpected happens

The next few sections examine each step in detail. In these sections, the word “cursor”
refers to an explicit cursor unless otherwise noted.

478 | Chapter 15: Data Retrieval

Download at WoweBook.Com

Declaring Explicit Cursors
To use an explicit cursor, you must first declare it in the declaration section of your
PL/SQL block or in a package, as shown here:

CURSOR cursor_name [([parameter [, parameter ...])]
 [RETURN return_specification]
 IS SELECT_statement
 [FOR UPDATE [OF [column_list]];

where cursor_name is the name of the cursor, return_specification is an optional
RETURN clause for the cursor, and SELECT_statement is any valid SQL SELECT
statement. You can also pass arguments into a cursor through the optional parameter
list described in “Cursor Parameters” on page 489. Finally, you can specify a list of
columns that you intend to update after a SELECT...FOR UPDATE statement (also
discussed later). Once you have declared a cursor, you can OPEN it and FETCH from
it.

Here are some examples of explicit cursor declarations:

A cursor without parameters
The result set of this cursor contains all the company IDs in the table:

CURSOR company_cur IS
 SELECT company_id FROM company;

A cursor with parameters
The result set of this cursor is the name of the company that matches the company
ID passed to the cursor via the parameter:

CURSOR name_cur (company_id_in IN NUMBER)
IS
 SELECT name FROM company
 WHERE company_id = company_id_in;

A cursor with a RETURN clause
The result set of this cursor is all columns (in the same structure as the underlying
table) from all employee records in department 10:

CURSOR emp_cur RETURN employees%ROWTYPE
IS
 SELECT * FROM employees
 WHERE department_id = 10;

Naming your cursor

The name of an explicit cursor can be up to 30 characters in length and follows the
rules for any other identifier in PL/SQL. A cursor name is not a PL/SQL variable. In-
stead, it is an undeclared identifier used to point to or refer to the query. You cannot
assign values to a cursor, nor can you use it in an expression. You can only reference
that explicit cursor by name within OPEN, FETCH, and CLOSE statements, and use
it to qualify the reference to a cursor attribute.

Working with Explicit Cursors | 479

Download at WoweBook.Com

Declaring cursors in packages

You can declare explicit cursors in any declaration section of a PL/SQL block. This
means that you can declare such cursors within packages and at the package level, as
well as within a subprogram in the package. I’ll explore packages in general in Chap-
ter 18. You may want to look ahead at that chapter to acquaint yourself with the basics
of packages before plunging into the topic of declaring cursors in packages.

Here are two examples:

PACKAGE book_info
IS
 CURSOR titles_cur
 IS
 SELECT title
 FROM books;

 CURSOR books_cur (title_filter_in IN books.title%TYPE)
 RETURN books%ROWTYPE
 IS
 SELECT *
 FROM books
 WHERE title LIKE title_filter_in;
END;

The first cursor, titles_cur, returns just the titles of books. The second cursor,
books_cur, returns a record for each row in the book table whose title passes the filter
provided as a parameter (such as “All books that contain ‘PL/SQL’”). Notice that the
second cursor also utilizes the RETURN clause of a cursor, in essence declaring publicly
the structure of the data that each FETCH against that cursor will return.

The RETURN clause of a cursor may be made up of any of the following datatype
structures:

• A record defined from a database table, using the %ROWTYPE attribute

• A record defined from another, previously defined cursor, also using the %ROW-
TYPE attribute

• A record defined from a programmer-defined record

The number of expressions in the cursor’s select list must match the number of columns
in the record identified by table_name%ROWTYPE, cursor%ROWTYPE, or
record_type. The datatypes of the elements must also be compatible. For example, if
the second element in the select list is type NUMBER, then the second column in the
RETURN record cannot be type VARCHAR2 or BOOLEAN.

Before exploring the RETURN clause and its advantages, let’s first address a different
question: why should you bother putting cursors into packages? Why not simply de-
clare your explicit cursors wherever you need them directly in the declaration sections
of particular procedures, functions, or anonymous blocks?

480 | Chapter 15: Data Retrieval

Download at WoweBook.Com

The answer is simple and persuasive. By defining cursors in packages, you can more
easily reuse those queries and avoid writing the same logical retrieval statement over
and over again throughout your application. By implementing that query in just one
place and referencing it in many locations, you make it easier to enhance and maintain
that query. You will also realize some performance gains by minimizing the number of
times your queries will need to be parsed.

You should also consider creating a function that returns a cursor variable, based on a
REF CURSOR. The calling program can then fetch rows through the cursor variable.
See “Cursor Variables and REF CURSORs” on page 496 for more information.

If you declare cursors in packages for reuse, you need to be aware of one
important factor. Data structures, including cursors, that are declared
at the “package level” (not inside any particular function or procedure)
maintain their values or persist for your entire session. This means that
a packaged cursor will stay open until you explicitly close it or until your
session ends. Cursors declared in local blocks of code close automati-
cally when that block terminates execution.

Now let’s explore this RETURN clause and why you might want to take advantage of
it. One of the interesting variations on a cursor declaration within a package involves
the ability to separate the cursor’s header from its body. The header of a cursor, much
like the header of a function, is just that information a developer needs in order to write
code to work with the cursor: the cursor’s name, any parameters, and the type of data
being returned. The body of a cursor is its SELECT statement.

Here is a rewrite of the books_cur in the book_info package that illustrates this
technique:

PACKAGE book_info
IS
 CURSOR books_cur (title_filter_in IN books.title%TYPE)
 RETURN books%ROWTYPE;
END;

PACKAGE BODY book_info
IS
 CURSOR books_cur (title_filter_in IN books.title%TYPE)
 RETURN books%ROWTYPE
 IS
 SELECT *
 FROM books
 WHERE title LIKE title_filter_in;
END;

Notice that everything up to but not including the IS keyword is the specification, while
everything following the IS keyword is the body.

Working with Explicit Cursors | 481

Download at WoweBook.Com

There are two reasons that you might want to divide your cursor as shown above:

Hide information
Packaged cursors are essentially black boxes. This is advantageous to developers
because they never have to code or even see the SELECT statement. They only need
to know what records the cursor returns, in what order it returns them, and which
columns are in the column list. They simply use it as another predefined element
in their application.

Minimize recompilation
If I hide the query definition inside the package body, I can make changes to the
SELECT statement without making any changes to the cursor header in the pack-
age specification. This allows me to enhance, fix, and recompile my code without
recompiling my specification, which means that all the programs dependent on
that package will not be marked invalid and will not need to be recompiled.

Opening Explicit Cursors
The first step in using a cursor is to define it in the declaration section. The next step
is to open that cursor. The syntax for the OPEN statement is simplicity itself:

OPEN cursor_name [(argument [, argument ...])];

where cursor_name is the name of the cursor you declared, and the arguments are the
values to be passed if the cursor was declared with a parameter list.

Oracle also offers the OPEN cursor FOR syntax, which is utilized in
both cursor variables (see “Cursor Variables”) and native dynamic SQL
(see Chapter 16).

When you open a cursor, PL/SQL executes the query for that cursor. It also identifies
the active set of data—that is, the rows from all involved tables that meet the criteria
in the WHERE clause and join conditions. The OPEN does not actually retrieve any of
these rows; that action is performed by the FETCH statement.

Regardless of when you perform the first fetch, however, the read consistency model
in the Oracle database guarantees that all fetches will reflect the data as it existed when
the cursor was opened. In other words, from the moment you open your cursor until
the moment that cursor is closed, all data fetched through the cursor will ignore any
inserts, updates, and deletes performed by any active sessions after the cursor was
opened.

Furthermore, if the SELECT statement in your cursor uses a FOR UPDATE clause, all
the rows identified by the query are locked when the cursor is opened. (This feature is
covered in the later section, “SELECT...FOR UPDATE.”)

482 | Chapter 15: Data Retrieval

Download at WoweBook.Com

If you try to open a cursor that is already open, you will get the following error:

ORA-06511: PL/SQL: cursor already open

You can be sure of a cursor’s status by checking the %ISOPEN cursor attribute before
you try to open the cursor:

IF NOT company_cur%ISOPEN
THEN
 OPEN company_cur;
END IF;

The later section, “Explicit Cursor Attributes” on page 487, explains the different
cursor attributes and how to best use them in your programs.

If you are using a cursor FOR loop, you do not need to open (or fetch
from or close) the cursor explicitly. Instead, the PL/SQL engine does
that for you.

Fetching from Explicit Cursors
A SELECT statement establishes a virtual table; its return set is a series of rows deter-
mined by the WHERE clause (or lack thereof), with columns determined by the column
list of the SELECT. So a cursor represents that virtual table within your PL/SQL pro-
gram. In almost every situation, the point of declaring and opening a cursor is to return,
or fetch, the rows of data from the cursor and then manipulate the information re-
trieved. PL/SQL provides a FETCH statement for this action.

The general syntax for a FETCH is:

FETCH cursor_name INTO record_or_variable_list;

where cursor_name is the name of the cursor from which the record is fetched, and
record_or_variable_list is the PL/SQL data structure(s) into which the next row of the
active set of records is copied. You can fetch into a record structure (declared with the
%ROWTYPE attribute or TYPE declaration statement), or you can fetch into a list of
one or more variables (PL/SQL variables or application-specific bind variables such as
Oracle Forms items).

Examples of explicit cursors

The following examples illustrate the variety of possible fetches:

• Fetch into a PL/SQL record:

DECLARE
 CURSOR company_cur is SELECT ...;
 company_rec company_cur%ROWTYPE;
BEGIN
 OPEN company_cur;
 FETCH company_cur INTO company_rec;

Working with Explicit Cursors | 483

Download at WoweBook.Com

• Fetch into a variable:

FETCH new_balance_cur INTO new_balance_dollars;

• Fetch into a collection row, a variable, and an Oracle Forms bind variable:

FETCH emp_name_cur INTO emp_name (1), hiredate, :dept.min_salary;

You should always fetch into a record that was defined with %ROW-
TYPE against the cursor; avoid fetching into lists of variables. Fetching
into a record usually means that you write less code and have more
flexibility to change the select list without having to change the FETCH
statement.

Fetching past the last row

Once you open an explicit cursor, you can FETCH from it until there are no more
records left in the active set. Oddly enough, though, you can also continue to FETCH
past the last record.

In this case, PL/SQL will not raise any exceptions. It just won’t actually be doing any-
thing. Because there is nothing left to fetch, it will not alter the values of the variables
in the INTO list of the FETCH. More specifically, the FETCH operation will not set
those values to NULL.

You should therefore never test the values of INTO variables to determine if the FETCH
against the cursor succeeded. Instead, you should check the value of the %FOUND or
%NOTFOUND attributes, as explained in the upcoming section, “Explicit Cursor At-
tributes” on page 487.

Column Aliases in Explicit Cursors
The SELECT statement of the cursor includes the list of columns that are returned by
that cursor. As with any SELECT statement, this column list may contain either actual
column names or column expressions, which are also referred to as calculated or virtual
columns.

A column alias is an alternative name you provide to a column or column expression
in a query. You may have used column aliases in SQL*Plus to improve the readability
of ad hoc report output. In that situation, such aliases are completely optional. In an
explicit cursor, on the other hand, column aliases are required for calculated columns
when:

• You FETCH into a record declared with a %ROWTYPE declaration against that
cursor, and

• You want to reference the calculated column in your program.

484 | Chapter 15: Data Retrieval

Download at WoweBook.Com

Consider the following query. For all companies with sales activity during 2001, the
SELECT statement retrieves the company name and the total amount invoiced to that
company (assume that the default date format mask for this instance is DD-MON-
YYYY):

SELECT company_name, SUM (inv_amt)
 FROM company c, invoice i
 WHERE c.company_id = i.company_id
 AND i.invoice_date BETWEEN '01-JAN-2001' AND '31-DEC-2001';

The output is:

 COMPANY_NAME SUM (INV_AMT)
--------------- -------------
ACME TURBO INC. 1000
WASHINGTON HAIR CO. 25.20

SUM (INV_AMT) does not make a particularly attractive column header for a report,
but it works well enough for a quick dip into the data as an ad hoc query. Let’s now
use this same query in an explicit cursor and add a column alias:

DECLARE
 CURSOR comp_cur IS
 SELECT c.name, SUM (inv_amt) total_sales
 FROM company C, invoice I
 WHERE C.company_id = I.company_id
 AND I.invoice_date BETWEEN '01-JAN-2001' AND '31-DEC-2001';
 comp_rec comp_cur%ROWTYPE;
BEGIN
 OPEN comp_cur;
 FETCH comp_cur INTO comp_rec;
 ...
END;

Without the alias, I have no way of referencing the column within the comp_rec record
structure. With the alias in place, I can get at that information just as I would any other
column or expression in the query:

IF comp_rec.total_sales > 5000
THEN
 DBMS_OUTPUT.PUT_LINE
 (' You have exceeded your credit limit of $5000 by ' ||
 TO_CHAR (comp_rec.total_sales - 5000, '$9999'));
END IF;

If you fetch a row into a record declared with %ROWTYPE, the only way to access the
column or column expression value is by the column name; after all, the record obtains
its structure from the cursor itself.

Closing Explicit Cursors
Early on I was taught to clean up after myself, and I tend to be a bit obsessive (albeit
selectively) about this later in life. Cleaning up after oneself is an important rule to

Working with Explicit Cursors | 485

Download at WoweBook.Com

follow in programming and can be crucial when it comes to cursor management. So be
sure to close a cursor when you are done with it!

Here is the syntax for a CLOSE cursor statement:

CLOSE cursor_name;

where cursor_name is the name of the cursor you are closing.

Here are some special considerations regarding the closing of explicit cursors:

• If you declare and open a cursor in a program, be sure to close it when you are
done. Otherwise, you may have just allowed a memory leak to creep into your
code—and that’s not good! Strictly speaking, a cursor (like any other data struc-
ture) should be automatically closed and destroyed when it goes out of scope. In
fact, in many cases PL/SQL does check for and implicitly close any open cursors
at the end of a procedure call, function call, or anonymous block. However, the
overhead involved in doing that is significant, so for the sake of efficiency there are
cases where PL/SQL does not immediately check for and close cursors opened in
a PL/SQL block. In addition, REF CURSORs are, by design, never closed implicitly.
The one thing you can count on is that whenever the outermost PL/SQL block ends
and control is returned to SQL or some other calling program, PL/SQL will at that
point implicitly close any cursors (but not REF CURSORs) left open by that block
or nested blocks.

Oracle Technology Network offers a detailed analysis of how and
when PL/SQL closes cursors in an article titled “Cursor reuse in
PL/SQL static SQL.” Nested anonymous blocks provide an exam-
ple of one case in which PL/SQL does not implicitly close cursors.
For an interesting discussion of this issue see Jonathan Gennick’s
article, “Does PL/SQL Implicitly Close Cursors?” at http://gennick
.com/open_cursors.html.

• If you declare a cursor in a package at the package level and then open it in a
particular block or program, that cursor will stay open until you explicitly close it
or until your session closes. Therefore, it is extremely important that you include
a CLOSE statement for any packaged cursors as soon as you are done with them
(and in the exception section as well), as in the following:

BEGIN
 OPEN my_package.my_cursor;

 ... Do stuff with the cursor

 CLOSE my_package.my_cursor;
EXCEPTION
 WHEN OTHERS
 THEN
 IF mypackage.my_cursor%ISOPEN THEN
 CLOSE my_package.my_cursor;

486 | Chapter 15: Data Retrieval

Download at WoweBook.Com

http://gennick.com/open_cursors.html
http://gennick.com/open_cursors.html

 END IF;
END;

• You can close a cursor only if it is currently open. Otherwise, the database will
raise an INVALID_CURSOR exception. You can check a cursor’s status with the
%ISOPEN cursor attribute before you try to close the cursor:

IF company_cur%ISOPEN
THEN
 CLOSE company_cur;
END IF;

Attempts to close a cursor that is already closed (or was never opened) will result in an
ORA-1001: Invalid cursor.

• If you leave too many cursors open, you may exceed the value set by the database
initialization parameter, OPEN_CURSORS (the value is on a per-session basis). If
this happens, you will encounter the dreaded error message ORA-01000: maximum
open cursors exceeded.

If you get this message, check your usage of package-based cursors to make sure
they are closed when no longer needed.

Explicit Cursor Attributes
Oracle offers four attributes (%FOUND, %NOTFOUND, %ISOPEN,
%ROWCOUNTM) that allow you to retrieve information about the state of your cur-
sor. Reference these attributes using this syntax:

cursor%attribute

where cursor is the name of the cursor you have declared.

Table 15-3 describes the significance of the values returned by these attributes for ex-
plicit cursors.

Table 15-3. Values returned by cursor attributes

Name Description

cursor%FOUND Returns TRUE if a record was fetched successfully

cursor%NOTFOUND Returns TRUE if a record was not fetched successfully

cursor%ROWCOUNT Returns the number of records fetched from the specified cursor at that point in time

cursor%ISOPEN Returns TRUE if the specified cursor is open

Table 15-4 shows you the attribute values you can expect to see both before and after
the specified cursor operations.

Working with Explicit Cursors | 487

Download at WoweBook.Com

Table 15-4. Cursor attribute values

Operation %FOUND %NOTFOUND %ISOPEN %ROWCOUNT

Before OPEN ORA-01001 raised ORA-01001 raised FALSE ORA-01001 raised

After OPEN NULL NULL TRUE 0

Before first FETCH NULL NULL TRUE 0

After first FETCH TRUE FALSE TRUE 1

Before subsequent FETCH(es) TRUE FALSE TRUE 1

After subsequent FETCH(es) TRUE FALSE TRUE Data-dependent

Before last FETCH TRUE FALSE TRUE Data-dependent

After last FETCH FALSE TRUE TRUE Data-dependent

Before CLOSE FALSE TRUE TRUE Data-dependent

After CLOSE Exception Exception FALSE Exception

Here are some things to keep in mind as you work with cursor attributes for explicit
cursors:

• If you try to use %FOUND, %NOTFOUND, or %ROWCOUNT before the cursor
is opened or after it is closed,the database will raise an INVALID_CURSOR error
(ORA-01001).

• If the result set is empty after the very first FETCH, then attributes will return values
as follows: %FOUND = FALSE, %NOTFOUND = TRUE, and
%ROWCOUNT = 0.

• If you are using BULK COLLECT, %ROWCOUNT will return the number of rows
fetched into the associated collections. For more details, see Chapter 21.

The following code showcases many of these attributes:

PACKAGE bookinfo_pkg
IS
 CURSOR bard_cur
 IS SELECT title, date_published
 FROM books
 WHERE UPPER(author) LIKE 'SHAKESPEARE%';
END bookinfo_pkg;

DECLARE
 bard_rec bookinfo_pkg.bard_cur%ROWTYPE;
BEGIN
 /* Check to see if the cursor is already opened.
 This may be the case as it is a packaged cursor.
 If so, first close it and then re-open it to
 ensure a "fresh" result set.
 */
 IF bookinfo_pkg.bard_cur%ISOPEN
 THEN
 CLOSE bookinfo_pkg.bard_cur;

488 | Chapter 15: Data Retrieval

Download at WoweBook.Com

 END IF;

 OPEN bookinfo_pkg.bard_cur;

 -- Fetch each row, but stop when I've displayed the
 -- first five works by Shakespeare or when I have
 -- run out of rows.
 LOOP
 FETCH bookinfo_pkg.bard_cur INTO bard_rec;
 EXIT WHEN bookinfo_pkg.bard_cur%NOTFOUND
 OR bookinfo_pkg.bard_cur%ROWCOUNT > 5;
 DBMS_OUTPUT.put_line (
 bookinfo_pkg.bard_cur%ROWCOUNT
 || ') '
 || bard_rec.title
 || ', published in '
 || TO_CHAR (bard_rec.date_published, 'YYYY')
);
 END LOOP;

 CLOSE bookinfo_pkg.bard_cur;
END;

Cursor Parameters
In this book you’ve already seen examples of the use of parameters with procedures
and functions. Parameters provide a way to pass information into and out of a module.
Used properly, parameters improve the usefulness and flexibility of modules.

PL/SQL allows you to pass parameters into cursors. The same rationale for using pa-
rameters in modules applies to parameters for cursors:

Makes the cursor more reusable
Instead of hardcoding a value into the WHERE clause of a query to select particular
information, you can use a parameter and then pass different values to the WHERE
clause each time a cursor is opened.

Avoids scoping problems
When you pass parameters instead of hardcoding values, the result set for that
cursor is not tied to a specific variable in a program or block. If your program has
nested blocks, you can define the cursor at a higher-level (enclosing) block and use
it in any of the subblocks with variables defined in those local blocks.

You can specify as many cursor parameters as you need. When you OPEN the cursor,
you need to include an argument in the parameter list for each parameter, except for
trailing parameters that have default values.

When should you parameterize your cursor? I apply the same rule of thumb to cursors
as to procedures and functions; if I am going to use the cursor in more than one place
with different values for the same WHERE clause, I should create a parameter for the
cursor.

Working with Explicit Cursors | 489

Download at WoweBook.Com

Let’s take a look at the difference between parameterized and unparameterized cursors.
First, here is a cursor without any parameters:

CURSOR joke_cur IS
 SELECT name, category, last_used_date
 FROM jokes;

The result set of this cursor is all the rows in the joke table. If I just wanted to retrieve
all jokes in the HUSBAND category, I would need to add a WHERE clause:

CURSOR joke_cur IS
 SELECT name, category, last_used_date
 FROM jokes
 WHERE category = 'HUSBAND';

I didn’t use a cursor parameter to accomplish this task, nor did I need to. The joke_cur
cursor now retrieves only those jokes about husbands. That’s all well and good, but
what if I also wanted to see light-bulb jokes and then chicken-and-egg jokes and finally,
as my 10-year-old niece would certainly demand, all my knock-knock jokes?

Generalizing cursors with parameters

I really don’t want to write a separate cursor for each category—that is definitely not
a data-driven approach to programming. Instead, I would much rather be able to
change the joke cursor so that it can accept different categories and return the appro-
priate rows. The best (though not the only) way to do this is with a cursor parameter:

PROCEDURE explain_joke (main_category_in IN joke_category.category_id%TYPE)
IS
 /*
 || Cursor with parameter list consisting of a single
 || string parameter.
 */
 CURSOR joke_cur (category_in IN VARCHAR2)
 IS
 SELECT name, category, last_used_date
 FROM joke
 WHERE category = UPPER (category_in);

 joke_rec joke_cur%ROWTYPE;

BEGIN
 /* Now when I open the cursor, I also pass the argument */
 OPEN joke_cur (main_category_in);
 FETCH joke_cur INTO joke_rec;

I added a parameter list after the cursor name and before the IS keyword. I took out
the hardcoded “HUSBAND” and replaced it with “UPPER (category_in)” so that I
could enter “HUSBAND”, “husband”, or “HuSbAnD” and the cursor would still work.
Now when I open the cursor, I specify the value I want to pass as the category by
including that value (which can be a literal, a constant, or an expression) inside paren-
theses. At the moment the cursor is opened, the SELECT statement is parsed and bound

490 | Chapter 15: Data Retrieval

Download at WoweBook.Com

using the specified value for category_in. The result set is identified, and the cursor is
ready for fetching.

Opening cursors with parameters

I can OPEN that same cursor with any category I like. Now I don’t have to write a
separate cursor to accommodate this requirement:

OPEN joke_cur (jokes_pkg.category);
OPEN joke_cur ('husband');
OPEN joke_cur ('politician');
OPEN joke_cur (jokes_pkg.relation || '-IN-LAW');

The most common place to use a parameter in a cursor is in the WHERE clause, but
you can make reference to it anywhere in the SELECT statement, as shown here:

DECLARE
 CURSOR joke_cur (category_in IN ARCHAR2)
 IS
 SELECT name, category_in, last_used_date
 FROM joke
 WHERE category = UPPER (category_in);

Instead of returning the category from the table, I simply pass back the category_in
parameter in the select list. The result will be the same either way because my WHERE
clause restricts categories to the parameter value.

Scope of cursor parameters

The scope of the cursor parameter is confined to that cursor. You cannot refer to the
cursor parameter outside of the SELECT statement associated with the cursor. The
following PL/SQL fragment will not compile because the program_name identifier is
not a local variable in the block. Instead, it is a formal parameter for the cursor and is
defined only inside the cursor:

DECLARE
 CURSOR scariness_cur (program_name VARCHAR2)
 IS
 SELECT SUM (scary_level) total_scary_level
 FROM tales_from_the_crypt
 WHERE prog_name = program_name;
BEGIN
 program_name := 'THE BREATHING MUMMY'; /* Illegal reference */
 OPEN scariness_cur (program_name);
 ...
 CLOSE scariness_cur;
END;

Cursor parameter modes

The syntax for cursor parameters is very similar to that of procedures and functions,
with the restriction that a cursor parameter can be an IN parameter only. You cannot

Working with Explicit Cursors | 491

Download at WoweBook.Com

specify OUT or IN OUT modes for cursor parameters. The OUT and IN OUT modes
are used to pass values out of a procedure through that parameter. This doesn’t make
sense for a cursor. Values cannot be passed back out of a cursor through the parameter
list. Information is retrieved from a cursor only by fetching a record and copying values
from the column list with an INTO clause. (See Chapter 17 for more information on
the parameter mode.)

Default values for parameters

Cursor parameters can be assigned default values. Here is an example of a parameter-
ized cursor with a default value:

CURSOR emp_cur (emp_id_in NUMBER := 0)
IS
 SELECT employee_id, emp_name
 FROM employee
 WHERE employee_id = emp_id_in;

So if Joe Smith’s employee ID is 1001, the following statements would set my_emp_id
to 1001 and my_emp_name to JOE SMITH:

OPEN emp_cur (1001);
FETCH emp_cur INTO my_emp_id, my_emp_name;

Because the emp_id_in parameter has a default value, I can also open and fetch from
the cursor without specifying a value for the parameter. If I do not specify a value for
the parameter, the cursor uses the default value.

SELECT...FOR UPDATE
When you issue a SELECT statement against the database to query some records, no
locks are placed on the selected rows. In general, this is a wonderful feature because
the number of records locked at any given time is kept to the absolute minimum: only
those records that have been changed but not yet committed are locked. Even then,
others are able to read those records as they appeared before the change (the “before
image” of the data).

There are times, however, when you will want to lock a set of records even before you
change them in your program. Oracle offers the FOR UPDATE clause of the SELECT
statement to perform this locking.

When you issue a SELECT...FOR UPDATE statement, the database automatically ob-
tains row-level locks on all the rows identified by the SELECT statement, holding the
records “for your changes only” as you move through the rows retrieved by the cursor.
It’s as if you’ve issued an UPDATE statement against the rows, but you haven’t—you’ve
merely SELECTed them. No one else will be able to change any of these records until
you perform a ROLLBACK or a COMMIT—but other sessions can still read the data.

Here are two examples of the FOR UPDATE clause used in a cursor:

492 | Chapter 15: Data Retrieval

Download at WoweBook.Com

CURSOR toys_cur IS
 SELECT name, manufacturer, preference_level, sell_at_yardsale_flag
 FROM my_sons_collection
 WHERE hours_used = 0
 FOR UPDATE;

CURSOR fall_jobs_cur IS
 SELECT task, expected_hours, tools_required, do_it_yourself_flag
 FROM winterize
 WHERE year_of_task = TO_CHAR (SYSDATE, 'YYYY')
 FOR UPDATE OF task;

The first cursor uses the unqualified FOR UPDATE clause, while the second cursor
qualifies the FOR UPDATE with a column name from the query.

You can use the FOR UPDATE clause in a SELECT against multiple tables. In this case,
rows in a table are locked only if the FOR UPDATE clause references a column in that
table. In the following example, the FOR UPDATE clause does not result in any locked
rows in the winterize table:

CURSOR fall_jobs_cur
IS
 SELECT w.task, w.expected_hours,
 w.tools_required,
 w.do_it_yourself_flag
 FROM winterize w, husband_config hc
 WHERE w.year_of_task = TO_CHAR (SYSDATE, 'YYYY')
 AND w.task_id = hc.task_id
 FOR UPDATE OF hc.max_procrastination_allowed;

The FOR UPDATE OF clause mentions only the max_procrastination_allowed col-
umn; no columns in the winterize table are listed. As a result, no rows in the winterize
table will be locked. It is important to minimize the amount of data you lock, so that
you decrease the impact you have on other sessions. Other sessions may be blocked by
your locks, waiting for you to complete your transaction so they can proceed with their
own DML statements.

If you simply state FOR UPDATE in the query and do not include one or more columns
after the OF keyword, the database will then lock all identified rows across all tables
listed in the FROM clause.

Furthermore, you do not have to actually UPDATE or DELETE any records just be-
cause you issue a SELECT...FOR UPDATE statement—that act simply states your
intention to be able to do so (and prevents others from doing the same).

Finally, you can append the optional keyword NOWAIT to the FOR UPDATE clause
to tell the database not to wait if the table has been locked by another user. In this case,
control will be returned immediately to your program so that you can perform other
work or simply wait for a period of time before trying again. You can also append WAIT
to specify the maximum number of seconds the database should wait to obtain the
lock. If no wait behavior is specified, then your session will be blocked until the

SELECT...FOR UPDATE | 493

Download at WoweBook.Com

table is available. For remote objects, the database initialization parameter,
DISTRIBUTED_LOCK_TIMEOUT, is used to set the limit.

Releasing Locks with COMMIT
As soon as a cursor with a FOR UPDATE clause is OPENed, all rows identified in the
result set of the cursor are locked and remain locked until your session or your code
explicitly issues either a COMMIT or a ROLLBACK. When either of these actions
occurs, the locks on the rows are released. As a result, you cannot execute another
FETCH against a FOR UPDATE cursor after you COMMIT or ROLLBACK. You will
have lost your position in the cursor.

Consider the following program, which assigns winterization chores:*

DECLARE
 /* All the jobs in the Fall to prepare for the Winter */
 CURSOR fall_jobs_cur
 IS
 SELECT task, expected_hours, tools_required, do_it_yourself_flag
 FROM winterize
 WHERE year = TO_NUMBER (TO_CHAR (SYSDATE, 'YYYY'))
 AND completed_flag = 'NOTYET';
BEGIN
 /* For each job fetched by the cursor... */
 FOR job_rec IN fall_jobs_cur
 LOOP
 IF job_rec.do_it_yourself_flag = 'YOUCANDOIT'
 THEN
 /*
 || I have found my next job. Assign it to myself (like someone
 || else is going to do it!) and then commit the changes.
 */
 UPDATE winterize SET responsible = 'STEVEN'
 WHERE task = job_rec.task
 AND year = TO_NUMBER (TO_CHAR (SYSDATE, 'YYYY'));
 COMMIT;
 END IF;
 END LOOP;
END;

Suppose this loop finds its first YOUCANDOIT job. It then commits an assignment of
a job to STEVEN. When it tries to FETCH the next record, the program raises the
following exception:

ORA-01002: fetch out of sequence

* Caveat: I don’t want to set false expectations, especially with my wife. The code in this block is purely an
example. In reality, I set the max_procrastination_allowed to five years and let my house decay until I can
afford to pay someone else to do something, or my wife does it, or she gives me an ultimatum. Now you
know why I decided to write books and write software, rather than do things in the “real world.”

494 | Chapter 15: Data Retrieval

Download at WoweBook.Com

If you ever need to execute a COMMIT or ROLLBACK as you FETCH records from a
SELECT FOR UPDATE cursor, you should include code (such as a loop EXIT or other
conditional logic) to halt any further fetches from the cursor.

The WHERE CURRENT OF Clause
PL/SQL provides the WHERE CURRENT OF clause for both UPDATE and DELETE
statements inside a cursor. This clause allows you to easily make changes to the most
recently fetched row of data.

To update columns in the most recently fetched row, specify:

UPDATE table_name
 SET set_clause
 WHERE CURRENT OF cursor_name;

To delete the row from the database for the most recently fetched record, specify:

DELETE
 FROM table_name
 WHERE CURRENT OF cursor_name;

Notice that the WHERE CURRENT OF clause references the cursor, not the record
into which the next fetched row is deposited.

The most important advantage to using WHERE CURRENT OF to change the last row
fetched is that you do not have to code in two (or more) places the criteria used to
uniquely identify a row in a table. Without WHERE CURRENT OF, you would need
to repeat the WHERE clause of your cursor in the WHERE clause of the associated
UPDATEs and DELETEs. As a result, if the table structure changed in a way that af-
fected the construction of the primary key, you would have to update each SQL state-
ment to support this change. If you use WHERE CURRENT OF, on the other hand,
you modify only the WHERE clause of the SELECT statement.

This might seem like a relatively minor issue, but it is one of many areas in your code
where you can leverage subtle features in PL/SQL to minimize code redundancies.
Utilization of WHERE CURRENT OF, %TYPE and %ROWTYPE declaration
attributes, cursor FOR loops, local modularization, and other PL/SQL language con-
structs can significantly reduce the pain of maintaining your Oracle-based applications.

Let’s see how this clause would improve the example in the previous section. In the
jobs cursor FOR loop, I want to UPDATE the record that was currently FETCHed by
the cursor. I do this in the UPDATE statement by repeating the same WHERE used in
the cursor because “(task, year)” makes up the primary key of this table:

WHERE task = job_rec.task
 AND year = TO_CHAR (SYSDATE, 'YYYY');

This is a less than ideal situation, as explained above: I have coded the same logic in
two places, and this code must be kept synchronized. It would be so much more con-
venient and natural to be able to code the equivalent of the following statements:

SELECT...FOR UPDATE | 495

Download at WoweBook.Com

• “Delete the row I just fetched.”

• “Update these columns in that row I just fetched.”

A perfect fit for WHERE CURRENT OF! The next version of my winterization program
uses this clause. I have also switched from a FOR loop to a simple loop because I want
to exit conditionally from the loop (possible but not recommended with a FOR loop):

DECLARE
 CURSOR fall_jobs_cur IS SELECT ... same as before ... ;
 job_rec fall_jobs_cur%ROWTYPE;
BEGIN
 OPEN fall_jobs_cur;
 LOOP
 FETCH fall_jobs_cur INTO job_rec;

 EXIT WHEN fall_jobs_cur%NOTFOUND;

 IF job_rec.do_it_yourself_flag = 'YOUCANDOIT'
 THEN
 UPDATE winterize SET responsible = 'STEVEN'
 WHERE CURRENT OF fall_jobs_cur;
 COMMIT;
 EXIT;
 END IF;
 END LOOP;
 CLOSE fall_jobs_cur;
END;

Cursor Variables and REF CURSORs
A cursor variable is a variable that points to or references an underlying cursor. Unlike
an explicit cursor, which names the PL/SQL work area for the result set, a cursor var-
iable is a reference to that work area. Explicit and implicit cursors are static in that they
are tied to specific queries. The cursor variable can be opened for any query, even for
different queries within a single program execution.

The most important benefit of the cursor variable is that it provides a mechanism for
passing results of queries (the rows returned by fetches against a cursor) between dif-
ferent PL/SQL programs—even between client and server PL/SQL programs. Prior to
PL/SQL Release 2.3, you would have had to fetch all data from the cursor, store it in
PL/SQL variables (perhaps a collection), and then pass those variables as arguments.
With cursor variables, you simply pass the reference to that cursor. This improves
performance and streamlines your code.

It also means that the cursor is, in effect, shared among the programs that have access
to the cursor variable. In a client-server environment, for example, a program on the
client side could open and start fetching from the cursor variable, and then pass that
variable as an argument to a stored procedure on the server. This stored program could
then continue fetching and pass control back to the client program to close the cursor.

496 | Chapter 15: Data Retrieval

Download at WoweBook.Com

You can also perform the same steps between different stored programs on the same
or different database instances.

This process, shown in Figure 15-2, offers dramatic new possibilities for data sharing
and cursor management in PL/SQL programs.

Figure 15-2. Referencing a cursor variable across two programs

Why Cursor Variables?
Cursor variables allow you to do the following:

• Associate a cursor variable with different queries at different times in your program
execution. In other words, a single cursor variable can be used to fetch from dif-
ferent result sets.

• Pass a cursor variable as an argument to a procedure or function. You can, in
essence, share the results of a cursor by passing the reference to that result set.

• Employ the full functionality of static PL/SQL cursors for cursor variables. You
can OPEN, CLOSE, and FETCH with cursor variables within your PL/SQL pro-
grams. You can also reference the standard cursor attributes—%ISOPEN,
%FOUND, %NOTFOUND, and %ROWCOUNT—for cursor variables.

• Assign the contents of one cursor (and its result set) to another cursor variable.
Because the cursor variable is a variable, it can be used in assignment operations.
There are restrictions on referencing this kind of variable, however, as I’ll discuss
later in this chapter.

Cursor Variables and REF CURSORs | 497

Download at WoweBook.Com

Similarities to Static Cursors
One of the key design requirements for cursor variables was that, when possible, the
semantics used to manage cursor objects would be the same as that of static cursors.
While the declaration of a cursor variable and the syntax for opening it are enhanced,
the following cursor operations for cursor variables are the same as for static cursors:

The CLOSE statement
In the following example, I declare a REF CURSOR type and a cursor variable
based on that type. Then I close the cursor variable using the same syntax as for a
static cursor:

DECLARE
 TYPE var_cur_type IS REF CURSOR;
 var_cur var_cur_type;
BEGIN
 OPEN var_cur FOR ...
 ...
 CLOSE var_cur;
END;

Cursor attributes
You can use any of the four cursor attributes with exactly the same syntax as for a
static cursor. The rules governing the use and values returned by those attributes
match those of explicit cursors. If I have declared a variable cursor as in the previous
example, I could use all the cursor attributes as follows:

var_cur%ISOPEN
var_cur%FOUND
var_cur%NOTFOUND
var_cur%ROWCOUNT

Fetching from the cursor variable
You use the same FETCH syntax when fetching from a cursor variable into local
PL/SQL data structures. There are, however, additional rules applied by PL/SQL
to make sure that the data structures of the cursor variable’s row (the set of values
returned by the cursor object) match those of the data structures to the right of the
INTO keyword. These rules are discussed in “Rules for Cursor Varia-
bles” on page 504.

Because the syntax for these aspects of cursor variables is the same as for the already
familiar explicit cursors, the following sections will focus on features that are unique
to cursor variables.

Declaring REF CURSOR Types
Just as with a collection or a programmer-defined record, you must perform two distinct
declaration steps in order to create a cursor variable:

498 | Chapter 15: Data Retrieval

Download at WoweBook.Com

1. Create a referenced cursor TYPE.

2. Declare the actual cursor variable based on that type.

The syntax for creating a referenced cursor type is as follows:

TYPE cursor_type_name IS REF CURSOR [RETURN return_type];

where cursor_type_name is the name of the type of cursor and return_type is the RE-
TURN data specification for the cursor type. The return_type can be any of the data
structures valid for a normal cursor RETURN clause, and is defined using the %ROW-
TYPE attribute or by referencing a previously defined record type.

Notice that the RETURN clause is optional with the REF CURSOR type statement.
Both of the following declarations are valid:

TYPE company_curtype IS REF CURSOR RETURN company%ROWTYPE;
TYPE generic_curtype IS REF CURSOR;

The first form of the REF CURSOR statement is called a strong type because it attaches
a record type (or row type) to the cursor variable type at the moment of declaration.
Any cursor variable declared using that type can only FETCH INTO data structures
that match the specified record type. The advantage of a strong type is that the compiler
can determine whether or not the developer has properly matched up the cursor vari-
able’s FETCH statements with its cursor object’s query list.

The second form of the REF CURSOR statement, in which the RETURN clause is
missing, is called a weak type. This cursor variable type is not associated with any record
data structures. Cursor variables declared without the RETURN clause can be used in
more flexible ways than the strong type. They can be used with any query, with any
record type structure, and can vary even within the course of a single program.

Starting with Oracle9i Database, Oracle provides a predefined weak REF CURSOR
type named SYS_REFCURSOR. You no longer need to define your own weak type;
just use Oracle’s:

DECLARE
 my_cursor SYS_REFCURSOR;

Declaring Cursor Variables
The syntax for declaring a cursor variable is:

cursor_name cursor_type_name;

where cursor_name is the name of the cursor, and cursor_type_name is the name of the
type of cursor previously defined with a TYPE statement.

Here is an example of the creation of a cursor variable:

DECLARE
 /* Create a cursor type for sports cars. */
 TYPE sports_car_cur_type IS REF CURSOR RETURN car%ROWTYPE;

Cursor Variables and REF CURSORs | 499

Download at WoweBook.Com

 /* Create a cursor variable for sports cars. */
 sports_car_cur sports_car_cur_type;
BEGIN
 ...
END;

It is important to distinguish between declaring a cursor variable and creating an actual
cursor object—the result set identified by the cursor SQL statement. A constant is
nothing more than a value, whereas a variable points to its value. Similarly, a static
cursor acts as a constant, whereas a cursor variable references or points to a cursor
object. These distinctions are shown in Figure 15-3. Notice that two different cursor
variables in different programs are both referring to the same cursor object.

Figure 15-3. The referencing character of cursor variables

Declaration of a cursor variable does not create a cursor object. To do that, you must
use the OPEN FOR syntax to create a new cursor object and assign it to the variable.

Opening Cursor Variables
You assign a value (the cursor object) to a cursor variable when you OPEN the cursor.
So the syntax for the traditional OPEN statement allows for cursor variables to accept
a SELECT statement after the FOR clause, as shown below:

OPEN cursor_name FOR select_statement;

where cursor_name is the name of a cursor variable, and select_statement is a SQL
SELECT statement.

For strong REF CURSOR type cursor variables, the structure of the SELECT statement
(the number and datatypes of the columns) must match or be compatible with the
structure specified in the RETURN clause of the TYPE statement. Figure 15-4 shows
an example of the kind of compatibility required. “Rules for Cursor Varia-
bles” on page 504 contains the full set of compatibility rules.

500 | Chapter 15: Data Retrieval

Download at WoweBook.Com

If cursor_name is a cursor variable defined with a weak REF CURSOR type, you can
OPEN it for any query, with any structure. In the following example, I open (assign a
value to) the cursor variable three times, with three different queries:

DECLARE
 TYPE emp_curtype IS REF CURSOR;
 emp_curvar emp_curtype;
BEGIN
 OPEN emp_curvar FOR SELECT * FROM employees;
 OPEN emp_curvar FOR SELECT employee_id FROM employees;
 OPEN emp_curvar FOR SELECT company_id, name FROM company;
END;

That last OPEN didn’t even have anything to do with the employee table!

If the cursor variable has not yet been assigned to any cursor object, the OPEN FOR
statement implicitly creates an object for the variable. If at the time of the OPEN, the
cursor variable is already pointing to a cursor object, OPEN FOR does not create a new
object. Instead, it reuses the existing object and attaches a new query to that object.
The cursor object is maintained separately from the cursor or query itself.

If you associate a new result set with a cursor variable that was previ-
ously used in an OPEN FOR statement and you did not explicitly close
that cursor variable, then the underlying cursor remains open. You
should always explicitly close your cursor variables before repurposing
them with another result set.

Fetching from Cursor Variables
As mentioned earlier, the syntax for a FETCH statement using a cursor variable is the
same as that for static cursors:

FETCH cursor_variable_name INTO record_name;
FETCH cursor_variable_name INTO variable_name, variable_name ...;

When the cursor variable is declared with a strong REF CURSOR type, the PL/SQL
compiler makes sure that the data structures listed after the INTO keyword are com-
patible with the structure of the query associated with the cursor variable.

Figure 15-4. Compatible REF CURSOR rowtype and select list

Cursor Variables and REF CURSORs | 501

Download at WoweBook.Com

If the cursor variable is of the weak REF CURSOR type, the PL/SQL compiler cannot
perform the same kind of check it performs for a strong REF CURSOR type. Such a
cursor variable can FETCH into any data structures because the REF CURSOR type is
not identified with a rowtype at the time of declaration. At compile time, there is no
way to know which cursor object (and associated SQL statement) will be assigned to
that variable.

Consequently, the check for compatibility must happen at runtime, when the FETCH
is about to be executed. At this point, if the query and the INTO clause do not struc-
turally match, then the PL/SQL runtime engine will raise the predefined
ROWTYPE_MISMATCH exception. Note that PL/SQL will use implicit conversions
if necessary and possible.

Handling the ROWTYPE_MISMATCH exception

You can trap the ROWTYPE_MISMATCH exception and then attempt to FETCH
from the cursor variable using a different INTO clause. But even though you are exe-
cuting the second FETCH statement in your program, you will still retrieve the first
row in the result set of the cursor object’s query. This functionality comes in handy for
weak REF CURSOR types, which can be easily defined using the predefined
SYS_REFCURSOR type.

In the following example, a centralized real estate database stores information about
properties in a variety of tables: one for homes, another for commercial properties, and
so on. There is also a single, central table that stores addresses and building types
(home, commercial, etc.). I use a single procedure to open a weak REF CURSOR var-
iable for the appropriate table based on the street address. Each individual real estate
office can then call that procedure to scan through the matching properties. Here are
the steps:

1. Create the procedure. Notice that the mode of the cursor variable parameter is IN
OUT:

/* File on web: rowtype_mismatch.sql */
PROCEDURE open_site_list
 (address_in IN VARCHAR2,
 site_cur_inout IN OUT SYS_REFCURSOR)
IS
 home_type CONSTANT PLS_INTEGER := 1;
 commercial_type CONSTANT PLS_INTEGER := 2;

 /* A static cursor to get building type. */
 CURSOR site_type_cur IS
 SELECT site_type FROM property_master
 WHERE address = address_in;
 site_type_rec site_type_cur%ROWTYPE;

BEGIN
 /* Get the building type for this address. */
 OPEN site_type_cur;

502 | Chapter 15: Data Retrieval

Download at WoweBook.Com

 FETCH site_type_cur INTO site_type_rec;
 CLOSE site_type_cur;

 /* Now use the site type to select from the right table.*/
 IF site_type_rec.site_type = home_type
 THEN
 /* Use the home properties table. */
 OPEN site_cur_inout FOR
 SELECT * FROM home_properties
 WHERE address LIKE '%' || address_in || '%';

 ELSIF site_type_rec.site_type = commercial_type
 THEN
 /* Use the commercial properties table. */
 OPEN site_cur_inout FOR
 SELECT * FROM commercial_properties
 WHERE address LIKE '%' || address_in || '%';
 END IF;
END open_site_list;

2. Now that I have my open procedure, I can use it to scan properties.

In the following example, I pass in the address and then try to fetch from the cursor,
assuming a home property. If the address actually identifies a commercial property,
PL/SQL will raise the ROWTYPE_MISMATCH exception on account of the incom-
patible record structures. The exception section then fetches again, this time into a
commercial building record, and the scan is complete.

/* File on web: rowtype_mismatch.sql */
DECLARE
 /* Declare a cursor variable. */
 building_curvar sys_refcursor;

 address_string property_master.address%TYPE;

 /* Define record structures for two different tables. */
 home_rec home_properties%ROWTYPE;
 commercial_rec commercial_properties%ROWTYPE;
BEGIN
 /* Retrieve the address from cookie or other source. */
 address_string := current_address ();

 /* Assign a query to the cursor variable based on the address. */
 open_site_list (address_string, building_curvar);

 /* Give it a try! Fetch a row into the home record. */
 FETCH building_curvar
 INTO home_rec;

 /* If I got here, the site was a home, so display it. */
 show_home_site (home_rec);
EXCEPTION
 /* If the first record was not a home... */
 WHEN ROWTYPE_MISMATCH
 THEN

Cursor Variables and REF CURSORs | 503

Download at WoweBook.Com

 /* Fetch that same 1st row into the commercial record. */
 FETCH building_curvar
 INTO commercial_rec;

 /* Show the commercial site info. */
 show_commercial_site (commercial_rec);
END;

Rules for Cursor Variables
This section examines in more detail the rules and issues regarding the use of cursor
variables in your programs. These include rowtype matching rules, cursor variable
aliases, and scoping issues.

Remember that the cursor variable is a reference to a cursor object or query in the
database. It is not the object itself. A cursor variable is said to refer to a given query if
either of the following is true:

• An OPEN statement FOR that query was executed with the cursor variable.

• A cursor variable was assigned a value from another cursor variable that refers to
that query.

You can perform assignment operations with cursor variables and also pass these
variables as arguments to procedures and functions. In order to perform such actions
between cursor variables (and to bind a cursor variable to a parameter), the different
cursor variables must follow a set of compile-time and runtime rowtype matching rules.

Compile-time rowtype matching rules

These are the rules that PL/SQL follows at compile time:

• Two cursor variables (including procedure parameters) are compatible for assign-
ments and argument passing if any of the following are true:

— Both variables (or parameters) are of a strong REF CURSOR type with the same
rowtype_name.

— Both variables (or parameters) are of a weak REF CURSOR type, regardless of
the rowtype_name.

— One variable (or parameter) is of any strong REF CURSOR type, and the other
is of any weak REF CURSOR type.

• A cursor variable (or parameter) of a strong REF CURSOR type may be OPEN
FOR a query that returns a rowtype that is structurally equal to the rowtype_
name in the original type declaration.

• A cursor variable (or parameter) of a weak REF CURSOR type may be OPEN FOR
any query. The FETCH from such a variable is allowed INTO any list of variables
or record structure.

504 | Chapter 15: Data Retrieval

Download at WoweBook.Com

If either of the cursor variables is of the weak REF CURSOR type, then the PL/SQL
compiler cannot really validate whether the two different cursor variables will be com-
patible. That will happen at runtime; the rules are covered in the next section.

Runtime rowtype matching rules

These are the rules that PL/SQL follows at runtime:

• A cursor variable (or parameter) of a weak REF CURSOR type may be made to
refer to a query of any rowtype regardless of the query or cursor object to which it
may have referred earlier.

• A cursor variable (or parameter) of a strong REF CURSOR type may be made to
refer only to a query that matches structurally the rowtype_name of the RETURN
clause of the REF CURSOR type declaration.

• Two records (or lists of variables) are considered structurally matching with im-
plicit conversions if both of the following are true:

— The number of fields is the same in both records (or lists).

— For each field in one record (or variable in one list), a corresponding field in the
second list (or a variable in the second list) has the same PL/SQL datatype, or
one that can be converted implicitly by PL/SQL to match the first.

• For a cursor variable (or parameter) used in a FETCH statement, the query asso-
ciated with the cursor variable must structurally match (with implicit conversions)
the record or list of variables of the INTO clause of the FETCH statement. This
same rule is used for static cursors.

Cursor variable aliases

If you assign one cursor variable to another cursor variable, they become aliases for the
same cursor object; they share the reference to the cursor object (result set of the cur-
sor’s query). Any action taken against the cursor object through one variable is also
available to and reflected in the other variable.

This anonymous block illustrates the way cursor aliases work:

1 DECLARE
2 TYPE curvar_type IS REF CURSOR;
3 curvar1 curvar_type;
4 curvar2 curvar_type;
5 story fairy_tales%ROWTYPE;
6 BEGIN
7 OPEN curvar1 FOR SELECT * FROM fairy_tales;
8 curvar2 := curvar1;
9 FETCH curvar1 INTO story;
10 FETCH curvar2 INTO story;
11 CLOSE curvar2;
12 FETCH curvar1 INTO story;
13 END;

Cursor Variables and REF CURSORs | 505

Download at WoweBook.Com

The following table provides an explanation of the cursor variable actions:

Line(s) Description

2–5 Declare my weak REF CURSOR type and cursor variables.

7 Creates a cursor object and assigns it to curvar1 by opening a cursor for that cursor variable.

8 Assigns that same cursor object to the second cursor variable, curvar2. (Now I have two cursor variables that can be
used to manipulate the same result set!)

9 Fetches the first record using the curvar1 variable.

10 Fetches the second record using the curvar2 variable. (Notice that it doesn’t matter which of the two variables you
use. The pointer to the current record resides with the cursor object, not with any particular variable.)

11 Closes the cursor object referencing curvar2.

12 Will raise the INVALID_CURSOR exception when I try to fetch again from the cursor object. (When I closed the cursor
through curvar2, it also closed it as far as curvar1 was concerned.)

Any change of state in a cursor object will be seen through any cursor variable that is
an alias for that cursor object.

Scope of cursor object

The scope of a cursor variable is the same as that of a static cursor: the PL/SQL block
in which the variable is declared. The scope of the cursor object to which a cursor
variable is assigned, however, is a different matter.

Once an OPEN FOR creates a cursor object, that cursor object remains accessible as
long as at least one active cursor variable refers to that cursor object. This means that
you can create a cursor object in one scope (PL/SQL block) and assign it to a cursor
variable. Then, by assigning that cursor variable to another cursor variable with a dif-
ferent scope, the cursor object remains accessible even if the original cursor variable
has gone out of scope.

In the following example, I use nested blocks to demonstrate how the cursor object can
persist outside of the scope in which it was originally created:

DECLARE
 curvar1 SYS_REFCURSOR;
 do_you_get_it VARCHAR2(100);
BEGIN
 /*
 || Nested block which creates the cursor object and
 || assigns it to the curvar1 cursor variable.
 */
 DECLARE
 curvar2 SYS_REFCURSOR;
 BEGIN
 OPEN curvar2 FOR SELECT punch_line FROM joke;
 curvar1 := curvar2;
 END;
 /*

506 | Chapter 15: Data Retrieval

Download at WoweBook.Com

 || The curvar2 cursor variable is no longer active,
 || but "the baton" has been passed to curvar1, which
 || does exist in the enclosing block. I can therefore
 || fetch from the cursor object, through this other
 || cursor variable.
 */
 FETCH curvar1 INTO do_you_get_it;
 CLOSE curvar1;
END;

Passing Cursor Variables as Arguments
You can pass a cursor variable as an argument in a call to a procedure or a function.
When you use a cursor variable in the parameter list of a program, you need to specify
the mode of the parameter and the datatype (the REF CURSOR type).

Identifying the REF CURSOR type

In your program header, you must identify the REF CURSOR type of your cursor var-
iable parameter. To do this, that cursor type must already be defined.

If you are creating a local module within another program (see Chapter 17 for infor-
mation about local modules), you can define the cursor type in the same program. It
will then be available for the parameter. This approach is shown here:

DECLARE
 /* Define the REF CURSOR type. */
 TYPE curvar_type IS REF CURSOR RETURN company%ROWTYPE;

 /* Reference it in the parameter list. */
 PROCEDURE open_query (curvar_out OUT curvar_type)
 IS
 local_cur curvar_type;
 BEGIN
 OPEN local_cur FOR SELECT * FROM company;
 curvar_out := local_cur;
 END;
BEGIN
 ...
END;

If you are creating a standalone procedure or function, then the only way you can
reference a preexisting REF CURSOR type is by placing that TYPE statement in a
package. All variables declared in the specification of a package act as globals within
your session, so you can then reference this cursor type using the dot notation shown
in the second example:

• Create the package with a REF CURSOR type declaration:

PACKAGE company
IS
 /* Define the REF CURSOR type. */

Cursor Variables and REF CURSORs | 507

Download at WoweBook.Com

 TYPE curvar_type IS REF CURSOR RETURN company%ROWTYPE;
END package;

• In a standalone procedure, reference the REF CURSOR type by prefacing the name
of the cursor type with the name of the package:

PROCEDURE open_company (curvar_out OUT company.curvar_type) IS
BEGIN
 ...
END;

Setting the parameter mode

Just like other parameters, a cursor variable argument can have one of the following
three modes:

IN
Can only be read by the program

OUT
Can only be written to by the program

IN OUT
Can be read or written to by the program

Remember that the value of a cursor variable is the reference to the cursor object, not
the state of the cursor object. In other words, the value of a cursor variable does not
change after you fetch from or close a cursor.

Only two operations, in fact, may change the value of a cursor variable (that is, the
cursor object to which the variable points):

• An assignment to the cursor variable

• An OPEN FOR statement

If the cursor variable is already pointing to a cursor object, the OPEN FOR doesn’t
actually change the reference. It simply changes the query associated with the object.

The FETCH and CLOSE operations affect the state of the cursor object, but not the
reference to the cursor object itself, which is the value of the cursor variable.

Here is an example of a program that has cursor variables as parameters:

PROCEDURE assign_curvar
 (old_curvar_in IN company.curvar_type,
 new_curvar_out OUT company.curvar_type)
IS
BEGIN
 new_curvar_out := old_curvar_in;
END;

This procedure copies the old company cursor variable to the new variable. The first
parameter is an IN parameter because it appears only on the right side of the assign-
ment. The second parameter must be an OUT (or IN OUT) parameter because its value

508 | Chapter 15: Data Retrieval

Download at WoweBook.Com

is changed inside the procedure. Notice that the curvar_type is defined within the
company package.

Cursor Variable Restrictions
Cursor variables are subject to the following restrictions; note that Oracle may remove
some of these in future releases:

• Cursor variables cannot be declared in a package because they do not have a per-
sistent state.

• You cannot use remote procedure calls (RPCs) to pass cursor variables from one
server to another.

• If you pass a cursor variable as a bind variable or host variable to PL/SQL, you will
not be able to fetch from it from within the server unless you also open it in that
same server call.

• The query you associate with a cursor variable in an OPEN FOR statement cannot
use the FOR UPDATE clause if you are running Oracle8i Database or earlier.

• You cannot test for cursor variable equality, inequality, or nullity using comparison
operators.

• You cannot assign NULLs to a cursor variable. Attempts to do so will result in a
PLS-00382 Expression is of wrong type error message.

• Database columns cannot store cursor variable values. You will not be able to use
REF CURSOR types to specify column types in statements to CREATE TABLEs.

• The elements in a nested table, associative array, or VARRAY cannot store the
values of cursor variables. You will not be able to use REF CURSOR types to specify
the element type of a collection.

Cursor Expressions
Oracle provides a powerful feature in the SQL language: the cursor expression. A cursor
expression, denoted by the CURSOR operator, returns a nested cursor from within a
query. Each row in the result set of this nested cursor can contain the usual range of
values allowed in a SQL query; it can also contain other cursors as produced by
subqueries.

The CURSOR syntax, although first introduced in Oracle8i Database
SQL, was not available from within PL/SQL programs. This deficiency
was corrected in Oracle9i Database Release 1; since then, SQL state-
ments within a PL/SQL procedure or function have been able to take
advantage of the CURSOR expression.

Cursor Expressions | 509

Download at WoweBook.Com

You can therefore use cursor expressions to return a large and complex set of related
values retrieved from one or more tables. You can then process the cursor expression
result set using nested loops that fetch from the rows of the result set, and then addi-
tional rows from any nested cursors within those rows.

Cursor expressions can get complicated, given how complex the queries and result sets
can be. Nevertheless, it’s good to know all the possible ways to retrieve data from the
Oracle database.

You can use cursor expressions in any of the following:

• Explicit cursor declarations

• Dynamic SQL queries

• REF CURSOR declarations and variables

You cannot use a cursor expression in an implicit query.

The syntax for a cursor expression is very simple:

CURSOR (subquery)

The database opens the nested cursor defined by a cursor expression implicitly as soon
as it fetches the row containing the cursor expression from the parent or outer cursor.
This nested cursor is closed when:

• You explicitly close the cursor.

• The outer, parent cursor is executed again, closed, or canceled.

• An exception is raised while fetching from a parent cursor. The nested cursor is
closed along with the parent cursor.

Using Cursor Expressions
You can use a CURSOR expression in two different, but very useful ways:

• To retrieve a subquery as a column in an outer query.

• To transform a query into a result set that can be passed as an argument to a
streaming or transformative function.

Retrieve a subquery as a column

The following procedure demonstrates the use of nested CURSOR expressions to re-
trieve a subquery as a column in an outer query. The top-level query fetches just two
pieces of data: the city location and a nested cursor containing departments in that city.
This nested cursor, in turn, fetches a nested cursor with a CURSOR expression—in
this case, one containing the names of all the employees in each department.

I could have performed this same retrieval with separate explicit cursors, opened and
processed in a nested fashion. The CURSOR expression gives us the option of using a

510 | Chapter 15: Data Retrieval

Download at WoweBook.Com

different approach, and one that can be much more concise and efficient, given that all
the processing takes place in the SQL statement executor and thus reduces context
switching.

PROCEDURE emp_report (p_locid NUMBER)
IS
 TYPE refcursor IS REF CURSOR;

 -- The query returns only 2 columns, but the second column is
 -- a cursor that lets us traverse a set of related information.
 CURSOR all_in_one_cur is
 SELECT l.city,
 CURSOR (SELECT d.department_name,
 CURSOR(SELECT e.last_name
 FROM employees e
 WHERE e.department_id =
 d.department_id)
 AS ename
 FROM departments d
 WHERE l.location_id = d.location_id) AS dname
 FROM locations l
 WHERE l.location_id = p_locid;

 departments_cur refcursor;
 employees_cur refcursor;

 v_city locations.city%TYPE;
 v_dname departments.department_name%TYPE;
 v_ename employees.last_name%TYPE;
BEGIN
 OPEN all_in_one_cur;

 LOOP
 FETCH all_in_one_cur INTO v_city, departments_cur;
 EXIT WHEN all_in_one_cur%NOTFOUND;

 -- Now I can loop through departments and I do NOT need to
 -- explicitly open that cursor. Oracle did it for me.
 LOOP
 FETCH departments_cur INTO v_dname, employees_cur;
 EXIT WHEN departments_cur%NOTFOUND;

 -- Now I can loop through employees for that department.
 -- Again, I do not need to open the cursor explicitly.
 LOOP
 FETCH employees_cur INTO v_ename;
 EXIT WHEN employees_cur%NOTFOUND;
 DBMS_OUTPUT.put_line (
 v_city
 || ' '
 || v_dname
 || ' '
 || v_ename
);
 END LOOP;

Cursor Expressions | 511

Download at WoweBook.Com

 END LOOP;
 END LOOP;

 CLOSE all_in_one_cur;
END;

Implement a streaming function with the CURSOR expression

Streaming functions, also known as transformative functions, allow you to transform
data from one state to another without using any local data structures as intermediate
staging points. Suppose, for example, that I need to take the data in the StockTable
and move it into TickerTable, pivoting one row in StockTable to two rows in
TickerTable. Using the CURSOR expression and table functions, I can implement this
solution as follows:

INSERT INTO TickerTable
 SELECT *
 FROM TABLE (StockPivot (CURSOR (SELECT * FROM StockTable)));

where the StockPivot function contains all the complex logic needed to perform the
transformation. This technique is explained in depth in Chapter 17.

Restrictions on Cursor Expressions
There are a number of restrictions on the use of cursor expressions:

• You cannot use a cursor expression with an implicit cursor because no mechanism
is available to fetch the nested cursor INTO a PL/SQL data structure.

• Cursor expressions can appear only in the outermost SELECT list of the query
specification.

• You can place cursor expressions only in a SELECT statement that is not nested
in any other query expression, except when it is defined as a subquery of the cursor
expression itself.

• Cursor expressions cannot be used when declaring a view.

• You cannot perform BIND and EXECUTE operations on cursor expressions when
using the CURSOR expression in dynamic SQL (see Chapter 16).

512 | Chapter 15: Data Retrieval

Download at WoweBook.Com

CHAPTER 16

Dynamic SQL and Dynamic PL/SQL

Dynamic SQL refers to SQL statements that are constructed and executed at runtime.
Dynamic is the opposite of static. Static SQL refers to SQL statements that are fully
specified, or fixed, at the time the code containing that statement is compiled. Dynamic
PL/SQL refers to entire PL/SQL blocks of code that are constructed dynamically, then
compiled and executed.

Time for a confession: I have had more fun writing dynamic SQL and dynamic PL/SQL
programs than just about anything else I have ever done with the PL/SQL language. By
constructing and executing dynamically, you gain a tremendous amount of flexibility.
You can also build extremely generic and widely useful reusable code.

So what can you do with dynamic SQL and dynamic PL/SQL?* Here are just a few ideas:

Execute DDL statements
You can only execute queries and DML statements with static SQL inside PL/SQL.
What if you want to create a table or drop an index? Time for dynamic SQL!

Support ad hoc query and update requirements of web-based applications
A common requirement of Internet applications is that users may be able to specify
which columns they want to see and vary the order in which they see the data (of
course, users don’t realize they are doing so).

Softcode business rules and formulas
Rather than hardcoding business rules and formulas into your code, you can place
that logic in tables. At runtime, you can generate and then execute the PL/SQL
code needed to apply the rules.

Ever since Oracle7 Database, we PL/SQL developers have been able to use the built-in
DBMS_SQL package to execute dynamic SQL. In Oracle8i Database, we were given a
second option for executing dynamically constructed SQL statements: native dynamic
SQL (NDS). NDS is a native part of the PL/SQL language; it is much easier to use than

* For the remainder of this chapter, any reference to “dynamic SQL” also includes dynamic PL/SQL blocks,
unless otherwise stated.

513

Download at WoweBook.Com

DBMS_SQL and, for many applications, it will execute more efficiently. There are still
requirements for which DBMS_SQL is a better fit; they are described at the end of this
chapter. For almost every situation you face, however, NDS will be the preferred im-
plementation approach.

NDS Statements
One of the nicest things about NDS is its simplicity. Unlike DBMS_SQL, which has
dozens of programs and lots of rules to follow, NDS has been integrated into the
PL/SQL language by adding one new statement, EXECUTE IMMEDIATE, which ex-
ecutes a specified SQL statement immediately, and by enhancing the existing OPEN
FOR statement, which allows you to perform multiple-row dynamic queries.

The EXECUTE IMMEDIATE and OPEN FOR statements will not be
directly accessible from Oracle Forms Builder and Oracle Reports
Builder until the PL/SQL version in those tools is upgraded to at least
Oracle8i Database. For earlier versions, you will need to create stored
programs that hide calls to these constructs; you will then be able to
execute those stored programs from within your client-side PL/SQL
code.

The EXECUTE IMMEDIATE Statement
Use EXECUTE IMMEDIATE to execute (immediately!) the specified SQL statement.
Here is the syntax of this statement:

EXECUTE IMMEDIATE SQL_string
 [INTO {define_variable[, define_variable]... | record}]
 [USING [IN | OUT | IN OUT] bind_argument
 [, [IN | OUT | IN OUT] bind_argument]...];

where:

SQL_string
Is a string expression containing the SQL statement or PL/SQL block.

define_variable
Is a variable that receives a column value returned by a query.

record
Is a record based on a user-defined TYPE or %ROWTYPE that receives an entire
row returned by a query.

bind_argument
Is an expression whose value is passed to the SQL statement or PL/SQL block, or
an identifier that serves as an input and/or output variable to the function or pro-
cedure that is called in the PL/SQL block.

514 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

INTO clause
Is used for single-row queries; for each column value returned by the query, you
must supply an individual variable or field in a record of a compatible type.

USING clause
Allows you to supply bind arguments for the SQL string. This clause is used for
both dynamic SQL and PL/SQL, which is why you can specify a parameter mode.
This mode is relevant only for PL/SQL, however; the default is IN, which is the
only kind of bind argument you would have for SQL statements.

You can use EXECUTE IMMEDIATE for any SQL statement or PL/SQL block except
for multiple-row queries. If SQL_string ends with a semicolon, it will be treated as a
PL/SQL block; otherwise, it will be treated as either DML (Data Manipulation Lan-
guage) or DDL (Data Definition Language). The string may contain placeholders for
bind arguments, but you cannot use bind values to pass in the names of schema objects,
such as table names or column names.

When you execute a DDL statement in your program, you will also
perform a commit. If you don’t want the DDL-driven commit to affect
outstanding changes in the rest of your application, place the dynamic
DDL statement within an autonomous transaction procedure. See the
auton_ddl.sql file on the book’s web site for a demonstration of this
technique.

When the statement is executed, the runtime engine replaces each placeholder (an
identifier with a colon in front of it, such as salary_value) in the SQL string with its
corresponding bind argument in the USING clause. Note that you cannot pass a NULL
literal value. Instead, you must pass a variable of the correct type that happens to have
a value of NULL.

NDS supports all SQL datatypes. You can bind scalar values like strings, numbers, and
dates, but you can also bind collections, LOBs, instances of an object type, XML docu-
ments, REFs, and more. You may not, however, bind values in the USING clause whose
datatypes are specific to PL/SQL, such as Booleans, associative arrays, and user-defined
record types. The INTO clause can, on the other hand, contain a PL/SQL record whose
number and types of fields match the values fetched by the dynamic query.

Let’s take a look at a few examples:

• Create an index:

BEGIN
 EXECUTE IMMEDIATE 'CREATE INDEX emp_u_1 ON employees (last_name)';
END;

It can’t get much easier than that, can it?

NDS Statements | 515

Download at WoweBook.Com

• Create a stored procedure that will execute any DDL statement:

PROCEDURE exec_DDL (ddl_string IN VARCHAR2)
IS
BEGIN
 EXECUTE IMMEDIATE ddl_string;
END;

With exec_ddl in place, I can create that same index as follows:

BEGIN
 exec_DDL ('CREATE INDEX emp_u_1 ON employees (last_name)');
END;

• Obtain the count of rows in any table for the specified WHERE clause:

/* File on web: tabcount_nds.sf */
FUNCTION tabcount (table_in IN VARCHAR2)
 RETURN PLS_INTEGER
IS
 l_query VARCHAR2 (32767) := 'SELECT COUNT(*) FROM ' || table_in;
 l_return PLS_INTEGER;
BEGIN
 EXECUTE IMMEDIATE l_query INTO l_return;
 RETURN l_return;
END;

So now I never again have to write SELECT COUNT(*), whether in SQL*Plus or
within a PL/SQL program. Instead I can do the following:

BEGIN
 IF tabCount ('employees') > 100
 THEN
 DBMS_OUTPUT.PUT_LINE ('We are growing fast!');
 END IF;
END;

• Here’s a function that lets you update the value of any numeric column in the
employees table. It’s a function because it returns the number of rows that have
been updated.

/* File on web: updnval.sf */
FUNCTION updNVal (
 col IN VARCHAR2,
 val IN NUMBER,
 start_in IN DATE,
 end_in IN DATE)
 RETURN PLS_INTEGER
IS
BEGIN
 EXECUTE IMMEDIATE
 'UPDATE employees SET ' || col || ' = :the_value
 WHERE hire_date BETWEEN :lo AND :hi'
 USING val, start_in, end_in;
 RETURN SQL%ROWCOUNT;
END;

516 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

That is a very small amount of code to achieve all that flexibility! This example
introduces the bind argument: after the UPDATE statement is parsed, the PL/SQL
engine replaces the various placeholders (:the_value, :lo, and :hi) with the values
in the USING clause. Notice also that I can rely on the SQL%ROWCOUNT cursor
attribute that I have already been using for static DML statements.

• Suppose that I need to run a different stored procedure at 9:00 a.m. each day of
the week. Each program’s name has the structure DAYNAME_set_schedule. Each
procedure has the same four arguments: you pass in employee_id and hour for the
first meeting of the day; it returns the name of the employee and the number of
appointments for the day. I can use dynamic PL/SQL to handle this situation:

/* File on web: run9am.sp */
PROCEDURE run_9am_procedure (
 id_in IN employee.employee_id%TYPE,
 hour_in IN INTEGER)
IS
 v_apptCount INTEGER;
 v_name VARCHAR2(100);
BEGIN
 EXECUTE IMMEDIATE
 'BEGIN ' || TO_CHAR (SYSDATE, 'DAY') ||
 '_set_schedule (:id, :hour, :name, :appts); END;'
 USING IN
 id_in, IN hour_in, OUT v_name, OUT v_apptCount;

 DBMS_OUTPUT.PUT_LINE (
 'Employee ' || v_name || ' has ' || v_apptCount ||
 ' appointments on ' || TO_CHAR (SYSDATE));
END;

As you can see, EXECUTE IMMEDIATE makes it very easy to execute dynamic SQL
statements, with a minimum of syntactic fuss.

The OPEN FOR Statement
The OPEN FOR statement was actually not introduced into PL/SQL for NDS; it was
first offered in Oracle7 Database to support cursor variables. Now it is deployed in an
especially elegant fashion to implement multiple-row dynamic queries. With
DBMS_SQL, you go through a painful series of steps to implement multirow queries:
parse, bind, define each column individually, execute, fetch, and extract each column
value individually. That’s a lot of code to write!

For native dynamic SQL, Oracle took an existing feature and syntax—that of cursor
variables—and extended it in a very natural way to support dynamic SQL. The next
section explores multirow queries in detail. Let’s now look at the syntax of the OPEN
FOR statement:

OPEN {cursor_variable | :host_cursor_variable} FOR SQL_string
 [USING bind_argument[, bind_argument]...];

NDS Statements | 517

Download at WoweBook.Com

where:

cursor_variable
Is a weakly typed cursor variable.

:host_cursor_variable
Is a cursor variable declared in a PL/SQL host environment such as an Oracle Call
Interface (OCI) program.

SQL_string
Contains the SELECT statement to be executed dynamically.

USING clause
Follows the same rules as in the EXECUTE IMMEDIATE statement.

If you are not familiar with cursor variables, you might want to review Chapter 15. Here
you will learn how to use cursor variables with NDS.

You can also use EXECUTE IMMEDIATE with BULK COLLECT to
retrieve multiple rows with a dynamic query. This approach requires
much less code and can improve the performance of your query
operation.

Following is an example that demonstrates the declaration of a weak REF CURSOR
type, a cursor variable based on that type, and the opening of a dynamic query using
the OPEN FOR statement:

PROCEDURE show_parts_inventory (
 parts_table IN VARCHAR2,
 where_in IN VARCHAR2)
IS
 TYPE query_curtype IS REF CURSOR;
 dyncur query_curtype;
BEGIN
 OPEN dyncur FOR
 'SELECT * FROM ' || parts_table
 ' WHERE ' || where_in;
 ...

Once you have opened the query with the OPEN FOR statement, the syntax rules used
to fetch rows, close the cursor variable, and check the attributes of the cursor are all
the same as for static cursor variables and hardcoded explicit cursors.

Let’s now take a closer look at the OPEN FOR statement. When you execute an OPEN
FOR statement, the PL/SQL runtime engine does the following:

1. Associates a cursor variable with the query found in the query string.

2. Evaluates any bind arguments and substitutes those values for the placeholders
found in the query string.

3. Executes the query.

518 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

4. Identifies the result set.

5. Positions the cursor on the first row in the result set.

6. Zeros out the rows-processed count returned by %ROWCOUNT.

Note that any bind arguments (provided in the USING clause) in the query are evalu-
ated only when the cursor variable is opened. This means that if you want to use a
different set of bind arguments for the same dynamic query, you must issue a new
OPEN FOR statement with those arguments.

To perform a multirow query, you follow these steps:

1. Declare a REF CURSOR type (or use the Oracle-defined SYS_REFCURSOR weak
REF CURSOR type).

2. Declare a cursor variable based on the REF CURSOR.

3. OPEN the cursor variable FOR your query string.

4. Use the FETCH statement to fetch one row at a time from the query.

5. Check cursor attributes (%FOUND, %NOTFOUND, %ROWCOUNT, %ISO-
PEN) as necessary.

6. Close the cursor variable using the normal CLOSE statement. Generally, if and
when you are done with your cursor variable, you should close it explicitly.

Here is a simple program to display the specified column of any table for the rows
indicated by the WHERE clause (it will work for number, date, and string columns):

/* File on web: showcol.sp */
PROCEDURE showcol (
 tab IN VARCHAR2,
 col IN VARCHAR2,
 whr IN VARCHAR2 := NULL)
IS
 cv SYS_REFCURSOR;
 val VARCHAR2(32767);
BEGIN
 OPEN cv FOR
 'SELECT ' || col ||
 ' FROM ' || tab ||
 ' WHERE ' || NVL (whr, '1 = 1');

 LOOP
 /* Fetch and exit if done; same as with explicit cursors. */
 FETCH cv INTO val;
 EXIT WHEN cv%NOTFOUND;

 /* If on first row, display header info. */
 IF cv%ROWCOUNT = 1
 THEN
 DBMS_OUTPUT.PUT_LINE (RPAD ('-', 60, '-'));
 DBMS_OUTPUT.PUT_LINE (
 'Contents of ' || UPPER (tab) || '.' || UPPER (col));
 DBMS_OUTPUT.PUT_LINE (RPAD ('-', 60, '-'));

NDS Statements | 519

Download at WoweBook.Com

 END IF;

 DBMS_OUTPUT.PUT_LINE (val);
 END LOOP;

 /* Don't forget to clean up! Very important... */
 CLOSE cv;
END;

Here are some examples of output from this procedure:

SQL> EXEC showcol ('emp', 'ename', 'deptno=10')
--
Contents of EMP.ENAME
--
CLARK
KING
MILLER

I can even combine columns:

BEGIN
 showcol (
 'emp',
 'ename || ''-$'' || sal',
 'comm IS NOT NULL');
END;
/
--
Contents of EMP.ENAME || '-$' || SAL
--
ALLEN-$1600
WARD-$1250
MARTIN-$1250
TURNER-$1500

FETCH into variables or records

The FETCH statement in the showcol procedure shown in the previous section fetches
into an individual variable. You could also FETCH into a sequence of variables, as
shown here:

DECLARE
 cv SYS_REFCURSOR;
 mega_bucks company.ceo_compensation%TYPE;
 achieved_by company.cost_cutting%TYPE;
BEGIN
 OPEN cv FOR
 'SELECT ceo_compensation, cost_cutting
 FROM ' || company_table_name (company_pkg.current_company_id);

 LOOP
 FETCH cv INTO mega_bucks, achieved_by;
 ...
 END LOOP;

520 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

 CLOSE cv;
END;

Working with a long list of variables in the FETCH list can be cumbersome and in-
flexible; you have to declare the variables, keep that set of values synchronized with
the FETCH statement, and so on. To ease our troubles, NDS allows us to fetch into a
record, as shown here:

DECLARE
 cv SYS_REFCURSOR;
 ceo_info company%ROWTYPE;
BEGIN
 OPEN cv FOR
 'SELECT *
 FROM ' ||
 company_table_name (company_pkg.current_company_id);
 LOOP
 FETCH cv INTO ceo_info;
 ...
 END LOOP;
 CLOSE cv;
END;

Of course, in many situations you will not want to do a SELECT *; this statement can
be very inefficient if your table has hundreds of columns, and you need to work with
only three. A better approach is to create record TYPEs that correspond to different
requirements. The best place to put these structures is in a package specification so that
they can be used throughout your application. Here’s one such package:

PACKAGE company_pkg
IS
 TYPE ceo_info_rt IS RECORD (
 mega_bucks company.ceo_compensation%TYPE,
 achieved_by company.cost_cutting%TYPE)
;

END company_pkg;

With this package in place, I can rewrite my CEO-related code as follows:

DECLARE
 cv SYS_REFCURSOR;
 rec company_pkg.ceo_info_rt;
BEGIN
 OPEN cv FOR
 'SELECT ceo_compensation, cost_cutting
 FROM ' || company_table_name (
 company_pkg.current_company_id);
 LOOP
 FETCH cv INTO rec;
 ...
 END LOOP;
 CLOSE cv;
END;

NDS Statements | 521

Download at WoweBook.Com

The USING clause in OPEN FOR

As with the EXECUTE IMMEDIATE statement, you can pass in bind arguments when
you open a cursor. You can provide only IN arguments for a query. By using bind
arguments, you can also improve the performance of your SQL and make it easier to
write and maintain that code. In addition, you can potentially dramatically reduce the
number of distinct parsed statements that are cached in the SGA, and thereby increase
the likelihood that your preparsed statement is still in the SGA the next time you need
it. (See the section “Binding Variables” on page 525 later in this chapter for infor-
mation about this technique.)

Let’s revisit the showcol procedure. That procedure accepted a completely generic
WHERE clause. Suppose that I have a more specialized requirement: I want to display
(or in some way process) all column information for rows that contain a date column
with a value within a certain range. In other words, I want to be able to support this
query:

SELECT last_name
 FROM employees
 WHERE hire_date BETWEEN x AND y;

as well as this query:

SELECT flavor
 FROM favorites
 WHERE preference_period BETWEEN x AND y;

I also want to make sure that the time component of the date column does not play a
role in the WHERE condition.

Here is the header for the procedure:

/* File on web: showdtcol.sp */
PROCEDURE showcol (
 tab IN VARCHAR2,
 col IN VARCHAR2,
 dtcol IN VARCHAR2,
 dt1 IN DATE,
 dt2 IN DATE := NULL)

The OPEN FOR statement now contains two placeholders and a USING clause to
match:

OPEN cv FOR
 'SELECT ' || col ||
 ' FROM ' || tab ||
 ' WHERE ' || dtcol ||
 ' BETWEEN TRUNC (:startdt)
 AND TRUNC (:enddt)'
 USING dt1, NVL (dt2, dt1+1);

I have crafted this statement so that if the user does not supply an end date, the WHERE
clause returns rows whose date column is the same day as the dt1 provided. The rest

522 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

of the showcol procedure remains the same, except for some cosmetic changes in the
display of the header.

The following call to this new version of showcol asks to see the names of all employees
hired in 1982:

BEGIN
 showcol ('emp',
 'ename', 'hiredate',
 TO_CHAR ('01-jan-82', 'DD-MON-RR'),
 TO_CHAR ('31-dec-82', 'DD-MON-RR')
);
END;

The output is:

--
Contents of EMP.ENAME for HIREDATE between 01-JAN-82 and 31-DEC-82
--
MILLER

About the Four Dynamic SQL Methods
Now that you’ve been introduced to the two basic statements used to implement native
dynamic SQL in PL/SQL, it’s time to take a step back and review the four distinct types,
or methods, of dynamic SQL, listed in Table 16-1, and the NDS statements you will
need to implement those methods.

Table 16-1. The four methods of dynamic SQL

Type Description NDS statements used

Method 1 No queries; just DDL statements and UPDATEs, INSERTs,
MERGEs, or DELETEs, which have no bind variables

EXECUTE IMMEDIATE without USING and
INTO clauses

Method 2 No queries; just UPDATEs, INSERTs, MERGEs, or DELETEs,
with a fixed number of bind variables

EXECUTE IMMEDIATE with a USING clause

Method 3 single row
queried

Queries (SELECT statements) with a fixed numbers of col-
umns and bind variables, retrieving a single row of data

EXECUTE IMMEDIATE with USING and
INTO clauses

Method 3 multiple
rows queried

Queries (SELECT statements) with a fixed numbers of col-
umns and bind variables, retrieving or more rows of data

EXECUTE IMMEDIATE with USING and
BULK COLLECT INTO clauses or OPEN FOR
with dynamic string

Method 4 A statement in which the number of columns selected (for
a query) or the number of bind variables set is not known
until runtime

For method 4, you will use the
DBMS_SQL package

Method 1

The following DDL statement is an example of method 1 dynamic SQL:

EXECUTE IMMEDIATE 'CREATE INDEX emp_ind_1 on employees (salary, hire_date)';

NDS Statements | 523

Download at WoweBook.Com

And this UPDATE statement is also method 1 dynamic SQL because its only variation
is in the table name; there are no bind variables:

EXECUTE IMMEDIATE
 'UPDATE ' || l_table || ' SET salary = 10000 WHERE employee_id = 1506'

Method 2

I now replace both of my hardcoded values with placeholders (a colon preceded by an
identifier) in the previous DML statement (indicated by the colon); I then have method
2 dynamic SQL:

EXECUTE IMMEDIATE
 'UPDATE ' || l_table || ' SET salary = :salary WHERE employee_id = :employee_id'
 USING 10000, 1506;

You can see that the USING clause contains the values that will be bound into the SQL
string after parsing and before execution.

Method 3

A method 3 dynamic SQL statement is a query with a fixed number of bind variables
(or none). This likely is the type of dynamic SQL you will most often be writing. Here
is an example:

EXECUTE IMMEDIATE
 'SELECT last_name, salary FROM employees
 WHERE department_id = :dept_id'
 INTO l_last_name, l_salary
 USING 10;

I am querying just two columns from the employee table and depositing them into the
two local variables with the INTO clause. I also have a single bind variable. Because
the numbers of these items are static at the time of compilation, I use method 3 dynamic
SQL.

Method 4

Finally, let’s consider the most complex scenario: method 4 dynamic SQL. Consider
this very generic query:

OPEN l_cursor FOR
 'SELECT ' || l_column_list ||
 'FROM employee';

At the time I compile my code, I don’t have any idea how many columns will be queried
from the employee table. This leaves me with quite a challenge: how do I write the
FETCH INTO statement to handle that variability? Your choices are twofold: either
fall back on DBMS_SQL to write relatively straightforward, though voluminous code,
or switch to dynamic PL/SQL block execution.

524 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

Fortunately for many of you, scenarios requiring method 4 dynamic SQL are rare. If,
you run into it, however, you should read “Meet Method 4 Dynamic SQL Require-
ments” on page 546.

Binding Variables
You have seen several examples that use bind variables or arguments with NDS. Let’s
now go over the various rules and special situations you may encounter when binding.

You can bind into your SQL statement only those expressions (literals, variables, com-
plex expressions) that replace placeholders for data values inside the dynamic string.
You cannot bind in the names of schema elements (tables, columns, etc.) or entire
chunks of the SQL statement (such as the WHERE clause). For those parts of your
string, you must use concatenation.

For example, suppose you want to create a procedure that will truncate the specified
view or table. Your first attempt might look something like this:

PROCEDURE truncobj (
 nm IN VARCHAR2,
 tp IN VARCHAR2 := 'TABLE',
 sch IN VARCHAR2 := NULL)
IS
BEGIN
 EXECUTE IMMEDIATE
 'TRUNCATE :trunc_type :obj_name'
 USING tp, NVL (sch, USER) || '.' || nm;
END;

This code seems perfectly reasonable. But when you try to run the procedure you’ll get
this error:

ORA-03290: Invalid truncate command - missing CLUSTER or TABLE keyword

If you rewrite the procedure to simply truncate tables, as follows:

EXECUTE IMMEDIATE 'TRUNCATE TABLE :obj_name' USING nm;

then the error becomes:

ORA-00903: invalid table name

Why does NDS (and DBMS_SQL) have this restriction? When you pass a string to
EXECUTE IMMEDIATE, the runtime engine must first parse the statement. The parse
phase guarantees that the SQL statement is properly defined. PL/SQL can tell that the
following statement is valid:

'UPDATE emp SET sal = :xyz'

without having to know the value of :xyz. But how can PL/SQL know if the following
statement is well formed?

'UPDATE emp SET :col_name = :xyz'

Binding Variables | 525

Download at WoweBook.Com

Even if you don’t pass in nonsense for col_name, it won’t work. For that reason, you
must use concatenation:

PROCEDURE truncobj (
 nm IN VARCHAR2,
 tp IN VARCHAR2 := 'TABLE',
 sch IN VARCHAR2 := NULL)
IS
BEGIN
 EXECUTE IMMEDIATE
 'TRUNCATE ' || tp || ' ' || NVL (sch, USER) || '.' || nm;
END;

Argument Modes
Bind arguments can have one of three modes:

IN
Read-only value (the default mode)

OUT
Write-only variable

IN OUT
Can read the value coming in and write the value going out

When you are executing a dynamic query, all bind arguments must be of mode IN,
except when you are taking advantage of the RETURNING clause, as shown here:

PROCEDURE wrong_incentive (
 company_in IN INTEGER,
 new_layoffs IN NUMBER
)
IS
 sql_string VARCHAR2(32767);
 sal_after_layoffs NUMBER;
BEGIN
 sql_string :=
 'UPDATE ceo_compensation
 SET salary = salary + 10 * :layoffs
 WHERE company_id = :company
 RETURNING salary INTO :newsal';

 EXECUTE IMMEDIATE sql_string
 USING new_layoffs, company_in, OUT sal_after_layoffs;

 DBMS_OUTPUT.PUT_LINE (
 'CEO compensation after latest round of layoffs $' || sal_after_layoffs);
END;

Besides being used with the RETURNING clause, OUT and IN OUT bind arguments
come into play mostly when you are executing dynamic PL/SQL. In this case, the modes
of the bind arguments must match the modes of any PL/SQL program parameters, as
well as the usage of variables in the dynamic PL/SQL block.

526 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

Here are some guidelines for the use of the USING clause with dynamic PL/SQL
execution:

• A bind variable of mode IN can be provided as any kind of expression of the correct
type: a literal value, named constant, variable, or complex expression. The expres-
sion is evaluated and then passed to the dynamic PL/SQL block.

• You must provide a variable to receive the outgoing value for a bind variable of
mode OUT or IN OUT.

• You can bind values only to variables in the dynamic PL/SQL block that have a
SQL type. If a procedure has a Boolean parameter, for example, that Boolean can-
not be set (or retrieved) with the USING clause.

Let’s take a look at how this works with a few examples. Here is a procedure with IN,
OUT, and IN OUT parameters:

PROCEDURE analyze_new_technology (
 tech_name IN VARCHAR2,
 analysis_year IN INTEGER,
 number_of_adherents IN OUT NUMBER,
 projected_revenue OUT NUMBER
)

Because I have four parameters, any dynamic invocation of this procedure must include
a USING clause with four elements. Because I have two IN parameters, the first two of
those elements can be literal values or expressions. The second two elements must be
the names of variables because the parameter modes are OUT or IN OUT. Here is an
example of a dynamic invocation of this procedure:

DECLARE
 devoted_followers NUMBER;
 est_revenue NUMBER;
BEGIN
 EXECUTE IMMEDIATE
 'BEGIN
 analyze_new_technology (:p1, :p2, :p3, :p4); END;'
 USING 'Java', 2002, IN OUT devoted_followers, OUT est_revenue;
END;

Duplicate Placeholders
In a dynamically constructed and executed SQL string, NDS associates placeholders
with USING clause bind arguments by position rather than by name. The treatment of
multiple placeholders with the same name varies, however, according to whether you
are using dynamic SQL or dynamic PL/SQL. You need to follow these rules:

• When you are executing a dynamic SQL string (DML or DDL—in other words,
the string does not end in a semicolon), you must supply an argument for each
placeholder, even if there are duplicates.

Binding Variables | 527

Download at WoweBook.Com

• When you are executing a dynamic PL/SQL block (the string ends in a semicolon),
you must supply an argument for each unique placeholder.

Here is an example of a dynamic SQL statement with duplicate placeholders; notice
the repetition of the val_in argument:

PROCEDURE updnumval (
 col_in IN VARCHAR2,
 start_in IN DATE, end_in IN DATE,
 val_in IN NUMBER)
IS
 dml_str VARCHAR2(32767) :=
 'UPDATE emp SET ' || col_in || ' = :val
 WHERE hiredate BETWEEN :lodate AND :hidate
 AND :val IS NOT NULL';
BEGIN
 EXECUTE IMMEDIATE dml_str
 USING val_in, start_in, end_in, val_in;
END;

And here is a dynamic PL/SQL block with a duplicate placeholder; notice that val_in
is supplied only once:

PROCEDURE updnumval (
 col_in IN VARCHAR2,
 start_in IN DATE, end_in IN DATE,
 val_in IN NUMBER)
IS
 dml_str VARCHAR2(32767) :=
 'BEGIN
 UPDATE emp SET ' || col_in || ' = :val
 WHERE hiredate BETWEEN :lodate AND :hidate
 AND :val IS NOT NULL;
 END;';
BEGIN
 EXECUTE IMMEDIATE dml_str
 USING val_in, start_in, end_in;
END;

Passing NULL Values
You will encounter special moments when you want to pass a NULL value as a bind
argument, as follows:

EXECUTE IMMEDIATE
 'UPDATE employee SET salary = :newsal
 WHERE hire_date IS NULL'
 USING NULL;

You will, however, get this error:

PLS-00457: in USING clause, expressions have to be of SQL types

Basically, this is saying that NULL has no datatype, and “no datatype” is not a valid
SQL datatype.

528 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

So what should you do if you need to pass in a NULL value? You can do one of two
things:

• Hide the NULL value behind a variable façade, most easily done with an unini-
tialized variable, as shown here:

DECLARE
 /* Default initial value is NULL */
 no_salary_when_fired NUMBER;
BEGIN
 EXECUTE IMMEDIATE
 'UPDATE employee SET salary = :newsal
 WHERE hire_date IS NULL'
 USING no_salary_when_fired;
END;

• Use a conversion function to convert the NULL value to a typed value explicitly:

BEGIN
 EXECUTE IMMEDIATE
 'UPDATE employee SET salary = :newsal
 WHERE hire_date IS NULL'
 USING TO_NUMBER (NULL);
END;

Working with Objects and Collections
One of the most important advantages of NDS over DBMS_SQL is its support for
datatypes such as objects and collections. You don’t need to change the structure of
the code you write in NDS to use it with these datatypes.

Suppose that I am building an internal administrative system for the national health
management corporation Health$.Com. To reduce costs, the system will work in a
distributed manner, creating and maintaining separate tables of customer information
for each for-profit hospital owned by Health$.Com.

I’ll start by defining an object type (person) and VARRAY type (preexist-
ing_conditions), as follows:

/* File on web: health$.pkg */
CREATE OR REPLACE TYPE person AS OBJECT (
 name VARCHAR2(50), dob DATE, income NUMBER);
/
CREATE OR REPLACE TYPE preexisting_conditions IS TABLE OF VARCHAR2(25);
/

Once these types are defined, I can build a package to manage my most critical health-
related information—data needed to maximize profits at Health$.Com. Here is the
specification:

PACKAGE health$
AS
 PROCEDURE setup_new_hospital (hosp_name IN VARCHAR2);

Working with Objects and Collections | 529

Download at WoweBook.Com

 PROCEDURE add_profit_source (
 hosp_name IN VARCHAR2,
 pers IN Person,
 cond IN preexisting_conditions);

 PROCEDURE minimize_risk (
 hosp_name VARCHAR2,
 min_income IN NUMBER := 100000,
 max_preexist_cond IN INTEGER := 0);

 PROCEDURE show_profit_centers (hosp_name VARCHAR2);
 END health$;

With this package, I can do the following:

• Set up a new hospital, which means create a new table to hold information about
that hospital. Here’s the implementation from the body:

FUNCTION tabname (hosp_name IN VARCHAR2) IS
BEGIN
 RETURN hosp_name || '_profit_center';
END;

PROCEDURE setup_new_hospital (hosp_name IN VARCHAR2) IS
BEGIN
 EXECUTE IMMEDIATE
 'CREATE TABLE ' || tabname (hosp_name) || ' (
 pers Person,
 cond preexisting_conditions)
 NESTED TABLE cond STORE AS cond_st';
END;

• Add a “profit source” (formerly known as a “patient”) to the hospital, including
her preexisting conditions. Here’s the implementation from the body:

PROCEDURE add_profit_source (
 hosp_name IN VARCHAR2,
 pers IN Person,
 cond IN preexisting_conditions)
IS
BEGIN
 EXECUTE IMMEDIATE
 'INSERT INTO ' || tabname (hosp_name) ||
 ' VALUES (:revenue_generator, :revenue_inhibitors)'
 USING pers, cond;
END;

• The use of objects and collections is transparent. I could be inserting scalars like
numbers and dates, and the syntax and code would be the same.

• Minimize the risk to the health maintenance organization’s bottom line by remov-
ing any patients who have too many preexisting conditions or too little income.
This is the most complex of the programs; here is the implementation:

PROCEDURE minimize_risk (
 hosp_name VARCHAR2,
 min_income IN NUMBER := 100000,

530 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

 max_preexist_cond IN INTEGER := 1)
IS
 cv RefCurTyp;
 human Person;
 known_bugs preexisting_conditions;

 v_table VARCHAR2(30) := tabname (hosp_name);
 v_rowid ROWID;
BEGIN
 /* Find all rows with more than the specified number
 of preconditions and deny them coverage. */
 OPEN cv FOR
 'SELECT ROWID, pers, cond
 FROM ' || v_table || ' alias
 WHERE (SELECT COUNT(*) FROM TABLE (alias.cond))
 > ' ||
 max_preexist_cond ||
 ' OR
 alias.pers.income < ' || min_income;
 LOOP
 FETCH cv INTO v_rowid, human, known_bugs;
 EXIT WHEN cv%NOTFOUND;
 EXECUTE IMMEDIATE
 'DELETE FROM ' || v_table || ' WHERE ROWID = :rid'
 USING v_rowid;
 END LOOP;
 CLOSE cv;
END;

I decided to retrieve the ROWID of each profit source so that when I do
the DELETE it would be easy to identify the row. It would be awfully
convenient to make the query FOR UPDATE, and then use “WHERE
CURRENT OF cv” in the DELETE statement, but that is not possible
for two reasons: (1) The cursor variable would have to be globally ac-
cessible to be referenced inside a dynamic SQL statement; and (2) You
cannot declare cursor variables in packages because they don’t have
persistent state. See “Dynamic PL/SQL” on page 531 for more details.

Dynamic PL/SQL
Dynamic PL/SQL offers some of the most interesting and challenging coding oppor-
tunities. Think of it: while a user is running your application, you can take advantage
of NDS to do any of the following:

• Create a program, including a package that contains globally accessible data
structures.

• Obtain (and modify) by name the value of global variables.

• Call functions and procedures whose names are not known at compile time.

Dynamic PL/SQL | 531

Download at WoweBook.Com

I have used this technique to build very flexible code generators, softcoded calculation
engines for users, and much more. Dynamic PL/SQL allows you to work at a higher
level of generality, which can be both challenging and exhilarating.

There are some rules and tips you need to keep in mind when working with dynamic
PL/SQL blocks and NDS:

• The dynamic string must be a valid PL/SQL block. It must start with the DECLARE
or BEGIN keyword, and end with an END statement and semicolon. The string
will not be considered PL/SQL code unless it ends with a semicolon.

• In your dynamic block, you can access only PL/SQL code elements that have global
scope (standalone functions and procedures, and elements defined in the specifi-
cation of a package). Dynamic PL/SQL blocks execute outside the scope of the
local enclosing block.

• Errors raised within a dynamic PL/SQL block can be trapped and handled by the
local block in which the string was run with the EXECUTE IMMEDIATE
statement.

Build Dynamic PL/SQL Blocks
Let’s explore these rules. First, I will build a little utility to execute dynamic PL/SQL:

/* File on web: dynplsql.sp */
PROCEDURE dynPLSQL (blk IN VARCHAR2)
IS
BEGIN
 EXECUTE IMMEDIATE
 'BEGIN ' || RTRIM (blk, ';') || '; END;';
END;

This one program encapsulates many of the rules mentioned previously for PL/SQL
execution. By enclosing the string within a BEGIN-END anonymous block, I guarantee
that whatever I pass in will be executed as a valid PL/SQL block. For instance, I can
execute the calc_totals procedure dynamically as simply as this:

SQL> exec dynPLSQL ('calc_totals');

Now let’s use this program to examine what kind of data structures you can reference
within a dynamic PL/SQL block. In the following anonymous block, I want to use
dynamic SQL to assign a value of 5 to the local variable num:

<<dynamic>>
DECLARE
 num NUMBER;
BEGIN
 dynPLSQL ('num := 5');
END;

532 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

This string is executed within its own BEGIN-END block, which appears to be a nested
block within the anonymous block named “dynamic”. Yet when I execute this script,
I receive the following error:

PLS-00201: identifier 'NUM' must be declared
ORA-06512: at "SCOTT.DYNPLSQL", line 4

The PL/SQL engine is unable to resolve the reference to the variable named num. I get
the same error even if I qualify the variable name with its block name:

<<dynamic>>
DECLARE
 num NUMBER;
BEGIN
 /* Also causes a PLS-00302 error! */
 dynPLSQL ('dynamic.num := 5');
END;

Now suppose that I define the num variable inside a package as follows:

PACKAGE pkgvars
IS
 num NUMBER;
END pkgvars;

I can now successfully execute the dynamic assignment to this newly defined variable:

BEGIN
 dynPLSQL ('pkgvars.num := 5');
END;

What’s the difference between these two pieces of data? In my first attempt, the variable
num is defined locally in the anonymous PL/SQL block. In my second attempt, num
is a public global variable defined in the pkgvars package. This distinction makes all
the difference with dynamic PL/SQL.

It turns out that a dynamically constructed and executed PL/SQL block is not treated
as a nested block; instead, it is handled as if it were a procedure or function called from
within the current block. So any variables local to the current or enclosing blocks are
not recognized in the dynamic PL/SQL block; you can make references only to globally
defined programs and data structures. These PL/SQL elements include standalone
functions and procedures and any elements defined in the specification of a package.

Fortunately, the dynamic block is executed within the context of the calling block. If
you have an exception section within the calling block, it will trap exceptions raised in
the dynamic block. So if I execute this anonymous block in SQL*Plus:

BEGIN
 dynPLSQL ('undefined.packagevar := ''abc''');
EXCEPTION
 WHEN OTHERS
 THEN
 DBMS_OUTPUT.PUT_LINE (SQLCODE);
END;

Dynamic PL/SQL | 533

Download at WoweBook.Com

I will not get an unhandled exception.

The assignment performed in this anonymous block is an example of
indirect referencing. I don’t reference the variable directly, but instead
do so by specifying the name of the variable. The Oracle Forms Builder
product (formerly known as SQL*Forms and Oracle Forms) offers an
implementation of indirect referencing with the NAME_IN and COPY
programs. This feature allows developers to build logic that can be
shared across all forms in the application. PL/SQL does not support
indirect referencing, but you can implement it with dynamic PL/SQL.
See the dynvar.pkg file on the book’s web site for an example of such an
implementation.

The following sections offer a few more examples of dynamic PL/SQL to spark your
interest and, perhaps, inspire your creativity.

Replace Repetitive Code with Dynamic Blocks
This is a true story, I kid you not. During a consulting stint at an insurance company
here in Chicago, I was asked to see what I could do about a particularly vexing program.
It was very large and continually increased in size—soon it would be too large to even
compile. Much to my amazement, this is what the program looked like:

PROCEDURE process_line (line IN INTEGER)
IS
BEGIN
 IF line = 1 THEN process_line1;
 ELSIF line = 2 THEN process_line2;
 ...
 ELSIF line = 514 THEN process_line514;
 ...
 ELSIF line = 2057 THEN process_line2057;
 END IF;
END;

Each one of those line numbers represented fine print in an insurance policy that helped
the company achieve its primary objective (minimizing the payment of claims). For
each line number, there was a “process_line” program that handled those details. And
as the insurance company added more and more exceptions to the policy, the program
got bigger and bigger. Not a very scalable approach to programming!

To avoid this kind of mess, a programmer should be on the lookout for repetition of
code. If you can detect a pattern, you can either create a reusable program to encapsulate
that pattern, or you can explore the possibility of expressing that pattern as a dynamic
SQL construction.

At the time, I fixed the problem using DBMS_SQL, but dynamic SQL would have been
a perfect match. Here’s the NDS implementation:

534 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

PROCEDURE process_line (line IN INTEGER)
IS
BEGIN
 EXECUTE IMMEDIATE
 'BEGIN process_line' || line || '; END;';
END;

From thousands of lines of code down to one executable statement! Of course, in most
cases, identification of the pattern and conversion of that pattern into dynamic SQL
will not be so straightforward. Still, the potential gains are enormous.

Recommendations for NDS
By now, you should have a solid understanding of how native dynamic SQL works in
PL/SQL. This section covers some topics you should be aware of as you start to build
production applications with this PL/SQL feature.

Use Invoker Rights for Shared Programs
I have created a number of useful generic programs in my presentation of NDS, in-
cluding functions and procedures that do the following:

• Execute any DDL statement

• Return the count of rows in any table

• Return the count for each grouping by specified column

These are pretty darn useful utilities, and I want to let everyone on my development
team use them. So I compile them into the COMMON schema and grant EXECUTE
authority on the programs to PUBLIC.

However, there is a problem with this strategy. When Sandra connects to her SANDRA
schema and executes this command:

SQL> EXEC COMMON.exec_DDL ('create table temp (x date)');

she will inadvertently create a table in the COMMON schema—unless I take advantage
of the invoker rights model, which is described in detail in Chapter 24. The invoker
rights model means that you define your stored programs so that they execute under
the authority of and the privileges of the invoking schema rather than the defining
schema (which is the default starting with Oracle8i Database and the only option prior
to that release).

Fortunately, it’s easy to take advantage of this new feature. Here is a version of my
exec_ddl procedure that executes any DDL statement, but always has an impact on the
calling or invoking schema:

PROCEDURE exec_DDL (ddl_string IN VARCHAR2)
 AUTHID CURRENT_USER
IS

Recommendations for NDS | 535

Download at WoweBook.Com

BEGIN
 EXECUTE IMMEDIATE ddl_string;
END;

I recommend that you use the AUTHID CURRENT_USER clause in all of your dy-
namic SQL programs, particularly in those you plan to share among a group of
developers.

Anticipate and Handle Dynamic Errors
Any robust application needs to anticipate and handle errors. Error detection and cor-
rection with dynamic SQL can be especially challenging.

Sometimes the most challenging aspect of building and executing dynamic SQL pro-
grams is getting the string of dynamic SQL correct. You might be combining a list of
columns in a query with a list of tables and then a WHERE clause that changes with
each execution. You have to concatenate all that stuff, getting the commas right, the
ANDs and ORs right, and so on. What happens if you get it wrong?

Well, the Oracle database raises an error. This error usually tells you exactly what is
wrong with the SQL string, but that information can still leave much to be desired.
Consider the following nightmare scenario: I am building the most complicated
PL/SQL application ever. It uses dynamic SQL left and right, but that’s OK. I am a pro
at NDS. I can, in a flash, type EXECUTE IMMEDIATE, OPEN FOR, and all the other
statements I need. I blast through the development phase, and rely on some standard
exception-handling programs I have built to display an error message when an excep-
tion is encountered.

Then the time comes to test my application. I build a test script that runs through a lot
of my code; I place it in a file named testall.sql (you’ll find it on the book’s web site).
With trembling fingers, I start my test:

SQL> @testall

And, to my severe disappointment, here is what shows up on my screen:

ORA-00942: table or view does not exist
ORA-00904: invalid column name
ORA-00921: unexpected end of SQL command
ORA-00936: missing expression

Now, what am I supposed to make of all these error messages? Which error message
goes with which SQL statement? Bottom line: when you do lots of dynamic SQL, it is
very easy to get very confused and waste lots of time debugging your code—unless you
take precautions as you write your dynamic SQL.

Here are my recommendations:

• Always include an error-handling section in code that calls EXECUTE IMMEDI-
ATE and OPEN FOR.

536 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

• In each handler, record and/or display the error message and the SQL statement
when an error occurs.

• You might also want to consider adding a “trace” in front of these statements so
that you can easily watch the dynamic SQL as it constructed and executed.

How do these recommendations translate into changes in your code? First, let’s apply
these changes to the exec_ddl routine, and then generalize from there. Here is the
starting point:

PROCEDURE exec_ddl (ddl_string IN VARCHAR2)
 AUTHID CURRENT_USER IS
BEGIN
 EXECUTE IMMEDIATE ddl_string;
END;

Now let’s add an error-handling section to show us problems when they occur:

/* File on web: execddl.sp */
PROCEDURE exec_ddl (ddl_string IN VARCHAR2)
 AUTHID CURRENT_USER IS
BEGIN
 EXECUTE IMMEDIATE ddl_string;
EXCEPTION
 WHEN OTHERS
 THEN
 DBMS_OUTPUT.PUT_LINE (
 'Dynamic SQL Failure: ' || DBMS_UTILITY.FORMAT_ERROR_STACK);
 DBMS_OUTPUT.PUT_LINE (
 ' on statement: "' || ddl_string || '"');
 RAISE;
END;

When I use this version to attempt to create a table using really bad syntax, this is what
I see:

SQL> EXEC execddl ('create table x')
Dynamic SQL Failure: ORA-00906: missing left parenthesis
 on statement: "create table x"

Of course, in your production version, you might want to consider something a bit
more sophisticated than the DBMS_OUTPUT built-in package.

With DBMS_SQL, if your parse request fails, and you do not explicitly
close your cursor in the error section, that cursor remains open (and
uncloseable), leading to possible ORA-01000: maximum open cursors
exceeded errors. This will not happen with NDS; cursor variables de-
clared in a local scope are automatically closed—and the memory
released—when the block terminates.

Now let’s broaden our view a bit: when you think about it, the exec_ddl procedure is
not really specific to DDL statements. It can be used to execute any SQL string that

Recommendations for NDS | 537

Download at WoweBook.Com

does not require either USING or INTO clauses. From that perspective, you now have
a single program that can and should be used in place of a direct call to EXECUTE
IMMEDIATE; it has all that error handling built-in. I supply such a procedure in the
ndsutil package.

I could even create a similar program for OPEN FOR—again, only for situations that
do not require a USING clause. Because OPEN FOR sets a cursor value, I would prob-
ably want to implement it as a function, which would return a type of weak REF CUR-
SOR. This leads right to a packaged implementation along these lines:

PACKAGE ndsutil
IS
 FUNCTION openFor (sql_string IN VARCHAR2) RETURN SYS_REFCURSOR;
END;

This NDS utility package contains the complete implementation of this function; the
body is quite similar to the exec_dll procedure shown earlier.

Use Binding Rather Than Concatenation
In most situations, you can take two different paths to insert program values into your
SQL string: binding and concatenation. The following table contrasts these approaches
for a dynamic UPDATE statement:

Binding Concatenation
EXECUTE IMMEDIATE
 'UPDATE ' ||
 tab 'SET sal = :new_sal' USING v_sal;

EXECUTE IMMEDIATE
 'UPDATE ' ||
 tab 'SET sal = '||
 v_sal;

Binding involves the use of placeholders and the USING clause; concatenation short-
cuts that process by adding the values directly to the SQL string. When should you use
each approach? I recommend that you bind arguments whenever possible (see the next
section for limitations on binding) rather than rely on concatenation. There are four
reasons to take this approach:

Binding is usually faster
When you bind in a value, the SQL string does not contain the value, just the
placeholder name. Therefore, you can bind different values to the same SQL state-
ment without changing that statement. Because it is the same SQL statement, your
application can more likely take advantage of the preparsed cursors that are cached
in the SGA of the database.

Note that I included the word “usually” here, because there are very few absolutes
in the world of Oracle optimization. For example, one possible drawback with
binding is that the cost-based optimizer has less information with which to work
and might not come up with the best explain plan for your SQL statement.

538 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

Binding is easier to write and maintain
When you bind, you don’t have to worry about datatype conversion; it is all han-
dled for you by the NDS engine. In fact, binding minimizes datatype conversion
because it works with the native datatypes. If you use concatenation, you will often
need to write very complex, error-prone string expressions involving multiple sin-
gle quotes, TO_DATE and TO_CHAR function calls, and so on.

Binding helps avoid implicit conversions
If you concatenate, you might inadvertently leave it up to the database to perform
implicit conversions. Under some circumstances, the conversion that the database
applies might not be the one you wanted; it could negate the use of indexes.

Binding negates the chance of code injection
One of the greatest dangers with dynamic SQL is that you write very generalized
code that is intended to be used in a certain way. Yet, depending on what the user
passes in to your string, the resulting dynamic statement could perform very dif-
ferent kinds of operations. That is, users can “inject” unwanted actions into your
SQL statement. See the following section for an example.

There are some potential downsides to binding, however. Bind variables will negate
the use of any histogram statistics because the bind values are assigned only after the
statement has been parsed. The cost-based optimizer may, therefore, have less infor-
mation to work with, and be unable to come up with the best execution plan for your
SQL statement.

For PL/SQL developers, I believe the primary emphasis should be how to write clean,
easy to understand, and maintainable code. If I rely on lots of concatenation, I end up
with statements that look like this:

EXECUTE IMMEDIATE
 'UPDATE employee SET salary = ' || val_in ||
 ' WHERE hire_date BETWEEN ' ||
 ' TO_DATE (''' || TO_CHAR (v_start) || ''')' ||
 ' AND ' ||
 ' TO_DATE (''' || TO_CHAR (v_end) || ''')';

A switch to binding makes my code much more understandable:

EXECUTE IMMEDIATE
 'UPDATE employee SET salary = :val
 WHERE hire_date BETWEEN :lodate AND :hidate'
 USING v_sal, v_start, v_end;

If there happen to be some scenarios in which concatenation is actually more efficient,
then don’t worry about that until you or your DBA identify a particular dynamic SQL
statement with binding as the source of the problem. In other words, move from bind-
ing to concatenation only when a bottleneck is identified—on an exception basis.

Recommendations for NDS | 539

Download at WoweBook.Com

Minimize the Dangers of Code Injection
Many web-based applications offer wonderful flexibility to the end user. This flexibility
is often accomplished through the execution of dynamic SQL and PL/SQL blocks.
Consider the following example of a very general “get rows” procedure:

/* File on web: code_injection.sql */
PROCEDURE get_rows (
 table_in IN VARCHAR2, where_in IN VARCHAR2
)
IS
BEGIN
 EXECUTE IMMEDIATE
 'DECLARE
 l_row ' || table_in || '%ROWTYPE;
 BEGIN
 SELECT * INTO l_row
 FROM ' || table_in || ' WHERE ' || where_in || ';
 END;';
END get_rows;

This looks like such an innocent program, but in fact it opens up gaping holes in your
application. Consider the following block:

BEGIN
 get_rows ('EMPLOYEE'
 ,'employee_id=7369;
 EXECUTE IMMEDIATE
 ''CREATE PROCEDURE backdoor (str VARCHAR2)
 AS BEGIN EXECUTE IMMEDIATE str; END;''');
END;
/

After running this code, I have created a “back door” procedure that will execute any
statement I pass in as a dynamic string. I could, for example, use UTL_FILE to retrieve
the contents of any file on the system, then create (and drop) any table or object I desire,
restricted only by whatever privileges are defined for the owner’s schema.

Code injection, also known as SQL injection, can compromise seriously the security of
any application. The execution of dynamic PL/SQL blocks offers the greatest oppor-
tunity for injection. While this is a very big topic that cannot be treated fully in this
book, I offer the following recommendations to minimize the chances of injection
occurring with your application. Chapter 23 providers additional security
recommendations.

Restrict privileges tightly on user schemas

The best way to minimize the risk of injection is to make sure that any schema to which
an outside user connects has severely restricted privileges.

Do not let such a schema create database objects, remove database objects, or directly
access tables. Do not allow the execution of supplied packages that interact (or can be

540 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

used to interact) with the operating system, such as UTL_SMTP, UTL_FILE,
UTL_TCP (and related packages), and DBMS_PIPE.

Such a schema should have privileges only to execute stored programs defined in an-
other schema. This PL/SQL code may then be designed to carefully allow only a re-
stricted set of operations. When defining programs in these executable schemas that
use dynamic SQL, be sure to define the subprogram as AUTHID CURRENT_USER.
That way, all SQL statements will be executed using the limited privileges of the cur-
rently-connected schema.

Use bind variables whenever possible

Strict enforcement of the use of bind variables, plus built-in analysis and automated
rejection of potentially dangerous strings, can help minimize the danger of injection.

By requiring binding, you can lose some flexibility. In the get_rows procedure, I would
need to replace the completely dynamic WHERE clause with something less generic,
but more tightly fitting the expected behavior of the application. Here’s an example
using a variation of the get_rows procedure:

PROCEDURE get_rows (
 table_in IN VARCHAR2, value1_in in VARCHAR2, value2_in IN DATE
)
IS
 l_where VARCHAR2(32767);
BEGIN
 IF table_in = 'EMPLOYEES'
 THEN
 l_where := 'last_name = :name AND hire_date < :hdate';
 ELSIF table_in = 'DEPARTMENTS'
 THEN
 l_where := 'name LIKE :name AND incorporation_date = :hdate';
 ELSE
 RAISE_APPLICATION_ERROR (
 −20000, 'Invalid table name for get_rows: ' || table_in);
 END IF;
 EXECUTE IMMEDIATE
 'DECLARE l_row ' || table_in || '%ROWTYPE;
 BEGIN
 SELECT * INTO l_row
 FROM ' || table_in || ' WHERE ' || l_where || ';
 END;';
 USING value1_in, value2_in
END get_rows;
/

In this rewrite, the WHERE clause relies on two bind variables; there is no opportunity
to concatenate a back-door entry point. I also check the table name and make sure it
is one that I expect to see. This will help avoid calls to functions in the FROM clause
(known as table functions), which could also cause aberrant behavior.

Recommendations for NDS | 541

Download at WoweBook.Com

Check dynamic text for dangerous text

The problem with the recommendations in the previous sections is that they rely on
the proactive diligence of an individual developer or DBA to minimize the risk. That
should be done, but perhaps something more could be offered to developers. It is also
possible to include checks in your programs to make sure that the text provided by the
user does not contain “dangerous” characters, such as the semicolon.

I created a utility named SQL Guard that takes another approach: analyze the string
provided by the user to see if it contains a risk of SQL injection. The programmer can
then decide whether or not to execute that statement and perhaps to log the problematic
text. You will find the code and a user’s guide for SQL Guard in the sqlguard.zip file
on the book’s web site.

With SQL Guard, the tests used to determine if there is a risk of SQL injection can be
configured by the user. In other words, SQL Guard comes with a set of predefined tests.
You can remove from or add to that list of tests to check for SQL injection patterns that
may be specific to your own application environment.

It isn’t possible to ever come up with a proactive mechanism that will trap, with 100%
certainty, all possible SQL injection. Having said all that, if you decide to use SQL
Guard, you should (it seems to me) be able to achieve the following:

• Increase awareness of SQL injection among your developers.

• Thwart the most common SQL injection attacks.

• More easily analyze your code base to identify possible injection pathways.

Use DBMS_ASSERT to validate inputs

Use the supplied DBMS_ASSERT package to ensure that a user input that is sup-
posed to be a valid SQL object name (for example, a schema name or table name) is, in
fact, valid. The DBMS_ASSERT package was first documented in Oracle Database
11g. It has since been backported to each of these Oracle versions: 8.1, 9.2, 10.1, and
10.2. In some cases, it is available in the latest patchset; in others, it is available in a
Critical Patch Update. You may need to contact Oracle Support before you can start
using the package.

The DBMS_ASSERT.SIMPLE_SQL_NAME is purely an asserter: you pass it the string
that should contain a valid SQL name. If it is valid, the function returns that string,
unchanged. If it is not valid, Oracle raises the DBMS_ASSERT.INVALID_SQL_NAME
exception.

For a much more comprehensive treatment of this issue, check out the whitepaper titled
“How to write SQL injection proof PL/SQL,” available on the Oracle Technology
Network.

542 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

When to Use DBMS_SQL
Native dynamic SQL should be your first choice (over DBMS_SQL) to satisfy dynamic
SQL requirements in your PL/SQL programs for the following reasons:

• NDS is much easier to write; you need less code, and the code you write is more
intuitive, leading to many fewer bugs. The code is also much easier to maintain.

• NDS works with all SQL datatypes, including user-defined objects and collection
types (associative arrays, nested tables, and VARRAYs). DBMS_SQL works only
with Oracle7 Database-compatible datatypes.

There are, however, situations when you will want or need to use DBMS_SQL. The
following sections describe these situations.

Parse Very Long Strings
Through Oracle Database 10g, EXECUTE IMMEDIATE executes the contents of a
VARCHAR2 string, with a maximum length of 32K. (What if your SQL statement
exceeds that length? While that scenario is unlikely for SQL statements you write your-
self, generated dynamic SQL statements based on tables with many columns (you can
now have up to 1,000 columns in a table) could easily exceed that limit. DBMS_SQL
to the rescue!

With Oracle Database 11g, EXECUTE IMMEDIATE can execute either
a VARCHAR2 string or a CLOB, whose maximum length is 4GB. A new
overloading of DBMS_SQL.PARSE also accepts a CLOB for parsing.

Use a special overloading of DBMS_SQL.PARSE to parse arbitrarily long SQL and
PL/SQL statements by passing a collection to the built-in that contains the full text of
the dynamic statement. The collection must be of type DBMS_SQL.VARCHAR2S
(maximum bytes per line is 256) or DBMS_SQL.VARCHAR2A (maximum bytes per
line is 32,676).

To demonstrate this approach, I show below a procedure that reads the contents of a
file and executes it as a DDL statement or DML statement without any placeholders.
As I am sure you have found with your own package definitions, such files can easily
and often exceed 32K in length. I focus on the DBMS_SQL-specific steps; please check
the file for the full implementation.

 /* File on web: compile_from_file.sp */
 1 PROCEDURE compile_from_file (dir_in IN VARCHAR2
 2 , file_in IN VARCHAR2
 3)
 4 IS
 5 l_file UTL_FILE.file_type;
 6 l_lines DBMS_SQL.varchar2s;

When to Use DBMS_SQL | 543

Download at WoweBook.Com

 7 l_cur PLS_INTEGER := DBMS_SQL.open_cursor;
 8
 9 PROCEDURE read_file (lines_out IN OUT DBMS_SQL.varchar2s)
10 IS
11 BEGIN
12 l_file := UTL_FILE.fopen (dir_in, file_in, 'R');
13
14 LOOP
15 UTL_FILE.get_line (l_file, l_lines (lines_out.COUNT + 1));
16 END LOOP;
17 EXCEPTION
18 WHEN NO_DATA_FOUND
19 THEN
20 UTL_FILE.fclose (l_file);
21 END read_file;
22 BEGIN
23 read_file (l_lines);
24 /* Parse all the lines in the array (going from FIRST to LAST) */
25 DBMS_SQL.parse (l_cur
26 , l_lines
27 , l_lines.FIRST
28 , l_lines.LAST
29 , TRUE
30 , DBMS_SQL.native
31);
32 DBMS_SQL.close_cursor (l_cur);
33 END compile_from_file;

Here is an explanation of the key sections of this program:

Line(s) Significance

6–7 Declare the l_lines local collection based on the DBMS_SQL type; then declare and open a cursor for use by
DBMS_SQL.PARSE

9–21 Transfer the contents of the file to the l_lines collection

25–31 Call the collection-based overloading of DBMS_SQL.PARSE, passing it the collection, and specifying that the entire
contents of the collection be used (from l_lines.FIRST to l_lines.LAST)

Obtain Information About Query Columns
DBMS_SQL allows you to describe the columns of your dynamic cursor, returning
information about each column in an associative array of records. This capability offers
the possibility of writing very generic cursor-processing code; this program may come
in particularly handy when you are writing method 4 dynamic SQL, and you are not
certain how many columns are being selected.

When you call this program, you need to have declared a PL/SQL collection based on
the DBMS_SQL.DESC_TAB collection type (or DESC_TAB2, if your query might re-
turn column names that are greater than 30 characters in length). You can then use
collection methods to traverse the table and extract the needed information about the

544 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

cursor. The following anonymous block shows the basic steps you will perform when
working with this built-in:

DECLARE
 cur PLS_INTEGER := DBMS_SQL.OPEN_CURSOR;
 cols DBMS_SQL.DESC_TAB;
 ncols PLS_INTEGER;
BEGIN
 -- Parse the query.
 DBMS_SQL.PARSE
 (cur, 'SELECT hire_date, salary FROM employees', DBMS_SQL.NATIVE);
 -- Retrieve column information
 DBMS_SQL.DESCRIBE_COLUMNS (cur, ncols, cols);
 -- Display each of the column names
 FOR colind IN 1 .. ncols
 LOOP
 DBMS_OUTPUT.PUT_LINE (cols (colind).col_name);
 END LOOP;
 DBMS_SQL.CLOSE_CURSOR (cur);
END;

To simplify your use of DESCRIBE_COLUMNS, I have created a package that hides
much of the underlying detail, making it easier to use this feature. Here is the package
specification:

/* File on web: desccols.pkg */
PACKAGE desccols
IS

 FUNCTION for_query (sql_in IN VARCHAR2)
 RETURN DBMS_SQL.desc_tab;

 FUNCTION for_cursor (cur IN PLS_INTEGER)
 RETURN DBMS_SQL.desc_tab;

 PROCEDURE show_columns (
 col_list_in IN DBMS_SQL.desc_tab
);
END desccols;

You can also use the for_query function when you want to get information about the
columns of a dynamic query, but might not otherwise be using DBMS_SQL.

Here is a script demonstrating the usage of this package:

/* File on web: desccols.sql */
DECLARE
 cur INTEGER := DBMS_SQL.open_cursor;
 tab DBMS_SQL.desc_tab;
BEGIN
 DBMS_SQL.parse (cur
 , 'SELECT last_name, salary, hiredate FROM employees'
 , DBMS_SQL.native
);
 tab := desccols.for_cursor (cur);
 desccols.show (tab);

When to Use DBMS_SQL | 545

Download at WoweBook.Com

 DBMS_SQL.close_cursor (cur);
 --
 tab := desccols.for_query ('SELECT * FROM employees');
 desccols.show (tab);
END;
/

Meet Method 4 Dynamic SQL Requirements
DBMS_SQL supports method 4 dynamic SQL (variable number of columns selected
of variables bound) more naturally than NDS. You have already seen that in order to
implement method 4 with NDS, you must switch to dynamic PL/SQL, which is gen-
erally a higher level of abstraction than many developers want to deal with.

When would you run into method 4? It certainly arises when you build a frontend to
support ad hoc query generation by users, or when you want to build a generic report
program, which constructs the report format and contents dynamically at runtime.
Let’s step through the implementation of a variation on this theme: the construction
of a PL/SQL procedure to display the contents of a table—any table, as specified by
the user at runtime. Here I cover only those aspects pertaining to the dynamic SQL
itself; check out the intab.sp file on the book’s web site for the full implementation.

The “in table” procedural interface

So I will use PL/SQL and DBMS_SQL. But before building any code, I need to come
up with a specification. How will the procedure be called? What information do I need
from my user (a developer, in this case)? What should a user have to type to retrieve
the desired output? I want my procedure (which I call “intab” for “in table”) to accept
the inputs in the following table.

Parameter Description

Name of the table Required. Obviously, a key input to this program.

WHERE clause Optional. Allows you to restrict the rows retrieved by the query. If not specified, all rows are retrieved.
You can also use this parameter to pass in ORDER BY and HAVING clauses, because they follow immediately
after the WHERE clause.

Column name filter Optional. If you don’t want to display all columns in the table, provide a comma-delimited list, and only
those columns will be used.

Given these inputs, the specification for my procedure becomes the following:

PROCEDURE intab (
 table_in IN VARCHAR2
 , where_in IN VARCHAR2 DEFAULT NULL
 , colname_like_in IN VARCHAR2 := '%'
);

Here are some examples of calls to intab, along with their output. First, the entire
contents of the emp table:

546 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

SQL> EXEC intab ('emp');

_ Contents of emp

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

 7369 SMITH CLERK 7902 12/17/80 120000 800 20
 7499 ALLEN SALESMAN 7698 02/20/81 120000 1600 300 30
 7521 WARD SALESMAN 7698 02/22/81 120000 1250 500 30
 7566 JONES MANAGER 7839 04/02/81 120000 2975 20
 7654 MARTIN SALESMAN 7698 09/28/81 120000 1250 1400 30
 7698 BLAKE MANAGER 7839 05/01/81 120000 2850 30
 7782 CLARK MANAGER 7839 06/09/81 120000 2450 10
 7788 SCOTT ANALYST 7566 04/19/87 120000 3000 20
 7839 KING PRESIDENT 11/17/81 120000 5000 10
 7844 TURNER SALESMAN 7698 09/08/81 120000 1500 0 30
 7876 ADAMS CLERK 7788 05/23/87 120000 1100 20
 7900 JAMES CLERK 7698 12/03/81 120000 950 30
 7902 FORD ANALYST 7566 12/03/81 120000 3000 20

And now let’s see just those employees in department 10, specifying a maximum length
of 20 characters for string columns:

SQL> EXEC intab ('emp', 20, 'deptno = 10 ORDER BY sal');

_ Contents of emp

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

 7934 MILLER CLERK 7782 01/23/82 120000 1300 10
 7782 CLARK MANAGER 7839 06/09/81 120000 2450 10
 7839 KING PRESIDENT 11/17/81 120000 5000 10

And now an entirely different table, with a different number of columns:

SQL> EXEC intab ('dept')

_ Contents of dept

DEPTNO DNAME LOC

 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

Notice that the user does not have to provide any information about the structure of
the table. My program will get that information itself—precisely the aspect of intab
that makes it a method 4 dynamic SQL example.

Steps for intab construction

To display the contents of a table, follow these steps:

1. Construct and parse the SELECT statement (using OPEN_CURSOR and PARSE).

When to Use DBMS_SQL | 547

Download at WoweBook.Com

2. Bind all local variables with their placeholders in the query (using
BIND_VARIABLE).

3. Define each column in the cursor for this query (using DEFINE_COLUMN).

4. Execute and fetch rows from the database (using EXECUTE and FETCH_ ROWS).

5. Retrieve values from the fetched row, and place them into a string for display pur-
poses (using COLUMN_VALUE). Then display that string with a call to the
PUT_LINE procedure of the DBMS_OUTPUT package.

My intab implementation does not currently support bind variables. I
assume, in other words, that the where_clause_in argument does not
contain any bind variables. As a result, I will not be exploring in detail
the code required for step 2.

Constructing the SELECT

To extract the data from the table, I have to construct the SELECT statement. The
structure of the query is determined by the various inputs to the procedure (table name,
WHERE clause, etc.) and the contents of the data dictionary. Remember that the user
does not have to provide a list of columns. Instead, I must identify and extract the list
of columns for that table from a data dictionary view. I have decided to use the
ALL_TAB_COLUMNS view in the intab procedure so the user can view the contents
not only of tables he owns (which are accessible in USER_TAB_COLUMNS), but also
any table for which he has SELECT access.

Here is the cursor I use to fetch information about the table’s columns:

CURSOR col_cur
 (owner_in IN VARCHAR2,
 table_in IN VARCHAR2)
IS
 SELECT column_name, data_type,
 data_length,
 data_precision, data_scale
 FROM all_tab_columns
 WHERE owner = owner_in
 AND table_name = table_in;

With this column cursor, I extract the name, datatype, and length information for each
column in the table. How should I store all of this information in my PL/SQL program?
To answer this question, I need to think about how that data will be used. It turns out
that I will use it in many ways—for example:

• To build the select list for the query, I will use the column names.

• To display the output of a table in a readable fashion, I need to provide a column
header that shows the names of the columns over their data. These column names
must be spaced out across the line of data in, well, columnar format. So I need the
column name and the length of the data for that column.

548 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

• To fetch data into a dynamic cursor, I need to establish the columns of the cursor
with calls to DEFINE_COLUMN. For this, I need the column datatype and length.

• To extract the data from the fetched row with COLUMN_VALUE, I need to know
the datatypes of each column, as well as the number of columns.

• To display the data, I must construct a string containing all the data (using
TO_CHAR to convert numbers and dates). Again, I must pad out the data to fit
under the column names, just as I did with the header line.

Therefore, I need to work with the column information several times throughout my
program, yet I do not want to read repeatedly from the data dictionary. As a result,
when I query the column data out of the ALL_TAB_COLUMNS view, I will store that
data in three PL/SQL collections:

Collection Description

colname The names of each column

coltype The datatypes of each column, a string describing the datatype

collen The number of characters required to display the column data

So if the third column of the emp table is SAL, then colname(3) = 'SAL', coltype(3) =
'NUMBER', and collen(3) = 7, and so forth.

The name and datatype information is stored directly from the data dictionary. Cal-
culating the column length is a bit trickier, but also not crucial to learning how to write
method 4 dynamic SQL. I will leave it to the reader to study the file.

I apply all of my logic inside a cursor FOR loop that sweeps through all the columns
for a table (as defined in ALL_COLUMNS). This loop (shown in the following example)
fills my PL/SQL collection:

FOR col_rec IN col_cur (owner_nm, table_nm)
LOOP
 /* Construct select list for query. */
 col_list := col_list || ', ' || col_rec.column_name;

 /* Save datatype and length for calls to DEFINE_COLUMN. */
 col_count := col_count + 1;
 colname (col_count) := col_rec.column_name;
 coltype (col_count) := col_rec.data_type;

 /* Construct column header line. */
 col_header :=
 col_header || ' ' || RPAD (col_rec.column_name, v_length);
END LOOP;

When this loop completes, I have constructed the select list, populated my
PL/SQL collections with the column information I need for calls to
DBMS_SQL.DEFINE_COLUMN and DBMS_SQL.COLUMN_VALUE, and also cre-
ated the column header line. Now that was a busy loop!

When to Use DBMS_SQL | 549

Download at WoweBook.Com

Now it is time to parse the query, and then construct the various columns in the dy-
namic cursor object.

Defining the cursor structure

The parse phase is straightforward enough. I simply cobble together the SQL statement
from its processed and refined components, including, most notably, the column list I
just constructed (the col_list variable):

DBMS_SQL.PARSE
 (cur,
 'SELECT ' || col_list ||
 ' FROM ' || table_in || ' ' || where_clause,
 DBMS_SQL.NATIVE);

Of course, I want to go far beyond parsing. I want to execute this cursor. Before I do
that, however, I must give some structure to the cursor. With DBMS_SQL, when you
open a cursor, you have merely retrieved a handle to a chunk of memory. When you
parse the SQL statement, you have associated a SQL statement with that memory. But
as a next step, I must define the columns in the cursor so that it can actually store
fetched data.

With method 4 dynamic SQL, this association process is complicated. I cannot hard-
code the number or type of calls to DBMS_SQL.DEFINE_COLUMN in my program;
I do not have all the information until runtime. Fortunately, in the case of intab, I
have kept track of each column to be retrieved. Now all I need to do is issue a call to
DBMS_SQL.DEFINE_COLUMN for each row defined in my collection, colname. Be-
fore we go through the actual code, here are some reminders about
DBMS_SQL.DEFINE_COLUMN.

The header for this built-in procedure is as follows:

PROCEDURE DBMS_SQL.DEFINE_COLUMN
 (cursor_handle IN INTEGER,
 position IN INTEGER,
 datatype_in IN DATE|NUMBER|VARCHAR2)

There are three things to keep in mind with this built-in:

• The second argument is a number; DBMS_SQL.DEFINE_COLUMN does not
work with column names—only with the sequential position of the column in the
list.

• The third argument establishes the datatype of the cursor’s column. It does this by
accepting an expression of the appropriate type. You do not, in other words, pass
a string such as “VARCHAR2” to DBMS_SQL.DEFINE_COLUMN. Instead, you
would pass a variable defined as VARCHAR2.

• When you are defining a character-type column, you must also specify the maxi-
mum length of values retrieved into the cursor.

550 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

In the context of the intab procedure, the row in the collection is the Nth position in
the column list. The datatype is stored in the coltype collection, but must be converted
into a call to DBMS_SQL.DEFINE_COLUMN using the appropriate local variable.
These complexities are handled in the following FOR loop:

FOR col_ind IN 1 .. col_count
LOOP
 IF is_string (col_ind)
 THEN
 DBMS_SQL.DEFINE_COLUMN
 (cur, col_ind, string_value, collen (col_ind));

 ELSIF is_number (col_ind)
 THEN
 DBMS_SQL.DEFINE_COLUMN (cur, col_ind, number_value);

 ELSIF is_date (col_ind)
 THEN
 DBMS_SQL.DEFINE_COLUMN (cur, col_ind, date_value);
 END IF;
END LOOP;

When this loop is completed, I will have called DEFINE_COLUMN for each column
defined in the collections. (In my version, this is all columns for a table. In your en-
hanced version, it might be just a subset of all these columns.) I can then execute the
cursor and start fetching rows. The execution phase is no different for method 4 than
it is for any of the other simpler methods. Specify:

fdbk := DBMS_SQL.EXECUTE (cur);

where fdbk is the feedback returned by the call to EXECUTE.

Now for the finale: retrieval of data and formatting for display.

Retrieving and displaying data

I use a cursor FOR loop to retrieve each row of data identified by my dynamic cursor.
If I am on the first row, I will display a header (this way, I avoid displaying the header
for a query that retrieves no data). For each row retrieved, I build the line and then
display it:

LOOP
 fdbk := DBMS_SQL.FETCH_ROWS (cur);
 EXIT WHEN fdbk = 0;

 IF DBMS_SQL.LAST_ROW_COUNT = 1
 THEN
 /* We will display the header information here */
 ...
 END IF;

 /* Construct the line of text from column information here */
 ...

When to Use DBMS_SQL | 551

Download at WoweBook.Com

 DBMS_OUTPUT.PUT_LINE (col_line);
END LOOP;

The line-building program is actually a numeric FOR loop in which I issue my calls to
DBMS_SQL.COLUMN_VALUE. I call this built-in for each column in the table (in-
formation that is stored in—you guessed it—my collections). As you can see below, I
use my is_* functions to determine the datatype of the column and therefore the ap-
propriate variable to receive the value.

Once I have converted my value to a string (necessary for dates and numbers), I pad it
on the right with the appropriate number of blanks (stored in the collen collection) so
that it lines up with the column headers.

col_line := NULL;
FOR col_ind IN 1 .. col_count
LOOP
 IF is_string (col_ind)
 THEN
 DBMS_SQL.COLUMN_VALUE (cur, col_ind, string_value);

 ELSIF is_number (col_ind)
 THEN
 DBMS_SQL.COLUMN_VALUE (cur, col_ind, number_value);
 string_value := TO_CHAR (number_value);

 ELSIF is_date (col_ind)
 THEN
 DBMS_SQL.COLUMN_VALUE (cur, col_ind, date_value);
 string_value := TO_CHAR (date_value, date_format_in);
 END IF;

 /* Space out the value on the line
 under the column headers. */
 col_line :=
 col_line || ' ' ||
 RPAD (NVL (string_value, ' '), collen (col_ind));
END LOOP;

There you have it. A very generic procedure for displaying the contents of a database
table from within a PL/SQL program. Again, check out intab.sp for the full details; the
intab_dbms_sql.sp file also contains a version of this procedure that is updated to take
advantage of more recent database features and is more fully documented.

Minimize Parsing of Dynamic Cursors
One of the drawbacks of EXECUTE IMMEDIATE is that each time the dynamic string
is executed it will be re-prepared, which will usually involve parsing, optimization, and
plan generation. For most dynamic SQL requirements, the overhead of these steps will
be compensated for by other benefits of NDS (in particular, the avoidance of calls to a
PL/SQL API as happens with DBMS_SQL). In some cases, however, the parse phase
may be quite expensive. For such scenarios, DBMS_SQL may be a better solution,

552 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

precisely for the same reason that usually makes this built-in package unattractive: you
have control over—and have to code for—each explicit step in the process.

With DBMS_SQL, you can explicitly avoid the parse phase when you know that the
SQL string you are executing dynamically is changing only its bind variables. All you
have to do is avoid calling DBMS_SQL.PARSE again, and simply rebind the variable
values with calls to DBMS_SQL.BIND_VARIABLE. Let’s look at a very simple exam-
ple, demonstrating the specific calls you make to the DBMS_SQL package.

The following anonymous block executes a dynamic query inside a loop:

 1 DECLARE
 2 l_cursor pls_INTEGER;
 3 l_result pls_INTEGER;
 4 BEGIN
 5 FOR i IN 1 .. counter
 6 LOOP
 7 l_cursor := DBMS_SQL.open_cursor;
 8 DBMS_SQL.parse
 9 (l_cursor, 'SELECT ... where col = ' || i , DBMS_SQL.native);
 10 l_result := DBMS_SQL.EXECUTE (l_cursor);
 11 DBMS_SQL.close_cursor (l_cursor);
 12 END LOOP;
 13 END;

Within my loop, I take the following actions:

Line(s) Description

7 Obtain a cursor, simply a pointer to memory used by DBMS_SQL

8–9 Parse the dynamic query, after concatenating in the only variable element, the variable i

10 Execute the query

11 Close the cursor

This is all valid (and, of course, you would usually follow up the execution of the query
with fetch and retrieve steps), yet it also is a misuse of DBMS_SQL. Consider the fol-
lowing rewrite of the same steps:

DECLARE
 l_cursor PLS_INTEGER;
 l_result PLS_INTEGER;
BEGIN
 l_cursor := DBMS_SQL.open_cursor;
 DBMS_SQL.parse (l_cursor, 'SELECT ... WHERE col = :value'
 , DBMS_SQL.native);

 FOR i IN 1 .. counter
 LOOP
 DBMS_SQL.bind_variable (l_cursor, 'value', i);
 l_result := DBMS_SQL.EXECUTE (l_cursor);
 END LOOP;

When to Use DBMS_SQL | 553

Download at WoweBook.Com

 DBMS_SQL.close_cursor (l_cursor);
END;

In this usage of DBMS_SQL, I now declare the cursor only once, because I can reuse
the same cursor with each call to DBMS_SQL.PARSE. I also move the parse call outside
of the cursor. Because the structure of the SQL statement itself doesn’t change, I don’t
need to reparse for each new value of i. So I parse once and then, within the loop, bind
a new variable value into the cursor, and execute. When I am all done (after the loop
terminates), I close the cursor.

The ability to perform each step explicitly and separately gives developers enormous
flexibility (and also headaches from all the code and complexity of DBMS_SQL). If that
is what you need, DBMS_SQL is hard to beat.

If you do use DBMS_SQL in your application, I encourage you to take advantage of
the package found in the dynalloc.pkg file on the book’s web site. This “dynamic allo-
cation” package helps you to:

• Minimize cursor allocation through cursor reuse.

• Perform tight and useful error handling for all DBMS_SQL parse operations.

• Avoid errors trying to open or close cursors that are already opened or closed.

Oracle Database 11g New Features
Oracle Database 11g adds interoperability between native dynamic SQL and
DBMS_SQL: you can now take advantage of the best features of each of these ap-
proaches to obtain the best performance with the simplest implementation. Specifi-
cally, you can now convert a DBMS_SQL cursor to a cursor variable, and vice versa, as
I describe in the following sections.

DBMS_SQL.TO_REFCURSOR Function
Use the DBMS_SQL.TO_REFCURSOR function to convert a cursor number (obtained
through a call to DBMS_SQL.OPEN_CURSOR) to a weakly-typed cursor variable
(declared with the SYS_REFCURSOR type or a weak REF CURSOR type of your own).
You can then fetch data from this cursor variable into local variables, or even pass that
cursor variable to a non-PL/SQL host environment for data retrieval, having hidden all
the complexities of the dynamic SQL processing in the backend.

Before passing a SQL cursor number to the DBMS_SQL.TO_REFCURSOR function,
you must OPEN, PARSE, and EXECUTE it; otherwise, an error occurs. After you con-
vert the cursor, you may not use DBMS_SQL any longer to manipulate that cursor,
including the closing of the cursor. All operations must be done throught the cursor
variable.

554 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

Why would you want to use this function? As noted in previous sections, DBMS_SQL
is sometimes the preferred or only option for certain dynamic SQL operations, in par-
ticular method 4. Suppose I have a situation in which I know the specific columns that
I am selecting, but the WHERE clause of the query has a unknown (at compile time)
number of bind variables. I cannot use EXECUTE IMMEDIATE to execute the dynamic
query because of this (it has a fixed USING clause).

I could use DBMS_SQL from start to finish, but using DBMS_SQL to retrieve rows and
values from within the rows is an onerous amount of work. It is so much easier to use
a regular, old static fetch and even BULK COLLECT.

The following example demonstrates precisely this scenario.

/* File on web: 11g_to_refcursor.sql */
DECLARE
 TYPE strings_t IS TABLE OF VARCHAR2 (200);

 l_cv sys_refcursor;
 l_placeholders strings_t := strings_t ('dept_id');
 l_values strings_t := strings_t ('20');
 l_names strings_t;

 FUNCTION employee_names (
 where_in IN VARCHAR2
 , bind_variables_in IN strings_t
 , placeholders_in IN strings_t
)
 RETURN sys_refcursor
 IS
 l_dyn_cursor NUMBER;
 l_cv sys_refcursor;
 l_dummy PLS_INTEGER;
 BEGIN
 /* Parse the retrieval of last names after appending the WHERE clause.

 NOTE: if you ever write code like this yourself, you MUST take steps
 to minimize the risk of SQL injection. This topic is also covered in
 this chapter. READ IT!
 */
 l_dyn_cursor := DBMS_SQL.open_cursor;
 DBMS_SQL.parse (l_dyn_cursor
 , 'SELECT last_name FROM employees WHERE ' || where_in
 , DBMS_SQL.native
);
 /*
 Bind each of the variables to the named placeholders;
 You cannot use EXECUTE IMMEDIATE for this step if you have
 a variable number of placeholders!
 */
 FOR indx IN 1 .. placeholders_in.COUNT
 LOOP
 DBMS_SQL.bind_variable (l_dyn_cursor
 , placeholders_in (indx)
 , bind_variables_in (indx)

Oracle Database 11g New Features | 555

Download at WoweBook.Com

);
 END LOOP;
 /*
 Execute the query now that all variables are bound.
 */
 l_dummy := DBMS_SQL.EXECUTE (l_dyn_cursor);
 /*
 Now it's time to convert to a cursor variable so that the frontend
 program or another PL/SQL program can easily fetch the values.
 */
 l_cv := DBMS_SQL.to_refcursor (l_dyn_cursor);
 /*
 Do not close with DBMS_SQL; you can ONLY manipulate the cursor
 through the cursor variable at this point.
 DBMS_SQL.close_cursor (l_dyn_cursor);
 */
 RETURN l_cv;
 END employee_names;
BEGIN
 l_cv := employee_names ('DEPARTMENT_ID = :dept_id', l_values, l_placeholders);

 FETCH l_cv BULK COLLECT INTO l_names;

 FOR indx IN 1 .. l_names.COUNT
 LOOP
 DBMS_OUTPUT.put_line (l_names(indx));
 END LOOP;

 CLOSE l_cv;
END;
/

Another example of a scenario in which this function will come in handy is when you
need to execute dynamic SQL that requires DBMS_SQL, but then you need to pass the
result set back to the middle tier client (as with Java or .Net-based applications). You
cannot pass back a DBMS_SQL cursor, but you definitely can return a cursor variable.

DBMS_SQL.TO_CURSOR Function
Use the DBMS_SQL.TO_CURSOR function to convert a REF CURSOR variable (ei-
ther strongly or weakly typed) to a SQL cursor number which you can then pass to
DBMS_SQL subprograms. The cursor variable must already have been opened before
you can pass it to the DBMS_SQL.TO_CURSOR function.

After you convert the cursor variable to a DBMS_SQL cursor, you will not be able to
use native dynamic SQL operations to access that cursor or the data “behind” it.

This function comes in handy when you know at compile time how many variables
you need to bind into the SQL statement, but you don’t know how many items you
are selecting (another example of dynamic SQL method 4!).

The following procedure demonstrates this application of the function.

556 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

/* File on web: 11g_to_cursorid.sql */
PROCEDURE show_data (
 column_list_in VARCHAR2
 , department_id_in IN employees.department_id%TYPE
)
IS
 sql_stmt CLOB;
 src_cur SYS_REFCURSOR;
 curid NUMBER;
 desctab DBMS_SQL.desc_tab;
 colcnt NUMBER;
 namevar VARCHAR2 (50);
 numvar NUMBER;
 datevar DATE;
 empno NUMBER := 100;
BEGIN
 /* Construct the query, embedding the list of columns to be selected,
 with a single bind variable.

 NOTE: this kind of concatenation leaves you vulnerable to SQL injection!
 Please read the section in this chapter on injection so that you can
 make sure your application is not vulnerable.
 */
 sql_stmt :=
 'SELECT '
 || column_list_in
 || ' FROM employees WHERE department_id = :dept_id';

 /* Open the cursor variable for this query, binding in the single value.
 MUCH EASIER than using DBMS_SQL for the same operations!
 */
 OPEN src_cur FOR sql_stmt USING department_id_in;

 /*
 To fetch the data, however, I can no longer use the cursor variable,
 since the number of elements fetched is unknown at complile time.

 This is, however, a perfect fit for DBMS_SQL and the DESCRIBE_COLUMNS
 procedure, so convert the cursor variable to a DBMS_SQL cursor number,
 and then take the necessary, if tedious steps.
 */
 curid := DBMS_SQL.to_cursor_number (src_cur);
 DBMS_SQL.describe_columns (curid, colcnt, desctab);

 FOR indx IN 1 .. colcnt
 LOOP
 IF desctab (indx).col_type = 2
 THEN
 DBMS_SQL.define_column (curid, indx, numvar);
 ELSIF desctab (indx).col_type = 12
 THEN
 DBMS_SQL.define_column (curid, indx, datevar);
 ELSE
 DBMS_SQL.define_column (curid, indx, namevar, 100);
 END IF;

Oracle Database 11g New Features | 557

Download at WoweBook.Com

 END LOOP;

 WHILE DBMS_SQL.fetch_rows (curid) > 0
 LOOP
 FOR indx IN 1 .. colcnt
 LOOP
 DBMS_OUTPUT.put_line (desctab (indx).col_name || ' = ');

 IF (desctab (indx).col_type = 1)
 THEN
 DBMS_SQL.COLUMN_VALUE (curid, indx, namevar);
 DBMS_OUTPUT.put_line (' ' || namevar);
 ELSIF (desctab (indx).col_type = 2)
 THEN
 DBMS_SQL.COLUMN_VALUE (curid, indx, numvar);
 DBMS_OUTPUT.put_line (' ' || numvar);
 ELSIF (desctab (indx).col_type = 12)
 THEN
 DBMS_SQL.COLUMN_VALUE (curid, indx, datevar);
 DBMS_OUTPUT.put_line (' ' || datevar);
 END IF;
 END LOOP;
 END LOOP;

 DBMS_SQL.close_cursor (curid);
END;

Enhanced Security for DBMS_SQL
In 2006, security specialists identified a new class of vulnerability in which a program
that uses DBMS_SQL and raises an exception allows an attacker to use the unclosed
cursor to compromise the security of the database.†

Oracle Database 11g has introduced three security-related changes to DBMS_SQL to
guard against this kind of attack:

• Generation of unpredictable, probably randomized, cursor numbers.

• Restriction of the use of the DBMS_SQL package whenever an invalid cursor num-
ber is passed to a DBMS_SQL program.

• Rejection of a DBMS_SQL operation when the current user attempting to use the
cursor has changed from the user that opened the cursor.

Unpredictable cursor numbers

Prior to Oracle Database 11g, calls to DBMS_SQL.OPEN_CURSOR returned a se-
quentially incremented number, usually between 1 and 300. This predictability could
allow an attacker to iterate through integers and test them as valid, open cursors. Once
found, a cursor could be repurposed and used by the attacker.

† For more details, visit David Litchfield’s blog at http://www.davidlitchfield.com/blog/archives/00000023.htm.

558 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

http://www.davidlitchfield.com/blog/archives/00000023.htm

Now, it will be very difficult for an attacker to find a valid cursor through iteration.
Here, for example, are five cursor numbers returned by OPEN_CURSOR in this block:

BEGIN
 FOR indx IN 1 .. 5
 LOOP
 DBMS_OUTPUT.put_line (DBMS_SQL.open_cursor ());
 END LOOP;
END;
/
1693551900
1514010786
1570905132
182110745
1684406543

Denial of access to DBMS_SQL when bad cursor number is used (ORA-24971)

To guard against an attacker “fishing” for a valid cursor, the Oracle database will now
deny access to the DBMS_SQL package as soon as an attempt is made to work with an
invalid cursor number.

Consider the following block:

/* File on web: 11g_access_denied_1.sql */
DECLARE
 l_cursor NUMBER;
 l_feedback NUMBER;

 PROCEDURE set_salary
 IS
 BEGIN
 DBMS_OUTPUT.put_line ('Set salary = salary...');
 l_cursor := DBMS_SQL.open_cursor ();
 DBMS_SQL.parse (l_cursor
 , 'update employees set salary = salary'
 , DBMS_SQL.native
);
 l_feedback := DBMS_SQL.EXECUTE (l_cursor);
 DBMS_OUTPUT.put_line (' Rows modified = ' || l_feedback);
 DBMS_SQL.close_cursor (l_cursor);
 END set_salary;
BEGIN
 set_salary ();

 BEGIN
 l_feedback := DBMS_SQL.EXECUTE (1010101010);
 EXCEPTION
 WHEN OTHERS
 THEN
 DBMS_OUTPUT.put_line (DBMS_UTILITY.format_error_stack ());
 DBMS_OUTPUT.put_line (DBMS_UTILITY.format_error_backtrace ());
 END;

 set_salary ();

Oracle Database 11g New Features | 559

Download at WoweBook.Com

EXCEPTION
 WHEN OTHERS
 THEN
 DBMS_OUTPUT.put_line (DBMS_UTILITY.format_error_stack ());
 DBMS_OUTPUT.put_line (DBMS_UTILITY.format_error_backtrace ());
END;

I execute a valid UPDATE statement, setting salary to itself for all rows in the employees
table, within the set_salary local procedure. I call that procedure, then I attempt to
execute an invalid cursor. Then I call set_salary again. Here are the results from running
this block:

Set salary = salary...
 Rows modified = 106

ORA-29471: DBMS_SQL access denied
ORA-06512: at "SYS.DBMS_SQL", line 1501
ORA-06512: at line 22

Set salary = salary...
ORA-29471: DBMS_SQL access denied
ORA-06512: at "SYS.DBMS_SQL", line 980
ORA-06512: at line 9
ORA-06512: at line 30

The set_salary procedure worked the first time, but once I tried to execute an invalid
cursor, I now get the ORA-29471 error when I try to run the set_salary program again.
In fact, any attempt to call a DBMS_SQL program will raise that error.

The only way to re-enable access to DBMS_SQL again is by logging off and logging
back on. Rather severe! But that makes sense, given the possibly dangerous nature of
the situation that resulted in this error.

The database will also deny access to DBMS_SQL if the program in which you opened
the cursor raised an exception (not necessarily related to the dynamic SQL). If you
“swallow” that error (do not re-raise the exception), then it can be quite difficult to
determine the source of the error.

Rejection of DBMS_SQL operation when effective user changes (ORA-24970)

Oracle Database 11g provides a new overloading of the OPEN_CURSOR function that
accepts an argument as follows:

DBMS_SQL.OPEN_CURSOR (security_level IN INTEGER) RETURN INTEGER;

This function allows you to specify security protection that Oracle enforces on the
opened cursor when you perform operations on that cursor Here are the security levels
that the database currently recognizes:

560 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

0
Turns off security checks for DBMS_SQL operations on this cursor. You can fetch
from the cursor, re-bind and re-execute the cursor, with a different effective userid
or roles than those in effect at the time the cursor was first parsed. This level of
security is not enabled by default.

1
Requires that the effective userid and roles of the caller to DBMS_SQL for bind
and execute operations on this cursor be the same as those of the caller of the most
recent parse operation on this cursor.

2
Requires that the effective userid and roles of the caller to DBMS_SQL for all bind,
execute, define, describe, and fetch operations on this cursor be the same as those
of the caller.

Here is an example of how you might encounter the error caused by Oracle’s new
security check:

1. Create the user_cursor procedure in the HR schema. Note that this is a definer
rights program, meaning that when another schema calls this program, the current
or effective user is HR. I open a cursor and parse a query against ALL_SOURCE
with this cursor. Then I return the DBMS_SQL cursor number as an OUT
argument.

/* File on web: 11g_effective_user_id.sql */
PROCEDURE use_cursor (
 security_level_in IN PLS_INTEGER
 , cursor_out IN OUT NUMBER
)
AUTHID DEFINER
IS
BEGIN
 cursor_out := DBMS_SQL.open_cursor (security_level_in);
 DBMS_SQL.parse (cursor_out
 , 'select count(*) from all_source'
 , DBMS_SQL.native
);
END;

2. Grant the ability to run this program to SCOTT:

GRANT EXECUTE ON use_cursor TO scott

3. Connect to SCOTT. Then run HR’s use_cursor program, specifying level 2 secur-
ity, and retrieve the dynamic SQL cursor. Then try to execute that cursor from the
SCOTT schema.

Oracle Database 11g New Features | 561

Download at WoweBook.Com

SQL> DECLARE
 2 l_cursor NUMBER;
 3 l_feedback number;
 4 BEGIN
 5 hr.use_cursor (2, l_cursor);
 6 l_feedback := DBMS_SQL.execute_and_fetch (l_cursor);
 7 END;
 8 /
DECLARE
*
ERROR at line 1:
ORA-29470: Effective userid or roles are not the same as when cursor was parsed
ORA-06512: at "SYS.DBMS_SQL", line 1513
ORA-06512: at line 6

Oracle raises the −29470 error because the cursor was opened and parsed under the
HR schema (as a result of the AUTHID DEFINER clause), but executed under the
SCOTT schema.

562 | Chapter 16: Dynamic SQL and Dynamic PL/SQL

Download at WoweBook.Com

PART V

PL/SQL Application Construction

This part of the book is where it all comes together. By now, you’ve learned the basics.
You know about declaring and working with variables. You’re an expert on error han-
dling and loop construction. Now it’s time to build an application—and you do that
by constructing the building blocks, made up of procedures, functions, packages, and
triggers, as described in Chapters17 through 19. Chapter 20 discusses managing your
PL/SQL code base, including testing and debugging programs and managing depend-
encies; it also provides an overview of the edition-based redefinition capability intro-
duced in Oracle Database 11g Release 2. Chapter 21, new in the fifth edition, focuses
on how you can use a variety of tools and techniques to get the best performance out
of your PL/SQL programs. Chapter 22 describes I/O techniques for PL/SQL, from
DBMS_OUTPUT (sending output to the screen) and UTL_FILE (reading and writing
files) to UTL_MAIL (sending mail) and UTL_HTTP (retrieving data from a web page).

Chapter 17, Procedures, Functions, and Parameters
Chapter 18, Packages
Chapter 19, Triggers
Chapter 20, Managing PL/SQL Code
Chapter 21, Optimizing PL/SQL Performance
Chapter 22, I/O and PL/SQL

Download at WoweBook.Com

Download at WoweBook.Com

CHAPTER 17

Procedures, Functions, and
Parameters

Earlier parts of this book have explored in detail all of the components of the PL/SQL
language: cursors, exceptions, loops, variables, and so on. While you certainly need to
know about these components when you write applications using PL/SQL, putting the
pieces together to create well-structured, easily understood, and smoothly maintaina-
ble programs is even more important.

Few of our tasks are straightforward. Few solutions can be glimpsed in an instant and
immediately put to paper or keyboard. The systems we build are usually large and
complex, with many interacting and sometimes conflicting components. Furthermore,
as users deserve, demand, and receive applications that are easier to use and vastly more
powerful than their predecessors, the inner world of those applications becomes cor-
respondingly more complicated.

One of the biggest challenges in our profession today is finding ways to reduce the
complexity of our environment. When faced with a massive problem to solve, the mind
is likely to recoil in horror. Where do I start? How can I possibly find a way through
that jungle of requirements and features?

A human being is not a massively parallel computer. Even the brightest of our bunch
have trouble keeping track of more than seven tasks (plus or minus two) at one time.
We need to break down huge, intimidating projects into smaller, more manageable
components, and then further decompose those components into individual programs
with an understandable scope. We can then figure out how to build and test those
programs, after which we can construct a complete application from these building
blocks.

Whether you use “top-down design” (a.k.a. step-wise refinement, which is explored in
detail in the section “Local or Nested Modules” on page 583) or some other method-
ology, there is absolutely no doubt that you will find your way to a high-quality and

565

Download at WoweBook.Com

easily maintainable application by modularizing your code into procedures, functions,
and object types.

Modular Code
Modularization is the process by which you break up large blocks of code into smaller
pieces (modules) that can be called by other modules. Modularization of code is anal-
ogous to normalization of data, with many of the same benefits and a few additional
advantages. With modularization, your code becomes:

More reusable
By breaking up a large program or entire application into individual components
that “plug-and-play” together, you will usually find that many modules are used
by more than one other program in your current application. Designed properly,
these utility programs could even be of use in other applications!

More manageable
Which would you rather debug: a 1,000-line program or five individual 2000-line
programs that call each other as needed? Our minds work better when we can focus
on smaller tasks. You can also test and debug on a per-program scale (called unit
testing) before individual modules are combined for a more complicated integra-
tion test.

More readable
Modules have names, and names describe behavior. The more you move or hide
your code behind a programmatic interface, the easier it is to read and understand
what that program is doing. Modularization helps you focus on the big picture
rather than on the individual executable statements. You might even end up with
that most elusive kind of software: self-documenting code.

More reliable
The code you produce will have fewer errors. The errors you do find will be easier
to fix because they will be isolated within a module. In addition, your code will be
easier to maintain because there is less of it and it is more readable.

Once you become proficient with the different iterative, conditional, and cursor con-
structs of the PL/SQL language (the IF statement, loops, etc.), you are ready to write
programs. You will not really be ready to build an application, however, until you
understand how to create and combine PL/SQL modules.

PL/SQL offers the following structures that modularize your code in different ways:

Procedure
A program that performs one or more actions and is called as an executable
PL/SQL statement. You can pass information into and out of a procedure through
its parameter list.

566 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

Function
A program that returns data through its RETURN clause, and is used just like a
PL/SQL expression. You can pass information into a function through its param-
eter list. You can also pass information out via the parameter list, but this is gen-
erally considered a bad practice.

Database trigger
A set of commands that are triggered to execute (e.g., log in, modify a row in a
table, execute a DDL statement) when an event occurs in the database.

Package
A named collection of procedures, functions, types, and variables. A package is not
really a module (it’s more of a meta-module), but it is so closely related that I
mention it here.

Object type or instance of an object type
Oracle’s version of (or attempt to emulate) an object-oriented class. Object types
encapsulate state and behavior, combining data (like a relational table) with rules
(procedures and functions that operate on that data).

Packages are discussed in Chapter 18; database triggers are explored in Chapter 19.
You can read more about object types in Chapter 26. This chapter focuses on how to
build procedures and functions, and how to design the parameter lists that are an in-
tegral part of well-designed modules.

I use the term module to mean either a function or a procedure. As is the case with many
other programming languages, modules can call other named modules. You can pass
information into and out of modules with parameters. Finally, the modular structure
of PL/SQL also integrates tightly with exception handlers to provide all-encompassing
error-checking techniques (see Chapter 6).

This chapter explores how to define procedures and functions, and then dives into the
details of setting up parameter lists for these programs. I also examine some of the more
“exotic” aspects of program construction, including local modules, overloading, for-
ward referencing, deterministic functions, and table functions.

Procedures
A procedure is a module that performs one or more actions. Because a procedure call
is a standalone executable statement in PL/SQL, a PL/SQL block could consist of
nothing more than a single call to a procedure. Procedures are key building blocks of
modular code, allowing you to both consolidate and reuse your program logic.

The general format of a PL/SQL procedure is as follows:

PROCEDURE [schema.]name[(parameter[, parameter...])]
 [AUTHID DEFINER | CURRENT_USER]
IS
 [declarations]

Procedures | 567

Download at WoweBook.Com

BEGIN
 executable statements

[EXCEPTION
 exception handlers]

 END [name];

where each element is used in the following ways:

schema
Optional name of the schema that will own this procedure. The default is the
current user. If different from the current user, that user will need privileges to
create a procedure in another schema.

name
The name of the procedure.

parameters
An optional list of parameters that you define to both pass information to the
procedure, and send information out of the procedure back to the calling program.

AUTHID clause
Determines whether the procedure will execute with the privileges of the definer
(owner) of the procedure or the current user. The former is known as the definer
rights model, the latter as the invoker rights model. These models are described in
detail in Chapter 24.

declarations
The declarations of local identifiers for that procedure. If you do not have any
declarations, there will be no statements between the IS and BEGIN statements.

executable statements
The statements that the procedure executes when it is called. You must have at
least one executable statement after the BEGIN and before the END or EXCEP-
TION keywords.

exception handlers
The optional exception handlers for the procedure. If you do not explicitly handle
any exceptions, then you can leave out the EXCEPTION keyword and simply ter-
minate the execution section with the END keyword.

Figure 17-1 shows the apply_discount procedure, which contains all four sections of
the named PL/SQL block as well as a parameter list.

Calling a Procedure
A procedure is called as an executable PL/SQL statement. In other words, a call to a
procedure must end with a semicolon (;) and be executed before or after other SQL or
PL/SQL statements (if they exist) in the execution section of a PL/SQL block.

568 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

The following executable statement runs the apply_discount procedure:

BEGIN
 apply_discount(new_company_id, 0.15); -- 15% discount
END;

If the procedure does not have any parameters, then you may call the procedure with
or without parentheses, as shown here:

display_store_summary;
display_store_summary();

The Procedure Header
The portion of the procedure definition that comes before the IS keyword is called the
procedure header or signature. The header provides all the information a programmer
needs to call that procedure, namely:

• The procedure name

Figure 17-1. The apply_discount procedure

Procedures | 569

Download at WoweBook.Com

• The AUTHID clause, if any

• The parameter list, if any

Ideally, a programmer should only need to see the header of the procedure in order to
understand what it does and how it is to be called.

The header for the apply_discount procedure mentioned in the previous section is:

PROCEDURE apply_discount (
 company_id_in IN company.company_id%TYPE
 , discount_in IN NUMBER
)

It consists of the module type, the name, and a list of two parameters.

The Procedure Body
The body of the procedure is the code required to implement that procedure, and
consists of the declaration, execution, and exception sections of the function. Every-
thing after the IS keyword in the procedure makes up that procedure’s body. The ex-
ception and declaration sections are optional. If you have no exception handlers, leave
off the EXCEPTION keyword and simply enter the END statement to terminate the
procedure. If you have no declarations, the BEGIN statement simply follows immedi-
ately after the IS keyword.

You must supply at least one executable statement in a procedure. That is generally
not a problem; instead, watch out for execution sections that become extremely long
and hard to manage. You should work hard to keep the execution section compact and
readable. See later sections in this chapter, especially “Improving readabil-
ity” on page 592, for more specific guidance on this topic.

The END Label
You can append the name of the procedure directly after the END keyword when you
complete your procedure, as shown here:

PROCEDURE display_stores (region_in IN VARCHAR2) IS
BEGIN
 ...
END display_stores;

This name serves as a label that explicitly links the end of the program with its begin-
ning. You should, as a matter of habit, use an END label. It is especially important to
do so when you have a procedure that spans more than a single page, or is one in a
series of procedures and functions in a package body.

570 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

The RETURN Statement
The RETURN statement is generally associated with a function because it is required
to RETURN a value from a function (or else raise an exception). Interestingly, PL/SQL
also allows you to use a RETURN statement in a procedure. The procedure version of
the RETURN does not take an expression; it therefore cannot pass a value back to the
calling program unit. The RETURN simply halts execution of the procedure and re-
turns control to the calling code.

You do not see this usage of RETURN very often, and for good reason. Use of the
RETURN in a procedure usually leads to unstructured code because there would then
be at least two paths out of the procedure, making execution flow harder to understand
and maintain. Avoid using both RETURN and GOTO to bypass proper control struc-
tures and process flow in your program units.

Functions
A function is a module that returns data through its RETURN clause, rather than in an
OUT or IN OUT argument. Unlike a procedure call, which is a standalone executable
statement, a call to a function can exist only as part of an executable statement, such
as an element in an expression or the value assigned as the default in a declaration of
a variable.

Because a function returns a value, it is said to have a datatype. A function can be used
in place of an expression in a PL/SQL statement having the same datatype as the
function.

Functions are particularly important constructs for building modular code. For exam-
ple, every single business rule or formula in your application should be placed inside a
function. Every single-row query should also be defined within a function, so that it
can be easily and reliably reused.

Some programmers prefer to rely less on functions, and more on pro-
cedures that return status information through the parameter list. If you
are one of these programmers, make sure that your business rules, for-
mulas, and single-row queries are tucked away into your procedures!

An application short on function definition and usage is likely to be difficult to maintain
and enhance over time.

Structure of a Function
The structure of a function is the same as that of a procedure, except that the function
also has a RETURN clause. The general format of a function is as follows:

Functions | 571

Download at WoweBook.Com

FUNCTION [schema.]name[(parameter[, parameter...])]
 RETURN return_datatype
 [AUTHID DEFINER | CURRENT_USER]
 [DETERMINISTIC]
 [PARALLEL_ENABLE ...]
 [PIPELINED]
 [RESULT_CACHE ...]
IS
 [declaration statements]

BEGIN
 executable statements

[EXCEPTION
 exception handler statements]

END [name];

where each element is used in the following ways:

schema
Optional name of the schema that will own this function. The default is the current
user. If different from the current user, that user will need privileges to create a
function in another schema.

name
The name of the function.

parameters
An optional list of parameters that you define to both pass information into the
function and send information out of the function back to the calling program.

return_datatype
The datatype of the value returned by the function. This is required in the function
header and is explained in more detail in the next section.

AUTHID clause
Determines whether the function will execute with the privileges of the definer
(owner) of the procedure or of the current user. The former is known as the definer
rights model, the latter as the invoker rights model.

DETERMINISTIC clause
An optimization hint that lets the system use a saved copy of the function’s return
result, if available. The query optimizer can choose whether to use the saved copy
or re-call the function.

PARALLEL_ENABLE clause
An optimization hint that enables the function to be executed in parallel when
called from within a SELECT statement.

PIPELINED clause
Specifies that the results of this table function should be returned iteratively via the
PIPE ROW command.

572 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

RESULT_CACHE clause
New to Oracle Database 11g. Specifies that the input values and result of this
function should be stored in the new function result cache. This feature is explored
in detail in Chapter 21, Optimizing PL/SQL Performance.

declaration statements
The declarations of local identifiers for that function. If you do not have any dec-
larations, there will be no statements between the IS and BEGIN statements.

executable statements
The statements the function executes when it is called. You must have at least one
executable statement after the BEGIN and before the END or EXCEPTION key-
words.

exception handler statements
The optional exception handlers for the function. If you do not explicitly handle
any exceptions, then you can leave out the EXCEPTION keyword and simply ter-
minate the execution section with the END keyword.

Figure 17-2 illustrates the PL/SQL function and its different sections. Notice that the
total_sales function does not have an exception section.

The RETURN Datatype
A PL/SQL function can return virtually any kind of data known to PL/SQL, from scalars
(single, primitive values like dates and strings) to complex structures such as collec-
tions, object types, cursor variables, and LOBs. You may not, however, return an ex-
ception through a function.

Here are some examples of RETURN clauses in functions:

• Return a string from a standalone function:

FUNCTION favorite_nickname (
 name_in IN VARCHAR2) RETURN VARCHAR2
IS
BEGIN
 ...
END;

• Return a number (age of a pet) from an object type member function:

TYPE pet_t IS OBJECT (
 tag_no INTEGER,
 NAME VARCHAR2 (60),
 breed VARCHAR2(100),
 dob DATE,
 MEMBER FUNCTION age RETURN NUMBER
)

Functions | 573

Download at WoweBook.Com

• Return a record with the same structure as the books table:

PACKAGE book_info
IS
 FUNCTION onerow (isbn_in IN books.isbn%TYPE)
 RETURN books%ROWTYPE;
...

• Return a cursor variable with the specified REF CURSOR type (based on a record
type):

PACKAGE book_info
IS
 TYPE overdue_rt IS RECORD (
 isbn books.isbn%TYPE,

Figure 17-2. The tot_sales function

574 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

 days_overdue PLS_INTEGER);

 TYPE overdue_rct IS REF CURSOR RETURN overdue_rt;

 FUNCTION overdue_info (username_in IN lib_users.username%TYPE)
 RETURN overdue_rct;

...

The END Label
You can append the name of the function directly after the END keyword when you
complete your function, as shown here:

FUNCTION total_sales (company_in IN INTEGER) RETURN NUMBER
IS
BEGIN
 ...
END total_sales;

This name serves as a label that explicitly links the end of the program with its begin-
ning. You should, as a matter of habit, use an END label. It is especially important to
do so when you have a function that spans more than a single page or that is one in a
series of functions and procedures in a package body.

Calling a Function
A function is called as part of an executable PL/SQL statement wherever an expression
can be used. The following examples illustrate how the various functions defined in
the section “The RETURN Datatype” on page 573 can be invoked.

• Assign the default value of a variable with a function call:

DECLARE
 v_nickname VARCHAR2(100) :=
 favorite_nickname ('Steven');

• Use a member function for the pet object type in a conditional expression:

DECLARE
 my_parrot pet_t :=
 pet_t (1001, 'Mercury', 'African Grey',
 TO_DATE ('09/23/1996', 'MM/DD/YYYY'));
BEGIN
 IF my_parrot.age () < INTERVAL '50' YEAR
 THEN
 DBMS_OUTPUT.PUT_LINE ('Still a youngster!');
 END IF;

• Retrieve a single row of book information directly into a record:

DECLARE
 my_first_book books%ROWTYPE;

Functions | 575

Download at WoweBook.Com

BEGIN
 my_first_book := book_info.onerow ('1-56592-335-9');
 ...

• Call a user-defined PL/SQL function from within a query:

DECLARE
 l_name employees.last_name%TYPE;
BEGIN

 SELECT last_name INTO l_name
 FROM employees
 WHERE employee_id = hr_info_pkg.employee_of_the_month ('FEBRUARY');
 ...

• Call a function of your own making from within a CREATE VIEW statement,
utilizing a CURSOR expression to pass a result set as an argument to that function:

VIEW young_managers
AS
 SELECT managers.employee_id AS manager_employee_id
 FROM employees managers
 WHERE most_reports_before_manager
 (
 CURSOR (SELECT reports.hire_date
 FROM employees reports
 WHERE reports.manager_id = managers.employee_id
),
 managers.hire_date
) = 1;

With PL/SQL, in contrast to some other programming languages, you cannot simply
ignore the return value of a function if you don’t need it. For example, this function call:

BEGIN
 favorite_nickname('Steven');
END;

will raise the error PLS-00221: ‘FAVORITE_NICKNAME’ is not a procedure or is un-
defined. You may not use a function as if it were a procedure.

Functions Without Parameters
If a function has no parameters, the function call can be written with or without pa-
rentheses. The following code illustrates this with a call to a method named “age” of
the pet_t object type:

IF my_parrot.age < INTERVAL '50' YEAR -- 9i INTERVAL type
IF my_parrot.age() < INTERVAL '50' YEAR

576 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

The Function Header
The portion of the function definition that comes before the IS keyword is called the
function header or signature. The header provides all the information a programmer
needs to call that function, namely:

• The function name

• Modifiers to the definition and behavior of the function (e.g., is it deterministic?
Does it run in parallel execution? Is it pipelined?)

• The parameter list, if any

• The RETURN datatype

Ideally, a programmer should need to look only at the header of the function in order
to understand what it does and how it is to be called.

The header for the total_sales function discussed earlier is:

FUNCTION total_sales
 (company_id_in IN company.company_id%TYPE,
 status_in IN order.status_code%TYPE := NULL)
RETURN NUMBER

It consists of the module type, the name, a list of two parameters, and a RETURN
datatype of NUMBER. This means that any PL/SQL statement or expression that ref-
erences a numeric value can make a call to total_sales to obtain that value. Here is one
such statement:

DECLARE
 v_sales NUMBER;
BEGIN
 v_sales := total_sales (1505, 'ACTIVE');
 ...
END;

The Function Body
The body of the function is the code required to implement the function. It consists of
the declaration, execution, and exception sections of the function. Everything after the
IS keyword in the function makes up that function’s body.

Once again, the declaration and exception sections are optional. If you have no excep-
tion handlers, simply leave off the EXCEPTION keyword and enter the END statement
to terminate the function. If you have no declarations, the BEGIN statement simply
follows immediately after the IS keyword.

A function’s execution section should have a RETURN statement in it, although it is
not necessary for the function to compile. If, however, your function finishes executing
without executing a RETURN statement, Oracle will raise the following error (a sure
sign of a very poorly designed function):

Functions | 577

Download at WoweBook.Com

ORA-06503: PL/SQL: Function returned without value

This error will not be raised if the function propagates an exception of
its own unhandled out of the function.

The RETURN Statement
A function must have at least one RETURN statement in its execution section of state-
ments. It can have more than one RETURN, but only one is executed each time the
function is called. The RETURN statement that is executed by the function determines
the value that is returned by that function. When a RETURN statement is processed,
the function terminates immediately and returns control to the calling PL/SQL block.

The RETURN clause in the header of the function is different from the RETURN state-
ment in the execution section of the body. While the RETURN clause indicates the
datatype of the return or result value of the function, the RETURN statement specifies
the actual value that is returned. You have to specify the RETURN datatype in
the header, but then also include at least one RETURN statement in the function. The
datatype indicated in the RETURN clause in the header must be compatible with the
datatype of the returned expression in the RETURN statement.

RETURN any valid expression

The RETURN statement can return any expression compatible with the datatype in-
dicated in the RETURN clause. This expression can be composed of calls to other
functions, complex calculations, and even data conversions. All of the following usages
of RETURN are valid:

RETURN 'buy me lunch';
RETURN POWER (max_salary, 5);
RETURN (100 - pct_of_total_salary (employee_id));
RETURN TO_DATE ('01' || earliest_month || initial_year, 'DDMMYY');

You can also return complex data structures such as object type instances, collections,
and records.

An expression in the RETURN statement is evaluated when the RETURN is executed.
When control is passed back to the calling block, the result of the evaluated expression
is passed along, too.

Multiple RETURNs

In the total_sales function shown in Figure 17-2, I used two different RETURN state-
ments to handle different situations in the function, which can be described as follows:

If I cannot obtain sales information from the cursor, I return NULL (which is different
from zero). If I do get a value from the cursor, I return it to the calling program. In both

578 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

of these cases, the RETURN statement passes back a value: in one case, the NULL value,
and in the other, the return_value variable.

While it is certainly possible to have more than one RETURN statement in the execu-
tion section of a function, you are generally better off having just one: the last line in
your execution section. The next section explains this recommendation.

RETURN as last executable statement

Generally, the best way to make sure that your function always returns a value is to
make the last executable statement your RETURN statement. Declare a variable named
return_value (which clearly indicates that it will contain the return value for the func-
tion), write all the code to come up with that value, and then, at the very end of the
function, RETURN the return_value, as shown here:

FUNCTION do_it_all (parameter_list) RETURN NUMBER IS
 return_value NUMBER;
BEGIN
 ... lots of executable statements ...
 RETURN return_value;
END;

Here is a rewrite of the logic in Figure 17-2 to fix the problem of multiple RETURN
statements.

OPEN sales_cur;
IF sales_cur%NOTFOUND
THEN
 return_value:= NULL;
END IF;
CLOSE sales_cur;
RETURN return_value;

Beware of exceptions, though. An exception that gets raised might “jump” over your
last statement straight into the exception handler. If your exception handler does not
then have a RETURN statement, you will get an ORA-06503: Function returned without
value error, regardless of how you handled the actual exception (unless you RAISE
another).

Parameters
Procedures and functions can both use parameters to pass information back and forth
between the module and the calling PL/SQL block.

The parameters of a module, part of its header or signature, are at least as important
as the code that implements the module (the module’s body). In fact, the header of the
program is sometimes described as a “contract”—between the author of the program
and its users. Sure, you have to make certain that your module fulfills its promise. But
the whole point of creating a module is that it can be called, ideally by more than one
other module. If the parameter list is confusing or badly designed, it will be very difficult

Parameters | 579

Download at WoweBook.Com

for other programmers to use the module, and the result is that few will bother. And it
doesn’t matter how well you implemented a program if no one uses it.

Many developers do not give enough attention to a module’s set of parameters. Con-
siderations regarding parameters include:

Number of parameters
Too few parameters can limit the reusability of your program; with too many
parameters, no one will want to reuse your program. Certainly, the number of
parameters is largely determined by program requirements, but there are different
ways to define parameters (such as bundling multiple parameters in a single
record).

Types of parameters
Should you use read-only, write-only, or read-write parameters?

Names of parameters
How should you name your parameters so that their purpose in the module is
properly and easily understood?

Default values for parameters
How do you set defaults? When should a parameter be given defaults, and when
should the programmer be forced to enter a value?

PL/SQL offers many different features to help you design parameters effectively. This
section covers all elements of parameter definition.

Defining Parameters
Formal parameters are defined in the parameter list of the program. A parameter def-
inition parallels closely the syntax for declaring variables in the declaration section of
a PL/SQL block. There are two important distinctions: first, a parameter has a passing
mode while a variable declaration does not; and second, a parameter declaration must
be unconstrained.

A constrained declaration is one that constrains or limits the kind of value that can be
assigned to a variable declared with that datatype. An unconstrained declaration is one
that does not limit values in this way. The following declaration of the variable
company_name constrains the variable to 60 characters:

DECLARE
 company_name VARCHAR2(60);

When you declare a parameter, however, you must leave out the constraining part of
the declaration:

PROCEDURE display_company (company_name IN VARCHAR2) IS ...

580 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

Actual and Formal Parameters
We need to distinguish between two different kinds of parameters: actual and formal
parameters. The formal parameters are the names that are declared in the parameter
list of the header of a module. The actual parameters are the values or expressions placed
in the parameter list of the actual call to the module.

Let’s examine the differences between formal and actual parameters using the example
of total_sales. Here, again, is the total_sales header:

FUNCTION total_sales
 (company_id_in IN company.company_id%TYPE,
 status_in IN order.status_code%TYPE := NULL)
RETURN std_types.dollar_amount;

The formal parameters of total_sales are:

company_id_in
The primary key of the company.

status_in
The status of the orders to be included in the sales calculation.

These formal parameters do not exist outside of the function. You can think of them
as placeholders for real or actual parameter values that are passed into the function
when it is used in a program.

When you use total_sales in your code, the formal parameters disappear. In their place,
you list the actual parameters or variables whose values will be passed to total_sales.
In the following example, the company_id variable contains the primary key pointing
to a company record. In the first three calls to total_sales, a different, hardcoded status
is passed to the function. The last call to total_sales does not specify a status; in this
case, the function assigns the default value (provided in the function header) to the
status_in parameter:

new_sales := total_sales (company_id, 'N');
paid_sales := total_sales (company_id, 'P');
shipped_sales := total_sales (company_id, 'S');
all_sales := total_sales (company_id);

When total_sales is called, all the actual parameters are evaluated. The results of the
evaluations are then assigned to the formal parameters inside the function to which
they correspond (note that this is true only for IN and IN OUT parameters; parameters
of OUT mode are not copied in).

The formal parameter and the actual parameter that corresponds to it (when called)
must be of the same or compatible datatypes. PL/SQL will perform datatype conver-
sions for you in many situations. Generally, however, you are better off avoiding all
implicit datatype conversions. Use a formal conversion function like TO_CHAR (see
“Numbers” on page 170) or TO_DATE (see Chapter 10), so that you know exactly
what kind of data you are passing into your modules.

Parameters | 581

Download at WoweBook.Com

Parameter Modes
When you define the parameter, you can also specify the way in which it can be used.
There are three different modes of parameters:

Mode Description Parameter usage

IN Read-only The value of the actual parameter can be referenced inside the module, but the parameter cannot
be changed. If you do not specify the parameter mode, then it is considered an IN parameter.

OUT Write-only The module can assign a value to the parameter, but the parameter’s value cannot be referenced.

IN OUT Read/write The module can both reference (read) and modify (write) the parameter.

The mode determines how the program can use and manipulate the value assigned to
the formal parameter. You specify the mode of the parameter immediately after the
parameter name and before the parameter’s datatype and optional default value. The
following procedure header uses all three parameter modes:

PROCEDURE predict_activity
 (last_date_in IN DATE,
 task_desc_inout IN OUT VARCHAR2,
 next_date_out OUT DATE)

The predict_activity procedure takes in two pieces of information: the date of the last
activity and a description of the activity. It then returns or sends out two pieces of
information: a possibly modified task description and the date of the next activity.
Because the task_desc_inout parameter is IN OUT, the program can both read the
value of the argument and change the value of that argument.

Let’s look at each of these parameter modes in detail.

IN mode

An IN parameter allows you to pass values into the module but will not pass anything
out of the module and back to the calling PL/SQL block. In other words, for the pur-
poses of the program, IN parameters function like constants. Just like constants, the
value of the formal IN parameter cannot be changed within the program. You cannot
assign values to the IN parameter or in any other way modify its value, without receiving
a compilation error.

IN is the default mode; if you do not specify a parameter mode, the parameter is au-
tomatically considered IN. I recommend, however, that you always specify a parameter
mode so that your intended use of the parameter is documented explicitly in the code
itself.

IN parameters can be given default values in the program header (see the later section
“Default Values” on page 589).

The actual value for an IN parameter can be a variable, a named constant, a literal, or
a complex expression. All of the following calls to display_title are valid:

582 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

/* File on web: display_title.sql */
DECLARE
 happy_title CONSTANT VARCHAR2(30) := 'HAPPY BIRTHDAY';
 changing_title VARCHAR2(30) := 'Happy Anniversary';
 spc CONSTANT VARCHAR2(1) := CHR(32); -- ASCII code for a single space;
BEGIN
 display_title ('Happy Birthday'); -- a literal
 display_title (happy_title); -- a constant

 changing_title := happy_title;
 display_title (changing_title); -- a variable
 display_title ('Happy' || spc || 'Birthday'); -- an expression
 display_title (INITCAP (happy_title)); -- another expression
END;

What if you want to transfer data out of your program? For that, you will need an OUT
or an IN OUT parameter.

OUT mode

An OUT parameter is the opposite of the IN parameter, but perhaps you already had
that figured out. Use the OUT parameter to pass a value back from the program to the
calling PL/SQL block. An OUT parameter is like the return value for a function, but it
appears in the parameter list, and you can have as many as you like (disclosure:
PL/SQL allows a maximum of 64K. parameters, but in practical terms, that is no limit
at all).

Inside the program, an OUT parameter acts like a variable that has not been initialized.
In fact, the OUT parameter has no value at all until the program terminates successfully
(unless you have requested use of the NOCOPY hint, which is explored in detail in
Chapter 21). During the execution of the program, any assignments to an OUT pa-
rameter are actually made to an internal copy of the OUT parameter. When the program
terminates successfully and returns control to the calling block, the value in that local
copy is then transferred to the actual OUT parameter. That value is then available in
the calling PL/SQL block.

There are several consequences of these rules concerning OUT parameters:

• You cannot assign an OUT parameter’s value to another variable or even use it in
a reassignment to itself.

• You also cannot provide a default value to an OUT parameter. You can only assign
a value to an OUT parameter inside the body of the module.

• Any assignments made to OUT parameters are rolled back when an exception is
raised in the program. Because the value for an OUT parameter is not actually
assigned until a program completes successfully, any intermediate assignments are
therefore ignored. Unless an exception handler traps the exception and then assigns
a value to the OUT parameter, no assignment is made to that parameter. The
variable will retain the same value it had before the program was called.

Parameters | 583

Download at WoweBook.Com

• An actual parameter corresponding to an OUT formal parameter must be a vari-
able. It cannot be a constant, literal, or expression because these formats do not
provide a receptacle in which PL/SQL can place the OUTgoing value.

IN OUT mode

With an IN OUT parameter, you can pass values into the program and return a value
back to the calling program (either the original, unchanged value or a new value set
within the program). The IN OUT parameter shares two restrictions with the OUT
parameter:

• An IN OUT parameter cannot have a default value.

• An IN OUT actual parameter or argument must be a variable. It cannot be a con-
stant, literal, or expression because these formats do not provide a receptacle in
which PL/SQL can place the outgoing value.

Beyond these restrictions, none of the other restrictions apply.

You can use the IN OUT parameter in both sides of an assignment because it functions
like an initialized, rather than uninitialized, variable. PL/SQL does not lose the value
of an IN OUT parameter when it begins execution of the program. Instead, it uses that
value as necessary within the program.

The combine_and_format_names procedure shown here combines the first and last
names into a full name in the format specified (“LAST, FIRST” or “FIRST LAST”). I
need the incoming names for the combine action, and I will uppercase the first and last
names for future use in the program (thereby enforcing the application standard of all-
uppercase for names of people and things). This program uses all three parameter
modes: IN, IN OUT, and OUT.

PROCEDURE combine_and_format_names
 (first_name_inout IN OUT VARCHAR2,
 last_name_inout IN OUT VARCHAR2,
 full_name_out OUT VARCHAR2,
 name_format_in IN VARCHAR2 := 'LAST, FIRST')
IS
BEGIN
 /* Upper-case the first and last names. */
 first_name_inout := UPPER (first_name_inout);
 last_name_inout := UPPER (last_name_inout);

 /* Combine the names as directed by the name format string. */
 IF name_format_in = 'LAST, FIRST'
 THEN
 full_name_out := last_name_inout || ', ' || first_name_inout;

 ELSIF name_format_in = 'FIRST LAST'
 THEN
 full_name_out := first_name_inout || ' ' || last_name_inout;
 END IF;
END combine_and_format_names;

584 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

The first name and last name parameters must be IN OUT. The full_name_out is just
an OUT parameter because I create the full name from its parts. If the actual parameter
used to receive the full name has a value going into the procedure, I certainly don’t
want to use it! Finally, the name_format_in parameter is a mere IN parameter because
it is used to determine how to format the full name, but is not changed or changeable
in any way.

Each parameter mode has its own characteristics and purpose. You should choose
carefully which mode to apply to your parameters so that they are used properly within
the module.

You should define formal parameters with OUT or IN OUT modes only
in procedures. Functions should return all their information only
through the RETURN clause. Following these guidelines will make it
easier to understand and use those subprograms. In addition, functions
with OUT or IN OUT parameters may not be called from within a SQL
statement.

Explicit Association of Actual and Formal Parameters in PL/SQL
How does PL/SQL know which actual parameter goes with which formal parameter
when a program is executed? PL/SQL offers two ways to make the association:

Positional notation
Associate the actual parameter implicitly (by position) with the formal parameter.

Named notation
Associate the actual parameter explicitly with the formal parameter, using the for-
mal parameter’s name and the “=>” combination symbol.

Positional notation

In every example so far, I have employed positional notation to guide PL/SQL through
the parameters. With positional notation, PL/SQL relies on the relative positions of the
parameters to make the correspondence: it associates the Nth actual parameter in the
call to a program with the Nth formal parameter in the program’s header.

With the following total_sales example, PL/SQL associates the first actual parame-
ter, :order.company_id, with the first formal parameter, company_id_in. It then asso-
ciates the second actual parameter, N, with the second formal parameter, status_in:

new_sales := total_sales (:order.company_id, 'N');

FUNCTION total_sales
 (company_id_in IN company.company_id%TYPE,
 status_in IN order.status_code%TYPE := NULL)
RETURN std_types.dollar_amount;

Parameters | 585

Download at WoweBook.Com

Positional notation, shown graphically in Figure 17-3, is the most common method for
passing arguments to programs.

Figure 17-3. Matching actual with formal parameters (positional notation)

Named notation

With named notation, you explicitly associate the formal parameter (the name of the
parameter) with the actual parameter (the value of the parameter) right in the call to
the program, using the combination symbol =>.

The general syntax for named notation is:

formal_parameter_name => argument_value

Because you provide the name of the formal parameter explicitly, PL/SQL no longer
needs to rely on the order of the parameters to make the association from actual to
formal. So, if you use named notation, you do not need to list the parameters in your
call to the program in the same order as the formal parameters in the header. You can
call total_sales for new orders in either of these two ways:

new_sales :=
 total_sales (company_id_in => order_pkg.company_id, status_in =>'N');

 new_sales :=
 total_sales (status_in =>'N', company_id_in => order_pkg.company_id);

You can also mix named and positional notation in the same program call:

:order.new_sales := total_sales (order_pkg.company_id, status_in =>'N');

If you do mix notation, however, you must list all of your positional parameters before
any named notation parameters, as shown in the preceding example. Positional nota-
tion has to have a starting point from which to keep track of positions, and the only
starting point is the first parameter. If you place named notation parameters in front
of positional notation, PL/SQL loses its place. Both of the following calls to total_sales
will fail. The first statement fails because the named notation comes first. The second
fails because positional notation is used, but the parameters are in the wrong order.
PL/SQL will try to convert ‘N’ to a NUMBER (for company_id):

:order.new_sales := total_sales (company_id_in => order_pkg.company_id, 'N');
:order.new_sales := total_sales ('N', company_id_in => order_pkg.company_id);

586 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

Benefits of named notation

Now that you are aware of the different ways to notate the order and association of
parameters, you might be wondering why you would ever use named notation. Here
are two possibilities:

Named notation is self-documenting
When you use named notation, the call to the program clearly describes the formal
parameter to which the actual parameter is assigned. The names of formal param-
eters can and should be designed so that their purpose is self-explanatory. In a way,
the descriptive aspect of named notation is another form of program documenta-
tion. If you are not familiar with all of the modules called by an application, the
listing of the formal parameters helps reinforce your understanding of a particular
program call. In some development environments, the standard for parameter no-
tation is named notation for just this reason. This is especially true when the formal
parameters are named following the convention of appending the passing mode as
the last token. Then, the direction of data can be clearly seen simply by investigating
the procedure or function call.

Named notation gives you complete flexibility over parameter specification
You can list the parameters in any order you want. (This does not mean, however,
that you should randomly order your arguments when you call a program!) You
can also include only the parameters you want or need in the parameter list. Com-
plex applications may at times require procedures with literally dozens of param-
eters. Any parameter with a default value can be left out of the call to the procedure.
Using named notation, the developer can use the procedure by passing only the
values needed for that usage.

Let’s see how these benefits can be applied. Consider the following program header:

/* File on web: namednot.sql */
PROCEDURE business_as_usual (
 advertising_budget_in IN NUMBER
 , contributions_inout IN OUT NUMBER
 , merge_and_purge_on_in IN DATE DEFAULT SYSDATE
 , obscene_ceo_bonus_out OUT NUMBER
 , cut_corners_in IN VARCHAR2 DEFAULT 'WHENEVER POSSIBLE'
);

An analysis of the parameter list yields these conclusions:

• The minimum number of arguments that must be passed to business_as_usual is
three. To determine this, add the number of IN parameters without default values
to the number of OUT or IN OUT parameters.

• I can call this program with positional notation with either four or five arguments,
because the last parameter has mode IN with a default value.

• You will need at least two variables to hold the values returned by the OUT and
IN OUT parameters.

Parameters | 587

Download at WoweBook.Com

Given this parameter list, there are a number of ways that you can call this program:

• All positional notation, all actual parameters specified. Notice how difficult it is to
recall the parameter (and significance) of each of these values.

DECLARE
 l_ceo_payoff NUMBER;
 l_lobbying_dollars NUMBER := 100000;
BEGIN
 /* All positional notation */
 business_as_usual (50000000
 , l_lobbying_dollars
 , SYSDATE + 20
 , l_ceo_payoff
 , 'PAY OFF OSHA'
);

• All positional notation, minimum number of actual parameters specified. Still hard
to understand.

business_as_usual (50000000
 , l_lobbying_dollars
 , SYSDATE + 20
 , l_ceo_payoff
);

• All named notation, keeping the original order intact. Now my call to
business_as_usual is self-documenting.

business_as_usual
 (advertising_budget_in => 50000000
 , contributions_inout => l_lobbying_dollars
 , merge_and_purge_on_in => SYSDATE
 , obscene_ceo_bonus_out => l_ceo_payoff
 , cut_corners_in => 'DISBAND OSHA'
);

• Skip over all IN parameters with default values, another critical feature of named
notation:

business_as_usual
 (advertising_budget_in => 50000000
 , contributions_inout => l_lobbying_dollars
 , obscene_ceo_bonus_out => l_ceo_payoff
);

• Change the order in which actual parameters are specified with named notation;
also provide just a partial list:

business_as_usual
 (obscene_ceo_bonus_out => l_ceo_payoff
 , merge_and_purge_on_in => SYSDATE
 , advertising_budget_in => 50000000
 , contributions_inout => l_lobbying_dollars
);

588 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

• Blend positional and named notation. You can start with positional, but once you
switch to named notation, you can’t go back to positional.

business_as_usual
 (50000000
 , l_lobbying_dollars
 , merge_and_purge_on_in => SYSDATE
 , obscene_ceo_bonus_out => l_ceo_payoff
);

As you can see, there is lots of flexibility when it comes to passing arguments to a
parameter list in PL/SQL. As a general rule, named notation is the best way to write
code that is readable and more easily maintained. You just have to take the time to look
up and write the parameter names.

The NOCOPY Parameter Mode Qualifier
PL/SQL offers an option for modifying the definition of a parameter: the NOCOPY
clause. NOCOPY requests that the PL/SQL compiler not make copies of OUT and IN
OUT arguments. The main objective of using NOCOPY is to improve the performance
of passing large constructs, such as collections, as IN OUT arguments. Because of its
performance implications, this topic is covered in detail in Chapter 21.

Default Values
As you have seen from previous examples, you can provide default values for IN pa-
rameters. If an IN parameter has a default value, you do not need to include that pa-
rameter in the call to the program. Likewise, a parameter’s default value is used by the
program only if the call to that program does not include that parameter in the list. You
must, of course, include an actual parameter for any IN OUT parameters.

The parameter default value works the same way as a specification of a default value
for a declared variable. There are two ways to specify a default value: either with the
keyword DEFAULT or with the assignment operator (:=), as the following example
illustrates:

PROCEDURE astrology_reading
 (sign_in IN VARCHAR2 := 'LIBRA',
 born_at_in IN DATE DEFAULT SYSDATE) IS

By using default values, you can call programs with different numbers of actual pa-
rameters. The program uses the default value of any unspecified parameters, and over-
rides the default values of any parameters in the list that have specified values. Here are
all the different ways you can ask for your astrology reading using positional notation:

BEGIN
 astrology_reading ('SCORPIO',
 TO_DATE ('12-24-2009 17:56:10', 'MM-DD-YYYY HH24:MI:SS'));
 astrology_reading ('SCORPIO');
 astrology_reading;

Parameters | 589

Download at WoweBook.Com

 astrology_reading();
END;

The first call specifies both parameters explicitly. In the second call, only the first actual
parameter is included, so born_at_in is set to the current date and time. In the third
call, no parameters are specified, so I omit the parentheses (or specify empty paren-
theses). Both of the default values are used in the body of the procedure.

What if you want to specify a birth time, but not a sign? To skip over leading parameters
that have default values, you will need to use named notation. By including the name
of the formal parameter, you can list only those parameters to which you need to pass
values. In this (thankfully) last request for a star-based reading of my fate, I have suc-
cessfully passed in a default of Libra as my sign and an overridden birth time of 5:56 p.m.

BEGIN
 astrology_reading (
 born_at_in =>
 TO_DATE ('12-24-2009 17:56:10', 'MM-DD-YYYY HH24:MI:SS'));
END;

Local or Nested Modules
A local or nested module is a procedure or function that is defined in the declaration
section of a PL/SQL block (anonymous or named). This module is considered local
because it is defined only within the parent PL/SQL block. It cannot be called by any
other PL/SQL blocks defined outside that enclosing block.

Figure 17-4 shows how blocks that are external to a procedure definition cannot “cross
the line” into the procedure to directly invoke any local procedures or functions.

Figure 17-4. Local modules are hidden and inaccessible outside the program

The syntax for defining the procedure or function is exactly the same as that used for
creating standalone modules.

590 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

The following anonymous block, for example, declares a local procedure:

DECLARE
 PROCEDURE show_date (date_in IN DATE) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE (TO_CHAR (date_in, 'Month DD, YYYY');
 END show_date;
BEGIN
 ...
END ;

Local modules must be located after all of the other declaration statements in the dec-
laration section. You must declare your variables, cursors, exceptions, types, records,
tables, and so on before you type in the first PROCEDURE or FUNCTION keyword.

The following sections explore the benefits of local modules and offer a number of
examples.

Benefits of Local Modularization
There are two central reasons to create local modules:

Reduce the size of the module by stripping it of repetitive code
This is the most common motivation to create a local module; you can see its
impact in the next example. The code reduction leads to higher code quality be-
cause you have fewer lines to test and fewer potential bugs. It takes less effort to
maintain the code because there is less to maintain. And when you do have to make
a change, you make it in one place in the local module, and the effects are felt
immediately throughout the parent module.

Improve the readability of your code
Even if you do not repeat sections of code within a module, you still may want to
pull out a set of related statements and package them into a local module. This can
make it easier to follow the logic of the main body of the parent module.

The following sections examine these benefits.

Reducing code volume

Let’s look at an example of reducing code volume. The calc_percentages procedure
takes numeric values from the sales package (sales_pkg), calculates the percentage of
each sales amount against the total sales provided as a parameter, and then formats the
number for display in a report or form. The example you see here has only three cal-
culations, but I extracted it from a production application that actually performed 23
of these computations!

PROCEDURE calc_percentages (total_sales_in IN NUMBER)
IS
 l_profile sales_descriptors%ROWTYPE;
BEGIN
 l_profile.food_sales_stg :=

Local or Nested Modules | 591

Download at WoweBook.Com

 TO_CHAR ((sales_pkg.food_sales / total_sales_in) * 100,
 '$999,999');
 l_profile.service_sales_stg :=
 TO_CHAR ((sales_pkg.service_sales / total_sales_in) * 100,
 '$999,999');
 l_profile.toy_sales_stg :=
 TO_CHAR ((sales_pkg.toy_sales / total_sales_in) * 100,
 '$999,999');
END;

This code took a long time (relatively speaking) to write, is larger than necessary, and
is maintenance-intensive. What if I need to change the format to which I convert the
numbers? What if the calculation of the percentage changes? I will have to change each
of the individual calculations.

With local modules, I can concentrate all the common, repeated code into a single
function, which is then called repeatedly in calc_percentages. The local module version
of this procedure is shown here:

PROCEDURE calc_percentages (total_sales_in IN NUMBER)
IS
 l_profile sales_descriptors%ROWTYPE;
 /* Define a function right inside the procedure! */
 FUNCTION pct_stg (val_in IN NUMBER) RETURN VARCHAR2
 IS
 BEGIN
 RETURN TO_CHAR ((val_in/total_sales_in) * 100, '$999,999');
 END;
BEGIN
 l_profile.food_sales_stg := pct_stg (sales_pkg.food_sales);
 l_profile.service_sales_stg := pct_stg (sales_pkg.service_sales);
 l_profile.toy_sales_stg := pct_stg (sales_pkg.toy_sales);
END;

All of the complexities of the calculation, from the division by total_sales_in to the
multiplication by 100 to the formatting with TO_CHAR, have been transferred to the
function pct_stg. This function is defined in the declaration section of the procedure.
By calling this function from within the body of calc_percentages, the executable state-
ments of the procedure are much more readable and maintainable. Now, if the formula
for the calculation changes in any way, I make the change just once in the function and
it takes effect in all the assignments.

Improving readability

You can use local modules to dramatically improve the readability and maintainability
of your code. In essence, local modules allow you to follow top-down design or stepwise
refinement methodologies very closely. You can also use the same technique to decom-
pose or refactor an existing program so that it is more readable.

The bottom-line result of using local modules in this way is that you can dramatically
reduce the size of your execution sections (you are transferring many lines of logic from
an inline location in the execution section to a local module callable in that section).

592 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

By keeping your execution sections small, you will find that it is much easier to read
and understand the logic.

I suggest that you adopt as a guideline in your coding standards that
execution sections of PL/SQL blocks be no longer than 60 lines (the
amount of text that can fit on a screen or page). This may sound crazy,
but if you follow the techniques in this section, you will find it not only
possible but highly advantageous.

Suppose that I have a series of WHILE loops (some of them nested) whose bodies
contain a series of complex calculations and deep nestings of conditional logic. Even
with extensive commenting, it can be difficult to follow the program flow over several
pages, particularly when the END IF or END LOOP of a given construct is not even
on the same page as the IF or LOOP statement that began it.

In contrast, if you pull out sequences of related statements, place them in one or more
local modules, and then call those modules in the body of the program, the result is a
program that can literally document itself. The assign_workload procedure offers a
simplified version of this scenario that still makes clear the gains offered by local
modules:

/* File on web: local_modules.sql */
PROCEDURE assign_workload (department_in IN emp.deptno%TYPE)
IS
 CURSOR emps_in_dept_cur (department_in IN emp.deptno%TYPE)
 IS
 SELECT * FROM emp WHERE deptno = department_in;

 PROCEDURE assign_next_open_case
 (emp_id_in IN NUMBER, case_out OUT NUMBER)
 IS
 BEGIN ... full implementation ... END;

 FUNCTION next_appointment (case_id_in IN NUMBER)
 RETURN DATE
 IS
 BEGIN ... full implementation ... END;

 PROCEDURE schedule_case
 (case_in IN NUMBER, date_in IN DATE)
 IS
 BEGIN ... full implementation ... END;

BEGIN /* main */
 FOR emp_rec IN emps_in_dept_cur (department_in)
 LOOP
 IF analysis.caseload (emp_rec.emp_id) <
 analysis.avg_cases (department_in);
 THEN
 assign_next_open_case (emp_rec.emp_id, case#);
 schedule_case

Local or Nested Modules | 593

Download at WoweBook.Com

 (case#, next_appointment (case#));
 END IF;
 END LOOP
END assign_workload;

The assign_workload procedure has three local modules:

assign_next_open_case
next_appointment
schedule_case

It also relies on two packaged programs that already exist and can be easily plugged
into this program: analysis.caseload and analysis.avg_cases. For the purposes of un-
derstanding the logic behind assign_workload, it doesn’t really matter what code is
executed in each of them. I can rely simply on the names of those modules to read
through the main body of this program. Even without any comments, a reader can still
gain a clear understanding of what each module is doing. Of course, if you want to rely
on named objects to self-document your code, you’d better come up with very good
names for the functions and procedures.

Scope of Local Modules
The modularized declaration section looks a lot like the body of a package, as you will
see in Chapter 18. A package body also contains definitions of modules. The big dif-
ference between local modules and package modules is their scope. Local modules can
be called only from within the block in which they are defined; package modules can—
at a minimum—be called from anywhere in the package. If the package modules are
also listed in the package specification, they can be called by other program units from
schemas that have EXECUTE authority on that package.

You should therefore use local modules only to encapsulate code that does not need
to be called outside of the current program. Otherwise, go ahead, and create a package!

Sprucing Up Your Code with Local Modules
These days it seems that whenever I write a program with more than 20 lines and any
complexity whatsoever, I end up creating one or more local modules. Doing so helps
me see my way through to a solution much more easily; I can conceptualize my code
at a higher level of abstraction by assigning a name to a whole sequence of statements,
and I can perform top-down design and stepwise refinement of my requirements. Fi-
nally, by modularizing my code even within a single program, I make it very easy to
later extract a local module and make it a truly independent, reusable procedure or
function.

You could also, of course, move that logic out of the local scope and make it a package
body-level program of its own (assuming you are writing this code in a package). Taking
this approach will reduce the amount of nesting of local procedures, which can be
helpful. It also, however, can lead to package bodies with a very long list of programs,

594 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

many of which are only used within another program. My general principle is to keep
the definition of an element as close as possible to its usage, which naturally leads to
the use of local modules.

I hope that as you read this, a program you have written comes to mind. Perhaps you
can go back and consolidate some repetitive code, clean up the logic, and make the
program actually understandable to another human being. Don’t fight the urge. Go
ahead, and modularize your code.

To help you define and work with local modules in your applications, I have created a
package called TopDown. Using this package, you can spend a small amount of time
placing “indicators” in your code, essentially instructions on what and how you want
local modules created. You can then compile this sort-of-template into the database,
call TopDown.Refactor for that program unit, and voila!, local modules are created as
you requested.

You can then repeat that process for each level down through the complexities of your
program, very quickly defining a highly modular architecture that you and others will
appreciate for years to come.

You will find a more complete explanation of the TopDown package, the source code,
and example scripts in the TopDown.zip file on the book’s web site.

Module Overloading
When more than one program in the same scope share the same name, the programs
are said to be overloaded. PL/SQL supports the overloading of procedures and functions
in the declaration section of a block (named or anonymous), package specifications
and bodies, and object type definitions. Overloading is a very powerful feature, and
you should exploit it fully to improve the usability of your software.

Here is a very simple example of three overloaded modules defined in the declaration
section of an anonymous block (therefore, all are local modules):

DECLARE
 /* First version takes a DATE parameter. */
 FUNCTION value_ok (date_in IN DATE) RETURN BOOLEAN IS
 BEGIN
 RETURN date_in <= SYSDATE;
 END;

 /* Second version takes a NUMBER parameter. */
 FUNCTION value_ok (number_in IN NUMBER) RETURN BOOLEAN IS
 BEGIN
 RETURN number_in > 0;
 END;

 /* Third version is a procedure! */
 PROCEDURE value_ok (number_in IN NUMBER) IS
 BEGIN

Module Overloading | 595

Download at WoweBook.Com

 IF number_in > 0 THEN
 DBMS_OUTPUT.PUT_LINE (number_in || 'is OK!');
 ELSE
 DBMS_OUTPUT.PUT_LINE (number_in || 'is not OK!');
 END IF;
 END;

BEGIN

When the PL/SQL runtime engine encounters the following statement:

IF value_ok (SYSDATE) THEN ...

the actual parameter list is compared with the formal parameter lists of the various
overloaded modules, searching for a match. If one is found, PL/SQL executes the code
in the body of the program with the matching header.

Another name for overloading is static polymorphism. The term poly-
morphism refers to the ability of a language to define and selectively use
more than one form of a program with the same name. When the deci-
sion on which form to use is made at compilation time, it is called static
polymorphism. When the decision is made at runtime, it is called dy-
namic polymorphism; this type of polymorphism is available through
inherited object types.

Overloading can greatly simplify your life and the lives of other developers. This tech-
nique consolidates the call interfaces for many similar programs into a single module
name, transferring the burden of knowledge from the developer to the software. You
do not have to try to remember, for instance, the six different names for programs
adding values (dates, strings, Booleans, numbers, etc.) to various collections. Instead,
you simply tell the compiler that you want to add a value and pass it that value.
PL/SQL and your overloaded programs figure out what you want to do and then do it
for you.

When you build overloaded modules, you spend more time in design and implemen-
tation than you might with separate, standalone modules. This additional time up-front
will be repaid handsomely down the line because you and others will find it much easier
and more efficient to use your programs.

Benefits of Overloading
There are three different scenarios that benefit from overloading:

Supporting many data combinations
When applying the same action to different kinds or combinations of data, over-
loading does not provide a single name for different activities, so much as it pro-
vides different ways of requesting the same activity. This is the most common
motivation for overloading.

596 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

Fitting the program to the user
To make your code as useful as possible, you may construct different versions of
the same program that correspond to different patterns of use. This often involves
overloading functions and procedures. A good indicator of the need for this form
of overloading is when you find yourself writing unnecessary code. For example,
when working with DBMS_SQL, you will call the DBMS_SQL.EXECUTE func-
tion, but for DDL statements, the value returned by this function is irrelevant.
Oracle should have overloaded this function as a procedure, so that I could simply
execute a DDL statement like this:

BEGIN
 DBMS_SQL.EXECUTE ('CREATE TABLE xyz ...');

as opposed to:

DECLARE
 feedback PLS_INTEGER;
BEGIN
 feedback := DBMS_SQL.EXECUTE ('CREATE TABLE xyz ...');

and then ignoring the feedback.

Overloading by type, not value
This is the least common application of overloading. In this scenario, you use the
type of data, not its value, to determine which of the overloaded programs should
be executed. This really comes in handy only when you are writing very generic
software. DBMS_SQL.DEFINE_COLUMN is a good example of this approach to
overloading. I need to tell DBMS_SQL the type of each of my columns being se-
lected from the dynamic query. To indicate a numeric column, I can make a call
as follows:

DBMS_SQL.DEFINE_COLUMN (cur, 1, 1);

or I could do this:

DBMS_SQL.DEFINE_COLUMN (cur, 1, DBMS_UTILITY.GET_TIME);

It doesn’t matter which I do; I just need to say “this is a number,” but not any
particular number. Overloading is an elegant way to handle this requirement.

Let’s look at an example of the most common type of overloading and then review
restrictions and guidelines on overloading.

Supporting many data combinations

Use overloading to apply the same action to different kinds or combinations of data.
As noted previously, this kind of overloading does not provide a single name for dif-
ferent activities so much as different ways of requesting the same activity. Consider
DBMS_OUTPUT.PUT_LINE. You can use this built-in to display the value of any type
of data that can be implicitly or explicitly converted to a string. Interestingly, in earlier
versions of Oracle Database (7, 8, 8i, 9i), this procedure was overloaded. In Oracle

Module Overloading | 597

Download at WoweBook.Com

Database 10g and later, however, it is not overloaded at all! This means that if you want
to display an expression that cannot be implicitly converted to a string, you cannot call
DBMS_OUTPUT.PUT_LINE and pass it that expression.

You might be thinking: so what? PL/SQL implicitly converts numbers and dates to a
string. What else might I want to display? Well, for starters, how about a Boolean? To
display an expression of type Boolean variable’s value, you must write an IF statement,
as in:

IF l_student_is_registered
THEN
 DBMS_OUTPUT.PUT_LINE ('TRUE');
ELSE
 DBMS_OUTPUT.PUT_LINE ('FALSE');
END IF;

Now, isn’t that silly? And a big waste of your time? Fortunately, it is very easy to fix
this problem. Just build your own package, with lots of overloadings, on top of
DBMS_OUTPUT.PUT_LINE. Here is a very abbreviated example of such a package.
You can extend it easily, as I do with the do.pl procedure (why type all those characters
just to say “show me,” right?). A portion of the package specification is shown here:

/* File on web: do.pkg (also check out the p.* files) */
PACKAGE do
IS
 PROCEDURE pl (boolean_in IN BOOLEAN);

 /* Display a string. */
 PROCEDURE pl (char_in IN VARCHAR2);

 /* Display a string and then a Boolean value. */
 PROCEDURE pl (
 char_in IN VARCHAR2,
 boolean_in IN BOOLEAN
);

 PROCEDURE pl (xml_in IN SYS.XMLType);
END do;

This package simply sits on top of DBMS_OUTPUT.PUT_LINE and enhances it. With
do.pl, I can now display a Boolean value without writing my own IF statement, as in:

DECLARE
 v_is_valid BOOLEAN :=
 book_info.is_valid_isbn ('5-88888-66');
BEGIN
 do.pl (v_is_valid);

Better yet, I can get really fancy and even apply do.pl to complex datatypes like
XMLType:

/* File on web: xmltype.sql */

DECLARE

598 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

 doc xmltype;
BEGIN
 SELECT ea.report
 INTO doc
 FROM env_analysis ea
 WHERE company= 'ACME SILVERPLATING';

 do.pl (doc);
END;

Restrictions on Overloading
There are several restrictions on how you can overload programs. When the PL/SQL
engine compiles and runs your program, it has to be able to distinguish between the
different overloaded versions of a program; after all, it can’t run two different modules
at the same time. So when you compile your code, PL/SQL will reject any improperly
overloaded modules. It cannot distinguish between the modules by their names because
by definition they are the same in all overloaded programs. Instead, PL/SQL uses the
parameter lists of these sibling programs to determine which one to execute and/or the
types of the programs (procedure versus function). As a result, the following restrictions
apply to overloaded programs:

The datatype “family” of at least one of the parameters of overloaded programs must differ
INTEGER, REAL, DECIMAL, FLOAT, etc., are NUMBER subtypes. CHAR,
VARCHAR2, and LONG are character subtypes. If the parameters differ only by
datatype within the supertype or family of datatypes, PL/SQL does not have
enough information to determine the appropriate program to execute.

However, see the following section, which explains an improve-
ment in Oracle Database 10g (and later) regarding overloading for
numeric types.

Overloaded programs with parameter lists that differ only by name must be called using
named notation

If you don’t use the name of the argument, how can the compiler distinguish be-
tween calls to two overloaded programs? Please note, however, that it is always
risky to use named notation as an enforcement paradigm. You should avoid sit-
uations where named notation yields different semantic meaning from positional
notation.

The parameter list of overloaded programs must differ by more than parameter mode
Even if a parameter in one version is IN and that same parameter in another version
is IN OUT, PL/SQL cannot tell the difference at the point at which the program is
called.

Module Overloading | 599

Download at WoweBook.Com

All of the overloaded programs must be defined within the same PL/SQL scope or block
(anonymous block, standalone procedure or function, or package)

You cannot define one version in one block (scope level) and define another version
in a different block. You cannot overload two standalone programs; one simply
replaces the other.

Overloaded functions must differ by more than their return type (the datatype specified
in the RETURN clause of the function)

At the time that the overloaded function is called, the compiler doesn’t know what
type of data that function will return. The compiler therefore cannot determine
which version of the function to use if all the parameters are the same.

Overloading with Numeric Types
Starting with Oracle Database 10g, you can overload two subprograms if their formal
parameters differ only in numeric datatype. Before getting into the details, let’s look at
an example. Consider the following block:

DECLARE
 PROCEDURE proc1 (n IN PLS_INTEGER) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE ('pls_integer version');
 END;

 PROCEDURE proc1 (n IN NUMBER) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE ('number version');
 END;
BEGIN
 proc1 (1.1);
 proc1 (1);
END;

When I try to run this code in Oracle9i Database, I get an error:

ORA-06550: line 14, column 4:
PLS-00307: too many declarations of 'PROC1' match this call

When I run this same block in Oracle Database 10g and Oracle Database 11g, however,
I see the following results:

number version
pls_integer version

The PL/SQL compiler is now able to distinguish between the two calls. Notice that it
called the “number version” when I passed a noninteger value. That’s because PL/SQL
looks for numeric parameters that match the value, and it follows this order of prece-
dence in establishing the match: it starts with PLS_INTEGER or BINARY_INTEGER,
then NUMBER, then BINARY_FLOAT, and finally BINARY_DOUBLE. It will use the
first overloaded program that matches the actual argument values passed.

600 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

While it is very nice that the database now offers this flexibility, be careful when relying
on this very subtle overloading—make sure that it is all working as you would expect.
Test your code with a variety of inputs and check the results. Remember that you can
pass a string such as “156.4” to a numeric parameter; be sure to try out those inputs
as well.

You can also qualify numeric literals and use conversion functions to make explicit
which overloading (i.e., which numeric datatype) you want to call. If you want to pass
5.0 as a BINARY_FLOAT, for example, you could specify the value 5.0f or use the
conversion function, TO_BINARY_FLOAT(5.0).

Forward Declarations
PL/SQL requires that you declare elements before using them in your code. Otherwise,
how can PL/SQL be sure that the way you are using the construct is appropriate? Be-
cause modules can call other modules, however, you may encounter situations where
it is completely impossible to define all modules before any references to those modules
are made. What if program A calls program B and program B calls program A? PL/SQL
supports recursion, including mutual recursion, in which two or more programs directly
or indirectly call each other.

If you find yourself committed to mutual recursion, you will be very glad to hear that
PL/SQL supports the forward declaration of local modules, which means that modules
are declared in advance of the actual definition of that program. This declaration makes
that program available to be called by other programs even before the program
definition.

Remember that both procedures and functions have a header and a body. A forward
declaration consists simply of the program header followed by a semicolon (;). This
construction is called the module header. This header, which must include the param-
eter list (and a RETURN clause if it’s a function), is all the information PL/SQL needs
about a module in order to declare it and resolve any references to it.

The following example illustrates the technique of forward declaration. I define two
mutually recursive functions within a procedure. Consequently, I have to declare just
the header of my second function, total_cost, before the full declaration of net_profit:

PROCEDURE perform_calcs (year_in IN INTEGER)
IS
 /* Header only for total_cost function. */
 FUNCTION total_cost (...) RETURN NUMBER;

 /* The net_profit function uses total_cost. */
 FUNCTION net_profit (...) RETURN NUMBER IS
 BEGIN
 RETURN total_sales (...) - total_cost (...);
 END;

Forward Declarations | 601

Download at WoweBook.Com

 /* The total_cost function uses net_profit. */
 FUNCTION total_cost (...) RETURN NUMBER IS
 BEGIN
 IF <condition based on parameters>
 THEN
 RETURN net_profit (...) * .10;
 ELSE
 RETURN <parameter value>;
 END IF;
 END;
BEGIN
 ...
END;

Here are some rules to remember concerning forward declarations:

• You cannot make forward declarations of a variable or cursor. This technique
works only with modules (procedures and functions).

• The definition for a forwardly declared program must be contained in the decla-
ration section of the same PL/SQL block (anonymous block, procedure, function,
or package body) in which you code the forward declaration.

In some situations, forward declarations are absolutely required; in most situations,
they just help make your code more readable and presentable. As with every other
advanced or unusual feature of the PL/SQL language, use forward declarations only
when you really need the functionality. Otherwise, the declarations simply add to the
clutter of your program, which is the last thing you want.

Advanced Topics
The following sections are most appropriate for experienced PL/SQL programmers.
Here, I’ll touch on a number of advanced modularization topics, including calling
functions in SQL, using table functions, and using deterministic functions.

Calling Your Function From Inside SQL
The Oracle database allows you to call your own custom-built functions from within
SQL. In essence, this flexibility allows you to customize the SQL language to adapt to
application-specific requirements.

Whenever the SQL runtime engine calls a PL/SQL function, it must
“switch” to the PL/SQL runtime engine. The overhead of this context
switch can be substantial if the function is called many times.

602 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

Requirements for calling functions in SQL

There are several requirements that a programmer-defined PL/SQL function must meet
in order to be callable from within a SQL statement:

• All of the function’s parameters must use the IN mode. Neither IN OUT nor OUT
parameters are allowed in SQL-embedded stored functions.

• The datatypes of the function’s parameters, as well as the datatype of the RETURN
clause of the function, must be recognized within the Oracle server. While all of
the Oracle server datatypes are valid within PL/SQL, PL/SQL has added new da-
tatypes that are not (yet) supported in the database. These datatypes include
BOOLEAN, BINARY_INTEGER, associative arrays, PL/SQL records, and
programmer-defined subtypes.

• The function must be stored in the database. A function defined in a client-side
PL/SQL environment cannot be called from within SQL; there would be no way
for SQL to resolve the reference to the function.

By default, user-defined functions that execute in SQL operate on a sin-
gle row of data, not on an entire column of data that crosses rows, as
the group functions SUM, MIN, and AVG do. It is possible to write
aggregate functions to be called inside SQL, but this requires taking
advantage of the ODCIAggregate interface, which is part of Oracle’s
Extensibility Framework. See the Oracle documentation for more de-
tails on this functionality.

Restrictions on user-defined functions in SQL

In order to guard against nasty side effects and unpredictable behavior, the Oracle
database applies many restrictions on what you can do from within a user-defined
function executed inside a SQL statement:

• The function may not modify database tables. It may not execute any of the fol-
lowing types of statements: DDL (CREATE TABLE, DROP INDEX, etc.), INSERT,
DELETE, MERGE, or UPDATE. Note that this restriction is relaxed if your func-
tion is defined as an autonomous transaction (described in Chapter 14); in this
case, any changes made in your function occur independently of the outer trans-
action in which the query was executed.

• When called remotely or through a parallelized action, the function may not read
or write the values of package variables. The Oracle server does not support side
effects that cross user sessions.

• The function can update the values of package variables only if that function is
called in a select list, or a VALUES or SET clause. If the stored function is called in
a WHERE or GROUP BY clause, it may not write package variables.

Advanced Topics | 603

Download at WoweBook.Com

• Prior to Oracle8 Database, you may not call RAISE_APPLICATION_ERROR from
within the user-defined function.

• The function may not call another module (stored procedure or function) that
breaks any of the preceding rules. A function is only as pure as the most impure
module that it calls.

• The function may not reference a view that breaks any of the preceding rules. A
view is a stored SELECT statement; that view’s SELECT may use stored functions.

• Prior to Oracle Database 11g, you may use only positional notation to pass actual
arguments to your function’s formal parameters. In Oracle Database 11g, you may
use named and mixed notation.

Read consistency and user-defined functions

The read consistency model of the Oracle database is simple and clear: once I start a
query, that query will only see data as it existed (was committed in the database) at the
time the query was started. So if my query starts at 9:00 a.m. and runs for an hour, then
even if another user comes along and changes data, my query will not see those changes.

Yet unless you take special precautions with user-defined functions in your queries, it
is quite possible that your query will violate (or, at least, appear to violate) the read
consistency model of the Oracle database. To understand this issue, consider the fol-
lowing function and the query that calls it:

FUNCTION total_sales (id_in IN account.account_id%TYPE)
 RETURN NUMBER
IS
 CURSOR tot_cur
 IS
 SELECT SUM (sales) total
 FROM orders
 WHERE account_id = id_in
 AND TO_CHAR (ordered_on, 'YYYY') = TO_CHAR (SYSDATE, 'YYYY');
 tot_rec tot_cur%ROWTYPE;
BEGIN
 OPEN tot_cur;
 FETCH tot_cur INTO tot_rec;
 RETURN tot_rec.total;
END;

SELECT name, total_sales (account_id)
 FROM account
 WHERE status = 'ACTIVE';

The account table has 5 million active rows in it (a very successful enterprise!). The
orders table has 20 million rows. I start the query at 10:00 a.m.; it takes about an hour
to complete. At 10:45 a.m., somebody with the proper authority comes along, deletes
all rows from the orders table, and performs a commit. According to the read consis-
tency model of Oracle, the session running the query should not see all those deleted
rows until the query completes. But the next time the total_sales function executes

604 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

from within the query, it finds no order rows and returns NULL—and will do so until
the query completes.

So if you are executing queries inside functions that are called inside SQL, you need to
be acutely aware of read-consistency issues. If these functions are called in long-running
queries or transactions, you will probably need to issue the following command to
enforce read-consistency between SQL statements in the current transaction:

SET TRANSACTION READ ONLY

In this case, for read consistency to be possible, you need to ensure that you have
sufficient undo tablespace.

Table Functions
A table function is a function that can be called from within the FROM clause of a query,
as if it were a relational table. Table functions return collections (nested tables or VAR-
RAYs), which can then be transformed with the TABLE operator into a structure that
can be queried using the SQL language. Table functions come in very handy when you
need to:

• Perform very complex transformations of data, requiring the use of PL/SQL, but
need to access that data from within an SQL statement.

• Pass complex result sets back to the host (that is, non-PLSQL) environment. You
can open a cursor variable for a query based on a table function, and let the host
environment fetch through the cursor variable.

There are two kinds of table functions that merit special mention and attention in our
examples:

Streaming table functions
Data streaming means that you can pass from one process or stage to another
without having to rely on intermediate structures. Table functions, in conjunction
with the CURSOR expression, enable you to stream data through multiple trans-
formations, all within a single SQL statement.

Pipelined table functions
These functions return a result set in pipelined fashion, meaning that data is re-
turned while the function is still executing. Add the PARALLEL_ENABLE to a
pipelined function’s header, and you have a function that will execute in parallel
within a parallel query.

Let’s explore how to define table functions and put them to use in your application.

Calling a function in a FROM clause

To call a function from within a FROM clause, you must do the following:

Advanced Topics | 605

Download at WoweBook.Com

• Define the RETURN datatype of the function to be a collection (either a nested
table or a VARRAY).

• Make sure that all of the other parameters to the function are of mode IN and have
SQL datatypes. (You cannot, for example, call a function with a Boolean or record
type argument inside a query.)

• Embed the call to the function inside the TABLE operator (if you are running Ora-
cle8i Database, you will also need to use the CAST operator).

Here is a simple example of a table function. First, I will create a nested table type based
on an object type of pets:

/* File on web: pet_family.sql */
CREATE TYPE pet_t IS OBJECT (
 name VARCHAR2 (60),
 breed VARCHAR2 (100),
 dob DATE);

CREATE TYPE pet_nt IS TABLE OF pet_t;

Now I will create a function named pet_family. It accepts two pet objects as arguments:
the mother and the father. Then, based on the breed, it returns a nested table with the
entire family defined in the collection:

FUNCTION pet_family (dad_in IN pet_t, mom_in IN pet_t)
 RETURN pet_nt
IS
 l_count PLS_INTEGER;
 retval pet_nt := pet_nt ();

 PROCEDURE extend_assign (pet_in IN pet_t) IS
 BEGIN
 retval.EXTEND;
 retval (retval.LAST) := pet_in;
 END;
BEGIN
 extend_assign (dad_in);
 extend_assign (mom_in);

 IF mom_in.breed = 'RABBIT' THEN l_count := 12;
 ELSIF mom_in.breed = 'DOG' THEN l_count := 4;
 ELSIF mom_in.breed = 'KANGAROO' THEN l_count := 1;
 END IF;

 FOR indx IN 1 .. l_count
 LOOP
 extend_assign (pet_t ('BABY' || indx, mom_in.breed, SYSDATE));
 END LOOP;

 RETURN retval;
END;

606 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

The pet_family function is silly and trivial; the point to understand here
is that your PL/SQL function may contain extremely complex logic—
whatever is required within your application and can be accomplished
with PL/SQL—that exceeds the expressive capabilities of SQL.

Now I can call this function in the FROM clause of a query, as follows::

SELECT pets.NAME, pets.dob
 FROM TABLE (pet_family (pet_t ('Hoppy', 'RABBIT', SYSDATE)
 , pet_t ('Hippy', 'RABBIT', SYSDATE)
)
) pets;

And here is a portion of the output:

NAME DOB
---------- ---------
Hoppy 27-FEB-02
Hippy 27-FEB-02
BABY1 27-FEB-02
BABY2 27-FEB-02
...
BABY11 27-FEB-02
BABY12 27-FEB-02

Passing table function results with a cursor variable

Table functions help overcome a problem that developers have encountered in the
past—namely, how do I pass data that I have produced through PL/SQL-based pro-
gramming (i.e., the data is not intact inside one or more tables in the database) back
to a non-PL/SQL host environment? Cursor variables allow me to easily pass back SQL-
based result sets to, say, Java programs, because cursor variables are supported in
JDBC. Yet if I first need to perform complex transformations in PL/SQL, how then do
I offer that data to the calling program?

Now, we can combine the power and flexibility of table functions with the wide support
for cursor variables in non-PL/SQL environments (explained in detail in Chapter 15)
to solve this problem.

Suppose, for example, that I need to generate a pet family (bred through a call to the
pet_family function, as shown in the previous section) and pass those rows of data to
a frontend application written in Java. I can do this very easily as follows:

/* File on web: pet_family.sql */
FUNCTION pet_family_cv
 RETURN SYS_REFCURSOR
IS
 retval SYS_REFCURSOR;
BEGIN
 OPEN retval FOR
 SELECT *
 FROM TABLE (pet_family (pet_t ('Hoppy', 'RABBIT', SYSDATE)

Advanced Topics | 607

Download at WoweBook.Com

 , pet_t ('Hippy', 'RABBIT', SYSDATE)
)
);

 RETURN retval;
END pet_family_cv;

In this program, I am taking advantage of the predefined weak REF CURSOR type,
SYS_REFCURSOR (introduced in Oracle9i Database), to declare a cursor variable. I
“OPEN FOR” this cursor variable, associating with it the query that is built around the
pet_family table function.

I can then pass this cursor variable back to the Java frontend. Because JDBC recognizes
cursor variables, the Java code can then easily fetch the rows of data and integrate them
into the application.

Creating a streaming function

A streaming function accepts as a parameter a result set (via a CURSOR expression)
and returns a result set in the form of a collection. Because you can apply the TABLE
operator to this collection and then query from it in a SELECT statement, these func-
tions can perform one or more transformations of data within a single SQL statement.

Support for streaming functions was added in Oracle9i Database and can be used to
hide algorithmic complexity behind a function interface and thus simplify the SQL in
your application. I will walk through an example to explain the kinds of steps you will
need to go through yourself to take advantage of table functions in this way.

Consider the following scenario. I have a table of stock ticker information that contains
a single row for the open and close prices of stock:

/* File on web: tabfunc_streaming.sql */
TABLE stocktable (
 ticker VARCHAR2(10),
 trade_date DATE,
 open_price NUMBER,
 close_price NUMBER)

I need to transform (or pivot) that information into another table:

TABLE tickertable (
 ticker VARCHAR2(10),
 pricedate DATE,
 pricetype VARCHAR2(1),
 price NUMBER)

In other words, a single row in stocktable becomes two rows in tickertable. There are
many ways to achieve this goal. A very traditional and straightforward approach in
PL/SQL might look like this:

FOR rec IN (SELECT * FROM stocktable)
LOOP
 INSERT INTO tickertable

608 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

 (ticker, pricetype, price)
 VALUES (rec.ticker, 'O', rec.open_price);

 INSERT INTO tickertable
 (ticker, pricetype, price)
 VALUES (rec.ticker, 'C', rec.close_price);
END LOOP;

There are also 100% SQL solutions, such as:

INSERT ALL
 INTO tickertable
 (ticker, pricedate, pricetype, price
)
 VALUES (ticker, trade_date, 'O', open_price
)
 INTO tickertable
 (ticker, pricedate, pricetype, price
)
 VALUES (ticker, trade_date, 'C', close_price
)
 SELECT ticker, trade_date, open_price, close_price
 FROM stocktable;

Let’s assume, however, that the transformation that I must perform to move data from
stocktable to tickertable is very complex and requires the use of PL/SQL. In this situa-
tion, a table function used to stream the data as it is transformed would offer a much
more efficient solution.

First of all, if I am going to use a table function, I will need to return a nested table or
VARRAY of data. I will use a nested table because VARRAYs require the specification
of a maximum size, and I don’t want to have that restriction in my implementation.
This nested table type must be defined as a schema-level element because the SQL
engine must be able to resolve a reference to a collection of this type.

I would like to return a nested table based on the table definition itself. That is, I would
like it to be defined as follows:

TYPE tickertype_nt IS TABLE of tickertype%ROWTYPE;

Unfortunately, this statement will fail because %ROWTYPE is not a SQL-recognized
type. That attribute is available only inside a PL/SQL declaration section. So I must
instead create an object type that mimics the structure of my relational table, and then
define a nested table TYPE against that object type.

TYPE TickerType AS OBJECT (
 ticker VARCHAR2(10),
 pricedate DATE
 pricetype VARCHAR2(1),
 price NUMBER);

TYPE TickerTypeSet AS TABLE OF TickerType;

Advanced Topics | 609

Download at WoweBook.Com

For my table function to stream data from one stage of transformation to the next, it
will have to accept as its argument a set of data, in essence, a query. The only way to
do that is to pass in a cursor variable, so I will need a REF CURSOR type to use in the
parameter list of my function.

I create a package to hold the REF CURSOR type based on my new nested table type:

PACKAGE refcur_pkg
IS
 TYPE refcur_t IS REF CURSOR RETURN StockTable%ROWTYPE;
END refcur_pkg;

Finally, I can write my stock pivot function:

/* File on web: tabfunc_streaming.sql */
1 FUNCTION stockpivot (dataset refcur_pkg.refcur_t)
2 RETURN tickertypeset
3 IS
4 l_row_as_object tickertype := tickertype (NULL, NULL, NULL, NULL);
5 l_row_from_query dataset%ROWTYPE;
6 retval tickertypeset := tickertypeset ();
7 BEGIN
8 LOOP
9 FETCH dataset
10 INTO l_row_from_query;
11
12 EXIT WHEN dataset%NOTFOUND;
13 --
14 l_row_as_object.ticker := l_row_from_query.ticker;
15 l_row_as_object.pricetype := 'O';
16 l_row_as_object.price := l_row_from_query.open_price;
17 l_row_as_object.pricedate := l_row_from_query.trade_date;
18 retval.EXTEND;
19 retval (retval.LAST) := l_row_as_object;
20 --
21 l_row_as_object.pricetype := 'C';
22 l_row_as_object.price := l_row_from_query.close_price;
23 retval.EXTEND;
24 retval (retval.LAST) := l_row_as_object;
25 END LOOP;
26
27 CLOSE dataset;
28
29 RETURN retval;
30 END stockpivot;

As with the pet_family function, the specifics of this program are not important, and
your own transformation logic will be qualitatively more complex. The basic steps
performed here, however, will likely be repeated in your own code, so I will review
them.

610 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

Line(s) Description

1–2 The function header: pass in a result set as a cursor variable, and return a nested table based on the object type.

4 Declare a local object, which will be used to populate the nested table.

5 Declare a local record based on the result set. This will be populated by the FETCH from the cursor variable.

6 The local nested table that will be returned by the function.

8–12 Start up a simple loop to fetch each row separately from the cursor variable, terminating the loop when no more data
is in the cursor.

14–19 Use the “open” data in the record to populate the local object, and then place it in the nested table, after EXTENDing
to define the new row.

21–25 Use the “open” data in the record to populate the local object, and then place it in the nested table, after EXTENDing
to define the new row.

27–30 Close the cursor and return the nested table. Mission completed. Really.

And now that I have this function in place to do all the fancy, but necessary footwork,
I can use it inside my query to stream data from one table to another:

BEGIN
 INSERT INTO tickertable
 SELECT *
 FROM TABLE (stockpivot (CURSOR (SELECT *
 FROM stocktable)));
END;

My inner SELECT retrieves all rows in the stocktable. The CURSOR expression around
that query transforms the result set into a cursor variable, which is passed to stockpivot.
That function returns a nested table, and the TABLE operator then translates it into a
relational table format that can be queried.

It may not be magic, but it is a bit magical, wouldn’t you say? Well, if you think a
streaming function is special, check out pipelined functions!

Creating a pipelined function

A pipelined function is a table function that returns a result set as a collection but does
so asynchronous to the termination of the function. In other words, the database no
longer waits for the function to run to completion, storing all the rows it computes in
the PL/SQL collection, before it delivers the first rows. Instead, as each row is ready to
be assigned into the collection, it is piped out of the function. This section describes
the basics of pipelined table functions. The performance implications of these functions
are explored in detail in Chapter 21.

Let’s take a look at a rewrite of the stockpivot function and see more clearly what is
needed to build pipelined functions:

 /* File on web: tabfunc_pipelined.sql */
 1 FUNCTION stockpivot (dataset refcur_pkg.refcur_t)
 2 RETURN tickertypeset PIPELINED

Advanced Topics | 611

Download at WoweBook.Com

 3 IS
 4 l_row_as_object tickertype := tickertype (NULL, NULL, NULL, NULL);
 5 l_row_from_query dataset%ROWTYPE;
 6 BEGIN
 7 LOOP
 8 FETCH dataset INTO l_row_from_query;
 9 EXIT WHEN dataset%NOTFOUND;
10
11 -- first row
12 l_row_as_object.ticker := l_row_from_query.ticker;
13 l_row_as_object.pricetype := 'O';
14 l_row_as_object.price := l_row_from_query.open_price;
15 l_row_as_object.pricedate := l_row_from_query.trade_date;
16 PIPE ROW (l_row_as_object);
17
18 -- second row
19 l_row_as_object.pricetype := 'C';
20 l_row_as_object.price := l_row_from_query.close_price;
21 PIPE ROW (l_row_as_object);
22 END LOOP;
23
24 CLOSE dataset;
25 RETURN;
26 END;

The following table notes several changes to our original functionality:

Line(s) Description

2 The only change from the original stockpivot function is the addition of the PIPELINED keyword.

4–5 Declare a local object and local record, as with the first stockpivot. What’s striking about these lines is what I
don’t declare—namely, the nested table that will be returned by the function. A hint of what is to come....

7–9 Start up a simple loop to fetch each row separately from the cursor variable, terminating the loop when no
more data is in the cursor.

12–15 and
19–21

Populate the local object for the open and close tickertable rows to be placed in the nested table.

16 and 21 Use the PIPE ROW statement (valid only in pipelined functions) to “pipe” the objects immediately out from the
function.

25 At the bottom of the executable section, the function doesn’t return anything! Instead, it calls the unqualified
RETURN (formerly allowed only in procedures) to return control to the calling block. The function already
returned all of its data with the PIPE ROW statements.

You can call the pipelined function as you would the nonpipelined version. You won’t
see any difference in behavior, unless you set up the pipelined function to be executed
in parallel as part of a parallel query (covered in the next section) or include logic that
takes advantage of the asynchronous return of data.

612 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

Consider, for example, a query that uses the ROWNUM pseudo-column to restrict the
rows of interest:

BEGIN
 INSERT INTO tickertable
 SELECT *
 FROM TABLE (stockpivot (CURSOR (SELECT *
 FROM stocktable)))
 WHERE ROWNUM < 10;
END;

My tests show that on Oracle Database 10g and Oracle Database 11g, if I pivot 100,000
rows into 200,000, and then return only the first 9 rows, the pipelined version completes
its work in 0.2 seconds, while the nonpipelined version took 4.6 seconds.

Clearly, piping rows back does work and does make a noticeable difference!

Enabling a function for parallel execution

One enormous step forward for PL/SQL, introduced first in Oracle9i Database, is the
ability to execute functions within a parallel query context. Prior to Oracle9i Database,
a call to a PL/SQL function inside SQL caused serialization of that query—a major
problem for data warehousing applications. You can now add information to the header
of a pipelined function in order to instruct the runtime engine how the data set being
passed into the function should be partitioned for parallel execution.

In general, if you would like your function to execute in parallel, it must have a single,
strongly typed REF CURSOR input parameter.*

Here are some examples:

• Specify that the function can run in parallel and that the data passed to that function
can be partitioned arbitrarily:

FUNCTION my_transform_fn (
 p_input_rows in employee_info.recur_t)
 RETURN employee_info.transformed_t
 PIPELINED
 PARALLEL_ENABLE (PARTITION p_input_rows BY ANY)

In this example, the keyword ANY expresses the programmer’s assertion that the
results are independent of the order in which the function gets the input rows.
When this keyword is used, the runtime system randomly partitions the data
among the various query processes. This keyword is appropriate for use with func-
tions that take in one row, manipulate its columns, and generate output rows based
on the columns of this row only. If your program has other dependencies, the
outcome will be unpredictable.

* The input REF CURSOR need not be strongly typed to be partitioned by ANY.

Advanced Topics | 613

Download at WoweBook.Com

• Specify that the function can run in parallel, that all the rows for a given department
go to the same process, and that all of these rows are delivered consecutively:

FUNCTION my_transform_fn (
 p_input_rows in employee_info.recur_t)
RETURN employee_info.transformed_t
PIPELINED
CLUSTER P_INPUT_ROWS BY (department)
PARALLEL_ENABLE
 (PARTITION P_INPUT_ROWS BY HASH (department))

Oracle uses the term clustered to signify this type of delivery, and cluster key for
the column (in this case, “department”) on which the aggregation is done. But
significantly, the algorithm does not care in what order of cluster key it receives
each successive cluster, and Oracle doesn’t guarantee any particular order here.
This allows for a quicker algorithm than if rows were required to be clustered and
delivered in the order of the cluster key. It scales as order N rather than order
N.log(N), where N is the number of rows.

In this example, I can choose between HASH (department) and RANGE (depart-
ment), depending on what I know about the distribution of the values. HASH is
quicker than RANGE and is the natural choice to be used with CLUSTER...BY.

• Specify that the function can run in parallel and that the rows that are delivered to
a particular process, as directed by PARTITION ... BY (for that specified partition),
will be locally sorted by that process. The effect will be to parallelize the sort:

 FUNCTION my_transform_fn (
 p_input_rows in employee_info.recur_t)
RETURN employee_info.transformed_t
PIPELINED
ORDER P_INPUT_ROWS BY (C1)
PARALLEL_ENABLE
 (PARTITION P_INPUT_ROWS BY RANGE (C1))

Because the sort is parallelized, there should be no ORDER...BY in the SELECT
used to invoke the table function. (In fact, an ORDER...BY clause in the SELECT
statement would subvert the attempt to parallelize the sort.) Thus it’s natural to
use the RANGE option together with the ORDER...BY option. This will be slower
than CLUSTER...BY, and so should be used only when the algorithm depends on
it.

The CLUSTER ... BY construct can’t be used together with the
ORDER...BY in the declaration of a table function. This means that an
algorithm that depends on clustering on one key, c1, and then on or-
dering within the set row for a given value of c1 by, say, c2, would have
to be parallelized by using the ORDER ... BY in the declaration in the
table function.

614 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

Deterministic Functions
A function is considered to be deterministic if it returns the same result value whenever
it is called with the same values for its IN and IN OUT arguments. Another way to
think about deterministic programs is that they have no side effects. Everything the
program changes is reflected in the parameter list.

The following function (a simple encapsulation on top of SUBSTR) is a deterministic
function:

FUNCTION betwnstr (
 string_in IN VARCHAR2, start_in IN PLS_INTEGER, end_in IN PLS_INTEGER)
 RETURN VARCHAR2 IS
BEGIN
 RETURN (SUBSTR (string_in, start_in, end_in - start_in + 1));
END betwnstr;

As long as I pass in, for example, “abcdef” for the string, 3 for the start, and 5 for the
end, betwnStr will always return “cde”. Now, if that is the case, why not have the
database save the results associated with a set of arguments? Then when I next
call the function with those arguments, it can return the result without executing the
function!

You can achieve this effect when calling your function inside a SQL statement by adding
the DETERMINISTIC clause to the function’s header, as in the following:

FUNCTION betwnstr (
 string_in IN VARCHAR2, start_in IN PLS_INTEGER, end_in IN PLS_INTEGER)
 RETURN VARCHAR2 DETERMINISTIC

The decision to use a saved copy of the function’s return result (if such a copy is avail-
able) is made by the Oracle query optimizer. Saved copies can come from a materialized
view, a function-based index, or a repetitive call to the same function in the same SQL
statement.

You must declare a function as DETERMINISTIC in order for it to be
called in the expression of a function-based index, or from the query of
a materialized view if that view is marked REFRESH FIRST or ENABLE
QUERY REWRITE. Also, deterministic caching of your function’s in-
puts and results will occur only when the function is called inside a SQL
statement.

A deterministic function can improve the performance of SQL statements that call such
functions. For more information on using deterministic functions as a caching mech-
anism, see Chapter 21. That chapter also describes Oracle Database 11g’s new function
result caching mechanism, specified using RESULT_CACHE.

Oracle has no way of reliably checking to make sure that the function you declare to
be deterministic actually is free of any side effects. It is up to you to use this feature

Advanced Topics | 615

Download at WoweBook.Com

responsibly. Your deterministic function should not rely on package variables, nor
should it access the database in a way that might affect the result set.

For a demonstration of the effect of a deterministic function (and its limitations), check
out the deterministic.sql file on the book’s web site.

Go Forth and Modularize!
PL/SQL has a long history of establishing the foundation of code for large and complex
applications. Companies run their businesses on PL/SQL-based applications, and they
use these applications for years and even decades. To be quite honest, you don’t have
much of a chance of success building (and certainly maintaining) such large-scale,
mission-critical systems without an intimate familiarity with (application of) the
modularization techniques available in PL/SQL.

This book should provide you with some solid pointers and a foundation on which to
build your code. There is still much more for you to learn, especially the awesome range
of the supplied packages that Oracle Corporation provides with various tools and the
database itself, such as DBMS_RLS (for row-level security) and UTL_TCP (for TCP-
related functionality.

Behind all that technology, however, I strongly encourage you to develop a firm com-
mitment to modularization and reuse. Develop a deep and abiding allergy to code re-
dundancy and to the hardcoding of values and formulas. Apply a fanatic’s devotion to
the modular construction of true black boxes that easily plug-and-play in and across
applications.

You will then find that you spend more time in the design phase of your development
and less time debugging your code (joy of joys!). Your programs will be more readable
and more maintainable. They will stand as elegant testimonies to your intellectual in-
tegrity. You will be the most popular kid in the class.

Go forth and modularize!

616 | Chapter 17: Procedures, Functions, and Parameters

Download at WoweBook.Com

CHAPTER 18

Packages

A package is a grouping or packaging together of elements of PL/SQL code into a named
scope. Packages provide a structure (both logically and physically) in which you can
organize your programs and other PL/SQL elements such as cursors, TYPEs, and var-
iables. They also offer significant, unique functionality, including the ability to hide
logic and data from view, and to define and manipulate “global” or session-persistent
data.

Why Packages?
The package is a powerful and important element of the PL/SQL language. It should
be the cornerstone of any application development project. What makes the package
so powerful and important? Consider their advantages:

Enhance and maintain applications more easily
As more and more of the production PL/SQL code base moves into maintenance
mode, the quality of PL/SQL applications will be measured as much by the ease of
maintenance as they are by overall performance. Packages can make a substantial
difference in this regard. From data encapsulation (hiding all calls to SQL state-
ments behind a procedural interface to avoid repetition), to enumerating constants
for literal or “magic” values, to grouping together logically related functionality,
package-driven design and implementation lead to reduced points of failure in an
application.

Improve overall application performance
By using packages, you can improve the performance of your code in a number of
ways. Persistent package data can dramatically improve the response time of quer-
ies by caching static data, thereby avoiding repeated queries of the same informa-
tion. Oracle’s memory management also optimizes access to code defined in
packages (see Chapter 24 for more details).

617

Download at WoweBook.Com

Shore up application or built-in weaknesses
It is quite straightforward to construct a package on top of existing functionality
where there are drawbacks. (Consider, for example, the UTL_FILE and
DBMS_OUTPUT built-in packages in which crucial functionality is badly or par-
tially implemented.) You don’t have to accept these weaknesses; instead, you can
build your own package on top of Oracle’s to correct as many of the problems as
possible. For example, the do.pkg script I described in Chapter 17 offers a substitute
for the DBMS_OUTPUT.PUT_LINE built-in that adds an overloading for the
XMLType datatype. Sure, you can get some of the same effect with standalone
procedures or functions, but overloading and other package features make this
approach vastly preferable.

Minimize the need to recompile code
As you will read below, a package usually consists of two pieces of code: the spec-
ification and body. External programs (not defined in the package) can only call
programs listed in the specification. If you change and recompile the package body,
those external programs are not invalidated. Minimizing the need to recompile
code is a critical factor in administering large bodies of application logic.

Packages are conceptually very simple. The challenge, I have found, is to figure out
how to fully exploit them in an application. As a first step, I’ll take a look at a simple
package and see how, even in that basic code, we can reap many of the benefits of
packages. Then I’ll look at the special syntax used to define packages.

Before diving in, however, I would like to make an overall recommendation:

Always construct your application around packages; avoid standalone
(a.k.a., “schema-level”) procedures and functions. Even if today you
think that only one procedure is needed for a certain area of function-
ality, in the future you will almost certainly have two, then three, and
then a dozen. At which point, you will find yourself saying, “Gee, I
should really collect those together in a package!” That’s fine, except
that now you have to go back to all the invocations of those unpackaged
procedures and functions and add in the package name. So start with a
package and save yourself the trouble!

Demonstrating the Power of the Package
A package consists of up to two chunks of code: the specification (required) and the
body (optional, but almost always present). The specification defines how a developer
can use the package: which programs can be called, what cursors can be opened, and
so on. The body contains the implementation of the programs (and, perhaps, cursors)
listed in the specification, plus other code elements as needed.

Suppose that I need to write code to retrieve the “full name” of an employee whose
name is in the form “last, first.” That seems easy enough to write:

618 | Chapter 18: Packages

Download at WoweBook.Com

PROCEDURE process_employee (
 employee_id_in IN employees.employee_id%TYPE)
IS
 l_fullname VARCHAR2(100);
BEGIN
 SELECT last_name || ',' || first_name
 INTO l_fullname
 FROM employees
 WHERE employee_id = employee_id_in;
 ...
END;

Yet there are many problems lurking in this seemingly transparent code:

• I have hardcoded the length of the l_fullname variable. I did this because it is a
derived value, the concatenation of two column values. I did not, therefore, have
a column against which I could %TYPE the declaration. This could cause difficul-
ties over time if the size of last_name and/or first_name columns are expanded.

• I have also hardcoded or explicitly placed in this block the formula (an application
rule, really) for creating a full name. What’s wrong with that, you wonder? What
if next week I get a call from the users: “We want to see the names in first-space-
last format.” Yikes! Time to hunt through all my code for the last-comma-first
constructions.

• Finally, this very common query will likely appear in a variety of formats in multiple
places in my application. This SQL redundancy can make it very hard to maintain
my logic—and optimize its performance.

What’s a developer to do? I would like to be able to change the way I write my code to
avoid the above hardcodings. To do that, I need to write these things once (one defi-
nition of a “full name” datatype, one representation of the formula, one version of the
query) and then call them wherever needed. Packages to the rescue!

Consider the following package specification:

/* Files on web: fullname.pkg, fullname.tst */
 1 PACKAGE employee_pkg
 2 AS
 3 SUBTYPE fullname_t IS VARCHAR2 (200);
 4
 5 FUNCTION fullname (
 6 last_in employees.last_name%TYPE,
 7 first_in employees.first_name%TYPE)
 8 RETURN fullname_t;
 9
10 FUNCTION fullname (
11 employee_id_in IN employees.employee_id%TYPE)
12 RETURN fullname_t;
13 END employee_pkg;

What I have done here is essentially list the different elements I want to use. The fol-
lowing table summarizes the important elements of the code.

Why Packages? | 619

Download at WoweBook.Com

Line(s) Description

3 Declare a “new” datatype using SUBTYPE called fullname_t. It is currently defined to have a maximum of 200
characters, but that can be easily changed if needed.

5–8 Declare a function called fullname. It accepts a last name and a first name and returns the full name. Notice that the
way the full name is constructed is not visible in the package specification. That’s a good thing, as you will soon see.

15–18 Declare a second function, also called fullname; this version accepts a primary key for an employee and returns the
full name for that employee. This repetition is an example of overloading, which I explored in Chapter 17.

Now, before I even show you the implementation of this package, let’s rewrite the
original block of code using my packaged elements (notice the use of dot notation,
which is very similar to its use in the form table.column):

DECLARE
 l_name employee_pkg.fullname_t;
 employee_id_in employees.employee_id%TYPE := 1;
BEGIN
 l_name := employee_pkg.fullname (employee_id_in);
 ...
END;

I declare my variable using the new datatype, and then simply call the appropriate
function to do all the work for me. The name formula and the SQL query have been
moved from my application code to a separate “container” holding employee-specific
functionality. The code is cleaner and simpler. If I need to change the formula for last
name or expand the total size of the full name datatype, I can go to the package spec-
ification or body, make the changes, and recompile any affected code, and the code
will automatically take on the updates.

Speaking of the package body, here is the implementation of employee_pkg:

 1 PACKAGE BODY employee_pkg
 2 AS
 3 FUNCTION fullname (
 4 last_in employee.last_name%TYPE,
 5 first_in employee.first_name%TYPE
 6)
 7 RETURN fullname_t
 8 IS
 9 BEGIN
10 RETURN last_in || ', ' || first_in;
11 END;
12
13 FUNCTION fullname (employee_id_in IN employee.employee_id%TYPE)
14 RETURN fullname_t
15 IS
16 retval fullname_t;
17 BEGIN
18 SELECT fullname (last_name, first_name) INTO retval
19 FROM employee
20 WHERE employee_id = employee_id_in;
21

620 | Chapter 18: Packages

Download at WoweBook.Com

22 RETURN retval;
23 EXCEPTION
24 WHEN NO_DATA_FOUND THEN RETURN NULL;
25
26 WHEN TOO_MANY_ROWS THEN errpkg.record_and_stop;
27 END;
28 END employee_pkg;

Note the following about this code:

Line(s) Description

3–11 These lines are nothing but a function wrapper around the last-comma-first formula.

13–27 Showcase a typical single-row query lookup built around an implicit query.

18 Here, though, the query calls that self-same fullname function to return the combination of the two name
components.

So now if my users call and say “first-space-last, please!”, I will not groan and work late
into the night, hunting down occurrences of || ', ' ||. Instead, I will change the imple-
mentation of my employee_pkg.fullname in about five seconds flat and astound my
users by announcing that they are ready to go.

And that, dear friends, gives you some sense of the beauty and power of packages.

Some Package-Related Concepts
Before diving into the details of package syntax and structure, you should be familiar
with a few concepts:

Information hiding
Information hiding is the practice of removing from view information about one’s
system or application. Why would a developer ever want to hide information?
Couldn’t it get lost? Information hiding is actually quite a valuable principle and
coding technique. First of all, humans can deal with only so much complexity at a
time. A number of researchers have demonstrated that remembering more than
seven (plus or minus two) items in a group for example, is challenging for the
average human brain (this is known as the “human hrair limit,” a term that comes
from the book Watership Down). By hiding unnecessary detail, you can focus on
the important stuff. Second, not everyone needs to know—or should be allowed
to know—all the details. I might need to call a function that calculates CEO com-
pensation, but the formula itself could very well be confidential. In addition, if the
formula changes, the code is insulated from that change.

Public and private
Closely related to information hiding is the fact that packages are built around the
concepts of public and private elements. Public code is defined in the package
specification and is available to any schema that has EXECUTE authority on the

Why Packages? | 621

Download at WoweBook.Com

package. Private code, on the other hand, is defined in and visible only from within
the package. External programs using the package cannot see or use private code.

When you build a package, you decide which of the package elements are public
and which are private. You also can hide all the details of the package body from
the view of other schemas/developers. In this way, you use the package to hide the
implementation details of your programs. This is most important when you want
to isolate the most volatile aspects of your application, such as platform
dependencies, frequently changing data structures, and temporary workarounds.

In early stages of development you can also implement programs in the package
body as “stubs,” containing just enough code to allow the package to compile. This
technique allows you to focus on the interfaces of your programs and the way they
connect to each other.

Package specification
The package specification contains the definition or specification of all the publicly
available elements in the package that may be referenced outside of the package.
The specification is like one big declaration section; it does not contain any PL/
SQL blocks or executable code. If a specification is well designed, a developer can
learn from it everything necessary to use the package. There should never be any
need to go “behind” the interface of the specification and look at the implemen-
tation, which is in the body.

Package body
The body of the package contains all the code required to implement elements
defined in the package specification. The body may also contain private elements
that do not appear in the specification and therefore cannot be referenced outside
of the package. The body of the package resembles a standalone module’s decla-
ration section. It contains both declarations of variables and the definitions of all
package modules. The package body may also contain an execution section, which
is called the initialization section because it is run only once, to initialize the
package.

Initialization
Initialization should not be a new concept for a programmer. In the context of
packages, however, it takes on a specific meaning. Rather than initializing the value
of a single variable, you can initialize the entire package with arbitrarily complex
code. Oracle takes responsibility for making sure that the package is initialized only
once per session.

Session persistence
As a database programmer, the concept of persistence should also be familiar. After
all, a database is all about persistence: I insert a row into the database on Monday,
fly to the Bahamas for the rest of the week, and when I return to work on the
following Monday, my row is still in the database. It persisted!

Another kind of persistence is session persistence. This means that if I connect to
the Oracle database (establish a session) and execute a program that assigns a value

622 | Chapter 18: Packages

Download at WoweBook.Com

to a package-level variable (i.e., a variable declared in a package specification or
body, outside of any program in the package), that variable is set to persist for the
length of my session, and it retains its value even if the program that performed
the assignment has ended.

It turns out that the package is the construct that offers support in the PL/SQL
language for session-persistent data structures.

Diagramming Privacy
Let’s go back to the public-private dichotomy for a moment. The distinction drawn
between public and private elements in a package gives PL/SQL developers unprece-
dented control over their data structures and programs. A fellow named Grady Booch
came up with a visual way to describe this aspect of a package (now called, naturally,
the Booch diagram).

Take a look at Figure 18-1. Notice the two labels Inside and Outside. Outside consists
of all the programs you write that are not a part of the package at hand (the external
programs). Inside consists of the package body (the internals or implementation of the
package).

Figure 18-1. Booch diagram showing public and private package elements

Here are the conclusions we can draw from the Booch diagram:

• External programs cannot cross the boundary from outside to inside. That is, an
external program may not reference or call any elements defined inside the package
body. They are private and invisible outside of the package.

• Those elements defined in the package specification (labeled Public in the figure)
straddle the boundary between inside and outside. These programs can be called
by an external program (from the outside), can be called or referenced by a private
program, and can, in turn, call or reference any other element in the package.

Why Packages? | 623

Download at WoweBook.Com

• Public elements of the package therefore offer the only path to the inside of the
package. In this way, the package specification acts as a control mechanism for the
package as a whole.

• If you find that a formerly private object (such as a module or a cursor) should
instead be made public, simply add that object to the package specification and
recompile. It will then be visible outside of the package.

Rules for Building Packages
The package is a deceptively simple construct. In a small amount of time, you can learn
all the basic elements of package syntax and rules, but you can spend weeks (or more)
uncovering all the nuances and implications of the package structure. In this section,
I review the rules you need to know in order to build packages. Later in the chapter, I
will take a look at the circumstances under which you will want to build packages.

To construct a package, you must build a specification and, in almost every case, a
package body. You must decide which elements go into the specification and which
are hidden away in the body. You also can include a block of code that the database
will use to initialize the package.

The Package Specification
The specification of a package lists all the elements in that package that are available
for use in applications, and provides all the information a developer needs in order to
use elements defined in the package (often referred to as an API or application pro-
gramming interface). A developer should never have to look at the implementation
code in a package body to figure out how to use an element in the specification.

Here are some rules to keep in mind for package specification construction:

• You can declare elements of almost any datatype, such as numbers, exceptions,
types, and collections, at the package level (i.e., not within a particular procedure
or function in the package). This is referred to as package-level data; generally, you
should avoid declaring variables in the package specification, although constants
are always “safe.”

You cannot declare cursor variables (variables defined from a REF CURSOR type)
in a package specification (or body). Cursor variables are not allowed to persist at
the session level (see “Working with Package Data” on page 633 for more infor-
mation about package data persistence).

• You can declare almost any type of data structure, such as a collection type, a record
type, or a REF CURSOR type.

• You can declare procedures and functions in a package specification, but you can
include only the header of the program (everything up to but not including the IS
or AS keyword). The header must end with a semicolon.

624 | Chapter 18: Packages

Download at WoweBook.Com

• You can include explicit cursors in the package specification. An explicit cursor
can take one of two forms: it can include the SQL query as a part of the cursor
declaration, or you can “hide” the query inside the package body and provide only
a RETURN clause in the cursor declaration. This topic is covered in more detail in
the section, “Packaged Cursors” on page 635.

• If you declare any procedures or functions in the package specification or if you
declare a CURSOR without its query, then you must provide a package body in
order to implement those code elements.

• You can include an AUTHID clause in a package specification, which determines
whether any references to data objects will be resolved according to the privileges
of the owner of the package (AUTHID DEFINER) or of the invoker of the package
(AUTHID CURRENT_USER). See Chapter 24 for more information on this
feature.

• You can include an optional package name label after the END statement of the
package, as in:

END my_package;

Here is a simple package specification illustrating these rules:

 /* File on web: favorites.sql */
 1 PACKAGE favorites_pkg
 2 AUTHID CURRENT_USER
 3 IS /* or AS */
 4 -- Two constants; notice that I give understandable
 5 -- names to otherwise obscure values.
 6
 7 c_chocolate CONSTANT PLS_INTEGER := 16;
 8 c_strawberry CONSTANT PLS_INTEGER := 29;
 9
10 -- A nested table TYPE declaration
11 TYPE codes_nt IS TABLE OF INTEGER;
12
13 -- A nested table declared from the generic type.
14 my_favorites codes_nt;
15
16 -- A REF CURSOR returning favorites information.
17 TYPE fav_info_rct IS REF CURSOR RETURN favorites%ROWTYPE;
18
19 -- A procedure that accepts a list of favorites
20 -- (using a type defined above) and displays the
21 -- favorite information from that list.
22 PROCEDURE show_favorites (list_in IN codes_nt);
23
24 -- A function that returns all the information in
25 -- the favorites table about the most popular item.
26 FUNCTION most_popular RETURN fav_info_rct;
27
28 END favorites_pkg; -- End label for package

Rules for Building Packages | 625

Download at WoweBook.Com

As you can see, a package specification is, in structure, essentially the same as a decla-
ration section of a PL/SQL block. One difference, however, is that a package
specification may not contain any implementation code.

The Package Body
The package body contains all the code required to implement the package specifica-
tion. A package body is not always needed; see “When to Use Pack-
ages” on page 642 for examples of package specifications without bodies. A package
body is required when any of the following conditions are true:

The package specification contains a cursor declaration with a RETURN clause
You will then need to specify the SELECT statement in the package body.

The package specification contains a procedure or function declaration
You will then need to complete the implementation of that module in the package
body.

You want to execute code in the initialization section of the package
The package specification does not support an execution section (executable state-
ments within a BEGIN...END); you can do this only in the body.

Structurally, a package body is very similar to a procedure definition. Here are some
rules particular to package bodies:

• A package body can have declaration, execution, and exception sections. The dec-
laration section contains the complete implementation of any cursors and pro-
grams defined in the specification, and also the definition of any private elements
(not listed in the specification). The declaration section can be empty as long as
there is an initialization section.

• The execution section of a package is known as the initialization section; this op-
tional code is executed when the package is instantiated for a session. I discuss this
topic in the following section.

• The exception section handles any exceptions raised in the initialization section.
You can have an exception section at the bottom of a package body only if you
have defined an initialization section.

• A package body may consist of the following combinations: only a declaration
section; only an execution section; execution and exception sections; or declara-
tion, execution, and exception sections.

• You may not include an AUTHID clause in the package body; it must go in the
package specification. Anything declared in the specification may be referenced
(used) within the package body.

• The same rules and restrictions for declaring package-level data structures apply
to the body as well as to the specification—for example, you cannot declare a cursor
variable.

626 | Chapter 18: Packages

Download at WoweBook.Com

• You can include an optional package name label after the END statement of the
package body, as in:

END my_package;

Here is an implementation of the favorites_pkg body:

/* File on web: favorites.sql */
PACKAGE BODY favorites_pkg
IS
 -- A private variable
 g_most_popular PLS_INTEGER := c_strawberry;

 -- Implementation of the function
 FUNCTION most_popular RETURN fav_info_rct
 IS
 retval fav_info_rct;
 null_cv fav_info_rct;
 BEGIN
 OPEN retval FOR
 SELECT *
 FROM favorites
 WHERE code = g_most_popular;
 RETURN retval;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN RETURN null_cv;
 END most_popular;

 -- Implementation of the procedure
 PROCEDURE show_favorites (list_in IN codes_nt) IS
 BEGIN
 FOR indx IN list_in.FIRST .. list_in.LAST
 LOOP
 DBMS_OUTPUT.PUT_LINE (list_in (indx));
 END LOOP;
 END show_favorites;

END favorites_pkg; -- End label for package

See “When to Use Packages” on page 642 for other examples of package bodies.

Initializing Packages
Packages can contain data structures that persist for your entire session (this topic is
covered in more detail in “Working with Package Data” on page 633). The first time
your session uses a package (whether by calling a program defined in the package,
reading or writing a variable, or using a locally declared variable TYPE), the database
initializes that package. This involves one or all of the following steps:

• Instantiate any package-level data (such as a number variable or a string constant).

• Assign default values to variables and constants as specified in their declarations.

Rules for Building Packages | 627

Download at WoweBook.Com

• Execute a block of code, called the initialization section, which is specifically de-
signed to initialize the package, complementing the preceding steps.

Oracle executes these steps just once per session, and not until you need that infor-
mation (i.e., on the “first touch” of that package).

A package may be reinitialized in a session if that package was recom-
piled since last use or if the package state for your entire session was
reset, as is indicated by the following error:

ORA-04068: existing state of packages has been discarded

The initialization section of a package consists of all the statements following the
BEGIN statement at the end of the package (and outside any procedure or function’s
definitions) and through to the END statement for the entire package body. Here is
what an initialization section in favorites_pkg might look like:

/* File on web: favorites.sql */
PACKAGE BODY favorites_pkg
IS
 g_most_popular PLS_INTEGER;

 PROCEDURE show_favorites (list_in IN codes_nt) ... END;

 FUNCTION most_popular RETURN fav_info_rct ... END;

 PROCEDURE analyze_favorites (year_in IN INTEGER) ... END;

-- Initialization section
BEGIN
 g_most_popular := c_chocolate;

 -- Use EXTRACT to get year number from SYSDATE!
 analyze_favorites (EXTRACT (YEAR FROM SYSDATE));
END favorites_pkg;

The initialization section is a powerful mechanism: PL/SQL automatically detects when
this code should be run. You do not have to explicitly execute the statements, and you
can be sure that they are run only once. Why would you use an initialization section?
The following sections explore some specific reasons.

Execute complex initialization logic

You can, of course, assign default values to package data directly in the declaration
statement. This approach has several possible problems:

• The logic required to set the default value may be quite complex and not easily
invoked as a default value assignment.

628 | Chapter 18: Packages

Download at WoweBook.Com

• If the assignment of the default value raises an exception, that exception cannot
be trapped within the package: it will instead propagate out unhandled. This issue
is covered in more detail in “When initialization fails” on page 630.

Using the initialization section to initialize data offers several advantages over default
value assignments. For one thing, you have the full flexibility of an execution section
in which to define, structure, and document your steps; and, if an exception is raised,
you can handle it within the initialization section’s exception section.

Cache static session information

Another great motivation for including an initialization section in your package is to
cache information that is static (unchanging) throughout the duration of your session.
If the data values don’t change, why endure the overhead of querying or recalculating
those values again and again?

In addition, if you want to make sure that the information is retrieved just once in your
session, then the initialization section is an ideal, automatically managed way to get
this to happen.

There is an important and typical tradeoff when working with cached package data:
memory versus CPU. By caching data in package variables, you can improve the elapsed
time performance of data retrieval. This is accomplished by moving the data “closer”
to the user, into the Program Global Area or PGA of each session. If there are 1,000
distinct sessions, then there are 1,000 copies of the cached data. This technique de-
creases the CPU usage, but consumes more, sometimes much more, memory.

See “Cache Static Session Data” on page 649 for more details on this technique.

Avoid side effects when initializing

Avoid setting the values of global data in other packages within the initialization section
(or anywhere else in those other packages, for that matter). This precaution can prevent
havoc in code execution and potential confusion for maintenance programmers. Keep
the initialization section code focused on the current package. Remember that this code
is executed whenever your application first tries to use a package element. You don’t
want your users sitting idle while the package performs some snazzy, expensive setup
computations that could be parceled out to different packages or triggers in the
application.

PACKAGE BODY company IS
BEGIN
 /*
 || Initialization section of company_pkg updates the global
 || package data of a different package. This is a no-no!
 */
 SELECT SUM (salary)
 INTO employee_pkg.max_salary

Rules for Building Packages | 629

Download at WoweBook.Com

 FROM employees;
END company;

If your initialization requirements seem different from those we’ve illustrated, you
should consider alternatives to the initialization section, such as grouping your startup
statements together into a procedure in the package. Give the procedure a name like
init_environment; then, at the appropriate initialization point in your application, call
the init_environment procedure to set up your session.

When initialization fails

There are several steps to initializing a package: declare data, assign default values, run
the initialization section (if present). What happens when an error occurs, causing the
failure of this initialization process? It turns out that even if a package fails to complete
its initialization steps, the database marks the package as having been initialized and
does not attempt to run the startup code again during that session. To verify this be-
havior, consider the following package:

/* File on web: valerr.pkg */
PACKAGE valerr
IS
 FUNCTION get RETURN VARCHAR2;
END valerr;

PACKAGE BODY valerr
IS
 -- A package-level, but private global variable
 v VARCHAR2(1) := 'ABC';

 FUNCTION get RETURN VARCHAR2
 IS
 BEGIN
 RETURN v;
 END;
BEGIN
 DBMS_OUTPUT.PUT_LINE ('Before I show you v...');
EXCEPTION
 WHEN OTHERS
 THEN
 DBMS_OUTPUT.PUT_LINE ('Trapped the error!');
END valerr;

Suppose that I connect to SQL*Plus and try to run the valerr.get function (for the first
time in that session). This is what I see:

SQL> EXEC DBMS_OUTPUT.PUT_LINE (valerr.get) *
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: character string buffer too small

In other words, my attempt in the declaration of the v variable to assign a value of
“ABC” caused a VALUE_ERROR exception. The exception section at the bottom of
the package did not trap the error; it can only trap errors raised in the initialization

630 | Chapter 18: Packages

Download at WoweBook.Com

section itself. And so the exception goes unhandled. Notice, however, that when I call
that function a second time in my session, I do not get an error:

SQL> BEGIN
 2 DBMS_OUTPUT.PUT_LINE ('V is set to ' || NVL (valerr.get, 'NULL'));
 3 END;
 4 /
 5 V is set to NULL

How curious! The statement “Before I show you v...” is never displayed; in fact, it is
never executed. This packaged function fails the first time, but not the second or any
subsequent times. Here I have one of those classic “unreproducible errors,” and within
the PL/SQL world, this is the classic cause of such a problem: a failure in package
initialization.

These errors are very hard to track down. The best way to avoid such errors and also
aid in detection is to move the assignments of default values to the initialization section,
where the exception section can gracefully handle errors and report on their probable
case, as shown here:

PACKAGE BODY valerr
IS
 v VARCHAR2(1);
 FUNCTION get RETURN VARCHAR2 IS BEGIN ... END;
BEGIN
 v := 'ABC';

EXCEPTION
 WHEN OTHERS
 THEN
 DBMS_OUTPUT.PUT_LINE ('Error initializing valerr:');
 DBMS_OUTPUT.PUT_LINE (DBMS_UTILITY.FORMAT_ERROR_STACK);
 DBMS_OUTPUT.PUT_LINE (DBMS_UTILITY.FORMAT_ERROR_BACKTRACE);
END valerr;

You may even want to standardize your package design to always include an initiali-
zation procedure to remind developers on your team about this issue. Here’s an
example:

/* File on web: package_template.sql */
PACKAGE BODY <package_name>
IS
 -- Place private data structures below.
 -- Avoid assigning default values here.
 -- Instead, assign in the initialization procedure and
 -- verify success in the verification program.

 -- Place private programs here.

 -- Initialization section (optional)
 PROCEDURE initialize IS
 BEGIN
 NULL;
 END initialize;

Rules for Building Packages | 631

Download at WoweBook.Com

 PROCEDURE verify_initialization (optional)
 -- Use this program to verify the state of the package.
 -- Were default values assigned properly? Were all
 -- necessary steps performed?
 IS
 BEGIN
 NULL;
 END verify_initialization;

 -- Place public programs here.

BEGIN
 initialize;
 verify_initialization;
END <package_name>;
/

Rules for Calling Packaged Elements
It doesn’t really make any sense to talk about running or executing a package (after all,
it is just a container for code elements). However, you will certainly want to run or
reference those elements defined in a package.

A package owns its objects, just as a table owns its columns. To reference an element
defined in the package specification outside of the package itself, you must use the same
dot notation to fully specify the name of that element. Let’s look at some examples.

The following package specification declares a constant, an exception, a cursor, and
several modules:

PACKAGE pets_inc
IS
 max_pets_in_facility CONSTANT INTEGER := 120;
 pet_is_sick EXCEPTION;

 CURSOR pet_cur (pet_id_in IN pet.id%TYPE) RETURN pet%ROWTYPE;

 FUNCTION next_pet_shots (pet_id_in IN pet.id%TYPE) RETURN DATE;
 PROCEDURE set_schedule (pet_id_in IN pet.id%TYPE);

END pets_inc;

To reference any of these objects, I preface the object name with the package name, as
follows:

DECLARE
 -- Base this constant on the id column of the pet table.
 c_pet CONSTANT pet.id%TYPE:= 1099;
 v_next_appointment DATE;
BEGIN
 IF pets_inc.max_pets_in_facility > 100
 THEN
 OPEN pets_inc.pet_cur (c_pet);

632 | Chapter 18: Packages

Download at WoweBook.Com

 ELSE
 v_next_appointment:= pets_inc.next_pet_shots (c_pet);
 END IF;
EXCEPTION
 WHEN pets_inc.pet_is_sick
 THEN
 pets_inc.set_schedule (c_pet);
END;

To summarize, there are two rules to follow in order to reference and use elements in
a package:

• When you reference elements defined in a package specification from outside of
that package (an external program), you must use dot notation in the form
package_name.element_name.

• When you reference package elements from within the package (specification or
body), you do not need to include the name of the package. PL/SQL will auto-
matically resolve your reference within the scope of the package.

Working with Package Data
Package data consists of variables and constants that are defined at the package level—
that is, not within a particular function or procedure in the package. The scope of the
package data is therefore not a single program, but rather the package as a whole. In
the PL/SQL runtime architecture, package data structures persist (hold their values) for
the duration of a session (rather than the duration of execution for a particular
program).

If package data is declared inside the package body, then that data persists for the
session but can be accessed only by elements defined in the package itself (private data).

If package data is declared inside the package specification, then that data persists for
the session and is directly accessible (to both read and modify the value) by any program
that has EXECUTE authority on that package (public data). Public package data is very
similar to and potentially as dangerous as GLOBAL variables in Oracle Forms.

If a packaged procedure opens a cursor, that cursor remains open and is available
throughout the session. It is not necessary to define the cursor in each program. One
module can open a cursor while another performs the fetch. Additionally, package
variables can carry data across the boundaries of transactions because they are tied to
the session rather than to a single transaction.

Global Within a Single Oracle Session
Package data structures act like globals within the PL/SQL environment. Remember,
however, that they are accessible only within a single Oracle session or connection;
package data is not shared across sessions. If you need to share data between different

Working with Package Data | 633

Download at WoweBook.Com

Oracle sessions, you can use the DBMS_PIPE package or Oracle Advanced Queuing.
(See the Oracle documentation or Oracle Built-In Packages (O’Reilly) for more infor-
mation about these facilities.)

You need to be careful about assuming that different parts of your application maintain
a single Oracle database connection. There are times when a tool may establish a new
connection to the database to perform an action. If this occurs, the data you have stored
in a package in the first connection will not be available.

For example, suppose that an Oracle Forms application has saved values to data struc-
tures in a package. When the form calls a stored procedure, this stored procedure can
access the same package-based variables and values as the form can because they share
a single database connection. But now suppose that the form kicks off a report using
Oracle Reports. By default, Oracle Reports uses a second connection to the database
(with the same username and password) to run the report. Even if this report accesses
the same package and data structures, the values in those data structures will not match
those used by the form. The report is using a different database connection and a new
instantiation of the package data structures.

Just as there are two types of data structures in a package (public and private), there
are also two types of global package data to consider: global public data and global
private data. The next three sections explore the various ways that package data can
be used.

Global Public Data
Any data structure declared in the specification of a package is a global public data
structure, meaning that any program outside of the package can access it. You can, for
example, define a PL/SQL collection in a package specification and use it to keep a
running list of all employees selected for a raise. You can also create a package of con-
stants that are used throughout all your programs. Other developers will then reference
the packaged constants instead of hardcoding the values in their programs. You are
also allowed to change global public data structures unless they are declared as CON-
STANTs in the declaration statement.

Global data is the proverbial “loose cannon” of programming. It is very convenient to
declare and is a great way to have all sorts of information available at any point in time.
However, reliance on global data structures leads to unstructured code that is full of
side effects.

Recall that the specification of a module should give you all the information you need
to understand how to call and use that module. However, it is not possible to determine
if a package reads and/or writes to global data structures from the package’s specifi-
cation. Because of this, you cannot be sure of what is happening in your application
and which program changes what data.

634 | Chapter 18: Packages

Download at WoweBook.Com

It is always preferable to pass data as parameters in and out of modules. That way,
reliance on those data structures is documented in the specification and can be ac-
counted for by developers. On the other hand, you should create named global data
structures for information that truly is global to an application, such as constants and
configuration information.

You can put all such data into a single, central package, which would be easiest to
manage. Note, however, that such a design also builds a “single point of recompilation”
into your application: every time you make a change to the package and recompile the
specification, you will cause many programs in your application to be invalidated.

Packaged Cursors
One particularly interesting type of package data is the explicit cursor, which was in-
troduced in Chapter 14. I can declare a cursor in a package, in either the body or the
specification. The state of this cursor (i.e., whether it is opened or closed, the pointer
to the location in the result set) persists for the session, just like any other packaged
data. This means that it is possible to open a packaged cursor in one program, fetch
from it in a second, and close it in a third. This flexibility can be an advantage and also
a potential problem.

Let’s first look at some of the nuances of declaring packaged cursors, and then move
on to how you can open, fetch, and close such cursors.

Declaring packaged cursors

If you are declaring an explicit cursor in a package specification, you have two options:

• Declare the entire cursor, including the query, in the specification. This is exactly
the same as if you were declaring a cursor in a local PL/SQL block.

• Declare only the header of the cursor and do not include the query itself. In this
case, the query is defined in the package body only. You have, in effect, hidden the
implementation of the cursor.

If you declare only the header, then you must add a RETURN clause to a cursor defi-
nition that indicates the data elements returned by a fetch from the cursor. Of course,
these data elements are actually determined by the SELECT statement for that cursor,
but the SELECT statement appears only in the body, not in the specification.

The RETURN clause may be made up of either of the following datatype structures:

• A record defined from a database table using the %ROWTYPE attribute

• A record defined from a programmer-defined record type

If you declare a cursor in a package body, the syntax is the same as if you were declaring
it in a local PL/SQL block.

Here is a simple package specification that shows both of these approaches:

Working with Package Data | 635

Download at WoweBook.Com

/* File on web: pkgcur.sql */
 1 PACKAGE book_info
 2 IS
 3 CURSOR byauthor_cur (
 4 author_in IN books.author%TYPE
 5)
 6 IS
 7 SELECT *
 8 FROM books
 9 WHERE author = author_in;
10
11 CURSOR bytitle_cur (
12 title_filter_in IN books.title%TYPE
13) RETURN books%ROWTYPE;
14
15 TYPE author_summary_rt IS RECORD (
16 author books.author%TYPE,
17 total_page_count PLS_INTEGER,
18 total_book_count PLS_INTEGER);
19
20 CURSOR summary_cur (
21 author_in IN books.author%TYPE
22) RETURN author_summary_rt;
23 END book_info;

The following table describes the logic of this program:

Line(s) Description

3–9 This is a very typical explicit cursor definition, fully defined in the package specification.

11–13 Define a cursor without a query. In this case, I am telling whoever is looking at the specification that if they open and
fetch from this cursor, they will receive a single row from the books table for the specified “title filter,” the implication
being that wildcards are accepted in the description of the title.

15–18 Define a new record type to hold summary information for a particular author.

20–22 Declare a cursor that returns summary information (just three values) for a given author.

Let’s take a look at the package body and then see what kind of code needs to be written
to work with these cursors:

 1 PACKAGE BODY book_info
 2 IS
 3 CURSOR bytitle_cur (
 4 title_filter_in IN books.title%TYPE
 5) RETURN books%ROWTYPE
 6 IS
 7 SELECT *
 8 FROM books
 9 WHERE title LIKE UPPER (title_filter_in);
10
11 CURSOR summary_cur (
12 author_in IN books.author%TYPE
13) RETURN author_summary_rt
14 IS

636 | Chapter 18: Packages

Download at WoweBook.Com

15 SELECT author, SUM (page_count), COUNT (*)
16 FROM books
17 WHERE author = author_in;
18 END book_info;

Because I had two cursors with a RETURN clause in my book information package
specification, I must finish defining those cursors in the body. The select list of the
query that I now add to the header must match, in number of items and datatype, the
RETURN clause in the package specification; in this case, they do. If they do not match
or the RETURN clause is not specified in the body, then the package body will fail to
compile with one of the following errors:

20/11 PLS-00323: subprogram or cursor '<cursor>' is declared in a
 package specification and must be defined in the package body

5/13 PLS-00400: different number of columns between cursor SELECT
 statement and return value

Working with packaged cursors

Now let’s see how you can take advantage of packaged cursors. First of all, you do not
need to learn any new syntax to open, fetch from, and close packaged cursors; you just
have to remember to prepend the package name to the name of the cursor. So if I want
to get information about all the books having to do with PL/SQL, I can write a block
like this:

DECLARE
 onebook book_info.bytitle_cur%ROWTYPE;
BEGIN
 OPEN book_info.bytitle_cur ('%PL/SQL%');

 LOOP
 EXIT WHEN book_info.bytitle_cur%NOTFOUND;
 FETCH book_info.bytitle_cur INTO onebook;
 book_info.display (onebook);
 END LOOP;

 CLOSE book_info.bytitle_cur;
END;

As you can see, I can %ROWTYPE a packaged cursor and check its attributes just as
I would with a locally defined explicit cursor. Nothing new there!

There are some hidden issues lurking in this code, however. Because my cursor is de-
clared in a package specification, its scope is not bound to any given PL/SQL block.
Suppose that I run this code:

BEGIN -- Only open...
 OPEN book_info.bytitle_cur ('%PEACE%');
END;

and then, in the same session, I run the anonymous block with the LOOP shown above.
I will then get this error:

Working with Package Data | 637

Download at WoweBook.Com

ORA-06511: PL/SQL: cursor already open

This happened because in my “only open” block, I neglected to close the cursor. Even
though the block terminated, my packaged cursor did not close.

Given the persistence of packaged cursors, you should always keep the following rules
in mind:

• Never assume that a packaged cursor is closed (and ready to be opened).

• Never assume that a packaged cursor is opened (and ready to be closed).

• Always be sure to explicitly close your packaged cursor when you are done with
it. You also will need to include this logic in exception handlers; make sure the
cursor is closed through all exit points in the program.

If you neglect these rules, you might well execute an application that makes certain
assumptions and then pays the price in unexpected and unhandled exceptions. So the
question then becomes: how best can you remember and follow these rules? My sug-
gestion is to build procedures that perform the open and close operations for you—
and take all these nuances and possibilities into account.

The following package offers an example of this technique:

/* File on web: openclose.sql */
PACKAGE personnel
IS
 CURSOR emps_for_dept (
 department_id_in_in IN employees.department_id%TYPE)
 IS
 SELECT * FROM employees
 WHERE department_id = department_id_in;

 PROCEDURE open_emps_for_dept(
 department_id_in IN employees.department_id%TYPE,
 close_if_open IN BOOLEAN := TRUE
);

 PROCEDURE close_emps_for_dept;

END personnel;

I have a packaged cursor along with procedures to open and close the cursor. So if I
want to loop through all the rows in the cursor, I would write code like this:

DECLARE
 one_emp personnel.emps_for_dept%ROWTYPE;
BEGIN
 personnel.open_emps_for_dept (1055);

 LOOP
 EXIT WHEN personnel.emps_for_dept%NOTFOUND;
 FETCH personnel.emps_for_dept INTO one_emp;
 ...
 END LOOP;

638 | Chapter 18: Packages

Download at WoweBook.Com

 personnel.close_emps_for_dept;
END;

I don’t use explicit OPEN and CLOSE statements; instead, I call the corresponding
procedures, which handle complexities related to packaged cursor persistence. I urge
you to examine the openclose.sql file available on the book’s web site to study the im-
plementation of these procedures.

You have a lot to gain by creating cursors in packages and making those cursors avail-
able to the developers on a project. Crafting precisely the data structures you need for
your application is hard and careful work. These same structures—and the data in
them—are used in your PL/SQL programs, almost always via a cursor. If you do not
package up your cursors and provide them “free of charge and effort” to all developers,
each will write her own variations of these cursors, leading to all sorts of performance
and maintenance issues. Packaging cursors is just one example of using packages to
encapsulate access to data structures, which is explored further in “When to Use Pack-
ages” on page 642.

One of the technical reviewers of this book, JT Thomas, offers the fol-
lowing alternative perspective:

“Rather than working with packaged cursors, you can get exactly the
same effect by encapsulating logic and data presentation into views and
publishing these to the developers. This allows the developers to then
be responsible for properly maintaining their own cursors; the idea is
that it is not possible to enforce proper maintenance given the toolset
available with publicly accessible package cursors. Specifically, as far as
I know, there is no way to enforce the usage of the open/close proce-
dures, but the cursors will always remain visible to the developer directly
opening/closing it; thus, this construct is still vulnerable. To make mat-
ters worse, however, the acceptance of publicly accessible packaged
cursors and the open/close procedures might lull a team into a false
sense of security and reliability.”

Serializable Packages
As you have seen, package data by default persists for your entire session (or until the
package is recompiled). This is an incredibly handy feature, but it has some drawbacks:

• Globally accessible (public and private) data structures persist, and that can cause
undesired side effects. In particular, I can inadvertently leave packaged cursors
open, causing “already open” errors in other programs.

• My programs can suck up lots of real memory (package data is managed in the
user’s memory area or User Global Area [UGA]) and then not release it if that data
is stored in a package-level structure.

Working with Package Data | 639

Download at WoweBook.Com

To help you manage the use of memory in packages, PL/SQL offers the
SERIALLY_REUSABLE pragma. This pragma, which must appear in both the package
specification and the body (if one exists), marks that package as serially reusable. For
such packages, the duration of package state (the values of variables, the open status
of a packaged cursor, etc.) can be reduced from a whole session to a single call of a
program in the package.

To see the effects of this pragma, consider the following book_info package. I have
created two separate programs: one to fill a list of books and another to show that list.

/* File on web: serialpkg.sql */
PACKAGE book_info
IS
 PRAGMA SERIALLY_REUSABLE;
 PROCEDURE fill_list;

 PROCEDURE show_list;
END;

As you can see in the following package body, that list is declared as a private, but
global, associative array:

/* File on web: serialpkg.sql */
PACKAGE BODY book_info
IS
 PRAGMA SERIALLY_REUSABLE;

 TYPE book_list_t
 IS
 TABLE OF books%ROWTYPE
 INDEX BY PLS_INTEGER;
 my_books book_list_t;

 PROCEDURE fill_list
 IS
 BEGIN
 FOR rec IN (SELECT *
 FROM books
 WHERE author LIKE '%FEUERSTEIN%')
 LOOP
 my_books (my_books.COUNT + 1) := rec;
 END LOOP;
 END fill_list;

 PROCEDURE show_list
 IS
 BEGIN
 IF my_books.COUNT = 0
 THEN
 DBMS_OUTPUT.PUT_LINE ('** No books to show you...');
 ELSE
 FOR indx IN 1 .. my_books.COUNT
 LOOP
 DBMS_OUTPUT.PUT_LINE (my_books (indx).title);

640 | Chapter 18: Packages

Download at WoweBook.Com

 END LOOP;
 END IF;
 END show_list;
END;

To see the effect of this pragma, I fill and then show the list. In my first approach, these
two steps are done in the same block, so the collection is still loaded and can be
displayed:

SQL> BEGIN
 2 DBMS_OUTPUT.PUT_LINE (
 3 'Fill and show in same block:'
 4);
 5 book_info.fill_list;
 6 book_info.show_list;
 7 END;
 8 /

 Fill and show in same block:

 Oracle PL/SQL Programming
 Oracle PL/SQL Best Practices
 Oracle PL/SQL Built-in Packages

In my second attempt, I fill and show the list in two separate blocks. As a result, my
collection is now empty:

SQL> BEGIN
 2 DBMS_OUTPUT.PUT_LINE ('Fill in first block');
 3 book_info.fill_list;
 4 END;
 5 /

Fill in first block

SQL> BEGIN
 2 DBMS_OUTPUT.PUT_LINE ('Show in second block:');
 3 book_info.show_list;
 4 END;
 5 /

Show in second block:
** No books to show you...

Here are some things to keep in mind for serialized packages:

• The global memory for serialized packages is allocated in the SGA, not in the user’s
UGA. This approach allows the package work area to be reused. Each time the
package is reused, its package-level variables are initialized to their default values
or to NULL, and its initialization section is re-executed.

• The maximum number of work areas needed for a serialized package is the number
of concurrent users of that package. The increased use of SGA memory is offset by
the decreased use of UGA or program memory. Finally, the database ages out work
areas not in use if it needs to reclaim memory from the SGA for other requests.

Working with Package Data | 641

Download at WoweBook.Com

When to Use Packages
By now, I’ve covered the rules, syntax, and nuances of constructing packages. Let’s
now return to the list of reasons you might want to use PL/SQL packages and explore
them in more detail. These scenarios include:

Encapsulate (hide) data manipulation
Rather than have developers write SQL statements (leading to inefficient variations
and maintenance nightmares), provide an interface to those SQL statements. This
interface is known as a table API or transaction API.

Avoid the hardcoding of literals
Use a package with constants to give a name to the literal (“magic”) value and avoid
hardcoding it into individual (and multiple) programs. You can, of course, declare
constants within procedures and functions as well. The advantage of a constant
defined in a package specification is that it can be referenced outside of the package.

Improve the usability of built-in features
Some of Oracle’s own utilities, such as UTL_FILE and DBMS_OUTPUT, leave
lots to be desired. Build your own package on top of Oracle’s to correct as many
of the problems as possible.

Group together logically related functionality
If you have a dozen procedures and functions that all revolve around a particular
aspect of your application, put them all into a package so that you can manage
(and find) that code more easily.

Cache session-static data to improve application performance
Take advantage of persistent package data to improve the response time of your
application by caching (and not requerying) static data.

The following sections describe each of these scenarios.

Encapsulate Data Access
Rather than have developers write their own SQL statements, you should provide an
interface to those SQL statements. This is one of the most important motivations for
building packages, yet is only rarely employed by developers.

With this approach, PL/SQL developers as a rule will not write SQL in their applica-
tions. Instead, they will call predefined, tested, and optimized code that does all the
work for them; for example, an “add” procedure (overloaded to support records) that
issues the INSERT statement and follows standard error-handling rules; a function to
retrieve a single row for a primary key; and a variety of cursors that handle the common
requests against the data structure (which could be a single table or a “business entity”
consisting of multiple tables).

If you take this approach, developers will not necessarily need to understand how to
join three or six different highly normalized tables to get the right set of data. They can

642 | Chapter 18: Packages

Download at WoweBook.Com

just pick a cursor and leave the data analysis to someone else. They will not have to
figure out what to do when they try to insert and the row already exists. The procedure
has this logic inside it.

Perhaps the biggest advantage of this approach is that as your data structures change,
the maintenance headaches of updating application code are both minimized and cen-
tralized. The person who is expert at working with that table or object type makes the
necessary changes within that single package, and the changes are then “rolled out”
more or less automatically to all programs relying on that package.

Data encapsulation is a big topic and can be very challenging to implement in a
comprehensive way. You will find an example of a table encapsulation
package (built around the employee table) in the employee_tp.pks, employee_qp.*, em-
ployee_cp.*, department_tp.pks, and department_qp.* files on the book’s web site (these
files were generated by the Quest CodeGen Utility, available from the Download page
of ToadWorld, http://www.ToadWorld.com).

Let’s take a look at what kind of impact this use of packages can have on your code.
The givebonus1.sp file on the book’s web site contains a procedure that gives the same
bonus to each employee in the specified department, but only if he has been with the
company for at least six months. Here are the parts of the give_bonus program that
contains the SQL (see givebonus1.sp for the complete implementation):

/* File on web: givebonus1.sp */
PROCEDURE give_bonus (
 dept_in IN employees.department_id%TYPE,
 bonus_in IN NUMBER)
/*
|| Give the same bonus to each employee in the
|| specified department, but only if they have
|| been with the company for at least 6 months.
*/
IS
 l_name VARCHAR2(50);
 CURSOR by_dept_cur
 IS
 SELECT * FROM employees
 WHERE department_id = dept_in;

 fdbk INTEGER;
BEGIN
 /* Retrieve all information for the specified department. */
 SELECT department_name INTO l_name
 FROM departments
 WHERE department_id = dept_in;

 /* Make sure the department ID was valid. */
 IF l_name IS NULL
 THEN
 DBMS_OUTPUT.PUT_LINE (
 'Invalid department ID specified: ' || dept_in);
 ELSE

When to Use Packages | 643

Download at WoweBook.Com

http://www.ToadWorld.com

 /* Display the header. */
 DBMS_OUTPUT.PUT_LINE (
 'Applying Bonuses of ' || bonus_in ||
 ' to the ' || l_name || ' Department');
 END IF;
 /* For each employee in the specified department... */
 FOR rec IN by_dept_cur
 LOOP
 IF employee_rp.eligible_for_bonus (rec)
 THEN
 /* Update this column. */

 UPDATE employees
 SET salary = rec.salary + bonus_in
 WHERE employee_id = rec.employee_id;
 END IF;
 END LOOP;
END;

Now let’s compare that to the encapsulation alternative, which you will find in its
entirety in givebonus2.sp:

 /* File on web: givebonus2.sp */
 1 PROCEDURE give_bonus (
 2 dept_in IN employee_tp.department_id_t
 3 , bonus_in IN employee_tp.bonus_t
 4)
 5 IS
 6 l_department department_tp.department_rt;
 7 l_employees employee_tp.employee_tc;
 8 l_rows_updated PLS_INTEGER;
 9 BEGIN
10 l_department := department_tp.onerow (dept_in);
11 l_employees := employee_qp.ar_fk_emp_department (dept_in);
12
13 FOR l_index IN 1 .. l_employees.COUNT
14 LOOP
15 IF employee_rp.eligible_for_bonus (rec)
16 THEN
17 employee_cp.upd_onecol_pky
18 (colname_in => 'salary'
19 , new_value_in => l_employees (l_index).salary
20 + bonus_in
21 , employee_id_in => l_employees (l_index).employee_id
22 , rows_out => l_rows_updated
23);
24 END IF;
25 END LOOP;
26
27 ... more processing with name and other elements
28 END;

Here is an explanation of the changes made in this second version:

644 | Chapter 18: Packages

Download at WoweBook.Com

Line(s) Significance

2–7 Declarations based on the underlying tables no longer use %TYPE and %ROWTYPE. Instead, a “types package” is
provided that offers SUBTYPEs, which in turn rely on %TYPE and %ROWTYPE. By taking this approach, the application
code no longer needs directly granted access to underlying tables (which would be unavailable in a fully encapsulated
environment).

10 Replace the SELECT INTO with a call to a function that returns “one row” of information for the primary key.

11 Call a function that retrieves all the employee rows for the department ID foreign key. This function utilizes BULK
COLLECT and returns a collection of records. This demonstrates how encapsulated code allows you to more easily take
advantage of new features in PL/SQL.

13–25 The cursor FOR loop is replaced with a numeric FOR loop through the contents of the collection.

17–23 Use dynamic SQL to update any single column for the specified primary key.

Overall, the SQL statements have been removed from the program and have been re-
placed with calls to reusable procedures and functions. Doing so optimizes the SQL in
my application and allows me to write more robust code in a more productive manner.

It is by no means a trivial matter to build (or generate) such packages, and I recognize
that most of you will not be willing or able to adopt a 100% encapsulated approach.
You can, however, gain many of the advantages of data encapsulation without having
to completely revamp your coding techniques. At a minimum, I suggest that you:

• Hide all your single-row queries behind a function interface. That way, you can
make sure that error handling is performed and can choose the best implementa-
tion (implicit or explicit cursors, for example).

• Identify the tables that are most frequently and directly manipulated by developers
and build layers of code around them.

• Create packaged programs to handle complex transactions. If “add a new order”
involves inserting two rows, updating six others, and so on, make sure to embed
this logic inside a procedure that handles the complexity. Don’t rely on individual
developers to figure it out (and write it more than once!).

Avoid Hardcoding Literals
Virtually any application has a variety of magic values—literal values that have special
significance in a system. These values might be type codes or validation limits. Your
users will tell you that these magic values never change. “I will always have only 25 line
items in my profit-and-loss,” one will say. “The name of the parent company,” swears
another, “will always be ATLAS HQ.” Don’t take these promises at face value, and
never code them into your programs. Consider the following IF statements:

IF footing_difference BETWEEN 1 and 100
THEN
 adjust_line_item;
END IF;

When to Use Packages | 645

Download at WoweBook.Com

IF cust_status = 'C'
THEN
 reopen_customer;
END IF;

You are begging for trouble if you write code like this. You will be a much happier
developer if you instead build a package of named constants as follows:

PACKAGE config_pkg
IS
 closed_status CONSTANT VARCHAR2(1) := 'C';
 open_status CONSTANT VARCHAR2(1) := 'O';
 active_status CONSTANT VARCHAR2(1) := 'A';
 inactive_status CONSTANT VARCHAR2(1) := 'I';

 min_difference CONSTANT PLS_INTEGER := 1;
 max_difference CONSTANT PLS_INTEGER := 100;

 earliest_date CONSTANT DATE := SYSDATE;
 latest_date CONSTANT DATE := ADD_MONTHS (SYSDATE, 120);

END config_pkg;

Using this package, my two IF statements above now become:

IF footing_difference
 BETWEEN config_pkg.min_difference and config_pkg.max_difference
THEN
 adjust_line_item;
END IF;

IF cust_status = config_pkg.closed_status
THEN
 reopen_customer;
END IF;

If any of my magic values ever change, I simply modify the assignment to the appro-
priate constant in the configuration package. I do not need to change a single program
module. Just about every application I have reviewed (and many that I have written)
mistakenly includes hardcoded magic values in the program. In every single case (es-
pecially those that I myself wrote!), the developer had to make repeated changes to the
programs, during both development and maintenance phases. It was often a headache,
and sometimes a nightmare; I cannot emphasize strongly enough the importance of
consolidating all magic values into one or more packages.

You will find another example of such a package in the utl_file_constants.pkg file. This
package takes a different approach from that shown above. All values are hidden
in the package body. The package specification consists only of functions, which return
the values. This way, if and when I need to change a value, I do not have to recompile
the package specification, and I avoid the need to recompile dependent programs.

Finally, if you get to choose the literal values that you plan to hide behind constants,
you might consider using outlandish values that will further discourage any use of the

646 | Chapter 18: Packages

Download at WoweBook.Com

literals. Suppose, for example, that you need to return a status indicator from a proce-
dure: success or failure? Typical values for such flags include 0 and 1, S and F, etc. The
problem with such values is that they are intuitive and brief, making it easy for an
undisciplined programmer to “cheat” and directly use the literal in his or her code.
Consider the following:

PACKAGE do_stuff
IS
 c_success CONSTANT PLS_INTEGER := 0;
 c_failure CONSTANT PLS_INTEGER := 1;
 PROCEDURE big_stuff (stuff_key_in IN PLS_INTEGER, status_out OUT PLS_INTEGER);
END do_stuff;

With this definition, it is very likely indeed that you will encounter usages of big_stuff
as follows:

do_stuff.big_stuff (l_stuff_key, l_status);

IF l_status = 0
THEN
 DBMS_OUTPUT.PUT_LINE ('Stuff went fine!');
END IF;

If, on the other hand, my package specification looks like this:

PACKAGE do_stuff
IS
 /* Entirely arbitrary literal values! */
 c_success CONSTANT PLS_INTEGER := −90845367;
 c_failure CONSTANT PLS_INTEGER := 55338292;
 PROCEDURE big_stuff (stuff_key_in IN PLS_INTEGER, status_out OUT PLS_INTEGER);
END do_stuff;

I predict that you will never see code like this:

do_stuff.big_staff (l_stuff_key, l_status);
IF l_status = −90845367
THEN
 DBMS_OUTPUT.PUT_LINE ('Stuff went fine!');
END IF;

It would be too embarrassing to write such code.

Improve Usability of Built-in Features
Some of Oracle’s own supplied packages, such as UTL_FILE and DBMS_OUTPUT,
either contain very bothersome bugs or reflect design choices that are undesirable. We
all have our pet peeves, and not just about how Oracle builds utilities for us. What
about that “ace” consultant who blew into town last year? Are you still trying to deal
with the code mess he left behind? Maybe you can’t replace any of this stuff, but you
can certainly consider building your own package on top of theirs (their packages, their
poorly designed data structures, etc.) to correct as many of the problems as possible.

When to Use Packages | 647

Download at WoweBook.Com

Rather than fill up the pages of this book with examples, I’ve listed the filenames of a
number of packages available on the book’s web site as companion code to this text.
These demonstrate this use of packages and also offer some useful utilities. I suggest
that you look through all the *.pkg files on the site for other code you might find handy
in your applications.

filepath.pkg
Adds support for a path to UTL_FILE. This allows you to search through multiple,
specified directories to find the desired file.

xfile.pkg and JFile.java (alternatively, sf_file.pks/pkb and sf_file.java)
Extend the reach of UTL_FILE by providing a package that is built on top of a Java
class that performs many tasks unsupported by UTL_FILE.The xfile (“eXtra File
stuff”) package also offers 100% support of the UTL_FILE interface. This means
that you can do a global search and replace of “UTL_FILE” with “xfile” in your
code and it will continue to work as it did before!

sf_out.pks/pkb, bpl.sp, do.pkg
Substitutes for the “print line” functionality of DBMS_OUTPUT, which help you
avoid the nuisances of its design drawbacks (inability to display Booleans or—prior
to Oracle Dababase 10g—strings longer than 255 bytes, for instance).

Group Together Logically Related Functionality
If you have a dozen procedures and functions that all revolve around a particular feature
or aspect of your application, put them into a package so that you can manage (and
find) that code more easily. This is most important when coding the business rules for
your application. When implementing business rules, follow these important
guidelines:

• Don’t hardcode them (usually repeatedly) into individual application components.

• Don’t scatter them across many different standalone, hard-to-manage programs.

Before you start building an application, construct a series of packages that encapsulate
all of its rules. Sometimes these rules are part of a larger package, such as a table en-
capsulation package. In other cases, you might establish a package that contains noth-
ing but the key rules. Here is one example:

/* File on web: custrules.pkg */
PACKAGE customer_rules
IS
 FUNCTION min_balance RETURN PLS_INTEGER;

 FUNCTION eligible_for_discount
 (customer_in IN customer%ROWTYPE)
 RETURN BOOLEAN;

 FUNCTION eligible_for_discount
 (customer_id_in IN customer.customer_id%TYPE)

648 | Chapter 18: Packages

Download at WoweBook.Com

 RETURN BOOLEAN;

END customer_rules;

The “eligible for discount” function is hidden away in the package so that it can be
easily managed. I also use overloading to offer two different interfaces to the formula:
one that accepts a primary key and establishes eligibility for that customer in the da-
tabase, and a second that applies its logic to customer information already loaded into
a %ROWTYPE record. Why did I do this? Because if a person has already queried the
customer information from the database, he can use the %ROWTYPE overloading and
avoid a second query.

Of course, not all “logically related functionality” has to do with business rules. I might
need to add to the built-in string manipulation functions of PL/SQL. Rather than create
12 different standalone functions, I will create a “string enhancements” package and
put all of the functions there. Then I and others know where to go to access that
functionality.

Cache Static Session Data
Take advantage of persistent package data to improve the response time of your ap-
plication by caching (and not requerying) static data. You can do this at a number of
different levels; for each of the following items, I’ve listed a few helpful code examples
available on the book’s web site:

• Cache a single value, such as the name of the current user (returned by the USER
function). Examples: thisuser.pkg and thisuser.tst.

• Cache a single row or set of information, such as the configuration information for
a given user. Examples: init.pkg and init.tst.

• Cache a whole list of values, such as the contents of a static, reference code lookup
table. Examples: emplu.pkg (employee lookup) and emplu.tst.

• Use the .tst files to compare cached and non-cached performance.

Package-based caching is just one type of caching available to PL/SQL developers. See
Chapter 21, Optimizing PL/SQL Performance, for a more detailed presentation of all of
your caching options.

If you decide to take advantage of package-based caching, remember
that this data is cached separately for each session that references the
package (in the Program Global Area). This means that if your cache of
a row in a table consumes 2MB and you have 1,000 simultaneously
connected sessions, then you have just used up 2 GB of memory in your
system—in addition to all the other memory consumed by the database.

When to Use Packages | 649

Download at WoweBook.Com

Packages and Object Types
Packages are containers that allow you to group together data and code elements. Ob-
ject types are containers that allow you to group together data and code elements. Do
you need both? Do object types supersede packages, especially now that Oracle has
added support for inheritance? When should you use a package and when should you
use an object type? All very interesting and pertinent questions.

It is true that packages and object types share some features:

• Each can contain one or more programs and data structures.

• Each can (and usually does) consist of both a specification and a body.

There are, however, key differences between the two, including:

• An object type is a template for data; you can instantiate multiple object type in-
stances (a.k.a. “objects”) from that template. Each one of those instances has as-
sociated with it all of the attributes (data) and methods (procedures and functions)
from the template. These instances can be stored in the database. A package, on
the other hand, is a one-off structure and, in a sense, a static object type: you cannot
declare instances of it.

• Object types offer inheritance. That means that I can declare an object type to be
“under” another type, and it inherits all the attributes and methods of that super-
type. There is no concept of hierarchy or inheritance in packages. See Chapter 26
for lots more information about this.

• With packages, you can create private, hidden data and programs. This is not
supported in object types, in which everything is publicly declared and accessible
(although you can still hide the implementation of methods in the object type
body).

So when should you use object types and when should you use packages? First of all,
very few people use object types and even fewer attempt to take advantage of Oracle’s
“object-relational” model. For them, packages will remain the core building blocks of
their PL/SQL-based applications.

If you do plan to exploit object types, I recommend that you consider putting much of
your complex code into packages that are then called by methods in the object type.
You then have more flexibility in designing the code that implements your object types,
and you can share that code with other elements of your application.

650 | Chapter 18: Packages

Download at WoweBook.Com

CHAPTER 19

Triggers

Database triggers are named program units that are executed in response to events that
occur in the database. Triggers are critical elements of a well-designed application built
on the Oracle database and are used to do the following:

Perform validation on changes being made to tables
Because the validation logic is attached directly to the database object, database
triggers offer a strong guarantee that the required logic will always be executed and
enforced.

Automate maintenance of the database
Starting with Oracle8i Database, you can use database startup and shutdown trig-
gers to automatically perform necessary initialization and cleanup steps. This is a
distinct advantage over creating and running such steps as scripts external to the
database.

Apply rules concerning acceptable database administration activity in a granular fashion
You can use triggers to tightly control what kinds of actions are allowed on database
objects, such as dropping or altering tables. Again, by putting this logic in triggers,
you make it very difficult, if not impossible, for anyone to bypass the rules you
have established.

Five different types of events can have trigger code attached to them:

Data Manipulation Language (DML) statements
DML triggers are available to fire whenever a record is inserted into, updated in,
or deleted from a table. These triggers can be used to perform validation, set default
values, audit changes, and even disallow certain DML operations.

Data Definition Language (DDL) statements
DDL triggers fire whenever DDL is executed—for example, whenever a table is
created. These triggers can perform auditing and prevent certain DDL statements
from occurring.

651

Download at WoweBook.Com

Database events
Database event triggers fire whenever the database starts up or is shut down,
whenever a user logs on or off, and whenever an Oracle error occurs. For
Oracle8i Database and above, these triggers provide a means of tracking activity
in the database.

INSTEAD OF
INSTEAD OF triggers are essentially alternatives to DML triggers. They fire when
inserts, updates, and deletes are about to occur; your code specifies what to do in
place of these DML operations. INSTEAD OF triggers control operations on views,
not tables. They can be used to make nonupdateable views updateable and to
override the behavior of views that are updateable.

Suspended statements
Oracle9i Database introduced the concept of suspended statements. Statements
experiencing space problems (lack of tablespace or quota) can enter a suspended
mode until the space problem is fixed. Triggers can be added to the mix to auto-
matically alert someone of the problem or even to fix it.

This chapter describes these types of triggers; for each, I’ll provide syntax details, ex-
ample code, and suggested uses. I’ll also touch on trigger maintenance at the end of the
chapter.

If you need to emulate triggers on SELECT statements (queries), you should investigate
the use of fine-grained auditing (FGA), which is described in Chapter 23 and in greater
detail in Oracle PL/SQL for DBAs (O’Reilly).

DML Triggers
Data Manipulation Language (DML) triggers fire when records are inserted into, up-
dated within, or deleted from a particular table, as shown in Figure 19-1. These are the
most common types of triggers, especially for developers; the other trigger types are
used primarily by DBAs.

There are many options regarding DML triggers. They can fire after or before a DML
statement, or they can fire after or before each row is processed within a statement.
They can fire for INSERT, UPDATE, MERGE, or DELETE statements, or combinations
of these three. Starting with Oracle Database 11g, you can bundle together several DML
triggers into one compound trigger.

There are also many ways to actually configure DML triggers. To determine what works
for your environment, you need to answer the following questions:

• Should the triggers fire once for the whole DML statement or once for each row
involved in the statement?

• Should the triggers fire before or after the whole statement completes or before or
after each row is processed?

652 | Chapter 19: Triggers

Download at WoweBook.Com

• Should the triggers fire for inserts, updates, deletes, or a combination thereof?

Figure 19-1. DML trigger flow of control

DML Trigger Concepts
Before diving into the syntax and examples, you may find it useful to review these DML
trigger concepts and associated terminology:

BEFORE trigger
A trigger that executes before a certain operation occurs, such as BEFORE INSERT.

AFTER trigger
A trigger that executes after a certain operation occurs, such as AFTER UPDATE.

Statement-level trigger
A trigger that executes for a SQL statement as a whole (which may, in turn, affect
one or more individual rows in a database table).

Row-level trigger
A trigger that executes for a single row that has been affected by the execution of
a SQL statement. Suppose that the books table contains 1,000 rows. Then the
following UPDATE statement will modify 1,000 rows:

UPDATE books SET title = UPPER (title);

And if I define a row-level update trigger on the books table, that trigger will fire
1,000 times.

NEW pseudo-record
A data structure named NEW that looks like and (mostly) acts like a PL/SQL
record. This pseudo-record is available only within update and insert DML triggers;
it contains the values for the affected row after any changes were made.

DML Triggers | 653

Download at WoweBook.Com

OLD pseudo-record
A data structure named OLD that looks like and (mostly) acts like a PL/SQL record.
This pseudo-record is available only within update and delete DML triggers; it
contains the values for the affected row before any changes were made.

WHEN clause
The portion of the DML trigger that is run to determine whether or not the trigger
code should be executed (allowing you to avoid unnecessary execution).

DML trigger scripts

To explore some of the concepts presented in the previous section, I have made the
following scripts available on the book’s web site:

Concept Files Description

Statement-level and row-level
triggers

copy_tables.sql Creates two identical tables, one with data and
one empty.

 statement_vs_row.sql Creates two simple triggers, one statement-level
and one row-level. After running these scripts,
execute this statement and view the results (with
SERVEROUTPUT turned on to watch the activity):

INSERT INTO to_table
SELECT * FROM from_table;

BEFORE and AFTER triggers before_vs_after.sql Creates BEFORE and AFTER triggers. After running
the script, execute this statement and view the
results:

INSERT INTO to_table
SELECT * FROM from_table;

Triggers for various DML operations one_trigger_per_type.sql Creates AFTER INSERT, UPDATE, and DELETE trig-
gers on to_table. After running the script, execute
these commands and view the results:

INSERT INTO to_table
 VALUES (1);
UPDATE to_table
 SET col1 10;
DELETE to_table;

Transaction participation

By default, DML triggers participate in the transaction from which they were fired. This
means that:

• If a trigger raises an exception, that part of the transaction is rolled back.

• If the trigger performs any DML itself (such as inserting a row into a log table),
then that DML becomes a part of the main transaction.

• You cannot issue a COMMIT or ROLLBACK from within a DML trigger.

654 | Chapter 19: Triggers

Download at WoweBook.Com

If you define your DML trigger to be an autonomous transaction (dis-
cussed in Chapter 14), however, then any DML performed inside the
trigger will be saved or rolled back—with your explicit COMMIT or
ROLLBACK statement—without affecting the main transaction.

The following sections present the syntax for creating a DML trigger, provide reference
information on various elements of the trigger definition, and explore an example that
uses the many components and options for these triggers.

Creating a DML Trigger
To create (or replace) a DML trigger, use the syntax shown here:

 1 CREATE [OR REPLACE] TRIGGER trigger_name
 2 {BEFORE | AFTER}
 3 {INSERT | DELETE | UPDATE | UPDATE OF column_list } ON table_name
 4 [FOR EACH ROW]
 5 [WHEN (...)]
 6 [DECLARE ...]
 7 BEGIN
 8 ...executable statements...
 9 [EXCEPTION ...]
10 END [trigger_name];

The following table provides an explanation of these different elements:

Line(s) Description

1 States that a trigger is to be created with the name supplied. Specifying OR REPLACE is optional. If the trigger exists
and REPLACE is not specified, then your attempt to create the trigger anew will result in an ORA-4081 error. It is
possible, by the way, for a table and a trigger (or a procedure and a trigger, for that matter) to have the same name.
I recommend, however, that you adopt naming conventions to avoid the confusion that will result from this sharing
of names.

2 Specifies if the trigger is to fire BEFORE or AFTER the statement or row is processed.

3 Specifies the combination of DML types to which the trigger applies: insert, update, or delete. Note that UPDATE can
be specified for the whole record or just for a column list separated by commas. The columns can be combined
(separated with an OR) and may be specified in any order. Line 3 also specifies the table to which the trigger is to
apply. Remember that each DML trigger can apply to only one table.

4 If FOR EACH ROW is specified, then the trigger will activate for each row processed by a statement. If this clause is
missing, the default behavior is to fire only once for the statement (a statement-level trigger).

5 An optional WHEN clause that allows you to specify logic to avoid unnecessary execution of the trigger.

6 Optional declaration section for the anonymous block that constitutes the trigger code. If you do not need to declare
local variables, you do not need this keyword. Note that you should never try to declare the NEW and OLD pseudo-
records. This is done automatically.

7–8 The execution section of the trigger. This is required and must contain at least one statement.

9 Optional exception section. This section will trap and handle (or attempt to handle) any exceptions raised in the
execution section only.

DML Triggers | 655

Download at WoweBook.Com

Line(s) Description

10 Required END statement for the trigger. You can include the name of the trigger after the END keyword to explicitly
document which trigger you are ending.

Here are a few examples of DML trigger usage:

• I want to make sure that whenever an employee is added or changed, all necessary
validation is run. Notice that I pass the necessary fields of the NEW pseudo-record
to individual check routines in this row-level trigger:

TRIGGER validate_employee_changes
 AFTER INSERT OR UPDATE
 ON employees
 FOR EACH ROW
BEGIN
 check_date (:NEW.hire_date);
 check_email (:NEW.email);
END;

• The following BEFORE INSERT trigger captures audit information for the CEO
compensation table. It also relies on the autonomous transaction feature to commit
this new row without affecting the “outer” or main transaction:

TRIGGER bef_ins_ceo_comp
 BEFORE INSERT
 ON ceo_compensation
 FOR EACH ROW
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO ceo_comp_history
 VALUES (:NEW.name,
 :OLD.compensation, :NEW.compensation,
 'AFTER INSERT', SYSDATE);
 COMMIT;
END;

The WHEN clause

Use the WHEN clause to fine-tune the situations under which the body of the trigger
code will actually execute. In the following example, I use the WHEN clause to make
sure that the trigger code does not execute unless the new salary is changing to a
different value:

TRIGGER check_raise
 AFTER UPDATE OF salary
 ON employees
 FOR EACH ROW
WHEN ((OLD.salary != NEW.salary) OR
 (OLD.salary IS NULL AND NEW.salary IS NOT NULL) OR
 (OLD.salary IS NOT NULL AND NEW.salary IS NULL))
BEGIN
 ...

656 | Chapter 19: Triggers

Download at WoweBook.Com

In other words, if a user issues an UPDATE to a row and for some reason sets the salary
to its current value, the trigger will and must fire, but the reality is that you really don’t
need any of the PL/SQL code in the body of the trigger to execute. By checking this
condition in the WHEN clause, you avoid some of the overhead of starting up the
PL/SQL block associated with the trigger.

The genwhen.sp file on the book’s web site offers a procedure that will
generate a WHEN clause to ensure that the new value is actually dif-
ferent from the old.

In most cases, you will reference fields in the OLD and NEW pseudo-records in the
WHEN clause, as in the example shown above. You may also, however, write code
that invokes built-in functions, as in the following WHEN clause that uses SYSDATE
to restrict the INSERT trigger to fire only between 9 a.m. and 5 p.m.

TRIGGER valid_when_clause
BEFORE INSERT ON frame
FOR EACH ROW
WHEN (TO_CHAR(SYSDATE,'HH24') BETWEEN 9 AND 17)
 ...

Here are some things to keep in mind when using the WHEN clause:

• Enclose the entire logical expression inside parentheses. These parentheses are
optional in an IF statement, but required in the trigger WHEN clause.

• Do not include the “:” in front of the OLD and NEW names. This colon (indicating
a host variable) is required in the body of the trigger PL/SQL code, but cannot be
used in the WHEN clause.

• You can invoke SQL built-in functions only from within the WHEN clause; you
will not be able to call user-defined functions or functions defined in built-in pack-
ages (such as DBMS_UTILITY). Attempts to do so will generate an ORA-04076:
invalid NEW or OLD specification error. If you need to invoke such functions, move
that logic to the beginning of the trigger execution section.

The WHEN clause can be used only with row-level triggers. You will
get a compilation error (ORA-04077) if you try to use it with statement-
level triggers.

Working with NEW and OLD pseudo-records

Whenever a row-level trigger fires, the PL/SQL runtime engine creates and populates
two data structures that function much like records. They are the NEW and OLD
pseudo-records (“pseudo” because they don’t share all the properties of real PL/SQL
records). OLD stores the original values of the record being processed by the trigger;

DML Triggers | 657

Download at WoweBook.Com

NEW contains the new values. These records have the same structure as a record de-
clared using %ROWTYPE on the table to which the trigger is attached.

Here are some rules to keep in mind when working with NEW and OLD:

• With triggers on INSERT operations, the OLD structure does not contain any data;
there is no “old” set of values.

• With triggers on UPDATE operations, both the OLD and NEW structures are
populated. OLD contains the values prior to the update; NEW contains the values
the row will contain after the update is performed.

• With triggers on DELETE operations, the NEW structure does not contain any
data; the record is about to be erased.

• The NEW and OLD pseudo-records also contain the ROWID pseudo-column;
this value is populated in both OLD and NEW with the same value, in all circum-
stances. Go figure!

• You cannot change the field values of the OLD structure; attempting to do so will
raise the ORA-04085 error. You can modify the field values of the NEW structure.

• You can’t pass a NEW or OLD structure as a “record parameter” to a procedure
or function called within the trigger. You can pass only individual fields of the
pseudo-record. See the gentrigrec.sp script for a program that will generate code
transferring NEW and OLD values to records that can be passed as parameters.

• When referencing the NEW and OLD structures within the anonymous block for
the trigger, you must preface those keywords with a colon, as in:

IF :NEW.salary > 10000 THEN...

• You cannot perform record-level operations with the NEW and OLD structures.
For example, the following statement will cause the trigger compilation to fail:

BEGIN :new := NULL; END;

You can also use the REFERENCING clause to change the names of the pseudo-records
within the database trigger; this allows you to write code that is more self-documenting
and application-specific. Here is one example:

/* File on web: full_old_and_new.sql */
TRIGGER audit_update
 AFTER UPDATE
 ON frame
 REFERENCING OLD AS prior_to_cheat NEW AS after_cheat
 FOR EACH ROW
BEGIN
 INSERT INTO frame_audit
 (bowler_id,
 game_id,
 old_score,
 new_score,
 change_date,
 operation)

658 | Chapter 19: Triggers

Download at WoweBook.Com

 VALUES (:after_cheat.bowler_id,
 :after_cheat.game_id,
 :prior_to_cheat.score,
 :after_cheat.score,
 SYSDATE,
 'UPDATE');
END;

Run the full_old_and_new.sql script to take a look at the behavior of the OLD and NEW
pseudo-records.

Determining the DML action within a trigger

Oracle provides a set of functions (also known as operational directives) that allow you
to determine which DML action caused the firing of the current trigger. Each of these
functions returns TRUE or FALSE, as described next:

INSERTING
Returns TRUE if the trigger was fired by an insert into the table to which the trigger
is attached, and FALSE if not.

UPDATING
Returns TRUE if the trigger was fired by an update of the table to which the trigger
is attached, and FALSE if not.

DELETING
Returns TRUE if the trigger was fired by a delete from the table to which the trigger
is attached, and FALSE if not.

Using these directives, it’s possible to create a single trigger that consolidates the actions
required for each different type of operations. Here’s one such trigger:

/* File on web: one_trigger_does_it_all.sql */
TRIGGER three_for_the_price_of_one
BEFORE DELETE OR INSERT OR UPDATE ON account_transaction
FOR EACH ROW
BEGIN
 -- track who created the new row
 IF INSERTING
 THEN
 :NEW.created_by := USER;
 :NEW.created_date := SYSDATE;

 -- track deletion with special audit program
 ELSIF DELETING
 THEN
 audit_deletion(USER,SYSDATE);

 -- track who last updated the row
 ELSIF UPDATING
 THEN
 :NEW.UPDATED_BY := USER;
 :NEW.UPDATED_DATE := SYSDATE;

DML Triggers | 659

Download at WoweBook.Com

 END IF;
END;

The UPDATING function is overloaded with a version that takes a specific column
name as an argument. This is handy for isolating specific column updates.

/* File on web: overloaded_update.sql */
TRIGGER validate_update
BEFORE UPDATE ON account_transaction
FOR EACH ROW
BEGIN
 IF UPDATING ('ACCOUNT_NO')
 THEN
 errpkg.raise('Account number cannot be updated');
 END IF;
END;

Specification of the column name is not case-sensitive. The name is not evaluated until
the trigger executes, and if the column does not exist in the table to which the trigger
is attached, it will evaluate to FALSE.

Operational directives can be called from within any PL/SQL block, not
just triggers. They will, however, only evaluate to TRUE within a DML
trigger or code called from within a DML trigger.

DML Trigger Example: No Cheating Allowed!
One application function for which triggers are perfect is change auditing. Consider
the example of Paranoid Pam (or Ms. Trustful as we call her), who runs a bowling alley
and has been receiving complaints about people cheating on their scores. She recently
implemented a complete Oracle application known as Pam’s Bowl-A-Rama Scoring
System, and now wants to augment it to catch the cheaters.

The focal point of Pam’s application is the frame table that records the score of a par-
ticular frame of a particular game for a particular player:

/* File on web: bowlerama_tables.sql */
TABLE frame
(bowler_id NUMBER,
 game_id NUMBER,
 frame_number NUMBER,
 strike VARCHAR2(1) DEFAULT 'N',
 spare VARCHAR2(1) DEFAULT 'N',
 score NUMBER,
 CONSTRAINT frame_pk
 PRIMARY KEY (bowler_id, game_id, frame_number))

Pam enhances the frame table with an audit version to catch all before and after values,
so that she can compare them and identify fraudulent activity:

TABLE frame_audit
(bowler_id NUMBER,

660 | Chapter 19: Triggers

Download at WoweBook.Com

 game_id NUMBER,
 frame_number NUMBER,
 old_strike VARCHAR2(1),
 new_strike VARCHAR2(1),
 old_spare VARCHAR2(1),
 new_spare VARCHAR2(1),
 old_score NUMBER,
 new_score NUMBER,
 change_date DATE,
 operation VARCHAR2(6))

For every change to the frame table, Pam would like to keep track of before and after
images of the affected rows. So she creates the following simple audit trigger:

/* File on web: bowlerama_full_audit.sql */
 1 TRIGGER audit_frames
 2 AFTER INSERT OR UPDATE OR DELETE ON frame
 3 FOR EACH ROW
 4 BEGIN
 5 IF INSERTING THEN
 6 INSERT INTO frame_audit(bowler_id,game_id,frame_number,
 7 new_strike,new_spare,new_score,
 8 change_date,operation)
 9 VALUES(:NEW.bowler_id,:NEW.game_id,:NEW.frame_number,
10 :NEW.strike,:NEW.spare,:NEW.score,
11 SYSDATE,'INSERT');
12
13 ELSIF UPDATING THEN
14 INSERT INTO frame_audit(bowler_id,game_id,frame_number,
15 old_strike,new_strike,
16 old_spare,new_spare,
17 old_score,new_score,
18 change_date,operation)
19 VALUES(:NEW.bowler_id,:NEW.game_id,:NEW.frame_number,
20 :OLD.strike,:NEW.strike,
21 :OLD.spare,:NEW.spare,
22 :OLD.score,:NEW.score,
23 SYSDATE,'UPDATE');
24
25 ELSIF DELETING THEN
26 INSERT INTO frame_audit(bowler_id,game_id,frame_number,
27 old_strike,old_spare,old_score,
28 change_date,operation)
29 VALUES(:OLD.bowler_id,:OLD.game_id,:OLD.frame_number,
30 :OLD.strike,:OLD.spare,:OLD.score,
31 SYSDATE,'DELETE');
32 END IF;
33 END audit_frames;

Notice that for the INSERTING clause (lines 6–11), she relies on the NEW pseudo-
record to populate the audit row. For UPDATING (lines 14–23), a combination of
NEW and OLD information is used. For DELETING (lines 26–31), Pam has only OLD
information with which to work. With this trigger in place, Pam can sit back and wait
for action.

DML Triggers | 661

Download at WoweBook.Com

Of course, Pam doesn’t announce her new auditing system. In particular, Sally Johnson
(a very ambitious but not terribly skilled bowler) has no idea she is being watched. Sally
has decided that she really wants to be the champion this year, and will stop at nothing
to make it happen. Her father owns the bowling alley, she has access to SQL*Plus, and
she knows that her bowler ID is 1. All that constitutes enough privilege and information
to allow her to bypass the application GUI altogether, connect directly into SQL*Plus,
and work some very unprincipled “magic.”

Sally starts out by giving herself a strike in the first frame:

SQL> INSERT INTO frame
 2 (BOWLER_ID,GAME_ID,FRAME_NUMBER,STRIKE)
 3 VALUES(1,1,1,'Y');
1 row created.

But then she decides to be clever. She immediately downgrades her first frame to a spare
to be less conspicuous:

SQL> UPDATE frame
 2 SET strike = 'N',
 3 spare = 'Y'
 4 WHERE bowler_id = 1
 5 AND game_id = 1
 6 AND frame_number = 1;
1 row updated.

Uh oh! Sally hears a noise in the corridor. She loses her nerve and tries to cover her
tracks:

SQL> DELETE frame
 2 WHERE bowler_id = 1
 3 AND game_id = 1
 4 AND frame_number = 1;
1 row deleted.

SQL> COMMIT;
Commit complete.

She even verifies that her entries were deleted:

SQL> SELECT * FROM frame;
no rows selected

Wiping the sweat from her brow, Sally signs out, but vows to come back later and
follow through on her plans.

Ever suspicious, Pam signs in and quickly discovers what Sally was up to by querying
the audit table (Pam might also consider setting up an hourly job via DBMS_JOB to
automate this part of the auditing procedure):

SELECT bowler_id, game_id, frame_number
 , old_strike, new_strike
 , old_spare, new_spare
 , change_date, operation
 FROM frame_audit

662 | Chapter 19: Triggers

Download at WoweBook.Com

Here is the output:

BOWLER_ID GAME_ID FRAME_NUMBER O N O N CHANGE_DA OPERAT
--------- ------- ------------ - - - - --------- ------
 1 1 1 Y N 12-SEP-00 INSERT
 1 1 1 Y N N Y 12-SEP-00 UPDATE
 1 1 1 N N 12-SEP-00 DELETE

Sally is so busted! The audit entries show what Sally was up to even though no changes
remain behind in the frame table. All three statements were audited by Pam’s DML
trigger: the initial insert of a strike entry, the downgrade to a spare, and the subsequent
removal of the record.

Applying the WHEN clause

After using her auditing system for many successful months, Pam undertakes an effort
to further isolate potential problems. She reviews her application frontend and deter-
mines that the strike, spare, and score fields are the only ones that can be changed.
Thus her trigger can be more specific:

TRIGGER audit_update
 AFTER UPDATE OF strike, spare, score
 ON frame
 REFERENCING OLD AS prior_to_cheat NEW AS after_cheat
 FOR EACH ROW
BEGIN
 INSERT INTO frame_audit (...)
 VALUES (...);
END;

After a few weeks of this implementation, Pam is still not happy with the auditing
situation because audit entries are being created even when values are set equal to
themselves. Updates like this one are producing useless audit records that show nothing
changing:

SQL> UPDATE FRAME
 2 SET strike = strike;
 1 row updated.

SQL> SELECT old_strike,
 2 new_strike,
 3 old_spare,
 4 new_spare,
 5 old_score,
 6 new_score
 7 FROM frame_audit;

O N O N OLD_SCORE NEW_SCORE
- - - - ---------- ----------
Y Y N N

Pam needs to further isolate the trigger so that it fires only when values actually change.
She does this using the WHEN clause shown here:

DML Triggers | 663

Download at WoweBook.Com

/* File on web: final_audit.sql */
TRIGGER audit_update
AFTER UPDATE OF STRIKE, SPARE, SCORE ON FRAME
REFERENCING OLD AS prior_to_cheat NEW AS after_cheat
FOR EACH ROW
WHEN (prior_to_cheat.strike != after_cheat.strike OR
 prior_to_cheat.spare != after_cheat.spare OR
 prior_to_cheat.score != after_cheat.score)
BEGIN
 INSERT INTO FRAME_AUDIT (...)
 VALUES (...);
END;

Now entries will appear in the audit table only if something did indeed change, allowing
Pam to quickly identify possible cheaters. Pam performs a quick final test of her trigger.

SQL> UPDATE frame
 2 SET strike = strike;
1 row updated.

SQL> SELECT old_strike,
 2 new_strike,
 3 old_spare,
 4 new_spare,
 5 old_score,
 6 new_score
 7 FROM frame_audit;
no rows selected

Using pseudo-records to fine-tune trigger execution

Pam has implemented an acceptable level of auditing in her system; now she’d like to
make it a little more user-friendly. Her most obvious idea is to have her system add 10
to the score for frames recording a strike or spare. This allows the scorekeeper to track
only the score for subsequent bowls while the system adds the strike score.

/* File on web: set_score.sql */
TRIGGER set_score
BEFORE INSERT ON frame
FOR EACH ROW
WHEN (NEW.score IS NOT NULL)
BEGIN
 IF :NEW.strike = 'Y' OR :NEW.spare = 'Y'
 THEN
 :NEW.score := :NEW.score + 10;
 END IF;
END;

Remember that field values in the NEW records can be changed only in
BEFORE row triggers.

664 | Chapter 19: Triggers

Download at WoweBook.Com

Being a stickler for rules, Pam decides to add score validation to her set of triggers:

/* File on web: validate_score.sql */
TRIGGER validate_score
 AFTER INSERT OR UPDATE
 ON frame
 FOR EACH ROW
BEGIN
 IF :NEW.strike = 'Y' AND :NEW.score < 10
 THEN
 RAISE_APPLICATION_ERROR (
 −20001,
 'ERROR: Score For Strike Must Be >= 10'
);
 ELSIF :NEW.spare = 'Y' AND :NEW.score < 10
 THEN
 RAISE_APPLICATION_ERROR (
 −20001,
 'ERROR: Score For Spare Must Be >= 10'
);
 ELSIF :NEW.strike = 'Y' AND :NEW.spare = 'Y'
 THEN
 RAISE_APPLICATION_ERROR (
 −20001,
 'ERROR: Cannot Enter Spare And Strike'
);
 END IF;
END;

Now when there is any attempt to insert a row that violates this condition, it will be
rejected:

SQL> INSERT INTO frame VALUES(1,1,1,'Y',NULL,5);
2 INSERT INTO frame
 *
ERROR at line 1:
ORA-20001: ERROR: Score For Strike Must >= 10

Multiple Triggers of the Same Type
Above and beyond all of the options presented for DML triggers, it is also possible to
have multiple triggers of the same type attached to a single table. Switching from bowl-
ing to golf, consider the following example that provides a simple commentary of a golf
score by determining its relationship to a par score of 72.

A single row-level BEFORE INSERT trigger would suffice:

/* File on web: golf_commentary.sql */
TRIGGER golf_commentary
 BEFORE INSERT
 ON golf_scores
 FOR EACH ROW
DECLARE
 c_par_score CONSTANT PLS_INTEGER := 72;
BEGIN

DML Triggers | 665

Download at WoweBook.Com

 :new.commentary :=
 CASE
 WHEN :new.score < c_par_score THEN 'Under'
 WHEN :new.score = c_par_score THEN NULL
 ELSE 'Over' || ' Par'
 END;
END;

However, the requirement could also be satisfied with three separate row-level
BEFORE INSERT triggers with mutually exclusive WHEN clauses:

TRIGGER golf_commentary_under_par
BEFORE INSERT ON golf_scores
FOR EACH ROW
WHEN (NEW.score < 72)
BEGIN
 :NEW.commentary := 'Under Par';
END;

TRIGGER golf_commentary_par
BEFORE INSERT ON golf_scores
FOR EACH ROW
WHEN (NEW.score = 72)
BEGIN
 :NEW.commentary := 'Par';
END;

TRIGGER golf_commentary_over_par
BEFORE INSERT ON golf_scores
FOR EACH ROW
WHEN (NEW.score > 72)
BEGIN
 :NEW.commentary := 'Over Par';
END;

Both implementations are perfectly acceptable and have advantages and disadvantages.
A single trigger is easier to maintain because all of the code is in one place, while separate
triggers reduce parse and execution time when more complex processing is required.

Who Follows Whom
Prior to Oracle Database 11g there was no way to guarantee the order in which multiple
DML triggers would fire. While this is not a concern in the previous example, it could
be a problem in others, as shown in the next example.

What values will be shown by the final query?

/* File on web: multiple_trigger_seq.sql */

TABLE incremented_values
(value_inserted NUMBER,
 value_incremented NUMBER);

TRIGGER increment_by_one

666 | Chapter 19: Triggers

Download at WoweBook.Com

BEFORE INSERT ON incremented_values
FOR EACH ROW
BEGIN
 :NEW.value_incremented := :NEW.value_incremented + 1;
END;

TRIGGER increment_by_two
BEFORE INSERT ON incremented_values
FOR EACH ROW
BEGIN
 IF :NEW.value_incremented > 1 THEN
 :NEW.value_incremented := :NEW.value_incremented + 2;
 END IF;
END;

INSERT INTO incremented_values
 VALUES(1,1);

SELECT *
 FROM incremented_values;

Any guesses? On my database I got this result:

SQL> SELECT *
 2 FROM incremented_values;

VALUE_INSERTED VALUE_INCREMENTED
-------------- -----------------
 1 2

So the increment_by_two trigger fired first and did nothing because the value_incre-
mented column was not greater than 1; then the increment_by_one trigger fired to
increase the value_incremented column by 1. Is this the result you will receive? The
above example offers no guarantee. Will this always be the result? Again, there is no
guarantee. Prior to Oracle Database 11g Oracle explicitly stated that there is no way to
control or assure the order in which multiple triggers of the same type on a single table
would fire. There are many theories, the most prevalent being that triggers fire in reverse
order of creation or by order of object ID—but even those theories could not be relied
upon.

Finally, in Oracle Database 11g, the firing order can be guaranteed using the FOLLOWS
clause as shown in the following example.

TRIGGER increment_by_two
BEFORE INSERT ON incremented_values
FOR EACH ROW
FOLLOWS increment_by_one
BEGIN
 IF :new.value_incremented > 1 THEN
 :new.value_incremented := :new.value_incremented + 2;
 END IF;
END;

DML Triggers | 667

Download at WoweBook.Com

Now this trigger is guaranteed to fire after the increment_by_one trigger does. Thus
guaranteeing the final result of the insert as well.

SQL> INSERT INTO incremented_values
 2 VALUES(1,1);
1 row created.
SQL> SELECT *
 2 FROM incremented_values;
VALUE_INSERTED VALUE_INCREMENTED
-------------- -----------------
 1 4

The increment_by_one trigger made the inserted value 2 and then the incre-
ment_by_two trigger bumped it up to 4. This will always be the behavior because it is
specified within the trigger itself—no need to rely on theories.

The link between triggers and their followers is viewable as a reference dependency in
the dependencies view of the Oracle data dictionary.

SQL> SELECT referenced_name,
 2 referenced_type,
 3 dependency_type
 4 FROM user_dependencies
 5 WHERE name = 'INCREMENT_BY_TWO'
 6 AND referenced_type = 'TRIGGER';
REFERENCED_NAME REFERENCED_TYPE DEPE
------------------ ------------------ ----
INCREMENT_BY_ONE TRIGGER REF

Despite the behavior I’ve described here for Oracle Database 11g, triggers will not
follow blindly—attempts to compile a trigger to follow one that is undefined are met
with this error message.

Trigger "SCOTT"."BLIND_FOLLOWER" referenced in FOLLOWS or PRECEDES clause may
not exist

Mutating Table Errors
When something mutates, it is changing. Something that is changing is hard to analyze
and to quantify. A mutating table error (ORA-4091) occurs when a row-level trigger
tries to examine or change a table that is already undergoing change (via an INSERT,
UPDATE, or DELETE statement).

In particular, this error occurs when a row-level trigger attempts to read or write the
table from which the trigger was fired. Suppose, for example, that I want to put a special
check on my employee table to make sure that when a person is given a raise, that
person’s new salary is not more than 20% above the next-highest salary in his
department.

I would therefore like to write a trigger like this:

TRIGGER brake_on_raises
 BEFORE UPDATE OF salary ON employee

668 | Chapter 19: Triggers

Download at WoweBook.Com

 FOR EACH ROW
DECLARE
 l_curr_max NUMBER;
BEGIN
 SELECT MAX (salary) INTO l_curr_max
 FROM employee;
 IF l_curr_max * 1.20 < :NEW.salary
 THEN
 errpkg.RAISE (
 employee_rules.en_salary_increase_too_large,
 :NEW.employee_id,
 :NEW.salary
);
 END IF;
END;

But when I try to perform an update that, say, doubles the salary of the PL/SQL pro-
grammer (yours truly), I get this error:

ORA-04091: table SCOTT.EMPLOYEE is mutating, trigger/function may not see it

Here are some guidelines to keep in mind regarding mutating table errors:

• In general, a row-level trigger may not read or write the table from which it has
been fired. The restriction applies only to row-level triggers, however. Statement-
level triggers are free to both read and modify the triggering table; this fact gives
us a way to avoid the mutating table error.

• If you make your trigger an autonomous transaction (by adding the PRAGMA
AUTONOMOUS TRANSACTION statement and committing inside the body of
the trigger), then you will be able to query the contents of the firing table. However,
you will still not be allowed to modify the contents of the table.

Because each release of the Oracle database renders mutating tables less and less of a
problem, it’s not really necessary to perform a full demonstration here. However a
demonstration script named mutation_zone.sql is available on the book’s web site. In
addition, the file mutating_template.sql offers a package that can serve as a template for
creating your own package to defer processing of row-level logic to the statement level.

Compound Triggers: Putting It All In One Place
The age-old saying that “I finally got it all together, but I forgot where I put it” often
applies to triggers. As you create more and more triggers containing more and more
business logic, it becomes difficult to recall which triggers handle which rules and how
all of the triggers interact. In the previous section I demonstrated how the three types
of DML (insert, update, delete) can be put together in a single trigger, but wouldn’t it
be nice to be able to put row and statement triggers together in the same code object
as well. Starting with Oracle Database 11g you can use the compound trigger to do just
that.

DML Triggers | 669

Download at WoweBook.Com

Here’s a very simple example to show the syntax.

/* File on web: compound_trigger.sql */
 1 TRIGGER compounder
 2 FOR UPDATE OR INSERT OR DELETE ON incremented_values
 3 COMPOUND TRIGGER
 4
 5 v_global_var NUMBER := 1;
 6
 7 BEFORE STATEMENT IS
 8 BEGIN
 9 DBMS_OUTPUT.PUT_LINE('Compound:BEFORE S:' || v_global_var);
 10 v_global_var := v_global_var + 1;
 11 END BEFORE STATEMENT;
 12
 13 BEFORE EACH ROW IS
 14 BEGIN
 15 DBMS_OUTPUT.PUT_LINE('Compound:BEFORE R:' || v_global_var);
 16 v_global_var := v_global_var + 1;
 17 END BEFORE EACH ROW;
 18
 19 AFTER EACH ROW IS
 20 BEGIN
 21 DBMS_OUTPUT.PUT_LINE('Compound:AFTER R:' || v_global_var);
 22 v_global_var := v_global_var + 1;
 23 END AFTER EACH ROW;
 24
 25 AFTER STATEMENT IS
 26 BEGIN
 27 DBMS_OUTPUT.PUT_LINE('Compound:AFTER S:' || v_global_var);
 28 v_global_var := v_global_var + 1;
 29 END AFTER STATEMENT;
 30
 31 END;

Just like a package

Compound triggers look a lot like PL/SQL packages, don’t they? All of the related code
and logic is in one place, making it easy to debug and modify. Let’s look at the syntax
in detail.

The most obvious change is the COMPOUND TRIGGER statement, which advises
Oracle that this trigger contains many triggers that it will need to fire and work together.

The next (and most eagerly awaited) change appears somewhat innocently on line 5—
a global variable! Finally, global variables can be defined together with the code that
manages them. No more special packages to manage them like this.

PACKAGE BODY yet_another_global_package AS
 v_global_var NUMBER := 1;
 PROCEDURE reset_global_var IS
 ...
END;

670 | Chapter 19: Triggers

Download at WoweBook.Com

The remaining compound trigger syntax is very similar to standalone triggers but a bit
more rigid.

BEFORE STATEMENT
The code in this section will fire before a DML statement executes, just like a
standalone BEFORE statement trigger does.

BEFORE EACH ROW
The code in this section gets executed before each and every row is processed by
the DML statement.

AFTER EACH ROW
The code in this section gets executed after each and every row is processed by the
DML statement.

AFTER STATEMENT
The code in this section will fire after a DML statement executes, just like a stand-
alone AFTER statement trigger does.

The rules for standalone triggers apply to compound triggers as well—for example,
record values (OLD and NEW) cannot be modified in statement-level triggers.

Not just like a package

So compound triggers look like packages, but do they behave in the same way? The
short answer is no—they behave better! Consider this example:

SQL> BEGIN
 2 insert into incremented_values values(1,1);
 3 insert into incremented_values values(2,2);
 4 END;
 5 /
Compound:BEFORE S:1
Compound:BEFORE R:2
Compound:AFTER R:3
Compound:AFTER S:4
Compound:BEFORE S:1
Compound:BEFORE R:2
Compound:AFTER R:3
Compound:AFTER S:4

PL/SQL procedure successfully completed.

Notice that the output of the global variable was set back to 1 when the second state-
ment executed. That’s because the scope of the compound trigger is the DML statement
that fires it. Once that statement completes, the compound trigger and its in-memory
values start anew. That simplifies the logic.

A further benefit of the tight scoping is simplified error handling. I’ll demonstrate by
putting a primary key on the table just so I can try to violate it later:

DML Triggers | 671

Download at WoweBook.Com

SQL> ALTER TABLE incremented_values
 2 add constraint a_pk
 3 primary key (value_inserted);

Now to insert one record:

SQL> INSERT INTO incremented_values values(1,1);
Compound:BEFORE S:1
Compound:BEFORE R:2
Compound:AFTER R:3
Compound:AFTER S:4

1 row created.

No surprises so far. But the next INSERT should throw an error because it violates the
new primary key:

SQL> INSERT INTO incremented_values values(1,1);
Compound:BEFORE S:1
Compound:BEFORE R:2
insert into incremented_values values(1,1)
*
ERROR at line 1:
ORA-00001: unique constraint (SCOTT.A_PK) violated

The next INSERT throws the primary key error again as expected. But that is not what’s
exceptional about this situation—what’s exceptional is that the global variable was
reinitialized back to 1 without any extra code having to be written. The firing DML
completed so the compound trigger fell out of scope, and everything started anew for
the next statement.

SQL> INSERT INTO incremented_values values(1,1);
Compound:BEFORE S:1
Compound:BEFORE R:2
insert into incremented_values values(1,1)
*
ERROR at line 1:
ORA-00001: unique constraint (DRH.A_PK) violated

I don’t need to include extra exception handling or packages just to reset the values
when exceptions occur.

Compound following

Compound triggers also can be used with the FOLLOWS syntax: :

TRIGGER follows_compounder
BEFORE INSERT ON incremented_values
FOR EACH ROW
FOLLOWS compounder
BEGIN
 DBMS_OUTPUT.PUT_LINE('Following Trigger');
END;

Here’s the output:

672 | Chapter 19: Triggers

Download at WoweBook.Com

SQL> INSERT INTO incremented_values
 2 values(8,8);
Compound:BEFORE S:1
Compound:BEFORE R:2
Following Trigger
Compound:AFTER R:3
Compound:AFTER S:4

1 row created.

The specific triggers within the compound trigger cannot be defined to fire after any
standalone or compound triggers.

If a standalone trigger is defined to follow a compound trigger that does
not contain a trigger to fire on the same statement or row, then the
FOLLOWS clause is simply ignored.

DDL Triggers
Oracle allows you to define triggers that will fire when DDL statements are executed.
Simply put, DDL is any SQL statement used to create or modify a database object such
as a table or an index. Here are some examples of DDL statements:

• CREATE TABLE

• ALTER INDEX

• DROP TRIGGER

Each of these statements results in the creation, alteration, or removal of a database
object.

The syntax for creating these triggers is remarkably similar to that of DML triggers,
except that the firing events differ, and they are not applied to individual tables.

The INSTEAD OF CREATE TABLE trigger, described at the end of this
section, allows the default behavior of a CREATE TABLE event to be
manipulated and is a somewhat idiosyncratic DDL trigger. Not all of
the aspects of syntax and usage described in the following subsections
apply to this trigger type.

Creating a DDL Trigger
To create (or replace) a DDL trigger, use the syntax shown here:

1 CREATE [OR REPLACE] TRIGGER trigger name
2 {BEFORE | AFTER } { DDL event} ON {DATABASE | SCHEMA}
3 [WHEN (...)]
4 DECLARE

DDL Triggers | 673

Download at WoweBook.Com

5 Variable declarations
6 BEGIN
7 ...some code...
8 END;

The following table summarizes what is happening in this code:

Line(s) Description

1 Specifies that a trigger is to be created with the name supplied. Specifying OR REPLACE is optional. If the trigger exists,
and REPLACE is not specified, then good old Oracle error ORA-4081 will appear stating just that.

2 This line has a lot to say. It defines whether the trigger will fire before, after, or instead of the particular DDL event
as well as whether it will fire for all operations within the database or just within the current schema. Note that the
INSTEAD OF option is available only in Oracle9i Release 1 and higher.

3 An optional WHEN clause that allows you to specify logic to avoid unnecessary execution of the trigger.

4–7 These lines simply demonstrate the PL/SQL contents of the trigger.

Here’s an example of a somewhat uninformed town crier trigger that announces the
creation of all objects:

/* File on web: uninformed_town_crier.sql */
SQL> CREATE OR REPLACE TRIGGER town_crier
 2 AFTER CREATE ON SCHEMA
 3 BEGIN
 4 DBMS_OUTPUT.PUT_LINE('I believe you have created something!');
 5 END;
 6 /
Trigger created.

SQL> SET SERVEROUTPUT ON
SQL> CREATE TABLE a_table
 2 (col1 NUMBER);
Table created.

SQL> CREATE INDEX an_index ON a_table(col1);
Index created.

SQL>
CREATE FUNCTION a_function RETURN BOOLEAN AS
 2 BEGIN
 3 RETURN(TRUE);
 4 END;
 5 /
Function created.

SQL> /*-- flush the DBMS_OUTPUT buffer */
SQL> BEGIN NULL; END;
 2 /
I believe you have created something!
I believe you have created something!
I believe you have created something!

PL/SQL procedure successfully completed.

674 | Chapter 19: Triggers

Download at WoweBook.Com

Text displayed using the DBMS_OUTPUT built-in package within DDL
triggers will not display until you successfully execute a PL/SQL block,
even if that block does nothing.

Over time, this town crier would be ignored due to a lack of information, always
proudly announcing that something had been created but never providing any details.
Thankfully, there is a lot more information available to DDL triggers, allowing for a
much more nuanced treatment, as shown in this version:

/* File on web: informed_town_crier.sql */
SQL> CREATE OR REPLACE TRIGGER town_crier
 2 AFTER CREATE ON SCHEMA
 3 BEGIN
 4 -- use event attributes to provide more info
 5 DBMS_OUTPUT.PUT_LINE('I believe you have created a ' ||
 6 ORA_DICT_OBJ_TYPE || ' called ' ||
 7 ORA_DICT_OBJ_NAME);
 8 END;
 9 /
Trigger created.

SQL> SET SERVEROUTPUT ON
SQL> CREATE TABLE a_table
 2 col1 NUMBER);
Table created.

SQL> CREATE INDEX an_index ON a_table(col1);
Index created.

SQL> CREATE FUNCTION a_function RETURN BOOLEAN AS
 2 BEGIN
 3 RETURN(TRUE);
 4 END;
 5 /
Function created.

SQL> /*-- flush the DBMS_OUTPUT buffer */

SQL> BEGIN NULL; END;
 2 /
I believe you have created a TABLE called A_TABLE
I believe you have created a INDEX called AN_INDEX
I believe you have created a FUNCTION called A_FUNCTION

PL/SQL procedure successfully completed.

Much more attention will be paid now that the town crier is more forthcoming. The
above examples touch upon two important aspects of DDL triggers: the specific events
to which they can be applied and the event attributes available within the triggers.

DDL Triggers | 675

Download at WoweBook.Com

Available Events
Table 19-1 lists the DDL events for which triggers can be coded. Each event can have
a BEFORE and an AFTER trigger.

Table 19-1. Available DDL events

DDL event Fires when...

ALTER Any database object is altered using the SQL ALTER command

ANALYZE Any database object is analyzed using the SQL ANALYZE command

ASSOCIATE STATISTICS Statistics are associated with a database object

AUDIT Auditing is turned on using the SQL AUDIT command

COMMENT Comments are applied to a database object

CREATE Any database object is created using the SQL CREATE command

DDL Any of the events listed here occur

DISASSOCIATE STATISTICS Statistics are disassociated from a database object

DROP Any database object is dropped using the SQL DROP command

GRANT Privileges are granted using the SQL GRANT command

NOAUDIT Auditing is turned off using the SQL NOAUDIT command

RENAME A database object is renamed using the SQL RENAME command

REVOKE Privileges are revoked using the SQL REVOKE command

TRUNCATE A table is truncated using the SQL TRUNCATE command

As with DML triggers, these DDL triggers fire when the event to which they are attached
occurs within the specified database or schema. There is no limit to the number of
trigger types that can exist in the database or schema.

Available Attributes
Oracle provides a set of functions (defined in the DBMS_STANDARD package) that
provide information about what fired the DDL trigger and other information about the
trigger state (e.g., the name of the table being dropped). Table 19-2 displays these trigger
attribute functions. The following sections offer some examples of usage.

Table 19-2. DDL trigger event and attribute functions

Name Returns...

ORA_CLIENT_IP_ADDRESS IP address of the client.

ORA_DATABASE_NAME Name of the database.

ORA_DES_ENCRYPTED_
PASSWORD

DES-encrypted password of the current user.

ORA_DICT_OBJ_NAME Name of the database object affected by the firing DDL.

676 | Chapter 19: Triggers

Download at WoweBook.Com

Name Returns...

ORA_DICT_OBJ_NAME_LIST Count of objects affected. It also returns a complete list of objects affected in the NAME_LIST
parameter, which is a collection of type DBMS_STANDARD.ORA_NAME_LIST_T.

ORA_DICT_OBJ_OWNER Owner of the database object affected by the firing DDL.

ORA_DICT_OBJ_OWNER_LIST Count of objects affected. It also returns a complete list of object owners affected in the
NAME_LIST parameter, which is a collection of type DBMS_
STANDARD.ORA_NAME_LIST_T.

ORA_DICT_OBJ_TYPE Type of database object affected by the firing DDL (e.g., TABLE or INDEX).

ORA_GRANTEE Count of grantees. The USER_LIST argument contains the full list of grantees, which is a
collection of type DBMS_STANDARD.ORA_NAME_LIST_T.

ORA_INSTANCE_NUM Number of the database instance.

ORA_IS_ALTER_COLUMN TRUE if the specified COLUMN_NAME argument is being altered, or FALSE if not.

ORA_IS_CREATING_NESTED_
TABLE

TRUE if a nested table is being created, or FALSE if not.

ORA_IS_DROP_COLUMN TRUE if the specified COLUMN_NAME argument is indeed being dropped, or FALSE if not.

ORA_LOGIN_USER Name of the Oracle user for which the trigger fired.

ORA_PARTITION_POS Position in the SQL command where a partitioning clause could be correctly added.

ORA_PRIVILEGE_LIST Number of privileges being granted or revoked. The PRIVILEGE_LIST argument contains the
full list of privileges affected, which is a collection of type
DBMS_STANDARD.ORA_NAME_LIST_T.

ORA_REVOKEE Count of revokees. The USER_LIST argument contains the full list of revokees, which is a
collection of type DBMS_STANDARD.ORA_NAME_LIST_T.

ORA_SQL_TXT Number of lines in the SQL statement firing the trigger. The SQL_TXT argument returns each
line of the statement, which is an argument of type DBMS_STANDARD.ORA_NAME_LIST_T.

ORA_SYSEVENT Type of event that caused the DDL trigger to fire (e.g., CREATE, DROP, or ALTER).

ORA_WITH_GRANT_OPTION TRUE if privileges were granted with the GRANT option, or FALSE if not.

Note the following about the event and attribute functions:

• The datatype ORA_NAME_LIST_T is defined in the DBMS_STANDARD pack-
age as:

TYPE ora_name_list_t IS TABLE OF VARCHAR2(64);

In other words, this is a nested table of strings, each of which can contain up to 64
characters.

• The DDL trigger event and attribute functions are also defined in the
DBMS_STANDARD package. Oracle creates a standalone function (which adds
the “ORA_” prefix to the function name) for each of the packaged functions by
executing the $ORACLE_HOME/rdbms/dbmstrig.sql script during database crea-
tion. In some releases of the Oracle database, there are errors in this script that
cause the standalone functions to not be visible or executable. If you feel that these

DDL Triggers | 677

Download at WoweBook.Com

elements have not been properly defined, you should ask your DBA to check the
script for problems and make the necessary corrections.

• The USER_SOURCE data dictionary view does not get updated until after both
BEFORE and AFTER DDL triggers are fired. In other words, you cannot use these
functions to provide a “before and after” version control system built entirely
within the database and based on database triggers.

Working with Events and Attributes
The best way to demonstrate the possibilities offered by DDL trigger events and at-
tributes is with a series of examples.

Here is a trigger that prevents any and all database objects from being created:

TRIGGER no_create
 AFTER CREATE ON SCHEMA
BEGIN
 RAISE_APPLICATION_ERROR (
 −20000,
 'ERROR : Objects cannot be created in the production database.'
);
END;

After installing this trigger, attempts at creating anything meet with failure:

SQL> CREATE TABLE demo (col1 NUMBER);

*
ERROR at line 1:
ORA-20000: Objects cannot be created in the production database.

That is a rather terse and uninformative error message. There was a failure, but what
failed? Wouldn’t it be nice to have a little more information in the error message, such
as the object I was attempting to create?

/* File on web: no_create.sql */
TRIGGER no_create
AFTER CREATE ON SCHEMA
BEGIN
 RAISE_APPLICATION_ERROR (-20000,
 'Cannot create the ' || ORA_DICT_OBJ_TYPE ||
 ' named ' || ORA_DICT_OBJ_NAME ||
 ' as requested by ' || ORA_DICT_OBJ_OWNER ||
 ' in production.');
END;

With this trigger installed, an attempt to create my table now offers much more diag-
nostic information:

SQL> CREATE TABLE demo (col1 NUMBER);
*
ERROR at line 1:
ORA-20000: Cannot create the TABLE named DEMO as requested by SCOTT in production

678 | Chapter 19: Triggers

Download at WoweBook.Com

I could even place this logic within a BEFORE DDL trigger and take advantage of the
ORA_SYSEVENT attribute to respond to specific events:

TRIGGER no_create
BEFORE DDL ON SCHEMA
BEGIN
 IF ORA_SYSEVENT = 'CREATE'
 THEN
 RAISE_APPLICATION_ERROR (-20000,
 'Cannot create the ' || ORA_DICT_OBJ_TYPE ||
 ' named ' || ORA_DICT_OBJ_NAME ||
 ' as requested by ' || ORA_DICT_OBJ_OWNER);
 ELSIF ORA_SYSEVENT = 'DROP'
 THEN
 -- Logic for DROP operations
 ...
 END IF;
END;

What column did I touch?

I can use the ORA_IS_ALTER_COLUMN function to decipher which column was
altered by an ALTER TABLE statement. Here is one example:

/* File on web: preserve_app_cols.sql */
TRIGGER preserve_app_cols
 AFTER ALTER ON SCHEMA
DECLARE
 -- Cursor to get columns in a table
 CURSOR curs_get_columns (cp_owner VARCHAR2, cp_table VARCHAR2)
 IS
 SELECT column_name
 FROM all_tab_columns
 WHERE owner = cp_owner AND table_name = cp_table;
BEGIN
 -- if it was a table that was altered...
 IF ora_dict_obj_type = 'TABLE'
 THEN
 -- for every column in the table...
 FOR v_column_rec IN curs_get_columns (
 ora_dict_obj_owner,
 ora_dict_obj_name
)
 LOOP
 -- Is the current column one that was altered?
 IF ORA_IS_ALTER_COLUMN (v_column_rec.column_name)
 THEN
 -- Reject change to "core application" column
 IF mycheck.is_application_column (
 ora_dict_obj_owner,
 ora_dict_obj_name,
 v_column_rec.column_name
)
 THEN
 CENTRAL_ERROR_HANDLER (

DDL Triggers | 679

Download at WoweBook.Com

 'FAIL',
 'Cannot alter core application attributes'
);
 END IF; -- table/column is core
 END IF; -- current column was altered
 END LOOP; -- every column in the table
 END IF; -- table was altered
END;

Attempts to change core application attributes will now be stopped.

Remember that this logic will not work when the trigger is fired for the addition of new
columns. That column information is not yet visible in the data dictionary when the
DDL trigger fires.

I can check for attempts to drop specific columns as follows:

IF ORA_IS_DROP_COLUMN ('COL2')
THEN
 do something!
ELSE
 do something else!
END IF;

The ORA_IS_DROP_COLUMN and ORA_IS_ALTER_COLUMN
functions are blissfully unaware of the table to which the column is
attached; they work on column name alone.

Lists returned by attribute functions

Some of the attribute functions return two pieces of data: a list of items and a count of
items. For example, the ORA_GRANTEE function returns a list and a count of users
that were granted a privilege, and the ORA_PRIVILEGE_LIST function returns a list
and a count of privileges granted. These two functions are perfect for use in AFTER
GRANT triggers. The what_privs.sql file available on the book’s web site offers an
extended example of how to use both of these functions. Below is just a portion of the
total code:

/* File on web: what_privs.sql */
TRIGGER what_privs
 AFTER GRANT ON SCHEMA
DECLARE
 v_grant_type VARCHAR2 (30);
 v_num_grantees BINARY_INTEGER;
 v_grantee_list ora_name_list_t;
 v_num_privs BINARY_INTEGER;
 v_priv_list ora_name_list_t;
BEGIN
 -- Retrieve information about grant type and then the lists.
 v_grant_type := ORA_DICT_OBJ_TYPE;
 v_num_grantees := ORA_GRANTEE (v_grantee_list);
 v_num_privs := ORA_PRIVILEGE_LIST (v_priv_list);

680 | Chapter 19: Triggers

Download at WoweBook.Com

 IF v_grant_type = 'ROLE PRIVILEGE'
 THEN
 DBMS_OUTPUT.put_line (
 'The following roles/privileges were granted');

 -- For each element in the list, display the privilege.
 FOR counter IN 1 .. v_num_privs
 LOOP
 DBMS_OUTPUT.put_line ('Privilege ' || v_priv_list (counter));
 END LOOP;

This trigger is great for detailing what privileges and objects are affected by grant op-
erations, as shown below. In a more sophisticated implementation, you might consider
storing this information in database tables so that you have a detailed history of changes
that have occurred.

SQL> GRANT DBA TO book WITH ADMIN OPTION;
Grant succeeded.

SQL> EXEC DBMS_OUTPUT.PUT_LINE('Flush buffer');
 The following roles/privileges were granted
 Privilege UNLIMITED TABLESPACE
 Privilege DBA
 Grant Recipient BOOK
Flush buffer

SQL> GRANT SELECT ON x TO system WITH GRANT OPTION;
Grant succeeded.

SQL> EXEC DBMS_OUTPUT.PUT_LINE('Flush buffer');
 The following object privileges were granted
 Privilege SELECT
 On X with grant option
 Grant Recipient SYSTEM
Flush buffer

Dropping the Undroppable
I have shown that one use for DDL triggers is preventing a particular type of DDL on
a particular object or type of object. But what if I create a trigger that prevents DROP
DDL and then attempt to drop the trigger itself? Will I be left with a trigger that is
essentially undroppable? Fortunately, Oracle has thought of this scenario, as you can
see here:

SQL> CREATE OR REPLACE TRIGGER undroppable
 2 BEFORE DROP ON SCHEMA
 3 BEGIN
 4 RAISE_APPLICATION_ERROR(-20000,'You cannot drop me! I am invincible!');
 5 END;

SQL> DROP TABLE employee;
*

DDL Triggers | 681

Download at WoweBook.Com

ERROR at line 1:
ORA-20000: You cannot drop me! I am invincible!

SQL> DROP TRIGGER undroppable;
Trigger dropped.

The INSTEAD OF CREATE Trigger
Oracle provides the INSTEAD OF CREATE trigger to allow you to automatically par-
tition a table. To do so, the trigger must trap the SQL statement being executed, insert
the partition clause into it, and then execute it using the ORA_SQL_TXT function.
The following trigger demonstrates these steps.

/* File on web: io_create.sql */
TRIGGER io_create
 INSTEAD OF CREATE ON DATABASE
WHEN (ORA_DICT_OBJ_TYPE = 'TABLE')
DECLARE
 v_sql VARCHAR2 (32767); -- sql to be built
 v_sql_t ora_name_list_t; -- table of sql
BEGIN
 -- get the SQL statement being executed
 FOR counter IN 1 .. ora_sql_txt (v_sql_t)
 LOOP
 v_sql := v_sql || v_sql_t (counter);
 END LOOP;

 -- Determine the partition clause and add it.
 -- We will call the my_partition function
 v_sql :=
 SUBSTR (v_sql, 1, ora_partition_pos)
 || magic_partition_function
 || SUBSTR (v_sql, ora_partition_pos + 1);

 /* Prepend table name with login username.
 | Replace CRLFs with spaces.
 | Requires an explicit CREATE ANY TABLE privilege,
 | unless you switch to AUTHID CURRENT_USER.
 */
 v_sql :=
 REPLACE (UPPER (REPLACE (v_sql, CHR (10), ' '))
 , 'CREATE TABLE '
 , 'CREATE TABLE ' || ora_login_user || '.'
);

 -- now execute the SQL
 EXECUTE IMMEDIATE v_sql;
END;

Now tables will be partitioned automatically, as determined by the logic in the
my_partition function.

682 | Chapter 19: Triggers

Download at WoweBook.Com

Oracle offers several partitioning options (e.g., range, hash) and logical partitioning
choices (e.g., by primary key, by unique key). You must decide which of these you want
to utilize in your partitioning function.

If you do not include the WHEN clause shown above, you will find that attempts to
create objects that are not tables will fail with this error:

ORA-00604: error occurred at recursive SQL level 1
ORA-30511: invalid DDL operation in system triggers

Further, if you try to create an INSTEAD OF trigger for any other DDL operation
besides CREATE, you will receive this compilation error:

ORA-30513: cannot create system triggers of INSTEAD OF type

INSTEAD OF triggers for DML operations (insert, update, and delete)
are addressed later in this chapter. These triggers share some syntax with
the INSTEAD OF CREATE trigger for tables, but that is the extent of
their similarity.

Database Event Triggers
Database event triggers fire whenever database-wide events occur. There are six data-
base event triggers:

STARTUP
Fires when the database is opened.

SHUTDOWN
Fires when the database is shut down normally.

SERVERERROR
Fires when an Oracle error is raised.

LOGON
Fires when an Oracle database session begins.

LOGOFF
Fires when an Oracle database session terminates normally.

DB_ROLE_CHANGE
Fires when a standby database is changed to be the primary database or vice versa.

As any DBA will immediately see, these triggers offer stunning possibilities for auto-
mated administration and very granular control.

Creating a Database Event Trigger
The syntax used to create these triggers is quite similar to that used for DDL triggers:

1 CREATE [OR REPLACE] TRIGGER trigger_name
2 {BEFORE | AFTER} {database_event} ON {DATABASE | SCHEMA}

Database Event Triggers | 683

Download at WoweBook.Com

3 DECLARE
4 Variable declarations
5 BEGIN
6 ...some code...
7 END;

There are restrictions regarding what events can be combined with what BEFORE and
AFTER attributes. Some situations just don’t make sense:

No BEFORE STARTUP triggers
Even if such triggers could be created, when would they fire? Attempts to create
triggers of this type will be met by this straightforward error message:

ORA-30500: database open triggers and server error triggers cannot have
BEFORE type

No AFTER SHUTDOWN triggers
Again, when would they fire? Attempts to create such triggers are deflected with
this message:

ORA-30501: instance shutdown triggers cannot have AFTER type

No BEFORE LOGON triggers
It would require some amazingly perceptive code to implement these triggers:
“Wait, I think someone is going to log on—do something!” Being strictly reality-
based, Oracles stops these triggers with this message:

ORA-30508: client logon triggers cannot have BEFORE type

No AFTER LOGOFF triggers
“No wait, please come back! Don’t sign off!” Attempts to create such triggers are
stopped with this message:

ORA-30509: client logoff triggers cannot have AFTER type

No BEFORE SERVERERROR
These triggers would be every programmer’s dream! Think of the possibilities....

CREATE OR REPLACE TRIGGER BEFORE_SERVERERROR
BEFORE SERVERERROR ON DATABASE
BEGIN
 diagnose_impending_error;
 fix_error_condition;
 continue_as_if_nothing_happened;
END;

Unfortunately, our dreams are shattered by this error message:

ORA-30500: database open triggers and server error triggers cannot have
BEFORE type

684 | Chapter 19: Triggers

Download at WoweBook.Com

The STARTUP Trigger
Startup triggers execute during database startup processing. This is a perfect place to
perform housekeeping steps, such as pinning objects in the shared pool so that they do
not “age out” with the least-recently-used algorithm.

In order to create startup event triggers, users must have been granted
the ADMINISTER DATABASE TRIGGER privilege.

Here is an example of creating a STARTUP event trigger:

CREATE OR REPLACE TRIGGER startup_pinner
AFTER STARTUP ON DATABASE
BEGIN
 pin_plsql_packages;
 pin_application_packages;
END;

The SHUTDOWN Trigger
BEFORE SHUTDOWN triggers execute before database shutdown processing is per-
formed. This is a great place to gather system statistics. Here is an example of creating
a SHUTDOWN event trigger:

CREATE OR REPLACE TRIGGER before_shutdown
BEFORE SHUTDOWN ON DATABASE
BEGIN
 gather_system_stats;
END;

SHUTDOWN triggers execute only when the database is shut down
using NORMAL or IMMEDIATE mode. They do not execute when the
database is shut down using ABORT mode or when the database
crashes.

The LOGON Trigger
AFTER LOGON triggers fire when an Oracle database session is begun. They are the
perfect place to establish session context and perform other session setup tasks. Here
is an example of creating a LOGON event trigger:

TRIGGER after_logon
AFTER LOGON ON SCHEMA
DECLARE
 v_sql VARCHAR2(100) := 'ALTER SESSION ENABLE RESUMABLE ' ||
 'TIMEOUT 10 NAME ' || '''' ||
 'OLAP Session' || '''';

Database Event Triggers | 685

Download at WoweBook.Com

BEGIN
 EXECUTE IMMEDIATE v_sql;
 DBMS_SESSION.SET_CONTEXT('OLAP Namespace',
 'Customer ID',
 load_user_customer_id);
END;

The LOGOFF Trigger
BEFORE LOGOFF triggers execute when sessions disconnect normally from the da-
tabase. This is a good place to gather statistics regarding session activity. Here is an
example of creating a LOGOFF event trigger:

TRIGGER before_logoff
BEFORE LOGOFF ON DATABASE
BEGIN
 gather_session_stats;
END;

The SERVERERROR Trigger
AFTER SERVERERROR triggers fire after an Oracle error is raised, unless the error is
one of the following:

ORA-00600
Oracle internal error

ORA-01034
Oracle not available

ORA-01403
No data found

ORA-01422
Exact fetch returns more than requested number of rows

ORA-01423
Error encountered while checking for extra rows in an exact fetch

ORA-04030
Out-of-process memory when trying to allocate N bytes

In addition, the AFTER SERVERERROR trigger will not fire when an exception is raised
inside this trigger (to avoid an infinite recursive execution of the trigger).

AFTER SERVERERROR triggers do not provide facilities to fix the error, only to log
information about the error. It is therefore possible to build some powerful logging
mechanisms around these triggers.

Oracle also provides built-in functions (again, defined in DBMS_STANDARD) that
retrieve information about the error stack generated when an exception is raised:

686 | Chapter 19: Triggers

Download at WoweBook.Com

ORA_SERVER_ERROR
Returns the Oracle error number at the specified position in the error stack. It
returns 0 if no error is found at that position.

ORA_IS_SERVERERROR
Returns TRUE if the specified error number appears in the current exception stack.

ORA_SERVER_ERROR_DEPTH
Returns the number of errors on the stack.

ORA_SERVER_ERROR_MSG
Returns the full text of the error message at the specified position. It returns NULL
if no error is found at the position.

ORA_SERVER_ERROR_NUM_PARAMS
Returns the number of parameters associated with the error message at the given
position. It returns 0 if no error is found at the position.

ORA_SERVER_ERROR_PARAM
Returns the value for the specified parameter position in the specified error. It
returns NULL if none found.

SERVERERROR examples

Let’s look at some examples of using the SERVERERROR functions. I’ll start with a
very simple example of a SERVERERROR trigger that echoes the fact that an error
occurred.

TRIGGER error_echo
AFTER SERVERERROR
ON SCHEMA
BEGIN
 DBMS_OUTPUT.PUT_LINE ('You experienced an error');
END;

Whenever an Oracle error occurs (assuming that SERVEROUTPUT is ON), the coded
message above will display:

SQL> SET SERVEROUTPUT ON
SQL> EXEC DBMS_OUTPUT.PUT_LINE(TO_NUMBER('A'));
You experienced an error
BEGIN DBMS_OUTPUT.PUT_LINE(TO_NUMBER('A')); END;

*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: character to number conversion error
ORA-06512: at line 1

Note that the Oracle error message was delivered after the trigger message. This allows
the error to be accessed and logged prior to the actual failure, as shown in the next
example.

Database Event Triggers | 687

Download at WoweBook.Com

SERVERERROR triggers are automatically isolated in their own auton-
omous transaction (autonomous transactions were covered in Chap-
ter 14). This means that you can, for example, write error information
out to a log table and save those changes with a COMMIT, while not
affecting the session transaction in which the error occurred.

The error_logger trigger guarantees that information about all but a handful of errors
listed earlier will be automatically logged regardless of the application, user, or program
in which the error was raised:

/* File on web: error_log.sql */
TRIGGER error_logger
AFTER SERVERERROR
ON SCHEMA
DECLARE

 v_errnum NUMBER; -- the Oracle error #
 v_now DATE := SYSDATE; -- current time

BEGIN

 -- for every error in the error stack...
 FOR e_counter IN 1..ORA_SERVER_ERROR_DEPTH LOOP

 -- write the error out to the log table; no
 -- commit is required because we are in an
 -- autonomous transaction
 INSERT INTO error_log(error_id,
 username,
 error_number,
 sequence,
 timestamp)
 VALUES(error_seq.nextval,
 USER,
 ORA_SERVER_ERROR(e_counter),
 e_counter,
 v_now);

 END LOOP; -- every error on the stack

END;

Remember that all these new rows in the error_log have been committed by the time
the END statement is reached, because the trigger is executed within an autonomous
transaction. The following lines demonstrate this trigger in action:

SQL> EXEC DBMS_OUTPUT.PUT_LINE(TO_NUMBER('A'));
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: character to number conversion error

SQL> SELECT * FROM error_log;

688 | Chapter 19: Triggers

Download at WoweBook.Com

USERNAME ERROR_NUMBER SEQUENCE TIMESTAMP
------------------------------ ------------ ---------- ---------
BOOK 6502 1 04-JAN-02
BOOK 6512 2 04-JAN-02

Why do two errors appear in the table when only one error was raised? The actual error
stack generated by the database contains both ORA-06502 and ORA-06512, so they
are both logged and denoted by their sequence of occurrence.

If you want to determine quickly if a certain error number is located in the stack without
parsing it manually, use the companion function ORA_IS_SERVERERROR. This func-
tion is very useful for monitoring specific errors that may require extra handling, such
as user-defined exceptions. This is the kind of code you might write:

-- Special handling of user defined errors
-- 20000 through 20010 raised by calls to
-- RAISE_APPLICATION_ERROR

FOR errnum IN 20000 .. 20010
LOOP
 IF ORA_IS_SERVERERROR (errnum)
 THEN
 log_user_defined_error (errnum);
 END IF;
END LOOP;

All Oracle error numbers are negative, except for 1 (user-defined ex-
ception) and 100 (synonymous with–1403, NO_DATA_FOUND).
When you specify an error number in the call to
ORA_IS_SERVERERROR, however, you must supply a positive num-
ber, as shown in the above example.

Central error handler

While it is possible to implement separate SERVERERROR triggers in every schema in
a database, I recommend creating a single central trigger with an accompanying PL/
SQL package to provide the following features:

Centralized error logging
There is only one trigger and package to maintain and keep in Oracle’s memory.

Session-long searchable error log
The error log can be accumulated over the course of a session rather than error by
error. It can be searched to return details like the number of occurrences, the time-
stamp of the first and last occurrence, etc. The log can also be purged on demand.

Option to save error log
The error log can be saved to a permanent table in the database if desired.

Viewable current log
The current log of errors is viewable by specific error number and/or date range.

Database Event Triggers | 689

Download at WoweBook.Com

You can find the implementation of one such centralized error-handling package in the
error_log.sql file on the book’s web site. Once this package is in place, I can create the
SERVERERROR trigger as follows:

CREATE OR REPLACE TRIGGER error_log
AFTER SERVERERROR
ON DATABASE
BEGIN
 central_error_log.log_error;
END;

Here are some example usages. First, I will generate an error:

SQL> EXEC DBMS_OUTPUT.PUT_LINE(TO_NUMBER('A'));
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: character to number conversion error

Now I can search for a specific error number and retrieve that information in a record:

DECLARE
 v_find_record central_error_log.v_find_record;
BEGIN
 central_error_log.find_error(6502,v_find_record);
 DBMS_OUTPUT.PUT_LINE('Total Found = ' || v_find_record.total_found);
 DBMS_OUTPUT.PUT_LINE('Min Timestamp = ' || v_find_record.min_timestamp);
 DBMS_OUTPUT.PUT_LINE('Max Timestamp = ' || v_find_record.max_timestamp);
END;

The output is:

Total Found = 1
Min Timestamp = 04-JAN-02
Max Timestamp = 04-JAN-02

INSTEAD OF Triggers
INSTEAD OF triggers control insert, update, merge, and delete operations on views,
not tables. They can be used to make nonupdateable views updateable and to override
the default behavior of views that are updateable.

Creating an INSTEAD OF Trigger
To create (or replace) an INSTEAD OF trigger, use the syntax shown here:

1 CREATE [OR REPLACE] TRIGGER trigger_name
2 INTEAD OF operation
3 ON view_name
4 FOR EACH ROW
5 BEGIN
6 ...code goes here...
7 END;

The table contains an explanation of this code:

690 | Chapter 19: Triggers

Download at WoweBook.Com

Line(s) Description

1 States that a trigger is to be created with the unique name supplied. Specifying OR REPLACE is optional. If the trigger
exists, and REPLACE is not specified, then my attempt to create the trigger anew will result in an ORA-4081 error.

2 This is where we see differences between INSTEAD OF triggers and other types of triggers. Because INSTEAD OF triggers
aren’t really triggered by an event, I don’t need to specify AFTER or BEFORE or provide an event name. What I do
specify is the operation that the trigger is to fire in place of (or instead of). Stating INSTEAD OF followed by one of
INSERT, UPDATE, MERGE, or DELETE accomplishes this.

3 This line is somewhat like the corresponding line for DDL and database event triggers in that the keyword ON is
specified. The similarities end there: instead of specifying DATABASE or SCHEMA, I provide the name of the view to
which the trigger is to apply.

4–7 Contains standard PL/SQL code.

INSTEAD OF triggers are best explained with an example. Let’s use one of my favorite
topics: pizza delivery! Before I can start pounding the dough, I have to put a system in
place to monitor my deliveries. I will need three tables: one to track actual deliveries,
one to track delivery areas, and one to track my massive fleet of drivers (remember the
first rule of business—always think big!).

/* File on web: pizza_tables.sql */
CREATE TABLE delivery
(delivery_id NUMBER,
 delivery_start DATE,
 delivery_end DATE,
 area_id NUMBER,
 driver_id NUMBER);

CREATE TABLE area
 (area_id NUMBER, area_desc VARCHAR2(30));

CREATE TABLE driver
 (driver_id NUMBER, driver_name VARCHAR2(30));

For the sake of brevity I will not create any primary or foreign keys.

I will also need three sequences to provide unique identifiers for our tables.

CREATE SEQUENCE delivery_id_seq;
CREATE SEQUENCE area_id_seq;
CREATE SEQUENCE driver_id_seq;

To avoid having to explain relational database design and normalization to my em-
ployees, I will simplify deliveries into a single view displaying delivery, area, and driver
information:

VIEW delivery_info AS
SELECT d.delivery_id,
 d.delivery_start,
 d.delivery_end,
 a.area_desc,
 dr.driver_name
 FROM delivery d,

INSTEAD OF Triggers | 691

Download at WoweBook.Com

 area a,
 driver dr
 WHERE a.area_id = d.area_id
 AND dr.driver_id = d.driver_id

Because my system relies heavily on this view for query functionality, why not make it
available for insert, update, and delete as well? I cannot directly issue DML statements
against the view; it is a join of multiple tables. How would the database know what to
do with an INSERT ? In fact, I need to tell the database very explicitly what to do when
an insert, update, or delete operation occurs against the delivery_info view; in other
words, I need to tell it what to do instead of trying to insert, update, or delete. Thus, I
will use INSTEAD OF triggers. Let’s start with the INSERT trigger.

The INSTEAD OF INSERT Trigger
My INSERT trigger will perform four basic operations:

• Ensure that the delivery_end value is NULL. All delivery completions must be done
via an update.

• Try to find the driver ID based on the name provided. If the name cannot be found,
then assign a new ID and create a driver entry using the name and the new ID.

• Try to find the area ID based on the name provided. If the name cannot be found,
then assign a new ID and create an area entry using the name and the new ID.

• Create an entry in the delivery table.

Bear in mind that this example is intended to demonstrate triggers—not how to effec-
tively build a business system! After a while I will probably wind up with a multitude
of duplicate driver and area entries. However, using this view speeds things up by not
requiring drivers and areas to be predefined, and in the fast-paced world of pizza de-
livery, time is money!

/* File on web: pizza_triggers.sql */
TRIGGER delivery_info_insert
 INSTEAD OF INSERT
 ON delivery_info
DECLARE
 -- cursor to get the driver ID by name
 CURSOR curs_get_driver_id (cp_driver_name VARCHAR2)
 IS
 SELECT driver_id
 FROM driver
 WHERE driver_name = cp_driver_name;

 v_driver_id NUMBER;

 -- cursor to get the area ID by name
 CURSOR curs_get_area_id (cp_area_desc VARCHAR2)
 IS
 SELECT area_id
 FROM area

692 | Chapter 19: Triggers

Download at WoweBook.Com

 WHERE area_desc = cp_area_desc;

 v_area_id NUMBER;
BEGIN
 /* Make sure the delivery_end value is NULL
 */
 IF :NEW.delivery_end IS NOT NULL
 THEN
 raise_application_error
 (-20000
 , 'Delivery end date value must be NULL when delivery created'
);
 END IF;

 /*
 || Try to get the driver ID using the name. If not found
 || then create a brand new driver ID from the sequence
 */
 OPEN curs_get_driver_id (UPPER (:NEW.driver_name));

 FETCH curs_get_driver_id
 INTO v_driver_id;

 IF curs_get_driver_id%NOTFOUND
 THEN
 SELECT driver_id_seq.NEXTVAL
 INTO v_driver_id
 FROM DUAL;

 INSERT INTO driver
 (driver_id, driver_name
)
 VALUES (v_driver_id, UPPER (:NEW.driver_name)
);
 END IF;

 CLOSE curs_get_driver_id;

 /*
 || Try to get the area ID using the name. If not found
 || then create a brand new area ID from the sequence
 */
 OPEN curs_get_area_id (UPPER (:NEW.area_desc));

 FETCH curs_get_area_id
 INTO v_area_id;

 IF curs_get_area_id%NOTFOUND
 THEN
 SELECT area_id_seq.NEXTVAL
 INTO v_area_id
 FROM DUAL;

 INSERT INTO area
 (area_id, area_desc

INSTEAD OF Triggers | 693

Download at WoweBook.Com

)
 VALUES (v_area_id, UPPER (:NEW.area_desc)
);
 END IF;

 CLOSE curs_get_area_id;

 /*
 || Create the delivery entry
 */
 INSERT INTO delivery
 (delivery_id, delivery_start
 , delivery_end, area_id, driver_id
)
 VALUES (delivery_id_seq.NEXTVAL, NVL (:NEW.delivery_start, SYSDATE)
 , NULL, v_area_id, v_driver_id
);
END;

The INSTEAD OF UPDATE Trigger
Now let’s move on to the UPDATE trigger. For the sake of simplicity, I will allow
updating only of the delivery_end field, and only if it is NULL to start with. I can’t have
drivers resetting delivery times.

/* File on web: pizza_triggers.sql */
TRIGGER delivery_info_update
 INSTEAD OF UPDATE
 ON delivery_info
DECLARE
 -- cursor to get the delivery entry
 CURSOR curs_get_delivery (cp_delivery_id NUMBER)
 IS
 SELECT delivery_end
 FROM delivery
 WHERE delivery_id = cp_delivery_id
 FOR UPDATE OF delivery_end;

 v_delivery_end DATE;
BEGIN
 OPEN curs_get_delivery (:NEW.delivery_id);
 FETCH curs_get_delivery INTO v_delivery_end;

 IF v_delivery_end IS NOT NULL
 THEN
 RAISE_APPLICATION_ERROR (
 −20000, 'The delivery end date has already been set');
 ELSE
 UPDATE delivery
 SET delivery_end = :NEW.delivery_end
 WHERE CURRENT OF curs_get_delivery;
 END IF;

694 | Chapter 19: Triggers

Download at WoweBook.Com

 CLOSE curs_get_delivery;
END;

The INSTEAD OF DELETE Trigger
The DELETE trigger is the simplest of all. It merely ensures that I am not deleting a
completed entry and then removes the delivery record. The driver and area records
remain intact.

/* File on web: pizza_triggers.sql */
TRIGGER delivery_info_delete
 INSTEAD OF DELETE
 ON delivery_info
BEGIN
 IF :OLD.delivery_end IS NOT NULL
 THEN
 RAISE_APPLICATION_ERROR (
 −20000,'Completed deliveries cannot be deleted');
 END IF;

 DELETE delivery
 WHERE delivery_id = :OLD.delivery_id;
END;

Populating the Tables
Now, with a single INSERT focused on the delivery information I know (the driver and
the area), all of the required tables are populated:

SQL> INSERT INTO delivery_info(delivery_id,
 2 delivery_start,
 3 delivery_end,
 4 area_desc,
 5 driver_name)
 6 VALUES
 7 NULL, NULL, NULL, 'LOCAL COLLEGE', 'BIG TED');

1 row created.

SQL> SELECT * FROM delivery;

DELIVERY_ID DELIVERY_ DELIVERY_ AREA_ID DRIVER_ID
----------- --------- --------- ---------- ----------
 1 13-JAN-02 1 1

SQL> SELECT * FROM area;

 AREA_ID AREA_DESC
---------- ------------------------------
 1 LOCAL COLLEGE

SQL> SELECT * FROM driver;

INSTEAD OF Triggers | 695

Download at WoweBook.Com

 DRIVER_ID DRIVER_NAME
---------- ------------------------------
 1 BIG TED

INSTEAD OF Triggers on Nested Tables
Oracle has introduced many ways to store complex data structures as columns in tables
or views. This is logically effective because the linkage between a table or view and its
columns is obvious. Technically, it can require some not-so-obvious trickery to allow
even the simplest of operations, like inserting records into these complex structures.
One of these complex situations can be resolved with a special type of INSTEAD OF
trigger, as shown in this section.

Consider the following view joining the chapters of a book with the lines in the chapter:

VIEW book_chapter_view AS
SELECT chapter_number,
 chapter_title,
 CAST(MULTISET(SELECT *
 FROM book_line
 WHERE chapter_number = book_chapter.chapter_number)
 AS book_line_t) lines
 FROM book_chapter;

I agree that the view is far too obtuse for its purpose (why not just join the tables
directly?), but it easily demonstrates the use of INSTEAD OF triggers on nested table
columns—or on any object or collection column in a view.

After creating a record in the BOOK_CHAPTER table and querying the view, I’ll see
the following, which explains that there are no lines in the chapter yet:

CHAPTER_NUMBER CHAPTER_TITLE
-------------- ------------------------------
LINES(CHAPTER_NUMBER, LINE_NUMBER, LINE_TEXT)

 18 Triggers
BOOK_LINE_T()

So I then try to create the first line to get past my writer’s block:

SQL> INSERT INTO TABLE(SELECT lines
 2 FROM book_chapter_view
 3 WHERE chapter_number = 18)
 4 VALUES(18,1,'Triggers are...');
INSERT INTO TABLE(SELECT lines
*
ERROR at line 1:
ORA-25015: cannot perform DML on this nested table view column

Apparently, the database has determined that there is not enough information available
to just insert values into the BOOK_LINE table masquerading as the LINES column
in the view. Thus, an INSTEAD OF trigger is required to make the intent crystal clear.

696 | Chapter 19: Triggers

Download at WoweBook.Com

TRIGGER lines_ins
INSTEAD OF INSERT ON NESTED TABLE lines OF book_chapter_view
BEGIN
 INSERT INTO book_line
 (chapter_number,
 line_number,
 line_text)
 VALUES(:PARENT.chapter_number,
 :NEW.line_number,
 :NEW.line_text);
END;

Now I can add the first line:

SQL> INSERT INTO TABLE (SELECT lines
 2 FROM book_chapter_view
 3 WHERE chapter_number = 18)
 4 VALUES(18,1,'Triggers Are...');

1 row created.

SQL> SELECT *
 2 FROM book_chapter_view;

CHAPTER_NUMBER CHAPTER_TITLE
-------------- ------------------------------
LINES(CHAPTER_NUMBER, LINE_NUMBER, LINE_TEXT)

 18 Triggers
BOOK_LINE_T(BOOK_LINE_O(18, 1, 'Triggers Are...'))

Note that the SQL used to create the trigger is just like what is used for other INSTEAD
OF triggers except for two things:

• The ON NESTED TABLE COLUMN OF clause used to denote the involved
column.

• The new PARENT pseudo-record containing values from the views parent record.

AFTER SUSPEND Triggers
Oracle9i Database Release 1 introduced a new type of trigger that fires whenever a
statement is suspended. This might occur as the result of a space issue such as exceeding
an allocated tablespace quota. This functionality can be used to address the problem
and allow the stalled operation to continue. AFTER SUSPEND triggers are a boon to
busy developers tired of being held up by space errors, and to even busier DBAs who
constantly have to resolve these errors.

The syntax used to create an AFTER SUSPEND trigger follows the same format as DDL
and database event triggers. It declares the firing event (SUSPEND), the timing (AF-
TER), and the scope (DATABASE or SCHEMA):

AFTER SUSPEND Triggers | 697

Download at WoweBook.Com

1 CREATE [OR REPLACE] TRIGGER trigger_name
2 AFTER SUSPEND
3 ON {DATABASE | SCHEMA}
4 BEGIN
5 ... code...
6 END;

Let’s take a closer look at AFTER SUSPEND, starting with an example of a scenario
that would call for creation of this type of trigger.

For example, consider the situation faced by Batch Only, the star Oracle developer at
Totally Controlled Systems. He is responsible for maintaining hundreds of programs
that run overnight, performing lengthy transactions to summarize information and
move it between disparate applications. At least twice a week, his pager goes off during
the wee hours of the morning because one of his programs has encountered this Oracle
error:

ERROR at line 1:
ORA-01536: space quota exceeded for tablespace 'USERS'

Batch then has the unenviable task of phoning Totally’s Senior DBA, Don T. Planahead,
and begging for a space quota increase. Don’s usual question is, “How much do you
need?” to which Batch can only feebly reply, “I don’t know because the data load
fluctuates so much.” This leaves them both very frustrated, because Don wants control
over the space allocation for planning reasons, and Batch doesn’t want his night’s sleep
interrupted so often.

Setting Up for the AFTER SUSPEND Trigger
Thankfully, an AFTER SUSPEND trigger can eliminate the dark circles under both
Don’s and Batch’s eyes. Here is how they work through the situation.

Batch discovers a particular point in his code that encounters the error most frequently.
It is an otherwise innocuous INSERT statement at the end of a program that takes hours
to run:

INSERT INTO monthly_summary (
 acct_no, trx_count, total_in, total_out)
VALUES (
 v_acct, v_trx_count, v_total_in, v_total_out);

What makes this most maddening is that the values take hours to calculate, only to be
immediately lost when the final INSERT statement fails. At the very least, Batch wants
the program to suspend itself while he contacts Don to get more space allocated. He
discovers that this can be done with a simple ALTER SESSION statement.

ALTER SESSION ENABLE RESUMABLE TIMEOUT 3600 NAME 'Monthly Summary';

This means that whenever this Oracle database session encounters an out-of-space
error, it will go into a suspended (and potentially resumable) state for 3,600 seconds
(1 hour). This provides enough time for Totally’s monitoring system to page Batch, for

698 | Chapter 19: Triggers

Download at WoweBook.Com

Batch to phone Don, and for Don to allocate more space. It’s not a perfect system, but
at least the hours spent calculating the data are no longer wasted.

Another problem faced by Batch and Don is that when they try to diagnose the situation
in the middle of the night, they are both so tired and grumpy that time is wasted on
misunderstandings. Thankfully, the need for explanations can be alleviated by another
feature of suspended/resumable statements: the DBA_RESUMABLE view. This shows
all sessions that have registered for resumable statements with the ALTER SESSION
command shown above.

The RESUMABLE system privilege must be granted to users before they
can enable the resumable option.

Now, whenever Batch’s programs go into the suspended state, he only has to phone
Don and mumble “Check the resumable view.” Don then queries it from his DBA
account to see what is going on.

SQL> SELECT session_id,
 2 name,
 3 status,
 4 error_number
 5 FROM dba_resumable

SESSION_ID NAME STATUS ERROR_NUMBER
---------- -------------------- --------- ------------
 8 Monthly Summary SUSPENDED 1536

1 row selected.

This shows that session 8 is suspended because of ORA-01536: space quota exceeded
for tablespace ‘tablespace_name’. From past experience, Don knows which schema and
tablespace are involved, so he corrects the problem and mumbles into the phone, “It’s
fixed.” The suspended statement in Batch’s code immediately resumes, and both Don
and Batch can go back to sleep in their own beds.

Invalid DDL Operation in System Triggers
AFTER SUSPEND triggers are not allowed to actually perform certain DDL (ALTER
USER and ALTER TABLESPACE) to fix the problems they diagnose. They simply raise
the error ORA-30511: Invalid DDL operation in system triggers. One way to work
around this situation is as follows:

1. Have the AFTER SUSPEND trigger write the SQL statement necessary to fix a
problem in a table.

2. Create a PL/SQL package that reads SQL statements from the table and executes
them.

AFTER SUSPEND Triggers | 699

Download at WoweBook.Com

3. Submit the PL/SQL package to DBMS_JOB every minute or so.

Looking at the Actual Trigger
After a few weeks, both Don and Batch are tired of their repetitive, albeit abbreviated
late-night conversations, so Don sets out to automate things with an AFTER SUSPEND
trigger. Here’s a snippet of what he cooks up and installs in the DBA account:

/* File on web: smart_space_quota.sql */
TRIGGER after_suspend
AFTER SUSPEND
ON DATABASE
DECLARE
...
BEGIN

 -- if this is a space related error...
 IF ORA_SPACE_ERROR_INFO (error_type => v_error_type,
 object_type => v_object_type,
 object_owner => v_object_owner,
 table_space_name => v_tbspc_name,
 object_name => v_object_name,
 sub_object_name => v_subobject_name) THEN

 -- if the error is a tablespace quota being exceeded...
 IF v_error_type = 'SPACE QUOTA EXCEEDED' AND
 v_object_type = 'TABLE SPACE' THEN
 -- get the username
 OPEN curs_get_username;
 FETCH curs_get_username INTO v_username;
 CLOSE curs_get_username;

 -- get the current quota for the username and tablespace
 OPEN curs_get_ts_quota(v_object_name,v_username);
 FETCH curs_get_ts_quota INTO v_old_quota;
 CLOSE curs_get_ts_quota;

 -- create an ALTER USER statement and send it off to
 -- the fixer job because if we try it here we will raise
 -- ORA-30511: invalid DDL operation in system triggers

 v_new_quota := v_old_quota + 40960;
 v_sql := 'ALTER USER ' || v_username || ' ' ||
 'QUOTA ' || v_new_quota || ' ' ||
 'ON ' || v_object_name;
 fixer.fix_this(v_sql);

 END IF; -- tablespace quota exceeded

 END IF; -- space related error

END;

700 | Chapter 19: Triggers

Download at WoweBook.Com

This creates a trigger that fires whenever a statement enters a suspended state and
attempts to fix the problem. (Note that this particular example handles only tablespace
quotas being exceeded.)

Now when Batch’s programs encounter the tablespace quota problem, the database-
wide AFTER SUSPEND trigger fires and puts a SQL entry in the “stuff to fix” table via
the fixer package. In the background, a fixer job is running; it picks the SQL statement
out of the table and executes it, thus alleviating the quota problem without requiring
anyone to pick up the phone.

A complete AFTER SUSPEND trigger and fixer package are available in
the fixer.sql file on the book’s web site.

The ORA_SPACE_ERROR_INFO Function
Information on the cause of the statement suspension may be garnered using the
ORA_SPACE_ERROR_INFO function shown in earlier examples. Now let’s look at
the syntax for specifying this function; the parameters are defined as shown in Ta-
ble 19-3.

Table 19-3. ORA_SPACE_ERROR_INFO parameters

Parameter Description

error_type Type of space error; will be one of the following:

• SPACE QUOTA EXCEEDED: if a user has exceeded his quota for a tablespace

• MAX EXTENTS REACHED: if an object attempts to go beyond its maximum extents specification

• NO MORE SPACE: if there is not enough space in a tablespace to store the new information

object_type Type of object encountering the space error

object_owner Owner of the object encountering the space error

table_space_name Tablespace encountering the space error

object_name Name of the object encountering the space error

sub_object_name Name of the subobject encountering the space error

The function returns a Boolean value of TRUE if the suspension occurs because of one
of the errors shown in the table, and FALSE if not.

The ORA_SPACE_ERROR_INFO function does not actually fix whatever space prob-
lems occur in your system; its role is simply to provide the information you need to
take further action. In the earlier example, you saw how the quota error was addressed.
Here are two additional examples of SQL you might supply to fix space problems
diagnosed by the ORA_SPACE_ERROR_INFO function:

AFTER SUSPEND Triggers | 701

Download at WoweBook.Com

• Specify the following when your table or index has achieved its maximum extents
and no more extents are available:

ALTER object_type object_owner.object_name STORAGE (MAXEXTENTS UNLIMITED);

• Specify the following when your tablespace is completely out of space:

/* Assume Oracle Managed Files (Oracle9i Database and later) being used so
 explicit datafile declaration not required */
ALTER TABLESPACE tablespace_name ADD DATAFILE;

The DBMS_RESUMABLE Package
If the ORA_SPACE_ERROR_INFO function returns FALSE, then the situation causing
the suspended statement cannot be fixed. Thus, there is no rational reason for remain-
ing suspended. Unfixable statements can be aborted from within the
AFTER_SUSPEND trigger using the ABORT procedure in the DBMS_RESUMABLE
package. The following provides an example of issuing this procedure:

/* File on web: local_abort.sql */
TRIGGER after_suspend
AFTER SUSPEND
ON SCHEMA
DECLARE

 CURSOR curs_get_sid IS
 SELECT sid
 FROM v$session
 WHERE audsid = SYS_CONTEXT('USERENV','SESSIONID');
 v_sid NUMBER;
 v_error_type VARCHAR2(30);
 ...

BEGIN

 IF ORA_SPACE_ERROR_INFO(...
 ...try to fix things...
 ELSE -- cant fix the situation
 OPEN curs_get_sid;
 FETCH curs_get_sid INTO v_sid;
 CLOSE curs_get_sid;
 DBMS_RESUMABLE.ABORT(v_sid);
 END IF;

END;

The ABORT procedure takes a single argument, the ID of the session to abort. This
allows ABORT to be called from a DATABASE- or SCHEMA-level AFTER SUSPEND
trigger. The aborted session receives this error:

ORA-01013: user requested cancel of current operation

After all, the cancellation was requested by a user, but exactly which user is unclear.

702 | Chapter 19: Triggers

Download at WoweBook.Com

In addition to the ABORT procedure, the DBMS_RESUMABLE package contains
functions and procedures to get and set timeout values:

GET_SESSION_TIMEOUT
Returns the timeout value of the suspended session by session ID:

FUNCTION DBMS_RESUMABLE.GET_SESSION_TIMEOUT (sessionid IN NUMBER)
 RETURN NUMBER;

SET_SESSION_TIMEOUT
Sets the timeout value of the suspended session by session ID:

 PROCEDURE DBMS_RESUMABLE.SET_SESSION_TIMEOUT (
 sessionid IN NUMBER, TIMEOUT IN NUMBER);

GET_TIMEOUT
Returns the timeout value of the current session:

FUNCTION DBMS_RESUMABLE.GET_TIMEOUT RETURN NUMBER;

SET_SESSION_TIMEOUT
Sets the timeout value of the current session:

PROCEDURE DBMS_REUSABLE.SET_TIMEOUT (TIMEOUT IN NUMBER);

New timeout values take effect immediately but do not reset the counter
to zero.

Trapped Multiple Times
AFTER SUSPEND triggers fire whenever a statement is suspended. Therefore, they can
fire many times during the same statement. For example, suppose that the following
hardcoded trigger is implemented:

/* File on web: increment_extents.sql */
TRIGGER after_suspend
AFTER SUSPEND ON SCHEMA
DECLARE
 -- get the new max (current plus one)
 CURSOR curs_get_extents IS
 SELECT max_extents + 1
 FROM user_tables
 WHERE table_name = 'MONTHLY_SUMMARY';
 v_new_max NUMBER;

BEGIN
 - fetch the new maximum extent value
 OPEN curs_get_extents;
 FETCH curs_get_extents INTO v_new_max;
 CLOSE curs_get_extents;

AFTER SUSPEND Triggers | 703

Download at WoweBook.Com

 -- alter the table to take on the new value for maxextents
 EXECUTE IMMEDIATE 'ALTER TABLE MONTHLY_SUMMARY ' ||
 'STORAGE (MAXEXTENTS ' ||
 v_new_max || ')';

 DBMS_OUTPUT.PUT_LINE('Incremented MAXEXTENTS to ' || v_new_max);
END;

If you start with an empty table with MAXEXTENTS (maximum number of extents)
specified as 1, inserting four extents’ worth of data produces this output:

SQL> @test

Incremented MAXEXTENTS to 2
Incremented MAXEXTENTS to 3
Incremented MAXEXTENTS to 4

PL/SQL procedure successfully completed.

To Fix or Not to Fix?
That is the question! The previous examples have shown how “lack of space” errors
can be handled on the fly by suspending statements until intervention (human or au-
tomated) allows them to continue. Taken to an extreme, this approach allows appli-
cations to be installed with minimal tablespace, quota, and extent settings, and then
to grow as required. While over-diligent DBAs may see this situation as nirvana, it does
have its downsides:

Intermittent pauses
Suspended statement pauses may wreak havoc with high-volume online transac-
tion processing (OLTP) applications that require high throughput levels. This will
be even more troublesome if the fix takes a long time.

Resource contention
Suspended statements maintain their table locks, which may cause other state-
ments to wait long periods of time or fail needlessly.

Management overhead
The resources required to continuously add extents or datafiles, or increment quo-
tas may wind up overwhelming those required to actually run the application.

For these reasons I recommend that AFTER SUSPEND triggers be used judiciously.
They are perfect for long-running processes that must be restarted after failure, as well
as for incremental processes that require DML to undo their changes before they can
be restarted. However, they are not well suited to OLTP applications.

704 | Chapter 19: Triggers

Download at WoweBook.Com

Maintaining Triggers
Oracle offers a number of DDL statements that can help you manage your triggers. You
can enable, disable, and drop triggers, view information about triggers, and check the
status of triggers, as explained in the following sections.

Disabling, Enabling, and Dropping Triggers
Disabling a trigger causes it not to fire when its triggering event occurs. Dropping a
trigger causes it to be removed from the database altogether. The SQL syntax for dis-
abling triggers is relatively simple compared to that for creating them:

ALTER TRIGGER trigger_name DISABLE;

For example:

ALTER TRIGGER emp_after_insert DISABLE;

A disabled trigger can also be reenabled as shown in the following example:

ALTER TRIGGER emp_after_insert ENABLE;

The ALTER TRIGGER command is concerned only with the trigger name; it does not
require identifying the trigger type or anything else. You can also easily create stored
procedures to handle these steps for you. The following procedure, for example, uses
dynamic SQL to disable or enable all triggers on a table:

/* File on web: settrig.sp */
PROCEDURE settrig (
 tab IN VARCHAR2
 , sch IN VARCHAR DEFAULT NULL
 , action IN VARCHAR2
)
IS
 l_action VARCHAR2 (10) := UPPER (action);
 l_other_action VARCHAR2 (10) := 'DISABLED';
BEGIN
 IF l_action = 'DISABLE'
 THEN
 l_other_action := 'ENABLED';
 END IF;

 FOR rec IN (SELECT trigger_name FROM user_triggers
 WHERE table_owner = UPPER (NVL (sch, USER))
 AND table_name = tab AND status = l_other_action)
 LOOP
 EXECUTE IMMEDIATE
 'ALTER TRIGGER ' || rec.trigger_name || ' ' || l_action;
 END LOOP;
END;

The DROP TRIGGER command is just as easy; simply specify the trigger name, as
shown in this example:

Maintaining Triggers | 705

Download at WoweBook.Com

DROP TRIGGER emp_after_insert;

Creating Disabled Triggers
Starting with Oracle Database 11g it is possible to create triggers in a disabled state so
they don’t fire. This is very helpful in situations where you want to validate a trigger
but don’t want it to start firing just yet. Here’s a very simple example.

TRIGGER just_testing
AFTER INSERT ON abc
DISABLE
BEGIN
 NULL;
END;

Because the DISABLE keyword is included in the header, this trigger gets validated,
compiled, and created, but it will not fire until it is explicitly enabled later on. Note
that the DISABLE keyword is not present in what gets saved into the database though.

SQL> SELECT trigger_body
 2 FROM user_triggers
 3 WHERE trigger_name = 'JUST_TESTING';

TRIGGER_BODY

BEGIN
 NULL;
END;

When you are using a GUI tool, be careful to avoid accidentally enabling triggers when
they are recompiled.

Viewing Triggers
You can find out lots of information about triggers by issuing queries against the fol-
lowing data dictionary views:

DBA_TRIGGERS
All triggers in the database

ALL_TRIGGERS
All triggers accessible to the current user

USER_TRIGGERS
All triggers owned by the current user

Table 19-4 summarizes the most useful (and common) columns in these views.

Table 19-4. Useful columns in trigger views

Name Description

TRIGGER_NAME Name of the trigger

706 | Chapter 19: Triggers

Download at WoweBook.Com

Name Description

TRIGGER_TYPE Type of the trigger; you can specify:

• For DML triggers: BEFORE_STATEMENT, BEFORE EACH ROW, AFTER EACH ROW, or
AFTER STATEMENT

• For DDL triggers: BEFORE EVENT or AFTER EVENT

• For INSTEAD OF triggers: INSTEAD OF

• For AFTER_SUSPEND triggers: AFTER EVENT

TRIGGERING_EVENT Event that causes the trigger to fire:

• For DML triggers: UPDATE, INSERT, or DELETE

• For DDL triggers: DDL operation (see full list in the DDL trigger section of this chapter)

• For database event triggers: ERROR, LOGON, LOGOFF, STARTUP, or SHUTDOWN

• For INSTEAD OF triggers: INSERT, UPDATE, or DELETE

• For AFTER SUSPEND triggers: SUSPEND

TABLE_OWNER This column contains different information depending on the type of trigger:

• For DML triggers: name of the owner of the table to which the trigger is attached

• For DDL triggers: if database-wide, then SYS; otherwise, the owner of the trigger

• For database event triggers: if database-wide, then SYS; otherwise, the owner of the trigger

• For INSTEAD OF triggers: owner of the view to which the trigger is attached

• For AFTER SUSPEND triggers: if database-wide, then SYS; otherwise, the owner of the trigger

BASE_OBJECT_TYPE Type of object to which the trigger is attached:

• For DML triggers: TABLE

• For DDL triggers: SCHEMA or DATABASE

• For database event triggers: SCHEMA or DATABASE

• For INSTEAD OF triggers: VIEW

• For AFTER SUSPEND triggers: SCHEMA or DATABASE

TABLE_NAME For DML triggers: name of the table the trigger is attached to; other types of triggers: NULL

REFERENCING_NAMES For DML (row-level) triggers: clause used to define the aliases for the OLD and NEW records

For other types of triggers: text “REFERENCING NEW AS NEW OLD AS OLD”

WHEN_CLAUSE For DML triggers: trigger’s conditional firing clause

STATUS Trigger’s status (ENABLED or DISABLED)

ACTION_TYPE Indicates whether the trigger executes a call (CALL) or contains PL/SQL (PL/SQL)

TRIGGER_BODY Text of the trigger body (LONG column); this information is also available in the USER_SOURCE table
starting with Oracle9i Database

Checking the Validity of Triggers
Oddly enough, the trigger views in the data dictionary do not display whether or not
a trigger is in a valid state. If a trigger is created with invalid PL/SQL, it is saved in the

Maintaining Triggers | 707

Download at WoweBook.Com

database but marked as INVALID. You can query the USER_OBJECTS or
ALL_OBJECTS views to determine this status, as shown here:

SQL> CREATE OR REPLACE TRIGGER invalid_trigger
 2 AFTER DDL ON SCHEMA
 3 BEGIN
 4 NULL
 5 END;
 6 /

Warning: Trigger created with compilation errors.

SQL> SELECT object_name,
 2 object_type,
 3 status
 4 FROM user_objects
 5 WHERE object_name = 'INVALID_TRIGGER';

OBJECT_NAME OBJECT TYPE STATUS
------------- ----------- -------
INVALID_TRIGGER TRIGGER INVALID

708 | Chapter 19: Triggers

Download at WoweBook.Com

CHAPTER 20

Managing PL/SQL Code

Writing the code for an application is just one step toward putting that application into
production and then maintaining the code base. It is not possible within the scope of
this book to fully address the entire life cycle of application design, development, and
deployment. I do have room, however, to offer some ideas and advice about the fol-
lowing topics:

Managing and analyzing code in the database
When you compile PL/SQL program units, the source code is loaded into the data
dictionary in a variety of forms (the text of the code, dependency relationships,
parameter information, etc.). You can then use SQL statements to retrieve infor-
mation about those program units, making it easier to understand and manage
your application code.

Using compile-time warnings
Starting with Oracle Database 10g, Oracle has added significant new and trans-
parent capabilities to the PL/SQL compiler. The compiler will now automatically
optimize your code, often resulting in substantial improvements in performance.
In addition, the compiler will provide warnings about your code that will help you
improve its readability, performance, and/or functionality.

Manage dependencies and recompile code
Oracle automatically manages dependencies between database objects. It is very
important to understand how these dependencies work, how to minimize
invalidation of program units, and how best to recompile program units.

Testing PL/SQL programs
Testing our programs to verify correctness is central to writing and deploying suc-
cessful applications. You can strengthen your own homegrown tests with auto-
mated testing frameworks, both open source and commercial.

Tracing PL/SQL code
Most of the applications we write are very complex—so complex, in fact, that we
can get lost inside our own code. Code instrumentation (which means, mostly,

709

Download at WoweBook.Com

inserting trace calls in your programs) can provide the additional information nee-
ded to make sense of what we write.

Debugging PL/SQL programs
Many development tools now offer graphical debuggers based on Oracle’s
DBMS_DEBUG API. These provide the most powerful way to debug programs,
but they are still just a small part of the overall debugging process. In this chapter
I also discuss program tracing and explore some of the techniques and (dare I say)
philosophical approaches you should utilize to debug effectively.

Protecting stored code
Oracle offers a way to “wrap” source code so that confidential and proprietary
information can be hidden from prying eyes. This feature is most useful to vendors
who sell applications based on PL/SQL stored code.

Using edition-based redefinition
New to Oracle Database 11g Release 2, this feature allows database administrators
to “hot patch” PL/SQL application code. Prior to this release, if you needed to
recompile a production package with “state” (package-level variables), you would
risk the dreaded ORA-04068 error unless you scheduled downtime for the appli-
cation—and that would require you to kick the users off the system. Now, new
versions of code and underlying database tables can be compiled into the applica-
tion while it is being used, reducing the downtime for Oracle applications. This is
primarily a DBA feature, but it is covered lightly in this chapter.

Managing Code in the Database
When you compile a PL/SQL program unit, its source code is stored in the database
itself. Information about that program unit is then made available through a set of data
dictionary views. This approach to compiling and storing code information offers two
tremendous advantages:

Information about that code is available via the SQL language
You can write queries and even entire PL/SQL programs that read the contents of
these data dictionary views, obtain lots of fascinating and useful information about
your code, and even change the state of your application code.

The database manages dependencies between your stored objects
In the world of PL/SQL, you don’t have to “make” an executable that is then run
by users. There is no “build process” for PL/SQL. The database takes care of all
such housekeeping details for you, letting you focus more productively on imple-
menting business logic.

The following sections introduce you to some of the most commonly accessed sources
of information in the data dictionary.

710 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

Overview of Data Dictionary Views
The Oracle data dictionary is a jungle—lushly full of incredible information, but often
with less than clear pathways to your destination. There are hundreds of views built
on hundreds of tables, many complex interrelationships, special codes, and, all too
often, nonoptimized view definitions. A subset of this multitude is particularly handy
to PL/SQL developers; I will take a closer look at the key views in a moment. First, it
is important to know that there are three types or levels of data dictionary views:

USER_*
Views that show information about the database objects owned by the currently
connected schema.

ALL_*
Views that show information about all of the database objects to which the cur-
rently connected schema has access (either because it owns them or because it has
been granted access to them). Generally they have the same columns as the corre-
sponding USER view, with the addition of an OWNER column in the ALL views.

DBA_*
Views that show information about all the (non-SYS-owned) objects in the data-
base. Generally they have the same columns as the corresponding ALL view.

I’ll work with the USER views in this chapter; you can easily modify any scripts and
techniques to work with the ALL views by adding an OWNER column to your logic.
The following are some views a PL/SQL developer is most likely to find useful:

USER_ARGUMENTS
The arguments (parameters) in all the procedures and functions in your schema.

USER_DEPENDENCIES
The dependencies to and from objects you own. This view is mostly used by Oracle
to mark objects INVALID when necessary, and also by IDEs to display the de-
pendency information in their object browsers.

USER_ERRORS
The current set of compilation errors for all stored objects (including triggers) you
own. This view is accessed by the SHOW ERRORS SQL*Plus command, described
in Chapter 2. You can, however, write your own queries against it as well.

USER_IDENTIFIERS (PL/Scope)
Introduced in Oracle Database 11g and populated by the PL/Scope compiler utility.
Once populated, this view provides you with information about all the identifiers
(program names, variables, etc.) in your code base. This is a very powerful code
analysis tool.

USER_OBJECTS
The objects you own. You can, for instance, use this view to see if an object is
marked INVALID, find all the packages that have “EMP” in their names, etc.

Managing Code in the Database | 711

Download at WoweBook.Com

USER_OBJECT_SIZE
The size of the objects you own. Actually, this view will show you the source,
parsed, and compile sizes for your code. Although it is used mainly by the compiler
and runtime engine, you can use it to identify the large programs in your environ-
ment, good candidates for pinning into the SGA.

USER_PLSQL_OBJECT_SETTINGS
Introduced in Oracle Database 10g. Information about the characteristics of a
PL/SQL object that can be modified through the ALTER and SET DDL commands,
such as the optimization level, debug settings, and more.

USER_PROCEDURES
Information about stored programs, such as the AUTHID setting, whether the
program was defined as DETERMINISTIC, and so on.

USER_SOURCE
The text source code for all objects you own (in Oracle9i Database and above,
including database triggers and Java source). This is a very handy view, because
you can run all sorts of analysis of the source code against it using SQL and, in
particular, Oracle Text.

USER_STORED_SETTINGS
PL/SQL compiler flags. Use this view to discover which programs have been com-
piled using native compilation.

USER_TRIGGERS and USER_TRIG_COLUMNS
The database triggers you own (including source code and description of triggering
event) and any columns identified with the triggers. You can write programs against
this view to enable or disable triggers for a particular table.

You can view the structures of each of these views either with a DESCRIBE command
in SQL*Plus or by referring to the appropriate Oracle documentation. The following
sections provide some examples of the ways you can use these views.

Display Information About Stored Objects
The USER_OBJECTS view contains the following key information about an object:

OBJECT_NAME
Name of the object.

OBJECT_TYPE
Type of the object (e.g., PACKAGE, FUNCTION, TRIGGER).

STATUS
Status of the object: VALID or INVALID.

LAST_DDL_TIME
Timestamp indicating the last time that this object was changed.

The following SQL*Plus script displays the status of PL/SQL code objects:

712 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

/* File on web: psobj.sql */
SELECT object_type, object_name, status
 FROM user_objects
 WHERE object_type IN (
 'PACKAGE', 'PACKAGE BODY', 'FUNCTION', 'PROCEDURE',
 'TYPE', 'TYPE BODY', 'TRIGGER')
 ORDER BY object_type, status, object_name

The output from this script file will be similar to the following:

OBJECT_TYPE OBJECT_NAME STATUS
-------------------- ------------------------------ ----------
FUNCTION DEVELOP_ANALYSIS INVALID
 NUMBER_OF_ATOMICS INVALID

PACKAGE CONFIG_PKG VALID
 EXCHDLR_PKG VALID

Notice that two of my modules are marked as INVALID. See the section “Recompiling
Invalid Program Units” on page 725 for more details on the significance of this setting
and how you can change it to VALID.

Display and Search Source Code
You should always maintain the source code of your programs in text files (or via a
development tool specifically designed to store and manage PL/SQL code outside of
the database). When you store these programs in the database, however, you can take
advantage of SQL to analyze your source code across all modules, which may not be a
straightforward task with your text editor.

The USER_SOURCE view contains all of the source code for objects owned by the
current user. The structure of USER_SOURCE is as follows:

Name Null? Type
------------------------------- -------- ----
NAME NOT NULL VARCHAR2(30)
TYPE VARCHAR2(12)
LINE NOT NULL NUMBER
TEXT VARCHAR2(4000)

where:

NAME
Is the name of the object.

TYPE
Is the type of the object (ranging from PL/SQL program units to Java source to
trigger source).

LINE
Is the line number.

TEXT
Is the text of the source code.

Managing Code in the Database | 713

Download at WoweBook.Com

USER_SOURCE is a very valuable resource for developers. With the right kind of
queries, you can do things like:

• Display source code for a given line number.

• Validate coding standards.

• Identify possible bugs or weaknesses in your source code.

• Look for programming constructs not identifiable from other views.

Suppose, for example, that I have set as a rule that individual developers should never
hardcode one of those application-specific error numbers between −20,999 and
−20,000 (such hardcodings can lead to conflicting usages and lots of confusion). I can’t
stop a developer from writing code like this:

RAISE_APPLICATION_ERROR (-20306, 'Balance too low');

but I can create a package that allows me to identify all the programs that have such a
line in them. I call it my “validate standards” package; it is very simple, and its main
procedure looks like this:

/* Files on web: valstd.* */
PROCEDURE progwith (str IN VARCHAR2)
IS
 TYPE info_rt IS RECORD (
 NAME user_source.NAME%TYPE
 , text user_source.text%TYPE
);
 TYPE info_aat IS TABLE OF info_rt
 INDEX BY PLS_INTEGER;

 info_aa info_aat;
BEGIN
 SELECT NAME || '-' || line
 , text
 BULK COLLECT INTO info_aa
 FROM user_source
 WHERE UPPER (text) LIKE '%' || UPPER (str) || '%'
 AND NAME <> 'VALSTD'
 AND NAME <> 'ERRNUMS';

 disp_header ('Checking for presence of "' || str || '"');

 FOR indx IN info_aa.FIRST .. info_aa.LAST
 LOOP
 pl (info_aa (indx).NAME, info_aa (indx).text);
 END LOOP;
END progwith;

Once this package is compiled into my schema, I can check for usages of −20,NNN
numbers with this command:

SQL> EXEC valstd.progwith ('-20')
==================
VALIDATE STANDARDS

714 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

==================
Checking for presence of "-20"
CHECK_BALANCE - RAISE_APPLICATION_ERROR (-20306, 'Balance too low');
MY_SESSION - PRAGMA EXCEPTION_INIT(dblink_not_open,-2081);
VSESSTAT - CREATE DATE : 1999-07-20

Notice that the second and third lines in my output are not really a problem; they show
up only because I couldn’t define my filter narrowly enough.

This is a fairly crude analytical tool, but you could certainly make it more sophisticated.
You could also have it generate HTML that is then posted on your intranet. You could
then run the valstd scripts every Sunday night through a DBMS_JOB-submitted job,
and each Monday morning developers could check the intranet for feedback on any
fixes needed in their code.

Use Program Size to Determine Pinning Requirements
The USER_OBJECT_SIZE view gives you the following information about the size of
the programs stored in the database:

SOURCE_SIZE
Size of the source in bytes. This code must be in memory during compilation (in-
cluding dynamic/automatic recompilation).

PARSED_SIZE
Size of the parsed form of the object in bytes. This representation must be in mem-
ory when any object that references this object is compiled.

CODE_SIZE
Code size in bytes. This code must be in memory when the object is executed.

Here is a query that allows you to show code objects that are larger than a given size.
You might want to run this query to identify the programs that you will want to pin
into the database using DBMS_SHARED_POOL (see Chapter 24 for more information
on this package) in order to minimize the swapping of code in the SGA:

/* File on web: pssize.sql */
SELECT name, type, source_size, parsed_size, code_size
 FROM user_object_size
 WHERE code_size > &&1 * 1024
 ORDER BY code_size DESC

Obtain Properties of Stored Code
The USER_PLSQL_OBJECT_SETTINGS view (introduced in Oracle Database 10g)
provides information about the following compiler settings of a stored PL/SQL object:

PLSQL_OPTIMIZE_LEVEL
Optimization level that was used to compile the object.

Managing Code in the Database | 715

Download at WoweBook.Com

PLSQL_CODE_TYPE
Compilation mode for the object.

PLSQL_DEBUG
Indicates whether or not the object was compiled for debugging.

PLSQL_WARNINGS
Compiler warning settings that were used to compile the object.

NLS_LENGTH_SEMANTICS
NLS length semantics that were used to compile the object.

Possible uses for this view include:

• Identify any programs that are not taking full advantage of the optimizing compiler
(an optimization level of 1 or 0):

/* File on web: low_optimization_level.sql */
SELECT owner, name
 FROM user_plsql_object_settings
 WHERE plsql_optimize_level IN (1,0);

• Determine if any stored programs have disabled compile-time warnings:

/* File on web: disable_warnings.sql */
SELECT NAME, plsql_warnings
 FROM user_plsql_object_settings
 WHERE plsql_warnings LIKE '%DISABLE%';

The USER_PROCEDURES view lists all functions and procedures, along with associ-
ated properties, including whether a function is pipelined, parallel enabled, or aggre-
gate. USER_PROCEDURES will also show you the AUTHID setting for a program
(DEFINER or CURRENT_USER). This can be very helpful if you need to see quickly
which programs in a package or group of packages use invoker rights or definer rights.
Here is an example of such a query:

/* File on web: show_authid.sql */
SELECT AUTHID
 , p.object_name program_name
 , procedure_name subprogram_name
 FROM user_procedures p, user_objects o
 WHERE p.object_name = o.object_name
 AND p.object_name LIKE '<package or program name criteria>'
ORDER BY AUTHID, procedure_name;

Analyze and Modify Trigger State Through Views
Query the trigger-related views (USER_TRIGGERS, USER_TRIG_COLUMNS) to do
any of the following:

• Enable or disable all triggers for a given table. Rather than have to write this code
manually, you can execute the appropriate DDL statements from within a PL/SQL

716 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

program. See the section “Maintaining Triggers” on page 705 in Chapter 19 for an
example of such a program.

• Identify triggers that execute only when certain columns are changed, but do not
have a WHEN clause. A best practice for triggers is to include a WHEN clause to
make sure that the specified columns actually have changed values (rather than
simply writing the same value over itself).

Here is a query you can use to identify potentially problematic triggers lacking a WHEN
clause:

/* File on web: nowhen_trigger.sql */
SELECT *
 FROM user_triggers tr
 WHERE when_clause IS NULL AND
 EXISTS (SELECT 'x'
 FROM user_trigger_cols
 WHERE trigger_owner = USER
 AND trigger_name = tr.trigger_name);

Analyze Argument Information
A very useful view for programmers is USER_ARGUMENTS. It contains information
about each of the arguments of each of the stored programs in your schema. It offers,
simultaneously, a wealth of nicely parsed information about arguments and a bewil-
dering structure that is very hard to work with.

Here is a simple SQL*Plus script to dump the contents of USER_ARGUMENTS for all
the programs in the specified package:

/* File on web: desctest.sql */
SELECT object_name, argument_name, overload
 , POSITION, SEQUENCE, data_level, data_type
 FROM user_arguments
 WHERE package_name = UPPER ('&&1');

A more elaborate PL/SQL-based program for displaying the contents of
USER_ARGUMENTS may be found in the show_all_arguments.sp file on the book’s
web site.

You can also write more specific queries against USER_ARGUMENTS to identify pos-
sible quality issues with your code base. For example, Oracle recommends that you
stay away from the LONG datatype and instead use LOBs. In addition, the fixed-length
CHAR datatype can cause logic problems; you are much better off sticking with
VARCHAR2. Here is a query that uncovers the usage of these types in argument
definitions:

/* File on web: long_or_char.sql */
SELECT object_name, argument_name, overload
 , POSITION, SEQUENCE, data_level, data_type
 FROM user_arguments
 WHERE data_type IN ('LONG','CHAR');

Managing Code in the Database | 717

Download at WoweBook.Com

You can even use USER_ARGUMENTS to deduce information about a package’s pro-
gram units that is otherwise not easily obtainable. Suppose that I want to get a list of
all the procedures and functions defined in a package specification. You will say: “No
problem! Just query the USER_PROCEDURES view.” And that would be a fine answer,
except that it turns out that USER_PROCEDURES doesn’t tell you whether a program
is a function or a procedure (in fact, it can be both, depending on how the program is
overloaded!).

You might instead, want to turn to USER_ARGUMENTS. It does, indeed, contain that
information, but it is far less than obvious. To determine whether a program is a func-
tion or a procedure, you must check to see if there is a row in USER_ARGUMENTS
for that package-program combination that has a POSITION of 0. That is the value
Oracle uses to store the RETURN “argument” of a function. If it is not present, then
the program must be a procedure.

The following function uses this logic to return a string that indicates the program type
(if it is overloaded with both types, the function returns “FUNCTION, PROCE-
DURE”). Note that the list_to_string function used in the main body is provided in the
file.

/* File on web: program_type.sf */
FUNCTION program_type (
 owner_in IN VARCHAR2
 , package_in IN VARCHAR2
 , program_in IN VARCHAR2
)
 RETURN VARCHAR2
IS
 TYPE overload_aat IS TABLE OF all_arguments.overload%TYPE
 INDEX BY PLS_INTEGER;

 l_overloads overload_aat;
 retval VARCHAR2 (32767);

BEGIN
 SELECT DECODE (MIN (POSITION), 0, 'FUNCTION', 'PROCEDURE')
 BULK COLLECT INTO l_overloads
 FROM all_arguments
 WHERE owner = owner_in
 AND package_name = package_in
 AND object_name = program_in
 GROUP BY overload;

 IF l_overloads.COUNT > 0
 THEN
 retval := list_to_string (l_overloads, ',', distinct_in => TRUE);
 END IF;

 RETURN retval;
END program_type;
/

718 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

Finally, you should also know that the built-in package, DBMS_DESCRIBE, provides
a PL/SQL API to provide much of the same information as USER_ARGUMENTS.
There are differences, however, in the way these two elements handle datatypes.

Analyze Identifier Usage (Oracle Database 11g’s PL/Scope)
It doesn’t take long for the volume and complexity of our code base to present serious
maintenance and evolutionary challenges. I might need, for example, to implement a
new feature in some portion of an existing program. How can I be sure that I understand
the impact of this feature and make all necessary changes? Prior to Oracle Database
11g, the tools I could use to perform impact analysis were largely limited to queries
against ALL_DEPENDENCIES and ALL_SOURCE. Now, with PL/Scope, I can per-
form much more detailed and useful analyses.

PL/Scope collects data about identifiers in PL/SQL source code when it compiles your
code, and makes it available in static data dictionary views. This collected data, acces-
sible through USER_IDENTIFIERS, includes very detailed information about the types
and usages (including declarations, references, assignments, etc.) of each identifier,
plus information about the location of each usage in the source code.

You can then write queries against USER_IDENTIFIERS to mine your code for all sorts
of information, including violations of naming conventions. PL/SQL editors, such as
Toad, are likely to start offering user interfaces to PL/Scope, making it easy to analyze
your code. Until that happens, you will need to construct your own queries (or use
those produced and made available by others).

To use PL/Scope, you must first ask the PL/SQL compiler to analyze the identifiers of
your program when it is compiled. You do this by changing the value of the
PLSCOPE_SETTINGS compilation parameter; you can do this for a session or even an
individual program unit, as shown here:

ALTER SESSION SET plscope_settings='IDENTIFIERS:ALL'

You can see the value of PLSCOPE_SETTINGS for any particular program unit with a
query against USER_PLSQL_OBJECT_SETTINGS.

Once PL/Scope has been enabled, whenever you compile a program unit, Oracle will
populate the data dictionary with detailed information about how each identifier in
your program (variables, types, programs, etc.) is used.

Let’s take a look at a few examples of using PL/Scope. Suppose I create the following
package specification and procedure, with PL/Scope enabled:

/* File on web: 11g_plscope.sql */
ALTER SESSION SET plscope_settings='IDENTIFIERS:ALL'
/

CREATE OR REPLACE PACKAGE plscope_pkg
IS
 FUNCTION plscope_func (plscope_fp1 NUMBER)

Managing Code in the Database | 719

Download at WoweBook.Com

 RETURN NUMBER;

 PROCEDURE plscope_proc (plscope_pp1 VARCHAR2);
END plscope_pkg;
/

CREATE OR REPLACE PROCEDURE plscope_proc1
IS
 plscope_var1 NUMBER := 0;
BEGIN
 plscope_pkg.plscope_proc (TO_CHAR (plscope_var1));
 DBMS_OUTPUT.put_line (SYSDATE);
 plscope_var1 := 1;
END plscope_proc1;
/

I can verify PL/Scope settings as follows:

SELECT name, plscope_settings
 FROM user_plsql_object_settings
 WHERE name LIKE 'PLSCOPE%'

NAME PLSCOPE_SETTINGS
------------------------------ ----------------
PLSCOPE_PKG IDENTIFIERS:ALL
PLSCOPE_PROC1 IDENTIFIERS:ALL

Let’s determine what has been declared in the process of compiling these two program
units:

 SELECT name, signature, TYPE
 FROM user_identifiers
 WHERE name LIKE 'PLSCOPE%' AND usage = 'DECLARATION'
ORDER BY type, usage_id

NAME SIGNATURE TYPE
--------------- -------------------------------- -----------
PLSCOPE_FP1 864F31A5B51B94097568688379D5959C FORMAL IN
PLSCOPE_PP1 9124512252B0AB1320818EADAAD87162 FORMAL IN
PLSCOPE_FUNC 78168BCBE1511996C92DEA6FD93E0484 FUNCTION
PLSCOPE_PKG 7DFBE4474A77569165B7DCB606761B81 PACKAGE
PLSCOPE_PROC1 4A24FD31BEA28212C696235F192E6CEE PROCEDURE
PLSCOPE_PROC F51FC44CA81F59C6B428AB27C6415B2E PROCEDURE
PLSCOPE_VAR1 401F008A81C7DCF48AD7B2552BF4E684 VARIABLE

Now I’ll discover all locally-declared variables:

 SELECT a.name variable_name, b.name context_name, a.signature
 FROM user_identifiers a, user_identifiers b
 WHERE a.usage_context_id = b.usage_id
 AND a.TYPE = 'VARIABLE'
 AND a.usage = 'DECLARATION'
 AND a.object_name = 'PLSCOPE_PROC1'
 AND a.object_name = b.object_name
ORDER BY a.object_type, a.usage_id

VARIABLE_NAME CONTEXT_NAME SIGNATURE

720 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

-------------- ------------- --------------------------------
PLSCOPE_VAR1 PLSCOPE_PROC1 401F008A81C7DCF48AD7B2552BF4E684

Impressive, yet PL/Scope can do so much more. I would like to know all the locations
in my program unit in which the variable is used, as well as the type of usage:

 SELECT usage, usage_id, object_name, object_type
 FROM user_identifiers sig
 , (SELECT a.signature
 FROM user_identifiers a, user_identifiers b
 WHERE a.usage_context_id = b.usage_id
 AND a.TYPE = 'VARIABLE'
 AND a.usage = 'DECLARATION'
 AND a.object_name = 'PLSCOPE_PROC1'
 AND a.object_name = b.object_name) variables
 WHERE sig.signature = variables.signature
ORDER BY object_type, usage_id

USAGE USAGE_ID OBJECT_NAME OBJECT_TYPE
----------- ---------- ------------------------------ -------------
DECLARATION 3 PLSCOPE_PROC1 PROCEDURE
ASSIGNMENT 4 PLSCOPE_PROC1 PROCEDURE
REFERENCE 7 PLSCOPE_PROC1 PROCEDURE
ASSIGNMENT 9 PLSCOPE_PROC1 PROCEDURE

You should be able to see, even from these simple examples, that PL/Scope offers
enormous potential in helping you better understand your code and analyze the impact
of change on that code.

Lucas Jellama of AMIS has produced more interesting and complex examples of using
PL/Scope to validate naming conventions. You can find these queries in the
11g_plscope_amis.sql file on the book’s web site.

Managing Dependencies and Recompiling Code
Another very important phase of PL/SQL compilation and execution is the checking
of program dependencies. A dependency (in PL/SQL) is a reference from a stored pro-
gram to some database object outside that program. Server-based PL/SQL programs
can have dependencies on tables, views, types, procedures, functions, sequences, syn-
onyms, object types, package specifications, etc. Program units are not, however, de-
pendent on package bodies or object type bodies; these are the “hidden”
implementations.

Oracle’s basic dependency principle for PL/SQL is, loosely speaking:

Do not use the currently compiled version of a program if any of the objects on which it
depends have changed since it was compiled.

The good news is that most dependency management happens automatically, from the
tracking of dependencies to the recompilation required to keep everything

Managing Dependencies and Recompiling Code | 721

Download at WoweBook.Com

synchronized. You can’t completely ignore this topic, though, and the following sec-
tions should help you understand how, when, and why you’ll need to intervene.

In Oracle Database 10g and earlier, these dependencies were tracked with a granularity
of a program unit. So if a procedure was dependent upon a function within a package
or a column within a table, the dependent unit was the package or the table. This
granularity has been the standard from the dawn of PL/SQL—until recently.

Beginning with Oracle Database 11g, the granularity of dependency tracking has im-
proved. Instead of tracking the dependency to the unit (for example; a package or a
table), the grain is now the element within the unit (for example, the columns in a table
or the packaged program together with the formal calling parameters and their mode).
This fine-grained dependency tracking means that your program will not be invalidated
if you add an additional program or overload an existing program in an existing pack-
age. Likewise, if you add a column to a table, the database will not automatically
invalidate all PL/SQL programs that reference the table—only those programs that
reference all columns, as in a SELECT * or by using the anchored declaration
%ROWTYPE. The following sections explore this situation in detail.

In Chapter 3, the section titled “Qualify all References to Variables and Columns in
SQL Statements” on page 59 provides an example of this fine-grained dependency
management.

It would be nice to report on the fine-grained dependencies that Oracle Database 11g
manages, but as of Oracle Database 11g Release 2, this data is not available in any of
the data dictionary views. I hope that they will “published” for our use in the future.

If, however, you are not yet building and deploying applications on Oracle Database
11g, object-level dependency tracking means that almost any change to underlying
database objects will cause a wide ripple effect of invalidations.

Analyzing Dependencies with Data Dictionary Views
You can use several of the data dictionary views to analyze dependency relationships.

Let’s take a look at a simple example. Suppose that I have a package named bookworm
on the server. This package contains a function that retrieves data from the books table.
After I create the table and then create the package, both the package specification and
body are VALID:

SELECT object_name, object_type, status
 FROM USER_OBJECTS
 WHERE object_name = 'BOOKWORM';

OBJECT_NAME OBJECT_TYPE STATUS
------------------------------ ------------------ -------
BOOKWORM PACKAGE VALID
BOOKWORM PACKAGE BODY VALID

722 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

Behind the scenes, when you compiled your PL/SQL program, the database determined
a list of other objects that BOOKWORM needs in order to compile successfully. I can
explore this dependency graph using a query of the data dictionary view
USER_DEPENDENCIES:

SELECT name, type, referenced_name, referenced_type
 FROM USER_DEPENDENCIES
 WHERE name = 'BOOKWORM';

NAME TYPE REFERENCED_NAME REFERENCED_TYPE
--------------- -------------- --------------- ---------------
BOOKWORM PACKAGE STANDARD PACKAGE
BOOKWORM PACKAGE BODY STANDARD PACKAGE
BOOKWORM PACKAGE BODY BOOKS TABLE
BOOKWORM PACKAGE BODY BOOKWORM PACKAGE

Figure 20-1 illustrates this information as a directed graph, where the arrows indicate
a “depends-on” relationship. In other words, the figure shows that:

• The bookworm package specification and body both depend on the built-in pack-
age named STANDARD (see the sidebar “Flying the STANDARD”
on page 725).

• The bookworm package body depends on its corresponding specification and on
the books table.

Figure 20-1. Dependency graph of the bookworm package

For purposes of tracking dependencies, the database records a package specification
and body as two different entities. Every package body will have a dependency on its
corresponding specification, but the specification will never depend on its body. Noth-
ing depends on the body. Hey, it might not even have a body.

If you’ve been responsible for maintaining someone else’s code during your career, you
will know that performing impact analysis relies not so much on “depends-on” infor-
mation as it does on “referenced-by” information. Let’s say that I’m contemplating a
change in the structure of the books table. Naturally, I’d like to know everything that
might be affected:

SELECT name, type
 FROM USER_DEPENDENCIES

Managing Dependencies and Recompiling Code | 723

Download at WoweBook.Com

 WHERE referenced_name = 'BOOKS'
 AND referenced_type = 'TABLE';

NAME TYPE
------------------------------ ------------
ADD_BOOK PROCEDURE
TEST_BOOK PACKAGE BODY
BOOK PACKAGE BODY
BOOKWORM PACKAGE BODY
FORMSTEST PACKAGE

As you can see, in addition to the bookworm package, there are some programs in my
schema I haven’t told you about, but fortunately the database never forgets. Nice!

As clever as the database is at keeping track of dependencies, it isn’t clairvoyant: in the
data dictionary, the database can only track dependencies of local stored objects written
with static calls. There are plenty of ways that you can create programs that do not
appear in the USER_DEPENDENCIES view. These include external programs that
embed SQL or PL/SQL; remote stored procedures or client-side tools that call local
stored objects; and any programs that use dynamic SQL.

As I was saying, if I alter the table’s structure by adding a column:

ALTER TABLE books MODIFY popularity_index NUMBER (8,2);

then the database will immediately and automatically invalidate all program units that
depend on the books table; or, in Oracle Database 11g, only those program units that
reference this column. Any change in the DDL time of an object—even if you just
rebuild it with no changes—will cause the database to invalidate dependent program
units (see the later sidebar “Avoiding Those Invalidations” on page 735). Actually,
the database’s automatic invalidation is even more sophisticated than that; if you own
a program that performs a particular DML statement on a table in another schema, and
your privilege to perform that operation gets revoked, this action will also invalidate
your program.

After the change, a query against USER_OBJECTS shows me the following
information:

/* File on web: invalid_objects.sql */
 SELECT object_name, object_type, status
 FROM USER_OBJECTS
 WHERE status = 'INVALID';

 OBJECT_NAME OBJECT_TYPE STATUS
 ------------------------------ ------------------ -------
 ADD_BOOK PROCEDURE INVALID
 BOOK PACKAGE BODY INVALID
 BOOKWORM PACKAGE BODY INVALID
 FORMSTEST PACKAGE INVALID
 FORMSTEST PACKAGE BODY INVALID
 TEST_BOOK PACKAGE BODY INVALID

724 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

By the way, this again illustrates a benefit of the two-part package arrangement: for the
most part, the package bodies have been invalidated, but not the specifications. As long
as the specification doesn’t change, program units that depend on the package will
not be invalidated. The only specification that has been invalidated here is for
FORMSTEST, which depends on the books table because (as I happen to know) it uses
the anchored declaration books%ROWTYPE.

One final note: another way to look at programmatic dependencies is to use Oracle’s
DEPTREE_FILL procedure in combination with the DEPTREE or IDEPTREE views.
As a quick example, if I run the procedure using:

BEGIN DEPTREE_FILL('TABLE', USER, 'BOOKS'); END;

I can then get a nice listing by selecting from the IDEPTREE view:

SELECT * FROM IDEPTREE;

DEPENDENCIES

TABLE SCOTT.BOOKS
 PROCEDUE SCOTT.ADD_BOOK
 PACKAGE BODY SCOTT.BOOK
 PACKAGE BODY SCOTT.TEST_BOOK
 PACKAGE BODY SCOTT.BOOKWORM
 PACKAGE SCOTT.FORMSTEST
 PACKAGE BODY SCOTT.FORMSTEST

This listing shows the result of a recursive “referenced-by” query. If you want to use
these objects yourself, execute the $ORACLE_HOME/rdbms/admin/utldtree.sql script
to build the utility procedure and views in your own schema. Or, if you prefer, you can
emulate it with a query such as:

SELECT RPAD (' ', 3*(LEVEL-1)) || name || ' (' || type || ') '
 FROM user_dependencies
 CONNECT BY PRIOR RTRIM(name || type) =
 RTRIM(referenced_name || referenced_type)
 START WITH referenced_name = 'name' AND referenced_type = 'type'

Now that you’ve seen how the server keeps track of relationships among objects, let’s
explore one way that the database takes advantage of such information.

Flying the STANDARD
All but the most minimal database installations will have a built-in package named
STANDARD available in the database. This package gets created along with the data
dictionary views from catalog.sql and contains many of the core features of the PL/SQL
language, including:

• Functions such as INSTR and LOWER

• Comparison operators such as NOT, =, and >

• Predefined exceptions such as DUP_VAL_ON_INDEX and VALUE_ERROR

Managing Dependencies and Recompiling Code | 725

Download at WoweBook.Com

• Subtypes such as STRING and INTEGER

You can view the source code for this package by looking at the file standard.sql, which
you would normally find in the $ORACLE_HOME/rdbms/admin subdirectory.

STANDARD’s specification is the “root” of the PL/SQL dependency graph; that is, it
depends upon no other PL/SQL programs, but most PL/SQL programs depend upon
it. This package is explored in more detail in Chapter 24, PL/SQL Architecture.

Fine-Grained Dependency (Oracle Database 11g)
One of the nicest features of PL/SQL is its automated dependency tracking. The Oracle
database automatically keeps track of all database objects on which a program unit is
dependent. If any of those objects are subsequently modified, the program unit is
marked INVALID and must be recompiled. For example, in the case of the scope_demo
package, the inclusion of the query from the employees table means that this package
is marked as being dependent on that table.

As I mentioned earlier, prior to Oracle Database 11g, dependency information was
recorded only with the granularity of the object as a whole. If any change at all is made
to that object, all dependent program units are marked INVALID, even if the change
does not affect that program unit.

Consider the scope_demo package. It is dependent on the employees table, but it refers
only to the department_id and salary columns. In Oracle Database 10g, I can change
the size of the first_name column and this package will be marked INVALID.

In Oracle Database 11g, Oracle fine-tuned its dependency tracking down to the element
within an object. In the case of tables, the Oracle database now records that a program
unit depends on specific columns within a table. With this approach, the database can
avoid unnecessary recompilations, making it easier for you to evolve your application
code base.

In Oracle Database 11g, I can indeed change the size of my first_name column, and
this package is not marked INVALID, as you can see below:

ALTER TABLE employees MODIFY first_name VARCHAR2(2000)
/
Table altered.

SELECT object_name, object_type, status
 FROM all_objects
 WHERE owner = USER AND object_name = 'SCOPE_DEMO'
/

OBJECT_NAME OBJECT_TYPE STATUS
------------------------------ ------------------- -------
SCOPE_DEMO PACKAGE VALID
SCOPE_DEMO PACKAGE BODY VALID

726 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

Note, however, that unless you fully qualify all references to PL/SQL variables inside
your embedded SQL statements, you will not be able to take full advantage of this
enhancement.

Specifically, qualification of variable names will avoid invalidation of program units
when new columns are added to a dependent table.

Consider that original, unqualified SELECT statement in set_global:

SELECT COUNT (*)
 INTO l_count
 FROM employees
 WHERE department_id = l_inner AND salary > l_salary;

In Oracle Database 11g, fine-grained dependency means that the database will note
that the scope_demo package is dependent only on department_id and salary.

Now suppose that the DBA adds a column to the employees table. Since there are
unqualified references to PL/SQL variables in the SELECT statement, it is possible that
the new column name will change the dependency information for this package.
Namely, if the new column name is the same as an unqualified reference to a PL/SQL
variable, the database will now resolve that reference to the column name. Thus, the
database would need to update the dependency information for scope_demo, which
means that it needs to invalidate the package.

If, conversely, you do qualify references to all your PL/SQL variables inside embedded
SQL statements, then when the database compiles your program unit, it knows that
there is no possible ambiguity. Even when columns are added, the program unit will
remain VALID.

Note that the INTO list of a query is not actually a part of the SQL statement. As a
result, variables in that list do not persist into the SQL statement that the PL/SQL
compiler derives. Consequently, qualifying (or not qualifying) that variable with its
scope name will have no bearing on the database’s dependency analysis.

Remote Dependencies
Server-based PL/SQL immediately becomes invalid whenever there is a change in a
local object on which it depends. However, if it depends on an object in a remote
database and that object changes, the local database does not attempt to invalidate the
calling PL/SQL program in real time. Instead, the local database defers the checking
until runtime.

Here is a program that has a remote dependency on the procedure recompute_prices,
which lives across the database link findat.ldn.world:

PROCEDURE synch_em_up (tax_site_in IN VARCHAR2, since_in IN DATE)
IS
BEGIN
 IF tax_site_in = 'LONDON'
 THEN

Managing Dependencies and Recompiling Code | 727

Download at WoweBook.Com

 recompute_prices@findat.ldn.world(cutoff_time => since_in);
 END IF;

If you recompile the remote procedure and some time later try to run synch_em_up,
you are likely to get an ORA-04062 error with accompanying text such as timestamp
(or signature) of package “SCOTT.recompute_prices” has been changed. If your call is
still legal, the database will recompile synch_em_up, and if it succeeds, its next invo-
cation should run without error. To understand the database’s remote procedure call
behavior, you need to know that the PL/SQL compiler always stores two kinds of in-
formation about each referenced remote procedure: its timestamp and its signature:

Timestamp
The most recent date and time (down to the second) when an object’s specification
was reconstructed, as given by the TIMESTAMP column in the USER_OBJECTS
view. For PL/SQL programs, this is not necessarily the same as the most recent
compilation time because it’s possible to recompile an object without reconstruct-
ing its specification. (Note that this column is of the DATE datatype, not the newer
TIMESTAMP datatype.)

Signature
A footprint of the actual shape of the object’s specification. Signature information
includes the object’s name and the ordering, datatype family, and mode of each
parameter.

So when I compiled synch_em_up, the database retrieved both the timestamp and the
signature of the remote procedure called recomputed_prices, and stored a representa-
tion of them with the bytecode of synch_em_up.

How do you suppose the database uses this information at runtime? The model is
simple: it uses either the timestamp or the signature, depending on the current value
of the parameter REMOTE_DEPENDENCIES_MODE. If that timestamp or signature
information, which is stored in the local program’s bytecode, doesn’t match the actual
value of the remote procedure at runtime, you get the ORA-04062 error.

Oracle’s default remote dependency mode is the timestamp method, but this setting
can sometimes cause unnecessary recompilations. The DBA can change the database’s
initialization parameter REMOTE_DEPENDENCIES_MODE, or you can change your
session’s setting, like this:

ALTER SESSION SET REMOTE_DEPENDENCIES_MODE = SIGNATURE;

or, inside PL/SQL:

EXECUTE IMMEDIATE 'ALTER SESSION SET REMOTE_DEPENDENCIES_MODE = SIGNATURE';

Thereafter, for the remainder of that session, every PL/SQL program run will use the
signature method. As a matter of fact, Oracle’s client-side tools always execute this
ALTER SESSION...SIGNATURE command as the first thing they do after connecting
to the database, overriding the database setting.

728 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

Oracle Corporation recommends using signature mode on client tools like Oracle
Forms and timestamp mode on server-to-server procedure calls. Be aware that signature
mode can cause false negatives—situations where the runtime engine thinks that the
signature hasn’t changed, but it really has—in which case the database does not force
an invalidation of a program that calls it remotely. You can wind up with silent com-
putational errors that are difficult to detect and even more difficult to debug. Here are
several risky scenarios:

• Changing only the default value of one of the called program’s formal parameters.
The caller will continue to use the old default value.

• Adding an overloaded program to an existing package. The caller will not bind to
the new version of the overloaded program even if it is supposed to.

• Changing just the name of a formal parameter. The caller may have problems if it
uses named parameter notation.

In these cases, you will have to perform a manual recompilation of the caller. In con-
trast, the timestamp mode, while prone to false positives, is immune to false negatives.
In other words, it won’t miss any needed recompilations, but it may force recompilation
that is not strictly required. This safety is no doubt why Oracle uses it as the default for
server-to-server RPCs.

If you do use the signature method, Oracle recommends that you add
any new functions or procedures at the end of package specifications
because doing so reduces false positives.

In the real world, minimizing recompilations can make a significant difference in ap-
plication availability. It turns out that you can trick the database into thinking that a
local call is really remote so that you can use signature mode. This is done using a
loopback database link inside a synonym. Here is an example that assumes you have
an Oracle Net service name “localhost” that connects to the local database:

CREATE DATABASE LINK loopback
 CONNECT TO bob IDENTIFIED BY swordfish USING 'localhost'
/
CREATE OR REPLACE PROCEDURE volatilecode AS
BEGIN
 -- whatever
END;
/
CREATE OR REPLACE SYNONYM volatile_syn FOR volatilecode@loopback
/
CREATE OR REPLACE PROCEDURE save_from_recompile AS
BEGIN
 ...
 volatile_syn;
 ...

Managing Dependencies and Recompiling Code | 729

Download at WoweBook.Com

END;
/

To take advantage of this arrangement, your production system would then include an
invocation such as this:

BEGIN
 EXECUTE IMMEDIATE 'ALTER SESSION SET REMOTE_DEPENDENCIES_MODE SIGNATURE';
 save_from_recompile;
END;
/

As long as you don’t do anything that alters the signature of volatilecode, you can
modify and recompile it without invalidating save_from_recompile or causing a run-
time error. You can even rebuild the synonym against a different procedure entirely.
This approach isn’t completely without drawbacks; for example, if volatilecode outputs
anything using DBMS_OUTPUT, you won’t see it unless save_from_recompile re-
trieves it explicitly over the database link and then outputs it directly. But for many
applications, such workarounds are a small price to pay for the resulting increase in
availability.

Limitations of Oracle’s Remote Invocation Model
Through Oracle Database 11g Release 2, there is no direct way for a PL/SQL program
to use any of the following package constructs on a remote server:

• Variables (including constants)

• Cursors

• Exceptions

This limitation applies not only to client PL/SQL calling the database server, but also
to server-to-server RPCs.

The simple workaround for variables is to use “get-and-set” programs to encapsulate
the data. In general, you should be doing that anyway because it is an excellent pro-
gramming practice.

The workaround for cursors is to encapsulate them with open, fetch, and close sub-
programs. For example, if you’ve declared a book_cur cursor in the specification of the
book_maint package, you could put this corresponding package body on the server:

PACKAGE BODY book_maint
AS
 prv_book_cur_status BOOLEAN;

 PROCEDURE open_book_cur IS
 BEGIN
 IF NOT book_maint.book_cur%ISOPEN
 THEN
 OPEN book_maint.book_cur;
 END IF;

730 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

 END;
 FUNCTION next_book_rec RETURN books%ROWTYPE
 IS
 l_book_rec books%ROWTYPE;
 BEGIN
 FETCH book_maint.book_cur INTO l_book_rec;
 prv_book_cur_status := book_maint.book_cur%FOUND;
 RETURN l_book_rec;
 END;

 FUNCTION book_cur_is_found RETURN BOOLEAN
 IS
 BEGIN
 RETURN prv_book_cur_status;
 END;

 PROCEDURE close_book_cur IS
 BEGIN
 IF book_maint.book_cur%ISOPEN
 THEN
 CLOSE book_maint.book_cur;
 END IF;
 END;
END book_maint;

Unfortunately, this approach won’t work around the problem of using remote excep-
tions; the exception “datatype” is treated differently from true datatypes. Instead, you
can use the RAISE_APPLICATION_ERROR procedure with a user-defined exception
number between −20000 and −20999. See Chapter 6 for a discussion of how to write
a package to help your application manage this type of exception.

Recompiling Invalid Program Units
In addition to becoming invalid when a referenced object changes, a new program may
be in an invalid state as the result of a failed compilation. In any event, no PL/SQL
program marked as INVALID will run until a successful recompilation changes its
status to VALID. Recompilation can happen in one of three ways:

Automatic runtime recompilation
The PL/SQL runtime engine will, under many circumstances, automatically re-
compile an invalid program unit when that program unit is called.

ALTER...COMPILE recompilation
Use an explicit ALTER command to recompile the package.

Schema-level recompilation
Use one of many alternative built-ins and custom code to recompile all invalid
program units in a schema or database instance.

Managing Dependencies and Recompiling Code | 731

Download at WoweBook.Com

Automatic runtime compilation

Since Oracle maintains information about the status of program units compiled into
the database, it knows when a program unit is invalid and needs to be recompiled.
When a user connected to the database attempts to execute (directly or indirectly) an
invalid program unit, the database will automatically attempt to recompile that unit.

You might then wonder: why do we need to explicitly recompile program units at all?
There are two reasons:

• In a production environment, “just in time” recompilation can have a ripple effect,
in terms of both performance degradation and cascading invalidations of other
database objects. The user experience will be much improved by recompiling all
invalid program units when users are not accessing the application (if at all
possible).

• Recompilation of a program unit that was previously executed by another user
connected to the same instance can and usually will result in an error that looks
like this:

ORA-04068: existing state of packages has been discarded
ORA-04061: existing state of package "SCOTT.P1" has been invalidated
ORA-04065: not executed, altered or dropped package "SCOTT.P1"
ORA-06508: PL/SQL: could not find program unit being called

This error occurs when a package that has “state” (one or more variables or constants
declared at the package level) has been recompiled. All sessions that had previously
initialized that package are now out of synch with the newly compiled package. When
the database tries to reference or run an element of that package, it cannot “find pro-
gram unit” and throws an exception.

The solution? Well, you (or the application) could trap the exception and then simply
call that same program unit again. Now the package state will be reset (that’s what the
ORA-4068 error message is telling us), and the database will be able to execute the
program. Unfortunately, the states of all packages, including DBMS_OUTPUT and
other built-in packages, will have been reset in that session. It is very unlikely that users
will be able to continue running the application successfully.

What this means for users of PL/SQL-based applications is that whenever the under-
lying code needs to be updated (recompiled), all users must stop using the application.
That is not an acceptable scenario in today’s world of “always on” Internet-based ap-
plications. Oracle Database 11g Release 2 finally addresses this problem by offering
support for “hot patching” of application code through the use of edition-based
redefinition. This topic is covered briefly at the end of this chapter.

The bottom line on automatic recompilation bears repeating: prior to Oracle Database
11g Release 2, in live production environments, do not do anything that will invalidate
or recompile (automatically or otherwise) any stored objects for which sessions might
have instantiations that will be referred to again.

732 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

Fortunately, development environments don’t usually need to worry about ripple ef-
fects, and automatic recompilation outside of production can greatly ease our
development efforts. While it might still be helpful to recompile all invalid program
units (explored in the following sections), it is not as critical a step.

ALTER...COMPILE recompilation

You can always recompile a program unit that has previously been compiled into the
database using the ALTER...COMPILE command. In the case presented earlier, for
example, I know by looking in the data dictionary that three program units were
invalidated.

To recompile these program units in the hope of setting their status back to VALID, I
can issue these commands:

ALTER PACKAGE bookworm COMPILE BODY REUSE SETTINGS;
ALTER PACKAGE book COMPILE BODY REUSE SETTINGS;
ALTER PROCEDURE add_book COMPILE REUSE SETTINGS;

Notice the inclusion of “REUSE SETTINGS”. This clause ensures that all the compi-
lation settings (optimization level, warnings level, etc.) previously associated with this
program unit will remain the same. If you do not include REUSE SETTINGS, then the
current settings of the session will be applied upon recompilation.

Of course, if you have many invalid objects, you will not want to type ALTER COM-
PILE commands for each one. You could write a simple query, like the one below, to
generate all the ALTER commands:

SELECT 'ALTER ' || object_type || ' ' || object_name
 || ' COMPILE REUSE SETTINGS;'
 FROM user_objects
 WHERE status = 'INVALID'

The problem with this “bulk” approach is that as you recompile one invalid object, you
may cause many others to be marked INVALID. You are much better off relying on
more sophisticated methods for recompiling all invalid program units; these are cov-
ered next.

Schema-level recompilation

Oracle offers a number of ways to recompile all invalid program units in a particular
schema. Unless otherwise noted, the following utilities must be run from a schema with
SYSDBA authority. All files listed below may be found in the $ORACLE_HOME/
Rdbms/Admin directory.

utlip.sql
Invalidates and recompiles all PL/SQL code and views in the entire database. Ac-
tually, it sets up some data structures, invalidates the objects, and prompts you to
restart the database and run utlrp.sql.

Managing Dependencies and Recompiling Code | 733

Download at WoweBook.Com

utlrp.sql
Recompiles all of the invalid objects in serial and is appropriate for single-processor
hardware. If you have a multiprocessor machine, you probably want to use
utlrcmp.sql instead.

utlrcmp.sql
Like utlrp.sql, recompiles all invalid objects, but in parallel; it works by submitting
multiple recompilation requests into the database’s job queue. You can supply the
“degree of parallelism” as an integer argument on the command line. If you leave
it null or supply “0”, then the script will attempt to select the proper degree of
parallelism on its own. However, even Oracle warns that this parallel version may
not yield dramatic performance results because of write contention on system
tables.

DBMS_UTILITY.RECOMPILE_SCHEMA
This procedure has been around since Oracle8 Database and can be run from any
schema; SYSDBA authority is not required. It will recompile program units in the
specified schema. Its header is defined as follows:

DBMS_UTILITY.COMPILE_SCHEMA (
 schema VARCHAR2
 , compile_all BOOLEAN DEFAULT TRUE,
 , reuse_settings BOOLEAN DEFAULT FALSE
);

Prior to Oracle Database 10g, this utility was poorly designed and often invalida-
ted as many program units as it recompiled to VALID status. Now, it seems to work
as one would expect.

UTL_RECOMP
This built-in package, first introduced in Oracle Database 10g, was designed for
database upgrades or patches that require significant recompilation. It has two
programs, one that recompiles invalid objects serially and one that uses
DBMS_JOB to recompile in parallel. To recompile all of the invalid objects in a
database instance in parallel, for example, a DBA only needs to run this single
command:

UTL_RECOMP.recomp_parallel

When running this parallel version, it uses the DBMS_JOB package to queue up
the recompile jobs. When this happens, all other jobs in the queue are temporarily
disabled to avoid conflicts with the recompilation.

Here is an example of calling the serial version to recompile all invalid objects in
the SCOTT schema:

SQL> CALL UTL_RECOMP.recomp_serial ('SCOTT');

If you have multiple processors, the parallel version may help you complete your
recompilations more rapidly. As Oracle notes in its documentation of this package,
however, compilation of stored programs results in updates to many catalog

734 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

structures and is I/O-intensive; the resulting speedup is likely to be a function of
the speed of your disks.

Here is an example of requesting recompilation of all invalid objects in the SCOTT
schema, using up to four simultaneous threads for the recompilation steps:

SQL> CALL UTL_RECOMP.recomp_parallel ('SCOTT', 4);

Solomon Yakobson, an outstanding Oracle DBA and general technol-
ogist, has also written a recompile utility that can be used by non-DBAs
to recompile all invalid program units in dependency order. It handles
stored programs, views (including materialized views), triggers, user-
defined object types, and dimensions. You can find the utility in a file
named recompile.sql on the book’s web site.

Avoiding Those Invalidations
When a database object’s DDL time changes, the database’s usual modus operandi is
to immediately invalidate all of its dependents on the local database.

In Oracle Database 10g and later releases, recompiling a stored program via its original
creation script will not invalidate dependents. This feature does not extend to re-
compiling a program using ALTER...COMPILE or via automatic recompilation, which
will invalidate dependents. Note that even if you use a script, the database is very picky;
if you change anything in your source code—even just a single letter—that program’s
dependents will be marked INVALID.

Compile-Time Warnings
Compile-time warnings can greatly improve the maintainability of your code and re-
duce the chance that bugs will creep into it. Compile-time warnings differ from com-
pile-time errors; with warnings, your program will still compile and run. You may,
however, encounter unexpected behavior or reduced performance as a result of running
code that is flagged with warnings.

This section explores how compile-time warnings work and which issues are currently
detected. Let’s start with a quick example of applying compile-time warnings in your
session.

A Quick Example
A very useful compile-time warning is PLW-06002: Unreachable code. Consider the
following program (available in the cantgothere.sql file on the book’s web site). Because
I have initialized the salary variable to 10,000, the conditional statement will always
send me to line 9. Line 7 will never be executed.

Compile-Time Warnings | 735

Download at WoweBook.Com

 /* File on web: cantgothere.sql */
 1 PROCEDURE cant_go_there
 2 AS
 3 l_salary NUMBER := 10000;
 4 BEGIN
 5 IF l_salary > 20000
 6 THEN
 7 DBMS_OUTPUT.put_line ('Executive');
 8 ELSE
 9 DBMS_OUTPUT.put_line ('Rest of Us');
10 END IF;
11 END cant_go_there;

If I compile this code in any release prior to Oracle Database 10g, I am simply told
“Procedure created.” If, however, I have enabled compile-time warnings in my session
on the new release and then try to compile the procedure, I get this response from the
compiler:

SP2-0804: Procedure created with compilation warnings

SQL> SHOW err
Errors for PROCEDURE CANT_GO_THERE:

LINE/COL ERROR
-------- --------------------------------------
7/7 PLW-06002: Unreachable code

Given this warning, I can now go back to that line of code, determine why it is un-
reachable, and make the appropriate corrections.

If You See a “No message file” Message
If you are running 10.1.0.2.0 on Windows, and try to reproduce what I showed in the
section “A Quick Example” on page 735, you will see this message:

7/7 PLW-06002: Message 6002 not found;
 No message file for product=plsql, facility=PLW

The problem is that Oracle didn’t ship the message file, plwus.msb, with the Oracle
Database 10g software until 10.1.0.3.0, and the download available on OTN is
10.1.0.2.0. If you encounter this problem, you will need to contact Oracle Support to
obtain this file (reference Bug 3680132) and place it in the \plsql\mesg subdirectory.
You will then be able to see the actual warning message.

Enabling Compile-Time Warnings
Oracle allows you to turn compile-time warnings on and off, and also to specify the
type of warnings that interest you. There are three categories of warnings:

Severe
Conditions that could cause unexpected behavior or actual wrong results, such as
aliasing problems with parameters.

736 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

Performance
Conditions that could cause performance problems, such as passing a VARCHAR2
value to a NUMBER column in an UPDATE statement.

Informational
Conditions that do not affect performance or correctness, but that you might want
to change to make the code more maintainable.

Oracle lets you enable/disable compile-time warnings for a specific category, for all
categories, and even for specific, individual warnings. You can do this with either the
ALTER DDL command or the DBMS_WARNING built-in package.

To turn on compile-time warnings in your system as a whole, issue this command:

ALTER SYSTEM SET PLSQL_WARNINGS='string'

The following command, for example, turns on compile-time warnings in your system
for all categories:

ALTER SYSTEM SET PLSQL_WARNINGS='ENABLE:ALL';

This is a useful setting to have in place during development because it will catch the
largest number of potential issues in your code.

To turn on compile-time warnings in your session for severe problems only, issue this
command:

ALTER SESSION SET PLSQL_WARNINGS='ENABLE:SEVERE';

And if you want to alter compile-time warnings settings for a particular, already com-
piled program, you can issue a command like this:

ALTER PROCEDURE hello COMPILE PLSQL_WARNINGS='ENABLE:ALL' REUSE SETTINGS;

Make sure to include REUSE SETTINGS to make sure that all other
settings (such as the optimization level) are not affected by the ALTER
command.

You can tweak your settings with a very high level of granularity by combining different
options. For example, suppose that I want to see all performance-related issues, that I
will not concern myself with server issues for the moment, and that I would like the
compiler to treat PLW-05005: function exited without a RETURN as a compile error. I
would then issue this command:

ALTER SESSION SET PLSQL_WARNINGS=
 'DISABLE:SEVERE'
 ,'ENABLE:PERFORMANCE'
 ,'ERROR:05005';

I especially like this “treat as error” option. Consider the PLW-05005: function returns
without value warning. If I leave PLW-05005 simply as a warning, then when I compile

Compile-Time Warnings | 737

Download at WoweBook.Com

my no_return function, shown below, the program does compile, and I can use it in
my application.

SQL> CREATE OR REPLACE FUNCTION no_return
 2 RETURN VARCHAR2
 3 AS
 4 BEGIN
 5 DBMS_OUTPUT.PUT_LINE (
 6 'Here I am, here I stay');
 7 END no_return;
 8 /
SP2-0806: Function created with compilation warnings

SQL> SHOW ERR
Errors for FUNCTION NO_RETURN:

LINE/COL ERROR
-------- ---
1/1 PLW-05005: function NO_RETURN returns without value at line 7

If I now alter the treatment of that error with the ALTER SESSION command shown
above and then recompile no_return, the compiler stops me in my tracks:

Warning: Procedure altered with compilation errors

By the way, I could also change the settings for that particular program only, to flag
this warning as a “hard” error with a command like this:

ALTER PROCEDURE no_return COMPILE PLSQL_WARNINGS = 'error:6002' REUSE SETTINGS
/

You can, in each of these variations of the ALTER command, also specify ALL as a
quick and easy way to refer to all compile-time warnings categories, as in:

ALTER SESSION SET PLSQL_WARNINGS='ENABLE:ALL';

Oracle also provides the DBMS_WARNING package, which provides the same capa-
bilities to set and change compile-time warning settings through a PL/SQL API.
DBMS_WARNING also goes beyond the ALTER command, allowing you to make
changes to those warning controls that you care about while leaving all the others intact.
You can also easily restore the original settings when you’re done.

DBMS_WARNING was designed to be used in install scripts in which you might need
to disable a certain warning, or treat a warning as an error, for individual program units
being compiled. You might not have any control over the scripts surrounding those for
which you are responsible. Each script’s author should be able to set the warning set-
tings he wants, while inheriting a broader set of settings from a more global scope.

Some Handy Warnings
In the following sections, I present a subset of all the warnings Oracle has implemented,
with an example of the type of code that will elicit the warning and some interesting

738 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

behavior (where present) in the way that Oracle has implemented compile-time
warnings.

To see the full list of warnings available in any given Oracle version, search for the
“PLW” section of the Error Messages book of the Oracle documentation set, available
at http://tahiti.oracle.com.

PLW-05000: Mismatch in NOCOPY qualification between specification and body

The NOCOPY compiler hint tells the Oracle database that, if possible, you would like
it to not make a copy of your IN OUT arguments. This can improve the performance
of programs that pass large data structures, such as collections or CLOBs.

You need to include the NOCOPY hint in both the specification and the body of your
program (relevant for packages and object types). If the hint is not present in both, the
database will apply whatever is specified in the specification.

Here is an example of code that will generate this warning:

/* File on web: plw5000.sql */
PACKAGE plw5000
IS
 TYPE collection_t IS
 TABLE OF VARCHAR2 (100);

 PROCEDURE proc (
 collection_in IN OUT NOCOPY
 collection_t);
END plw5000;

PACKAGE BODY plw5000
IS
 PROCEDURE proc (
 collection_in IN OUT
 collection_t)
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE ('Hello!');
 END proc;
END plw5000;

Compile-time warnings will display as follows:

SQL> SHOW ERRORS PACKAGE BODY plw5000
Errors for PACKAGE BODY PLW5000:

LINE/COL ERROR
-------- ---
3/20 PLW-05000: mismatch in NOCOPY qualification between specification
 and body

3/20 PLW-07203: parameter 'COLLECTION_IN' may benefit from use of the
 NOCOPY compiler hint

Compile-Time Warnings | 739

Download at WoweBook.Com

http://tahiti.oracle.com

PLW-05001: Previous use of ’string’ (at line string) conflicts with this use

This warning will make itself heard when you have declared more than one variable or
constant with the same name. It can also pop up if the parameter list of a program
defined in a package specification is different from that of the definition in the package
body.

You may be saying to yourself: I’ve seen that error before, but it is a compilation error,
not a warning. And, in fact, you are right, in that the following program simply will not
compile:

/* File on web: plw5001.sql */
PROCEDURE plw5001
IS
 a BOOLEAN;
 a PLS_INTEGER;
BEGIN
 a := 1;
 DBMS_OUTPUT.put_line ('Will not compile');
END plw5001;

You receive the following compile error: PLS-00371: at most one declaration for 'A' is
permitted in the declaration section.

So why is there a warning for this situation? Consider what happens when I remove the
assignment to the variable named a:

SQL> CREATE OR REPLACE PROCEDURE plw5001
 2 IS
 3 a BOOLEAN;
 4 a PLS_INTEGER;
 5 BEGIN
 6 DBMS_OUTPUT.put_line ('Will not compile?');
 7 END plw5001;
 8 /
Procedure created.

The program compiles! The database does not flag the PLS-00371 because I have not
actually used either of the variables in my code. The PLW-05001 warning fills that gap
by giving me a heads-up if I have declared, but not yet used, variables with the same
name, as you can see here:

SQL> ALTER PROCEDURE plw5001 COMPILE plsql_warnings = 'enable:all';
SP2-0805: Procedure altered with compilation warnings

SQL> SHOW ERRORS
Errors for PROCEDURE PLW5001:

LINE/COL ERROR
-------- ---
4/4 PLW-05001: previous use of 'A' (at line 3) conflicts with this use

740 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

PLW-05003: Same actual parameter (string and string) at IN and NOCOPY may have side effects

When you use NOCOPY with an IN OUT parameter, you are asking PL/SQL to pass
the argument by reference, rather than by value. This means that any changes to the
argument are made immediately to the variable in the outer scope. “By value” behavior
(NOCOPY is not specified or the compiler ignores the NOCOPY hint), on the other
hand, dictates that changes within the program are made to a local copy of the IN
OUT parameter. When the program terminates, these changes are then copied to the
actual parameter. (If an error occurs, the changed values are not copied back to the
actual parameter.)

Use of the NOCOPY hint increases the possibility that you will run into the issue of
argument aliasing, in which two different names point to the same memory location.
Aliasing can be difficult to understand and debug; a compile-time warning that catches
this situation will come in very handy.

Consider this program:

/* File on web: plw5003.sql */
PROCEDURE very_confusing (
 arg1 IN VARCHAR2
 , arg2 IN OUT VARCHAR2
 , arg3 IN OUT NOCOPY VARCHAR2
)
IS
BEGIN
 arg2 := 'Second value';
 DBMS_OUTPUT.put_line ('arg2 assigned, arg1 = ' || arg1);
 arg3 := 'Third value';
 DBMS_OUTPUT.put_line ('arg3 assigned, arg1 = ' || arg1);
END;

It’s a simple enough program: pass in three strings, two of which are IN OUT; assign
values to those IN OUT arguments; and display the value of the first IN argument’s
value after each assignment.

Now I will run this procedure, passing the very same local variable as the argument for
each of the three parameters:

SQL> DECLARE
 2 str VARCHAR2 (100) := 'First value';
 3 BEGIN
 4 DBMS_OUTPUT.put_line ('str before = ' || str);
 5 very_confusing (str, str, str);
 6 DBMS_OUTPUT.put_line ('str after = ' || str);
 7 END;
 8 /
str before = First value
arg2 assigned, arg1 = First value
arg3 assigned, arg1 = Third value
str after = Second value

Compile-Time Warnings | 741

Download at WoweBook.Com

Notice that while still running very_confusing, the value of the arg1 argument was not
affected by the assignment to arg2. Yet when I assigned a value to arg3, the value of
arg1 (an IN argument) was changed to “Third value”! Furthermore, when
very_confusing terminated, the assignment to arg2 was applied to the str variable.
Thus, when control returned to the outer block, the value of the str variable was set to
“Second value”, effectively writing over the assignment of “Third value”.

As I said earlier, parameter aliasing can be very confusing. So, if you enable compile-
time warnings, programs such as plw5003 may be revealed to have potential aliasing
problems:

SQL> CREATE OR REPLACE PROCEDURE plw5003
 2 IS
 3 str VARCHAR2 (100) := 'First value';
 4 BEGIN
 5 DBMS_OUTPUT.put_line ('str before = ' || str);
 6 very_confusing (str, str, str);
 7 DBMS_OUTPUT.put_line ('str after = ' || str);
 8 END plw5003;
 9 /
SP2-0804: Procedure created with compilation warnings

SQL> SHOW ERR

Errors for PROCEDURE PLW5003:
LINE/COL ERROR
-------- ---
6/4 PLW-05003: same actual parameter(STR and STR) at IN and NOCOPY
 may have side effects
6/4 PLW-05003: same actual parameter(STR and STR) at IN and NOCOPY
 may have side effects

PLW-05004: Identifier string is also declared in STANDARD or is a SQL built-in

Many PL/SQL developers are unaware of the STANDARD package, and its implica-
tions for their PL/SQL code. For example, it is common to find programmers who
assume that names like INTEGER and TO_CHAR are reserved words in the PL/SQL
language. That is not the case. They are, respectively, a datatype and a function declared
in the STANDARD package.

STANDARD is one of the two default packages of PL/SQL (the other is
DBMS_STANDARD). Because STANDARD is a default package, you do not need to
qualify references to datatypes like INTEGER, NUMBER, PLS_INTEGER, etc., with
“STANDARD"—but you could, if you so desired.

PLW-5004 notifies you if you happen to have declared an identifier with the same name
as an element in STANDARD (or a SQL built-in; most built-ins—but not all—are
declared in STANDARD).

Consider this procedure definition:

742 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

 /* File on web: plw5004.sql
 1 PROCEDURE plw5004
 2 IS
 3 INTEGER NUMBER;
 4
 5 PROCEDURE TO_CHAR
 6 IS
 7 BEGIN
 8 INTEGER := 10;
 9 END TO_CHAR;
10 BEGIN
11 TO_CHAR;
12 END plw5004;

Compile-time warnings for this procedure will display as follows:

LINE/COL ERROR
-------- ---
3/4 PLW-05004: identifier INTEGER is also declared in STANDARD
 or is a SQL builtin
5/14 PLW-05004: identifier TO_CHAR is also declared in STANDARD
 or is a SQL builtin

You should avoid reusing the names of elements defined in the STANDARD package
unless you have a very specific reason to do so.

PLW-05005: Function string returns without value at line string

This warning makes me happy. A function that does not return a value is a very badly
designed program. This is a warning that I would recommend you ask the database to
treat as an error with the “ERROR:5005” syntax in your PLSQL_WARNINGS setting.

You already saw one example of such a function—no_return. That was a very obvious
chunk of code; there wasn’t a single RETURN in the entire executable section. Your
code will, of course, be more complex. The fact that a RETURN may not be executed
could well be hidden within the folds of complex conditional logic.

At least in some of these situations, though, the database will still detect the problem.
The following program demonstrates one of those situations:

 1 FUNCTION no_return (
 2 check_in IN BOOLEAN)
 3 RETURN VARCHAR2
 4 AS
 5 BEGIN
 6 IF check_in
 7 THEN
 8 RETURN 'abc';
 9 ELSE
10 DBMS_OUTPUT.put_line (
11 'Here I am, here I stay');
12 END IF;
13 END no_return;

Compile-Time Warnings | 743

Download at WoweBook.Com

Oracle has detected a branch of logic that will not result in the execution of a RETURN,
so it flags the program with a warning. The plw5005.sql file on the book’s web site
contains even more complex conditional logic, demonstrating that the warning is raised
for less trivial code structures as well.

PLW-06002: Unreachable code

The Oracle database now performs static (compile-time) analysis of your program to
determine if any lines of code in your program will never be reached during execution.
This is extremely valuable feedback to receive, but you may find that the compiler warns
you of this problem on lines that do not, at first glance, seem to be unreachable. In fact,
Oracle notes in the description of the action to take for this error that you should
“disable the warning if much code is made unreachable intentionally and the warning
message is more annoying than helpful.” I will come back to this issue at the end of the
section.

You already saw an example of this compile-time warning in the section “A Quick
Example” on page 735. Now consider the following code:

 /* File on web: plw6002.sql */
 1 PROCEDURE plw6002
 2 AS
 3 l_checking BOOLEAN := FALSE;
 4 BEGIN
 5 IF l_checking
 6 THEN
 7 DBMS_OUTPUT.put_line ('Never here...');
 8 ELSE
 9 DBMS_OUTPUT.put_line ('Always here...');
10 GOTO end_of_function;
11 END IF;
12 <<end_of_function>>
13 NULL;
14 END plw6002;

In Oracle Database 10g and later, you will see the following compile-time warnings for
this program:

LINE/COL ERROR
-------- ------------------------------
5/7 PLW-06002: Unreachable code
7/7 PLW-06002: Unreachable code
13/4 PLW-06002: Unreachable code

I see why line 7 is marked as unreachable: l_checking is set to FALSE, and so line 7 can
never run. But why is line 5 marked “unreachable.” It seems as though, in fact, that
code would always be run! Furthermore, line 13 will always be run as well because the
GOTO will direct the flow of execution to that line through the label. Yet it is tagged
as unreachable.

744 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

The reason for this behavior is that prior to Oracle Database 11g the unreachable code
warning is generated after optimization of the code. In Oracle Database 11g, the anal-
ysis of unreachable code is much cleaner and more helpful.

The compiler does not give you false positives; when it says that line N is unreachable,
it is telling you that the line truly will never be executed, accurately reflecting the op-
timized code.

There are currently scenarios of unreachable code that are not flagged by the compiler.
Here is one example:

/* File on web: plw6002.sql */
FUNCTION plw6002 RETURN VARCHAR2
AS
BEGIN
 RETURN NULL;
 DBMS_OUTPUT.put_line ('Never here...');
END plw6002;

Certainly, the call to DBMS_OUTPUT.PUT_LINE is unreachable, but the compiler
does not currently detect that state. This scenario, and others like it, may be covered
in future releases of the compiler.

PLW-07203: Parameter 'string' may benefit from use of the NOCOPY compiler hint

As mentioned earlier in relation to PLW-05005, use of NOCOPY with complex, large
IN OUT parameters can improve the performance of programs under certain condi-
tions. This warning will flag programs whose IN OUT parameters might benefit from
NOCOPY. Here is an example of such a program:

/* File on web: plw7203.sql */
PACKAGE plw7203
IS
 TYPE collection_t IS TABLE OF VARCHAR2 (100);

 PROCEDURE proc (collection_in IN OUT collection_t);
END plw7203;

This is another one of those warnings that will be generated for lots of programs and
may become a nuisance. The warning/recommendation is certainly valid, but for most
programs the impact of this optimization will not be noticeable. Furthermore, you are
unlikely to switch to NOCOPY without making other changes in your code to handle
situations where the program terminates before completing, possibly leaving your data
in an uncertain state.

PLW-07204: Conversion away from column type may result in suboptimal query plan

This warning will surface when you call a SQL statement from within PL/SQL and rely
on implicit conversions within that statement. Here is an example:

/* File on web: plw7204.sql */
FUNCTION plw7204

Compile-Time Warnings | 745

Download at WoweBook.Com

 RETURN PLS_INTEGER
AS
 l_count PLS_INTEGER;
BEGIN
 SELECT COUNT(*) INTO l_count
 FROM employees
 WHERE salary = '10000';
 RETURN l_count;
END plw7204;

The salary column is numeric, but I am comparing it to a string value. The optimizer
may well disable the use of an index on salary because of this implicit conversion.

Related tightly to this warning is PLW-7202: bind type would result in conversion away
from column type.

PLW-06009: Procedure “string” OTHERS handler does not end in RAISE or RAISE_APPLICATION_ERROR
(Oracle Database 11g)

This warning (added in Oracle Database 11g) appears when your OTHERS exception
handler does not execute some form of RAISE (re-raise the same exception or raise
another) and does not call RAISE_APPLICATION_ERROR. In other words, there is a
good possibility that you are “swallowing” up the error and ignoring it. Under certain,
fairly rare circumstances, ignoring errors is the appropriate thing to do. Usually, how-
ever, you will want to pass an exception back to the enclosing block.

Here is an example:

/* File on web: plw6009.sql */
FUNCTION plw6009
 RETURN PLS_INTEGER
AS
 l_count PLS_INTEGER;
BEGIN
 SELECT COUNT (*) INTO l_count
 FROM dual WHERE 1 = 2;

 RETURN l_count;
EXCEPTION
 WHEN OTHERS
 THEN
 DBMS_OUTPUT.put_line ('Error!');
 RETURN 0;
END plw6009;

Testing PL/SQL Programs
I get great satisfaction out of creating new things, and that is one of the reasons I so
enjoy writing software. I love to take an interesting idea or challenge, and then come
up with a way of using the PL/SQL language to meet that challenge.

746 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

I have to admit, though, that I don’t really like having to take the time to test my software
(nor do I like to write documentation for it). I do it, but I don’t really do enough of it.
And I have this funny feeling that I am not alone. The overwhelming reality is that
developers generally perform an inadequate number of inadequate tests and figure that
if the users don’t find a bug, there is no bug. Why does this happen? Let me count the
ways….

Psychology of success and failure
We are so focused on getting our code to work correctly that we generally shy away
from bad news—or from taking the chance of getting bad news. Better to do some
cursory testing, confirm that everything seems to be working OK, and then wait
for others to find bugs, if there are any (as if there were any doubt).

Deadline pressures
Hey, it’s Internet time! Time to market determines all. We need everything yes-
terday, so let’s release pre-beta software as production and let our users test/suffer
through our applications.

Management’s lack of understanding
IT management is notorious for not really understanding the software development
process. If we aren’t given the time and authority to write (and I mean “write” in
the broadest sense, including testing, documentation, refinement, etc.) code
properly, we will always end up with buggy junk that no one wants to admit
ownership of.

Overhead of setting up and running tests
If it’s a big deal to write and run tests, they won’t get done. We’ll decide that we
don’t have time; after all, there is always something else to work on. One conse-
quence of this is that more and more of the testing is handed over to the QA de-
partment, if there is one. That transfer of responsibility is, on the one hand, positive.
Professional quality assurance professionals can have a tremendous impact on ap-
plication quality. Yet developers must take and exercise responsibility for unit
testing their own code; otherwise, the testing/QA process is much more frustrating
and extended.

The end result is that software almost universally needs more—much more—testing
and fewer bugs. How can we test more effectively in the world of PL/SQL?

In the following sections, I answer that question by first taking a look at what I would
consider to be a weak but typical manual testing process. Then I will draw some con-
clusions about the key problems with manual testing. From there, I will take a look at
automated testing options for PL/SQL code.

Typical, Tawdry Testing Techniques
When testing the effect of a program, you need to identify what has been changed by
that program: for example, the string returned by a function, the table updated by a

Testing PL/SQL Programs | 747

Download at WoweBook.Com

procedure. Then you need to decide, in advance, what the correct behavior of the pro-
gram for a given set of inputs and setup (a test case) would be. Then after the program
has run, you must compare the actual results (what was changed by the program) to
the expected values. If they match, your program worked. If there is a discrepancy, the
program failed.

That’s a very general description of testing; the critical question is how you go about
defining all needed test cases and implementing the tests. Let’s start by looking at what
I would consider to be a fairly typical and typically bad approach to testing.

Say that I am writing a big application with lots of string manipulation. I’ve got a
“hangnail” called SUBSTR; this function bothers me, and I need to take care of it.
What’s the problem? SUBSTR is great when you know the starting location of a string
and the number of characters you want. In many situations, though, I have only the
start and end locations, and then I have to compute the number of characters. But which
formula is it?

end - start
end - start + 1
end - start - 1

I can never remember (the correct answer is end – start + 1), so I write a program that
will remember it for me—the betwnstr function:

/* File on web: betwnstr.sf */
FUNCTION betwnstr (string_in IN VARCHAR2
 , start_in IN INTEGER
 , end_in IN INTEGER
)
 RETURN VARCHAR2
IS
BEGIN
 RETURN (SUBSTR (string_in, start_in, end_in - start_in + 1));
END betwnstr;

That was easy—and I am very certain that this formula is correct—I reverse engineered
it from an example. Still, I should test it. The problem is that I am under a lot of pressure
and this is just one little utility among many other programs I must write and test. So
I throw together a crude “test script” built around DBMS_OUTPUT.PUT_LINE, and
run it:

BEGIN
 DBMS_OUTPUT.put_line (NVL (betwnstr ('abcdefg', 3, 5)
 , '**Really NULL**'));
END;

cde

It worked...how exciting! But I should run more tests than that one. Let’s change the
end value to 500. It should return the rest of the string, just like SUBSTR would:

BEGIN
 DBMS_OUTPUT.put_line (NVL (betwnstr ('abcdefg', 3, 500)

748 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

 , '**Really NULL**'));
END;

cdefg

It worked again! This is my lucky day. Now, let’s be sure to make sure it handles NULLs
properly:

BEGIN
 DBMS_OUTPUT.put_line (NVL (betwnstr ('abcdefg', NULL, 5)
 , '**Really NULL**'));
END;

Really NULL));

Three in a row. This is one very correct function, wouldn’t you say? No, you are prob-
ably (or, at the very least, should be) shaking your head and saying to yourself: “That’s
just pitiful. You haven’t scratched the surface of all the scenarios you need to test. Why,
you didn’t even change the value of the first argument. Plus, every time you change
your input values you threw away your last test.”

Good points, all. So rather than just willy-nilly throw up some different argument val-
ues, I will come up with a list of test cases whose behavior I want to verify:

String Start End Result

abcdefg 1 3 abc

abcdefg 0 3 abc

<anything> NULL NOT NULL NULL

<anything> NOT NULL NULL NULL

NULL <anything> <anything> NULL

abcdefg Positive number Smaller than start NULL

abcdefg 1 Number larger than length of string abcdefg

From this grid, I will then construct a simple test script like the following:

/* File on web: betwnstr.tst */
BEGIN
 DBMS_OUTPUT.put_line ('Test 1: ' || betwnstr (NULL, 3, 5));
 DBMS_OUTPUT.put_line ('Test 2: ' || betwnstr ('abcdefgh', 0, 5));
 DBMS_OUTPUT.put_line ('Test 3: ' || betwnstr ('abcdefgh', 3, 5));
 DBMS_OUTPUT.put_line ('Test 4: ' || betwnstr ('abcdefgh', -3, -5));
 DBMS_OUTPUT.put_line ('Test 5: ' || betwnstr ('abcdefgh', NULL, 5));
 DBMS_OUTPUT.put_line ('Test 6: ' || betwnstr ('abcdefgh', 3, NULL));
 DBMS_OUTPUT.put_line ('Test 7: ' || betwnstr ('abcdefgh', 3, 100));
END;

And now whenever I need to test betwnstr, I simply run this script and check the results;
based on that initial implementation, they are:

Testing PL/SQL Programs | 749

Download at WoweBook.Com

SQL> @betwnstr.tst
Test 1:
Test 2: abcdef
Test 3: cde
Test 4:
Test 5:
Test 6:
Test 7: cdefgh

Ah…“check the results.” So easy to say, but how easy is it to do? Did this test work
properly? I have to go through the results line by line and compare them to my grid.
Plus, if I am going to test this code thoroughly, I will probably have more than 30 test
cases (what about negative start and end values?). It will take me at least several minutes
to scan the results of my test. This is a ridiculously simple piece of code. The thought
of extending this technique to any “real” code is frightening. Imagine if my program
modified two tables and returned two OUT arguments. I might have hundreds of test
cases, plus non-trivial setup tasks and the challenge of figuring out how to make sure
the contents of my tables are correct.

Yet this is the approach many developers take routinely when “testing” their code. To
conclude, almost all the code testing we do suffers from these key drawbacks:

Hand-written test code
We write the test code ourselves, which severely limits how much testing we can
do. Who has time to write all that code?

Incomplete testing
If we were completely honest with ourselves, we would be forced to admit that we
don’t actually test most of our code. Rather, we try a few of the most obvious cases
to reassure ourselves that the program is not obviously broken. That’s a far cry
from actual testing.

Throw-away testing
Our tests are not repeatable. We are so focused on getting the program to work
right now, that we can’t think ahead and realize that we—or someone else—will
have to do the same tests, over and over again, in the future.

Manual verification
If we rely on our own eyes and observational skills to verify test results, it will take
way too much time and likely result in erroneous conclusions. We are so desperate
for our programs to work that we will overlook minor issues or apparent failures,
and explain them away.

Testing after development
I believe that most programmers say to themselves “When I am done writing my
program, I will test it.” Sounds so reasonable, does it not? And yet it is a fatally
flawed principle. First, we are never “done” writing our programs. So we inevitably
run out of time for testing. Second, and more troubling, if we think about testing
only after we finish implementing our program, we will subconsciously choose to

750 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

run tests that are most likely to succeed, and avoid those that we are pretty sure
will cause problems. It’s the way our brains are wired.

Clearly, if we are going to test effectively and thoroughly, we will need to take a different
path. We need a way to define our tests so that they can easily be maintained over time.
We need to be able to easily run our tests and then, most importantly, determine with-
out lengthy analysis the outcome: success or failure. And we need to figure out a way
to run tests without having to write enormous amounts of test code.

In the following sections, I first offer some advice on how to approach testing your
code. Then I examine automated testing options for PL/SQL developers, with a focus
on utPLSQL and Quest Code Tester for Oracle.

General Advice for Testing PL/SQL Code
Whatever tool you choose to help you test, you should take the following into consid-
eration if you hope to successfully transform the quality of your testing:

Commit to testing
The most important change to make is inside our heads. We have to change our
perspective from “I sure hope this program will work.” to “I want to be able to
prove that my program works.” Once you commit to testing, you will find yourself
writing more modular code that can be more easily tested. You will also then have
to find tools to help you test more efficiently.

Get those test cases out of your head before you start writing your program—and onto a
piece of paper or into a tool that manages your tests

The important thing is to externalize your belief of what needs to be tested; oth-
erwise, you are likely to lose or ignore that information. On Monday, when I start
to build my program, I can easily think of 25 different scenarios (requirements)
that need to be covered (implemented). Three days later I have run out of time, so
I switch to testing. Suddenly and very oddly, I can only remember 5 test cases (the
most obvious ones). If you make a list of your known test cases at the very beginning
of the development process, you are much more likely to remember and verify
them.

Don’t worry about 100% test coverage
I doubt that there has ever been a non-trivial software program that was com-
pletely tested. You should not set as your objective 100% coverage of all possible
test cases. It is very unlikely to happen and will serve only to discourage you. The
most important thing about testing is to get started. So what if you only implement
10% of your test cases in phase 1? That’s 10% more than you were testing before.
And once your test cases (and associated code) are in place, it is much easier to add
to them.

Testing PL/SQL Programs | 751

Download at WoweBook.Com

Integrate testing into development
You cannot afford to put off testing until after you are “done” writing your soft-
ware. Instead, you should think about testing as early as possible in the process.
List out your test cases, construct your test code, and then run those tests as you
implement, debug, and enhance your program. After every change, run your test
again to verify that you are making progress. If you need a fancy name, a.k.a., a
methodology, to be convinced about the value of this approach, check out the
widely-adopted (in object-oriented circles) Test Driven Development (TDD).

Get those regression tests in place
All of the above, plus the tools described below, will help you build a regression
test. This kind of test is intended to make sure that your code does not regress or
move backwards. It’s terribly embarrassing when we roll out V2 of our product
and half the features of V1 are broken. “How can this happen?” wail our users.
And if we gave them an honest answer, they would run screaming from the meeting
room, because that answer would be: “Sorry, but we didn’t have time to write a
regression test. That means when we make a change in our spaghetti code we really
don’t have any idea what might have been broken.” This is unacceptable, yes? Once
you have a regression test in place, though, you can make changes and roll out new
versions with confidence.

Automated Testing Options for PL/SQL
Today, PL/SQL developers can choose from the following automated frameworks and
tools for testing their code:

utPLSQL
The first framework for PL/SQL, utPLSQL is essentially the “JUnit for PL/SQL.”
It implements Extreme Programming testing principles, and automatically runs
your handwritten test code, verifying results. The next section demonstrates a ses-
sion with utPLSQL. For full details visit http://utplsql.sourceforge.net.

PLUTO
PLUTO is similar to utPLSQL, but it is implemented using Oracle object types.
For more information see http://code.google.com/p/pluto-test-framework.

dbFit
This framework follows a very different approach to specifying tests: tabular
scripts. dbFit “is a set of FIT fixtures which enables FIT/FitNesse tests to execute
directly against a database.” For more information visit http://gojko.net/fitnesse/
dbfit.

Quest Code Tester for Oracle
This commercial testing tool offers the highest level of test automation. It generates
test code from UI-specified expected behaviors, runs that test, and displays the
results using a red light-green light format. It is also demonstrated briefly in a later
section. For full details check out www.quest.com/code-tester-for-oracle.

752 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

http://utplsql.sourceforge.net
http://code.google.com/p/pluto-test-framework
http://gojko.net/fitnesse/dbfit
http://gojko.net/fitnesse/dbfit
http://www.quest.com/code-tester-for-oracle

For both utPLSQL and Code Tester, I will build tests for the betwnstr function dis-
cussed earlier.

Testing with utPLSQL
Way back in 1999, I discovered Extreme Programming and its associated testing frame-
works, known generally as the XUnit family, with JUnit being its most famous member.
I resolved to build a similar framework in PL/SQL and the result was utPLSQL. While
it does not fully automate the testing process, utPLSQL offers many helpful testing
capabilities that will save you lots of time over writing your own manual testing scripts.

This section provides a brief introduction to utPLSQL via a simple example. For all the
details and software, visit http://utplsql.sourceforge.net.

utPLSQL (and the other Xunit tools) follows a cooperative paradigm: if you cooperate
with utPLSQL by following its naming conventions and calling its backend API for test
verification (a.k.a., assertions) in your test code, then utPLSQL will run your test code
and automatically verify the results.

You do, however, have to build your own test package to be run by utPLSQL. Let’s do
that for betwnstr.

My test package specification is very simple. Using the “ut_” prefix of utPLSQL, I
simply include programs to set up and tear down the test (even if they don’t do anything,
they need to be present), plus one procedure for each subprogram I want to test. If I
am testing a schema-level function like betwnstr, then the test package contains just
one test procedure:

/* File on web: ut_betwnstr.pks */
PACKAGE ut_betwnstr
IS
 PROCEDURE ut_setup;
 PROCEDURE ut_teardown;
 PROCEDURE ut_BETWNSTR;
END ut_betwnstr;

Inside the test package body, I need to implement each test case in the ut_betwnstr
procedure. Here is the implementation of what I refer to as the “normal” test case: start
and end values within the boundaries of the string:

 /* File on web: ut_betwnstr.pkb */
 1 PROCEDURE ut_betwnstr
 2 IS
 3 check_this VARCHAR2 (32767);
 4 against_this VARCHAR2 (32767);
 5 BEGIN
 6 /* "Normal usage" test case. Start and end values inside the string. */
 7
 8 /* Call program with to get actual results. */
 9 check_this :=
10 betwnstr (string_in => 'abcdefgh'
11 , start_in => 3

Testing PL/SQL Programs | 753

Download at WoweBook.Com

http://utplsql.sourceforge.net

12 , end_in => 5
13);
14
15 /* Define the "control" or expected value for this test case. */
16 against_this := 'cde';
17
18 /* Now use the assertion package to see if they are equal,
19 and record the results. */
20 utassert.eq ('Normal Usage', check_this, against_this);
21 END;

Here is a description of the significant lines of code:

Line(s) Description

3–4 Declare two variables to hold the actual result (check_this) against the expected result (against_this).

9–13 Call betwnstr with input values that match the “normal” test case.

16 Set the expected or control value.

20 Use utPLSQL’s assertion package, utassert, to assert that the expected value matches the actual value. If your assertion
is correct, then the program worked and SUCCESS is recorded. Otherwise, FAILURE is the result for this test.

So you build each test case in this way, compile the package, and then you run the test
as follows (results are shown for a set of test cases, not demonstrated above):

SQL> EXEC utplsql.test ('betwnstr')
> FFFFFFF AA III L U U RRRRR EEEEEEE
> F A A I L U U R R E
> F A A I L U U R R E
> F A A I L U U R R E
> FFFF A A I L U U RRRRRR EEEE
> F AAAAAAAA I L U U R R E
> F A A I L U U R R E
> F A A I L U U R R E
> F A A III LLLLLLL UUU R R EEEEEEE
.
 FAILURE: "betwnstr"
.
> Individual Test Case Results:
>
FAILURE - EQ "Start at 0" Expected "abc" and got "abcd"
SUCCESS - EQ "Normal Usage" Expected "cde" and got "cde"
SUCCESS - ISNULL "null start" Expected "" and got ""
SUCCESS - ISNULL "null end" Expected "" and got ""
SUCCESS - ISNULL "null string" Expected "" and got ""
SUCCESS - ISNULL "big start small end" Expected "" and got ""
FAILURE - EQ "Negative values" Expected "def" and got ""
SUCCESS - EQ "end past string" Expected "abcdefgh" and got "abcdefgh"

Notice that you are shown the result for each test case. So if one of them failed, you
can focus in on that case, more quickly identify the bug, and then run the test again—
and again, until you get:

754 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

SQL> EXEC utplsql.test ('betwnstr')
.
> SSSS U U CCC CCC EEEEEEE SSSS SSSS
> S S U U C C C C E S S S S
> S U U C C C C E S S
> S U U C C E S S
> SSSS U U C C EEEE SSSS SSSS
> S U U C C E S S
> S U U C C C C E S S
> S S U U C C C C E S S S S
> SSSS UUU CCC CCC EEEEEEE SSSS SSSS

This is a very brief introduction to utPLSQL, but you can see that this framework
automatically runs my test, and then tells me whether or not my test succeeded. It even
reports on individual test cases.

utPLSQL doesn’t take all the pain out of building, but it provides a standardized process
and a test harness from which you can run your tests and easily view results.

Testing with Quest Code Tester for Oracle
I designed and built the first version of utPLSQL (it is now an independent, open source
project) and yet, ironically and a bit hypocritically, I never really used utPLSQL very
much. The reason was simple: I didn’t have the time to build what would have to be
very large test packages. So for most of my testing, I continued building crude scripts
that relied on manual execution and verification. Bad boy!

In 2005, I accepted that I would never be disciplined enough to write comprehensive
utPLSQL packages. Furthermore, I became fed up with my own hypocrisy and decided
to make a second attempt at building an automated testing tool. So I asked myself a
question: what kind of tool would allow lazy, undisciplined me to actually do lots of
testing? And the answer was clear: a tool that generates test code, rather than forces
me to write it. With that insight, I went back to the drawing board, and came up with
designs for what eventually became Quest Code Tester for Oracle.

With Quest Code Tester, you describe the expected behavior of your program through
a graphical interface. These descriptions are then stored in a set of Oracle tables (a true
testing repository, which utPLSQL lacks). You can analyze the quality of testing by
running reports against these tables, but, much more importantly, Code Tester gener-
ates test code from these descriptions. You may still need to write some code to set up
the contents of tables and collections and so forth, but the vast majority of the test code
is managed by Code Tester and regenerated whenever you change your test definition.

Figure 20-2 offers a screenshot of Test Builder, the main window for describing expec-
ted behavior. I have created eight test cases. Each test case has a set of inputs and
outcomes. I press the Run button, and Code Tester saves this information to the re-
pository, generates the test code, runs the test, and shows me the results, as shown in
Figure 20-3.

Testing PL/SQL Programs | 755

Download at WoweBook.Com

You can even ask Code Tester to generate test cases, based on sets of random values,
lists of values, or queries, as shown in Figure 20-4.

You can also export test definitions to a file. You will find the test definition for betwnstr
in the Q##BETWNSTR.qut file.

As you can see, Quest Code Tester is a rich and powerful testing tool, which takes on
most of the heavy lifting required to test your programs. You can get more information
about this product at www.quest.com/code-tester-for-oracle.

Tracing PL/SQL Execution
You get your program to compile. You run your Quest Code Tester test definition—
and it tells you that you have a failed test case: there’s a bug somewhere in your program.
How, then, do you find the cause of the problem? You can certainly dive right into your
source code debugger (virtually all PL/SQL editors include visual debuggers with UI-
settable breaks and watchpoints). You may, however, want to consider tracing execu-
tion of your program first.

Before exploring options for tracing PL/SQL code, let’s first look at the difference be-
tween debugging and tracing. Developers often conflate these two processes into a

Figure 20-2. List of defined test cases within Test Builder

756 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

http://www.quest.com/code-tester-for-oracle

single activity, yet they are quite different. To summarize, you first trace execution to
obtain in-depth information about application behavior, helping you isolate the source
of the problem; you then use a debugger to find the specific lines of code that cause a
bug.

A key distinction between tracing and debugging is that tracing is a “batch” process,
while debugging is interactive). That is, I turn on tracing and run my application code.
When it is done, I open the trace log and use the information there to inform my
debugging session. When I debug, I step through my code line by line (usually starting
from a breakpoint that is close to the source of the problem, as indicated by trace data).
A debug session is usually very time-consuming and tedious, so it makes an awful lot
of sense to do everything I can to minimize the time spent debugging. Solid, proactive
tracing will help me do this.

Every application should include programmer-defined tracing (also known as instru-
mentation). This section explores options for tracing, but before doing that, let’s review
some principles that we should follow when implementing tracing:

• Trace calls should remain in the code throughout all phases of development and
deployment. In other words, do not insert trace calls while developing, and then
remove them when the application goes into production. Tracing is often the best
opportunity you have to understand what is happening in your application when
it is run by a real, live user in a production environment.

Figure 20-3. The Results Viewer shows the test results

Tracing PL/SQL Execution | 757

Download at WoweBook.Com

• Keep the overhead of calls to your trace utility to an absolute minimum. When
tracing is disabled, the user should see no impact on application performance.

• Do not call the DBMS_OUTPUT.PUT_LINE program directly within your appli-
cation code as the trace mechanism. This built-in is not flexible or powerful enough
for high-quality tracing.

• Make it easy for the end user to enable and disable tracing of your backend code.
It should not require the intervention of the support organization to switch on
tracing. Nor should you have to provide a different version of the application that
includes tracing.

• If someone else has already created a trace utility that you can use (and meets these
and your own principles), don’t waste your time building your own trace mecha-
nism.

Let’s consider that last principle first. What tracing utilities already do exist?

DBMS_APPLICATION_INFO
This built-in package offers an API that allows applications to “register” their cur-
rent execution status with the Oracle database. This tracing utility writes trace
information to V$ dynamic views. It is described in the next section.

Figure 20-4. Generating random values for boundary call testing

758 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

Log4PLSQL
This open source tracing framework is modeled after (and built upon) log4J, a very
popular Java logging mechanism. You can get more information about Log4PLSQL
at http://log4plsql.sourceforge.net.

Quest Error Manager
This is a freeware tool from Quest that you can use to raise, handle and log errors
(discussed in Chapter 6), but also to trace program execution. I use the QEM trace
facility in Quest Code Tester, and will demonstrate that usage in a later section.

DBMS_TRACE
This built-in utility traces the execution of PL/SQL code, but does not allow you
to log as part of your trace any application data. You can, however, use this trace
utility without making any changes to your source code. It is described in a later
section.

You can also use one of Oracle’s built-in PL/SQL profilers to obtain
information about the performance profile of each line and subprogram
in your application. The profilers are discussed in Chapter 21.

DBMS_APPLICATION_INFO
The DBMS_APPLICATION_INFO built-in package provides an API that allows ap-
plications to “register” their current execution status with the Oracle database. Once
registered, information about the status of an application can be externally monitored
through several of the V$ virtual tables. Using the V$ virtual tables as the trace
repository is what distinguishes this package from all other tracing alternatives.

The DBMS_APPLICATION_INFO package is used to develop applications that can
be monitored in various ways, including:

• Module usage (where do users spend their time in the application)

• Resource accounting by transaction and module

• End-user tracking and resource accounting in three-tier architectures

• Incremental recording of long-running process statistics

Applications registered using DBMS_APPLICATION_INFO can be analyzed for per-
formance and resource consumption by DBAs and developers much more closely than
is otherwise possible. This facilitates better application tuning as well as more accurate
usage-based cost accounting.

Here are the subprograms in this package; all are procedures and none can be run in
SQL:

Tracing PL/SQL Execution | 759

Download at WoweBook.Com

http://log4plsql.sourceforge.net

Name Description

DBMS_APPLICATION_INFO.SET_MODULE Sets name of module executing

DBMS_APPLICATION_INFO.SET_ACTION Sets action within module

DBMS_APPLICATION_INFO.READ_MODULE Reads module and action for current session

DBMS_APPLICATION_INFO.SET_CLIENT_INFO Sets client information for session

DBMS_APPLICATION_INFO.READ_CLIENT_INFO Reads client information for session

DBMS_APPLICATION_INFO.SET_SESSION_LONGOPS Sets row in LONGOPS table (v8.0 only)

For thorough coverage of this package, see the chapter from Oracle Built-in Packages
(O’Reilly) that we have included on this book’s web site.

Here is a demonstration of DBMS_APPLICATION_INFO:

/* File on web: dbms_application_info.sql */
PROCEDURE drop_dept (
 deptno_IN IN employees.department_id%TYPE
 , reassign_deptno_IN IN employees.department_id%TYPE
)
IS
 l_count PLS_INTEGER;
BEGIN
 DBMS_APPLICATION_INFO.SET_MODULE
 (module_name => 'DEPARTMENT FIXES'
 ,action_name => null);
 DBMS_APPLICATION_INFO.SET_ACTION (action_name => 'GET COUNT IN DEPT');

 SELECT COUNT(*)
 INTO l_count
 FROM employees
 WHERE department_id = deptno_IN;

 DBMS_OUTPUT.PUT_LINE ('Reassigning ' || l_count || ' employees');

 IF l_count > 0
 THEN
 DBMS_APPLICATION_INFO.SET_ACTION (action_name => 'REASSIGN EMPLOYEES');

 UPDATE employees
 SET department_id = reassign_deptno_IN
 WHERE department_id = deptno_IN;
 END IF;

 DBMS_APPLICATION_INFO.SET_ACTION (action_name => 'DROP DEPT');

 DELETE FROM departments WHERE department_id = deptno_IN;

 COMMIT;

 DBMS_APPLICATION_INFO.SET_MODULE(null,null);

EXCEPTION

760 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

 WHEN OTHERS THEN
 DBMS_APPLICATION_INFO.SET_MODULE(null,null);
END drop_dept;

Notice in this example that DBMS_APPLICATION_INFO is called three times to dis-
tinguish between the three steps involved in the process of dropping the department.
This gives a very fine granularity to the level at which the application can be tracked.

Be sure to set the action name to a name that can identify the current transaction or
logical unit of work within the module.

When the transaction terminates, call DBMS_APPLICATION_INFO.SET_ACTION
and pass a null value for the action_name parameter. This ensures that in case subse-
quent transactions do not register using DBMS_APPLICATION_INFO, they are not
incorrectly counted as part of the current action. As in the example, if the program
handles exceptions, the exception handler should probably reset the action
information.

Quest Error Manager Tracing
While Quest Error Manager (QEM) is intended primarily as a generalized exception
management utility for PL/SQL applications, you can also use QEM to perform appli-
cation tracing. I use QEM to implement tracing in the backend of Quest Code Tester.
I demonstrate in this next section how I use QEM, and make it easy for users to start
and stop tracing.

The following subprograms of the q$error_manager are helpful for tracing:

Name Description

set_trace Turns tracing on or off

trace_enabled Returns TRUE if tracing is currently enabled (turned on)

trace Sends information from the application to the QEM log; you can specify a context (useful for filtering) and
text (whatever information you want to trace)

totable Directs trace output to the the q$log table (default)

toscreen Directs trace output to the the q$log table (default)

tofile Directs output to the specified file using UTL_FILE

pl Use instead of DBMS_OUTPUT.PUT_LINE to display strings, numbers, dates, CLOBs, and Booleans (not
directly needed for tracing)

Using the QEM API, I can enable tracing for all calls to trace as follows:

q$error_manager.set_tracing (TRUE);

In the next call to set_tracing, I enable tracing only for contexts that contain the string
“balance”:

q$error_manager.set_tracing (TRUE, 'balance');

Tracing PL/SQL Execution | 761

Download at WoweBook.Com

As mentioned earlier, though, you don’t want to have to instruct your users to execute
PL/SQL statements to enable/disable tracing. Instead, you should build this capability
directly into your user interface. In Quest Code Tester, for example, a user can start
tracing by pressing Alt-Space to open the system menu and then choose “Start Tracing”
(and “Stop Tracing”). They then see the window shown in Figure 20-5.

Figure 20-5. Start tracing from the Code Tester user interface

That covers enabling tracing. Now let’s take a look at how I make calls to
q$error_manager.trace in my stored programs.

I almost never call q$error_manager.trace directly. Instead, I nest it inside a call to
q$error_manager.trace_enabled, as you see here:

IF q$error_manager.trace_enabled
THEN
 q$error_manager.trace (
 context_in => 'generate_test_code for program'
 , text_in => qu_program_qp.name_for_id (l_program_key)
);
END IF;

I call the trace program in this way to minimize the runtime overhead of tracing. The
trace_enabled function returns the value of a single Boolean flag; it passes no actual

762 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

arguments and finishes its work efficiently. If it returns TRUE, then the Oracle database
will evaluate all the expressions in the parameter list and call the trace procedure, which
will also make sure that tracing is enabled for this specific context.

If I call the trace procedure directly in my application code, then every time the runtime
engine hits that line of code, it will evaluate all the actual arguments in the parameter
list and call the trace procedure. The trace procedure will then make sure that tracing
is enabled for this specific context. If tracing is disabled, then nothing more happens—
but notice that the application will have wasted CPU cycles evaluating the arguments
and passing them into trace.

Would a user ever notice the overhead of evaluating those arguments unnecessarily?
Perhaps not, but as you add more and more trace calls to your code, you increase the
probability of user impact. You should instead set as a habit and standard that you
always hide your actual trace calls inside an IF statement that keeps overhead to a
minimum.

The DBMS_TRACE Facility
The DBMS_TRACE built-in package provides programs to start and stop PL/SQL
tracing in a session. When tracing is turned on, the engine collects data as the program
executes. The data is then written out to the Oracle server trace file.

The PL/SQL trace facility provides a trace file that shows you the specific steps executed
by your code. DBMS_PROFILER and DBMS_HPROF (hierarchical profiler), which
are described in Chapter 21, offer more comprehensive analyses of your application,
including timing information and counts of the number of times a specific line was
executed.

Installing DBMS_TRACE

This package may not have been installed automatically with the rest of the built-in
packages. To determine whether DBMS_TRACE is present, connect to SYS (or another
account with SYSDBA privileges) and execute this command:

BEGIN DBMS_TRACE.CLEAR_PLSQL_TRACE; END;

If you see this error:

PLS-00201: identifier 'DBMS_TRACE.CLEAR_PLSQL_TRACE' must be declared

then you must install the package. Alternatively, you can use the DESCRIBE command
in SQL*Plus.

To install DBMS_TRACE, remain connected as SYS (or another account with SYSDBA
privileges), and run the following files in the order specified:

$ORACLE_HOME/rdbms/admin/dbmspbt.sql
$ORACLE_HOME/rdbms/admin/prvtpbt.plb

Tracing PL/SQL Execution | 763

Download at WoweBook.Com

DBMS_TRACE programs

The following subprograms are available in the DBMS_TRACE package:

Name Description

SET_PLSQL_TRACE Starts PL/SQL tracing in the current session

CLEAR_PLSQL_TRACE Stops the dumping of trace data for that session

PLSQL_TRACE_VERSION Gets the major and minor version numbers of the DBMS_TRACE package

To trace execution of your PL/SQL code, you must first start the trace with a call to:

DBMS_TRACE.SET_PLSQL_TRACE (trace_level INTEGER);

in your current session, where trace_level is one of the following values:

• Constants that determine which elements of your PL/SQL program will be traced:

DBMS_TRACE.trace_all_calls constant INTEGER := 1;
DBMS_TRACE.trace_enabled_calls constant INTEGER := 2;
DBMS_TRACE.trace_all_exceptions constant INTEGER := 4;
DBMS_TRACE.trace_enabled_exceptions constant INTEGER := 8;
DBMS_TRACE.trace_all_sql constant INTEGER := 32;
DBMS_TRACE.trace_enabled_sql constant INTEGER := 64;
DBMS_TRACE.trace_all_lines constant INTEGER := 128;
DBMS_TRACE.trace_enabled_lines constant INTEGER := 256;

• Constants that control the tracing process:

DBMS_TRACE.trace_stop constant INTEGER := 16384;
DBMS_TRACE.trace_pause constant INTEGER := 4096;
DBMS_TRACE.trace_resume constant INTEGER := 8192;
DBMS_TRACE.trace_limit constant INTEGER := 16;

By combining the DBMS_TRACE constants, you can enable tracing of
multiple PL/SQL language features simultaneously. Note that the
constants that control the tracing behavior (such as
DBMS_TRACE.trace_pause) should not be used in combination with
the other constants (such as DBMS_TRACE.trace_enabled_calls).

To turn on tracing from all programs executed in your session, issue this call:

DBMS_TRACE.SET_PLSQL_TRACE (DBMS_TRACE.trace_all_calls);

To turn on tracing for all exceptions raised during the session, issue this call:

DBMS_TRACE.SET_PLSQL_TRACE (DBMS_TRACE.trace_all_exceptions);

You then run your code. When you are done, you stop the trace session by calling:

DBMS_TRACE.CLEAR_PLSQL_TRACE;

You can then examine the contents of the trace file. The names of these files are gen-
erated by the database; you would usually look at the modification dates to figure out

764 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

which file to examine. The location of the trace files is discussed in the later section,
“Format of collected data” on page 766.

Note that you cannot use PL/SQL tracing with the shared server (formerly known as
the multithreaded server, or MTS).

Control trace file contents

The trace files produced by DBMS_TRACE can get really big. You can focus the output
by enabling only specific programs for trace data collection. Note that you cannot use
this approach with remote procedure calls.

To enable a specific program for tracing, you can alter the session to enable any pro-
grams that are created or replaced in the session. To take this approach, issue this
command:

ALTER SESSION SET PLSQL_DEBUG=TRUE;

If you don’t want to alter your entire session, you can recompile a specific program unit
in debug mode as follows (not applicable to anonymous blocks):

ALTER [PROCEDURE | FUNCTION | PACKAGE BODY] program_name COMPILE DEBUG;

After you have enabled the programs you’re interested in, issue the following call to
initiate tracing just for those program units:

DBMS_TRACE.SET_PLSQL_TRACE (DBMS_TRACE.trace_enabled_calls);

You can also restrict the trace information to only those exceptions raised within ena-
bled programs with this call:

DBMS_TRACE.SET_PLSQL_TRACE (DBMS_TRACE.trace_enabled_exceptions);

If you request tracing for all programs or exceptions and also request tracing only for
enabled programs or exceptions, the request for “all” takes precedence.

Pause and resume the trace process

The SET_PLSQL_TRACE procedure can do more than just determine which informa-
tion will be traced. You can also request that the tracing process be paused and resumed.
The following statement, for example, requests that no information be gathered until
tracing is resumed:

DBMS_TRACE.SET_PLSQL_TRACE (DBMS_TRACE.trace_pause);

DBMS_TRACE will write a record to the trace file to show when tracing was paused
and/or resumed.

Use the DBMS_TRACE.trace_limit constant to request that only the last 8,192 trace
events of a run be preserved. This approach helps ensure that you can turn tracing on
without overwhelming the database with trace activity. When the trace session ends,
only the last 8,192 records are saved.

Tracing PL/SQL Execution | 765

Download at WoweBook.Com

Format of collected data

If you request tracing only for enabled program units, and the current program unit is
not enabled, no trace data is written. If the current program unit is enabled, call tracing
writes out the program unit type, name, and stack depth.

Exception tracing writes out the line number. Raising an exception records trace in-
formation on whether the exception is user-defined or predefined, and records the
exception number in the case of predefined exceptions. If you raise a user-defined ex-
ception, you will always see an error code of 1.

Here is an example of the output from a trace of the showemps procedure:

*** 1999.06.14.09.59.25.394
*** SESSION ID:(9.7) 1999.06.14.09.59.25.344
------------ PL/SQL TRACE INFORMATION -----------
Levels set : 1
Trace: ANONYMOUS BLOCK: Stack depth = 1
Trace: PROCEDURE SCOTT.SHOWEMPS: Call to entry at line 5 Stack depth = 2
Trace: PACKAGE BODY SYS.DBMS_SQL: Call to entry at line 1 Stack depth = 3
Trace: PACKAGE BODY SYS.DBMS_SYS_SQL: Call to entry at line 1 Stack depth = 4
Trace: PACKAGE BODY SYS.DBMS_SYS_SQL: ICD vector index = 21 Stack depth = 4
Trace: PACKAGE PLVPRO.P: Call to entry at line 26 Stack depth = 3
Trace: PACKAGE PLVPRO.P: ICD vector index = 6 Stack depth = 3
Trace: PACKAGE BODY PLVPRO.P: Call to entry at line 1 Stack depth = 3
Trace: PACKAGE BODY PLVPRO.P: Call to entry at line 1 Stack depth = 3
Trace: PACKAGE BODY PLVPRO.P: Call to entry at line 1 Stack depth = 4

Debugging PL/SQL Programs
When you test a program, you find errors in your code. When you debug a program,
you uncover the cause of an error and fix it. These are two very different processes and
should not be confused. Once a program is tested, and bugs are uncovered, it is certainly
the responsibility of the developer to fix those bugs. And so the debugging begins!

Many programmers find that debugging is by far the hardest part of programming. This
difficulty often arises from the following factors:

Lack of understanding of the problem being solved by the program
Most programmers like to code. They tend to not like reading and understanding
specifications, and will sometimes forgo this step so that they can quickly get down
to writing code. The chance of a program meeting its requirements under these
conditions is slim at best.

Poor programming practice
Programs that are hard to read (lack of documentation, too much documentation,
inconsistent use of whitespace, bad choices for identifier names, etc.), programs
that are not properly modularized, and programs that try to be too clever present
a much greater challenge to debug than programs that are well designed and
structured.

766 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

The program simply contains too many errors
Without the proper analysis and coding skills, your code will have a much higher
occurrence of bugs. When you compile a program and get back five screens of
compile errors, do you just want to scream and hide? It is easy to be so overwhelmed
by your errors that you don’t take the organized, step-by-step approach needed to
fix those errors.

Limited debugging skills
There are many different approaches to uncovering the causes of your problems.
Some approaches only make life more difficult for you. If you have not been trained
in the best way to debug your code, you can waste many hours, raise your blood
pressure, and upset your manager.

The following sections review the debugging methods that you will want to avoid at
all costs, and then offer recommendations for more effective debugging strategies.

The Wrong Way to Debug
As I present the various ways you shouldn’t debug your programs, I expect that just
about all of you will say to yourselves, “Well, that sure is obvious. Of course you
shouldn’t do that. I never do that.”

And yet the very next time you sit down to do your work, you may very well follow
some of these obviously horrible debugging practices.

If you happen to see little bits of yourself in the paragraphs that follow, I hope you will
be inspired to mend your ways.

Disorganized debugging

When faced with a bug, you become a whirlwind of frenzied activity. Even though the
presence of an error indicates that you did not fully analyze the problem and figure out
how the program should solve it, you do not now take the time to understand the
program. Instead you place MESSAGE statements (in Oracle Forms) or
SRW.MESSAGE statements (in Oracle Reports) or DBMS_OUTPUT.PUT_LINE
statements (in stored modules) all over your program in the hopes of extracting more
clues.

You do not save a copy of the program before you start making changes because that
would take too much time; you are under a lot of pressure right now, and you are certain
that the answer will pop right out at you. You will just remove your debug statements
later.

You spend lots of time looking at information that is mostly irrelevant. You question
everything about your program, even though most of it uses constructs you’ve em-
ployed successfully for years.

Debugging PL/SQL Programs | 767

Download at WoweBook.Com

You skip lunch but make time for coffee, lots of coffee, because it is free and you want
to make sure your concentration is at the most intense level possible. Even though you
have no idea what is causing the problem, you think that maybe if you try this one
change, it might help. You make the change and take several minutes to compile, gen-
erate, and run through the test case, only to find that the change didn’t help. In fact, it
seemed to cause another problem because you hadn’t thought through the impact of
the change on your application.

So you back out of that change and try something else in hopes that it might work. But
several minutes later, you again find that it doesn’t. A friend, noticing that your fingers
are trembling, offers to help. But you don’t know where to start explaining the problem
because you don’t really know what is wrong. Furthermore, you are kind of embar-
rassed about what you’ve done so far (turned the program into a minefield of tracing
statements) and realize you don’t have a clean version to show your friend. So you snap
at the best programmer in your group and call your family to let them know you aren’t
going to be home for dinner that night.

Why? Because you are determined to fix that bug!

Irrational debugging

You execute your report, and it comes up empty. You spent the last hour making
changes both in the underlying data structures and in the code that queries and formats
the data. You are certain, however, that your modifications could not have made the
report disappear.

You call your internal support hotline to find out if there is a network problem, even
though File Manager clearly shows access to network drives. You further probe as to
whether the database has gone down, even though you just connected successfully.
You spend another 10 minutes of the support analyst’s time running through a variety
of scenarios before you hang up in frustration.

“They don’t know anything over there,” you fume. You realize that you will have to
figure this one out all by yourself. So you dive into the code you just modified. You are
determined to check every single line until you find the cause of your difficulty. Over
the course of the next two hours, you talk aloud to yourself—a lot.

“Look at that! I called the stored procedure inside an IF statement. I never did that
before. Maybe I can’t call stored programs that way.” So you remove the IF statement
and instead use a GOTO statement to perform the branching to the stored procedure.
But that doesn’t fix the problem.

“My code seems fine. But it calls this other routine that Joe wrote ages ago.” Joe has
since moved on, making him a ripe candidate for the scapegoat. “It probably doesn’t
work anymore; after all, we did upgrade to a new voicemail system.” So you decide to
perform a standalone test of Joe’s routine, which hasn’t changed for two years and has

768 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

no interface to voicemail. But his program seems to work fine—when it’s not run from
your program.

Now you are starting to get desperate. “Maybe this report should only run on weekends.
Hey, can I put a local module in an anonymous block? Maybe I can use only local
modules in procedures and functions! I think maybe I heard about a bug in this tool.
Time for a workaround….”

You get angry and begin to understand why your eight-year-old hits the computer
monitor when he can’t beat the last level of Ultra Mystic Conqueror VII. And just as
you are ready to go home and take it out on your dog, you realize that you are connected
to the development database, which has almost no data at all. You switch to the test
instance, run your report, and everything looks just fine.

Except, of course, for that GOTO and all the other workarounds you stuck in the
report....

Debugging Tips and Strategies
In this chapter, I do not pretend to offer a comprehensive primer on debugging. The
following tips and techniques, however, should improve on your current set of error-
fixing skills.

Use a source code debugger

The single most effective thing you can do to minimize the time spent debugging your
code is to use a source code debugger. One is now available in just about every PL/SQL
Integrated Development Environment (IDE). If you are using Quest’s Toad or SQL
Navigator, Allround Automations’ PL/SQL Developer, or Oracle SQL Developer (or
any other such GUI tool), you will be able to set visual breakpoints in your code with
the click of a mouse, step through your code line by line, watch variables as they change
their values, and so on.

The other tips in this section apply whether or not you are using a GUI-based debugger,
but there is no doubt that if you are still debugging the old-fashioned way (inserting
calls to DBMS_OUTPUT.PUT_LINE in dozens of places in your code), you are wasting
a lot of your time. (Unfortunately, if your code is deployed at some customer site,
debugging with a GUI tool is not always possible, in which case you usually have to
resort to some sort of logging mechanism.)

Gather data

Gather as much data as possible about when, where, and how the error occurred. It is
very unlikely that the first occurrence of an error will give you all the information you
will want or need to figure out the source of that error. Upon noticing an error, the
temptation is to show off one’s knowledge of the program by declaring, “Got it! I know
what’s going on and exactly how to fix it.” This can be very gratifying when it turns

Debugging PL/SQL Programs | 769

Download at WoweBook.Com

out that you do have a handle on the problem, and that may be the case for simple
bugs. Some problems can appear simple, however, and turn out to require extensive
testing and analysis. Save yourself the embarrassment of pretending (or believing) that
you know more than you actually do. Before rushing to change your code, take these
steps:

Run the program again to see if the error is reproducible
This will be the first indication of the complexity of the problem. It is almost im-
possible to determine the cause of a problem if you are unable to get it to occur
predictably. Once you work out the steps needed to get the error to occur, you will
have gained much valuable information about its cause.

Narrow the test case needed to generate the error
I recently had to debug a problem in one of my Oracle Forms modules. A pop-up
window would lose its data under certain circumstances. At first glance, the rule
seemed to be: “For a new call, if you enter only one request, that request will be
lost.” If I had stopped testing at that point, I would have had to analyze all code
that initialized the call record and handled the INSERT logic. Instead, I tried ad-
ditional variations of data entry and soon found that the data was lost only when
I navigated to the pop-up window directly from a certain item. Now I had a very
narrow test case to analyze, and it became very easy to uncover the error in logic.

Examine the circumstances under which the problem does not occur
“Failure to fail” can offer many insights into the reason an error does occur. It also
helps you narrow down the sections of code and the conditions you have to analyze
when you go back to the program.

The more information you gather about the problem at hand, the easier it will be to
solve that problem. It is worth the extra time to assemble the evidence. So even when
you are absolutely sure you are on to that bug, hold off and investigate a little further.

Remain logical at all times

Symbolic logic is the lifeblood of programmers. No matter which programming lan-
guage you use, the underlying logical framework is a constant. PL/SQL has one par-
ticular syntax. The C language uses different keywords, and the IF statement looks a
little different. The elegance of LISP demands a very different way of building programs.
But underneath it all, symbolic logic provides the backbone on which you hang the
statements that solve your problems.

The reliance on logical and rational thought in programming is one reason that it is so
easy for a developer to learn a new programming language. As long as you can take the
statement of a problem and develop a logical solution step by step, the particulars of a
language are secondary.

With logic at the core of our being, it amazes me to see how often we programmers
abandon this logic and pursue the most irrational path to solving a problem. We engage
in wishful thinking and highly superstitious, irrational, or dubious thought processes.

770 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

Even though we know better—much better—we find ourselves questioning code that
conforms to documented functionality, that has worked in the past, and that surely
works at that moment. This irrationality almost always involves shifting the blame from
oneself to the “other”—the computer, the compiler, Joe, the word processor, whatever.
Anything and anybody but our own pristine selves!

When you attempt to shift blame, you only put off solving your problem. Computers
and compilers may not be intelligent, but they’re very fast and very consistent. All they
can do is follow rules, and you write the rules in your program. So when you uncover
a bug in your code, take responsibility for that error. Assume that you did something
wrong—don’t blame the PL/SQL compiler, Oracle Forms, or the text editor.

If you do find yourself questioning a basic element or rule in the compiler that has
always worked for you in the past, it is time to take a break. Better yet, it is time to get
someone else to look at your code. It is amazing how another pair of eyes can focus
your own analytical powers on the real causes of a problem.

Strive to be the Spock of Programming. Accept only what is logical.
Reject that which has no explanation.

Analyze instead of trying

So you have a pile of data and all the clues you could ask for in profiling the symptoms
of your problem. Now it is time to analyze that data. For many people, analysis takes
the following form: “Hmm, this looks like it could be the answer. I’ll make this change,
recompile, and try it to see if it works.”

What’s wrong with this approach? When you try a solution to see what will happen,
what you are really saying is:

• You are not sure that the change really is a solution. If you were sure, you wouldn’t
“try” it to see what would happen. You would make the change and then test that
change.

• You have not fully analyzed the error to understand its causes. If you know why
an error occurs, then you know if a particular change will fix that problem. If you
are unsure about the source of the error, you will be tempted to simply try a change
and examine the impact. This is, unfortunately, very faulty logic.

• Even if the change stops the error from occurring, you can’t be sure that your
“solution” really solved anything. Because you aren’t sure why the problem oc-
curred, the simple fact that the problem doesn’t reappear in your particular tests
doesn’t mean that you fixed the bug. The most you can say is that your change
stopped the bug from occurring under certain, perhaps even most, circumstances.

Debugging PL/SQL Programs | 771

Download at WoweBook.Com

To truly solve a problem, you must completely analyze the cause of the problem. Once
you understand why the problem occurs, you have found the root cause and can take
the steps necessary to make the problem go away in all circumstances.

When you identify a potential solution, perform a walk-through of your code based on
that change. Don’t execute your form. Examine your program, and mentally try out
different scenarios to test your hypothesis. Once you are certain that your change ac-
tually does address the problem, you can then perform a test of that solution. You won’t
be trying anything; you will be verifying a fix.

Analyze your bug fully before you test solutions. If you say to yourself, “Why don’t I
try this?” in the hope that it will solve the problem, then you are wasting your time and
debugging inefficiently.

Take breaks, and ask for help

We are often our own biggest obstacles when it comes to sorting out our problems,
whether a program bug or a personal crisis. When you are stuck on the inside of a
problem, it is hard to maintain an objective distance and take a fresh look.

When you are making absolutely no progress and feel that you have tried everything,
try these two radical techniques:

• Take a break

• Ask for help

When I have struggled with a bug for any length of time without success, I not only
become ineffective, I also tend to lose perspective. I pursue irrational and superstitious
leads. I lose track of what I have already tested and what I have assumed to be right. I
get too close to the problem to debug it effectively.

My frustration level usually correlates closely to the amount of time I have sat in my
ergonomic chair and perched over my wrist-padded keyboard and stared at my low-
radiation screen. Often the very simple act of stepping away from the workstation will
clear my head and leave room for a solution to pop into place. Did you ever wake up
the morning after a very difficult day at work to find the elusive answer sitting there at
the end of your dream?

Make it a rule to get up and walk around at least once an hour when you are working
on a problem—heck, even when you are writing your programs. Give your brain a
chance to let its neural networks make the connections and develop new options for
your programming. There is a whole big world out there. Even when your eyes are
glued to the monitor and your source code, the world keeps turning. It never hurts to
remind yourself of the bigger picture, even if that only amounts to taking note of the
weather outside your air-conditioned cocoon.

Even more effective than taking a break is asking another person to look at your prob-
lem. There is something entirely magical about the dynamic of adding another pair of

772 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

eyes to the situation. You might struggle with a problem for an hour or two, and finally,
at the exact moment that you break down and explain the problem to a coworker, the
solution will jump out at you. It could be a mismatch on names, a false assumption, or
a misunderstanding of the IF statement logic. Whatever the case, chances are that you
yourself will find it (even though you couldn’t for the last two hours) as soon as you
ask someone else to find it for you.

And even if the error does not yield itself quite so easily, you still have lots to gain from
the perspective of another person who (a) did not write the code and has no subcon-
scious assumptions or biases about it, and (b) isn’t mad at the program.

Other benefits accrue from asking for help. You improve the self-esteem and self-
confidence of other programmers by showing that you respect their opinions. If you
are one of the best developers in the group, then your request for help demonstrates
that you, too, sometimes make mistakes and need help from the team. This builds the
sense (and the reality) of teamwork, which will improve the overall development and
testing efforts on the project.

Change and test one area of code at a time

One of my biggest problems when I debug my code is that I am overconfident about
my development and debugging skills, so I try to address too many problems at once.
I make five or ten changes, rerun my test, and get very unreliable and minimally useful
results. I find that my changes cause other problems (a common phenomenon until a
program stabilizes, and a sure sign that lots more debugging and testing is needed),
that some, but not all, of the original errors are gone, and that I have no idea which
changes fixed which errors and which changes caused new errors.

In short, my debugging effort is a mess, and I have to back out of changes until I have
a clearer picture of what is happening in my program.

Unless you are making very simple changes, you should fix one problem at a time and
then test that fix. The amount of time it takes to compile, generate, and test may in-
crease, but in the long run you will be much more productive.

Another aspect of incremental testing and debugging is performing unit tests on indi-
vidual modules before you test a program that calls these various modules. If you test
the programs separately and determine that they work, when you debug your applica-
tion as a whole (in a system test), you do not have to worry about whether those modules
return correct values or perform the correct actions. Instead, you can concentrate on
the code that calls the modules. (See the earlier section “Testing PL/SQL Pro-
grams” on page 746, for more on unit testing.)

You will also find it helpful to come up with a system for keeping track of your trou-
bleshooting efforts. Dan Clamage, a reviewer for this book, reports that he maintains
a simple text file with running commentary of his efforts to reproduce the problem and
what he has done to correct it. This file will usually include any SQL written to analyze

Debugging PL/SQL Programs | 773

Download at WoweBook.Com

the situation, setup data for test cases, a list of the modules examined, and any other
items that may be of interest in the future. With this file in place, it’s much easier to
return at any time (e.g., after you have had a good night’s sleep and are ready to try
again) and follow your original line of reasoning.

Protecting Stored Code
Virtually any application I write contains propriety information. If I write my applica-
tion in PL/SQL and sell it commercially, I really don’t want to let customers (or worse,
competitors) see my secrets. Oracle offers a program known as wrap that hides or
obfuscates most, if not all, of these secrets.

Some people refer to “wrapping” code as “encrypting” code, but wrap-
ping is not true encryption. If you need to deliver information, such as
a password, that really needs to be secure, you should not rely upon this
facility. Oracle does provide a way of incorporating true encryption into
your own applications using the built-in package DBMS_CRYPTO (or
DBMS_OBFUSCATION_TOOLKIT in releases before Oracle Data-
base 10g). Chapter 23 describes encryption and other aspects of PL/SQL
application security.

When you wrap PL/SQL source, you convert your readable ASCII text source code into
unreadable ASCII text source code. This unreadable code can then be distributed to
customers, regional offices, etc., for creation in new database instances. The Oracle
database maintains dependencies for this wrapped code as it would for programs com-
piled from readable text. In short, a wrapped program is treated within the database
just as normal PL/SQL programs are treated; the only difference is that prying eyes
can’t query the USER_SOURCE data dictionary to extract trade secrets.

Oracle has, for years, provided a wrap executable that performs the obfuscation of your
code. Starting with Oracle Database 10g Release 2, you can also use the
DBMS_DDL.WRAP and DBMS_DDL.CREATE_WRAPPED programs to wrap dy-
namically constructed PL/SQL code.

Restrictions on and Limitations of Wrapping
You should be aware of the following issues when working with wrapped code:

• Wrapping makes reverse engineering of your source code difficult, but you should
still avoid placing passwords and other highly sensitive information in your code.

• You cannot wrap the source code in triggers. If it is critical that you hide the con-
tents of triggers, move the code to a package and then call the packaged program
from the trigger.

774 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

• Wrapped code cannot be compiled into databases of a version lower than that of
the wrap program. Wrapped code is upward-compatible only.

• You cannot include SQL*Plus substitution variables inside code that must be
wrapped.

Using the Wrap Executable
To wrap PL/SQL source code, you run the wrap executable. This program, named
wrap.exe, is located in the bin directory of the Oracle instance. The format of the
wrap command is:

wrap iname=infile [oname=outfile]

where infile points to the original, readable version of your program, and outfile is the
name of the file that will contain the wrapped version of the code. If infile does not
contain a file extension, then the default of sql is assumed.

If you do not provide an oname argument, then wrap creates a file with the same name
as infile but with a default extension of plb, which stands for “PL/SQL binary” (a mis-
nomer, but it gets the idea across: binaries are, in fact, unreadable).

Here are some examples of using the wrap executable:

• Wrap a program, relying on all the defaults:

wrap iname=secretprog

• Wrap a package body, specifying overrides of all the defaults. Notice that the
wrapped file doesn’t have to have the same filename or extension as the original:

wrap iname=secretbody.spb oname=shhhhhh.bin

Dynamic Wrapping with DBMS_DDL
Oracle Database 10g Release 2 introduced a way to wrap code that is generated
dynamically: the WRAP and CREATE_WRAPPED programs of the DBMS_DDL
package:

DBMS_DDL.WRAP
Returns a string containing an obfuscated version of your code.

DBMS_DDL.CREATE_WRAPPED
Compiles an obfuscated version of your code into the database

Both programs are overloaded to work with a single string and with arrays of strings
based on the DBMS_SQL.VARCHAR2A and DBMS_SQL.VARCHAR2S collection
types. Here are two examples that use these programs:

• Obfuscate and display a string that creates a tiny procedure:

SQL> DECLARE
 2 l_program VARCHAR2 (32767);

Protecting Stored Code | 775

Download at WoweBook.Com

 3 BEGIN
 4 l_program := 'CREATE OR REPLACE PROCEDURE dont_look IS BEGIN NULL; END;';
 5 DBMS_OUTPUT.put_line (SYS.DBMS_DDL.wrap (l_program));
 6 END;
 7 /

The output is:

CREATE OR REPLACE PROCEDURE dont_look wrapped

a000000
369
abcd
....
XtQ19EnOI8a6hBSJmk2NebMgPHswg5nnm7+fMr2ywFy4CP6Z9P4I/v4rpXQruMAy/tJepZmB
CC0r
uIHHLcmmpkOCnm4=

• Read a PL/SQL program definition from a file, obfuscate it, and compile it into the
database:

/* File on web: obfuscate_from_file.sql */
PROCEDURE obfuscate_from_file (
 dir_in IN VARCHAR2
 , file_in IN VARCHAR2
)
IS
 l_file UTL_FILE.file_type;
 l_lines DBMS_SQL.varchar2s;

 PROCEDURE read_file (lines_out IN OUT NOCOPY DBMS_SQL.varchar2s)
 IS BEGIN ... not critical to the example ... END read_file;
BEGIN
 read_file (l_lines);
 SYS.DBMS_DDL.create_wrapped (l_lines, l_lines.FIRST, l_lines.LAST);
END obfuscate_from_file;

Guidelines for Working with Wrapped Code
I have found the following guidelines useful in working with wrapped code:

• Create batch files so that you can easily, quickly, and uniformly wrap one or more
files. In Windows, I create bat files that contain lines like this in my source code
directories:

c:\orant\bin\wrap iname=plvrep.sps oname=plvrep.pls

Of course, you can also create parameterized scripts and pass in the names of the
files you want to wrap.

• You can only wrap package specifications and bodies, object type specifications
and bodies, and standalone functions and procedures. You can run the wrapped
binary against any other kind of SQL or PL/SQL statement, but those files will not
be changed.

776 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

• You can tell that a program is wrapped by examining the program header. It will
contain the keyword WRAPPED, as in:

PACKAGE BODY package_name WRAPPED

Even if you don’t notice the keyword WRAPPED on the first line, you will imme-
diately know that you are looking at wrapped code because the text in
USER_SOURCE will look like this:

 LINE TEXT
------- ----------------------
 45 abcd
 46 95a425ff
 47 a2
 48 7 PACKAGE:

and no matter how bad your coding style is, it surely isn’t that bad!

• Wrapped code is much larger than the original source. I have found in my experi-
ence that a 57 KB readable package body turns into a 153 KB wrapped package
body, while an 86 KB readable package body turns into a 357 KB wrapped package
body. These increases in file size do result in increased requirements for storing
source code in the database. The size of compiled code stays the same, although
the time it takes to compile may increase.

Introduction to Edition-Based Redefinition (Oracle Database
11g Release 2)
One of the most significant enhancements in Oracle Database 11g Release 2 is surely
edition-based redefinition, a new element of Oracle’s high availability solution. This
feature makes it possible to upgrade the database component of an application while
it is being used; that is, Oracle now supports “hot patching” of PL/SQL-based appli-
cations. Edition-based redefinition will make it possible to minimize or completely
eliminate downtime for maintenance.

With edition-based redefinition, when you need to upgrade an application while it is
in use, you make a copy of any affected database objects in the application and rede-
fine the copied objects in isolation from the running application. Any changes you make
are not visible to nor have any effect on users. Users can continue to run the application
as it existed before your changes (to this new edition). When you are certain that all
changes are correct, you then make the upgraded application available to all users.

As you can imagine, adding this feature has had a sweeping impact on the Oracle
database. For example, if you want to see a list of all the objects you have defined,
instead of writing a query against ALL_OBJECTS, you can now query the contents of
ALL_OBJECTS_AE (“All Editions”). The unique specifier for an object is now
OWNER, OBJECT_NAME, and EDITION_NAME (assuming, in any case, that the

Introduction to Edition-Based Redefinition (Oracle Database 11g Release 2) | 777

Download at WoweBook.Com

owner is editions-enabled) This one aspect is just the tip of the iceberg of all the changes
that edition-based redefinition has wrought in the Oracle database.

Other Oracle database capabilities in the high availability space can be adopted and
deployed at particular sites where an application is installed without that application’s
needing special preparation and without its developers even knowing about the high
availability capabilities that different sites use.

Edition-based redefinition is fundamentally different. To take advantage of this feature:

• The schema(s) that own the database objects that are the application’s backend
must be modified to prepare the application to use edition-based redefinition. This
design work should be done by the application architect, and introduced into a
new (or first) version of the application. Scripts need to be written to implement
this preparatory upgrade step, and those scripts must run “old-style,” that is to say,
offline.

• Once the application is ready for edition-based redefinition, the development team
programmers responsible for scripting patches and upgrades will then need to learn
edition-based redefinition and write their scripts in a new way.

Given the complexity of this feature and the fact that, strictly speaking, it extends well
beyond the PL/SQL language, we can do little more in this book than to offer below a
very simple demonstration to give you a sense of how edition-based redefinition works
(all code is available in the 11gR2_editions.sql file on the book’s web site).

Let’s start by creating a new edition. Every edition must be defined as the child of an
existing edition. Furthermore, all databases upgraded to or created in Oracle Database
11g Release 2 start with one edition named ora$base. This edition always must serve
as the parent of the first edition created with a CREATE EDITION statement.

Suppose that I am enhancing my Human Resources application to reflect a change in
the rule for displaying the full name of an employee. Historically, I displayed names in
the format “first space last,” as shown here:

/* File on web: 11gR2_editions.sql */
FUNCTION full_name (first_in IN employees.first_name%TYPE
 , last_in IN employees.first_name%TYPE
)
 RETURN VARCHAR2
IS
BEGIN
 RETURN (first_in || ' ' || last_in);
END full_name;

This function is defined in the ora$base edition. When I call it, I see the following
output:

BEGIN
 DBMS_OUTPUT.put_line (full_name ('Steven', 'Feuerstein'));
END;

778 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

/
Steven Feuerstein

Unfortunately, our users have changed their minds (what a surprise!): they now want
names displayed in the form “last comma first.” Now, this function is called all day
long in the application, and I don’t want to have to force our users off that application.
Thankfully, we recently upgraded to Oracle Database 11g Release 2. So I first create an
edition for the new version of my function:

CREATE_EDITION_HR_PATCH_NAMEFORMAT
/

I then make this edition current in my session:

ALTER SESSION SET edition = HR_PATCH_NAMEFORMAT
/

Since this edition was based on ora$base, it inherits all the objects defined in that parent
edition. I can, therefore, still call my function and get the same answer as before:

BEGIN
 DBMS_OUTPUT.put_line (full_name ('Steven', 'Feuerstein'));
END;
/
Steven Feuerstein

Now I change the implementation of this function to reflect the new rule:

CREATE OR REPLACE FUNCTION full_name (first_in IN employees.first_name%TYPE
 , last_in IN employees.first_name%TYPE
)
 RETURN VARCHAR2
IS
BEGIN
 RETURN (last_in || ', ' || first_in);
END full_name;
/

Now when I run the function, I see a different result:

BEGIN
 DBMS_OUTPUT.put_line (full_name ('Steven', 'Feuerstein'));
END;
/
Feuerstein, Steven

But if I change the edition back to the base edition, I see my old format:

ALTER SESSION SET edition = ora$base
/

BEGIN
 DBMS_OUTPUT.put_line (full_name ('Steven', 'Feuerstein'));
END;
/
Steven Feuerstein

Introduction to Edition-Based Redefinition (Oracle Database 11g Release 2) | 779

Download at WoweBook.Com

That’s the basic idea behind edition-based redefinition, but of course your application
architect and your development team will need to explore the many aspects of this
feature, especially crossedition triggers and editioning views, both of which are needed
when you change the structure of a table (which is not directly editionable),

You will find extensive documentation on edition-based redefinition in the Oracle
Database 11g Release 2 Advanced Application Developer’s Guide.

780 | Chapter 20: Managing PL/SQL Code

Download at WoweBook.Com

CHAPTER 21

Optimizing PL/SQL Performance

Optimizing the performance of an Oracle application is a complex process: you need
to tune the SQL in your code base, make sure the System Global Area (SGA) is properly
configured, optimize algorithmic logic, and so on. Tuning individual PL/SQL programs
is a bit less daunting, but still more than enough of a challenge. Before spending lots
of time changing your PL/SQL code in hopes of improving the performance of that
code, you should first:

Tune access to code and data in the SGA
Before your code can be executed (and perhaps run too slowly), it must be loaded
into the SGA of the Oracle instance. This process can benefit from a focused tuning
effort, usually performed by a DBA. You will find more information about the SGA
and other aspects of the PL/SQL architecture in Chapter 24.

Optimize your SQL
In virtually any application you write against the Oracle database, the vast majority
of tuning will take place by optimizing the SQL statements executed against your
data. The potential inefficiencies of a 16-way join dwarf the usual issues found in
a procedural block of code. To put it another way, if you have a program that runs
in 20 hours, and you need to reduce its elapsed time to 30 minutes, virtually your
only hope will be to concentrate on the SQL within your code. There are many
third-party tools available to both DBAs and developers that perform very sophis-
ticated analyses of SQL within applications and recommend more efficient
alternatives.

Use the most aggressive compiler optimization level possible
Oracle Database 10g introduced an optimizing compiler for PL/SQL programs.
The default optimization level of 2 in that release took the most aggressive approach
possible in terms of transforming your code to make it run faster (Oracle Database
11g has an even higher optimization level of 3. The default optimization level,
however, is still 2 and that will be sufficient for the vast majority of your code).
You should use this default level unless compilation time is unacceptably slow,
and you are not seeing benefits from optimization.

781

Download at WoweBook.Com

Once you are confident that the context in which your PL/SQL code runs is not obvi-
ously inefficient, you should turn your attention to your packages and other code. I
suggest the following steps:

Write your application with best practices and standards in mind
While you shouldn’t take clearly inefficient approaches to meeting requirements,
you also shouldn’t obsess about the performance implications of every line in your
code. Remember that most of the code you write will never be a bottleneck in your
application’s performance, so optimizing it will not result in any user benefits.
Instead, write the application with correctness and maintainability foremost in
mind and then....

Analyze your application’s execution profile
Does it run quickly enough? If it does, great: you don’t need to do any tuning (at
the moment). If it’s too slow, identify which specific elements of the application
are causing the problem and then focus directly on those programs (or parts of
programs). Once identified, you can then ...

Tune your algorithms
As a procedural language, PL/SQL is often used to implement complex formulas
and algorithms. You can use conditional statements, loops, perhaps even GOTOs
and (I hope) reusable modules to get the job done. These algorithms can be written
in many different ways, some of which perform very badly. How do you tune poorly
written algorithms? This is a tough question with no easy answers. Tuning algo-
rithms is much more complex than tuning SQL (which is “structured” and there-
fore lends itself more easily to automated analysis).

Take advantage of any PL/SQL-specific performance features
Over the years, Oracle has added statements and optimizations that can make a
substantial difference to the execution of your code. Consider using constructs
ranging from the RETURNING clause to FORALL. Make sure you aren’t living in
the past and paying the price in application inefficiencies.

Balance performance improvements against memory consumption
A number of the techniques that improve the performance of your code also con-
sume more memory, usually in the Program Global Area (PGA), but also sometimes
in the SGA. It won’t do you much good to make your program blazingly fast if the
resulting memory consumption is unacceptable in your application environment.

It’s outside the scope of this book to offer substantial advice on SQL tuning and data-
base/SGA configuration. I certainly can, on the other hand, tell you all about the most
important performance optimization features of PL/SQL, and offer advice on how to
apply those features to achieve the fastest PL/SQL code possible.

Finally, remember that overall performance optimization is a team effort. Work closely
with your DBA, especially as you begin to leverage key features like collections, table
functions and the function result cache.

782 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

Tools to Assist in Optimization
In this section, I introduce the tools and techniques that can help optimize the per-
formance of your code. These fall into several categories: analyzing memory usage,
identifying bottlenecks in PL/SQL code, calculating elapsed time, choosing the fastest
program, avoiding infinite loops, and using performance-related warnings.

Analyzing Memory Usage
As I mentioned, as you go about optimizing code performance, you will also need to
take into account the amount of memory your program consumes. Program data con-
sumes PGA; each session connected to the Oracle database has its own PGA. Thus, the
total memory required for your application is usually far greater than the memory
needed for a single instance of the program. Memory consumption is an especially
critical factor whenever you work with collections (array-like structures), as well as
object types with a large number of attributes and records having a large number of
fields.

For an in-depth discussion of this topic, check out the section “PL/SQL and Database
Instance Memory” on page 996 in Chapter 24.

Identifying Bottlenecks in PL/SQL Code
Before you can tune your application, you need to figure out what is running slowly
and where you should focus your efforts. Oracle and third-party vendors offer a variety
of products to help you do this; generally they focus on analyzing the SQL statements
in your code, offering alternative implementations, and so on. These tools are very
powerful, yet they can also be very frustrating to PL/SQL developers. They tend to offer
an overwhelming amount of performance data without telling you what you really want
to know: where are the bottlenecks in your code?

To answer these questions, Oracle offers a number of built-in utilities. Here are the
most useful:

DBMS_PROFILER
This built-in package allows you to turn on execution profiling in a session. Then,
when you run your code, the Oracle database uses tables to keep track of detailed
information about how long each line in your code took to execute. You can then
run queries on these tables or—preferably—use screens in products like Toad or
SQL Navigator to present the data in a clear, graphical fashion.

DBMS_HPROF (hierarchical profiler)
Oracle Database 11g features a new hierarchical profiler that makes it easier to roll
performance results up through the execution call stack. DBMS_PROFILER pro-
vides “flat” data about performance, which makes it difficult to answer questions

Tools to Assist in Optimization | 783

Download at WoweBook.Com

like “How much time altogether is spent in the ADD_ITEM procedure?” The hi-
erarchical profiler makes it easy to answer such questions.

DBMS_PROFILER

In case you do not have access to a tool that offers an interface to DBMS_PROFILER,
here are some instructions and examples.

First of all, Oracle may not have installed DBMS_PROFILER for you automatically. To
see if DBMS_PROFILER is installed and available, connect to your schema in SQL*Plus
and issue this command:

SQL> DESC DBMS_PROFILER

If you then see the message:

ERROR:
ORA-04043: object dbms_profiler does not exist

then you (or your DBA) will have to install the program. To do this, run the $ORA-
CLE_HOME/rdbms/admin/profload.sql file under a SYSDBA account.

You next need to run the $ORACLE_HOME/rdbms/admin/proftab.sql file in your own
schema to create three tables populated by DBMS_PROFILER:

PLSQL_PROFILER_RUNS
Parent table of runs

PLSQL_PROFILER_UNITS
Program units executed in run

PLSQL_PROFILER_DATA
Profiling data for each line in a program unit

Once all these objects are defined, you gather profiling information for your application
by writing code like this:

BEGIN
 DBMS_PROFILER.start_profiler (
 'my application' || TO_CHAR (SYSDATE, 'YYYYMMDD HH24:MI:SS')
);

 my_application_code;

 DBMS_PROFILER.stop_profiler;
END;

Once you have finished running your application code, you can run queries against the
data in the PLSQL_PROFILER_ tables. Here is an example of such a query that displays
those lines of code that consumed at least 1% of the total time of the run:

/* File on web: slowest.sql */
SELECT TO_CHAR (
 p1.total_time / 10000000,
 '99999999')

784 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

 || '-'
 || TO_CHAR (p1.total_occur) AS time_count,
 p2.unit_owner || '.' || p2.unit_name unit,
 TO_CHAR (p1.line#)
 || '-'
 || p3.text text
 FROM plsql_profiler_data p1, plsql_profiler_units p2, all_source p3,
 plsql_profiler_grand_total p4
 WHERE p2.unit_owner NOT IN ('SYS', 'SYSTEM')
 AND p1.runid = &&firstparm
 AND (p1.total_time >= p4.grand_total / 100)
 AND p1.runid = p2.runid
 AND p2.unit_number = p1.unit_number
 AND p3.TYPE = 'PACKAGE BODY'
 AND p3.owner = p2.unit_owner
 AND p3.line = p1.line#
 AND p3.NAME = p2.unit_name
ORDER BY p1.total_time DESC;

As you can see, these queries are fairly complex (I modified one of the canned queries
from Oracle to produce the above four-way join). That’s why it is far better to rely on
a graphical interface in a PL/SQL development tool.

Hierarchical profiler

Oracle Database 11g has introduced a second profiling mechanism: DBMS_HPROF,
known as the hierarchical profiler. Use this profiler to obtain the execution profile of
PL/SQL code, organized by the distinct subprogram calls in your application. “OK,” I
can hear you thinking, “but doesn’t DBMS_PROFILER do that for me already?” Not
really. Nonhierarchical (flat) profilers like DBMS_PROFILER record the time that your
application spends within each subprogram, down to the execution time of each indi-
vidual line of code. That’s helpful, but in a limited way. Often, you also want to know
how much time the application spends within a particular subprogram—that is, you
need to “roll up” profile information to the subprogram level. That’s what the new
hierarchical profiler does for you.

The PL/SQL hierarchical profiler reports performance information about each sub-
program in your application that is profiled, keeping SQL and PL/SQL execution times
distinct. The profiler tracks a wide variety of information, including the number of calls
to the subprogram, the amount of time spent in that subprogram, the time spent in the
subprogram’s subtree (that is, in its descendent subprograms), and detailed parent-
children information.

The hierarchical profiler has two components:

Data collector
Provides APIs that turn hierarchical profiling on and off. The PL/SQL runtime
engine writes the “raw” profiler output to the specified file.

Tools to Assist in Optimization | 785

Download at WoweBook.Com

Analyzer
Processes the raw profiler output and stores the results in hierarchical profiler ta-
bles, which can then be queried to display profiler information.

To use the hierarchical profiler, do the following:

1. Make sure that you can execute the DBMS_HPROF package.

2. Make sure that you have WRITE privileges on the directory that you specify when
you call DBMS_HPROF.START_PROFILING.

3. Create the three profiler tables (see details on this step below).

4. Call the DBMS_HPROF.START_PROFILING procedure to start the hierarchical
profiler data collection in your session.

5. Run your application code long and repetitively enough to obtain sufficient code
coverage to get interesting results.

6. Call the DBMS_HPROF.STOP_PROFILING procedure to terminate the gathering
of profile data.

7. Analyze the contents and then run queries against the profiler tables to obtain
results.

To get the most accurate measurements of elapsed time for your sub-
programs, you should minimize any unrelated activity on the system on
which your application is running.

Of course, on a production system other processes may slow down your
program. You may also want to run these measurements while using
Real Application Testing (RAT) in Oracle Database 11g to obtain real
response times.

To create the profiler tables and other necessary database objects, run the
dbmshptab.sql script (located in the rdbms/admin directory). This script will create these
three tables:

DBMSHP_RUNS
Top-level information about each run of the ANALYZE utility of DBMS_HPROF.

DBMSHP_FUNCTION_INFO
Detailed information about the execution of each subprogram profiled in a par-
ticular run of the ANALYZE utility.

DBMSHP_PARENT_CHILD_INFO
Parent-child information for each subprogram profiled in DBMSHP_FUNC-
TION_INFO.

Here’s a very simple example: I want to test the performance of my intab procedure
(which displays the contents of the specified table using DBMS_SQL). So first I start
profiling, specifying that I want the raw profiler data to be written to the

786 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

intab_trace.txt file in the TEMP_DIR directory. This directory must have been previ-
ously defined with the CREATE DIRECTORY statement.

BEGIN
 DBMS_HPROF.start_profiling ('TEMP_DIR', 'intab_trace.txt');
END;
/

Then I call my program (run my application code):

BEGIN
 intab ('DEPARTMENTS');
END;
/

And then I terminate my profiling session:

BEGIN
 DBMS_HPROF.stop_profiling;
END;
/

I could have included all three statements in the same block of code; instead, I kept
them separate because in most situations you are not going to include profiling com-
mands in or near your application code.

So now that trace file is populated with data. I could open it and look at the data, and
perhaps make a little bit of sense of what I find there. A much better use of my time
and Oracle’s technology, however, would be to call the ANALYZE utility of
DBMS_HPROF. This function takes the contents of the trace file, transforms it, and
places it into the three profiler tables. It returns a run number, which you must then
use when querying the contents of these tables.

BEGIN
 DBMS_OUTPUT.PUT_LINE (
 DBMS_HPROF.ANALYZE ('TEMP_DIR', 'intab_trace.txt'));
END;
/

And that’s it! The data has been collected and analyzed into the tables, and now I can
choose from one of two approaches to obtaining the profile information:

1. Run the plshprof command-line utility (located in the directory
$ORACLE_HOME/bin/). This utility generates simple HTML reports from either
one or two raw profiler output files. For an example of a raw profiler output file,
see the section titled “Collecting Profile Data” in the Oracle Database Advanced
Application Developer’s Guide. I can then peruse the generated HTML reports in
the browser of my choice.

2. Run my own “home-grown” queries. Suppose, for example, that the above block
returns 177 as the run number. First, here’s a query that shows all current runs:

SELECT runid, run_timestamp, total_elapsed_time, run_comment
 FROM dbmshp_runs

Tools to Assist in Optimization | 787

Download at WoweBook.Com

Here’s a query that shows me all the names of subprograms that have been profiled,
across all runs:

SELECT symbolid, owner, module, type, function, line#, namespace
 FROM dbmshp_function_info

Here’s a query that shows me information about subprogram execution for this specific
run:

SELECT FUNCTION, line#, namespace, subtree_elapsed_time
 , function_elapsed_time, calls
 FROM dbmshp_function_info
 WHERE runid = 177

This query retrieves parent-child information for the current run, but not in a very
interesting way, since I see only key values and not names of programs.

SELECT parentsymid, childsymid, subtree_elapsed_time, function_elapsed_time
 , calls
 FROM dbmshp_parent_child_info
 WHERE runid = 117

Here’s a more useful query, joining with the function information table; now I can see
the names of the parent and child programs, along with the elapsed time and number
of calls.

SELECT RPAD (' ', LEVEL * 2, ' ') || fi.owner || '.' || fi.module AS NAME
 , fi.FUNCTION, pci.subtree_elapsed_time, pci.function_elapsed_time
 , pci.calls
 FROM dbmshp_parent_child_info pci JOIN dbmshp_function_info fi
 ON pci.runid = fi.runid AND pci.childsymid = fi.symbolid
 WHERE pci.runid = 117
CONNECT BY PRIOR childsymid = parentsymid
START WITH pci.parentsymid = 1

The hierarchical profiler is a very powerful and rich utility. I suggest that you read
Chapter 9 of the Oracle Database Advanced Application Developer’s Guide for extensive
coverage of this profiler.

Calculating Elapsed Time
So you’ve found the bottleneck in your application; it’s a function named CALC_TO-
TALS, and it contains a complex algorithm that clearly needs some tuning. You work
on the function for a little while, and now you want to know if it’s faster. You certainly
could profile execution of your entire application again, but it would certainly be much
easier if you could simply run the original and modified versions “side by side” and see
which is faster. To do this, you need a utility that computes the elapsed time of indi-
vidual programs, even lines of code within a program.

The DBMS_UTILITY package offers two functions to help you obtain this information:
DBMS_UTILITY.GET_TIME and DBMS_UTILITY.GET_CPU_TIME. Both are avail-
able for Oracle Database 10g and later.

788 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

You can easily use these functions to calculate the elapsed time (total and CPU, re-
spectively) of your code down to the hundredth of a second. Here’s the basic idea:

• Call DBMS_UTILITY.GET_TIME (or GET_CPU_TIME) before you execute your
code. Store this “start time.”

• Run the code whose performance you want to measure.

• Call DBMS_UTILITY.GET_TIME (or GET_CPU_TIME) to get the “end time.”
Subtract start from end; this difference is the number of hundredths of seconds
that have elapsed between start and end.

Here is an example of this flow:

DECLARE
 l_start_time PLS_INTEGER;
BEGIN
 l_start_time := DBMS_UTILITY.get_time;

 my_program;

 DBMS_OUTPUT.put_line (
 'Elapsed: ' || DBMS_UTILITY.get_time - l_start_time);
END;

Now, here’s something strange: I find these functions extremely useful, but I never (or
rarely) call them directly in my performance scripts. Instead, I choose to encapsulate or
hide the use of these functions—and their related “end – start” formula—inside a
package or object type. In other words, when I want to test “my_program”, I would
write the following:

BEGIN
 sf_timer.start_timer ();

 my_program;

 sf_timer.show_elapsed_time ('Ran my_program');
END;

In other words, I capture the start time, run the code, and show the elapsed time.

I avoid direct calls to DBMS_UTILITY.GET_TIME, and instead use the SFTK timer
package, sf_timer, for two reasons:

• To improve productivity: Who wants to declare those local variables, write all the
code to call that mouthful of a built-in function, and do the math? I’d much rather
have my utility do it for me.

• To get consistent results: If you rely on the simple “end – start” formula, you can
sometimes end up with a negative elapsed time. Now, I don’t care how fast your
code is; you can’t possibly go backwards in time!

How is it possible to obtain a negative elapsed time? The number returned by
DBMS_UTILITY.GET_TIME represents the total number of seconds elapsed since an

Tools to Assist in Optimization | 789

Download at WoweBook.Com

arbitrary point in time. When this number gets very big (the limit depends on your
operating system), it rolls over to 0 and starts counting again. So if you happen to call
GET_TIME right before the roll-over, end – start will come out negative!

What you really need to do to avoid the possible negative timing is to write code like
this:

DECLARE
 c_big_number NUMBER := POWER (2, 32);
 l_start_time PLS_INTEGER;
BEGIN
 l_start_time := DBMS_UTILITY.get_time;
 my_program;
 DBMS_OUTPUT.put_line (
 'Elapsed: '
 || TO_CHAR (MOD (DBMS_UTILITY.get_time - l_start_time + c_big_number
 , c_big_number)));
END;

Who in their right mind, and with the deadlines we all face, would want to write such
code every time he or she needs to calculate elapsed time?

So instead I created the sf_timer package, to hide these details and make it easier to
analyze and compare elapsed times.

Choosing the Fastest Program
You’d think that choosing the fastest program would be clear and unambiguous. You
run a script, you see which of your various implementations runs the fastest, and you
go with that one. Ah, but under what scenario did you run those implementations? Just
because you verified top speed for implementation C for one set of circumstances, that
doesn’t mean that your program will always or even mostly run faster than the other
implementations.

When testing performance and especially when needing to choose among different
implementations of the same requirements, you should consider and test all the fol-
lowing scenarios:

Positive results
The program was given valid inputs and did what it was supposed to do.

Negative results
The program was given invalid inputs (for example, a nonexistent primary key)
and the program was not able to perform the requested tasks.

The data neutrality of your algorithms
Your program works really well against a table of 10 rows, but what about for
10,000 rows? Your program scans a collection for matching data, but what if the
matching row is at the beginning, middle, or end of the collection?

790 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

Multiuser execution of program
The program works fine for a single user, but you need to test it for simultaneous,
multiuser access. You don’t want to find out about deadlocks after the product
goes into production, do you?

Test on all supported versions of Oracle
If your application needs to work well on Oracle Database 10g and Oracle Database
11g, for example, you must run your comparison scripts on instances of each
version.

The specifics of each of your scenarios depend, of course, on the program you are
testing. I suggest, though, that you create a procedure that executes each of your im-
plementations and calculates the elapsed time for each. The parameter list of this pro-
cedure should include the number of times you want to run each program; you will
very rarely be able to run each program just once and get useful results. You need to
run your code enough times to ensure that the initial loading of code and data into
memory does not skew the results. The other parameters to the procedure are deter-
mined by what you need to pass to each of your programs to run them.

Here is a template for such a procedure, with calls to sf_timer in place and ready to go:

/* File on web: compare_performance_template.sql */
PROCEDURE compare_implementations (
 title_in IN VARCHAR2
 , iterations_in IN INTEGER
/*
And now any parameters you need to pass data to the
programs you are comparing....
*/
)
IS
BEGIN
 DBMS_OUTPUT.put_line ('Compare Performance of <CHANGE THIS>: ');
 DBMS_OUTPUT.put_line (title_in);
 DBMS_OUTPUT.put_line ('Each program execute ' || iterations_in || ' times.');
 /*
 For each implementation, start the timer, run the program N times,
 then show elapsed time.
 */
 sf_timer.start_timer;

 FOR indx IN 1 .. iterations_in
 LOOP
 /* Call your program here. */
 NULL;
 END LOOP;

 sf_timer.show_elapsed_time ('<CHANGE THIS: Implementation 1');
 --
 sf_timer.start_timer;

 FOR indx IN 1 .. iterations_in
 LOOP

Tools to Assist in Optimization | 791

Download at WoweBook.Com

 /* Call your program here. */
 NULL;
 END LOOP;

 sf_timer.show_elapsed_time ('<CHANGE THIS: Implementation 2');
END compare_implementations;

You will see a number of examples of using sf_timer in this chapter.

Avoiding Infinite Loops
If you are concerned about performance, you certainly want to avoid infinite loops!
Infinite loops are less a problem for production applications (assuming that your team
has done a decent job of testing!) and more a problem when you are in the process of
building your programs. You may need to write some tricky logic to terminate a loop,
and it certainly isn’t productive to have to kill and restart your session as you test your
program.

I have run into my own share of infinite loops and finally decided to write a utility to
help me avoid this annoying outcome: the Loop Killer package. The idea behind
sf_loop_killer is that while you may not yet be sure how to terminate the loop suc-
cessfully, you know that if the loop body executes more than N times (e.g., 100, 1000,
depending on your situation), you have a problem.

So you compile the Loop Killer package into your development schema and then write
a small amount of code that will lead to a termination of the loop when it reaches a
number of iterations you deem to be an unequivocal indicator of an infinite loop.

Here’s the package spec (the full package is available on the book’s web site):

/* File on web: sf_loop_killer.pks/pkb */
PACKAGE sf_loop_killer
IS
 c_max_iterations CONSTANT PLS_INTEGER DEFAULT 1000;
 e_infinite_loop_detected EXCEPTION;
 c_infinite_loop_detected PLS_INTEGER := −20999;
 PRAGMA EXCEPTION_INIT (e_infinite_loop_detected, −20999);

 PROCEDURE kill_after (max_iterations_in IN PLS_INTEGER);

 PROCEDURE increment_or_kill (by_in IN PLS_INTEGER DEFAULT 1);

 FUNCTION current_count RETURN PLS_INTEGER;
END sf_loop_killer;

Let’s look at an example of using this utility: I specify that I want the loop killed after
100 iterations. Then I call “increment or kill” at the end of the loop body. When I run
this code (clearly an infinite loop), I then see the unhandled exception shown in Fig-
ure 21-1.

792 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

Performance-Related Warnings
Oracle introduced a compile-time warnings framework in Oracle Database 10g
PL/SQL. When you turn on warnings in your session, Oracle will give you feedback
on the quality of your code, and will offer advice for improving readability and per-
formance. I recommend that you use compile-time warnings to help identify areas of
your code that could be optimized.

You can enable warnings for the entire set of performance-related warnings with the
following statement:

ALTER SESSION SET PLSQL_WARNINGS = 'ENABLE:PERFORMANCE'

Performance warnings include the following:

• PLW-06014: PLSQL_OPTIMIZE_LEVEL <= 1 turns off native code generation

• PLW-07203: parameter “string” may benefit from use of the NOCOPY compiler
hint

• PLW-07204: conversion away from column type may result in suboptimal query
plan

See “Compile-Time Warnings” on page 735 for additional warnings and more details
about working with these warnings. All of the warnings are documented in the Error
Messages book of your Oracle documentation set.

The Optimizing Compiler
PL/SQL’s optimizing compiler can improve runtime performance dramatically, with a
relatively slight cost at compile time. The benefits of optimization apply to both

Figure 21-1. Using the Loop Killer package

The Optimizing Compiler | 793

Download at WoweBook.Com

interpreted and natively compiled PL/SQL because optimizations are applied by ana-
lyzing patterns in source code.

The optimizing compiler is enabled by default. However, you may want to alter its
behavior, either by lowering its aggressiveness or by disabling it entirely. For example,
if, in the course of normal operations, your system must perform recompilation of many
lines of code, or if an application generates many lines of dynamically executed
PL/SQL, the overhead of optimization may be unacceptable. Keep in mind, though,
that Oracle’s tests show that the optimizer doubles the runtime performance of com-
putationally intensive PL/SQL.

In some cases, the optimizer may even alter program behavior. One such case might
occur in code written for Oracle9i Database that depends on the relative timing of
initialization sections in multiple packages. If your testing demonstrates such a prob-
lem, yet you wish to enjoy the performance benefits of the optimizer, you may want to
rewrite the offending code or to introduce an initialization routine that ensures the
desired order of execution.

The optimizer settings are defined through the PLSQL_OPTIMIZE_LEVEL initializa-
tion parameter (and related ALTER DDL statements), which can be set to 0, 1, 2, or 3
(3 is available only in Oracle Database 11g). The higher the number, the more aggressive
is the optimization, meaning that the compiler will make a greater effort, and possibly
restructure more of your code to optimize performance.

Set your optimization level according to the best fit for your application or program,
as follows:

PLSQL_OPTIMIZE_LEVEL = 0
Zero essentially turns off optimization. The PL/SQL compiler maintains the orig-
inal evaluation order of statement processing of Oracle9i Database and earlier re-
leases. Your code will still run faster than in earlier versions, but the difference will
not be so dramatic.

PLSQL_OPTIMIZE_LEVEL = 1
The compiler will apply many optimizations to your code, such as eliminating
unnecessary computations and exceptions. It will not, in general, change the order
of your original source code.

PLSQL_OPTIMIZE_LEVEL = 2
This is the default value. It is also the most aggressive setting available prior to
Oracle Database 11g. It will apply many modern optimization techniques beyond
level 1, and some of those changes may result in moving source code relatively far
from its original location. Level 2 optimization offers the greatest boost in per-
formance. It may, however, cause the compilation time in some of your programs
to increase substantially. If you encounter this situation (or, alternatively, if you
are developing your code and want to minimize compile time, knowing that when
you move to production, you will apply the highest optimization level), try cutting
back the optimization level to 1.

794 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

PLSQL_OPTIMIZE_LEVEL = 3
New to Oracle Database 11g, this level of optimization adds inlining of nested or
local subprograms. It may be of benefit in extreme cases (large numbers of local
subprograms or recursive execution), but for most PL/SQL applications, the de-
fault level of 2 should suffice.

You can set the optimization level for the instance as a whole, but then override the
default for a session or for a particular program. Here are some examples:

ALTER SESSION SET PLSQL_OPTIMIZE_LEVEL = 0;

Oracle retains optimizer settings on a module-by-module basis. When you recompile
a particular module with nondefault settings, the settings will “stick,” allowing you to
recompile later using REUSE SETTINGS. For example:

ALTER PROCEDURE bigproc COMPILE PLSQL_OPTIMIZE_LEVEL = 0;

and then:

ALTER PROCEDURE bigproc COMPILE REUSE SETTINGS;

To view all the compiler settings for your modules, including optimizer level,
interpreted versus native, and compiler warning levels, query the
USER_PLSQL_OBJECT_SETTINGS view.

Insights on How the Optimizer Works
In addition to doing things that mere programmers are not allowed to do, optimizers
can also detect and exploit patterns in your code that you might not notice. One of the
chief methods that optimizers employ is reordering the work that needs to be done, to
improve runtime efficiency. The definition of the programming language circumscribes
the amount of reordering an optimizer can do, but PL/SQL’s definition leaves plenty
of wiggle room—or “freedom”—for the optimizer. The rest of this section discusses
some of the freedoms offered by PL/SQL, and gives examples of how code can be
improved in light of them.

As a first example, consider the case of a “loop invariant,” something that is inside a
loop but that remains constant over every iteration. Any programmer worth his salt
will take a look at this:

FOR e IN (SELECT * FROM employees WHERE DEPT = p_dept)
LOOP
 DBMS_OUTPUT.PUT_LINE('<DEPT>' || p_dept || '</DEPT>');
 DBMS_OUTPUT.PUT_LINE('<emp ID="' || e.empno || '">');
 etc.
END LOOP;

and tell you it would likely run faster if you pull the “invariant” piece out of the loop,
so it doesn’t re-execute needlessly:

l_dept_str := '<DEPT>' || p_dept || '</DEPT>'
FOR e IN (SELECT * FROM employees WHERE DEPT = p_dept)

The Optimizing Compiler | 795

Download at WoweBook.Com

LOOP
 DBMS_OUTPUT.PUT_LINE(l_dept_str);
 DBMS_OUTPUT.PUT_LINE('<emp ID="' || e.empno || '">');
 etc.
END LOOP;

Even a salt-worthy programmer might decide, however, that the clarity of the first
version outweighs the performance gains that the second would give you. Starting with
Oracle Database 10g, PL/SQL no longer forces you to make this decision. With the
default optimizer settings, the compiler will detect the pattern in the first version and
convert it to bytecode that implements the second version. The reason this can happen
is that the language definition does not require that loop invariants be executed re-
peatedly; this is one of the freedoms the optimizer can, and does, exploit. You might
think that this is optimization is a little thing, and it is; but it’s the little things that can
add up. I’ve never seen a database that got smaller over time. Plenty of PL/SQL pro-
grams loop over all of the records in a growing table, and a million-row table is no
longer considered unusually large. Personally, I’d be quite happy if Oracle would au-
tomatically eliminate a million unnecessary instructions from my code.

As another example, consider a series of statements such as these:

result1 := r * s * t;
...
result2 := r * s * v;

If there is no possibility of modifying r and s between these two statements, PL/SQL is
free to compile the code like this:

interim := r * s;
result1 := interim * t;
...
result2 := interim * v;

The optimizer would take such a step if it thinks that storing the value in a temporary
variable would be faster than repeating the multiplication.

Oracle has revealed these and other insights into the PL/SQL optimizer in a whitepaper,
“Freedom, Order, and PL/SQL Compilation,” which is available on the Oracle Tech-
nology Network.* To summarize some of the paper’s main points:

1. Unless your code requires execution of a code fragment in a particular order by the
rules of short-circuit expressions or of statement ordering, PL/SQL may execute
the fragment in some order other than the one in which it was originally written.
Reordering has a number of possible manifestations. In particular, the optimizer
may change the order in which package initialization sections execute, and if a
calling program only needs access to a package constant, the compiler may simply
store that constant with the caller.

* “Freedom, Order, and PL/SQL Compilation,” by Charles Wetherell, is available on OTN at http://otn.oracle
.com (enter the paper title in the search box).

796 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

http://otn.oracle.com
http://otn.oracle.com

2. PL/SQL treats the evaluation of array indexes and the identification of fields in
records as operators. If you have a nested collection of records and refer to a par-
ticular element and field such as price(product)(type).settle, PL/SQL must figure
out an internal address that is associated with the variable. This address is treated
as an expression; it may be stored and reused later in the program to avoid the cost
of recomputation.

3. As shown earlier, PL/SQL may introduce interim values to avoid computations.

4. PL/SQL may completely eliminate operations such as x*0. However, an explicit
function call will not be eliminated; in the expression f()*0, the function f() will
always be called in case there are side effects. (In fact, the function will be called
even if it is free of side effects and marked as DETERMINISTIC; the PL/SQL com-
piler ignores this keyword.)

5. PL/SQL does not introduce new exceptions.

6. PL/SQL may obviate the raising of exceptions. For example, the divide by 0 ex-
ception in this code can be dropped because it is unreachable:

IF FALSE THEN y := x/0; END IF;

7. PL/SQL does not have the freedom to change which exception handler will handle
a given exception.

Point 1 deserves a bit of elaboration. In the applications that I write, I’m accustomed
to taking advantage of package initialization sections, but I’ve never really worried
about execution order. My initialization sections are typically small and involve the
assignment of static lookup values (typically retrieved from the database), and these
operations seem to be immune from the order of operations. If your application must
guarantee the order of execution, you’ll want to move the code out of the initialization
section and put it into separate initialization routines you invoke explicitly; for example,
call:

pkgA.init();
pkgB.init();

right where you need pkgA and then pkgB initialized. This advice holds true even if
you are not using the optimizing compiler.

Point 2 also deserves some comment. The example is price(product)(type).settle. If this
element is referenced several times where the value of the variable type is changing but
the value of the variable product is not, then optimization might split the addressing
into two parts—the first to compute price(product) and the second (used several places)
to compute the rest of the address. The code will run faster because only the changeable
part of the address is recomputed each time the entire reference is used. More impor-
tantly, this is one of those changes that the compiler can make easily, but that would
be very difficult for the programmer to make in the original source code because of the
semantics of PL/SQL. Many of the optimization changes are of this ilk; the compiler
can operate “under the hood” to do something the programmer would find difficult.

The Optimizing Compiler | 797

Download at WoweBook.Com

PL/SQL includes other features to identify and speed up certain programming idioms.
In this code:

 counter := counter + 1;

the compiler does not generate machine code that does the complete addition. Instead,
PL/SQL detects this programming idiom and uses a special PL/SQL Virtual Machine
(PVM) “increment” instruction that runs much faster than the conventional addition.

A special instruction also exists to handle code that concatenates many terms:

str := 'value1' || 'value2' || 'value3' ...

Rather than treating this as a series of pair-wise concatenations, the compiler and PVM
work together and do the series of concatenations in a single instruction.

Most of the rewriting that the optimizer does will be invisible to you. During an up-
grade, you may find a program that is not as well behaved as you thought, because it
relied on an order of execution that the new compiler has changed. It seems likely that
a common problem area will be the order of package initialization, but of course your
mileage may vary.

One final comment: the way the optimizer modifies code is deterministic, at least for
a given value of PLSQL_OPTIMIZE_LEVEL. In other words, if you write, compile, and
test your program using, say, the default optimizer level of 2, its behavior will not
change when you move the program to a different computer or a different database—
as long as the destination database version and optimizer level are the same.

Runtime Optimization of Fetch Loops
For database versions up through and including Oracle9i Database Release 2, a cursor
FOR loop such as the following would retrieve exactly one logical row per fetch.

FOR arow IN (SELECT something FROM somewhere)
LOOP
 ...
END LOOP;

So, if you had 500 rows to retrieve, there would be 500 fetches, and therefore 500
expensive “context switches” between PL/SQL and SQL.

However, starting with Oracle Database 10g, the database performs an automatic
“bulkification” of this construct so that each fetch retrieves (up to) 100 rows. The cursor
FOR loop above would use only five fetches to bring the 500 rows back from the SQL
engine. It’s as if the database automatically recodes your loop to use the BULK COL-
LECT feature (described later in this chapter).

This apparently undocumented feature also works for code of the form:

FOR arow IN cursorname
LOOP

798 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

 ...
END LOOP;

However, it does not work with code of the form:

OPEN cursorname;
LOOP
 EXIT WHEN cursorname%NOTFOUND;
 FETCH cursorname INTO ...
END LOOP;
CLOSE cursorname;

Nevertheless, this internal optimization should be a big win for the cursor FOR loop
case (which has the added benefit of conciseness).

Data Caching Techniques
A very common technique for improving performance is to build caches for data that
needs to be accessed repeatedly—and that is, at least for some period of time, static
(does not change).

The SGA of the Oracle database is the “mother of all caches,” Oracle-wise. It is a (usu-
ally) very large and (always) very complex area of memory that serves as the interme-
diary between the actual database (files on disk) and the programs that manipulate that
database.

As described more thoroughly in Chapter 20, the SGA caches the following information
(and much more, but these are the most relevant for PL/SQL programmers):

• Parsed cursors

• Data queried by cursors from the database

• Partially compiled representations of our programs

For the most part, however, the database does not use the SGA to cache program
data. When you declare a variable in your program, the memory for that data is con-
sumed in the PGA. Each connection to the database has its own PGA; the memory
required to store your program data is, therefore, copied in each connection that calls
that program.

Fortunately, there is a benefit to the use of PGA memory: your PL/SQL program can
retrieve information more quickly from the PGA than it can from the SGA. Thus, PGA-
based caching offers some interesting opportunities to improve performance. Oracle
also provides other PL/SQL-specific caching mechanisms to help improve performance
of your programs. In this section, you will learn about three types of PL/SQL caching:

Package-based caching
Use the PGA memory area to store static data that you need to retrieve many times.
Use PL/SQL programs to avoid repeatedly accessing data via the SQL layer in the

Data Caching Techniques | 799

Download at WoweBook.Com

SGA. This is the fastest caching technique, but also the most restrictive in terms of
circumstances when it can be safely used.

Deterministic function caching
When you declare a function to be deterministic and call that function inside a SQL
statement, Oracle will cache the inputs to the function and its return value. If you
call the function with the same inputs, Oracle will return the previously stored
value without calling the function.

Function result caching (Oracle Database 11g)
This latest advance in PL/SQL caching is the most exciting and useful. With a
simple declarative clause in your function header, you can instruct the database to
cache the function’s input and return values. In contrast to the deterministic ap-
proach, however, the function result cache is used whenever the function is called
(not just from within a SQL statement), and the cache is automatically invalidated
when dependent data changes.

Cache with care! When you cache, you store a copy of the data. You
need to be very certain that your copy is accurate and up-to-date. It is
quite possible to abuse each of these caching approaches and end up
with “dirty data” being served up to users.

Package-Based Caching
A package-based cache consists of one or more variables declared at the package-level,
rather than in any subprogram of the package. Package-level data is a natural repository
for a cache, because this kind of data persists throughout a session, even if programs
in that session are not currently using the data or calling any of the subprograms in the
package. In other words, if you declare a variable at the package level, then once you
assign a value to that variable, it keeps that value until you disconnect, recompile the
package, or change the value.

I will explore package-based caching by first describing the scenarios under which you
will want to use this technique. Then I will look at a simple example of caching a single
value. Finally, I will show you how you can cache all or part of a relational table in a
package, and thereby greatly speed up access to the data in that table.

When to use package-based caching

Consider using a package-based cache under the following circumstances:

• You are not yet using Oracle Database 11g or higher. If you are developing appli-
cations for recent releases, you will almost always be better off using the function
result cache, not a package-based cache.

• The data you wish to cache does not change for the duration of time that the data
is needed by a user. Examples of static data include small reference tables (“O” is

800 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

for “Open”, “C” is for “Closed”, etc.) that rarely if ever change; and batch scripts
that require a “snapshot” of consistent data taken at the time the script starts and
used until the script ends.

• Your database server has enough memory to support a copy of your cache for each
session connected to the instance (and using your cache). You can use the utility
described earlier in this chapter to measure the size of the cache defined in your
package.

Conversely, do not use a package-based cache if either of the following is true:

• The data you are caching could possibly change during the time the user accesses
the cache.

• The volume of data cached requires too much memory per session, causing mem-
ory errors with large numbers of users.

A simple example of package-based caching

Consider the USER function—it returns the name of the currently connected session.
Oracle implements this function in the STANDARD package as follows:

function USER return varchar2 is
c varchar2(255);
begin
 select user into c from sys.dual;
 return c;
end;

Thus, every time you call USER, you execute a query. Sure, it’s a fast query, but it should
never be executed more than once in a session, since the value never changes. You are
probably now saying to yourself: So what? Not only is a SELECT FROM dual very
efficient, but the Oracle database will also cache the parsed query and the value re-
turned, so it is already very optimized. Would package-based caching make any dif-
ference? Absolutely!

Consider the following package:

/* File on web: thisuser.pkg */
PACKAGE thisuser
IS
 cname CONSTANT VARCHAR2(30) := USER;
 FUNCTION name RETURN VARCHAR2;
END;

PACKAGE BODY thisuser
IS
 g_user VARCHAR2(30) := USER;

 FUNCTION name RETURN VARCHAR2 IS BEGIN RETURN g_user; END;
END;

I cache the value returned by USER in two different ways:

Data Caching Techniques | 801

Download at WoweBook.Com

• A constant defined at the package level: the PL/SQL runtime engine calls USER to
initialize the constant when the package is initialized (on first use).

• A function: the function returns the name of “this user”—the value returned by
the function is a private (package body) variable also assigned the value returned
by USER when the package is initialized.

Having now created these caches, I should see if they are worth the bother. Is either
implementation noticeably faster than simply calling the highly optimized USER func-
tion over and over?

So I build a script utilizing sf_timer to compare performances:

/* File on web: thisuser.tst */
PROCEDURE test_thisuser (count_in IN PLS_INTEGER)
IS
 l_name all_users.username%TYPE;
BEGIN
 sf_timer.start_timer;
 FOR indx IN 1 .. count_in LOOP l_name := thisuser.NAME; END LOOP;
 sf_timer.show_elapsed_time ('Packaged Function');
 --
 sf_timer.start_timer;
 FOR indx IN 1 .. count_in LOOP l_name := thisuser.cname; END LOOP;
 sf_timer.show_elapsed_time ('Packaged Constant');
 --
 sf_timer.start_timer;
 FOR indx IN 1 .. count_in LOOP l_name := USER; END LOOP;
 sf_timer.show_elapsed_time ('USER Function');
END test_thisuser;

And when I run it for 100 and then 1,000,000 iterations, I see these results:

Packaged Function Elapsed: 0 seconds.
Packaged Constant Elapsed: 0 seconds.
USER Function Elapsed: 0 seconds.

Packaged Function Elapsed: .48 seconds.
Packaged Constant Elapsed: .06 seconds.
USER Function Elapsed: 32.6 seconds.

The results are clear: for small numbers of iterations, the advantage of caching is not
apparent. For large numbers of iterations, the package-based cache is dramatically
faster than going through the SQL layer and the SGA.

By the way, accessing the constant is faster than calling a function that returns the value.
So why use a function? The function version offers this advantage over the constant: it
hides the value. So if for any reason the value must be changed (not applicable to this
scenario), you can do so without recompiling the package specification, which would
force recompilation of all programs dependent on this package.

While it is unlikely that you will ever benefit from caching the value returned by the
USER function, I hope you can see that package-based caching is clearly a very efficient
way to store and retrieve data. Now let’s take a look at a less trivial example.

802 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

Caching table contents in a package

If your application includes a table that never changes during normal working hours
(that is, it is static while a user accesses the table), you can rather easily create a package
that caches the full contents of that table, boosting query performance by an order of
magnitude or more.

Suppose that I have a table of products that is static, defined as follows:

/* File on web: package_cache_demo.sql */
TABLE products (
 product_number INTEGER PRIMARY KEY
 , description VARCHAR2(1000))

Here is a package body that offers two ways of querying data from this table; query
each time or cache the data and retrieve from cache:

 1 PACKAGE BODY products_cache
 2 IS
 3 TYPE cache_t IS TABLE OF products%ROWTYPE INDEX BY PLS_INTEGER;
 4 g_cache cache_t;
 5
 6 FUNCTION with_sql (product_number_in IN products.product_number%TYPE)
 7 RETURN products%ROWTYPE
 8 IS
 9 l_row products%ROWTYPE;
10 BEGIN
11 SELECT * INTO l_row FROM products
12 WHERE product_number = product_number_in;
13 RETURN l_row;
14 END with_sql;
15
16 FUNCTION from_cache (product_number_in IN products.product_number%TYPE)
17 RETURN products%ROWTYPE
18 IS
19 BEGIN
20 RETURN g_cache (product_number_in);
21 END from_cache;
22 BEGIN
23 FOR product_rec IN (SELECT * FROM products) LOOP
24 g_cache (product_rec.product_number) := product_rec;
25 END LOOP;
26 END products_cache;

Here is an explanation of the interesting parts of this package:

Line(s) Significance

3–4 Declare an associative array cache, g_cache, that mimics the structure of my products table: every element in the
collection is a record with the same structure as a row in the table.

6–14 The with_sql function returns one row from the products table for a given primary key, using the “traditional” SELECT
INTO method. In other words, every time you call this function you run a query.

16–21 The from_cache function also returns one row from the products table for a given primary key, but it does so by using
that primary key as the index value, thereby locating the row in g_cache.

Data Caching Techniques | 803

Download at WoweBook.Com

Line(s) Significance

23–25 When the package is initialized, load the contents of the products table into the g_cache collection. Notice that I use
the primary key value as the index into the collection. This emulation of the primary key is what makes the from_cache
implementation possible (and so simple).

With this code in place, the first time a user calls the from_cache (or with_sql) function,
the database will first execute this code.

Next, I construct and run a block of code to compare the performance of these
approaches:

DECLARE
 l_row products%ROWTYPE;
BEGIN
 sf_timer.start_timer;
 FOR indx IN 1 .. 100000
 LOOP
 l_row := products_cache.from_cache (5000);
 END LOOP;
 sf_timer.show_elapsed_time ('Cache table');
 --
 sf_timer.start_timer;
 FOR indx IN 1 .. 100000
 LOOP
 l_row := products_cache.with_sql (5000);
 END LOOP;
 sf_timer.show_elapsed_time ('Run query every time');
END;

And here are the results I see:

Cache table Elapsed: .14 seconds.
Run query every time Elapsed: 4.7 seconds.

Again, it is very clear that package-based caching is much, much faster that executing
a query repeatedly—even when that query is fully optimized by all the power and so-
phistication of the SGA.

Just-in-time caching of table data

Suppose I have identified a static table to which I want to apply this caching technique.
There is, however, a problem: the table has 100,000 rows of data. I can build a package
like products_cache, shown in the previous section, but it uses 5 MB of memory in each
session’s PGA. With 500 simultaneous connections, this cache will consume 2.5 GB,
which is unacceptable. Fortunately, I notice that even though the table has many rows
of data, each user will typically query only the same 50 or so rows of that data (there
are, in other words, hot spots of activity). So caching the full table in each session is
wasteful in both CPU cycles (the initial load of 100,000 rows) and memory.

When your table is static, but you don’t want or need all the data in that table, you
should consider employing a “just in time” approach to caching. This means that you

804 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

do not query the full contents of the table into your collection cache when the package
initializes. Instead, whenever the user asks for a row, if it is in the cache, you return it
immediately. If not, you query that single row from the table, add it to the cache, and
then return the data.

The next time the user asks for that same row, it will be retrieved from the cache.

/* File on web: package_cache_demo.sql */
FUNCTION jit_from_cache (product_number_in IN products.product_number%TYPE)
 RETURN products%ROWTYPE
IS
 l_row products%ROWTYPE;
BEGIN
 IF g_cache.EXISTS (product_number_in)
 THEN
 /* Already in the cache, so return it. */
 l_row := g_cache (product_number_in);
 ELSE
 /* First request, so query it from the database
 and then add it to the cache. */
 l_row := with_sql (product_number_in);
 g_cache (product_number_in) := l_row;
 END IF;

 RETURN l_row;
END jit_from_cache;

Generally, just-in-time caching is somewhat slower than the one-time load of all data
to the cache, but it is still much faster than repeated database lookups.

Deterministic Function Caching
A function is considered to be deterministic if it returns the same result value whenever
it is called with the same values for its IN and IN OUT arguments. Another way to
think about deterministic programs is that they have no side effects. Everything the
program changes is reflected in the parameter list. See Chapter 17 for more details on
deterministic functions.

Precisely because the deterministic function behaves so consistently, Oracle can build
a cache from the function’s inputs and outputs. After all, if the same inputs always
result in the same outputs, then there is no reason to call the function a second time if
the inputs match a previous invocation of that function.

Let’s take a look at an example of the caching nature of deterministic functions. Suppose
I define the following encapsulation on top of SUBSTR (return the string between start
and end locations) as a deterministic function:

/* File on web: deterministic_demo.sql */
FUNCTION betwnstr (
 string_in IN VARCHAR2, start_in IN PLS_INTEGER, end_in IN PLS_INTEGER)
 RETURN VARCHAR2 DETERMINISTIC
IS

Data Caching Techniques | 805

Download at WoweBook.Com

BEGIN
 RETURN (SUBSTR (string_in, start_in, end_in - start_in + 1));
END betwnstr;

I can then call this function inside a query (it does not modify any database tables,
which would otherwise preclude using it in this way), such as:

SELECT betwnstr (last_name, 1, 5) first_five
 FROM employees

And when betwnstr is called in this way, the database will build a cache of inputs and
the return value. So if I call the function with the same inputs, the database will return
the value without calling the function. To demonstrate this optimization, I will change
betwnstr to the following:

FUNCTION betwnstr (
 string_in IN VARCHAR2, start_in IN PLS_INTEGER, end_in IN PLS_INTEGER)
 RETURN VARCHAR2 DETERMINISTIC
IS
BEGIN
 DBMS_LOCK.sleep (.01);
 RETURN (SUBSTR (string_in, start_in, end_in - start_in + 1));
END betwnstr;

In other words, I will use the sleep subprogram of DBMS_LOCK to pause betwnstr
1/100th of a second.

If I call this function in a PL/SQL block of code (not from within a query), the database
will not cache the function values, and so when I query the 107 rows of the employees
table, it takes more than one second:

DECLARE
 l_string employees.last_name%TYPE;
BEGIN
 sf_timer.start_timer;

 FOR rec IN (SELECT * FROM employees)
 LOOP
 l_string := betwnstr ('FEUERSTEIN', 1, 5);
 END LOOP;

 sf_timer.show_elapsed_time ('Deterministic function in block');
END;
/

The output is:

Deterministic function in block Elapsed: 1.67 seconds.

If I now execute the same logic, but move the call to betwnstr inside the query, the
performance is quite different:

BEGIN
 sf_timer.start_timer;

 FOR rec IN (SELECT betwnstr ('FEUERSTEIN', 1, 5) FROM employees)

806 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

 LOOP
 NULL;
 END LOOP;

 sf_timer.show_elapsed_time ('Deterministic function in query');
END;
/

The output is:

Deterministic function in query Elapsed: .05 seconds.

As you can see, caching with a deterministic function is a very effective path to opti-
mization. Just be sure of the following:

• When you declare a function to be deterministic, make sure that it really is. The
Oracle database does not analyze your program to determine if you are telling the
truth. If you add the DETERMINISTIC keyword to a function that, for example,
queries data from a table, the database might cache data inappropriately, with the
consequence that a user sees “dirty data.”

• You must call that function within a SQL statement to get the effects of determin-
istic caching; that is a significant constraint on the usefulness of this type of caching.

Function Result Cache (Oracle Database 11g)
Prior to the release of Oracle Database 11g, package-based caching offered the best,
most flexible option for caching data for use in a PL/SQL program. Sadly, the circum-
stances under which it can be used are quite limited, since the data source must be
static and memory consumption grows with each session connected to the Oracle
database.

Recognizing the performance benefit of this kind of caching (as well as that implemen-
ted for deterministic functions), Oracle implemented the function result cache in Oracle
Database 11g. This feature offers a caching solution that overcomes the weaknesses of
package-based caching and offers performance that is almost as fast.

When you turn on the function result cache for a function, you get the following
benefits:

• Oracle stores both inputs and the return value in a separate cache for each function.
The cache is shared among all sessions connected to this instance of the database;
it is not duplicated for each session. And in Oracle Database 11g Release 2, the
function result cache is even shared across instances in a RAC.

• Whenever the function is called, the database checks to see if it has already cached
the same input values. If so, then the function is not executed. The values in the
cache are simply returned.

Data Caching Techniques | 807

Download at WoweBook.Com

• Whenever changes are made to tables that are identified as dependencies for the
cache, the database automatically invalidates the cache. Subsequent calls to the
function will then repopulate the cache with consistent data.

• Caching occurs whenever the function is called; you do not need to invoke it within
a SQL statement.

• There is no need to write code to declare and populate a collection; instead, you
use declarative syntax in the function header to specify the cache.

In the following sections, I will first describe the syntax of this feature. Then I will
demonstrate some simple examples of the cache; discuss the circumstances under
which you should use this cache; cover the DBA-related aspects of cache management;
and review restrictions and gotchas for this feature.

How to use the function result cache

Oracle has made it very easy to add function result caching to your functions. You
simply need to add the RESULT_CACHE clause to the header of your function, and
Oracle takes it from there.

The syntax of the RESULT_CACHE clause is:

RESULT_CACHE [RELIES_ON (table_or_view [, table_or_view2 ... table_or_viewN]]

The RELIES_ON tells Oracle on which tables or views the contents of the cache rely.
This clause can only be added to the headers of schema-level functions and the imple-
mentation of a packaged function (that is, in the package body).

Here are several examples of using this clause.

1. Schema-level function without RELIES_ON:

CREATE OR REPLACE FUNCTION session_constant RETURN VARCHAR2
 RESULT_CACHE

2. Schema-level function with RELIES_ON clause indicating that the cache relies on
the employees table:

CREATE OR REPLACE FUNCTION name_for_id (id_in IN employees.employee_id%TYPE)
 RETURN employees.last_name%TYPE
 RESULT_CACHE RELIES ON (employees)

3. A packaged function without a RELIES_ON clause (needed in both specification
and body):

CREATE OR REPLACE PACKAGE get_data
IS
 FUNCTION FUNCTION session_constant RETURN VARCHAR2
 RESULT_CACHE;
END get_data;
/

CREATE OR REPLACE PACKAGE BODY get_data
IS

808 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

 FUNCTION session_constant RETURN VARCHAR2
 RESULT_CACHE
 IS
 BEGIN
 ...
 END session_constant;
END get_data;
/

4. A packaged function with a RELIES_ON clause (it may appear only in the body):

CREATE OR REPLACE PACKAGE get_data
IS
 FUNCTION name_for_id (id_in IN employees.employee_id%TYPE)
 RETURN employees.last_name%TYPE
 RESULT_CACHE
END get_data;
/

CREATE OR REPLACE PACKAGE BODY get_data
IS
 FUNCTION name_for_id (id_in IN employees.employee_id%TYPE)
 RETURN employees.last_name%TYPE
 RESULT_CACHE RELIES ON (employees)
 IS
 BEGIN
 ...
 END name_for_id;
END get_data;
/

5. A RELIES_ON clause with multiple objects listed:

CREATE OR REPLACE PACKAGE BODY get_data
IS
 FUNCTION name_for_id (id_in IN employees.employee_id%TYPE)
 RETURN employees.last_name%TYPE
 RESULT_CACHE RELIES ON (employees, departments, locations)
...

That is all it takes! The only complicated element is RELIES_ON, so let’s focus in on
that before exploring this feature in more detail.

The RELIES_ON clause

RELIES_ON is a critical element of the function result cache; it gives the database the
information needed to correctly invalidate cached data. If you do not include this clause
and/or list incorrectly the tables or views on which the function’s returned data de-
pends, that function could return out-of-date, incorrect data to a user.

The first thing to know about RELIES_ON is that it is no longer needed in Oracle
Database 11g Release 2. Oracle will now automatically determine on which tables your
returned data is dependent and correctly invalidate the cache when those tables’ con-
tents are changed. Run the 11Gr2_frc_no_relies_on.sql script to verify this behavior.

Data Caching Techniques | 809

Download at WoweBook.Com

In Oracle Database 11g Release 1, however, it is still up to you to explicitly list all tables
and views from which returned data is queried. Determining which tables and views
to include in the list is usually fairly straightforward. If your function contains a SELECT
statement, then make sure that any tables or views in any FROM clause in that query
are added to the list.

If you select from a view, you need to list only that view, not all the tables that are
queried from within the view. The script named 11g_frc_views.sql demonstrates how
the database will determine from the view definition itself all the tables whose changes
must invalidate the cache.

Function result cache example: A deterministic function

In a previous section I talked about the caching associated with deterministic functions.
In particular, I noted that this caching will only come into play when the function is
called within a query. Let’s now apply the Oracle Database 11g function result cache
to the betwnstr function and see that it works when called natively in a PL/SQL block.

In the following function, I add the RESULT_CACHE clause to the header. I also add
a call to DBMS_OUTPUT.PUT_LINE to show what inputs were passed to the function.

/* File on web: 11g_frc_simple_demo.sql */
FUNCTION betwnstr (
 string_in IN VARCHAR2, start_in IN INTEGER, end_in IN INTEGER)
 RETURN VARCHAR2 RESULT_CACHE
IS
BEGIN
 DBMS_OUTPUT.put_line (
 'betwnstr for ' || string_in || '-' || start_in || '-' || end_in);
 RETURN (SUBSTR (string_in, start_in, end_in - start_in + 1));
END;

I then call this function for ten rows in the employees table. If the employee ID is even,
then apply betwnstr to the employee last name; otherwise, pass it the same three input
values.

DECLARE
 l_string employees.last_name%TYPE;
BEGIN
 FOR rec IN (SELECT * FROM employees WHERE ROWNUM < 11)
 LOOP
 l_string :=
 CASE MOD (rec.employee_id, 2)
 WHEN 0 THEN betwnstr (rec.last_name, 1, 5)
 ELSE betwnstr ('FEUERSTEIN', 1, 5)
 END;
 END LOOP;
END;

When I run this function, I see the following output:

betwnstr for OConnell-1-5
betwnstr for FEUERSTEIN-1-5

810 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

betwnstr for Whalen-1-5
betwnstr for Fay-1-5
betwnstr for Baer-1-5
betwnstr for Gietz-1-5
betwnstr for King-1-5

Notice that FEUERSTEIN appears only once, even though it was called five times. That
demonstrates the function result cache in action.

Function result cache example: Querying data from a table

You will mostly want to use the function result cache when you are querying data from
a table, whose contents are queried more frequently than changed (in between changes,
the data is static). Suppose, for example, that in my real estate management application,
I have a table that contains the interest rates available for different types of loans. The
contents of this table are updated via a scheduled job that runs once an hour throughout
the day. Here is the structure of the table and the data I am using in my demonstration
script:

/* File on web: 11g_frc_demo_table.sql */
CREATE TABLE loan_info (
 NAME VARCHAR2(100) PRIMARY KEY,
 length_of_loan INTEGER,
 initial_interest_rate NUMBER,
 regular_interest_rate NUMBER,
 percentage_down_payment INTEGER)
/
BEGIN
 INSERT INTO loan_info VALUES ('Five year fixed', 5, 6, 6, 20);
 INSERT INTO loan_info VALUES ('Ten year fixed', 10, 5.7, 5.7, 20);
 INSERT INTO loan_info VALUES ('Fifteen year fixed', 15, 5.5, 5.5, 10);
 INSERT INTO loan_info VALUES ('Thirty year fixed', 30, 5, 5, 10);
 INSERT INTO loan_info VALUES ('Two year balloon', 2, 3, 8, 0);
 INSERT INTO loan_info VALUES ('Five year balloon', 5, 4, 10, 5);
 COMMIT;
END;
/

Here is a function to retrieve all the information for a single row:

FUNCTION loan_info_for_name (NAME_IN IN VARCHAR2)
 RETURN loan_info%ROWTYPE
 RESULT_CACHE RELIES_ON (loan_info)
IS
 l_row loan_info%ROWTYPE;
BEGIN
 DBMS_OUTPUT.put_line ('> Looking up loan info for ' || NAME_IN);

 SELECT * INTO l_row FROM loan_info WHERE NAME = NAME_IN;

 RETURN l_row;
END loan_info_for_name;

Data Caching Techniques | 811

Download at WoweBook.Com

In this case, the RESULT_CACHE clause includes the RELIES_ON subclause to indi-
cate that the cache for this function is based on data from (“relies on”) the loan_info
table. I then run the following script, which calls the function for two different names;
then changes the contents of the table; and finally calls the function again for one of
the original names.

DECLARE
 l_row loan_info%ROWTYPE;
BEGIN
 DBMS_OUTPUT.put_line ('First time for Five year fixed...');
 l_row := loan_info_for_name ('Five year fixed');
 DBMS_OUTPUT.put_line ('First time for Five year balloon...');
 l_row := loan_info_for_name ('Five year balloon');
 DBMS_OUTPUT.put_line ('Second time for Five year fixed...');
 l_row := loan_info_for_name ('Five year fixed');

 UPDATE loan_info SET percentage_down_payment = 25
 WHERE NAME = 'Thirty year fixed';
 COMMIT;

 DBMS_OUTPUT.put_line ('After commit, third time for Five year fixed...');
 l_row := loan_info_for_name ('Five year fixed');
END;

Here’s the output from running this script:

First time for Five year fixed...
> Looking up loan info for Five year fixed
First time for Five year balloon...
> Looking up loan info for Five year balloon
Second time for Five year fixed...
After commit, third time for Five year fixed...
> Looking up loan info for Five year fixed

And here is an explanation of what you see happening here:

• The first time I call the function for “Five year fixed”, it executes the function, looks
up the data, puts the data in the cache, and returns the data.

• The first time I call the function for “Five year balloon”, it executes the function,
looks up the data, puts the data in the cache, and returns the data.

• The second time I call the function for “Five year fixed”, it does not execute the
function (there is no “Looking up ...” for the second call). The function result cache
at work...

• Then I change a column value for the row with name “Thirty year fixed” and
commit that change.

• Finally, I call the function for the third time for “Five year fixed” and it calls the
function this time to query the data. This happens because I have told Oracle that
this RESULT_CACHE RELIES ON the loan_info table, and the contents of that
table have changed.

812 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

Function result cache example: Caching a collection

So far I have shown you examples of caching an individual value and an entire record.
You can also cache an entire collection of data, even a collection of records. In the
following code, I have changed the function to return all of the names of loans into a
collection of strings (based on the predefined DBMS_SQL collection type). I then call
the function repeatedly but the collection is populated only once. (BULK COLLECT
is described later in this chapter.)

/* File on web: 11g_frc_table_demo.sql */
FUNCTION loan_names RETURN DBMS_SQL.VARCHAR2S
 RESULT_CACHE RELIES_ON (loan_info)
IS
 l_names DBMS_SQL.VARCHAR2S;
BEGIN
 DBMS_OUTPUT.put_line ('> Looking up loan names....');

 SELECT name BULK COLLECT INTO l_names FROM loan_info;
 RETURN l_names;
END loan_names;

Here is a script that demonstrates that even when populating a complex type like this,
the function result cache will come into play:

DECLARE
 l_names DBMS_SQL.VARCHAR2S;
BEGIN
 DBMS_OUTPUT.put_line ('First time retrieving all names...');
 l_names := loan_names ();
 DBMS_OUTPUT.put_line('Second time retrieving all names...');
 l_names := loan_names ();

 UPDATE loan_info SET percentage_down_payment = 25
 WHERE NAME = 'Thirty year fixed';

 COMMIT;
 DBMS_OUTPUT.put_line ('After commit, third time retrieving all names...');
 l_names := loan_names ();
END;
/

The output is:

First time retrieving all names...
> Looking up loan names....
Second time retrieving all names...
After commit, third time retrieving all names...
> Looking up loan names....

When to use the function result cache

Caching must always be done with the greatest of care. If you cache incorrectly, your
application may deliver bad data to users. The function result cache is the most flexible

Data Caching Techniques | 813

Download at WoweBook.Com

and widely useful of the different types of caches you can use in PL/SQL code, but you
can still get yourself in trouble with it.

You should consider adding RESULT_CACHE to your function header in any of the
following circumstances:

• Data is queried from a table more frequently than it is updated. Suppose, for ex-
ample, that in our Human Resources application, users query the contents of the
employees table thousands of times a minute, but it is updated on average once
every ten minutes. In between those changes, the employees table is static, so the
data can be safely cached—and the query time reduced.

• A function that doesn’t even query any data is called repeatedly (often in this sce-
nario, recursively) with the same input values. One classic example from program-
ming texts is the Fibonacci algorithm. To calculate the Fibonacci value for the
integer, n (a.k.a., F(n)), you must compute F(1) through F(n−1) multiple times.

• Your application (or each user of an application) relies on a set of configuration
values that are static during use of the application: a perfect fit for the function
result cache!

When not to use the function result cache

You cannot use the RESULT_CACHE clause if any of the following are true:

• The function is defined within the declaration section of an anonymous block. The
function must be defined at the schema level or within a package.

• The function is a pipelined table function.

• The function has any OUT or IN OUT parameters. The function can only return
data through the RETURN clause.

• Any of the function’s IN parameters are of any of these types: BLOB, CLOB,
NCLOB, REF CURSOR, collection, record, object type.

• The function RETURN type is any of the following: BLOB, CLOB, NCLOB, REF
CURSOR, object type, or collection or record that contains the previously listed
datatypes (for example, a collection of CLOBs would be a no-go for a function
result cache).

• The function is an invoker rights function. In other words, your function is defined
with the AUTHID CURRENT_USER clause (see Chapter 24 for more details on
this clause). CURRENT_USER means that when the function is executed, any
references to database objects like tables will be resolved according to the privileges
of the current user of the function. So schemas USER1 and USER2 may actually
need to query from different tables (for example, each has its own employees table).
Yet if that function caches results and both those schemas call the function, then
whoever calls it first will set the results wrongly for the second.

814 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

You should not use (or at a minimum very carefully evaluate your use of) the
RESULT_CACHE clause if either of the following is true:

• Your function has side effects; for example, it modifies the contents of database
tables or modifies the external state of your application (by, for example, sending
data to sysout via DBMS_OUTPUT or sending email). Since you can never be sure
when and if the body of the function will execute, your application will likely not
perform correctly under all circumstances. This is an unacceptable tradeoff for
improved performance.

• Your function executes a query against a table on which a Virtual Private Database
security policy applies. I explore the ramifications of using VPD with function result
caching later, in the section “The Virtual Private Database and function result
caching” on page 816.

Useful details of function result cache behavior

The following information should come in handy as you delve into the details of ap-
plying the function result cache to your application.

• When checking to see if the function has been called previously with the same
inputs, Oracle considers NULL to be equal to NULL. In other words, if my function
has one string argument and it is called with a NULL input value, then the next
time it is called with a NULL value, Oracle will decide that it does not need to call
the function and can instead return the cached outcome.

• Users never see dirty data. Suppose a result cache function returns the last name
of an employee for an ID, and that the last name “Feuerstein” is cached for ID 400.
Then if a user changes the contents of the employees table, but has not yet com-
mitted the change, the database will bypass the cache (and any other cache that
relies on employees) for this user. All other users connected to the instance (RAC,
in Oracle Database 11g Release 2) will continue to take advantage of the cache.

• When you define a function’s cache as dependent on a particular table, then when
that table is marked invalid, the function is also marked invalid and will need to
be recompiled before it can be used.

• If the function propagates an unhandled exception, the database will not cache the
input values for that execution. That is, the contents of the result cache for this
function will not be changed.

Managing the function result cache

The function result cache is an area of memory in the SGA. Oracle provides the usual
cast of characters so that a database administrator can manage that cache:

Data Caching Techniques | 815

Download at WoweBook.Com

RESULT_CACHE_MAX_SIZE initialization parameter
Maximum amount of SGA memory that the function result cache can use. When
the cache fills up, Oracle will use the least-recently-used algorithm to age out of
the cache the data that has been there the longest.

DBMS_RESULT_CACHE package
Supplied package that offers a set of subprograms to manage the contents of the
cache. This package will mostly be of interest to database administrators.

Dynamic performance views
V$RESULT_CACHE_STATISTICS, V$RESULT_CACHE_MEMORY, V$RE-
SULT_CACHE_OBJECTS, and V$RESULT_CACHE_DEPENDENCY

The Virtual Private Database and function result caching

When you use the Virtual Private Database (VPD) (also known as row level security or
fine-grained access control) in your application, you define security policies to SQL op-
erations on tables. The Oracle database then automatically adds these polices in the
form of WHERE clause predicates to restrict the rows that a user can query or change
in that table. It is impossible to get around these policies, since they are applied in-
side the SQL layer—and they are invisible to the user. The bottom line: users connected
to two different schemas can run what seems to be the same query (as in “SELECT
last_name FROM employees”) and get different results. For detailed information about
VPD, see Chapter 23.

Let’s take a look at a simplistic use of VPD and how it can lead to bad data for users
(all the code in this section may be found in the 11g_frc_vpd.sql file). Suppose I define
the following package with two functions in my Human Resources application schema,
one to return the last name of an employee for a given employee ID, and the other to
be used as a VPD security policy:

/* File on web: 11g_frc_vpd.sql */
PACKAGE emplu11g
IS
 FUNCTION last_name (employee_id_in IN employees.employee_id%TYPE)
 RETURN employees.last_name%TYPE
 result_cache;

 FUNCTION restrict_employees (schema_in VARCHAR2, NAME_IN VARCHAR2)
 RETURN VARCHAR2;
END emplu11g;

PACKAGE BODY emplu11g
IS
 FUNCTION last_name (employee_id_in IN employees.employee_id%TYPE)
 RETURN employees.last_name%TYPE
 result_cache relies_on (employees)
 IS
 onerow_rec employees%ROWTYPE;
 BEGIN
 DBMS_OUTPUT.PUT_LINE ('Looking up last name for employee ID '

816 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

 || employee_id_in);
 SELECT * INTO onerow_rec
 FROM employees
 WHERE employee_id = employee_id_in;

 RETURN onerow_rec.last_name;
 END last_name;

 FUNCTION restrict_employees (schema_in VARCHAR2, NAME_IN VARCHAR2)
 RETURN VARCHAR2
 IS
 BEGIN
 RETURN (CASE USER
 WHEN 'HR' THEN '1 = 1'
 ELSE '1 = 2'
 END
);
 END restrict_employees;
END emplu11g;

The restrict_employees function states very simply: if you are connected to the HR
schema, you can see all rows in the employees table; otherwise, you can see nothing.

I then assign this function as the security policy for all operations on the employees
table:

BEGIN
 DBMS_RLS.add_policy
 (object_schema => 'HR'
 , object_name => 'employees'
 , policy_name => 'rls_and_rc'
 , function_schema => 'HR'
 , policy_function => 'emplu11g.restrict_employees'
 , statement_types => 'SELECT,UPDATE,DELETE,INSERT'
 , update_check => TRUE
);
END;

I then give the SCOTT schema the ability to execute this package and select from the
underlying table:

GRANT EXECUTE ON emplu11g TO scott
/
GRANT SELECT ON employees TO scott
/

Before I run the result cache function, let’s verify that the security policy is in place and
affecting the data that HR and SCOTT can see.

I connect as HR and query from the employees table successfully:

SELECT last_name
 FROM employees
 WHERE employee_id = 198
/
LAST_NAME

Data Caching Techniques | 817

Download at WoweBook.Com

OConnell

Now I connect to SCOTT and execute the same query; notice the difference!

CONNECT scott/tiger@oracle11

SELECT last_name
 FROM hr.employees
 WHERE employee_id = 198
/
no rows selected.

The VPD at work: when connected as SCOTT, I cannot see rows of data that are visible
from HR.

Now let’s see what happens when I execute the same query from within a result cache
function owned by HR. First, I connect as HR and execute the function, then display
the name returned:

BEGIN
 DBMS_OUTPUT.put_line (emplu11g.last_name (198));
END;
/
Looking up last name for employee ID 198
OConnell

Notice the two lines of output:

1. “Looking up last name for employee ID 198” is displayed because the function was
executed.

2. “OConnell” is displayed because the row of data was found and the last name
returned.

Now I connect as SCOTT and run the same block of code. Since the function executes
a SELECT INTO that should return no rows, I should expect to see an unhandled
NO_DATA_FOUND exception. Instead...

BEGIN
 DBMS_OUTPUT.put_line (hr.emplu11g.last_name (198));
END;
/
OConnell

The function successfully returns “OConnell”, but notice that the “Looking up...” text
is not shown. That’s because the PL/SQL engine did not actually execute the function
(and the call to DBMS_OUTPUT.PUT_LINE inside the function). It simply returned
the cached last name.

And this is precisely the scenario that makes VPD such a dangerous combination with
the function result cache. Since the function was first called with the input value of 198
from HR, the last name was cached for use in all other sessions connected to this same
instance. Thus, a user connected to SCOTT sees data that he is not supposed to see.

818 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

To verify that the function really should return NO_DATA_FOUND if caching were
not in place, let’s now connect to HR and invalidate the cache by committing a change
to the employees table (any change will do):

BEGIN
 /* All us non-CEO employees deserve a 50% raise, don't we? */
 UPDATE employees SET salary = salary * 1.5;
 COMMIT;
END;
/

And now when I connect to SCOTT and run the function, I get an unhandled
NO_DATA_FOUND exception:

BEGIN
 DBMS_OUTPUT.put_line (hr.emplu11g.last_name (198));
END;
/
ORA-01403: no data found
ORA-06512: at "HR.EMPLU11G", line 10
ORA-06512: at line 3

So if you are working on one of those relatively rare applications that relies on the
Virtual Private Database, be very wary of defining functions that use the function result
cache.

Caching Summary
If a value has not changed, you should seek ways to minimize the time it to takes to
retrieve that value. As proven for years by the SGA of Oracle’s database architecture,
data caching is a critical technology when it comes to optimizing performance. We can
learn from the SGA’s transparent caching of cursors, data blocks, etc., to create our
own caches or take advantage of non-transparent SGA caches (meaning that we need
to change our code in some way to take advantage of them).

Here I briefly summarize the recommendations I’ve made for data caching. The options
include:

Package-based caching
Create a package-level cache, likely of a collection, that will store previously re-
trieved data and make it available from PGA memory much more quickly than
from the SGA. There are two major downsides of this cache: it is copied for each
session connected to the Oracle database; and you cannot update the cache if a
session makes changes to the table(s) from which the cached data is drawn.

Deterministic function caching
Define a function as DETERMINISTIC. Specifying this keyword will cause caching
of the function’s inputs and return value within the scope of execution of a single
SQL query.

Data Caching Techniques | 819

Download at WoweBook.Com

Function result cache (Oracle Database 11g)
Use the Oracle Database 11g function result cache whenever you ask for data from
a table that is queried much more frequently than it is changed. This declarative
approach to function-based caching is almost as fast as the package-level cache. It
is shared across all sessions connected to the instance, and can be automatically
invalidated whenever a change is made to the table(s) from which the cached data
is drawn.

Bulk Processing for Multirow SQL
Oracle introduced a significant enhancement to PL/SQL’s SQL-related capabilities
with the FORALL statement and BULK COLLECT clause for queries. Together, these
are referred to as bulk processing statements for PL/SQL. Why, you might wonder,
would this be necessary? We all know that PL/SQL is tightly integrated with the un-
derlying SQL engine in the Oracle database. PL/SQL is the database programming
language of choice for Oracle—even though you can now use Java inside the database
as well.

But this tight integration does not mean that there is no overhead associated with run-
ning SQL from a PL/SQL program. When the PL/SQL runtime engine processes a block
of code, it executes the procedural statements within its own engine, but passes the
SQL statements on to the SQL engine. The SQL layer executes the SQL statements and
then returns information to the PL/SQL engine, if necessary.

This transfer of control (shown in Figure 21-2) between the PL/SQL and SQL engines
is called a context switch. Each time a switch occurs, there is additional overhead. There
are a number of scenarios in which many switches occur and performance degrades.
As you can see, PL/SQL and SQL might be tightly integrated on the syntactic level, but
“under the covers” the integration is not as tight as it could be.

Figure 21-2. Context switching between PL/SQL and SQL

820 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

With FORALL and BULK COLLECT, however, you can fine-tune the way these two
engines communicate, effectively telling the PL/SQL engine to compress multiple con-
text switches into a single switch, thereby improving the performance of your
applications.

Consider the FORALL statement shown in the figure. Rather than use a cursor FOR
loop or a numeric loop to iterate through the rows to be updated, I use a FORALL
header to specify a total number of iterations for execution. At runtime, the PL/SQL
engine “expands” the UPDATE statement into a set of statements incorporating all the
iterations, and then passes them to the SQL engine with a single context switch. In
other words, the same SQL statements are executed, but they are all run in the same
round trip to the SQL layer, minimizing the context switches. This is shown in Fig-
ure 21-3.

This reduction in context switches leads to a surprisingly sharp reduction in elapsed
time for multirow SQL statements executed in PL/SQL. Let’s take a closer look at BULK
COLLECT and FORALL.

High Speed Querying with BULK COLLECT
With BULK COLLECT you can retrieve multiple rows of data through either an implicit
or an explicit cursor with a single roundtrip to and from the database. BULK COLLECT
reduces the number of context switches between the PL/SQL and SQL engines and
thereby reduces the overhead of retrieving data.

Take a look at the following code snippet. I need to retrieve hundreds of rows of data
on automobiles that have a poor environmental record. I place that data into a set of
collections so that I can easily and quickly manipulate the data for both analysis and
reporting.

Figure 21-3. One context switch with FORALL

Bulk Processing for Multirow SQL | 821

Download at WoweBook.Com

DECLARE
 TYPE names_t IS TABLE OF transportation.name%TYPE;
 TYPE mileage_t IS TABLE OF transportation.mileage %TYPE;
 names names_t;
 mileages mileage_t;

 CURSOR major_polluters_cur
 IS
 SELECT name, mileage FROM transportation
 WHERE transport_type = 'AUTOMOBILE' AND mileage < 20;
BEGIN
 FOR bad_car IN major_polluters_cur
 LOOP
 names.EXTEND;
 names (major_polluters_cur %ROWCOUNT) := bad_car.NAME;
 mileages.EXTEND;
 mileages (major_polluters_cur%ROWCOUNT) := bad_car.mileage;
 END LOOP;
 -- Now work with data in the collections
END;

This certainly gets the job done, but the job might take a long time to complete. Con-
sider this: if the transportation table contains 2,000 vehicles, then the PL/SQL engine
issues 2,000 individual fetches against the cursor in the SGA.

To help out in this scenario, use the BULK COLLECT clause in the INTO element of
your query. By using this clause in your cursor (explicit or implicit) you tell the SQL
engine to bulk bind the output from the multiple rows fetched by the query into the
specified collections before returning control to the PL/SQL engine. The syntax for this
clause is:

... BULK COLLECT INTO collection_name[, collection_name] ...

where collection_name identifies a collection.

Here are some rules and restrictions to keep in mind when using BULK COLLECT:

• Prior to Oracle9i Database, you could use BULK COLLECT only with static SQL.
Now you can use BULK COLLECT with both dynamic and static SQL.

• You can use BULK COLLECT keywords in any of the following clauses: SELECT
INTO, FETCH INTO, and RETURNING INTO.

• The SQL engine automatically initializes and extends the collections you reference
in the BULK COLLECT clause. It starts filling the collections at index 1, inserts
elements consecutively (densely), and overwrites the values of any elements that
were previously defined.

• You can’t use the SELECT...BULK COLLECT statement in a FORALL statement.

• SELECT...BULK COLLECT will not raise NO_DATA_FOUND if no rows are
found. Instead, you must check the contents of the collection to see if there is any
data inside it.

• If the query returns no rows, the collection’s COUNT method will return 0.

822 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

Let’s explore these rules and the usefulness of BULK COLLECT through a series of
examples. First, here is a rewrite of the major polluters example using BULK
COLLECT:

DECLARE
 TYPE names_t IS TABLE OF transportation.name%TYPE;
 TYPE mileage_t IS TABLE OF transportation.mileage %TYPE;
 names names_t;
 mileages mileage_t;
BEGIN
 SELECT name, mileage BULK COLLECT INTO names, mileages
 FROM transportation
 WHERE transport_type = 'AUTOMOBILE'
 AND mileage < 20;

 /* Now work with data in the collections */
END;

I am now able to remove the initialization and extension code from the row-by-row
fetch implementation.

I don’t have to rely on implicit cursors to get this job done. Here is another reworking
of the major polluters example, retaining the explicit cursor:

DECLARE
 TYPE names_t IS TABLE OF transportation.name%TYPE;
 TYPE mileage_t IS TABLE OF transportation.mileage %TYPE;
 names names_t;
 mileages mileage_t;

 CURSOR major_polluters_cur IS
 SELECT name, mileage FROM transportation
 WHERE transport_type = 'AUTOMOBILE' AND mileage < 20;
BEGIN
 OPEN major_polluters_cur;
 FETCH major_polluters_cur BULK COLLECT INTO names, mileages;
 CLOSE major_polluters_cur;
 ...
END;

I can also simplify my life and code by fetching into a collection of records, as you see
here:

DECLARE
 TYPE transportation_aat IS TABLE OF transportation%ROWTYPE
 INDEX BY PLS_INTEGER;
 l_transportation transportation_aat;
BEGIN
 SELECT * BULK COLLECT INTO l_transportation
 FROM transportation
 WHERE transport_type = 'AUTOMOBILE'
 AND mileage < 20;

 -- Now work with data in the collections
END;

Bulk Processing for Multirow SQL | 823

Download at WoweBook.Com

In Oracle Database 10g and later, the PL/SQL compiler will automati-
cally optimize a cursor FOR loop so that it runs with performance com-
parable to BULK COLLECT. You do not need to explicitly transform
this code yourself—unless the body of your loop executes, directly or
indirectly, DML statements. The database does not optimize DML
statements into FORALL, so you will need to explicitly convert your
cursor FOR loop to use BULK COLLECT. You can then use the col-
lections populated by the BULK COLLECT to “drive” the FORALL
statement.

Limiting rows retrieved with BULK COLLECT

Oracle provides a LIMIT clause for BULK COLLECT that allows you to limit the num-
ber of rows fetched from the database. The syntax is:

FETCH cursor BULK COLLECT INTO ... [LIMIT rows];

where rows can be any literal, variable, or expression that evaluates to an integer (oth-
erwise, the database will raise a VALUE_ERROR exception).

LIMIT is very useful with BULK COLLECT, because it helps you manage how much
memory your program will use to process data. Suppose, for example, that you need
to query and process 10,000 rows of data. You could use BULK COLLECT to retrieve
all those rows and populate a rather large collection. However, this approach will con-
sume lots of memory in the PGA for that session. If this code is run by many separate
Oracle schemas, your application performance may degrade because of PGA swapping.

The following block of code uses the LIMIT clause in a FETCH that is inside a simple
loop.

DECLARE
 CURSOR allrows_cur IS SELECT * FROM employees;
 TYPE employee_aat IS TABLE OF allrows_cur%ROWTYPE
 INDEX BY BINARY_INTEGER;
 l_employees employee_aat;
BEGIN
 OPEN allrows_cur;
 LOOP
 FETCH allrows_cur BULK COLLECT INTO l_employees LIMIT 100;

 /* Process the data by scanning through the collection. */
 FOR l_row IN 1 .. l_employees.COUNT
 LOOP
 upgrade_employee_status (l_employees(l_row).employee_id);
 END LOOP;

 EXIT WHEN allrows_cur%NOTFOUND;
 END LOOP;

 CLOSE allrows_cur;
END;

824 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

Notice that I terminate the loop by checking the value of allrows_cur%NOTFOUND
at the bottom of the loop. When querying data one row at a time, I usually put this
code immediately after the FETCH statement. You should not do that when using
BULK COLLECT, because when the fetch retrieves the last set of rows, the cursor will
be exhausted (and %NOTFOUND will return TRUE) but you will still have some
elements in the collection to process.

So either check the %NOTFOUND attribute at the bottom of your loop, or check the
contents of the collection immediately after the fetch:

LOOP
 FETCH allrows_cur BULK COLLECT INTO l_employees LIMIT 100;
 EXIT WHEN l_employees.COUNT = 0;

The disadvantage of this second approach is that you will perform an extra fetch that
returns no rows, compared to checking %NOTFOUND at the bottom of the loop body.

Bulk fetching of multiple columns

As you have seen in previous examples, you certainly can bulk fetch the contents of
more than one column. It would be most elegant if you could fetch those multiple
columns into a single collection of records. In fact, Oracle made this feature available
starting with Oracle9i Database Release 2.

Suppose that I would like to retrieve all the information in my transportation table for
each vehicle whose mileage is less than 20 miles per gallon. I can do so with a minimum
of coding fuss:

DECLARE
 -- Declare the type of collection
 TYPE VehTab IS TABLE OF transportation%ROWTYPE;

 -- Instantiate a particular collection from the TYPE.
 gas_guzzlers VehTab;
BEGIN
 SELECT *
 BULK COLLECT INTO gas_guzzlers
 FROM transportation
 WHERE mileage < 20;
 ...

Prior to Oracle9i Database Release 2, the above code would raise this exception:

PLS-00597: expression 'GAS_GUZZLERS' in the INTO list is of wrong type

You can use the LIMIT clause with a BULK COLLECT into a collection of records, just
as you would with any other BULK COLLECT statement.

Bulk Processing for Multirow SQL | 825

Download at WoweBook.Com

Using the RETURNING clause with bulk operations

You have now seen BULK COLLECT used for both implicit and explicit query cursors.
You can also use BULK COLLECT inside a FORALL statement, in order to take ad-
vantage of the RETURNING clause.

The RETURNING clause allows you to obtain information (such as a newly updated
value for a salary) from a DML statement. RETURNING can help you avoid additional
queries to the database to determine the results of DML operations that just completed.

Suppose that Congress has passed a law requiring that a company pay its highest-
compensated employee no more than 50 times the salary of its lowest-paid employee.
I work in the IT department of the newly merged company Northrop-Ford-Mattel-
Yahoo-ATT, which employs a total of 250,000 workers. The word has come down from
on high: the CEO is not taking a pay cut, so I need to increase the salaries of everyone
who makes less than 50 times his 2008 total compensation package of $145 million—
and decrease the salaries of all upper management except for the CEO. After all, some-
body’s got to make up for this loss in profit.

Wow! I have lots of updating to do, and I want to use FORALL to get the job done as
quickly as possible. However, I also need to perform various kinds of processing on the
employee data and then print a report showing the change in salary for each affected
employee. That RETURNING clause would come in awfully handy here, so let’s give
it a try.

See the onlyfair.sql file on the book’s web site for all of the steps shown here, plus table
creation and INSERT statements.

First, I’ll create a reusable function to return the compensation for an executive:

/* File on web: onlyfair.sql */
FUNCTION salforexec (title_in IN VARCHAR2) RETURN NUMBER
IS
 CURSOR ceo_compensation IS
 SELECT salary + bonus + stock_options +
 mercedes_benz_allowance + yacht_allowance
 FROM compensation
 WHERE title = title_in;
 big_bucks NUMBER;
BEGIN
 OPEN ceo_compensation;
 FETCH ceo_compensation INTO big_bucks;
 RETURN big_bucks;
END;

In the main block of the update program, I declare a number of local variables and the
following query to identify underpaid employees and overpaid employees who are not
lucky enough to be the CEO:

DECLARE
 big_bucks NUMBER := salforexec ('CEO');
 min_sal NUMBER := big_bucks / 50;

826 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

 names name_varray;
 old_salaries number_varray;
 new_salaries number_varray;

 CURSOR affected_employees (ceosal IN NUMBER)
 IS
 SELECT name, salary + bonus old_salary
 FROM compensation
 WHERE title != 'CEO'
 AND ((salary + bonus < ceosal / 50)
 OR (salary + bonus > ceosal / 10)) ;

At the start of my executable section, I load all of this data into my collections with a
BULK COLLECT query:

OPEN affected_employees (big_bucks);
FETCH affected_employees
 BULK COLLECT INTO names, old_salaries;

Then I can use the names collection in my FORALL update:

FORALL indx IN names.FIRST .. names.L*
 UPDATE compensation
 SET salary =
 GREATEST(
 DECODE (
 GREATEST (min_sal, salary),
 min_sal, min_sal,
 salary / 5),
 min_sal)
 WHERE name = names (indx)
 RETURNING salary BULK COLLECT INTO new_salaries;

I use DECODE to give an employee either a major boost in yearly income or an 80%
cut in pay to keep the CEO comfy. I end it with a RETURNING clause that relies on
BULK COLLECT to populate a third collection: the new salaries.

Finally, because I used RETURNING and don’t have to write another query against
the compensation table to obtain the new salaries, I can immediately move to report
generation:

FOR indx IN names.FIRST .. names.LAST
LOOP
 DBMS_OUTPUT.PUT_LINE (
 RPAD (names(indx), 20) ||
 RPAD (' Old: ' || old_salaries(indx), 15) ||
 ' New: ' || new_salaries(indx)
);
END LOOP;

Here, then, is the report generated from the onlyfair.sql script:

John DayAndNight Old: 10500 New: 2900000
Holly Cubicle Old: 52000 New: 2900000
Sandra Watchthebucks Old: 22000000 New: 4000000

Bulk Processing for Multirow SQL | 827

Download at WoweBook.Com

Now everyone can afford quality housing and health care. And tax revenue at all levels
will increase, so public schools can get the funding they need.

The RETURNING column values or expressions returned by each ex-
ecution in FORALL are added to the collection after the values returned
previously. If you use RETURNING inside a non-bulk FOR loop, pre-
vious values are overwritten by the latest DML execution.

High Speed DML with FORALL
BULK COLLECT speeds up queries. FORALL does the same thing for inserts, updates,
deletes and merges (FORALL with a merge is supported in Oracle Database 11g only)
(I will refer to these statements collectively as “DML”). FORALL tells the PL/SQL
runtime engine to bulk bind into the SQL statement all of the elements of one or more
collections before sending its statements to the SQL engine.

Given the centrality of SQL to Oracle-based applications and the heavy impact of DML
statements on overall performance, FORALL is probably the single most important
optimization feature in the PL/SQL language.

So if you are not yet using FORALL, I have bad news and good news. The bad news is
that your application code base has not been enhanced over the years to take advantage
of critical Oracle features. The good news is that your users will experience some very
pleasant (and relatively easy to achieve) boosts in performance.

You will find in the following pages explanations of all of the features and nuances of
FORALL, along with plenty of examples.

Syntax of the FORALL statement

Although the FORALL statement contains an iteration scheme (i.e., it iterates through
all the rows of a collection), it is not a FOR loop. Consequently, it has neither a LOOP
nor an END LOOP statement. Its syntax is as follows:

FORALL index IN
 [lower_bound ... upper_bound |
 INDICES OF indexing_collection |
 VALUES OF indexing_collection
]
 [SAVE EXCEPTIONS]
 sql_statement;

where:

index
Is an integer, declared implicitly by Oracle, that is a defined index value in the
collection.

828 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

lower_bound
Is the starting index value (row or collection element) for the operation.

upper_bound
Is the ending index value (row or collection element) for the operation.

sql_statement
Is the SQL statement to be performed on each collection element.

indexing_collection
Is the PL/SQL collection used to select the indices in the bind array referenced in
the sql_statement; the INDICES OF and VALUES_OF alternatives are available
starting in Oracle Database 10g.

SAVE EXCEPTIONS
Is an optional clause that tells FORALL to process all rows, saving any exceptions
that occur.

You must follow these rules when using FORALL:

• The body of the FORALL statement must be a single DML statement—an INSERT,
UPDATE, DELETE, or MERGE (in Oracle Database 11g and later).

• The DML statement must reference collection elements, indexed by the
index_row variable in the FORALL statement. The scope of the index_row variable
is the FORALL statement only; you may not reference it outside of that statement.
Note, though, that the upper and lower bounds of these collections do not have
to span the entire contents of the collection(s).

• Do not declare a variable for index_row. It is declared implicitly as PLS_INTEGER
by the PL/SQL engine.

• The lower and upper bounds must specify a valid range of consecutive index num-
bers for the collection(s) referenced in the SQL statement. Sparsely filled collections
will raise the following error:

ORA-22160: element at index [3] does not exist

See the missing_element.sql file on the book’s web site for an example of this
scenario.

Starting with Oracle Database 10g you can use the INDICES OF and VALUES OF
syntax to allow use of sparse collections (undefined elements between FIRST and
LAST). These clauses are covered later in this chapter.

• Until Oracle Database 11g, fields within collections of records could not be refer-
enced within the DML statement. Instead, you could only reference the row in the
collection as a whole, whether the fields are collections of scalars or collections of
more complex objects. For example, the code below:

DECLARE
 TYPE employee_aat IS TABLE OF employees%ROWTYPE
 INDEX BY PLS_INTEGER;
 l_employees employee_aat;

Bulk Processing for Multirow SQL | 829

Download at WoweBook.Com

BEGIN
 FORALL l_index IN l_employees.FIRST .. l_employees.LAST
 INSERT INTO employee (employee_id, last_name)
 VALUES (l_employees (l_index).employee_id
 , l_employees (l_index).last_name
);
END;

will cause the following compilation error in releases prior to Oracle Database 11g:

PLS-00436: implementation restriction: cannot reference fields
of BULK In-BIND table of records

To use FORALL in this case, you would need to load the employee IDs and the last
names into two separate collections. Thankfully, this restriction has been removed in
Oracle Database 11g.

• The collection subscript referenced in the DML statement cannot be an expression.
For example, the following script:

DECLARE
 names name_varray := name_varray ();
BEGIN
 FORALL indx IN names.FIRST .. names.LAST
 DELETE FROM emp WHERE ename = names(indx+10);
END;

will cause the following error:

PLS-00430: FORALL iteration variable INDX is not allowed in this context

FORALL examples

Here are some examples of the use of the FORALL statement:

• Change the page count of all books whose ISBNs appear in the isbns_in collection:

PROCEDURE order_books (
 isbns_in IN name_varray,
 new_counts_in IN number_varray)
IS
BEGIN
 FORALL indx IN isbns_in.FIRST .. isbns_in.LAST
 UPDATE books
 SET page_count = new_counts_in (indx)
 WHERE isbn = isbns_in (indx);
END;

Notice that the only changes in this example are to change FOR to FORALL, and
to remove the LOOP and END LOOP keywords. This use of FORALL accesses
and passes to SQL each of the rows defined in the two collections. Refer back to
Figure 21-3 for the change in behavior that results.

• The next example shows how the DML statement can reference more than one
collection. In this case, I have three collections: denial, patient_name, and illnesses.

830 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

Only the first two are subscripted, and so individual elements of the collection are
passed to each INSERT. The third column in health_coverage is a collection listing
preconditions. Because the PL/SQL engine bulk binds only subscripted collections,
the illnesses collection is placed in that column for each row inserted:

FORALL indx IN denial.FIRST .. denial.LAST
 INSERT INTO health_coverage
 VALUES (denial(indx), patient_name(indx), illnesses);

• Use the RETURNING clause in a FORALL statement to retrieve information about
each separate DELETE statement. Notice that the RETURNING clause in FOR-
ALL must use BULK COLLECT INTO (the corresponding “bulk” operation for
queries):

FUNCTION remove_emps_by_dept (deptlist IN dlist_t)
 RETURN enolist_t
IS
 enolist enolist_t;
BEGIN
 FORALL aDept IN deptlist.FIRST..deptlist.LAST
 DELETE FROM employees WHERE department_id IN deptlist(aDept)
 RETURNING employee_id BULK COLLECT INTO enolist;
 RETURN enolist;
END;

• Use the indices defined in one collection to determine which rows in the binding
array (the collection referenced inside the SQL statement) will be used in the dy-
namic INSERT.

FORALL indx IN INDICES OF l_top_employees
 EXECUTE IMMEDIATE
 'INSERT INTO ' || l_table || ' VALUES (:emp_pky, :new_salary)'
 USING l_new_salaries(indx).employee_id,
 l_new_salaries(indx).salary;

Cursor attributes for FORALL

You can use cursor attributes after you execute a FORALL statement to get information
about the DML operation run within FORALL. Oracle also offers an additional attrib-
ute, %BULK_ROWCOUNT, to give you more granular information about the results
of the bulk DML statement.

Table 21-1 describes the significance of the values returned by these attributes for
FORALL.

Table 21-1. Implicit SQL cursor attributes for FORALL statements

Name Description

SQL%FOUND Returns TRUE if the last execution of the SQL statement modified one or more rows.

SQL%NOTFOUND Returns TRUE if the DML statement failed to change any rows.

SQL%ROWCOUNT Returns the total number of rows processed by all executions of the SQL statement, not just the
last statement.

Bulk Processing for Multirow SQL | 831

Download at WoweBook.Com

Name Description

SQL%ISOPEN Always returns FALSE and should not be used.

SQL%BULK_ROWCOUNT Returns a pseudo-collection that tells you the number of rows processed by each corresponding
SQL statement executed via FORALL. Note that when %BULK_ROWCOUNT(i) is zero, %FOUND
and %NOTFOUND are FALSE and TRUE, respectively.

SQL%BULK_EXCEPTIONS Returns a pseudo-collection that provides information about each exception raised in a FORALL
statement that includes the SAVE EXCEPTIONS clause.

Let’s now explore the %BULK_ROWCOUNT composite attribute. This attribute, de-
signed specifically for use with FORALL, has the semantics of (acts like) an associative
array or collection. The database deposits in the Nth element in this collection the
number of rows processed by the Nth execution of the FORALL’s INSERT, UPDATE,
DELETE, or MERGE. If no rows were affected, the Nth row will contain a zero value.

Here is an example of using %BULK_ROWCOUNT (and the overall %ROWCOUNT
attribute as well):

DECLARE
 TYPE isbn_list IS TABLE OF VARCHAR2(13);

 my_books isbn_list
 := isbn_list (
 '1-56592-375-8', '0-596-00121-5', '1-56592-849-0',
 '1-56592-335-9', '1-56592-674-9', '1-56592-675-7',
 '0-596-00180-0', '1-56592-457-6'
);
BEGIN
 FORALL book_index IN
 my_books.FIRST..my_books.LAST
 UPDATE books
 SET page_count = page_count / 2
 WHERE isbn = my_books (book_index);

 -- Did I update the total number of books I expected?
 IF SQL%ROWCOUNT != 8
 THEN
 DBMS_OUTPUT.PUT_LINE (
 'We are missing a book!');
 END IF;

 -- Did the 4th UPDATE statement affect any rows?
 IF SQL%BULK_ROWCOUNT(4) = 0
 THEN
 DBMS_OUTPUT.PUT_LINE (
 'What happened to Oracle PL/SQL Programming?');
 END IF;
END;

Here are some tips on how this attribute works:

832 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

• The FORALL statement and %BULK_ROWCOUNT use the same subscripts or
row numbers in the collections. For example, if the collection passed to FORALL
has data in rows 10 through 200, then the %BULK_ROWCOUNT
pseudo-collection will also have rows 10 through 200 defined and populated. Any
other rows will be undefined.

• When the INSERT affects only a single row (when you specify a VALUES list, for
example), a row’s value in %BULK_ROWCOUNT will be equal to 1. For IN-
SERT...SELECT statements, however, %BULK_ROWCOUNT can be greater
than 1.

• The value in a row of the %BULK_ROWCOUNT pseudo-array for deletes, updates
and insert-selects may be any natural number (0 or positive); these statements can
modify more than one row, depending on their WHERE clauses.

ROLLBACK behavior with FORALL

The FORALL statement allows you to pass multiple SQL statements all together (in
bulk) to the SQL engine. This means that you have a single context switch—but each
statement still executes separately in the SQL engine.

What happens when one of those DML statements fails?

1. The DML statement that raised the exception is rolled back to an implicit savepoint
marked by the PL/SQL engine before execution of the statement. Changes to all
rows already modified by that statement are rolled back.

2. Any previous DML operations in that FORALL statement that already completed
without error are not rolled back.

3. If you do not take special action (by adding the SAVE EXCEPTIONS clause to
FORALL, discussed next), the entire FORALL statement stops and the remaining
statements are not executed at all.

Continuing past exceptions with SAVE EXCEPTIONS

By adding the SAVE EXCEPTIONS clause to your FORALL header, you instruct the
Oracle database to continue processing even when an error has occurred. The database
will then “save the exception” (or multiple exceptions, if more than one error occurs).
When the DML statement completes, it will then raise the ORA-24381 exception. In
the exception section, you can then access a pseudo-collection called
SQL%BULK_EXCEPTIONS to obtain error information.

Here is an example, followed by an explanation of what is going on:

 /* File on web: bulkexc.sql */
 1 DECLARE
 2 bulk_errors EXCEPTION;
 3 PRAGMA EXCEPTION_INIT (bulk_errors, −24381);
 4 TYPE namelist_t IS TABLE OF VARCHAR2(32767);
 5

Bulk Processing for Multirow SQL | 833

Download at WoweBook.Com

 6 enames_with_errors namelist_t
 7 := namelist_t ('ABC',
 8 'DEF',
 9 NULL, /* Last name cannot be NULL */
 10 'LITTLE',
 11 RPAD ('BIGBIGGERBIGGEST', 250, 'ABC'), /* Value too long */
 12 'SMITHIE'
 13);
 14 BEGIN
 15 FORALL indx IN enames_with_errors.FIRST .. enames_with_errors.LAST
 16 SAVE EXCEPTIONS
 17 UPDATE EMPLOYEES
 18 SET last_name = enames_with_errors (indx);
 19
 20 EXCEPTION
 21 WHEN bulk_errors
 22 THEN
 23 DBMS_OUTPUT.put_line ('Updated ' || SQL%ROWCOUNT || ' rows.');
 24
 25 FOR indx IN 1 .. SQL%BULK_EXCEPTIONS.COUNT
 26 LOOP
 27 DBMS_OUTPUT.PUT_LINE ('Error '
 28 || indx
 29 || ' occurred during '
 30 || 'iteration '
 31 || SQL%BULK_EXCEPTIONS (indx).ERROR_INDEX
 32 || ' updating name to '
 33 || enames_with_errors (SQL%BULK_EXCEPTIONS (indx).ERROR_INDEX);
 34 DBMS_OUTPUT.PUT_LINE ('Oracle error is '
 35 || SQLERRM (−1 * SQL%BULK_EXCEPTIONS (indx).ERROR_CODE)
 36);
 37 END LOOP;
 38 END;

When I run this code with SERVEROUTPUT turned on, I see these results:

SQL> EXEC bulk_exceptions

Error 1 occurred during iteration 2 updating name to BIGBIGGERBIGGEST
Oracle error is ORA-01401: inserted value too large for column

Error 2 occurred during iteration 4 updating name to
Oracle error is ORA-01407: cannot update () to NULL

In other words, the database encountered two exceptions as it processed the DML for
the names collection. It did not stop with the first exception, but continued on, cata-
loging a second.

The following table describes the error-handling functionality in this code:

Line(s) Description

2–3 Declare a named exception to make the exception section more readable.

4–13 Declare and populate a collection that will drive the FORALL statement. I have intentionally placed data in the
collection that will raise two errors.

834 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

Line(s) Description

15–18 Execute an UPDATE statement with FORALL using the enames_with_errors collection.

25–37 Use a numeric FOR loop to scan through the contents of the SQL%BULK_EXCEPTIONS pseudo-collection. Note that
I can call the COUNT method to determine the number of defined rows (errors raised), but I cannot call other
methods, such as FIRST and LAST.

31 and 33 The ERROR_INDEX field of each pseudo-collection’s row returns the row number in the driving collection of the
FORALL statement for which an exception was raised.

35 The ERROR_CODE field of each pseudo-collection’s row returns the error number of the exception that was raised.
Note that this value is stored as a positive integer; you will need to multiple it by −1 before passing it to SQLERRM
or displaying the information.

Driving FORALL with nonsequential arrays

Prior to Oracle Database 10g, the collection that is referenced inside the FORALL
statement (the “binding array”) had to be densely or consecutively filled. If there were
any gaps between the low and high values specified in the range of the FORALL header,
Oracle would raise an error as shown below:

 1 DECLARE
 2 TYPE employee_aat IS TABLE OF employees.employee_id%TYPE
 3 INDEX BY PLS_INTEGER;
 4 l_employees employee_aat;
 5 BEGIN
 6 l_employees (1) := 100;
 7 l_employees (100) := 1000;
 8 FORALL l_index IN l_employees.FIRST .. l_employees.LAST
 9 UPDATE employees SET salary = 10000
10 WHERE employee_id = l_employees (l_index);
11 END;
12 /

The error message looked like this:

DECLARE
*
ERROR at line 1:
ORA-22160: element at index [2] does not exist

Furthermore, there was no way for you to skip over rows in the binding array that you
didn’t want processed by the FORALL statement. These restrictions often led to the
writing of additional code to compress collections to fit the limitations of FORALL. To
help PL/SQL developers avoid this nuisance coding, starting with Oracle Database
10g, PL/SQL offers the INDICES OF and VALUES OF clauses, both of which allow
you to specify the portion of the binding array to be processed by FORALL.

First, let’s review the difference between these two clauses, and then I will explore
examples to demonstrate their usefulness.

Bulk Processing for Multirow SQL | 835

Download at WoweBook.Com

INDICES OF
Use this clause when you have a collection (let’s call it the indexing array) whose
defined rows specify which rows in the binding array (referenced inside the FOR-
ALL’s DML statement) you would like to be processed. In other words, if the
element at position N (a.k.a. the row number) is not defined in the indexing array,
you want the FORALL statement to ignore the element at position N in the binding
array.

VALUES OF
Use this clause when you have a collection of integers (again, the indexing array)
whose content (the value of the element at a specified position) identifies the po-
sition in the binding array that you want to be processed by the FORALL statement.

I would like to update the salaries of some employees to $10,000.
Currently, no one has such a salary:

SQL> SELECT employee_id FROM employees WHERE salary = 10000;
no rows selected

I then write the following program.

 /* File on web: 10g_indices_of.sql */
 1 DECLARE
 2 TYPE employee_aat IS TABLE OF employees.employee_id%TYPE
 3 INDEX BY PLS_INTEGER;
 4
 5 l_employees employee_aat;
 6
 7 TYPE boolean_aat IS TABLE OF BOOLEAN
 8 INDEX BY PLS_INTEGER;
 9
10 l_employee_indices boolean_aat;
11 BEGIN
12 l_employees (1) := 7839;
13 l_employees (100) := 7654;
14 l_employees (500) := 7950;
15 --
16 l_employee_indices (1) := TRUE;
17 l_employee_indices (500) := TRUE;
18 l_employee_indices (799) := TRUE;
19
20 FORALL l_index IN INDICES OF l_employee_indices
21 BETWEEN 1 AND 500
22 UPDATE employees23 SET salary = 10000
24 WHERE employee_id = l_employees (l_index);
25 END;

The following table describes the logic of the program:

Line(s) Description

2–5 Define a collection of employee ID numbers.

7–10 Define a collection of Boolean values.

INDICES OF example.

836 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

Line(s) Description

12–14 Populate (sparsely) three rows (1, 100, and 500) in the collection of employee IDs.

16–18 Define only two rows in the collection, 1 and 500.

20–24 In the FORALL statement, rather than specify a range of values from FIRST to LAST, I simply specify INDICES OF
l_employee_indices. I also include an optional BETWEEN clause to restrict which of those index values will be used.

After executing this code, I query the table to see that, in fact, only two rows of the
table were updated; the employee with ID 7654 was skipped because the Boolean in-
dices collection had no element defined at position 100.

SQL> SELECT employee_id FROM employee WHERE salary = 10000;

EMPLOYEE_ID

 7839
 7950

With INDICES OF (line 19), the contents of the indexing array are ignored. All that
matters are the positions or row numbers that are defined in the collection.

Again, I would like to update the salaries of some employees to
$10,000, this time using the VALUES OF clause. Currently, no one has such a salary:

SQL> SELECT employee_id FROM employee WHERE salary = 10000;
no rows selected

I then write the following program:

 /* File on web: 10g_values_of.sql */
 1 DECLARE
 2 TYPE employee_aat IS TABLE OF employees.employee_id%TYPE
 3 INDEX BY PLS_INTEGER;
 4
 5 l_employees employee_aat;
 6
 7 TYPE indices_aat IS TABLE OF PLS_INTEGER
 8 INDEX BY PLS_INTEGER;
 9
10 l_employee_indices indices_aat;
11 BEGIN
12 l_employees (-77) := 7820;
13 l_employees (13067) := 7799;
14 l_employees (99999999) := 7369;
15 --
16 l_employee_indices (100) := −77;
17 l_employee_indices (200) := 99999999;
18 --
19 FORALL l_index IN VALUES OF l_employee_indices
20 UPDATE employees
21 SET salary = 10000
22 WHERE employee_id = l_employees (l_index);
23 END;

VALUES OF example.

Bulk Processing for Multirow SQL | 837

Download at WoweBook.Com

The following table describes the logic of the program:

Line(s) Description

2–6 Define a collection of employee ID numbers.

7–10 Define a collection of integers.

12–14 Populate (sparsely) three rows (–77, 13067, and 99999999) in the collection of employee IDs.

16–17 I want to set up the indexing array to identify which of those rows to use in my update. Because I am using VALUES
OF, the row numbers that I use are unimportant. Instead, what matters is the value found in each of the rows in the
indexing array. Again, I want to skip over that “middle” row of 13067, so here I define just two rows in the
l_employee_indices array and assign them values –77 and 9999999, respectively.

19–22 Rather than specify a range of values from FIRST to LAST, I simply specify VALUES OF l_employee_indices. Notice
that I populate rows 100 and 200 in the indices collection. VALUES OF does not require a densely filled indexing
collection.

After executing this code, I query the table to see that in fact only two rows of the table
were updated; the employee with ID 7799 was skipped because the “values of” collec-
tion had no element whose value equaled 13067.

SQL> SELECT employee_id FROM employees WHERE salary = 10000;

EMPLOYEE_ID

 7369
 7820

Improving Performance With Pipelined Table Functions
Pipelined functions are where the elegance and simplicity of PL/SQL converge with the
performance of SQL. Complex data transformations are effortless to develop and sup-
port with PL/SQL, yet to achieve high-performance data processing, we often resort to
set-based SQL solutions. Pipelined functions bridge the gap between the two methods
effortlessly, but they also have some unique performance features of their own, making
them a superb performance optimization tool.

In the following pages, I’ll show some examples of typical data-processing requirements
and how you might tune them with pipelined functions. I’ll cover the following topics:

• How to tune typical data-loading requirements with pipelined functions. In each
case, I’ll convert legacy row-based solutions to set-based solutions that include
parallel pipelined functions.

• How to exploit the parallel context of pipelined functions to improve the perform-
ance of data unloads.

• The relative performance of the partitioning and streaming options for parallel
pipelined functions.

838 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

• How the cost-based optimizer (CBO) deals with both pipelined and standard table
functions.

• How complex multitable loading requirements can be solved with multitype pipe-
lined functions.

The basic syntax for pipelined table functions is covered in Chapter 17. To recap, a
pipelined function is called in the FROM clause of a SQL statement and is queried as
if it were a relational table or other rowsource. Unlike standard table functions (that
have to complete all of their processing before passing a potentially large collection of
data back to the calling context), pipelined table functions stream their results to the
client almost as soon as they are prepared. In other words, pipelined functions do not
materialize their entire result set, and this optimization feature dramatically reduces
their PGA memory footprint. Another unique performance feature of pipelined func-
tions is the ability to call them in the context of a parallel query. I have taken advantage
of these unique performance features many times, and in the next few pages I will show
you how and when to use pipelined functions to improve the performance of some of
your own programs.

Replacing Row-Based Inserts with Pipelined Function-Based Loads
To demonstrate the performance of pipelined functions, let’s first imagine a typical
legacy loading scenario that I want to bring into the 21st century. Using the stockpivot
example, I have coded a simple row-by-row load to fetch the stockpivot source data
and pivot each record into two rows for insert. It is contained in a package and is as
follows:

/* File on web: stockpivot_setup.sql */
PROCEDURE load_stocks_legacy IS

 CURSOR c_source_data IS
 SELECT ticker, open_price, close_price, trade_date
 FROM stocktable;

 r_source_data stockpivot_pkg.stocktable_rt;
 r_target_data stockpivot_pkg.tickertable_rt;

BEGIN
 OPEN c_source_data;
 LOOP
 FETCH c_source_data INTO r_source_data;
 EXIT WHEN c_source_data%NOTFOUND;

 /* Opening price... */
 r_target_data.ticker := r_source_data.ticker;
 r_target_data.price_type := 'O';
 r_target_data.price := r_source_data.open_price;
 r_target_data.price_date := r_source_data.trade_date;
 INSERT INTO tickertable VALUES r_target_data;

Improving Performance With Pipelined Table Functions | 839

Download at WoweBook.Com

 /* Closing price... */
 r_target_data.price_type := 'C';
 r_target_data.price := r_source_data.close_price;
 INSERT INTO tickertable VALUES r_target_data;

 END LOOP;
 CLOSE c_source_data;
END load_stocks_legacy;

I regularly see code of this format and since Oracle8i Database I’ve typically used BULK
COLLECT and FORALL as my primary tuning tool (when the logic is too complex for
a set-based SQL solution). However, an alternative technique (that I first saw described
by Tom Kyte†) is to use a set-based insert from a pipelined function. In other words, a
pipelined function is used for all of the legacy data transformation and preparation
logic, but the target-table load is handled separately as a set-based insert. Since reading
about this powerful technique, I have used it successfully in my own performance op-
timization work, as described in the following sections.

A pipelined function implementation

As demonstrated in Chapter 17, the first thing to consider when creating a pipelined
function is the data that it will return. For this, I need to create an object type to define
a single row of the pipelined function’s return data.

/* File on web: stockpivot_setup.sql */
CREATE TYPE stockpivot_ot AS OBJECT
(ticker VARCHAR2(10)
, price_type VARCHAR2(1)
, price NUMBER
, price_date DATE
);

I also need to create a collection of this object as this defines the function’s return type.

/* File on web: stockpivot_setup.sql */
CREATE TYPE stockpivot_ntt AS TABLE OF stockpivot_ot;

Transforming the legacy code into a pipelined function is quite simple. First I must
define the function specification in the header (see the stockpivot_setup.sql file on the
book’s web site). I must also include a load procedure that I will describe later:

/* File on web: stockpivot_setup.sql */
CREATE PACKAGE stockpivot_pkg AS

 TYPE stocktable_rct IS REF CURSOR
 RETURN stocktable%ROWTYPE;

 <snip>

 FUNCTION pipe_stocks(
 p_source_data IN stockpivot_pkg.stocktable_rct

† See his discussion in Expert Oracle Database Architecture, pp. 640–643.

840 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

) RETURN stockpivot_ntt PIPELINED;

 PROCEDURE load_stocks;

END stockpivot_pkg;

My pipelined function takes a strong REF CURSOR as an input parameter (I could also
use a weak REF CURSOR in this case). The cursor parameter itself is not necessarily
required. It would be just as valid for me to declare the cursor in the function itself (as
I did with the legacy procedure). However, the cursor parameter is going to be required
for further iterations of this pipelined function, so I’ve introduced it from the outset.

The function’s implementation follows.

 /* File on web: stockpivot_setup.sql */
 1 FUNCTION pipe_stocks(
 2 p_source_data IN stockpivot_pkg.stocktable_rct
 3) RETURN stockpivot_ntt PIPELINED IS
 4
 5 r_target_data stockpivot_ot := stockpivot_ot(NULL, NULL, NULL, NULL);
 6 r_source_data stockpivot_pkg.stocktable_rt;
 7
 8 BEGIN
 9 LOOP
 10 FETCH p_source_data INTO r_source_data;
 11 EXIT WHEN p_source_data%NOTFOUND;
 12
 13 /* First row... */
 14 r_target_data.ticker := r_source_data.ticker;
 15 r_target_data.price_type := 'O';
 16 r_target_data.price := r_source_data.open_price;
 17 r_target_data.price_date := r_source_data.trade_date;
 18 PIPE ROW (r_target_data);
 19
 20 /* Second row... */
 21 r_target_data.price_type := 'C';
 22 r_target_data.price := r_source_data.close_price;
 23 PIPE ROW (r_target_data);
 24
 25 END LOOP;
 26 CLOSE p_source_data;
 27 RETURN;
 28 END pipe_stocks;

Other than the general pipelined function syntax (that you should by now be familiar
with from Chapter 17), the majority of the pipelined function’s code is recognizable
from the legacy example. The main differences to consider are summarized here.

Line(s) Description

2 The legacy cursor is removed from the code and instead is passed as a REF CURSOR parameter.

5 My target data variable is no longer defined as the target table’s ROWTYPE. It is now of the STOCKPIVOT_OT object
type that defines the pipelined function’s return data.

Improving Performance With Pipelined Table Functions | 841

Download at WoweBook.Com

Line(s) Description

18 and 23 Instead of inserting records into tickertable, I pipe records from the function. At this stage, the database will buffer
a small number of my piped object rows into a corresponding collection. Depending on the client’s array size, this
buffered collection of data will be available almost immediately.

Loading from a pipelined function

As you can see, with only a small number of changes to the original load program, I
now have a pipelined function that prepares and pipes all of the data that I need to load
into tickertable. To complete the conversion of my legacy code, I only need to write an
additional procedure to insert the piped data into my target table.

/* File on web: stockpivot_setup.sql */
 PROCEDURE load_stocks IS
 BEGIN

 INSERT INTO tickertable (ticker, price_type, price, price_date)
 SELECT ticker, price_type, price, price_date
 FROM TABLE(
 stockpivot_pkg.pipe_stocks(
 CURSOR(SELECT * FROM stocktable)));

 END load_stocks;

That completes the basic conversion of the row-by-row legacy code to a pipelined
function solution. So how does this compare to the original? In my tests, I created the
stocktable as an external table with a file of 500,000 records. The legacy row-by-row
code completed in 57 seconds (inserting 1 million rows into tickertable) and the set-
based insert using the pipelined function ran in just 16 seconds (test results for all
examples are available on the book’s web site).

Considering that this is my first and most basic pipelined function implementation, the
improvement in performance shown above is quite respectable. However, it is not quite
the performance I can get when using a simple BULK COLLECT and FORALL solution
(which runs in just over 5 seconds in my tests), so I will need to make some modifica-
tions to my pipelined function load.

Before I do this, however, notice that I retained the single-row fetches off the main
cursor and did nothing to reduce the “expensive” context-switching (which would
require a BULK COLLECT fetch). So why is it faster than the legacy row-by-row code?

It is faster primarily because of the switch to set-based SQL. Set-based DML (such as
the INSERT...SELECT I used in my pipelined load) is almost always considerably faster
than a row-based, procedural solution. In this particular case, I have benefited directly
from the Oracle database’s internal optimization of set-based inserts. Specifically, the
database writes considerably less redo information for set-based inserts (INSERT...SE-
LECT) than it does for singleton inserts (INSERT...VALUES). That is to say, if I insert
100 rows in a single statement, it will generate less redo than if I inserted 100 rows one-
by-one.

842 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

My original legacy load of 1 million tickertable rows generated over 270 MB of redo
information. This was reduced to just over 37 MB when using the pipelined function-
based load, contributing to a significant proportion of the time savings.

I have omitted any complicated data transformations from my examples
for the sake of clarity. You should assume in all cases that the data-
processing rules are sufficiently complex to warrant a PL/SQL, pipe-
lined function solution in the first place. Otherwise, I would probably
just use a set-based SQL solution with analytic functions, subquery fac-
toring, and CASE expressions to transform my high-volume data!

Tuning pipelined functions with array fetches

Despite having tuned the legacy code with a pipelined function implementation, I am
not done yet. There are further optimization possibilities and I need to make my pro-
cessing at least as fast as a BULK COLLECT and FORALL solution. Notice that I used
single-row fetches from the main source cursor. The first simple tuning possibility is
therefore to use array fetches with BULK COLLECT.

I begin by adding a default array size to my package specification. The optimal array
fetch size will vary according to your specific data-processing requirements, but I always
prefer to start my tests with 100 and work from there. I also add an associative array
type to the package specification (it could just as well be declared in the body); this is
for bulk fetches from the source cursor. Finally, I add a second parameter to the pipe-
lined function signature so that I can control the array fetch size (this isn’t necessary of
course: just good practice). My specification is now as follows.

/* File on web: stockpivot_setup.sql */
CREATE PACKAGE stockpivot_pkg AS
 <snip>
 c_default_limit CONSTANT PLS_INTEGER := 100;

 TYPE stocktable_aat IS TABLE OF stocktable%ROWTYPE
 INDEX BY PLS_INTEGER;

 FUNCTION pipe_stocks_array(
 p_source_data IN stockpivot_pkg.stocktable_rct,
 p_limit_size IN PLS_INTEGER DEFAULT stockpivot_pkg.c_default_limit
) RETURN stockpivot_ntt PIPELINED;
 <snip>
END stockpivot_pkg;

The function itself is very similar to the original version.

/* File on web: stockpivot_setup.sql */
 FUNCTION pipe_stocks_array(
 p_source_data IN stockpivot_pkg.stocktable_rct,
 p_limit_size IN PLS_INTEGER DEFAULT stockpivot_pkg.c_default_limit
) RETURN stockpivot_ntt PIPELINED IS

 r_target_data stockpivot_ot := stockpivot_ot(NULL, NULL, NULL, NULL);

Improving Performance With Pipelined Table Functions | 843

Download at WoweBook.Com

 aa_source_data stockpivot_pkg.stocktable_aat;

 BEGIN
 LOOP
 FETCH p_source_data BULK COLLECT INTO aa_source_data LIMIT p_limit_size;
 EXIT WHEN aa_source_data.COUNT = 0;

 /* Process the batch of (p_limit_size) records... */
 FOR i IN 1 .. aa_source_data.COUNT LOOP

 /* First row... */
 r_target_data.ticker := aa_source_data(i).ticker;
 r_target_data.price_type := 'O';
 r_target_data.price := aa_source_data(i).open_price;
 r_target_data.price_date := aa_source_data(i).trade_date;
 PIPE ROW (r_target_data);

 /* Second row... */
 r_target_data.price_type := 'C';
 r_target_data.price := aa_source_data(i).close_price;
 PIPE ROW (r_target_data);
 END LOOP;
 END LOOP;
 CLOSE p_source_data;
 RETURN;
 END pipe_stocks_array;

The only difference from my original version is the use of BULK COLLECT...LIMIT
from the source cursor. The load procedure is the same as before, modified to reference
the array-version of the pipelined function. This reduced my loading time further to
just 6 seconds, purely because of the reduction in context-switching from array-based
PL/SQL. My pipelined function solution now has comparable performance to my
BULK COLLECT and FORALL solution.

Exploiting parallel pipelined functions for ultimate performance

I’ve achieved some good performance gains from the switch to a set-based insert from
a pipelined function. Yet I have one more tuning option for my stockpivot load that
will give me better performance than any other solution: using the parallel capability
of pipelined functions described in Chapter 17. In this next iteration, I parallel-enable
my stockpivot function by adding another clause to the function signature:

/* File on web: stockpivot_setup.sql */
CREATE PACKAGE stockpivot_pkg AS
 <snip>
 FUNCTION pipe_stocks_parallel(
 p_source_data IN stockpivot_pkg.stocktable_rct
 p_limit_size IN PLS_INTEGER DEFAULT stockpivot_pkg.c_default_limit
) RETURN stockpivot_ntt
 PIPELINED
 PARALLEL_ENABLE (PARTITION p_source_data BY ANY);
 <snip>
END stockpivot_pkg;

844 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

By using the ANY partitioning scheme, I have instructed the Oracle database to ran-
domly allocate my source data to the parallel processes. This is because the order in
which the function receives and processes the source data has no effect on the resulting
output (i.e., there are no inter-row dependencies). That is not always the case, of course.

Enabling parallel pipelined function execution

Aside from the parallel-enabling syntax in the specification and body, the function
implementation is the same as the array-fetch example (see the stockpivot_setup.sql file
on the web site for the full package). However, I need to ensure that my tickertable load
is executed in parallel. First, I must enable parallel DML at the session level and once
this is done, parallel query is invoked in one of the following ways:

• Using the PARALLEL hint

• Using parallel DEGREE settings on the underlying objects

• Forcing parallel query (ALTER SESSION FORCE PARALLEL (QUERY)
PARALLEL n)

Parallel query/DML is a feature of Oracle Database Enterprise Edition.
If you use either Standard Edition or Standard Edition One, you are not
licensed to use the parallel feature of pipelined functions.

In my load, I have enabled parallel DML at the session level and used hints to specify
a degree of parallelism (DOP) of 4:

/* File on web: stockpivot_setup.sql */
PROCEDURE load_stocks_parallel IS
BEGIN

 EXECUTE IMMEDIATE 'ALTER SESSION ENABLE PARALLEL DML';

 INSERT /*+ PARALLEL(t, 4) */ INTO tickertable t
 (ticker, price_type, price, price_date)
 SELECT ticker, price_type, price, price_date
 FROM TABLE(
 stockpivot_pkg.pipe_stocks_parallel(
 CURSOR(SELECT /*+ PARALLEL(s, 4) */ * FROM stocktable s)));

END load_stocks_parallel;

This reduces the load time to just over 3 seconds, a significant improvement on my
original legacy code and all other versions of my pipelined function load. Of course,
when dealing in small units of time such as this, the startup costs of parallel processes
will impact the overall runtime, but I have still managed almost a 50% improvement
on my array version. The fact that parallel inserts use direct path rather than conven-
tional path also means that the redo generation dropped further still to just 25 KB!

Improving Performance With Pipelined Table Functions | 845

Download at WoweBook.Com

In commercial systems, you might be tuning processes that run for an hour or more,
so the gains you can achieve with parallel pipelined loads will be significant in both
proportional and actual terms.

When you are using parallel pipelined functions, your source cursor
must be passed as a REF CURSOR parameter. In serial pipelined func-
tions, the source cursor can be embedded in the function itself (although
I have chosen not to do this in any of my examples).

Furthermore, the REF CURSOR can be either weakly or strongly typed
for functions partitioned with the ANY scheme, but for HASH or
RANGE based partitioning, it must be strongly typed. See Chapter 15
for more details on REF CURSORs and cursor variables.

Tuning Merge Operations with Pipelined Functions
You might now be considering serial or parallel pipelined functions as a tuning mech-
anism for your own high-volume data loads. Yet not all loads involve inserts like the
stockpivot example. Many data loads are incremental and require periodic merges of
new and modified data. The good news is that the same principle of combining
PL/SQL transformations with set-based SQL applies to merges (and updates) as well.

Row-based PL/SQL merge processing

Consider the following procedure, taken from my employee_pkg example. I have a
merge of a large number of employee records, but my legacy code uses an old PL/SQL
technique of attempting an update first and inserting only when the update matches
zero records in the target table.

/* File on web: employees_merge_setup.sql */
PROCEDURE upsert_employees IS
 n PLS_INTEGER := 0;
BEGIN
 FOR r_emp IN (SELECT * FROM employees_staging) LOOP
 UPDATE employees
 SET <snip>
 WHERE employee_id = r_emp.employee_id;

 IF SQL%ROWCOUNT = 0 THEN
 INSERT INTO employees (<snip>)
 VALUES (<snip>);
 END IF;
 END LOOP;
END upsert_employees;

I’ve removed some of the code for brevity, but you can clearly see the “upsert” technique
in action. Note that I’ve used an implicit cursor FOR loop that will benefit from the
array-fetch optimization introduced to PL/SQL in Oracle Database 10g.

846 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

To test this procedure, I created a staging table of 500,000 employees records (this is
a massive corporation!) and inserted 250,000 of them into an employees table to man-
ufacture an even split between updates and inserts. This PL/SQL “poor man’s merge”
solution completed in 46 seconds.

Using pipelined functions for set-based MERGE

Converting this example to a set-based SQL MERGE from a pipelined function is, once
again, quite simple. First, I create the supporting object and nested table types (see the
employees_merge_setup.sql file for details) and declare the function in the package
header.

/* File on web: employees_merge_setup.sql */
CREATE PACKAGE employee_pkg AS

 c_default_limit CONSTANT PLS_INTEGER := 100;

 TYPE employee_rct IS REF CURSOR RETURN employees_staging%ROWTYPE;
 TYPE employee_aat IS TABLE OF employees_staging%ROWTYPE
 INDEX BY PLS_INTEGER;
 <snip>

 FUNCTION pipe_employees(
 p_source_data IN employee_pkg.employee_rct
 p_limit_size IN PLS_INTEGER DEFAULT employee_pkg.c_default_limit
) RETURN employee_ntt
 PIPELINED
 PARALLEL_ENABLE (PARTITION p_source_data BY ANY);
END employee_pkg;

I have parallel-enabled the pipelined function and used the ANY partitioning scheme
as before. The function implementation is as follows:

/* File on web: employees_merge_setup.sql */
 FUNCTION pipe_employees(
 p_source_data IN employee_pkg.employee_rct,
 p_limit_size IN PLS_INTEGER DEFAULT employee_pkg.c_default_limit
) RETURN employee_ntt
 PIPELINED
 PARALLEL_ENABLE (PARTITION p_source_data BY ANY) IS
 aa_source_data employee_pkg.employee_aat;
 BEGIN
 LOOP
 FETCH p_source_data BULK COLLECT INTO aa_source_data LIMIT p_limit_size;
 EXIT WHEN aa_source_data.COUNT = 0;
 FOR i IN 1 .. aa_source_data.COUNT LOOP
 PIPE ROW (
 employee_ot(aa_source_data(i).employee_id,
 <snip>
 SYSDATE));
 END LOOP;
 END LOOP;
 CLOSE p_source_data;

Improving Performance With Pipelined Table Functions | 847

Download at WoweBook.Com

 RETURN;
 END pipe_employees;

This function simply array-fetches the source data and pipes it out in the correct format.
I can now use my function in a MERGE statement, which I wrap in a procedure in
employee_pkg, as follows.

 /* File on web: employees_merge_setup.sql */
 PROCEDURE merge_employees IS
 BEGIN

 EXECUTE IMMEDIATE 'ALTER SESSION ENABLE PARALLEL DML';

 MERGE /*+ PARALLEL(e, 4) */
 INTO employees e
 USING TABLE(
 employee_pkg.pipe_employees(
 CURSOR(SELECT /*+ PARALLEL(es, 4) */ *
 FROM employees_staging es))) s
 ON (e.employee_id = s.employee_id)
 WHEN MATCHED THEN
 UPDATE
 SET <snip>
 WHEN NOT MATCHED THEN
 INSERT (<snip>)
 VALUES (<snip>);

 END merge_employees;

The SQL MERGE from my parallel pipelined function reduces the load time by over
50% to just 21 seconds. So using parallel pipelined functions as a rowsource for set-
based SQL operations is clearly a valuable tuning technique for volume data loads.

Asynchronous Data Unloading with Parallel Pipelined Functions
So far, I have demonstrated two types of data loads that have benefited from conversion
to a parallel pipelined function. You might also want to exploit the parallel feature of
pipelined functions for those times when you need to unload data (even well into the
21st century I have yet to see a corporate in-house ODS/DSS/warehouse that doesn’t
extract data for transfer to other systems).

A typical data-extract program

Imagine the following scenario. I have a daily extract of all my trading data (held in
tickertable) for transfer to a middle-office system, which expects a delimited flat file.
To achieve this, I write a simple utility to unload data from a cursor:

/* File on web: parallel_unload_setup.sql */
PROCEDURE legacy_unload(
 p_source IN SYS_REFCURSOR,
 p_filename IN VARCHAR2,
 p_directory IN VARCHAR2,

848 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

 p_limit_size IN PLS_INTEGER DEFAULT unload_pkg.c_default_limit
) IS
 TYPE row_aat IS TABLE OF VARCHAR2(32767)
 INDEX BY PLS_INTEGER;
 aa_rows row_aat;
 v_name VARCHAR2(128) := p_filename || '.txt';
 v_file UTL_FILE.FILE_TYPE;
BEGIN
 v_file := UTL_FILE.FOPEN(p_directory, v_name, 'w', c_maxline);
 LOOP
 FETCH p_source BULK COLLECT INTO aa_rows LIMIT p_limit_size;
 EXIT WHEN aa_rows.COUNT = 0;
 FOR i IN 1 .. aa_rows.COUNT LOOP
 UTL_FILE.PUT_LINE(v_file, aa_rows(i));
 END LOOP;
 END LOOP;
 CLOSE p_source;
 UTL_FILE.FCLOSE(v_file);
END legacy_unload;

I simply loop through the source cursor parameter using an array fetch size of 100 and
write each batch of rows to the destination file using UTL_FILE. The source cursor has
just one column—the cursor is prepared with the source columns already concaten-
ated/delimited.

In testing, 1 million delimited tickertable rows unloaded to a flat file in just 24 seconds
(I ensured that tickertable was fully scanned a few times beforehand to reduce the
impact of physical I/O). But tickertable has an average row length of just 25 bytes, and
so unloads very quickly. Commercial systems will write significantly more data (in both
row length and row counts) and potentially take tens of minutes.

A parallel-enabled pipelined function unloader

If you recognize this scenario from your own systems, you should consider tuning with
parallel pipelined functions. If you analyze the legacy example above, all of the data
manipulation can be placed within a pipelined function (specifically, there are no DML
operations). So how about if I take that cursor fetch logic and UTL_FILE management
and put it inside a parallel pipelined function? If I do this, I can exploit Oracle’s parallel
query to unload the data to multiple files much faster.

Of course, pipelined functions usually return piped data, but in this case my source
rows are being written to a file and I don’t need them returned to the client. Instead, I
will return one row per parallel process with some very basic metadata to describe the
session information and number of rows it extracted. My supporting types are as
follows:

/* File on web: parallel_unload_setup.sql */
CREATE TYPE unload_ot AS OBJECT
(file_name VARCHAR2(128)
, no_records NUMBER
, session_id NUMBER);

Improving Performance With Pipelined Table Functions | 849

Download at WoweBook.Com

CREATE TYPE unload_ntt AS TABLE OF unload_ot;

My function implementation is based on the legacy processing with some additional
setup required for the metadata being returned.

 /* File on web: parallel_unload_setup.sql */
 1 FUNCTION parallel_unload(
 2 p_source IN SYS_REFCURSOR,
 3 p_filename IN VARCHAR2,
 4 p_directory IN VARCHAR2,
 5 p_limit_size IN PLS_INTEGER DEFAULT unload_pkg.c_default_limit
 6)
 7 RETURN unload_ntt
 8 PIPELINED PARALLEL_ENABLE (PARTITION p_source BY ANY) AS
 9 aa_rows row_aat;
 10 v_sid NUMBER := SYS_CONTEXT('USERENV','SID');
 11 v_name VARCHAR2(128) := p_filename || '_' || v_sid || '.txt';
 12 v_file UTL_FILE.FILE_TYPE;
 13 v_lines PLS_INTEGER;
 14 BEGIN
 15 v_file := UTL_FILE.FOPEN(p_directory, v_name, 'w', c_maxline);
 16 LOOP
 17 FETCH p_source BULK COLLECT INTO aa_rows LIMIT p_limit_size;
 18 EXIT WHEN aa_rows.COUNT = 0;
 19 FOR i IN 1 .. aa_rows.COUNT LOOP
 20 UTL_FILE.PUT_LINE(v_file, aa_rows(i));
 21 END LOOP;
 22 END LOOP;
 23 v_lines := p_source%ROWCOUNT;
 24 CLOSE p_source;
 25 UTL_FILE.FCLOSE(v_file);
 26 PIPE ROW (unload_ot(v_name, v_lines, v_sid));
 27 RETURN;
 28 END parallel_unload;

Note the following about this function:

Line(s) Description

1 and 8 My function is parallel-enabled and will partition the source data by ANY. Therefore, I am able to declare my
source cursor based on the system-defined SYS_REFCURSOR type.

10 My return metadata will include the session ID (SID). This is available in the USERENV application context. You
can derive the SID from views such as V$MYSTAT in versions prior to Oracle Database 10g.

11 I want to unload in parallel to multiple files so I create a unique filename for each parallel invocation.

15–22 and
24–25

I reuse all of the processing logic from the original legacy implementation.

26 For each invocation of the function, I pipe a single row containing the filename, number of rows extracted, and
session identifier.

850 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

With minimal effort, I have parallel-enabled my data unloader, using the pipelined
function as an asynchronous forking mechanism. Let’s see how to invoke this new
version below. I’ve also included my test output from SQL*Plus.

/* File on web: parallel_unload_test.sql */
SELECT *
FROM TABLE(
 unload_pkg.parallel_unload(
 p_source => CURSOR(SELECT /*+ PARALLEL(t, 4) */
 ticker || ',' ||
 price_type || ',' ||
 price || ',' ||
 TO_CHAR(price_date,'YYYYMMDDHH24MISS')
 FROM tickertable t),
 p_filename => 'tickertable',
 p_directory => 'DIR'));

The output is:

FILE_NAME NO_RECORDS SESSION_ID
------------------------------ ---------- ----------
tickertable_144.txt 260788 144
tickertable_142.txt 252342 142
tickertable_127.txt 233765 127
tickertable_112.txt 253105 112

4 rows selected.

Elapsed: 00:00:12.21

On my test system, with four parallel processes, I have roughly halved my processing
time. Remember that when dealing in small numbers of seconds, as in this example,
the cost of parallel startup can have an impact on processing time. For extracts that
take minutes or more to complete, your potential savings (in both actual and real terms)
might be far greater.

It is easy to improve further on this technique by “tuning” the UTL_FILE
calls, using a buffering mechanism. See the PARAL-
LEL_UNLOAD_BUFFERED function in the parallel_unload_setup.sql
file on the book’s web site for the implementation. Rather than write
each line to file immediately, I instead append it to a large VARCHAR2
buffer (I could alternatively use a collection), and flush it to a file peri-
odically. Reducing the UTL_FILE calls in such a way nearly halved the
extract time of my parallel unloader to just under 7 seconds.

Performance Implications of Partitioning and Streaming Clauses in Parallel
Pipelined Functions
All of my parallel pipelined function examples so far have used the ANY partitioning
scheme because there have been no dependencies between the rows of source data. As

Improving Performance With Pipelined Table Functions | 851

Download at WoweBook.Com

described in Chapter 17, there are several partitioning and streaming options to control
how source input data is allocated and ordered in parallel processes. To recap, these are:

• Partitioning options (for allocating data to parallel processes):

— PARTITION p_cursor BY ANY

— PARTITION p_cursor BY RANGE(cursor_column(s))

— PARTITION p_cursor BY HASH(cursor_column(s))

• Streaming options (for ordering data within a parallel process):

— CLUSTER p_cursor BY (cursor_column(s))

— ORDER p_cursor BY (cursor_column(s))

The particular method you choose depends on your specific data-processing require-
ments. For example, if you need to ensure that all orders for a specific customer are
processed together, but in date order, you could use HASH partitioning with ORDER
streaming. If you need to ensure that all of your trading data is processed in event order,
you might use a RANGE/ORDER combination.

Relative performance of partitioning and streaming combinations

These options have their own performance characteristics resulting from the sorting
they imply. The following table summarizes the time taken to pipe 1 million tickertable
rows through a parallel pipelined function (with a DOP of 4) using each of the parti-
tioning and streaming options.‡

Partitioning option Streaming option Elapsed time (s)

ANY - 5.37

ANY ORDER 8.06

ANY CLUSTER 9.58

HASH - 7.48

HASH ORDER 7.84

HASH CLUSTER 8.10

RANGE - 9.84

RANGE ORDER 10.59

RANGE CLUSTER 10.90

As you might expect, ANY and HASH partitioning are comparable (although the un-
ordered ANY option is comfortably the quickest), but the RANGE partitioning mech-
anism is significantly slower. This is probably to be expected because the source data

‡ To test the performance of these options for yourself, use the parallel_options_*.sql files available on the web
site for this book.

852 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

must be ordered before the database can divide it among the slaves. Within the parallel
processes themselves, ordering is quicker than clustering for all partitioning options
(this is perhaps a surprising result as clustering doesn’t need to order the entire set of
data). Your mileage might vary, of course.

Partitioning with skewed data

A further consideration with partitioning is the division of the workload among the
parallel processes. The ANY and HASH options lead to a reasonably uniform spread
of data among the parallel processes, regardless of the number of rows in the source.
However, depending on your data characteristics, RANGE partitioning might lead to
a very uneven allocation, especially if the values in the partitioning column(s) are
skewed. If one parallel process receives too large a share of the data, this can negate
any benefits of parallel pipelined functions. To test this yourself, use the files named
parallel_skew_*.sql available on the book’s web site.

All of my pipelined function calls include a REF CURSOR parameter
supplied via the CURSOR(SELECT...) function. As an alternative, it is
perfectly legal to prepare a REF CURSOR variable using the OPEN ref
cursor FOR... construct and pass this variable in place of the CUR-
SOR(SELECT...) call. If you choose to do this, beware bug 5349930!
When you are using parallel-enabled pipelined functions, this bug can
cause a parallel process to die unexpectedly with an ORA-01008: not
all variables bound exception.

Pipelined Functions and the Cost-Based Optimizer
The examples in this chapter demonstrate the use of pipelined functions as simple
rowsources that generate data for loading and unloading scenarios. At some point,
however, you might need to join a pipelined function to another rowsource (such as a
table, a view, or the intermediate output of other joins within a SQL execution plan).
Rowsource statistics (such as cardinality, data distribution, nulls, etc.) are critical to
achieving efficient execution plans, but in the case of pipelined functions (or indeed
any table function), the cost-based optimizer doesn’t have much information to work
with.

Cardinality heuristics for pipelined table functions

Up to and including Oracle Database 11g Release 1, the CBO applies a heuristic car-
dinality to pipelined and table functions in SQL statements and this can sometimes
lead to inefficient execution plans. The default cardinality appears to be dependent on
the value of the DB_BLOCK_SIZE initialization parameter, but on a database with a
standard 8Kb block size Oracle uses a heuristic of 8,168 rows. I can demonstrate this
quite easily with a pipelined function that pipes a subset of columns from the employees
table. Using Autotrace in SQL*Plus to generate an execution plan, I see the following.

Improving Performance With Pipelined Table Functions | 853

Download at WoweBook.Com

/* Files on web: cbo_setup.sql and cbo_test.sql */
SQL> SELECT *
 2 FROM TABLE(pipe_employees) e;

Execution Plan
--
Plan hash value: 1802204150

--
| Id | Operation | Name | Rows |
--
| 0 | SELECT STATEMENT | | 8168 |
| 1 | COLLECTION ITERATOR PICKLER FETCH| PIPE_EMPLOYEES | |
--

This pipelined function actually returns 50,000 rows, so if I join this pipelined function
to the departments table, I run the risk of getting a suboptimal plan.

/* File on web: cbo_test.sql */
SQL> SELECT *
 2 FROM departments d
 3 , TABLE(pipe_employees) e
 4 WHERE d.department_id = e.department_id;

Execution Plan
--
Plan hash value: 4098497386

--
| Id | Operation | Name | Rows |
--
0	SELECT STATEMENT		8168
1	MERGE JOIN		8168
2	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	27
3	INDEX FULL SCAN	DEPT_ID_PK	27
* 4	SORT JOIN		8168
5	COLLECTION ITERATOR PICKLER FETCH	PIPE_EMPLOYEES	
--

As predicted, this appears to be a suboptimal plan; it is unlikely that a sort-merge join
will be more efficient than a hash join in this scenario. So how do I influence the CBO?
For this example I could use simple access hints such as LEADING and USE_HASH
to effectively override the CBO’s cost-based decision and secure a hash join between
the table and pipelined function. However, for more complex SQL statements, it is
quite difficult to provide all the hints necessary to “lock down” an execution plan. It is
often far better to provide the CBO with better statistics with which to make its deci-
sions. There are two ways to do this:

Optimizer dynamic sampling
This feature was enhanced in Oracle Database 11g (11.1.0.7) to include sampling
for table and pipelined functions.

854 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

User-defined cardinality
There are several ways to provide the optimizer with a suitable estimate of a pipe-
lined function’s cardinality.

I’ll demonstrate both of these methods for my pipe_employees function below.

Using optimizer dynamic sampling for pipelined functions

Dynamic sampling is an extremely useful feature that enables the optimizer to take a
small statistics sample of one or more objects in a query during the parse phase. You
might use dynamic sampling when you haven’t gathered statistics on all of your tables
in a query or when you are using transient objects such as global temporary tables.
Starting with version 11.1.0.7, the Oracle database is able to use dynamic sampling for
table or pipelined functions.

To see what difference this feature can make, I’ll repeat my previous query but include
a DYNAMIC_SAMPLING hint for the pipe_employees function.

/* File on web: cbo_test.sql */
SQL> SELECT /*+ DYNAMIC_SAMPLING(e 5) */
 2 *
 3 FROM departments d
 4 , TABLE(pipe_employees) e
 5 WHERE d.department_id = e.department_id;

Execution Plan
--
Plan hash value: 815920909

| Id | Operation | Name | Rows |

0	SELECT STATEMENT		50000
* 1	HASH JOIN		50000
2	TABLE ACCESS FULL	DEPARTMENTS	27
3	COLLECTION ITERATOR PICKLER FETCH	PIPE_EMPLOYEES	

This time, the CBO has correctly computed the 50,000 rows that my function returns
and has generated a more suitable plan. Note that I used the word “computed” and
not “estimated” because in version 11.1.0.7 and later, the optimizer takes a 100%
sample of the table or pipelined function, regardless of the dynamic sampling level being
used (this is also the case in Oracle Database 11g Release 2). I used level 5, but I could
have used anything between level 2 and level 10 to get exactly the same result. This
means, of course, that dynamic sampling can be potentially costly or time-consuming
if it is being used for queries involving high-volume or long-running pipelined
functions.

Improving Performance With Pipelined Table Functions | 855

Download at WoweBook.Com

Providing cardinality statistics to the optimizer

The only information that I can explicitly pass to the CBO for my pipelined function
is its cardinality. As is often the case with Oracle, there are several ways to do this:

CARDINALITY hint (undocumented)
Tells the Oracle database the cardinality of a rowsource in an execution plan. It is
quite limited in use and effectiveness.

OPT_ESTIMATE hint (undocumented)
Provides a scaling-factor to correct the estimated cardinality for a rowsource, join
or index in an execution plan. This hint is used in SQL Profiles, a
separately-licensed feature of Oracle Database 10g Enterprise Edition. SQL Profiles
are used to store scaling factors for existing SQL statements to improve and stabilize
their execution plans.

Extensible Optimizer interface
Associates a pipelined or table function with an object type to calculate its cardin-
ality and provides this information directly to the CBO (available starting with
Oracle Database 10g).

The CARDINALITY and OPT_ESTIMATE hints are not officially supported by Oracle
Corporation. For this reason, I prefer not to use them in production code. Other than
SQL profiles (or dynamic sampling, as described earlier), the only officially supported
method for supplying pipelined functions’ cardinality estimates to the CBO is to use
the optimizer extensibility features introduced in Oracle Database 10g.

Extensible Optimizer and pipelined function cardinality

Optimizer extensibility is part of Oracle’s Data Cartridge implementation—a set of
well-formed interfaces that enable us to extend the database’s built-in functionality
with our own code and algorithms (typically stored in object types). For pipelined and
table functions, the database provides a dedicated interface specifically for cardinality
estimates. In the following simple example for my pipe_employees function, I will
associate my pipelined function with a special object type that will tell the CBO about
the function’s cardinality. The pipe_employees function specification is as follows:

/* File on web: cbo_setup.sql */
FUNCTION pipe_employees(
 p_cardinality IN INTEGER DEFAULT 1
) RETURN employee_ntt PIPELINED

Note the p_cardinality parameter. My pipe_employees body doesn’t use this parameter
at all; instead, I am going to use this to tell the CBO the number of rows I expect my
function to return. As the Extensible Optimizer needs this to be done via an interface
type, I first create my interface object type specification:

 /* File on web: cbo_setup.sql */
 1 CREATE TYPE pipelined_stats_ot AS OBJECT (
 2

856 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

 3 dummy INTEGER,
 4
 5 STATIC FUNCTION ODCIGetInterfaces (
 6 p_interfaces OUT SYS.ODCIObjectList
 7) RETURN NUMBER,
 8
 9 STATIC FUNCTION ODCIStatsTableFunction (
 10 p_function IN SYS.ODCIFuncInfo,
 11 p_stats OUT SYS.ODCITabFuncStats,
 12 p_args IN SYS.ODCIArgDescList,
 13 p_cardinality IN INTEGER
 14) RETURN NUMBER
 15);

Note the following points about this type specification:

Line(s) Description

3 All object types must have at least one attribute, so I’ve included one called “dummy” because it is not needed for
this example.

5 and 9 These methods are part of the well-formed interface for the Extensible Optimizer. There are several other methods
available, but the two I’ve used are the ones needed to implement a cardinality interface for my pipelined function.

10–12 These ODCIStatsTableFunction parameters are mandatory. The parameter names are flexible, but their positions and
datatypes are fixed.

13 All parameters in a pipelined or table function must be replicated in its associated statistics type. In my example,
pipe_employees has a single parameter, p_cardinality, which I must also include in my ODCIStatsTableFunction
signature.

My cardinality algorithm is implemented in the type body as follows:

 /* File on web: cbo_setup.sql */
 1 CREATE TYPE BODY pipelined_stats_ot AS
 2
 3 STATIC FUNCTION ODCIGetInterfaces (
 4 p_interfaces OUT SYS.ODCIObjectList
 5) RETURN NUMBER IS
 6 BEGIN
 7 p_interfaces := SYS.ODCIObjectList(
 8 SYS.ODCIObject ('SYS', 'ODCISTATS2')
 9);
 10 RETURN ODCIConst.success;
 11 END ODCIGetInterfaces;
 12
 13 STATIC FUNCTION ODCIStatsTableFunction (
 14 p_function IN SYS.ODCIFuncInfo,
 15 p_stats OUT SYS.ODCITabFuncStats,
 16 p_args IN SYS.ODCIArgDescList,
 17 p_cardinality IN INTEGER
 18) RETURN NUMBER IS
 19 BEGIN
 20 p_stats := SYS.ODCITabFuncStats(NULL);
 21 p_stats.num_rows := p_cardinality;
 22 RETURN ODCIConst.success;

Improving Performance With Pipelined Table Functions | 857

Download at WoweBook.Com

 23 END ODCIStatsTableFunction;
 24
 25 END;

This is a very simple interface implementation. The key points to note are:

Line(s) Description

3–11 This mandatory assignment is needed by the Oracle database. No user-defined logic is required here.

20–21 This is my cardinality algorithm. The p_stats OUT parameter is how I tell the CBO the cardinality of my function. Any
value that I pass to my pipe_employees’ p_cardinality parameter will be referenced inside my statistics type. During
query optimization (i.e., a “hard parse”), the CBO will invoke the ODCIStatsTableFunction method to retrieve the
p_stats parameter value and use it in its calculations.

To recap, I now have a pipelined function and a statistics type. All I need to do now is
to associate the two objects using the ASSOCIATE STATISTICS SQL command. This
association is what enables the “magic” I’ve described above to happen:

/* File on web: cbo_test.sql */
ASSOCIATE STATISTICS WITH FUNCTIONS pipe_employees USING pipelined_stats_ot;

Now I am ready to test. I’ll repeat my previous query but include the number of rows
I expect my pipelined function to return (this function pipes 50,000 rows).

/* File on web: cbo_test.sql */
SQL> SELECT *
 2 FROM departments d
 3 , TABLE(pipe_employees(50000)) e
 4 WHERE d.department_id = e.department_id;

Execution Plan
--
Plan hash value: 815920909

| Id | Operation | Name | Rows |

0	SELECT STATEMENT		50000
* 1	HASH JOIN		50000
2	TABLE ACCESS FULL	DEPARTMENTS	27
3	COLLECTION ITERATOR PICKLER FETCH	PIPE_EMPLOYEES	

This time, my expected cardinality has been picked up and used by the CBO, and I
have the execution plan that I was expecting. I haven’t even had to use any hints! In
most cases, if the CBO is given accurate inputs, it will make a good decision, as dem-
onstrated in this example. Of course, the example also highlights the “magic” of the
Extensible Optimizer. I supplied my expected cardinality as a parameter to the
pipe_employees function, and during the optimization phase, the database accessed
this parameter via the associated statistics type and used it to set the rowsource car-
dinality accordingly (using my algorithm). I find this quite impressive.

858 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

As a final thought, note that it makes good sense to find a systematic way to derive
pipelined function cardinalities. I have demonstrated one method—in fact, I should
add a p_cardinality parameter to all my pipelined functions and associate them all with
the pipelined_statistics_ot interface type. The algorithms you use in your interface
types can be as sophisticated as you require. They might be based on other function
parameters (for example, you might return different cardinalities based on particular
parameter values). Perhaps you might store the expected cardinalities in a lookup table
and have the interface type query this instead. There are many different ways that you
can use this feature.

Tuning Complex Data Loads with Pipelined Functions
My stockpivot example transformed each input row into two output rows of the same
record structure. All of my other examples piped a single output row of a single record
structure. But some transformations or loads are not so simple. It is quite common to
load multiple tables from a single staging table—can pipelined functions be useful in
such scenarios as well?

The good news is that they can; multitable loads can also be tuned with pipelined
functions. The function itself can pipe as many different record types as you need, and
conditional or unconditional multitable inserts can load the corresponding tables with
the relevant attributes.

One source, two targets

Consider an example of loading customers and addresses from a single file delivery.
Let’s imagine that a single customer record has up to three addresses stored in his or
her history. This means that as many as four records are generated for each customer.
For example:

CUSTOMER_ID LAST_NAME ADDRESS_ID STREET_ADDRESS PRIMARY
----------- ---------- ---------- ------------------------------ -------
 1060 Kelley 60455 7310 Breathing Street Y
 1060 Kelley 119885 7310 Breathing Street N
 103317 Anderson 65045 57 Aguadilla Drive Y
 103317 Anderson 65518 117 North Union Avenue N
 103317 Anderson 61112 27 South Las Vegas Boulevard N

I have removed most of the detail, but this example shows that Kelley has two addresses
in the system and Anderson has three. My loading scenario is that I need to add a single
record per customer to the customers table, and all of the address records need to be
inserted into the addresses table.

Piping multiple record types from pipelined functions

How can a pipelined function generate a customer record and an address record at the
same time? Surprisingly, there are two relatively simple ways to achieve this:

Improving Performance With Pipelined Table Functions | 859

Download at WoweBook.Com

• Use substitutable object types (described in Chapter 26). Different subtypes can
be piped out of a function in place of the supertype on which the function is based,
meaning that each piped record can be inserted into its corresponding table in a
conditional multitable INSERT FIRST statement.

• Use wide, denormalized records with all of the attributes for every target table
stored in a single piped row. Each record being piped can be pivoted into multiple
rows of target data and inserted using a multitable INSERT ALL statement.

Using object-relational features

Let’s take a look at the first method as it is the most elegant solution to this requirement.
I first need to create four types to describe my data:

• An object “supertype” to head the type hierarchy. This will contain only the at-
tributes that the subtypes need to inherit. In my case, this will be just the
customer_id.

• A collection type of this supertype. I will use this as the return type for my pipelined
function.

• A customer object “subtype” with the remaining attributes required for the cus-
tomers table load.

• An address object “subtype” with the remaining attributes required for the ad-
dresses table load.

I’ve picked a small number of attributes for demonstration purposes. My types look
like this:

/* File on web: multitype_setup.sql */
-- Supertype...
CREATE TYPE customer_ot AS OBJECT
(customer_id NUMBER
) NOT FINAL;

-- Collection of supertype...
CREATE TYPE customer_ntt AS TABLE OF customer_ot;

-- Customer detail subtype...
CREATE TYPE customer_detail_ot UNDER customer_ot
(first_name VARCHAR2(20)
, last_name VARCHAR2(60)
, birth_date DATE
) FINAL;

-- Address detail subtype...
CREATE TYPE address_detail_ot UNDER customer_ot
(address_id NUMBER
, primary VARCHAR2(1)
, street_address VARCHAR2(40)
, postal_code VARCHAR2(10)
) FINAL;

860 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

If you have never worked with object types, I suggest that you review the contents of
Chapter 26. Briefly, however, Oracle’s support for substitutability means that I can
create rows of either customer_detail_ot or address_detail_ot, and use them wherever
the customer_ot supertype is expected. So if I create a pipelined function to pipe a
collection of the supertype, this means that I can also pipe rows of either of the subtypes.
This is but one example of how an object-oriented type hierarchy can offer a simple
and elegant solution.

A multitype pipelined function

Let’s take a look at the pipelined function body, and then I’ll explain the key concepts.

 /* File on web: multitype_setup.sql */
 1 FUNCTION customer_transform_multi(
 2 p_source IN customer_staging_rct,
 3 p_limit_size IN PLS_INTEGER DEFAULT customer_pkg.c_default_limit
 4)
 5 RETURN customer_ntt
 6 PIPELINED
 7 PARALLEL_ENABLE (PARTITION p_source BY HASH(customer_id))
 8 ORDER p_source BY (customer_id, address_id) IS
 9
 10 aa_source customer_staging_aat;
 11 v_customer_id customer_staging.customer_id%TYPE := −1;
 12 /* Needs a non-null default */
 13 BEGIN
 14 LOOP
 15 FETCH p_source BULK COLLECT INTO aa_source LIMIT p_limit_size;
 16 EXIT WHEN aa_source.COUNT = 0;
 17
 18 FOR i IN 1 .. aa_source.COUNT LOOP
 19
 20 /* Only pipe the first instance of the customer details... */
 21 IF aa_source(i).customer_id != v_customer_id THEN
 22 PIPE ROW (customer_detail_ot(aa_source(i).customer_id,
 23 aa_source(i).first_name,
 24 aa_source(i).last_name,
 25 aa_source(i).birth_date));
 26 END IF;
 27
 28 PIPE ROW(address_detail_ot(aa_source(i).customer_id,
 29 aa_source(i).address_id,
 30 aa_source(i).primary,
 31 aa_source(i).street_address,
 32 aa_source(i).postal_code));
 33
 34 /* Save customer ID for "control break" logic... */
 35 v_customer_id := aa_source(i).customer_id;
 36
 37 END LOOP;
 38 END LOOP;
 39 CLOSE p_source;
 40 RETURN;
 41 END customer_transform_multi;

Improving Performance With Pipelined Table Functions | 861

Download at WoweBook.Com

This function is parallel-enabled, and it processes the source data in arrays for maxi-
mum performance. The main concepts specific to multityping are:

Line(s) Description

5 My function’s return is a collection of the customer supertype. This allows me to pipe subtypes instead.

7–8 I have data dependencies so have used hash partitioning with ordered streaming. I need to process each customer’s
records together, because I will need to pick off the customer attributes from the first record only, and then allow all
addresses through.

21–26 If this is the first source record for a particular customer, pipe out a row of CUSTOMER_DETAIL_OT. Only one customer
details record will be piped per customer.

28–32 For every source record, pick out the address information and pipe out a row of ADDRESS_DETAIL_OT.

Querying a multitype pipelined function

I now have a single function generating rows of two different types and structures.
Using SQL*Plus, let’s query a few rows from this function.

/* File on web: multitype_query.sql */
SQL> SELECT *
 2 FROM TABLE(
 3 customer_pkg.customer_transform_multi(
 4 CURSOR(SELECT * FROM customer_staging))) nt
 5 WHERE ROWNUM <= 5;

CUSTOMER_ID

 1
 1
 1
 1
 2

That’s a surprise—where’s my data? Even though I used SELECT *, I have only the
CUSTOMER_ID column in my results. The reason for this is simple: my function is
defined to return a collection of the customer_ot supertype, which has only one at-
tribute. So unless I code explicitly for the range of subtypes being returned from my
function, the database will not expose any of their attributes. In fact, if I reference any
of the subtypes’ attributes using the above query format, the database will raise an
ORA-00904: invalid identifier exception.

Fortunately, Oracle supplies two ways to access instances of object types: the VALUE
function and the OBJECT_VALUE pseudo-column. Let’s see what they do (they are
interchangeable):

 /* File on web: multitype_query.sql */
 SQL> SELECT VALUE(nt) AS object_instance --could use "nt.OBJECT_VALUE" instead
 2 FROM TABLE(
 3 customer_pkg.customer_transform_multi(
 4 CURSOR(SELECT * FROM customer_staging))) nt
 5 WHERE ROWNUM <= 5;

862 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

OBJECT_INSTANCE(CUSTOMER_ID)

CUSTOMER_DETAIL_OT(1, 'Abigail', 'Kessel', '31/03/1949')
ADDRESS_DETAIL_OT(1, 12135, 'N', '37 North Coshocton Street', '78247')
ADDRESS_DETAIL_OT(1, 12136, 'N', '47 East Sagadahoc Road', '90285')
ADDRESS_DETAIL_OT(1, 12156, 'Y', '7 South 3rd Circle', '30828')
CUSTOMER_DETAIL_OT(2, 'Anne', 'KOCH', '23/09/1949')

This is more promising. I now have the data as it is returned from the pipelined function,
so I’m going to do two things with it. First I will determine the type of each record using
the IS OF condition; this will be useful to me later on. Second, I will use the TREAT
function to downcast each record to its underlying subtype (until I do this, the database
thinks that my data is of the supertype and so will not allow me access to any of the
attributes). The query now looks something like this:

 /* File on web: multitype_query.sql */
 SQL> SELECT CASE
 2 WHEN VALUE(nt) IS OF TYPE (customer_detail_ot)
 3 THEN 'C'
 4 ELSE 'A'
 5 END AS record_type
 6 , TREAT(VALUE(nt) AS customer_detail_ot) AS cust_rec
 7 , TREAT(VALUE(nt) AS address_detail_ot) AS addr_rec
 8 FROM TABLE(
 9 customer_pkg.customer_transform_multi(
 10 CURSOR(SELECT * FROM customer_staging))) nt
 11 WHERE ROWNUM <= 5;

RECORD_TYPE CUST_REC ADDR_REC
----------- ------------------------------ ------------------------------
C CUSTOMER_DETAIL_OT(1, 'Abigail
 ', 'Kessel', '31/03/1949')

A ADDRESS_DETAIL_OT(1, 12135, 'N
 ', '37 North Coshocton Street'
 , '78247')

A ADDRESS_DETAIL_OT(1, 12136, 'N
 ', '47 East Sagadahoc Road', '
 90285')

A ADDRESS_DETAIL_OT(1, 12156, 'Y
 ', '7 South 3rd Circle', '3082
 8')

C CUSTOMER_DETAIL_OT(2, 'Anne',
 'KOCH', '23/09/1949')

I now have my data in the correct subtype format, which means that I can access the
underlying attributes. I do this by wrapping the previous query in an inline view and
accessing the attributes using dot notation, as follows.

/* File on web: multitype_query.sql */
SELECT ilv.record_type

Improving Performance With Pipelined Table Functions | 863

Download at WoweBook.Com

, NVL(ilv.cust_rec.customer_id,
 ilv.addr_rec.customer_id) AS customer_id
, ilv.cust_rec.first_name AS first_name
, ilv.cust_rec.last_name AS last_name
 <snip>
, ilv.addr_rec.postal_code AS postal_code
FROM (
 SELECT CASE...
 <snip>
 FROM TABLE(
 customer_pkg.customer_transform_multi(
 CURSOR(SELECT * FROM customer_staging))) nt
) ilv;

Loading multiple tables from a multitype pipelined function

I’ve removed some lines from the example above, but you should recognize the pattern.
I now have all the elements needed for a multitable insert into my customers and ad-
dresses tables. Here’s the loading code:

/* File on web: multitype_setup.sql */
 INSERT FIRST
 WHEN record_type = 'C'
 THEN
 INTO customers
 VALUES (customer_id, first_name, last_name, birth_date)
 WHEN record_type = 'A'
 THEN
 INTO addresses
 VALUES (address_id, customer_id, primary, street_address, postal_code)
 SELECT ilv.record_type
 , NVL(ilv.cust_rec.customer_id,
 ilv.addr_rec.customer_id) AS customer_id
 , ilv.cust_rec.first_name AS first_name
 , ilv.cust_rec.last_name AS last_name
 , ilv.cust_rec.birth_date AS birth_date
 , ilv.addr_rec.address_id AS address_id
 , ilv.addr_rec.primary AS primary
 , ilv.addr_rec.street_address AS street_address
 , ilv.addr_rec.postal_code AS postal_code
 FROM (
 SELECT CASE
 WHEN VALUE(nt) IS OF TYPE (customer_detail_ot)
 THEN 'C'
 ELSE 'A'
 END AS record_type
 , TREAT(VALUE(nt) AS customer_detail_ot) AS cust_rec
 , TREAT(VALUE(nt) AS address_detail_ot) AS addr_rec
 FROM TABLE(
 customer_pkg.customer_transform_multi(
 CURSOR(SELECT * FROM customer_staging))) nt
) ilv;

864 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

With this INSERT FIRST statement, I have a complex load that uses a range of object-
relational features in a way that enables me to retain set-based principles. This approach
might also work for you.

An alternative multitype method

The alternative to this method is to create a single “wide” object record and pipe a
single row for each set of customer addresses. I’ll show you the type definition to clarify
what I mean by this, but see the multitype_setup.sql files on the book’s web site for the
full example).

/* File on web: multitype_setup.sql */
CREATE TYPE customer_address_ot AS OBJECT
(customer_id NUMBER
, first_name VARCHAR2(20)
, last_name VARCHAR2(60)
, birth_date DATE
, addr1_address_id NUMBER
, addr1_primary VARCHAR2(1)
, addr1_street_address VARCHAR2(40)
, addr1_postal_code VARCHAR2(10)
, addr2_address_id NUMBER
, addr2_primary VARCHAR2(1)
, addr2_street_address VARCHAR2(40)
, addr2_postal_code VARCHAR2(10)
, addr3_address_id NUMBER
, addr3_primary VARCHAR2(1)
, addr3_street_address VARCHAR2(40)
, addr3_postal_code VARCHAR2(10)
, CONSTRUCTOR FUNCTION customer_address_ot
 RETURN SELF AS RESULT
);

You can see that each of the three address instances per customer is “denormalized”
into its respective attributes. Each row piped from the function is pivoted into four
rows with a conditional INSERT ALL statement. The INSERT syntax is simpler and,
for this particular example, quicker than the substitutable type method. The technique
you choose will depend on your particular circumstances; note, however, that you may
find that as the number of attributes increases, the performance of the denormalized
method may degrade. Having said that, I’ve used this method successfully to tune a
load that inserts up to nine records into four tables for every distinct financial
transaction.

Improving Performance With Pipelined Table Functions | 865

Download at WoweBook.Com

You can expect to experience a degradation in the performance of a
pipelined function implementation when using wide rows or rows with
many columns (pertinent to the denormalized multirecord example de-
scribed above). For example, I tested a 50,000-row serial pipelined bulk
load against row-by-row inserts using multiple columns of 10 bytes
each. In Oracle9i Database, the row-based solution became faster than
the pipelined solution at just 50 columns. Fortunately, this increases to
somewhere between 100 and 150 columns in all major versions of Ora-
cle Database 10g and Oracle Database 11g.

A Final Word on Pipelined Functions
In this discussion of pipelined functions, I’ve shown several scenarios where such func-
tions (serial or parallel) can help you improve the performance of your data loads and
extracts. As a tuning tool, some of these techniques should prove to be useful. However,
I do not recommend that you convert your entire code base to pipelined functions! They
are a specific tool that is likely to apply to only a subset of your data-processing tasks.
If you need to implement complex transformations that are too unwieldy when repre-
sented in SQL (typically as analytic functions, CASE expressions, subqueries, or even
the frightening MODEL clause), then encapsulating them in pipelined functions, as
I’ve shown in this section, may provide substantial performance benefits.

Specialized Optimization Techniques
You should always proactively use FORALL and BULK COLLECT for all non-trivial
multirow SQL operations (that is, those involving more than a few dozen rows). You
should always look for opportunities to cache data. And for many data-processing
tasks, you should strongly consider the use of pipelined functions. In other words, some
techniques are so broadly effective that they should be used at every possible oppor-
tunity.

Other performance optimization techniques, however, really will only help you in rel-
atively specialized circumstances. For example: the recommendation to use the
PLS_INTEGER datatype instead of INTEGER is likely to do you little good unless you
are running a program with a very large number of integer operations.

And that’s what I cover in this section: performance-related features of PL/SQL that
can make a noticeable difference, but only in more specialized circumstances. Gener-
ally, I suggest that you not worry too much about applying each and every one of these
proactively. Instead, focus on building readable, maintainable code, and then if you
identify bottlenecks in specific programs, see if any of these techniques might offer
some relief.

866 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

Using the NOCOPY Parameter Mode Hint
The NOCOPY parameter hint requests that the PL/SQL runtime engine pass an IN
OUT argument by reference rather than by value. This can speed up the performance
of your programs, because by-reference arguments are not copied within the program
unit. When you pass large, complex structures like collections, records, or objects, this
copy step can be expensive.

To understand NOCOPY and its potential impact, it will help to review how PL/SQL
handles parameters. There are two ways to pass parameter values: by reference and by
value.

By reference
When an actual parameter is passed by reference, it means that a pointer to the
actual parameter is passed to the corresponding formal parameter. Both the actual
and the formal parameters then reference, or point to, the same location in memory
that holds the value of the parameter.

By value
When an actual parameter is passed by value, the value of the actual parameter is
copied to the corresponding formal parameter. If the program then terminates
without an exception, the formal parameter value is copied back to the actual
parameter. If an error occurs, the changed values are not copied back to the actual
parameter.

Parameter passing in PL/SQL without the use of NOCOPY follows these rules:

Parameter mode Passed by value or reference? (default behavior)

IN By reference

OUT By value

IN OUT By value

You can infer from these definitions and rules that when a large data structure (such
as a collection, a record, or an instance of an object type) is passed as an OUT or IN
OUT parameter, that structure will be passed by value, and your application could
experience performance and memory degradation as a result of all this copying. The
NOCOPY hint is a way for you to attempt to avoid this. This feature fits into a parameter
declaration as follows:

parameter_name
 [IN | IN OUT | OUT | IN OUT NOCOPY | OUT NOCOPY]
parameter_datatype

You can specify NOCOPY only in conjunction with the OUT or IN OUT mode. Here
is a parameter list that uses the NOCOPY hint for both of its IN OUT arguments:

PROCEDURE analyze_results (
 date_in IN DATE,

Specialized Optimization Techniques | 867

Download at WoweBook.Com

 values IN OUT NOCOPY numbers_varray,
 validity_flags IN OUT NOCOPY validity_rectype
);

There are two things you should keep in mind about NOCOPY:

• The corresponding actual parameter for an OUT parameter under the NOCOPY
hint is set to NULL whenever the subprogram containing the OUT parameter is
called.

• NOCOPY is a hint, not a command. This means that the compiler might silently
decide that it can’t fulfill your request for a NOCOPY parameter treatment. The
next section lists the restrictions on NOCOPY that might cause this to happen.

Restrictions on NOCOPY

A number of situations will cause the PL/SQL compiler to ignore the NOCOPY hint
and instead use the default by-value method to pass the OUT or IN OUT parameter.
These situations are the following:

The actual parameter is an element of an associative array
You can request NOCOPY for an entire collection (each row of which could be an
entire record), but not for an individual element in the table. A suggested work-
around is to copy the structure to a standalone variable, either scalar or record,
and then pass that as the NOCOPY parameter. That way, at least you aren’t copy-
ing the entire structure.

Certain constraints are applied to actual parameters
Some constraints will result in the NOCOPY hint’s being ignored; these include a
scale specification for a numeric variable and the NOT NULL constraint. You can,
however, pass a string variable that has been constrained by size.

The actual and formal parameters are record structures
One or both records were declared using %ROWTYPE or %TYPE, and the con-
straints on corresponding fields in these two records are different.

In passing the actual parameter, the PL/SQL engine must perform an implicit datatype
conversion

A suggested workaround is this: because you are always better off performing ex-
plicit conversions anyway, do that and then pass the converted value as the
NOCOPY parameter.

The subprogram requesting the NOCOPY hint is used in an external or remote procedure
call

In these cases, PL/SQL will always pass the actual parameter by value.

Performance benefits of NOCOPY

So how much can NOCOPY help you? To answer this question, I constructed a package
with two procedures as follows:

868 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

/* File on web: nocopy_performance.tst */
PACKAGE nocopy_test
IS
 TYPE numbers_t IS TABLE OF NUMBER;

 PROCEDURE pass_by_value (numbers_inout IN OUT numbers_t);

 PROCEDURE pass_by_ref (numbers_inout IN OUT NOCOPY numbers_t);
END nocopy_test;

Each of them doubles the value in each element of the nested table, as in:

PROCEDURE pass_by_value (numbers_inout IN OUT numbers_t)
IS
BEGIN
 FOR indx IN 1 .. numbers_inout.COUNT
 LOOP
 numbers_inout (indx) := numbers_inout (indx) * 2;
 END LOOP;
END;

I then did the following for each procedure:

• Loaded the nested table with 100,000 rows of data.

• Called the procedure 1,000 times.

In Oracle Database 10g, I saw these results:

By value (without NOCOPY) - Elapsed CPU : 20.49 seconds.
By reference (with NOCOPY) - Elapsed CPU : 12.32 seconds.

In Oracle Database 11g, however, I saw these results:

By value (without NOCOPY) - Elapsed CPU : 13.12 seconds.
By reference (with NOCOPY) - Elapsed CPU : 12.82 seconds.

I ran similar tests of collections of strings, with similar results.

After running repeated tests, I conclude that prior to Oracle Database 11g, you can see
a substantive improvement in performance, but in Oracle Database 11g, that advantage
is very much narrowed, I assume by overall tuning of the PL/SQL engine in this new
version.

The downside of NOCOPY

Depending on your application, NOCOPY can improve the performance of programs
with IN OUT or OUT parameters. These possible gains come, however, with a tradeoff:
if a program terminates with an unhandled exception, you cannot trust the values in a
NOCOPY actual parameter.

What do I mean by “trust?” Let’s review how PL/SQL behaves concerning its param-
eters when an unhandled exception terminates a program. Suppose that I pass an IN
OUT record to my calculate_totals procedure. The PL/SQL runtime engine first makes
a copy of that record and then, during program execution, makes any changes to that

Specialized Optimization Techniques | 869

Download at WoweBook.Com

copy. The actual parameter itself is not modified until calculate_totals ends successfully
(without propagating back an exception). At that point, the local copy is copied back
to the actual parameter, and the program that called calculate_totals can access that
changed data. If calculate_totals terminates with an unhandled exception, however,
the calling program can be certain that the actual parameter’s value has not been
changed.

That certainty disappears with the NOCOPY hint. When a parameter is passed by
reference (the effect of NOCOPY), any changes made to the formal parameter are also
made immediately to the actual parameter. Suppose that my calculate_totals program
reads through a 10,000-row collection and makes changes to each row. If an error is
raised at row 5,000 and propagated out of calculate_totals unhandled, my actual pa-
rameter collection will be only half-changed.

The nocopy.tst file on the book’s web site demonstrate the challenges of working with
NOCOPY. You should run this script and make sure you understand the intricacies of
this feature before using it in your application.

Beyond that and generally, you should be judicious in your use of the NOCOPY hint.
Use it only when you know that you have a performance problem relating to your
parameter passing, and be prepared for the potential consequences when exceptions
are raised.

The PL/SQL Product Manager, Bryn Llewellyn, differs with me regard-
ing NOCOPY. He is much more inclined to recommend broad usage of
this feature. He argues that the side effect of partially modified data
structures should not be a big concern, because this situation only arises
when an unexpected error has occurred. When this happens, you will
almost always stop application processing, log the error, and propagate
the exception out to the enclosing block. The fact that a collection is in
an uncertain state is likely to be of little importance at this point.

Using the Right Datatype
When you are performing a small number of operations, it may not really matter if the
PL/SQL engine needs to perform implicit conversions or if it uses a relatively slow
implementation. On the other hand, if your algorithms require large amounts of in-
tensive computations, the following advice could make a noticeable difference.

Avoid implicit conversions

PL/SQL, just like SQL, will perform implicit conversions under many circumstances.
In the following block, for example, PL/SQL must convert the integer 1 into a number
(1.0) before adding it to another number and assigning the result to a number.

DECLARE
 l_number NUMBER := 2.0;

870 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

BEGIN
 l_number := l_number + 1;
END;

Most developers are aware that implicit conversions performed inside a SQL statement
can cause performance degradation by turning off the use of indexes. Implicit conver-
sion in PL/SQL can also affect performance, although usually not as dramatically as
that found in SQL.

Run the test_implicit_conversion.sql script to see if you can verify an improvement in
performance in your environment.

Use PLS_INTEGER for intensive integer computations

When you declare an integer variable as PLS_INTEGER, it will use less memory than
INTEGER and rely on machine arithmetic to get the job done more efficiently. In a
program that requires intensive integer computations, simply changing the way that
you declare your variables could have a noticeable impact on performance. See “The
PLS_INTEGER Type” on page 237 for a more detailed discussion of the different types
of integers.

Use BINARY_FLOAT or BINARY_DOUBLE for floating-point arithmetic

Oracle Database 10g introduced two new floating-point types: BINARY_FLOAT and
BINARY_DOUBLE. These types conform to the IEEE 754 floating-point standard and
use native machine arithmetic, making them more efficient than NUMBER or INTE-
GER variables. See “The BINARY_FLOAT and BINARY_DOUBLE
Types” on page 241 for details.

Stepping Back for the Big Picture on Performance
This chapter offers numerous ways to improve the performance of your PL/SQL pro-
grams. Just about every one of them comes with a tradeoff: better performance for more
memory, better performance for increased code complexity and maintenance costs,
and so on. I offer these recommendations to ensure that you optimize code in ways that
offer the most benefit to both your users and your development team:

• Make sure your SQL statements are properly optimized. Tuning PL/SQL code
simply cannot compensate for the drag of unnecessary full table scans. If your SQL
is running slowly, you cannot fix the problem in PL/SQL.

• Ensure that the PL/SQL optimization level is set to at least 2. That’s the default,
but developers can “mess” with this setting and end up with code that is not fully
optimized by the compiler. You can enforce this optimization level with condi-
tional compilation’s $ERROR directive (covered in Chapter 20).

• Use BULK COLLECT and FORALL at every possible opportunity. This means
that if you are executing row-by-row queries or DML statements, it’s time to write

Stepping Back for the Big Picture on Performance | 871

Download at WoweBook.Com

a bunch more code to introduce and process your SQL via collections. Rewriting
cursor FOR loops is less critical, but OPEN...LOOP...CLOSE constructs will al-
ways fetch one row at a time and really should be replaced.

• Keep an eye out for static datasets and when you find them, determine the best
caching method to avoid repetitive, expensive retrievals of data. Even if you are
not yet using Oracle Database 11g, start to encapsulate your queries behind func-
tion interfaces. That way, you can quickly and easily apply the function result cache
when you upgrade to Oracle Database 11g.

• Your code doesn’t have to be “as fast as possible.” It simply has to be “fast enough.”
That is, don’t obsess over optimization of every line of code. Instead, prioritize
readability and maintainability over “blazing performance.” Get your code to work
properly (meet user requirements). Then stress test the code to identify bottlenecks.
Get rid of the bottlenecks by applying some of the more specialized tuning
techniques.

• Make sure that your DBA is aware of native compilation options, especially in
Oracle Database 11g and higher. With these options, Oracle will transparently
compile PL/SQL code down to machine code commands.

872 | Chapter 21: Optimizing PL/SQL Performance

Download at WoweBook.Com

CHAPTER 22

I/O and PL/SQL

Many, perhaps most, of the PL/SQL programs you write need to interact only with the
underlying Oracle database using SQL. However, there will inevitably be times when
you will want to send information from PL/SQL to the external environment or read
information from some external source (screen, file, etc.) into PL/SQL. This chapter
explores some of the most common mechanisms for I/O in PL/SQL, including the
following built-in packages:

DBMS_OUTPUT
For displaying information on the screen

UTL_FILE
For reading and writing operating system files

UTL_MAIL and UTL_SMTP
For sending email from within PL/SQL

UTL_HTTP
For retrieving data from a web page

It is outside the scope of this book to provide full reference information about the built-
in packages introduced in this chapter. Instead, in this chapter, I will demonstrate how
to use them to handle the most frequently encountered requirements. Check out Ora-
cle’s documentation for more complete coverage. You will also find Oracle Built-in
Packages (O’Reilly) a helpful source for information on many packages; several chap-
ters from that book are available on this book’s web site.

Displaying Information
Oracle provides the DBMS_OUTPUT package to give you a way to send information
from your programs to a buffer. This buffer can then be read and manipulated by
another PL/SQL program or by the host environment. DBMS_OUTPUT is most fre-
quently used as a simple mechanism for displaying information on your screen.

873

Download at WoweBook.Com

Each user session has a DBMS_OUTPUT buffer of predefined size, which developers
commonly set to UNLIMITED. Oracle versions prior to Oracle Database 10g Release
2 had a 1 million-byte limit. Once filled, you will need to empty it before you can reuse
it; you can empty it programmatically, but more commonly you will rely on the host
environment (such as SQL*Plus) to empty it and display its contents. This only occurs
after the outermost PL/SQL block terminates; you cannot use DBMS_OUTPUT for
real-time streaming of messages from your program.

The way to write information to this buffer is by calling the DBMS_OUTPUT.PUT and
DBMS_OUTPUT.PUT_LINE programs. If you want to read from the buffer
programmatically, you can use DBMS_OUTPUT.GET_LINE or DBMS_OUT-
PUT.GET_LINES.

Enabling DBMS_OUTPUT
Since the default setting of DBMS_OUTPUT is disabled, calls to the PUT_LINE and
PUT programs are ignored and the buffer remains empty. To enable DBMS_OUTPUT,
you generally execute a command in the host environment. For example, in SQL*Plus,
you can issue this command:

SET SERVEROUTPUT ON SIZE UNLIMITED

In addition to enabling output to the console, this command has the side effect of
issuing the following command to the database server:

BEGIN DBMS_OUTPUT.ENABLE (buffer_size => NULL); END;

(Null buffer_size equates to an unlimited buffer; otherwise the buffer_size is expressed
in bytes.) SQL*Plus offers a variety of options for the SERVEROUTPUT command;
check the documentation for the features for your release.

Developer environments such as Oracle's SQL Developer and Quest's Toad generally
display the output from DBMS_OUTPUT in a designated portion of the screen (a
“pane”), as long as you have properly enabled the display feature.

Write Lines to the Buffer
There are two built-in procedures to choose from when you want to put information
into the buffer. PUT_LINE appends a newline marker after your text; PUT places text
in the buffer without a newline marker. If you’re using PUT alone, the output will
remain in the buffer, even when the call ends. In this case, call
DBMS_OUTPUT.NEW_LINE to flush the buffer.

If the Oracle database knows implicitly how to convert your data to a VARCHAR2
string, then you can pass it in your call to the PUT and PUT_LINE programs. Here are
some examples:

BEGIN
 DBMS_OUTPUT.put_line ('Steven');

874 | Chapter 22: I/O and PL/SQL

Download at WoweBook.Com

 DBMS_OUTPUT.put_line (100);
 DBMS_OUTPUT.put_line (SYSDATE);
END;
/

Unfortunately, DBMS_OUTPUT does not know what to do with a variety of common
PL/SQL types, most notably Booleans. You may therefore want to consider writing a
small utility to make it easier to display Boolean values, such as the following procedure,
which displays a string and then the Boolean:

/* File on web: bpl.sp */
PROCEDURE bpl (boolean_in IN BOOLEAN)
IS
BEGIN
 DBMS_OUTPUT.PUT_LINE(
 CASE boolean_in
 WHEN TRUE THEN 'TRUE'
 WHEN FALSE THEN 'FALSE'
 ELSE 'NULL'
 END
);
END bpl;
/

The largest string that you can pass in one call to DBMS_OUTPUT.PUT_LINE is
32,767 bytes in the most recent releases of Oracle. With Oracle Database 10g Release
1 or earlier, the limit is 255 bytes. With any version, if you pass a value larger than the
maximum allowed, the database will raise an exception (either VALUE_ERROR or
ORU-10028: line length overflow, limit of NNN chars per line). To avoid this problem,
you might want to use an encapsulation of DBMS_OUTPUT.PUT_LINE that auto-
matically wraps long strings. The following files, available on the book’s web site, offer
variations on this theme.

pl.sp
This standalone procedure allows you to specify the length at which your string
will be wrapped.

p.pks/pkb
The p package is a comprehensive encapsulation of DBMS_OUTPUT.PUT_LINE
that offers many different overloadings (for example, you can display an XML
document or an operating-system file by calling the p.l procedure) and also wraps
long lines of text.

Read the Contents of the Buffer
The typical usage of DBMS_OUTPUT is very basic: you call DBMS_OUT-
PUT.PUT_LINE and view the results on the screen. Behind the scenes, your client
environment (e.g., SQL*Plus) calls the appropriate programs in the DBMS_OUTPUT
package to extract the contents of the buffer and then display it.

Displaying Information | 875

Download at WoweBook.Com

If you need to obtain the contents of the DBMS_OUTPUT buffer, you can call the
GET_LINE and/or GET_LINES procedures.

The GET_LINE procedure retrieves one line of information from the buffer in a first-
in, first-out fashion, and returns a status value of 0 if successful. Here’s an example that
uses this program to extract the next line from the buffer into a local PL/SQL variable:

FUNCTION next_line RETURN VARCHAR2
IS
 return_value VARCHAR2(32767);
 status INTEGER;
BEGIN
 DBMS_OUTPUT.GET_LINE (return_value, status);
 IF status = 0
 THEN
 RETURN return_value;
 ELSE
 RETURN NULL;
 END IF;
END;

The GET_LINES procedure retrieves multiple lines from the buffer with one call. It
reads the buffer into a PL/SQL collection of strings (maximum length 255 or 32,767,
depending on your version of Oracle). You specify the number of lines you want to
read, and it returns those. Here is a generic program that transfers the contents of the
DBMS_OUTPUT buffer into a database log table:

/* File on web: move_buffer_to_log.sp */
PROCEDURE move_buffer_to_log
IS
 l_buffer DBMS_OUTPUT.chararr;
 l_num_lines PLS_INTEGER;
BEGIN
 LOOP
 l_num_lines := 100;
 DBMS_OUTPUT.get_lines (l_buffer, l_num_lines);

 EXIT WHEN l_buffer.COUNT = 0;

 FORALL indx IN l_buffer.FIRST .. l_buffer.LAST
 INSERT INTO logtab (text) VALUES (l_buffer (indx));
 END LOOP;
END;

Reading and Writing Files
The UTL_FILE package allows PL/SQL programs to both read from and write to any
operating-system files that are accessible from the server on which your database in-
stance is running. You can load data from files directly into database tables while ap-
plying the full power and flexibility of PL/SQL programming. You can generate reports

876 | Chapter 22: I/O and PL/SQL

Download at WoweBook.Com

directly from within PL/SQL without worrying about the maximum buffer restrictions
of DBMS_OUTPUT that existed prior to Oracle Database 10g Release 2.

UTL_FILE lets you read and write files accessible from the server on which your data-
base is running. Sounds dangerous, eh? An ill-intentioned or careless programmer
could theoretically use UTL_FILE to write over tablespace datafiles, control files, and
so on. Oracle allows the DBA to place restrictions on where you can read and write
your files in one of two ways:

• UTL_FILE reads and writes files in directories that are specified by the
UTL_FILE_DIR parameter in the database initialization file.

• UTL_FILE also reads/writes files in locations specified by database “Directory”
objects.

After explaining how to use these two approaches; I will examine the specific capabil-
ities of the UTL_FILE package. Many of the UTL_FILE programs are demonstrated in
a handy encapsulation package found in the fileIO.pkg file on the book’s web site.

The UTL_FILE_DIR Parameter
Although not officially deprecated, the UTL_FILE_DIR approach is rarely used with
the latest versions of the Oracle database. Using directories is much easier and more
flexible. If you have a choice, don’t use UTL_FILE_DIR; just skip this section and jump
ahead to “Work with Oracle Directories” on page 879.

When you call FOPEN to open a file, you must specify both the location and the name
of the file in separate arguments. This file location is then checked against the list of
accessible directories, which you can specify with an entry in the database initialization
file such as:

UTL_FILE_DIR = directory

Include a parameter for UTL_FILE_DIR for each directory you want to make accessible
for UTL_FILE operations. The following entries, for example, enable four different
directories in Unix/Linux-like filesystems:

UTL_FILE_DIR = /tmp
UTL_FILE_DIR = /ora_apps/hr/time_reporting
UTL_FILE_DIR = /ora_apps/hr/time_reporting/log
UTL_FILE_DIR = /users/test_area

To bypass server security and allow read/write access to all directories, you can use this
special syntax:

UTL_FILE_DIR = *

You should not use this option in production environments. In development environ-
ments, this entry certainly makes it easier for developers to get up and running on
UTL_FILE, as well as to test their code. However, you should allow access to only a
few specific directories when you move the application to production.

Reading and Writing Files | 877

Download at WoweBook.Com

Setting up directories

Here are some observations on working with and setting up accessible directories with
UTL_FILE:

• Access is not recursive through subdirectories. Suppose that the following lines
were in your database initialization file:

UTL_FILE_DIR = c:\group\dev1
UTL_FILE_DIR = c:\group\prod\oe
UTL_FILE_DIR = c:\group\prod\ar

You would not be able to open a file in the c:\group\prod\oe\reports subdirectory.

• Do not include the following entry on Unix or Linux systems:

UTL_FILE_DIR = .

This allows you to read/write on the current directory in the operating system.

• Do not enclose the directory names within single or double quotes.

• In a Unix/Linux environment, a file created by FOPEN has as its owner the shadow
process running the Oracle instance. This is usually the “oracle” owner. If you try
to access these files outside of UTL_FILE, you will need the correct privileges (or
be logged in as “oracle”) to access or change these files.

• You should not end your directory name with a delimiter, such as the forward slash
in Unix/Linux. The following specification of a directory will result in problems
when trying to read from or write to the directory:

UTL_FILE_DIR = /tmp/orafiles/

Specifying file locations when opening files

The location of the file is an operating system-specific string that specifies the directory
or area in which to open the file. When you pass the location in the call to
UTL_FILE.FOPEN, you provide the location specification as it appears in the database
initialization file. And remember that in case-sensitive operating systems, the case of
the location specification in the initialization file must match that used in the call to
UTL_FILE.FOPEN.

Here are some examples:

In Windows

file_id := UTL_FILE.FOPEN ('k:\common\debug', 'trace.lis', 'R');

In Unix/Linux

file_id := UTL_FILE.FOPEN ('/usr/od2000/admin', 'trace.lis', 'W');

Your location must be an explicit, complete path to the file. You cannot use operating
system-specific parameters such as environment variables in Unix/Linux to specify file
locations.

878 | Chapter 22: I/O and PL/SQL

Download at WoweBook.Com

Work with Oracle Directories
Prior to Oracle9i Database Release 2, whenever you opened a file, you needed to specify
the location of the file, as in the examples above. Such a hardcoding of values is always
to be avoided, however. What if the location of the accounts data changes? How many
programs will you have to go fix to make sure everyone is looking in the right place?
How many times will you have to make such changes?

A better approach is to declare a variable or constant and assign it the value of the
location. If you do this in a package, the constant can be referenced by any program in
a schema with the EXECUTE privilege on that package. Here is an example, followed
by a recoding of the earlier FOPEN call:

PACKAGE accts_pkg
IS
 c_data_location
 CONSTANT VARCHAR2(30) := '/accts/data';
 ...
END accts_pkg;

DECLARE
 file_id UTL_FILE.file_type;
BEGIN
 file_id := UTL_FILE.fopen (accts_pkg.c_data_location, 'trans.dat', 'R');
END;

That’s great. But even better is to use a schema-level object that you can define in the
database: a directory. This particular type of object is also used when working with
BFILEs, so you can in effect “consolidate” file location references in both DBMS_LOB
and UTL_FILE by using directories.

To create a directory, the DBA will need to grant you the CREATE ANY DIRECTORY
privilege. You then define a new directory as shown in these examples:

CREATE OR REPLACE DIRECTORY development_dir AS '/dev/source';

CREATE OR REPLACE DIRECTORY test_dir AS '/test/source';

Here are some things to keep in mind about directories and UTL_FILE:

• The Oracle database does not validate the location you specify when you specify
the name of a directory. It simply associates that string with the named database
object.

• When you specify the name of a directory in a call to, say, UTL_FILE.FOPEN, it
is not treated as the name of an Oracle object; instead, it is treated as a case-sensitive
string. In other words, if you do not specify the name as an uppercase string, the
operation will fail. This will work:

handle := UTL_FILE.FOPEN(
 location => 'TEST_DIR', filename => 'myfile.txt', open_mode => 'r');

...but this will not:

Reading and Writing Files | 879

Download at WoweBook.Com

handle := UTL_FILE.FOPEN(
 location => test_dir, filename => 'myfile.txt', open_mode => 'r');

• Once created, you can grant permissions to specific users to work with that direc-
tory as follows:

GRANT READ ON DIRECTORY development_dir TO senior_developer;

• Finally, you can query the contents of ALL_DIRECTORIES to determine which
directories are available in the currently connected schema. You can also leverage
this view to build some useful utilities. Here is one example: print a list of all the
directories defined in the database:

/* File on web: fileIO.pkg */
PROCEDURE fileIO.gen_utl_file_dir_entries
IS
BEGIN
 FOR rec IN (SELECT * FROM all_directories)
 LOOP
 DBMS_OUTPUT.PUT_LINE ('UTL_FILE_DIR = ' || rec.directory_path);
 END LOOP;
END gen_utl_file_dir_entries;

One advantage of building utilities like those found in fileIO.pkg is that you can easily
add sophisticated handling of the case of the directory to avoid “formatting errors,”
such as forgetting to specify the directory name in uppercase.

Open Files
Before you can read or write a file, you must open it. The UTL_FILE.FOPEN function
opens the specified file and returns a file handle you can then use to manipulate the
file. Here’s the header for the function:

FUNCTION UTL_FILE.FOPEN (
 location IN VARCHAR2
 , filename IN VARCHAR2
 , open_mode IN VARCHAR2
 , max_linesize IN BINARY_INTEGER DEFAULT NULL)
RETURN UTL_FILE.file_type;

Parameters are summarized in the following table:

Parameter Description

location Location of the file (directory in UTL_FILE_DIR or a database directory).

filename Name of the file.

open_mode Mode in which the file is to be opened (see the following modes).

max_linesize Maximum number of characters per line, including the newline character, for this file. Minimum is 1;
maximum is 32767. The default of NULL means that UTL_FILE determines an appropriate value from the
operating system (the value has historically been around 1,024 bytes).

UTL_FILE.file_type Record containing all the information UTL_FILE needs to manage the file.

880 | Chapter 22: I/O and PL/SQL

Download at WoweBook.Com

You can open the file in one of three modes:

R
Opens the file read-only. If you use this mode, use UTL_FILE’s GET_LINE pro-
cedure to read from the file.

W
Opens the file to read and write in replace mode. When you open in replace mode,
all existing lines in the file are removed. If you use this mode, you can use any of
the following UTL_FILE programs to modify the file: PUT, PUT_LINE,
NEW_LINE, PUTF, and FFLUSH.

A
Opens the file to read and write in append mode. When you open in append mode,
all existing lines in the file are kept intact. New lines will be appended after the last
line in the file. If you use this mode, you can use any of the following UTL_FILE
programs to modify the file: PUT, PUT_LINE, NEW_LINE, PUTF, and FFLUSH.

Keep the following points in mind as you attempt to open files:

• The file location and the filename joined together must represent a legal filename
on your operating system.

• The file location specified must be accessible and must already exist; FOPEN will
not create a directory or subdirectory for you in order to write a new file:

• If you want to open a file for read access, the file must already exist. If you want to
open a file for write access, the file will either be created if it does not exist or
emptied of all its contents if it does exist.

• If you try to open with append, the file must already exist. UTL_FILE will not treat
your append request like a write access request. If the file is not present, UTL_FILE
will raise the INVALID_OPERATION exception.

The following example shows how to declare a file handle and then open a file for that
handle in read-only mode:

DECLARE
 config_file UTL_FILE.FILE_TYPE;
BEGIN
 config_file := UTL_FILE.FOPEN ('/maint/admin', 'config.txt', 'R');

Notice that I did not provide a maximum line size when I opened this file. That pa-
rameter is, in fact, optional. If you do not provide it, the maximum length of a line you
can read from or write to the file is approximately 1,024. Given this limitation, you
probably want to include the max_linesize argument as shown below:

DECLARE
 config_file UTL_FILE.FILE_TYPE;
BEGIN
 config_file := UTL_FILE.FOPEN (
 '/maint/admin', 'config.txt', 'R', max_linesize => 32767);

Reading and Writing Files | 881

Download at WoweBook.Com

Use the FOPEN_NCHAR function to open files written in multibyte
character sets. In this case, Oracle recommends limiting max_linesize
to 6400.

Is the File Already Open?
The IS_OPEN function returns TRUE if the specified handle points to a file that is
already open. Otherwise, it returns false. The header for the function is,

FUNCTION UTL_FILE.IS_OPEN (file IN UTL_FILE.FILE_TYPE) RETURN BOOLEAN;

where file is the file to be checked.

Within the context of UTL_FILE, it is important to know what this means. The
IS_OPEN function does not perform any operating system checks on the status of the
file. In actuality, it merely checks to see if the id field of the file handle record is not
NULL. If you don’t play around with these records and their contents, this id field is
set to a non-NULL value only when you call FOPEN. It is set back to NULL when you
call FCLOSE.

Close Files
Use the UTL_FILE.FCLOSE and UTL_FILE.FCLOSE_ALL procedures to close a spe-
cific file and all open files in your session, respectively.

Use FCLOSE to close an open file. The header for this procedure is:

PROCEDURE UTL_FILE.FCLOSE (file IN OUT UTL_FILE.FILE_TYPE);

where file is the file handle.

Notice that the argument to UTL_FILE.FCLOSE is an IN OUT parameter because the
procedure sets the id field of the record to NULL after the file is closed.

If there is buffered data that has not yet been written to the file when you try to close
it, UTL_FILE will raise the WRITE_ERROR exception.

FCLOSE_ALL closes all the opened files. The header for this procedure is:

PROCEDURE UTL_FILE.FCLOSE_ALL;

This procedure will come in handy when you have opened a variety of files and want
to make sure that none of them are left open when your program terminates.

In programs in which files have been opened, you may wish to call FCLOSE_ALL in
the exception handlers of those programs. If there is an abnormal termination of the
program, files will then still be closed.

EXCEPTION
 WHEN OTHERS
 THEN
 UTL_FILE.FCLOSE_ALL;

882 | Chapter 22: I/O and PL/SQL

Download at WoweBook.Com

 ... other cleanup activities ...
END;

When you close your files with the FCLOSE_ALL procedure, none of your file handles
will be marked as closed (the id field, in other words, will still be non-NULL). The
result is that any calls to IS_OPEN for those file handles will still return TRUE. You
will not, however, be able to perform any read or write operations on those files (unless
you reopen them).

Read from Files
The UTL_FILE.GET_LINE procedure reads a line of data from the specified file, if it
is open, into the provided line buffer. The header for the procedure is:

PROCEDURE UTL_FILE.GET_LINE
 (file IN UTL_FILE.FILE_TYPE,
 buffer OUT VARCHAR2);

where file is the file handle returned by a call to FOPEN, and buffer is the buffer into
which the line of data is read. The variable specified for the buffer parameter must be
large enough to hold all the data up to the next carriage return or end-of-file condition
in the file. If not, PL/SQL will raise the VALUE_ERROR exception. The line terminator
character is not included in the string passed into the buffer.

Oracle offers additional GET programs to read NVARCHAR2 data
(GET_LINE_NCHAR) and raw data (GET_RAW).

Here is an example that uses GET_LINE:

DECLARE
 l_file UTL_FILE.FILE_TYPE;
 l_line VARCHAR2(32767);
BEGIN
 l_file := UTL_FILE.FOPEN ('TEMP_DIR', 'numlist.txt', 'R', max_linesize => 32767);
 UTL_FILE.GET_LINE (l_file, l_line);
 DBMS_OUTPUT.PUT_LINE (l_line);
END;

Because GET_LINE reads data only into a string variable, you will have to perform
your own conversions to local variables of the appropriate datatype if your file holds
numbers or dates.

GET_LINE exceptions

When GET_LINE attempts to read past the end of the file, the NO_DATA_FOUND
exception is raised. This is the same exception that is raised when you:

• Execute an implicit (SELECT INTO) cursor that returns no rows

Reading and Writing Files | 883

Download at WoweBook.Com

• Reference an undefined row of a PL/SQL collection

• Read past the end of a BFILE (binary file) with DBMS_LOB

If you are performing more than one of these operations in the same PL/SQL block,
you may need to add extra logic to distinguish between the different sources of this
error. See the who_did_that.sql file on the book’s web site for a demonstration of this
technique.

Handy encapsulation for GET_LINE

The GET_LINE procedure is simple and straightforward. It gets the next line from the
file. If the pointer to the file is already located at the last line of the file,
UTL_FILE.GET_LINE does not return any kind of flag but instead raises the
NO_DATA_FOUND exception. This design leads to poorly structured code; you
might consider using an encapsulation on top of GET_LINE to improve that design,
as explained in this section.

Here is a program that reads each line from a file and then processes that line:

DECLARE
 l_file UTL_FILE.file_type;
 l_line VARCHAR2 (32767);
BEGIN
 l_file := UTL_FILE.FOPEN ('TEMP', 'names.txt', 'R');

 LOOP
 UTL_FILE.get_line (l_file, l_line);
 process_line (l_line);
 END LOOP;
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 UTL_FILE.fclose (l_file);
END;

Notice that the simple loop does not contain any explicit EXIT statement. The loop
terminates implicitly and with an exception, as soon as UTL_FILE reads past the end
of the file. In a small block like this one, the logic is clear. But imagine if my program
is hundreds of lines long and much more complex. Suppose further that reading the
contents of the file is just one step in the overall algorithm. If an exception terminates
my block, I will then need to put the rest of my business logic in the exception section
(bad idea) or put an anonymous BEGIN-END block wrapper around my read-file logic.

I am not comfortable with this approach. I don’t like to code infinite loops without an
EXIT statement; the termination condition is not structured into the loop itself. Fur-
thermore, the end-of-file condition is not really an exception; every file, after all, must
end at some point. Why must I be forced into the exception section simply because I
want to read a file in its entirety?

884 | Chapter 22: I/O and PL/SQL

Download at WoweBook.Com

I believe that a better approach to handling the end-of-file condition is to build a layer
of code around GET_LINE that immediately checks for end-of-file and returns a
Boolean value (TRUE or FALSE). The get_nextline procedure shown here demon-
strates this approach:

/* File on web: getnext.sp */
PROCEDURE get_nextline (
 file_in IN UTL_FILE.FILE_TYPE
 , line_out OUT VARCHAR2
 , eof_out OUT BOOLEAN)
IS
BEGIN
 UTL_FILE.GET_LINE (file_in, line_out);
 eof_out := FALSE;
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 line_out := NULL;
 eof_out := TRUE;
END;

The get_nextline procedure accepts an already assigned file handle and returns two
pieces of information: the line of text (if there is one) and a Boolean flag (set to TRUE
if the end-of-file is reached, FALSE otherwise). Using get_nextline, I can now read
through a file with a loop that has an EXIT statement:

DECLARE
 l_file UTL_FILE.file_type;
 l_line VARCHAR2 (32767);
 l_eof BOOLEAN;
BEGIN
 l_file := UTL_FILE.FOPEN ('TEMP', 'names.txt', 'R');

 LOOP
 get_nextline (l_file, l_line, l_eof);
 EXIT WHEN l_eof;
 process_line (l_line);
 END LOOP;

 UTL_FILE.fclose (l_file);
END;

With get_nextline, I no longer treat end-of-file as an exception. I read a line from the
file until I am done, and then I close the file and exit. This is, I believe, a more straight-
forward and easily understood program.

Write to Files
In contrast to the simplicity of reading from a file, UTL_FILE offers a number of dif-
ferent procedures you can use to write to a file:

Reading and Writing Files | 885

Download at WoweBook.Com

UTL_FILE.PUT
Adds the data to the current line in the opened file but does not append a line
terminator. You must use the NEW_LINE procedure to terminate the current line
or use PUT_LINE to write out a complete line with a line termination character.

UTL_FILE.NEW_LINE
Inserts one or more newline characters (default is 1) into the file at the current
position.

UTL_FILE.PUT_LINE
Puts a string into a file, followed by a platform-specific line termination character.
This is the program you are most likely to be using with UTL_FILE.

UTL_FILE.PUTF
Puts up to five strings out to the file in a format based on a template string, similar
to the printf function in C.

UTL_FILE.FFLUSH
UTL_FILE writes are normally buffered; FFLUSH immediately writes the buffer
out to the filesystem.

You can use these procedures only if you have opened your file with modes W or A; if
you opened the file for read-only, the runtime engine raises the
UTL_FILE.INVALID_OPERATION exception.

Oracle offers additional PUT programs to write NVARCHAR2 data
(PUT_LINE_NCHAR, PUT_NCHAR, PUTF_NCHAR) and raw data
(PUT_RAW).

Let’s take a closer look at UTL_FILE.PUT_LINE. This procedure writes data to a file
and then immediately appends a newline character after the text. The header for
PUT_LINE is:

PROCEDURE UTL_FILE.PUT_LINE (
 file IN UTL_FILE.FILE_TYPE
 ,buffer IN VARCHAR2
 ,autoflush IN BOOLEAN DEFAULT FALSE)

Parameters are summarized in the following table:

Parameter Description

file The file handle returned by a call to FOPEN

buffer Text to be written to the file; maximum size allowed is 32,767

autoflush Pass TRUE if you want this line to be flushed out to the operating system immediately

Before you can call UTL_FILE.PUT_LINE, you must have already opened the file.

886 | Chapter 22: I/O and PL/SQL

Download at WoweBook.Com

Here is an example that uses PUT_LINE to dump the names of all our employees to a
file:

PROCEDURE names_to_file
IS
 fileid UTL_FILE.file_type;
BEGIN
 fileid := UTL_FILE.FOPEN ('TEMP', 'names.dat', 'W');

 FOR emprec IN (SELECT * FROM employee)
 LOOP
 UTL_FILE.put_line (fileid, emprec.first_name || ' ' || emprec.last_name);
 END LOOP;

 UTL_FILE.fclose (fileid);
END names_to_file;

A call to PUT_LINE is equivalent to a call to PUT followed by a call to NEW_LINE.
It is also equivalent to a call to PUTF with a format string of “%s\n” (see the description
of PUTF in the next section).

Writing formatted text to file

Like PUT, PUTF puts data into a file, but it uses a message format (hence, the “F” in
“PUTF”) to interpret the different elements to be placed in the file. You can pass be-
tween one and five different items of data to PUTF. The header for the procedure is:

PROCEDURE UTL_FILE.putf
 (file IN FILE_TYPE
 ,format IN VARCHAR2
 ,arg1 IN VARCHAR2 DEFAULT NULL
 ,arg2 IN VARCHAR2 DEFAULT NULL
 ,arg3 IN VARCHAR2 DEFAULT NULL
 ,arg4 IN VARCHAR2 DEFAULT NULL
 ,arg5 IN VARCHAR2 DEFAULT NULL);

Parameters are summarized in the following table:

Parameter Description

file The file handle returned by a call to FOPEN

format The string that determines the format of the items in the file; see the following options

argN An optional argument string; up to five may be specified

The format string allows you to substitute the argN values directly into the text written
to the file. In addition to “boilerplate” or literal text, the format string may contain the
following patterns:

%s
Directs PUTF to put the corresponding item in the file. You can have up to five %s
patterns in the format string because PUTF will take up to five items.

Reading and Writing Files | 887

Download at WoweBook.Com

\n
Directs PUTF to put a newline character in the file. There is no limit to the number
of \n patterns you may include in a format string.

The %s formatters are replaced by the argument strings in the order provided. If you
do not pass in enough values to replace all of the formatters, then the %s is simply
removed from the string before writing it to the file.

The following example illustrates how to use the format string. Suppose you want the
contents of the file to look like this:

Employee: Steven Feuerstein
Soc Sec #: 123-45-5678
Salary: $1000

This single call to PUTF will accomplish the task:

UTL_FILE.PUTF
 (file_handle, 'Employee: %s\nSoc Sec #: %s\nSalary: %s\n',
 'Steven Feuerstein',
 '123-45-5678',
 TO_CHAR (:employee.salary, '$9999'));

If you need to write out more than five items of data, you can simply call PUTF twice
consecutively to finish the job.

Copy Files
UTL_FILE.FCOPY lets you easily copy the contents of one source file to another des-
tination file. The following snippet, for example, uses UTL_FILE.FCOPY to perform
a backup by copying a single file from the development directory to the archive
directory:

DECLARE
 file_suffix VARCHAR2 (100)
 := TO_CHAR (SYSDATE, 'YYYYMMDDHH24MISS');
BEGIN
 -- Copy the entire file...
 UTL_FILE.FCOPY (
 src_location => 'DEVELOPMENT_DIR',
 src_filename => 'archive.zip',
 dest_location => 'ARCHIVE_DIR',
 dest_filename => 'archive'
 || file_suffix
 || '.zip'
);
END;

You can also use FCOPY to copy just a portion of a file. The program offers two addi-
tional parameters that allow you to specify the starting and ending line numbers you
want to copy from the file. Suppose that I have a text file containing the names of the
winners of a monthly PL/SQL quiz that started in January 2008. I would like to transfer

888 | Chapter 22: I/O and PL/SQL

Download at WoweBook.Com

all the names in 2009 to another file. I can do that by taking advantage of the fifth and
sixth arguments of the FCOPY procedure as shown below:

DECLARE
 c_start_year CONSTANT PLS_INTEGER := 2008;
 c_year_of_interest CONSTANT PLS_INTEGER := 2009;
 l_start PLS_INTEGER;
 l_end PLS_INTEGER;
BEGIN
 l_start := (c_year_of_interest - c_start_year)*12 + 1;
 l_end := l_start + 11;

 UTL_FILE.FCOPY (
 src_location => 'WINNERS_DIR',
 src_filename => 'names.txt',
 dest_location => 'WINNERS_DIR',
 dest_filename => 'names2008.txt',
 start_line => l_start,
 end_line => l_end
);
END;

A useful encapsulation to UTL_FILE.FCOPY allows me to specify start and end strings
instead of line numbers. I will leave the implementation of such a utility as an exercise
for the reader (see the infile.sf file on the book’s web site for an implementation of an
“INSTR for files” that might give you some ideas on implementation).

Delete Files
You can remove files using UTL_FILE.FREMOVE, as long as you are using Oracle9i
Database Release 2 or later. The header for this procedure is:

PROCEDURE UTL_FILE.FREMOVE (
 location IN VARCHAR2,
 filename IN VARCHAR2);

For example, here I can use UTL_FILE.FREMOVE to remove the original archive file
shown previously:

BEGIN
 UTL_FILE.FREMOVE ('DEVELOPMENT_DIR', 'archive.zip');
END;

That’s simple enough. You provide the location and name of the file, and UTL_FILE
attempts to delete it. What if UTL_FILE encounters a problem? You might then see one
of the following exceptions raised:

Exception name Meaning

UTL_FILE.invalid_path Not a valid file handle

UTL_FILE.invalid_filename File not found or filename NULL

UTL_FILE.file_open File already open for writing/appending

Reading and Writing Files | 889

Download at WoweBook.Com

Exception name Meaning

UTL_FILE.access_denied Access to the directory object is denied

UTL_FILE.remove_failed Failed to delete file

In other words, UTL_FILE will raise an exception if you try to remove a file that doesn’t
exist or if you do not have the privileges needed to remove the file. Many file-removal
programs in other languages (for example, File.delete in Java) return a status code to
inform you of the outcome of the removal attempt. If you prefer this approach, you can
use (or copy) the fileIO.FREMOVE program found in the fileIO.pkg file on the book’s
web site.

Rename and Move Files
I can combine copy and remove operations into a single step by calling the
UTL_FILE.RENAME procedure. This handy utility allows me to either rename a file
in the same directory or to rename a file to another name and location (in effect, moving
that file).

The header for FRENAME is:

PROCEDURE UTL_FILE.frename (
 src_location IN VARCHAR2,
 src_filename IN VARCHAR2,
 dest_location IN VARCHAR2,
 dest_filename IN VARCHAR2,
 overwrite IN BOOLEAN DEFAULT FALSE);

This program may raise one of the following exceptions:

Exception name Meaning

UTL_FILE.invalid_path Not a valid file handle

UTL_FILE.invalid_filename File not found or filename NULL

UTL_FILE.rename_failed Unable to perform the rename as requested

UTL_FILE.access_denied Insufficient privileges to access directory object

You will find an interesting application of FRENAME in the fileIO.pkg—the chgext
procedure. This program changes the extension of the specified file.

Retrieve File Attributes
Sometimes you need to get information about a particular file: How big is this file? Does
a file even exist? What is the block size of the file? Such questions are not mysteries that
can only be solved with the help of an operating system command (or, in the case of
the file length, the DBMS_LOB package), as they were in early Oracle releases.
UTL_FILE.FGETATTR provides that information in a single native procedure call.

890 | Chapter 22: I/O and PL/SQL

Download at WoweBook.Com

The header for FGETATTR is:

PROCEDURE UTL_FILE.FGETATTR (
 location IN VARCHAR2,
 filename IN VARCHAR2,
 fexists OUT BOOLEAN,
 file_length OUT NUMBER,
 block_size OUT BINARY_INTEGER);

Thus, to use this program, you must declare three different variables to hold the Boolean
flag (does the file exist?), the length of the file, and the block size. Here is a sample usage:

DECLARE
 l_fexists BOOLEAN;
 l_file_length PLS_INTEGER;
 l_block_size PLS_INTEGER;
BEGIN
 UTL_FILE.FGETATTR (
 location => 'DEVELOPMENT_DIR',
 filename => 'bigpkg.pkg',
 fexists => l_fexists,
 file_length => l_file_length,
 block_size => l_block_size
);
 ...
END;

This interface is a bit awkward. Suppose that you just want to find out the length of
this file? You still have to declare all those variables, obtain the length, and then work
with that value. Perhaps the best way to take advantage of FGETATTR is to build some
of your own functions on top of this built-in that answer a single question, such as:

FUNCTION fileIO.flength (
 location_in IN VARCHAR2,
 file_in IN VARCHAR2
)
 RETURN PLS_INTEGER;

or:

FUNCTION fileIO.fexists (
 location_in IN VARCHAR2,
 file_in IN VARCHAR2
)
 RETURN BOOLEAN;

As a result, you do not have to declare unneeded variables, and you can write simpler,
cleaner code.

Sending Email
Over the years, Oracle has gradually made it easier to send email from within a stored
procedure. Here’s a short example:

Sending Email | 891

Download at WoweBook.Com

/* Requires Oracle Database 10g or later */
BEGIN
 UTL_MAIL.send(
 sender => 'me@mydomain.com'
 ,recipients => 'you@yourdomain.com'
 ,subject => 'API for sending email'
 ,message =>
'Dear Friend:

This is not spam. It is a mail test.

Mailfully Yours,
Bill'
);

END;

When you run this block, the database will attempt to send this message using whatever
SMTP* host the DBA has configured in the initialization file (see the discussion in the
next section).

The header for UTL_MAIL.SEND is:

PROCEDURE send(sender IN VARCHAR2,
 recipients IN VARCHAR2,
 cc IN VARCHAR2 DEFAULT NULL,
 bcc IN VARCHAR2 DEFAULT NULL,
 subject IN VARCHAR2 DEFAULT NULL,
 message IN VARCHAR2 DEFAULT NULL,
 mime_type IN VARCHAR2
 DEFAULT 'text/plain; charset=us-ascii',
 priority IN PLS_INTEGER DEFAULT 3);

Most of the parameters are self-explanatory. One non-obvious usage hint: if you want
to use more than one recipient (or cc or bcc), separate the addresses with commas, like
this:

recipients => 'you@yourdomain.com, him@hisdomain.com'

Okay, so that’s pretty good if you have a recent version of Oracle, but what if you only
have access to earlier versions, or what if you just want a little more control? You can
still use the UTL_SMTP package, which is a little more complicated but nevertheless
workable. If you want to code at an even lower level, you can use UTL_TCP, an external
procedure, or a Java stored procedure, but I’ll leave those as an exercise for anyone who
wants to write some entertaining code.

* SMTP is one of many Internet acronyms governed by other acronyms. Simple Mail Transfer Protocol is
governed by Request for Comment (RFC) 2821, which obsoletes RFC 821.

892 | Chapter 22: I/O and PL/SQL

Download at WoweBook.Com

Oracle Prerequisites
Unfortunately, not all versions of Oracle provide email-from-PL/SQL that works out
of the box. The built-in UTL_SMTP is part of a default installation, so it will generally
work right out of the box. If you are using Oracle Database 11g Release 2, there is one
security hoop you will have to jump through, as explained below.

Starting with Oracle Database 10g, the default Oracle installation does not include the
UTL_MAIL package. To set up and use UTL_MAIL, your DBA will have to perform
the following tasks:

1. Set a value for the initialization parameter SMTP_OUT_SERVER. In Oracle Da-
tabase 10g Release 2 and later, you can just do something like this:

ALTER SYSTEM SET SMTP_OUT_SERVER = 'mailhost';

In Oracle Database 10g Release 1, you need to edit your pfile by hand to set this
parameter. The string you supply will be one or more (comma-delimited) mail
hostnames that UTL_MAIL should try one at a time until it finds one it likes.

2. After setting this parameter, you must bounce the database server for the change to
take effect. Amazing but true.

3. As SYS, run the installation scripts:

@$ORACLE_HOME/rdbms/admin/utlmail.sql
@$ORACLE_HOME/rdbms/admin/prvtmail.plb

4. Grant execute to the “privileged few” who need to use it:

GRANT EXECUTE ON UTL_MAIL TO SCOTT;

Configuring Network Security
In Oracle Database 11g Release 2, your DBA will need to jump through one more
security hoop for any package that makes network callouts, including UTL_SMTP and
UTL_MAIL. The DBA will need to create an Access Control List (ACL), put your user-
name or role into it, and grant the network-level privilege to that list. Here is a simple
cookbook ACL for this purpose:

BEGIN
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL (
 acl => 'mail-server.xml'
 ,description => 'Permission to make network connections to mail server'
 ,principal => 'SCOTT' /* username or role */
 ,is_grant => TRUE
 ,privilege => 'connect'
);

 DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL (
 acl => 'mail-server.xml'
 ,host => 'my-STMP-servername'
 ,lower_port => 25 /* The default SMTP network port */
 ,upper_port => NULL /* Null here means open only port 25 */

Sending Email | 893

Download at WoweBook.Com

);
END;

These days, your network administrator might also need to configure a firewall to allow
port 25 outbound connections from your database server, and your email administrator
might also have some permissions to set!

Send a Short (32,767 or Less) Plaintext Message
In the previous section, the first example showed how to send a plaintext message if
you have UTL_MAIL at your disposal. If, however, you are using UTL_SMTP, your
program will have to communicate with the mail server at a lower programmatic level:
opening the connection, composing the headers, sending the body of the message, and
(ideally) examining the return codes. To give you a flavor of what this looks like,
Figure 22-1 shows a sample conversation between a mail server and a PL/SQL mail
client I’ve named send_mail_via_utl_smtp.

Here is the code for this simple stored procedure:

 /* File on web: send_mail_via_utl_smtp.sp */
 1 PROCEDURE send_mail_via_utl_smtp
 2 (sender IN VARCHAR2
 3 ,recipient IN VARCHAR2
 4 ,subject IN VARCHAR2 DEFAULT NULL
 5 ,message IN VARCHAR2
 6 ,mailhost IN VARCHAR2 DEFAULT 'mailhost'
 7)
 8 IS
 9 mail_conn UTL_SMTP.connection;
10 crlf CONSTANT VARCHAR2(2) := CHR(13) || CHR(10);
11 smtp_tcpip_port CONSTANT PLS_INTEGER := 25;
12 BEGIN
13 mail_conn := UTL_SMTP.OPEN_CONNECTION(mailhost, smtp_tcpip_port);
14 UTL_SMTP.HELO(mail_conn, mailhost);
15 UTL_SMTP.MAIL(mail_conn, sender);
16 UTL_SMTP.RCPT(mail_conn, recipient);
17 UTL_SMTP.DATA(mail_conn, SUBSTR(
18 'Date: ' || TO_CHAR(SYSTIMESTAMP, 'Dy, dd Mon YYYY HH24:MI:SS TZHTZM')
19 || crlf || 'From: ' || sender || crlf
20 || 'Subject: ' || subject || crlf
21 || 'To: ' || recipient || crlf
22 || message
23 , 1, 32767));
24
25 UTL_SMTP.QUIT(mail_conn);
26 END;

894 | Chapter 22: I/O and PL/SQL

Download at WoweBook.Com

The following table explains a few concepts behind this code:

Line(s) Description

9 You must define a variable to handle the “connection,” which is a record of type UTL_SMTP.connection.

10 According to Internet mail standards, all header lines must end with a carriage return followed by a line feed, and
you are responsible for making this happen (see lines 19–21).

14–25 These lines send specific instructions to the SMTP server in the sequence and form an Internet-compliant mail server
expects.

18 This line uses SYSTIMESTAMP (introduced in Oracle9i Database) to gain access to time zone information.

If you look at lines 17–23, you’ll see that this procedure cannot send a message whose
“DATA” part exceeds 32,767 bytes, which is the limit of PL/SQL variables. It’s possible
to send longer emails using UTL_SMTP, but you will need to stream the data using
multiple calls to UTL_SMTP.WRITE_DATA, as shown later.

Figure 22-1. A “conversation” between the PL/SQL mail client and SMTP server

Sending Email | 895

Download at WoweBook.Com

By convention, most email programs limit each line of text to 78 char-
acters plus the two line-terminating characters. In general, you’ll want
to keep each line of text to a maximum of 998 characters exclusive of
carriage return/line feed, or CRLF (that is, 1,000 bytes if you count the
CRLF). Don’t go over 1,000 bytes unless you’re sure that your server
implements the relevant SMTP “Service Extension.”

Include “Friendly” Names in Email Addresses
If I invoke the previous procedure like this:

BEGIN
 send_mail_via_utl_smtp('myname@mydomain.com',
 'yourname@yourdomain.com', 'mail demo', NULL);
END;

the “normally” visible headers of the email, as generated by lines 17–21, will show up
something like this:

Date: Wed, 23 Mar 2005 17:14:30 −0600
From: myname@mydomain.com
Subject: mail demo
To: yourname@yourdomain.com

Most humans (and many antispam programs) prefer to see real names in the headers,
in a form such as:

Date: Wed, 23 Mar 2005 17:14:30 −0600
From: Bob Swordfish <myname@mydomain.com>
Subject: mail demo
To: "Scott Tiger, Esq." <yourname@yourdomain.com>

There is, of course, more than one way to make this change; perhaps the most elegant
would be to add some parsing to the sender and recipient parameters. This is what
Oracle has done in UTL_MAIL. So, for example, I can call UTL_MAIL.SEND with
addresses of the form:

["]Friendly name["] <email_address>

as in:

BEGIN
 UTL_MAIL.send('Bob Swordfish <myname@mydomain.com>',
 '"Scott Tiger, Esq." <yourname@yourdomain.com>',
 subject=>'mail demo');
END;

However, you need to realize that Oracle’s package also adds character set information,
so the previous code generates an email header that looks something like this:

Date: Sat, 24 Jan 2009 17:47:00 −0600 (CST)
From: Bob Swordfish <me@mydomain.com>
To: Scott Tiger, Esq. <you@yourdomain.com>
Subject: =?WINDOWS-1252?Q?mail=20demo?=

896 | Chapter 22: I/O and PL/SQL

Download at WoweBook.Com

While that looks odd to most ASCII speakers, it is completely acceptable in Internet-
standards-land; an intelligent mail client should interpret (rather than display) the
character set information anyway.

One quick and dirty modification of the send_mail_via_utl_smtp procedure would
simply be to add parameters for the friendly names (or change the existing parameters
to record structures).

Send a Plaintext Message of Arbitrary Length
UTL_MAIL is pretty handy, but if you want to send a text message larger than 32,767
bytes, it won’t help you. One way around this limitation would be to modify the
send_mail_via_utl_smtp procedure so that the “message” parameter is a CLOB data-
type. Take a look at the other changes required:

/* File on web: send_clob.sp */
PROCEDURE send_clob_thru_email (
 sender IN VARCHAR2
 , recipient IN VARCHAR2
 , subject IN VARCHAR2 DEFAULT NULL
 , MESSAGE IN CLOB
 , mailhost IN VARCHAR2 DEFAULT 'mailhost'
)
IS
 mail_conn UTL_SMTP.connection;
 crlf CONSTANT VARCHAR2 (2) := CHR (13) || CHR (10);
 smtp_tcpip_port CONSTANT PLS_INTEGER := 25;
 pos PLS_INTEGER := 1;
 bytes_o_data CONSTANT PLS_INTEGER := 32767;
 offset PLS_INTEGER := bytes_o_data;
 msg_length CONSTANT PLS_INTEGER := DBMS_LOB.getlength (MESSAGE);
BEGIN
 mail_conn := UTL_SMTP.open_connection (mailhost, smtp_tcpip_port);
 UTL_SMTP.helo (mail_conn, mailhost);
 UTL_SMTP.mail (mail_conn, sender);
 UTL_SMTP.rcpt (mail_conn, recipient);

 UTL_SMTP.open_data (mail_conn);
 UTL_SMTP.write_data (
 mail_conn
 , 'Date: '
 || TO_CHAR (SYSTIMESTAMP, 'Dy, dd Mon YYYY HH24:MI:SS TZHTZM')
 || crlf
 || 'From: '
 || sender
 || crlf
 || 'Subject: '
 || subject
 || crlf
 || 'To: '
 || recipient
 || crlf
);

Sending Email | 897

Download at WoweBook.Com

 WHILE pos < msg_length
 LOOP
 UTL_SMTP.write_data (mail_conn, DBMS_LOB.SUBSTR (MESSAGE, offset, pos));
 pos := pos + offset;
 offset := LEAST (bytes_o_data, msg_length - offset);
 END LOOP;

 UTL_SMTP.close_data (mail_conn);

 UTL_SMTP.quit (mail_conn);
END send_clob_thru_email;

Using open_data, write_data, and close_data allows you to transmit an arbitrary num-
ber of bytes to the mail server (up to whatever limit the server imposes on email size).
Note the one big assumption that this code is making: that the CLOB has been properly
split into lines of the correct length.

Let’s next take a look at how to attach a file to an email.

Send a Message with a Short (< 32,767) Attachment
The original email standard required all messages to be composed of seven-bit U.S.
ASCII characters.† But we all know that emails can include attachments—such as vi-
ruses and word-processing documents—and these kinds of files are normally binary,
not text. How can an ASCII message transmit a binary file? The answer, in general, is
that attachments are transmitted using mail extensions known as MIME‡ in combina-
tion with a binary-to-ASCII translation scheme such as base64. To see MIME in action,
let’s take a look at an email that transmits a tiny binary file:

Date: Wed, 01 Apr 2009 10:16:51 −0600
From: Bob Swordfish <my@myname.com>
MIME-Version: 1.0
To: Scott Tiger <you@yourname.com>
Subject: Attachment demo
Content-Type: multipart/mixed;
 boundary="------------060903040208010603090401"

This is a multi-part message in MIME format.
--------------060903040208010603090401
Content-Type: text/plain; charset=us-ascii; format=fixed
Content-Transfer-Encoding: 7bit

Dear Scott:

I'm sending a gzipped file containing the text of the first

† Modern mail programs generally support 8-bit character transfer per an SMTP extension known as
8BITMIME. You can discover whether it’s supported via SMTP’s EHLO directive.

‡ Multipurpose Internet Mail Extensions, as set forth in RFC 2045, 2046, 2047, 2048, and 2049, and updated
by 2184, 2231, 2646, and 3023. And then some....

898 | Chapter 22: I/O and PL/SQL

Download at WoweBook.Com

paragraph. Hope you like it.

Bob
--------------060903040208010603090401
Content-Type: application/x-gzip; name="hugo.txt.gz"
Content-Transfer-Encoding: base64
Content-Disposition: inline; filename="hugo.txt.gz"

H4sICDh/TUICA2xlc21pcy50eHQAPY5BDoJAEATvvqI/AJGDxjMaowcesbKNOwmZITsshhf7
DdGD105Vpe+K5tQc0Jm6sGScU8gjvbrmoG8Tr1qhLtSCbs3CEa/gaMWTTbABF3kqa9z42+dE
RXhYmeHcpHmtBlmIoBEpREyZLpERtjB/aUSxns5/Ci7ac/u0P9a7Dw4FECSdAAAA
--------------060903040208010603090401--

Although a lot of the text can be boilerplated, there are still a lot of details to handle
when you generate the email. Fortunately, if you just want to send a “small” attachment
(less than 32,767), and you have Oracle Database 10g or later, UTL_MAIL comes to
the rescue. In this next example, I’ll use UTL_MAIL.SEND_ATTACH_VARCHAR2,
which sends attachments that are expressed as text.

The previous message and file can be sent as follows:

DECLARE
 b64 VARCHAR2(512) := 'H4sICDh/TUICA2xlc21...'; -- etc., as above
 txt VARCHAR2(512) := 'Dear Scott: ...'; -- etc., as above
BEGIN
 UTL_MAIL.send_attach_varchar2(
 sender => 'my@myname.com'
 ,recipients => 'you@yourname.com'
 ,message => txt
 ,subject => 'Attachment demo'
 ,att_mime_type => 'application/x-gzip'
 ,attachment => b64
 ,att_inline => TRUE
 ,att_filename => 'hugo.txt.gz'
);
END;

Here are the new parameters:

Parameter Description

att_mime_type Indication of the type of media and format of the attachment

att_inline Directive to the mail-reading program as to whether the attachment should be displayed in the flow of the
message body (TRUE) or as a separate thing (FALSE)

att_filename Sender’s designated name of the attached file

The MIME type isn’t just something you make up; it’s loosely governed, like so many
things on the Internet, by the Internet Assigned Numbers Authority (IANA). Common
MIME content types include text/plain, multipart/mixed, text/html, application/pdf,
and application/msword. For a complete list, visit IANA’s web page at http://www.iana
.org/assignments/media-types/.

Sending Email | 899

Download at WoweBook.Com

http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/

You may have noticed that there was quite a bit of hand-waving earlier to attach a
base64-encoded file to an email. Let’s take a closer look at the exact steps required to
convert a binary file into something you can send to an inbox.

Send a Small File (< 32767) as an Attachment
To have the Oracle database convert a small binary file to something that can be
emailed, you can read the contents of the file into a RAW variable, and use
UTL_MAIL.SEND_ATTACH_RAW. This causes the database to convert the binary
data to base64 and properly construct the MIME directives. If the file you want to send
is in /tmp/hugo.txt.gz (and is less than 32,767 in size), you might specify:

/* File on web: send_small_file.sql */
CREATE OR REPLACE DIRECTORY tmpdir AS '/tmp'
/
DECLARE
 the_file BFILE := BFILENAME('TMPDIR', 'hugo.txt.gz');
 rawbuf RAW(32767);
 amt PLS_INTEGER := 32767;
 offset PLS_INTEGER := 1;
BEGIN
 DBMS_LOB.fileopen(the_file, DBMS_LOB.file_readonly);
 DBMS_LOB.read(the_file, amt, offset, rawbuf);
 UTL_MAIL.send_attach_raw
(
 sender => 'my@myname.com'
 ,recipients => 'you@yourname.com'
 ,subject => 'Attachment demo'
 ,message => 'Dear Scott...'
 ,att_mime_type => 'application/x-gzip'
 ,attachment => rawbuf
 ,att_inline => TRUE
 ,att_filename => 'hugo.txt.gz'
);

 DBMS_LOB.close(the_file);
END;

If you don’t have UTL_MAIL, follow the instructions in the next section.

Attach a File of Arbitrary Size
To send a larger attachment, you can use the trusty UTL_SMTP package; if the at-
tachment is not text, you can perform a base64 conversion with Oracle’s built-in
UTL_ENCODE package . Here is an example procedure that sends a BFILE along with
a short text message:

 /* File on web: send_bfile.sp */
 1 PROCEDURE send_bfile
 2 (sender IN VARCHAR2
 3 ,recipient IN VARCHAR2
 4 ,subject IN VARCHAR2 DEFAULT NULL

900 | Chapter 22: I/O and PL/SQL

Download at WoweBook.Com

 5 ,message IN VARCHAR2 DEFAULT NULL
 6 ,att_bfile IN OUT BFILE
 7 ,att_mime_type IN VARCHAR2
 8 ,mailhost IN VARCHAR2 DEFAULT 'mailhost'
 9)
10 IS
11 crlf CONSTANT VARCHAR2(2) := CHR(13) || CHR(10);
12 smtp_tcpip_port CONSTANT PLS_INTEGER := 25;
13 bytes_per_read CONSTANT PLS_INTEGER := 23829;
14 boundary CONSTANT VARCHAR2(78) := '-------5e9i1BxFQrgl9cOgs90-------';
15 encapsulation_boundary CONSTANT VARCHAR2(78) := '--' || boundary;
16 final_boundary CONSTANT VARCHAR2(78) := '--' || boundary || '--';
17
18 mail_conn UTL_SMTP.connection;
19 pos PLS_INTEGER := 1;
20 file_length PLS_INTEGER;
21
22 diralias VARCHAR2(30);
23 bfile_filename VARCHAR2(512);
24 lines_in_bigbuf PLS_INTEGER := 0;
25
26 PROCEDURE writedata (str IN VARCHAR2, crlfs IN PLS_INTEGER DEFAULT 1)
27 IS
28 BEGIN
29 UTL_SMTP.write_data(mail_conn, str || RPAD(crlf, 2 * crlfs, crlf));
30 END;
31
32 BEGIN
33 DBMS_LOB.fileopen(att_bfile, DBMS_LOB.LOB_READONLY);
34 file_length := DBMS_LOB.getlength(att_bfile);
35
36 mail_conn := UTL_SMTP.open_connection(mailhost, smtp_tcpip_port);
37 UTL_SMTP.helo(mail_conn, mailhost);
38 UTL_SMTP.mail(mail_conn, sender);
39 UTL_SMTP.rcpt(mail_conn, recipient);
40
41 UTL_SMTP.open_data(mail_conn);
42 writedata('Date: ' || TO_CHAR(SYSTIMESTAMP,
43 'Dy, dd Mon YYYY HH24:MI:SS TZHTZM') || crlf
44 || 'MIME-Version: 1.0' || crlf
45 || 'From: ' || sender || crlf
46 || 'Subject: ' || subject || crlf
47 || 'To: ' || recipient || crlf
48 || 'Content-Type: multipart/mixed; boundary="' || boundary || '"', 2);
49
50 writedata(encapsulation_boundary);
51 writedata('Content-Type: text/plain; charset=ISO-8859-1; format=flowed');
52 writedata('Content-Transfer-Encoding: 7bit', 2);
53 writedata(message, 2);
54
55 DBMS_LOB.filegetname(att_bfile, diralias, bfile_filename);
56 writedata(encapsulation_boundary);
57 writedata('Content-Type: '
58 || att_mime_type || '; name="' || bfile_filename || '"');
59 writedata('Content-Transfer-Encoding: base64');

Sending Email | 901

Download at WoweBook.Com

60 writedata('Content-Disposition: attachment; filename="'
61 || bfile_filename || '"', 2);
62
63 WHILE pos < file_length
64 LOOP
65 writedata(UTL_RAW.cast_to_varchar2(
66 UTL_ENCODE.base64_encode
67 DBMS_LOB.substr(att_bfile, bytes_per_read, pos))), 0);
68 pos := pos + bytes_per_read;
69 END LOOP;
70
71 writedata(crlf || crlf || final_boundary);
72
73 UTL_SMTP.close_data(mail_conn);
74 UTL_SMTP.QUIT(mail_conn);
75 DBMS_LOB.CLOSE(att_bfile);
76 END;

Let’s take a look at a few highlights:

Line(s) Description

13 This constant governs how many bytes of the file to attempt to read at a time (see line 67), which should probably
be as large as possible for performance reasons. It turns out that UTL_ENCODE.BASE64_ENCODE generates lines that
are 64 characters wide. Because of the way base64 works, each 3 bytes of binary data gets translated into 4 bytes of
character data. Add in 2 bytes of CRLF per emailed line of base64 text, and you get the largest possible read of 23,829
bytes (obtained from the expression TRUNC((0.75*64)*(32767/(64+2))-1).

14–16 You can reuse the same core boundary string throughout this email. As you can see from the code, MIME standards
require that slightly different boundaries be used in different parts of the email. If you want to create an email with
nested MIME parts, though, you will need a different boundary string for each level of nesting.

26–30 This is a convenience procedure to make the executable section a little cleaner. The crlfs parameter indicates the
number of CRLFs to append to the line (generally 0, 1, or 2).

55 Instead of requiring a filename argument to send_bfile, you can just extract the filename from the BFILE itself.

63–69 This is the real guts of the program. It reads a portion of the file and converts it to base64, sending data out via the
mail connection just before hitting the 32,767 limit.

I know what you’re thinking: I, too, used to think sending email was easy. And this
procedure doesn’t even provide much flexibility; it lets you send one text part and attach
one file. But it provides a starting point that you can extend for your own application’s
needs.

One more point about crafting well-formed emails: rather than reading yourself to sleep
with the RFCs, you may prefer to pull out the email client you use every day, send
yourself an email of the form you are trying to generate, and then view the underlying
“source text” of the message. It worked for me; I did that many times while writing this
section of the book! Note, however, that some mail clients, notably Microsoft Outlook,
don’t seem to provide a way to examine all of the underlying “source.”

902 | Chapter 22: I/O and PL/SQL

Download at WoweBook.Com

Working with Web-Based Data (HTTP)
Let’s say you want to acquire some data from the web site of one of your business
partners. There are lots of ways to retrieve a web page:

• “By hand,” that is, by pointing your web browser to the right location.

• Using a scripting language such as Perl, which, incidentally, has lots of available
gizmos and gadgets to interpret the data once you retrieve it.

• Via a command-line utility such as GNU wget (one of my favorite utilities).

• Using Oracle’s built-in package UTL_HTTP.

Since this is a book about PL/SQL, guess which method I’ll be discussing!

If you’re running Oracle Database 11g Release 2 or later, you will need to set up a
network ACL to permit outbound connections to any desired remote hosts, as men-
tioned in the previous section.

Let’s start with a relatively simple means of coding the retrieval of a web page. This
first method, which slices up the web page and puts the slices into an array, actually
predates Oracle’s support of CLOBs.

Retrieve a Web Page in “Pieces”
One of the first procedures that Oracle ever released in the UTL_HTTP package re-
trieves a web page into consecutive elements of an associative array. Usage can be pretty
simple:

DECLARE
 page_pieces UTL_HTTP.html_pieces; -- array of VARCHAR2(2000)
BEGIN
 page_pieces := UTL_HTTP.request_pieces(url => 'http://www.oreilly.com/');
END;

This format is not terribly fun to work with, because the 2,000-byte boundaries are
unrelated to anything you would find on the text of the page. So if you have a parsing
algorithm that needs a line-by-line approach, you will have to read and reassemble the
lines. Moreover, Oracle says that it may not fill all of the (unending) pieces to 2,000
bytes; Oracle’s algorithm does not use end-of-line boundaries as breaking points; and
the maximum number of pieces is 32,767.

Even if an array-based retrieval meets your needs, you will likely encounter web sites
where the above code just won’t work. For example, some sites would refuse to serve
their content to such a script, because Oracle’s default HTTP “header” looks unfamiliar
to the web server. In particular, the “User-Agent” header is a text string that tells the
web server the browser software the client is using (or emulating), and many web sites
are set up to provide content specific to certain browsers. But by default, Oracle does
not send a User-Agent. A commonly used and supported header you might want to use
is:

Working with Web-Based Data (HTTP) | 903

Download at WoweBook.Com

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

Sending this header does increase the complexity of the code you must write, because
doing so means you must code at a lower level of abstraction; in particular, you must
initiate a “request,” send your header, get the “response,” and retrieve the page in a
loop:

DECLARE
 req UTL_HTTP.req; -- a "request object" (actually a PL/SQL record)
 resp UTL_HTTP.resp; -- a "response object" (also a PL/SQL record)
 buf VARCHAR2(32767); -- buffer to hold data from web page
BEGIN
 req := UTL_HTTP.begin_request('http://www.oreilly.com/',
 http_version => UTL_HTTP.http_version_1_1);
 UTL_HTTP.set_header(req, 'User-Agent'
 , 'Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)');
 resp := UTL_HTTP.get_response(req);

 BEGIN
 LOOP
 UTL_HTTP.read_text(resp, buf);
 -- process buf here; e.g., store in array
 END LOOP;
 EXCEPTION
 WHEN UTL_HTTP.end_of_body
 THEN
 NULL;
 END;
 UTL_HTTP.end_response(resp);
END;

The heart of the code above is this built-in:

PROCEDURE UTL_HTTP.read_text(
 r IN OUT NOCOPY UTL_HTTP.resp,
 data OUT NOCOPY VARCHAR2 CHARACTER SET ANY_CS,
 len IN PLS_INTEGER DEFAULT NULL);

If len is NULL, the Oracle database will fill the buffer up to its maximum size until
reaching the end of the page, after which point the read operation raises the
UTL_HTTP.end_of_body exception as above. (Yes, like UTL_FILE.GET_LINE dis-
cussed earlier, this goes against a coding practice that normal operations should not
raise exceptions.) Each iteration through the loop, you will need to process the buffer,
perhaps by appending it to a LOB.

You can also use the line-by-line retrieval using READ_LINE rather than READ_TEXT:

PROCEDURE UTL_HTTP.read_line(
r IN OUT NOCOPY UTL_HTTP.resp,
 data OUT NOCOPY VARCHAR2 CHARACTER SET ANY_CS,
 remove_crlf IN BOOLEAN DEFAULT FALSE);

This built-in reads one line of source text at a time, optionally cutting off the end-of-
line characters. The caveat with READ_LINE is that each line you fetch from the HTTP

904 | Chapter 22: I/O and PL/SQL

Download at WoweBook.Com

server needs to be less than 32,767 in length. Such an assumption is not always a good
one, so don’t use READ_LINE unless you are sure this limit won’t cause a problem.

Retrieve a Web Page into a LOB
Because reading either by “pieces” or by lines can run into various size limits, you may
decide that it would make more sense to read into LOBs. Again, Oracle provides a very
simple call that may meet your needs. You can retrieve an entire page at once into a
single data structure using the HTTPURITYPE built-in object type:

DECLARE
 text CLOB;
BEGIN
 text := HTTPURITYPE('http://www.oreilly.com').getclob;
END;

If you are retrieving a binary file and you want to put it in a BLOB, you can use getblob():

DECLARE
 image BLOB;
BEGIN
 image :=
 HTTPURITYPE('www.oreilly.com/catalog/covers/oraclep4.s.gif').getblob;
END;

The HTTPURITYPE constructor assumes HTTP as the transport protocol, and you
can either include or omit the “http://”—but, unfortunately, this built-in does not
support HTTPS, nor will it let you send a custom User-Agent.

The UTL_HTTP flavor of fetching a LOB looks like this:

/* File on web: url_to_clob.sql */
DECLARE
 req UTL_HTTP.req;
 resp UTL_HTTP.resp;
 buf VARCHAR2(32767);
 pagelob CLOB;
BEGIN
 req := UTL_HTTP.begin_request('http://www.oreilly.com/',
 http_version => UTL_HTTP.http_version_1_1);
 UTL_HTTP.set_header(req, 'User-Agent', 'Mozilla/4.0 (compatible;
 MSIE 6.0; Windows NT 5.1)');
 resp := UTL_HTTP.get_response(req);
 DBMS_LOB.createtemporary(pagelob, TRUE);
 BEGIN
 LOOP
 UTL_HTTP.read_text(resp, buf);
 DBMS_LOB.writeappend(pagelob, LENGTH(buf), buf);
 END LOOP;
 EXCEPTION
 WHEN UTL_HTTP.end_of_body
 THEN
 NULL;
 END;

Working with Web-Based Data (HTTP) | 905

Download at WoweBook.Com

 UTL_HTTP.end_response(resp);

 ...here is where you parse, store, or otherwise process the LOB

 DBMS_LOB.freetemporary(pagelob);
END;

Authenticate Using HTTP Username/Password
Although many web sites such as Amazon and eBay use a custom HTML form for login
and authentication, there are still a lot of sites that use HTTP authentication, more
precisely known as basic authentication. You will recognize such sites by your browser
client’s behavior; it will pop up a modal dialog box requesting your username and
password.

It is sometimes possible to bypass the dialog by inserting your username and password
in the URL in the following form (although this approach is deprecated in the official
standards):

http://username:password@some.site.com

Both UTL_HTTP and HTTPURITYPE support this syntax, at least since 9.2.0.4. A
simple case:

DECLARE
 webtext clob;
 user_pass VARCHAR2(64) := 'bob:swordfish'; -- replace with your own
 url VARCHAR2(128) := 'www.encryptedsite.com/cgi-bin/login';
BEGIN
 webtext := HTTPURITYPE(user_pass || '@' || url).getclob;
END;
/

If encoding the username and password in the URL doesn’t work, try something along
these lines:

...
 req := UTL_HTTP.begin_request('http://some.site.com/');
 UTL_HTTP.set_authentication(req, 'bob', 'swordfish');
 resp := UTL_HTTP.get_response(req);
...

This works as long as the site does not encrypt the login page.

Retrieve an SSL-Encrypted Web Page (Via HTTPS)
Although HTTPURITYPE does not support SSL-encrypted retrievals, UTL_HTTP will
do the job if you set up an Oracle wallet. An Oracle wallet is just a catchy name for a
file that contains security certificates and, optionally, public/private key pairs. It’s the
former (the certificates) that you need for HTTPS retrievals. You can store one or more
wallets as files in the database server’s filesystem or in an LDAP directory service; Oracle

906 | Chapter 22: I/O and PL/SQL

Download at WoweBook.Com

does not install any wallets by default. See Chapter 23 for more information on wallets
and other Oracle security features.

To set up one of these wallet things, you’ll want to fire up Oracle’s GUI utility known
as Oracle Wallet Manager, which is probably named owm on Unix/Linux hosts or will
appear on your Start→Oracle... menu on Microsoft Windows. Once you have Oracle
Wallet Manager running, the basic steps you need to follow§ are:

1. Click on the “New” icon or select Wallet→New from the pull-down menu.

2. Give the wallet a password. In my example, the password will be “password1”.
Use the default wallet type (“standard”).

3. If it asks you “Do you want to create a certificate request at this time?,” the correct
response is almost certainly “No.” You don’t need your own certificate to make an
HTTPS retrieval.

4. Click on the Save icon or choose Wallet→Save As from the menu to designate the
directory. Oracle will name the file for you (on my machine, owm named it “ewal-
let.p12”).

5. Upload or copy the wallet file to some location on the Oracle server to which the
oracle processes have read access. In the next example, the directory is /oracle/
wallets.

Now try something like this:

DECLARE
 req UTL_HTTP.req;
 resp UTL_HTTP.resp;
BEGIN
 UTL_HTTP.set_wallet('file:/oracle/wallets', 'password1');
 req := UTL_HTTP.begin_request('https://www.entrust.com/');
 UTL_HTTP.set_header(req, 'User-Agent', 'Mozilla/4.0');
 resp := UTL_HTTP.get_response(req);
 UTL_HTTP.end_response(resp);
END;

If you don’t get an error message, you can reward yourself with a small jump for joy.
This ought to work, because Entrust is one of the few authorities whose certificate
Oracle includes by default when you create a wallet.

If you want to retrieve data from another HTTPS site whose public certificate doesn’t
happen to be on Oracle’s list, you can fire up Oracle Wallet Manager again and “im-
port” the certificate into your file, and again put it on the server. To download a cer-
tificate in a usable format, you can use Microsoft Internet Explorer and follow these
steps:

1. Point your (Microsoft IE) browser to the HTTPS site.

2. Double-click on the yellow lock icon in the lower right corner of the window.

§ Thanks to Tom Kyte for spelling this out in plain English on http://asktom.oracle.com.

Working with Web-Based Data (HTTP) | 907

Download at WoweBook.Com

http://asktom.oracle.com

3. Click on Details → Copy to File.

4. Follow the prompts to export a base64-encoded certificate.

Or, if you have the OpenSSL package installed (typically on a Unix/Linux-based box),
you could do this:

echo '' | openssl s_client -connect host:port

which will spew all kinds of information to stdout; just save the text between the BEGIN
CERTIFICATE and END CERTIFICATE lines (inclusive) to a file. And by the way, the
normal port for HTTPS is 443.

Now that you have your certificate, you can do this:

1. Open Oracle Wallet Manager.

2. Open your “wallet” file.

3. Import the certificate from the file you just created.

4. Save your wallet file, and upload it to the database server as before.

Remember that those certificates are not in an Oracle wallet until you import them via
Oracle Wallet Manager. And in case you’re wondering, a wallet can have more than
one certificate, and a wallet directory can hold one or more wallets.

Submit Data to a Web Page via GET or POST
Sometimes, you’ll want to retrieve results from a web site as if you had filled out a form
in your browser and pressed the Submit button. This section will show a few examples
that use UTL_HTTP for this purpose, but many web sites are quirky and require quite
a bit of fiddling about to get things working right. Some of the tools you may find useful
while analyzing the behavior of your target site include:

• Familiarity with HTML source code (especially as it relates to HTML forms) and
possibly with JavaScript.

• A browser’s “view source” feature that lets you examine the source code of the site
you’re trying to use from PL/SQL.

• A tool such as GNU wget that easily lets you try out different URLs and has an
ability to show the normally hidden conversation between web client and server
(use the -d switch).

• Browser plug-ins such as Chris Pederick’s Web Developer and Adam Judson’s
Tamper Data for Mozilla-based browsers.

First, let’s look at some simple code you can use to query Google. As it turns out,
Google’s main page uses a single HTML form:

<form action=/search name=f>

908 | Chapter 22: I/O and PL/SQL

Download at WoweBook.Com

Because the method tag is omitted, it defaults to GET. The single text box on the form
is named “q” and includes the following properties (among others):

<input autocomplete="off" maxLength=2048 size=55 name=q value="">

You can encode the GET request directly in the URL as follows:

http://www.google.com/search?q=query

Given this information, here is the programmatic equivalent of searching for “oracle
pl/sql programming” (including the double quotes) using Google:

DECLARE
 url VARCHAR2(64)
 := 'http://www.google.com/search?q=';
 qry VARCHAR2(128) := UTL_URL.escape('"oracle pl/sql programming"', TRUE);
 result CLOB;
BEGIN
 result := HTTPURITYPE(url || qry).getclob;
END;

Oracle’s handy UTL_URL.ESCAPE function transforms the query by translating spe-
cial characters into their hex equivalents. If you’re curious, the escaped text from the
example is:

%22oracle%20pl%2Fsql%20programming%22

Let’s take a look at using POST in a slightly more complicated example. When I looked
at the source HTML for http://www.apache.org, I found that their search form’s “ac-
tion” was http://search.apache.org, that the form uses the POST method, and that their
search box is named “query”. With POST, you cannot simply append the data to the
URL as with GET; instead you send it to the web server in a particular form. Here is
some code that POSTs a search for the string “oracle pl/sql” (relevant additions
highlighted):

DECLARE
 req UTL_HTTP.req;
 resp UTL_HTTP.resp;
 qry VARCHAR2(512) := UTL_URL.escape('query=oracle pl/sql');
BEGIN
 req := UTL_HTTP.begin_request('http://search.apache.org/', 'POST', 'HTTP /1.0');
 UTL_HTTP.set_header(req, 'User-Agent', 'Mozilla/4.0');
 UTL_HTTP.set_header(req, 'Host', 'search.apache.org');
 UTL_HTTP.set_header(req, 'Content-Type', 'application/x-www-form-urlencoded');
 UTL_HTTP.set_header(req, 'Content-Length', TO_CHAR(LENGTH(qry)));
 UTL_HTTP.write_text(req, qry);
 resp := UTL_HTTP.get_response(req);

 ...now we can retrieve the results as before (e.g., line by line)

 UTL_HTTP.end_response(resp);
END;

In a nutshell, the BEGIN_REQUEST includes the POST directive, and the code uses
write_text to transmit the form data. While POST does not allow the name/value pairs

Working with Web-Based Data (HTTP) | 909

Download at WoweBook.Com

http://www.apache.org
http://search.apache.org

to be appended to the end of the URL (like GET queries), this site allows the x-www-
form-urlencoded content type, allowing name/value pairs in the qry variable that you
send to the server.

The earlier Apache example shows one other additional header that my other examples
don’t use:

UTL_HTTP.set_header(req, 'Host', 'search.apache.org');

Without this header, Apache’s site was responding with their main page, rather than
their search page, The Host header is required for web sites that use the “virtual host”
feature—that is, one IP address serves two or more hostnames—so the web server
knows what site you’re looking for. The good thing is that you can always include the
Host header, even if the remote site does not happen to serve virtual hosts.

By the way, if you have more than one item in the form to fill out, URL encoding says
that each name/value pair must be separated with an ampersand:

name1=value1&name2=value2&name3= ...

Okay, you’ve got all your GETs and POSTs working now, so you are all set to go forth
and fetch...right? Possibly. It’s likely your code will sooner or later run afoul of the
HTTP “redirect.” This is a special return code that web servers send, which means
“sorry, you need to go over there to find what you are looking for.” We are accustomed
to letting our browsers handle redirects for us silently and automatically, but it turns
out that the underlying implementation can be tricky: there are at least five different
kinds of redirect, each with slightly different rules about what is “legal” for the browser
to do. You may encounter redirects with any web page, but for many of them you should
be able to use a feature in UTL_HTTP to follow redirects. That is:

UTL_HTTP.set_follow_redirect
 (max_redirects IN PLS_INTEGER DEFAULT 3);

Unfortunately, while testing code to retrieve a weather forecast page from the U.S.
National Weather Service, I discovered that their server responds to a POST with a
302 “Found” redirect. This is an odd case in the HTTP standard, which holds that
clients should not follow the redirect...and Oracle’s UTL_HTTP adheres to the letter
of the standard, at least in this case.

So, I have to ignore the standard to get something useful from the weather page. My
final program to retrieve the weather in Sebastopol, California appears here:

/* File on web: orawx.sp */
PROCEDURE orawx
AS
 req UTL_HTTP.req;
 resp UTL_HTTP.resp;
 line VARCHAR2(32767);
 formdata VARCHAR2(512) := 'inputstring=95472'; -- zip code
 newlocation VARCHAR2(1024);
BEGIN
 req := UTL_HTTP.begin_request('http://www.srh.noaa.gov/zipcity.php',

910 | Chapter 22: I/O and PL/SQL

Download at WoweBook.Com

 'POST', UTL_HTTP.http_version_1_0);
 UTL_HTTP.set_header(req, 'User-Agent', 'Mozilla/4.0');
 UTL_HTTP.set_header(req, 'Content-Type', 'application/x-www-form-urlencoded');
 UTL_HTTP.set_header(req, 'Content-Length', TO_CHAR(LENGTH(formdata)));
 UTL_HTTP.write_text(req, formdata);
 resp := UTL_HTTP.get_response(req);

 IF resp.status_code = UTL_HTTP.http_found
 THEN
 UTL_HTTP.get_header_by_name(resp, 'Location', newlocation);
 req := UTL_HTTP.begin_request(newlocation);
 resp := UTL_HTTP.get_response(req); END IF;

 ...process the resulting page here, as before...

 UTL_HTTP.end_response(resp);
END;

Figure 22-2 shows the basic interaction between this code and the web server.

Figure 22-2. Getting the Sebastopol weather from NOAA involves following a “302 found” redirection

I don’t know how common a problem that is, and my “fix” is not really a general-
purpose solution for all redirects, but it gives you an idea of the kinds of quirks you
may run into when writing this sort of code.

Working with Web-Based Data (HTTP) | 911

Download at WoweBook.Com

Disable Cookies or Make Cookies Persistent
For better or for worse, session-level cookie support is enabled by default in recent
versions of UTL_HTTP. Oracle has set a default of 20 cookies allowed per site and a
total of 300 per session. To check whether this is true for your version of UTL_HTTP,
use the following:

DECLARE
 enabled BOOLEAN;
 max_total PLS_INTEGER;
 max_per_site PLS_INTEGER;
BEGIN
 UTL_HTTP.get_cookie_support(enabled, max_total, max_per_site);
 IF enabled
 THEN
 DBMS_OUTPUT.PUT('Allowing ' || max_per_site || ' per site');
 DBMS_OUTPUT.PUT_LINE(' for total of ' || max_total || ' cookies. ');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Cookie support currently disabled.');
 END IF;
END;

Cookie support is transparent; Oracle automatically stores cookies in memory and
sends them back to the server when requested.

Cookies disappear when the session ends. If you’d like to make cookies persistent, you
can save them into Oracle tables and then restore them when you start a new session.
To do this, have a look at the sample code that Oracle provides in the UTL_HTTP
section of the Packages and Types manual.

To completely disable cookie support for all your UTL_HTTP requests for the remain-
der of your session, use this code:

UTL_HTTP.set_cookie_support
(FALSE);

To disable cookies for a particular request, specify this:

UTL_HTTP.set_cookie_support(req, FALSE);

To change the number of cookies from Oracle’s default values, specify this:

UTL_HTTP.set_cookie_support(TRUE,
 max_cookies => n,
 max_cookies_per_site => m);

Retrieve Data from an FTP Server
Oracle does not provide out-of-the-box support for retrieving data from FTP sites via
PL/SQL. However, if you need to send or receive files via FTP, there are several
PL/SQL solutions available on the Internet. I’ve seen at least three different packages,
authored, respectively, by Barry Chase, Tim Hall, and Chris Poole. These implemen-
tations typically use UTL_TCP and UTL_FILE (and possibly Java), and support most

912 | Chapter 22: I/O and PL/SQL

Download at WoweBook.Com

of the commonly used FTP operations. You can find a link to some of these imple-
mentations by visiting http://plnet.org.

In addition, some proxy servers support the retrieval of FTP via HTTP requests from
the client, so you may be able to live without a true FTP package.

Use a Proxy Server
For a variety of reasons, it is common in the corporate world for the network to force
all web traffic through a proxy server. Fortunately, Oracle includes support for this
kind of arrangement in UTL_HTTP. For example, if your proxy is running on port
8888 at 10.2.1.250, use the following:

DECLARE
 req UTL_HTTP.req;
 resp UTL_HTTP.resp;
BEGIN
 UTL_HTTP.set_proxy(proxy => '10.2.1.250:8888',
 no_proxy_domains => 'mycompany.com, hr.mycompany.com');

 req := UTL_HTTP.begin_request('http://some-remote-site.com');

 /* If your proxy requires authentication, use this: */
 UTL_HTTP.set_authentication(r => req,
 username => 'username',
 password => 'password',
 for_proxy => TRUE);

 resp := UTL_HTTP.get_response(req);

 ...etc.

I happened to test this code on a proxy server that uses Microsoft NTLM-based au-
thentication. After an embarrassing amount of trial and error, I discovered that I had
to prefix my username with the Microsoft server “domain name” plus a backslash. That
is, if I normally log in to the NTLM domain “mis” as user bill with password swordfish,
I must specify:

 username => 'mis\bill', password => 'swordfish'

Other Types of I/O Available in PL/SQL
This chapter has focused on some of the types of I/O that I think are most useful in the
real world and that aren’t well covered elsewhere. But what about these other types of
I/O?

• Database pipes, queues, and alerts

• TCP sockets

• Oracle’s built-in web server

Other Types of I/O Available in PL/SQL | 913

Download at WoweBook.Com

http://plnet.org

Database Pipes, Queues, and Alerts
The DBMS_PIPE built-in package was originally designed as an efficient means of
sending small bits of data between separate Oracle database sessions. With the intro-
duction of autonomous transactions, database pipes are no longer needed if they are
simply being used to isolate transactions from each other. Database pipes can also be
used to manually parallelize operations.

Database queuing is a way to pass messages asynchronously among Oracle sessions.
There are many variations on queuing: single versus multiple producers, single versus
multiple consumers, limited-life messages, priorities, and more. The latest incarnation
of Oracle’s queuing features is covered in the Oracle manual called Oracle Streams
Advanced Queuing User’s Guide.

The DBMS_ALERT package allows synchronous notification to multiple sessions that
various database events have occurred. My impression is that this feature is rarely used
today; Oracle provides other products that fill a similar need but with more features.

You can read more about pipes and alerts in the chapter Intersession Communication
in Oracle Built-in Packages (O’Reilly). For your convenience, that chapter is posted on
this book’s web site.

TCP Sockets
As interesting a subject as low-level network programming may be to the geeks among
us (including yours truly), it’s just not a widely used feature. In addition to the
UTL_TCP built-in package, Oracle also supports invocation of the networking features
in Java stored procedures, which you can invoke from PL/SQL.

Oracle’s Built-in Web Server
Even if you haven’t licensed the Oracle Application Server product, you still have access
to an HTTP server built-in to the Oracle database. Configuration of the built-in server
varies according to Oracle version, but the PL/SQL programming side of it, including
the OWA_UTIL, HTP, and HTF packages, has remained relatively unchanged.

These packages let you generate database-driven web pages directly from PL/SQL. This
is a fairly extensive topic, particularly if you want to generate and process HTML forms
in your web page—not to mention the fact that HTTP is a stateless protocol, so you
don’t really get to set and use package-level variables from one call to the next.
O’Reilly’s Learning Oracle PL/SQL provides an introduction to PL/SQL that makes
heavy use of the built-in web server and provides a number of code samples. The PL/
SQL coding techniques are also applicable if you happen to be using Oracle’s separate,
full-blown application server product; for more information about this product, see
Oracle Application Server 10g Essentials by Rick Greenwald, Robert Stackowiak, and
Donald Bales (O’Reilly).

914 | Chapter 22: I/O and PL/SQL

Download at WoweBook.Com

Although not an I/O method per se, Oracle Application Express, also known as Oracle
APEX, deserves one final mention. This is a free add-on to the Oracle Database which
lets you build full-blown, web-based applications that connect to an Oracle database.
PL/SQL programmers can write their own stored programs that integrate into the GUI
framework that Oracle APEX provides, which provides many convenient tools for ex-
changing data via a visible user interface.

Other Types of I/O Available in PL/SQL | 915

Download at WoweBook.Com

Download at WoweBook.Com

PART VI

Advanced PL/SQL Topics

A language as mature and rich as PL/SQL is packed full of features that you may not
use on a day-to-day basis, but that may make the crucial difference between success
and failure. This part of the book focuses on those features. Chapter 23 explores the
security-related challenges we face as we build PL/SQL programs. Chapter 24 contains
an exploration of the PL/SQL architecture, including PL/SQL’s use of memory. Chap-
ter 25 provides guidance for PL/SQL developers who need to address issues of global-
ization and localization. Chapter 26 offers an introduction to the object-oriented fea-
tures of Oracle.

Two additional chapters, describing invoking Java and C code from PL/SQL applica-
tions, are available in full on the book's web site.

Chapter 23, Application Security and PL/SQL
Chapter 24, PL/SQL Architecture
Chapter 25, Globalization and Localization in PL/SQL
Chapter 26, Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

Download at WoweBook.Com

CHAPTER 23

Application Security and PL/SQL

Many PL/SQL developers view security as an activity that only database administrators
and security administrators need to be concerned about. It’s certainly true that some
aspects of security are the responsibility of DBAs—for example, performing user and
privilege management and setting the password for the listener. However, it would be
a gross mistake to believe that security is merely a DBA activity, one that does not belong
on the plates of PL/SQL developers. For one thing, security is not an end unto itself;
rather, it’s an ongoing process and a means to an end. For another, a lot of adminis-
trators are more likely to spend their efforts securing the database as a whole rather
than programming the security features of an individual application.

You’ve probably heard that “a chain is only as safe as its weakest link.” This adage
could have been written about application security. Every element of the entire infra-
structure—application, architecture, middleware, database, operating system—con-
tributes to the overall security of that infrastructure, and a failure of security in any
single component compromises the security and increases the vulnerability of the entire
system. Understanding the building blocks of security and incorporating them into
your application design is not just desirable, it’s essential.

Security Overview
Oracle security topics fall into three general categories:

• Those that are exclusively in the DBA, system administrator, and network admin-
istrator domains. Topics in this category—for example, user and privilege man-
agement—are beyond the scope of this book.

• Those that are important to developers and application architects and that are not
necessarily the responsibility of the DBA. One example is the issue of selecting
invoker rights versus definer rights while creating stored code; this choice is typi-
cally made during the application design phase itself by the developer, not by the
DBA. Topics in this category are covered elsewhere in this book; for example, the
topic of rights is covered in Chapter 24.

919

Download at WoweBook.Com

• Those that are generally considered DBA topics but that developers and application
architects need to know about and from which they can derive a good deal of
unconventional value. These include encryption, row-level security (RLS), appli-
cation contexts, and fine-grained auditing (FGA). These topics are the subject of
this chapter.

How can the features and tools described in this chapter help PL/SQL developers and
application architects? Let’s answer that question by looking at each topic in turn:

Encryption
The answer here is obvious: encryption is vitally important to data protection and
is actively applied in many application design situations. You need a working
knowledge of the Oracle features and tools available to perform encryption, in-
cluding Transparent Data Encryption (TDE), which was introduced in Oracle Da-
tabase 10g Release 2, and Transparent Table Encryption (TTE), which was intro-
duced in Oracle Database 11g.

Row-level security (RLS)
When you design an application, you must be aware of the architecture being used
for access and authorization of data. RLS allows you to restrict the rows a user can
see. A clear understanding of RLS helps you write better code, even if you don’t
implement RLS yourself. In many cases, RLS actually makes applications simpler
to understand and easier to implement. In some special cases, it even allows an off-
the-shelf application to be compliant with the established security practices fol-
lowed in your organization.

Application contexts
Related to row-level security, application contexts are sets of name-value pairs that
can be defined in a session through the execution of a specially defined stored
procedure. Application contexts are most commonly used to control access to da-
tabase resources according to rules that vary depending on the current user. They
can be very useful application development resources.

Fine-grained auditing (FGA)
FGA provides a mechanism to record the fact that certain users have issued certain
statements against a table and that certain conditions are met. FGA provides a
number of features of value to developers. For example, FGA lets you implement
what is in essence a SELECT trigger, a user-written procedure executed automat-
ically every time a piece of data is selected from the table.

Oracle security is an enormous topic; this chapter can only touch on those aspects of
most value to PL/SQL developers. For more information on these and related Oracle
security operations, see Oracle PL/SQL for DBAs by Arup Nanda and Steven Feuerstein
(O’Reilly). There are also many excellent security books on the market that you should
also consult if you need to understand the intricacies of the security topics introduced
in this chapter. Oracle’s Security Technology Center (otn.oracle.com/security) provides
several resources on this topic as well.

920 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

http://otn.oracle.com/security

Encryption
In the simplest terms, encryption means disguising data, or altering the contents in such
a way that only the original user knows how to put them back together. Let’s consider
this very simple and ubiquitous example. I use my bank ATM card on a regular basis
to withdraw money, perhaps a bit more than I should. Every time I do so, I need the
PIN to access my account. Unfortunately, I am a rather forgetful person, so I decide
that I will write down the PIN on something that I will always have when I use the ATM
card—the ATM card itself.

Being a smart fellow, I realize that writing my PIN number on the card increases rather
dramatically the vulnerability of the card; anyone who steals the card will see the PIN
written right on it. Goodbye life savings! What can I do to prevent a thief from learning
the PIN after stealing my card, yet also allow me to easily remember my PIN?

After a few minutes’ consideration, I come up with a clever idea: I will alter the contents
in some predetermined manner. In this case, I add a single-digit number to the PIN and
write that new number on the ATM card. Let’s say the single-digit number is 6. My
PIN is 6523. After adding 6 to it, it becomes 6529, which is what I write on the card.
If a thief gets my card, he will see 6529, but that’s meaningless as a PIN. He will never
be able to get the actual value even if he sees the number, because he needs to know
how I altered the original number. Even if he knows that I add a number, he has to
guess the number, 6 in this case. In other words, I just encrypted my PIN and made it
difficult for a thief to know the actual value.

Let’s pause for a moment here and examine the mechanics before I return to this ex-
ample and admit that I haven’t been terribly clever after all. I need to know two things
to perform encryption (that is, to scramble my PIN beyond recognition):

• The method by which the value is altered—in this case, by adding a number to the
source number.

• The specific number that I added—in this case, 6.

The first of these, the method part, is known as an algorithm. The second, the number
part, is known as the key. These are the basic components of any encryption system,
as shown in Figure 23-1. You can keep one component the same but vary the other to
produce a different set of encrypted data.

With truly secure systems, the encryption algorithm is not, of course, as simplistic as
the one I’ve described. The actual logic of the algorithm is extremely complex. It’s
beyond the scope of this chapter to delve into the exact mechanics of an encryption
algorithm, and it’s not necessary for you to understand the logic to start building an
encryption system. You should, however, know the different basic types of algorithms
and their relative merits. Most accepted encryption algorithms are in the public domain,
so the choice of algorithm alone does not provide security. The security comes from
varying the other variable you can control—the encryption key.

Encryption | 921

Download at WoweBook.Com

One critical challenge when building an encryption infrastructure is to build an effective
key management system. If the intruder gets access to the encryption keys, the encryp-
ted data is vulnerable, regardless of the sophistication of the algorithm. On the other
hand, some users (e.g., applications) will legitimately need access to the keys, and that
access must be easy enough for the applications to run well. The challenge here is to
balance the simplicity of access and the security of the keys. Later in this chapter, I’ll
provide an example showing how you can create and manage an effective
key-management system.

Key Length
In my earlier example of PIN encryption, there is a serious flaw. Because the algorithm
is assumed to be universally known, the thief may know that I am simply adding a
number to the PIN to encrypt it. Of course, he does not initially know what number.
But suppose he starts guessing. It’s not that difficult: all he has to do is guess 10 times—
he’s looking for a number between 0 and 9, because I’m using a single-digit number.
It might be easier for the thief to decrypt my encrypted PIN, after all, merely by guessing
a number up to a maximum of 10 times. But suppose I use a two-digit number. Now
the thief will have to guess a number between 0 and 99, a total of 100 times, making it
more difficult to guess. Increasing the number of digits of the key makes it more difficult
to crack the code. Key length is extremely important in increasing the security of any
encrypted system.

Of course, in real-life computer encryptions, the keys are not one or two digits, and
they are not just numbers. Their length is typically at least 56 bits and may be as long
as 256 bits. The length of the key depends upon the algorithm chosen, as I describe in
the following section.

Figure 23-1. Encryption basics

922 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

The longer the key, the more difficult it is to crack the encryption. How-
ever, longer keys also extend the elapsed time needed to do encryption
and decryption because the CPU has to do more work.

Algorithms
There are many widely used and commercially available encryption algorithms, but I’ll
focus here on those supported by Oracle for use in PL/SQL applications. All of these
fall into the category of private key (sometimes called symmetric) algorithms; see the
sidebar, “Public or Private?” on page 923, for a summary of the differences between
these private key algorithms and the public key (sometimes called asymmetric)
algorithms.

Public or Private?
With private key (symmetric) encryption, you use a key to encrypt data and then use
the same key to decrypt that data. During decryption, you must have access to the
encryption key, which has to be transmitted to you somehow. This may not be con-
venient in situations where the data is transmitted from one location to the other, as
the key management becomes complex and insecure.

In contrast, with public key (asymmetric) encryption, the intended receiver generates
two keys. He keeps one—known as the private key—with him and sends the other one
—known as the public key—to the intended sender. The sender then encrypts the data
using the public key, but the encrypted data can only be decrypted using the private
key, which is with the recipient. The sender never knows the private key and cannot
tamper with the data. Public keys can be given out well in advance of any actual transfer
and can be reused. Because there is no exchange of keys, key management becomes
extremely easy, reducing the burden on one aspect of the encryption.

Public and private keys are statistically related, so theoretically it is possible to guess
the private key from the public key, albeit rather laboriously. So, to reduce the risk of
brute-force guessing, very high key lengths are used, typically 1,024-bit keys, instead
of the 64-, 128,- or 256-bit keys used in symmetric encryption.

Oracle provides asymmetric encryption at two points:

• During transmission of data between the client and the database

• During authentication of users

Both of these functions require use of Oracle’s Advanced Security Option, an extra-
cost option that is not provided by default. This tool simply enables asymmetric key
encryption on those functions; it does not provide a toolkit that PL/SQL developers
can use to build an encryption solution for stored data.

Encryption | 923

Download at WoweBook.Com

The only developer-oriented encryption tool available in Oracle provides for symmetric
encryption. For this reason, I focus on symmetric encryption, not asymmetric encryp-
tion, in this chapter.

The following algorithms are most commonly used with Oracle:

Data Encryption Standard (DES)
Historically, DES has been the predominant standard used for encryption. It was
developed more than 20 years ago for the National Bureau of Standards (later re-
named the National Institute of Standards and Technology (NIST)) and has since
become an ISO standard. There is a great deal to say about DES and its history,
but my purpose here is not to describe the algorithm but simply to summarize its
use inside the Oracle database. This algorithm requires a 64-bit key, but discards
8 of them, using only 56 bits. An intruder would have to use up to
72,057,594,037,927,936 combinations to guess the key.

DES was an adequate algorithm for decades, but it now shows signs of age. Today’s
powerful computers might find it easy to crack open even the large number of
combinations needed to expose the key.

Triple DES (DES3)
NIST went on to solicit development of another scheme based on the original DES
that encrypts data twice or thrice, depending upon the mode of calling. A hacker
trying to guess a key would have to face 2,112, then 2,168 combinations in double-
and triple-pass encryption routines respectively. DES3 uses a 128-bit or 192-bit
key, depending on whether it is using a two-pass or three-pass scheme.

Triple DES was also acceptable for some time, but now it too shows signs of age
and has become susceptible to determined attacks.

Advanced Encryption Standard (AES)
In November 2001, the Federal Information Processing Standards Publication
(FIPS) 197 announced the approval of a new standard, the Advanced Encryption
Standard, which became effective May 2002. The full text of the standard can be
obtained from NIST at http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

Padding and Chaining
When a piece of data is encrypted, it is not encrypted as a whole by the algorithm. It’s
usually broken into chunks of 8 bytes each, and then each chunk is operated on inde-
pendently. Of course, the length of the data may not be an exact multiple of 8. In that
case the algorithm adds some characters to the last chunk to make it 8 bytes long. This
process is known as padding. This padding also has to be done correctly so an attacker
won’t be able to figure out what was padded and then guess the key from there. To
securely pad the values, you can use a predeveloped padding method implemented in
Oracle, known as Public Key Cryptography System #5 (PKCS#5). There are several

924 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

other padding options allowing for padding with zeros and for no padding at all. Later
in this chapter, I’ll show how you can use these options.

When data is divided into chunks, there needs to be a way to connect the adjacent
chunks, a process known as chaining. The security of an encryption system also depends
upon how chunks are connected and encrypted—independently or in conjunction with
the adjacent chunks. The most common chaining format is Cipher Block Chaining
(CBC); with the Oracle database, you can select that format via a constant defined in
the CHAIN_CBC built-in package. Other chaining options are Electronic Code Book
format (CHAIN_ECB), Cipher Feedback (CHAIN_CFB) and Output Feedback
(CHAIN_OFB). Later in this chapter, I’ll demonstrate these options.

The DBMS_CRYPTO Package
Now that I’ve introduced the most basic building blocks of encryption, let’s see how
to create an encryption infrastructure in PL/SQL with Oracle’s built-in package
DBMS_CRYPTO.

The DBMS_CRYPTO package was introduced in Oracle Database
10g. In earlier Oracle database versions, the DBMS_OBFUSCA-
TION_TOOLKIT package provided similar (but not identical) func-
tionality. That package is still available, but it has been deprecated in
favor of the newer package.

Recall that to perform encryption, you need four components in addition to the input
value:

• The encryption key

• The encryption algorithm

• The padding method

• The chaining method

The encryption key is something you supply. The other components are provided by
Oracle. You choose them by selecting the appropriate constants from the
DBMS_CRYPTO package, as described in the following sections.

Algorithms

The constants listed in Table 23-1, defined in DBMS_CRYPTO, allow you to choose
a specific algorithm and key length. Because these are defined as constants in the pack-
age, you must reference them in the form PackageName.ConstantName—for example,
DBMS_CRYPTO.ENCRYPT_DES selects the Data Encryption Standard.

Encryption | 925

Download at WoweBook.Com

Table 23-1. DBMS_CRYPTO algorithm constants

Constant Effective key length Description

ENCRYPT_DES 56 Data Encryption Standard (similar to the one provided in
DBMS_OBFUSCATION_TOOLKIT)

ENCRYPT_3DES_2KEY 112 Modified Triple Data Encryption Standard; operates on a block
three times with two keys

ENCRYPT_3DES 156 Triple Data Encryption Standard; operates on a block three
times

ENCRYPT_AES128 128 Advanced Encryption Standard

ENCRYPT_AES192 192 Advanced Encryption Standard

ENCRYPT_AES256 256 Advanced Encryption Standard

ENCRYPT_RC4 The only stream cipher, which is used to encrypt streaming
data rather than discrete data being transmitted or data at rest.

Padding and chaining

For padding and chaining, the constants listed in Table 23-2 are available in the
DBMS_CRYPTO package.

Table 23-2. DBMS_CRYPTO padding and chaining constants

Constant Padding/chaining method

PAD_PCKS5 Padding with Public Key Cryptography System #5

PAD_ZERO Padding with zeros

PAD_NONE No padding is done; when the data is assumed to be exactly 8 bytes (or a multiple thereof) in length, this padding
method is chosen

CHAIN_CBC Cipher Block Chaining, the most common method used

CHAIN_CFB Cipher Feedback

CHAIN_ECB Electronic Code Book

CHAIN_OFB Output Feedback

You will rarely need to be concerned about the exact padding or chaining methods to
use; they offer advanced functionality seldom needed in typical system development.
The most common choices are PKCS#5 for padding and CBC for chaining. In this
chapter, I use these options unless otherwise noted.

Encrypting Data
Let’s move on to how you can actually use Oracle’s encryption facilities in your appli-
cations. I’ll start with a very simple example of encrypting the string Confidential
Data using the DBMS_CRYPTO.ENCRYPT function. This function takes four
arguments:

926 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

src
The source or the input data to be encrypted. It must be of the datatype RAW.

key
The encryption key, also in RAW. The length of this key must be as required by
the algorithm chosen. For instance, if I choose DES, this key length must be at least
64 bits.

typ
Specification of the three static components—the algorithm, the padding mecha-
nism, and the chaining method—by adding together the appropriate packaged
constants.

iv
Specifies the optional initialization vector (IV), another component of the encryp-
tion that adds a little “salt” to the encrypted value, making the “pattern” more
difficult to guess. (This topic is beyond the scope of this chapter.)

In the following examples, let’s assume the following:

Algorithm
Advanced Encryption Standard 128-bit

Chaining method
Cipher Block Chaining

Padding mechanism
Public Key Cryptography Standard #5

These three are specified in the typ parameter of the call to the function:

DBMS_CRYPTO.ENCRYPT_AES128
 + DBMS_CRYPTO.CHAIN_CBC
 + DBMS_CRYPTO.PAD_PKCS5;

Note how these have been added together. Had I chosen no padding instead of
PKCS#5, I would have used:

DBMS_CRYPTO.ENCRYPT_AES128
 + DBMS_CRYPTO.CHAIN_CBC
 + DBMS_CRYPTO.PAD_NONE;

Similarly I can choose any specific algorithm and chaining method.

Next I must choose the key. Assume that I want to use “1234567890123456” for the
key. The datatype of this value is VARCHAR2. To use it in the ENCRYPT function, I
must first convert it to RAW. To do so, I use the STRING_TO_RAW function in the
built-in package UTL_I18N (this package is explained later in the chapter). Here is a
code snippet that does exactly that:

DECLARE
 l_raw RAW (200);
 l_in_val VARCHAR2 (200) := 'Confidential Data';
BEGIN

Encryption | 927

Download at WoweBook.Com

 l_raw := utl_i18n.string_to_raw (l_in_val, 'AL32UTF8');
END;

I have converted the VARCHAR2 variable l_in_val to RAW. Now, I’ll encrypt the input
value:

/* File on web: enc.sql */
 1 DECLARE
 2 l_key VARCHAR2 (2000) := '1234567890123456';
 3 l_in_val VARCHAR2 (2000) := 'Confidential Data';
 4 l_mod NUMBER
 5 := DBMS_CRYPTO.encrypt_aes128
 6 + DBMS_CRYPTO.chain_cbc
 7 + DBMS_CRYPTO.pad_pkcs5;
 8 l_enc RAW (2000);
 9 BEGIN
10 l_enc :=
11 DBMS_CRYPTO.encrypt (utl_i18n.string_to_raw (l_in_val, 'AL32UTF8'),
12 l_mod,
13 utl_i18n.string_to_raw (l_key, 'AL32UTF8')
14);
15 DBMS_OUTPUT.put_line ('Encrypted=' || l_enc);
16 END;

The output is:

Encrypted=C0777257DFBF8BA9A4C1F724F921C43C70D0C0A94E2950BBB6BA2FE78695A6FC

Let’s analyze the above code, line by line:

Line(s) Description

2 The key is defined here. As you can see, the key is exactly 16 characters, which AES requires. Here I specified a
128-bit key size. Most computers follow a 8-bit word size, which means that each byte is 8 bits long. Thus, 128 bits
mean (128/8=) 16 bytes. Had I chosen AES192 instead, I would have specified a 192-bit or (192/8=) 24-byte long
key. If the key length is not adequate, I will get the KeyBadSize exception.

3 The input value, which needs to be encrypted. This need not conform to any length restrictions, so you can use a value
of any length. If it’s not a multiple of 8 bytes, the input value is padded automatically by the algorithm.

4–7 I specify the algorithm, the padding method, and the chaining method.

8 I define a variable to hold the encrypted value. Note that the output is in RAW.

11 The input value is converted from VARCHAR2 to RAW.

13 As with the input value, the function also expects the key to be RAW. I convert it here.

15 Finally, I display the encrypted value, also in RAW, as a hexadecimal string. In a real system, you won’t display the
value as it is meaningless; you will probably do something else with the value, such as store it in a table or pass it to
the calling procedure to be used elsewhere.

You have now seen the basic workings of the ENCRYPT function. Using ENCRYPT,
you can build a generic function to encrypt data. In this function, I will use the AES
algorithm with a 128-bit key, PCKS#5 as the padding method, and CBC as the chaining

928 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

method. Consequently, the only variables a user of the function must provide are the
input value to be encrypted and the key.

/* File on web: get_enc_eval.sql */
FUNCTION get_enc_val (p_in_val IN VARCHAR2, p_key IN VARCHAR2)
 RETURN VARCHAR2
IS
 l_enc_val RAW (4000);
BEGIN
 l_enc_val :=
 DBMS_CRYPTO.encrypt (src => utl_i18n.string_to_raw (p_in_val,
 'AL32UTF8'
),
 key => utl_i18n.string_to_raw (p_key,
 'AL32UTF8'
),
 typ => DBMS_CRYPTO.encrypt_aes128
 + DBMS_CRYPTO.chain_cbc
 + DBMS_CRYPTO.pad_pkcs5
);
 RETURN l_enc_val;
END;

Before I close the section, there is one more thing to note. Here I have used the function
UTL_I18N.STRING_TO_RAW, rather than UTL_RAW.CAST_TO_RAW, to con-
vert the VARCHAR2 data to RAW. Why?

The ENCRYPT function requires the input to be RAW and also requires a specific
character set—AL32UTF8, which may not be the character set of the database. There-
fore, while converting a VARCHAR2 string to RAW for use in encryption, I have to
perform two conversions:

• From the current database character set to the character set AL32UTF8

• From VARCHAR2 to RAW

Both of these conversions are performed by the STRING_TO_RAW function in the
built-in package UTL_IL8N; character set conversion is not performed by the
CAST_TO_RAW function.

The UTL_IL8N package is provided as part of Oracle’s Globalization
Support and is used to perform globalization (or internationalization,
which is often shortened to “i18n”; that name is made up of the starting
letter “i,” the ending letter “n,” and the 18 letters in between). For de-
tailed information about globalization, see Chapter 25.

Encrypting LOBs
Large object datatypes, such as CLOB and BLOB, can also be encrypted. Examples of
BLOB data include signature files and photocopies of legal documents. Because such
files are sensitive and are inside the database, you may need to encrypt them. Rather

Encryption | 929

Download at WoweBook.Com

than call the ENCRYPT function that I have been using in the previous examples, I have
to use the overloaded procedure version of ENCRYPT, as shown in the next example.

/* File on web: enc_lob.sql */
DECLARE
 l_enc_val BLOB;
 l_in_val CLOB;
 l_key VARCHAR2 (16) := '1234567890123456';
BEGIN
 DBMS_CRYPTO.encrypt (dst => l_enc_val,
 src => l_in_val,
 key => utl_i18n.string_to_raw (l_key, 'AL32UTF8'),
 typ => DBMS_CRYPTO.encrypt_aes128
 + DBMS_CRYPTO.chain_cbc
 + DBMS_CRYPTO.pad_pkcs5
);
END;

The output is stored in the variable l_enc_val, which can then be passed on to a different
program or stored in the table.

For LOB data only, use the procedure version of ENCRYPT; for all other
datatypes, use the function version. Make sure that you convert the val-
ues to RAW (and the CLOB to BLOB) before passing them to the EN-
CRYPT function.

SecureFiles
Large objects (LOBs) have undergone a complete makeover in Oracle Database 11g
and are now called SecureFiles. The traditional LOBs (now known as BasicFiles), such
as CLOBs and BLOBs, are still available, but I recommend that you not use them any
more. Wherever you used LOBs in the past, you should now use SecureFiles. Secure-
Files offer the same functionality as LOBs, as well as additional features such as com-
pression, deduplication, filesystem-like caching, the ability to stop redo logging, and
more. For more information on using SecureFiles, see Chapter 13.

Decrypting Data
There wouldn’t be much point to encrypting data if I couldn’t decrypt it at some point
so that it could be read and used. To do this, I will use ENCRYPT’s sister function,
DECRYPT. Its calling structure is identical to ENCRYPT; it also takes four arguments:

src
The encrypted value

key
The key used previously to encrypt

930 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

typ
The combination of algorithm, padding, and chaining exactly as in ENCRYPT

iv
The initialization vector, as in ENCRYPT

The DECRYPT function also returns the unencrypted value in RAW; that value will
need to be converted to another format for easy viewing.

While decrypting an encrypted value, you must use exactly the same
algorithm, key, padding method, and chaining method used during
encryption.

Let’s see how decryption works. Here I have encrypted a value, stored the encrypted
value in a SQL*Plus variable, and later used that as an input to the DECRYPT function.

 1 /* File on the web decval.sql */
 2 REM Define a variable to hold the encrypted value
 3 VARIABLE enc_val varchar2(2000);
 4 DECLARE
 5 l_key VARCHAR2 (2000) := '1234567890123456';
 6 l_in_val VARCHAR2 (2000) := 'Confidential Data';
 7 l_mod NUMBER
 8 := DBMS_CRYPTO.encrypt_aes128
 9 + DBMS_CRYPTO.chain_cbc
10 + DBMS_CRYPTO.pad_pkcs5;
11 l_enc RAW (2000);
12 BEGIN
13 l_enc :=
14 DBMS_CRYPTO.encrypt (utl_i18n.string_to_raw (l_in_val, 'AL32UTF8'),
15 l_mod,
16 utl_i18n.string_to_raw (l_key, 'AL32UTF8')
17);
18 DBMS_OUTPUT.put_line ('Encrypted=' || l_enc);
19 :enc_val := RAWTOHEX (l_enc);
20 END;
21 /
22 DECLARE
23 l_key VARCHAR2 (2000) := '1234567890123456';
24 l_in_val RAW (2000) := HEXTORAW (:enc_val);
25 l_mod NUMBER
26 := DBMS_CRYPTO.encrypt_aes128
27 + DBMS_CRYPTO.chain_cbc
28 + DBMS_CRYPTO.pad_pkcs5;
29 l_dec RAW (2000);
30 BEGIN
31 l_dec :=
32 DBMS_CRYPTO.decrypt (l_in_val,
33 l_mod,
34 utl_i18n.string_to_raw (l_key, 'AL32UTF8')
35);

Encryption | 931

Download at WoweBook.Com

36 DBMS_OUTPUT.put_line ('Decrypted=' || utl_i18n.raw_to_char (l_dec));
37 END;

This code needs some explanation, shown in the following table:

Line(s) Description

23 I declare the key for decryption. Note that the same key is used to encrypt and decrypt.

24 Because the variable enc_val is in hexadecimal, I convert it to RAW.

26–28 As with encryption, specify the algorithm, padding method, and chaining method as a single parameter. Note that
they are the same as those used in encryption. They must be, in order for the decryption to work correctly.

34 As with encryption, the key must be in RAW, so I convert it from VARCHAR2 to RAW.

The output of the above code segment is Confidential Data, the same as the input given.

To decrypt an encrypted LOB value, you must use the overloaded pro-
cedure version of DECRYPT because you used the procedure version of
ENCRYPT.

Performing Key Generation
So far I have focused on the process of encryption and decryption, and have assumed
a very simple key in the examples—“1234567890123456.” The security of the encryp-
tion system depends entirely on the security of the key—that is, the difficulty a potential
attacker would have to guess the value of the key. My key should therefore be random
enough to be resistant to easy guessing.

There is a standard algorithm for creating a random number, defined by ANSI’s
standard X9.31: Pseudo-Random Number Generator (PRNG). Oracle implements this
algorithm in the RANDOMBYTES function in the DBMS_CRYPTO package. The
function takes one argument—the length of the random string generated—and returns
a RAW value of that length. Here is how I use it to create a 16-byte value:

DECLARE
 l_key RAW (16);
BEGIN
 l_key := DBMS_CRYPTO.randombytes (16);
END;

Of course, the generation of a string of random bytes has to be for some reason, and
what better reason than to use it as an encryption key? Using this function, you can
generate a key of any length suitable for the algorithm chosen.

Performing Key Management
You’ve learned the basics of how to use encryption and decryption and to generate
keys. But, that’s the easy part; for the most part, I’ve simply shown how to use Oracle’s

932 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

supplied functionality to get the job done. Now comes the most challenging part in the
encryption infrastructure—managing the key. Our applications will need to have access
to the key to decrypt the encrypted values, and this access mechanism should be as
simple as possible. On the other hand, because the key is literally the “key” to safeguard
the encrypted values, it should not be too accessible. A proper key management system
balances the simplicity of key access against prevention of unauthorized access to the
keys.

There are essentially three different types of key management.

• A single key for the entire database.

• A single key for each row of tables with encrypted data.

• A combination of the above two.

The following sections describe these different approaches to key management.

A single key for the database

With this approach, a single key can access any data in the database. As shown in
Figure 23-2, the encryption routine reads only one key from the key location and en-
crypts all the data that needs to be protected.

This key could be stored in a variety of locations:

In the database
This is the simplest strategy of all. The key is stored in a relational table, perhaps
in a schema used specifically for this purpose. Because the key is inside the data-
base, it is automatically backed up as a part of the database; older values can be
obtained by flashback queries or the database, and the key is not vulnerable to theft
from the operating system. The simplicity of this approach is also its weakness;
because the key is just data in a table, anyone with the authority to modify that
table (such as any DBA) could alter the key and disrupt the encryption
infrastructure.

In the filesystem
The key is stored in a file, which may then be read by the encryption procedure,
using the UTL_FILE built-in package. By setting the appropriate privileges on that
file, you can ensure that it cannot be changed from within the database.

On some removable media controlled by the end user
This approach is the safest one; no one except the end user can decrypt the values
or alter the key, not even the DBA or system administrator. Examples of removable
media include a USB stick, a DVD, and a removable hard drive. A major disad-
vantage of removable media is the possibility of key loss. The responsibility of
safekeeping the key lies with the end user. If the key is ever lost, the encrypted data
is also lost—permanently.

Encryption | 933

Download at WoweBook.Com

The biggest disadvantage of this approach is its dependence on a single point of failure.
If an intruder breaks into the database and determines the key, the entire database
becomes immediately vulnerable. In addition, if you want to change the key, you will
need to change all of the rows in all the tables, which may be quite an extensive task
in a large database.

A single key for each row

This approach calls for a single key per row of the table, as shown in Figure 23-3. If you
use this approach, you create a different table to hold the keys. The source table and
the key table are linked by the primary key of the source table.

The biggest advantage of this approach is the fact that each row is protected by a dif-
ferent key. If a single key is compromised, only one row, not the entire database, is
vulnerable. When a key is changed, it does not affect the entire database; only one row
is affected, and that row can be easily changed.

On the other hand, a major disadvantage of this approach is that the key must always
be in the database. Storing keys on filesystems so that they are available to the database
may not even be feasible. This approach also makes it difficult to protect against a
database file theft in which both keys and encrypted data may be stolen.

Figure 23-2. Single database key approach

934 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

A combined approach

The combined approach attempts to marry a high degree of security with the maximum
possible flexibility. You create a different key for each row, but also have a master
key (see Figure 23-4). The encryption process does not simply use the key stored for
each row. Instead, the row key and a new, single, master key are combined using a
bitwise XOR operation, and the resulting value is used as the encryption key for that
row. To decrypt the value, you need to know the row key (stored in the database) and
the master key (stored elsewhere). By storing these keys separately, you can increase
the level of security for your encryption architecture.

The disadvantage of the combined approach is the same as that for the single key strat-
egy: if the master key is lost, you have lost your ability to decrypt the data. However,
this risk can be mitigated to some extent by backing up the master key to a different
location.

This approach is not the same as re-encrypting the encrypted value with
a different key. The DBMS_CRYPTO package does not allow you to re-
encrypt an encrypted value. If you attempt to do so, you will encounter
the ORA-28233 source data was previously encrypted error.

Figure 23-3. Single key per row approach

Encryption | 935

Download at WoweBook.Com

Now let’s see how I can use this approach in a real application. Here I will use the same
example shown earlier for decryption. I have added a new variable called l_master_key
in line 6, which accepts a value from the user (the substitution variable &master_key).
In lines 14 through 18, I have XORed the key and the master key, which was used as
the encryption key in line 22, instead of the l_key variable.

/* File on web: combined_master_key.sql */
1 REM
2 REM Define a variable to hold the encrypted value
3 VARIABLE enc_val varchar2(2000);
4 DECLARE
5 l_key VARCHAR2 (2000) := '1234567890123456';
6 l_master_key VARCHAR2 (2000) := '&master_key';
7 l_in_val VARCHAR2 (2000) := 'Confidential Data';
8 l_mod NUMBER
9 := DBMS_CRYPTO.encrypt_aes128
10 + DBMS_CRYPTO.chain_cbc
11 + DBMS_CRYPTO.pad_pkcs5;
12 l_enc RAW (2000);
13 l_enc_key RAW (2000);
14 BEGIN
15 l_enc_key :=
16 UTL_RAW.bit_xor (utl_i18n.string_to_raw (l_key, 'AL32UTF8'),
17 utl_i18n.string_to_raw (l_master_key, 'AL32UTF8')
18);
19 l_enc :=
20 DBMS_CRYPTO.encrypt (utl_i18n.string_to_raw (l_in_val, 'AL32UTF8'),
21 l_mod,
22 l_enc_key
23);
24 DBMS_OUTPUT.put_line ('Encrypted=' || l_enc);
25 :enc_val := RAWTOHEX (l_enc);

Figure 23-4. Combined master key approach

936 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

26 END;
27 /
28 DECLARE
29 l_key VARCHAR2 (2000) := '1234567890123456';
30 l_master_key VARCHAR2 (2000) := '&master_key';
31 l_in_val RAW (2000) := HEXTORAW (:enc_val);
32 l_mod NUMBER
33 := DBMS_CRYPTO.encrypt_aes128
34 + DBMS_CRYPTO.chain_cbc
35 + DBMS_CRYPTO.pad_pkcs5;
36 l_dec RAW (2000);
37 l_enc_key RAW (2000);
38 BEGIN
39 l_enc_key :=
40 UTL_RAW.bit_xor (utl_i18n.string_to_raw (l_key, 'AL32UTF8'),
41 utl_i18n.string_to_raw (l_master_key, 'AL32UTF8')
42);
43 l_dec := DBMS_CRYPTO.decrypt (l_in_val, l_mod, l_enc_key);
44 DBMS_OUTPUT.put_line ('Decrypted=' || utl_i18n.raw_to_char (l_dec));
45 END;

When I execute this block, I see the following output in SQL*Plus. Note that I supply
the master key first to encrypt the value, and then provide the same master key while
decrypting.

Enter value for master_key: MasterKey0123456
old 3: l_master_key varchar2(2000) := '&master_key';
new 3: l_master_key varchar2(2000) := 'MasterKey0123456';
Encrypted=C2CABD4FD4952BC3ABB23BD50849D0C937D3EE6659D58A32AC69EFFD4E83F79D

PL/SQL procedure successfully completed.

Enter value for master_key: MasterKey0123456
old 3: l_master_key varchar2(2000) := '&master_key';
new 3: l_master_key varchar2(2000) := 'MasterKey0123456';
Decrypted=ConfidentialData

PL/SQL procedure successfully completed.

It asked for the master key, which I supplied correctly, and the correct value came up.
But what happens if I supply an incorrect master key?

Enter value for master_key: MasterKey0123456
old 3: l_master_key varchar2(2000) := '&master_key';
new 3: l_master_key varchar2(2000) := 'MasterKey0123456';
Encrypted=C2CABD4FD4952BC3ABB23BD50849D0C937D3EE6659D58A32AC69EFFD4E83F79D

PL/SQL procedure successfully completed.

Enter value for master_key: MasterKey0123455
old 3: l_master_key varchar2(2000) := '&master_key';
new 3: l_master_key varchar2(2000) := 'MasterKey0123455';
declare
*
ERROR at line 1:
ORA-28817: PL/SQL function returned an error.

Encryption | 937

Download at WoweBook.Com

ORA-06512: at "SYS.DBMS_CRYPTO_FFI", line 67
ORA-06512: at "SYS.DBMS_CRYPTO", line 41
ORA-06512: at line 15

Note the error here: the use of a wrong master key did not expose the encrypted data.
This enhanced security mechanism relies on two different keys, and both keys must be
present to successfully decrypt the data. If you hide the master key, it will be enough
to prevent unauthorized decryption.

If the master key is stored with the client, and it is sent over the network, a potential
attacker could use a tool to “sniff” the value as it passes by. To prevent this from
occurring, you can use a variety of approaches.

• You could create a Virtual LAN (VLAN) between the application server and the
database server that protects the network traffic between them to a great extent.

• You could modify the master key in some predetermined way, such as by reversing
the characters so that an attacker could potentially get the master key that passed
over the network but not the master key actually used.

• Finally, for a really secure solution, you could use Oracle’s Advanced Security Op-
tion (an extra-cost option) to secure the network traffic between the client and the
server.

There is no perfect key management solution. The approach you choose will be deter-
mined by the nature of your application and your best attempts to balance security
against ease of access. The three approaches described in the previous sections repre-
sent three major types of key management techniques and are intended to give you a
jump start on figuring out your own key management approach. You might very well
come up with a better idea that could be more appropriate to your specific situation.
For example, you might consider a hybrid approach, such as using different keys for
critical tables.

Cryptographic Hashing
Encryption provides a way to ensure that only authorized people can see your data. It
does so by disguising sensitive data. In some cases, however, you may not be interested
in disguising data but simply in protecting it from manipulation. A classic example is
the need to store passwords securely. Another might have to do with making sure data
is not unduly altered. Suppose that you have stored payment information for vendors.
That data by itself may not be sensitive enough to require encryption, but you may
want a way to ensure that someone does not alter the numbers to increase a payment
amount. How can you do that?

The answer lies in a process known as cryptographic hashing. When you apply a cryp-
tographic hash function to a value, you generate a new value that cannot be “reverse-
engineered” to the original value and is very likely to be unique (see the warning below
regarding the uniqueness of hash values). Hash functions are also deterministic,

938 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

meaning that as long as you provide the same input value, the hash function will return
the same hash value.

Hashing is not encryption because you can’t decipher the original value from the hash
value. Using hashing, you can generate an opaque representation of the input data and
store it separate from the main data. When the time comes to validate the authenticity
of the data, you simply generate the hash value again and compare it against the stored
hash value. If the source data has been changed, the hash value will be different, and
you can take appropriate action.

It is theoretically possible that two different input values will produce
the same hash value. However, by relying on widely used algorithms
such as MD5 and SHA-1, you are ensured that the probability of a hash
conflict is a statistically remote 1 in 1038. If you cannot afford to take
even that chance, you will need to write conflict resolution logic around
your use of the hash function.

There are two types of hashing available in Oracle: Message Digest (MD5) and Secure
Hash Algorithm (SHA-1), both implemented in the HASH function of the
DBMS_CRYTPO package. The HASH function takes two arguments:

src
Input data for which the hash value should be generated. The value must be of
datatype RAW, as with the ENCRYPT function. If the value to be hashed is a
VARCHAR2 or NUMBER, you must convert it to RAW.

typ
Type of hashing; it may be MD4, MD5, or SHA-1. The parameter is passed as a
predefined constant in the DBMS_CRYPTO package, as in the encryption routines.
The constants are:

DBMS_CRYPTO.HASH_SH1
DBMS_CRYPTO.HASH_MD5
DBMS_CRYPTO.HASH_MD4

Let’s look at an example. I declare a local variable with my source value and another
to hold the hash value. I then call the HASH function, specifying SHA-1 as the hash
method:

 /* File on web: hash.sql */
 1 DECLARE
 2 l_in_val VARCHAR2 (2000) := 'CriticalData';
 3 l_hash RAW (2000);
 4 BEGIN
 5 l_hash :=
 6 DBMS_CRYPTO.HASH (src => utl_i18n.string_to_raw (
 7 l_in_val, 'AL32UTF8'
 8),
 9 typ => DBMS_CRYPTO.hash_sh1
10);

Encryption | 939

Download at WoweBook.Com

11 DBMS_OUTPUT.put_line ('Hash=' || l_hash);
12 * END;

The output is the following hash value;

Hash=9222DE984C1A7DD792F680FDFD3EA05CB6CA59A9

Of course, you will usually not display the hash value; you will either store it or send
it to the recipient for further verification.

Hashing has many uses beyond cryptography. Web applications, for example, are
stateless; an application session does not necessarily correspond to a “session” in the
Oracle instance. Consequently, you cannot depend on the application of row-level
locks to avoid lost updates. After a web page retrieves a row, another application might
change it. How does a web session know whether a row retrieved earlier has been
changed? One solution is to generate and cache the hash value of the row data. Then,
at any later time, when the application needs to work with a row, it can do a second
hash, compare the values, and quickly determine if the row is not current.

Using Message Authentication Codes
Hashing is designed to verify the authenticity of data, not to protect it from prying eyes.
The idea is to generate the hash value and store it in some place other than the data
itself. You can later regenerate the hash value and compare against the stored data.
There is a little problem, however: what if an intruder updates the main data, calculates
the hash value as well, and updates the stored hash value?

To protect against that possibility, you can create a kind of password-protected hash
value, known as a message authentication code (MAC). A MAC is a hash value com-
bined with a key. If you use a different key, the same input data will produce a different
MAC. As with a hash, you can’t decipher the main data from the MAC; it is one-way
encryption. The presence of the key makes it impossible for an intruder to come up
with the same MAC value, unless he guesses the key (so don’t use anything obvious!).

The MAC function in the DBMS_CRYPTO package implements the MAC algorithm.
It accepts three parameters:

src
Input value (RAW).

key
Key used to calculate the MAC value.

typ
Algorithm used. As with hashing, there are three choices: MD4, MD5, or
SHA-1.The parameter is passed as a predefined constant in the DBMS_CRYPTO
package (see the list in the previous section):

940 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

I’ll use the same example shown for hashing, except that I will make it secure by adding
a key—“1234567890123456”. The key and input value both must be RAW; if they are
not, I have to convert them.

DECLARE
 l_in_val VARCHAR2 (2000) := 'Critical Data';
 l_key VARCHAR2 (2000) := 'SecretKey';
 l_mac RAW (2000);
BEGIN
 l_mac :=
 DBMS_CRYPTO.mac (src => utl_i18n.string_to_raw (l_in_val,'AL32UTF8'),
 typ => DBMS_CRYPTO.hmac_sh1,
 KEY => utl_i18n.string_to_raw (l_key, 'AL32UTF8')
);
 DBMS_OUTPUT.put_line ('MAC=' || l_mac);
 -- let's use a different key
 l_key := 'Another Key';
 l_mac :=
 DBMS_CRYPTO.mac (src => utl_i18n.string_to_raw (l_in_val,'AL32UTF8'),
 typ => DBMS_CRYPTO.hmac_sh1,
 KEY => utl_i18n.string_to_raw (l_key, 'AL32UTF8')
);
 DBMS_OUTPUT.put_line ('MAC=' || l_mac);
END;

The output is:

MAC=7A23524E8B665A57FE478FBE1D5BFE2406906B2E
MAC=0C0E467B588D2AD1DADE7393753E3D67FCCE800C

As expected, when a different key is used, the same input value provides a different
MAC value. So if an intruder updates the MAC value, she may not know the key used
initially; she will therefore generate a different MAC value, which won’t match the
previously generated value, and hence, will raise alarms.

This example is very simplistic. In the real world, such an operation
would require the generation of a much more complex and difficult-to-
guess key.

Using Transparent Data Encryption (TDE)
In the previous sections, you learned how to build an encryption infrastructure from
the ground up. You may need such an infrastructure if your organization is to satisfy
the many compliance-related regulations and directives in play these days, or you may
simply want to protect your database from potential attacks. As we worked through
the examples in these sections, I’m sure you noticed that building the
encryption-related components (e.g., trigger, package) were relatively simple and
straightforward. The most difficult part of the infrastructure was clearly the manage-
ment of the encryption keys. While it’s important to make these keys available to

Encryption | 941

Download at WoweBook.Com

applications, access to the keys must be restricted to protect them from theft, and that
can be tricky.

Starting with Oracle Database 10g Release 2, a feature known as Transparent Data
Encryption (TDE) makes encrypting data extremely easy. All you have to do is to declare
a column as encrypted; Oracle does the rest. The column value is intercepted when
entered by the user, encrypted, and then stored in encrypted format. Afterwards, when
the column is queried, the value is decrypted automatically, and then the decrypted
text (cleartext) is returned to the user. The user does not even need to know that en-
cryption and decryption are taking place—hence the term transparent. It’s all done
inside the Oracle code without any need for triggers or complex procedural logic.

Here is an example that uses TDE. To declare the column SSN of the table ACCOUNTS
as being encrypted, simply specify:

ALTER TABLE accounts MODIFY (ssn ENCRYPT USING 'AES256')

The Oracle database instantly encrypts the column SSN using the AES algorithm and
a 256-bit key. The key is stored in a data dictionary table, but to protect the key from
theft, it is also encrypted using a master key, which is stored in a separate location
known as a wallet. The wallet, by default, is in the location $ORACLE_BASE/admin/
$ORACLE_SID/wallet; however, you can always specify a different location in the file
SQLNET.ORA. When a user inserts the data specifying:

INSERT INTO accounts (ssn) VALUES ('123456789')

the actual value is stored in encrypted format in the datafiles, the redo log files and their
archives, and consequently the backup files. When a user subsequently queries the
data, the encrypted value is automatically decrypted, and the original value is shown.
The wallet must be opened by the DBA or a security administrator before the above
statements are issued.

Given how easy TDE is to use, the big question is: does it make everything you’ve
learned in this chapter about encryption obsolete?

Encryption in a Nutshell
• Oracle provides two packages to implement encryption and related activities:

DBMS_CRYPTO (available starting in Oracle Database 10g) and
DBMS_OBFUSCATION_TOOLKIT. If you are now running Oracle Database
10g or Oracle Database 11g, you should be using DBMS_CRYPTO.

• Encryption needs four components to encrypt an input value: a key, an algorithm,
a padding method, and a chaining method. Usually, the last three are kept the
same. The key is hidden for each encrypted data.

• The longer the key, the more difficult it is to guess it and the more secure the
encryption.

• To decrypt, you must use the same combination of algorithm, key, padding, and
chaining used during encryption.

942 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

• The biggest challenge in building an encryption system is the management of the
keys. Safekeeping the keys while making them easily accessible to applications is
the key to a successful encryption system.

• Hashing is the generation of some seemingly random value from an input value.
The input value cannot be guessed from the hash value. A hash function, when
applied to a value, produces the same hash value every time.

• A message authentication code (MAC) is identical to a hash, except that a key is
supplied during the generation of the MAC value.

Not at all! The goal of TDE is a limited one: to protect the database files mentioned
earlier from potential theft by encrypting sensitive data using minimal effort. Note,
however, that the emphasis is on the word transparent—that is, while encryption is
done automatically, so is decryption. Within the database, Oracle does not differentiate
between users. When a user queries the database, Oracle supplies the cleartext value
regardless of who the authorized user may be.

In many cases, you will still need to build a more sophisticated system in which the
cleartext value will be exposed only if the user making the request is actually authorized
to see that value; in all other cases, the encrypted value will be returned. It is not possible
to satisfy this requirement using TDE because TDE decrypts everything indiscrimin-
ately. You can, however, achieve this objective by building your own infrastructure
using the techniques described in this chapter.

TDE comes with some limitations. For one thing, you can’t have a foreign key column
encrypted by TDE; that’s quite a limitation in many business applications. For another,
you can create only b*tree indexes on the columns under TDE. These restrictions are
irrelevant, however, when you roll out your own encryption routine using PL/SQL.

When deciding whether TDE serves your purposes, the other aspect you must consider
is automation. In TDE, the wallet (in which the master key is stored) must be opened
by the DBA using a command such as the following:

ALTER SYSTEM SET ENCRYPTION WALLET OPEN AUTHENTICATED BY "pooh"

Here the password of the wallet is “pooh”. If the database datafiles (or the redo logs or
backups of those files) are stolen, the encrypted columns will remain encrypted because
the thief will not know the password, “pooh”, which would allow him to open the
wallet.

After every database startup, the wallet must be explicitly opened by the DBA for the
encrypted columns to be inserted or accessed. If the wallet is not open, the inserts and
accesses to these columns fail. So, that is one extra step that needs to be performed
after the database is opened. In addition, you will have to ensure that the person open-
ing the database knows the wallet password.

To make such a process easier and more automatic, you might ordinarily consider
creating a database startup trigger that calls the ALTER SYSTEM command (shown

Encryption | 943

Download at WoweBook.Com

above) to open the wallet. If you do, however, this startup trigger will remove the only
protection from the wallet and, subsequently, the encrypted columns. So, if you are
using TDE, you should never use such a startup trigger, and you must be prepared to
perform the extra step after each database startup. If you build your own encryption
infrastructure, however, it is available as soon as the database is; no additional step is
necessary, and no wallet passwords need to be remembered and entered.

In summary, TDE is a limited capability. It offers a quick and easy way to encrypt
datafiles, redo logs, and backup files. However, it does not protect the data by dis-
criminating among users; it always decrypts upon access. If you need to have more
control over the decryption process, then you will have to rely on your own encryption
infrastructure.

Transparent Tablespace Encryption
The problems with TDE and, to a lesser extent, user-written encryption, on application
performance can be summed up as follows:

• TDE negates the use of indexes for queries with a range scan, since there is no
pattern correlation of the table data to the index entry. User-written encryption
offers only limited opportunities to use indexes.

• Querying the encrypted data requires decryption of that data, which results in
significant additional CPU consumption.

The impact of these problems means that in real-world application development, TDE
is often rejected as unfeasible, while the extensive coding requirements for user-written
encryption via DBMS_CRYPTO pose a significant challenge for many organizations.

To address these drawbacks, Oracle Database 11g has introduced a new feature:
Transparent Tablespace Encryption (TTE). With TTE, a user can define an entire ta-
blespace, rather than an individual table, as encrypted. Here is an example of creating
an encrypted tablespace:

TABLESPACE securets1
 DATAFILE '+DG1/securets1_01.dbf'
 SIZE 10M
 ENCRYPTION USING 'AES128'
 DEFAULT STORAGE (ENCRYPT)

Whenever you create an object in this tablespace, it will be converted to an encrypted
format via an AES algorithm using a 128-bit key. You must have already set up the
wallet and opened it as described in the TDE section. The encryption key is stored in
the ENC$ table in an encrypted manner, and the key to that encryption is stored in the
wallet, as it is in TDE. Of course, the wallet must be opened prior to tablespace creation.

You may be wondering how an encrypted tablespace can avoid the problems of table-
based encryption. The key difference is that the data in the tablespace is only encrypted
on disk; as soon as the data is read; the data is decrypted and placed in the SGA’s buffer

944 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

cache as cleartext. Index scans operate on the buffer cache, thereby bypassing the
problem of unmatched encrypted data. Similarly, since the data is decrypted and placed
in the buffer cache only once (at least until it is aged out), the decryption occurs just
once, rather than every time that data is accessed. As a consequence, as long as the data
remains in the SGA, performance is not affected by encryption. It’s the best of both
worlds—security by encryption and minimized performance impact.

Since the issues seem to have been resolved, does TTE spell doom for the user-written
encryption procedures shown in this chapter? Not at all!

When you encrypt a tablespace, all the objects—indexes and tables—are encrypted,
regardless of whether you need them to be encrypted or not. That’s fine when you need
to encrypt all or most of the data in the tablespace. What if, on the other hand, you
only need encryption for a fraction of the total data volume? With TTE, your applica-
tion will experience the performance impact of decryption for much more data than is
really necessary. The Oracle database minimizes this impact, but it cannot completely
avoid it. As a result, you may still choose to implement user-written encryption when
you need to encrypt data selectively in your application’s tables.

In addition, encrypted tablespaces can only be created; you can’t convert an existing
tablespace from cleartext to encrypted (nor can you change an encrypted tablespace to
cleartext). Instead, you must create a tablespace as encrypted and then move your
objects into it. If you decide to introduce encryption into an existing database, the TTE
approach may not be feasible, given the enormous volumes of many production data-
bases. User-written encryption allows you to tightly control how much of the data will
be encrypted—and then decrypted.

Clearly, user-written encryption still has its charm and its place in real-world applica-
tions. You can implement Transparent Tablespace Encryption much more quickly and
easily, but you will need to validate that the “brute force” approach of total encryption
works for your application.

Row-Level Security
Row-level security (RLS) is a feature introduced in Oracle8i Database that allows you
to define security policies on tables (and specific types of operations on tables) that
have the effect of restricting which rows a user can see or change in a table. Much of
the functionality is implemented with the built-in package DBMS_RLS.

Oracle has, for years, provided security at the table level and, to some extent, at the
column level. Privileges may be granted to allow or restrict users to access only some
tables or columns. For example, you can grant privileges to specific users to insert only
into certain tables while allowing them to select from other tables. Or you can allow
users to update certain columns of specific tables. Using views, you can also restrict
how the tables get populated from the views, using INSTEAD OF triggers (described
in Chapter 19). All of these privileges are based on one assumption; you can achieve

Row-Level Security | 945

Download at WoweBook.Com

security simply by restricting access to certain tables and columns. But when that access
is granted, the users have access to see all the rows of the table. What if you need to
limit the visibility of rows in a table, based on criteria such as the identity of the user
or other application-specific characteristics?

Consider, for example, the demonstration table provided with the database—EMP in
schema HR. The table has 14 rows of data, with primary keys (employee numbers)
ranging from 7369 to 7934.

Suppose that you have given a user named Lora access to see this table, but you also
want to add a further restriction so that Lora can see and modify only employees who
get a commission (i.e., the COMM field is NOT NULL).

One way to solve this problem is to create a view on top of the table, but what if a user
is able to (or needs to) gain access to the underlying table? In some cases, a user may
have a legitimate need to access the table directly—for example, to create stored pro-
gram units that work with the table. A view-based implementation simply won’t work.
Instead, you can turn to RLS. With RLS, you can instruct the Oracle database to limit
the set of rows a user can see based on some arbitrary rules you define. It will be im-
possible for the user to evade these rules.

In Oracle, RLS is also sometimes referred to as the Virtual Private Da-
tabase (VPD) or fine-grained access control (FGAC).

If, for example, you enable RLS on the table EMP with the rule described above, then
when Lora issues the following query:

SELECT * FROM emp

she sees only four rows—not 14—even though the query itself has no WHERE clause:

7499 ALLEN SALESMAN 7698 20-FEB-81 1,600 300 30
7521 WARD SALESMAN 7698 22-FEB-81 1,250 500 30
7654 MARTIN SALESMAN 7698 28-SEP-81 1,250 1,400 30
7844 TURNER SALESMAN 7698 08-SEP-81 1,500 0 30

Similarly when she updates the table without a WHERE clause, only those rows she is
allowed to see are updated.

SQL> UPDATE hr.emp SET comm = 100
 2 /

4 rows updated.

It’s as if the other 10 rows do not even exist for Lora. The database accomplishes this
seeming act of magic (“Now you see it, now you don’t!”) by adding a predicate (a
WHERE clause) to any DML written by users against the table. In this case, the query
SELECT * FROM EMP was automatically rewritten to:

946 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

SELECT * FROM emp WHERE comm IS NOT NULL

To achieve this kind of transparent, row-level security on a table, you must define an
RLS policy on that table. This policy determines whether or not a restriction should be
enabled during data access. You may want only UPDATEs to be restricted for users,
while SELECTs from the table remain unrestricted, or you may want to restrict access
for SELECTs only if the user selects a certain column (e.g., SALARY), not others. These
instructions are placed in the policy. The policy is associated with a policy function,
which generates the predicate (COMM IS NOT NULL, in this case) to be applied to
the queries.

To summarize, at a high level, RLS consists of three main components:

Policy
A declarative command that determines when and how to apply the policy: during
queries, insertions, deletions, updates, or combinations of these operations.

Policy function
A PL/SQL function that is called whenever the conditions specified in the policy
are met.

Predicate
A string that is generated by the policy function, and then applied to the users’ SQL
statements, indicating limiting conditions.

Conceptually, this behavior is illustrated in Figure 23-5. A policy is like a sieve that
checks the rows of the table against the predicate generated. If they satisfy the predicate,
they’re allowed to pass through the sieve; otherwise, they are not shown to the user.

Why Learn About RLS?
At first glance, row-level security may seem to be a topic for DBAs and security ad-
ministrators, not for PL/SQL developers and not even for application architects. Why
should a PL/SQL developer learn more about it?

Security is everybody’s business now
RLS was initially designed for security, and security has traditionally been the bai-
liwick of DBAs. In the 21st century, however, we all find ourselves in a more se-
curity-conscious environment. A myriad of laws, regulations, and guidelines con-
strain our applications. Increasingly, developers need to be aware of the security
aspects of the various tools they use to construct their programs. Applications
architects, in particular, need a working knowledge of how to apply RLS early in
the design process.

RLS is not just for security
Take a closer look at the RLS concept. It’s a sieve, and the developer of the function
controls how the sieve should filter. Suppose that you have a third-party applica-
tion to support that now has two different functional areas going into the same

Row-Level Security | 947

Download at WoweBook.Com

table; you may have to make some changes in the application’s queries to make
sure that these functional areas are clearly delineated. But that means making
changes to application, which may be undesirable. RLS may come to the rescue
here. You can use RLS to create a logical separation of the rows inside the same
table so that two applications will see different sets of data. This clearly benefits
application development while keeping the overall system highly maintainable.

You can use RLS to perform some tricks that aren’t possible otherwise
Remember that RLS applies a function-generated predicate to your queries. If you
generate a predicate 1=2, which always evaluates to FALSE, what will be the output
of your queries? “No rows found,” because the WHERE clause will always evaluate
to FALSE. Thus, if you define a 1=2 policy on DELETEs, INSERTs, and UPDATEs,
but not on SELECTs, you can effectively stop users from making changes to a table,
while still allowing them to read the data. Oracle by default allows a tablespace,
but not a specific table, to be read-only. But RLS gives you a way to make the table
itself read-only.

Other approaches don’t work here. If you simply revoke UPDATE or INSERT
grants from the user, that will invalidate the procedures. If you define a procedure
using the definer rights model (the default, described in Chapter 24), then you
won’t be able to revoke a privilege from the user itself.

Let’s try to jump-start learning about RLS by looking at some examples.

Figure 23-5. Row-level security infrastructure

948 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

A Simple RLS Example
In this example, I’ll use the same EMP table referenced earlier this chapter. The re-
quirement that I will implement is as follows:

Users cannot see employees whose salaries are greater than $1,500.

I will therefore need to construct the following:

• A predicate that will be added automatically to the users’ SQL statements.

• A policy function that generates the above predicate.

• A policy to call that function and apply the predicate transparently.

In this case, the predicate should be:

SALARY <= 1500

Next, I write the policy function to return this:

FUNCTION authorized_emps (
 p_schema_name IN VARCHAR2,
 p_object_name IN VARCHAR2
)
 RETURN VARCHAR2
IS
 l_return_val VARCHAR2 (2000);
BEGIN
 l_return_val := 'SAL <= 1500';
 RETURN l_return_val;
END authorized_emps;

When the function is executed, it will return the string SAL <= 1500. Let’s just confirm
that using this code segment:

DECLARE
 l_return_string VARCHAR2 (2000);
BEGIN
 l_return_string := authorized_emps ('X', 'X');
 DBMS_OUTPUT.put_line ('Return String = "' || l_return_string || '"');
END;

The output is:

Return String = "SAL <= 1500"

You might be wondering why I would pass in those arguments, if the function always
returns the same value regardless of their values. This is actually a requirement of RLS,
which I’ll explain later.

Finally, I will create the policy using the ADD_POLICY function provided in Oracle’s
DBMS_RLS built-in package:

1 BEGIN
2 DBMS_RLS.add_policy (object_schema => 'HR',
3 object_name => 'EMP',
4 policy_name => 'EMP_POLICY',

Row-Level Security | 949

Download at WoweBook.Com

5 function_schema => 'HR',
6 policy_function => 'AUTHORIZED_EMPS',
7 statement_types => 'INSERT, UPDATE, DELETE, SELECT'
8);
9 END;

Here I am adding a policy named EMP_POLICY (line 4) on the table EMP (line 3)
owned by the schema HR (line 2). The policy will apply the filter coming out of the
function AUTHORIZED_EMPS (line 6) owned by schema HR (line 5) whenever any
user performs INSERT, UPDATE, DELETE, or SELECT operations (line 7). Earlier I
wrote the function AUTHORIZED_EMPS to create and return the predicate strings to
be applied to the user queries.

Once this policy is in place, if the user selects from the table or tries to change it, she
will be able to operate on only those rows where SAL <= 1500.

The policy EMP_POLICY is applied to the table EMP when a user performs SELECT,
INSERT, DELETE, or UPDATE. The predicate of the policy function is applied to the
policy. As long as the policy function returns a valid predicate string, it’s applied to the
query. Depending on the business needs, you can write the policy function in any way,
as long as you follow certain rules:

• The policy may be a standalone or packaged function, but never a procedure.

• It must return a VARCHAR2 value, which will be applied as a predicate. Note that
this means your predicates cannot be greater than 32,767 bytes in length.

• It must have exactly two input parameters in the following order:

— schema, which owns the table on which the policy has been defined

— object_name, which identifies the table(s) or view(s)

To have no restrictions on access, you can specify a policy function that
returns one of the following as a predicate.

• NULL

• 1=1 or some other expression that always evaluates to TRUE. Be-
cause the return value has to be VARCHAR2, you can’t return the
Boolean TRUE.

Similarly to have a restriction for all rows, you can have a predicate that
always evaluates to FALSE—for example, 1=2.

You can define more than one policy on the table. There is no precedence—that is, no
defined order in which the policies are applied to the queries on the table. When you
issue a SQL statement against the table, the query is appended to the predicates re-
turned by all the policies.

950 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

To see the policies defined on a table, you can check the data dictionary view
DBA_POLICIES, which shows the name of the policy, the object on which it is defined
(and its owner), the policy function name (and its owner), and much more.

Starting with Oracle Database 10g, the parameter statement_types can have another
value—INDEX. When you specify that, access to the rows even when creating indexes
is also restricted. Suppose you are trying to create a function-based index on the SAL
column; the index creation script will need all the values of the column, effectively
bypassing the security. You specify INDEX as a value in the parameter as shown here:

1 BEGIN
2 DBMS_RLS.add_policy (object_schema => 'HR',
3 object_name => 'EMP',
4 policy_name => 'EMP_POLICY',
5 function_schema => 'HR',
6 policy_function => 'AUTHORIZED_EMPS',
7 statement_types => 'INSERT, UPDATE, DELETE, SELECT, INDEX'
8);
9 END;

Then, if you attempt to create a function-based index, it will raise the following error:

ORA-28133: full table access is restricted by fine-grained security

Now you’ve seen how to create a policy. You can also drop a policy using the
DROP_POLICY function in the DBMS_RLS package. To drop a policy using
EMP_POLICY, I would issue the following statement:

BEGIN
 DBMS_RLS.drop_policy (object_schema => 'HR',
 object_name => 'EMP',
 policy_name => 'EMP_POLICY'
);
END;

Note that policies are not database schema objects—that is, no user owns them. Any
user with the EXECUTE privilege on the DBMS_RLS package can create a policy. Sim-
ilarly, any user with the EXECUTE privilege can drop that policy. Therefore it’s im-
portant that you revoke EXECUTE privileges on the package from anyone who doesn’t
need this.

Let’s examine a slight twist here. The user, instead of updating any other column,
updates the SAL column, which is the column used in the predicate. It will be interesting
to see the result:

SQL> UPDATE hr.emp SET sal = 1200;

7 rows updated.

SQL> UPDATE hr.emp SET sal = 1100;

7 rows updated.

Row-Level Security | 951

Download at WoweBook.Com

Only seven rows are updated, as expected. Now let’s change the updated amount. After
all, everyone deserves a better salary.

SQL> UPDATE hr.emp SET sal = 1600;

7 rows updated.

SQL> UPDATE hr.emp SET sal = 1100;

0 rows updated.

As you may have predicted, the second update does not change any rows because the
first update moved all of the rows in the table beyond the reach of a user whose RLS
policy dictates a filtering predicate SAL <= 1500. Thus after the first update, all the
rows were invisible to the user.

This is a potentially confusing situation in which the updates might themselves update
the data to change the visibility of the table rows. During application development, this
may create bugs or at least introduce some degree of unpredictability. To counter this
behavior, let’s take advantage of another parameter of DBMS_RLS.ADD_POLICY
named update_check. Let’s take a look at the impact of setting update_check to TRUE
while creating a policy on the table:

BEGIN
 DBMS_RLS.add_policy (object_name => 'EMP',
 policy_name => 'EMP_POLICY',
 function_schema => 'HR',
 policy_function => 'AUTHORIZED_EMPS',
 statement_types => 'INSERT, UPDATE, DELETE, SELECT',
 update_check => TRUE
);
END;

After this policy is placed on the table, if Lora performs the same update, she now gets
an error:

SQL> UPDATE hr.emp SET sal = 1600;
UPDATE hr.emp SET sal = 1600
 *
ERROR at line 1:
ORA-28115: policy with check option violation

The ORA-28115 error is raised because the policy now prevents any updates to the
column value that will make the rows move in and out of RLS coverage. Suppose that
Lora updates SAL to a value that does not affect the visibility of the rows:

SQL> UPDATE hr.emp SET sal = 1200;

7 rows updated.

Because the new value of the SAL column—1200—will still make these 7 rows visible,
this update is allowed.

952 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

Set the update_check parameter to TRUE when defining a policy to
avoid what may appear to be unpredictable behavior in the application.

Using Dynamic Policies
In the earlier example, I talked about a policy that returns a predicate string that is a
constant, SAL <= 1500. In real life that is not very common, except in some specialized
applications such as goods warehouses. In most cases, you will need to build the filter
based on the user’s issuing the query. For example, the HR application may require
that a user sees only records of his department. This is a dynamic requirement because
it needs to be evaluated for each employee who is logged in.

And that isn’t the only rule I need to apply to this situation. The table is protected by
the RLS policy, which prevents users from seeing all the records. But what if the owner
of that table, HR, selects from the table; it too will see only those records. That isn’t
right: the owner must be able to see all the records. To let HR see all the records, I have
two options:

• Grant a special privilege to the user HR so that RLS policies do not apply to HR.

• Define the policy function so that if the calling user is the schema owner, the re-
strictive predicate is not applied.

Using the first approach, the policy function needs no change. The DBA can grant the
following privilege to HR:

GRANT EXEMPT ACCESS POLICY TO hr;

This removes the application of any RLS policies from the user HR. Because no policy,
regardless of which table it is defined on, will be applied, you should use this approach
with great caution. In fact, considering the risk of a breach in security, it is probably
something you should avoid altogether.

The other approach involves modifying the policy function to take care of this problem.
Here is the policy function needed to handle this complexity:

1 FUNCTION authorized_emps (
2 p_schema_name IN VARCHAR2,
3 p_object_name IN VARCHAR2
4)
5 RETURN VARCHAR2
6 IS
7 l_deptno NUMBER;
8 l_return_val VARCHAR2 (2000);
9 BEGIN
10 IF (p_schema_name = USER)
11 THEN
12 l_return_val := NULL;
13 ELSE

Row-Level Security | 953

Download at WoweBook.Com

14 SELECT deptno
15 INTO l_deptno
16 FROM emp
17 WHERE ename = USER;
18
19 l_return_val := 'DEPTNO = ' || l_deptno;
20 END IF;
21
22 RETURN l_return_val;
23 END;

Let’s examine this function in detail:

Line(s) Description

10 I check to see whether the calling user is the owner of the table. If so, I return NULL as a predicate, which means that
no restriction will be placed on the table during access.

14–19 I determine the department number of the user and then construct the predicate as “DEPTNO = user’s department
number“.

22 Finally, I return the predicate.

There is an interesting fringe benefit to this approach. The policy function returns
DEPTNO as a limiting predicate, so I can apply this policy to any table that has a
DEPTNO column.

The above example showed one extreme case of a dynamic policy function. When each
record is returned, the policy executed the policy function, checked the predicate, and
decided whether or not to pass the record. This is certainly an expensive approach
because the database will go through the parse-execute-fetch cycle each time.

If the predicate remains the same, I can optimize performance of the application by
eliminating unnecessary calls to the function. Starting with Oracle9i Database, the
ADD_POLICY procedure has a parameter static_policy, which defaults to FALSE. If
the parameter is set to TRUE, the policy function is executed only once at the beginning
of the session. This value should only be used if you are absolutely sure that the pred-
icate string will remain the same throughout the session.

Starting with Oracle Database 10g, there are several types of “dynamic” policies. You
can set any of these policies in the parameter policy_type in the ADD_POLICY proce-
dure. The valid values are:

DBMS_RLS.DYNAMIC
DBMS_RLS.CONTEXT_SENSTIVE
DBMS_RLS.SHARED_CONTEXT_SENSITIVE
DBMS_RLS.SHARED_STATIC
DBMS_RLS.STATIC

The default behavior is DYNAMIC. If the parameter static_policy (still available in
Oracle Database 10g and Oracle Database 11g) is set to TRUE, the default value of
policy_type is DBMS_RLS.STATIC. If static_policy is FALSE, then the policy_type is

954 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

set to DBMS_RLS.DYNAMIC. In these two policy types—static and dynamic—the
policies behave just as they would in Oracle9i Database with the parameter static_pol-
icy set to TRUE and FALSE, respectively.

In the following sections I’ll show the other types of policies supported in Oracle Da-
tabase 10g and later.

The new policy types provide excellent performance benefits over the
default dynamic type. However, beware of the side effects of these policy
types. For example, because static polices do not re-execute the func-
tion, they may produce unexpected output.

Shared static policy

A shared static policy type is similar to a static one, except that the same policy function
is used in policies on multiple objects. In a previous example you saw how the function
AUTHORIZED_EMPS was used as a policy function in the policies on both the DEPT
and the EMP tables. Similarly, you can have the same policy defined on both tables,
not merely the same function. This is known as a shared policy. If it can be considered
static, then the policy is declared as shared static (DBMS_RLS.SHARED_STATIC).
Using this type, here is how I can create the same policy on both the tables:

 1 BEGIN
 2 DBMS_RLS.drop_policy (object_schema => 'HR',
 3 object_name => 'DEPT',
 4 policy_name => 'EMP_DEPT_POLICY'
 5);
 6 DBMS_RLS.add_policy (object_schema => 'HR',
 7 object_name => 'DEPT',
 8 policy_name => 'EMP_DEPT_POLICY',
 9 function_schema => 'RLSOWNER',
10 policy_function => 'AUTHORIZED_EMPS',
11 statement_types => 'SELECT, INSERT, UPDATE, DELETE',
12 update_check => TRUE,
13 policy_type => DBMS_RLS.SHARED_STATIC
14);
15 DBMS_RLS.add_policy (object_schema => 'HR',
16 object_name => 'EMP',
17 policy_name => 'EMP_DEPT_POLICY',
18 function_schema => 'RLSOWNER',
19 policy_function => 'AUTHORIZED_EMPS',
20 statement_types => 'SELECT, INSERT, UPDATE, DELETE',
21 update_check => TRUE,
22 policy_type => DBMS_RLS.SHARED_STATIC
23);
24 END;

By declaring a single policy on both tables, I have instructed the database to cache the
result of the policy function once and then use it multiple times.

Row-Level Security | 955

Download at WoweBook.Com

Context-sensitive policy

As you learned earlier, static policies, although quite efficient, can be dangerous; be-
cause they do not re-execute the function every time, they may produce unexpected
results. Hence, Oracle provides another type of policy—context-sensitive, which re-
executes the policy function only when the application context changes in the session.
(See “Application Contexts” on page 964.)

1 BEGIN
 2 DBMS_RLS.drop_policy (object_schema => 'HR',
 3 object_name => 'DEPT',
 4 policy_name => 'EMP_DEPT_POLICY'
 5);
 6 DBMS_RLS.add_policy (object_schema => 'HR',
 7 object_name => 'DEPT',
 8 policy_name => 'EMP_DEPT_POLICY',
 9 function_schema => 'RLSOWNER',
10 policy_function => 'AUTHORIZED_EMPS',
11 statement_types => 'SELECT, INSERT, UPDATE, DELETE',
12 update_check => TRUE,
13 policy_type => DBMS_RLS.CONTEXT_SENSITIVE
14);
15 DBMS_RLS.add_policy (object_schema => 'HR',
16 object_name => 'EMP',
17 policy_name => 'EMP_DEPT_POLICY',
18 function_schema => 'RLSOWNER',
19 policy_function => 'AUTHORIZED_EMPS',
20 statement_types => 'SELECT, INSERT, UPDATE, DELETE',
21 update_check => TRUE,
22 policy_type => DBMS_RLS.CONTEXT_SENSITIVE23
);
24 END;

When you use the context-sensitive policy type
(DBMS_RLS.CONTEXT_SENSITIVE), performance is generally not as good as
SHARED_STATIC, but better than DYNAMIC. Here is an example of time differences
for a particular query. To measure the time, I will use the built-in timer
DBMS_UTILITY.GET_CPU_TIME.

DECLARE
 l_start_time PLS_INTEGER;
 l_count PLS_INTEGER;
BEGIN
 l_start_time := DBMS_UTILITY.get_time;

 SELECT COUNT (*)
 INTO l_count
 FROM hr.emp;

 DBMS_OUTPUT.put_line (DBMS_UTILITY.get_time - l_start_time);
END;

956 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

The difference in the output of the function call between the beginning and the end is
the time elapsed in centiseconds (hundredths of a second). When this query is run
under different conditions, I get different response times as shown in the table:

Policy type Response time (cs)

Dynamic 133

Context sensitive 84

Static 37

Shared context-sensitive policy

Shared context sensitive policies are similar to context-sensitive policies, except that the
same policy is used for multiple objects, as you saw with shared static policies.

Upgrade Strategy for Oracle Database 10g/11g Policy Types
When upgrading from Oracle9i Database to Oracle Database 10g or Oracle Database
11g, I recommend that you do the following:

1. Initially use the default type (dynamic).

2. Once the upgrade is complete, try to recreate the policy as context-sensitive and
test the results thoroughly, with all possible scenarios, to eliminate any potential
caching issues.

3. For those policies that can be made static, convert them to static and test
thoroughly.

Using Column-Sensitive RLS
Let’s revisit the example of the HR application used in the previous sections. I designed
the policy with the requirement that no user should have permission to see all records.
A user can see only the data about the employees in her department. However, there
may be cases in which that policy is too restrictive.

Suppose that you want to protect the data so people can’t snoop around for salary
information. Consider the following two queries:

SELECT empno, sal FROM emp
SELECT empno FROM emp

The first query shows salary information for employees, the very information you want
to protect. In this case, you want to show only the employees in the user’s own de-
partment. But the second query shows only the employee numbers. Should you filter
that as well so that it shows only the employees in the same department?

Row-Level Security | 957

Download at WoweBook.Com

The answer might vary depending upon the security policy in force at your organization.
There may well be a good reason to let the second query show all employees, regardless
of the department to which they belong. In such a case, will RLS be effective?

In Oracle9i Database, RLS doesn’t help; in Oracle Database 10g and later, however, an
ADD_POLICY parameter, sec_relevant_cols, makes it easy. In the above scenario, for
example, you want the filter to be applied only when SAL and COMM columns are
selected, not any other columns. You can write the policy as follows (note the new
parameter):

BEGIN
 /* Drop the policy first. */
 DBMS_RLS.drop_policy (object_schema => 'HR',
 object_name => 'EMP',
 policy_name => 'EMP_POLICY'
);
 /* Add the policy. */
 DBMS_RLS.add_policy (object_schema => 'HR',
 object_name => 'EMP',
 policy_name => 'EMP_POLICY',
 function_schema => 'RLSOWNER',
 policy_function => 'AUTHORIZED_EMPS',
 statement_types => 'INSERT, UPDATE, DELETE, SELECT',
 update_check => TRUE,
 sec_relevant_cols => 'SAL, COMM'
);
END;

After this policy is put in place, queries on HR.EMP have different results.

SQL> -- harmless query, only EMPNO is selected
SQL> SELECT empno FROM hr.emp;
... rows are here ...

14 rows selected.

SQL> -- sensitive query, SAL is selected
SQL> SELECT empno, sal FROM hr.emp;
... rows are here ...

6 rows selected.

Note that when the column SAL is selected, the RLS policy kicks in, preventing the
display of all rows; it filters out the rows where DEPTNO is something other than 30—
that is, the DEPTNO of the user executing the query.

Column sensitivity does not just apply to being in the select list, but applies whenever
the column is referenced, either directly or indirectly. Consider the following query:

SQL> SELECT deptno, count(*)
 2 FROM hr.emp
 3 WHERE sal> 0
 4 GROUP BY deptno;

 DEPTNO COUNT(*)

958 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

---------- ----------
 30 6

Here, the SAL column has been referenced in the WHERE clause, so the RLS policy
applies, causing only the records from department 30 to be displayed. Consider another
example:

SQL> SELECT *
 2 FROM hr.emp
 3 WHERE deptno = 10;

no rows selected

Here the column SAL has not been referenced explicitly, but it is implicitly referenced
by the SELECT * clause, so the RLS policy kicks in, filtering all but the rows from
department 30. Because the query called for department 10, no rows were returned.

Let’s examine a slightly different situation now. In the above case, I did protect the SAL
column values from being displayed for those rows for which the user is not authorized.
However, in the process, I suppressed the display of the entire row, not just the column.
Now suppose that new requirements call for masking only the column, not the entire
row, and for displaying all other non-sensitive columns. Can this be done?

It’s easy, using another ADD_POLICY parameter, sec_relevant_cols_opt. Let’s recre-
ate the policy with the parameter set to DBMS_RLS.ALL_ROWS, as follows:

BEGIN
 DBMS_RLS.drop_policy (object_schema => 'HR',
 object_name => 'EMP',
 policy_name => 'EMP_POLICY'
);
 DBMS_RLS.add_policy (object_schema => 'HR',
 object_name => 'EMP',
 policy_name => 'EMP_POLICY',
 function_schema => 'RLSOWNER',
 policy_function => 'AUTHORIZED_EMPS',
 statement_types => 'SELECT',
 update_check => TRUE,
 sec_relevant_cols => 'SAL, COMM',
 sec_relevant_cols_opt => DBMS_RLS.all_rows
);
END;

If I issue the same type of query now, the results will be different:

SQL> -- Show a "?" for the NULL values in the output.
SQL> SET NULL ?
SQL> SELECT *
 2 FROM hr.emp
 3 ORDER BY deptno
 4 /

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
------ ---------- --------- ------ --------- ------ ------ ------
 7782 CLARK MANAGER 7839 09-JUN-81 ? ? 10

Row-Level Security | 959

Download at WoweBook.Com

 7839 KING PRESIDENT ? 17-NOV-81 ? ? 10
 7934 MILLER CLERK 7782 23-JAN-82 ? ? 10
 7369 SMITH CLERK 7902 17-DEC-80 ? ? 20
 7876 ADAMS CLERK 7788 12-JAN-83 ? ? 20
 7902 FORD ANALYST 7566 03-DEC-81 ? ? 20
 7788 SCOTT ANALYST 7566 09-DEC-82 ? ? 20
 7566 JONES MANAGER 7839 02-APR-81 ? ? 20
 7499 ALLEN SALESMAN 7698 20-FEB-81 1,600 300 30
 7698 BLAKE MANAGER 7839 01-MAY-81 2,850 ? 30
 7654 MARTIN SALESMAN 7698 28-SEP-81 1,250 1,400 30
 7900 JAMES CLERK 7698 03-DEC-81 950 ? 30
 7844 TURNER SALESMAN 7698 08-SEP-81 1,500 0 30
 7521 WARD SALESMAN 7698 22-FEB-81 1,250 500 30

14 rows selected.

Notice that all 14 rows have been shown, along with all the columns, but that the values
for SAL and COMM have been made NULL for the rows that the user is not supposed
to see—that is, the employees of the department other than 30.

RLS here lets you satisfy cases in which rows must be displayed, but sensitive values
must be hidden. Prior to Oracle Database 10g, you would have had to use views to
accomplish the same thing, and the operations were a good deal more complicated.

Use this feature with caution because in certain cases, it may produce
unexpected results. Consider this query issued by, say, MARTIN:

SQL> SELECT COUNT(1), AVG(sal) FROM hr.emp;
COUNT(SAL) AVG(SAL)
---------- ----------
 14 1566.66667

The result shows 14 employees and the average salary is 1,566, which
is actually the average of the 6 employees MARTIN is authorized to see,
not all 14 employees. This may create some confusion as to which values
are correct. When the schema owner, HR, issues the same query, you
see a different result:

SQL> CONN hr/hr
Connected.
SQL> SELECT COUNT(1), AVG(sal) FROM hr.emp;
COUNT(SAL) AVG(SAL)
---------- ----------
 14 2073.21429

Because results vary by the user issuing the query, you need to be careful
to interpret the results accordingly; otherwise, this feature may intro-
duce difficult-to-trace bugs into your application.

RLS Debugging
RLS is a somewhat complex feature, relying on a variety of elements in the Oracle
architecture. You may encounter errors, either as a result of problems in the design or
through misuse by users. Fortunately, for most errors, RLS produces a detailed trace

960 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

file in the directory specified by the database initialization parameter
USER_DUMP_DEST.

Interpreting errors

The most common error you will encounter, and the easiest to deal with, is ORA-28110:
Policy function or package has error. The culprit here is a policy function with errors.
Fixing your compilation errors and recompiling the function (or the package containing
the function) cures the problem.

You may also encounter runtime errors, such as a datatype mismatch or a
VALUE_ERROR exception. In these cases, Oracle raises the ORA-28112: failed to ex-
ecute policy function error and produces a trace file. Here is an excerpt from a trace file:

--
Policy function execution error:
Logon user : MARTIN
Table/View : HR.EMP
Policy name : EMP_DEPT_POLICY
Policy function: RLSOWNER.AUTHORIZED_EMPS
ORA-01422: exact fetch returns more than requested number of rows
ORA-06512: at "RLSOWNER.AUTHORIZED_EMPS", line 14
ORA-06512: at line 1

The trace file shows that MARTIN was executing the query when this occurred. Here
the policy function simply fetched more than one row. Examining the policy function,
you notice that the policy function has a segment as follows:

SELECT deptno
 INTO l_deptno
 FROM hr.emp
 WHERE ename = USER

It seems that there is more than one employee with the name MARTIN: the number
of rows fetched is more than one, which caused this problem. The solution is to either
handle the error via an exception or just use something else as a predicate to get the
department number.

The ORA-28113: policy predicate has error exception occurs when the policy function
does not construct the predicate clause correctly. Here is an excerpt from the trace file
for this error:

Error information for ORA-28113:
Logon user : MARTIN
Table/View : HR.EMP
Policy name : EMP_DEPT_POLICY
Policy function: RLSOWNER.AUTHORIZED_EMPS
RLS predicate :
DEPTNO = 10,
ORA-00907: missing right parenthesis

It shows that the predicate returned by the policy function is:

DEPTNO = 10,

Row-Level Security | 961

Download at WoweBook.Com

This is syntactically incorrect, so the policy application failed and so did MARTIN’s
query. This can be fixed by correcting the policy function logic to return a valid value
as the predicate.

Performing direct path operations

If you are using direct path operations—for example, SQL*Loader’s Direct Path Load
or a Direct Path Insert using the APPEND hint (INSERT /*+ APPEND */ INTO ...), or
Direct Path Export—you need to be aware that the RLS policies on affected tables will
not be invoked. After all, the point of these direct path operations is to bypass the SQL
layer. You will have to take special precautions to deal with this situation.

In the case of exports, it’s rather easy. Here is what happens when I export the table
EMP, protected by one or more RLS policies, with the DIRECT=Y option:

About to export specified tables via Direct Path ...
EXP-00080: Data in table "EMP" is protected. Using conventional mode.
EXP-00079: Data in table "EMP" is protected. Conventional path may only be exporting
partial table.

The export is successfully done, but as you can see in the output, the output mode is
conventional, not direct, as I wanted it to be. And in the process of performing the
operation, the export still applied the RLS policies to the table—that is, the user can
export only the rows he is authorized to see, not all of them.

Because the operation of exporting a table under RLS may still success-
fully complete, you might get a false impression that all rows have been
exported. However, be aware that only the rows the user is allowed to
see, not all of them, are exported. In addition, even though the export
was supposed to be run in direct mode, it runs in conventional mode.

Now, when you try to do a SQL*Loader Direct Path Load/Direct Path Insert, you get
an error:

SQL> INSERT /*+ APPEND */
 2 INTO hr.EMP
 3 SELECT *
 4 FROM hr.emp
 5 WHERE rownum < 2;
from hr.emp
 *
ERROR at line 4:
ORA-28113: policy predicate has error

The error message is a little confusing—the policy predicate didn’t actually have an
error. The RLS policy was not applied because this was a direct path operation, but the
error message didn’t show that. You can fix this situation either by temporarily disa-
bling the policy on the table EMP or by exporting through a user who has the EXEMPT
ACCESS POLICY system privilege.

962 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

Row-Level Security in a Nutshell
• RLS automatically applies a predicate (to be attached to a WHERE clause) to the

queries issued by users so that only certain rows are visible.

• The predicate is generated by a policy function written by the user.

• A policy on a table determines under what circumstances the predicate should be
imposed and what policy function to execute.

• More than one policy can be defined on a table.

• The same policy can be applied to more than one table.

• The type of policy (dynamic, static, etc.) determines how often to execute the
policy function.

• When a table is loaded via a direct path operation, the SQL layer is bypassed, and
the RLS policy cannot be enforced, resulting in an error.

Viewing SQL statements

During debugging, it may be necessary to see the exact SQL statement rewritten by
Oracle when an RLS policy is applied. In this way you will leave nothing to chance or
interpretation. You can see the rewritten statement through two different approaches:

Use VPD views
One option is to use the dictionary view V$VPD_POLICY. VPD in the name stands
for Virtual Private Database, another name for row-level security. This view shows
all the query transformations.

SELECT sql_text, predicate, POLICY, object_name
 FROM v$sqlarea, v$vpd_policy
 WHERE hash_value = sql_hash

SQL_TEXT PREDICATE
----------------------------- ------------------------------
POLICY OBJECT_NAME
------------------------------ ------------------------------
select count(*) from hr.emp DEPTNO = 10
EMP_DEPT_POLICY EMP

The column SQL_TEXT shows the exact SQL statement issued by the user, while
the column PREDICATE shows the predicate generated by the policy function and
applied to the query. Using this view, you can identify the statements issued by the
users and the predicates applied to them.

Set an event
The other option is to set an event in the session like this:

SQL> ALTER SESSION SET EVENTS '10730 trace name context forever, level 12';

Session altered.

Row-Level Security | 963

Download at WoweBook.Com

SQL> SELECT COUNT(*) FROM hr.emp;

After the query finishes, you will see a trace file generated in the directory specified
by the database initialization parameter USER_DUMP_DEST. Here is what the
trace file shows:

Logon user : MARTIN
Table/View : HR.EMP
Policy name : EMP_DEPT_POLICY
Policy function: RLSOWNER.AUTHORIZED_EMPS
RLS view :
SELECT "EMPNO","ENAME","JOB","MGR","HIREDATE","SAL","COMM","DEPTNO"
FROM "HR"."EMP" "EMP" WHERE (DEPTNO = 10)

This clearly shows the statement as it was rewritten by the RLS policy.

Using either of these methods, you will be able to see the exact way that user queries
are rewritten.

Application Contexts
In the discussion of row-level security in the previous section, I made a critical as-
sumption: the predicate (i.e., the limiting condition that restricts the rows of the table)
was the same. In my examples, it was based on the department number of the user.
What if I have a new requirement: users can now see employee records based not on
department numbers but on a list of privileges maintained for that reason. A table
named EMP_ACCESS maintains the information about which users can access which
employee information.

SQL> DESC emp_access
 Name Null? Type
 ----------------- -------- ------------
 USERNAME VARCHAR2(30)
 DEPTNO NUMBER

Here is some sample data:

USERNAME DEPTNO
------------------------------ ----------
MARTIN 10
MARTIN 20
KING 20
KING 10
KING 30
KING 40

Here I observe that Martin can see departments 10 and 20, but King can see 10, 20, 30,
and 40. If an employee’s name is not here, he cannot see any records. This new re-
quirement requires that I generate the predicate dynamically inside the policy function.

964 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

The requirements also state that users can be reassigned their privileges dynamically
by updating the EMP_ACCESS table, and that it is not an option to log off and log in
again. Hence, a LOGON trigger (see Chapter 19) will not help in this case.

Solution? One option is to create a package with a variable to hold the predicate and
let the user execute a PL/SQL code segment to assign the value to the variable. Inside
the policy function, you will be able to see the value of the packaged variable and apply
that as the predicate. Is this an acceptable approach? Consider this option carefully: if
the user can reassign another value to the package variable, what prevents him from
assigning a very powerful value, such as that for King? Martin could log in, set the
variable to all departments, and then SELECT from the table to see all the records.
There is no security in this case, and that is unacceptable. This scenario is precisely why
you should put the code for setting the variable values in the LOGON trigger, where
the user will not have a chance to make a change.

Using Application Contexts
The possibility that a user may change the value of the package variable dynamically
requires us to rethink our strategy. We need a way to set a global variable by some
secure mechanism so that unauthorized alteration will not be possible. Fortunately,
Oracle provides this capability through application contexts. An application context is
analogous to a global package variable; once set, it can be accessed throughout the
session and reset. However, that’s where the similarity ends. The important difference
is that in contrast to a package variable, an application context is not set by mere value
assignment; rather, it needs a call to a procedure to set the value—and that is what
makes it more secure. Let’s explore this further with an example.

An application context is similar to a structure in the C language or a record in PL/SQL:
it has attributes, and attributes are assigned values. However, unlike its counterparts
in C and PL/SQL, the attributes are not named during the creation of the context;
instead, they are named and assigned at runtime. Application contexts reside in the
Program Global Area, by default, unless they are defined as global contexts. Since the
PGA is private to a session, the values are not visible to another session.

Here, I use the CREATE CONTEXT command to define a new context called dept_ctx:

SQL> CREATE CONTEXT dept_ctx USING set_dept_ctx;

Context created.

USING set_dept_ctx indicates that there is a procedure named set_dept_ctx, and that
only that procedure can set or change attributes of the context dept_ctx; this cannot
be done in any other way.

I have not yet specified any attributes of the context; I have simply defined the overall
context (name and secure mechanism for changing it). To do that, I need to create the
procedure. Inside this procedure, I will assign values to the context attributes using the

Application Contexts | 965

Download at WoweBook.Com

SET_CONTEXT function in the built-in package DBMS_SESSION, as shown in the
following example.

PROCEDURE set_dept_ctx (p_attr IN VARCHAR2, p_val IN VARCHAR2)
IS
BEGIN
 DBMS_SESSION.set_context ('DEPT_CTX', p_attr, p_val);
END;

To set the attribute named DEPTNO to a value 10, I specify:

SQL> EXEC set_dept_ctx ('DEPTNO','10')

PL/SQL procedure successfully completed.

To obtain the current value of an attribute, I call the SYS_CONTEXT function, which
accepts two parameters—the context name and the attribute name. Here is an example:

SQL> DECLARE
 2 l_ret VARCHAR2 (20);
 3 BEGIN
 4 l_ret := SYS_CONTEXT ('DEPT_CTX', 'DEPTNO');
 5 DBMS_OUTPUT.put_line ('Value of DEPTNO = ' || l_ret);
 6 END;
 7 /

Value of DEPTNO = 10

I can use this function to get some predefined contexts—for example, to obtain the IP
addresses and terminal names of the client:

BEGIN
 DBMS_OUTPUT.put_line ('The Terminal ID is '
 || SYS_CONTEXT ('USERENV', 'TERMINAL')
);
END;

The output is:

The Terminal ID is pts/0

I am taking advantage of the predefined application context USERENV, which has a
set of attributes such as TERMINAL, IP_ADDRESS, OS_USER, whose values are as-
signed automatically by Oracle; I cannot modify the values for these context attributes.
I can only obtain their values.

Security in Contexts
All that the procedure set_dept_ctx does is call the supplied program DBMS_SES-
SION.SET_CONTEXT with appropriate parameters. Why do I need to use a procedure
to do that? Can’t I just call the built-in function directly? Let’s see what happens if a
user calls the same code segment to set the value of the attribute DEPTNO to 10:

SQL> BEGIN
 2 DBMS_SESSION.set_context

966 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

 3 ('DEPT_CTX', 'DEPTNO',10);
 4 END;
 5 /
begin
*
ERROR at line 1:
ORA-01031: insufficient privileges
ORA-06512: at "SYS.DBMS_SESSION", line 82
ORA-06512: at line 2

Note the error, ORA-01031: insufficient privileges; that’s puzzling because the user
Martin does have the EXECUTE privilege on DBMS_SESSION, so that is clearly not
the issue here. You can verify this by regranting the EXECUTE privilege on this package
and re-executing the same code segment; you will still get the same error.

The answer lies in the fact that application contexts cannot be assigned directly by
calling the built-in package; they must be assigned through the program unit associated
with the context at the time of its creation. This makes the program unit trusted for the
context; hence, it’s known as the trusted program of the application context.

While creating an application context, you must specify its trusted pro-
gram. Only the trusted program can set the values inside that context,
and it cannot set values for any other context.

Contexts as Predicates in RLS
So far you have learned that a procedure must be used to set a context value, which is
akin to a global variable. You might be tempted to ask: how is that useful? Doesn’t it
increase the complexity rather unnecessarily without achieving any definite purpose?

The answer is no because the trusted procedure is the only way to set context values,
it acts as a gatekeeper to the context. We can perform arbitrarily complex authentica-
tion and verification steps inside the trusted program to ensure that the attribute as-
signments are valid. We can even completely eliminate passing parameters and set the
values from predetermined values without any input from the user. For example, from
our requirement definition, we know that we need to set the application context value
to a string of department numbers, picked from the table EMP_ACCESS, not passed
by the user. This application context is then used in the policy function. Let’s see how
to meet this requirement.

First I need to modify the policy function:

/* File on web: authorized_emps_3.sql */
 1 FUNCTION authorized_emps (
 2 p_schema_name IN VARCHAR2,
 3 p_object_name IN VARCHAR2
 4)
 5 RETURN VARCHAR2
 6 IS

Application Contexts | 967

Download at WoweBook.Com

 7 l_deptno NUMBER;
 8 l_return_val VARCHAR2 (2000);
 9 BEGIN
10 IF (p_schema_name = USER)
11 THEN
12 l_return_val := NULL;
13 ELSE
14 l_return_val := SYS_CONTEXT ('DEPT_CTX', 'DEPTNO_LIST');
15 END IF;
16
17 RETURN l_return_val;
18 END;

Here the policy function expects the department numbers to be passed through the
attribute DEPTNO_LIST of the context dept_ctx (line 14). To set this value, I need to
modify the trusted procedure of the context.

 /* File on web: set_dept_ctx_2.sql */
 1 PROCEDURE set_dept_ctx
 2 IS
 3 l_str VARCHAR2 (2000);
 4 l_ret VARCHAR2 (2000);
 5 BEGIN
 6 FOR deptrec IN (SELECT deptno
 7 FROM emp_access
 8 WHERE username = USER)
 9 LOOP
10 l_str := l_str || deptrec.deptno || ',';
11 END LOOP;
12
13 IF l_str IS NULL
14 THEN
15 -- No access records found, so no records
16 -- should be visible to this user.
17 l_ret := '1=2';
18 ELSE
19 l_str := RTRIM (l_str, ',');
20 l_ret := 'DEPTNO IN (' || l_str || ')';
21 DBMS_SESSION.set_context ('DEPT_CTX', 'DEPTNO_LIST', l_ret);
22 END IF;
23 END;

It’s time to test the function. First Martin logs in and counts the number of employees.
Before he issues the query, he needs to set the context:

SQL> EXEC rlsowner.set_dept_ctx

PL/SQL procedure successfully completed.

SQL> SELECT SYS_CONTEXT ('DEPT_CTX', 'DEPTNO_LIST') FROM DUAL;

SYS_CONTEXT('DEPT_CTX','DEPTNO_LIST')

DEPTNO IN (20,10)

SQL> SELECT DISTINCT deptno FROM hr.emp;

968 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

 DEPTNO

 10
 20

Here Martin sees only the employees of departments 10 and 20, as per the
EMP_ACCESS table. Suppose that Martin’s department changes to Department Num-
ber 30, Martin’s access should now be changed to department 30. The security ad-
ministrator updates the table to reflect the changes.

SQL> DELETE emp_access WHERE username = 'MARTIN';

2 rows deleted.

SQL> INSERT INTO emp_access VALUES ('MARTIN',30);

1 row created.

SQL> COMMIT;

Commit complete.

When Martin issues the same queries, he will see different results:

SQL> EXEC rlsowner.set_dept_ctx

PL/SQL procedure successfully completed.

SQL> SELECT SYS_CONTEXT ('DEPT_CTX','DEPTNO_LIST') FROM DUAL;

SYS_CONTEXT('DEPT_CTX','DEPTNO_LIST')

DEPTNO IN (30)

SQL> SELECT DISTINCT deptno FROM hr.emp;

 DEPTNO

 30

This change takes effect automatically. Because Martin can’t set the context attributes
himself, this arrangement is inherently more secure than setting a global package
variable would be. In addition, using the context-sensitive policy (in row-level security)
in Oracle Database 10g and later improves the performance as well. The policy function
is executed only when the context changes; the cached values are used until that hap-
pens. This makes the policy faster than the default dynamic policy type.

So, how is this approach different from creating a dynamically generated policy func-
tion on the fly from the emp_access table? In the case of a policy function, it must be
executed to get the predicate value, the list of departments in this case. Consider a table
with millions of queries against it; the policy function gets executed that many times,
each time hitting the emp_access table—a sure shot to terrible performance. You can

Application Contexts | 969

Download at WoweBook.Com

define the policy as static where the function is not executed as many times; but that
means that if the emp_access table records change, the policy function will not pick
the change and will produce the wrong result. Defining a context-sensitive policy with
application contexts achieves the best of both words—the policy function is
re-executed unless the context value changes. The context value resides in memory, so
it can be accessed very quickly.

Identifying Non-Database Users
Application contexts are useful well beyond the situations I’ve described so far. The
most important use of application contexts is to distinguish between different users
who cannot be identified through unique sessions. This is quite common in web ap-
plications that typically use a connection pool—a pool of connections to the database
using a single user, named, for example, CONNPOOL. Web users connect to the ap-
plication server, which, in turn, uses one of the connections from the pool to get to the
database. This is shown in Figure 23-6.

Here the users Martin and King are not database users; they are web users, and the
database has no knowledge of them. The connection pool connects to the database
using the user id CONNPOOL, which is a database user. When Martin requests some-
thing from the database, the pool might decide to use the connection labeled 1 to get
it from the database. After the request is complete, the connection becomes idle. If, at
this point, King requests something, the pool might decide to use the same connection
(labeled 1). Hence, from the database perspective, a session (which is actually the con-
nection from the pool) is from the user CONNPOOL. As a consequence, the examples
I showed earlier (where the USER function was used to identify the user) will not work
to identify the user making the calls. The USER function will always return CONN-
POOL because that is the connected user to the database.

This is where the application context comes into the picture. Assume that there is a
context named WEB_CTX with the attribute name WEBUSER. This value is set to the
name of the actual user (e.g., 'MARTIN') by the client when it sends the request to the
connection pool as follows:

BEGIN
 set_web_ctx ('WEBUSER', 'MARTIN');
END;

The RLS policy can be based on this value instead of on the database username. In that
case, the policy function will be slightly different, as shown below:

 /* File on web: authorized_emps_4.sql */
 1 FUNCTION authorized_emps (
 2 p_schema_name IN VARCHAR2,
 3 p_object_name IN VARCHAR2
 4)
 5 RETURN VARCHAR2
 6 IS
 7 l_deptno NUMBER;

970 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

 8 l_return_val VARCHAR2 (2000);
 9 BEGIN
10 IF (p_schema_name = USER)
11 THEN
12 l_return_val := NULL;
13 ELSE
14 SELECT deptno
15 INTO l_deptno
16 FROM emp
17 WHERE ename = SYS_CONTEXT ('WEB_CTX', 'WEBUSER');
18
19 l_return_val := 'DEPTNO = ' || l_deptno;
20 END IF;
21
22 RETURN l_return_val;
23 END;

Figure 23-6. Application users and RLS

Note line 17. The original code showed the following:

WHERE ename = USER;

Now it is:

WHERE ename = SYS_CONTEXT ('WEB_CTX','WEBUSER');

That selects the name of the web user and matches it against the ENAME column.

Application Contexts | 971

Download at WoweBook.Com

Application Contexts in a Nutshell
• Contexts are like global package variables; once set, they retain their values and

can be accessed for the duration of the session. Each session, furthermore, can set
the variable differently. Contexts reside in the PGA.

• Contexts can have one or more named attributes, each of which can be set to a
value. Attributes are defined at runtime.

• To set a value for an attribute, you call its trusted procedure, specified in the CRE-
ATE CONTEXT statement. This trusted procedure has the attribute name and a
value as its only arguments.

• Contexts, once defined, can be retrieved via the SYS_CONTEXT function.

Fine-Grained Auditing
Fine-grained auditing (FGA) provides a mechanism to record the fact that some user
has issued certain statements against a table and that certain conditions are met. The
mechanism records the user’s exact SQL statement as well as other details such as the
time, terminal, and so on.

Traditional auditing in Oracle is the mechanism by which Oracle records which schema
performed which action: Joe executed procedure X, John selected something from table
Y, etc. The records of all these activities—known as the audit trail—go into a single
table in the SYS schema, AUD$, which is exposed to users through several data dic-
tionary views—for example, DBA_AUDIT_TRAIL. Audit trails can also be written to
operating-system files instead of to database tables. Regardless of where this informa-
tion is written, the basic problem with regular auditing still remains: it merely keeps
track of who executed what statement, not specifically what was done. For example,
it shows that Joe selected some records from table ACCOUNTS, but not which par-
ticular records. If you want to know the values changed, you can place DML triggers
(discussed in Chapter 19) on the tables and capture the values in some table you have
defined. But because it’s not possible to define a trigger on SELECT statements, that
option will not work either.

This is where Oracle’s FGA comes in. FGA functionality is available via the built-in
package DBMS_FGA. FGA was introduced in Oracle9i Database where it applied only
to SELECT statements. Starting with Oracle Database 10g, it now applies to all DML
statements.

Don’t confuse FGA with FGAC, which stands for fine-grained access
control, a synonym for row-level security, which was discussed earlier
in this chapter.

972 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

Using FGA you can now record the activity of SELECT, INSERT, UPDATE, and DE-
LETE statements in the audit trail (albeit a different audit trail, not the AUD$ table).
In this audit trail, you will find not only the information on who did what, but a whole
lot of other information such as the exact SQL statement entered by the user, the System
Change Number (SCN), the value of bind variables (if used), and more.

One of the best aspects of FGA is that it can be applied selectively, for specific activities.
For example, you may want to perform an audit when someone selects the SAL column,
but not any of the other columns. Or, you may want to record an audit trail only when
someone selects the SAL column, and the value of SAL is at least 1500. This selective
recording reduces the amount of audit information that is generated.

Another very useful feature of FGA is that it can be directed to execute a user-defined
procedure automatically. This ability can be exploited in a variety of ways, as I’ll de-
scribe in the following sections.

Why Learn About FGA?
FGA is a close cousin of regular auditing, clearly a DBA-centric feature, so why should
PL/SQL developers be interested in it? There are several reasons:

Security
As I’ve noted for the other features described in this chapter, learning to leverage
Oracle’s built-in security features is simply part of good design for application
developers and architects today. FGA should be a part of your overall design
repertoire.

Performance
A more immediately compelling reason is the practical value of the information
returned by FGA. In addition to capturing information about who issues what
statements, FGA is able to identify the exact SQL statements issued. If you enable
FGA on a table, all of the SQL statements against that table will be captured in the
FGA audit trails. You can later analyze this information to help you identify pat-
terns in issuing these statements. This analysis can help you decide whether you
need to add or modify indexes or make any other changes that will help improve
performance.

Bind values
FGA captures bind values as well, and any well-designed application uses a lot of
bind variables. How do you know what different values are passed during the ap-
plication run? The answer may help you decide whether or not you need to define
an index. FGA trails will reveal the kind of information that will help you make
such decisions.

Handler modules
FGA can optionally execute a procedure, known as a handler module, whenever
certain audit conditions are satisfied. If FGA is placed on SELECT statements, the

Fine-Grained Auditing | 973

Download at WoweBook.Com

handler module will execute for each SELECT from the table. This is akin to spec-
ifying a trigger on a SELECT statement, something that Oracle does not support
but that might be highly desirable. For example, suppose that whenever someone
selects the salary of a company executive, a message should be sent to an advanced
queue, which is then sent to a different database. You can implement a handler
module to achieve the same objective that a trigger on SELECTs would provide
you.

Let’s take a closer look at how you can apply FGA in your application.

For FGA to work correctly, your database must be in cost-based opti-
mizer (CBO) mode, the queries must be using the CBO (i.e., they must
not be using RULE hints), and the tables (or views) in the query must
have been analyzed, at least with estimates. If these conditions are not
met, FGA might produce false positives: it might write an audit trail even
if the column was not actually selected.

A Simple FGA Example
Let’s start with a simple example—the same EMP table in the HR schema described in
the earlier section on row-level security. Suppose that because of privacy regulations,
you want to record a trail whenever someone selects the SAL and COMM columns. To
reduce the size of the trail being generated, you may want to record the activity only
when any of the selected records has a salary of $150,000 or more (not unreasonable
considered the starting salary of executives today). Finally, you may also want to trigger
auditing when someone queries the salary of employee 100 (you).

With these objectives in mind, let’s start building the FGA infrastructure. As with RLS,
there is an FGA policy defined on the table to be audited. The policy defines the con-
ditions under which the auditing should be triggered and the actions taken. I add the
policy using the ADD_POLICY procedure from the built-in package DBMS_FGA.

1 BEGIN
2 DBMS_FGA.add_policy (object_schema => 'HR',
3 object_name => 'EMP',
4 policy_name => 'EMP_SEL',
5 audit_column => 'SAL, COMM',
6 audit_condition => 'SAL >= 150000 OR EMPID = 100'
7);
8 END;

Here I have defined an FGA policy named EMP_SEL in line 4, passed to the parameter
policy_name. The policy is defined on the table EMP (line 3) owned by HR (line 2).
That policy asks for the creation of an audit trail whenever any user selects two columns,
SAL and COMM (audited columns, line 5). But the audit trail is written only if the
value of SAL in that record is at least $150,000 or if the employee ID is 100 (audit
condition, line 6).

974 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

The parameters audit_column and audit_condition can be omitted. If they are omitted,
every SELECT from table EMP in the HR schema will be audited.

Starting with Oracle Database 10g, because FGA can be applied to regular DML as
well, I can define the specific statements on which the policy should be effective, via a
new parameter, policy_name:

1 BEGIN
2 DBMS_FGA.add_policy (object_schema => 'HR',
3 object_name => 'EMP',
4 policy_name => 'EMP_DML',
5 audit_column => 'SALARY, COMM',
6 audit_condition => 'SALARY >= 150000 OR EMPID = 100,
7 statement_types => 'SELECT, INSERT, DELETE, UPDATE'
8);
9 END;

Although both FGA and RLS rely on a policy, the significance of this
element is quite different in each feature. They do have some similarities,
though. Like its namesake in RLS, a policy in FGA is not a “schema
object”—that is, no user owns it. Anyone with the EXECUTE privilege
on the DBMS_FGA package can create a policy and drop one created
by a different user. So ask your DBA to be very choosy while granting
the EXECUTE privilege on this built-in package; granting to PUBLIC
renders all of your auditing records suspect—at best.

In this case, the audit trail is written only when:

• The user selects one or both columns, SAL and COMM.

• The SAL value is at least 150,000, or the EMPID is 100.

Both conditions must be true for the audit record to be written. If one condition is true
but the other one is not, then the action is not audited. If the user does not retrieve the
SAL or the COMM columns in the query, either explicitly or implicitly, the trail is not
generated even if the record being accessed has a value of 150,000 or more in the SAL
column. For example, suppose that Jake’s salary is $160,000, and his EMPID is 52. A
user who merely wants to find his manager’s name issues:

SELECT mgr
 FROM emp
 WHERE empid = 52;

Because the user has not selected the SAL or the COMM columns, the action is not
audited. However the query:

SELECT mgr
 FROM emp
 WHERE sal >= 160000;

generates a trail. Why? Because the SAL column is present in the WHERE clause, the
user has accessed it; hence, the audited column condition was fulfilled. The SAL of the

Fine-Grained Auditing | 975

Download at WoweBook.Com

records retrieved is more than 150,000; hence, the audit condition is fulfilled. Because
both conditions have been fulfilled, the audit trail is triggered.

The audit condition need not reference the columns of the table on which the policy is
defined; it can reference other values, such as pseudo-columns, as well. This becomes
useful if you want to audit only a certain set of users, not all of them. Suppose you want
to record accesses to table EMP made by Scott; you could define the policy as:

BEGIN
 DBMS_FGA.add_policy (object_schema => 'HR',
 object_name => 'EMP',
 policy_name => 'EMP_SEL',
 audit_column => 'SALARY, COMM',
 audit_condition => 'USER=''SCOTT'''
);
END;

Access How Many Columns?
In my example in the previous section, I have specified a list of relevant columns as
follows

audit_column => 'SAL, COMM'

This indicates that if a user accesses either the SAL or the COMM column, the action
is logged. However, in some cases you may have a finer requirement that asks for logging
only if all the columns named in the list are referenced, not just one of them. For
example, in the employee database, you may want FGA to write a trail only if someone
accesses SAL and EMPNAME together. If only one column is accessed, the action is
not likely to uncover sensitive information because the user needs the name to match
to a salary. Suppose the user issues a query:

SELECT salary FROM hr.emp;

This displays the salaries of all employees, but without a name next to the salary, the
information is useless to a user who wants to know the salary of a particular employee.
Similarly, if the user issues:

SELECT empname
 FROM hr.emp;

the query returns the names of the employees; without the SAL column, however, the
salary information is protected. However, if the user issues:

SELECT empname, salary FROM hr.emp;

this query will enable the user to see the salaries of all employees, the very information
that should be protected.

Of the three cases I’ve shown, the last one is the only one that will trigger generation
of the audit trail (and the only one in which a trail would provide meaningful infor-
mation). In Oracle9i Database, there was no provision to specify the combination of

976 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

columns as an audit condition; in Oracle Database 10g and later, this is possible,
through the audit_colum_opts parameter in the ADD_POLICY procedure. By default,
the value of the parameter is DBMS_FGA.ANY_COLUMNS, which triggers an audit
trail if any of the columns is referenced. If you specify DBMS_FGA.ALL_COLUMNS
as the value of the parameter, the audit trail is generated only if all of the columns are
referenced. In my example, if I want to have an FGA policy that creates an audit record
only if the user selects both the SALARY and EMPNAME columns, I can create the
policy as:

BEGIN
 DBMS_FGA.add_policy (object_schema => 'HR',
 object_name => 'EMP',
 policy_name => 'EMP_DML',
 audit_column => 'SALARY, EMPNAME',
 audit_condition => 'USER=''SCOTT''',
 statement_types => 'SELECT, INSERT, DELETE, UPDATE',
 audit_column_opts => DBMS_FGA.all_columns
);
END;

This feature is extremely useful in limiting audit records to only relevant ones and thus
helping to limit the trail to a manageable size.

Checking the Audit Trail
The FGA audit trails are recorded in the table FGA_LOG$ owned by SYS. A data
dictionary view DBA_FGA_AUDIT_TRAIL is the external interface to this view, and
you can check there for audit trails.

SELECT db_user, sql_text
 FROM dba_fga_audit_trail
 WHERE object_schema = 'HR' AND object_name = 'EMP'

This query produces the following output:

DB_USER SQL_TEXT
------- ---
SCOTT select salary from hr.emp where empid = 1

In addition to capturing the user and the SQL statement, the FGA trail also captures
several other helpful pieces of information. Here are the important columns of the view:

TIMESTAMP
The time when the activity occurred.

SCN
The system change number when the activity occurred. This is useful when a value
selected now is immaterial. You can use Oracle’s flashback queries to look back at
a previous SCN.

OS_USER
The operating system user connected to the database.

Fine-Grained Auditing | 977

Download at WoweBook.Com

USERHOST
The terminal or client machine from which the user is connected.

EXT_NAME
In some cases, the user may be externally authenticated, for example via LDAP. In
such cases, the username in those external authentication mechanisms may be
relevant and is captured in this column.

Using Bind Variables
Back when I introduced FGA, I mentioned bind variables. Let’s look more deeply into
when you would use FGA with these variables. Let’s assume that a user did not specify
a statement such as the following:

SELECT salary
 FROM emp
 WHERE empid = 100;

but instead used:

DECLARE
 l_empid PLS_INTEGER;
BEGIN
 SELECT salary
 FROM emp
 WHERE empid = l_empid;
END;

FGA captures the values of bind variables along with the SQL text issued. The
values recorded can be seen in the column SQL_BIND in the view
DBA_FGA_AUDIT_TRAIL. In the above case, you specify the following code.

SQL> SELECT sql_text,sql_bind from dba_fga_audit_trail;

SQL_TEXT SQL_BIND
-- -----------------------
select * from hr.emp where empid = :empid #1(3):100

Notice the format in which the captured bind variable is displayed:

#1(3):100

where:

#1
Indicates the first bind variable. If the query had more than one bind variable, the
others would have been shown as #2, #3, and so on.

(3)
Indicates the actual length of the value of the bind variable. In this example, Scott
used 100 as the value, so the length is 3.

:100
Indicates the actual value of the bind variable, which, in this case is 100.

978 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

The SQL_BIND column contains the string of values if more than one bind variable is
used. For instance, if the query is:

DECLARE
 l_empid PLS_INTEGER := 100;
 l_salary NUMBER := 150000;

 TYPE emps_t IS TABLE OF emp%ROWTYPE;
 l_emps empts_t;
BEGIN
 SELECT * BULK COLLECT INTO l_emps
 FROM hr.emp
 WHERE empid = l_empid OR salary > l_salary;
END;

the SQL_BIND column will look like this:

#1(3):100 #2(5):15000

The SQL text and bind variable information are captured only if the
audit_trail parameter in the ADD_POLICY procedure is set to
DB_EXTENDED (the default), not to “DB”.

Fine-Grained Auditing in a Nutshell
• FGA can record SELECT accesses to a table (in Oracle9i Database) or all types of

DML access (in Oracle Database 10g and later) into an audit table named
FGA_LOG$ in the SYS schema.

• You can limit the generation of audit trail information so that the trail is produced
only if certain columns are selected or certain conditions are met.

• For FGA to work correctly, the cost based optimizer must be used; otherwise, more
false positives will occur.

• The recording of the trail is done through an autonomous transaction. Thus, if the
DML fails, the trail will still exist, and that may also lead to false positives.

• The audit trails show the exact statement issued by the user, the value of the bind
variables (if any), the System Change Number at the time of the query, and various
attributes of the session, such as the database username, the operating system
username, the timestamp, and much more.

• In addition to writing an entry into the audit trails, FGA can also automatically
execute a procedure, known as handler module.

Using Handler Modules
As I mentioned earlier, FGA can optionally execute PL/SQL stored program units such
as stored procedures. If the stored procedure, in turn, encapsulates a shell or OS pro-
gram, it can execute that as well. This stored program unit is known as the handler

Fine-Grained Auditing | 979

Download at WoweBook.Com

module. In the earlier example where I built the mechanism to audit accesses to the
EMP table, I could optionally specify a stored procedure—standalone or packaged—
to be executed as well. If the stored procedure is owned by user FGA_ADMIN and is
named myproc, I will have to call the policy creation procedure, ADD_POLICY, with
two new parameters, handler_schema and handler_module:

BEGIN
 DBMS_FGA.add_policy (object_schema => 'HR',
 object_name => 'EMP',
 policy_name => 'EMP_SEL',
 audit_column => 'SALARY, COMM',
 audit_condition => 'SALARY >= 150000 OR EMPID = 100',
 handler_schema => 'FGA_ADMIN',
 handler_module => 'MYPROC'
);
END;

Whenever the policy’s audit conditions are satisfied and the relevant columns are ref-
erenced, not only is the action recorded in the audit trails, but the procedure
fga_admin.myproc is executed as well. The procedure is automatically executed every
time the audit trails are written, as an autonomous transaction. (See the discussion of
autonomous transactions in Chapter 14.) It has to have exactly three parameters—the
schema name, the table name, and the policy name. Here is the structure of a handler
module procedure:

PROCEDURE myproc (
 p_table_owner IN VARCHAR2,
 p_table_name IN VARCHAR2,
 p_fga_policy IN VARCHAR2
)
IS
BEGIN
 -- the code is here
END;

How is that useful? In several ways. For starters, this allows you to build your own audit
handler program that can write to your own tables, not just to the standard audit trail
tables. You can write the messages to a queue table to be placed in a different database,
ask an email to be sent to security administrators, or simply count the number of times
it happened. The possibilities are endless.

If the handler module fails for any reason, FGA does not report an error
when you query data from the table. Instead it simply silently stops
retrieving the rows for which the handler module fails. This is a tricky
situation because you will never know that a handler module failed. Not
all rows will be returned, producing erroneous results. This makes it
important that you thoroughly test your handler modules.

980 | Chapter 23: Application Security and PL/SQL

Download at WoweBook.Com

CHAPTER 24

PL/SQL Architecture

In my experience, relatively few PL/SQL developers exhibit a burning curiosity about
the underlying architecture of the PL/SQL language. As a community, we seem to
mostly be content with learning the basic syntax of PL/SQL, writing our programs, and
going home to spend quality time with family and friends. That’s a very healthy
perspective!

I suggest, however, that all PL/SQL developers would benefit from a basic understand-
ing of this architecture. Not only will you be able to write programs that utilize memory
more efficiently, but you will be able to configure your programs and overall applica-
tions to behave in ways that you might have thought were impossible.

You will find in this chapter answers to the following questions…and many more:

• How does the PL/SQL runtime engine use memory, and what can I do to manage
how much memory is used?

• Should I be running natively compiled code or stick with the default interpreted
code? What does “native compilation” mean, anyway?

• Why do my programs become INVALID and how can I recompile them back to
health?

• I have duplicated tables in 20 different schemas. Do I really have to maintain 20
copies of my code, in each of those schemas?

• And…who or what is DIANA?

Who (or What) is DIANA?
In earlier editions of this book, the title of this chapter was Inside PL/SQL. I decided to
change the name to PL/SQL Architecture for two reasons:

1. Most of what was in the chapter was not truly in any sense “internals.” In fact, it
is very difficult for PL/SQL developers (anyone outside of Oracle headquarters) to
get information about “internal” aspects of PL/SQL.

981

Download at WoweBook.Com

2. I don’t want to encourage you to try to uncover otherwise hidden aspects of
PL/SQL. Developers, I believe, benefit most from learning the syntax of the lan-
guage, not from trying to “game” or trick the PL/SQL compiler into doing some-
thing it wouldn’t do of its own volition.

Having said that, a very common question that touches on the internal structures of
the PL/SQL compiler is: “Who or what is DIANA?”

Asking a PL/SQL programmer Who is Diana? is like asking a San Francisco resident
Who’s Bart?. The answer to both questions is not so much a who as a what. For the San
Francisco Bay Area resident, BART is the Bay Area Rapid Transit system—the subway.
For the PL/SQL programmer, DIANA is the Distributed Intermediate Annotated No-
tation for Ada and is part of PL/SQL’s heritage as an Ada-derived language. In some
Ada compilers the output of the first part of the compilation is a DIANA. Likewise,
PL/SQL was originally designed to output a DIANA in the first part of the compilation
process.

As a PL/SQL programmer, however, you never really see or interact with your pro-
gram’s DIANA. Oracle Corporation may decide, like some Ada compiler publishers,
that PL/SQL has outgrown DIANA, and another mechanism may be used. Changes in
the internals of the database happen. For example, segment space management used
to use free lists, but now uses bitmaps. So, while you might get an error if your DIANA
grows too large (how embarrassing—your DIANA is showing!), you don’t really do
anything with DIANA and if she (it) goes away, you probably won’t even know.

Knowing about DIANA might win you a T-shirt in a trivia contest at Oracle Open
World, but it probably won’t improve your programming skills— unless you are pro-
gramming the PL/SQL compiler.

So ... enough with internals. Let’s get on with our discussion of critical aspects of the
PL/SQL architecture.

How Does Oracle Execute PL/SQL Code?
Before I explore how an Oracle database executes PL/SQL programs, I first need to
define a couple of terms of art:*

PL/SQL runtime engine (a.k.a. PL/SQL Virtual Machine)
The PL/SQL Virtual Machine (PVM) is the database component that executes a
PL/SQL program’s bytecode. In this virtual machine, the bytecode of a PL/SQL
program is translated to machine code that makes calls to the database server and
returns results to the calling environment. The PVM itself is written in C. Histor-
ically, Oracle has included a PVM in some client-side tools such as Oracle Forms,

* http://en.wiktionary.org defines a term of art as “A term whose use or meaning is specific to a particular field
of endeavor.”

982 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

http://en.wiktionary.org

where the runtime engine opens a session to a remote database, communicating
with the SQL engine over a networking protocol.

Database session
For most (server-side) PL/SQL, the database session is the process and memory
space associated with an authenticated user connection. Each session has its own
memory area where it can hold an executing program’s data. Sessions begin with
logon and end with logoff. The sessions connected to a database are visible through
the view V$SESSION.

To put these terms into context, let’s take a look at several variations on running a
trivial program from a very common frontend, SQL*Plus. This is a good representative
of a session-oriented tool that gives you direct access to the PL/SQL environment inside
the database server. (I introduced SQL*Plus and showed how to use it with PL/SQL
back in Chapter 2.) Of course, you may be calling the server from other tools such as
Oracle’s other client-side tools or even a procedural language such as Perl, C, or Java.
But don’t worry: processing on the server side is relatively independent of the client
environment.

PL/SQL execution launched directly from SQL*Plus always involves a top-level anon-
ymous block. While you may know that the SQL*Plus EXECUTE command converts
the call to an anonymous block, did you know that SQL’s CALL statement uses a
(simplified) kind of anonymous block? Actually, until Oracle9i Database’s direct in-
vocation of PL/SQL from SQL, all PL/SQL invocations from SQL used anonymous
blocks.

An Example
So let’s begin with a look at the simplest possible anonymous block:

BEGIN
 NULL;
END;

…and find out just what happens when you send this block to the database server
(Figure 24-1).

Let’s step through the operations shown in this figure:

1. Starting on the left side of Figure 24-1, the user composes the source code for the
block and then gives SQL*Plus the go-ahead command (a slash). As the figure
shows, SQL*Plus sends the entire code block, exclusive of the slash, to the server.
This transmission occurs over whatever connection the session has established (for
example, Oracle Net or interprocess communication).

How Does Oracle Execute PL/SQL Code? | 983

Download at WoweBook.Com

2. Next, the PL/SQL compiler attempts to compile this anonymous block to byte-
code.† A first phase is to check the syntax to ensure that the program adheres to
the grammar of the language. In this simple case, there are no identifiers to figure
out, only language keywords. If compilation succeeds, the database puts the
block’s compiled form (the bytecode) into a shared memory area; if it fails, the
compiler will return error messages to the SQL*Plus session.

3. Finally, the PVM interprets the bytecode and ultimately returns a success or failure
code to the SQL*Plus session.

Let’s add an embedded SQL query statement into the anonymous block and see how
that changes the picture. Figure 24-2 introduces some of the SQL-related elements of
the database server.

This example fetches a column value from the well-known table DUAL.‡

After checking that the PL/SQL portions of the code adhere to the language’s syntax,
the PL/SQL compiler communicates with the SQL compiler to hand off any embedded
SQL for execution. Likewise, PL/SQL programs called from SQL statements cause the
SQL compiler to hand off the PL/SQL calls to the PL/SQL compiler. The SQL parser
will resolve any expressions, look for opportunities to use the function result cache
(starting with Oracle Database 11g), execute semantic and syntax checks, perform
name resolution and determine an optimal execution plan. These steps are all part of
the parse phase of the SQL execution and precede any substitution of bind variables
and the execution and fetch of the SQL statement.

Figure 24-1. Execution of a trivial anonymous block

† Actually, if some session previously needed the database to compile the block, there is a good chance that
the compile phase won’t need to be repeated. That is because the server caches the outputs of relatively
expensive operations like compilation in memory and tries to share them.

‡ According to a reputable source, the name DUAL is from its dual singularity: one row, one column.

984 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

While PL/SQL shares a SQL compiler with the database, this does not mean that every
SQL function is available in PL/SQL. For example, SQL supports the NVL2 function:

SELECT NVL2(NULL, 1, 2) FROM DUAL;

But attempting to use NVL2 directly in PL/SQL results in PLS-00201: identifier ‘NVL2’
must be declared.

EXEC DBMS_OUTPUT.PUT_LINE(NVL2(NULL, 1, 2));

BEGIN DBMS_OUTPUT.PUT_LINE (NVL2(NULL, 1, 2)); END;

 *
ERROR at line 1:
ORA-06550: line 1, column 28:
PLS-00201: identifier 'NVL2' must be declared
ORA-06550: line 1, column 7:
PL/SQL: Statement ignored

When a PL/SQL program is compiled, embedded SQL statements are modified slightly
such that INTO clauses are removed, local program variables are replaced with bind

Figure 24-2. Execution of an anonymous block that contains SQL

How Does Oracle Execute PL/SQL Code? | 985

Download at WoweBook.Com

variables, and some keywords are forced to uppercase. For example, if myvar is a local
program variable, PL/SQL will change this:

select dummy into str from dual where dummy = myvar

into something like this in Oracle Database 10g or Oracle Database 11g:

SELECT DUMMY FROM DUAL WHERE DUMMY = :B1

There are two other kinds of callouts you can make from PL/SQL:

Java stored procedures
The default database server installation includes not just a PL/SQL virtual machine
but also a Java virtual machine. You can write a PL/SQL call spec whose logic is
implemented as a static Java class. For details and examples, see Chapter 27 on the
book’s web site).

External procedures
You can also implement the executable portion of a PL/SQL subprogram in custom
C code, and at runtime the database will run your code in a separate process and
memory space from the main database server. You are responsible for backing up
these binaries and making sure each RAC node has a copy. Chapter 28 discusses
external procedures and is also available on the book’s web site.

You can learn more about the runtime architecture of these two approaches by con-
sulting their respective chapters.

Compiler Limits
Large PL/SQL programs may encounter the server error PLS-00123: Program too
large. This means that the compiler bumped into the maximum allowed number of
“nodes” in the parse tree. The normal workaround for this error is to split the program
into several smaller programs or re-engineer it (for example to use a temporary table
instead of 10,000 parameters). It’s difficult to predict how many nodes a program will
need because nodes don’t directly correspond to anything easily measurable, such as
tokens or lines of code.

Oracle advises that a “typical” stored program generates four parse tree nodes per line
of code, and that this equates to the following approximate upper limits:

PL/SQL program type Upper limit (estimated)

Package and type bodies; standalone functions and procedures 256M

Signature (header) of standalone functions and procedures 128K

Package and type specifications; anonymous blocks 128K

These are only estimates, and there can be a fair amount of variance in either direction.

Other documented hard limits in the PL/SQL compiler include the following:

986 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

PL/SQL elements Upper limit (estimated)

Levels of block nesting 255

Parameters you can pass to a procedure or function 65,536

Levels of record nesting 64

Objects referenced in a program unit 65,536

Number of exception handlers in one program 65,536

Precision of a NUMBER (digits) 38

Size of a VARCHAR2 (bytes) 32,767

Few of these are likely to cause a problem, but you can find a complete list of them in
an appendix of Oracle’s official PL/SQL documentation, PL/SQL User’s Guide and
Reference.

The Default Packages of PL/SQL
A true object-oriented language like Java has a root class (in Java it is called Object, not
surprisingly), from which all other classes are derived. PL/SQL is, officially, an object-
relational language, but at its core it is a relational, procedural programming language
and it has at its core a “root” package named STANDARD.

The packages you build are not derived from STANDARD, but almost every program
you write will depend on and use this package. It is, in fact, one of the two default
packages of PL/SQL, the other being DBMS_STANDARD.

To best understand the role that these packages play in your programming environ-
ment, it is worth traveling back in time to the late 1980s, before the days of Oracle7
and SQL*Forms 3, before Oracle PL/SQL even existed. Oracle had discovered that
while SQL was a wonderful language, it couldn’t do everything. Their customers found
themselves writing C programs that executed the SQL statements, but those C pro-
grams had to be modified to run on each different operating system.

Oracle decided that it would create a programming language that could execute SQL
statements natively and be portable across all operating systems on which the Oracle
database was installed. The company also decided that rather than come up with a
brand-new language on their own, they would evaluate existing languages and see if
any of them could serve as the model for what became PL/SQL.

In the end, Oracle chose Ada as that model. Ada was originally designed for use by the
U.S. Department of Defense, and was named after Ada Lovelace, an early and widely
respected software programming pioneer. Packages are a construct adopted from Ada.
In the Ada language, you can specify a “default package” in any given program unit.
When a package is the default, you do not have to qualify references to elements in the
package with the package_name dot syntax as in my_package.call_procedure.

The Default Packages of PL/SQL | 987

Download at WoweBook.Com

When Oracle designed PL/SQL, they kept the idea of a default package, but changed
the way it is applied. We (users of PL/SQL) are not allowed to specify a default package
in a program unit. Instead, there are just two default packages in PL/SQL, STANDARD
and DBMS_STANDARD. They are defaults for the entire language, not for any specific
program unit.

You can (and almost always will) reference elements in either of these packages without
using the package name as a dot-qualified prefix. Let’s now explore how Oracle uses
the STANDARD package (and to a lesser extent, DBMS_STANDARD) to, as stated in
the Oracle PL/SQL User Guide, “define the PL/SQL environment.”

STANDARD declares a set of types, exceptions, and subprograms that are automati-
cally available to all PL/SQL programs and would be considered (mistakenly) by many
PL/SQL developers to be “reserved words” in the language. When compiling your code,
Oracle must resolve all unqualified identifiers; it first checks to see if an element with
that name is declared in the current scope. If not, it then checks to see if there an element
with that name defined in STANDARD or DBMS_STANDARD. If a match is found
for all identifiers in your program, the code can be compiled (assuming there are no
syntax errors).

To understand the role of STANDARD, consider the following, very strange-looking
block of PL/SQL code. What do you think will happen when I execute this block?

 /* File on web: standard_demo.sql */
 1 DECLARE
 2 SUBTYPE DATE IS NUMBER;
 3 VARCHAR2 DATE := 11111;
 4 TO_CHAR PLS_INTEGER;
 5 NO_DATA_FOUND EXCEPTION;
 6 BEGIN
 7 SELECT 1 INTO TO_CHAR
 8 FROM SYS.DUAL WHERE 1 = 2;
 9 EXCEPTION
10 WHEN NO_DATA_FOUND
11 THEN
12 DBMS_OUTPUT.put_line ('Trapped!');
13 END;

Most PL/SQL developers will say either “This block won’t even compile,” or “it will
display the word ‘Trapped!’ since 1 is never equal to 2.”

In fact, the block will compile, but when you run it, you will see an unhandled
NO_DATA_FOUND exception:

ORA-01403: no data found
ORA-06512: at line 7

Now isn’t that odd? NO_DATA_FOUND is the only exception I am actually handling,
so how can it escape unhandled? Ah, but the question is: which NO_DATA_FOUND
am I handling? You see, in this block, I have declared my own exception named
NO_DATA_FOUND. This name is not a reserved word in the PL/SQL language (in

988 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

contrast, BEGIN is a reserved word. You cannot name a variable “BEGIN”). Instead,
it is an exception that is defined in the specification of the STANDARD package, as
follows:

 NO_DATA_FOUND exception;
 pragma EXCEPTION_INIT(NO_DATA_FOUND, 100);

Since I have a locally-declared exception with the name NO_DATA_FOUND, any
unqualified reference to this identifier in my block will be resolved as my exception and
not STANDARD’s exception. A SELECT INTO that does not find any rows raises
STANDARD.NO_DATA_FOUND, which is not the exception handled in the excep-
tion section.

If, on the other hand, line 12 in my exception section looked like this:

WHEN STANDARD.NO_DATA_FOUND

then the exception would be handled and the word “Trapped!” displayed.

In addition to the oddness of NO_DATA_FOUND, these lines also appear to be rather
strange:

Line(s) Description

2 Define a new type of data named “DATE”, which is actually of type NUMBER.

3 Declare a variable named “VARCHAR2” of type “DATA” and assign it a value of 11111.

4 Declare a variable named “TO_CHAR” of type PLS_INTEGER.

I can “repurpose” these names of “built-in” elements of the PL/SQL language, because
they are all defined in the STANDARD package. These names are not reserved by
PL/SQL; they are simply and conveniently referenceable without their package name.

The STANDARD package contains the definitions of the supported datatypes in
PL/SQL, the predefined exceptions, and the built-in functions, such as
TO_CHAR, SYSDATE, and USER. The DBMS_STANDARD package contains trans-
action-related elements, such as COMMIT, ROLLBACK, and the trigger event func-
tions INSERTING, DELETING, and UPDATING.

Here are a few things to note about STANDARD:

• You should never change the contents of this package. If you do, I suggest that you
not contact Oracle Support and ask for help. You have likely just violated your
maintenance agreement! Your DBA should give you read-only authority on the
RDBMS/Admin directory so that you can examine this package, along with any of
the supplied packages, like DBMS_OUTPUT (check out dbmsotpt.sql) and
DBMS_UTILITY (check out dbmsutil.sql).

• Oracle even lets you read the package body of STANDARD; most package bodies,
such as for DBMS_SQL, are wrapped or pseudo-encrypted. STANDARD is not.
Look in the stdbody.sql script and you will see, for instance, that the USER function

The Default Packages of PL/SQL | 989

Download at WoweBook.Com

always executes a SELECT from SYS.dual, while SYSDATE will only execute a
query if a C program to retrieve the system timestamp fails.

• Just because you see a statement in STANDARD doesn’t mean you can write that
same code in your own PL/SQL blocks. You cannot, for example, declare a subtype
with a range of values, as is done for BINARY_INTEGER.

• Just because you see something defined in STANDARD doesn’t mean you can use
it in PL/SQL. For example, the DECODE function is declared in STANDARD, but
it can be called only from within a SQL statement.

The STANDARD package is defined by the stdspec.sql and stdbody.sql files in $ORA-
CLE_HOME/RDBMS/Admin (in some earlier versions of the database, this package
may be found in the standard.sql file). You will find DBMS_STANDARD in
dbmsstdx.sql.

If you are curious about which of the many predefined identifiers are actually reserved
words in the PL/SQL language, check out the reserved_words.sql script on the book’s
web site. This script is explained in Chapter 3.

Execution Authority Models
The Oracle database offers two different models for object permissions in your PL/SQL
programs. The default (and only model way back in the days before Oracle8i Database)
is definer rights. With this model, a stored program executes under the authority of its
owner, or definer.§ The other permission model uses the privileges of the user invoking
the program and is referred to as invoker rights.

You need to understand the nuances of both the definer rights model and the invoker
rights model because many PL/SQL applications rely on a combination of the two.
Let’s explore these in a little more detail, so you know when you want to use each model.

The Definer Rights Model
Before a PL/SQL program can be executed from within a database instance, it must be
compiled and stored in the database itself. Thus, a program unit is always stored within
a specific schema or database account, even though the program might refer to objects
in other schemas.

With the definer rights model, keep the following rules in mind:

• Any external reference in a program unit is resolved at compile time, using the
directly granted privileges of the schema in which the program unit is compiled.

§ It was possible to get invoker rights by using a loopback database link.

990 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

• Database roles are ignored completely when compiling stored programs. All priv-
ileges needed for the program must be granted directly to the definer (owner) of
the program.

• Whenever you run a program compiled with the definer rights model (the default),
its SQL executes under the authority of the schema that owns the program.

• Although direct grants are needed to compile a program, you can grant EXECUTE
authority to give other schemas and roles the ability to run your program.

Figure 24-3 shows how you can use the definer rights model to control access to un-
derlying data objects. All the order entry data is stored in the OEData schema. All the
order entry code is defined in the OECode schema. OECode has been granted the direct
privileges necessary to compile the Order_Mgt package, which allows you to both place
and cancel orders.

Figure 24-3. Controlling access to data with the definer rights model

To make sure that the orders table is updated properly, no direct access (either via roles
or via privileges) is allowed to that table through any schema other than OECode.
Suppose, for example, that the Sam_Sales schema needs to run through all the out-
standing orders and close out old ones. Sam will not be able to issue a DELETE state-
ment from the Close_Old_Orders procedure; instead, he will have to call
Order_Mgt.cancel to get the job done.

Execution Authority Models | 991

Download at WoweBook.Com

Advantages of definer rights

Certain situations cry out for definer rights. This model offers the following advantages:

• You are better able to control access to underlying data structures. You can guar-
antee that the only way the contents of a table can be changed is by going through
a specific programmatic interface (usually a package).

• Application performance improves dramatically because the PL/SQL engine does
not have to perform checks at runtime to determine if you have the appropriate
privileges or—just as important—which object you should actually be manipu-
lating (my accounts table may be quite different from yours!).

• You don’t have to worry about manipulating the wrong table. With definer rights,
your code will work with the same data structure you would be accessing directly
in SQL in your SQL*Plus (or other execution) environment. It is simply more
intuitive.

Disadvantages of definer rights

But there are problems with the definer rights model as well. These are explored in the
next sections.

Let’s see what all those definer rights rules can mean to a PL/SQL
developer on a day-to-day basis. In many databases, developers write code against ta-
bles and views that are owned by other schemas, with public synonyms created for
them to hide the schema. Privileges are then granted via database roles.

This very common setup can result in some frustrating experiences. Suppose that my
organization relies on roles to grant access to objects. I am working with a table called
accounts, and can execute this query without any problem in SQL*Plus:

SQL> SELECT account#, name FROM accounts;

Yet, when I try to use that same table (and the same query, even) inside a procedure, I
get an error:

SQL> CREATE OR REPLACE PROCEDURE show_accounts
 2 IS
 3 BEGIN
 4 FOR rec IN (SELECT account#, name FROM accounts)
 5 LOOP
 6 DBMS_OUTPUT.PUT_LINE (rec.name);
 7 END LOOP;
 8 END;
 9 /

Warning: Procedure created with compilation errors.

SQL> sho err
Errors for PROCEDURE SHOW_ACCOUNTS:

LINE/COL ERROR

Where’d my table go.

992 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

-------- --
4/16 PL/SQL: SQL Statement ignored
4/43 PLS-00201: identifier 'ACCOUNTS' must be declared

This doesn’t make any sense…or does it? The problem is that accounts is actually owned
by another schema; I was unknowingly relying on a synonym and roles to get at the
data. So if you are ever faced with this seemingly contradictory situation, don’t bang
your head against the wall in frustration. Instead, ask the owner of the object or the
DBA to grant you the privileges you require to get the job done.

Suppose that my database instance is set up with a separate
schema for each of the regional offices in my company. I build a large body of code that
each office uses to analyze and maintain its data. Each schema has its own tables with
the same structure but different data, a design selected for both data security and ease
of movement via transportable tablespaces.

Now, I would like to install this code so that I spend the absolute minimum amount
of time and effort setting up and maintaining the application. The way to do that is to
install the code in one schema and share that code among all the regional office schemas.

With the definer rights model, unfortunately, this goal and architecture are impossible
to achieve. If I install the code in a central schema and grant EXECUTE authority to
all regional schemas, then all those offices will be working with whatever set of tables
is accessible to the central schema (perhaps one particular regional office or, more
likely, a dummy set of tables). That’s no good. I must instead install this body of code
in each separate regional schema, as shown in Figure 24-4.

Figure 24-4. Repetitive installations of code needed with definer rights

How do I maintain all that code.

Execution Authority Models | 993

Download at WoweBook.Com

The result is a maintenance and enhancement nightmare. Perhaps invoker rights will
give us options for a better solution.

Another common source of confusion with definer rights
occurs when using dynamic SQL (described in Chapter 16). Suppose that I create a
generic “exec DDL” program (yes, this is a really bad idea security-wise, but it illustrates
the unintended consequences of this learning exercise) as follows:

/* File on web: execddl.sp */
PROCEDURE execDDL (ddl_string IN VARCHAR2)
IS
BEGIN
 EXECUTE IMMEDIATE ddl_string;
EXCEPTION
 WHEN OTHERS
 THEN
 DBMS_OUTPUT.PUT_LINE ('Dynamic SQL Failure: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE (' on statement: "' || ddl_string || '"');
 RAISE;
END;

After testing it in my schema with outstanding results, I decide to share this neat utility
with everyone else in my development organization. I compile it into the COMMON
schema (where all reusable code is managed), grant EXECUTE to PUBLIC, and create
a public synonym. Then I send out an email announcing its availability.

A few weeks later, I start getting calls from my coworkers. “Hey, I asked it to create a
table, and it ran without any errors, but I don’t have the table.” “I asked it to drop my
table, and the execddl procedure said that there is no such table. But I can do a DE-
SCRIBE on it.” You get the idea. I begin to have serious doubts about sharing my code
with other people. Sheesh, if they can’t use something as simple as the execddl proce-
dure without screwing things up...but I decide to withhold judgment and do some
research.

I log into the COMMON schema and find that, sure enough, all of the objects people
were trying to create or drop or alter were sitting here in COMMON. And then it dawns
on me: unless a user of execddl specifies his own schema when he asks to create a table,
the results will be most unexpected.

In other words, this call to execddl:

EXEC execddl ('CREATE TABLE newone (rightnow DATE)')

would create the newone table in the COMMON schema. And this call to execddl:

EXEC execddl ('CREATE TABLE scott.newone (rightnow DATE)')

might solve the problem, but would fail with the following error:

ORA-01031: insufficient privileges

unless I grant CREATE ANY TABLE to the COMMON schema. Yikes…my attempt
to share a useful piece of code got very complicated very fast! It sure would be nice to

Dynamic SQL and definer rights.

994 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

let people run the execddl procedure under their own authority and not that of COM-
MON, without having to install multiple copies of the code.

The time to pause and review your design with a col-
league is when your program executes dynamic SQL that relies on the owner’s directly
granted system privileges—and you think definer rights is appropriate to use. You
should be very reluctant to create my execDDL procedure in the SYS schema or any
other schema having system privileges that could serve as a gateway to privilege esca-
lation if unexpected, but legal input is passed in. Please review Chapter 16 on how to
prevent code injection.

The Invoker Rights Model
Sometimes, your programs should execute using the privileges of the person running
the program and not the owner of the program. In such cases, you should choose the
invoker rights model. With this approach, all external references in the SQL statements
in a PL/SQL program unit are resolved according to the privileges of the invoking
schema, not those of the owning or defining schema.

Figure 24-5 demonstrates the fundamental difference between the definer and the in-
voker rights models. Recall that in Figure 24-4, it was necessary for me to push out
copies of my application to each regional office so that the code would manipulate the
correct tables. With invoker rights, this step is no longer necessary. Now I can compile
the code into a single code repository. When a user from the Northeast region executes
the centralized program (probably via a synonym), it will work automatically with
tables in the Northeast schema.

Figure 24-5. Use of invoker rights model

So that’s the idea behind invoker rights. Let’s see what is involved in terms of code,
and then explore how best to exploit the feature.

Privilege escalation and SQL injection.

Execution Authority Models | 995

Download at WoweBook.Com

Invoker rights syntax

The syntax to support this feature is simple enough. You add the following clause before
your IS or AS keyword in the program header:

AUTHID CURRENT_USER

Here, for example, is that generic “exec DDL” engine again, this time defined as an
invoker rights program:

/* File on web: execddl.sql */
PROCEDURE execddl (ddl_in in VARCHAR2)
 AUTHID CURRENT_USER
IS
BEGIN
 EXECUTE IMMEDIATE ddl_in;
END;

The AUTHID CURRENT_USER clause before the IS keyword indicates that when
execddl executes, it should run under the authority of the invoker or “current user,”
not the authority of the definer. And that’s all you have to do. If you do not include the
AUTHID clause, or if you include it and explicitly request definer rights as shown:

AUTHID DEFINER

then all references in your program will be resolved according to the directly granted
privileges of the owning schema.

Invoker Rights for Dynamic SQL
I have written hundreds of programs using dynamic SQL, and with definer rights I
would have to worry about schema issues. Where is the program running? Who is
running it? What will happen when someone runs it? These are serious questions to
ask about your code!

You may be tempted to use the AUTHID CURRENT_USER clause with every stored
program unit that uses any kind of dynamic SQL. Once you take this step, you reason,
you can rest assured that no matter where the program is compiled and which schema
runs the program, it will always act on the currently connected schema.

The problem with this approach, though, is twofold. First, your users now require the
same privileges that the programs have (and you may not want the HR clerk to modify
a salary outside the designated program). Second there is extra runtime checking that
the database must perform for invoker rights programs—and that can be a drag on
performance. Use invoker rights where it is appropriate—neither model should be
adopted blindly. I like to think about which privilege model my program needs and
deliberately code to that model.

Rules and restrictions on invoker rights

There are a number of rules and restrictions to keep in mind when you are taking
advantage of the invoker rights model:

996 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

• AUTHID DEFINER is the default option.

• The invoker rights model checks the privileges assigned to the invoker at the time
of program execution to resolve any SQL-based references to database objects.

• With invoker rights, roles are in effect at runtime as long as the invoker rights
program hasn’t been called from a definer rights program.

• The AUTHID clause is allowed only in the header of a standalone subprogram
(procedure or function), a package specification, or an object type specification.
You cannot apply the AUTHID clause to individual programs or methods within
a package or object type. So the whole package will be invoker rights or the whole
package will be definer rights. If parts of your package should be invoker rights
and parts should be definer rights, then you need two packages.

• Invoker rights resolution of external references will work for the following kinds
of statements:

— SELECT, INSERT, UPDATE, MERGE, and DELETE data manipulation
statements

— LOCK TABLE transaction control statement

— OPEN and OPEN FOR cursor control statements

— EXECUTE IMMEDIATE and OPEN FOR USING dynamic SQL statements

— SQL statements parsed using DBMS_SQL.PARSE

• Definer rights will always be used to resolve all external references to PL/SQL pro-
grams and object type methods at compilation time.

• You can use invoker rights to change the resolution of static external data element
references (tables and views).

You can also use invoker rights to resolve external references to PL/SQL programs.
Here is one way to do it:

EXECUTE IMMEDIATE 'BEGIN someprogram; END;';

In this fragment, someprogram would get resolved at runtime according to the rights
and namespace of the invoker. Alternatively, I could have used SQL’s CALL statement
instead of the anonymous block. (I can’t just use a naked CALL statement because it
is not directly supported within PL/SQL.)

Combining Rights Models
What do you think would happen if a definer rights program called an invoker rights
program? Or vice versa? The rules are simple:

• If a definer rights program calls an invoker rights program, the rights of the call-
ing program’s owner apply while the called program executes.

Execution Authority Models | 997

Download at WoweBook.Com

• If an invoker rights program calls a definer rights program, the rights of the
called program’s owner apply while the called program executes. When control
returns to the caller, invoker rights resume.

To help keep all of this straight in your head, just remember that definer rights are
“stronger” than (take precedence over) invoker rights.

Here are some files on the book’s web site that you can use to explore the nuances of
the invoker rights model in more detail:

invdefinv.sql and invdefinv.tst
Two scripts that demonstrate the impact of the precedence of definer rights over
invoker rights.

invdef_overhead.tst
Examines the overhead of reliance on invoker rights (hint: runtime resolution is
slower than compile-time resolution).

invrole.sql
Demonstrates how a change in roles can affect how object references are resolved
at runtime.

irdynsql.sql
Explores some of the complexities involved in using invoker and definer rights with
dynamic SQL.

Conditional Compilation
Introduced in Oracle Database 10g Release 2, conditional compilation allows the com-
piler to compile selected parts of a program based on conditions you provide with the
$IF directive.

Conditional compilation will come in very handy when you need to:

• Write a program that will run under different versions of Oracle, taking advantage
of features specific to those versions. More specifically, you may want to take ad-
vantage of new features of the Oracle database where available, but you also need
your program to compile and run in older versions. Without conditional compi-
lation, you would have to maintain multiple files or use complex SQL*Plus sub-
stitution variable logic.

• Run certain code during testing and debugging, but then omit that code from the
production code. Prior to conditional compilation, you would need to either com-
ment out lines of code or add some overhead to the processing of your
application—even in production.

• Install/compile different elements of your application based on user requirements,
such as the components for which a user is licensed. Conditional compilation
greatly simplifies the maintenance of a code base with this complexity.

998 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

You implement conditional compilation by placing compiler directives (commands) in
your source code. When your program is compiled, the PL/SQL preprocessor evaluates
the directives and selects those portions of your code that should be compiled. This
pared-down source code is then passed to the compiler for compilation.

There are three types of directives:

Selection directives
Use the $IF directive to evaluate expressions and determine which code should be
included or avoided.

Inquiry directives
Use the $$identifier syntax to refer to conditional compilation flags. These inquiry
directives can be referenced within an $IF directive or used independently in your
code.

Error directives
Use the $ERROR directive to report compilation errors based on conditions eval-
uated when the preprocessor prepares your code for compilation.

First I’ll show some simple examples, then delve more deeply into the capabilities of
each directive. You’ll also learn how to use two packages related to conditional com-
pilation, DBMS_DB_VERSION and DBMS_PREPROCESSOR.

Examples of Conditional Compilation
Let’s start with some examples of several types of conditional compilation.

Use application package constants in $IF directive

The $IF directive can reference constants defined in your own packages. In the example
below, I vary the way that a bonus is applied depending on whether or not the location
in which this third-party application is installed is complying with the Sarbanes-Oxley
guidelines. Such a setting is unlikely to change for a long period of time. If I rely on the
traditional conditional statement in this case, I will leave in place a branch of logic that
should never be applied. With conditional compilation, the code is removed before
compilation.

/* File on web: cc_my_package.sql */
PROCEDURE apply_bonus (
 id_in IN employee.employee_id%TYPE
 ,bonus_in IN employee.bonus%TYPE)
IS
BEGIN
 UPDATE employee
 SET bonus =
 $IF employee_rp.apply_sarbanes_oxley
 $THEN
 LEAST (bonus_in, 10000)
 $ELSE

Conditional Compilation | 999

Download at WoweBook.Com

 bonus_in
 $END
 WHERE employee_id = id_in;
 NULL;
END apply_bonus;

Toggle tracing through conditional compilation flags

I can now set up my own debug/trace mechanisms and have them conditionally com-
piled into my code. This means that when my code rolls into production, I can have
this code completely removed so that there will be no runtime overhead to this logic.
Note that I can specify both Boolean and PLS_INTEGER values through the special
PLSQL_CCFLAGS compile parameter.

/* File on web: cc_debug_trace.sql */
ALTER SESSION SET PLSQL_CCFLAGS = 'oe_debug:true, oe_trace_level:10';

PROCEDURE calculate_totals
IS
BEGIN
$IF $$oe_debug AND $$oe_trace_level >= 5
$THEN
 DBMS_OUTPUT.PUT_LINE ('Tracing at level 5 or higher');
$END
 NULL;
END calculate_totals;

The Inquiry Directive
An inquiry directive is a directive that makes an inquiry of the compilation environ-
ment. Of course, that doesn’t really tell you much. So let’s take a closer look at the
syntax for inquiry directives and the different sources of information available through
the inquiry directive.

The syntax for an inquiry directive is as follows:

$$identifier

where identifier is a valid PL/SQL identifier that can represent any of the following:

• Compilation environment settings: the values found in the USER_PLSQL_OB-
JECT_SETTINGS data dictionary view.

• Your own custom-named directive: defined with the ALTER...SET
PLSQL_CCFLAGS command, described in a later section.

• Implicitly defined directives: $$PLSQL_LINE and $$PLSQL_UNIT, providing you
with the line number and program name.

Inquiry directives are designed for use within conditional compilation clauses, but they
can also be used in other places in your PL/SQL code. For example, I can display the
current line number in my program with this code:

1000 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

DBMS_OUTPUT.PUT_LINE ($$PLSQL_LINE);

I can also use inquiry directives to define and apply application-wide constants in my
code. Suppose, for example, that the maximum number of years of data supported in
my application is 100. Rather than hardcode this value in my code, I can do the
following:

ALTER SESSION SET PLSQL_CCFLAGS = 'max_years:100';

PROCEDURE work_with_data (num_years_in IN PLS_INTEGER)
IS
BEGIN
 IF num_years_in > $$max_years THEN ...
END work_with_data;

Even more valuable, I can use inquiry directives in places in my code where a variable
is not allowed. Here are two examples:

DECLARE
 l_big_string VARCHAR2($$MAX_VARCHAR2_SIZE);

 l_default_app_err EXCEPTION;
 PRAGMA EXCEPTION_INIT (l_default_app_err, $$DEF_APP_ERR_CODE);
BEGIN

The DBMS_DB_VERSION package

The DBMS_DB_VERSION built-in package offers a set of constants that give you ab-
solute and relative information about the version of your installed database. The con-
stants defined in the Oracle Database 11g Release 2 version of this package are shown
in Table 24-1. With each new version of Oracle, two new relative constants are added,
and the values returned by the VERSION and RELEASE constants are updated.

Table 24-1. DBMS_DB _VERSION constants

Name of packaged constant Description
Value in Oracle Database
11g Release 2

DBMS_DB_VERSION.VERSION The database version number, as in 11 for
Oracle Database 11g

11

DBMS_DB_VERSION.RELEASE The database release number, as in 2 for
Oracle Database 11g Release 2

2

DBMS_DB_VERSION.VER_LE_9 TRUE if the current version is less than or
equal to Oracle9i Database

FALSE

DBMS_DB_VERSION.VER_LE_9_1 TRUE if the current version is less than or
equal to Oracle9i Database Release 1

FALSE

DBMS_DB_VERSION.VER_LE_9_2 TRUE if the current version is less than or
equal to Oracle9i Database Release 2

FALSE

DBMS_DB_VERSION.VER_LE_10 TRUE if the current version is less than or
equal to Oracle Database 10g

FALSE

Conditional Compilation | 1001

Download at WoweBook.Com

Name of packaged constant Description
Value in Oracle Database
11g Release 2

DBMS_DB_VERSION.VER_LE_10_1 TRUE if the current version is less than or
equal to Oracle Database 10g Release 1

FALSE

DBMS_DB_VERSION.VER_LE_10_2 TRUE if the current version is less than or
equal to Oracle Database 10g Release 2

FALSE

DBMS_DB_VERSION.VER_LE_11_1 TRUE if the current version is less than or
equal to Oracle Database 11g Release 1

FALSE

DBMS_DB_VERSION.VER_LE_11_2 TRUE if the current version is less than or
equal to Oracle Database 11g Release 2

TRUE

While this package was designed for use with conditional compilation, you can, of
course, use it for your own purposes.

Interestingly, you can write expressions that include references to as-yet undefined
constants in the DBMS_DB_VERSION package. As long as they are not evaluated, as
in the case below, they will not cause any errors. Here is an example:

$IF DBMS_DB_VERSION.VER_LE_10_2
$THEN
 Use this code.
$ELSEIF DBMS_DB_VERSION.VER_LE_12
 This is a placeholder for future.
$ENDIF

Setting compilation environment parameters

The following information (corresponding to the values in the
USER_PLSQL_OBJECT_SETTINGS data dictionary view) is available via inquiry
directives:

$$PLSQL_DEBUG
Debug setting for this compilation unit

$$PLSQL_OPTIMIZE_LEVEL
Optimization level for this compilation unit

$$PLSQL_CODE_TYPE
Compilation mode for this compilation unit

$$PLSQL_WARNINGS
Compilation warnings setting for this compilation unit

$$NLS_LENGTH_SEMANTICS
Value set for the NLS length semantics

See the cc_plsql_parameters.sql file on the book’s web site for a demonstration that uses
each of these parameters.

1002 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

Referencing unit name and line number

Oracle implicitly defines two very useful inquiry directives for use in $IF and $ERROR
directives:

$$PLSQL_UNIT
Name of the compilation unit in which the reference appears

$$PLSQL_LINE
Line number of the compilation unit where the reference appears

You can call two built-in functions, DBMS_UTILITY.FORMAT_CALL_STACK and
DBMS_UTILITY.FORMAT_ERROR_BACKTRACE, to obtain current line numbers,
but then you must also parse those strings to find the line number and program unit
name. These inquiry directives provide the information more directly. Here is an
example:

BEGIN
 IF l_balance < 10000
 THEN
 raise_error (
 err_name => 'BALANCE TOO LOW'
 ,failed_in => $$plsql_unit
 ,failed_on => $$plsql_line
);
 END IF;
 ...
END;

Run cc_line_unit.sql to see a demonstration of using these last two directives.

Note that when $$PLSQL_UNIT is referenced inside a package, it will return the name
of the package, not the name of the individual procedure or function within the
package.

Using the PLSQL_CCFLAGS parameter

Oracle offers a parameter, PLSQL_CCFLAGS, which you can use with conditional
compilation. Essentially, it allows you to define name-value pairs, and the name can
then be referenced as an inquiry directive in your conditional compilation logic. Here
is an example:

ALTER SESSION SET PLSQL_CCFLAGS = 'use_debug:TRUE, trace_level:10';

The flag name can be set to any valid PL/SQL identifier, including reserved words and
keywords (the identifier will be prefixed with $$, so there will be no confusion with
normal PL/SQL code). The value assigned to the name must be one of the following:
TRUE, FALSE, NULL, or a PLS_INTEGER literal.

The PLSQL_CCFLAGS value will be associated with each program that is then com-
piled in that session. If you want to keep those settings with the program, then future

Conditional Compilation | 1003

Download at WoweBook.Com

compilations with the ALTER...COMPILE command should include the REUSE SET-
TINGS clause.

Because you can change the value of this parameter and then compile selected program
units, you can easily define different sets of inquiry directives for different programs.

Note that you can refer to a flag that is not defined in PLSQL_CCFLAGS; this flag will
evaluate to NULL. If you enable compile-time warnings, this reference to an undefined
flag will cause the database to report a PLW-06003: unknown inquiry directive warning
(unless the source code is wrapped).

The $IF Directive
Use the selection directive, implemented through the $IF statement, to direct the con-
ditional compilation step in the preprocessor. Here is the general syntax of this
directive:

$IF Boolean-expression
$THEN
 code_fragment
[$ELSEIF Boolean-expression
$THEN
 code_fragment]
[$ELSE
 code_fragment]
$END

where Boolean-expression is a static expression (it can be evaluated at the time of com-
pilation) that evaluates to TRUE, FALSE, or NULL. The code_fragment can be any set
of PL/SQL statements, which will then be passed to the compiler for compilation, as
directed by the expression evaluations.

Static expressions can be constructed from any of the following elements:

• Boolean, PLS_INTEGER, and NULL literals, plus combinations of these literals.

• Boolean, PLS_INTEGER, and VARCHAR2 static expressions.

• Inquiry directives: identifiers prefixed with $$. These directives can be provided
by Oracle (e.g., $$PLSQL_OPTIMIZE_LEVEL; the full list is provided in the sec-
tion “The Optimizing Compiler” on page 793 in Chapter 21) or set via the
PLSQL_CCFLAGS compilation parameter (explained earlier in this chapter).

• Static constants defined in a PL/SQL package.

• Most comparison operations (>, <, =, <> are fine, but you cannot use an IN ex-
pression), logical Boolean operations such as AND and OR, concatenations of
static character expressions, and tests for NULL.

A static expression may not contain calls to procedures or functions that require exe-
cution; they cannot be evaluated during compilation, and therefore will render invalid
the expression within the $IF directive. You will get a compile error as follows:

1004 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

PLS-00174: a static boolean expression must be used

Here are examples of static expressions in $IF directives :

• If the user-defined inquiry directive controlling debugging is not NULL, then ini-
tialize the debug subsystem:

$IF $$app_debug_level IS NOT NULL $THEN
 debug_pkg.initialize;
$END

• Check the value of a user-defined package constant along with the optimization
level:

$IF $$PLSQL_OPTIMIZE_LEVEL = 2 AND appdef_pkg.long_compilation
$THEN
 $ERROR 'Do not use optimization level 2 for this program!' $END
$END

String literals and concatenations of strings are allowed only in the $ER-
ROR directive; they may not appear in the $IF directive.

The $ERROR Directive
Use the $ERROR directive to cause the current compilation to fail and return the error
message provided. The syntax of this directive is:

$ERROR VARCHAR2_expression $END

Suppose that I need to set the optimization level for a particular program unit to 1, so
that compilation time will be improved. In the following example, I use the $$ inquiry
directive to check the value of the optimization level from the compilation environment.
I then raise an error with the $ERROR directive as necessary.

/* File on web: cc_opt_level_check.sql */
SQL> CREATE OR REPLACE PROCEDURE long_compilation
 2 IS
 3 BEGIN
 4 $IF $$plsql_optimize_level != 1
 5 $THEN
 6 $ERROR 'This program must be compiled with optimization level = 1' $END
 7 $END
 8 NULL;
 9 END long_compilation;
 10 /

Warning: Procedure created with compilation errors.

SQL> SHOW ERRORS
Errors for PROCEDURE LONG_COMPILATION:

LINE/COL ERROR

Conditional Compilation | 1005

Download at WoweBook.Com

-------- ---
6/4 PLS-00179: $ERROR: This program must be compiled with
 optimization level = 1

Synchronizing Code with Packaged Constants
Use of packaged constants within a selection directive allows you to easily synchronize
multiple program units around a specific conditional compilation setting. This is pos-
sible because Oracle’s automatic dependency management is applied to selection di-
rectives. In other words, if program unit PROG contains a selection directive that
references package PKG, then PROG is marked as dependent on PKG. When the spec-
ification of PKG is recompiled, all program units using the packaged constant are
marked INVALID and must be recompiled.

Suppose I want to use conditional compilation to automatically include or exclude
debugging and tracing logic in my code base. I define a package specification to hold
the required constants:

/* File on web: cc_debug.pks */
PACKAGE cc_debug
IS
 debug_active CONSTANT BOOLEAN := TRUE;
 trace_level CONSTANT PLS_INTEGER := 10;
END cc_debug;

I then use these constants in procedure calc_totals:

PROCEDURE calc_totals
IS
BEGIN
$IF cc_debug.debug_active AND cc_debug.trace_level > 5 $THEN
 log_info (...);
$END
 ...
END calc_totals;

During development, the debug_active constant is initialized to TRUE. When it is time
to move the code to production, I change the flag to FALSE and recompile the package.
The calc_totals program and all other programs with similar selection directives are
marked INVALID and must then be recompiled.

Program-Specific Settings with Inquiry Directives
Packaged constants are useful for coordinating settings across multiple program units.
Inquiry directives, drawn from the compilation settings of individual programs, are a
better fit when you need different settings applied to different programs.

Once you have compiled a program with a particular set of values, it will retain those
values until the next compilation (from either a file or a simple recompilation using the
ALTER...COMPILE command). Furthermore, a program is guaranteed to be

1006 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

recompiled with the same postprocessed source as was selected at the time of the
previous compilation if all of the following conditions are TRUE:

• None of the conditional compilation directives refer to package constants. Instead,
they rely only on inquiry directives.

• When the program is recompiled, the REUSE SETTINGS clause is used and the
PLSQL_CCFLAGS parameter is not included in the ALTER...COMPILE
command.

This capability is demonstrated by the cc_reuse_settings.sql script, whose output is
shown below. I first set the value of app_debug to TRUE and then compile a program
with that setting, A query against USER_PLSQL_OBJECT_SETTINGS shows that this
value is now associated with the program unit:

/* File on web: cc_reuse_settings.sql */

SQL> ALTER SESSION SET plsql_ccflags = 'app_debug:TRUE';

SQL> CREATE OR REPLACE PROCEDURE test_ccflags
 2 IS
 3 BEGIN
 4 NULL;
 5 END test_ccflags;
 6 /

SQL> SELECT name, plsql_ccflags
 2 FROM user_plsql_object_settings
 3 WHERE NAME LIKE '%CCFLAGS%';

NAME PLSQL_CCFLAGS
------------------------------ ----------------------------
TEST_CCFLAGS app_debug:TRUE

I now alter the session, setting $$app_debug to evaluate to FALSE. I compile a new
program with this setting:

SQL> ALTER SESSION SET plsql_ccflags = 'app_debug:FALSE';

SQL> CREATE OR REPLACE PROCEDURE test_ccflags_new
 2 IS
 3 BEGIN
 4 NULL;
 5 END test_ccflags_new;
 6 /

Then I recompile my existing program with REUSE SETTINGS:

SQL> ALTER PROCEDURE test_ccflags COMPILE REUSE SETTINGS;

A query against the data dictionary view now reveals that my settings are different for
each program:

SQL> SELECT name, plsql_ccflags
 2 FROM user_plsql_object_settings

Conditional Compilation | 1007

Download at WoweBook.Com

 3 WHERE NAME LIKE '%CCFLAGS%';

NAME PLSQL_CCFLAGS
------------------------------ ----------------------------
TEST_CCFLAGS app_debug:TRUE
TEST_CCFLAGS_NEW app_debug:FALSE

Working with Postprocessed Code
You can use the DBMS_PREPROCESSOR package to display or retrieve the source
text of your program in its postprocessed form. DBMS_PREPROCESSOR offers two
programs, overloaded to allow you to specify the object of interest in various ways, as
well as to work with individual strings and collections:

DBMS_PREPROCESSOR.PRINT_POST_PROCESSED_SOURCE
Retrieves the postprocessed source and then displays it with the function
DBMS_OUTPUT.PUTLINE.

DBMS_PREPROCESSOR.GET_POST_PROCESSED_SOURCE
Returns the postprocessed source as either a single string or a collection of strings.

When working with the collection version of either of these programs, you will need
to declare that collection based on the following package-defined collection:

TYPE DBMS_PREPROCESSOR.source_lines_t IS TABLE OF VARCHAR2(32767)
 INDEX BY BINARY_INTEGER;

The following sequence demonstrates the capability of these programs. I compile a very
small program with a selection directive based on the optimization level. I then display
the postprocessed code, and it shows the correct branch of the $IF statement.

/* File on web: cc_postprocessor.sql
PROCEDURE post_processed
IS
BEGIN
$IF $$PLSQL_OPTIMIZE_LEVEL = 1
$THEN
 -- Slow and easy
 NULL;
$ELSE
 -- Fast and modern and easy
 NULL;
$END
END post_processed;

SQL> BEGIN
 2 DBMS_PREPROCESSOR.PRINT_POST_PROCESSED_SOURCE (
 3 'PROCEDURE', USER, 'POST_PROCESSED');
 4 END;
 5 /

PROCEDURE post_processed
IS

1008 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

BEGIN
-- Fast and modern and easy
NULL;
END post_processed;

In the following block, I use the “get” function to retrieve the postprocessed code, and
then display it using DBMS_OUTPUT.PUT_LINE:

DECLARE
 l_postproc_code DBMS_PREPROCESSOR.SOURCE_LINES_T;
 l_row PLS_INTEGER;
BEGIN
 l_postproc_code :=
 DBMS_PREPROCESSOR.GET_POST_PROCESSED_SOURCE (
 'PROCEDURE', USER, 'POST_PROCESSED');
 l_row := l_postproc_code.FIRST;

 WHILE (l_row IS NOT NULL)
 LOOP
 DBMS_OUTPUT.put_line (LPAD (l_row, 3)
 || ' - '
 || rtrim (l_postproc_code (l_row),chr(10))
);
 l_row := l_postproc_code.NEXT (l_row);
 END LOOP;
END;

Conditional compilation opens up all sorts of possibilities for PL/SQL developers and
application administrators. And its usefulness only increases as new versions of the
Oracle database are released and the DBMS_DB_VERSION constants can be put to
full use, allowing us to take additional advantage of each version’s unique PL/SQL
features.

PL/SQL and Database Instance Memory
By economizing on its use of machine resources such as memory and CPU, an Oracle
database can support tens of thousands of simultaneous users on a single database.
The databases’s memory management techniques have become quite sophisticated
over the years, and correspondingly difficult to understand. It’s true that features such
as Automatic Shared Memory Management ease the burden a bit for Oracle Database
10g and later, but administrators of busy databases still need a thorough knowledge of
memory management, and advanced PL/SQL programmers should also have a good
understanding of this topic. It’s also true that the automation features introduced in
recent versions ease the burden on DBAs considerably, but PL/SQL developers still risk
wasting memory unless they understand how memory is used for cursors and package
variables in particular.

PL/SQL and Database Instance Memory | 1009

Download at WoweBook.Com

PGA, UGA, and CGA
When a client program such as SQL*Plus or SQL Developer interacts with the database,
the database assigns a server process to service its calls. Each server process uses a
memory area known as the Process Global Area (PGA) for its private data. Data needed
only during a single database call is placed in an area of the PGA known as the Call
Global Area (CGA). Data that needs to be retained between a session’s database calls,
like package variables and private SQL areas, is placed in the User Global Area (UGA).

The location of the UGA in memory depends on whether the session has connected to
the database using a dedicated server or shared servers.

Dedicated server
The database spawns a dedicated server process for each session. This is appro-
priate for workloads that are either intensive or involve long-running database calls.
The UGA is placed in the PGA because no other server process will need to access
it.

Shared server
Database calls are queued to a group of shared server processes that can service
calls on behalf of any session. This is appropriate if there are many hundreds of
concurrent sessions making short calls with a lot of intervening idle time. The UGA
is placed in the SGA so that it can be accessed by any of the shared server processes.

Figure 24-6 shows a simplified representation of these two different arrangements.‖

Figure 24-6. Database instance memory and process architecture in dedicated vs. shared server
configurations

‖ The figure doesn’t show the shared server’s dispatchers and request/response queues, which are somewhat
ancillary to this discussion.

1010 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

The total size of the PGA can vary quite a bit based on what kinds of operations your
application requires the server to perform. For example, a SQL DML statement that
requires a large sort can consume a lot of CGA memory; a PL/SQL package that pop-
ulates a large PL/SQL collection in a package-level variable requires large amounts of
UGA memory.

If your application uses shared servers, user processes may have to wait in a queue to
be serviced. If any of your user processes invoke long-running PL/SQL blocks or SQL
statements, the DBA may need to either configure the server with a greater number of
shared processes or assign to those sessions a dedicated server.

Let’s next consider what memory looks like to an individual running program.

Cursors, Memory, and More
You may have written hundreds of programs that declare, open, fetch from, and close
cursors. It’s impossible to execute SQL or PL/SQL without cursors, and statements
often automatically make recursive calls that open more cursors. Because every cursor,
whether implicit or explicit, requires an allocation of memory on the database server,
tuning the database sometimes involves reducing the number of cursors required by an
application.

Although this section is devoted to memory, keep in mind that memory
is only one aspect of tuning the database; you may actually improve
overall performance by increasing the number of cursors to avoid soft
parses.

The database assigns cursors to anonymous PL/SQL blocks in much the same way that
it assigns cursors to SQL statements. For example, on the first parse call from a session,
the database opens an area in UGA memory (the “private SQL area”) where it will put
information specific to the run.

It turns out that some of the server-side data structures associated with cursors reside
in the UGA, and some in the CGA. For example, because SELECT statements identify
rows that need to be available during multiple fetches, the database allocates a work
area for the cursor from UGA memory (SELECT statements also allocate a work area
in the CGA). Because DML statements complete in a single call, the database allocates
their work area only from CGA memory. Similarly, when executing PL/SQL, the
database allocates UGA memory to store state information, and uses CGA for other
processing.

When executing a SQL statement or a PL/SQL block, the server first looks in the library
cache to see if it can find a reusable parsed representation of it. If it does find such a
shared PL/SQL area, the runtime engine establishes an association between the private
SQL area and the shared SQL area. The shared cursor has to be found or built before

PL/SQL and Database Instance Memory | 1011

Download at WoweBook.Com

the private SQL area can be allocated. The private SQL area memory requirements are
part of what is determined during compilation and cached in the shared cursor. If no
reusable shared area exists, the database will “hard parse” the statement or the block.
(As an aside, note that the database also prepares and caches a simple execution plan
for anonymous PL/SQL blocks, which consists of calling the PL/SQL engine to interpret
the bytecode.)

The database interprets the simplest of PL/SQL blocks—those that call no subprograms
and include no embedded SQL statements—using only the memory allocated for its
primary cursor. If your PL/SQL program includes SQL or PL/SQL calls, though, the
database requires additional private SQL areas in the UGA. PL/SQL manages these on
behalf of your application.

This brings us to another important fact about cursors: there are two ways a cursor can
be closed. A soft-closed cursor is one that you can no longer use in your application
without reopening it. This is what you get when you close a cursor using a statement
such as this one:

CLOSE cursor_name;

or even when an implicit cursor closes automatically. However, PL/SQL does not im-
mediately free the session memory associated with this cursor. Instead, it caches cursors
to avoid a soft parse should the cursor be opened again, as often happens. You will see,
if you look in the V$OPEN_CURSOR view, that the CLOSE alone does not reduce the
count of this session’s open cursors.

It turns out that PL/SQL maintains its own “session cursor cache”; that is, it decides
when to close a cursor for good. This cache can hold a maximum number of cursors,
as specified by the OPEN_CURSORS database initialization parameter. A
least-recently-used (LRU) algorithm determines which of the soft-closed cursors need
to be hard-closed and hence deallocated.

However, PL/SQL’s internal algorithm works optimally only if your programs close
their cursors immediately after they are through fetching with them. So remember:

If you explicitly open a cursor, you should explicitly close it as soon as you are through
using it (but not sooner).

There are a few ways that the database allows PL/SQL programmers to intervene in the
default behavior. One way you can close all of your session cursors, of course, is to
terminate the session! Less drastic ways include:

• Reset the package state, as discussed at the end of the later section “Large collec-
tions in PL/SQL” on page 1018.

• Use DBMS_SQL to gain explicit control over low-level cursor behavior. On the
whole, though, memory gains provided by this approach are unlikely to offset the
corresponding performance costs and programming challenges.

1012 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

Tips on Reducing Memory Use
Armed with a bit of theory, let’s review some practical tips you can use in your day-to-
day programming. Also check out the more general program tuning hints in Chap-
ter 21. In addition, it helps to be able to measure the amount of memory your session
is using at any given point of time in your application code. You can do this by querying
the contents of various V$ views. The plsql_memory package (defined in the
plsql_memory.pkg file on the book’s web site) will help you do this.

Statement sharing

The database can share the source and compiled versions of SQL statements and anon-
ymous blocks, even if they are submitted from different sessions by different users. The
optimizer determines the execution plan at parse time, so factors that affect the parse
(including optimizer settings) will affect SQL statement sharing. For sharing to happen,
certain conditions must be true:

1. Variable data values must be supplied via bind variables rather than literals so that
the text of the statements will not differ. Bind variables themselves must match in
name and datatype.

2. The letter case and formatting conventions of the source code must match exactly.
If you are executing the same programs, this will happen automatically. Ad hoc
statements may not match those in programs exactly.

3. References to database objects must resolve to the same underlying object.

4. For SQL, database parameters influencing the SQL optimizer must match. For
example, the invoking sessions must be using the same “optimizer goal”
(ALL_ROWS versus FIRST_ROWS).

5. The invoking sessions must be using the same language (Globalization Support,
formerly National Language Support, or NLS) environment.

I’m not going to talk much about the SQL-specific rules; specific reasons for nonsharing
of SQL statements that otherwise pass these rules can be found in the view
V$SQL_SHARED_CURSOR. For now, let’s explore the impact of the first three rules
on your PL/SQL programs.

Rule #1, regarding bind variables, is so critical that it has a later section devoted it to it.

Rule #2, matching letter case and formatting, is a well-known condition to sharing
statements. The text has to match because the database computes a hash value from
its source text with which to locate and lock an object in the library cache.

Despite the fact that PL/SQL is normally a case-independent language, the block:

BEGIN NULL; END;

does not match:

begin null; end;

PL/SQL and Database Instance Memory | 1013

Download at WoweBook.Com

nor does it match:

BEGIN NULL; END;

These statements will each hash to a different value and are inherently different SQL
statements—they are logically the same but physically different. However, if all your
anonymous blocks are short, and all your “real programs” are in stored code such as
packages, there is much less chance of inadvertently disabling code sharing. The tip
here is:

Centralize your SQL and PL/SQL code in stored programs. Anonymous blocks should
be as short as possible, generally consisting of a single call to a stored program.

In addition, an extension of this tip applies to SQL:

To maximize the sharing of SQL statements, put SQL into programs. Then call these
programs rather than write the SQL you need in each block.

I’ve always felt that trying to force statement sharing by adopting strict formatting
conventions for SQL statements was just too impractical; it’s much easier to put the
SQL into a callable program.

Moving on, Rule #3 says that database object references (to tables, procedures, etc.)
must resolve to the same underlying object. Say that Scott and I are connected to the
same database, and we both run a block that goes like this:

BEGIN
 XYZ;
END;

The database’s decision about whether to share the cached form of this anonymous
block boils down to whether the name “xyz” refers to the same underlying stored pro-
cedure. If Scott has a synonym xyz that points to my copy of the procedure, then the
database will share this anonymous block; if Scott and I own independent copies of
xyz, the database will not share this anonymous block. So even if the two copies of the
xyz procedure are line-by-line identical, the database caches these as different objects.
The database also caches identical triggers on different tables as different objects. That
leads to the following tip:

Avoid proliferating copies of tables and programs in different accounts unless you have
a good reason.

How far should you go with sharing of code at the application level? The conventional
wisdom holds that you should identify and extract code that is common to multiple
programs (especially triggers) and incorporate it by call rather than by duplicating it.
In other words, set up one database account to own the PL/SQL programs, and grant
EXECUTE privilege to any other users who need it. While sharing code in this manner
is an excellent practice for code maintainability, it is not likely to save any memory. In
fact, every caller has to instantiate the additional object at a cost of typically several KB
per session. Of course, this won’t be a huge burden unless you have enormous numbers
of users.

1014 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

There is another caveat on the conventional wisdom, and it applies if you are running
in a high concurrency environment—that is, many users simultaneously executing the
same PL/SQL program. Whenever common code is called, a “library cache latch” is
needed to establish and then release a pin on the object. In high concurrency environ-
ments, this can lead to latch contention. In such cases, duplicating the code wherever
it is needed may be preferred because doing so will avoid extra latching for the addi-
tional object and reduce the risk of poor performance due to latch contention.

But now, let’s go back to Rule #1: use bind variables.

Bind variables

In an Oracle database, a bind variable is an input variable to a statement whose value
is passed by the caller’s execution environment. Bind variables are especially significant
to the sharing of SQL statements, regardless of whether the statements are submitted
by PL/SQL, Java, SQL*Plus, or OCI. Application developers using virtually any envi-
ronment should understand and use bind variables. Bind variables allow an application
to scale, help prevent code injection, and allow SQL statement sharing.

A requirement for two different statements to be considered identical is that any bind
variables must themselves match in name, datatype, and maximum length. So for ex-
ample, the SQL statements given below do not match:

SELECT col FROM tab1 WHERE col = :bind1;
SELECT col FROM tab1 WHERE col = :bind_1;

But this requirement applies to the text of the statement as seen by the SQL engine. As
mentioned much earlier in this chapter, PL/SQL rewrites your static SQL statements
before SQL ever sees them! Here’s an example:

FUNCTION plsql_bookcount (author IN VARCHAR2)
 RETURN NUMBER
IS
 titlepattern VARCHAR2(10) := '%PL/SQL%';
 lcount NUMBER;
BEGIN
 SELECT COUNT(*) INTO lcount
 FROM books
 WHERE title LIKE titlepattern
 AND author = plsql_bookcount.author;
 RETURN lcount;
END;

After executing plsql_bookcount, the V$SQLAREA view in Oracle Database 11g re-
veals that PL/SQL has rewritten the query as:

SELECT COUNT(*) FROM BOOKS WHERE TITLE LIKE :B2 AND AUTHOR = :B1

The parameter “author” and the local variable “titlepattern” have been replaced by the
bind variables :B1 and :B2. This implies that, in static SQL, you don’t need to worry
about matching bind variable names; PL/SQL replaces your variable name with a gen-
erated bind variable name.

PL/SQL and Database Instance Memory | 1015

Download at WoweBook.Com

This automatic introduction of bind variables in PL/SQL applies to program variables
that you use in the WHERE and VALUES clauses of static INSERT, UPDATE, MERGE,
DELETE, and of course SELECT statements.

In additional experiments, I have found that changing the PL/SQL variable to have a
different maximum length did not result in an additional statement in the SQL area,
but that changing the variable’s datatype can add a statement. But don’t take my word
for it; privileges permitting, you can run your own experiments to determine whether
SQL statements are being shared in the way you think they are. Look in V$SQLAREA.
For the code listed above (assuming that I am the only person running this particular
code):

SELECT executions, sql_text FROM v$sqlarea
WHERE sql_text like 'SELECT COUNT(*) FROM BOOKS%';
/

EXECUTIONS SQL_TEXT
---------- --
 1 SELECT COUNT(*) FROM BOOKS WHERE TITLE LIKE :B2
 AND AUTHOR = :B1

You might say, well, if PL/SQL is that smart, I don’t need to worry about bind variables
then, do I? Hang on there: even though PL/SQL automatically binds program variables
into static SQL statements, this feature is not automatic when using dynamic SQL.
Sloppy programming can easily result in statements getting built with literal values. For
example:

 FUNCTION count_recent_records (tablename_in IN VARCHAR2,
 since_in IN VARCHAR2)
 RETURN PLS_INTEGER
 AS
 count_l PLS_INTEGER;
 BEGIN
 EXECUTE IMMEDIATE 'SELECT COUNT(*) FROM '
 || DBMS_ASSERT.SIMPLE_SQL_NAME(tablename_in)
 || ' WHERE lastupdate > TO_DATE('
 || DBMS_ASSERT.ENQUOTE_LITERAL(since_in)
 || ', ''YYYYMMDD'')'
 INTO count_l;
 RETURN count_l;
 END;

This causes the dynamic construction of statements such as:

SELECT COUNT(*) FROM tabname WHERE lastupdate > TO_DATE('20090315','YYYYMMDD')

Repeated invocation with different since_in arguments can result in a lot of statements
that are unlikely to be shared. For example:

SELECT COUNT(*) FROM tabname WHERE lastupdate > TO_DATE('20090105','YYYYMMDD')
SELECT COUNT(*) FROM tabname WHERE lastupdate > TO_DATE('20080704','YYYYMMDD')
SELECT COUNT(*) FROM tabname WHERE lastupdate > TO_DATE('20090101','YYYYMMDD')

This is wasteful of memory and other server resources.

1016 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

Use DBMS_ASSERT to Avoid Code Injection
What are those calls to DBMS_ASSERT in the bind variable example? Well, dynamic
SQL that uses raw user input should be validated before you blindly execute it.
DBMS_ASSERT helps to ensure that the code being passed in is what you expect. If
you tried to call our function with a weird-looking table name like "books where
1=1;--" then DBMS_ASSERT would raise an exception stopping the program before
damage was done. DBMS_ASSERT.SIMPLE_SQL_NAME ensures that the input
passes muster as a legitimate SQL name. The DBMS_ASSERT.ENQUOTE_LITERAL
encloses the input in quotes and makes sure that there are no embedded, unmatched
quote characters. See the Oracle Database 11g PL/SQL Packages and Types Reference
for full details on DBMS_ASSERT.

A bind-variable version of this program would be:

FUNCTION count_recent_records (tablename_in IN VARCHAR2,
 since_in IN VARCHAR2)
RETURN PLS_INTEGER
AS
 count_l PLS_INTEGER;
BEGIN
 EXECUTE IMMEDIATE 'SELECT COUNT(*) FROM '
 || DBMS_ASSERT.SIMPLE_SQL_NAME(tablename_in)
 || ' WHERE lastupdate > :thedate'
 INTO count_l
 USING TO_DATE(since_in,'YYYYMMDD');
 RETURN count_l;
END;

which results in statements that look like this to the SQL compiler:

SELECT COUNT(*) FROM tabname WHERE lastupdate > :thedate

Not only is the second version prettier and easier to follow, but it will also perform
much better over repeated invocations with the same tablename_in but with different
since_in arguments.

The database offers the initialization parameter CURSOR_SHARING, which may pro-
vide some benefits to applications with a lot of non-bind-variable SQL. By setting this
parameter to FORCE or to SIMILAR, you can ask the database to replace some or all
SQL literals with bind variables at runtime, thus avoiding some of the hard-parse over-
head. Unfortunately, this is one of those “sounds better in theory than in practice”
features.

Even if you can derive some performance benefits from using CUR-
SOR_SHARING, you should view it only as a stopgap measure. It’s not
nearly as efficient as using true bind variables and can have a number
of unexpected and undesirable side effects. If you must use this feature
with certain pathological (often third-party) software, do so only until
the code can be modified to use true bind variables.

PL/SQL and Database Instance Memory | 1017

Download at WoweBook.Com

On the other hand, if you consistently exercise the small amount of discipline required
to use true bind variables in your dynamic SQL, you will be rewarded, perhaps richly
so, at runtime. Just remember to keep your CURSOR_SHARING parameter set to its
default value of EXACT.

Packaging to improve memory use and performance

When retrieving the bytecode of a stored PL/SQL program, the database reads the entire
program. This rule applies not only to procedures and functions, but also to packages.
In other words, you can’t get the database to retrieve only a part of a package; the first
time any session uses some element of a package, even just a single package variable,
the database loads the compiled code for the entire package into the library cache.
Having fewer large package instantiations requires less memory (and disk) overhead
than more smaller instantiations. It also minimizes the number of pins taken and re-
leased, which is very important in high concurrency applications. So a logical grouping
of package elements is not just a good design idea, it will also help your system’s
performance.

Because the database reads an entire package into memory at once, de-
sign each of your packages with functionally related components that
are likely to be invoked together.

Large collections in PL/SQL

Sharing is a wonderful thing, but of course not everything can be shared at runtime.
Even when two or more users are executing the same program owned by the same
schema, each session has its own private memory area, which holds run-specific data
such as the value of local or package variables, constants, and cursors. It wouldn’t make
much sense to try to share values that are specific to a given session.

Large collections are a case in point (Chapter 12 describes collections in detail). Imagine
that I declare a PL/SQL associative array as follows:

DECLARE
 TYPE number_tab_t IS TABLE OF NUMBER INDEX BY PLS_INTEGER;
 number_tab number_tab_t;
 empty_tab number_tab_t;

Now I create a bunch of elements in this array:

 FOR i IN 1..100000
 LOOP
 number_tab(i) := i;
 END LOOP;

The database has to put all of those elements somewhere. Following the rules discussed
earlier, memory for this array will come from the UGA in the case of package-level data,
or the CGA in the case of data in anonymous blocks or top-level procedures or

1018 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

functions. Either way, it’s easy to see that manipulating large collections can require
very large amounts of memory.

You may wonder how you can get that memory back once a program is through with
it. This is a case where the natural and easy thing to do will help quite a bit. You can
use one of these two forms:

number_tab.DELETE;

or:

number_tab := empty_tab;

Using either of these statements will cause the database to free the memory into its
originating free list. That is, package-level memory frees into the session state heap,
call-level memory frees into the CGA, and the CGA is freed into the PGA at the end of
the call. The same thing happens when the collection passes out of scope; if you declare
and use the collection only in a standalone procedure, the database realizes that you
don’t need it any more after the procedure finishes executing. Either way, though, this
memory is not available to other sessions, nor is it available to the current session for
CGA memory requirements. So, if a subsequent DML operation requires a large sort,
you could wind up with some huge memory requirements. Not until the session ends
will the database release this memory to its parent heap.

I should point out that it is no great hardship for a virtual memory operating system
with plenty of paging/swap space if processes retain large amounts of inactive virtual
memory in their address space. This inactive memory consumes only paging space, not
real memory. There may be times, however, when you don’t want to fill up paging
space, and you would prefer that the database release the memory. For those times, the
database supplies an on-demand “garbage collection” procedure. The syntax is simply:

DBMS_SESSION.FREE_UNUSED_USER_MEMORY;

This built-in procedure will find most of the UGA memory that is no longer in use by
any program variables and release it back to the parent memory heap—the PGA in the
case of dedicated server, or the SGA in the case of shared server.

I have run quite a few test cases to determine the effect of running garbage collection
in different scenarios: for example, associative arrays versus nested tables, shared server
versus dedicated server, and anonymous blocks versus package data. The conclusions
and tips that are described next apply to using large collections.

• Merely assigning a NULL to a nested table or VARRAY will fail to mark its memory
as unused. Instead, you can do one of three things: use the method
collection.DELETE, assign a null but initialized collection to it, or wait for it to go
out of scope.

• If you need to release memory to the parent heap, use
DBMS_SESSION.FREE_UNUSED_USER_MEMORY when your program has

PL/SQL and Database Instance Memory | 1019

Download at WoweBook.Com

populated one or more large PL/SQL tables, marked them as unused, and is un-
likely to need further large memory allocations for similar operations.

• Shared server mode can be more prone than dedicated server mode to memory-
shortage errors. This is because the UGA is drawn from the SGA, which is limited
in size. As discussed in the later section “What to Do if You Run Out of Mem-
ory” on page 1024, you may get an ORA-04031 error.

• If you must use shared server connections, you cannot release the memory occu-
pied by PL/SQL tables unless the table is declared at the package level.

As a practical matter, for a collection of NUMBER elements, there seems to be no
difference in storage required to store NULL elements versus, say, 38-digit number
elements. However, the database does seem to allocate memory for VARCHAR2 ele-
ments dynamically if the elements are declared larger than VARCHAR2(30).

When populating an associative array in dedicated server mode, a million-element as-
sociative array of NUMBERs occupies about 38 MB; even if the million elements are
just Booleans, almost 15 MB of memory is required. Multiply that by even 100 users,
and you’re talking some big numbers, especially if you don’t want the operating system
to start paging this memory out to disk.

If you’d like to discover for yourself how much UGA and PGA your current session
uses, you can run a query like the following:

SELECT n.name, ROUND(m.value/1024) kbytes
 FROM V$STATNAME n, V$MYSTAT m
 WHERE n.statistic# = m.statistic#
 AND n.name LIKE 'session%memory%'

(You’ll need nondefault privileges to read the two V$ views in this query.) This will
show you the “current” and the “max” memory usage thus far in your session.

Incidentally, if you want to clear out the memory used by packaged collections but
don’t want to terminate the session (for example, you are running scripts that test
memory usage), you can use one of these built-ins:

DBMS_SESSION.RESET_PACKAGE
Frees all memory allocated to package state. This has the effect of resetting all
package variables to their default values. For packages, this built-in goes beyond
what FREE_UNUSED_USER_MEMORY does because RESET_PACKAGE
doesn’t care whether the memory is in use or not.

DBMS_SESSION.MODIFY_PACKAGE_STATE (action_flag IN PLS_INTEGER)
You can supply one of two constants as the action flag:
DBMS_SESSION.free_all_resources or DBMS_SESSION.reinitialize. The first has
the same effect as using the RESET_PACKAGE procedure. Supplying the latter
constant resets state variables to their defaults but doesn’t actually free and recreate
the package instantiation from scratch; also, it only soft-closes open cursors and

1020 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

does not flush the cursor cache. If these behaviors are acceptable in your applica-
tion, use the second constant because it will perform better than a complete reset.

BULK COLLECT...LIMIT operations

Bulk binds are a great way to process data efficiently, but you should take care to limit
your memory consumption and not let your collections grow too large. When you
BULK COLLECT into a collection, the default is to fetch all the rows into the collection.
When you have a lot of data, this results in a very large collection. That’s where the
LIMIT clause comes into play. It allows you to limit your memory consumption and
make your programs faster.

When I benchmarked the LIMIT clause, I expected it to use less memory, but was
surprised to find that it ran faster too. Here is the example benchmark, using a test table
containing a million rows. To get good numbers for comparison, I ran it once to warm
up the cache, reconnected to zero out my memory consumption, and then ran it a
second time to compare. I’ve included calls to the plsql_memory package (see the
plsql_memory.pkg file on the book’s web site) to report on memory use:

/* File on web: LimitBulkCollect.sql */
DECLARE
 -- set up the collections
 TYPE numtab IS TABLE OF NUMBER INDEX BY PLS_INTEGER;
 TYPE nametab IS TABLE OF VARCHAR2(4000) INDEX BY PLS_INTEGER;
 TYPE tstab IS TABLE OF TIMESTAMP INDEX BY PLS_INTEGER;
 CURSOR test_c IS
 SELECT hi_card_nbr,hi_card_str ,hi_card_ts
 FROM data_test
 ;
 nbrs numtab;
 txt nametab;
 tstamps tstab;
 counter number;
 strt number;
 fnsh number;
BEGIN
 plsql_memory.start_analysis; -- initialize memory reporting
 strt := dbms_utility.get_time; -- save starting time
 OPEN test_c;
 LOOP
 FETCH test_c BULK COLLECT INTO nbrs,txt,tstamps LIMIT 10000;
 EXIT WHEN nbrs.COUNT = 0;
 FOR i IN 1..nbrs.COUNT LOOP
 counter := counter + i; -- do somthing with the data
 END LOOP;
 END LOOP;
 plsql_memory.show_memory_usage;
 CLOSE test_c;
 fnsh := dbms_utility.get_time;
 -- convert the centi-seconds from get_time to milliseconds
 DBMS_OUTPUT.PUT_LINE('Run time = '||(fnsh-strt)*10||' ms');
END;

PL/SQL and Database Instance Memory | 1021

Download at WoweBook.Com

/

Change in UGA memory: 0 (Current = 1366000)
Change in PGA memory: 1310720 (Current = 3555712)
Run time = 1530 ms

You can see that with a limit of 10,000 rows, I grew the PGA by 1,310,720 bytes. When
I show the memory again after the PL/SQL block completes, you see that much (but
not all) of this memory has been released:

-- report on memory again, after the program completes
EXEC plsql_memory.show_memory_usage;

Change in UGA memory: 0 (Current = 1366000)
Change in PGA memory: −458752 (Current = 1786240)

Let’s run it again, without the LIMIT clause, so I read the full complement of rows in
one big slurp.

DECLARE
 -- set up the collections
 TYPE numtab IS TABLE OF NUMBER INDEX BY PLS_INTEGER;
 TYPE nametab IS TABLE OF VARCHAR2(4000) INDEX BY PLS_INTEGER;
 TYPE tstab IS TABLE OF TIMESTAMP INDEX BY PLS_INTEGER;
 CURSOR test_c IS
 SELECT hi_card_nbr,hi_card_str ,hi_card_ts
 FROM data_test
 ;
 nbrs numtab;
 txt nametab;
 tstamps tstab;
 counter number;
 strt number;
 fnsh number;
BEGIN
 plsql_memory.start_analysis; -- initialize memory reporting
 strt :=d bms_utility.get_time; -- save starting time
 OPEN test_c;
 LOOP
 FETCH test_c BULK COLLECT INTO nbrs,txt,tstamps;
 EXIT WHEN nbrs.COUNT = 0;
 FOR i IN 1..nbrs.COUNT LOOP
 counter := counter + i; -- do somthing with the data
 END LOOP;
 END LOOP;
 plsql_memory.show_memory_usage;
 CLOSE test_c;
 fnsh :=d bms_utility.get_time;
 -- convert the centi-seconds from get_time to milliseconds
 DBMS_OUTPUT.PUT_LINE ('Run time = '||(fnsh-strt)*10||' ms');
END;
/

Change in UGA memory: 0 (Current = 1366000)
Change in PGA memory: 134479872 (Current = 136724864)
Run time = 1940 ms

1022 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

exec plsql_memory.show_memory_usage;

Change in UGA memory: 65464 (Current = 1431464)
Change in PGA memory: −458752 (Current = 1786240)

It is clear that the LIMIT reduced the memory usage from 131,328 KB to 1,280 KB.
Wow! But the surprise was the 21% speedup from 1940 ms to 1530 ms—all from using
less memory!

Preservation of state

The database normally maintains the state of package-level constants, cursors, and
variables in your UGA for as long as your session is running. Contrast this behavior
with the variables instantiated in the declaration section of a standalone module. The
scope of those variables is restricted to the module. When the module terminates, the
memory and values associated with those variables are released. They are no more.

In addition to disconnecting, several other things can cause a package to obliterate its
state:

• Someone recompiles the program, or the database invalidates it, as discussed
earlier.

• The DBMS_SESSION.RESET_PACKAGE built-in procedure executes in your
session.

• You include the SERIALLY_REUSABLE pragma (see Chapter 18) in your program,
which causes the database to put the private SQL area into the SGA for reuse by
other sessions. State will be retained only for the duration of the call, rather than
for the entire session.#

• You are using the web gateway in the default mode that, by default, does not
maintain persistent database sessions for each client.

Subject to these limitations, package data structures can act as “globals” within the
PL/SQL environment. That is, they provide a way for different PL/SQL programs run-
ning in the same session to exchange data.

From an application design perspective, there are two types of global data: public and
private:

Public
A data structure declared in the specification of a package is a global public data
structure. Any calling program or user with the EXECUTE privilege has access to
the data. Programs can assign even meaningless values to package variables not
marked CONSTANT. Public global data is the proverbial “loose cannon” of

#By the way, instances with many concurrent sessions can use this to save a lot of memory.

PL/SQL and Database Instance Memory | 1023

Download at WoweBook.Com

programming: convenient to declare but tempting to overuse, leading to a greater
risk of unstructured code that is susceptible to ugly side effects.

The specification of a module should give you all the information you need to call
and use that module. If the program reads and/or writes global data structures,
you cannot tell this from the module specification; you cannot be sure of what is
happening in your application and which program changes what data. It is always
preferable to pass data as parameters in and out of modules. That way, the reliance
on those data structures is documented in the specification and can be accounted
for by the developer. In my own code, I try to limit global public data to those
values that can truly be made CONSTANT.

Private
Not so problematic are global but private data structures (also called package-level
data) that you might declare in the body of the package. Because it does not appear
in the specification, this data cannot be referenced from outside the package—only
from within the package, by other package elements.

Packaged data items are global only within a single database session or
connection. Package data is not shared across sessions. If you need to
share data between different database sessions, there are other tools at
your disposal, including the DBMS_PIPE package, Oracle Advanced
Queuing, and the UTL_TCP package…not to mention database tables!

What to Do if You Run Out of Memory
Let’s say you’re cruising along with your database running just fine, with lots of
PL/SQL and SQL statements happily zipping by, and then it strikes: ORA-04031: un-
able to allocate n bytes of shared memory. This error is more common in shared server
mode, which caps a shared server’s UGA memory. In dedicated server mode, the da-
tabase can usually grab more virtual memory from the operating system, but you may
still encounter the analogous error ORA-04030: out of process memory when trying to
allocate n bytes.

There are several ways to correct this condition. If you’re the application developer,
you can attempt to reduce your use of shared memory. Steps you could take include
(more or less in order):

1. Modify code to ensure that the maximum number of SQL statements get shared.

2. Reduce the size or number of in-memory collections.

3. Reduce the amount of application code in memory.

4. Tune the database-wide settings and/or buy more server memory.

Steps 1 and 2 have already been covered; let’s take a look at Step 3. How can you assess
the size of your source code once it’s loaded into memory? And how can you reduce it?

1024 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

Before running a PL/SQL program, the database must load all of its bytecode into
memory. You can see how much space a program object actually occupies in the shared
pool by having your DBA run the built-in procedure DBMS_SHARED_POOL.SIZES,
which lists all objects over a given size.

Starting with Oracle Database 10g, the DBMS_SHARED_POOL pack-
age is not installed by default; Oracle moved it into the Statspack set of
tools, which your DBA can install by running the spcreate.sql script in
rdbms/admin.

Here is an example that looks at the memory required by objects in the shared pool
immediately after database startup:*

SQL> SET SERVEROUTPUT ON SIZE 1000000
SQL> EXEC DBMS_SHARED_POOL.sizes(minsize => 125)

SIZE(K) KEPT NAME
------- ------ ---
433 SYS.STANDARD (PACKAGE)
364 SYS.DBMS_RCVMAN (PACKAGE BODY)
249 SYSMAN.MGMT_JOB_ENGINE (PACKAGE BODY)
224 SYS.DBMS_RCVMAN (PACKAGE)
221 SYS.DBMS_STATS_INTERNAL (PACKAGE)
220 SYS.DBMS_BACKUP_RESTORE (PACKAGE)
125 MERGE INTO cache_stats_1$ D USING (select * from table(dbms_sta
ts_internal.format_cache_rows(CURSOR((select dataobj# o, st
atistic# stat, nvl(value, 0) val from gv$segstat where stat
istic# in (0, 3, 5) and obj# > 0 and inst_id = 1) union all
(select obj# o, 7 stat,nvl(sum(num_buf), 0) val from x$kcb
oqh x where inst_id = 1 group by obj#) order by o))) wh
(20B5C934,3478682418) (CURSOR)

The “minsize => 125” means “show only objects that are 125K or larger.” This output
shows that the package STANDARD occupies the most shared memory, 433K.†

Knowing the amount of memory your programs use is necessary, but not sufficient,
information if you wish to reduce 4031 or 4030 errors; you must also know the size of
the shared pool and how much of the shared pool is filled by “re-creatable” objects—
that is, objects that can be aged out of memory and loaded again later when needed.
Some of this information is difficult to tease out of the database and may require
knowledge of the mysterious X$ views. However, versions 9.2.0.5 and later will auto-
matically generate a heap dump in your USER_DUMP_DEST directory every time you

* If you’re wondering why the columns of data do not line up properly with their headings, it’s probably because
of the severe limitations of DBMS_OUTPUT. If you don’t like it, write your own (grab the query from
V$SQLAREA after running the package).

† There is a bug in older versions of DBMS_SHARED_POOL.SIZES that results in the amount’s being over-
reported by about 2.3%. Oracle’s package erroneously computed kilobytes by dividing bytes by 1000 instead
of by 1024.

PL/SQL and Database Instance Memory | 1025

Download at WoweBook.Com

hit a 4031 error. See what you can discover from that, or just punt it over to Oracle
Support. As a developer, you also need to figure out if your applications contain a large
amount of unshared code that logically could be shared because this can have a big
impact on memory requirements.

Natively compiled PL/SQL programs are linked to shared-library files, but the database
still allocates some memory inside the database in order to run them. The same is true
for external procedures. A privileged user can use operating-system-level utilities such
as pmap on Solaris to measure the amount of memory they require outside of the
database.

Now, on to Step 4: tune the database or buy more memory. A competent DBA (hey,
don’t look at me) will know how to tune the shared pool by adjusting parameters such
as these:

SHARED_POOL_SIZE
Bytes set aside for the shared pool.

DB_CACHE_SIZE
Bytes of memory reserved to hold rows of data from the database (may need to be
reduced in order to increase the size of the shared pool).

LARGE_POOL_SIZE
Bytes of memory reserved for an optional region of memory that holds the UGA
for shared server connections. This prevents the variable portion of the UGA from
competing for use of the shared pool.

JAVA_POOL_SIZE
Bytes used by the Java memory manager.

STREAMS_POOL_SIZE
Bytes used by the Oracle Streams feature.

If that’s too much to fuss with, and you are using Oracle Database 10g or later, the
DBA can turn on the Automatic Shared Memory Management features:

SGA_TARGET
Set to a nonzero number of bytes, which indicates the size of the SGA from which
the database will automatically allocate the cache and pools indicated above.

PGA_AGGREGATE_TARGET
Total amount of memory used by all of the server processes in the instance. Gen-
erally, it should be equal to the amount of server memory available to the database
minus the SGA size.

1026 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

You can also ask the DBA to force the shared pool to hold a PL/SQL program unit,
sequence, table, or cursor in memory with the DBMS_SHARED_POOL.KEEP proce-
dure.‡ For example, the following block would require that the database keep the
STANDARD package pinned in memory:

BEGIN
 DBMS_SHARED_POOL.KEEP('SYS.STANDARD');
END;

It can be especially beneficial to pin into memory large program units that are executed
relatively infrequently. Without pinning, the partially compiled code will likely be aged
out of the shared pool. When called again, its loading could force many smaller objects
out of the shared pool, and degrade performance.

It’s probably obvious, but if you’re encountering ORA-04031 errors resulting from a
few users or applications, consider moving the offenders to dedicated server mode.

Another memory error you may find in shared server mode is ORA-06500: PL/SQL:
storage error. Increasing the LARGE_POOL_SIZE usually makes this go away.

Native Compilation
In its default mode (interpreted), your code is partially compiled, but also interpreted
at runtime. PL/SQL executes in a virtual machine, and it first translates (compiles) your
code into virtual machine code, sometimes called bytecode or mcode. This is basically
the same model that Java uses. When it is time to actually run your code, however, that
bytecode is translated (interpreted) into system calls.

However, once you have the code running well, you can choose to improve the runtime
efficiency of your PL/SQL programs by having the database perform the bytecode to
machine code translation early, at compile time. This second half compilation (called
native mode) results in machine code in a shared library. The database will dynamically
load this compiled machine code at runtime.

When to Run Interpreted Mode
So, if native mode is faster, why run in interpreted mode? Let’s look at this question
from the other end. The goal of native mode is fast execution speed. So, to get the fastest
execution speed, you crank up the optimization level and try to do as much work ahead
of execution time as possible (including early translation to machine code). When you
are developing and unit testing your code, you need the capabilities of the debugger
more than you need fast execution speed. If you need to step through your source code
and step over subprogram calls in a debugger, you surely can’t have the optimizing
compiler rearranging your source code (optimization level 2) or inlining subprograms

‡ In the fine print, Oracle says that it may obsolete the feature when it comes up with better memory
management algorithms.

Native Compilation | 1027

Download at WoweBook.Com

(optimization level 3). So to debug, you have to revert to optimization level 0 or 1, at
which point native mode is of questionable value. So I recommend running interpreted
mode in development environments.

When to Go Native
Native mode is built for speed. You run native mode when you have your program
debugged and want to make it go as fast as possible. Native compilation goes hand in
hand with higher optimization levels. This configuration is usually production and
some test environments. With native mode, the compile times are slightly longer be-
cause you are doing more work in the compile, but the execution times will be faster
or perhaps the same as in interpreted mode.

Native Compilation and Database Release
Setting up native compilation and execution varies from major database release to ma-
jor release. The details are spelled out in Chapter 20, but let’s review a little native
compilation and history here.

Oracle9i Database
Native compilation was introduced with Oracle9i Database. Everything worked
quite well with native compilation on this release, as long as you weren’t running
Real Application Clusters (RAC) and didn’t mind complicated backups. RAC da-
tabases were a problem (they weren’t supported) and database backups needed to
include the shared libraries, which Oracle Recovery Manager (RMAN) didn’t
capture.

Oracle Database 10g
Native compilation was improved with Oracle Database 10g. RAC databases and
shared servers were supported, but you needed the C compiler and copies of the
shared libraries on each RAC node. Database backups were still an issue though—
they still needed to include the shared libraries, but RMAN didn’t capture these
shared libraries.

Oracle Database 11g
Native compilation has again been improved with Oracle Database 11g. You no
longer need a C compiler, and the shared libraries are stored in the data dictionary,
where every backup tool on the planet (well, those that work with Oracle databases
at least) locates and backs them up. So, with no issues related to backups or man-
aging shared library files, there is little to hold you back from going native on your
production and test databases. Try it, you’ll like it, and you won’t go back.

1028 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

What You Need to Know
So, do you really need to remember everything in this chapter? I certainly hope not,
because I can’t even remember it in my day-to-day work. Your database administrator,
on the other hand, probably needs to know most of this stuff.

In addition to satisfying healthy curiosity, my goal in presenting this material was to
help allay any misgivings programmers might have about the PL/SQL architecture.
Whether or not you’ve ever had such concerns, there are a number of important points
to remember about what goes on inside PL/SQL:

• To avoid compilation overhead, programs you plan to use more than a few times
should be put in stored programs rather than stored in files as anonymous blocks.

• In addition to their unique ability to preserve state throughout a session, PL/SQL
packages offer performance benefits. You should put most of your extensive ap-
plication logic into package bodies.

• When upgrading Oracle versions, new features in the PL/SQL compiler warrant
thorough application testing. In some (probably rare) cases when upgrading to
Oracle Database 11g, slight changes in execution order, resulting from freedoms
exploited by the optimizing compiler, could affect application results.

• While the Oracle database’s automatic dependency management approach relieves
a huge burden on developers, upgrading applications on a live production database
should be undertaken with great care because of the need for object locking and
package state reset.

• If you use signature-based remote dependency checking in remote procedure calls
or with a loopback-link synonym as a way to avoid invalidations, you should in-
stitute (manual) procedures to eliminate the possibility of the signature check re-
turning a false negative (which would cause a runtime error).

• Use definer rights to maximize performance and to help simplify the management
and control of privileges on database tables. Use invoker rights only to address
particular problems (for example, programs that use dynamic SQL and that create
or destroy database objects).

• The database’s sophisticated approaches aimed at minimizing the machine re-
sources needed to run PL/SQL occasionally benefit from a little help from devel-
opers and DBAs—for example, by explicitly freeing unused user memory or pin-
ning objects in memory.

• Where it makes sense to your application logic, use the cursor FOR loop idiom,
rather than open/fetch loop/close, to take advantage of the automatic bulk binding
feature in Oracle Database 10g and later versions.

• When your program does need to open an explicit cursor in a PL/SQL program,
be sure to close the cursor as soon as fetching is complete.

What You Need to Know | 1029

Download at WoweBook.Com

• Native compilation of PL/SQL may not offer any performance advantages for SQL-
intensive applications, but it can significantly improve the performance of
compute-intensive programs.

• Calling remote packages entails some special programming considerations if you
want to take advantage of anything in the package other than procedures, func-
tions, types, and subtypes.

• Use program variables in embedded static SQL statements in PL/SQL, and bind
variables in dynamic SQL statements, to avoid subverting the database’s cursor
sharing features.

1030 | Chapter 24: PL/SQL Architecture

Download at WoweBook.Com

CHAPTER 25

Globalization and Localization
in PL/SQL

Businesses do not typically begin their operations on a global scale. They usually start
as local or regional businesses with plans to expand. As they grow into new regions, or
locales, critical applications need to adjust to new language and formatting require-
ments. If the applications are not designed to support multiple locales, this transition
becomes very time-consuming and costly.

In a perfect development world, globalization would be an integral part of application
design, and all design considerations would be accompanied by the question “Where
in the world would this design fail?” In the real world, however, many companies do
not include a globalization strategy in the initial design. Cost concerns, lack of global-
ization experience, or simply an inability to anticipate the global reach of the business
are all common reasons for failing to analyze localization risks.

So, what’s the big deal? It is just a matter of translating data, right? Not exactly. There
are, in fact, many common PL/SQL programming tasks with localization implications
that can disrupt your application’s ability to function globally:

Variable precision
CHAR(1) handles “F” very nicely, but will it do the same for “民”?

String sort order of result set
ORDER BY is determined easily for English characters. Will Korean, Chinese, or
Japanese be as straightforward? How are combined characters, or characters with
accents, ordered?

Information retrieval (IR)
PL/SQL is often the language of choice for information retrieval applications. How
can you store data in multiple languages and accurately retrieve information across
languages using the same query?

1031

Download at WoweBook.Com

Date/time formatting
Different countries and regions use different calendars and date formats. How vul-
nerable is your code to these variations?

Currency formatting
Currency considerations extend beyond basic currency conversion. A misused
comma or period resulting from locale-specific formatting requirements can un-
intentionally change the cost of an item.

This chapter explores the ramifications of these kinds of issues and talks about how
you can write PL/SQL code to anticipate and handle them. I begin with a discussion
of Unicode and Oracle’s Globalization Support architecture. Next, I demonstrate some
problems using multibyte characters and describe how to handle them in your PL/SQL
programs using character semantics. I then discuss some of the complexities associated
with sorting character strings using various character sets, and demonstrate efficient
multilingual information retrieval. Finally, I show how you can make your applications
work using different date/time and currency formats.

Globalization Strategy
As you develop with globalization in mind, you will find yourself anticipating locali-
zation problems much earlier in the development life cycle. There is no better time to
think about globalization than during the design phase of your application. There is
obviously far more to your overall globalization strategy than can be covered in this
chapter, but your PL/SQL programs should be in good shape if you take into account:

• Character set

• NLS parameters

• Unicode functions

• Character versus byte semantics

• String sort order

• Multilingual information retrieval

• Date/time

• Currency

For additional information on globalization and localization within Oracle, see the
globalization documentation at http://otn.oracle.com/tech/globalization/index.html.
This site provides discussion forums, links to papers, and additional documentation
on database and application server globalization. It also includes a Character Set Scan-
ner download to assist with conversions.

1032 | Chapter 25: Globalization and Localization in PL/SQL

Download at WoweBook.Com

http://otn.oracle.com/tech/globalization/index.html

Throughout this chapter, we will be working with a publication schema
called g11n. If you want to install this catalog in your own environment,
download the G11N.ZIP file from the book’s web site and unzip to a
local directory. Modify the header of g11n.sql with the correct environ-
ment details for your system, but make sure when saving it again that
your encoding is Unicode. If the files are saved as ASCII or some other
Western character set, the multibyte characters in the file will not save
correctly and you will get errors when running the scripts. The
g11n.sql script creates a user named g11n, grants necessary permissions
to work through the samples, creates the sample objects, and adds seed
data. Refer to the header of g11n.sql for additional instructions

Overview and Terminology
Before I proceed, let’s get some terminology straight. Globalization, internationaliza-
tion, and localization are often used interchangeably, yet they actually have very dif-
ferent meanings. Table 25-1 defines each and explains how they are related.

Table 25-1. Fundamental terms and abbreviation

Term Abbreviation Definition

Globalization g11n Application development strategy focused on making applications
multilingual and locale-independent. Globalization is accomplished
through internationalization and localization.

Internationalization i18n The design or modification of an application to work with multiple
locales.

Localization l10n The process of actually making an application work in each specific
locale. l10n includes text translation. It is made easier with a proper
i18n implementation.

If you haven’t seen the abbreviations mentioned in Table 25-1 before,
you may be confused about the numbers sandwiched between the two
letters. These terms are often abbreviated by including the first letter
and last letter, with the number of characters between them in the mid-
dle. Globalization, for example, has 11 letters between the “g” and the
“n,” making the abbreviation g11n.

It is true that Oracle supports localization to every region of the world. I have heard it
suggested, though, that Oracle’s localization support means that you can load English
data and search it in Japanese. Not true! Oracle does not have a built-in linguistic
translation engine that performs translations on the fly for you. If you have ever
witnessed the results of a machine translation, you know that you would not want this
kind of so-called functionality as a built-in “feature” anyway. Oracle supports locali-
zation, but it does not implement localization for you. That is still your job.

Overview and Terminology | 1033

Download at WoweBook.Com

Additional terms used in this chapter are defined in Table 25-2; I’ll expand on these in
the following sections.

Table 25-2. Detailed globalization, localization, and internationalization terms

Term Definition

Character
encoding

Each character is a representation of a code point. Character encoding is the mapping between character and
code point. The type of character encoding chosen for the database determines the ability to store and retrieve
these code points.

Character
set

Characters are grouped by language or region. Each regionalized set of characters is referred to as a character set.

Code point Each character in every character set is given a unique identifier called a code point. This identifier is determined
by the Unicode Consortium. Code points can represent a character in its entirety or can be combined with other
code points to form complex characters. An example of a code point is \0053.

Glyph A glyph is the graphical display of a character that is mapped to one or more code points. The code point definition
in this table used the \0053 code point. The glyph this code point is mapped to is the capital letter S.

Multibyte
characters

Most Western European characters require only a single byte to store them. Multibyte characters, such as Japanese
or Korean, require between 2 and 4 bytes to store a single character in the database.

NLS National Language Support is the old name for Oracle’s globalization architecture. Starting with Oracle9i Data-
base, it is officially referred to as Globalization Support, but you will see documentation and parameters that
make reference to NLS for some time to come.

Unicode Unicode is a standard for character encoding.

Unicode Primer
Before the Unicode standard was developed, there were multiple character encoding
schemes that were inadequate and that, at times, conflicted with each other. It was
nearly impossible to develop global applications that were consistent because no single
character encoding scheme could support all characters.

Unicode is a standard for character encoding that resolves these problems. It was de-
veloped and is maintained by the Unicode Consortium. The Unicode Standard and
Unicode Character Database, or UCD, define what is included in each version.

Oracle’s Unicode character sets allow you to store and retrieve more than 200 different
individual character sets. Using a Unicode character set provides support for all char-
acter sets without making any engineering changes to an application.

Oracle Database 11g Release 2 supports Unicode version 5.0. First published in 2006,
Unicode 5.0 includes the capacity to encode more than 1 million characters. This is
enough to support all modern characters, as well as many ancient or minor scripts. At
the time of this writing, Unicode 5.1 is the most current published Unicode version.

Unicode character sets in Oracle Database 11g include UTF-8 and UTF-16 encoding.
UTF-8 stores characters in 1, 2, or 3 bytes, depending on the character. UTF-16 stores
characters in 2 bytes regardless of character. Supplementary characters are supported

1034 | Chapter 25: Globalization and Localization in PL/SQL

Download at WoweBook.Com

with both encoding schemes, and these require 4 bytes per character regardless of the
Unicode character set chosen.

Each Oracle database has two character sets. You can define one primary database
character set that will be used for most application functions, and a separate NLS char-
acter set for NLS-specific datatypes and functions. Use the following query to determine
the character sets you are using:

SELECT parameter, VALUE
 FROM nls_database_parameters
 WHERE parameter IN ('NLS_CHARACTERSET', 'NLS_NCHAR_CHARACTERSET')

This query returns the following results in my environment:

PARAMETER VALUE
------------------------- ----------
NLS_CHARACTERSET AL32UTF8
NLS_NCHAR_CHARACTERSET AL16UTF16

My NLS_CHARACTERSET, or primary character set for my database, has a value of
AL32UTF8. This 32-bit UTF-8 Unicode character set is meant to encompass most
common characters in the world. My NLS_NCHAR_CHARACTERSET, used primar-
ily for NCHAR and NVARCHAR2 columns, is a 16-bit UTF-16 character set.

Choosing a Character Set
Oracle now recommends that all new installations of the Oracle Database use a Unicode
character set for the NLS_CHARACTERSET. Having performed a number of character
set migrations, I agree that this recommendation is definitely a good one to follow. Your
application may need to support only ASCII characters right now, but what about in
two or three years? The performance implications of using Unicode are negligible, and
space implications are minor since the encoding uses variable byte sizes based on the
characters themselves.

Another consideration, even if you have no plans to work with multilingual data, is
that you may still get multibyte characters in your database. Browser-based applications
often support the copying and pasting of large amounts of text from word-processing
applications. In doing so, they can take in more than simple ASCII characters. Bullets,
for example, are multibyte characters. Unless you analyze everything that is posted to
your data fields, it will be difficult to know whether the data going in is supported by
your non-Unicode character set. Unicode ensures that your database will handle what-
ever characters are required today—and tomorrow.

The names Oracle gives to its character sets are structured to provide useful information
about each character set. US7ASCII supports U.S. English characters, for example. For
AL32UTF8, the character set is intended to support all languages. The second part of
the string indicates the number of bits per character. US7ASCII uses 7 bits per character
while AL32UTF8 uses up to 32 bits per character. The remainder of the string is the
official character set name. Figure 25-1 illustrates this convention.

Unicode Primer | 1035

Download at WoweBook.Com

For more information on Unicode, refer to the Unicode Standard web site at:

http://unicode.org/unicode/standard/standard.html

National Character Set Datatypes
The Globalization Support (national character set) datatypes of NCLOB, NCHAR,
and NVARCHAR2 use the character set defined for NLS_NCHAR_CHARACTERSET
rather than the database default character set specified for the database using
NLS_CHARACTERSET. These datatypes support only the use of a multibyte Unicode
character set, so even when working with a database whose default is non-Unicode,
they will store the characters using the national character set instead. Because the na-
tional character set supports only UTF-8 and UTF-16 encodings, NCLOB, NCHAR,
and NVARCHAR2 are guaranteed to store the data as multibyte Unicode.

This used to cause a problem when comparing NCLOB/NCHAR/NVARCHAR2 col-
umns with CLOB/CHAR/VARCHAR2 columns. For all currently supported releases,
however, Oracle performs an implicit conversion, allowing the comparison to take
place.

Character Encoding
Your choice of a character set at database creation time determines the type of encoding
your characters will have. Each encoded character is assigned a code value, or code
point, that is unique to that character. This value is part of a Unicode character-map-
ping table whose values are controlled by the Unicode Consortium.

Code points appear as a U+ (or a backslash, \) followed by the hexadecimal value of
the character, with the valid range of values from U+0000 to U+10FFFF16. Combined
characters, such as Ä, can be broken down into their individual components (A with
an umlaut in this case) and recomposed again into their original state. The decompo-
sition mapping for A is U+0041, and U+0308 for the umlaut. I will examine some
Oracle functions in the next section that enable you to work with these code points.

A code unit is the byte size of the datatype that is used to store characters. The size of
the code unit depends on the character set that is used. In certain circumstances, the

Figure 25-1. Oracle’s character set naming convention

1036 | Chapter 25: Globalization and Localization in PL/SQL

Download at WoweBook.Com

http://unicode.org/unicode/standard/standard.html

code point is too large for a single code unit, so multiple code units are needed for a
single code point.

Of course, users recognize characters, not code points and code units. The “word”
\0053\0074\0065\0076\0065\006E doesn’t mean a lot to average end users who rec-
ognize characters in their native language. For one thing, the text actually displayed on
the user’s screen is called a glyph and is simply a representation of the underlying code
point. Your computer may not have the required fonts or may be otherwise unable to
render the characters on the screen. This does not mean, however, that Oracle has
stored the code point incorrectly.

Globalization Support Parameters
Oracle relies on Globalization Support (NLS) parameters for its default behavior. These
settings are configured at the time of database creation and encompass everything from
your character sets to default currency symbols. I will refer to parameters that can be
modified for your session throughout this chapter. Table 25-3 shows the parameters,
example values, and an explanation of each. You can find the values on your system
from the NLS_SESSION_PARAMETERS view.

Unicode and Your Environment
Oracle supports all characters in the world but does your environment? Unless you
work with Unicode characters on a regular basis, there is a good chance that your system
is not set up to support certain multibyte characters (is unable, that is, to render the
proper glyphs). Operating-system Unicode support does not guarantee that all appli-
cations on that operating system will work with all characters. The individual applica-
tion vendors control their Unicode support. Even basic applications such as DOS have
difficulty with certain characters if not properly configured.

If you require interaction with the Oracle database in a way that supports multibyte
characters, but you do not want or need to adjust your operating system and applica-
tions, consider configuring Oracle Application Express from Oracle. You can access the
database using your browser where Unicode encoding is easily configured. Oracle Ap-
plication Express is free to install on top of any version of the Oracle database, and is
actually preconfigured with Oracle Express Edition. iSQL*Plus is another option for
Oracle9i Database and later.

Many web-based tools have the appropriate encoding scheme listed in their page header
so Unicode characters will display correctly by default, but in case you do not see the
correct characters, set the encoding in your Internet Explorer browser as follows:

On the menu, select:

View → Encoding → Auto Select and UTF-8.

Using Firefox, select:

View → Character Encoding → Unicode (UTF-8)

Unicode Primer | 1037

Download at WoweBook.Com

Table 25-3. NLS session parameters

Parameter Description Example

NLS_CALENDAR Sets the default calendar for the database. GREGORIAN

NLS_COMP Works with NLS_SORT to define sort rules for characters. You must use
a linguistic index when setting to ANSI.

BINARY

NLS_CURRENCY Specifies the currency symbol and is based on the NLS_TERRITORY
value unless explicitly overridden with another value.

$

NLS_DATE_FORMAT The default format of the date only. It is derived from NLS_TERRITORY
and can be overridden.

DD-MON-RR

NLS_DATE_LANGUAGE Determines the spelling of the day and month for date-related
functions.

AMERICAN

NLS_DUAL_CURRENCY Helps support the Euro and is derived from NLS_TERRITORY unless
overridden. It is an alternate currency for a territory.

$

NLS_ISO_CURRENCY The ISO currency symbol whose default is derived from the NLS_TER-
RITORY. It can be overridden with any valid territory.

AMERICA

NLS_LANGUAGE Sets the default language used within the database. It impacts every-
thing from date formatting to server messages.

AMERICAN

NLS_LENGTH_SEMANTICS Determines whether character or byte semantics are used. BYTE

NLS_NCHAR_CONV_EXCP Determines whether a character type conversion will report an error. FALSE

NLS_NUMERIC_CHARACTERS The default decimal character and group separator are derived from
NLS_TERRITORY but can be overridden.

.,

NLS_SORT Defines the character sort order for a given language. BINARY

NLS_TERRITORY Has a broad impact because many other NLS parameters depend on
this value for their defaults. The value specifies the primary region
supported by the database.

AMERICA

NLS_TIMESTAMP_FORMAT Default timestamp format for TO_TIMESTAMP and TO_CHAR
functions.

DD-MON-RR
HH.MI.SSXF F AM

NLS_TIMESTAMP_TZ_FORMAT Sets the timestamp with time zone format for TO_CHAR and
TO_TIMESTAMP_TZ.

DD-MON-RR
HH.MI.SSXF F AM
TZR

NLS_TIME_FORMAT Complements the NLS_DATE_FORMAT mentioned earlier. Sets the
default time format for the database.

HH.MI.SSXF F AM

NLS_TIME_TZ_FORMAT Defines the time format including the time zone region or UTC offset. HH.MI.SSXF F AM
TZR

Unicode Functions
Oracle’s Unicode PL/SQL support begins with some basic string functions. However,
you will notice slight variations in Table 25-4 for some well-known functions. Func-
tions INSTR, LENGTH, and SUBSTR have a B, C, 2, or 4 appended to the end of the
name indicating whether the function is byte, character, code unit, or code point-based.

1038 | Chapter 25: Globalization and Localization in PL/SQL

Download at WoweBook.Com

INSTR, LENGTH, and SUBSTR use the length semantics associated
with the datatype of the column or variable. These base functions and
the variations ending in “C” will often return the same value until you
begin work against NCHAR or NVARCHAR. Because your
NLS_NCHAR_CHARACTERSET and NLS_CHARACTERSET can be
different, INSTR, LENGTH, and SUBSTR can return different results
(depending on the datatype) from their character counterparts.

Table 25-4. Unicode functions

Unicode function Description

ASCIISTR(string) Converts string to ASCII characters. When the character is Unicode, it formats as the standard
Unicode format \xxxx.

COMPOSE(string) Converts a decomposed string to its fully composed form.

DECOMPOSE(string, [canonical |
compatibility)

Takes string as an argument and returns a Unicode string in its individual code points.

INSTRB(string, substr, pos, occ) Returns the byte position of substr in string beginning at position pos. You can also specify
the occ occurrence of substr if it appears more than once. The default of pos and occ are both
1 if not specified. pos is in bytes.

INSTRC(string, substr, pos, occ) Similar to INSTRB except that it returns the character position of substr in string beginning at
position pos where pos is in characters.

INSTR2(string, substr, pos, occ) Return position is based on UTF-16 code units.

INSTR4(string, substr, pos, occ) Return position is based on UTF-16 code points.

LENGTHB(string) Returns the number of bytes in string.

LENGTHC(string) Returns the Unicode length of string. The length is in number of characters.

LENGTH2(string) Length is based on UTF-16 code units.

LENGTH4(string) Length is based on UTF-16 code points.

SUBSTRB(string, n, m) Returns a portion of string beginning at position n for length m. n and m are in bytes.

SUBSTRC(string, n, m) Returns a portion of string beginning at position n for length m. n and m are based on Unicode
characters.

SUBSTR2(string, n, m) n and m are in UTF-16 code units.

SUBSTR4(string, n, m) n and m are in UTF-16 code points.

UNISTR Converts string to an ASCII string representation of Unicode using backslash and hex digits.

Let’s take a closer look at these functions.

ASCIISTR

ASCIISTR takes string as input and attempts to convert it to a string of ASCII characters.
If string contains non-ASCII characters it formats them as \xxxx. As you will see with
the DECOMPOSE function described later, this formatting comes in very handy.

Unicode Primer | 1039

Download at WoweBook.Com

BEGIN
 DBMS_OUTPUT.put_line ('ASCII Character: ' || ASCIISTR ('A'));
 DBMS_OUTPUT.put_line ('Unicode Character: ' || ASCIISTR ('Ä'));
END;

This returns the following:

ASCII Character: A
Unicode Character: \00C4

COMPOSE

For some characters, there are multiple ways for code points to represent the same
thing. This is a problem when you are comparing two values. An Ä can be created using
a single code point U+00C4, or with multiple code points U+0041 (the letter A) and
U+0308. U+00C4 is precomposed, while U+0041 and U+0308 are decomposed. On
comparison, PL/SQL says these are not equal.

DECLARE
 v_precomposed VARCHAR2 (20) := UNISTR ('\00C4');
 v_decomposed VARCHAR2 (20) := UNISTR ('A\0308');
BEGIN
 IF v_precomposed = v_decomposed
 THEN
 DBMS_OUTPUT.put_line ('==EQUAL==');
 ELSE
 DBMS_OUTPUT.put_line ('<>NOT EQUAL<>');
 END IF;
END;

The following is displayed:

<>NOT EQUAL<>

Using the COMPOSE function I can make the decomposed value equal to the pre-
composed value:

DECLARE
 v_precomposed VARCHAR2 (20) := UNISTR ('\00C4');
 v_decomposed VARCHAR2 (20) := COMPOSE (UNISTR ('A\0308'));
BEGIN
 IF v_precomposed = v_decomposed
 THEN
 DBMS_OUTPUT.put_line ('==EQUAL==');
 ELSE
 DBMS_OUTPUT.put_line ('<>NOT EQUAL<>');
 END IF;
END;

This query returns the following:

==EQUAL==

1040 | Chapter 25: Globalization and Localization in PL/SQL

Download at WoweBook.Com

DECOMPOSE

As you might have guessed, DECOMPOSE is the opposite of COMPOSE. DECOM-
POSE takes something that is precomposed and breaks it down into separate code
points or elements:

DECLARE
 v_precomposed VARCHAR2 (20) := ASCIISTR (DECOMPOSE ('Ä'));
 v_decomposed VARCHAR2 (20) := 'A\0308';
BEGIN
 IF v_precomposed = v_decomposed
 THEN
 DBMS_OUTPUT.put_line ('==EQUAL==');
 ELSE
 DBMS_OUTPUT.put_line ('<>NOT EQUAL<>');
 END IF;
END;

The results are as follows:

==EQUAL==

INSTR/INSTRB/INSTRC/INSTR2/INSTR4

All INSTR functions return the position of a substring within a string. The differences
lie in how the position is determined:

INSTR
Finds the position by character.

INSTRB
Returns the position in bytes.

INSTRC
Determines the position by Unicode character.

INSTR2
Uses code units.

INSTR4
Returns the position by code point.

To illustrate, let’s use the publication table in the g11n schema.

DECLARE
 v_instr NUMBER (2);
 v_instrb NUMBER (2);
 v_instrc NUMBER (2);
 v_instr2 NUMBER (2);
 v_instr4 NUMBER (2);
BEGIN
 SELECT INSTR (title, 'グ'),
 INSTRB (title, 'グ'),
 INSTRC (title, 'グ
'),
 INSTR2 (title, 'グ'),

Unicode Primer | 1041

Download at WoweBook.Com

 INSTR4 (title, 'グ
')
 INTO v_instr, v_instrb, v_instrc,
 v_instr2, v_instr4
 FROM publication
 WHERE publication_id = 2;

 DBMS_OUTPUT.put_line ('INSTR of グ: ' || v_instr);
 DBMS_OUTPUT.put_line ('INSTRB of グ: ' || v_instrb);
 DBMS_OUTPUT.put_line ('INSTRC of グ: ' || v_instrc);
 DBMS_OUTPUT.put_line ('INSTR2 of グ: ' || v_instr2);
 DBMS_OUTPUT.put_line ('INSTR4 of グ: ' || v_instr4);
END;
/

The output is as follows:

INSTR of グ: 16
INSTRB of グ: 20
INSTRC of グ: 16
INSTR2 of グ: 16
INSTR4 of グ: 16

The position of character “グ” is different only for INSTRB in this case. One nice feature
of INSTR2 and INSTR4 is that you can search for code points that do not represent
complete characters. Returning to our character Ä, it is possible to include the umlaut
as the substring for which to search.

LENGTH/LENGTHB/LENGTHC/LENGTH2/LENGTH4

The LENGTH functions operate as follows:

LENGTH
Returns the length in characters.

LENGTHB
Returns the length in bytes of a string.

LENGTHC
Returns the length in Unicode characters.

LENGTH2
Is the number of code units.

LENGTH4
Is the number of code points.

The LENGTH function matches the LENGTHC function when characters are
precomposed.

DECLARE
 v_length NUMBER (2);
 v_lengthb NUMBER (2);
 v_lengthc NUMBER (2);
 v_length2 NUMBER (2);

1042 | Chapter 25: Globalization and Localization in PL/SQL

Download at WoweBook.Com

 v_length4 NUMBER (2);
BEGIN
 SELECT LENGTH (title), LENGTHB (title), lengthc (title), length2 (title),
 length4 (title)
 INTO v_length, v_lengthb, v_lengthc, v_length2,
 v_length4
 FROM publication
 WHERE publication_id = 2;

 DBMS_OUTPUT.put_line ('LENGTH of string: ' || v_length);
 DBMS_OUTPUT.put_line ('LENGTHB of string: ' || v_lengthb);
 DBMS_OUTPUT.put_line ('LENGTHC of string: ' || v_lengthc);
 DBMS_OUTPUT.put_line ('LENGTH2 of string: ' || v_length2);
 DBMS_OUTPUT.put_line ('LENGTH4 of string: ' || v_length4);
END;

This gives the following result:

LENGTH of string: 28
LENGTHB of string: 52
LENGTHC of string: 28
LENGTH2 of string: 28
LENGTH4 of string: 28

The only difference in this case is with the LENGTHB function. As expected, LENGTH
and LENGTHC returned the same result. My expectation changes when working with
decomposed characters, however. Note the following example:

DECLARE
 v_length NUMBER (2);
BEGIN
 SELECT LENGTH (UNISTR ('A\0308'))
 INTO v_length
 FROM DUAL;

 DBMS_OUTPUT.put_line ('Decomposed string size using LENGTH: ' || v_length);

 SELECT lengthc (UNISTR ('A\0308'))
 INTO v_length
 FROM DUAL;

 DBMS_OUTPUT.put_line ('Decomposed string size using LENGTHC: ' || v_length);
END;

The length is returned as follows:

Decomposed string size using LENGTH: 2
Decomposed string size using LENGTHC: 1

In this case, LENGTH still returns the number of characters, but sees the A as separate
from the umlaut. LENGTHC returns the length of Unicode characters, so it sees only
one character.

Unicode Primer | 1043

Download at WoweBook.Com

SUBSTR/SUBSTRB/SUBSTRC/SUBSTR2/SUBSTR4

The different versions of SUBSTR follow the same pattern as INSTR and LENGTH.
SUBSTR returns a portion of a string beginning at a given position, for a specified
length. The functions operate as follows:

SUBSTR
Determines position and length by character.

SUBSTRB
Determines position and length in bytes.

SUBSTRC
Determines position and length in Unicode characters.

SUBSTR2
Uses code units.

SUBSTR4
Uses code points.

The following example illustrates the use of these functions.

DECLARE
 v_substr VARCHAR2 (20);
 v_substrb VARCHAR2 (20);
 v_substrc VARCHAR2 (20);
 v_substr2 VARCHAR2 (20);
 v_substr4 VARCHAR2 (20);
BEGIN
 SELECT SUBSTR (title, 13, 4), SUBSTRB (title, 13, 4),
 substrc (title, 13, 4), substr2 (title, 13, 4),
 substr4 (title, 13, 4)
 INTO v_substr, v_substrb,
 v_substrc, v_substr2,
 v_substr4
 FROM publication
 WHERE publication_id = 2;

 DBMS_OUTPUT.put_line ('SUBSTR of string: ' || v_substr);
 DBMS_OUTPUT.put_line ('SUBSTRB of string: ' || v_substrb);
 DBMS_OUTPUT.put_line ('SUBSTRC of string: ' || v_substrc);
 DBMS_OUTPUT.put_line ('SUBSTR2 of string: ' || v_substr2);
 DBMS_OUTPUT.put_line ('SUBSTR4 of string: ' || v_substr4);
END;

Notice the difference between SUBSTRB and the other functions in the output from
the script.

SUBSTR of string: L プログ
SUBSTRB of string: L プ
SUBSTRC of string: L プログ
SUBSTR2 of string: L プログ
SUBSTR4 of string: L プログ

1044 | Chapter 25: Globalization and Localization in PL/SQL

Download at WoweBook.Com

UNISTR

UNISTR takes a string and converts it to Unicode. I used this function in a few earlier
examples to display the Unicode character of a decomposed string. In the section,
“Character Encoding” on page 1036, I used a string of code points as an example when
discussing glyphs. I can use UNISTR to make sense of all this:

DECLARE
 v_string VARCHAR2 (20);
BEGIN
 SELECT UNISTR ('\0053\0074\0065\0076\0065\006E')
 INTO v_string
 FROM DUAL;

 DBMS_OUTPUT.put_line (v_string);
END;

The output is as follows:

Steven

See http://www.unicode.org/charts/ for a complete listing of characters
and code points.

Character Semantics
Undoubtedly, one of the first issues you will run into when localizing your application
is support for multibyte characters. When you pass your first Japanese characters to a
VARCHAR2 variable and experience an ORA-6502 error, you will likely spend an hour
debugging your procedure that “should work.”

At some point, you may realize that every declaration of every character variable or
character column in your application will have to be changed to accommodate the
multibyte character set. You will then, if you are anything like me, consider for a mo-
ment changing careers. Don’t give up! Once you work through the initial challenges,
you will be in a very strong position to guide application implementations in the future.

Consider the following example:

DECLARE
 v_title VARCHAR2 (30);
BEGIN
 SELECT title
 INTO v_title
 FROM publication
 WHERE publication_id = 2;

 DBMS_OUTPUT.put_line (v_title);
EXCEPTION
 WHEN OTHERS

Character Semantics | 1045

Download at WoweBook.Com

http://www.unicode.org/charts/

 THEN
 DBMS_OUTPUT.put_line (DBMS_UTILITY.format_error_stack);
END;

It returns the following exception:

ORA-06502: PL/SQL: numeric or value error: character string buffer too small

It failed because the precision of 30 is in bytes, not in characters. A number of Asian
character sets have up to 3 bytes per character, so it’s possible that a variable with a
precision of 2 will actually not support even a single character in your chosen character
set!

Using the LENGTHB function I can determine the actual size of the string:

DECLARE
 v_length_in_bytes NUMBER (2);
BEGIN
 SELECT LENGTHB (title)
 INTO v_length_in_bytes
 FROM publication
 WHERE publication_id = 2;

 DBMS_OUTPUT.put_line ('String size in bytes: ' || v_length_in_bytes);
END;

This returns the following result:

String size in bytes: 52

Prior to Oracle9i Database we were somewhat limited in what we could do. The ap-
proach I most frequently used in Oracle8i Database was to simply use the maximum
number of characters expected and multiply by 3.

DECLARE
 v_title VARCHAR2 (90);
BEGIN
 SELECT title
 INTO v_title
 FROM publication
 WHERE publication_id = 2;

 DBMS_OUTPUT.put_line (v_title);
EXCEPTION
 WHEN OTHERS
 THEN
 DBMS_OUTPUT.put_line (DBMS_UTILITY.format_error_stack);
END;

If you are using a display that can render the proper glyph, the following result is
returned:

Oracle PL/SQL プログラミング 基礎編 第 3 版

1046 | Chapter 25: Globalization and Localization in PL/SQL

Download at WoweBook.Com

This workaround does the job, but it is clumsy. Using byte semantics and simply mul-
tiplying the number of expected characters by 3 causes some undesired behaviors in
your application:

• Many other database vendors use character rather than byte semantics by default,
so porting applications to multiple databases becomes cumbersome.

• In cases where characters do not take the full 3 bytes, it is possible for the variable
or column to store more than the expected number of characters.

• The padding that Oracle automatically applies to CHAR datatypes means that the
full 90 bytes are used regardless of whether they are needed.

Character semantics were first introduced in Oracle9i Database. It is possible to declare
a variable with precision in either bytes or characters. The following example is the
same one that failed earlier—with one exception. Look at the declaration of the variable
to see how I invoke character semantics:

DECLARE
 v_title VARCHAR2 (30 CHAR);
BEGIN
 SELECT title
 INTO v_title
 FROM publication
 WHERE publication_id = 2;

 DBMS_OUTPUT.put_line (v_title);
EXCEPTION
 WHEN OTHERS
 THEN
 DBMS_OUTPUT.put_line (DBMS_UTILITY.format_error_stack);
END;

This returns the following complete string:

Oracle PL/SQL プログラミング 基礎編 第 3 版

This method still requires a change for every character variable or column declaration
in your application. An easier solution is to change from byte semantics to character
semantics for your entire database. To make this change, simply set
NLS_LENGTH_SEMANTICS to CHAR. You can find your current setting by running:

SELECT parameter, VALUE
 FROM nls_session_parameters
 WHERE parameter = 'NLS_LENGTH_SEMANTICS'

The following is returned:

PARAMETER VALUE
------------------------- ----------
NLS_LENGTH_SEMANTICS BYTE

Also check the V$PARAMETER view:

Character Semantics | 1047

Download at WoweBook.Com

SELECT NAME, VALUE
 FROM v$parameter
 WHERE NAME = 'nls_length_semantics'

This query returns the following:

NAME VALUE
------------------------- ----------
nls_length_semantics BYTE

Modify your system NLS_LENGTH_SEMANTICS setting using the ALTER SYSTEM
command:

ALTER SYSTEM SET NLS_LENGTH_SEMANTICS = CHAR

You can also modify this parameter for a session with the ALTER SESSION command:

ALTER SESSION SET NLS_LENGTH_SEMANTICS = CHAR

With this approach, modifying an existing application becomes a snap; now all existing
declarations are automatically based on number of characters rather than bytes. After
setting the system to character semantics, you can see the change in the data dictionary:

SELECT parameter, value
 FROM nls_session_parameters
 WHERE parameter = 'NLS_LENGTH_SEMANTICS'

The following is returned:

PARAMETER VALUE
------------------------- ----------
NLS_LENGTH_SEMANTICS CHAR

Returning to the prior example, you can see that character semantics are used without
specifying CHAR in the declaration.

DECLARE
 v_title VARCHAR2 (30);
BEGIN
 SELECT title
 INTO v_title
 FROM publication
 WHERE publication_id = 2;

 DBMS_OUTPUT.put_line (v_title);
EXCEPTION
 WHEN OTHERS
 THEN
 DBMS_OUTPUT.put_line (DBMS_UTILITY.format_error_stack);
END;

The following is returned:

Oracle PL/SQL プログラミング 基礎編 第 3 版

Note that the maximum number of bytes allowed is not adjusted in any way with
character semantics. While setting character semantics will allow 1,000 3-byte char-
acters to go into a VARCHAR2(1000) without modification, you will not be able to put

1048 | Chapter 25: Globalization and Localization in PL/SQL

Download at WoweBook.Com

32,767 3-byte characters in a VARCHAR2(32767). The VARCHAR2 variable limit is
still set at 32,767 bytes and the VARCHAR2 column maximum is still 4,000 bytes.

Include the use of character semantics in your initial application design
and make your life infinitely easier. Unless you have an overwhelming
need to use byte semantics in a portion of your application, set the pa-
rameter NLS_LENGTH_SEMANTICS = CHAR to make character se-
mantics the default. If you change your NLS_LENGTH_SEMANTICS
for an existing application, remember to recompile all objects so the
change will take effect. This includes rerunning the catproc.sql script to
re-create all supplied packages too!

String Sort Order
Oracle provides advanced linguistic sort capabilities that extend far beyond the basic
A-Z sorting you get with an ORDER BY clause. The complexities found in international
character sets do not lend themselves to simple alphabetic sort, or collation, rules.
Chinese, for example, includes approximately 70,000 characters (although many are
not used regularly). Not exactly something you can easily put into song like the ABCs!
Also, not something that can be defined by simple sort rules.

String sort order is an obvious programming problem that is often overlooked in glob-
alization until a product makes its way to the test team. Ordering the names of em-
ployees, cities of operation, or customers is much more complicated than “A comes
before B.” Consider the following factors:

• Some European characters include accents that change the meaning of the base
letter. The letter “a” is different from “ä.” Which letter should come first in an
ORDER BY?

• Concatenated characters are used in other languages. Spanish, for example, com-
bines two “l”s to form a new character that is pronounced differently and that
comes after the letter “l” in the Spanish alphabet. Using a basic sort from the English
alphabet, the word “pollo” would be listed before the word “polo.” In the Spanish
alphabet, it would come afterwards.

• Each locale may have its own sort rules, so a multilingual application must be able
to support different sort rules based on the text. Even regions that use the same
alphabet may still have different sort rules.

Oracle provides three types of sorts: binary, monolingual, and multilingual.

The Unicode Consortium makes its collation algorithm public, so we can compare the
output from our queries for these three types of sorts with the expected results shown
at http://www.unicode.org/charts/collation/.

String Sort Order | 1049

Download at WoweBook.Com

http://www.unicode.org/charts/collation/

Binary Sort
The binary sort is based on the character’s encoding scheme, and the values associated
with each character. It is very fast, and is especially useful if you know that all of your
data is stored in uppercase. The binary sort is most useful for ASCII characters, sorting
the English alphabet, but even then you may find some undesired results. ASCII en-
coding, for example, orders uppercase letters before their lowercase representation.

The following example from the g11n sample schema shows the results of a binary sort
of German cities:

 SELECT city
 FROM store_location
 WHERE country <> 'JP'
ORDER BY city;

The ordered list of results is as follows:

CITY

Abdêra
Asselfingen
Astert
Auufer
Außernzell
Aßlar
Boßdorf
Bösleben
Bötersen
Cremlingen
Creuzburg
Creußen
Oberahr
Zudar
Zühlen
Ängelholm
...lsen

Note the order of the cities in the list. Ängelholm is ordered after Zühlen. Character
codes are sorted in ascending order, providing the A–Z ordering you see above. These
anomalies result from the inclusion of characters outside the English alphabet, here
being treated as special characters.

Monolingual Sort
Most European languages will benefit from monolingual sort capabilities within Ora-
cle. Rather than using basic codes associated with the character’s encoding scheme like
the binary sort, two values are used to determine the relative position of a character in
a monolingual sort. Each character has a major value, related to the base character, and
a minor value, based on case and diacritic differences. If sort order can be determined
by a difference in major value, the ordering is complete. Should there be a tie in major

1050 | Chapter 25: Globalization and Localization in PL/SQL

Download at WoweBook.Com

value, the minor value is used. This way, characters such as ö can be ordered relative
to the character o accurately.

To see the impact this has on the ordering of these additional characters, let’s return
to the prior example and modify the session to use the German monolingual sort:

ALTER SESSION SET NLS_SORT = german;

Upon confirmation that the session has been altered, I run the following query:

 SELECT city
 FROM store_location
 WHERE country <> 'JP'
ORDER BY city;

Notice that the order is different now that NLS_SORT is set to “german”:

CITY

Abdêra
Ängelholm
Aßlar
Asselfingen
Astert
Außernzell
Auufer
Boßdorf
Bösleben
Bötersen
Cremlingen
Creußen
Creuzburg
Oberahr
...lsen
Zudar
Zühlen

This is much better! The treatment of non-English characters is now in line with the
expected German order of characters. By the way, if you do not want to (or cannot)
alter your session NLS settings, you can use the NLSSORT function and the NLS_SORT
parameter as part of your query. The following function demonstrates the use of this
parameter:

FUNCTION city_order_by_func (v_order_by IN VARCHAR2)
 RETURN sys_refcursor
IS
 v_city sys_refcursor;
BEGIN
 OPEN v_city
 FOR
 SELECT city
 FROM store_location
 ORDER BY NLSSORT (city, 'NLS_SORT=' || v_order_by);

 RETURN v_city;
END city_order_by_func;

String Sort Order | 1051

Download at WoweBook.Com

As seen above, the NLSSORT function and the NLS_SORT parameter provide quick
ways to change the results of an ORDER BY clause. For this function, which is used in
the remaining examples, the NLS_SORT parameter is taken as input. Table 25-5 lists
some of the available NLS_SORT parameter values in Oracle Database 11g.

Table 25-5. Monolingual NLS_SORT parameter values

arabic xcatalan japanese

arabic_match german polish

arabic_abj_sort xgerman punctuation

arabic_abj_match german_din xpunctuation

azerbaijani xgerman_din romanian

xazerbaijani hungarian russian

bengali xhungarian spanish

bulgarian icelandic xspanish

canadian french indonesian west_european

catalan italian xwest_european

The list of parameters in this table includes some values prefixed with an x. These
extended sort parameters allow for special cases in a language. In my cities example,
some names have the character ß. This sharp s in German can be treated as ss for the
purposes of the sort. I tried a sort using NLS_SORT = german. Let’s try xgerman to see
the difference:

VARIABLE v_city_order REFCURSOR
CALL city_order_by_func('xgerman') INTO :v_city_order;
PRINT v_city_order

This displays the following:

CITY

...
Abdêra
Ängelholm
Asselfingen
Aßlar
Astert
Außernzell
Auufer
...

Using xgerman rather than german, the word Aßlar drops to fourth in the list instead
of third.

1052 | Chapter 25: Globalization and Localization in PL/SQL

Download at WoweBook.Com

Multilingual Sort
Monolingual sort, as you might guess from the use of “mono” in its name, has a major
drawback. It can operate on only one language at a time based on the NLS_SORT
parameter setting. Oracle also provides multilingual sort capabilities that allow you to
sort for multiple locales.

The multilingual sort, based on the ISO 14651 standard, supports more than 1.1 million
characters in a single sort. Not only does Oracle’s multilingual support cover characters
defined as part of the Unicode 4.0 standard, but it can also support supplementary
characters.

Where binary sorts are determined by character encoding scheme codes, and mono-
lingual sorts are developed in two stages, multilingual sorts use a three-step approach
to determine the order of characters:

1. The first level, or primary level, separates base characters.

2. The secondary level distinguishes base characters from diacritics that modify the
base characters.

3. Finally, the tertiary level separates by case.

For Asian languages, characters are also differentiated by number of strokes, PinYin,
or radicals.

NLSSORT and NLS_SORT are still used for multilingual sorts, but the parameters
change. GENERIC_M works well for most Western languages, and provides the base
for the remaining list of values. Table 25-6 lists the NLS_SORT parameter values avail-
able for multilingual sorts.

Table 25-6. Multilingual NLS_SORT parameter values

generic_m

canadian_m japanese_m schinese_pinyin_m tchinese_radical_m

danish_m korean_m schinese_radical_m tchinese_stroke_m

french_m schinese_stroke_m spanish_m thai_m

To demonstrate the multilingual sort functionality, I can modify the call to use the
generic_m value:

VARIABLE v_city_order REFCURSOR
CALL city_order_by_func('generic_m') INTO :v_city_order;
PRINT v_city_order

This returns the following ordered list of cities:

CITY

Abdêra
Ängelholm

String Sort Order | 1053

Download at WoweBook.Com

Asselfingen
Aßlar
Astert
..
Zudar
Zühlen
尼崎市
旭川市
足立区
青森市

Multilingual Information Retrieval
Application developers who work on catalogs, digital libraries, and knowledge
repositories are no doubt familiar with information retrieval, or IR. An IR application
takes in user-supplied criteria and searches for the items or documents that best match
the intent of the user. This is one of the major ways that IR differs from standard SQL
queries, which either do or do not find matches for the query criteria. Good IR systems
can help determine what documents are about, and return those documents that are
most relevant to the search, even if they don’t match the search exactly.

Perhaps the most challenging task in IR is to support indexing and querying in multiple
languages. English, for example, is a single-byte language that uses whitespace to sep-
arate words. Retrieval of information is substantially different when working with Jap-
anese, which is a multibyte character set that does not use whitespace as delimiters.

Oracle Text, an option available in both the Oracle Enterprise Edition and the Oracle
Standard Edition, provides full-text IR capabilities. Because Oracle Text uses SQL for
index creation, search, and maintenance operations, it works very well in PL/SQL-
based applications.

Called ConText and interMedia in prior releases, Oracle Text really came of age as an
information retrieval solution with Oracle9i Database. With Oracle Text:

• All NLS character sets are supported.

• Searching across documents in Western languages, as well as in Korean, Japanese,
and Traditional and Simplified Chinese, is possible.

• Unique characteristics of each language are accommodated.

• Searches are case-insensitive by default.

• Cross-language search is supported.

Before a PL/SQL application can be written that searches a data source, Oracle Text
indexes must be created. As part of the g11n schema, I created an Oracle Text index on
the publication.short_description column. To support multiple languages, I provided
individual language preferences, as well as a MULTI_LEXER preference, that makes it
possible to search across multiple languages with a single query.

1054 | Chapter 25: Globalization and Localization in PL/SQL

Download at WoweBook.Com

Oracle Text Indexes
There are four index types available with Oracle Text. The first, and most commonly
used, is the CONTEXT index. The CONTEXT index can index any character or LOB
column, including BFILEs. It uses a filter to extract text from different document types.
The filter that is shipped with the data server can filter more than 350 different docu-
ment types, including Word documents, PDFs, and XML documents.

Once the text is extracted from the document, it is broken into tokens, or individual
terms and phrases, by a LEXER. Language-specific LEXERs are available where re-
quired. A MULTI_LEXER actually uses language-specific LEXERs (defined as
SUB_LEXERs) to extract the tokens from a multilingual data source. The tokens are
stored in Oracle Text index tables and are used during search operations to point to
relevant documents. To see the tokens created in this chapter’s examples, run the
following:

SELECT token_text
 FROM dr$g11n_index$i

The result contains English, German, and Japanese tokens.

The other three Oracle Text index types are the CTXCAT, CTXRULE, and
CTXXPATH indexes. For additional information regarding their structure, check out
the Oracle Text Application Developer’s Guide, and the Oracle Text Reference available
at http://otn.oracle.com.

You can use the TEXT_SEARCH_FUNC function that is part of the g11n schema to
test some of the multilingual features:

FUNCTION text_search_func (v_keyword IN VARCHAR2)
 RETURN sys_refcursor
IS
 v_title sys_refcursor;
BEGIN
 OPEN v_title
 FOR
 SELECT title, LANGUAGE, score (1)
 FROM publication
 WHERE contains (short_description, v_keyword, 1) > 0
 ORDER BY score (1) DESC;

 RETURN v_title;
END text_search_func;

A call to this function, passing “pl” as the keyword, yields the following result:

variable x refcursor;
call text_search_func('pl') into :x;
print x;

Multilingual Information Retrieval | 1055

Download at WoweBook.Com

http://otn.oracle.com

This returns the following result:

TITLE LANGUAGE SCORE(1)
-- -------- --------
Oracle PL/SQL プログラミング 基礎編 第 3 版 JA 18
Oracle PL/SQL Programming, 3rd Edition EN 13
Oracle PL/SQL Programmierung, 2. Auflage DE 9

You find this reference in all three languages because “pl” is common among them.
Note that I searched on a lowercase “pl,” but the “PL” in the record is uppercase. My
search is case-insensitive by default even though no UPPER function was used.

It may be that some languages should be case-sensitive while others should not be.
Language-specific case-sensitivity can be set as part of your language preference crea-
tion. Simply add a mixed_case attribute with a value of yes. The tokens will be created
mixed case, just as they are stored in your document or column, but only for the lan-
guage identified in that preference.

Oracle Database 11g makes multilingual IR easier with the introduction of the
AUTO_LEXER. Although it has fewer language-specific features than the
MULTI_LEXER, it provides a nearly effortless method of implementation. Instead of
relying on a language column, the AUTO_LEXER identifies the text based on the code
point.

Oracle also supports the WORLD_LEXER. It is not as full-featured as the
MULTI_LEXER, and does not have language-specific features like the AUTO_LEXER.
It is very easy to configure, however.

With the WORLD_LEXER, the text is broken into tokens based on the category in
which it falls. Both Arabic and other categories are separated by whitespace because
they’re easily divided into tokens. Asian characters are more complex because they
aren’t whitespace delimited, so they are broken into overlapping tokens of two char-
acters at a time. For example, the three-character string of 尼崎市 is broken into two
tokens, 尼崎 and 崎市.

Oracle Text provides additional features as well, depending on the language. For details
including language-specific features and restrictions, see the Oracle Text documenta-
tion provided on the OTN web site.

IR and PL/SQL
I have designed and implemented some extremely large and complex record manage-
ment systems and digital libraries. Based on my experiences, I have found that nothing
beats PL/SQL for search and maintenance operations with Oracle Text. PL/SQL’s tight
integration to the database server, and its improved performance over the last few re-
leases, makes stored PL/SQL program units the language of choice for these types of
applications.

1056 | Chapter 25: Globalization and Localization in PL/SQL

Download at WoweBook.Com

This is even more evident when working with multiple languages. The shared SQL and
PL/SQL parser means that there is consistent handling of characters and character
semantics, regardless of the language being indexed and searched.

One of the first projects most Oracle Text programmers undertake is to find a way to
format strings for search. The following example creates a function that formats search
strings for Oracle Text:

/* File on web: g11n.sql */
FUNCTION format_string (p_search IN VARCHAR2)
 RETURN VARCHAR2
AS
-- Define an associative array
 TYPE token_table IS TABLE OF VARCHAR2 (500 CHAR)
 INDEX BY PLS_INTEGER;

-- Define an associative array variable
 v_token_array token_table;
 v_temp_search_string VARCHAR2 (500 CHAR);
 v_final_search_string VARCHAR2 (500 CHAR);
 v_count PLS_INTEGER := 0;
 v_token_count PLS_INTEGER := 0;
BEGIN
 v_temp_search_string := TRIM (UPPER (p_search));
 -- Find the max number of tokens
 v_token_count :=
 lengthc (v_temp_search_string)
 - lengthc (REPLACE (v_temp_search_string, ' ', ''))
 + 1;

 -- Populate the associative array
 FOR y IN 1 .. v_token_count
 LOOP
 v_count := v_count + 1;
 v_token_array (y) :=
 regexp_substr (v_temp_search_string, '[^[:space:]]+', 1, v_count);
 -- Handle reserved words
 v_token_array (y) := TRIM (v_token_array (y));

 IF v_token_array (y) IN ('ABOUT', 'WITHIN')
 THEN
 v_token_array (y) := '{' || v_token_array (y) || '}';
 END IF;
 END LOOP;

 v_count := 0;

 FOR y IN v_token_array.FIRST .. v_token_array.LAST
 LOOP
 v_count := v_count + 1;

 -- First token processed
 IF ((v_token_array.LAST = v_count OR v_count = 1)
 AND v_token_array (y) IN ('AND', '&', 'OR', '|')
)

Multilingual Information Retrieval | 1057

Download at WoweBook.Com

 THEN
 v_final_search_string := v_final_search_string;
 ELSIF (v_count <> 1)
 THEN
 -- Separate by a comma unless separator already present
 IF v_token_array (y) IN ('AND', '&', 'OR', '|')
 OR v_token_array (y - 1) IN ('AND', '&', 'OR', '|')
 THEN
 v_final_search_string :=
 v_final_search_string || ' ' || v_token_array (y);
 ELSE
 v_final_search_string :=
 v_final_search_string || ', ' || v_token_array (y);
 END IF;
 ELSE
 v_final_search_string := v_token_array (y);
 END IF;
 END LOOP;

 -- Escape special characters in the final string
 v_final_search_string :=
 TRIM (REPLACE (REPLACE (v_final_search_string,
 '&',
 ' & '
),
 ';',
 ' ; '
)
);
 RETURN (v_final_search_string);
END format_string;

This is designed to break terms, or tokens, from the string using the space between the
characters. It uses character semantics for variable declarations, including the declara-
tion of the associative array.

To test this with an English string, I run this SELECT:

SELECT format_string('oracle PL/SQL') AS "Formatted String"
 FROM dual

This returns the following result:

Formatted String

ORACLE, PL/SQL

The FORMAT_STRING function separates terms with a comma by default, so an exact
match is not required. A string of characters that is not whitespace-delimited will look
exactly the way it was entered. The following example illustrates this using a mix of
English and Japanese characters:

SELECT format_string('Oracle PL/SQL プログラミング 基礎編 第 3 版') AS
"Formatted String" FROM dual;

1058 | Chapter 25: Globalization and Localization in PL/SQL

Download at WoweBook.Com

Passing this mixed character string to the FORMAT_STRING function returns the
following result:

Formatted String

ORACLE, PL/SQL プログラミング, 基礎編, 第 3 版

Where spaces delimit terms in the text, a comma is added regardless of the language.

The following CONTAINS search uses the FORMAT_STRING function:

SELECT score (1) "Rank", title
 FROM publication
 WHERE contains (short_description, format_string('プログラム'), 1) > 0;

This returns the following:

 Rank TITLE
------------ ------------
 12 Oracle SQL*Plus デスクトップリファレンス

Using PL/SQL and Oracle Text, it is possible to index and perform full-text searches
on data regardless of character set or language.

Date/Time
My globalization discussion thus far has been focused on strings. Date/time issues,
however, can be every bit as troublesome when localizing an application. Users may
be on the other side of the world from your database and web server, but they still
require accurate information relating to their time zone, and the format of the date and
time must be in a recognized structure.

Consider the following issues related to date/time:

• There are different time zones around the world.

• Daylight savings time exists for some regions, and not for others.

• Certain locales use different calendars.

• Date/time formatting is not consistent throughout the world.

Timestamp Datatypes
Until Oracle9i Database, working with dates and times was fairly straightforward. You
had the DATE type and the TO_DATE function. The limited functionality of the DATE
type made application development of global applications somewhat tedious, though.
All time zone adjustments involved manual calculations. Sadly, if your application is
to work with Oracle8i Database or earlier versions, I’m afraid you are still stuck with
this as your only option.

Those of us working with Oracle9i Database and later, however, benefit greatly from
the TIMESTAMP and INTERVAL datatypes discussed in detail in Chapter 10. If you

Date/Time | 1059

Download at WoweBook.Com

have not read that chapter yet, I’ll provide a quick overview here, but I do recommend
that you go back and read that chapter to obtain a thorough understanding of the topic.

Lets take a look at an example of the TIMESTAMP, TIMESTAMP WITH TIME ZONE,
AND TIMESTAMP WITH LOCAL TIME ZONE datatypes in action:

DECLARE
 v_date_timestamp TIMESTAMP (3) := SYSDATE;
 v_date_timestamp_tz TIMESTAMP (3) WITH TIME ZONE := SYSDATE;
 v_date_timestamp_ltz TIMESTAMP (3) WITH LOCAL TIME ZONE := SYSDATE;
BEGIN
 DBMS_OUTPUT.put_line ('TIMESTAMP: ' || v_date_timestamp);
 DBMS_OUTPUT.put_line ('TIMESTAMP WITH TIME ZONE: ' || v_date_timestamp_tz);
 DBMS_OUTPUT.put_line ('TIMESTAMP WITH LOCAL TIME ZONE: '
 || v_date_timestamp_ltz
);
END;

The following dates and times are returned:

TIMESTAMP: 08-JAN-05 07.28.39.000 PM
TIMESTAMP WITH TIME ZONE: 08-JAN-05 07.28.39.000 PM −07:00
TIMESTAMP WITH LOCAL TIME ZONE: 08-JAN-05 07.28.39.000 PM

TIMEZONE and TIMEZONE WITH LOCAL TIMESTAMP are identical because the
database time is in the same locale as my session. The value for TIMESTAMP WITH
TIMEZONE shows that I am in the Mountain time zone. If I were in accessing my
Colorado database via a session in California, the result would be slightly different.

TIMESTAMP: 08-JAN-05 07.28.39.000 PM
TIMESTAMP WITH TIME ZONE: 08-JAN-05 07.28.39.000 PM −07:00
TIMESTAMP WITH LOCAL TIME ZONE: 08-JAN-05 06.28.39.000 PM

The value for TIMESTAMP WITH LOCAL TIMEZONE used the time zone of my
session, which is now Pacific, or −08:00, and automatically converted the value.

Date/Time Formatting
One localization challenge we face is related to date and time formatting. Japan, for
example, may prefer the format yyyy/MM/dd hh:mi:ssxff AM while in the United States,
you would expect to see dd-MON-yyyy hh:mi:ssxff AM.

A common way to handle this situation is to include a list of format masks in a locale
table that maps to the user. When the user logs in, his assigned locale maps to the
correct date/time format for his region.

The g11n schema has a USERS table and a LOCALE table, joined by a locale_id. Let’s
take a look at some examples using date/time functions (discussed in detail in Chap-
ter 10), and the format masks provided in the g11n.locale table.

The registration_date column in the table uses the TIMESTAMP WITH TIME ZONE
datatype. Using the TO_CHAR function and passing the format mask for each user’s
locale displays the date in the correct format.

1060 | Chapter 25: Globalization and Localization in PL/SQL

Download at WoweBook.Com

/* File on web: g11n.sql */
FUNCTION date_format_func
 RETURN sys_refcursor
IS
 v_date sys_refcursor;
BEGIN
 OPEN v_date
 FOR
 SELECT locale.locale_desc "Locale Description",
 TO_CHAR (users.registration_date,
 locale.DATE_FORMAT
) "Registration Date"
 FROM users, locale
 WHERE users.locale_id = locale.locale_id;

 RETURN v_date;
END date_format_func;

To execute it, I do the following:

variable v_format refcursor
CALL date_format_func() INTO :v_format;
PRINT v_format

This prints the following result set:

Locale Description Registration Date
----------------------- ------------------
English 01-JAN-2005 11:34:21.000000 AM US/MOUNTAIN
Japanese 2005/01/01 11:34:21.000000 AM JAPAN
German 01 January 05 11:34:21.000000 AM EUROPE/WARSAW

The three locales have different date format masks assigned. Using this method allows
each user to see an appropriate date format for his locale based on his profile. If I now
add NLS_DATE_FORMAT, the dates and times will use the appropriate locale lan-
guage. I have this mapped in my tables to ensure that each locale is displayed correctly.

/* File on web: g11n.sql */
FUNCTION date_format_lang_func
 RETURN sys_refcursor
IS
 v_date sys_refcursor;
BEGIN
 OPEN v_date
 FOR
 SELECT locale.locale_desc "Locale Description",
 TO_CHAR (users.registration_date,
 locale.DATE_FORMAT,
 'NLS_DATE_LANGUAGE= ' || locale_desc
) "Registration Date"
 FROM users, locale
 WHERE users.locale_id = locale.locale_id;

 RETURN v_date;
END date_format_lang_func;

Date/Time | 1061

Download at WoweBook.Com

I execute the function as follows:

variable v_format refcursor
CALL date_format_lang_func() INTO :v_format;
PRINT v_format

This prints the following:

Locale Description Registration Date
----------------------- ------------------
English 01-JAN-2005 11:34:21.000000 AM US/MOUNTAIN
Japanese 2005/01/01 11:34:21.000000 午前 JAPAN
German 01 Januar 05 11:34:21.000000 AM EUROPE/WARSAW

The same data is stored in the USERS table, but the time is displayed in locale-specific
format. I can modify the function in the same way to use the time zone and timestamp
functions to distinguish between time zones for various locales. NLS_DATE_LAN-
GUAGE is customized for each territory, so AM is in Japanese for the Japanese locale,
and the month for the German locale is displayed in German.

I can extend my function to include the session time zone either by converting the value
to the TIMESTAMP WITH TIME ZONE datatype, or by converting the value to my
session’s local time zone with TIMESTAMP WITH LOCAL TIME ZONE. I do this
with the CAST function (described in Chapter 7), which will change the datatype of
the value stored in my table.

/* File on web: g11n.sql */
FUNCTION date_ltz_lang_func
 RETURN sys_refcursor
IS
 v_date sys_refcursor;
BEGIN
 OPEN v_date
 FOR
 SELECT locale.locale_desc,
 TO_CHAR
 (CAST
 (users.registration_date AS TIMESTAMP WITH LOCAL TIME ZONE
),
 locale.DATE_FORMAT,
 'NLS_DATE_LANGUAGE= ' || locale_desc
) "Registration Date"
 FROM users, locale
 WHERE users.locale_id = locale.locale_id;

 RETURN v_date;
END date_ltz_lang_func;

The function is executed by doing the following:

variable v_format refcursor
CALL date_ltz_lang_func() INTO :v_format;
PRINT v_format

The registration dates are returned as follows:

1062 | Chapter 25: Globalization and Localization in PL/SQL

Download at WoweBook.Com

Locale Description Registration Date
----------------------- ------------------
English 01-JAN-2005 11:34:21.000000 AM −07:00
Japanese 2004/12/31 07:34:21.000000 午後 −07:00
German 01 Januar 05 03:34:21.000000 AM −07:00

There is a lot going on here:

• Date/time language is converted to the locale-specific terms.

• Formatting is locale-specific.

• I use CAST to convert the values stored as TIMESTAMP WITH TIMEZONE to
TIMESTAMP WITH LOCAL TIMEZONE.

• The displayed time is relative to my session’s time zone, which is US/Mountain in
this example, or −07:00.

Many of my examples thus far have shown the time zone as a UTC offset. This is not
necessarily the easiest display for a user to understand. Oracle maintains a list of region
names and abbreviations that can be substituted by modifying the format mask. In fact,
the three records I have been working with were inserted using these region names
rather than the UTC offset. For a complete list of time zones, query the
V$TIMEZONE_NAMES view. Examine the INSERT statements into the USERS table
in the g11n schema for more examples using region names.

I want to discuss one more NLS parameter related to date/time. My times are inserted
into the table using the Gregorian calendar, which is the value for NLS_CALENDAR
on my test system. Not all locales use the same calendar, however, and no amount of
formatting will adjust the base calendar. With NLS_CALENDAR, I can change my
default calendar from Gregorian to a number of other seeded calendars—Japanese
Imperial for example. A simple SELECT of SYSDATE after setting the session results
in the following:

ALTER SESSION SET NLS_CALENDAR = 'JAPANESE IMPERIAL';
ALTER SESSION SET NLS_DATE_FORMAT = 'E RR-MM-DD';

After altering the session, I run the following SELECT:

SELECT sysdate
 FROM dual;

The SELECT shows the modified SYSDATE:

SYSDATE

H 17-02-08

Date/Time | 1063

Download at WoweBook.Com

Default values are controlled by your NLS settings. If you have a primary
locale you are working with, you may find that setting your NLS pa-
rameters for your database is a much easier approach than explicitly
stating them in your application. For applications in which these set-
tings need to be dynamic, however, I recommend that you include NLS
settings as part of your user/locale settings and store them with your
application. This allows your code to function in any locale simply by
setting a user’s profile correctly.

Currency Conversion
A discussion of globalization and localization would not be complete without address-
ing currency conversion issues. The most common approach to the conversion from
dollars to yen, for example, is to use a rate table that tracks conversion rates between
monetary units. But how does an application know how to display the resulting num-
ber? Consider the following:

• Are decimals and commas appropriate, and where should they be placed?

• Which symbol is used for each currency ($ for dollar, € for Euro, etc)?

• Which ISO currency symbol should be displayed (USD for example)?

Each publication in the g11n schema has a price and is associated with a locale. I can
use the TO_CHAR function to format each string, but what about displaying the cor-
rect currency? I can use the NLS_CURRENCY parameter to format my prices correctly
as follows:

/* File on web: g11n.sql */
FUNCTION currency_conv_func
 RETURN sys_refcursor
IS
 v_currency sys_refcursor;
BEGIN
 OPEN v_currency
 FOR
 SELECT pub.title "Title",
 TO_CHAR (pub.price,
 locale.currency_format,
 'NLS_CURRENCY=' || locale.currency_symbol
) "Price"
 FROM publication pub, locale
 WHERE pub.locale_id = locale.locale_id;

 RETURN v_currency;
END currency_conv_func;

I execute the currency conversion function as follows:

VARIABLE v_currency REFCURSOR
CALL currency_conv_func() INTO :v_currency;
PRINT v_currency

1064 | Chapter 25: Globalization and Localization in PL/SQL

Download at WoweBook.Com

This returns the following list of prices:

Title Price
---------------------------------- ----------------
Oracle PL/SQL Programming, 3rd Edition $54.95
Oracle PL/SQL プログラミング 基礎編 第 3 版 ¥5,800
Oracle PL/SQL Programmierung, 2. Auflage €64

Note that no actual conversion is done here. If you need to automate the conversion
from one currency to another, you will need to build your rate table and conversion
rules.

The NLS_ISO_CURRENCY symbol is generally a three-character abbreviation. With
a few exceptions, the first two characters refer to the country or locale, and the third
character represents the currency. For example, the United States dollar and the Jap-
anese yen are USD and JPY, respectively. Many European countries use the Euro, how-
ever, so the country/currency rule of thumb noted earlier cannot apply. It is simply
represented as EUR.

The g11n schema includes ISO currency values to help us convert the prices of publi-
cations to their correct ISO abbreviations, as you can see in the
ISO_CURRENCY_FUNC function:

/* File on web: g11n.sql */
FUNCTION iso_currency_func
 RETURN sys_refcursor
IS
 v_currency sys_refcursor;
BEGIN
 OPEN v_currency
 FOR
 SELECT title "Title",
 TO_CHAR (pub.price,
 locale.iso_currency_format,
 'NLS_ISO_CURRENCY=' || locale.iso_currency_name
) "Price - ISO Format"
 FROM publication pub, locale
 WHERE pub.locale_id = locale.locale_id
 ORDER BY publication_id;

 RETURN v_currency;
END iso_currency_func;

To execute the ISO_CURRENCY_FUNC function, I run the following:

VARIABLE v_currency REFCURSOR
CALL iso_currency_func() INTO :v_currency;
PRINT v_currency

The result set shows the following:

Currency Conversion | 1065

Download at WoweBook.Com

Title Price - ISO Format
-------------------------------------- -----------------------
Oracle PL/SQL Programming, 3rd Edition USD54.95
Oracle PL/SQL プログラミング 基礎編 第 3 版 JPY5,800
Oracle PL/SQL Programmierung, 2. Auflage EUR64

USD, JPY, and EUR are included in my price display just as I expected based on the
format mask.

Globalization Development Kit for PL/SQL
Starting with Oracle Database 10g, Oracle provides a Globalization Development Kit
(GDK) for Java and PL/SQL that simplifies the g11n development process. If you are
developing a multilingual application, determining the locale of each user and pre-
senting locale-specific feedback may be the most difficult programming task you will
face. The PL/SQL components of the GDK help with this aspect of g11n development,
and are delivered in two packages: UTL_I18N and UTL_LMS.

UTL_118N Utility Package
The UTL_I18N package is the workhorse of the GDK. Its subprograms are summarized
in Table 25-7.

Table 25-7. Programs in the UTL_I18N package

Name Description

ESCAPE_REFERENCE HTML and XML documents do not always support the same characters that are in the
database. In such cases, it would be helpful to return an escape character. This function
takes as input the source string, and the character set of the HTML or XML document.

GET_COMMON_TIME_ZONES Returns a list of the most common time zones. This is particularly useful when presenting
a user with a list of time zones he can select from to configure user settings.

GET_DEFAULT_CHARSET Returns the default character set name or the email-safe name based on the language
supplied to this function.

GET_DEFAULT_ISO_CURRENCY Supplied with a territory, this function returns the appropriate currency code.

GET_DEFAULT_LINGUISTIC_SORT Returns the most common sort for the supplied language.

GET_LOCAL_LANGUAGES Returns local languages for a given territory.

GET_LOCAL_LINGUISTIC_SORTS Returns a list of sort names based on a supplied language.

GET_LOCAL_TERRITORIES Lists territory names based on a given language.

GET_LOCAL_TIMEZONES Returns all time zones in a given territory.

GET_TRANSLATION Translates the language and/or territory name for the specified language and returns the
results.

MAP_CHARSET Is particularly useful for applications that send data extracted from the database via email.
Provides mapping between database character sets and email-safe character sets.

MAP_FROM_SHORT_LANGUAGE Pass a short language name to this function, and it maps it to the Oracle language name.

1066 | Chapter 25: Globalization and Localization in PL/SQL

Download at WoweBook.Com

Name Description

MAP_LANGUAGE_FROM_ISO Pass an ISO locale name to this function, and it returns the Oracle language name.

MAP_LOCALE_TO_ISO Supply the Oracle language and territory to this function, and it returns the ISO locale name.

MAP_TERRITORY_FROM_ISO Pass an ISO locale to this function, and it returns the Oracle territory name.

MAP_TO_SHORT_LANGUAGE Reverse of the MAP_FROM_SHORT_LANGUAGE function. Supply the full Oracle language
name to this function, and it returns the short name.

RAW_TO_CHAR Overloaded function that takes a RAW type as input and returns a VARCHAR2.

RAW_TO_NCHAR Identical to RAW_TO_CHAR except the return value is of type NVARCHAR2.

STRING_TO_RAW Converts either VARCHAR2 or NVARCHAR2 to the specified character set and returns a value
of type RAW.

TRANSLITERATE Script translation, based on transliteration name, for Japanese Kana.

UNESCAPE_REFERENCE Performs the reverse action of the ESCAPE_REFERENCE function. It recognizes escape
characters and converts them back to their original characters.

The GET_LOCAL_LANGUAGES function is one of the most useful in this package.
If I know the territory of a user, I can reduce the list of values for valid languages for
them to choose from in an application using the
UTL_I18N.GET_LOCAL_LANGUAGES. This is great for applications in which the
administrator must configure user-specific application settings. I can test it out using
the following seed data.

CREATE TABLE user_admin (
 id NUMBER(10) PRIMARY KEY,
 first_name VARCHAR2(10 CHAR),
 last_name VARCHAR2(20 CHAR),
 territory VARCHAR2(30 CHAR),
 language VARCHAR2(30 CHAR))
/

BEGIN
INSERT INTO user_admin
 VALUES (1, 'Stan', 'Smith', 'AMERICA', 'AMERICAN');
INSERT INTO user_admin
 VALUES (2, 'Robert', 'Hammon', NULL, 'SPANISH');
INSERT INTO user_admin
 VALUES (3, 'Anil', 'Venkat', 'INDIA', NULL);
COMMIT;
END:
/

The territory is entered into the USER_ADMIN table. I can present a list of local lan-
guages for user Anil using the following anonymous block:

DECLARE
 -- Create array for the territory result set
 v_array utl_i18n.string_array;
 -- Create the variable to hold the user record
 v_user user_admin%ROWTYPE;

Globalization Development Kit for PL/SQL | 1067

Download at WoweBook.Com

BEGIN
 -- Populate the variable with the record for Anil
 SELECT *
 INTO v_user
 FROM user_admin
 WHERE ID = 3;

 -- Retrieve a list of languages valid for the territory
 v_array := utl_i18n.get_local_languages (v_user.territory);
 DBMS_OUTPUT.put (CHR (10));
 DBMS_OUTPUT.put_line ('=======================');
 DBMS_OUTPUT.put_line ('User: ' || v_user.first_name || ' '
 || v_user.last_name
);
 DBMS_OUTPUT.put_line ('Territory: ' || v_user.territory);
 DBMS_OUTPUT.put_line ('=======================');

 -- Loop through the array
 FOR y IN v_array.FIRST .. v_array.LAST
 LOOP
 DBMS_OUTPUT.put_line (v_array (y));
 END LOOP;
END;

This returns the following:

=======================
User: Anil Venkat
Territory: INDIA
=======================
ASSAMESE
BANGLA
GUJARATI
HINDI
KANNADA
MALAYALAM
MARATHI
ORIYA
PUNJABI
TAMIL
TELUGU

This list of values is much easier for a user to manage than a complete list of all lan-
guages. The same can be done for territories where the language is known. Suppose
that Robert currently has a NULL territory, but his language is specified as SPANISH.
The following anonymous block returns a list of valid territories for the SPANISH
language:

DECLARE
 -- Create array for the territory result set
 v_array utl_i18n.string_array;
 -- Create the variable to hold the user record
 v_user user_admin%ROWTYPE;
BEGIN
 -- Populate the variable with the record for Robert

1068 | Chapter 25: Globalization and Localization in PL/SQL

Download at WoweBook.Com

 SELECT *
 INTO v_user
 FROM user_admin
 WHERE ID = 2;

 -- Retrieve a list of territories valid for the language
 v_array := utl_i18n.get_local_territories (v_user.LANGUAGE);
 DBMS_OUTPUT.put (CHR (10));
 DBMS_OUTPUT.put_line ('=======================');
 DBMS_OUTPUT.put_line ('User: ' || v_user.first_name || ' '
 || v_user.last_name
);
 DBMS_OUTPUT.put_line ('Language: ' || v_user.LANGUAGE);
 DBMS_OUTPUT.put_line ('=======================');

 -- Loop through the array
 FOR y IN v_array.FIRST .. v_array.LAST
 LOOP
 DBMS_OUTPUT.put_line (v_array (y));
 END LOOP;
END;

The output is:

=======================
User: Robert Hammon
Language: SPANISH
=======================
SPAIN
CHILE
COLOMBIA
COSTA RICA
EL SALVADOR
GUATEMALA
MEXICO
NICARAGUA
PANAMA
PERU
PUERTO RICO
VENEZUELA

With a territory, I can present a list of languages, valid time zones, and currency to the
end user and make configuration much easier. Once a language is selected, I can get
the default character set, the default linguistic sort, the local territories, and the short
language name, all using UTL_I18N.

UTL_LMS Error-Handling Package
UTL_LMS is the second package that is part of the GDK. It includes two functions that
retrieve and format an error message:

Globalization Development Kit for PL/SQL | 1069

Download at WoweBook.Com

GET_MESSAGE
Returns the raw message based on the language specified. By raw message, I mean
that any parameters required for the message are not included in what is returned
by GET_MESSAGE.

FORMAT_MESSAGE
Adds detail to the message.

See the following example:

DECLARE
 v_bad_bad_variable PLS_INTEGER;
 v_function_out PLS_INTEGER;
 v_message VARCHAR2 (500);
BEGIN
 v_bad_bad_variable := 'x';
EXCEPTION
 WHEN OTHERS
 THEN
 v_function_out :=
 utl_lms.GET_MESSAGE (06502, 'rdbms', 'ora', NULL, v_message);
 -- Output unformatted and formatted messages
 DBMS_OUTPUT.put (CHR (10));
 DBMS_OUTPUT.put_line ('Message - Not Formatted');
 DBMS_OUTPUT.put_line ('=======================');
 DBMS_OUTPUT.put_line (v_message);
 DBMS_OUTPUT.put (CHR (10));
 DBMS_OUTPUT.put_line ('Message - Formatted');
 DBMS_OUTPUT.put_line ('===================');
 DBMS_OUTPUT.put_line (utl_lms.format_message (v_message,
 ': The quick brown fox'
)
);
END;

In the call to UTL_LMS.GET_MESSAGE, the value for language was left to the default
value. In this case, the returned message will be in the default language, determined by
NLS_LANGUAGE. My instance returns:

Message - Not Formatted
=======================
PL/SQL: numeric or value error%s

Message - Formatted
===================
PL/SQL: numeric or value error: The quick brown fox

Because a language value can be passed to UTL_LMS.GET_MESSAGE, I simply pass
the application user’s language when getting the message.

GDK Implementation Options
The GDK functions allow for several different implementation options. If you are sup-
porting only two or three locales, it might be easiest to separate your implementation

1070 | Chapter 25: Globalization and Localization in PL/SQL

Download at WoweBook.Com

by locale. For your German system, set your database and application servers to the
appropriate settings for that locale and have a completely separate environment for
your users in France. More often than not, however, you will want to look at a true
multilingual environment in which new locales can be added without purchasing and
configuring a separate environment. This requires extra development effort up front,
but is much easier to manage in the long run.

The method by which you determine your user’s locale depends largely on who your
users are and the type of application you are developing. In the following subsections
I discuss three options for you to consider in your design.

Method 1: Locale buttons

As a frequent surfer (of the Internet of course), I regularly see this method in action on
web pages. Visit a company that does business in different locales and you might see
buttons or links on the main page that look like the following:

in English | en Español | en Français | in Italiano

This is great for web pages in which the business is restricted to a few locations and
where date/time accuracy is not required. Users can choose their language and currency
settings through the simple act of clicking the link, and should they choose incorrectly,
they simply use the Back button on the browser to correct the problem.

In this scenario, you can either have separate pages and code for each locale or store
session-specific selection in cookies or the database so all localization is controlled by
the database. The most common approach here is to allow the application tier to control
localization.

Method 2: User administration

Applications that have a managed user base (not open to anonymous Internet users,
for example) will find method 2 a great way to control locale settings. For a small
number of users it is possible to use the UTL_I18N package to deliver a list of values
(LOV) showing available time zones, locales, languages, and territories as I demon-
strated earlier. The user or administrator simply selects the settings that are appropriate
for the user, and every time that user logs in, that application reads these settings and
delivers the appropriate localizations.

What about instances where there are a lot of users? It isn’t feasible to manage each
user’s settings individually in all cases. We can take a lesson from the designers of the
Oracle database (which is a global application, right?) and create profiles. Add to your
application the ability to create a profile, and assign locale settings to it rather than to
users. When you add a user, simply assign the profile. This cuts out many of the ad-
ministrative headaches, especially if you ever have to go back and make a change later.
You can simply change the profile rather than have to change all users.

Globalization Development Kit for PL/SQL | 1071

Download at WoweBook.Com

Method 3: Hybrid

Method 3 is a combination of methods 1 and 2. It is used frequently with Internet
applications that have online stores. Most customers begin by browsing a site to see if
it has something that they want. At this point, requiring them to fill out details about
their location is premature, but they need locale-specific features such as data sorted
and displayed in their language, and correct currency format. To make certain that
basic locale information is correct, offer the solution discussed in method 1.

Once the decision to purchase is made, however, it is quite appropriate to have them
enter a user profile including locale-specific information. The localization becomes
more precise, using exact date/time and currency information from the database, all
based on the customer’s locale.

1072 | Chapter 25: Globalization and Localization in PL/SQL

Download at WoweBook.Com

CHAPTER 26

Object-Oriented Aspects of PL/SQL

PL/SQL has always been a language that supports traditional procedural programming
styles such as structured design and functional decomposition. Using PL/SQL pack-
ages, it is also possible to take an object-based approach, applying principles such as
abstraction and encapsulation to the business of manipulating relational tables. Recent
versions of the Oracle database have introduced direct support for object-oriented pro-
gramming (OOP), providing a rich and complex type system, complete with support
for type hierarchies and “substitutability.”

In the interest of summarizing this book-sized topic into a modest number of pages,
this chapter presents a few choice code samples to demonstrate the most significant
aspects of object programming with PL/SQL. These cover the following areas:

• Creating and using object types

• Using inheritance and substitutability

• Type evolution

• Pointer (REF)-based retrieval

• Object views, including INSTEAD OF views

Among the things you will not find in this chapter are:

• Comprehensive syntax diagrams for SQL statements dealing with object types

• Database administration topics such as importing and exporting object data

• Low-level considerations such as physical data storage on disk

I’d like to introduce the topic with a brief history.

Introduction to Oracle’s Object Features
First released in 1997 as an add-on to the Oracle8 Database (the so-called “object-
relational database”), the Objects Option allowed developers to extend Oracle’s built-
in datatypes to include abstract datatypes. The introduction of programmer-defined

1073

Download at WoweBook.Com

collections (described in Chapter 12) in that release also proved useful, not only because
application developers had been looking for ways to store and retrieve arrays in the
database, but also because PL/SQL provided a new way to query collections as if they
were tables. While there were other interesting aspects of the new Oracle object model
such as pointer-based navigation, there was no notion of inheritance or dynamic poly-
morphism, making the object-relational features of the Oracle8 Database an option
that drew few converts from (or into) the camp of true OOP believers. The complexity
of the object features, plus a perceived performance hit, also limited uptake in the
relational camp.

The Oracle8i Database introduced support for Java Stored Procedures, which not only
provided the ability to program the server using a less proprietary language than
PL/SQL, but also made it easier for the OOP community to consider using stored pro-
cedures. Oracle provided a way to translate object type definitions from the server into
Java classes, making it possible to share objects across the Java/database boundary.
Oracle released the Oracle8i Database during a peak of market interest in Java, so hardly
anyone really noticed that Oracle’s core object features were not much enhanced, ex-
cept that Oracle Corporation quietly began bundling the object features with the core
database server. Around this time, I asked an Oracle representative about the future of
object programming in PL/SQL, and the response was, “If you want real object-oriented
programming in the database, use Java.”

Nevertheless, with the Oracle9i Database release, Oracle significantly extended the
depth of its native object support, becoming a more serious consideration for OOP
purists. Inheritance and polymorphism have become available in the database, and
PL/SQL has gained new object features. Does it finally make sense to extend the object
model of your system into the structure of the database itself? Should you now repar-
tition existing middleware or client applications to take advantage of “free stuff” in the
database server? As Table 26-1 shows, Oracle has made great strides, and the move
may be tempting. The table also shows that a few desirable features still aren’t available.*

Oracle Database 10g, although introducing several useful enhance-
ments to collections (see Chapter 12), included only one new feature
unique to object types: it is described in the sidebar “The OB-
JECT_VALUE Pseudo Column” on page 1111.

Table 26-1. Significant object programming features in the Oracle database

Feature 8.0 8.1 9.1 9.2 and later 11g and later

Abstract datatypes as first-class database entity ✔ ✔ ✔ ✔ ✔
Abstract datatypes as PL/SQL parameter ✔ ✔ ✔ ✔ ✔
Collection-typed attributes ✔ ✔ ✔ ✔ ✔

* Perhaps I should say arguably desirable features. The missing features are unlikely to be showstoppers.

1074 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

Feature 8.0 8.1 9.1 9.2 and later 11g and later

REF-typed attributes for intra-database object navigation ✔ ✔ ✔ ✔ ✔
Implementing method logic in PL/SQL or C ✔ ✔ ✔ ✔ ✔
Programmer-defined object comparison semantics ✔ ✔ ✔ ✔ ✔
Views of relational data as object-typed data ✔ ✔ ✔ ✔ ✔
Compile-time or static polymorphism (method overloading) ✔ ✔ ✔ ✔ ✔
Ability to “evolve” type by modifying existing method logic (but not
signature), or by adding methods

✔ ✔ ✔ ✔ ✔

Implementing method logic in Java ✔ ✔ ✔ ✔
“Static” methods (execute without having object instance) ✔ ✔ ✔ ✔
Relational primary key can serve as persistent object identifier, al-
lowing declarative integrity of REFs

 ✔ ✔ ✔ ✔

Inheritance of attributes and methods from a user-defined type ✔ ✔ ✔
Dynamic method dispatch ✔ ✔ ✔
Noninstantiable supertypes, similar to Java-style “abstract classes” ✔ ✔ ✔
Ability to evolve type by removing methods (and adding to change
signature)

 ✔ ✔ ✔

Ability to evolve type by adding and removing attributes, automat-
ically propagating changes to associated physical database structures

 ✔ ✔ ✔

“Anonymous” types: ANYTYPE, ANYDATA, ANYDATASET ✔ ✔ ✔
Downcast operator (TREAT) and type detection operator (IS OF) avail-
able in SQL

 ✔ ✔ ✔

TREAT and IS OF available in PL/SQL ✔ ✔
User-defined constructor functions ✔ ✔
Supertype method invocation in a subtype ✔
“Private” attributes, variables, constants, and methods ✔
Inheritance from multiple supertypes

Sharing of object types or instances across distributed databases
without resorting to object views

Unless you’re already a practicing object-oriented programmer, many of the terms in
this table probably don’t mean much to you. However, the remainder of this chapter
should shed some light on these terms and give some clues about the larger architectural
decisions you may need to make.

Object Types by Example
In keeping with the sample general application area explored in the introductory book,
Learning Oracle PL/SQL Programming (O’Reilly), I’d like to build an Oracle system

Object Types by Example | 1075

Download at WoweBook.Com

that will use an object-oriented approach to modeling a trivial library catalog. The
catalog can hold books, serials (such as magazines, proceedings, or newspapers), and,
eventually, other artifacts.

A graphic portrayal of the top-level types appears in Figure 26-1. Later on, I might want
to add to the type hierarchy, as the dotted-line boxes imply.

Figure 26-1. Type hierarchy for a trivial library catalog

Creating a Base Type
The “root” or top of the hierarchy represents the common characteristics of all the
subtypes. For now, let’s assume that the only things that books and serials have in
common are a library-assigned identification number and some kind of filing title. I
can create an object type for catalog items using the following SQL statement from
SQL*Plus:

CREATE OR REPLACE TYPE catalog_item_t AS OBJECT (
 id INTEGER,
 title VARCHAR2(4000),
 NOT INSTANTIABLE MEMBER FUNCTION ck_digit_okay
 RETURN BOOLEAN,
 MEMBER FUNCTION print
 RETURN VARCHAR2
) NOT INSTANTIABLE NOT FINAL;

This statement creates an object type, which is similar to a Java or C++ class. In rela-
tional terms, an object type is akin to a record type bundled with related functions and
procedures. These subprograms are known collectively as methods.

The NOT FINAL keyword at the end flags the datatype as being able to serve as the
base type or supertype from which you can derive other types. I needed to include NOT
FINAL because I want to create subtypes for books and serials; if this keyword is omit-
ted, the Oracle database defaults to FINAL, that is, no subtypes allowed.

1076 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

Notice also that I’ve marked this type specification NOT INSTANTIABLE. Although
PL/SQL will let me declare a variable of type catalog_item_t, I won’t be able to give it
a value—not directly, anyway. Similar to a Java abstract class, this kind of type exists
only to serve as a base type from which to create subtypes, and objects of the subtype
will, presumably, be instantiable.

For demonstration and debugging purposes, I’ve included a print method (“print” is
not a reserved word, by the way) as a way to describe the object in a single string. When
I create a subtype, it can (and probably should) override this method—in other words,
the subtype will include a method with the same name, but will also print the subtype’s
attributes. Notice that instead of making print a procedure, which would have hard-
coded a decision to use something like DBMS_OUTPUT.PUT_LINE, I decided to
make it a function whose output can be redirected later. This decision isn’t particularly
object-oriented, just good design.

I’ve also defined a ck_digit_okay method that will return TRUE or FALSE depending
on whether the “check digit” is OK. The assumption here (which is a bad one, I admit)
is that all subtypes of catalog_item_t will be known by some identifier other than their
library-assigned id, and these other identifiers include some concept of a check
digit.† I’m only going to be dealing with books and serials, normally identified with an
ISBN or ISSN, so the check digit concept applies to all the subtypes.

Here are a few further comments before moving on to the next part of the example:

• The CREATE TYPE statement above creates only an object type specification. The
corresponding body, which implements the methods, will be created separately
using CREATE TYPE BODY.

• Object types live in the same namespace as tables and top-level PL/SQL programs.
This is one of the reasons I use the “_t” naming convention with types.

• Object types are owned by the Oracle user (schema) that created them, and this
user may grant EXECUTE privilege to other users.

• You can attempt to create synonyms on object types, but unless you’re using Ora-
cle9i Database Release 2 or later, the synonyms won’t work.

• As with conventional PL/SQL programs, you can create an object type using either
definer rights (the default) or invoker rights (described in Chapter 24).

• Unlike some languages’ object models, Oracle’s model doesn’t define a master
root-level class from which all programmer-defined classes derive. Instead, you can
create any number of standalone root-level datatypes such as catalog_item_t.

† A check digit is a number incorporated into an identifier that is mathematically derived from the identifier’s
other digits. Its accuracy yields a small amount of confidence that the overall identifier has been correctly
transcribed. The ISBN (International Standard Book Number) and ISSN (International Standard Serial
Number)—identifiers assigned by external authorities—both contain check digits. So do most credit card
numbers.

Object Types by Example | 1077

Download at WoweBook.Com

• If you see the compiler error PLS-00103: Encountered the symbol “;” when expecting
one of the following… , you have probably made the common mistake of terminating
the methods with a semicolon. The correct token in the type specification is a
comma.

Creating a Subtype
I made catalog_item_t impossible to instantiate, so now would be a good time to show
how to create a subtype for book objects. In the real world, a book is a type of catalog
item; this is also true in my example, in which all instances of this book_t subtype will
have four attributes:

id
Inherited from the base catalog_item_t type.

title
Also inherited from the base type.

isbn
Corresponds to the book’s assigned ISBN, if any.

pages
An integer giving the number of pages in the book.

In code, I can make the equivalent statement as follows:

 1 TYPE book_t UNDER catalog_item_t (
 2 isbn VARCHAR2(13),
 3 pages INTEGER,
 4
 5 CONSTRUCTOR FUNCTION book_t (id IN INTEGER DEFAULT NULL,
 6 title IN VARCHAR2 DEFAULT NULL,
 7 isbn IN VARCHAR2 DEFAULT NULL,
 8 pages IN INTEGER DEFAULT NULL)
 9 RETURN SELF AS RESULT,
10
11 OVERRIDING MEMBER FUNCTION ck_digit_okay
12 RETURN BOOLEAN,
13
14 OVERRIDING MEMBER FUNCTION print
15 RETURN VARCHAR2
16);

The interesting portions of this code are as follows:

Line(s) Description

1 You can see that the syntax for indicating a subtype is the keyword UNDER in line 1, which makes a certain amount
of intuitive sense. Oracle doesn’t use the phrase AS OBJECT here because it would be redundant; the only thing that
can exist “under” an object type is another object type.

2–3 I need to list only those attributes that are unique to the subtype; those in the parent type are implicitly included.
Oracle orders the attributes with the base type first, then the subtype, in the same order as defined in the specification.

1078 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

Line(s) Description

5–15 Here are the method declarations. I’ll look at these methods more closely in the next section.

Methods
I’ve used two kinds of methods in the previous type definition:

Constructor method
A function that accepts values for each attribute and assembles them into a typed
object. Declared in lines 5–9 of the example.

Member method
A function or procedure that executes in the context of an object instance—that
is, it has access to the current values of each of the attributes. Declared in lines 11–
12, as well as in lines 14–15 of the example.

My example shows a user-defined constructor, a feature that was introduced in Ora-
cle9i Database Release 2. Earlier versions provided only a system-defined constructor.
Creating your own constructor for each type gives you precise control over what hap-
pens at instantiation. That control can be very useful for doing extra tasks like validation
and introducing controlled side effects. In addition, you can use several overloaded
versions of a user-defined constructor, allowing it to adapt to a variety of calling
circumstances.

To see some types and methods in action, take a look at this anonymous block:

 1 DECLARE
 2 generic_item catalog_item_t;
 3 abook book_t;
 4 BEGIN
 5 abook := NEW book_t(title => 'Out of the Silent Planet',
 6 isbn => '0-6848-238-02');
 7 generic_item := abook;
 8 DBMS_OUTPUT.PUT_LINE('BOOK: ' || abook.print());
 9 DBMS_OUTPUT.PUT_LINE('ITEM: ' || generic_item.print());
10 END;

Interestingly, the objects’ print invocations (lines 8 and 9) yield identical results for
both abook and generic_item:

BOOK: id=; title=Out of the Silent Planet; isbn=0-6848-238-02; pages=
ITEM: id=; title=Out of the Silent Planet; isbn=0-6848-238-02; pages=

Let’s walk through the code:

Line(s) Description

5–6 The constructor assembles a new object and puts it into a book. My example takes advantage of PL/SQL’s named
notation. It supplied values for only two of the four attributes, but the constructor creates the object anyway, which
is what I asked it to do.

The syntax to use any constructor follows the pattern:

Object Types by Example | 1079

Download at WoweBook.Com

Line(s) Description
[NEW] typename (arg1, arg2, ...);

The NEW keyword, introduced in Oracle9i Database Release 2, is optional, but is nevertheless useful as a visual cue
that the statement will create a new object.

7 Even though a catalog item is not instantiable, I can assign to it an instance of a subtype, and it will even hold all the
attributes that are unique to the subtype. This demonstrates one nifty aspect of “substitutability” that Oracle supports
in PL/SQL, which is that by default, an object variable may hold an instance of any of its subtypes. Note to programmers
of other languages: The assignment in line 7 is not simply creating a second reference to one object; instead, it’s
making a complete copy.

In English, it certainly makes sense to regard a book as a catalog item. In computerese, it’s a case of widening or
upcasting the generic item by adding attributes from a more specific subtype. The converse operation, narrowing, is
trickier but nevertheless possible, as you’ll see later.

8–9 Notice that the calls to print() use the graceful object-style invocation:

object.methodname(arg1, arg2, ...)

because it is a member method executing on an already declared and instantiated object. Which version of the print
method executes for objects of different types? The one in the most specific subtype associated with the currently
instantiated object. The selection of the method gets deferred until runtime, in a feature known as dynamic method
dispatch. This can be very handy, although it may incur a performance cost.

Let’s turn now to the body of the book_t method, so you can better understand the
result you’ve just seen. The implementation holds two important new concepts, which
I’ll describe afterwards.

 1 TYPE BODY book_t
 2 AS
 3 CONSTRUCTOR FUNCTION book_t (id IN INTEGER,
 4 title IN VARCHAR2,
 5 isbn IN VARCHAR2,
 6 pages IN INTEGER)
 7 RETURN SELF AS RESULT
 8 IS
 9 BEGIN
10 SELF.id := id;
11 SELF.title := title;
12 SELF.isbn := isbn;
13 SELF.pages := pages;
14 IF isbn IS NULL OR SELF.ck_digit_okay
15 THEN
16 RETURN;
17 ELSE
18 RAISE_APPLICATION_ERROR(-20000, 'ISBN ' || isbn
19 || ' has bad check digit');
20 END IF;
21 END;
22
23 OVERRIDING MEMBER FUNCTION ck_digit_okay
24 RETURN BOOLEAN
25 IS
26 subtotal PLS_INTEGER := 0;
27 isbn_digits VARCHAR2(10);

1080 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

28 BEGIN
29 /* remove dashes and spaces */
30 isbn_digits := REPLACE(REPLACE(SELF.isbn, '-'), ' ');
31 IF LENGTH(isbn_digits) != 10
32 THEN
33 RETURN FALSE;
34 END IF;
35
36 FOR nth_digit IN 1..9
37 LOOP
38 subtotal := subtotal +
39 (11 - nth_digit) * TO_NUMBER(SUBSTR(isbn_digits, nth_digit, 1));
40 END LOOP;
41
42 /* check digit can be 'X' which has value of 10 */
43 IF UPPER(SUBSTR(isbn_digits, 10, 1)) = 'X'
44 THEN
45 subtotal := subtotal + 10;
46 ELSE
47 subtotal := subtotal + TO_NUMBER(SUBSTR(isbn_digits, 10, 1));
48 END IF;
49
50 RETURN MOD(subtotal, 11) = 0;
51
52 EXCEPTION
53 WHEN OTHERS
54 THEN
55 RETURN FALSE;
56 END;
57
58 OVERRIDING MEMBER FUNCTION print
59 RETURN VARCHAR2
60 IS
61 BEGIN
62 RETURN 'id=' || id || '; title=' || title
63 || '; isbn=' || isbn || '; pages=' || pages;
64 END;
65 END;

Note the following about lines 3–21:

• A user-defined constructor has several rules to follow:

— It must be declared with keywords CONSTRUCTOR FUNCTION (line 3).

— The return clause must be RETURN SELF AS RESULT (line 7).

— It assigns values to any of the current object’s attributes (lines 10–13).

— It ends with a bare RETURN statement or an exception (line 16; lines 18–19).

• A constructor would typically assign values to as many of the attributes as it knows
about. As you can see from line 14, my constructor tests the check digit before
completing the construction. You will notice, if you skip ahead to line 30, that
object attributes (such as SELF.isbn) are accessible even before validation is com-
plete, an interesting and useful feature.

Object Types by Example | 1081

Download at WoweBook.Com

• Lines 18–19 are merely a placeholder; you should definitely take a more compre-
hensive approach to application-specific exceptions, as discussed in Chapter 6 in
“Use Standardized Error Management Programs” on page 157.

Next, let’s look at the use of the SELF keyword that appears throughout the type body;
SELF is akin to Java’s this keyword. Translation for non-Java programmers: SELF is
merely a way to refer to the invoking (current) object when writing implementations
of member methods. You can use SELF by itself when referring to the entire object, or
you can use dot notation to refer to an attribute or a method:

IF SELF.id ...

IF SELF.ck_digit_okay() ...

The SELF keyword is not always required inside a member method, as you can see in
lines 62–63, because the current object’s attribute identifiers are always in scope. Using
SELF can provide attribute visibility (as in lines 10–13, where the PL/SQL compiler
interprets those unqualified identifiers as the formal parameters) and help to make your
code SELF-documenting. (Ugh, sorry about that.)

There are a few more rules to note about this keyword:

• SELF isn’t available inside static method bodies because static methods have no
“current object.” (I’ll define static methods later in this section.)

• By default, SELF is an IN variable in functions and an IN OUT variable in proce-
dures and constructor functions.

• You can change the default mode by including SELF as the first formal parameter.

Lines 23–56 of the previous example show the computing of the check digit, which is
kind of fun, but my algorithm doesn’t really exploit any new object-oriented features.
I will digress to mention that the exception handler is quite important here; it responds
to a multitude of problems such as the TO_NUMBER function encountering a char-
acter instead of a digit.

Next, on to creating a subtype for serials:

TYPE serial_t UNDER catalog_item_t (
 issn VARCHAR2(10),
 open_or_closed VARCHAR2(1),

 CONSTRUCTOR FUNCTION serial_t (id IN INTEGER DEFAULT NULL,
 title IN VARCHAR2 DEFAULT NULL,
 issn IN VARCHAR2 DEFAULT NULL,
 open_or_closed IN VARCHAR2 DEFAULT NULL)
 RETURN SELF AS RESULT,

 OVERRIDING MEMBER FUNCTION ck_digit_okay
 RETURN BOOLEAN,

 OVERRIDING MEMBER FUNCTION print

1082 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

 RETURN VARCHAR2
) NOT FINAL;

Again, no new features appear in this type specification, but it does give another ex-
ample of subtyping. A serial item in this model will have its own constructor, its own
version of validating the check digit, and its own way to print itself.‡

In addition to constructor and member methods, Oracle supports two other categories
of methods:

Static method
A function or procedure invoked independently of any instantiated objects. Static
methods behave a lot like conventional PL/SQL procedures or functions.

Comparison method
That is, a map or order method. These are special member methods that let you
program what Oracle should do when it needs to compare two objects of this
datatype—for example, in an equality test in PL/SQL or when sorting objects in
SQL.

One final point before moving on. Objects follow PL/SQL’s general convention that
uninitialized variables are null;§ the precise term for objects is atomically null (see
Chapter 13 for more information).

As with collections, when an object is null, you cannot simply assign values to its at-
tributes. Take a look at this short example:

DECLARE
 mybook book_t; -- declared, but not initialized
BEGIN
 IF mybook IS NULL -- this will be TRUE; it is atomically null
 THEN
 mybook.title := 'Learning Oracle PL/SQL'; -- this line raises...
 END IF;
EXCEPTION
 WHEN ACCESS_INTO_NULL -- ...this predefined exception
 THEN
 ...
END;

Before assigning values to the attributes, you must initialize (instantiate) the entire ob-
ject in one of three ways: by using a constructor method, via direct assignment from
another object, or via a fetch from the database, as described in “Storing, Retrieving,
and Using Persistent Objects” on page 1085.

‡ In case you’re curious, the open_or_closed attribute will be either (O)pen, meaning that the library can
continue to modify the catalog entry (perhaps they do not own all the issues); (C)losed, meaning that the
catalog entry is complete; or NULL, meaning we just don’t know at the moment.

§ Associative arrays are a significant exception; they are non-null but empty when first declared.

Object Types by Example | 1083

Download at WoweBook.Com

Invoking Supertype Methods in Oracle Database 11g
One restriction in Oracle’s object-oriented functionality that was lifted in Oracle
Database 11g is the ability to invoke a method of a supertype that is overridden in the
current (or higher-level) subtype.

Prior to Oracle Database 11g, if I overrode a supertype’s method in a subtype, there
was no way that I could call the supertype’s method in an instance of the subtype. This
is now possible, as I demonstrate below.

Suppose I create a root type to manage and display information about food (my favorite
topic!):

/* File on web: 11g_gen_invoc.sql */
CREATE TYPE food_t AS OBJECT (
 NAME VARCHAR2 (100),
 food_group VARCHAR2 (100),
 grown_in VARCHAR2 (100),
 MEMBER FUNCTION to_string RETURN VARCHAR2
)
NOT FINAL;
/
CREATE OR REPLACE TYPE BODY food_t
IS
 MEMBER FUNCTION to_string RETURN VARCHAR2
 IS
 BEGIN
 RETURN 'FOOD! ' || self.name || ' - '
 || self.food_group || ' - ' || self.grown_in;
 END;
END;
/

I then create a subtype of food, dessert, that overrides the to_string method. Now, when
I display information about a dessert, I would like to include both dessert-specific in-
formation, as well as the more general food attributes, but I don’t want to copy and
paste the code from the food type. I want to reuse it. Prior to Oracle Database 11g, this
was not possible. With the new general invocation feature (SELF AS supertype), how-
ever, I can define the type as follows:

CREATE TYPE dessert_t UNDER food_t (
 contains_chocolate CHAR (1)
 , year_created NUMBER (4)
 , OVERRIDING MEMBER FUNCTION to_string RETURN VARCHAR2
);
/

CREATE OR REPLACE TYPE BODY dessert_t
IS
 OVERRIDING MEMBER FUNCTION to_string RETURN VARCHAR2
 IS
 BEGIN
 /* Add the supertype (food) string to the subtype string.... */
 RETURN 'DESSERT! With Chocolate? '

1084 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

 || contains_chocolate
 || ' created in '
 || SELF.year_created
 || chr(10)
 || (SELF as food_t).to_string;
 END;
END;
/

Now, when I display the “to string” representation of a dessert, I see the food infor-
mation as well:

DECLARE
 TYPE foodstuffs_nt IS TABLE OF food_t;

 fridge_contents foodstuffs_nt
 := foodstuffs_nt (
 food_t ('Eggs benedict', 'PROTEIN', 'Farm')
 , dessert_t ('Strawberries and cream'
 , 'FRUIT', 'Backyard', 'N', 2001)
);
BEGIN
 FOR indx IN fridge_1 .. fridge_contents.C
 LOOP
 DBMS_OUTPUT.put_line (RPAD ('=', 60, '='));
 DBMS_OUTPUT.put_line (fridge_contents (indx).to_string);
 END LOOP;
END;
/

The output is:

==
FOOD! Eggs benedict - PROTEIN - Farm
==
DESSERT! With Chocolate? N created in 2001
FOOD! Strawberries and cream - FRUIT - Backyard

In Oracle’s implementation of supertype invocation, you don’t simply refer to the su-
pertype with a generic SUPERTYPE keyword, as is done in some other object-oriented
languages. Instead, you must specify the specific supertype from the hierarchy. This is
more flexible (you can invoke whichever supertype method you like, but it also means
that you must hardcode the name of the supertype in your subtype’s code.

Storing, Retrieving, and Using Persistent Objects
Thus far, I’ve only been discussing the definition of the datatypes and the instantiation
of objects in the memory of running programs. Fortunately, that’s not even half the
story! Oracle wouldn’t be Oracle if there were no way to store an object in the database.

There are at least two main ways that I could physically store the library catalog as
modeled thus far: either as one big table of catalog objects or as a series of smaller tables,
one for each subtype. I’ll show the former arrangement, which could begin as follows:

Object Types by Example | 1085

Download at WoweBook.Com

CREATE TABLE catalog_items OF catalog_item_t
 (CONSTRAINT catalog_items_pk PRIMARY KEY (id));

This statement tells Oracle to build an object table called catalog_items, each row of
which will be a row object of type catalog_item_t. An object table generally has one
column per attribute:

SQL > DESC catalog_items
 Name Null? Type
 ------------------------------------ -------- -------------------------
 ID NOT NULL NUMBER(38)
 TITLE VARCHAR2(4000)

Remember, though, that catalog_item_t isn’t instantiable, and each row in the table
will actually be of a subtype such as a book or serial item. So where do the extra at-
tributes go? Consider that these are legal statements:‖

INSERT INTO catalog_items
 VALUES (NEW book_t(10003, 'Perelandra', '0-684-82382-9', 222));
INSERT INTO catalog_items
 VALUES (NEW serial_t(10004, 'Time', '0040-781X', 'O'));.

Method Chaining
An object whose type definition looks like this:

CREATE OR REPLACE TYPE chaindemo_t AS OBJECT (
 x NUMBER, y VARCHAR2(10), z DATE,
 MEMBER FUNCTION setx (x IN NUMBER) RETURN chaindemo_t,
 MEMBER FUNCTION sety (y IN VARCHAR2) RETURN chaindemo_t,
 MEMBER FUNCTION setz (z IN DATE) RETURN chaindemo_t);

provides the ability to “chain” its methods together. For example:

DECLARE
 c chaindemo_t := chaindemo_t(NULL, NULL, NULL);
BEGIN
 c := c.setx(1).sety('foo').setz(sysdate); -- chained invocation

The executable statement above really just acts as the equivalent of:

c := c.setx(1);
c := c.sety('foo');
c := c.setz(sysdate);

Each function returns a typed object as the input to the next function in the chain. The
implementation of one of the methods appears in the following code (the others are
similar):

MEMBER FUNCTION setx (x IN NUMBER) RETURN chaindemo_t IS
 l_self chaindemo_t := SELF;
BEGIN
 l_self.x := x;

‖ I would prefer to use named notation in these static function calls, but that was not supported until Oracle
Database 11g, which now supports named notation for any user-defined PL/SQL function called within a
SQL statement.

1086 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

 RETURN l_self;
END;

Here are some rules about chaining :

• You cannot use a function’s return value as an IN OUT parameter to the next
function in the chain. Functions return read-only values.

• Methods are invoked in order from left to right.

• The return value of a chained method must be of the object type expected by the
method to its right.

• A chained call can include at most a single procedure.

If your chained call includes a procedure, it must be the rightmost method in the chain.

In fact, Oracle put the ISBN, ISSN, etc., into hidden columns on the catalog_items
table. From an object programming point of view, that’s pretty cool because it helps
preserve the abstraction of the catalog item, yet provides a way to expose the additional
subtype information when needed.

One more thing about the catalog_items table: the CONSTRAINT clause above des-
ignates the id column as the primary key. Yes, object tables can have primary keys too.
And, if you exclude such a CONSTRAINT clause, Oracle will instead create a system-
generated object identifier (OID), as described next.

Object identity

If you’re a relational database programmer, you know that conventional tables have a
unique identifier for every row. If you’re an object-oriented programmer, you know
that OOP environments generally assign unique arbitrary identifiers that serve as object
handles. If you’re a programmer using object-relational features of the database, you
have a mix of both approaches. The following table summarizes where you will find
object identifiers:

What and where Has object identifier?

Row object in object table Yes

Column object in any table (or fetched into PL/SQL
program)

No; use row’s primary key instead

Transient object created in PL/SQL program No; use entire object instead

Row object fetched from object table into PL/SQL program Yes, but available in program only if you explicitly fetch the “REF”
(See the later section “Using REFs” on page 1096)

Object Types by Example | 1087

Download at WoweBook.Com

Here is an example of a table that can hold column objects:

CREATE TABLE my_writing_projects (
 project_id INTEGER NOT NULL PRIMARY KEY,
 start_date DATE,
 working_title VARCHAR2(4000),
 catalog_item catalog_item_t -- this is a "column object"
);

Oracle Corporation takes the view that a column object is dependent on the row’s
primary key, and should not be independently identified.#

For any object table, the Oracle database can base its object identifier on one of two
things:

The primary key value
To use this feature, use the clause OBJECT IDENTIFIER IS PRIMARY KEY at the
end of the CREATE TABLE statement.

A system-generated value
If you omit the PRIMARY KEY clause, Oracle adds a hidden column named
SYS_NC_OID$ to the table and populates it with a unique 16-byte RAW value for
each row.

Which kind of OID should you use? Primary-key-based OIDs typically use less storage
than system-generated OIDs, provide a means of enforcing referential integrity, and
allow for much more convenient loading of objects. System-generated OIDs have the
advantage that REFs to them cause “SCOPED” or limited to values from only one table.
For a more complete discussion of the pros and cons of these two approaches, check
out Oracle’s Application Developer’s Guide—Object-Relational Features. For now, you
should know that a system-generated OID is:

Opaque
Although your programs can use the OID indirectly, you don’t typically see its
value.

Potentially globally unique across databases
The OID space makes provisions for up to 2128 objects (definitely “many” by the
reckoning of the Hottentots).* In theory, these OIDs could allow object navigation
across distributed databases without embedding explicit database links.

Immutable
Immutable in this context means incapable of update. Even after export and im-
port, the OID remains the same, unlike a ROWID. To “change” an OID, you would
have to delete and recreate the object.

#A contrary view is held by relational industry experts who assert that OIDs should not be used for row
identification and that only column objects should have OIDs. See Hugh Darwen and C. J. Date, “The Third
Manifesto,” SIGMOD Record, Volume 24 Number 1, March 1995.

* The Hottentots had a four-valued counting system: 1, 2, 3, and “many.”

1088 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

The VALUE function

To retrieve an object from the database, Oracle provides the VALUE function in SQL.
VALUE accepts a single argument, which must be a table alias in the current FROM
clause, and returns an object of the type on which the table is defined. It looks like this
in a SELECT statement:

SELECT VALUE(c)
 FROM catalog_items c;

I like short abbreviations as table aliases, which explains the c. The VALUE function
returns an opaque series of bits to the calling program rather than a record of column
values. SQL*Plus, however, has built-in features to interpret these bits, returning the
following result from that query:

VALUE(C)(ID, TITLE)

BOOK_T(10003, 'Perelandra', '0-684-82382-9', 222)
SERIAL_T(10004, 'Time', '0040-781X', 'O')

PL/SQL also has features to deal with fetching objects. Start with a properly typed local
variable named catalog_item:

DECLARE
 catalog_item catalog_item_t;
 CURSOR ccur IS
 SELECT VALUE(c)
 FROM catalog_items c;
BEGIN
 OPEN ccur;
 FETCH ccur INTO catalog_item;
 DBMS_OUTPUT.PUT_LINE('I fetched item #' || catalog_item.id);
 CLOSE ccur;
END;

The argument to PUT_LINE uses variable.attribute notation to yield the attribute value,
resulting in the output:

I fetched item #10003

The fetch assigns the object to the local variable catalog_item, which is of the base type;
this makes sense because I don’t know in advance which subtype I’ll be retrieving. My
fetch simply assigns the object into the variable.

In addition to substitutability, the example also illustrates (by displaying
catalog_item.id) that I have direct access to the base type’s attributes.

In case you’re wondering, normal cursor attribute tricks work too; the previous anon-
ymous block is equivalent to:

DECLARE
 CURSOR ccur IS
 SELECT VALUE(c) obj
 FROM catalog_items c;
 arec ccur%ROWTYPE;

Object Types by Example | 1089

Download at WoweBook.Com

BEGIN
 OPEN ccur;
 FETCH ccur INTO arec;
 DBMS_OUTPUT.PUT_LINE('I fetched item #' || arec.obj.id);
 CLOSE ccur;
END;

If I just wanted to print out all of the object’s attributes, I could, of course, use the print
method I’ve already defined. It’s legal to use this because it has been defined at the root
type level and implemented in the subtypes; at runtime, the database will find the
appropriate overriding implementations in each subtype. Ah, the beauty of dynamic
method dispatch.

As a matter of fact, the VALUE function supports dot notation, which provides access
to attributes and methods—but only those specified on the base type. For example, the
following:

SELECT VALUE(c).id, VALUE(c).print()
 FROM catalog_items c;

yields:

VALUE(C).ID VALUE(C).PRINT()
----------- --
 10003 id=10003; title=Perelandra; isbn=0-684-82382-9; pages=222
 10004 id=10004; title=Time; issn=0040-781X; open_or_closed=Open

If I happen to be working in a client environment that doesn’t understand Oracle ob-
jects, I might want to take advantage of such features.

But what if I want to read only the attribute(s) unique to a particular subtype? I might
first try something like this:

SELECT VALUE(c).issn /* Error; subtype attributes are inaccessible */
 FROM catalog_items c;

This gives me ORA-00904: invalid column name. The Oracle database is telling me that
an object of the parent type provides no direct access to subtype attributes. I might try
declaring book of book_t and assigning the subtyped object to it, hoping that it will
expose the “hidden” attributes:

book := catalog_item; /* Error; Oracle won't do implied downcasts */

This time I get PLS-00382: expression is of wrong type. What’s going on? The non-
intuitive answer to that mystery appears in the next section.

Before I move on, here are a few final notes about performing DML on object relational
tables:

• For object tables built on object types that lack subtypes, it is possible to select,
insert, update, and delete all column values using conventional SQL statements.
In this way, some object-oriented and relational programs can share the same un-
derlying data.

1090 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

• You cannot perform conventional relational DML on hidden columns that exist
as a result of subtype-dependent attributes. You must use an “object DML”
approach.

• To update an entire persistent object from a PL/SQL program, you can use an
object DML statement such as:

UPDATE catalog_items c SET c = object_variable WHERE ...

This updates all the attributes (columns), including those unique to a subtype.

• The only good way I have found to update a specific column that is unique to a
subtype is to update the entire object. For example, to change the page count to
1,000 for the book with id 10007:

UPDATE catalog_items c
 SET c = NEW book_t(c.id, c.title, c.publication_date, c.subject_refs,
 (SELECT TREAT(VALUE(y) AS book_t).isbn
 FROM catalog_items y
 WHERE id = 10007),
 1000)
 WHERE id = 10007;

Now let’s go back and take a look at that last problem I mentioned.

The TREAT function

If I’m dealing with a PL/SQL variable typed as a supertype, and it’s populated with a
value of one of its subtypes, how can I gain access to the subtype-specific attributes and
methods? In my case, I want to treat a generic catalog item as the more narrowly defined
book. This operation is called narrowing or downcasting, and is something the compiler
can’t, or won’t, do automatically. What I need to use is the Oracle function called
TREAT:

DECLARE
 book book_t;
 catalog_item catalog_item_t := NEW book_t();
BEGIN
 book := TREAT(catalog_item AS book_t); /* Using 9i R2 or later */
END;

or, in SQL (note that in releases prior to Oracle9i Database Release 2 PL/SQL doesn’t
directly support TREAT):

DECLARE
 book book_t;
 catalog_item catalog_item_t := book_t(NULL, NULL, NULL, NULL);
BEGIN
 SELECT TREAT (catalog_item AS book_t)
 INTO book
 FROM DUAL;
END;

Object Types by Example | 1091

Download at WoweBook.Com

The general syntax of the TREAT function is:

TREAT (object_instance AS subtype) [. { attribute | method(args...) }]

where object_instance is any object with subtype as the name of one of its subtypes.
Calls to TREAT won’t compile if you attempt to treat one type as another from a
different type hierarchy. One notable feature of TREAT is that if you have supplied an
object from the correct type hierarchy, it will return either the downcasted object or
NULL—but not an error.

As with VALUE, you can use dot notation with TREAT to specify an attribute or
method of the TREATed object. For example:

DBMS_OUTPUT.PUT_LINE(TREAT (VALUE(c) AS serial_t).issn);

If I want to iterate over all the objects in the table in a type-aware fashion, I can do
something like this:

DECLARE
 CURSOR ccur IS
 SELECT VALUE(c) item FROM catalog_items c;
 arec ccur%ROWTYPE;
BEGIN
 FOR arec IN ccur
 LOOP
 CASE
 WHEN arec.item IS OF (book_t)
 THEN
 DBMS_OUTPUT.PUT_LINE('Found a book with ISBN '
 || TREAT(arec.item AS book_t).isbn);
 WHEN arec.item IS OF (serial_t)
 THEN
 DBMS_OUTPUT.PUT_LINE('Found a serial with ISSN '
 || TREAT(arec.item AS serial_t).issn);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Found unknown catalog item');
 END CASE;
 END LOOP;
END;

This block introduces the IS OF predicate to test an object’s type. Although the syntax
is somewhat exciting:

object IS OF ([ONLY] typename)

the IS OF operator is much more limited than one would hope: it works only on object
types, not on any of Oracle’s core datatypes like NUMBER or DATE. Also, it will return
an error if the object is not in the same type hierarchy as typename.

Notice the ONLY keyword. The default behavior—without ONLY—is to return TRUE
if the object is of the given type or any of its subtypes. If you use ONLY, the expression
won’t check the subtypes and returns TRUE only if the type is an exact match.

1092 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

Syntactically, you must always use the output from any TREAT expres-
sion as a function, even if you just want to call TREAT to invoke a
member procedure. For example, you’d expect that if there were a
set_isbn member procedure in the book_t, you could do this:

TREAT(item AS book_t).set_isbn('0140714154'); --wrong

But that gives the curious compiler error PLS-00363: expression
‘SYS_TREAT’ cannot be used as an assignment target.

Instead, you need to store the item in a temporary variable, and then
invoke the member procedure:

book := TREAT(item AS book_t);
book.set_isbn('0140714154');

The IS OF predicate, like TREAT itself, became available in Oracle9i Database Release
1 SQL, although direct support for it in PL/SQL didn’t appear until Oracle9i Database
Release 2. As a Release 1 workaround, I could define one or more additional methods
in the type tree, taking advantage of dynamic method dispatch to perform the desired
operation at the correct level in the hierarchy. The “correct” solution to the narrowing
problem depends not just on the version number, though, but also on what my appli-
cation is supposed to accomplish.

For the moment, I’d like to move on to another interesting area: exploring the features
Oracle offers when (not if!) you have to deal with changes in application design.

Evolution and Creation
Oracle9i Database and later versions are light years beyond the Oracle8i Database in
the area known as type evolution. That is, the later versions let you make a variety of
changes to object types, even if you have created tables full of objects that depend on
the type. Yippee!

Earlier in this chapter, I did a quick-and-dirty job of defining catalog_item_t. As almost
any friendly librarian would point out, it might also be nice to carry publication date
information† about all the holdings in the library. So I just hack out the following (no
doubt while my DBA cringes):

ALTER TYPE catalog_item_t
 ADD ATTRIBUTE publication_date VARCHAR2(400)
 CASCADE INCLUDING TABLE DATA;

Et voilà! Oracle propagates this change to perform the needed physical alterations in
the corresponding table(s). It appends the attribute to the bottom of the supertype’s

† I can’t make this attribute an Oracle DATE type, though, because sometimes it’s just a year, sometimes a
month or a quarter, and occasionally something completely offbeat. I might get really clever and make this
a nifty object type…well, maybe in the movie version.

Object Types by Example | 1093

Download at WoweBook.Com

attributes and adds a column after the last column of the supertype in the corresponding
object table. A DESCRIBE of the type now looks like this:

SQL> DESC catalog_item_t
 catalog_item_t is NOT FINAL
 catalog_item_t is NOT INSTANTIABLE
 Name Null? Type
 --- -------- ----------------------------
 ID NUMBER(38)
 TITLE VARCHAR2(4000)
 PUBLICATION_DATE VARCHAR2(400)

METHOD

 MEMBER FUNCTION CK_DIGIT_OKAY RETURNS BOOLEAN
 CK_DIGIT_OKAY IS NOT INSTANTIABLE

METHOD

 MEMBER FUNCTION PRINT RETURNS VARCHAR2

And a DESCRIBE of the table now looks like this:

SQL> DESC catalog_items
 Name Null? Type
 --- -------- ----------------------------
 ID NOT NULL NUMBER(38)
 TITLE VARCHAR2(4000)
 PUBLICATION_DATE VARCHAR2(400)

In fact, the ALTER TYPE statement fixes nearly everything—though alas, it isn’t smart
enough to rewrite my methods. My constructors are a particular issue because I need
to alter their signature. Hey, no problem! I can change a method signature by dropping
and then recreating the method.

When evolving object types, you may encounter the message
ORA-22337: the type of accessed object has been evolved. This condition
may prevent you from doing a DESCRIBE on the type. You might think
that recompiling it will fix the problem, but it won’t. Moreover, if you
have hard dependencies on the type, the Oracle database won’t let you
recompile the object type specification. To get rid of this error, discon-
nect and then reconnect your Oracle session. This clears various buffers
and enables DESCRIBE to see the new version.

To drop the method from the book type specification, specify:

ALTER TYPE book_t
 DROP CONSTRUCTOR FUNCTION book_t (id INTEGER DEFAULT NULL,
 title VARCHAR2 DEFAULT NULL,
 isbn VARCHAR2 DEFAULT NULL,
 pages INTEGER DEFAULT NULL)
 RETURN SELF AS RESULT
 CASCADE;

1094 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

Notice that I supply the full function specification. That will guarantee that I’m drop-
ping the correct method because multiple overloaded versions of it might exist. (Strictly
speaking, though, the DEFAULTs are not required, but I left them in because I’m usu-
ally just cutting and pasting this stuff.)

The corresponding add-method operation is easy:

ALTER TYPE book_t
 ADD CONSTRUCTOR FUNCTION book_t (id INTEGER DEFAULT NULL,
 title VARCHAR2 DEFAULT NULL,
 publication_date VARCHAR2 DEFAULT NULL,
 isbn VARCHAR2 DEFAULT NULL,
 pages INTEGER DEFAULT NULL)
 RETURN SELF AS RESULT
 CASCADE;

Easy for me, anyway; the database is doing a lot more behind the scenes than I will
probably ever know.

The next steps (not illustrated in this chapter) would be to alter the serial_t type in a
similar fashion and then rebuild the two corresponding object type bodies with the
CREATE OR REPLACE TYPE BODY statement. I would also want to inspect all the
methods to see whether any changes would make sense elsewhere (for example, it
would be a good idea to include the publication date in the print method).

By the way, you can drop a type using the statement:

DROP TYPE typename [FORCE];

Use the FORCE option (available only in Oracle Database 11g Release 2) with care
because it cannot be undone. Any object types or object tables that depend on a force-
dropped type will be rendered permanently useless. If there are any columns defined
on a force-dropped type, the database marks them as UNUSED and makes them in-
accessible. If your type is a subtype, and you have used the supertype in any table
definitions, you might benefit from this form of the statement:

DROP TYPE subtypename VALIDATE;

VALIDATE causes the database to look through the table and drop the type as long as
there are no instances of the subtype, avoiding the disastrous consequences of the
FORCE option.

Now let’s visit the strange and fascinating world of object referencing.

Back to Pointers?
The object-relational features in Oracle include the ability to store an object reference
or REF value. A REF is a logical pointer to a particular row in an object table. The Oracle
database stores inside each reference the following information:

• The target row’s primary key or system-generated object identifier.

Object Types by Example | 1095

Download at WoweBook.Com

• A unique identifier to designate the table.

• At the programmer’s option, a hint on the row’s physical whereabouts on disk, in
the form of its ROWID.

The literal contents of a REF are not terribly useful unless you happen to like looking
at long hex strings:

SQL> SELECT REF(c) FROM catalog_items c WHERE ROWNUM = 1;
REF(C)
--
00002802099FC431FBE5F20599E0340003BA0F1F139FC431FBE5F10599E0340003BA0F1F130240000C0000

However, your queries and programs can use a REF to retrieve a row object without
having to name the table where the object resides. Huh? Queries without table names?
A pointer in a relational database? Let’s take a look at how this feature might work in
my library catalog.

Using REFs

Libraries classify their holdings within a strictly controlled set of subjects. For example,
the Library of Congress might classify the book you’re reading now in the following
three subjects:

• Oracle (Computer file)

• PL/SQL (Computer program language)

• Relational databases

The Library of Congress uses a hierarchical subject tree: “Computer file” is the broader
subject or parent of “Oracle,” and “Computer program language” is the broader subject
for “PL/SQL.”

When classifying things, any number of subjects may apply to a particular catalog item
in a many-to-many (M:M) relationship between subjects and holdings. In my simple
library catalog, I will make one long list (table) of all available subjects. While a rela-
tional approach to the problem would then establish an “intersection entity” to resolve
the M:M relationship, I have other options out here in object-relational land.

I will start with an object type for each subject:

CREATE TYPE subject_t AS OBJECT (
 name VARCHAR2(2000),
 broader_term_ref REF subject_t
);

Each subject has a name and a broader term. However, I’m not going to store the term
itself as a second attribute, but instead a reference to it. The third line of this type
definition shows that I’ve typed the broader_term_ref attribute as a REF to a same-
typed object. It’s kind of like Oracle’s old EMP table, with a MGR column whose value
identifies the manager’s record in the same table.

1096 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

I now create a table of subjects:

CREATE TABLE subjects OF subject_t
 (CONSTRAINT subject_pk PRIMARY KEY (name),
 CONSTRAINT subject_self_ref FOREIGN KEY (broader_term_ref)
 REFERENCES subjects);

The foreign key begs a bit of explanation. Even though it references a table with a
relational primary key, because the foreign key datatype is a REF, Oracle knows to use
the table’s object identifier instead. This support for the REF-based foreign key con-
straint is a good example of Oracle’s bridge between the object and relational worlds.

Here are a few unsurprising inserts into this table (just using the default constructor):

INSERT INTO subjects VALUES (subject_t('Computer file', NULL));
INSERT INTO subjects VALUES (subject_t('Computer program language', NULL));
INSERT INTO subjects VALUES (subject_t('Relational databases', NULL));
INSERT INTO subjects VALUES (subject_t('Oracle',
 (SELECT REF(s) FROM subjects s WHERE name = 'Computer file')));
INSERT INTO subjects VALUES (subject_t('PL/SQL',
 (SELECT REF(s) FROM subjects s WHERE name = 'Computer program language')));

For what it’s worth, you can list the contents of the subjects table, as shown here:

SQL> SELECT VALUE(s) FROM subjects s;

VALUE(S)(NAME, BROADER_TERM_REF)

SUBJECT_T('Computer file', NULL)
SUBJECT_T('Computer program language', NULL)
SUBJECT_T('Oracle', 00002202089FC431FBE6FB0599E0340003BA0F1F139FC431FBE6690599E03
40003BA0F1F13)

SUBJECT_T('PL/SQL', 00002202089FC431FBE6FC0599E0340003BA0F1F139FC431FBE6690599E03
40003BA0F1F13)

SUBJECT_T('Relational databases', NULL)

Even if that’s interesting, it’s not terribly useful. However, what’s both interesting and
useful is that I can easily have Oracle automatically “resolve” or follow those pointers.
For example, I can use the DEREF function to navigate those ugly REFs back to their
target row in the table:

SELECT s.name, DEREF(s.broader_term_ref).name bt
 FROM subjects s;

Dereferencing is like an automatic join, although it’s more of an outer join than an equi-
join. In other words, if the reference is null or invalid, the driving row will still appear,
but the target object (and column) will be null.

Oracle introduced a dereferencing shortcut that is really quite elegant. You only need
to use dot notation to indicate what attribute you wish to retrieve from the target object:

SELECT s.name, s.broader_term_ref.name bt FROM subjects s;

Both queries produce the following output:

Object Types by Example | 1097

Download at WoweBook.Com

NAME BT
------------------------------ ------------------------------
Computer file
Computer program language
Oracle Computer file
PL/SQL Computer program language
Relational databases

As a point of syntax, notice that both forms require a table alias, as in the following:

SELECT table_alias.ref_column_name.column_name
 FROM tablename table_alias

You can also use REF-based navigation in the WHERE clause. To show all the subjects
whose broader term is “Computer program language,” specify:

SELECT VALUE(s).name FROM subjects s
 WHERE s.broader_term_ref.name = 'Computer program language';

Although my example table uses a reference to itself, in reality a reference can point to
an object in any object table in the same database. To see this in action, let’s return to
the definition of the base type catalog_item_t. I can now add an attribute that will hold
a collection of REFs, so that each cataloged item can be associated with any number of
subjects. First, I’ll create a collection of subject references:

CREATE TYPE subject_refs_t AS TABLE OF REF subject_t;

Now I’ll allow every item in the catalog to be associated with any number of subjects:

ALTER TYPE catalog_item_t
 ADD ATTRIBUTE subject_refs subject_refs_t
 CASCADE INCLUDING TABLE DATA;

And now (skipping gleefully over the boring parts about modifying any affected meth-
ods in the dependent types), I might insert a catalog record using the following exotic
SQL statement:

INSERT INTO catalog_items
VALUES (NEW book_t(10007,
 'Oracle PL/SQL Programming',
 'Sept 1997',
 CAST(MULTISET(SELECT REF(s)
 FROM subjects s
 WHERE name IN ('Oracle', 'PL/SQL', 'Relational databases'))
 AS subject_refs_t),
 '1-56592-335-9',
 987));

The CAST/MULTISET clause performs an on-the-fly conversion of the subject REFs
into a collection, as explained in the section “Working with Collections”
on page 350.

Here is a slightly more understandable PL/SQL equivalent:

DECLARE
 subrefs subject_refs_t;
BEGIN

1098 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

 SELECT REF(s)
 BULK COLLECT INTO subrefs
 FROM subjects s
 WHERE name IN ('Oracle', 'PL/SQL', 'Relational databases');

 INSERT INTO catalog_items VALUES (NEW book_t(10007,
 'Oracle PL/SQL Programming', 'Sept 1997', subrefs, '1-56592-335-9', 987));
END;

In English, that code says “grab the REFs to three particular subjects, and store them
with this particular book.”

REF-based navigation is so cool that I’ll show another example using some more of
that long-haired SQL:

SELECT VALUE(s).name
 || ' (' || VALUE(s).broader_term_ref.name || ')' plsql_subjects
 FROM TABLE(SELECT subject_refs
 FROM catalog_items
 WHERE id=10007) s;

This example retrieves values from the subjects table, including the name of each
broader subject term, without ever mentioning the subjects table by name. (The TABLE
function converts a collection into a virtual table.) Here are the results:

PLSQL_SUBJECTS

Relational databases ()
PL/SQL (Computer program language)
Oracle (Computer file)

Other than automatic navigation from SQL, what else does all this effort offer the
PL/SQL programmer? Er, well, not a whole lot. References have a slight edge, at least
because as theory goes, they are strongly typed—that is, a REF-typed column can point
only to an object that is defined on the same object type as the REF. Contrast this
behavior with conventional foreign keys, which can point to any old thing as long as
the target is constrained to be a primary key or has a unique index on it.

The UTL_REF package

The UTL_REF built-in package performs the dereferencing operation without an ex-
plicit SQL call, allowing your application to perform a programmatic lock, select, up-
date, or delete of an object given only its REF. As a short example, I can add a method
such as the following to the subject_t type:

MEMBER FUNCTION print_bt (str IN VARCHAR2)
 RETURN VARCHAR2
IS
 bt subject_t;
BEGIN
 IF SELF.broader_term_ref IS NULL
 THEN
 RETURN str;
 ELSE

Object Types by Example | 1099

Download at WoweBook.Com

 UTL_REF.SELECT_OBJECT(SELF.broader_term_ref, bt);
 RETURN bt.print_bt(NVL(str,SELF.name)) || ' (' || bt.name || ')';
 END IF;
END;

This recursive procedure walks the hierarchy from the current subject to the “topmost”
broader subject.

When using the procedures in UTL_REF, the REF argument you supply must be typed
to match your object argument. The complete list of subprograms in UTL_REF follows:

UTL_REF.SELECT_OBJECT (obj_ref IN, object_variable OUT);
Finds the object to which obj_ref points and retrieves a copy in object_variable.

UTL_REF.SELECT_OBJECT_WITH_CR (obj_ref IN, object_variable OUT);
Like SELECT_OBJECT, but makes a copy (“snapshot”) of the object. This version
exists to avoid a mutating table error (ORA-4091), which can occur if you are
updating an object table and setting the value to a function, but the function uses
UTL_REF to dereference an object from the same table you’re updating.

UTL_REF.LOCK_OBJECT (obj_ref IN);
Locks the object to which obj_ref points but does not fetch it yet.

UTL_REF.LOCK_OBJECT (obj_ref IN, object_variable OUT);
Locks the object to which obj_ref points and retrieves a copy in object_variable.

UTL_REF.UPDATE_OBJECT (obj_ref IN, object_variable IN);
Replaces the object to which obj_ref points with the value supplied in
object_variable. This operation updates all of the columns in the corresponding
object table.

UTL_REF.DELETE_OBJECT (obj_ref IN);
Deletes the object to which obj_ref points.

In C, Better Support for REFs
While PL/SQL offers few overwhelming reasons to program with object references, you
would find more benefits to this programming style with the Oracle Call Interface
(OCI), Oracle’s C/C++ language interface, or even with Pro*C. In addition to the ability
to navigate REFs, similar to what you find in PL/SQL, OCI provides complex object
retrieval (COR). With COR, you can retrieve an object and all its REFerenced neighbors
in a single call. Both OCI and Pro*C support a client-side object cache, allowing an
application to load objects into client memory and to manipulate (select, insert, update,
merge, delete) them as if they were in the database. Then, in a single call, the application
can flush all the changes back to the server. In addition to improving the programmer’s
functional repertoire, these features reduce the number of network round trips, im-
proving overall performance. The downside: creating a cache of Oracle data outside
the server invites a host of challenges relating to concurrency and locking.

1100 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

REFs and type hierarchies

All of the UTL_REF subprograms are procedures, not functions,‡ and the parameters
have the unique characteristic of being semiweakly typed. In other words, the database
doesn’t need to know at compile time what the precise datatypes are, as long as the
REF matches the object variable.

I’d like to mention a few more technical points about REFs when dealing with type
hierarchies. Assume the following program declarations:

DECLARE
 book book_t;
 item catalog_item_t;
 itemref REF catalog_item_t;
 bookref REF book_t;

As you have seen, assigning a REF to an “exactly typed” variable works fine:

SELECT REF(c) INTO itemref
 FROM catalog_items c WHERE id = 10007;

Similarly, you can dereference an object into the exact type, using:

UTL_REF.select_object(itemref, item);

or:

SELECT DEREF(itemref) INTO item FROM DUAL;

However, you cannot directly narrow a REF:

SELECT REF(c)
 INTO bookref /* Error */
 FROM catalog_items c WHERE id = 10007;

One way to narrow a REF would be to use TREAT, which understands how to narrow
references:

SELECT TREAT(REF(c) AS REF book_t)
 INTO bookref
 FROM catalog_items c WHERE id = 10007;

You can always widen or upcast while dereferencing, whether you are using:

UTL_REF.select_object(TREAT(bookref AS ref catalog_item_t), item);

(notice the explicit upcast) or:

SELECT DEREF(bookref) INTO item FROM DUAL;

And, although you cannot narrow or downcast while dereferencing with DEREF, as
shown here:

SELECT DEREF(itemref)
 INTO book /* Error */
 FROM DUAL;

‡ I’m somewhat mystified by this; it would be a lot handier if at least SELECT_OBJECT were a function.

Object Types by Example | 1101

Download at WoweBook.Com

TREAT can again come to the rescue:

SELECT DEREF(TREAT(itemref AS REF book_t))
 INTO book
 FROM catalog_items c WHERE id = 10007;

Or, amazingly enough, you can also perform an implicit downcast with UTL_REF:

UTL_REF.select_object(itemref, book);

Got all that?

Dangling REFs

Here are a few final comments about object references:

• A REF may point to nothing, in which case it’s known as a dangling REF. This can
happen when you store a reference to an object and then delete the object. Oracle
permits such nonsense if you fail to define a foreign key constraint that would
prevent it.

• To locate references that point to nothing, use the IS DANGLING operator:

SELECT VALUE(s) FROM subjects s
WHERE broader_term_ref IS DANGLING;

Now let’s move on and take a look at some Oracle features for dealing with data whose
type is either unknown or varying.

Generic Data: The ANY Types
As discussed in Chapter 13, Oracle provides the ANYDATA type, which can hold data
in any other built-in or user-defined type. With ANYDATA, a PL/SQL program could,
for instance, store, retrieve, and operate on a data item declared on any SQL type in
the database—without having to create dozens of overloaded versions. Sounds pretty
good, right? This feature was tailor-made for advanced queuing, where an application
needs to put a “thing” in the queue, and you don’t want the queue to have to know
what the datatype of each item is.

The built-in packages and types in this family are:

ANYDATA type
Encapsulation of any SQL-datatyped item in a self-descriptive data structure.

ANYTYPE type
When used with ANYDATA, reads the description of the data structure. Can be
used separately to create transient object types.

DBMS_TYPES package
A package consisting only of constants that help interpret which datatype is being
used in the ANYDATA object.

1102 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

ANYDATASET type
Similar to an ANYDATA, but the contents are one or more instances of a datatype
(like a collection).

Preview: What ANYDATA is not

If I wanted to write a function that would print anything (that is, convert it to a string),
I might start with this spec:

FUNCTION printany (whatever IN ANYDATA) RETURN VARCHAR2;

and hope to invoke the function like this:

DBMS_OUTPUT.PUT_LINE(printany(SYSDATE)); -- nope
DBMS_OUTPUT.PUT_LINE(printany(NEW book_t(111)); -- nada
DBMS_OUTPUT.PUT_LINE(printany('Hello world')); -- nyet

Unfortunately, those calls won’t work. ANYDATA is actually an encapsulation of other
types, and you must first convert the data into the ANYDATA type using one of its
built-in static methods:

DBMS_OUTPUT.PUT_LINE(printany(ANYDATA.ConvertDate(SYSDATE));
DBMS_OUTPUT.PUT_LINE(printany(ANYDATA.ConvertObject(NEW book_t(12345)));
DBMS_OUTPUT.PUT_LINE(printany(ANYDATA.ConvertVarchar2('Hello world')));

Don’t think of ANYDATA as an exact replacement for overloading.

Dealing with ANYDATA

Let’s take a look at an implementation of the printany program and see how it figures
out how to deal with data of different types. This code is not comprehensive; it deals
only with numbers, strings, dates, objects, and REFs, but you could extend it to almost
any other datatype.

 /* File on web: printany.fun */
 1 FUNCTION printany (adata IN ANYDATA)
 2 RETURN VARCHAR2
 3 AS
 4 aType ANYTYPE;
 5 retval VARCHAR2(32767);
 6 result_code PLS_INTEGER;
 7 BEGIN
 8 CASE adata.GetType(aType)
 9 WHEN DBMS_TYPES.TYPECODE_NUMBER THEN
10 RETURN 'NUMBER: ' || TO_CHAR(adata.AccessNumber);
11 WHEN DBMS_TYPES.TYPECODE_VARCHAR2 THEN
12 RETURN 'VARCHAR2: ' || adata.AccessVarchar2;
13 WHEN DBMS_TYPES.TYPECODE_CHAR THEN
14 RETURN 'CHAR: ' || RTRIM(adata.AccessChar);
15 WHEN DBMS_TYPES.TYPECODE_DATE THEN
16 RETURN 'DATE: ' || TO_CHAR(adata.AccessDate, 'YYYY-MM-DD hh24:mi:ss');
17 WHEN DBMS_TYPES.TYPECODE_OBJECT THEN
18 EXECUTE IMMEDIATE 'DECLARE ' ||
19 ' myobj ' || adata.GetTypeName || '; ' ||

Object Types by Example | 1103

Download at WoweBook.Com

20 ' myad anydata := :ad; ' ||
21 'BEGIN ' ||
22 ' :res := myad.GetObject(myobj); ' ||
23 ' :ret := myobj.print(); ' ||
24 'END;'
25 USING IN adata, OUT result_code, OUT retval;
26 retval := adata.GetTypeName || ': ' || retval;
27 WHEN DBMS_TYPES.TYPECODE_REF THEN
28 EXECUTE IMMEDIATE 'DECLARE ' ||
29 ' myref ' || adata.GetTypeName || '; ' ||
30 ' myobj ' || SUBSTR(adata.GetTypeName,
31 INSTR(adata.GetTypeName, ' ')) || '; ' ||
32 ' myad anydata := :ad; ' ||
33 'BEGIN ' ||
34 ' :res := myad.GetREF(myref); ' ||
35 ' UTL_REF.SELECT_OBJECT(myref, myobj);' ||
36 ' :ret := myobj.print(); ' ||
37 'END;'
38 USING IN adata, OUT result_code, OUT retval;
39 retval := adata.GetTypeName || ': ' || retval;
40 ELSE
41 retval := '<data of type ' || adata.GetTypeName ||'>';
42 END CASE;
43
44 RETURN retval;
45
46 EXCEPTION
47 WHEN OTHERS
48 THEN
49 IF INSTR(SQLERRM, 'component ''PRINT'' must be declared') > 0
50 THEN
51 RETURN adata.GetTypeName || ': <no print() function>';
52 ELSE
53 RETURN 'Error: ' || SQLERRM;
54 END IF;
55 END;

Here are just a few highlights:

Line(s) Description

5 In cases where I need a temporary variable to hold the result, I assume that 32K will be big enough. Remember
that PL/SQL dynamically allocates memory for large VARCHAR2s, so it won’t be a memory pig unless required.

6 The value of result_code (see lines 25 and 38) is irrelevant for the operations in this example, but is required by
the ANYDATA API.

8 The ANYDATA type includes a method called GetType that returns a code corresponding to the datatype. Here is
its specification:

MEMBER FUNCTION ANYDATA.GetType
 (OUT NOCOPY ANYTYPE)
 RETURN typecode_integer;

To use this method, though, you have to declare an ANYTYPE variable into which Oracle will store detailed
information about the type that you’ve encapsulated.

1104 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

Line(s) Description

9, 11, 13,
15, 17, 27

These expressions rely on the constants that Oracle provides in the built-in package DBMS_TYPES.

10, 12, 14,
16

These statements use the ANYDATA.AccessNNN member functions introduced in Oracle9i Database Release 2. In
Release 1, you had to use the GetNNN member procedures for a similar result, although they required the use of
a temporary local variable.

18–25 To get an object to print itself without doing a lot of data dictionary contortions, this little dynamic anonymous
block will construct an object of the correct type and invoke its print() member method. You did give it a print(),
didn’t you?

28–38 The point of this is to dereference the pointer and return the referenced object’s content. Well, it will work if
there’s a print().

49–51 In the event that I’m trying to print an object with no print member method, the compiler will return an error at
runtime that I can detect in this fashion. In this case the code will just punt and return a generic message.

Running my earlier invocations:

DBMS_OUTPUT.PUT_LINE(printany(ANYDATA.ConvertDate(SYSDATE));
DBMS_OUTPUT.PUT_LINE(printany(ANYDATA.ConvertObject(NEW book_t(12345)));
DBMS_OUTPUT.PUT_LINE(printany(ANYDATA.ConvertVarchar2('Hello world')));

yields:

DATE: 2005-03-10 16:00:25
SCOTT.BOOK_T: id=12345; title=; publication_date=; isbn=; pages=
VARCHAR2: Hello world

As you can see, using ANYDATA isn’t as convenient as true inheritance hierarchies
because ANYDATA requires explicit conversions. On the other hand, it does make
possible the creation of a table column or object attribute that will hold any type of
data.§

Creating a transient type

Although PL/SQL still does not support defining new object types inside a program’s
declaration section, it is possible to use these ANY built-ins to create this kind of “tran-
sient” type—that is, one that exists only at runtime. Wrapped up as an ANYTYPE, you
can even pass such a type as a parameter and create an instance of it as an ANYDATA.
Here is an example:

/* Create (anonymous) transient type with two attributes: number, date */
FUNCTION create_a_type
 RETURN ANYTYPE
AS
 mytype ANYTYPE;
BEGIN
 ANYTYPE.BeginCreate(typecode => DBMS_TYPES.TYPECODE_OBJECT,

§ As of this writing, it is impossible to store in a table an ANYDATA encapsulating an object that has evolved
or that is part of a type hierarchy.

Object Types by Example | 1105

Download at WoweBook.Com

 atype => mytype);
 mytype.AddAttr(typecode => DBMS_TYPES.TYPECODE_NUMBER,
 aname => 'just_a_number',
 prec => 38,
 scale => 0,
 len => NULL,
 csid => NULL,
 csfrm => NULL);
 mytype.AddAttr(typecode => DBMS_TYPES.TYPECODE_DATE,
 aname => 'just_a_date',
 prec => 5,
 scale => 5,
 len => NULL,
 csid => NULL,
 csfrm => NULL);
 mytype.EndCreate;
 RETURN mytype;
END;

As you can see, there are three main steps:

1. Begin the creation by calling the static procedure BeginCreate. This returns an
initialized ANYTYPE.

2. One at a time, add the desired attributes using the AddAttr member procedure.

3. Call the member procedure EndCreate.

Similarly, when you wish to use the type, you will need to assign attribute values in a
piecewise manner:

DECLARE
 ltype ANYTYPE := create_a_type;
 l_any ANYDATA;
BEGIN
 ANYDATA.BeginCreate(dtype => ltype, adata => l_any);
 l_any.SetNumber(num => 12345);
 l_any.SetDate(dat => SYSDATE);
 l_any.EndCreate;
END;

If you don’t know the structure of the datatype in advance, it is possible to discover it
using ANYTYPE methods (such as GetAttrElemInfo) in combination with a piecewise
application of the ANYDATA.Get methods. (See the anyObject.sql script on the book’s
web site for an example.)

I Can Do It Myself
In object-oriented design, there is a school of thought that wants each object type to
have the intelligence necessary to be self-sufficient. If the object needs to be stored
persistently in a database, it would know how to save itself; similarly, it would include
methods for update, delete, and retrieval. If I subscribed to this philosophy, here is one
of the methods I would want to add to my type:

1106 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

ALTER TYPE catalog_item_t
 ADD MEMBER PROCEDURE remove
 CASCADE;

TYPE BODY catalog_item_t
AS
 ...
 MEMBER PROCEDURE remove
 IS
 BEGIN
 DELETE catalog_items
 WHERE id = SELF.id;
 SELF := NULL;
 END;
END;

(Oracle does not offer a destructor method, by the way.) By defining this method at
the supertype level, all my subtypes are taken care of too. This design assumes that
corresponding objects will live in a single table; some applications might need some
additional logic to locate the object. (Also, a real version of this method might include
logic to perform ancillary functions like removing dependent objects and/or archiving
the data before removing the object permanently.)

Assuming that my applications would always modify a transient object in memory
before writing it to disk, I could combine insert and update into a single method I’ll
call “save”:

ALTER TYPE catalog_item_t
 ADD MEMBER PROCEDURE save,
 CASCADE;

TYPE BODY catalog_item_t
AS
 ...
 MEMBER PROCEDURE save
 IS
 BEGIN
 UPDATE catalog_items c
 SET c = SELF
 WHERE id = SELF.id;
 IF SQL%ROWCOUNT = 0
 THEN
 INSERT INTO catalog_items VALUES (SELF);
 END IF;
 END;

You may correctly point out that this will replace all of the column values in the table
even if they are unchanged, which could cause triggers to fire that shouldn’t, and results
in needless I/O. Alas, this is one of the unfortunate by-products of an object approach.
It is true that with careful programming, you could avoid modifying columns from the
supertype that haven’t changed, but columns from any subtype are not individually
accessible from any variation on the UPDATE statement that Oracle currently offers.

Object Types by Example | 1107

Download at WoweBook.Com

Retrieval is the most difficult operation to encapsulate because of the many WHERE-
clause permutations and the multiset nature of the result. The specification of the query
criteria can be a real rat’s nest, as anyone who has ever built a custom query screen will
attest. Considering only the result side, the options for what to return include:

• A collection of objects

• A collection of REFs

• A pipelined result set

• A cursor variable (strongly or weakly typed)

The requirements of the application and its programming environment will have the
largest influence on how to choose from these options. Here’s a stripped-down example
that uses the fourth approach, a cursor variable:

ALTER TYPE catalog_item_t
 ADD STATIC FUNCTION cursor_for_query (typename IN VARCHAR2 DEFAULT NULL,
 title IN VARCHAR2 DEFAULT NULL,
 att1 IN VARCHAR2 DEFAULT NULL,
 val1 IN VARCHAR2 DEFAULT NULL)
 RETURN SYS_REFCURSOR
 CASCADE;

I use a static method that returns the built-in SYS_REFCURSOR type, which is a weak
cursor type that Oracle provides (just something of a convenience feature), allowing
the client program to iterate over the results. The “att1” and “val1” parameters provide
a means of querying subtype-specific attribute/value pairs; a real version of this pro-
gram would be better off accepting a collection of such attribute/value pairs to allow
queries on multiple attributes of a given subtype.

Jumping ahead to how you might execute a query, let’s look at this example:

DECLARE
 catalog_item catalog_item_t;
 l_refcur SYS_REFCURSOR;
BEGIN
 l_refcur := catalog_item_t.cursor_for_query(
 typename => 'book_t',
 title => 'Oracle PL/SQL Programming');
 LOOP
 FETCH l_refcur INTO catalog_item;
 EXIT WHEN l_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE('Matching item:' || catalog_item.print);
 END LOOP;
 CLOSE l_refcur;
END;

which yields:

Matching item:id=10007; title=Oracle PL/SQL Programming;
 publication_date=Sept 1997;
isbn=1-56592-335-9; pages=987

The implementation is:

1108 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

 1 MEMBER PROCEDURE save
 2 IS
 3 BEGIN
 4 UPDATE catalog_items c
 5 SET c = SELF
 6 WHERE id = SELF.id;
 7 IF SQL%ROWCOUNT = 0
 8 THEN
 9 INSERT INTO catalog_items VALUES (SELF);
10 END IF;
11 END;
12
13 STATIC FUNCTION cursor_for_query (typename IN VARCHAR2 DEFAULT NULL,
14 title IN VARCHAR2 DEFAULT NULL,
15 att1 IN VARCHAR2 DEFAULT NULL,
16 val1 IN VARCHAR2 DEFAULT NULL)
17 RETURN SYS_REFCURSOR
18 IS
19 l_sqlstr VARCHAR2(1024);
20 l_refcur SYS_REFCURSOR;
21 BEGIN
22 l_sqlstr := 'SELECT VALUE(c) FROM catalog_items c WHERE 1=1 ';
23 IF title IS NOT NULL
24 THEN
25 l_sqlstr := l_sqlstr || 'AND title = :t ';
26 END IF;
27
28 IF typename IS NOT NULL
29 THEN
30 IF att1 IS NOT NULL
31 THEN
32 l_sqlstr := l_sqlstr
33 || 'AND TREAT(SELF AS ' || typename || ').' || att1 || ' ';
34 IF val1 IS NULL
35 THEN
36 l_sqlstr := l_sqlstr || 'IS NULL ';
37 ELSE
38 l_sqlstr := l_sqlstr || '=:v1 ';
39 END IF;
40 END IF;
41 l_sqlstr := l_sqlstr || 'AND VALUE(c) IS OF (' || typename ||') ';
42 END IF;
43
44 l_sqlstr := 'BEGIN OPEN :lcur FOR ' || l_sqlstr || '; END;';
45
46 IF title IS NULL AND att1 IS NULL
47 THEN
48 EXECUTE IMMEDIATE l_sqlstr USING IN OUT l_refcur;
49 ELSIF title IS NOT NULL AND att1 IS NULL
50 THEN
51 EXECUTE IMMEDIATE l_sqlstr USING IN OUT l_refcur, IN title;
52 ELSIF title IS NOT NULL AND att1 IS NOT NULL
53 THEN
54 EXECUTE IMMEDIATE l_sqlstr USING IN OUT l_refcur, IN title, IN att1;
55 END IF;

Object Types by Example | 1109

Download at WoweBook.Com

56
57 RETURN l_refcur;
58 END;

Because dynamic SQL is a little tricky to follow, here is what the function would have
generated internally with the previous query:

BEGIN
 OPEN :lcur FOR
 SELECT VALUE(c)
 FROM catalog_items c
 WHERE 1=1
 AND title = :t
 AND VALUE(c) IS OF (book_t);
END;

One nice thing about this approach is that you don’t have to modify the query code
every time you add a subtype to the inheritance tree.

Comparing Objects
So far, my examples have used object tables—tables in which each row constitutes an
object built with the CREATE TABLE...OF type statement. As I’ve illustrated, such an
arrangement enjoys some special features, such as REF-based navigation and the treat-
ment of entire objects (rather than individual column values) as the unit of I/O.

You can also use an object type as the datatype for individual columns in a table (the
relevant nomenclature is column objects, as mentioned earlier). For example, imagine
that I want to create an historical record of changes in the catalog_items table, capturing
all inserts, updates, and deletes.

CREATE TABLE catalog_history (
 id INTEGER NOT NULL PRIMARY KEY,
 action CHAR(1) NOT NULL,
 action_time TIMESTAMP DEFAULT (SYSTIMESTAMP) NOT NULL,
 old_item catalog_item_t,
 new_item catalog_item_t)
 NESTED TABLE old_item.subject_refs STORE AS catalog_history_old_subrefs
 NESTED TABLE new_item.subject_refs STORE AS catalog_history_new_subrefs;

As soon as you start populating a table with column objects, though, you raise some
questions about how Oracle should behave when you ask it to do things like sort or
index on one of those catalog_item_t columns. There are four ways you can compare
objects; some are more useful than others:

Attribute-level comparison
Include the relevant attribute(s) when sorting, creating indexes, or comparing.

Default SQL
Oracle’s SQL knows how to do a simple equality test. In this case, two objects are
considered equal if they are defined on exactly the same type and every corre-
sponding attribute is equal. This will work if the objects have only scalar attributes

1110 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

(no collections or LOBs) and if you haven’t already defined a MAP or ORDER
member method on the object type.

MAP member method
You can create a special function method that returns a “mapping” of the object
value onto a datatype that Oracle already knows how to compare, such as a number
or a date. This will work only if no ORDER method exists.

ORDER member method
This is another special function that compares two objects and returns a flag value
that indicates their relative ordering. This will work only if no MAP method exists.

Default SQL comparison is not terribly useful, so I won’t say any more about it. The
following sections describe the other, more useful ways to compare objects.

The OBJECT_VALUE Pseudo Column
Curious readers may wonder how, precisely, one could automatically populate an au-
dit-style table such as catalog_history, which includes column objects defined on a type
that has subtypes. You might hope that it could be done with a table-level trigger.

The difficult question is how to capture the values of the attributes for all the subtypes.
There is no obvious way to refer to them generically. No problem…Pseudo-Column
Man comes to the rescue! Ponder this:

TRIGGER catalog_hist_upd_trg
AFTER UPDATE ON catalog_items
FOR EACH ROW
BEGIN
 INSERT INTO catalog_history (id,
 action,
 action_time,
 old_item,
 new_item)
 VALUES (catalog_history_seq.NEXTVAL,
 'U',
 SYSTIMESTAMP,
 :OLD.OBJECT_VALUE,
 :NEW.OBJECT_VALUE);
END;

Oracle provides access to the fully attributed subtypes via the pseudo-column
OBJECT_VALUE. However, this works only if you have Oracle Database 10g or later;
it’s true that a similar pseudo-column SYS_NC_ROWINFO$ is available in earlier ver-
sions, but I have found that it does not work in this particular application.

OBJECT_VALUE can also be used for other purposes and is not limited to circum-
stances involving subtypes; for example, it can be useful when creating object views
using the WITH OBJECT IDENTIFIER clause (discussed later in this chapter).

Object Types by Example | 1111

Download at WoweBook.Com

Attribute-level comparison

Attribute-level comparison may not be precisely what you want, but it is fairly easy in
PL/SQL, or even in SQL if you remember to use a table alias in the SQL statement.
Oracle lets you expose attributes via dot notation:

SELECT * FROM catalog_history c
 WHERE c.old_item.id > 10000
 ORDER BY NVL(TREAT(c.old_item as book_t).isbn, TREAT
(c.old_item AS serial_t).issn)

Attribute-level index creation is equally easy:

CREATE INDEX catalog_history_old_id_idx ON catalog_history c (c.old_item.id);

The MAP method

Both the MAP and the ORDER methods make it possible to perform statements such
as the following:

SELECT * FROM catalog_history
 ORDER BY old_item;

IF old_item > new_item
THEN ...

First let’s look at MAP. I can add a trivial MAP method to catalog_item_t as follows:

ALTER TYPE catalog_item_t
 ADD MAP MEMBER FUNCTION mapit RETURN NUMBER
 CASCADE;

TYPE BODY catalog_item_t
AS ...
 MAP MEMBER FUNCTION mapit RETURN NUMBER
 IS
 BEGIN
 RETURN id;
 END;
 ...
END;

Assuming, of course, that ordering by id makes sense, now I can order and compare
catalog items to my heart’s content, and the Oracle database will call this method
automatically whenever necessary. The function needn’t be so simple; for example, it
could return a scalar value computed from all the object attributes, melded together in
some way that actually might be of some value to librarians.

Creating a MAP method like this has a side effect, though: the equality comparison gets
defined in a way you might not like. “Equality” now becomes a matter of the mapped
value’s being equal for the objects you’re comparing. If you want an easy way to com-
pare two objects for attribute-by-attribute equality, you will want to either create your
own (non-MAP) method and invoke it by name when needed, or use an ORDER
method.

1112 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

The ORDER method

The alternative to MAP is an ORDER member function, which compares two methods:
SELF, and another object of the same type that you supply as an argument. You want
to program the function to return an integer that is positive, zero, or negative, indicating
the ordering relationship of the second object to SELF. Table 26-2 illustrates the be-
havior you need to incorporate.

Table 26-2. Desired behavior of ORDER member functions

For these desired semantics... Your ORDER member function must return

SELF < argumentObject Any negative number (typically −1)

SELF = argumentObject 0

SELF > argumentObject Any positive number (typically +1)

Undefined comparison NULL

Let’s take a look at a nontrivial example of an ORDER method:

 1 ALTER TYPE catalog_item_t
 2 DROP MAP MEMBER FUNCTION mapit RETURN NUMBER
 3 CASCADE;
 4
 5 ALTER TYPE catalog_item_t
 6 ADD ORDER MEMBER FUNCTION orderit (obj2 IN catalog_item_t)
 7 RETURN INTEGER
 8 CASCADE;
 9
10 TYPE BODY catalog_item_t
11 AS ...
12 ORDER MEMBER FUNCTION orderit (obj2 IN catalog_item_t)
13 RETURN INTEGER
14 IS
15 self_gt_o2 CONSTANT PLS_INTEGER := 1;
16 eq CONSTANT PLS_INTEGER := 0;
17 o2_gt_self CONSTANT PLS_INTEGER := −1;
18 l_matching_count NUMBER;
19 BEGIN
20 CASE
21 WHEN obj2 IS OF (book_t) AND SELF IS OF (serial_t) THEN
22 RETURN o2_gt_self;
23 WHEN obj2 IS OF (serial_t) AND SELF IS OF (book_t) THEN
24 RETURN self_gt_o2;
25 ELSE
26 IF obj2.title = SELF.title
27 AND obj2.publication_date = SELF.publication_date
28 THEN
29 IF obj2.subject_refs IS NOT NULL
30 AND SELF.subject_refs IS NOT NULL
31 AND obj2.subject_refs.COUNT = SELF.subject_refs.COUNT
32 THEN
33 SELECT COUNT(*) INTO l_matching_count FROM
34 (SELECT *

Object Types by Example | 1113

Download at WoweBook.Com

35 FROM TABLE(SELECT CAST(SELF.subject_refs AS subject_refs_t)
36 FROM dual)
37 INTERSECT
38 SELECT *
39 FROM TABLE(SELECT CAST(obj2.subject_refs AS subject_refs_t)
40 FROM dual));
41 IF l_matching_count = SELF.subject_refs.COUNT
42 THEN
43 RETURN eq;
44 END IF;
45 END IF;
46 END IF;
47 RETURN NULL;
48 END CASE;
49 END;
50 ...
51 END;

Here are the important things to note:

Line(s) Description

21–24 This means that “books sort higher than serials.”

26–46 This is an equality test that uses a very cool feature. Because Oracle doesn’t know how to compare collections, this
code uses Oracle’s ability to select from a collection as if it were a table. By checking to make sure that the relational
intersection of these two collections has the expected number of elements, I can determine whether every element
in the first collection has an equal counterpart in the second (which is my definition of “equality”).

Overall, however, my ORDER method is still inadequate because it fails to treat the
subtype-specific attributes, but anything longer would just be too unwieldy for this
book.

Additional comparison recommendations

To close out this discussion, here are a few additional rules and recommendations for
comparison methods:

• MAP and ORDER cannot coexist in the same object type; use one or the other.

• Oracle recommends MAP when you have a large number of objects to sort or
compare, as in a SQL statement. This is because of an internal optimization that
reduces the number of function calls. With ORDER, the function must run once
for every comparison.

• Oracle ignores the method names; you can call them anything you want.

• Subtypes can include MAP methods, but only if the supertype also has one.

• Subtypes cannot have ORDER methods; you’ll have to put all the comparison
“smarts” into the supertype.

1114 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

Object Views
Although Oracle’s object extensions offer PL/SQL programmers rich possibilities for
the design of new systems, it’s unlikely that you will want to completely reengineer
your existing systems to use objects. In part to allow established applications to take
advantage of the new object features over time, Oracle provides object views. This fea-
ture offers several unique advantages:

“Object-ification” of remote data
It’s not yet possible to use the object tables and physical REFs across a distributed
database, but you can create object views and virtual REFs that cast remote rela-
tional data as objects.

Virtual denormalization
In a relational database or even an object-relational database, you will usually find
relationships modeled in only one direction. For example, a book has some number
of subjects. With an object view, it’s easy to associate a column that provides the
inverse mapping; for example, a subject object could include a collection of REFs
that point to all of the books in that subject.

Efficiency of object access
In Oracle Call Interface (OCI) applications, object programming constructs pro-
vide for the convenient retrieval, caching, and updating of object data. By reducing
trips between application and database server, these programming facilities may
provide performance improvements, with the added benefit that application code
can be more succinct.

Greater flexibility to change the object model
Although newer versions of Oracle have tremendous abilities in the area of type
evolution, adding and removing object attributes still cause table bits to move
around on the disk, which administrators may be loath to do. Recompiling object
views suffers no such consequences.

On the other hand, there are some disadvantages to using object views:

View performance
Object views are still views, and some Oracle shops are generally leery of the per-
formance of any view.

No virtual REFs
You cannot store virtual REFs in the database; instead, they get constructed on the
fly. This may present some challenges if you someday want to convert those object
views into object tables.

Other features of Oracle can improve the expressiveness of any types of views, not just
object views. Two such features that are not strictly limited to object views are collec-
tions and INSTEAD OF triggers.

Object Views | 1115

Download at WoweBook.Com

Collections
Consider two relational tables with a simple master-detail relationship. You can
create a view portraying the detail records as a single nonscalar attribute (collec-
tion) of the master.

INSTEAD OF triggers
In addition, by using INSTEAD OF triggers, you can tell the Oracle database ex-
actly how to perform inserts, updates, and deletes on the view.

From an object perspective, there is one slight disadvantage of object views when com-
pared to comprehensive reengineering: object views cannot retrofit any benefits of en-
capsulation. Insofar as any applications apply INSERT, UPDATE, MERGE, and
DELETE statements directly to the underlying relational data, they may subvert the
benefits of encapsulation normally provided by an object approach. Object-oriented
designs typically prevent free-form access directly to data. However, because Oracle
supports neither private attributes nor private methods, the incremental sacrifice here
is small.

If you do choose to layer object views on top of an existing system, it may be possible
for new applications to enjoy incremental benefit, and your legacy systems are no worse
off than they were before. Figure 26-2 illustrates this use of object views.

Figure 26-2. Object views allow you to bind an object type definition to (existing) relational tables

The following sections discuss aspects of using object views (including differences be-
tween object tables and object views) that PL/SQL programmers should find particu-
larly useful and interesting.

A Sample Relational System
For this chapter’s second major example, let’s look at how object views might be used
in a database application that supports a graphic design firm. Their relational

1116 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

application includes information about images (GIF, JPEG, etc.) that appear on web
sites they design. These images are stored in files, but data about them is stored in
relational tables. To help the graphic artists locate the right image, each image has one
or more associated keywords stored in a straightforward master-detail relationship.

The legacy system has a table of suppliers:

CREATE TABLE suppliers (
 id INTEGER NOT NULL PRIMARY KEY,
 name VARCHAR2(400) NOT NULL
);

Here is the table for image metadata:

CREATE TABLE images (
 image_id INTEGER NOT NULL PRIMARY KEY,
 file_name VARCHAR2(512) NOT NULL,
 file_type VARCHAR2(12) NOT NULL,
 supplier_id INTEGER REFERENCES suppliers (id),
 supplier_rights_descriptor VARCHAR2(256),
 bytes INTEGER
);

Not all images originate from suppliers; if the supplier id is null, then the image was
created in-house.

Finally, there is one table for the keywords associated with the images:

CREATE TABLE keywords (
 image_id INTEGER NOT NULL REFERENCES images (image_id),
 keyword VARCHAR2(45) NOT NULL,
 CONSTRAINT keywords_pk PRIMARY KEY (image_id, keyword)
);

Let’s assume that the following data exists in the underlying tables:

INSERT INTO suppliers VALUES (101, 'Joe''s Graphics');
INSERT INTO suppliers VALUES (102, 'Image Bar and Grill');
INSERT INTO images VALUES (100001, '/files/web/60s/smiley_face.png', 'image/png',
 101, 'fair use', 813);
INSERT INTO images VALUES (100002, '/files/web/60s/peace_symbol.gif', 'image/gif',
 101, 'fair use', 972);
INSERT INTO images VALUES (100003, '/files/web/00s/towers.jpg',
 'image/jpeg', NULL,
 NULL, 2104);
INSERT INTO KEYWORDS VALUES (100001, 'SIXTIES');
INSERT INTO KEYWORDS VALUES (100001, 'HAPPY FACE');
INSERT INTO KEYWORDS VALUES (100002, 'SIXTIES');
INSERT INTO KEYWORDS VALUES (100002, 'PEACE SYMBOL');
INSERT INTO KEYWORDS VALUES (100002, 'JERRY RUBIN');

In the next few sections, you’ll see several object views defined on this data:

• The first view is defined on an image type that includes the keywords as a collection
attribute.

Object Views | 1117

Download at WoweBook.Com

• The second view is a “subview”—that is, defined on a subtype in an object type
hierarchy. It will include characteristics for images that originate from suppliers.

• The final view includes keywords and their inverse references back to the relevant
images.

Object View with a Collection Attribute
Before creating an underlying type for the first view, I need a collection type to hold
the keywords. Use of a nested table makes sense here, because keyword ordering is
unimportant and because there is no logical maximum number of keywords.‖

CREATE TYPE keyword_tab_t AS TABLE OF VARCHAR2(45);

At this point, it’s a simple matter to define the image object type:

CREATE TYPE image_t AS OBJECT (
 image_id INTEGER,
 image_file BFILE,
 file_type VARCHAR2(12),
 bytes INTEGER,
 keywords keyword_tab_t
);

Assuming that the image files and the database server are on the same machine, I can
use an Oracle BFILE datatype rather than the filename. I’ll need to create a “directory,”
that is, an alias by which the database will know the directory that contains the images.
In this case, I use the root directory (on the target Unix system, this is represented by
a single forward slash), because I happen to know that the file_name column includes
full pathnames.

CREATE DIRECTORY rootdir AS '/';

You likely will not have privileges to work with files in the root directory;
set your directory to a folder in which you can work.

So far, I have not defined a connection between the relational tables and the object
type. They are independent organisms. It is in building the object view that I overlay
the object definition onto the tables, as the next statement illustrates:

CREATE VIEW images_v
 OF image_t
 WITH OBJECT IDENTIFIER (image_id)
AS
 SELECT i.image_id, BFILENAME('ROOTDIR', i.file_name),
 i.file_type, i.bytes,
 CAST (MULTISET (SELECT keyword

‖ If ordering were important or if there were a (small) logical maximum number of keywords per image, a
VARRAY collection would be a better choice.

1118 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

 FROM keywords k
 WHERE k.image_id = i.image_id)
 AS keyword_tab_t)
 FROM images i;

There are two components of this statement that are unique to object views:

OF image_t
This means that the view will return objects of type image_t.

WITH OBJECT IDENTIFIER (image_id)
To behave like a “real” object instance, data returned by the view will need some
kind of object identifier. By designating the primary key as the basis of a virtual
OID, I can enjoy the benefits of REF-based navigation to objects in the view.

In addition, the select list of an object view must correspond in number, position, and
datatype with the attributes in the associated object type.

OK, now that I’ve created an object view, what can I do with it? Most significantly, I
can retrieve data from it just as if it were an object table. So, from SQL*Plus, a query
like the following:

SQL> SELECT image_id, keywords FROM images_v;

yields:

 IMAGE_ID KEYWORDS
---------- ---
 100003 KEYWORD_TAB_T()
 100001 KEYWORD_TAB_T('HAPPY FACE', 'SIXTIES')
 100002 KEYWORD_TAB_T('JERRY RUBIN', 'PEACE SYMBOL', 'SIXTIES')

In the interest of deepening the object appearance, I could also add methods to the type
definition. Here, for example, is a print() method:

ALTER TYPE image_t
 ADD MEMBER FUNCTION print RETURN VARCHAR2
 CASCADE;

CREATE OR REPLACE TYPE BODY image_t
AS
 MEMBER FUNCTION print
 RETURN VARCHAR2
 IS
 filename images.file_name%TYPE;
 dirname VARCHAR2(30);
 keyword_list VARCHAR2(32767);
 BEGIN
 DBMS_LOB.FILEGETNAME(SELF.image_file, dirname, filename);
 IF SELF.keywords IS NOT NULL
 THEN
 FOR key_elt IN 1..SELF.keywords.COUNT
 LOOP
 keyword_list := keyword_list || ', ' || SELF.keywords(key_elt);
 END LOOP;
 END IF;

Object Views | 1119

Download at WoweBook.Com

 RETURN 'Id=' || SELF.image_id || '; File=' || filename
 || '; keywords=' || SUBSTR(keyword_list, 3);
 END;
END;

This example illustrates a way to “flatten” the keyword list by iterating over the virtual
collection of keywords.

Is It Null, or Is It Not?
A null collection is not the same thing as an initialized collection with zero elements.
Image 100003 has no keywords, but the object view is mistakenly returning an empty
but initialized collection. To get a true NULL instead, I can use a DECODE to test the
number of keywords:

CREATE OR REPLACE VIEW images_v
 OF image_t
 WITH OBJECT IDENTIFIER (image_id)
AS
 SELECT i.image_id, BFILENAME('ROOTDIR', i.file_name),
 i.file_type, i.bytes,
 DECODE((SELECT COUNT(*)
 FROM keywords k2
 WHERE k2.image_id = i.image_id),
 0, NULL,
 CAST (MULTISET (SELECT keyword
 FROM keywords k
 WHERE k.image_id = i.image_id)
 AS keyword_tab_t))
 FROM images i;

In other words, if there are no keywords, return NULL; otherwise, return the CAST/
MULTISET expression. From this view, “SELECT...WHERE image_id=100003” prop-
erly yields the following:

 IMAGE_ID KEYWORDS
---------- ---
 100003

But you might conclude that this amount of conceptual purity is not worth the extra
I/O (or having to look at the convoluted SELECT statement).

Other things you can do with object views include the following:

Use virtual REFs
These are pointers to virtual objects. They are discussed in detail in the later section,
“Differences Between Object Views and Object Tables” on page 1125.

Write INSTEAD OF triggers
These will allow direct manipulation of the view’s contents. You can read more
about this topic in the earlier section, “INSTEAD OF Triggers” on page 690.

1120 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

Object Subview
In the case where I want to treat certain images differently from others, I might want
to create a subtype. In my example, I’m going to create a subtype for those images that
originate from suppliers. I’d like the subtype to include a REF to a supplier object,
which is defined by:

CREATE TYPE supplier_t AS OBJECT (
 id INTEGER,
 name VARCHAR2(400)
);

and by a simple object view:

CREATE VIEW suppliers_v
 OF supplier_t
 WITH OBJECT IDENTIFIER (id)
AS
 SELECT id, name
 FROM suppliers;

I will need to alter or recreate the base type to be NOT FINAL:

ALTER TYPE image_t NOT FINAL CASCADE;

so that I can create the subtype under it:

CREATE TYPE supplied_images_t UNDER image_t (
 supplier_ref REF supplier_t,
 supplier_rights_descriptor VARCHAR2(256)
);

After all this preparation, I make the subview of this subtype and declare it to be
UNDER the images_v view using the following syntax:

CREATE VIEW supplied_images_v
 OF supplied_images_t
 UNDER images_v
AS
 SELECT i.image_id, BFILENAME('ROOTDIR', i.file_name),
 i.file_type, i.bytes,
 CAST (MULTISET (SELECT keyword
 FROM keywords k
 WHERE k.image_id = i.image_id)
 AS keyword_tab_t),
 MAKE_REF(suppliers_v, supplier_id),
 supplier_rights_descriptor
 FROM images i
 WHERE supplier_id IS NOT NULL;

Oracle won’t let a subview query through the superview, so this view queries the base
table, adding the WHERE clause to restrict the records retrieved. Also notice that sub-
views don’t use the WITH OBJECT IDENTIFIER clause because they inherit the same
OID as their superview.

Object Views | 1121

Download at WoweBook.Com

I have introduced the MAKE_REF function in this query, which Oracle provides as a
way to compute a REF to a virtual object. Here, the virtual object is the supplier, as
conveyed through suppliers_v. The specification of MAKE_REF is:

FUNCTION MAKE_REF (view, value_list) RETURN ref;

where:

view
Is the object view to which you want ref to point.

value_list
Is a comma-separated list of column values whose datatypes must match one-for-
one with the OID attributes of view.

You should realize that MAKE_REF does not actually select through the view; it merely
applies an internal Oracle algorithm to derive a REF. And, as with “real” REFs, virtual
REFs may not point to actual objects.

Now I come to a surprising result. Although it seems that I have not changed the su-
perview, images from suppliers now appear twice in the superview—that is, as
duplicates:

SQL> SELECT COUNT(*), image_id FROM images_v GROUP BY image_id;

 COUNT(*) IMAGE_ID
---------- ----------
 2 100001
 2 100002
 1 100003

The Oracle database is returning a logical UNION ALL of the query in the superview
and that of the subview. This does sort of make sense; an image from a supplier is still
an image. To eliminate the duplicates, add a WHERE clause on the parent that excludes
records returned in the subview:

CREATE OR REPLACE VIEW images_v AS
 ...
 WHERE supplier_id IS NULL;

Object View with Inverse Relationship
To demonstrate virtual denormalization, I can create a keyword type for a view that
links keywords back to the images they describe:

CREATE TYPE image_refs_t AS TABLE OF REF image_t;

CREATE TYPE keyword_t AS OBJECT (
 keyword VARCHAR2(45),
 image_refs image_refs_t);

And here is a keywords view definition:

1122 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

CREATE OR REPLACE VIEW keywords_v
 OF keyword_t
 WITH OBJECT IDENTIFIER (keyword)
AS
 SELECT keyword, CAST(MULTISET(SELECT MAKE_REF(images_v, image_id)
 FROM keywords
 WHERE keyword = main.keyword)
 AS image_refs_t)
 FROM (SELECT DISTINCT keyword FROM keywords) main;

Now, I don’t promise that queries on this view will run fast; the query is compensating
for the fact that the database lacks a reference table of keywords by doing a SELECT
DISTINCT operation. Even if I weren’t using any object features, that would be an
expensive query.

You may correctly point out that using MAKE_REF is not mandatory here; I could have
retrieved a REF by making the inner query on images_v rather than on the keywords
table. In general, MAKE_REF should be faster than a lookup through an object view;
on occasion, you may not have the luxury of being able to perform that lookup.

Anyway, at this point I can run such pithy queries as this one:

SQL> SELECT DEREF(VALUE(i)).print()
 2 FROM keywords_v v, TABLE(v.image_refs) i
 3 WHERE keyword = 'SIXTIES';

DEREF(VALUE(I)).PRINT()
--
Id=100001; File=/files/web/60s/smiley_face.gif; keywords=HAPPY FACE, SIXTIES
Id=100002; File=/files/web/60s/peace_symbol.gif; keywords=JERRY RUBIN, PEACE SYMBOL,
SIXTIES

That is, I can show a list of all the images tagged with the keyword SIXTIES, along with
their other keywords and attributes. I admit that I’m not sure how groovy that really is!

INSTEAD OF Triggers
Since Chapter 19 covered the syntax and use of INSTEAD OF triggers, I’m not going
to discuss their mechanics here. Instead, I’ll explore whether they are a good fit for the
problem of updating object views. If your goal is to migrate toward an object approach,
you may ask whether INSTEAD OF triggers are just a relational throwback that facil-
itates a free-for-all in which any application can perform DML.

Well, they are and they aren’t.

Let’s examine the arguments for both sides, and come up with some considerations so
you can decide what’s best for your application.

The case against

On the one hand, you could use PL/SQL programs such as packages and object meth-
ods to provide a more comprehensive technique than triggers for encapsulating DML.

Object Views | 1123

Download at WoweBook.Com

It is nearly trivial to take the logic from my INSTEAD OF trigger and put it into an
alternate PL/SQL construct that has more universal application. In other words, if
you’ve already standardized on some combination of packages and methods as the
means of performing DML, you could keep your environment consistent without using
view triggers. You might conclude that view triggers are just added complexity in an
increasingly confusing equation.

Moreover, even Oracle cautions against the “excessive use” of triggers because they
can cause “complex interdependencies.” Imagine if your INSTEAD OF triggers per-
formed DML on tables that had other triggers, which performed DML on still other
tables with triggers…it’s easy to see how this could get impossible to debug.

The case for

On the other hand, you can put much of the necessary logic that you would normally
put into a package or method body into an INSTEAD OF trigger instead. Doing this
in combination with a proper set of privilege restrictions could protect your data just
as well as, or even better than, methods or packages.

If you happen to use a client tool such as Oracle Forms, INSTEAD OF triggers allow
you to use much more of the product’s default functionality when you create a Forms
“block” against a view rather than a table.

Finally, if you use OCI, INSTEAD OF triggers are required if the object view is not
inherently modifiable, and you want to be able to easily “flush” cached object view data
back to the server.

The bigger question

The bigger question is this: what’s the best place for the SQL statements that insert,
update, and delete data, especially when using object views? Assuming that you want
to localize these operations on the server side, you have at least three choices: PL/SQL
packages, object methods, and INSTEAD OF triggers.

Table 26-3 summarizes some of the major considerations of the three techniques. Note
that this table is not meant to compare these approaches for general-purpose use, but
only as they apply to localizing DML on object views.

Table 26-3. Assessment of techniques for encapsulating DML on object views

Consideration PL/SQL package Object method INSTEAD OF trigger

Consistency with object-oriented
approach

Potentially very good Excellent Potentially very good

Ability to modify when underlying
schema changes

Excellent; can be easily
altered and recompiled
independently

Excellent in Oracle9i
Database and later

Excellent

1124 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

Consideration PL/SQL package Object method INSTEAD OF trigger

Risk of unexpected interactions Low Low High; triggers may have un-
predictable interactions with
each other

Ease of use with client tool default
functionality (specifically Oracle
Developer)

Acceptable; program-
mer must add code for
all client-side transac-
tional triggers

Acceptable; programmer
must add code for all client-
side transactional triggers

Excellent for top-level types
(however, there is no INSTEAD
OF LOCK server-side trigger)

Can be turned on and off at will No No Yes (by disabling and ena-
bling the trigger)

As you can see, there is no clear “winner.” Each technique has benefits that may be of
more or less importance to your application.

One important point about using INSTEAD OF triggers in view hierarchies is that you
will need a separate trigger for each level of the hierarchy. When you perform DML
through a subview, the subview’s trigger will fire; when you perform DML through the
superview, the superview’s trigger will fire.

And of course, you may decide that INSTEAD OF triggers make sense in combination
with PL/SQL packages and/or object methods to provide layers of encapsulation. For
example:

TRIGGER images_v_insert
INSTEAD OF INSERT ON images_v
FOR EACH ROW
BEGIN
 /* Call a packaged procedure to perform the insert. */
 manage_image.create_one(:NEW.image_id, :NEW.file_type,
 :NEW.file_name, :NEW.bytes, :NEW.keywords);
END;

In an ideal world, developers would select an overall architecture and design approach
before hurling every Oracle feature at their application. Use a feature only if it make
sense for your design. I agree with Oracle’s advice that if you do use triggers, you should
use them in moderation.

Differences Between Object Views and Object Tables
In addition to the obvious difference between an object view and an object table,
PL/SQL programmers should be aware of the more subtle differences. Areas of differ-
ence include the following:

• OID uniqueness

• “Storeability” of physical versus virtual REFs

• REFs to nonunique OIDs

Let’s look at each difference in turn.

Object Views | 1125

Download at WoweBook.Com

OID uniqueness

An object table will always have a unique object identifier, either system-generated or
derived from the primary key. It is technically possible—though poor practice—to
create an object table with duplicate rows, but the instances will still be unique in their
object identifier. This can happen in two different ways:

Duplicate OIDs in a single view
An object view can easily contain multiple object instances (rows) for a given OID.
You’ve already seen a case where the superview can accidentally contain duplicates.

Duplicate OIDs across multiple views
If your object view is defined on an underlying object table or view and if you use
the DEFAULT keyword to specify the OID, the view contains OIDs that match the
OIDs of the underlying structure.

It seems more likely that this second possibility of duplication would be legitimate in
your application because separate views are just separate stored queries.

“Storeability” of physical versus virtual REFs

If you’ve built an application with physical object tables, you can store REFs to those
objects persistently in other tables. A REF is a binary value that the database can use
as a pointer to an object.

However, the database returns an error if you attempt to store a virtual REF—that is,
a REF to a row of an object view—in an actual table. Because the reference depends
on some column value(s), you will need to save the underlying column value(s) instead
of the virtual reference. From one perspective, this is an irritant rather than a major
obstacle. Still, it’s a bit unpleasant that I cannot intermingle object tables with object
views, nor can I perform a simple transformation from an object view into an object
table. I would like to be able to create an object table:

CREATE TABLE images2 OF image_t
 NESTED TABLE keywords STORE AS keyword_tab;

and then populate it from the view:

INSERT INTO images2 /* invalid because images_v includes a REF */
 SELECT VALUE(i) FROM images_v i;

But alas, Oracle tells me ORA-22979: cannot INSERT object view REF or user-defined
REF. Life goes on, however.

REFs to nonunique OIDs

I don’t believe that it is possible to have a REF to a non-unique OID when dealing with
object tables. You may want to consider what will happen if you create a REF to an
object in an object view, but the view has multiple object instances for the OID in

1126 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

question. Granted, this is a pretty weird case; you shouldn’t be creating object views
with ambiguous OIDs.

In my testing, DEREFing this type of virtual REF did indeed return an object—
apparently, the first one Oracle found that matched.

Maintaining Object Types and Object Views
If you work much with object types, you will learn a number of ways to get information
about the types and views that you have created. Once you reach the limits of the
SQL*Plus DESCRIBE command, this could involve direct queries from the Oracle data
dictionary.

Data Dictionary
The data dictionary term for user-defined types (objects and collections) is simply
TYPE. Object type definitions and object type bodies are both found in the
USER_SOURCE view (or DBA_SOURCE, or ALL_SOURCE), just as package speci-
fications and bodies are. Table 26-4 lists a number of helpful queries you can use.

Table 26-4. Data dictionary entries for object types

To answer the question... Use a query such as

What object and collection types have I created? SELECT * FROM user_types;
SELECT * FROM user_objects
 WHERE object_type = 'TYPE';

What do my object type hierarchies look like? SELECT RPAD(' ', 3*(LEVEL-1)) || type_name
 FROM user_types
WHERE typecode = 'OBJECT'
 CONNECT BY PRIOR type_name = supertype_name;

What are the attributes of type foo? SELECT * FROM user_type_attrs
 WHERE type_name = 'FOO';

What are the methods of type foo? SELECT * FROM user_type_methods
 WHERE type_name = 'FOO';

What are the parameters of foo’s methods? SELECT * FROM user_method_params
 WHERE type_name = 'FOO';

What datatype is returned by foo’s method called bar? SELECT * FROM user_method_results
 WHERE type_name = 'FOO' AND method_name = 'BAR';

What is the source code for foo, including all ALTER
statements?

SELECT text FROM user_source
 WHERE name = 'FOO'
 AND type = 'TYPE' /* or 'TYPE BODY' */
 ORDER BY line;

What are the object tables that implement foo? SELECT table_name FROM user_object_tables
 WHERE table_type = 'FOO';

What are all the columns in an object table foo_tab,
including the hidden ones?

SELECT column_name, data_type, hidden_column,
 virtual_column
 FROM user_tab_cols
 WHERE table_name = 'FOO_TAB';

Maintaining Object Types and Object Views | 1127

Download at WoweBook.Com

To answer the question... Use a query such as

What columns implement foo? SELECT table_name, column_name
 FROM user_tab_columns
 WHERE data_type = 'FOO';

What database objects depend on foo? SELECT name, type FROM user_dependencies
 WHERE referenced_name = 'FOO';

What object views have I created, using what OIDs? SELECT view_name, view_type, oid_text
 FROM user_views
 WHERE type_text IS NOT NULL;

What does my view hierarchy look like? (Requires a
temporary table in Oracle versions that can’t use a sub-
query with CONNECT BY)

CREATE TABLE uvtemp AS
 SELECT v.view_name, v.view_type,
 v.superview_name, v1.view_type superview_type
 FROM user_views v, user_views v1
 WHERE v.superview_name = v1.view_name (+);
SELECT RPAD(' ', 3*(LEVEL-1)) || view_name
 || ' (' || view_type || ') '
 FROM uvtemp
 CONNECT BY PRIOR view_type = superview_type;
DROP TABLE uvtemp;

What is the query on which I defined the foo_v view? SET LONG 1000 -- or greater
SELECT text FROM user_views
 WHERE view_name = 'FOO_V';

What columns are in view foo_v? SELECT column_name, data_type_mod, data_type
 FROM user_tab_columns
 WHERE table_name = 'FOO_V';

One potentially confusing thing Oracle has done in the data dictionary is to make object
tables invisible from the USER_TABLES view. Instead, a list of object tables appears
in USER_OBJECT_TABLES (as well as in USER_ALL_TABLES).

Privileges
There are a handful of system-level privileges associated with object types, summarized
here:

CREATE [ANY] TYPE
Create, alter, and drop object types and type bodies. ANY means in any schema.

CREATE [ANY] VIEW
Create and drop views, including object views. ANY means in any schema.

ALTER ANY TYPE
Use ALTER TYPE facilities on types in any schema.

EXECUTE ANY TYPE
Use an object type from any schema for purposes including instantiating, executing
methods, referencing, and dereferencing.

UNDER ANY TYPE
Create a subtype in one schema under a type in any other schema.

UNDER ANY VIEW
Create a subview in one schema under a view in any other schema.

1128 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

There are three kinds of object-level privileges on object types: EXECUTE, UNDER,
and DEBUG. It is also important to understand how the conventional DML privileges
apply to object tables and views.

The EXECUTE privilege

If you want your associate Joe to use one of your types in his own PL/SQL programs
or tables, you can grant the EXECUTE privilege to him:

GRANT EXECUTE on catalog_item_t TO joe;

If Joe has the privilege needed to create synonyms and is running Oracle9i Database
Release 2 or later, he will be able to create a synonym:

CREATE SYNONYM catalog_item_t FOR scott.catalog_item_t;

and use it as follows:

CREATE TABLE catalog_items OF catalog_item_t;

and/or:

DECLARE
 an_item catalog_item_t;

Joe can also use a qualified reference to the type scott.catalog_item_t.

If you refer to an object type in a stored program and grant EXECUTE privilege on that
program to a user or role, having EXECUTE on the type is not required, even if the
program is defined using invoker rights (described in Chapter 24). Similarly, if a user
has a DML privilege on a view that has an INSTEAD OF trigger for that DML operation,
that user doesn’t need explicit EXECUTE privileges if the trigger refers to the object
type because triggers run under the definer rights model. However, the EXECUTE
privilege is required by users who need to run anonymous blocks that use the object
type.

The UNDER privilege

The UNDER privilege gives the grantee the right to create a subtype. You can grant it
as follows:

GRANT UNDER ON image_t TO scott;

For a schema to be able to create a subtype, the supertype must be defined using invoker
rights (AUTHID CURRENT_USER).

This privilege can also grant the recipient the right to create a subview:

GRANT UNDER ON images_v TO scott;

The DEBUG privilege

If one of your associates is using a PL/SQL debugger to analyze code that uses a type
you have created, you may want to grant him the DEBUG privilege:

Maintaining Object Types and Object Views | 1129

Download at WoweBook.Com

GRANT DEBUG ON image_t TO joe;

Doing so will enable the grantee to look “under the covers” to examine the variables
used in the type and to set breakpoints inside methods.

The DEBUG privilege also applies to object views, providing a way to debug the
PL/SQL source code of INSTEAD OF triggers.

The DML privileges

For object tables, the traditional SELECT, INSERT, UPDATE, and DELETE privileges
still have some meaning. A user with only SELECT privilege on the object table may
retrieve any relational columns in the base type on which the table is defined, but cannot
retrieve the object-as-object. That is, VALUE, TREAT, REF, and DEREF are not avail-
able. Similarly, the other DML privileges, INSERT, UPDATE, and DELETE, also apply
only to the relational interpretation of the table.

In the same fashion, the grantee will not have permission to use the constructor or other
object methods unless the object type owner has granted the user EXECUTE privilege
on the object type. Any columns defined on subtypes will be invisible.

Concluding Thoughts from a (Mostly) Relational Developer
Over the years, I’ve seen no compelling evidence that any particular programming style
has a monopoly on the fundamental things we care about—fidelity to requirements,
performance efficiency, developer effectiveness, and system reliability. I have seen a lot
of fads, bandwagons, hand-waving, and unsupported assumptions (OK, I’m probably
not entirely innocent myself), and object-oriented programming seems to attract quite
a lot of it. That isn’t to say that OOP fails to help you solve problems; it’s just that OOP
is not the magic bullet that many would have you believe.

Take, for example, the principle of object-based decomposition, particularly as it tends
to generate inheritance hierarchies. By accurately modeling objects as they exist in the
real world, software artifacts should be easier to comprehend, faster to assemble, and
more amenable to large-scale system development. Sounds fabulous, doesn’t it? Well,
there are a lot of different ways to decompose something drawn from the real world.
It is a rare taxonomy that can exist in a simple hierarchy. My library catalog hierarchy
could have been decomposed according to, say, media (print versus audio tape versus
digital format ...). And, although Oracle provides wonderful tools for type evolution,
it may still be so painful to make sweeping changes in a type hierarchy that it will never
happen. This isn’t really the tool’s fault; reality has a way of circumventing even the
best-laid plans.

Nor is it even clear that co-locating the programming logic (methods) with the data
(attributes) in an abstract datatype yields any measurable benefits. It looks reasonable
and makes for some great sound bites, but how exactly will coupling data and behavior
be better than keeping data structures (logical and physical table design) separate from

1130 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

processes (procedures, functions, packages)? Many development methods acknowl-
edge that an organization’s business data structures have a much slower rate of change
than do the algorithms that manipulate them. It is a design truism (even for OOP) that
the more volatile elements of a system should be kept separate from the more stable
elements.

There is considerable inconsistency on this last point. Rich and famous object evan-
gelists, while emphasizing the value of bundling data with behaviors, simultaneously
promote a model-view-controller approach that “separates business logic from data.”
Are these emperors wearing clothes, or not?

Many OOP proponents have argued for years that its greatest benefit is the reuse of
software. It has been said so many times that it must be true! Unfortunately, few ob-
servers have hard evidence for this, in part because there is no consensus on what
constitutes “reuse.” Even object apologists began promoting higher-level “compo-
nents” (whatever those may be) as a preferred unit of reuse precisely because objects
proved very difficult to fit into situations beyond those for which they were designed.
My sense is that OOP results in no more code reuse than well-designed subroutines.

It is certainly possible to use object-oriented approaches with PL/SQL and achieve reuse
of software. Fellow author Don Bales, an accomplished object-oriented programmer,
has been using PL/SQL packages as “types” for about a decade, and he says that he has
been able to take entire packages (and any accompanying tables) and drop them into
new software development projects without modification. He believes that the missing
ingredient in most object approaches is an accurate model of the person who is actually
executing the software—the user—whom Don models as an object with behaviors
implemented in the actual program that is run.

Regardless of development method, some of the critical ingredients of software success
are having prior expertise with similar problems, being able to employ seasoned project
leaders, and incorporating a conscious software design phase. Introducing object
methods or any other approach is likely to produce more positive results than an un-
planned, organically grown system.

A few final thoughts on when to best use Oracle’s object features:

• If you use the Oracle Call Interface (OCI), it’s possible that the client-side cache
and complex object retrieval would tip the scales in favor of heavy use of Oracle’s
object features. I’m not an OCI programmer, though, so I can’t speak from expe-
rience in this regard.

• If your organization already uses object programming across the board, Oracle’s
object features will probably make it easier and more graceful to introduce database
technology into your systems.

• Don’t throw the collections baby out with the objects bathwater. Remember that
you don’t need to use object types or object views to take advantage of collections.

Concluding Thoughts from a (Mostly) Relational Developer | 1131

Download at WoweBook.Com

• If you’ve never used OOP before, these object features may seem quite complica-
ted. I would encourage quite a bit of playing around before committing to an object
approach. In particular, try out object views in conjunction with an existing system.

• I would caution against rejecting object types and object views on a vague per-
formance argument. Oracle has made continuous progress in reducing overhead.
If you perform some actual measurements, you might find OOP within acceptable
bounds for your application.

• It turns out that Oracle delivers some of its built-in functionality, most notably
XML_TYPE, but also Advanced Queuing, Oracle Spatial, and Rules Manager, us-
ing object types. As we have often learned in the past, once Oracle starts using
some of its own features, bugs are more quickly fixed, performance is enhanced,
and usability is improved. That has happened with object types, as well. More than
that, however, it means that if you are going to fully leverage the Oracle feature
set, you should become at least familiar with the object type syntax and basic
features.

1132 | Chapter 26: Object-Oriented Aspects of PL/SQL

Download at WoweBook.Com

CHAPTER 27

Calling Java from PL/SQL

The Java language, originally designed and promoted by Sun Microsystems and now
widely promoted by nearly everyone other than Microsoft, offers an extremely diverse
set of programming features, many of which are not available natively in PL/SQL. This
chapter introduces the topic of creating and using Java Stored Procedures in Oracle,
and shows how you can create and use JSP functionality from PL/SQL.

Oracle and Java
Starting with Oracle8i Database, the Oracle Database Server has included a Java Virtual
Machine that allows Java programs to run efficiently in the server memory space. Many
of the core Java class libraries are bundled with Oracle as well, resulting not only in a
formidable weapon in the programmer’s arsenal, but also a formidable topic for a
PL/SQL book! That’s why the objectives for this chapter are limited to the following:

• Providing the information you need to load Java classes into the Oracle database,
manage those new database objects, and publish them for use inside PL/SQL.

• Offering a basic tutorial on building Java classes that will provide enough guidance
to let you construct simple classes to access underlying Java functionality.

In preview, here is the usual way you will create and expose Java stored procedures:

1. Write the Java source code. You can use any convenient text editor or IDE such as
Oracle’s JDeveloper.

2. Compile your Java into classes and, optionally, bundle them into .jar files. Again,
you can use an IDE or Sun’s command-line javac compiler. (Strictly speaking, this
step is optional because you can load the source into Oracle and use the built-in
Java compiler.)

3. Load the Java classes into Oracle using the loadjava command-line utility or the
CREATE JAVA statement.

4. Publish the Java class methods by writing PL/SQL “wrappers” to invoke the Java
code.

1133

Download at WoweBook.Com

5. Grant privileges as required on the PL/SQL wrapper.

6. Call the PL/SQL programs from any one of a number of environments, as illustrated
in Figure 27-1.

Figure 27-1. Accessing JSPs from within the Oracle database

Oracle offers a variety of components and commands to work with Java. Table 27-1
shows just a few of them.

Table 27-1. Oracle components and commands for Java

Component Description

“aurora” JVM The Java Virtual Machine (JVM) that Oracle implemented in its database server

loadjava An operating system command-line utility that loads your Java code elements (classes, .jar files, etc.) into the
Oracle database

dropjava An operating system command-line utility that drops your Java code elements (classes, .jar files, etc.) from the
Oracle database

CREATE JAVA

DROP JAVA

ALTER JAVA

DDL statements that perform some of the same tasks as loadjava and dropjava

DBMS_JAVA A built-in package that offers a number of utilities to set options and other aspects of the JVM

1134 | Chapter 27: Calling Java from PL/SQL

Download at WoweBook.Com

The remainder of this chapter explains more about these steps and components. For
more coverage of Java in the Oracle database, you might also want to look at Java
Programming with Oracle JDBC by Donald Bales (O’Reilly). For more comprehensive
Java information, see the documentation from Sun Microsystems as well as the O’Reilly
Java series (as well as several other books I’ll recommend later in this chapter). For
more detailed documentation on using Oracle and Java together, see Oracle Corpora-
tion’s manuals.

Getting Ready to Use Java in Oracle
Before you can call Java methods from within your PL/SQL programs, you will need
to do the following:

• Ensure that the Java option has been installed in your Oracle Database Server.

• Build and load your Java classes and code elements.

• In some cases, have certain Java-specific permissions granted to your Oracle user
account.

Installing Java
On the Oracle server, the Java features may or may not be installed, depending on what
version of Oracle you are running and what choices your DBA made during the Oracle
installation. You can check whether Java is installed by running this query:

SELECT COUNT(*)
 FROM all_objects
 WHERE object_type LIKE 'JAVA%';

If the result is 0, Java is definitely not installed, and you can ask your DBA to run a
script called $ORACLE_HOME/javavm/install/initjvm.sql.

As a developer, you will probably want to build and test Java programs on your own
workstation, and that requires access to a Java Development Kit (JDK). You have two
choices when installing the JDK: you can download it from http://java.sun.com/ your-
self; or, if you are using a third-party IDE such as Oracle JDeveloper, you may be able
to rely on its bundled JDK. Be warned: you may need to be cautious about matching
the exact JDK version number.

When you download Java from the Sun site, you will have to choose from among lots
of different acronyms and versions. Personally, I’ve had reasonably good luck with Java
2 Standard Edition (J2SE) using the Core Java package rather than the “Desktop”
package, the latter of which includes a bunch of GUI-building stuff I don’t need. An-
other choice is between the JDK and the Java Runtime Engine (JRE). Always pick the
JDK if you want to compile anything! In terms of the proper version to download, I
would look at your Oracle server’s version and try to match that.

Getting Ready to Use Java in Oracle | 1135

Download at WoweBook.Com

http://java.sun.com/

Oracle version JDK version

Oracle8i Database (8.1.5) JDK 1.1.6

Oracle8i Database (8.1.6 or later) JDK 1.2

Oracle9i Database J2SE 1.3

Oracle Database 10g Release 1 J2SE 1.4.1

Oracle Database 10g Release 2 J2SE 1.4.2

If you have to support more than one version of the Oracle server, get the later one and
be careful about what features you use.

One other unobvious thing you may need to know: if you can’t seem to get your Java
program to compile, check to see that the environment variable CLASSPATH has been
set to include your classes—and the Oracle-supplied classes as well.

Building and Compiling Your Java Code
Many PL/SQL developers (myself included) have little experience with object-oriented
languages, so getting up to speed on Java can be a bit of a challenge. In the short time
in which I have studied and used Java, I have come to these conclusions:

• It doesn’t take long to get a handle on the syntax needed to build simple classes in
Java.

• It’s not at all difficult to start leveraging Java inside PL/SQL, but ...

• Writing real object-oriented applications using Java requires significant learning
and rethinking for PL/SQL developers!

There are many (many, many, many) books available on various aspects of Java, and
a number of them are excellent. I recommend that you check out the following:

The Java Programming Language, by Ken Arnold, James Gosling, and David Holmes
(Addison-Wesley)

James Gosling is the creator of Java, so you’d expect the book to be helpful. It is.
Written in clear, simple terms, it gives you a strong grounding in the language.

Java in a Nutshell, by David Flanagan (O’Reilly)
This very popular and often-updated book contains a short, but excellent primer
to the language, followed by a quick reference to all of the major language elements,
arranged in an easy-to-use and heavily cross-referenced fashion.

Thinking in Java, by Bruce Eckel (Prentice Hall)
A very readable and creative approach to explaining object-oriented concepts. It is
also available in a free, downloadable format at http://www.mindview.net/Books/
TIJ/. If you like the feel of Oracle PL/SQL Programming, you will definitely enjoy
Thinking in Java.

1136 | Chapter 27: Calling Java from PL/SQL

Download at WoweBook.Com

http://www.mindview.net/Books/TIJ/
http://www.mindview.net/Books/TIJ/

Later in this chapter, when I demonstrate how to call Java methods from within
PL/SQL, I will also take you step by step through the creation of relatively simple
classes. You will find that, in many cases, this discussion will be all you need to get the
job done.

Setting Permissions for Java Development and Execution
Java security was handled differently prior to release 8.1.6 of the Oracle database, so
we will look at the two models individually in the following sections.

Java security for Oracle through 8.1.5

Early releases of Oracle8i Database (before 8.1.6) supported a relatively simple model
of Java security. There were basically two database roles that a DBA could grant:

JAVAUSERPRIV
Grants relatively few Java permissions, including examining properties

JAVASYSPRIV
Grants major permissions, including updating JVM-protected packages

So for example, if I want to allow Scott to perform any kind of Java-related operation,
I would issue this command from a SYSDBA account:

GRANT JAVASYSPRIV TO scott;

If I want to place some restrictions on what he can do with Java, I might execute this
grant instead:

GRANT JAVAUSERPRIV TO scott;

For example, to create a file through Java, I need the JAVASYSPRIV role; to read or
write a file, I only need the JAVAUSERPRIV role. See Oracle’s Java Developer’s
Guide from 8.1.7 (or later) for more details about which Java privileges correspond to
which Oracle roles.

When the JVM is initialized, it installs an instance of java.lang.SecurityManager, the
Java Security Manager. Oracle uses this, along with Oracle Database security, to de-
termine who can call a particular Java method.

If a user lacking sufficient privileges tries to execute an illegal operation, the JVM will
throw the java.lang.SecurityException. Here is what you would see in SQL*Plus:

ORA-29532: Java call terminated by uncaught Java exception:
 java.lang.SecurityException

When you run Java methods inside the database, different security issues can arise,
particularly when interacting with the server-side filesystem or other operating system
resources. Oracle follows the following two rules when checking I/O operations:

• If the dynamic ID has been granted JAVASYSPRIV, then Security Manager allows
the operation to proceed.

Getting Ready to Use Java in Oracle | 1137

Download at WoweBook.Com

• If the dynamic ID has been granted JAVAUSERPRIV, then Security Manager fol-
lows the same rules that apply to the PL/SQL UTL_FILE package to determine if
the operation is valid. In other words, the file must be in a directory (or subdirec-
tory) specified by the UTL_FILE_DIR parameter in the database initialization file.

Java security for Oracle from 8.1.6

Beginning with 8.1.6, Oracle’s JVM offered support for Java 2 security, in which per-
missions are granted on a class-by-class basis. This is a much more sophisticated and
fine-grained approach to security. This section offers some examples to give you a sense
of the kind of security-related code you could write (check Oracle’s manuals for more
details and examples).

Generally, you will use the DBMS_JAVA.GRANT_PERMISSION procedure to grant
the appropriate permissions. Here is an example of calling that program to give the
BATCH schema permission to read and write the lastorder.log file:

/* Must be connected as a dba */
BEGIN
 DBMS_JAVA.grant_permission(
 grantee => 'BATCH',
 permission_type => 'java.io.FilePermission',
 permission_name => '/apps/OE/lastorder.log',
 permission_action => 'read,write');
END;
/
COMMIT;

When making such a call, be sure to uppercase the grantee; otherwise, Oracle won’t
be able to locate the account name.

Also note the COMMIT. It turns out that this DBMS_JAVA call is just writing permis-
sion data to a table in Oracle’s data dictionary, but it does not commit automatically.
And, by the way, you can query permission data through the views
USER_JAVA_POLICY and DBA_JAVA_POLICY.

Here is a sequence of commands that first grants permission to access files in a directory,
and then restricts permissions on a particular file:

BEGIN
/* First, grant read and write to everyone */
 DBMS_JAVA.grant_permission(
 'PUBLIC',
 'java.io.FilePermission',
 '/shared/*',
 'read,write');

/* Use the "restrict" built-in to revoke read & write
| permission on one particular file from everyone
*/
 DBMS_JAVA.restrict_permission(
 'PUBLIC',

1138 | Chapter 27: Calling Java from PL/SQL

Download at WoweBook.Com

 'java.io.FilePermission',
 '/shared/secretfile',
 'read,write');

/* Now override the restriction so that one user can read and write
| that file.
*/
 DBMS_JAVA.grant_permission(
 'BOB',
 'java.io.FilePermission',
 '/shared/secretfile',
 'read,write');

 COMMIT;
END;

Here are the predefined permissions that Oracle offers:

java.util.PropertyPermission
java.io.SerializablePermission
java.io.FilePermission
java.net.NetPermission
java.net.SocketPermission
java.lang.RuntimePermission
java.lang.reflect.ReflectPermission
java.security.SecurityPermission
oracle.aurora.rdbms.security.PolicyTablePermission
oracle.aurora.security.JServerPermission

Oracle also supports the Java mechanisms for creating your own permissions; check
Oracle’s Java Developer’s Guide for details.

A Simple Demonstration
Before diving into the details, let’s walk through all the steps needed to access Java from
within PL/SQL. In the process, I’ll introduce the various pieces of technology you need
to get the job done.

Say that I need to be able to delete a file from within PL/SQL. Prior to Oracle8i Database,
I had the following options.

• In Oracle7 Database (7.3) (and above), I could send a message to a database pipe
and then have a C listener program grab the message (“Delete file X”) and do all
the work.

• In Oracle8 Database and later, I could set up a library that pointed to a C DLL or
shared library, and then from within PL/SQL, call a program in that library to delete
the file.

The pipe technique is handy, but it is a clumsy workaround. The external procedure
implementation in Oracle8 Database is a better solution, but it is also less than straight-
forward, especially if you don’t know the C language. So the Java solution looks as if

A Simple Demonstration | 1139

Download at WoweBook.Com

it might be the best one all around. Although some basic knowledge of Java is required,
you don’t need the same level of skill that would be required to write the equivalent
code in C. Java comes with prebuilt (foundation) classes that offer clean, easy-to-use
APIs to a wide array of functionality, including file I/O.

Here are the steps that I will perform in this demonstration:

1. Identify the Java functionality I need to access.

2. Build a class of my own to make the underlying Java feature callable through
PL/SQL.

3. Compile the class and load it into the database.

4. Build a PL/SQL program to call the class method I created.

5. Delete files from within PL/SQL.

Finding the Java Functionality
A while back, my O’Reilly editor, Deborah Russell, was kind enough to send me a
whole bunch of their Java books, so I grabbed the big, fat Java Fundamental Classes
Reference, by Mark Grand and Jonathan Knudsen, and looked up “File” in the index
(sure, I could use online documentation, but I like books). The entry for “File class”
caught my eye, and I hurried to the correct page.

There I found information about the class named java.io.File, namely, that it “provides
a set of methods to obtain information about files and directories.” And it doesn’t just
let you obtain information; it also contains methods (procedures and functions) to
delete and rename files, make directories, and so on. I had come to the right place!

Here is a portion of the API offered by the File class:

public class java.io.File {
 public boolean delete();
 public boolean mkdir ();
}

In other words, I will call a Boolean function in Java to delete a file. If the file is deleted,
the function returns TRUE; otherwise, it returns FALSE.

Building a Custom Java Class
Now, you might be asking yourself why I had to build my own Java class on top of the
File class. Why can’t I just call that function directly inside my PL/SQL wrapper? There
are two reasons:

• A Java class method is typically executed for a specific object instantiated from the
class. In PL/SQL I cannot instantiate a Java object and then call the method against
that object; in other words, PL/SQL only allows the calling of static methods.

1140 | Chapter 27: Calling Java from PL/SQL

Download at WoweBook.Com

• Even though Java and PL/SQL both have Boolean datatypes (Java even offers a
Boolean primitive and a Boolean class), they do not map to each other. I cannot
pass a Boolean from Java directly to a PL/SQL Boolean.

As a direct consequence, I need to build my own class that will:

• Instantiate an object from the File class

• Execute the delete method against that object

• Return a value that PL/SQL interprets properly

Here is the very simple class I wrote to take advantage of the File.delete method:

/* File on web: JDelete.java */
import java.io.File;

public class JDelete {

 public static int delete (String fileName) {
 File myFile = new File (fileName);
 boolean retval = myFile.delete();
 if (retval) return 1; else return 0;
 }
}

Figure 27-2 explains each of the steps in this code, but the main effect is clear: the
JDelete.delete method simply instantiates a dummy File object for the specified file-
name so that I can call the delete method for that file. By declaring my method to be
static, I make that method available without the need to instantiate an object. Static
methods are associated with the class, not with the individual instances of the objects
of that class.

The JDelete class above highlights a number of differences between Java and PL/SQL
that you should keep in mind:

• There are no BEGIN and END statements in Java for blocks, loops, or conditional
statements. Instead, you use curly braces to delimit the block.

• Java is case-sensitive; “if ” is definitely not the same thing as “IF”.

• The assignment operator is a plain equals sign (=) rather than the compound sym-
bol used in PL/SQL (:=).

• When you call a method that does not have any arguments (such as the delete
method of the File class), you still must open and close the parentheses. Otherwise,
the Java compiler will try to interpret the method as a class member or data
structure.

Hey, that was easy! Of course, you didn’t watch me fumble around with Java for a day,
getting over the nuisance of minor syntax errors, the agony of a case-sensitive language,
and the confusion setting the CLASSPATH. I’ll leave all that to your imagination—and
your own day of fumbling!

A Simple Demonstration | 1141

Download at WoweBook.Com

Compiling and Loading into Oracle
Now that my class is written, I need to compile it. On a Microsoft Windows machine,
one way I could do this would be to open a console session on the directory where I
have the source code, ensure that the Java compiler (javac.exe) is on my PATH, and do
this:

C:\samples\java>javac JDelete.java

If successful, the compiler should generate a file called JDelete.class.

Now that it’s compiled, I realize that it would make an awful lot of sense to test the
function before I stick it inside Oracle and try it from PL/SQL. You are always better
off building and testing incrementally. Java gives us an easy way to do this: the “main”
method. If you provide a void method (i.e., a procedure) called main in your class—
and give it the right parameter list—you can then call the class, and this code will
execute.

Figure 27-2. A simple Java class used to delete a file

1142 | Chapter 27: Calling Java from PL/SQL

Download at WoweBook.Com

The main method is one example of how Java treats certain elements in
a special way if they have the right signature. Another example is the
toString method. If you add a method with this name to your class, it
will automatically be called to display your custom description of the
object. This is especially useful when your object consists of many ele-
ments that make sense only when presented a certain way, or that oth-
erwise require formatting to be readable.

So let’s add a simple main method to JDelete:

import java.io.File;

public class JDelete {
 public static int delete (String fileName) {
 File myFile = new File (fileName);
 boolean retval = myFile.delete();
 if (retval) return 1; else return 0;
 }

 public static void main (String args[]) {
 System.out.println (
 delete (args[0])
);
 }
}

The first element (0) in the “args” array represents the first argument supplied from the
calling environment.

Next, I will recompile the class:

C:\samples\java>javac JDelete.java

And, assuming the “java” executable is on my PATH:

C:\samples\java>java JDelete c:\temp\te_employee.pks
1

C:\samples\java>java JDelete c:\temp\te_employee.pks
0

Notice that the first time I run the main method it displays 1 (TRUE), indicating that
the file was deleted. So it will come as no surprise that when I run the same command
again, main displays 0. It couldn’t delete a file that had already been deleted.

That didn’t take too much work or know-how, did it?

A Simple Demonstration | 1143

Download at WoweBook.Com

In another demonstration of the superiority of Java over PL/SQL, please
note that while you have to type 20 characters in PL/SQL to display
output (DBMS_OUTPUT.PUT_LINE), you needn’t type any more than
18 characters in Java (System.out.println). Give us a break, you language
designers! Though Alex Romankeuich, one of our technical reviewers,
notes that if you declare “private static final PrintStream o = Sys-
tem.out;” at the beginning of the class, you can then display output in
the class with the command “o.println”—only 9 characters in all!

Now that my class compiles, and I have verified that the delete method works, I can
load it into the SCOTT schema of the Oracle database using Oracle’s loadjava com-
mand. Oracle includes loadjava as part of its distribution, so it should be on your PATH
if you have installed the Oracle server or client on your local machine.

C:\samples\java>loadjava -user scott/tiger -oci8 -resolve JDelete.class

I can even verify that the class is loaded by querying the contents of the USER_OBJECTS
data dictionary via a utility I’ll introduce later in this chapter:

SQL> EXEC myjava.showobjects
Object Name Object Type Status Timestamp

JDelete JAVA CLASS VALID 2005-05-06:15:01

That takes care of all the Java-specific steps, which means that it’s time to return to the
cozy world of PL/SQL.

Building a PL/SQL Wrapper
I will now make it easy for anyone connecting to my database to delete files from within
PL/SQL. To accomplish this goal, I will create a PL/SQL wrapper that looks like a
PL/SQL function on the outside but is really nothing more than a pass-through to the
underlying Java code.

/* File on web: fdelete.sf */
FUNCTION fDelete (
 file IN VARCHAR2)
 RETURN NUMBER
AS LANGUAGE JAVA
 NAME 'JDelete.delete (
 java.lang.String)
 return int';

The implementation of the fdelete function consists of a string describing the Java
method invocation. The parameter list must reflect the parameters of the method, but
in place of each parameter, I specify the fully qualified datatype name. In this case, that
means that I cannot simply say “String,” but instead must add the full name of the Java
package containing the String class. The RETURN clause simply lists int for integer.
The int is a primitive datatype, not a class, so that is the complete specification.

1144 | Chapter 27: Calling Java from PL/SQL

Download at WoweBook.Com

As a bit of an aside, I could also write a call spec for a procedure that invokes the
JDelete.main method:

PROCEDURE fDelete2 (
 file IN VARCHAR2)
AS LANGUAGE JAVA
 NAME 'JDelete.main(java.lang.String[])';

The main method is special; even though it accepts an array of Strings, you can define
a call spec using any number of parameters.

Deleting Files from PL/SQL
So I compile the function and then prepare to perform my magical, previously difficult
(if not impossible) feat:

SQL> @fdelete.sf

Function created.

SQL> EXEC DBMS_OUTPUT.PUT_LINE (fdelete('c:\temp\te_employee.pkb'))

And I get:

ERROR at line 1:
ORA-29532: Java call terminated by uncaught Java exception: java.security.
AccessControlException: the
Permission (java.io.FilePermission c:\temp\te_employee.pkb delete) has not been
granted to BOB. The PL/SQL
to grant this is dbms_java.grant_permission('BOB', 'SYS:java.io.FilePermission',
'c:\temp\te_employee.pkb', 'delete')
ORA-06512: at "BOB.FDELETE", line 1
ORA-06512: at line 1

I forgot to give myself permission! But hey, look at that message—it’s pretty nice of
Oracle to tell me not just what the problem is but also how to fix it. So I get my friendly
DBA to run something like this (a slight variation of Oracle’s suggestion):

CALL DBMS_JAVA.grant_permission(
 'BOB',
 'SYS:java.io.FilePermission',
 'c:\temp*',
 'read,write,delete');

And now I get:

SQL> EXEC DBMS_OUTPUT.PUT_LINE (fdelete('c:\temp\te_employee.pkb'))
1
SQL> exec DBMS_OUTPUT.PUT_LINE (fdelete('c:\temp\te_employee.pkb'))
0

Yippee, it works!

I can also build utilities on top of this function. How about a procedure that deletes all
of the files found in the rows of a nested table? Even better, how about a procedure that

A Simple Demonstration | 1145

Download at WoweBook.Com

accepts a directory name and filter (“all files like *.tmp,” for example) and deletes all
files found in that directory that pass the filter?

In reality, of course, what I should do is build a package and then put all this great new
stuff in there. And that is just what I will do later in this chapter. First, however, let’s
take a closer look at each of the steps I just performed.

Using loadjava
The loadjava utility is an operating system command-line utility that uploads Java files
into the database. The first time you run loadjava in a schema, it creates a number of
objects in your local schema; although the exact list varies somewhat by Oracle version,
you are likely to find at least the following in your default tablespace:

CREATE$JAVA$LOB$TABLE
A table created in each schema, containing Java code elements. Each new class you
load using loadjava will generate one row in this table, putting the bytes of the class
into a BLOB column.

SYS_C ... (exact name will vary)
Unique index on the above table.

SYS_IL ... (exact name will vary)
LOB index on the above table.

By the way, if you don’t have permissions or quota available to create these objects in
your default tablespace, the load operation will fail.

Before executing the load, Oracle will check to see if the object being loaded already
exists, and whether it has changed, thereby minimizing the need to reload and avoiding
invalidation of dependent classes.*

The load operation then calls the DDL command CREATE JAVA to load the Java
classes from the BLOB column of CREATE$JAVA$LOB$TABLE into the RDBMS as
schema objects. This loading occurs only if:

• The class is being loaded for the first time.

• The class has been changed.

• The -force option is supplied.

Here is the basic syntax :

loadjava {-user | -u} username/password[@database]
 [option ...] filename [filename]...

where filename is a Java source, sqlj, class, .jar, resource, properties, or .zip file. The
following command, for example, loads the JFile class into the SCOTT schema:

* Oracle examines the MD5 checksum of the incoming class and compares it against that of the existing class.

1146 | Chapter 27: Calling Java from PL/SQL

Download at WoweBook.Com

C:> loadjava -user scott/tiger -oci8 -resolve JFile.class

Here are some things to keep in mind about loadjava. To display help text, use this
syntax:

loadjava {-help | -h}

In a list of options or files, names must be separated only by spaces:

-force, -resolve, -thin // No
-force -resolve -thin // Yes

In a list of users or roles, however, names must be separated only by commas:

SCOTT, PAYROLL, BLAKE // No
SCOTT,PAYROLL,BLAKE // Yes

There are more than 40 command-line options on loadjava; some key options are
mentioned in Table 27-2.

Table 27-2. Common loadjava options

Option Description

-debug Aids in debugging the loadjava script itself, not your code; rarely necessary.

-definer Specifies that the methods of uploaded classes will execute with the privileges of their definer, not their invoker.
(By default, methods execute with the privileges of their invoker.) Different definers can have different privileges,
and an application can have many classes, so programmers should make sure the methods of a given class execute
only with the privileges they need.

-encoding Sets (or resets) the -encoding option in the database table JAVA$OPTIONS to the specified value, which must be
the name of a standard JDK encoding scheme (the default is “latin1”). The compiler uses this value, so the encoding
of uploaded source files must match the specified encoding. Refer to the section “GET_, SET_, and RESET_COM-
PILER_OPTION: Getting and Setting (a Few) Compiler Options” on page 1151 for information on how this object
is created and used.

-force Forces the loading of Java class files, whether or not they have changed since they were last loaded.

Note that you cannot force the loading of a class file if you previously loaded the source file (or vice versa). You
must drop the originally loaded object first.

-grant Grants the EXECUTE privilege on uploaded classes to the listed users or roles. (To call the methods of a class directly,
users must have the EXECUTE privilege.)

This option is cumulative. Users and roles are added to the list of those having the EXECUTE privilege.

To revoke the privilege, either drop and reload the schema object without specifying -grant, or use the SQL REVOKE
statement. To grant the privilege on an object in another user’s schema, you must have the CREATE PROCEDURE
WITH GRANT privilege.

-oci8 Directs loadjava to communicate with the database using the OCI JDBC driver. This option (the default) and -thin
are mutually exclusive. When calling loadjava from a client-side computer that does not have Oracle installed on
it, use the -thin option.

-resolve After all files on the command line are loaded and compiled (if necessary), resolves all external references in those
classes. If this option is not specified, files are loaded but not compiled or resolved until runtime.

Using loadjava | 1147

Download at WoweBook.Com

Option Description
Specify this option to compile and resolve a class that was loaded previously. You need not specify the -force option
because resolution is done independently, after loading.

-resolver Binds newly created class schema objects to a user-defined resolver spec. Because it contains spaces, the resolver
spec must be enclosed in double quotes. This option and -oracleresolver (the default) are mutually exclusive.

-schema Assigns newly created Java schema objects to the specified schema. If this option is not specified, the logon schema
is used. You must have the CREATE ANY PROCEDURE privilege to load into another user’s schema.

-synonym Creates a public synonym for uploaded classes, making them accessible outside the schema into which they are
loaded. To specify this option, you must have the CREATE PUBLIC SYNONYM privilege.

If you specify this option for source files, it also applies to classes compiled from those source files.

-thin Directs loadjava to communicate with the database using the thin JDBC driver. This option and -oci8 (the default)
are mutually exclusive. When calling loadjava from a client-side computer that does not have Oracle installed on
it, use the -thin option.

-verbose Enables the verbose mode, in which progress messages are displayed. Very handy!

As you can probably imagine, there are various nuances of using loadjava, such as
whether to load individual classes or compressed groups of elements in a .zip or .jar
file. The Oracle documentation contains more information about the loadjava com-
mand.

Using dropjava
The dropjava utility reverses the action of loadjava. It converts filenames into the names
of schema objects, then drops the schema objects and any associated data. Dropping
a class invalidates classes that depend on it directly or indirectly. Dropping a source
object also drops classes derived from it.

The syntax is nearly identical to loadjava syntax:

dropjava {-user | -u} username/password[@database]
 [option ...] filename [filename] ...

where option includes -oci8, -encoding, and -verbose.

Managing Java in the Database
This section explores in more detail issues related to the way that Java elements are
stored in the database and how you can manage those elements.

The Java Namespace in Oracle
Oracle stores each Java class in the database as a schema object. The name of that object
is derived from (but is not the same as) the fully qualified name of the class; this name

1148 | Chapter 27: Calling Java from PL/SQL

Download at WoweBook.Com

includes the names of any containing packages. The full name of the class OracleSim-
pleChecker, for example, is as follows:

oracle.sqlj.checker.OracleSimpleChecker

In the database, however, the full name of the Java schema object would be:

oracle/sqlj/checker/OracleSimpleChecker

In other words, once stored in the Oracle database, slashes replace dots.

An object name in Oracle, whether the name of a database table or a Java class, cannot
be longer than 30 characters. Java does not have this restriction; you can have much
longer names. Oracle will allow you to load a Java class into the Oracle database with
a name of up to 4,000 characters. If the Java element name has more than 30 characters,
the database will automatically generate a valid alias (less than 31 characters) for that
element.

But don’t worry! You never have to reference that alias in your stored procedures. You
can instead continue to use the real name for your Java element in your code. Oracle
will map that long name automatically to its alias (the schema name) when necessary.

Examining Loaded Java Elements
Once you have loaded Java source, class, and resource elements into the database,
information about those elements is available in several different data dictionary views,
as shown in Table 27-3.

Table 27-3. Class information in data dictionary views

View Description

USER_OBJECTS

ALL_OBJECTS

DBA_OBJECTS

Contains header information about your objects of JAVA SOURCE, JAVA CLASS, and JAVA RESOURCE types

USER_ERRORS

ALL_ERRORS

DBA_ERRORS

Contains any compilation errors encountered for your objects

USER_SOURCE Contains the source code for your Java source if you used the CREATE JAVA SOURCE command to create the
Java schema object

Here is a query that shows all of the Java-related objects in my schema:

/* Files on web: showjava.sql, myJava.pkg */
COLUMN object_name FORMAT A30
SELECT object_name, object_type, status, timestamp
 FROM user_objects
 WHERE (object_name NOT LIKE 'SYS_%'
 AND object_name NOT LIKE 'CREATE$%'

Managing Java in the Database | 1149

Download at WoweBook.Com

 AND object_name NOT LIKE 'JAVA$%'
 AND object_name NOT LIKE 'LOADLOB%')
 AND object_type LIKE 'JAVA %'
 ORDER BY object_type, object_name;

The WHERE clause filters out those objects created by Oracle for managing Java ob-
jects. You can build programs to access the information in a variety of useful ways.
Here is some sample output from the myjava package, which you can find on the book’s
web site:

SQL> EXEC myJava.showObjects
Object Name Object Type Status Timestamp

DeleteFile JAVA CLASS INVALID 0000-00-00:00:00
JDelete JAVA CLASS VALID 2005-05-06:10:13
book JAVA CLASS VALID 2005-05-06:10:07
DeleteFile JAVA SOURCE INVALID 2005-05-06:10:06
book JAVA SOURCE VALID 2005-05-06:10:07

The following would let you see a list of all the Java elements whose names contain
“Delete”:

SQL> EXEC myJava.showobjects ('%Delete%')

The column USER_OBJECTS.object_name contains the full names of Java schema
objects, unless the name is longer than 30 characters or contains an untranslatable
character from the Unicode character set. In both cases, the short name is displayed in
the object_name column. To convert short names to full names, you can use the
LONGNAME function in the utility package DBMS_JAVA, which is explored in the
next section.

Using DBMS_JAVA
The Oracle built-in package DBMS_JAVA gives you access to and the ability to modify
various characteristics of the Java Virtual Machine in the database.

The DBMS_JAVA package contains a large number of programs, many of which are
intended for Oracle internal use only. Nevertheless, we can take advantage of a number
of very useful programs; most can also be called within SQL statements. Table 27-4
summarizes some of the DBMS_JAVA programs. As noted earlier in the chapter,
DBMS_JAVA also offers programs to manage security and permissions.

Table 27-4. Common DBMS_JAVA programs

Program Description

LONGNAME function Obtains the full (long) Java name for a given Oracle short name

GET_COMPILER_OPTION function Looks up an option in the Java options table

SET_COMPILER_OPTION procedure Sets a value in the Java options table and creates the table, if one does not exist

RESET_COMPILER_OPTION procedure Resets a compiler option in the Java options table

1150 | Chapter 27: Calling Java from PL/SQL

Download at WoweBook.Com

Program Description

SET_OUTPUT procedure Redirects Java output to the DBMS_OUTPUT text buffer

EXPORT_SOURCE procedure Exports a Java source schema object into an Oracle LOB

EXPORT_RESOURCE procedure Exports a Java resource schema object into an Oracle LOB

EXPORT_CLASS procedure Exports a Java class schema object into an Oracle LOB

These programs are explored in more detail in the following sections.

LONGNAME: Converting Java Long Names
Java class names can easily exceed the maximum SQL identifier length of 30 characters.
In such cases, Oracle creates a unique “short name” for the Java code element and uses
that name for SQL- and PL/SQL-related access.

Use the following function to obtain the full (long) name for a given short name:

FUNCTION DBMS_JAVA.LONGNAME (shortname VARCHAR2) RETURN VARCHAR2

The following query displays the long names for all Java classes defined in the currently
connected schema for which the long names and short names do not match:

/* File on web: longname.sql */
SELECT object_name shortname,
 DBMS_JAVA.LONGNAME (object_name) longname
 FROM USER_OBJECTS
 WHERE object_type = 'JAVA CLASS'
 AND object_name != DBMS_JAVA.LONGNAME (object_name);

This query is also available inside the myJava package (found in the myJava.pkg file);
its use is shown here. Suppose that I define a class with this name:

public class DropAnyObjectIdentifiedByTypeAndName {

That is too long for Oracle, and I can verify that Oracle creates its own short name as
follows:

SQL> EXEC myJava.showlongnames
Short Name | Long Name
--
Short: /247421b0_DropAnyObjectIdentif
Long: DropAnyObjectIdentifiedByTypeAndName

GET_, SET_, and RESET_COMPILER_OPTION: Getting and Setting (a Few)
Compiler Options
You can also set a few of the compiler option values in the database table JAVA$OP-
TIONS (called the options table from here on). While there are currently about 40
command-line options, only three of them can be saved in the options table. They are:

Using DBMS_JAVA | 1151

Download at WoweBook.Com

encoding
Character-set encoding in which the source code is expressed. If not specified, the
compiler uses a default, which is the result of the Java method System.getProp-
erty(“file.encoding”); a sample value is ISO646-US.

online
True or false; applies only to SQLJ source. The default value of “true” enables
online semantics checking.

debug
True or false; setting to true is like using javac -g. If not specified, the compiler
defaults to true.

The compiler looks up options in the options table unless they are specified on the
loadjava command line.

You can get and set these three options-table entries using the following DBMS_JAVA
functions and procedures:

FUNCTION DBMS_JAVA.GET_COMPILER_OPTION (
 what VARCHAR2, optionName VARCHAR2)

PROCEDURE DBMS_JAVA.SET_COMPILER_OPTION (
 what VARCHAR2, optionName VARCHAR2, value VARCHAR2)

PROCEDURE DBMS_JAVA.RESET_COMPILER_OPTION (
 what VARCHAR2, optionName VARCHAR2)

where:

what
Is the name of a Java package, the full name of a class, or the empty string. After
searching the options table, the compiler selects the row in which what most closely
matches the full name of the schema object. If what is the empty string, it matches
the name of any schema object.

optionName
Is the name of the option being set. Initially, a schema does not have an options
table. To create one, use the procedure DBMS_JAVA.SET_COMPILER_OPTION
to set a value. The procedure creates the table if it does not exist. Enclose param-
eters in single quotes, as shown in the following example:

SQL> DBMS_JAVA.SET_COMPILER_OPTION ('X.sqlj', 'online', 'false');

SET_OUTPUT: Enabling Output from Java
When executed within the Oracle database, the System.out and System.err classes send
their output to the current trace files, which are typically found in the server’s udump
subdirectory. This is not a very convenient location if you simply want to test your code
to see if it is working properly. DBMS_JAVA supplies a procedure you can call to re-

1152 | Chapter 27: Calling Java from PL/SQL

Download at WoweBook.Com

direct output to the DBMS_OUTPUT text buffer so that it can be flushed to your
SQL*Plus screen automatically. The syntax of this procedure is:

PROCEDURE DBMS_JAVA.SET_OUTPUT (buffersize NUMBER);

Here is an example of how you might use this program:

/* File on web: ssoo.sql */
SET SERVEROUTPUT ON SIZE 1000000
CALL DBMS_JAVA.SET_OUTPUT (1000000);

Passing any integer to DBMS_JAVA.set_output will turn it on. Documentation on the
interaction between these two commands is skimpy; my testing has uncovered the
following behaviors:

• The minimum (and default) buffer size is a measly 2,000 bytes; the maximum size
is 1,000,000 bytes, at least up through Oracle Database 10g Release 1. You can
pass a number outside of that range without causing an error; unless the number
is really big, the maximum will be set to 1,000,000.

• The buffer size specified by SET SERVEROUTPUT supersedes that of
DBMS_JAVA.SET_OUTPUT. In other words, if you provide a smaller value for
the DBMS_JAVA call, it will be ignored, and the larger size will be used.

• If you are running Oracle Database 10g Release 2 or later, and you have set SERV-
EROUTPUT size to be UNLIMITED, the maximum size of the Java buffer is also
unlimited.

• If your output in Java exceeds the buffer size, you will not receive the error you get
with DBMS_OUTPUT, namely:

ORA-10027: buffer overflow, limit of nnn bytes

The output will instead be truncated to the buffer size specified, and execution of
your code will continue.

As is the case with DBMS_OUTPUT, you will not see any output from your Java calls
until the stored procedure through which they are called finishes executing.

EXPORT_SOURCE, EXPORT_RESOURCE, and EXPORT_CLASS: Exporting
Schema Objects
Oracle’s DBMS_JAVA package offers the following set of procedures to export source,
resources, and classes:

PROCEDURE DBMS_JAVA.EXPORT_SOURCE (
 name VARCHAR2 IN,
 [blob BLOB IN | clob CLOB IN]
);

PROCEDURE DBMS_JAVA.EXPORT_SOURCE (
 name VARCHAR2 IN,
 schema VARCHAR2 IN,

Using DBMS_JAVA | 1153

Download at WoweBook.Com

 [blob BLOB IN | clob CLOB IN]
);

PROCEDURE DBMS_JAVA.EXPORT_RESOURCE (
 name VARCHAR2 IN,
 [blob BLOB IN | clob CLOB IN]
);

PROCEDURE DBMS_JAVA.EXPORT_RESOURCE (
 name VARCHAR2 IN,
 schema VARCHAR2 IN,
 [blob BLOB IN | clob CLOB IN]
);

PROCEDURE DBMS_JAVA.EXPORT_CLASS (
 name VARCHAR2 IN,
 blob BLOB IN
);

PROCEDURE DBMS_JAVA.EXPORT_CLASS (
 name VARCHAR2 IN,
 schema VARCHAR2 IN,
 blob BLOB IN
);

In all cases, name is the name of the Java schema object to be exported, schema is the
name of the schema owning the object (if one is not supplied, the current schema is
used), and blob | clob is the large object that receives the specified Java schema object.

You cannot export a class into a CLOB, only into a BLOB. In addition, the internal
representation of the source uses the UTF8 format, so that format is used to store the
source in the BLOB as well.

The following prototype procedure offers an idea of how you might use the export
programs to obtain source code of your Java schema objects, when appropriate:

/* File on web: showjava.sp */
PROCEDURE show_java_source (
 NAME IN VARCHAR2, SCHEMA IN VARCHAR2 := NULL
)
-- Overview: Shows Java source (prototype). Author: Vadim Loevski
IS
 b CLOB;
 v VARCHAR2 (2000);
 i INTEGER;
 object_not_available EXCEPTION;
 PRAGMA EXCEPTION_INIT(object_not_available, −29532);

BEGIN
 /* Move the Java source code to a CLOB. */
 DBMS_LOB.createtemporary(b, FALSE);

 DBMS_JAVA.export_source(name, NVL(SCHEMA, USER), b);

 /* Read the CLOB to a VARCHAR2 variable and display it. */

1154 | Chapter 27: Calling Java from PL/SQL

Download at WoweBook.Com

 i := 1000;
 DBMS_lob.read(b, i, 1, v);
 DBMS_OUTPUT.put_line(v);
EXCEPTION
 /* If the named object does not exist, an exception is raised. */
 WHEN object_not_available
 THEN
 IF DBMS_UTILITY.FORMAT_ERROR_STACK LIKE '%no such%object'
 THEN
 DBMS_OUTPUT.put_line ('Java object cannot be found.');
 END IF;
END;

If I then create a Java source object using the CREATE JAVA statement as follows:

CREATE OR REPLACE JAVA SOURCE NAMED "Hello"
AS
 public class Hello {
 public static String hello() {
 return "Hello Oracle World";
 }
 };

I can view the source code as shown here (assuming that DBMS_OUTPUT has been
enabled):

SQL> EXEC show_java_source ('Hello')
public class Hello {
 public static String hello() {
 return "Hello Oracle World";
 }
};

Publishing and Using Java in PL/SQL
Once you have written your Java classes and loaded them into the Oracle database,
you can call their methods from within PL/SQL (and SQL)—but only after you “pub-
lish” those methods via a PL/SQL wrapper.

Call Specs
You need to build wrappers in PL/SQL only for those Java methods you want to make
available through a PL/SQL interface. Java methods can access other Java methods in
the Java Virtual Machine directly, without any need for a wrapper. To publish a Java
method, you write a call spec—a PL/SQL program header (function or procedure)
whose body is actually a call to a Java method via the LANGUAGE JAVA clause. This
clause contains the following information about the Java method: its full name, its
parameter types, and its return type. You can define these call specs as standalone
functions or procedures, as programs within a package, or as methods in an object type:

CREATE [OR REPLACE] --If standalone (not in a package)
Standard PL/SQL procedure/function header

Publishing and Using Java in PL/SQL | 1155

Download at WoweBook.Com

{IS | AS} LANGUAGE JAVA
NAME 'method_fullname (java_type[, java_type]...)
 [return java_type]';

where java_type is either the full name of a Java type, such as java.lang.String, or a
primitive type, such as int. Note that you do not include the parameter names, only
their types.

The NAME clause string uniquely identifies the Java method being wrapped. The full
Java name and the call spec parameters, which are mapped by position, must corre-
spond, one to one, with the parameters in the program. If the Java method takes no
arguments, code an empty parameter list for it.

Here are a few examples:

• As shown earlier, here is a standalone function calling a method:

FUNCTION fDelete (
 file IN VARCHAR2)
 RETURN NUMBER
AS LANGUAGE JAVA
 NAME 'JDelete.delete (
 java.lang.String)
 return int';

• A packaged procedure that passes an object type as a parameter:

PACKAGE nat_health_care
IS
 PROCEDURE consolidate_insurer (ins Insurer)
 AS LANGUAGE JAVA
 NAME 'NHC_consolidation.process(oracle.sql.STRUCT)';
END nat_health_care;

• An object type method:

TYPE pet_t AS OBJECT (
 name VARCHAR2(100),
 MEMBER FUNCTION date_of_birth (
 name_in IN VARCHAR2) RETURN DATE
 AS LANGUAGE JAVA
 NAME 'petInfo.dob (java.lang.String)
 return java.sql.Timestamp'
);

• A standalone procedure with an OUT parameter:

PROCEDURE read_out_file (
 file_name IN VARCHAR2,
 file_line OUT VARCHAR2
)
AS
LANGUAGE JAVA
 NAME 'utils.ReadFile.read(java.lang.String
 ,java.lang.String[])';

1156 | Chapter 27: Calling Java from PL/SQL

Download at WoweBook.Com

Some Rules for Call Specs
Note the following:

• A PL/SQL call spec and the Java method it publishes must reside in the same
schema.

• A call spec exposes a Java method’s top-level entry point to Oracle. As a result,
you can publish only public static methods, unless you are defining a member
method of a SQL object type. In this case, you can publish instance methods as
member methods of that type.

• You cannot provide default values in the parameter list of the PL/SQL program
that will serve as a wrapper for a Java method invocation.

• A method in object-oriented languages cannot assign values to objects passed as
arguments; the point of the method is to apply to the object to which it is attached.
When you want to call a method from SQL or PL/SQL and change the value of an
argument, you must declare it as an OUT or IN OUT parameter in the call spec.
The corresponding Java parameter must then be a one-element array of the ap-
propriate type.

You can replace the element value with another Java object of the ap-
propriate type or (for IN OUT parameters only) modify the value if the
Java type permits. Either way, the new value propagates back to the
caller. For example, you might map a call spec OUT parameter of type
NUMBER to a Java parameter declared as float[] p, and then assign a
new value to p[0].

A function that declares OUT or IN OUT parameters cannot be called
from SQL DML statements.

Mapping Datatypes
Earlier in this chapter, we saw a very simple example of a PL/SQL wrapper—a delete
function that passed a VARCHAR2 value to a java.lang.String parameter. The Java
method returned an int, which was then passed back through the RETURN NUMBER
clause of the PL/SQL function. These are straightforward examples of datatype map-
ping, that is, setting up a correspondence between a PL/SQL datatype and a Java da-
tatype.

When you build a PL/SQL call spec, the PL/SQL and Java parameters, as well as the
function result, are related by position and must have compatible datatypes. Ta-
ble 27-5 lists all the datatype mappings currently allowed between PL/SQL and Java.
If you rely on a supported datatype mapping, Oracle will convert from one to the other
automatically.

Publishing and Using Java in PL/SQL | 1157

Download at WoweBook.Com

Table 27-5. Legal datatype mappings

SQL type Java class

CHAR oracle.sql.CHAR

NCHAR java.lang.String

LONG java.sql.Date

VARCHAR2 java.sql.Time

NVARCHAR2 java.sql.Timestamp

java.lang.Byte

java.lang.Short

java.lang.Integer

java.lang.Long

java.lang.Float

java.lang.Double

java.math.BigDecimal

byte, short, int, long, float, double

DATE oracle.sql.DATE

java.sql.Date

java.sql.Time

java.sql.Timestamp

java.lang.String

NUMBER oracle.sql.NUMBER

java.lang.Byte

java.lang.Short

java.lang.Integer

java.lang.Long

java.lang.Float

java.lang.Double

java.math.BigDecimal

byte, short, int, long, float, double

RAW oracle.sql.RAW

LONG RAW byte[]

ROWID oracle.sql.CHAR

oracle.sql.ROWID

java.lang.String

1158 | Chapter 27: Calling Java from PL/SQL

Download at WoweBook.Com

SQL type Java class

BFILE oracle.sql.BFILE

BLOB oracle.sql.BLOB

oracle.jdbc2.Blob

CLOB oracle.sql.CLOB

NCLOB oracle.jdbc2.Clob

User-defined object type oracle.sql.STRUCT

java.sql.Struct

java.sql.SqlData

oracle.sql.ORAData

User-defined REF type oracle.sql.REF

java.sql.Ref

oracle.sql.ORAData

Opaque type (such as XMLType) oracle.sql.OPAQUE

TABLE

VARRAY

oracle.sql.ARRAY

User-defined table or VARRAY type java.sql.Array

oracle.sql.ORAData

Any of the above SQL types oracle.sql.CustomDatum

oracle.sql.Datum

As you can see, Oracle supports only automatic conversion for SQL datatypes. Such
PL/SQL-specific datatypes as BINARY_INTEGER, PLS_INTEGER, BOOLEAN, and
associative array types are not supported. In those cases, you have to perform manual
conversion steps to transfer data between these two execution environments. See the
references in the section “Other Examples” on page 1167 for examples of nondefault
mappings; see the Oracle documentation for even more detailed examples involving
the use of JDBC.

Calling a Java Method in SQL
You can call PL/SQL functions of your own creation from within SQL DML statements.
You can also call Java methods wrapped in PL/SQL from within SQL. However, these
methods must conform to the following purity rules:

• If you call a method from a SELECT statement or a parallelized INSERT, UPDATE,
MERGE, or DELETE statement, the method is not allowed to modify any database
tables.

Publishing and Using Java in PL/SQL | 1159

Download at WoweBook.Com

• If you call a method from an INSERT, UPDATE, MERGE, or DELETE statement,
the method cannot query or modify any database tables modified by that state-
ment.

• If you call a method from a SELECT, INSERT, UPDATE, MERGE, or DELETE
statement, the method cannot execute SQL transaction control statements (such
as COMMIT), session control statements (such as SET ROLE), or system control
statements (such as ALTER SYSTEM). The method also cannot execute DDL
statements because they automatically perform a commit in your session. Note
that these restrictions are waived if the method is executed from within an auton-
omous transaction PL/SQL block.

The objective of these restrictions is to control side effects that might disrupt your SQL
statements. If you try to execute a SQL statement that calls a method violating any of
these rules, you will receive a runtime error when the SQL statement is parsed.

Exception Handling with Java
On the one hand, the Java exception-handling architecture is very similar to that of
PL/SQL. In Java-speak, you throw an exception and then catch it. In PL/SQL-speak,
you raise an exception and then handle it.

On the other hand, exception handling in Java is much more robust. Java offers a
foundation class called Exception. All exceptions are objects based on that class, or on
classes derived from (extending) that class. You can pass exceptions as parameters and
manipulate them pretty much as you would objects of any other class.

When a Java stored method executes a SQL statement and an exception is thrown, that
exception is an object from a subclass of java.sql.SQLException. That subclass contains
two methods that return the Oracle error code and error message: getErrorCode() and
getMessage().

If a Java stored procedure called from SQL or PL/SQL throws an exception that is
not caught by the JVM, the caller gets an exception thrown from a Java error message.
This is how all uncaught exceptions (including non-SQL exceptions) are reported. Let’s
take a look at the different ways of handling errors and the resulting output.

Suppose that I create a class that relies on JDBC to drop objects in the database (this
is drawn from an example in the Oracle documentation):

/* File on web: DropAny.java */
import java.sql.*;
import java.io.*;
import oracle.jdbc.driver.*;

public class DropAny {
 public static void object (String object_type, String object_name)
 throws SQLException {
 // Connect to Oracle using JDBC driver
 Connection conn = new OracleDriver().defaultConnection();

1160 | Chapter 27: Calling Java from PL/SQL

Download at WoweBook.Com

 // Build SQL statement
 String sql = "DROP " + object_type + " " + object_name;
 Statement stmt = conn.createStatement();
 try {
 stmt.executeUpdate(sql);
 }
 catch (SQLException e) {
 System.err.println(e.getMessage());
 }
 finally {
 stmt.close();
 }
 }
}

This example traps and displays any SQLException using the highlighted code. The
“finally” clause ensures that the close() method executes whether the exception is
raised or not, in order to get the statement’s open cursor handled properly.

While it doesn’t really make any sense to rely on JDBC to drop objects
because this can be done much more easily in native dynamic SQL,
building it in Java makes the functionality available to other Java pro-
grams without calling PL/SQL.

I load the class into the database using loadjava and then wrap this class inside a
PL/SQL procedure as follows:

PROCEDURE dropany (
 tp IN VARCHAR2,
 nm IN VARCHAR2
)
AS LANGUAGE JAVA
 NAME 'DropAny.object (
 java.lang.String,
 java.lang.String)';

When I attempt to drop a nonexistent object, I will see one of two outcomes:

SQL> CONNECT scott/tiger
Connected.

SQL> SET SERVEROUTPUT ON
SQL> BEGIN dropany ('TABLE', 'blip'); END;
/
PL/SQL procedure successfully completed.

SQL> CALL DBMS_JAVA.SET_OUTPUT (1000000);

Call completed.

SQL> BEGIN dropany ('TABLE', 'blip'); END;
/

Publishing and Using Java in PL/SQL | 1161

Download at WoweBook.Com

ORA-00942: table or view does not exist

What you see in these examples is a reminder that output from System.err.println will
not appear on your screen until you explicitly enable it with a call to
DBMS_JAVA.SET_OUTPUT. In either case, however, no exception was raised back
to the calling block because it was caught inside Java. After the second call to dropany,
you can see that the error message supplied through the getMessage() method is taken
directly from Oracle.

If I comment out the exception handler in the DropAny.object() method, I will get
something like this (assuming SERVEROUTPUT is enabled, as well as Java output):

SQL > BEGIN
 2 dropany('TABLE', 'blip');
 3 EXCEPTION
 4 WHEN OTHERS
 5 THEN
 6 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 7 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 8 END;
 9 /
oracle.jdbc.driver.OracleSQLException: ORA-00942: table or view does not exist
 at oracle.jdbc.driver.T2SConnection.check_error(T2SConnection.java:120)
 at oracle.jdbc.driver.T2SStatement.check_error(T2SStatement.java:57)
 at oracle.jdbc.driver.T2SStatement.execute_for_rows(T2SStatement.java:486)
 at oracle.jdbc.driver.OracleStatement.doExecute
WithTimeout(OracleStatement.java:1148)
 at oracle.jdbc.driver.OracleStatement.executeUpdate(OracleStatement.java:1705)
 at DropAny.object(DropAny:14)

−29532
ORA-29532: Java call terminated by uncaught Java exception: java.sql.SQLException:
ORA-00942: table or view does not exist

This takes a little explaining. Everything between:

java.sql.SQLException: ORA-00942: table or view does not exist

and:

−29532

represents an error stack dump generated by Java and sent to standard output, regard-
less of how you handle the error in PL/SQL. In other words, even if my exception section
looked like this:

EXCEPTION WHEN OTHERS THEN NULL;

I would still get all that output on the screen, and then processing in the outer block
(if any) would continue. The last three lines of output displayed are generated by my
calls to DBMS_OUTPUT.PUT_LINE.

1162 | Chapter 27: Calling Java from PL/SQL

Download at WoweBook.Com

Notice that the Oracle error is not ORA-00942, but instead is ORA-29532, a generic
Java error. This is a problem. If you trap the error, how can you discover what the real
error is? Looks like it’s time for Write-A-Utility Man!

It appears to me that the error returned by SQLERRM is of this form:

ORA-29532: Java call ...: java.sql.SQLException: ORA-NNNNN ...

So I can scan for the presence of java.sql.SQLException and then SUBSTR from there.
The book’s web site contains a program in the getErrorInfo.sp file that returns the error
code and message for the current error, building in the smarts to compensate for the
Java error message format.

The main focus in the following sections is an expansion of the JDelete class into the
JFile class, which will provide significant new file-related features in PL/SQL. Following
that, we’ll explore how to write Java classes and PL/SQL programs around them to
manipulate Oracle objects.

Extending File I/O Capabilities
Oracle’s UTL_FILE package (described in Chapter 22) is notable more for what it is
missing than for what it contains. With UTL_FILE, you can read and write the contents
of files sequentially. That’s it. At least before Oracle9i Database Release 2, you can’t
delete files, change privileges, copy a file, obtain the contents of a directory, set a path,
etc., etc. Java to the rescue! Java offers lots of different classes to manipulate files. You’ve
already met the File class and seen how easy it is to add the “delete a file” capability to
PL/SQL.

I will now take my lessons learned from JDelete and the rest of this chapter and create
a new class called JFile, which will allow PL/SQL developers to answer the questions
and take the actions listed here:

• Can I read from a file? Write to a file? Does a file exist? Is the named item a file or
a directory?

• What is the number of bytes in a file? What is the parent directory of a file?

• What are the names of all the files in a directory that match a specified filter?

• How can I make a directory? Rename a file? Change the extension of a file?

I won’t explain all the methods in the JFile class and its corresponding package; there
is a lot of repetition, and most of the Java methods look just like the delete() function
I built at the beginning of the chapter. I will instead focus on the unique issues addressed
in different areas of the class and package. You can find the full definition of the code
in the following files on the book’s web site:

JFile.java
A Java class that draws together various pieces of information about operating
system files and offers it through an API accessible from PL/SQL.

Publishing and Using Java in PL/SQL | 1163

Download at WoweBook.Com

xfile.pkg
The PL/SQL package that wraps the JFile class. Stands for “eXtra stuff for FILEs.”

Oracle9i Database Release 2 introduced an enhanced version of the
UTL_FILE package that, among other things, allows you to delete a file
using the UTL_FILE.FREMOVE procedure. It also supports file copy-
ing (FCOPY) and file renaming (FRENAME).

Polishing up the delete method

Before moving on to new and exciting stuff, we should make sure that what we’ve done
so far is optimal. The way I defined the JDelete.delete() method and the delete_file
function is far from ideal. Here’s the method code I showed you earlier:

public static int delete (String fileName) {
 File myFile = new File (fileName);
 boolean retval = myFile.delete();
 if (retval) return 1; else return 0;
 }

And the associated PL/SQL:

FUNCTION fDelete (
 file IN VARCHAR2) RETURN NUMBER
AS LANGUAGE JAVA
 NAME 'JDelete.delete (java.lang.String)
 return int';

So what’s the problem? The problem is that I have been forced to use clumsy, numeric
representations for TRUE/FALSE values. As a result, I must write code like this:

IF fdelete ('c:\temp\temp.sql') = 1 THEN ...

and that is very ugly, hardcoded software. Not only that, but the person writing the
PL/SQL code would be required to know about the values for TRUE and FALSE em-
bedded within a Java class.

I would much rather define a delete_file function with this header:

 FUNCTION fDelete (
 file IN VARCHAR2) RETURN BOOLEAN;

So let’s see what it would take to present that clean, easy-to-use API to users of the xfile
package.

First, I will rename the JDelete class to JFile to reflect its growing scope. Then, I will
add methods that encapsulate the TRUE/FALSE values its other methods will return
—and call those inside the delete() method. Here is the result:

/* File on web: JFile.java */
import java.io.File;

public class JFile {

1164 | Chapter 27: Calling Java from PL/SQL

Download at WoweBook.Com

 public static int tVal () { return 1; };
 public static int fVal () { return 0; };

 public static int delete (String fileName) {
 File myFile = new File (fileName);
 boolean retval = myFile.delete();
 if (retval) return tVal();
 else return fVal();
 }
}

That takes care of the Java side of things; now it’s time to shift attention to my PL/SQL
package. Here’s the first pass at the specification of xfile:

/* File on web: xfile.pkg */
PACKAGE xfile
IS
 FUNCTION delete (file IN VARCHAR2)
 RETURN BOOLEAN;
END xfile;

So now we have the Boolean function specified. But how do we implement it? I have
two design objectives:

• Hide the fact that I am relying on numeric values to pass back TRUE or FALSE.

• Avoid hardcoding the 1 and 0 values in the package.

To achieve these objectives, I will define two global variables in my package to hold
the numeric values:

/* File on web: xfile.pkg */
PACKAGE BODY xfile
IS
 g_true INTEGER;
 g_false INTEGER;

And way down at the end of the package body, I will create an initialization section
that calls these programs to initialize my globals. By taking this step in the initialization
section, I avoid unnecessary calls (and overhead) to Java methods:

BEGIN
 g_true := tval;
 g_false := fval;
END xfile;

Back up in the declaration section of the package body, I will define two private func-
tions whose only purpose is to give me access in my PL/SQL code to the JFile methods
that have encapsulated the 1 and 0:

FUNCTION tval RETURN NUMBER
AS LANGUAGE JAVA
 NAME 'JFile.tVal () return int';

FUNCTION fval RETURN NUMBER

Publishing and Using Java in PL/SQL | 1165

Download at WoweBook.Com

AS LANGUAGE JAVA
 NAME 'JFile.fVal () return int';

I have now succeeded in softcoding the TRUE/FALSE values in the JFile package. To
enable the use of a true Boolean function in the package specification, I create a private
“internal delete” function that is a wrapper for the JFile.delete() method. It returns a
number:

FUNCTION Idelete (file IN VARCHAR2) RETURN NUMBER
AS LANGUAGE JAVA
 NAME 'JFile.delete (java.lang.String) return int';

Finally, my public delete function can now call Idelete and convert the integer value to
a Boolean by checking against the global variable:

FUNCTION delete (file IN VARCHAR2) RETURN BOOLEAN
AS
BEGIN
 RETURN Idelete (file) = g_true;
EXCEPTION
 WHEN OTHERS
 THEN
 RETURN FALSE;
END;

And that is how you convert a Java Boolean to a PL/SQL Boolean. You will see this
method employed again and again in the xfile package body.

Obtaining directory contents

One of my favorite features of JFile is its ability to return a list of files found in a direc-
tory. It accomplishes this feat by calling the File.list() method; if the string you used
to construct a new File object is the name of a directory, it returns a array of String
filenames found in that directory. Let’s see how I can make this information available
as a collection in PL/SQL.

First, I create a collection type with which to declare these collections:

CREATE OR REPLACE TYPE dirlist_t AS TABLE OF VARCHAR2(512);

I next create a method called dirlist, which returns an oracle.sql.ARRAY:

/* File on web: JFile.java */
import java.io.File;
import java.sql.*;
import oracle.sql.*;
import oracle.jdbc.*;

public class JFile {
...
 public static oracle.sql.ARRAY dirlist (String dir)
 throws java.sql.SQLException
 {
 Connection conn = new OracleDriver().defaultConnection();
 ArrayDescriptor arraydesc =

1166 | Chapter 27: Calling Java from PL/SQL

Download at WoweBook.Com

 ArrayDescriptor.createDescriptor ("DIRLIST_T", conn);

 File myDir = new File (dir);
 String[] filesList = myDir.list();

 ARRAY dirArray = new ARRAY(arraydesc, conn, filesList);
 return dirArray;
 }
...

This method first retrieves a “descriptor” of the user-defined type dirlist_t so that we
can instantiate a corresponding object. After calling Java’s File.list() method, it copies
the resulting list of files into the ARRAY object in the invocation of the constructor.

Over on the PL/SQL side of the world, I then create a wrapper that calls this method:

FUNCTION dirlist (dir IN VARCHAR2)
 RETURN dirlist_t
AS
 LANGUAGE JAVA
 NAME 'myFile.dirlist(java.lang.String) return oracle.sql.ARRAY';

And here is a simple example of how it might be invoked:

DECLARE
 tempdir dirlist_t;
BEGIN
 tempdir := dirlist('C:\temp');
 FOR indx IN 1..tempdir.COUNT
 LOOP
 DBMS_OUTPUT.PUT_LINE_(tempdir(indx));
 END LOOP;
END;

You will find in the xfile package additional programs to do the following: retrieve
filenames as a list rather than an array, limit files retrieved by designated wildcard filters,
and change the extension of specified files. You will also find all of the entry points of
the UTL_FILE package, such as FOPEN and PUT_LINE. I add those so that you can
avoid the use of UTL_FILE for anything but declarations of file handles as
UTL_FILE.FILE_TYPE and references to the exceptions declared in UTL_FILE.

Other Examples
On the book’s web site there are still more interesting examples of using Java to extend
the capabilities of PL/SQL or perform more complex datatype mapping:

utlzip.sql
Courtesy of reviewer Vadim Loevski, this Java class and corresponding package
make zip/compression functionality available in PL/SQL. They also use the CRE-
ATE OR REPLACE JAVA statement to load a class directly into the database with-
out relying on the loadjava command. Here is the header of the Java class creation
statement:

Publishing and Using Java in PL/SQL | 1167

Download at WoweBook.Com

/* File on web: utlzip.sql */
JAVA SOURCE NAMED "UTLZip" AS
import java.util.zip.*;
import java.io.*;
public class utlzip
{ public static void compressfile(string infilename, string outfilename)
...
}

And here is the “cover” for the Java method:

PACKAGE utlzip
IS
 PROCEDURE compressfile (p_in_file IN VARCHAR2, p_out_file IN VARCHAR2)
 AS
 LANGUAGE JAVA
 NAME 'UTLZip.compressFile(java.lang.String,
 java.lang.String)';
END;

If you are running Oracle Database 10g or later, you may not find this quite as
useful, because you can just use Oracle’s built-in package UTL_COMPRESS in-
stead.

DeleteFile.java and deletefile.sql
Courtesy of reviewer Alex Romankeuich, this Java class and corresponding
PL/SQL code demonstrate how to pass a collection (nested table or VARRAY) into
an array in Java. The specific functionality implements the deletion of all files in
the specified directory that have been modified since a certain date. To create the
PL/SQL side of the equation, I first create a nested table of objects, and then pass
that collection to Java through the use of the oracle.sql.ARRAY class:

CREATE TYPE file_details AS OBJECT (
 dirname VARCHAR2 (30),
 deletedate DATE)
/
CREATE TYPE file_table AS TABLE OF file_details;
/
CREATE OR REPLACE PACKAGE delete_files
IS
 FUNCTION fdelete (tbl IN file_table) RETURN NUMBER
 AS
 LANGUAGE JAVA
 NAME 'DeleteFile.delete(oracle.sql.ARRAY) return int';
END delete_files;

And here are the initial lines of the Java method. Note that Alex extracts the result
set from the array structure and then iterates through that result set. See the De-
leteFile.java script for the full implementation and extensive comments.

/* File on web: DeleteFile.java and deletfile.sql */
public class DeleteFile {
 public static int delete(oracle.sql.ARRAY tbl) throws SQLException {
 try {

1168 | Chapter 27: Calling Java from PL/SQL

Download at WoweBook.Com

 // Retrieve the contents of the table/varray as a result set
 ResultSet rs = tbl.getResultSet();

 for (int ndx = 0; ndx < tbl.length(); ndx++) {
 rs.next();

 // Retrieve the array index and array element.
 int aryndx = (int)rs.getInt(1);
 STRUCT obj = (STRUCT)rs.getObject(2);

utlcmd.sql
Courtesy of reviewer Vadim Loevski, this Java class and corresponding package
make it dangerously easy to execute any operating system command from within
PL/SQL. Use with caution.

Publishing and Using Java in PL/SQL | 1169

Download at WoweBook.Com

Download at WoweBook.Com

CHAPTER 28

External Procedures

In the early days of PL/SQL, it was common to hear the question “Can I call what-
ever from within Oracle?” Typically, whatever had something to do with sending email,
running operating-system commands, or using some non-PL/SQL feature. Although
email has pretty much been a nonissue since Oracle began shipping the built-in
UTL_SMTP and UTL_MAIL packages, there are by now quite a handful of alternatives
to calling “whatever.” Here are the most common approaches:

• Write the program as a Java stored procedure and call the Java from PL/SQL.

• Use a database table or queue as a place to store the requests, and create a separate
process to read and respond to those requests.

• Expose the program as a web service.

• Use a database pipe and write a daemon that responds to requests on the pipe.

• Write the program in C and call it as an external procedure.

Java may work well, and it can be fast enough for many applications. Queuing is a very
interesting technology, but even if you are simply using plain tables, this approach
requires two Oracle database sessions: one to write to the queue and one to read from
it. Moreover, two sessions means two different transaction spaces, and that might be
a problem for your application. Database pipe-based approaches also have the two-
session problem, not to mention the challenge of packing and unpacking the contents
of the pipe. In addition, handling many simultaneous requests using any of these ap-
proaches might require you to create your own listener and process-dispatching system.

Those are all reasons to consider the final option. External procedures allow PL/SQL
to do almost anything that any other language can do, and can remedy the shortcomings
of the other approaches just mentioned. But ... just how do external procedures work?
Are they secure? How can I build my own? What are their advantages and disadvan-
tages? This chapter addresses these questions and provides examples of commonly used
features of external procedures.

1171

Download at WoweBook.Com

By the way, examples in this chapter make use of the GNU C compiler, which, like
Oracle, runs practically everywhere.* I love GCC, but it won’t work in every situation;
you might need to use the compiler that is “native” on your hardware.

Introduction to External Procedures
To call an external program from inside Oracle, the program must run as a shared
library. You probably know this type of program as a DLL file (dynamically linked
library) on Microsoft operating systems; on Solaris, AIX, and Linux, you’ll usually see
shared libraries with a .so (shared object) file extension, or .sl (shared library) on
HP-UX. In theory, you can write the external routine in any language you wish, but
your compiler and linker will need to generate the appropriate shared library format
that is callable from C. You “publish” the external program by writing a special PL/
SQL wrapper, known as a call specification. If the external function returns a value, it
maps to a PL/SQL function; if the external function returns nothing, it maps to a
PL/SQL procedure.

Example: Invoking an Operating System Command
Our first example allows a PL/SQL program to execute any operating system-level
command. Eh? I hope your mental security buzzer is going off—that sounds like a really
dangerous thing to do, doesn’t it? Despite several security hoops you have to jump
through to make it work, your database administrator will still object to granting wide
permissions to run this code. Just try to suspend your disbelief as we walk through the
examples.

The first example consists of a very simple C function, extprocsh(), which accepts a
string and passes it to the system function for execution:

int extprocshell(char *cmd)
{
 return system(cmd);
}

The function returns the result code as provided by system, a function normally found
in the C runtime library (libc) on Unix, or in msvcrt.dll on Microsoft platforms.

After saving the source code in a file named extprocsh.c, I can use the GNU C compiler
to generate a shared library. On my 64-bit Solaris machine running GCC 3.4.2 and
Oracle Database 10g Release 2, I used the following compiler command. Note that
GCC options vary on different Unix/Linux distributions.

gcc -m64 extprocsh.c -fPIC -G -o extprocsh.so

* GNU C is free to use and is found here: http://gcc.gnu.org. There are at least two versions for Microsoft
Windows; this chapter uses the one from http://www.mingw.org.

1172 | Chapter 28: External Procedures

Download at WoweBook.Com

http://gcc.gnu.org
http://www.mingw.org

Similarly, on Microsoft Windows XP Pro running GCC 3.2.3 from Minimal GNU for
Windows (MinGW), also with Oracle Database 10g Release 2, this works:

c:\MinGW\bin\gcc extprocsh.c -shared -o extprocsh.dll

These commands generate a shared library file, extprocsh.so or extprocsh.dll. Now I
need to put the library file somewhere that Oracle can find it. Depending on your Oracle
version, that may be easier said than done! Table 28-1 gives you a clue as to where to
put the files.

Table 28-1. Location of shared library files

Version Default “allowed” location Means of specifying nondefault location

Oracle8 Database

Oracle8 i Database

Oracle9i Database
Release 1

Anywhere readable by the oracle process Not applicable

Oracle9i Release 2 and
later

$ORACLE_HOME/lib and/or $ORA-
CLE_HOME/bin (varies by Oracle version
and platform; lib is typical for Unix and
bin for Microsoft Windows)

Edit listener configuration file and supply path
value(s) for ENVS="EXTPROC_DLLS...” property (see
the section "“The Oracle Net Configura-
tion” on page 1176“)

After copying the file and/or making adjustments to the listener, I also need to define
a “library” inside Oracle to point to the DLL:

CREATE OR REPLACE LIBRARY extprocshell_lib
 AS '/u01/app/oracle/local/lib/extprocsh.so'; -- Unix-Linux

CREATE OR REPLACE LIBRARY extprocshell_lib
 AS 'c:\oracle\local\lib\extprocsh.dll'; -- Microsoft

Don’t by confused by the term “library” here; it’s really just a filename alias that can
be used in Oracle’s namespace. Also note that performing this step requires Oracle’s
CREATE LIBRARY privilege, which is one of the security hoops I mentioned earlier.

Now I can create a PL/SQL call specification that uses the newly created library:

FUNCTION shell(cmd IN VARCHAR2)
 RETURN PLS_INTEGER
AS
 LANGUAGE C
 LIBRARY extprocshell_lib
 NAME "extprocshell"
 PARAMETERS (cmd STRING, RETURN INT);

That’s all there is to it! Assuming that the DBA has set up the system environment to
support external procedures (see the section “Specifying the Listener Configura-
tion” on page 1176 later in this chapter), shell() is now usable anywhere you can invoke
a PL/SQL function—SQL*Plus, Perl, Pro*C, etc. From an application programming

Introduction to External Procedures | 1173

Download at WoweBook.Com

perspective, calling an external procedure is indistinguishable from calling a conven-
tional procedure. For example:

DECLARE
 result PLS_INTEGER;
BEGIN
 result := shell('cmd');
END;

Or even:

SQL> SELECT shell('cmd') FROM DUAL;

If successful, this will return zero:

SHELL('cmd')

 0

Keep in mind that if the operating-system command normally displays output to stdout
or stderr, that output will go to the bit bucket unless you modify your program to return
it to PL/SQL. You can, subject to OS-level permissions, redirect that output to a file;
here is a trivial example of saving a file containing a directory listing:

result := shell('ls / > /tmp/extproc.out')); -- Unix-Linux
result := shell('cmd /c "dir c:\ > c:\temp\extproc.out"')); -- Microsoft

These operating-system commands will execute with the same privileges as the Oracle
Net listener that spawns the extproc process. Hmmm, I’ll bet your DBA or security guy
will want to change that. Read on if you want to help.

Architecture of External Procedures
What happens under the covers when you invoke an external procedure? Let’s first
consider a case such as the example illustrated in the previous section, which uses the
default external procedure “agent.”

When the PL/SQL runtime engine learns from the compiled code that the program has
been implemented externally, it looks for a TNS service named EXTPROC_CON-
NECTION_DATA, which must be known to the server via some Oracle Net naming
method such as the tnsnames.ora file. As shown in Figure 28-1, the Oracle Net listener
responds to the request by spawning a session-specific process called extproc, to which
it passes the path to the DLL file along with the function name and any arguments. It
is extproc that dynamically loads your shared library, sends needed arguments, receives
its output, and transmits these results back to the caller. In this arrangement, only one
extproc process runs for a given Oracle session; it launches with the first external pro-
cedure call and terminates when the session disconnects. For each distinct external
procedure you call, this extproc process loads the associated shared library (if it hasn’t
already been loaded).

1174 | Chapter 28: External Procedures

Download at WoweBook.Com

Oracle has provided a number of features to help make external procedures usable and
efficient:

Shared DLL
The external C program must be in a shared dynamically linked library rather than
in a statically linked module. Although deferring linking until runtime incurs some
overhead, there should be memory savings when more than one session uses a
shared library; the operating system allows some of the memory pages of the library
to be shared by more than one process. Another benefit of using dynamically linked
modules is that they can be created and updated more easily than statically linked
programs. In addition, there can be many subprograms in a shared library (hence
the term “library”). This mitigates the performance overhead by allowing you to
load fewer files dynamically.

Separate memory space
Oracle external procedures run in a separate memory space from the main database
kernel processes. If the external procedure crashes, it won’t step on kernel memory;
the extproc process simply returns an error to the PL/SQL engine, which in turn
reports it to the application. Writing an external procedure to crash the Oracle
server is possible, but it’s no easier than doing so from a non-external procedure
program.

Full transaction support
External procedures provide full transaction support; that is, they can participate
fully in the current transaction. By accepting “context” information from PL/SQL,

Figure 28-1. Invoking an external procedure that uses the default agent

Introduction to External Procedures | 1175

Download at WoweBook.Com

the procedure can call back to the database to fetch data, make SQL or PL/SQL
calls, and raise exceptions. Using these features requires some low-level Oracle Call
Interface (OCI) programming ... but at least it’s possible!

Multithreading (Oracle Database 10g and later)
Up through Oracle9i Database, each Oracle session that called an external proce-
dure required a companion extproc process. For large numbers of users, the added
overhead could be significant. Starting with Oracle Database 10g, though, the DBA
can configure a multithreaded “agent” that services each request in a thread rather
than a separate process. You will need to ensure that your C program is thread-
safe if you go this route. See the later section “Setting Up Multithreaded
Mode” on page 1179 for more information about using this feature.

Despite their many features and benefits, external procedures are not a perfect match
for every application: Oracle’s architecture requires an unavoidable amount of inter-
process communication. This is the tradeoff required for the safety of separating the
external procedure’s memory space from that of the database server.

The Oracle Net Configuration
Let’s take a look at how you would set up a simple configuration that will support
external procedures while closing up some of the glaring security gaps.

Specifying the Listener Configuration
It is the Oracle Net communications layer that provides the conduit between PL/SQL
and the shared libraries. Although default installations of Oracle8i Database and later
generally provide some support for external procedures, you probably don’t want to
use the out-of-the-box configuration until Oracle has made some significant security
enhancements.

At the time we were writing the third edition of this book, Oracle was suffering a bit
of a black eye from a security vulnerability arising from the external procedures feature.
Specifically, a remote attacker could connect via the Oracle Net TCP/IP port (usually
1521) and run extproc with no authentication. Although Oracle closed up that partic-
ular vulnerability, the conventional wisdom of securing Oracle includes that shown in
the following note.

Keep Oracle listeners behind a firewall; never expose a listener port to
the Internet or to any other untrusted network.

Getting the listener set up properly involves modifying the tnsnames.ora file and the
listener.ora file (either by hand or by using the Oracle Net Manager frontend). Here,

1176 | Chapter 28: External Procedures

Download at WoweBook.Com

for example, is a simple listener.ora file that sets up an external procedure listener that
is separate from the database listener:

regular listener (to connect to the database)

LISTENER =
 (ADDRESS = (PROTOCOL = TCP)(HOST = hostname)(PORT = 1521))

SID_LIST_LISTENER =
 (SID_DESC =
 (GLOBAL_DBNAME = global_name)
 (ORACLE_HOME = oracle_home_directory)
 (SID_NAME = SID)
)

external procedure listener

EXTPROC_LISTENER =
 (ADDRESS = (PROTOCOL = IPC)(KEY = extprocKey))

SID_LIST_EXTPROC_LISTENER =
 (SID_DESC =
 (SID_NAME = extprocSID)
 (ORACLE_HOME = oracle_home_directory)
 (ENVS="EXTPROC_DLLS=shared_object_file_list,other_envt_vars")
 (PROGRAM = extproc)
)

where:

hostname, global_name
hostname is the name or IP address of this machine; global_name is the fully quali-
fied name of the database. In the example, these parameters apply to the database
listener only, not to the external procedure listener.

extprocKey
A short identifier used by Oracle Net to distinguish this listener from other poten-
tial IPC listeners. Its actual name is arbitrary because your programs will never see
it. Oracle uses EXTPROC0 or EXTPROC1 as the default name for the first Oracle
Net installation on a given machine. This identifier must be the same in the address
list of listener.ora and in the tnsnames.ora file.

oracle_home_directory
The full pathname to your ORACLE_HOME directory, such as /u01/app/oracle/
oracle/product/10.2.0/db_1 on Unix or C:\oracle\product\10.2.0\db_1 on Microsoft
Windows. Notice that there are no quotation marks around the directory name
and no trailing slash.

extprocSID
An arbitrary unique identifier for the external procedure listener. In the default
installation, Oracle uses the value PLSExtProc.

The Oracle Net Configuration | 1177

Download at WoweBook.Com

ENVS="EXTPROC_DLLS=shared_object_file_list"
Available in Oracle9i Database Release 2 and later. The ENVS clause sets up en-
vironment variables for the listener. The list is colon-delimited, and each element
must be the fully qualified path name to the shared object file.

There are some special keywords you can use in the list. For no security at all, you
can use the ANY keyword, which lets you use any shared library that is visible to
the operating system user running the external procedure listener. In other words:

ENVS="EXTPROC_DLLS=ANY"

For maximum security, use the ONLY keyword to limit execution of those shared
libraries given by the colon-delimited list. Here is an example from my Solaris
machine that shows what this might look like:

(ENVS="EXTPROC_DLLS=ONLY:/u01/app/oracle/local/lib/extprocsh.so:/u01/app/oracle/
local/lib/RawdataToPrinter.so")

And here is an entry from my laptop machine, which runs a Microsoft Windows
operating system:

(ENVS="EXTPROC_DLLS=ONLY:c:\oracle\admin\local\lib\extprocsh.dll:c:\oracle\admin\
local\lib\RawDataToPrinter.dll")

Here, the colon symbol has two different meanings; as the list delimiter or as the
drive letter separator. Also note that although I’ve shown only two library files,
you can include as many as you like.

If you omit the ANY and ONLY keywords but still provide a list of files, both the
default directories and the explicitly named files are available.

other_envt_vars
You can set values for environment variables needed by shared libraries by adding
them to the ENVS setting of the external procedure listener. A commonly needed
value on Unix is LD_LIBRARY_PATH:

(ENVS="EXTPROC_DLLS=shared_object_file_list,LD_LIBRARY_PATH=/usr/local/lib")

Use commas to separate the list of files and each environment variable.

Security Characteristics of the Configuration
The configuration established here accomplishes two important security objectives:

• It allows the system administrator to run the external procedure listener as a user
account with limited privileges. By default, the listener would run as the account
that runs the Oracle server.

• It limits the external procedure listener to accept only IPC connections from the
local machine, as opposed to TCP/IP connections from anywhere.

But we’re not quite done. The tnsnames.ora file for the database in which the callout
originates will need an entry like the following:

1178 | Chapter 28: External Procedures

Download at WoweBook.Com

EXTPROC_CONNECTION_DATA =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = IPC)(KEY = extprocKey))
 (CONNECT_DATA = (SID = extprocSID) (PRESENTATION = RO))
)

You’ll recognize most of these settings from the earlier listener configuration. Note that
the values you used in the listener for extprocKey and extprocSID must match their
respective values here. The optional PRESENTATION setting is intended to improve
performance a bit; it tells the server, which might be listening for different protocols,
to assume that the client wants to communicate using the protocol known as
Remote-Ops (hence the RO).

You’ll want to be careful about what privileges the supplemental listener account has,
especially regarding its rights to modify files owned by the operating system or by the
oracle account. Also, by setting the TNS_ADMIN environment variable on Unix (or in
the registry of a Microsoft operating system), you can relocate the external procedure
listener’s listener.ora and sqlnet.ora files to a separate directory. This may be another
aspect of an overall approach to security.

Setting up these configuration files and creating supplemental OS-level user accounts
may seem rather distant from day-to-day PL/SQL programming, but these days, se-
curity is everybody’s business!

Oracle professionals should keep up with Oracle’s security alerts page
at http://otn.oracle.com/deploy/security/alerts.htm. The external proce-
dures problem I mentioned back in the section “Specifying the Listener
Configuration” on page 1176 first appeared as alert number 29, but
every Oracle shop should regularly review the entire list of issues to
discover what workarounds or patches to employ.

Setting Up Multithreaded Mode
Oracle Database 10g introduced a way for multiple sessions to share a single external
procedure process. Although this feature takes a bit of effort to set up, it could pay off
when you have many users running external procedures. Here are the minimum steps
required for your DBA to turn on multithreaded mode:

1. Shut down the external procedure listener. If you have configured a separate lis-
tener for it as recommended above, this step is simply:

OS> lsnrctl stop extproc_listener

2. Edit listener.ora: first, change your extprocKey (which by default would be
EXTPROC0 or EXTPROC1) to PNPKEY; second, to eliminate the possibility of
any dedicated listeners, delete the entire SID_LIST_EXTPROC_LISTENER sec-
tion.

3. Edit tnsnames.ora, changing your extprocKey to be PNPKEY.

Setting Up Multithreaded Mode | 1179

Download at WoweBook.Com

http://otn.oracle.com/deploy/security/alerts.htm

4. Restart the external procedure listener; for example:

OS> lsnrctl start extproc_listener

5. At the operating system command prompt, be sure you have set a value for the
AGTCTL_ADMIN environment variable. The value should consist of a fully quali-
fied directory path; this tells agtctl where to store its settings. (If you don’t set
AGTCTL_ADMIN, but do have TNS_ADMIN set, the latter will be used instead.)

6. If you need to send any environment variables to the agent such as
EXTPROC_DLLS or LD_LIBRARY_PATH, set these in the current operating sys-
tem session. Here are some examples (if using the bash shell or equivalent):

OS> export EXTPROC_DLLS=ANY
OS> export LD_LIBRARY_PATH=/lib:/usr/local/lib/sparcv9

7. Assuming that you are still using the external procedure’s default listener “SID,”
that is, PLSExtProc, run the following:

OS> agtctl startup extproc PLSExtProc

To see if it’s working, you can use the “lsnrctl services” command:

OS> lsnrctl services extproc_listener
...
Connecting to (ADDRESS=(PROTOCOL=IPC)(KEY=PNPKEY))
Services Summary...
Service "PLSExtProc" has 1 instance(s).
 Instance "PLSExtProc", status READY, has 1 handler(s) for this service...
 Handler(s):
 "ORACLE SERVER" established:0 refused:0 current:0 max:5 state:ready
 PLSExtProc
 (ADDRESS=(PROTOCOL=ipc)(KEY=#5746.1.4))

This output is what we hoped to see; the agent is listed in state “ready,” and is not
labeled as dedicated. This command also shows stats on the number of sessions; in the
output above, everything is “0” except the maximum number of sessions, which de-
faults to 5.

Internally, a multithreaded agent uses its own listener/dispatcher/worker bee arrange-
ment, allowing each session request to get handed off to its own thread of execution.
You can control the numbers of tasks using “agtctl set” commands. For example, to
modify the maximum number of sessions, first shut down the agent:

OS> agtctl shutdown PLSExtProc

Then set max_sessions:

OS> agtctl set max_sessions n PLSExtProc

Where n is the maximum number of Oracle sessions that can connect to the agent
simultaneously.

Finally, restart the agent:

OS> agtctl startup extproc PLSExtProc

1180 | Chapter 28: External Procedures

Download at WoweBook.Com

When tuning your setup, there are several parameter settings to be aware of:

Parameter Description Default

max_dispatchers Maximum number of dispatcher threads, which hand off requests
to the task threads

1

max_task_threads Maximum number of “worker bee” threads 2

max_sessions Maximum number of Oracle sessions that can be serviced by the
multithreaded extproc process

5

listener_address Addresses with which the multithreaded process “registers” with
an already-running listener

(ADDRESS_LIST=
 (ADDRESS=
 (PROTOCOL=IPC)
 (KEY=PNPKEY))
 (ADDRESS=
 (PROTOCOL=IPC)
 (KEY=listenerSID))
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=127.0.0.1)
 (PORT=1521)))

By the way, while testing this feature, I discovered that whenever I bounced the listener,
afterwards I needed to bounce the agent as well. Fortunately, the agtctl utility kindly
remembers any parameter adjustments you have made from the default values.

Some experimentation may be needed to optimize the agent-specific parameters against
the number of agent processes. While I have not experimented enough with multi-
threaded agents to offer any rules of thumb, let’s at least take a look at the changes
required to use two multithreaded agents. Follow the steps given earlier, but this time,
in Step 7, you will start two agents with unique names:

OS> agtctl startup extproc PLSExtProc_001
...
OS> agtctl startup extproc PLSExtProc_002

You must also modify tnsnames.ora (Step 3 above) to be aware of these new agent
names; because you probably want Oracle Net to “load balance” across the agents, edit
the EXTPROC_CONNECTION_DATA section of tnsnames.ora to be:

EXTPROC_CONNECTION_DATA =
 (DESCRIPTION_LIST =
 (LOAD_BALANCE = TRUE)
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = IPC)(KEY = PNPKEY))
 (CONNECT_DATA = (SID = PLSExtProc_001)(PRESENTATION = RO))
)
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = ipc)(key = PNPKEY))
 (CONNECT_DATA = (SID = PLSExtProc_002)(PRESENTATION = RO))
)
)

Setting Up Multithreaded Mode | 1181

Download at WoweBook.Com

You need to add the DESCRIPTION_LIST parameter and include one description sec-
tion for each of the agents.

With this new configuration, each time Oracle Net receives a request from PL/SQL to
connect to an external procedure, Oracle Net will randomly connect to one of the agents
listed; if the connection fails (for example, because it already has the maximum number
of sessions connected), Oracle Net will try the other agent, until it either makes a suc-
cessful connection or fails to connect to any of them. Such a failure will result in
ORA-28575: unable to open RPC connection to external procedure agent.

You can read more about multithreaded mode and agtctl in Oracle’s Application De-
velopment Guide—Fundamentals and the Heterogenous Connectivity Administrator’s
Guide. Oracle Net’s load balancing features are described in the Net Services Adminis-
trator’s Guide and the Net Services Reference.

One final point: when using multithreaded agents, the C program that implements an
external procedure must be thread-safe, and writing such a beasty is not necessarily
trivial. See the notes at the end of this chapter for a few of the caveats.

Creating an Oracle Library
The SQL statement CREATE LIBRARY defines an alias in the Oracle data dictionary
for the external shared library file, allowing the PL/SQL runtime engine to find the
library when it is called. The only users who can create libraries are administrators and
those to whom they have granted the CREATE LIBRARY or CREATE ANY LIBRARY
privilege.

The general syntax for the CREATE LIBRARY command is:

CREATE [OR REPLACE] LIBRARY library_name
AS
 'path_to_file' [AGENT 'agent_db_link'] ;

where:

library_name
A legal PL/SQL identifier. This name will be used in subsequent bodies of external
procedures that need to call the shared object (or DLL) file. The library name can-
not be the same as a table, top-level PL/SQL object, or anything else in the main
namespace.

path_to_file
The fully qualified pathname to the shared object (or DLL) file, enclosed in single
quotes.

In Oracle9i Database, it became possible to use environment variables in
path_to_file. In particular, if the operating system-level account sets the variable
before starting the listener, you can put this variable in the CREATE LIBRARY
statement; for example:

1182 | Chapter 28: External Procedures

Download at WoweBook.Com

CREATE LIBRARY extprocshell_lib AS '${ORACLE_HOME}/lib/extprocsh.so'; -- Unix
CREATE LIBRARY extprocshell_lib AS '%{ORACLE_HOME}%\bin\extprocsh.dll'; -- MS

This may be a good thing to do for the sake of script portability.

You can also use an environment variable that you supply via EXTPROC_DLLS
in the listener.ora file, as discussed earlier.

AGENT 'agent_db_link'
(Optional) Database link to which the library owner has access. You must make
sure that there is an entry in tnsnames.ora for the service name you specify when
creating agent_db_link, and that the entry includes an external procedure address
and connection data. Using the AGENT clause allows the external procedure to
run on a different database server, although it must still be on the same machine.
The AGENT clause was introduced in Oracle9i Database.

Here are some things to keep in mind when issuing a CREATE LIBRARY statement:

• The statement must be executed by the DBA or by a user who has been granted
CREATE LIBRARY or CREATE ANY LIBRARY privileges.

• As with most other database objects, libraries are owned by a specific Oracle user
(schema). The owner automatically has execution privileges, and can grant and
revoke the EXECUTE privilege on the library to other users.

• Other users who have received EXECUTE privilege on a library can refer to it in
their own call specs using owner.library syntax, or they can create and use syno-
nyms for the library if desired.

• Oracle doesn’t check whether the named shared library file exists when you execute
the CREATE LIBRARY statement. Nor will it check when you later create an ex-
ternal procedure declaration for a function in that library. If you have an error in
the path, you won’t know it until the first time you try to execute the function.

You need to create only a single Oracle library in this fashion for each shared library
file you use. There can be any number of callable C functions in the library file and any
number of call specifications that refer to the library.

Let’s take a closer look at how to write a PL/SQL subprogram that maps the desired
routine from the shared library into a PL/SQL-callable form.

Writing the Call Specification
An external procedure can serve as the implementation of any program unit other than
an anonymous block. In other words, a call specification can appear in a top-level
procedure or function, a packaged procedure or function, or an object method. What’s
more, you can define the call spec in either the specification or the body of packaged
program units (or in either the spec or body of object types). Here are some schematic
examples:

Writing the Call Specification | 1183

Download at WoweBook.Com

CREATE FUNCTION name (args) RETURN datatype
AS callspec;

You should recognize the form shown here as that of the shell() function shown earlier
in the chapter. You can also create a procedure:

CREATE PROCEDURE name
AS callspec;

In this case, the corresponding C function would be typed void.

The next form shows a packaged function that does not need a package body:

CREATE PACKAGE pkgname
AS
 FUNCTION name RETURN datatype
 AS callspec;
END;

However, when the time comes to modify the package, you would have to recompile
the specification. Depending on the change you need to make, you may considerably
reduce the recompilation ripple effect by moving the call spec into the package body:

CREATE PACKAGE pkgname
AS
 PROCEDURE name;
END;

CREATE PACKAGE BODY pkgname
AS
 PROCEDURE name
 AS callspec;
END;

Unpublished or private program units inside packages can also be implemented as
external procedures. And finally, using a call spec in an object type method is quite
similar to using it in a package; that is, you can put the call spec in the object type
specification or in the corresponding type body.

The Call Spec: Overall Syntax
It is the AS LANGUAGE clause† that distinguishes the call spec from a regular stored
program.

Syntactically, the clause looks like this:

AS LANGUAGE C
 LIBRARY library_name
 [NAME external_function_name]
 [WITH CONTEXT]
 [AGENT IN (formal_parameter_name)]
 [PARAMETERS (external_parameter_map)] ;

† Oracle8 Database did not have this clause, offering instead a now-deprecated form, AS EXTERNAL.

1184 | Chapter 28: External Procedures

Download at WoweBook.Com

where:

AS LANGUAGE C
Another option here is AS LANGUAGE JAVA, as covered in Chapter 27. There
are no other supported languages.

library_name
Name of the library, as defined in a CREATE LIBRARY statement, which you have
privilege to execute, either by owning it or by receiving the privilege.

external_function_name
Name of the function as defined in the C language library. If the name is lowercase
or mixed case, you must put double quotes around it. You can omit this parameter,
in which case the name of the external routine must match your PL/SQL module’s
name (defaults to uppercase).

WITH CONTEXT
The presence of this clause indicates that you want PL/SQL to pass a “context
pointer” to the called program. The called program must be expecting the pointer
as a parameter of type OCIExtProcContext * (defined in the C header file ociextp.h).

This “context” that you are passing via a pointer is an opaque data structure that
contains Oracle session information. The called procedure doesn’t need to ma-
nipulate the data structure’s content directly; instead, the structure simply facili-
tates other OCI calls that perform various Oracle-specific tasks. These tasks include
raising predefined or user-defined exceptions, allocating session-only memory
(which gets released as soon as control returns to PL/SQL), and obtaining infor-
mation about the Oracle user’s environment.

AGENT IN (formal_parameter_name)
This clause is a way of designating a different agent process, similar to the AGENT
clause on the library, but deferring the selection of the agent until runtime. The
idea is that you pass in the value of the agent as a formal PL/SQL parameter to the
call spec; it will supersede the name of the agent given in the library, if any. To
learn a little more about the AGENT IN clause, see the section “Nondefault
Agents” on page 1196.

PARAMETERS (external_parameter_map)
This section gives the position and datatypes of parameters exchanged between
PL/SQL and C. The external_parameter_map is a comma-delimited list of elements
that match positionally with the parameters in the C function or that supply ad-
ditional properties.

Getting the mapping right is potentially the most complex task you face, so the next
section spends a bit of time examining the wilderness of details.

Writing the Call Specification | 1185

Download at WoweBook.Com

Parameter Mapping: The Example Revisited
Consider for a moment the problems of exchanging data between PL/SQL and C.
PL/SQL has its own set of datatypes that are only somewhat similar to those you find
in C. PL/SQL variables can be NULL and are subject to three-valued truth table logic;
C variables have no equivalent concept. Your C library might not know which national
language character set you’re using to express alphanumeric values. And should your
C functions expect a given argument by value or by reference (pointer)?

I’d like to start with an example that builds on the shell program illustrated earlier in
the chapter. When we last saw the shell() function, it had no protection from being
called with a NULL argument instead of a real command. It turns out that calling shell
(NULL) results in the runtime error ORA-01405: fetched column value is NULL. That
may be a perfectly acceptable behavior in some applications, but what if I prefer that
the external procedure simply respond to a null input with a null output?

Properly detecting an Oracle NULL in C requires PL/SQL to transmit an additional
parameter known as an indicator variable. Likewise, for the C program to return an
Oracle NULL, it must return a separate indicator parameter back to PL/SQL. While
Oracle sets and interprets this value automatically on the PL/SQL side, the C applica-
tion will need to get and set this value explicitly.

It’s probably simplest to illustrate this situation by looking at how the PL/SQL call spec
will change:

FUNCTION shell(cmd IN VARCHAR2)
 RETURN PLS_INTEGER
AS
 LANGUAGE C
 LIBRARY extprocshell_lib
 NAME "extprocsh"
 PARAMETERS (cmd STRING, cmd INDICATOR, RETURN INDICATOR, RETURN INT);

Although the PL/SQL function’s formal parameters can appear anywhere in the
PARAMETERS mapping, the items in the mapping must correspond in position and
in associated datatype with the parameters in the C function. Any RETURN mapping
that you need to provide must be the last item on the list.

You can omit RETURN from the parameter map if you want Oracle to use the default
mapping (explained later). This would actually be OK in this case, although the indi-
cator still has to be there:

FUNCTION shell(cmd IN VARCHAR2)
 RETURN PLS_INTEGER
AS
 LANGUAGE C
 LIBRARY extprocshell_lib
 NAME "extprocsh"
 PARAMETERS (cmd STRING, cmd INDICATOR, RETURN INDICATOR);

1186 | Chapter 28: External Procedures

Download at WoweBook.Com

The good news is that even though you’ve made a number of changes to the call spec
compared with the version earlier in the chapter, a program that invokes the shell()
function sees no change in the number or datatype of its parameters.

Let’s turn now to the new version of the C program, which adds two parameters, one
for each indicator:

 1 #include <ociextp.h>
 2
 3 int extprocsh(char *cmd, short cmdInd, short *retInd)
 4 {
 5 if (cmdInd == OCI_IND_NOTNULL)
 6 {
 7 *retInd = (short)OCI_IND_NOTNULL;
 8 return system(cmd);
 9 } else
10 {
11 *retInd = (short)OCI_IND_NULL;
12 return 0;
13 }
14 }

The changes you’ll notice are summarized in the following table:

Line(s) Changes

1 This include file appears in the %ORACLE_HOME%\oci\include subdirectory on Microsoft platforms; on Unix-like
machines, I’ve spotted this file in $ORACLE_HOME/rdbms/demo (Oracle9i Database) and $ORACLE_HOME/rdbms/
public (Oracle Database 10g), although it may be somewhere else on your system.

3 Notice that the command indicator is short, but the return indicator is short *. That follows the argument-
passing convention of using call-by-value for input parameters sent from PL/SQL to C, but call-by-reference for output
or return parameters sent from C to PL/SQL.

5, 7 The indicator variable is either OCI_IND_NULL or OCI_IND_NOTNULL; these are special #define values from Oracle’s
include file. Here, explicit assignments in the code set the return indicator to be one or the other.

11–12 The return indicator takes precedence over the return of 0; the latter is simply ignored.

Here are some simple commands that will compile and link the above program, first
on my 64-bit Solaris machine (still using GCC):

gcc -m64 extprocsh.c -fPIC -G -I$ORACLE_HOME/rdbms/public -o extprocsh.so

And here are the equivalent commands on my Microsoft Windows machine (all on one
line):

c:\MinGW\bin\gcc -Ic:\oracle\product\10.2.0\db_1\oci\include extprocsh.c
-shared -o extprocsh.dll

And now, steel yourself to face the intimidating details of parameter mapping.

Writing the Call Specification | 1187

Download at WoweBook.Com

Parameter Mapping: The Full Story
As shown in the previous section, when moving data between PL/SQL and C, each
PL/SQL datatype maps to an external datatype, identified by a PL/SQL keyword, which
in turn maps to an allowed set of C types.

You identify an external datatype in the PARAMETERS clause with a keyword known
to PL/SQL. In some cases, the external datatypes have the same name as the C type,
but in others they don’t. For example, if you pass a PL/SQL variable of type
PLS_INTEGER, the corresponding default external type is INT, which maps to an int
in C. But Oracle’s VARCHAR2 type uses the STRING external datatype, which nor-
mally maps to a char * in C.

Table 28-2 lists all the possible datatype conversions supported by Oracle’s PL/SQL-
to-C interface. Note that the allowable conversions depend on both the datatype and
the mode of the PL/SQL formal parameter, as the previous example illustrated. The
defaults, if ambiguous, are shown in bold in the table.

Table 28-2. Legal mappings of PL/SQL and C datatypes

 C datatypes for PL/SQL
parameters that are:

Datatype of PL/SQL parameter
PL/SQL keyword identify-
ing external type

N or function return
values

IN OUT, OUT, or any
parameter designated as be-
ing passed BY REFERENCE

Long integer family: BI-
NARY_INTEGER, BOOLEAN,
PLS_INTEGER

INT, UNSIGNED INT, CHAR,
UNSIGNED CHAR, SHORT,
UNSIGNED SHORT, LONG,
UNSIGNED LONG, SB1, UB1,
SB2, UB2, SB4, UB4, SIZE_T

int, unsigned int, char,
unsigned char, short,
unsigned short, long,
unsigned long, sb1,
ub1, sb2, ub2, sb4, ub4,
size_t

Same list of types as at left, but
use a pointer (for example, the
int * rather than int)

Short integer family: NATURAL,
NATURALN, POSITIVE, POSITIVEN,
SIGNTYPE

Same as above, except de-
fault is UNSIGNED INT

Same as above, except
default is unsigned int

Same as above, except default
is unsigned int *

Character family: VARCHAR2,
CHAR, NCHAR, LONG,
NVARCHAR2, VARCHAR, CHARAC-
TER, ROWID

STRING, OCISTRING char *, OCIString * char *, OCIString *

NUMBER OCINUMBER OCINumber * OCINumber *

DOUBLE PRECISION DOUBLE double double *

FLOAT, REAL FLOAT float float *

RAW, LONG RAW RAW, OCIRAW unsigned char *,
OCIRaw *

unsigned char *, OCIRaw *

DATE OCIDATE OCIDate * OCIDate *

1188 | Chapter 28: External Procedures

Download at WoweBook.Com

 C datatypes for PL/SQL
parameters that are:

Datatype of PL/SQL parameter
PL/SQL keyword identify-
ing external type

N or function return
values

IN OUT, OUT, or any
parameter designated as be-
ing passed BY REFERENCE

Timestamp family: TIMESTAMP,
TIMESTAMP WITH TIME ZONE,
TIMESTAMP WITH LOCAL TIME
ZONE

OCIDATETIME OCIDateTime * OCIDateTime *

INTERVAL DAY TO SECOND, INTER-
VAL YEAR TO MONTH

OCIINTERVAL OCIInterval * OCIInterval *

BFILE, BLOB, CLOB, NCLOB OCILOBLOCATOR OCILOBLOCATOR * OCILOBLOCATOR **

Descriptor of user-defined type
(collection or object)

TDO OCIType * OCIType *

Value of user-defined collection OCICOLL OCIColl **, OCIArray **,
OCITable **

OCIColl **, OCIArray **,
OCITable **

Value of user-defined object DVOID dvoid * dvoid * (use dvoid ** for non-
final types that are IN OUT or
OUT)

In some simple cases where you are passing only numeric arguments and where the
defaults are acceptable, you can actually omit the PARAMETERS clause entirely. How-
ever, you must use it when you want to pass indicators or other data properties.

Each piece of supplemental information we want to exchange will be passed as a sep-
arate parameter, and will appear both in the PARAMETERS clause and in the C lan-
guage function specification.

More Syntax: The PARAMETERS Clause
The PARAMETERS clause provides a comma-delimited list that may contain five dif-
ferent kinds of elements:

• The name of the parameter followed by the external datatype identifier.

• The keyword RETURN and its associated external datatype identifier.

• A “property” of the PL/SQL parameter or return value, such as a nullness indicator
or an integer corresponding to its length.

• The keyword CONTEXT, which is a placeholder for the context pointer.

• The keyword SELF, in the case of an external procedure for an object type member
method.

Elements (other than CONTEXT) follow the syntax pattern:

{pname | RETURN | SELF} [property] [BY REFERENCE] [external_datatype]

Writing the Call Specification | 1189

Download at WoweBook.Com

If your call spec includes WITH CONTEXT, the corresponding element in the param-
eter list is simply:

CONTEXT

By convention, if you have specified WITH CONTEXT, you should make CONTEXT
the first argument because that is its default location if the rest of the parameter map-
pings are defaulted.

Parameter entries have the following meanings:

pname | RETURN | SELF
The name of the parameter as specified in the formal parameter list of the PL/SQL
module, or the keyword RETURN, or the keyword SELF (in the case of a member
method in an object type). PL/SQL parameter names do not need to be the same
as the names of formal parameters in the C language routine. However, parameters
in the PL/SQL parameter list must match one for one, in order, those in the C
language specification.

property
One of the following: INDICATOR, INDICATOR STRUCT, LENGTH, MAX-
LEN, TDO, CHARSETID, or CHARSETFORM. These are described in the next
section.

BY REFERENCE
Pass the parameter by reference. In other words, the module in the shared library
is expecting a pointer to the parameter rather than its value. BY REFERENCE only
has meaning for scalar IN parameters that are not strings, such as
BINARY_INTEGER, PLS_INTEGER, FLOAT, DOUBLE PRECISION, and
REAL. All others (IN OUT and OUT parameters, as well as IN parameters of type
STRING) are always passed by reference, and the corresponding C prototype must
specify a pointer.

external_datatype
The external datatype keyword from the second column of Table 28-2. If this is
omitted, the external datatype will default as indicated in the table.

PARAMETERS Properties
This section describes each possible property you can specify in a PARAMETERS
clause.

The INDICATOR property

The INDICATOR property is a flag to denote whether the parameter is null, and has
the following characteristics:

Allowed external types
short (the default), int, long

1190 | Chapter 28: External Procedures

Download at WoweBook.Com

Allowed PL/SQL types
All scalars can use an INDICATOR; to pass indicator variables for composite types
such as user-defined objects and collections, use the INDICATOR STRUCT prop-
erty.

Allowed PL/SQL modes
IN, IN OUT, OUT, RETURN

Call mode
By value for IN parameters (unless BY REFERENCE specified), and by reference
for IN OUT, OUT, and RETURN variables.

You can apply this property to any parameter, in any mode, including RETURNs. If
you omit an indicator, PL/SQL is supposed to think that your external routine will
always be non-null (but it’s not that simple; see the sidebar “Indicating Without Indi-
cators?” on page 1191).

When you send an IN variable and its associated indicator to the external procedure,
Oracle sets the indicator’s value automatically. However, if your C module is returning
a value in a RETURN or OUT parameter and an indicator, your C code must set the
indicator value.

For an IN parameter, the indicator parameter in your C function might be:

short pIndicatorFoo

Or for an IN OUT parameter, the indicator might be:

short *pIndicatorFoo

In the body of your C function, you should use the #define constants OCI_IND_NOT-
NULL and OCI_IND_NULL, which will be available in your program if you #include
oci.h. Oracle defines these as:

typedef sb2 OCIInd;
#define OCI_IND_NOTNULL (OCIInd)0 /* not NULL */
#define OCI_IND_NULL (OCIInd)(-1) /* NULL */

Indicating Without Indicators?
What happens if you don’t specify an indicator variable for a string and then return an
empty C string? We wrote a short test program to find out:

void mynull(char *outbuff){
 outbuff[0] = '\0';
}

The call spec could look like this:

CREATE OR REPLACE PROCEDURE mynull
 (res OUT VARCHAR2)
AS
 LANGUAGE C
 LIBRARY mynulllib
 NAME "mynull";

Writing the Call Specification | 1191

Download at WoweBook.Com

When invoked as an external procedure, PL/SQL does actually interpret this parameter
value as a NULL. The reason appears to be that the STRING external type is special;
you can also indicate a NULL value to Oracle by passing a string of length 2 where the
first byte is \0. (This works only if you omit a LENGTH parameter.)

But you probably shouldn’t take this lazy way out; use an indicator instead!

The LENGTH property

The LENGTH property is an integer indicating the number of characters in a character
parameter, and has the following characteristics:

Allowed external types
int (the default), short, unsigned short, unsigned int, long, unsigned long

Allowed PL/SQL types
VARCHAR2, CHAR, RAW, LONG RAW

Allowed PL/SQL modes
IN, IN OUT, OUT, RETURN

Call mode
By value for IN parameters (unless BY REFERENCE specified), and by reference
for IN OUT, OUT, and RETURN variables

The LENGTH property is mandatory for RAW and LONG RAW, and is available as
a convenience to your C program for the other datatypes in the character family. When
passing a RAW from PL/SQL to C, Oracle will set the LENGTH property; however,
your C program must set LENGTH if you need to pass the RAW data back.

For an IN parameter, the indicator parameter in your C function might be:

int pLenFoo

Or for an OUT or IN OUT parameter, it might be:

int *pLenFoo

The MAXLEN property

The MAXLEN property is an integer indicating the maximum number of characters in
a string parameter, and has the following characteristics:

Allowed external types
int (the default), short, unsigned short, unsigned int, long, unsigned long

Allowed PL/SQL types
VARCHAR2, CHAR, RAW, LONG RAW

Allowed PL/SQL modes
IN OUT, OUT, RETURN

1192 | Chapter 28: External Procedures

Download at WoweBook.Com

Call mode
By reference

MAXLEN applies to IN OUT, OUT and RETURN parameters and to no other mode.
If you attempt to use it for an IN, you’ll get the compile-time error PLS-00250: incorrect
usage of MAXLEN in parameters clause.

Unlike the LENGTH parameter, the MAXLEN data is always passed by reference.

Here’s an example of the C formal parameter:

int *pMaxLenFoo

The CHARSETID and CHARSETFORM properties

The CHARSETID and CHARSETFORM properties are flags denoting information
about the character set, and have the following characteristics:

Allowed external types
unsigned int (the default), unsigned short, unsigned long

Allowed PL/SQL types
VARCHAR2, CHAR, CLOB

Allowed PL/SQL modes
IN, IN OUT, OUT, RETURN

Call mode
By reference

If you are passing data to the external procedure that is expressed in a nondefault
character set, these properties will let you communicate the character set’s ID and form
to the called C program. The values are read-only and should not be modified by the
called program. Here is an example of a PARAMETERS clause that includes character
set information:

 PARAMETERS (CONTEXT, cmd STRING, cmd INDICATOR, cmd CHARSETID,
 cmd CHARSETFORM);

Oracle sets these additional values automatically, based on the character set in which
you have expressed the cmd argument. For more information about Oracle’s globali-
zation support in the C program, refer to Oracle’s OCI documentation.

Raising an Exception from the Called C Program
The shell() program shown earlier in the chapter is very, um, “C-like:” it is a function
whose return value contains the status code, and the caller must check the return value
to see if it succeeded. Wouldn’t it make more sense—in PL/SQL, anyway—for the
program to be a procedure that simply raises an exception when there’s a problem?
Let’s take a brief look at how to perform the OCI equivalent of RAISE_APPLICA-
TION_ERROR.

Raising an Exception from the Called C Program | 1193

Download at WoweBook.Com

In addition to the easy change from a function to a procedure, there are several other
things I need to do:

• Pass in the context area.

• Decide on an error message and an error number in the 20001–20999 range.

• Add a call to the OCI service routine that raises an exception.

The changes to the call spec are trivial:

/* File on web: extprocsh.sql */
PROCEDURE shell(cmd IN VARCHAR2)
AS
 LANGUAGE C
 LIBRARY extprocshell_lib
 NAME "extprocsh"
 WITH CONTEXT
 PARAMETERS (CONTEXT, cmd STRING, cmd INDICATOR);
/

(I also removed the return parameter and its indicator.) The following code shows how
to receive and use the context pointer in the call needed to raise the exception:

/* File on web: extprocsh.c */
1 #include <ociextp.h>
2 #include <errno.h>
3
4 void extprocsh(OCIExtProcContext *ctx, char *cmd, short cmdInd)
5 {
6 int excNum = 20001; # a convenient number :->
7 char excMsg[512];
8 size_t excMsgLen;
9
10 if (cmdInd == OCI_IND_NULL)
11 return;
12
13 if (system(cmd) != 0)
14 {
15 sprintf(excMsg, "Error %i during system call: %.*s", errno, 475,
16 strerror(errno));
17 excMsgLen = (size_t)strlen(excMsg);
18
19 if (OCIExtProcRaiseExcpWithMsg(ctx, excNum, (text *)excMsg, excMsgLen)
20 != OCIEXTPROC_SUCCESS)
21 return;
22 }
23
24 }

1194 | Chapter 28: External Procedures

Download at WoweBook.Com

Note the following lines:

Line(s) Description

4 The first of the formal parameters is the context pointer.

6 You can use whatever number in Oracle’s user-defined error number range you want; in general, I advise against
hardcoding these values, but, er, this is a “do as I say, not as I do” example.

7 The maximum size for the text in a user-defined exception is 512 bytes.

8 A variable to hold the length of the error message text, which will be needed in the OCI call that raises the exception.

10–11 Here, I am translating the NULL argument semantics of the earlier function into a procedure: when called with NULL,
nothing happens.

13 A zero return code from system() means that everything executed perfectly; a nonzero code corresponds to either an
error or a warning.

15,-17 These lines prepare the variables containing the error message and its length.

19–20 This OCI function, which actually raises the user-defined exception, is where the context pointer actually gets used.

Now, how do we compile this baby? First, Unix/Linux:

gcc -m64 -extprocsh.c -I$ORACLE_HOME/rdbms/public -fPIC -shared -o extprocsh.so

That was easy enough. But on Microsoft Windows, I found that I needed an ex-
plicit .def file to define the desired entry point (more precisely, to exclude potential
entry points found in Oracle’s oci.lib):

/* File on web: build_extprocsh.bat */
echo LIBRARY extprocsh.dll > extprocsh.def
echo EXPORTS >> extprocsh.def
echo extprocsh >> extprocsh.def

Although we’ve had to break it to fit in the book’s margins, the following line must be
entered as one long string:

c:\MinGW\bin\gcc -c extprocsh.def extprocsh.c -IC:\oracle\product\10.2.0\db_1\oci\
include C:\oracle\product\10.2.0\db_1\oci\lib\msvc\oci.lib-shared -o extprocsh.dll

Here’s what a test of the function should yield:

SQL> CALL shell('garbage');
CALL shell('garbage')
 *
ERROR at line 1:
ORA-20001: Error 2 during system call: No such file or directory

That is, you should get a user-defined −20001 exception with the corresponding text
“no such file or directory.” Unfortunately, I discovered that system() does not always
return meaningful error codes, and on some platforms the message is ORA-20001:
Error 0 during system call: Error 0. (Fixing this probably requires using a call other than
system(). Another reader exercise.)

Raising an Exception from the Called C Program | 1195

Download at WoweBook.Com

A number of other OCI routines are unique to writing external procedures. Here is the
complete list:

OCIExtProcAllocCallMemory
Allocates memory that Oracle will automatically free when control returns to
PL/SQL.

OCIExtProcRaiseExcp
Raises a predefined exception by its Oracle error number.

OCIExtProcRaiseExcpWithMsg
Raises a user-defined exception, including a custom error message (illustrated in
the previous example).

OCIExtProcGetEnv
Allows an external procedure to perform OCI callbacks to the database to execute
SQL or PL/SQL.

These all require the context pointer. Refer to Oracle’s Application Developer’s Guide—
Fundamentals for detailed documentation and examples that use these routines.

Nondefault Agents
Starting with Oracle9i Database, it is possible to run external procedure agents via
database links that connect to other local database servers. This functionality enables
you to spread the load of running expensive external programs onto other database
instances.

Even without other servers, running an external procedure through a nondefault agent
launches a separate process. This can be handy if you have a recalcitrant external pro-
gram. Launching it via a nondefault agent means that even if its extproc process crashes,
it won’t have any effect on other external procedures running in the session.

As a simple example of a nondefault agent, here is a configuration that allows an agent
to run on the same database but in a separate extproc task. The tnsnames.ora file needs
an additional entry such as:

agent0 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = IPC)(KEY=extprocKey))
 (CONNECT_DATA = (SID = PLSExtProc))
)

Here, extprocKey can just be the same key as in your EXTPROC_CONNEC-
TION_DATA entry.

Because agents are created with a database link, we’ll need to create one of those:

SQL> CREATE DATABASE LINK agent0link
 2 CONNECT TO username IDENTIFIED BY password
 3 USING 'agent0';

1196 | Chapter 28: External Procedures

Download at WoweBook.Com

Now, finally, the agent can appear in a CREATE LIBRARY statement such as:

CREATE OR REPLACE LIBRARY extprocshell_lib_with_agent
 AS 'c:\oracle\admin\local\lib\extprocsh.dll'
 AGENT 'agent0';

Any call spec that was written to use this library will authenticate and connect through
this agent0 link, launching an extproc task separate from the default extproc task. In
this way, you could separate tasks from each other (for example, you could send the
thread-safe tasks to a multithreading agent and the others to dedicated agents).

Oracle also supports a dynamic arrangement that allows you to pass in the name of the
agent as a parameter to the external procedure. To take advantage of this feature, use
the AGENT IN clause in the call spec. For example (changes in boldface):

CREATE OR REPLACE PROCEDURE shell2 (name_of_agent IN VARCHAR2, cmd VARCHAR2)
AS
 LANGUAGE C
 LIBRARY extprocshell_lib
 NAME "extprocsh2"
 AGENT IN (name_of_agent)
 WITH CONTEXT
 PARAMETERS (CONTEXT, name_of_agent STRING, cmd STRING, cmd INDICATOR);

Notice that I had to include the name of the agent in the list of parameters. Oracle
enforces a rule that every formal parameter must have a corresponding entry in the
PARAMETERS clause. So I have to modify my external C library. In my case, I merely
added a second entry point, extprocsh2(), to the library with the following trivial
function:

void extprocsh2(OCIExtProcContext *ctx, char *agent, char *cmd, short cmdInd)
{
 extprocsh(ctx, cmd, cmdInd);
}

My code just ignores the agent string. Now, though, I can invoke my shell2 procedure
as in the following:

CALL shell2('agent0', 'whatever');

If you want your stored program to somehow invoke an external procedure on a remote
machine, you have a couple of options. You could implement an external procedure
on the local machine which is just a “pass-through” program, making a C-based remote
procedure call on behalf of PL/SQL. Alternatively, you could implement a stored PL/
SQL program on the remote machine as an external procedure, and call it from the
local machine via a database link. What isn’t possible is setting up an external procedure
listener to accept networked connections from a different machine.

Nondefault Agents | 1197

Download at WoweBook.Com

A Debugging Odyssey
It turns out that some debuggers, including the GNU debugger (GDB), can attach to a
running process and debug external procedures. Here is an outline of how I got this to
work on Solaris and on Windows XP.

As a preliminary step on both platforms, I compiled the shared library file with the
compiler option (-g in the case of GCC) needed to include symbolic information for
the debugger. That was the easy part. During testing, I discovered the slap-hand-on-
forehead fact that I could not debug my 64-bit Solaris external procedure with a 32-bit
debugger, so I also had to build and install a 64-bit gdb executable. This step began in
the root directory of the GDB source tree with the command:

OS> CC="gcc -m64" ./configure

At this point, the GDB build presented many surprises; it probably would have helped
to have a competent system administrator looking over my shoulder!

Another preparatory step, although optional, involves running the script dbgextp.sql,
which should be in the plsql/demo directory. If you’re using Oracle Database 10g or
later, you won’t find this directory in your default $ORACLE_HOME distribution be-
cause Oracle moved the entire directory to the Companion CD. However, you may be
able to extract the plsql/demo directory with a command like this:

OS> jar xvf /cdrom/stage/Components/oracle.rdbms.companion/10. x.x.x.x /1/
DataFiles/filegroup1.jar

If you do manage to locate the dbgextp.sql file, you’ll find that it contains some useful
inline comments, which you should definitely read. Then run the script as yourself (not
as SYS) to build a package named DEBUG_EXTPROC. This package contains a pro-
cedure whose sole purpose in life is to launch the external procedure agent, thus al-
lowing you to discover the corresponding process ID (PID). In a fresh SQL*Plus session,
you can run it as follows:

SQL> EXEC DEBUG_EXTPROC.startup_extproc_agent

This causes an extproc process to launch; its PID can be found using ps -ef or pgrep
extproc.

Why do I say the DEBUG_EXTPROC package is optional? Because you can also launch
the agent by running any old external procedure; or, if you happen to be using multi-
threaded agents, the process will already be pre-spawned, and you can probably figure
out the PID without breaking a sweat.

At any rate, armed with the PID, you can start the debugger and attach to the running
process:

OS> gdb $ORACLE_HOME/bin/extproc pid

When I first tried this, I got a “permission denied” error, which was cured by logging
in as the oracle account.

I then set a breakpoint on the “pextproc” symbol, per the instructions in the file
dbgextp.sql. Next, in my SQL*Plus session, I invoked my external procedure using:

1198 | Chapter 28: External Procedures

Download at WoweBook.Com

SQL> CALL shell(NULL);

I issued a GDB “continue,” and extproc promptly hit the pextproc breakpoint. Next, I
executed a GDB “share” command so the debugger would read the symbols in my just-
loaded external shared library; and, finally, I was able to set a breakpoint on the ex-
tprocsh() external procedure, issue a “continue,” and boom—I’m in my code! It worked
pretty well after that, allowing me to step through each line of my code, examine
variables, etc.

I found that debugging external procedures with Cygwin’s GDB on Microsoft platforms
required the following adjustments:

• I had to modify the listener service in the Windows control panel to execute under
the authority of my own user account rather than under that of “Local System.”

• Instead of ps -ef, I used Microsoft’s tasklist.exe program (or the Windows task
manager) to obtain the extproc PID.

• To view the external procedure’s source code during the debugging session, I found
that I needed to launch GDB from the directory containing its source file (there is
probably another way to do this).

On Solaris, my tests were performed using a 64-bit build of GDB 6.3 on Solaris 2.8. On
my Windows XP machine, I used Cygwin’s GDB 6.3 binary with no problems, but was
not able to get the MinGW GDB 5.2.1 binary to work.

Maintaining External Procedures
Here are some assorted bits of information that will assist you in creating, debugging,
and managing external procedures.

Dropping Libraries
The syntax for dropping a library is simply:

DROP LIBRARY library_name;

The Oracle user who executes this command must have the DROP LIBRARY or DROP
ANY LIBRARY privilege.

Oracle does not check dependency information before dropping the library. This fact
is useful if you need to change the name or location of the shared object file to which
the library points. You can just drop it and rebuild it, and any dependent routines will
continue to function. (More useful, perhaps, would be a requirement that you use a
DROP LIBRARY FORCE command, but such an option does not exist.)

Before you drop the library permanently, you may wish to look in the
DBA_DEPENDENCIES view to see if any PL/SQL module relies on the library.

Maintaining External Procedures | 1199

Download at WoweBook.Com

Data Dictionary
There are a few entries in the data dictionary that help manage external procedures.
Table 28-3 shows the USER_ version of the dictionary tables, but note that there are
corresponding entries for DBA_ and ALL_.

Table 28-3. Data dictionary views for external procedures

To answer the question... Use this view Example

What libraries have I created? USER_LIBRARIES SELECT *
FROM user_libraries;

What stored PL/SQL programs use the xyz
library in a call spec?

USER_DEPENDENCIES SELECT *
 FROM user_dependencies
 WHERE referenced_name = 'XYZ';

What external procedure agents (both
dedicated and multithreaded) are
currently running?

V$HS_AGENT SELECT * FROM V$HS_AGENT
 WHERE UPPER(program) LIKE 'EXTPROCS%'

What Oracle sessions are using which
agents?

V$HS_SESSION SELECT s.username, h.agent_id
 FROM V$SESSION s, V$HS_SESSION h
 WHERE s.sid = h.sid;

Rules and Warnings
As with almost all things PL/SQL, external procedures come with an obligatory list of
cautions:

• While the mode of each formal parameter (IN, IN OUT, OUT) may have certain
restrictions in PL/SQL, C does not honor these modes. Differences between the
PL/SQL parameter mode and the usage in the C module cannot be detected at
compile time, and could also go undetected at runtime. The rules are what you
would expect: don’t assign values to IN parameters, don’t read OUT parameters;
always assign values to IN OUT and OUT parameters, and always return a value
of the appropriate datatype.

• Modifiable INDICATORs and LENGTHs are always passed by reference for IN
OUT, OUT, and RETURN. Unmodifiable INDICATORs and LENGTHs are
always passed by value unless you specify BY REFERENCE. However, even if you
pass INDICATORs or LENGTHs for PL/SQL variables by reference, they are still
read-only parameters.

• Although you can pass up to 128 parameters between PL/SQL and C, if any of
them are float or double, your actual maximum will be lower. How much lower
depends on the operating system.

• If you use the multithreaded agent feature introduced in Oracle Database 10g, there
are special additional restrictions on your programs. All the calls you invoke from
the C program must be thread-safe. In addition, you want to avoid using global C
variables. Even in the nonthreaded version, globals may not behave as expected
due to “DLL caching” by the operating system.

1200 | Chapter 28: External Procedures

Download at WoweBook.Com

• Your external procedure may not perform DDL commands, begin or end a session,
or control a transaction using COMMIT or ROLLBACK. (See Oracle’s PL/SQL
User’s Guide and Reference for a list of unsupported OCI routines.)

Maintaining External Procedures | 1201

Download at WoweBook.Com

Download at WoweBook.Com

APPENDIX A

Regular Expression Metacharacters
and Function Parameters

This appendix describes the various regular expression metacharacters available start-
ing with Oracle Database 10g. It also provides a summary of the syntax of the REGEXP_
functions. For more details on Oracle’s regular expression support, see Chapter 8.

Metacharacters
The Initial Release column in Table A-1 through Table A-3 indicates which metachar-
acters were introduced in Oracle Database 10g Release 1 and which in Release 2.

Table A-1. Character-matching metacharacters

Syntax Initial release Description

. 10gR1 Matches any single character except for newline. Will match newline when
the n flag is set. On Windows, Linux, and Unix platforms, chr(10) is recognized
as the newline.

[...] 10gR1 Defines a matching list that matches any character listed between the brack-
ets. You may specify ranges of characters, as in a-z. These ranges are inter-
preted based on the NLS_SORT setting.

A dash (-) is a literal when it occurs first or last in the list (e.g., [abc-]). A
closing-bracket (]) is a literal when it occurs first in the list (e.g., []abc]). A
caret (^) in the first position makes the list a nonmatching list (see the next
entry).

[^ ...] 10gR1 Matches any character not listed between the brackets. Referred to as a
“nonmatching list.”

[:class:] 10gR1 Matches any character that belongs to the specified character class. May
only be used within a matching list: [[:class:]abc] is a valid expression,
[:class:]abc is not. Table A-5 lists the valid character class names.

[.coll.] 10gR1 Matches the specified collation element, which may be one or more char-
acters. May only be used within a matching list. For example, the expression

1203

Download at WoweBook.Com

Syntax Initial release Description
[[.ch.]] matches the Spanish letter “ch”. Table A-4 lists the valid collation
elements.

[=char=] 10gR1 Matches all characters that share the same base character as char. May be
used only within a matching list. For example, [[=e=]] matches any of:
“eéëèÉËÈE”.

\d 10gR2 Matches any digit. Equivalent to [[:digit:]].

\D 10gR2 Matches any nondigit. Equivalent to [^[:digit:]].

\w 10gR2 Matches any “word character.” Word characters are defined to be alphabetic
characters, numeric characters, and the underscore.

\W 10gR2 Matches any nonword character.

\s 10gR2 Matches any whitespace character. Equivalent to [[:space:]].

\S 10gR2 Matches nonwhitespace characters. Equivalent to [^[:space:]].

Table A-2. Quantifiers

Syntax Initial release Description

? 10gR1 Zero or one.

* 10gR1 Zero or more.

+ 10gR1 One or more.

{m} 10gR1 Exactly m occurrences.

{m,} 10gR1 At least m occurrences.

{m,n} 10gR1 At least m, and at most n occurrences.

+? 10gR2 One or more, but nongreedy.

?? 10gR2 Zero or one, but nongreedy.

{m}? 10gR2 The same as {m}.

{m,}? 10gR2 At least m occurrences, but nongreedy and stops as soon as m occurrences
are reached.

{m,n}? 10gR2 At least m, and at most n occurrences, but nongreedy; when possible, m
occurrences are matched.

Table A-3. Other metacharacters

Syntax Initial release Description

| 10gR1 Specifies an alternation. An alternation within a subexpression doesn’t
extend beyond the subexpression.

(...) 10gR1 Defines a subexpresson.

\n 10gR1 References the text matched by the nth subexpression. Backreferences
may range from \1 through \9.

\ 10gR1 When not followed by a digit, the \ is an escape character. For example,
use the pattern \\1 to look for a single backslash followed by the digit

1204 | Appendix A: Regular Expression Metacharacters and Function Parameters

Download at WoweBook.Com

Syntax Initial release Description
1, use \(to look for an opening-parentheses (rather than begin a sub-
expression), etc.

^ 10gR1 Anchors an expression to the beginning of the string (in multiline mode,
to the beginning of a line).

$ 10gR1 Anchors an expression to the end of the string (in multiline mode, to the
end of a line).

\A 10gR2 Anchors an expression to the beginning of the string regardless of
whether multiline mode is specified.

\Z 10gR2 Anchors an expression to the end of the string, or a newline that happens
to be ending a string, regardless of whether multiline mode is specified.

\z 10gR2 Anchors an expression to the end of the string regardless of whether
multiline mode is specified.

Table A-4. Collation elements

NLS_SORT Multicharacter collation elements

XCROATIAN d_

lj

nj

D_

LJ

Nj

D_

Lj

NJ

XCZECH Ch CH Ch

XCZECH_PUNCTUATION Ch CH Ch

XDANISH aa

oe

AA

OE

Aa

Oe

XHUNGARIAN cs

gy

ly

ny

sz

ty

zs

CS

GY

LY

NY

SZ

TY

ZS

Cs

Gy

Ly

Ny

Sz

Ty

Zs

XSLOVAK dz

d_

ch

DZ

D_

CH

Dz

D_

Ch

XSPANISH ch

ll

CH

LL

Ch

Ll

Metacharacters | 1205

Download at WoweBook.Com

Table A-5. Supported character classes

Class Description

[:alnum:] Alphanumeric characters (same as [:alpha:] + [:digit:])

[:alpha:] Alphabetic characters only

[:blank:] Blank space characters, such as space and tab

[:cntrl:] Nonprinting, or control characters

[:digit:] Numeric digits

[:graph:] Graphical characters (same as [:punct:] + [:upper:] + [:lower:] + [:digit:])

[:lower:] Lowercase letters

[:print:] Printable characters

[:punct:] Punctuation characters

[:space:] Whitespace characters such as space, formfeed, newline, carriage return, horizontal tab, and vertical tab

[:upper:] Uppercase letters

[:xdigit:] Hexadecimal characters

Functions and Parameters
The following syntax shows the function parameters for Oracle’s regular expression
functions. The meaning of the parameters is shown in “Regular Expression Parame-
ters” on page 1207.

Regular Expression Functions
The syntax for each regular expression function is shown below.

REGEXP_COUNT (Oracle Database 11g Only)

Returns a tally of occurrences of an expression in a target string. The syntax is:

REGEXP_COUNT(source_string, expression
 [, position
 [, match_parameter]]

REGEXP_INSTR

Returns the character position at which text can be found matching a regular expression
in a target string. The syntax is:

REGEXP_INSTR(source_string, expression
 [, position [, occurrence
 [, return_option
 [, match_parameter
 [, subexpression]]]]])

1206 | Appendix A: Regular Expression Metacharacters and Function Parameters

Download at WoweBook.Com

REGEXP_LIKE

Determines whether a given string contains text matching an expression. This is a
Boolean function, returning TRUE, FALSE, or NULL. The syntax is:

REGEXP_LIKE (source_string, expression
 [, match_parameter])

REGEXP_REPLACE

Performs a regular expression search-and-replace operation (see Chapter 8 for details).
The syntax is:

REGEXP_REPLACE(source_string, expression
 [, replace_string
 [, position [, occurrence
 [, match_parameter]]]]

REGEXP_SUBSTR

Extracts text matching a regular expression from a string. The syntax is:

REGEXP_SUBSTR(source_string, expression
 [, position [, occurrence
 [, match_parameter
 [, subexpression]]]]

Regular Expression Parameters
These are the parameters that may be included in the regular expression functions
described above.

source_string
Is a string to be searched.

expression
Is a regular expression describing the pattern of text that you seek.

replace_string
Is a string generating the replacement text to be used in a search-and-replace
operation.

position
Is the character position within source_string at which to begin a search. This de-
faults to 1.

occurrence
Is the occurrence of the pattern you want to locate. This defaults to 1, giving you
the first possible match.

Functions and Parameters | 1207

Download at WoweBook.Com

return_option
Is valid only for REGEXP_INSTR, and determines whether the beginning or ending
character position is returned for text matching a pattern. The default is 0, for the
beginning. Use 1 to return the ending position.

match_parameter
Is a text string through which you may specify options to vary the behavior of the
regular expression matching engine.

subexpression (Oracle Database 11g only)
Is a number (0 – 9) identifying which subexpression to match on. The default is 0
and signifies that subexpressions will not be used:

i
Requests a case-insensitive search.

c
Requests a case-sensitive search.

By default, your NLS_SORT setting determines whether a
search is case-sensitive.

n
Allows the period to match newline characters. By default, the period does not
match newlines.

m
Changes the definition of line with respect to the ^ and $ metacharacters. By
default, line means the entire target string. Using the m option, however, causes
the definition of line to change from the entire target string, to any line within
that string, where lines are delimited by newline characters.

You can specify multiple match parameters in any order. For example, 'in' means
the same as 'ni'. If you specify conflicting options, such as 'ic', the last option,
'c' in this case, is the one that takes precedence.

1208 | Appendix A: Regular Expression Metacharacters and Function Parameters

Download at WoweBook.Com

APPENDIX B

Number Format Models

Number formats are used with both the TO_CHAR function and the TO_NUMBER
function. You use number formats in calls to TO_CHAR to specify exactly how a nu-
meric value should be translated into a VARCHAR2 string. You can specify the punc-
tuation to use, the location of the positive or negative sign, and other useful items.
Conversely, you use number formats in calls to TO_NUMBER to specify how a string
representing a numeric value should be interpreted.

A number format mask can comprise one or more elements from Table B-1. The re-
sulting character string (or the converted numeric value) reflects the combination of
the format model elements you use. You will find examples of different applications of
the format models in the descriptions of TO_CHAR and TO_NUMBER.

Format elements with a description starting with “Prefix:” can be used only at the
beginning of a format mask; when a description starts with “Suffix:”, the element can
be used only at the end of a format mask. Most format elements are described in terms
of their effect on a conversion of a number to its character string representation. Bear
in mind that the majority of such elements may also be used in the converse manner,
to specify the format of a character string to be converted into a number.

Table B-1. Number format model elements

Format element Description

$ Prefix: puts a dollar sign in front of a number. (for currency symbol, see the C format element).

, (comma) Places a comma into the return value. This comma is used as a group separator (see the G format
element).

. (period) Places a period into the return value. This period is used as a decimal point (see the D format
element).

0 Each zero represents a significant digit to be returned. Leading zeros in a number are displayed
as zeros.

9 Each 9 represents a significant digit to be returned. Leading zeros in a number are displayed as
blanks.

B Prefix: returns a zero value as blanks, even if the 0 format element is used to show leading zeros.

1209

Download at WoweBook.Com

Format element Description

C Specifies the location of the ISO currency symbol in the returned value. The NLS_ISO_CURRENCY
parameter specifies the ISO currency symbol.

D Specifies the location of the decimal point in the returned value. All format elements to the left
of the D format the integer component of the value. All format elements to the right of the D
format the fractional part of the value. The character used for the decimal point is determined
by the NLS_NUMERIC_CHARACTERS database parameter.

EEEE Suffix: specifies that the value be returned in scientific notation.

FM Prefix: removes any leading or trailing blanks from the return value.

G Specifies the location of the group separator (for example, a comma or period to separate
thousands as in 6,754 or 6.754) in the returned value. The character used for the group separator
is determined by the database parameter NLS_NUMERIC_CHARACTERS.

L Specifies the location of the local currency symbol (such as $ or €) in the return value. The
NLS_CURRENCY parameter specifies the local currency symbol.

MI Suffix: places a minus sign (-) after the number if it is negative. If the number is positive, a trailing
space is placed after the number.

PR Suffix: places angle brackets (< and >) around a negative value. Positive values are given a
leading and a trailing space.

RN or rn Specifies that the return value be converted to upper- or lowercase Roman numerals. The range
of valid numbers for conversion to Roman numerals is between 1 and 3999. The value must be
an integer. RN returns uppercase Roman numerals, while rn returns lowercase Roman numerals.

S Prefix: places a plus sign (+) in front of a positive number and a minus sign (-) in front of a
negative number.

TM Prefix: returns a number using the minimum number of characters. TM stands for “text mini-
mum.” Follow TM with one 9 if you want a regular, decimal notation (the default). Follow TM
with one E if you want scientific notation.

U Places the dual currency symbol (often €) at the specified location. The NLS_DUAL_CURRENCY
parameter controls the character returned by this format element.

V Multiplies the number to the left of the V in the format model by 10 raised to the nth power,
where n is the number of 9s found after the V in the format model.

X Returns a number in hexadecimal value. You can precede this element with 0s to return leading
zeros or with FM to trim leading and trailing blanks. X cannot be used in combination with any
other format elements.

Notice that sometimes two elements can specify the same thing, or seemingly the same
thing. For example, you can use the dollar sign ($), comma (,), and period (.), or you
can use the L, G, and D elements, respectively. The letter elements respect your current
NLS settings, and return the proper characters for whatever language you are using.
For example, some European languages use a comma rather than a period to represent
the decimal point. The dollar sign, comma, and period format elements are U.S.-centric
and always return those three characters. We recommend that you use the

1210 | Appendix B: Number Format Models

Download at WoweBook.Com

NLS-sensitive format model elements such as L, G, and D unless you have a specific
reason to do otherwise.

Denoting Monetary Units
Table B-1 shows four format elements you can use to denote currency symbols . These
elements are $, L, C, and U, and you may be wondering about the differences among
them:

The $ format element
Is U.S.-centric and always returns a dollar sign ($).

The L format element
Respects your current NLS_CURRENCY setting, which specifies your local cur-
rency indicator. If, for example, you set your NLS_TERRITORY to indicate that
you’re in the United Kingdom, NLS_CURRENCY will default to £, and the L
format element will result in the £ being used as the currency indicator.

The C format element
Is similar to the L element but it results in the ISO currency indicator, as specified
by your current NLS_ISO_CURRENCY setting. For the United Kingdom, you’ll
get GBP (for Great Britain pounds), while for the United States, you’ll get USD (for
U.S. dollars), and so forth.

The U format element
Was added to support the Euro and uses the currency indicator specified by
NLS_DUAL_CURRENCY. For countries that support the Euro, the
NLS_DUAL_CURRENCY setting defaults to the Euro symbol (€).

To view your current NLS_CURRENCY and NLS_ISO_CURRENCY settings, you can
query the NLS_SESSION_PARAMETERS or V$NLS_PARAMETERS system views.

Number Format Models | 1211

Download at WoweBook.Com

Download at WoweBook.Com

APPENDIX C

Date Format Models

Table C-1 lists the date format model elements that you can use with the conversion
functions TO_CHAR, TO_DATE, TO_TIMESTAMP, and TO_TIMESTAMP_TZ.
Some of the model elements in Table C-1 are also used with ROUND and TRUNC.

You have the option of specifying default date and timestamp formats at the session
level, a capability that can come in handy if your particular needs differ from those of
the majority of database users. Use the ALTER SESSION command to specify session-
level default date and timestamp formats. The following example works in Oracle8i
Database or higher, and sets the default date format to MM/DD/YYYY:

BEGIN
 EXECUTE IMMEDIATE 'ALTER SESSION SET NLS_DATE_FORMAT=''MM/DD/YYYY''';
END;

To check the default date format in effect for your session at any given time, issue the
following query against the NLS_SESSION_PARAMETERS data dictionary view:

SELECT value
FROM nls_session_parameters
WHERE parameter='NLS_DATE_FORMAT';

To set or check default timestamp formats, use NLS_TIMESTAMP_FORMAT and
NLS_TIMESTAMP_TZ_FORMAT.

Some elements in Table C-1 apply only when translating datetime values from Oracle’s
internal format into character strings, and not vice versa. Such elements can’t be used
in a default date model (e.g., with NLS_DATE_FORMAT) because the default date
model applies to conversions in both directions. These elements are noted as “Output-
only” in the table.

1213

Download at WoweBook.Com

Table C-1. Date format model elements

Element Description

Other text Any punctuation, such as a comma (,) or slash (/) or hyphen (-), will be reproduced in the formatted output
of the conversion. You can also include text within double quotes (” “) and the text will be represented as
entered in the converted value.

A.M. or P.M. The meridian indicator (morning or evening) with periods.

AM or PM The meridian indicator (morning or evening) without periods.

B.C. or A.D. The B.C. or A.D. indicator, with periods.

BC or AD The B.C. or A.D. indicator, without periods.

CC and SCC The century. If the SCC format is used, any B.C. dates are prefaced with a minus sign (-). Output-only.

D The day of the week, from 1 through 7. The day of the week that is decreed the first day is specified implicitly
by the NLS_TERRITORY initialization parameter for the database instance.

DAY, Day, or
day

The name of the day in upper-, mixed, or lowercase format.

DD The day of the month, from 1 through 31.

DDD The day of the year, from 1 through 366.

DL Long date format. Depends on the current values of NLS_TERRITORY and NLS_LANGUAGE. May be used alone
or with TS, but not with any other elements.

DS Short date format. Depends on the current values of NLS_TERRITORY and NLS_LANGUAGE. May be used alone
or with TS, but not with any other elements.

DY, Dy, or dy The abbreviated name of the day, as in TUE for Tuesday.

E The abbreviated era name. Valid only for the following calendars: Japanese Imperial, ROC Official, and Thai
Buddha. Input-only.

EE The full era name.

FF The fractional seconds. Only valid when used with TIMESTAMP values. The number of digits returned will
correspond to the precision of the datetime being converted.

Always use FF (two Fs) regardless of the number of decimal digits you wish to see or use. Any other number
of Fs is invalid.

FF1..FF9 Same as FF, but the digit (1..9) controls the number of decimal digits used for fractional seconds. Use FF1 to
see one digit past the decimal point, FF2 to see two digits past, and so forth.

FM Element that toggles suppression of blanks in output from conversion. (FM stands for Fill Mode.)

FX Element that requires exact pattern matching between data and format model. (FX stands for Format eXact.)

HH or HH12 The hour of the day, from 1 through 12. Output only.

HH24 The hour of the day, from 0 through 23.

IW The week of the year, from 1 through 52 or 1 through 53, based on the ISO standard. Output-only.

IYY or IY or I The last three, two, or one digits of the ISO standard year. Output only.

IYYY The four-digit ISO standard year. Output only.

J The Julian day format of the date (counted as the number of days since January 1, 4712 B.C., the earliest date
supported by the Oracle database).

1214 | Appendix C: Date Format Models

Download at WoweBook.Com

Element Description

MI The minutes component of the datetime value, from 0 through 59.

MM The number of the month in the year, from 01 through 12. January is month number 01, September is 09, etc.

MON, Mon, or
mon

The abbreviated name of the month, as in JAN for January. This also may be in upper-, mixed-, or lowercase
format.

MONTH,
Month, or
month

The name of the month, in upper-, mixed-, or lowercase format.

Q The quarter of the year, from 1 through 4. January through March are in the first quarter, April through June
in the second quarter, etc. Output only.

RM The Roman numeral representation of the month number, from I through XII. January is I, September is IX,
etc. Output only.

RR The last two digits of the year. This format displays years in centuries other than our own.

RRRR Same as RR when used for output; accepts four-digit years when used for input.

SCC or CC The century. If the SCC format is used, any B.C. dates are prefaced with a minus sign (-). Output only.

SP Suffix that converts a number to its spelled format. This element can appear at the end of any element that
results in a number. For example, a model such as “DDth-Mon-Yyyysp” results in output such as “15th-Nov-
One Thousand Nine Hundred Sixty-One”. The return value is always in English, regardless of the date language.
(Note that Yyyy resulted in mixed-case words.)

SPTH or THSP Suffix that converts a number to its spelled and ordinal format; for example, 4 becomes FOURTH and 1 becomes
FIRST. This element can appear at the end of any element that results in a number. For example, a model such
as “Ddspth Mon, Yyyysp” results in output such as “Fifteenth Nov, One Thousand Nine Hundred Sixty-One”.
The return value is always in English, regardless of the date language.

SS The seconds component of the datetime value, from 0 through 59.

SSSSS The number of seconds since midnight of the time component. Values range from 0 through 86399, with each
hour comprising 3,600 seconds.

SYEAR, YEAR,
SYear, Year,
syear, or year

The year spelled out in words (e.g., “two thousand two”). The S prefix places a negative sign in front of B.C.
dates. The format may be upper-, mixed-, or lowercase. Output only.

SYYYY or YYYY The four-digit year. If the SYYYY format is used, any B.C. dates are prefaced with a minus sign (-).

TH Suffix that converts a number to its ordinal format; for example, 4 becomes 4th and 1 becomes 1st. This
element can appear at the end of any element that results in a number. For example, “DDth-Mon-YYYY’ results
in output such as “15th-Nov-1961”. The return value is always in English, regardless of the date language.

TS Short time format. Depends on the current values of NLS_TERRITORY and NLS_LANGUAGE. May be used alone
or with either DL or DS, but not with any other elements.

TZD The abbreviated time zone name; for example, EST, PST, etc. This is an input-only format, which may seem
odd at first.

TZH The time zone hour displacement. For example, −5 indicates a time zone five hours earlier than UTC.

TZM The time zone minute displacement. For example, −5:30 indicates a time zone that is five hours, thirty minutes
earlier than UTC. A few such time zones do exist.

Date Format Models | 1215

Download at WoweBook.Com

Element Description

TZR The time zone region. For example, “US/Eastern” is the region in which EST (Eastern Standard Time) and EDT
(Eastern Daylight Time) are valid.

W The week of the month, from 1 through 5. Week 1 starts on the first day of the month and ends on the seventh.
Output only.

WW The week of the year, from 1 through 53. Output only.

X The local radix character. In American English, this is a period (.). This element can be placed in front of FF so
that fractional seconds are properly interpreted and represented.

Y,YYY The four-digit year with a comma.

YYY or YY or Y The last three, two, or one digits of the year. The current century is the default when using these elements to
convert a character string value into a date.

Whenever a date format returns a spelled value (words rather than numbers, as with
MONTH, MON, DAY, DY, AM, and PM), the language used to spell these words is
determined by the Globalization Support, formerly National Language Support pa-
rameters, NLS_DATE_LANGUAGE and NLS_LANGUAGE, or by the optional date
language argument you can pass to both TO_ CHAR and TO_DATE.

ISO Dates
The IYY and IW elements represent the ISO (International Standards Organization)
year and week. The ISO calendar is a good example of “design by committee.” The first
day of the ISO year is always a Monday and is determined by the following rules:

• When January 1 falls on a Monday, the ISO year begins on the same day.

• When January 1 falls on a Tuesday through Thursday, the ISO year begins on the
preceding Monday.

• When January 1 falls on a Friday through Sunday, the ISO year begins on the
following Monday.

These rules lead to some strange situations. For example, 31-Dec-2008 is considered
to be the first day of ISO year 2009, and if you display that date using the IYYY format,
31-Dec-2009 is exactly what you’ll get.

ISO weeks always begin on Mondays and are numbered from the first Monday of the
ISO year.

Here are some examples of date format models composed of the above format elements:

'Month DD, YYYY'
'MM/DD/YY Day A.M.'
'Year Month Day HH24:MI:SS'
'J'
'SSSSS-YYYY-MM-DD'
'"A beautiful summer morning on the" DDth" day of "Month'

1216 | Appendix C: Date Format Models

Download at WoweBook.Com

You can use the format elements in any combination, in any order. Older releases of
Oracle allowed you to specify the same date element twice. For example, the model
“Mon (MM) DD, YYYY” specifies the month twice. However, you can specify an ele-
ment only once in a format model. For example, you can specify only one of MONTH,
MON, and MM because all three refer to the month.

See the description of the TO_CHAR and TO_DATE functions in Chapter 10 for more
examples of the use and resulting values of date format models.

Date Format Models | 1217

Download at WoweBook.Com

Download at WoweBook.Com

Index

Symbols
! (exclamation mark)

!= (not equal) operator, 65, 259, 387
testing nested tables, 389

user-defined string literal delimiter, 70
(hash sign) in identifiers, 66
$ (dollar sign)

$$identifier syntax for inquiry directive,
1000

in identifiers, 66
% (percent sign)

attribute indicator, 65
in cursor attribute names, 468
wildcard symbol in LIKE condition, 65

& (ampersand)
problems with, executing PL/SQL code in

SQL*Plus, 196
referring to SQL*Plus variables, 33

" " (quotation marks, double)
data structure names enclosed in, 168
inside string literals, 73
surrounding identifiers, 67

' ' (quotation marks, single)
embedding inside literal strings, 72
indicating null strings, 71
SQL*Plus variables used as literal strings,

33
in string constants, 195

() (parentheses)
as string literal delimiters, 73
functions without parameters, 576

* (asterisk)
** (exponentiation) operator, 65, 259
multiplication operator, 259

+ (plus sign)
addition operator, 259
identity operator, 259

- (hyphen), -- (double hyphen) delimiting
single-line comments, 65, 75

- (minus sign)
negation operator, 259
subtraction operator, 259

. (dot)
.. (range) operator, 65
component selector, xxxiv
dot notation component selector, 115, 322
dot notation for fields in nested records,

323
dot notation referencing package elements,

620, 632
... (ellipses) in syntax descriptions, xxxiv
/ (slash)

/* */ multiline comment block delimiters,
65

division operator, 259
following CREATE TYPE statement, 354

: (colon)
:= (assignment) operator, 65, 176

assigning values to a collection, 360
storing string constant in a variable, 196

host variable indicator, 65
; (semicolon)

placing only after END IF keywords in IF
statements, 87

terminating declarations and statements,
65, 74

< > (angle brackets)
< (less than) operator, 259

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

1219

Download at WoweBook.Com

<%= %>, embedding PL/SQL into HTML
page, 51

<< >> label delimiters, 65, 98
<= (less than or equal to) operator, 65, 259
<> (not equal) operator, 65, 259, 387
> (greater than) operator, 259
>= (greater than or equal to) operator, 65,

259
= (equals sign)

=> association operator, 65, 585
using for named notation, 586

equality operator, 259, 387
testing nested tables for equality, 389

? (question mark)
nongreedy quantifiers in regular

expressions, 217
@ (at sign)

SQL*Plus at-sign command, 30
@ (at-sign)

remote location indicator, 65
[] (square brackets) in syntax descriptions,

xxxiv
^ (caret)

^= (not equal) operator, 65, 259
_ (underscore)

in identifiers, 66
single-character wildcard in LIKE condition,

65
{ } curly braces in syntax descriptions, xxxiv
| (vertical bar)

in code examples, xxxiv
as string literal delimiter, 73
|| (concatenation) operator, 65, 198

~ (tilde)
~= (not equal) operator, 65, 259

A
ABORT procedure (DBMS_RESUMABLE),

702
abstract datatypes, 169
ACLs (access control lists), 430, 893
actual and formal parameters, 581

association in PL/SQL, 585–589
Ada, xxvii, 987

DIANA (Distributed Intermediate
Annotated Notation for Ada),
981

ADD_MONTHS function, 300
Advanced Encryption Standard (AES), 924

Advanced Queuing (AQ), 178, 634
AFTER GRANT triggers, 680
AFTER SUSPEND triggers, 697–704

aborting unfixable statements using
DBMS_RESUMABLE, 702

downsides to using, 704
example of, 700
ORA_SPACE_ERROR_INFO function,

701
setting up, 698
trapped multiple times, 703

AFTER triggers, 653
aggregate assignments

entire collection contents to another
collection, 360

in record-level operations, 320
alerts, 914
algorithms (encryption), 921, 923

AES (Advanced Encryption Standard), 924,
927

DBMS_CRYPTO algorithm constants, 925
DES (Data Encryption Standard), 924
Triple DES (DES3), 924

ALL_* views, 711
ALL_DEPENDENCIES view, 719
ALL_IDENTIFIERS view, PL/Scope

information in, 15
ALL_OBJECTS_AE view, 778
ALL_SOURCE view, 719
ALTER command, enabling compile-time

warnings, 737
ALTER INDEX statements, 673
ALTER SESSION...SIGNATURE command,

728
ALTER TRIGGER command, 705
ALTER TYPE command, 354, 1093–1095
ALTER...COMPILE recompilation, 733
anchored datatypes, 351
anchored declarations, 177

anchoring to cursors and tables, 179
benefits of, 180

AND operator
exception handler for multiple exceptions,

144
short-circuit evaluation in IF statements,

89
anonymous blocks, 53, 54

general syntax, 55
labeling, 77

1220 | Index

Download at WoweBook.Com

nested, 57
uses of, 56

anonymous exceptions, 127
ANSI/ISO standards for date and timestamp

literal format, 292
ANY keyword, 613
ANY types, 431–435, 1102

creating a transient type, 1105
resources for information, 435

ANYDATA type, 174, 432, 1103–1105
ANYDATASET type, 174, 432, 1103
ANYTYPE type, 174, 432, 1102

creating transient type, 1105
application contexts, 920, 964–972

contexts as predicates in RLS, 967
creating and setting, 965
identifying non-database users, 970
security in, 966

application security, 919–980
application contexts, 964–972
encryption, 921–945
fine-grained auditing (FGA), 972–980
row-level security (RLS), 945–964
security overview, 919

AQ (Advanced Queuing), 178, 634
architecture of PL/SQL, 981–1030

conditional compilation, 998–1009
default packages, 987
DIANA, 981
execution authority models, 990–998
native compilation, 1027
Oracle execution of PL/SQL code, 982
PL/SQL and databse instance memory,

1009–1027
arguments, 581

(see also parameters)
information about, 717

array fetches, tuning pipelined functions with,
843

arrays, 327
(see also associative arrays; collections;
VARRAYs)
collection, 329
multidimensional, creating with collections

of collections, 329
multidimensional, emulation with

unnamed multilevel collections,
376

nonsequential arrays with FORALL
statements, 835

ASCII function, 198, 222
ASCII, US7ASCII character set, 64
ASCIISTR function, 222, 1039
assignment

of entire collection contents to another
collection, 360

in record-level operations, 319
rows from relational table to a collection,

361
assignment operator (:=), 65, 176

assigning values to a collection, 360
storing string constant in a variable, 196

ASSM (Automatic Segment Space
Management), 416

association operator (=>), 65
associative arrays, 331

assigning data to, specifying index value for,
360

collection using, 331
comparison to other collection types, 340
declaring associative array collection type,

351
asymmetric encryption, 923
attribute-level comparison, 1110, 1112
audit trail, 972

checking, 977
auditing (see fine-grained auditing)
authentication

external, captured in FGA, 978
MACs (method authentication codes), 940
operating system, 34
proxy server requiring authentication, 913
using HTTP username and password, 906

AUTHID clause, 6
AUTHID CURRENT_USER, 996
AUTHID DEFINER, 996
in package specification, 625
settings for programs, 716

automatic runtime recompilation, 732
autonomous transactions, 454–461

building autonomous logging mechanism,
459

defining, 455
DML triggers as, 655, 669
rules and restrictions on, 456
visibility of, 457
when to use, 458

Index | 1221

Download at WoweBook.Com

AUTONOMOUS_TRANSACTION pragma,
76, 455

B
basic authentication, 906
BasicFiles, 415, 930
BEFORE INSERT triggers, 656, 665
BEFORE triggers, 653
BETWEEN operator, 259
BFILE datatype, 173, 400, 410–415

accessing BFILEs, 412
creating BFILE locator, 411
sending as email attachment, 900
using BFILEs to load LOB columns, 413

BFILENAME function, 411
binary (32-bit) floating-point literals, 73
binary data, 173
binary double (64-bit) floating-point literals,

73
binary files (see BFILE datatype)
binary sort, 1050
BINARY type, 73
BINARY_FLOAT and BINARY_DOUBLE

datatypes, 171, 241
literals used with, 241
performance improvements with, 871
performance, NUMBER type versus, 243
predicates used with, 242

BINARY_INTEGER datatype, 239
bind values, 973
bind variables

reducing memory use with, 1015–1018
in SQL*Plus, 32

declaring and displaying with PRINT
command, 33

using in FGA, 978
binding variables, 525–529

argument modes, 526
duplicate placeholders, 527
passing NULL values, 528
using bind variables to prevent code

injection, 541
using instead of concatenation in NDS,

538
blank-padding comparison, 220
BLOBs (Binary Large Objects), 173, 400, 403

(see also LOBs)
creating empty BLOBs, 406
writing into, 408

block-structured language, 57
blocks, 53–64

anonymous, 54
exception section, 127
labeling, 77
named, 56
nested, 57
scope, 58
visibility of variables, 61–64

body of a function, 577
body of a loop, 103
body of a package, 618, 622

example implementation, 620
rules for construction, 626

body of a procedure, 570
books on PL/SQL programming, 17
BOOLEAN datatypes, 172, 395
Boolean expressions, 82

NULL versus UNKNOWN results, 91
Boolean literals, 70, 73
Boolean values, displaying with

DBMS_OUTPUT, 875
Boolean variables, 73

using as flags for expression evaluation, 85
boundary (loop), 103

simple loops, 104
bounded collections, 330
bugs, avoiding through use of qualifiers, 60
BULK COLLECT clause, 821–828

array fetches with, using to tune pipelined
functions, 843

bulk fetching of multiple columns, 825
LIMIT clause with, reducing memory usage,

1021
limiting rows retrieved, 824

bulk processing for multirow SQL, 820–838
DML using FORALL statement, 828–838
querying using BULK COLLECT, 821–828

bulk processing, defined, 466
%BULK_EXCEPTIONS attribute, 470
%BULK_ROWCOUNT attribute, 470
bytecode, 1027

C
C language, 48

(see also External Procedures chapter on
book web site)
calling PL/SQL function from, 47
support for REFs, 1100

1222 | Index

Download at WoweBook.Com

caching, 799–820
deterministic functions, 805
function result cache, 807
function results (see function result cache)
package-based, 800–805
recommendations for data caching, 819
static session data, 629, 649
types available to PL/SQL developers, 649

calculated or virtual columns, 484
calendar (ISO), 1216
Call Global Area (CGA), 1010
CALL statements, 983
cardinality for pipelined table functions, 853–

859
CASCADE option (ALTER TYPE), 354
case in strings, 199

capitalizing each word, 201
case-insensitivity and indexes, 201
forcing string to all upper- or lowercase,

199
making comparisons case-insensitive, 199

CASE statements, 8
CASE statements and expressions, 90–97

CASE expressions, 95
CASE in SQL statements, 97
nested CASE statements, 95
searched CASE statements, 93
simple CASE statements, 91

case-insensitivity in PL/SQL, 65
CASE_NOT_FOUND errors, 92
CAST function, 187

converting numbers to and from strings,
256

using to convert between numbers and
strings, 256

using with date and time values, 297
CAST pseudo-function, 383
CBO (cost-based optimizer), 853–859
certificates, 907
CGA (Call Global Area), 1010
chaining, 925

CBC (Cipher Block Chaining), 927
DBMS_CRYPTO chaining constants, 926

chaining (method), 1086
CHAR datatype, 170, 191, 193

assigning zero-length string to, 71
converting hexadecimal string to type RAW,

190
empty strings and, 219

mixing with VARCHAR2 values, 219–222
character encodings

defined, 1034
Unicode, 1036

character functions, CHAR arguments, 222
Character Large Objects (see CLOBs)
character semantics, 1045–1049
character sets, 64

conversions, 929
converting strings between, 189
defined, 1034
national character set datatypes, 1036
translating, 229

characters
dangerous characters in dynamic text, 542
nonprintable, in code, 197

CHARTOROWID function, 187
child blocks, 57
CHR function, 222

referencing nonprintable characters in code,
197

client-side PL/SQL, 4
CLOBs (Character Large Objects), 170, 400,

403
(see also LOBs)
applying SQL semantics to, temporary

CLOB yielded by, 423
empty versus NULL, 405
reading from, 409
using interchangeably with VARCHAR2,

421
writing into, 407

CLOSE cursor statements, 464, 486
closing cursor variable, 498

CLUSTER ... BY clause, 614
clustered, 614
code examples

conventions used in, xxxiii
web site for downloads, xxxv

code injection (see SQL injection)
code management, 709–780

compile-time warnings, 735–746
data dictionary views for PL/SQL

developers, 710–721
in the database, 710
debugging, 766–774
edition-based redefinition, 777–780
managing dependencies and recompiling

code, 721–735

Index | 1223

Download at WoweBook.Com

protecting stored code, 774
testing PL/SQL programs, 746
tracing PLSQL execution, 756–766

code points, 1036
defined, 1034

code units, 1037
code, creating and running, 23–52

calling PLSQL from other languages, 46–
52

creating and editing source code, 24
creating stored program, 38
database navigation, 23
dropping stored programs, 44
editing environments for PL/SQL, 45
error handling in SQL*Plus, 36
executing stored program in SQL*Plus, 41
grants and synonyms for stored programs,

43
hiding source code of stored program, 44
other SQL*Plus tasks, 32

editing a statement, 34
exiting SQL*Plus, 34
loading custom environment at startup,

35
saving output to file, 33
setting your preferences, 32

reasons to love and hate SQL*Plus, 37
showing stored programs, 42
using SQL*Plus, 25

code, minimizing redundancies in, 495
CodeGen utility, 19
collection instance, 329
collections, 327–394

accessing data in, 364
as attributes of object type, 339
built-in methods, 341
caching, using function result cache, 813
choosing collection type, 340
as columns in database table, 338
comparison of collection types, 340
of complex datatypes, 370–374

objects and other types, 373
records, 371–373

as components of a record, 335
concepts and terminology, 328
converting types, 188
COUNT method, 343
as datatype of function return value, 337

declaring and initializing collection
variables, 355–359

initializing implicitly during direct
assignment, 356

initializing implicitly via FETCH, 357
declaring collection types, 350
DELETE method, 343
EXISTS method, 345
EXTEND method, 345
FIRST and LAST methods, 346
large, memory use and, 1018
LIMIT method, 347
multilevel, 374–382

extending string_tracker (example), 380
multidimensional API (example), 378
nesting of collections, levels of, 382
unnamed, emulating multidimensional

arrays, 376
multiset operations on nested tables

checking element membership, 390
high-level set operations, 390

nested table multiset operations, 387–393
handling duplicates, 392
testing equality and membership, 389

NULL, 1120
populating with data, 359–364

advantages of nonsequential population,
362

aggregate assignments, 360
assigning rows from relational table,

361
specifying index values, 360
using assignment operator, 360

PRIOR and NEXT methods, 348
as program parameters, 335
schema-level, maintaining, 393

data dictionary entries for collections,
394

string-indexed, 365–370
TRIM procedure, 349
types of, 330
using a nested table, 332
using a VARRAY, 333
using an associative array, 331
working with in SQL, 382–387

CAST pseudo-function, 383
MULTISET pseudo-function, 384
sorting collection contents, 386
TABLE pseudo-function, 385

1224 | Index

Download at WoweBook.Com

working with using NDS, 529–531
COLLECTION_IS_NULL exception, 343
column aliases in explicit cursors, 484
column objects, 1110
columns

bulk fetching of multiple columns, 825
determining which column was altered,

679
object types as datatype for, 1110
RLS sensitive to, 957
synchronization of local variables with,

180
command-line interpreters, 25
comments, 75

multiline, 75
single-line, 75
specifying for current transaction, 451

COMMIT statements, 451
releasing locks with, 494

compilation
conditional (see conditional compilation)
native, 14, 1027
recompiling invalid program units, 731–

735
compilation environment parameters, 1002
compile-time warnings, 735–746

enabling and specifying category, 736
reference listing of handy warnings, 739–

746
compiler directives, 999–1001
compiler settings for stored code, 715
compilers

limits on PL/SQL program size, 986
optimizing compiler, 794–799
PL/SQL and SQL, 984

complex datatypes, 351
collections of, 370–374

COMPOSE function, 223, 1040
composite data, 167
compound triggers, 15, 652, 670–673

differences from packages, 671
order of firing, 672
resemblance to packages, 670

CONCAT function, 198, 223
concatenation

binding versus, for dynamic SQL strings,
538

inserting program values into SQL strings,
526

concatenation operator (||), 65, 198
conditional compilation, 998–1009

$ERROR directive, 1005
examples of, 999
$IF directive, 1004
inquiry directives, 1000
program-specific settings with inquiry

directives, 1006
synchronizing code with packaged

constants, 1006
toggle tracing through conditional

compilation flags, 1000
working with postprocessed code, 1008

conditional control statements, 8
CASE statements and expressions, 90–97

CASE expressions, 95
nested CASE statements, 95
searched CASE statements, 93
simple CASE statements, 91

IF statements, 81–90
IF-THEN, 82
IF-THEN-ELSE, 84
IF-THEN-ELSIF, 85

connect identifiers (Oracle Net), 27
connection pools, 970
constants, 167

declaring, 176
name conflicts in, 740
naming, 167
specifying string constants, 195

constrained declarations, 580
constrained subtypes, 182
CONSTRUCTOR FUNCTION keywords,

1081
constructor methods, 1079

user-defined, 1081
containers, 167
CONTAINS predicate, 425
context-sensitive policies, 956
CONTINUE statements, 13, 116

understanding and using correctly, 117
contributors to this book, listed, xxx
control statements, 8
CONVERT function, 189, 223
cookies, disabling or making persistent, 912
Coordinated Universal Time (see UTC)
cost-based optimizer (CBO), 853–859
COUNT function, 341, 343

Index | 1225

Download at WoweBook.Com

CPAN (Comprehensive Perl Archive Network),
49

CREATE statements
CREATE FUNCTION, 38
wrapping in plain text and hex to hide

source code, 44
CREATE TABLE statements, 673
CREATE TYPE statements, 353

creating object type, 1076
creating schema-level type, 336
FORCE option, 13

cryptographic hashing, 938
cryptography (see DBMS_CRYPTO package;

encryption)
currency conversions, 1064–1066
currency symbols, 1211
CURRENT_DATE function, 272
CURRENT_TIMESTAMP function, 272
cursor attributes, 467–470

%BULK_EXCEPTIONS, 470
%BULK_ROWCOUNT, 470
%FOUND, 468
%ISOPEN, 469
%NOTFOUND, 469
%ROWCOUNT, 469
defined, 466
explicit cursor attributes, 487
for FORALL statements, 831
implicit cursor attributes for DML

statements, 444
SQL%FOUND, 444
SQL%ROWCOUNT, 445

implicit SQL cursor attributes, 476
listed, 467
using with cursor variables, 498

cursor expressions, 464, 509–512
restrictions on, 512
using, 510

cursor FOR loops, 102, 112–115
declaring records, 315
exiting properly, 120
getting information on loop execution, 121
implicit use of %ROWTYPE declaration,

179
runtime optimization of, 798

CURSOR operator, 509
cursor variables, 173, 463, 496

benefits of using, 497
declaring, 499

declaring REF CURSOR types, 498
defined, 466
fetching from, 501

handling ROWTYPE_MISMATCH
exception, 502

opening, 500
packages and, 624
passing as arguments in procedure or

function calls, 507
passing table function results with, 607
restrictions on, 509
rules for, 504

aliases, 505
rowtype matching at compile-time, 504
rowtype matching at runtime, 505
scope of cursor object, 506

similarities to static cursors, 498
using with NDS, 517

cursor-based records, declaring, 314
cursors, 464

anchoring to, 179
choosing between explicit and implicit,

471
closing, 1012
data retrieval terminology, 465
DBMS_SQL.TO_CURSOR function, 556
defining structure in method 4 dynamic SQL

using DBMS_SQL, 550
explicit, 463, 465, 477–492

attributes, 487
closing, 486
column aliases in, 484
declaring, 479–482
fetching from, 483
opening, 482
parameters, 489–492

implicit, 463, 465
memory usage, 1011
minimizing parsing of dynamic cursors,

553
opening and closing, DBMS_SQL versus

NDS, 537
in package specification, 625
packaged, 635–639

alternative to, 639
declaring, 635
opening and closing, 638
taking advantage of, 637

remote invocation and, 730

1226 | Index

Download at WoweBook.Com

security enhancements for DBMS_SQL
package, 558

SELECT FOR UPDATE statements, 492–
496

typical query operations, 466
working with implicit cursors, 472

CURSOR_SHARING initialization parameter,
1017

D
D, designating 64-bit floating-point literals, 73
dangling REFs, 1102
Data Definition Language (see DDL)
data dictionary

entries for object types, 1127
views providing information on collections,

394
data dictionary views, 711–721

analyzing identifier usage (PL/Scope), 719–
721

dependency analysis with, 722
overview of, 711
for triggers, 706
USER_ARGUMENTS view, 717
USER_OBJECTS view, 712
USER_OBJECT_SIZE view, 715
USER_PLSQL_OBJECT_SETTINGS view,

715
USER_PROCEDURES view, 716
USER_SOURCE view, 713
USER_TRIGGERS and

USER_TRIG_COLUMNS, 716
data encapsulation, 20
Data Encryption Standard (DES), 924

Triple DES (DES3), 924
Data Manipulation Language (see DML)
data streaming, 605
Database Error Messages document, 40
database event triggers, 652, 683–690

(see also triggers)
creating, 683
LOGOFF, 686
LOGON, 685
SERVERERROR, 686–690
SHUTDOWN, 685
STARTUP, 685

database languages, 4
database pipes, 107, 914

Database PL/SQL Packages and Types
Reference, 429

database queuing, 914
database sessions, 983
database triggers (see triggers)
datatypes, 169–175

anchored, 177
benefits of, 180

ANY, 174
binary data, 173
Boolean, 172, 395
character data, 170
conversions between, 183–190

compile-time warning about, 745
explicit conversion, 185
implicit conversion, 183

dates, timestamps, and intervals, 172
FORCE option with CREATE TYPE

statements, 13
Internet-related, 174
interval, 274
LOBs (large objects), 400
matching in cross-language work, 46
naming, 169
national character set, 1036
NOT NULL, anchoring to, 181
numeric, 171, 231
overloading by type, not value, 597
performance improvement using right type,

870
predefined object types, 426

ANY types, 431–435
URI types, 430
XMLType, 426– 0

programmer-defined subtypes, 182
RAW, 397
REF CURSOR, 173
return value for functions, 573
ROWID and UROWID, 173, 397–400
SIMPLE types in Oracle Database 11g, 14
string, 191
supertype invocation from subtype, 16
user-defined, 175

DATE datatype, 172, 268
converting strings to, 279
converting to strings, 281
DATE values as inputs to datetime

functions, 308
format elements used with, 283

Index | 1227

Download at WoweBook.Com

when to use, 271
date format models, 278, 1213–1217

DATE versus TIMESTAMP types, 283
NLS_DATE_FORMAT setting, 279
requiring exact format mask match with FX,

287
RR element, interpreting two-digit years,

288
using FM (fill mode), 288

dates and time, 267–310, 1059–1064
arithmetic operations on, 300

adding and subtracting intervals, 305
computing intervals between datetimes,

302
date arithmetic with DATE datatypes,

301
intervals and datetimes, 300
mixing DATEs and TIMESTAMPs, 304
multiplying and dividing intervals, 306
unconstrained INTERVAL types, 307

calculating elapsed time, 788
choosing a datetime datatype, 271
conversions, 278–291

from datetimes to strings, 281
from strings to datetimes, 279
interpreting two-digit years, 288
not requiring exact match for format

mask, 288
padding output with FM (fill mode),

291
requiring exact match for format mask,

287
time zones to character strings, 290
working with time zones, 284

date and timestamp literals, 291
datetime datatypes, 172, 268
declaring datetime variables, 270
formatting in localization efforts, 1060–

1064
getting current date and time, 272
interval conversions, 293–295
interval datatypes, 274–278
interval literals, 295
literals in PL/SQL, 70
time differences for a query, 956
TIMESTAMP datatypes, 1059
using CAST function with, 297
using EXTRACT function with, 299

DBA_* views, 711

DBD::Oracle module, 49
dbFit testing framework, 752
DBI (DataBase Interface) module (Perl), 49
DBMS_ALERT package, 914
DBMS_APPLICATION_INFO package, 759
DBMS_ASSERT package, 1016

using to validate user inputs, 542
DBMS_CRYPTO package, 925

algorithm constants, 925
DECRYPT function, 930
ENCRYPT function, 926
ENCRYPT procedure, 930
HASH function, 939
MAC function, 940
padding and chaining constants, 926
RANDOMBYTES function, 932

DBMS_DB_VERSION package, 1001
DBMS_DDL package, 775
DBMS_DESCRIBE package, information about

arguments, 719
DBMS_FGA package, 972

ADD_POLICY procedure, 974
DBMS_HPROF package, 16, 784, 785
DBMS_LOB package, 173

CREATETEMPORARY procedure, 418
FREETEMPORARY procedure, 419
GET_LENGTH procedure, 410
LOADBLOBFROMFILE package, 413
LOADCLOBFROMFILE procedure, 413
predefined exceptions in, 132
READ procedure, 409
WRITE and WRITEAPPEND procedures,

407–409
DBMS_OUTPUT package

CASE expression used with, 96
enabling, 874
PUT_LINE function, overloading, 598
reading buffer contents, 875
writing lines to the buffer, 874

DBMS_PIPE package, 634
calls, CPU load and, 108

DBMS_PREPROCESSOR package, 1008
DBMS_PROFILER package, 783
DBMS_RESULT_CACHE package, 816
DBMS_RESUMABLE package

ABORT procedure, 702
functions and procedures for timeout

values, 703
DBMS_RLS package, 945

1228 | Index

Download at WoweBook.Com

ADD_POLICY function, 949
policy_type parameter, 955
sec_relevant_cols parameter, 958
sec_relevant_cols_opt parameter, 959
statement_type parameter, 951
static_policy parameter, 954
update_check parameter, 952

DROP_POLICY function, 951
DBMS_SESSION package

clearing out memory used by packaged
collection, 1020

SET_CONTEXT function, 966
DBMS_SQL package

DEFINE_COLUMN function, overloading
by type, 597

dynamic SQL, 514
new features in Oracle Database 11g, 554–

562
enhanced security, 558–562
TO_CURSOR function, 556
TO_REFCURSOR function, 554

when to use, 543–554
meeting method 4 dynamic SQL

requirements, 546–552
minimizing parsing of dynamic cursors,

553
obtaining information about query

columns, 544
parsing very long strings, 543

DBMS_STANDARD package, 987
DDL event and attribute functions, 676
functions for error stack information, 686

DBMS_TRACE package, 763–766
DBMS_TYPES package, 1102
DBMS_TYPES.NO_DATA, 434
DBMS_TYPES.SUCCESS, 434
DBMS_UTILITY package

FORMAT_CALL_STACK function, 141
FORMAT_ERROR_BACKTRACE

function, 141–143
FORMAT_ERROR_STACK function, 140
functions to calculate elapsed time, 788
RECOMPILE_SCHEMA procedure, 734

DBMS_WARNING package, 738
DBTIMEZONE function, 273
DBURITYPE datatype, 430
DB_ROLE_CHANGE triggers, 683
DDL (Data Definition Language), 515

invalid DDL operation in system triggers,
699

stored procedure to execute DDL
statements, 516

triggers, 673–683
available attributes, 676
available events, 676
creating, 673
dropping undroppable triggers, 681
INSTEAD OF CREATE, 682
working with events and triggers, 678–

681
deadline pressures on developers, resisting, 20
deadlock, 456
DEBUG privilege (for object types), 1129
debugging, 766–774

row-level security (RLS), 961
tips and strategies for

analyzing instead of trying, 771
changing and testing single code area,

773
gathering data, 770
remaining logical, 770
taking breaks and asking for help, 772
using source code debugger, 769

tracing versus, 757
wrong way to debug, 767

disorganized debugging, 767
traditional debugging, 768

DEC datatype, 247
DECIMAL datatype, 247
declaration section, 54
declarations, 175–182

anchored, 177
benefits of, 180

anchoring to cursors and tables, 179
anchoring to NOT NULL datatypes, 181
constants, 176
constrained and unconstrained, 580
forward, 601
NOT NULL clause, 177
termination with semicolon (;), 74
variables, 175

NOT NULL clause, 177
DECOMPOSE function, 223, 1041
decrypting data, 930
dedicated server, 1010
DEFAULT operator, setting default values for

variables, 176

Index | 1229

Download at WoweBook.Com

DEFINE command (SQL*Plus), 32
definer rights model, 990–995

advantages of, 992
combining with invoker rights, 997
defined, 990
disadvantages of, 992
dynamic SQL and, 994

DELETE procedure, 341, 343
DELETE statements, 441, 443

continuing past errors, 149
as loops, 122
WHERE CURRENT OF clause, 495

DELETE triggers, INSTEAD OF DELETE,
695

DELETING clause in DML triggers, 661
DELETING function, 659
deliberate exceptions, 154

guidelines for handling, 156
denormalization, virtual, 1122
dense collections, 330
dependencies, 721–730

analyzing using data dictionary views, 722
fine-grained (Oracle Database 11g), 16,

726
invalidation of dependents through

recompilation, 735
Oracle's basic dependency principle, 721
remote, 727
USER_DEPENDENCIES view, 711

DEPTREE view, 725
DEPTREE_FILL procedure, 725
DES (Data Encryption Standard), 924
DES3 (Triple DES), 924
DESCRIBE command (SQL*Plus), 42
design, planning before coding, 20
DETERMINISTIC clause, 572
deterministic functions, 615

caching, 805
caching using function result cache, 810

development in PL/SQL, advice for, 19
asking for help, 21
planning and design before coding, 20
taking creative approach, 22

DIANA (Distributed Intermediate Annotated
Notation for Ada), 981

direct path operations, 962
directories

current directory for SQL*Plus, 31
setting up using UTL_FILE, 878

working with Oracle directories, 879
DISABLE keyword, 706
DISCONNECT command (SQL*Plus), 34
DML (Data Manipulation Language), 439–

450
cursor attributes for DML operations, 444
DELETE statement, 443
DML statements in SQL, 441
encapsulation on object views, 1124
exception handling and, 446
high speed statement execution using

FORALL, 828–838
INSERT statement, 441
MERGE statement, 443
order of firing, 666
records and, 447
RETURNING clause, retrieving

information from DML
statements, 445

triggers, 652
compound, 670–673
concepts and associated terminology,

653
creating, 655–660
example, 660–665
multiple triggers of same type, 665
mutating table errors, 668
participation in transactions, 654
scripts, 654

UPDATE statement, 442
DML privileges for object types, 1130
DOUBLE PRECISION datatype, 247
downcasting, 1091
DROP statements, dropping stored programs,

44
DROP TRIGGER command, 673, 681, 705
DROP TYPE statements, 1095
DSINTERVAL_UNCONSTRAINED

datatype, 307
duplicates

handling in nested tables, 392
SecureFiles deduplication option, 416

dynamic PL/SQL, 513, 531–535
replacing repetitive code with dynamic

block, 534
dynamic sampling, 855
dynamic SQL, 465, 513, 514

(see also NDS)
defined, 464

1230 | Index

Download at WoweBook.Com

definer rights and, 994
enhancements in Oracle Database 11g, 14
invoker rights for, 996
methods, 523
new features in Oracle Database 11g, 554–

562
when to use DBMS_SQL, 543–554

dynamically typed programming languages,
170

E
echoing content of scripts in SQL*Plus, 39
ed editor (Unix/Linux), 35
EDIT command (SQL*Plus), 34
edition-based redefinition, 12, 710, 777–780
_EDITOR variable (SQL*Plus), 35
editors

default external editors assumed by Oracle,
35

for source code, 24
SQL*Plus line editor, 35

element and index value (collections), 329
ELSE clauses

IF-THEN-ELSE statements, 84
using to prevent errors in simple CASE

statements, 92
ELSIF keyword, 87

common syntax errors with, 86
email, sending, 891–902

attaching file of arbitrary size, 900
configuring network security, 893
including friendly names in addresses, 896
message with short attachment, 898
Oracle prerequisites for, 893
plaintext message of arbitrary length, 897
short plaintext message, 894
small file as attachment, 900

embedded languages, 23
empty LOBs, 405
empty strings, 218
encapsulation, 460

data encapsulation in packages, 642–645
of DML on object views, 1124
single-row queries behind function

interface, 471
enclosed blocks, 57
encryption, 921–945

algorithms, 923
DBMS_CRYPTO package, 925

decrypting data, 930
encrypting data, 926–929
encrypting LOBs, 930
key generation, 932
key length, 922
key management, 933–938
padding and chaining, 925
SecureFiles, 417
SSL-encrypted web page, 907
TDE (Transparent Data Encryption), 942
TTE (Transparent Tablespace Encryption),

944
wrapping versus, 774

END IF keywords
avoiding syntax errors in IF statements, 86
line breaks and, 83

END IF statements, 82
END label

for functions, 575
for packages, 625
for procedures, 570

END LOOP statement, 102
equality

comparing records for, 325
comparison of collection types for, 340
object type comparisons for, 1083, 1111

MAP method and, 1112
ORDER method, 1113

testing nested tables for, 389
error codes

application specific, organizing use of, 157
associating exception names with, 129–132
set aside for users versus in built-in

packages, 137
$ERROR directive, 1005
error directives, 999
error messages

retrieving and formatting with UTL_LMS,
1069

returning for error codes, 140
errors

anticipating and handling in NDS, 536
date conversions, 281
handling in SQL*Plus, 36
handling with implicit cursors, 473
interpreting RLS errors, 961
logging errors occurring during transaction

processing, 459
mutating table errors, 668

Index | 1231

Download at WoweBook.Com

ORA_SPACE_ERROR_INFO function,
701

raising and handling, 9
SERVERERROR database event trigger,

686–690
showing error messages in SQL*Plus, 40
treatment as exceptions in PL/SQL, 125

event-driven model for error processing, 126
evolution, object types, 1093
EXCEPTION datatype, 152, 159
exception handling, 125–164

building effective error management
architecture, 152

deciding on strategy, 153
standard templates for common error

handling, 162
standardizing for different types of

exceptions, 154
use of application-specific error codes,

157
using standardized programs, 158
writing your own exception objects,

159
built-in error functions, 139–144
combining multiple exceptions in single

handler, 144
concepts and terminology, 125
continuing past exceptions, 148
defining exception handlers, 138
defining exceptions, 128–135
DML and, 446
handling exceptions, 138–152
making most of PL/SQL error management,

164
propagation of unhandled exceptions, 145

losing exception information, 146
raising exceptions, 135–138
unhandled exceptions, 145
writing WHEN OTHERS handling code,

150
EXCEPTION keyword, 138
exception section, 54

exception handlers in, 138
exceptions, 10, 125

continuing past in FORALL statements,
833

OTHERS handler not executing RAISE,
746

remote invocation and, 730

system and programmer-defined, 126
EXCEPTION_INIT pragma, 76, 127, 130–

132
associating exception names with error

codes, 130
recommended uses of, 131

EXECUTE command (SQL*Plus), 29, 41
EXECUTE IMMEDIATE statements, 514–517

length of strings executed, 543
using in dynamic SQL, 523

EXECUTE privileges
for object types, 1129
RLS policies and, 951
in SQL*Plus, 43

execution authority models, 990–998
combining, 997
definer rights, 990–995
invoker rights, 995–997

execution authority, improvements in, 5
execution section, 54
EXISTS function, 341, 345
EXISTSNODE function, 428
EXIT command (SQL*Plus), 34
EXIT statements

label as target for, 78
loop label after, 116
terminating simple loops, 105
using properly with loops, 120

EXIT WHEN statements, 105
explicit cursors

attributes, 487
choosing between implicit cursors and, 471
closing, 486
column aliases in, 484
declaring, 479–482
defined, 465
fetching from, 483
opening, 482
parameters, 489–492

exponentiation operator (**), 65, 259
EXTEND procedure, 341, 345
extent settings, 704
external LOBs, 401
external procedures, 986, 1026

(see also External Procedures chapter on
book web site)

EXTRACT function
conversions of intervals to character strings,

295

1232 | Index

Download at WoweBook.Com

listing of datetime component names used
with, 299

using with date and time values, 299

F
F, denoting binary (32-bit) floating-point

literals, 73
FALSE values, 172
FETCH statements

cursor variables used in, rowtype matching
rules, 505

fetching from cursor variables, 498, 501
fetching from explicit cursors, 483
fetching into variables or records, 520
initializing collections implicitly via, 357
using BULK COLLECT with LIMIT clause,

824
Feuerstein, Steven, PL/SQL portal, 18
FF format element, 283
fine-grained access control (FGAC), 946
fine-grained auditing (FGA), 920, 972–980

checking the audit trail, 977
number of columns to access, 976
reasons to learn FGA, 973
simple example, 974
using bind variables, 978
using handler modules, 980

Firefox browser, setting Unicode character
encoding, 1037

FIRST and LAST functions, 341, 346
FLOAT datatype, 247
floating-point datatypes, 171, 232, 241–246

BINARY_FLOAT and BINARY_DOUBLE,
241–245

floating-point arithmetic with, 871
mixing in comparisons, 242
mixing, Oracle order of precedence on

implicit conversions, 245
SIMPLE_FLOAT and SIMPLE_DOUBLE,

246
floating-point literals, 73
FLOOR function, 260
FM (fill mode) element, 282, 288

padding output in datetime conversions,
291

FOLLOWS clause, 667, 672
FOR loops, 102

cursor FOR loop, 112–115
exiting properly, 120

numeric FOR loop, 109–112
examples of, 111
nontrivial increments, 112
rules for, 110

obtaining information about execution,
121

FORALL statements, 820, 828–838
cursor attributes for, 831
examples of, 830
INDICES OF clause, 829, 836
nonsequential arrays with, 835
returning information into a collection using

BULK COLLECT syntax, 446
ROLLBACK behavior with, 833
rules for use, 829
SAVE EXCEPTIONS clause, 833
syntax, 828
using BULK COLLECT and RETURNING

clause, 826
VALUES OF clause, 829, 837

FORCE keyword, 354
FORCE option, CREATE TYPE statements,

13
formal parameters, 581

association with actual parameters, 585–
589

FORMAT_STRING function, 1058
forward declarations, 601
%FOUND attribute, 468

using with explicit cursors, 487
fractional seconds, FF format element, 283
fractional values in date arithmetic, 302
FREMOVE utility, 163
FROM clauses

table functions in, 386, 541, 605–615
calling function, 605

FTP server, retrieving data from, 913
function result cache (Oracle Database 11g),

13, 807–819
example caching a collection, 813
example querying data from table, 811
example using deterministic function, 810
how to use, 808
managing, 815
RELIES_ON clause, 809
Virtual Private Database (VPD) and, 816–

819
when not to use, 814
when to use, 814

Index | 1233

Download at WoweBook.Com

functions, 571–579
body of, 577
built-in error functions, 139–144
calling, 575
calling from within SQL, 602
collection as datatype of return value, 337
conversion functions, built-in, 185–190
converting strings to dates and timestamps,

279
creating in SQL*Plus, 38
date/time, 308
datetime, built-in, 309
DDL trigger event and attribute, 676
declared in package specification, 625
defined, 567
determining DML action within a trigger,

659
deterministic, 615
END label, 575
error stack generated when exception is

raised, 686
forward declaration, 601
getting current date and time, 272
header, 577
information about, in

USER_PROCEDURES view, 716
LOB conversion, 425
not returning value, compile-time warning

for, 743
numeric, 260–265
overloaded, requirements for, 600
overloading, 595
parameters, 580–590
passing cursor variables as arguments in

function calls, 507
PL/SQL, invoking within SQL statements,

42
RETURN datatype, 573
RETURN statement, 578
streaming or transformative, 512
string, quick reference, 222–230
structure of, 571
table functions, 605–615, 839

(see also pipelined table functions)
Unicode, 1038–1045
without parameters, 576

FX modifier in format masks, 287

G
GDK (Globalization Development Kit), 1066–

1072
implementation options, 1071
UTL_I18N package, 1066
UTL_LMS error-handling package, 1069

GET method (HTTP), 909
global data, 634

package data structures acting as, 1023
globalization and localization, 1031–1072

character semantics, 1045–1049
currency conversion, 1064–1066
dates and time, 1059–1064
development kit for PL/SQL, 1066–1072
globalization strategy, 1032
multilingual information retrieval, 1054–

1059
overview and terminology, 1033
string sort order, 1049–1054
Unicode primer, 1034–1045

glyphs, 1034
GOTO statements, 8, 97

restrictions on, 98
using NULL after a label, 99

GRANT statements, 43
GREATEST function, 223
greediness in regular expression matching,

216

H
habits in programming, reassessing, 22
handler modules, 974

using in FGA, 980
handlers (exception), 127
hashing, 938
headers

function, 56, 577
for named PLSQL blocks, 53
procedure, 56, 569

help, asking for, 21
HEXTORAW function, 190
hierarchical profiler (see DBMS_HPROF)
homogenous elements, 329
hot patching of PL/SQL-based applications,

777
HTML pages, embedding PL/SQL using PSP,

51
HTTP authentication, 906

1234 | Index

Download at WoweBook.Com

HTTP data, working with, 903–913
authentication, 906
cookies, disabling or making persistent,

912
HTTP headers, 903
retrieval of FTP via HTTP, 913
retrieving web page in pieces, 903
retrieving web page into a LOB, 905
submitting data to web page via GET or

POST methods, 908–911
HTTP server built into Oracle database, 914
HTTPS protocol, retrieving SSL-encrypted web

page via, 907
HTTPURITYPE datatype, 174, 430, 905

HTTP authentication, 906
retrieving web pages, 431

I
I Love PL/SQL And web site, 18
I/O (input/output), 873–915

database pipes, queues, and alerts, 914
displaying information, 873–877

enabling DBMS_OUTPUT, 874
reading buffer contents, 875
writing lines to the buffer, 874

Oracle’s built-in web server, 914
reading and writing files, 877–891

closing files, 882
copying files, 888
deleting files, 889
determining if file is open, 882
opening files, 880
reading from files, 883
renaming and moving files, 890
retrieving file attributes, 890
UTL_FILE_DIR parameter, 877
working with Oracle directories, 879
writing to files, 885

saving output to file using SQL*Plus, 33
sending email, 891–902

file attachment of arbitrary size, 900
network security, 893
Oracle friendly names in addresses, 896
Oracle prerequisites, 893
plaintext message of arbitrary length,

897
short plaintext message, 894
small file attachment, 900

TCP sockets, 914

working with web-based data, 903–913
cookies, 912
FTP data, 913
HTTP authentication, 906
retrieving SSL-encrypted web page, 907
retrieving web page in pieces, 903
retrieving web page into a LOB, 905
submitting data to web page, 908–911

IANA (Internet Assigned Numbers Authority),
899

identifiers, 66–70
$$identifier syntax for inquiry directives,

1000
avoiding incorrect use of reserved words,

69
built-in, 68

reserved words, 68
from STANDARD package, 68

case-insensitivity in names, 67
object, 1087
PL/Scope information about, 719
qualified, visibility and, 62
qualifying with module names, 62
scope of, 58
separating with whitespace, 69
valid and invalid names for, 67
visible, 61

IDEPTREE view, 725
IDEs (integrated development environments)

listing of popular IDEs for PL/SQL, 45
source code debuggers, 769
Toad IDE, 24
using for database navigation, 23

IEEE-754 floating-point standard, 241–246
converting types, 247
floating-point literals, 73
Oracle binary floating-point

implementation versus, 245
$IF directive, 999, 1004
IF statements, 8, 81–90

avoiding syntax gotchas, 86
comparing two VARCHAR2 values, issue

with NULLs and empty strings,
219

IF-THEN statements, 82
IF-THEN-ELSE statements, 84
IF-THEN-ELSIF statements, 85
line breaks and, 83
listing of types, 81

Index | 1235

Download at WoweBook.Com

nested, 88
short-circuit evaluation, 89

IF...THEN...ELSE statements, implications of
NULL Boolean variables, 396

implicit conversions, 183, 257
avoiding to improve performance, 870
drawbacks of, 184
limitations of, 184
problems with, 259

implicit cursors
choosing between explicit cursors and, 471
defined, 465
error handling, 473
examples of use, 472
SELECT statement with special

characteristics, 472
SQL cursor attributes, 476

IN mode, 582
bind arguments, 526

IN OUT mode, 492, 584
bind arguments, 526
NOCOPY qualifier, compile-time warning

about, 739, 741
INDEX BY clause

associative arrays, index values, 360
datatypes for collection indexes, 351
specifying index values for assignment to

associative array, 360
index values, 329

assigning data to associative array, 360
assigning values to, in nested table or

VARRAY collections, 359
defined for collection, getting lowest and

highest, 346
greatest value in use in an associative array,

342
returned by PRIOR and NEXT collection

methods, 348
trying to read undefined index value in

collection, 365
index-organized table (IOT), 173
indexed by integers (collections), 330
indexed by strings (collections), 330
indexes

case-insensitive indexes using Oracle Text,
425

case-insensitivity and, 201
collection, datatypes, 351
collection, string indexes, 365–370

creating using EXECUTE IMMEDIATE,
515

creating, restricted row access in RLS, 951
determining which rows in binding array to

use in dynamic INSERT, 831
indexing in multiple languages, 1054
numeric FOR loop, 110

handling nontrivial increments, 112
Oracle Text, 1054
understandable names for loop indexes,

119
INDICES OF clause (FORALL statement),

829
example, 836
VALUES OF clause versus, 835

infinite loops, 106
avoiding, 792
terminating, 107

information hiding with packages, 621
information retrieval (IR), multilingual, 1054–

1059
and PL/SQL, 1056

informational compile-time warnings, 737
INITCAP function, 201, 224
initialization of packages, 622, 627–632

avoiding side effects, 629
caching static session information, 629
executing complex initialization logic, 628
failure of, 630
initialization procedure included in

packages, 631
initialization section, 628
steps in process, 627

inner table, 330
inquiry directives, 999, 1000

DBMS_DB_VERSION package, 1001
program-specific settings with, 1006
referencing unit name and line number,

1003
setting compilation environmental

parameters, 1002
using PLSQL_CCFLAGS parameter, 1003

INSERT statements, 441
as loops, 122
populating tables with single INSERT, 695
record-based, 448

restrictions on, 450
using records, 447

INSERT triggers, 656

1236 | Index

Download at WoweBook.Com

INSTEAD OF INSERT trigger, 692
INSERTING clause in DML triggers, 659, 661
instantiable types, 1077
instants, 274
INSTEAD OF CREATE triggers, 682
INSTEAD OF triggers, 652, 690–697

creating, 690
INSTEAD OF DELETE, 695
INSTEAD OF INSERT, 692
INSTEAD OF UPDATE, 694
on nested tables, 696
populating tables with single INSERT, 695
using in object views, 1123

INSTR function, 202, 224, 1041
negative string positioning, 204

instrumentation, 757
integer datatypes, 171

BINARY_INTEGER, 239
PLS_INTEGER, 237

subtypes, 247
using for intensive integer computations,

871
SIMPLE_INTEGER, 239

internal LOBs, 401
SQL semantics for, 422

internationalization, 1033
Internet Assigned Numbers Authority (IANA),

899
Internet Explorer

retrieving data from HTTPS site, 907
setting Unicode encoding, 1037

Internet resources for PL/SQL, 18
Internet-related datatypes, 174
interpreted mode, 1028
INTERVAL datatypes, 172, 274–278

declaring INTERVAL variables, 275
unconstrained, 307
when to use, 276

designating periods of time, 277
finding difference between datetime

values, 276
INTERVAL DAY TO SECOND datatype, 275
interval literals, 295
INTERVAL YEAR TO MONTH datatype,

275
intervals, 274

adding and subtracting, 305
computing between two datetimes, 302
conversions, 293

converting numbers to, 293
converting strings to, 294
date arithmetic with, 300
element names, 293
formatting for display, 295
as literals, 70
multiplying and dividing, 306

INTO clause
EXECUTE IMMEDIATE statement, 515
FETCH INTO statements, 501

runtime rowtype matching rules, 505
INSERT INTO statements, 441
SELECT INTO or BULK COLLECT INTO,

472
SELECT INTO statement, 7

INVALIDATE option (ALTER TYPE), 354
invoker rights for shared programs, 535
invoker rights model, 995–997

combining with definer rights, 998
rules and restrictions, 996
syntax, 996

IR (information retrieval), multilingual, 1054–
1059

and PL/SQL, 1056
IS NULL operator, 259

testing scalar datatypes and LOBs, 406
IS OF operator, 1092
ISO dates, 1216
isolation levels for transactions, 453

READ COMMITTED, 457
SERIALIZABLE, 457

%ISOPEN attribute, 469
using with explicit cursors, 487

ISO_CURRENCY_FUNC function, 1065

J
Java, 46

(see also Calling Java from PL/SQL chapter
on book web site)
abstract classes, 1077
calling PL/SQL from, using JDBC, 48
stored procedures, 986, 1074

JDBC (Java Database Connectivity), 48

K
keys (cryptographic), 921

combined master key approach, 935
generating, 932

Index | 1237

Download at WoweBook.Com

key management, 933
single database key approach, 933
single key per row approach, 934

L
label delimiters (<< >>), 65
labels, 77

as targets for GOTO statements, 98
NULL after, 99

loop, 115
large objects (see LOBs)
LAST function, 341

member-method syntax, 342
using (example), 347

LEAST function, 224
linguistic sorting and, 200

LENGTH function, 224, 1042
passing string constants to, 196

LENGTHB function, 1046
lexical units, 66

error caused by whitespace in, 70
LIMIT clause for BULK COLLECT, 824, 844
LIMIT function, 347
line breaks, IF statements and, 83
line numbers (compilation unit), 1003
linefeed character, 197
Linux

ed editor, 35
killing a process, 107
opening files, specifying locations for, 878
retrieving SSL-encrypted web page via

HTTPS, 908
lists

collections of, 382
returned by DDL trigger attribute functions,

680
literals, 70–74

avoiding hardcoding of, 645
Boolean, 73
date and timestamp, 291
embedding single quotes within, 72
NULLs, 71
numeric, 73

LOBs (large objects), 170
BFILEs, 410–415
conversion functions, 425
datatypes, 400
empty versus NULL, 405
encrypting, 930

examples, table definition for, 401
function return values containing, 814
internal and external, 401
locators, 403
native LOB operations, 421

performance impact of SQL semantics,
424

SQL semantics for, 421
temporary LOBs yielded by SQL

semantics, 423
Oracle documentation for, 404
reading from, 409
retrieving web page into a LOB, 905
SecureFiles, 930
SecureFiles versus BasicFiles, 415
temporary, 417–421
writing into, 407–409

local modules, 590–595
benefits of using, 591

improving readability, 592
reducing code volume, 591

forward declaration of, 601
scope of, 594
sprucing up your code with, 594

local variables
normalization of, 181
synchronization with database columns,

180
localization (see globalization and localization)
LOCALTIMESTAMP function, 272
locators (LOB), 403

BFILE locator, 411
creating BFILE locator, 411
temporary LOBs yielded by application of

SQL semantics, 423
LOCK TABLE statements, 454
locking

releasing locks with COMMIT statement,
494

using SELECT FOR UPDATE statement,
492

logging
building autonomous logging mechanism,

459
errors, then continuing past error, 149

LOGOFF triggers, 683, 686
LOGON triggers, 683, 685, 965
LONG datatype, 170, 401
LONG RAW datatype, 173, 401

1238 | Index

Download at WoweBook.Com

LOOP keyword, 104
Loop Killer package, 792
loops, 8, 101–123

avoiding infinite loops, 792
CONTINUE statement, 13, 116
cursor FOR loop, 112–115
FOR loop, 102
infinite loop, 106
labels, 115
listing of loop types with descriptions, 101
numeric FOR loop, 109–112
runtime optimization of fetch loops, 798
simple loop, 102, 104–108
SQL statement as, 122
structure of, 103
tips on writing, 119–123

exiting properly, 120
getting execution information on FOR

loops, 121
understandable names for indexes, 119

WHILE loop, 103, 108
Lovelace, Ada, xxvii
LOWER function, 199, 225
LPAD function, 204, 225
LTRIM function, 206, 225

M
MACs (message authentication codes), 940
main transaction, 454
managing code (see code management)
many-to-many (MM) relationships, 1096
MAP method, 1111, 1112
mcode, 1027
MD5 (Message Digest), 939
member methods, 1079
member-method syntax, collection methods,

342
membership, testing nested table collections

for, 389
memory

analyzing usage, 783
cached packaged data memory versus CPU,

629
database instance memory and PL/SQL,

1009–1027
cursors and, 1011
PGA, UGA, and CGA, 1010
reducing memory use, 1013–1024
running out of memory, 1024

serialized packages and, 641
merge operations, tuning with pipelined

functions, 846–848
MERGE statements, 441, 443
message authentication codes (MACs), 940
method chaining, 1086
methods, 1076, 1079

collection, 341–350
constructor, 1079
invoking supertype methods from subtype,

1084
member, 1079

Microsoft, 25
(see also Windows systems)
ODBC (Open Database Connectivity), 46

MIME (Multipurpose Internet Mail
Extensions), 898

MIME types, 899
MOD function, 112
modular code, 566

forward declarations, 601
functions, 571–579
local or nested modules, 590–595
module overloading, 595–601
parameters, 579–590
procedures, 567

modularization, 566
importance of, 616

module names, qualifying identifer names with,
62

monolingual sort, 1051
MONTHS_BETWEEN function, 303
multibyte characters, 1034, 1045
multilevel collections (see collections,

multilevel)
multilingual data retrieval, 1054–1059
multilingual sort, 1053
multiset operations on nested tables (see nested

tables)
MULTISET pseudo-function, 384

MULTISET UNION, 392

N
name conflicts in variables or constants, 740
named blocks, 53, 56
named exceptions, 127

declaring, 128
system exceptions, 132

Index | 1239

Download at WoweBook.Com

named notation, associating actual and formal
parameters, 586

benefits of named notation, 587
naming conventions for program data, 167
narrowing, 1091
national character set datatypes, 1036
native compilation, 1027

new features in Oracle Database 11g, 14
native dynamic SQL (see NDS)
NCHAR datatype, 170, 191, 1036

NLS_NCHAR_CHARACTERSET, 1035
NCLOBs (NLS Character Large Objects), 170,

400, 1036
creating empty NCLOBs, 406

NDS (native dynamic SQL), 514–525
binding variables, 525–529
dynamic PL/SQL, 531–535
EXECUTE IMMEDIATE statement, 514–

517
OPEN FOR statement, 517–523
recommendations for, 535–542

errors, 536
minimizing danger of code injection,

540–542
using binding instead of concatenation,

538
using invoker rights for shared programs,

535
working with objects and collections, 529–

531
nested blocks, 57
nested modules (see local modules)
nested programs, scope and visibility of

variables, 64
nested tables, 331

changing characteristics of, 354
collection using, 332
comparison to other table types, 340
database-to-PL/SQL integration, 358
declaring and initializing collection

variables of type, 355
declaring nested table collection type, 353
INSTEAD OF triggers on, 696
multiset operations on, 387–393

checking element membership, 390
handling duplicates, 392
high-level set operations, 390
testing equality and membership, 389

using as column datatype, 339

NEW pseudo-records, 326, 653
working with, in DML triggers, 658

NEXT function, 341, 348
NLS (National Language Support), 1034
NLS Character Large Objects (see NCLOBs)
NLS Large Objects (see NCLOBs)
NLS settings

for datetimes, 297
determining by querying

NLS_SESSION_PARAMETERS,
192

NLS_CALENDAR parameter, 1063
NLS_COMP parameter, 199
NLS_CURRENCY parameter, 1064
NLS_DATE_FORMAT parameter, 279,

289
NLS_DATE_LANGUAGE parameter,

1062
NLS_LENGTH_SEMANTICS parameter,

192, 1047
NLS_SORT parameter

monolingual values, 1052
multilingual values, 1053

NLS_SORTparameter, 199
NLS_TERRITORY parameter, 281
passing to TO_CHAR function, 256
passing to TO_NUMBER function, 250
session parameters, listed, 1037

NLSSORT function, 226, 1051
NLS_INITCAP function, 225
NLS_LOWER function, 226
NLS_UPPER function, 226
NOCOPY parameter mode hint, 589, 867–

870
compile-time warnings about, 739, 741,

745
downside of, 869
performance benefits of, 868
restrictions on, 868

non-blank-padding comparison, 220
nongreedy quantifiers in regular expressions,

217
normalization

interval values, 297
of local variables, 181

NOT FINAL keyword, 1076
NOT INSTANTIABLE keyword, 1077
NOT operator, 259
Notepad editor, 35

1240 | Index

Download at WoweBook.Com

%NOTFOUND attribute, 469
using with explicit cursors, 487

NOWAIT keyword, using with LOCK TABLE,
454

NO_DATA_FOUND exception, 156
definition in STANDARD package, 989
raised by implicit cursor SELECT statement,

473
NULL statements, 98

improving readability with, 99
using after GOTO statement label, 99

NULLs, 71, 172
in Boolean expressions, 82
Boolean variables as, implications for

IF...THEN...ELSE statements,
396

collection, 1120
comparing NULL records, 325
empty strings as, 218
equality check for nested tables, 390
NULL LOB, 405
passing as bind arguments, 528
UNKNOWN versus, 91

NUMBER datatype, 73, 171, 232
constraining precision and scale, 233
converting strings and IEEE-754 floating-

point types to, 247–251
dealing with money, 242
mixing with other floating-point types, 245
negative scale values, 235
performance, BINARY_DOUBLE versus,

243
range of, 237
rounding of values, 234
using for floating-point numbers, 241

number format models, 1209
CAST function and, 257
using with TO_CHAR function, 252
using with TO_NUMBER function, 249

passing NLS settings, 250
V element, 253

numbers
conversions, 247–259

implicit conversions, 257
using CAST function, 256
using TO_CHAR function, 251–256
using TO_NUMBER function, 247–251

converting to intervals, 293
NUMERIC datatype, 247

numeric datatypes, 231
BINARY_DOUBLE, 241
BINARY_FLOAT, 241
BINARY_INTEGER, 239
NUMBER, 232
overloading with, 600
PLS_INTEGER, 237
SIMPLE_INTEGER, 239
subtypes, 246

numeric FOR loops, 109–112
examples of, 111
nontrivial increments, 112
rules for, 110

numeric functions, 260–265
quick reference, 261–265
rounding and truncation, 260
trigonometric, 261

numeric literals, 70, 73
numeric operators, 259
NUMTOYMINTERVAL function, 293
NVARCHAR2 datatype, 170, 191, 1036

NLS_NCHAR_CHARACTERSET, 1035
NVL2 function, 197

O
object identifiers (OIDs), 1087, 1119

primary-key-based, 1088
REFs to nonunique OIDs, 1127
system-generated, 1088
uniqueness, 1126

object tables, 1110
object views versus, 1125
views, 1128

object types, 567, 1076–1114
ANY types, 431–435, 1102–1106
comparing objects, 1110

additional recommendations, 1114
attribute-level comparison, 1112
MAP method, 1112
ORDER method, 1113

creating base type, 1076
creating self-sufficient type, 1106–1110
evolution and creation, 1093
invoking sypertype methods from subtype,

1084
maintaining object types and object views,

1127
methods, 1079
object views, 1115–1127

Index | 1241

Download at WoweBook.Com

packages and, 650
predefined, 426
privileges, 1128
REFs (object references), 1095–1102
storing, retrieving, and using persistent

objects, 1085
URI types, 430
XMLType, 426– 0

object views, 1115–1127
with collection attribute, 1118
example relational system, 1117
INSTEAD OF triggers, 1123
with inverse relationship, 1122
maintaining, 1127
object subview, 1121
object tables versus, 1125

object-oriented programming, 1073–1132
concluding thoughts on, 1130
Oracle’s object features, 1074

best situations for use, 1131
objects

collections of, 373
stored, displaying information about, 712
viewing all objects you have defined, 778
working with using NDS, 529–531

OBJECT_VALUE pseudo-column, 1111
OCI (Oracle Call Interface), 47

creation of temporary LOBs, 418
support for REFs, 1100

ODBC (Open Database Connectivity), 46
OIDs (see object identifiers)
OLD pseudo-records, 326, 654

working with, in DML triggers, 658
ON NESTED TABLE COLUMN OF clause,

697
one-dimensional or single-dimensional, 329
ONLY keyword, 1092
Open Directory Project, 19
OPEN FOR statements, 517–523

fetching into variables or records, 520
method 4 dynamic SQL, 524
USING clause, 522

OPEN statements
opening cursor variables, 500
opening explicit cursors, 482

OPEN_CURSORS initialization parameter,
1012

operating systems
starting up SQL*Plus, 26

terminating intentionally infinite loop, 107
time values from, 273

operational directives, 659
optimizing compiler, 794–799

how optimizer works, 795
runtime optimization of fetch loops, 798

optimizing performance (see performance
optimization)

OR operator
combining multiple exceptions in single

handler, 144
short-circuit evaluation in IF statements,

89
Oracle Advanced Queuing (AQ), 178, 634
Oracle Application Express (Oracle APEX),

915
Oracle Call Interface (see OCI)
Oracle Database 11g, 11, 12–16

automatic subprogram inlining, 15
compile-time warning, OTHERS handler

not ending in RAISE, 746
compound triggers, 15, 652, 670–673
CONTINUE statement, 13
creating disabled triggers, 706
dynamic SQL enhancements, 14, 554–562
fine-grained dependency tracking, 16, 726
firing order of DML triggers, using

FOLLOWS clause, 667
function result cache, 13, 807–819
hierarchical profiler, DBMS_HPROF, 16,

784, 785
native compilation, 14, 1028
PL/Scope, 15, 719–721
REGEXP_COUNT function, 214
regular expressions, specifying which

subexpression to return, 213
SecureFiles, 15
sequences in expressions, 14
SIMPLE datatypes, 14
SQL*Plus, 25
supertype invocation from subtype, 16,

1084
Transparent Tablespace Encryption (TTE),

944
upgrade strategy for policy types, 957

Oracle Database 11g Release 2
configuring network security, 893
DBMS_DB_VERSION constants, 1001

1242 | Index

Download at WoweBook.Com

edition-based redefinition, 12, 710, 777–
780

FORCE option with CREATE TYPE, 13
Oracle databases

native compilation and database release,
1028

version information in
DBMS_DB_VERSION, 1001

versions, xxxiv
versions, and corresponding PL/SQL

versions, 11
Oracle Globalization Support Guide, 280
Oracle Net, 27
Oracle Technology Network web site, 19, 51
Oracle Text, 425, 1054

indexes, 1055
Oracle Wallet Manager utility, 907
ORA_GRANTEE function, 680
ORA_IS_ALTER_COLUMN function, 679
ORA_SPACE_ERROR_INFO function, 701
ORA_SQL_TXT function, 682
ORDER BY clause

international character sets and, 1049
using with CLUSTER BY in table functions,

614
ORDER method, 1111, 1113
OUT mode, 492, 583

bind arguments, 526
out-of-space errors, 698
outer table, 330
overloading, module, 595–601

benefits of, 596
supporting many data combinations,

598
overloading with numeric types, 600
restrictions on, 599

P
package body (see body of a package)
package specification (see specification)
packaged constants, synchronizing code with,

1006
packages, 617–650

advantages of using, 617
available on book web site, 648
body of, 626
caching based on, 800–805

caching table contents, 803
just-in-time caching of table data, 804

compound triggers and, 670
concepts related to, 621
creating with REF CURSOR type

declaration, 507
declaring explicit cursors in, 480
default PL/SQL packages, 987
defined, 567
demonstrating power of, 618
dependencies, analyzing, 722
improving memory use and performance by

using, 1018
initializing, 627–632
object types and, 650
preservation of state of constants, cursors,

and variables, 1023
public and private elements, diagram of,

623
records based on, 324
rules for calling elements, 632
specification, 624
when to use, 642

avoiding hardcoding of literals, 645
caching static session data, 649
encapsulating data access, 642–645
grouping logically related functionality,

648
improving usability of built-in features,

647
working with package data, 633–641

cursors, 635–639
global public data, 634
global within Oracle session, 634
serializable packages, 639–641

padding (encryption), 925
DBMS_CRYPTO padding constants, 926
PKCS#5, 927

padding strings, 204
string comparisons and, 220

parallel execution of table function, 613
parallel pipelined functions, 844

asynchronous data unloading with, 848–
851

enabling execution, 845
performance implications of partitioning

and streaming clauses, 852
PARALLEL_ENABLE clause, 572
parameters, 579–590

actual and formal, 581
association in PL/SQL, 585–589

Index | 1243

Download at WoweBook.Com

considerations for, 580
cursor, 489–492
cursor variable arguments, setting mode,

508
default values, 589
defining, 580
modes of, 582

IN mode, 582
IN OUT mode, 584
OUT mode, 583

NOCOPY parameter mode qualifier, 589,
739, 741

overloaded modules, 599
passing by reference and by value, 867

parent block, 57
PARENT pseudo-records, 697
PARTITION...BY clause, 614
partitioning

parallel pipelined functions, performance
and, 852

with skewed data, 853
pattern matching (see regular expressions)
peer code review process, 21
performance

comple-time warnings about, 737
impact of using SQL semantics, 424
improving with ROWIDs, 400
information returned by FGA, 973
string-indexed collections, 369

performance optimization, 781–872
analyzing memory usage, 783
avoiding infinite loops, 792
big picture on performance, 871
bulk processing for multirow SQL, 820–

838
DML using FORALL, 828–838
querying with BULK COLLECT, 821–

828
calculating elapsed time, 788
choosing fastest program, 790
data caching techniques, 799–820

deterministic function caching, 805
function result cache, 807–819
package-based caching, 800–805

identifying bottlenecks in PL/SQL code,
783

using DBMS_HPROF, 785
using DBMS_PROFILER, 784

optimizing compiler, 794–799

specialized techniques, 866–871
NOCOPY parameter mode hint, 867–

870
using right datatype, 870

using pipelined table functions, 838–866
warnings about performance, 793

periods, 274
designating periods of time, 277

Perl
calling PL/SQL from, 49
resources for information, 50

persistent LOBs, 417
PGA (Program Global Area), 167, 362, 1010

data caching in, 799
PHP

calling PL/SQL from, 50
resources for information, 51

PIPELINED clause, 572
pipelined table functions, 605, 838–866

cost-based optimizer and, 853–859
creating, 611
parallel

asynchronous data unloading with, 848–
851

partitioning and streaming clauses,
performance and, 852

replacing row-based inserts with loads from,
839–846

loading from pipelined function, 842
parallel pipelined functions, 844
pipelined function implementation, 840
tuning with array fetches, 843

summary of performance tuning use, 866
tuning complex data loads with, 859–865
tuning merge operations with, 846–848

PKCS#5 (Public Key Cryptography Standard
#5), 925, 927

PL/Net.org, 19
PL/Scope, 15, 719–721

USER_IDENTIFIERS view, 711
PL/SQL, xxvii

advice for developers, 19
application construction

code management, 709–780
I/O, 873–915
modular programming, 590–616
optimizing performance, 781–872
packages, 617–650

1244 | Index

Download at WoweBook.Com

procedures, functions, and parameters,
565–590

triggers, 651–708
architecture, 981–1030
block structure, 53–64
calling from C language, 47
calling from Java, 48
calling from other languages, 46
calling from Perl, 49
calling from PHP, 50
character set, 64
comments, 75
control and conditional logic, 8
creating and running code, 23–52
defining characteristics, 3
ease of learning, 7
errors, raising and handling, 9
globalization and localization, 1031–1072
identifiers, 66–70
integration with SQL, 7
literals, 70–74
object-oriented aspects, 1073–1132
online resources, 18
origins and brief history of, 4
other languages or environments to use it

from, 52
procedural language capabilities, xxvii
program data

collections, 327–394
dates and timestamps, 267–310
miscellaneous datatypes, 395–435
numbers, 231
records, 311–326
strings, 191–230
working with, 167–190

program structure
conditional and sequential control, 81–

100
exception handlers, 125–164
iterative processing with loops, 101–

123
resources for developers, 17
security, 919–980
semicolon (;), terminating statements and

declarations, 74
SQL in

data retrieval, 463–512
DML and transaction management,

439–461

dynamic SQL and PL/SQL, 513–562
versions, xxxiv, 11

PL/SQL Developer IDE, 45
PL/SQL User’s Guide and Reference, 987
PL/SQL Virtual Machine (PVM), 983
PLSQL_CCFLAGS compile parameter, 1000
PLSQL_CCFLAGS parameter, 1003
PLS_INTEGER datatype, 171, 237

subtypes, 247
using for intensive integer computations,

871
PLUTO testing framework, 752
pointers, 463

(see also cursor variables; cursors)
LOB locators, 403
object references (REFs), 1095
similarity of ROWIDs to, 398

policies (FGA), 974
policies (RLS), 947

context-sensitive policy, 956
creating, 949
dropping, 951
dynamic, 953
shared context-sensitive policy, 957
shared static policy, 955
upgrade strategy for policy types, 957
viewing policies defined on a table, 951

policy function, 947
errors in, 961
RLS example, 949
rules for, 950

polymorphism, 596
portability, application, 5
positional notation, associating actual and

formal parameters, 585
POST method (HTTP), 909
postprocessed code, 1008
PRAGMA keyword, 76
pragmas

AUTONOMOUS_TRANSACTION, 455
types of pragmas in PL/SQL, 76

precision
datetime variables, 270
NUMBER datatype, 233

predicates, 947
contexts as predicates in RLS, 967
RLS example, 949
used with BINARY_FLOAT AND

BINARY_DOUBLE types, 242

Index | 1245

Download at WoweBook.Com

primary keys
emulating with string indexes in collections,

369
using ROWIDs instead of, 397

PRINT command (SQL*Plus), 33
PRIOR and NEXT functions, 341, 348
private code, 622

Booch diagram showing private package
elements, 623

private key, 923
privilege escalation and SQL injection, 995
privileges

CREATE ANY DIRECTORY, 879
granting and removing for stored programs,

43
listing with DDL trigger attribute functions,

680
object types, 1128
rejection of DBMS_SQL operations when

effective user changes, 560
restriction on user schemas to prevent code

injection, 540
for schema-level collections, 393

PRNG (Pseudo-Random Number Generator),
932

Pro*C precompiler, 47
procedures, 567–571

body of, 570
declared in package specification, 625
defined, 566
defining in local modules, 590
END label, 570
forward declaration, 601
header, 56, 569
overloading, 595
parameters, 579–590
passing cursor variables as arguments in

procedure calls, 507
RETURN statement, 571
standalone, referencing REF CURSOR type,

508
USER_PROCEDURES view, 716

profilers, 783–788
DBMS_HPROF package, 16, 785
DBMS_PROFILER package, 784

program data, 167–190
conversions between datatypes, 183–190
datatypes in PL/SQL, 169–175
declaring, 175–182

defined, 167
naming, 167
programmer-defined subtypes, 182

Program Global Area (see PGA)
programmer-defined exceptions, 126

losing information about, 146
programmer-defined records, 314, 315–318

declaring record TYPEs, 316
declaring records, 316
examples of declarations, 317

programmer-defined tracing, 757
programming habits, reassessing, 22
programming languages

calling PL/SQL from other languages, 46–
52

database, 4
static and dynamic typing, 170

programs
compiler limits on size of, 986
nested, 64
stored in database, size of, 715

propagation of exceptions, 127
unhandled exceptions, 145

examples of propagation, 147
losing exception information, 146

proxy servers, 913
pseudo-columns

OBJECT_VALUE, 1111
ROWID, 398

pseudo-records, 326
changing names in DML triggers, 658
PARENT, 697
using to fine-tune trigger execution, 664

PSP (PL/SQL Server Pages), 51
public code, 622

Booch diagram showing public package
elements, 623

global public package data, 634
public key, 923
Public Key Cryptography Standard #5 (see

PKCS#5)
PVM (PL/SQL Virtual Machine), 983

Q
qualifying references, 59

labels as aid in, 77
Quest Code Tester for Oracle, 752

testing with, 755
Quest CodeGen utility, 19

1246 | Index

Download at WoweBook.Com

Quest Error Manager (QEM) framework, 19
tracing with, 761

queuing, 914

R
raising exceptions, 127, 135–138

RAISE statement, 136
RAISE_EXCEPTION_ERROR procedure,

137
random numbers, 932
range operator (..), 65
ranges, numeric FOR loops, 110
RAW datatype, 173, 397

AQ message IDs, 178
casting to VARCHAR2, 412
converting hexadecimal string from type

CHAR or VARCHAR2 to, 190
converting VARCHAR2 value to, 927
UTL_MAIL.SEND_ATTACH_RAW, 900

RAWTOHEX function, 190
READ COMMITTED isolation level, 457
read consistency and user-defined functions,

604
READ procedure (DBMS_LOB), 409
REAL datatype, 247
real numbers, 73
recompiling code, invalid program units, 731–

735
record anchoring, 177
records, 311–326

benefits of using, 312
collections as components of, 335
collections of, 371–373
comparing, 325
in cursor RETURN clause, 480
declaring, 314
defining your own type, 312
fetching into, 521
field-level operations, 322–324

nested records, 323
package-based records, 324

programmer-defined, 315–318
record-level operations, 318–322

fetching directly into a record, 320
initializations, 319
setting all fields to NULL with direct

assignment, 321
trigger pseudo-records, 326
using with DML statements, 447

record-based inserts, 448
record-based updates, 449
restrictions on inserts and updates, 450
RETURNING clause, 449

records equal generator, 325
recursion, 601
redefinition capability (see edition-based

redefinition)
REF CURSOR datatype, 173
REF CURSOR types

compatible rowtype and select list, 500
converting to SQL cursor number using

DBMS_SQL.TO_CURSOR, 556
DBMS_SQL.TO_REFCURSOR function,

554
declaring, 498
FETCH INTO statements, compatible

rowtype, 501
identifying for cursor variable used as

argument, 507
rowtype matching at compile time, 504
rowtype matching at runtime, 505
strong and weak, 499

references, qualifying with scope, 59
REFERENCING clause, changing names of

pseudo-records in DML triggers, 658
REFs (object references), 1095–1102

better support in C, 1100
dangling REFs, 1102
to nonunique OIDs, 1127
storing, physical versus virtual REFs, 1126
type hierarchies and, 1101
using, 1096
UTL_REF package, 1099
virtual REFs, 1120, 1122

REGEXP_COUNT function, 214, 1206
REGEXP_INSTR function, 1206

locating a pattern, 209
REGEXP_LIKE function, 208, 1207
REGEXP_REPLACE function, 214, 1207
REGEXP_SUBSTR function, 211, 1207
regular expressions, 207–218, 1203–1208

counting matches, 214
detecting a pattern, 208
extracting text matching a pattern, 211
functions and parameters, 1206
greediness in matching and nongreedy

quantifiers, 216
locating a pattern, 209

Index | 1247

Download at WoweBook.Com

metacharacters, 1203–1206
replacing text, 214
resources for information, 218

RELIES_ON clause (function result cache),
808, 809

using (example), 812
remote dependencies, 727
remote invocation, limitations of Oracle’s

model, 730
REMOTE_DEPENDENCIES_MODE

initialization parameter, 728
REPEAT UNTIL loop, emulating, 106
REPLACE function, 203, 226
reserved words, 68

avoiding incorrect use of, 69
information on, 990

resources for PL/SQL developers, 17
books from O’Reilly, 17
online resources, 18

RESTRICT_REFERENCES pragma, 76
result sets, 465
RESULT_CACHE clause, 573, 808

RELIES_ON subclause, 809, 812
using with deterministic function

(example), 810
when not to use, 814
when to use, 814

RESULT_CACHE_MAX_SIZE initialization
parameter, 816

resumable statements, 699
DBMS_RESUMABLE package, 702

RETURN clauses
cursor

datatype structures, 480
declaring cursor with RETURN clause,

479
function, 567

return datatype, 573
packaged cursors, 635

RETURN SELF AS RESULT clause, 1081
RETURN statements

functions, 578
as last executable statement, 579
multiple RETURNs, 578
returning any valid expression, 578

use with procedures, 571
RETURNING clause

DML statements, using records with, 449

using in FORALL statement with BULK
COLLECT, 826

using in FORALL statements, 831
using with DML statements, 445

REVERSE keyword, 111
REVOKE statements, 43
RLS (see row-level security)
rollback segment, assigning current transaction

to, 453
ROLLBACK statements, 452
rollbacks

considerations in programs performing
DML, 447

with FORALL statements, 833
ROUND function, 260
rounding functions, 260
row-based merge processing, 846
row-level security (RLS), 920, 945–964

column-sensitive RLS, 957–961
contexts as predicates in, 967
debugging, 961

direct path operations, 962
interpreting errors, 961
viewing SQL statements, 963

dynamic policies, 953
main components, 947
reasons to learn about, 947
simple example, 949–952

row-level triggers, 653
%ROWCOUNT attribute, 469

using with explicit cursors, 487
ROWID datatype, 173, 397–400

changes in, 397
converting CHAR or VARCHAR2 values to,

187
getting ROWIDs, 398
using ROWIDs, 399

ROWIDTOCHAR function, 190
%ROWTYPE attribute, 173

anchoring to cursors and tables, 179
packaged cursors, 637
use in record declarations, 314
using in record anchoring, 177

ROWTYPE_MISMATCH exception, 502
RPAD function, 204, 226
RR date format element, 288
RTRIM function, 206, 227

1248 | Index

Download at WoweBook.Com

S
SAVE EXCEPTIONS clause (FORALL

statement), 829, 833
SAVEPOINT statements, 452
savepoints

erasure by COMMIT, 451
indicating for ROLLBACK statement, 452

scalar anchoring, 177
scalar datatypes, 351

IS NULL test, 406
scalars, 167
scale, NUMBER datatype, 233
schema-level recompilation, 733
scope, 58

of compound triggers, 671
cursor object to which cursor variable is

assigned, 506
cursor parameters, 491
exceptions, 127, 134
local modules, 594
qualified references with scope name, 59

scripts, running from SQL*Plus, 30
search strings, formatting for multilingual IR,

1057
searched CASE statements, 93
SecureFiles, 15, 395, 930

BasicFiles versus, 415
compression, 416
deduplication, 416
encryption, 417

security, 919
(see also application security)
in application contexts, 966
enhancements for DBMS_SQL package,

558
security policies (see policies)
SELECT FOR UPDATE statements, 466, 492–

496
releasing locks with COMMIT, 494
WHERE CURRENT OF clause, 495

SELECT statements
explicit cursor, 477
explicit cursor body, 481
implicit cursor, 472

selection directives, 999
SELF keyword, 1082
sequences

in expressions, 14

native PL/SQL support for in Oracle
Database 11g, 442

sequential control statements, 81
GOTO, 97

SERIALIZABLE isolation level, 457
SERIALLY_REUSABLE pragma, 76, 640
SERVERERROR triggers, 683, 686–690

central error handler, 689
examples of, 687

SERVEROUTPUT command (SQL*Plus), 28
session persistence with packages, 622
sessions

caching static data, 629, 649
database, 983
package data as global within, 634

SESSIONTIMEZONE function, 273
SET command (SQL*Plus), 32
SET DEFINE OFF command (SQL*Plus), 196
SET ECHO ON command (SQL*Plus), 39
SET EDITFILE command (SQL*Plus), 34
set operations (see nested tables, multiset

operations on)
SET TRANSACTION statements, 453

isolation level of SERIALIZABLE, 457
set-based MERGE, using pipelined functions,

847
severe compile-time warnings, 736
SFTK timer package, 789
SGA (System Global Area), 362, 782

data caching in, 799
SHA-1 (Secure Hash Algorithm), 939
shared context-sensitive policies, 957
shared server, 1010
shared static policies, 955
short-circuit evaluation, 89
SHOW ERRORS command (SQL*Plus), 40

list of categories recognized by, 40
SHUTDOWN triggers, 683, 685
signature mode (remote dependencies), 728
SIMPLE datatypes, 14
simple loops, 102, 104–108

emulating REPEAT UNTIL loop, 106
exiting, 105
infinite loop (intentional), 106

SIMPLE_DOUBLE datatype, 171, 246
SIMPLE_FLOAT datatype, 171, 246
SIMPLE_INTEGER datatype, 171, 239
SMTP (Simple Mail Transfer Protocol), 892

8BITMIME, 898

Index | 1249

Download at WoweBook.Com

UFL_SMTP, 893
SMTP server, conversation with PL/SQL mail

client, 895
SOUNDEX function, 227
source code

displaying and searching in
USER_SOURCE view, 713

managing (see code management)
sparse collections, 330
specification (packages), 618, 622

example, 619
referencing element defined in from outside

the package, 632
rules for construction, 624

SPOOL command (SQL*Plus), 33
SQL (Structured Query Language)

calling functions from, 602
DML statements in, 441
dynamic and static SQL, 513
dynamic SQL enhancements in Oracle

Database 11g, 14
execution of anonymous PL/SQL block

containing SQL statement, 984
integration with PL/SQL, xxviii, 7
native dynamic SQL (see NDS)
object comparisons, 1111
semantics for LOBs, 421–425

performance impact of, 424
yielding temporary LOBs, 423

working with collections, 382–387
CAST pseudo-function, 383
MULTISET pseudo-function, 384
sorting collection contents, 386
TABLE pseudo-function, 385

SQL Developer IDE, 45
SQL injection

avoiding in dynamic SQL and PL/SQL, 540–
542

preventing by using DBMS_ASSERT, 1016
privilege escalation and, 995

SQL Navigator IDE, 45
SQL statements

calling deterministic functions within, 615
as loops, 122
qualifying references to variables and

columns in, 59
SQL%BULK_EXCEPTIONS attribute, 832,

833
SQL%BULK_ROWCOUNT attribute, 832

SQL%FOUND attribute, 444, 476, 832
SQL%ISOPEN attribute, 476, 832
SQL%NOTFOUND attribute, 476, 832
SQL%ROWCOUNT attribute, 445, 476, 832
SQL*Plus, 25–38, 983

benefits and limitations of, 37
creating stored programs, 38
current directory, 31
editing statements, 34
error handling, 36
executing stored programs, 41
exiting, 34
loading custom environment automatically

on startup, 35
problems with & (ampersand) in PLSQL

code, 196
running a PL/SQL program, 28
running a script, 30
running a SQL statement, 28
saving output to file, 33
setting your preferences, 32
showing stored programs, 42
starting up, 26

pseudo-GUI version, 27
versions, 25

SQL*Plus User's Guide and Reference, 31
SQLCODE function, 129, 140

combining with WHEN OTHERS clause,
151

SQLERRM function, 140
useful applications of, 143

SQLPATH environment variable, 30
SSL-encrypted web page, retrieving via HTTPS,

907
STANDARD package, 987

compile-time warning about, 742
core features of PL/SQL language and

dependencies, 725
defining PL/SQL environment, 988
identifiers from, 68
important points about, 989
predefined datatypes in, 169
predefined exceptions in, 128

START command (SQL*Plus), 30
STARTUP triggers, 683, 685
statement sharing, 1013
statement-level triggers, 653
statements, 81

1250 | Index

Download at WoweBook.Com

(see also conditional control statements;
sequential control statements; SQL
statements)
PL/SQL, termination with semicolon (;),

74
static polymorphism, 596
static SQL, 465, 513
static typing, 170
stepwise refinement in application design, 20
stepwise refinement methodologies, 592
store table, 330
streaming functions, 512

parallel pipelined functions, performance
and, 852

streaming table functions, 605
creating, 608–611

string literals, 71
string-indexed collections, 365–370

emulating primary keys and unique indexes,
369

other examples of, 370
performance, 369
simplifying algorithmic logic with, 366

strings, 191–230
CHAR datatype, 193
concatenating, 198
converting datetimes to, 281
converting numbers to, 251–256
converting time zones to, 290
converting to and from numbers, 256
converting to datetimes, 279
converting to intervals, 294
datatypes, listed, 191
dealing with case, 199
empty strings, 218
mixing CHAR and VARCHAR2 values,

219–222
nonprintable characters, 197
null and zero-length, 71
padding, 204
quick reference for string functions, 222–

230
searching, extracting, and replacing,

traditional, 202
searching, extracting, and replacing, using

regular expressions, 207–218
sort order, globalization and, 1049–1054
specifying string constants, 195
subtypes, 194

trimming, 206
VARCHAR2 datatype, 192

strong type, 499
sub-blocks, 57
subprograms

automatic inlining in Oracle Database 11g,
15

execution profile of code, 16
overloading, 600

SUBSTR function, 202, 227, 1044
negative string positioning, 204

subtypes
creating for object type, 1078
numeric, 246
programmer-defined, 182
string, 194

subviews, 1121
supertype methods, invoking, 16, 1084
suspendable/resumable statements, 699
suspended statements, 652
symmetric encryption, 923
synchronization with database columns, 180
synonyms for stored programs, 43
SYS.STANDARD package, numeric functions

in, 262
SYSDATE function, 272, 301
system exceptions, 126

named, listing of predefined exceptions,
132

System Global Area (SGA), 362, 782
data caching in, 799

system-generated object identifiers, 1088
SYSTIMESTAMP function, 272

precision of timestamps returned, 273
SYS_REFCURSOR datatype, 173, 499, 1108

T
table functions, 386, 605–615, 839

(see also pipelined table functions)
calling in a FROM clause, 605
creating pipelined function, 611
creating streaming function, 608–611
enabling for parallel execution, 613
passing results with a cursor variable, 607

TABLE operator, 605
TABLE pseudo-function, 385
table-based records, declaring, 314
tables

anchoring to, 179

Index | 1251

Download at WoweBook.Com

locking, 454
TCP sockets, 914
TDE (Transparent Data Encryption), 417, 942
temporary LOBs, 417–421

creating, 418
freeing, 419
managing, 420
yielded by SQL semantics for LOBs, 423

testing PL/SQL programs, 746–756
automated testing options, 752
general advice for, 751
reasons for inadequate testing, 747
typically bad approach to testing, 748

key drawbacks of, 750
using Quest Code Tester for Oracle, 755
using utPLSQL, 753–755

testing, planning and developing tests, 20
text, 408

(see also Oracle Text)
checking dynamic text for dangerous

content, 542
TEXT_SEARCH_FUNC function, 1055
THEN keyword, 82

requirement after ELSIF clause, 86
three-valued logic, 82
time zones, 268

converting to character strings, 290
region names and time zone abbreviations,

286
session and database, 272
working with, 284

timeout values, DBMS_RESUMABLE package
functions for, 703

TIMESTAMP datatypes, 172, 268, 1059
arithmetic with intervals, 300
caution using DATE with, 271
considerations when choosing, 271
conversions between, 273
conversions using CAST function, 298
converting strings to, 279
converting to strings, 281
date formats and, 283
as inputs for datetime functions, 308
mixing with DATEs in datetime arithmetic,

304
timestamp literals, 291
timestamp mode (remote dependencies), 728
TIMESTAMP WITH LOCAL TIME ZONE

datatype, 268

considerations when choosing, 271
TIMESTAMP WITH TIME ZONE datatype,

268
considerations when choosing, 271
time zone information in, 290

Toad IDE, 24, 45
TOO_MANY_ROWS exception, 156

raised by implicit cursor SELECT statement,
473

top-down design, 20, 592
TO_CHAR function, 228, 251–256

converting datetime values to strings, 281
dealing with spaces, 255
examples of use for date conversions, 282
interval format masks and, 295
passing NLS settings to, 256
rounding when converting, 254
V format element, 253

TO_DATE function, 279
TO_DSINTERVAL function, 294
TO_MULTI_BYTE function, 228
TO_NCHAR function, 228
TO_NUMBER function, 247–251

passing NLS settings to, 250
using with format model, 249
using with no format, 248

TO_TIMESTAMP function, 279
TO_TIMESTAMP_TZ function, 279
TO_YMINTERVAL function, 294
tracing program execution, 756–766

using DBMS_APPLICATION_INFO
package, 759

using DBMS_TRACE package, 763–766
using Quest Error Manager (QEM), 761

transactions, 439, 450–461
autonomous, 454–461

building autonomous logging
mechanism, 459

defining, 455
rules and restrictions for, 456
visibility of, 457
when to use, 458

COMMIT statement, 451
defined, 450
exiting SQL*Plus before completion of, 34
integrity of, 5
LOCK TABLE statement, 454
participation of DML triggers, 654

1252 | Index

Download at WoweBook.Com

PL/SQL statements for transaction
management, 450

ROLLBACK statement, 452
SAVEPOINT statement, 452
SET TRANSACTION statement, 453

transformative functions, 512
transient types, 1105
TRANSLATE function, 228
Transparent Data Encryption (TDE), 417, 942
Transparent Tablespace Encryption (TTE),

944
TREAT function, 1091
triggers, 651–708

AFTER SUSPEND, 697–704
checking validity of, 708
compound, 670–673
creating disabled triggers, 706
database event, 683–690
DDL, 673–683
defined, 567
disabling, enabling, and dropping, 705
DML, 652

creating, 655–660
example, 660–665
multiple triggers of same type, 665
mutating table errors, 668
order of firing, 666

enhancements in Oracle Database 11g, 15
events with trigger code attached, 651
INSTEAD OF, 690–697
pseudo-records, 326
USER_TRIGGERS and

USER_TRIG_COLUMNS views,
712

analyzing and modifying triggers, 716
uses of, 651
viewing, 706

trigonometric functions, 261
TRIM function, 206, 229
TRIM procedure, 341, 349
trimming strings, 206
Triple DES (DES3), 924
TRUE values, 172
TRUNC function, 260

with MONTHS_BETWEEN function, 304
using with dates and times, 285

%TYPE attribute, 177
anchoring to NOT NULL datatypes, 182

type evolution, 1093

type hierarchies
object types, 1076
REFs and, 1101

TYPE statements, declaring programmer-
defined records, 315

TYPE...RECORD statements, 314

U
UGA (User Global Area), 1010
unbounded collections, 330
unconstrained declarations, 580
unconstrained subtypes, 182
UNDER privilege (for objct types), 1129
unexpected exceptions, 154

exception handling for, 155
guidelines for handling, 156

unfortunate exceptions, 154
exception handling for, 155
guidelines for handling, 156

unhandled exceptions, 127, 145
propagation of, 145

examples, 147
losing exception information, 146

Unicode, 1034–1045
character encoding, 1036
defined, 1034
globalization support (NLS) parameters,

1037
national character set datatypes, 1036
PL/SQL functions for, 1038–1045
support in your environment, 1037
Unicode Standard web site, 1036
UTF-8 character set, 192

UNISTR function, 230, 1045
units (compilation), 1003
Unix

ed editor, 35
killing a process, 107
opening files, specifying locations for, 878
retrieving SSL-encrypted web page via

HTTPS, 908
UNKNOWN values, NULL versus, 91
unnamed (anonymous) exceptions, 127
unreachable code, compile-time warning

about, 744
UPDATE statements, 441, 442

record-based, 449
restrictions on, 450

using in dynamic SQL, 524

Index | 1253

Download at WoweBook.Com

using records, 447
using RETURNING clause, 445
WHERE CURRENT OF clause, 495

UPDATE triggers, INSTEAD OF UPDATE,
694

UPDATING clause in DML triggers, 661
UPDATING function, 659
UPPER function, 199, 230
URI types, 430
URIs (Universal Resource Identifiers), 174
URITYPE datatype, 174
UROWID datatype, 173, 397
US7ASCII character set, 64
USER function, 801
User Global Area (UGA), 1010
user-defined datatypes, 169, 175

collection, 350
user-defined functions

calling from within SQL
read consistency and, 604

calling from within SQL, restrictions on,
603

USER_* views, 711
USER_ARGUMENTS view, 711
USER_DEPENDENCIES view, 711, 723
USER_DUMP_DEST initialization parameter,

961
USER_ERRORS view, 40, 711
USER_IDENTIFIERS view, 711, 719
USER_OBJECTS view, 711

information about stored objects, 712
showing stored programs in, 42

USER_OBJECT_SIZE view, 712, 715
USER_PLSQL_OBJECT_SETTINGS view,

712, 715, 1002, 1007
USER_PROCEDURES view, 712, 716
USER_SOURCE view, 712, 713
USER_STORED_SETTINGS view, 712
USER_TAB_PRIVS_MADE view, 43
USER_TRIGGERS view, 712, 716
USER_TRIG_COLUMNS view, 712, 716
USING clause

association of placeholders with bind
arguments, 527

EXECUTE IMMEDIATE statement, 515
OPEN FOR statements, 522

USSR_ARGUMENTS view, 717
UTC (Coordinated Universal Time), 268, 270

time zone information, 290

UTL_ENCODE package, 900
UTL_FILE package, 877–891

closing files with FCLOSE and
FCLOSE_ALL procedures, 882

copying files with FCOPY procedure, 888
DELETE_FAILED exception, 163
deleting files with FREMOVE procedure,

889
error codes for exceptions, 163
INVALID_OPERATION exception, 163
IS_OPEN function, 882
opening files with FOPEN function, 880

specifying locations, 878
reading from files with GET_LINE

procedure, 883
renaming and moving files with FRENAME

procedure, 890
retrieving file attributes with FGETATTR

procedure, 890
UTL_FILE_DIR parameter, 877

setting up directories, 878
working with Oracle directories, 879
writing formatted text to file with PUTF

procedure, 887
writing to files, procedures for, 885

UTL_HTTP package, 903–913
authentication using HTTP username and

password, 906
cookies, disabling or making persistent,

912
end_of_body exception, 904
fetching a LOB, 905
proxy servers, 913
READ_LINE procedure, 904
READ_TEXT procedure, 904
retrieving SSL-encrypted web page via

HTTPS, 907
UTL_I18N package

listing of programs in, 1066
STRING_TO_RAW function, 927, 929

UTL_LMS package, 1069
UTL_MAIL package

SEND procedure, 892
friendly names in addresses, 896

SEND_ATTACH_RAW procedure, 900
SEND_ATTACH_VARCHAR2 procedure,

899
setting up and using, 893

UTL_RAW package

1254 | Index

Download at WoweBook.Com

CAST_TO_VARCHAR2 function, 412
UTL_RECOMP package, 734
UTL_REF package, 1099
UTL_SMTP package, 893

sending plaintext method of arbitrary
length, 897

UTL_URL.ESCAPE function, 909
utPLSQL testing framework, 752

testing with, 753–755

V
V number format element, 253
V$TEMPORARY_LOBS view, 421
V$TIMEZONE_NAMES view, 286
validation of user input, using DBMS_ASSERT

package, 542
validity of triggers, checking, 708
VALUE function, 1089
VALUES OF clause (FORALL statement), 829,

836
example, 837

VALUE_ERROR exception, 177, 180
VARCHAR2 datatype, 170, 192

assigning zero-length string to, 71
casting RAW type to, 412
converting binary value of type ROWID to,

190
converting hexadecimal string to type RAW,

190
converting to RAW, using

UTL_I18N.STRING_TO_RAW
function, 927

converting type RAW to hexadecimal string
of, 190

empty strings and, 219
mixing with CHAR values, 219–222
sending file as email attachment, 899
using CLOBs interchangeably with, 421

variable attribute notation, 1089
variables, 167

binding, 525–529
declaring, 175

default values, NOT NULL clause, 177
declaring datetime variables, 270
declaring INTERVAL variables, 275
name conflicts in, 740
naming, 167
qualifying references to, 59
remote invocation and, 730

scope, 58
SQL*Plus, declared and bind variables, 32

VARRAYs, 331
accessing data in, 364
bounded collections, 330
changing characteristics of, 354
collection using, 333
comparison to other collection types, 340
database-to-PL/SQL integration, 358
declaring and initializing collection

variables of type, 355
declaring VARRAY collection type, 353
using as column datatype, 339

versions
of installed database, 1001
Oracle database and PL/SQL, xxxiv, 11

virtual columns, 484
virtual denornalization, 1122
Virtual Private Database (VPD), 946, 963

function result caching and, 816–819
visibility of variables, 61–64

identifier names qualified with module
names, 62

qualified identifiers, 62
visible identifiers, 61

W
wallets, 907

TDE master key storage, 943
warnings

compile-time, 735–746
about performance, 793

WE8MSWIN1252 character set, 189
weak type, 499
web site for this book, xxxvii

DML trigger scripts, 654
packages available on, 648

web sites for PL/SQL, 18
WHEN clauses

CASE expressions and, 97
in DML triggers, 654, 656

applying (example), 663
evaluation in searched CASE statements,

93
exceptions named in, 139
simple CASE statements and, 92
in triggers, getting information about, 716

WHEN OTHERS clause, 139, 150
WHERE clause

Index | 1255

Download at WoweBook.Com

DELETE statement, 443
UPDATE statement, 442

WHERE CURRENT OF clause, 495
WHILE loops, 103, 108

exiting properly, 120
whitespace

dealing with spaces in number to character
string conversions, 255

keywords and, 69
not allowed in identifiers, 66

wildcards
% (percent sign), used in LIKE condition,

65
_ (underscore) in LIKE condition, 65

Windows systems
carriage return and new line characters,

197
killing a process, 107
Notepad editor, 35
opening files, specifying locations for, 878
retrieving SSL-encrypted web page via

HTTPS, 907
WORK keyword, 451
wrap utility, 44
WRAPPED keyword, 777
wrapping code, 774

guidelines for wrapped code, 776
restrictions and limitations, 774
using DBMS_DDL package, 775
using wrap executable, 775

WRITE and WRITEAPPEND procedures
(DBMS_LOB), 407–409

X
XDBURITYPE datatype, 430
XML DB Developer’s Guide for Oracle

Database 11g Release 2, 429
XMLType, 174, 426–429

CreateXML method, 427
documentation, 429
existsNode method, 428
indexing columns, 429
using INSERT statements to create XML

documents, 427
XQuery language, 427

Y
YMINTERVAL_UNCONSTRAINED

datatype, 307

Z
zero-length strings, 71

1256 | Index

Download at WoweBook.Com

About the Authors
Steven Feuerstein is considered one of the world’s leading experts on the Oracle
PL/SQL language, having written 10 books on PL/SQL, including Oracle PL/SQL
Programming and Oracle PL/SQL Best Practices (both published by O’Reilly). Steven
has been developing software since 1980, spent five years with Oracle (1987–1992),
and has served as PL/SQL Evangelist for Quest Software since January 2001. He is an
Oracle ACE Director and writes regularly for Oracle Magazine, which named him the
PL/SQL Developer of the Year in both 2002 and 2006. He is also the first recipient of
ODTUG’s Lifetime Achievement Award (2009). Since 2005, he has focused his atten-
tion on improving the testing of PL/SQL programs, primarily through the creation of
Quest Code Tester for Oracle, which automates PL/SQL code testing. Steven’s online
technical cyberhome is located at http://www.ToadWorld.com/SF. You can also catch
up on his latest, mostly non-PLSQL rants at http://feuerthoughts.blogspot.com.

Bill Pribyl is the primary author of Learning Oracle PL/SQL and the coauthor of Oracle
PL/SQL Programming and its companion pocket reference (all from O’Reilly). He
thrives on writing oddball PL/SQL code such as TCP/IP networking clients, transcen-
dental functions, and XML-based web scrapers. Bill holds a degree in physics from Rice
University and now works full-time for an energy trading firm in Houston, Texas.

Colophon
Ants are featured on the cover of Oracle PL/SQL Programming, Fifth Edition. At least
8,000 different species of ants can be found everywhere on Earth except the North and
South Poles. Ants preserved in amber suggest that these insects existed 50 million years
before humans.

Humans have long been fascinated by ants, because these tiny insects are accomplished
builders, nurses, miners, and even farmers. Fables such as “The Ant and the Grass-
hopper” extol the virtues of hardworking, forward-looking ants. (Hail ants!) It is true
that individual ants are able to perform amazing feats: an ant can carry up to 50 times
its body weight, can travel the human equivalent of 40 miles a day, and can climb
vertical heights the equivalent of Mount Everest. However, the greatest accomplish-
ments of ants are those performed together for the good of their community.

Queen ants establish new communities, or nests, after their mating flight. On this flight
the queen mates with several males. After mating, the males fall to Earth and die. The
queen then finds an uninhabited nest, settles into it, and pulls her wings off. She will
never fly again, and after removing her wings she is able to absorb the wing muscles as
nutrients for her eggs. She will continue to lay eggs, thousands of them, for years.

During the three-stage development process, which takes about two months, the eggs,
larvae, and pupae are cared for by the nurse ants, who feed, clean, and carefully move
the young to warmer or cooler places in the nest, depending on the temperature. These
nurse ants are, in turn, cared for by other worker ants, who feed the nurses with

Download at WoweBook.Com

http://www.ToadWorld.com/SF
http://feuerthoughts.blogspot.com

regurgitated food. The workers and the nurses will fight together to defend the young
against enemies if the nest is invaded, either by another group of ants or by a larger
animal.

The cover image is is a 19th-century engraving from the Dover Pictorial Archive. The
cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading font
is Adobe Myriad Condensed; and the code font is LucasFont’s
TheSansMonoCondensed.

Download at WoweBook.Com

	Table of Contents
	Preface
	Objectives of This Book
	Structure of This Book
	About the Contents
	What This Book Does Not Cover

	Conventions Used in This Book
	Which Platform or Version?
	About the Code
	Using Code Examples
	Safari® Books Online
	Comments and Questions
	Acknowledgments

	Part I. Programming in PL/SQL
	Chapter 1. Introduction to PL/SQL
	What Is PL/SQL?
	The Origins of PL/SQL
	The Early Years of PL/SQL
	Improved Application Portability
	Improved Execution Authority and Transaction Integrity
	Humble Beginnings, Steady Improvement

	So This Is PL/SQL
	Integration with SQL
	Control and Conditional Logic
	When Things Go Wrong

	About PL/SQL Versions
	Oracle Database 11g New Features
	Edition-based redefinition capability (Release 2 only)
	FORCE option with CREATE TYPE (Release 2 only)
	Function result cache
	CONTINUE statement
	Sequences in PL/SQL expressions
	Dynamic SQL enhancements
	New native compilation and SIMPLE datatypes
	SecureFiles
	Trigger enhancements
	Automatic subprogram inlining
	PL/Scope
	PL/SQL hierarchical profiler
	Fine-grained dependency tracking
	Supertype invocation from subtype

	Resources for PL/SQL Developers
	The O’Reilly PL/SQL Series
	PL/SQL on the Internet

	Some Words of Advice
	Don’t Be in Such a Hurry!
	Don’t Be Afraid to Ask for Help
	Take a Creative, Even Radical Approach

	Chapter 2. Creating and Running PL/SQL Code
	Navigating the Database
	Creating and Editing Source Code
	SQL*Plus
	Starting Up SQL*Plus
	Running a SQL Statement
	Running a PL/SQL Program
	Running a Script
	What Is the “Current Directory”?
	Other SQL*Plus Tasks
	Setting your preferences
	Saving output to a file
	Exiting SQL*Plus
	Editing a statement
	Loading your own custom environment automatically on startup

	Error Handling in SQL*Plus
	Why You Will Love and Hate SQL*Plus

	Performing Essential PL/SQL Tasks
	Creating a Stored Program
	Executing a Stored Program
	Showing Stored Programs
	Managing Grants and Synonyms for Stored Programs
	Dropping a Stored Program
	Hiding the Source Code of a Stored Program

	Editing Environments for PL/SQL
	Calling PL/SQL from Other Languages
	C: Using Oracle’s Precompiler (Pro*C)
	Java: Using JDBC
	Perl: Using Perl DBI and DBD::Oracle
	PHP: Using Oracle Extensions
	PL/SQL Server Pages
	And Where Else?

	Chapter 3. Language Fundamentals
	PL/SQL Block Structure
	Anonymous Blocks
	Named Blocks
	Nested Blocks
	Scope
	Qualify all References to Variables and Columns in SQL Statements
	Improve readability
	Avoid bugs through qualifiers

	Visibility
	“Visible” identifiers
	Qualified identifiers
	Qualifying identifier names with module names
	Nested programs

	The PL/SQL Character Set
	Identifiers
	Reserved Words
	Reserved words
	Identifiers from STANDARD package
	How to avoid using reserved words

	Whitespace and Keywords

	Literals
	NULLs
	Embedding Single Quotes Inside a Literal String
	Numeric Literals
	Boolean Literals

	The Semicolon Delimiter
	Comments
	Single-Line Comment Syntax
	Multiline Comment Syntax

	The PRAGMA Keyword
	Labels

	Part II. PL/SQL Program Structure
	Chapter 4. Conditional and Sequential Control
	IF Statements
	The IF-THEN Combination
	The IF-THEN-ELSE Combination
	The IF-THEN-ELSIF Combination
	Avoiding IF Syntax Gotchas
	Nested IF Statements
	Short-Circuit Evaluation

	CASE Statements and Expressions
	Simple CASE Statements
	Searched CASE Statements
	Nested CASE Statements
	CASE Expressions

	The GOTO Statement
	The NULL Statement
	Improving Program Readability
	Using NULL After a Label

	Chapter 5. Iterative Processing with Loops
	Loop Basics
	Examples of Different Loops
	Structure of PL/SQL Loops

	The Simple Loop
	Terminating a Simple Loop: EXIT and EXIT WHEN
	Emulating a REPEAT UNTIL Loop
	The Intentionally Infinite Loop

	The WHILE Loop
	The Numeric FOR Loop
	Rules for Numeric FOR Loops
	Examples of Numeric FOR Loops
	Handling Nontrivial Increments

	The Cursor FOR Loop
	Example of Cursor FOR Loops

	Loop Labels
	The CONTINUE Statement
	Tips for Iterative Processing
	Use Understandable Names for Loop Indexes
	The Proper Way to Say Goodbye
	Obtaining Information About FOR Loop Execution
	SQL Statement as Loop

	Chapter 6. Exception Handlers
	Exception-Handling Concepts and Terminology
	Defining Exceptions
	Declaring Named Exceptions
	Associating Exception Names with Error Codes
	Using EXCEPTION_INIT
	Recommended uses of EXCEPTION_INIT

	About Named System Exceptions
	Scope of an Exception

	Raising Exceptions
	The RAISE Statement
	Using RAISE_APPLICATION_ERROR

	Handling Exceptions
	Built-in Error Functions
	More on DBMS_UTILITY.FORMAT_ERROR_BACKTRACE
	Just the line number, please
	Useful applications of SQLERRM

	Combining Multiple Exceptions in a Single Handler
	Unhandled Exceptions
	Propagation of Unhandled Exceptions
	Losing exception information
	Examples of exception propagation

	Continuing Past Exceptions
	Writing WHEN OTHERS Handling Code

	Building an Effective Error Management Architecture
	Decide on Your Error Management Strategy
	Standardize Handling of Different Types of Exceptions
	Deliberate exceptions
	Unfortunate and unexpected exceptions
	How to benefit from this categorization

	Organize Use of Application-Specific Error Codes
	Use Standardized Error Management Programs
	Work with Your Own Exception “Objects”
	Create Standard Templates for Common Error Handling

	Making the Most of PL/SQL Error Management

	Part III. PL/SQL Program Data
	Chapter 7. Working with Program Data
	Naming Your Program Data
	Overview of PL/SQL Datatypes
	Character Data
	Numbers
	Dates, Timestamps, and Intervals
	Booleans
	Binary Data
	ROWIDs
	REF CURSORs
	Internet Datatypes
	“Any” Datatypes
	User-Defined Datatypes

	Declaring Program Data
	Declaring a Variable
	Declaring Constants
	The NOT NULL Clause
	Anchored Declarations
	Anchoring to Cursors and Tables
	Benefits of Anchored Declarations
	Synchronization with database columns
	Normalization of local variables

	Anchoring to NOT NULL Datatypes

	Programmer-Defined Subtypes
	Conversion Between Datatypes
	Implicit Data Conversion
	Limitations of implicit conversion
	Drawbacks of implicit conversion

	Explicit Datatype Conversion
	The CHARTOROWID function
	The CAST function
	The CONVERT function
	The HEXTORAW function
	The RAWTOHEX function
	The ROWIDTOCHAR function

	Chapter 8. Strings
	String Datatypes
	The VARCHAR2 Datatype
	The CHAR Datatype
	String Subtypes

	Working with Strings
	Specifying String Constants
	Using Nonprintable Characters
	Concatenating Strings
	Dealing with Case
	Forcing a string to all upper- or lowercase
	Making comparisons case-insensitive
	Case-insensitivity and indexes
	Capitalizing each word in a string

	Traditional Searching, Extracting, and Replacing
	Padding
	Trimming
	Regular Expression Searching, Extracting, and Replacing
	Detecting a pattern
	Locating a pattern
	Extracting text matching a pattern
	Counting regular expression matches
	Replacing text
	Groking greediness
	Learning more about regular expressions

	Working with Empty Strings
	Mixing CHAR and VARCHAR2 Values
	Database-to-variable conversion
	Variable-to-database conversion
	String comparisons
	Character functions and CHAR arguments

	String Function Quick Reference

	Chapter 9. Numbers
	Numeric Datatypes
	The NUMBER Type
	The PLS_INTEGER Type
	The BINARY_INTEGER Type
	The SIMPLE_INTEGER Type
	The BINARY_FLOAT and BINARY_DOUBLE Types
	The SIMPLE_FLOAT and SIMPLE_DOUBLE Types
	Numeric Subtypes

	Number Conversions
	The TO_NUMBER Function
	Using TO_NUMBER with no format
	Using TO_NUMBER with a format model
	Passing NLS settings to TO_NUMBER

	The TO_CHAR Function
	Using TO_CHAR with no format
	Using TO_CHAR with a format model
	The V format element
	Rounding when converting numbers to character strings
	Dealing with spaces when converting numbers to character strings
	Passing NLS settings to TO_CHAR

	The CAST Function
	Implicit Conversions

	Numeric Operators
	Numeric Functions
	Rounding and Truncation Functions
	Trigonometric Functions
	Numeric Function Quick Reference

	Chapter 10. Dates and Timestamps
	Datetime Datatypes
	Declaring Datetime Variables
	Choosing a Datetime Datatype

	Getting the Current Date and Time
	Interval Datatypes
	Declaring INTERVAL Variables
	When to Use INTERVALs
	Finding the difference between two datetime values
	Designating periods of time

	Datetime Conversions
	From Strings to Datetimes
	From Datetimes to Strings
	Working with Time Zones
	Requiring a Format Mask to Match Exactly
	Easing Up on Exact Matches
	Interpreting Two-Digit Years in a Sliding Window
	Converting Time Zones to Character Strings
	Padding Output with Fill Mode

	Date and Timestamp Literals
	Interval Conversions
	Converting from Numbers to Intervals
	Converting Strings to Intervals
	Formatting Intervals for Display

	Interval Literals
	CAST and EXTRACT
	The CAST Function
	The EXTRACT Function

	Datetime Arithmetic
	Date Arithmetic with Intervals and Datetimes
	Date Arithmetic with DATE Datatypes
	Computing the Interval Between Two Datetimes
	Mixing DATEs and TIMESTAMPs
	Adding and Subtracting Intervals
	Multiplying and Dividing Intervals
	Using Unconstrained INTERVAL Types

	Date/Time Function Quick Reference

	Chapter 11. Records
	Records in PL/SQL
	Benefits of Using Records
	Data abstraction
	Aggregate operations
	Leaner, cleaner code

	Declaring Records
	Programmer-Defined Records
	Declaring programmer-defined record TYPEs
	Declaring the record
	Examples of programmer-defined record declarations

	Working with Records
	Record-level operations
	Field-level operations
	Field-level operations with nested records
	Field-level operations with package-based records

	Comparing Records
	Trigger Pseudo-Records

	Chapter 12. Collections
	Collections Overview
	Collections Concepts and Terminology
	Types of Collections
	Collection Examples
	Using an associative array
	Using a nested table
	Using a VARRAY

	Where You Can Use Collections
	Collections as components of a record
	Collections as program parameters
	Collection as datatype of a function’s return value
	Collection as “columns” in a database table
	Collections as attributes of an object type

	Choosing a Collection Type

	Collection Methods (Built-ins)
	The COUNT Method
	Boundary considerations
	Exceptions possible

	The DELETE Method
	Boundary considerations
	Exceptions possible

	The EXISTS Method
	Boundary considerations
	Exceptions possible

	The EXTEND Method
	Boundary considerations
	Exceptions possible

	The FIRST and LAST Methods
	Boundary considerations
	Exceptions possible

	The LIMIT Method
	Boundary considerations
	Exceptions possible

	The PRIOR and NEXT Methods
	Boundary considerations
	Exceptions possible

	The TRIM Method
	Boundary considerations
	Exceptions possible

	Working with Collections
	Declaring Collection Types
	Declaring an associative array collection type
	Declaring a nested table or VARRAY
	Changing nested table of VARRAY characteristics

	Declaring and Initializing Collection Variables
	Initializing implicitly during direct assignment
	Initializing implicitly via FETCH
	VARRAY integration

	Populating Collections with Data
	Using the assignment operator
	What index values can I use?
	Aggregate assignments
	Assigning rows from a relational table
	Advantage of nonsequential population of collection

	Accessing Data Inside a Collection
	Using String-Indexed Collections
	Simplifying algorithmic logic with string indexes
	Emulating primary keys and unique indexes
	Performance of string-indexed collections
	Other examples of string-indexed collections

	Collections of Complex Datatypes
	Collections of records
	Collections of objects and other complex types

	Multilevel Collections
	Unnamed multilevel collections: emulation of multidimensional arrays
	Exploring the multdim API
	Extending string_tracker with multilevel collections
	How deeply can I nest collections?

	Working with Collections in SQL
	The CAST pseudo-function
	The MULTISET pseudo-function
	The TABLE pseudo-function
	Sorting contents of collections

	Nested Table Multiset Operations
	Testing Equality and Membership of Nested Tables
	Checking for Membership of an Element in a Nested Table
	Performing High-Level Set Operations
	Handling Duplicates in a Nested Table

	Maintaining Schema-Level Collections
	Necessary Privileges
	Collections and the Data Dictionary

	Chapter 13. Miscellaneous Datatypes
	The BOOLEAN Datatype
	The RAW Datatype
	The UROWID and ROWID Datatypes
	Getting ROWIDs
	Using ROWIDs

	The LOB Datatypes
	Working with LOBs
	Understanding LOB Locators
	Empty Versus NULL LOBs
	Writing into a LOB
	Reading from a LOB
	BFILEs Are Different
	Creating a BFILE locator
	Accessing BFILEs
	Using BFILEs to load LOB columns

	SecureFiles Versus BasicFiles
	Deduplication
	Compression
	Encryption

	Temporary LOBs
	Creating a temporary LOB
	Freeing a temporary LOB
	Checking to see whether a LOB is temporary
	Managing temporary LOBs

	Native LOB Operations
	SQL semantics
	SQL semantics may yield temporary LOBs
	Performance impact of using SQL semantics

	LOB Conversion Functions

	Predefined Object Types
	The XMLType Type
	The URI Types
	The Any Types

	Part IV. SQL in PL/SQL
	Chapter 14. DML and Transaction Management
	DML in PL/SQL
	A Quick Introduction to DML
	The INSERT statement
	The UPDATE statement
	The DELETE statement
	The MERGE statement

	Cursor Attributes for DML Operations
	RETURNING Information from DML Statements
	DML and Exception Handling
	DML and Records
	Record-based inserts
	Record-based updates
	Using records with the RETURNING clause
	Restrictions on record-based inserts and updates

	Transaction Management
	The COMMIT Statement
	The ROLLBACK Statement
	The SAVEPOINT Statement
	The SET TRANSACTION Statement
	The LOCK TABLE Statement

	Autonomous Transactions
	Defining Autonomous Transactions
	Rules and Restrictions on Autonomous Transactions
	Transaction Visibility
	When to Use Autonomous Transactions
	Building an Autonomous Logging Mechanism

	Chapter 15. Data Retrieval
	Cursor Basics
	Some Data Retrieval Terms
	Typical Query Operations
	Introduction to Cursor Attributes
	The %FOUND attribute
	The %NOTFOUND attribute
	The %ROWCOUNT attribute
	The %ISOPEN attribute
	The %BULK_ROWCOUNT attribute
	The %BULK_EXCEPTIONS attribute

	Referencing PL/SQL Variables in a Cursor
	Choosing Between Explicit and Implicit Cursors

	Working with Implicit Cursors
	Implicit Cursor Examples
	Error Handling with Implicit Cursors
	Implicit SQL Cursor Attributes

	Working with Explicit Cursors
	Declaring Explicit Cursors
	Naming your cursor
	Declaring cursors in packages

	Opening Explicit Cursors
	Fetching from Explicit Cursors
	Examples of explicit cursors
	Fetching past the last row

	Column Aliases in Explicit Cursors
	Closing Explicit Cursors
	Explicit Cursor Attributes
	Cursor Parameters
	Generalizing cursors with parameters
	Opening cursors with parameters
	Scope of cursor parameters
	Cursor parameter modes
	Default values for parameters

	SELECT...FOR UPDATE
	Releasing Locks with COMMIT
	The WHERE CURRENT OF Clause

	Cursor Variables and REF CURSORs
	Why Cursor Variables?
	Similarities to Static Cursors
	Declaring REF CURSOR Types
	Declaring Cursor Variables
	Opening Cursor Variables
	Fetching from Cursor Variables
	Handling the ROWTYPE_MISMATCH exception

	Rules for Cursor Variables
	Compile-time rowtype matching rules
	Runtime rowtype matching rules
	Cursor variable aliases
	Scope of cursor object

	Passing Cursor Variables as Arguments
	Identifying the REF CURSOR type
	Setting the parameter mode

	Cursor Variable Restrictions

	Cursor Expressions
	Using Cursor Expressions
	Retrieve a subquery as a column
	Implement a streaming function with the CURSOR expression

	Restrictions on Cursor Expressions

	Chapter 16. Dynamic SQL and Dynamic PL/SQL
	NDS Statements
	The EXECUTE IMMEDIATE Statement
	The OPEN FOR Statement
	FETCH into variables or records
	The USING clause in OPEN FOR

	About the Four Dynamic SQL Methods
	Method 1
	Method 2
	Method 3
	Method 4

	Binding Variables
	Argument Modes
	Duplicate Placeholders
	Passing NULL Values

	Working with Objects and Collections
	Dynamic PL/SQL
	Build Dynamic PL/SQL Blocks
	Replace Repetitive Code with Dynamic Blocks

	Recommendations for NDS
	Use Invoker Rights for Shared Programs
	Anticipate and Handle Dynamic Errors
	Use Binding Rather Than Concatenation
	Minimize the Dangers of Code Injection
	Restrict privileges tightly on user schemas
	Use bind variables whenever possible
	Check dynamic text for dangerous text
	Use DBMS_ASSERT to validate inputs

	When to Use DBMS_SQL
	Parse Very Long Strings
	Obtain Information About Query Columns
	Meet Method 4 Dynamic SQL Requirements
	The “in table” procedural interface
	Steps for intab construction
	Constructing the SELECT
	Defining the cursor structure
	Retrieving and displaying data

	Minimize Parsing of Dynamic Cursors

	Oracle Database 11g New Features
	DBMS_SQL.TO_REFCURSOR Function
	DBMS_SQL.TO_CURSOR Function
	Enhanced Security for DBMS_SQL
	Unpredictable cursor numbers
	Denial of access to DBMS_SQL when bad cursor number is used (ORA-24971)
	Rejection of DBMS_SQL operation when effective user changes (ORA-24970)

	Part V. PL/SQL Application Construction
	Chapter 17. Procedures, Functions, and Parameters
	Modular Code
	Procedures
	Calling a Procedure
	The Procedure Header
	The Procedure Body
	The END Label
	The RETURN Statement

	Functions
	Structure of a Function
	The RETURN Datatype
	The END Label
	Calling a Function
	Functions Without Parameters
	The Function Header
	The Function Body
	The RETURN Statement
	RETURN any valid expression
	Multiple RETURNs
	RETURN as last executable statement

	Parameters
	Defining Parameters
	Actual and Formal Parameters
	Parameter Modes
	IN mode
	OUT mode
	IN OUT mode

	Explicit Association of Actual and Formal Parameters in PL/SQL
	Positional notation
	Named notation
	Benefits of named notation

	The NOCOPY Parameter Mode Qualifier
	Default Values

	Local or Nested Modules
	Benefits of Local Modularization
	Reducing code volume
	Improving readability

	Scope of Local Modules
	Sprucing Up Your Code with Local Modules

	Module Overloading
	Benefits of Overloading
	Supporting many data combinations

	Restrictions on Overloading
	Overloading with Numeric Types

	Forward Declarations
	Advanced Topics
	Calling Your Function From Inside SQL
	Requirements for calling functions in SQL
	Restrictions on user-defined functions in SQL
	Read consistency and user-defined functions

	Table Functions
	Calling a function in a FROM clause
	Passing table function results with a cursor variable
	Creating a streaming function
	Creating a pipelined function
	Enabling a function for parallel execution

	Deterministic Functions

	Go Forth and Modularize!

	Chapter 18. Packages
	Why Packages?
	Demonstrating the Power of the Package
	Some Package-Related Concepts
	Diagramming Privacy

	Rules for Building Packages
	The Package Specification
	The Package Body
	Initializing Packages
	Execute complex initialization logic
	Cache static session information
	Avoid side effects when initializing
	When initialization fails

	Rules for Calling Packaged Elements
	Working with Package Data
	Global Within a Single Oracle Session
	Global Public Data
	Packaged Cursors
	Declaring packaged cursors
	Working with packaged cursors

	Serializable Packages

	When to Use Packages
	Encapsulate Data Access
	Avoid Hardcoding Literals
	Improve Usability of Built-in Features
	Group Together Logically Related Functionality
	Cache Static Session Data

	Packages and Object Types

	Chapter 19. Triggers
	DML Triggers
	DML Trigger Concepts
	DML trigger scripts
	Transaction participation

	Creating a DML Trigger
	The WHEN clause
	Working with NEW and OLD pseudo-records
	Determining the DML action within a trigger

	DML Trigger Example: No Cheating Allowed!
	Applying the WHEN clause
	Using pseudo-records to fine-tune trigger execution

	Multiple Triggers of the Same Type
	Who Follows Whom
	Mutating Table Errors
	Compound Triggers: Putting It All In One Place
	Just like a package
	Not just like a package
	Compound following

	DDL Triggers
	Creating a DDL Trigger
	Available Events
	Available Attributes
	Working with Events and Attributes
	What column did I touch?
	Lists returned by attribute functions

	Dropping the Undroppable
	The INSTEAD OF CREATE Trigger

	Database Event Triggers
	Creating a Database Event Trigger
	The STARTUP Trigger
	The SHUTDOWN Trigger
	The LOGON Trigger
	The LOGOFF Trigger
	The SERVERERROR Trigger
	SERVERERROR examples
	Central error handler

	INSTEAD OF Triggers
	Creating an INSTEAD OF Trigger
	The INSTEAD OF INSERT Trigger
	The INSTEAD OF UPDATE Trigger
	The INSTEAD OF DELETE Trigger
	Populating the Tables
	INSTEAD OF Triggers on Nested Tables

	AFTER SUSPEND Triggers
	Setting Up for the AFTER SUSPEND Trigger
	Looking at the Actual Trigger
	The ORA_SPACE_ERROR_INFO Function
	The DBMS_RESUMABLE Package
	Trapped Multiple Times
	To Fix or Not to Fix?

	Maintaining Triggers
	Disabling, Enabling, and Dropping Triggers
	Creating Disabled Triggers
	Viewing Triggers
	Checking the Validity of Triggers

	Chapter 20. Managing PL/SQL Code
	Managing Code in the Database
	Overview of Data Dictionary Views
	Display Information About Stored Objects
	Display and Search Source Code
	Use Program Size to Determine Pinning Requirements
	Obtain Properties of Stored Code
	Analyze and Modify Trigger State Through Views
	Analyze Argument Information
	Analyze Identifier Usage (Oracle Database 11g’s PL/Scope)

	Managing Dependencies and Recompiling Code
	Analyzing Dependencies with Data Dictionary Views
	Fine-Grained Dependency (Oracle Database 11g)
	Remote Dependencies
	Limitations of Oracle’s Remote Invocation Model
	Recompiling Invalid Program Units
	Automatic runtime compilation
	ALTER...COMPILE recompilation
	Schema-level recompilation

	Compile-Time Warnings
	A Quick Example
	Enabling Compile-Time Warnings
	Some Handy Warnings
	PLW-05000: Mismatch in NOCOPY qualification between specification and body
	PLW-05001: Previous use of ’string’ (at line string) conflicts with this use
	PLW-05003: Same actual parameter (string and string) at IN and NOCOPY may have side effects
	PLW-05004: Identifier string is also declared in STANDARD or is a SQL built-in
	PLW-05005: Function string returns without value at line string
	PLW-06002: Unreachable code
	PLW-07203: Parameter 'string' may benefit from use of the NOCOPY compiler hint
	PLW-07204: Conversion away from column type may result in suboptimal query plan
	PLW-06009: Procedure “string” OTHERS handler does not end in RAISE or RAISE_APPLICATION_ERROR (Oracle Database 11g)

	Testing PL/SQL Programs
	Typical, Tawdry Testing Techniques
	General Advice for Testing PL/SQL Code
	Automated Testing Options for PL/SQL
	Testing with utPLSQL
	Testing with Quest Code Tester for Oracle

	Tracing PL/SQL Execution
	DBMS_APPLICATION_INFO
	Quest Error Manager Tracing
	The DBMS_TRACE Facility
	Installing DBMS_TRACE
	DBMS_TRACE programs
	Control trace file contents
	Pause and resume the trace process
	Format of collected data

	Debugging PL/SQL Programs
	The Wrong Way to Debug
	Disorganized debugging
	Irrational debugging

	Debugging Tips and Strategies
	Use a source code debugger
	Gather data
	Remain logical at all times
	Analyze instead of trying
	Take breaks, and ask for help
	Change and test one area of code at a time

	Protecting Stored Code
	Restrictions on and Limitations of Wrapping
	Using the Wrap Executable
	Dynamic Wrapping with DBMS_DDL
	Guidelines for Working with Wrapped Code

	Introduction to Edition-Based Redefinition (Oracle Database 11g Release 2)

	Chapter 21. Optimizing PL/SQL Performance
	Tools to Assist in Optimization
	Analyzing Memory Usage
	Identifying Bottlenecks in PL/SQL Code
	DBMS_PROFILER
	Hierarchical profiler

	Calculating Elapsed Time
	Choosing the Fastest Program
	Avoiding Infinite Loops
	Performance-Related Warnings

	The Optimizing Compiler
	Insights on How the Optimizer Works
	Runtime Optimization of Fetch Loops

	Data Caching Techniques
	Package-Based Caching
	When to use package-based caching
	A simple example of package-based caching
	Caching table contents in a package
	Just-in-time caching of table data

	Deterministic Function Caching
	Function Result Cache (Oracle Database 11g)
	How to use the function result cache
	The RELIES_ON clause
	Function result cache example: A deterministic function
	Function result cache example: Querying data from a table
	Function result cache example: Caching a collection
	When to use the function result cache
	When not to use the function result cache
	Useful details of function result cache behavior
	Managing the function result cache
	The Virtual Private Database and function result caching

	Caching Summary

	Bulk Processing for Multirow SQL
	High Speed Querying with BULK COLLECT
	Limiting rows retrieved with BULK COLLECT
	Bulk fetching of multiple columns
	Using the RETURNING clause with bulk operations

	High Speed DML with FORALL
	Syntax of the FORALL statement
	FORALL examples
	Cursor attributes for FORALL
	ROLLBACK behavior with FORALL
	Continuing past exceptions with SAVE EXCEPTIONS
	Driving FORALL with nonsequential arrays
	INDICES OF example
	VALUES OF example

	Improving Performance With Pipelined Table Functions
	Replacing Row-Based Inserts with Pipelined Function-Based Loads
	A pipelined function implementation
	Loading from a pipelined function
	Tuning pipelined functions with array fetches
	Exploiting parallel pipelined functions for ultimate performance
	Enabling parallel pipelined function execution

	Tuning Merge Operations with Pipelined Functions
	Row-based PL/SQL merge processing
	Using pipelined functions for set-based MERGE

	Asynchronous Data Unloading with Parallel Pipelined Functions
	A typical data-extract program
	A parallel-enabled pipelined function unloader

	Performance Implications of Partitioning and Streaming Clauses in Parallel Pipelined Functions
	Relative performance of partitioning and streaming combinations
	Partitioning with skewed data

	Pipelined Functions and the Cost-Based Optimizer
	Cardinality heuristics for pipelined table functions
	Using optimizer dynamic sampling for pipelined functions
	Providing cardinality statistics to the optimizer
	Extensible Optimizer and pipelined function cardinality

	Tuning Complex Data Loads with Pipelined Functions
	One source, two targets
	Piping multiple record types from pipelined functions
	Using object-relational features
	A multitype pipelined function
	Querying a multitype pipelined function
	Loading multiple tables from a multitype pipelined function
	An alternative multitype method

	A Final Word on Pipelined Functions

	Specialized Optimization Techniques
	Using the NOCOPY Parameter Mode Hint
	Restrictions on NOCOPY
	Performance benefits of NOCOPY
	The downside of NOCOPY

	Using the Right Datatype
	Avoid implicit conversions
	Use PLS_INTEGER for intensive integer computations
	Use BINARY_FLOAT or BINARY_DOUBLE for floating-point arithmetic

	Stepping Back for the Big Picture on Performance

	Chapter 22. I/O and PL/SQL
	Displaying Information
	Enabling DBMS_OUTPUT
	Write Lines to the Buffer
	Read the Contents of the Buffer

	Reading and Writing Files
	The UTL_FILE_DIR Parameter
	Setting up directories
	Specifying file locations when opening files

	Work with Oracle Directories
	Open Files
	Is the File Already Open?
	Close Files
	Read from Files
	GET_LINE exceptions
	Handy encapsulation for GET_LINE

	Write to Files
	Writing formatted text to file

	Copy Files
	Delete Files
	Rename and Move Files
	Retrieve File Attributes

	Sending Email
	Oracle Prerequisites
	Configuring Network Security
	Send a Short (32,767 or Less) Plaintext Message
	Include “Friendly” Names in Email Addresses
	Send a Plaintext Message of Arbitrary Length
	Send a Message with a Short (< 32,767) Attachment
	Send a Small File (< 32767) as an Attachment
	Attach a File of Arbitrary Size

	Working with Web-Based Data (HTTP)
	Retrieve a Web Page in “Pieces”
	Retrieve a Web Page into a LOB
	Authenticate Using HTTP Username/Password
	Retrieve an SSL-Encrypted Web Page (Via HTTPS)
	Submit Data to a Web Page via GET or POST
	Disable Cookies or Make Cookies Persistent
	Retrieve Data from an FTP Server
	Use a Proxy Server

	Other Types of I/O Available in PL/SQL
	Database Pipes, Queues, and Alerts
	TCP Sockets
	Oracle’s Built-in Web Server

	Part VI. Advanced PL/SQL Topics
	Chapter 23. Application Security and PL/SQL
	Security Overview
	Encryption
	Key Length
	Algorithms
	Padding and Chaining
	The DBMS_CRYPTO Package
	Algorithms
	Padding and chaining

	Encrypting Data
	Encrypting LOBs
	SecureFiles
	Decrypting Data
	Performing Key Generation
	Performing Key Management
	A single key for the database
	A single key for each row
	A combined approach

	Cryptographic Hashing
	Using Message Authentication Codes
	Using Transparent Data Encryption (TDE)
	Transparent Tablespace Encryption

	Row-Level Security
	Why Learn About RLS?
	A Simple RLS Example
	Using Dynamic Policies
	Shared static policy
	Context-sensitive policy
	Shared context-sensitive policy

	Using Column-Sensitive RLS
	RLS Debugging
	Interpreting errors
	Performing direct path operations
	Viewing SQL statements

	Application Contexts
	Using Application Contexts
	Security in Contexts
	Contexts as Predicates in RLS
	Identifying Non-Database Users

	Fine-Grained Auditing
	Why Learn About FGA?
	A Simple FGA Example
	Access How Many Columns?
	Checking the Audit Trail
	Using Bind Variables
	Using Handler Modules

	Chapter 24. PL/SQL Architecture
	Who (or What) is DIANA?
	How Does Oracle Execute PL/SQL Code?
	An Example
	Compiler Limits

	The Default Packages of PL/SQL
	Execution Authority Models
	The Definer Rights Model
	Advantages of definer rights
	Disadvantages of definer rights
	Where’d my table go
	How do I maintain all that code
	Dynamic SQL and definer rights

	The Invoker Rights Model
	Invoker rights syntax
	Rules and restrictions on invoker rights

	Combining Rights Models

	Conditional Compilation
	Examples of Conditional Compilation
	Use application package constants in $IF directive
	Toggle tracing through conditional compilation flags

	The Inquiry Directive
	The DBMS_DB_VERSION package
	Setting compilation environment parameters
	Referencing unit name and line number
	Using the PLSQL_CCFLAGS parameter

	The $IF Directive
	The $ERROR Directive
	Synchronizing Code with Packaged Constants
	Program-Specific Settings with Inquiry Directives
	Working with Postprocessed Code

	PL/SQL and Database Instance Memory
	PGA, UGA, and CGA
	Cursors, Memory, and More
	Tips on Reducing Memory Use
	Statement sharing
	Bind variables
	Packaging to improve memory use and performance
	Large collections in PL/SQL
	BULK COLLECT...LIMIT operations
	Preservation of state

	What to Do if You Run Out of Memory

	Native Compilation
	When to Run Interpreted Mode
	When to Go Native
	Native Compilation and Database Release

	What You Need to Know

	Chapter 25. Globalization and Localization in
 PL/SQL
	Overview and Terminology
	Unicode Primer
	National Character Set Datatypes
	Character Encoding
	Globalization Support Parameters
	Unicode Functions
	ASCIISTR
	COMPOSE
	DECOMPOSE
	INSTR/INSTRB/INSTRC/INSTR2/INSTR4
	LENGTH/LENGTHB/LENGTHC/LENGTH2/LENGTH4
	SUBSTR/SUBSTRB/SUBSTRC/SUBSTR2/SUBSTR4
	UNISTR

	Character Semantics
	String Sort Order
	Binary Sort
	Monolingual Sort
	Multilingual Sort

	Multilingual Information Retrieval
	IR and PL/SQL

	Date/Time
	Timestamp Datatypes
	Date/Time Formatting

	Currency Conversion
	Globalization Development Kit for PL/SQL
	UTL_118N Utility Package
	UTL_LMS Error-Handling Package
	GDK Implementation Options
	Method 1: Locale buttons
	Method 2: User administration
	Method 3: Hybrid

	Chapter 26. Object-Oriented Aspects of PL/SQL
	Introduction to Oracle’s Object Features
	Object Types by Example
	Creating a Base Type
	Creating a Subtype
	Methods
	Invoking Supertype Methods in Oracle Database 11g
	Storing, Retrieving, and Using Persistent Objects
	Object identity
	The VALUE function
	The TREAT function

	Evolution and Creation
	Back to Pointers?
	Using REFs
	The UTL_REF package
	REFs and type hierarchies
	Dangling REFs

	Generic Data: The ANY Types
	Preview: What ANYDATA is not
	Dealing with ANYDATA
	Creating a transient type

	I Can Do It Myself
	Comparing Objects
	Attribute-level comparison
	The MAP method
	The ORDER method
	Additional comparison recommendations

	Object Views
	A Sample Relational System
	Object View with a Collection Attribute
	Object Subview
	Object View with Inverse Relationship
	INSTEAD OF Triggers
	The case against
	The case for
	The bigger question

	Differences Between Object Views and Object Tables
	OID uniqueness
	“Storeability” of physical versus virtual REFs
	REFs to nonunique OIDs

	Maintaining Object Types and Object Views
	Data Dictionary
	Privileges
	The EXECUTE privilege
	The UNDER privilege
	The DEBUG privilege
	The DML privileges

	Concluding Thoughts from a (Mostly) Relational Developer

	Chapter 27. Calling Java from PL/SQL
	Oracle and Java
	Getting Ready to Use Java in Oracle
	Installing Java
	Building and Compiling Your Java Code
	Setting Permissions for Java Development and Execution
	Java security for Oracle through 8.1.5
	Java security for Oracle from 8.1.6

	A Simple Demonstration
	Finding the Java Functionality
	Building a Custom Java Class
	Compiling and Loading into Oracle
	Building a PL/SQL Wrapper
	Deleting Files from PL/SQL

	Using loadjava
	Using dropjava
	Managing Java in the Database
	The Java Namespace in Oracle
	Examining Loaded Java Elements

	Using DBMS_JAVA
	LONGNAME: Converting Java Long Names
	GET_, SET_, and RESET_COMPILER_OPTION: Getting and Setting (a Few) Compiler Options
	SET_OUTPUT: Enabling Output from Java
	EXPORT_SOURCE, EXPORT_RESOURCE, and EXPORT_CLASS: Exporting Schema Objects

	Publishing and Using Java in PL/SQL
	Call Specs
	Some Rules for Call Specs
	Mapping Datatypes
	Calling a Java Method in SQL
	Exception Handling with Java
	Extending File I/O Capabilities
	Polishing up the delete method
	Obtaining directory contents

	Other Examples

	Chapter 28. External Procedures
	Introduction to External Procedures
	Example: Invoking an Operating System Command
	Architecture of External Procedures

	The Oracle Net Configuration
	Specifying the Listener Configuration
	Security Characteristics of the Configuration

	Setting Up Multithreaded Mode
	Creating an Oracle Library
	Writing the Call Specification
	The Call Spec: Overall Syntax
	Parameter Mapping: The Example Revisited
	Parameter Mapping: The Full Story
	More Syntax: The PARAMETERS Clause
	PARAMETERS Properties
	The INDICATOR property
	The LENGTH property
	The MAXLEN property
	The CHARSETID and CHARSETFORM properties

	Raising an Exception from the Called C Program
	Nondefault Agents
	Maintaining External Procedures
	Dropping Libraries
	Data Dictionary
	Rules and Warnings

	Appendix A. Regular Expression Metacharacters and Function Parameters
	Metacharacters
	Functions and Parameters
	Regular Expression Functions
	REGEXP_COUNT (Oracle Database 11g Only)
	REGEXP_INSTR
	REGEXP_LIKE
	REGEXP_REPLACE
	REGEXP_SUBSTR

	Regular Expression Parameters

	Appendix B. Number Format Models
	Appendix C. Date Format Models
	Index

