
RETRO GAMING

RASPBERRY PIW I T H

164 PAGES OF
VIDEO GAME PROJECTS

FROM THE MAKERS OF                  THE OFFICIAL RASPBERRY PI MAGAZINE

BUILD AN 
ARCADE 

MACHINE

NEW

2022
UPDATE

2 N D E D I T I O N

www.dbooks.org

https://www.dbooks.org/


https://vilros.com/


raspberrypi.org/magpi 3March 2015 

EDITORIAL 
Editor: Lucy Hattersley 
Features Editor: Rob Zwetsloot
Contributors: David Crookes, PJ Evans,
Rosie Hattersley, Nicola King, Phil King, KG 
Orphanides, Mark Vanstone

DESIGN
Critical Media: criticalmedia.co.uk 
Head of Design: Lee Allen
Designers: Sam Ribbits, Ty Logan 
Illustrator: Sam Alder, Dan Malone

PUBLISHING
Publishing Director: Russell Barnes
russell@raspberrypi.com 

Advertising: Charlotte Milligan
charlotte.milligan@raspberrypi.com
Tel: +44 (0)7725 368887

Director of Communications: Liz Upton
CEO: Eben Upton

This official product is published by Raspberry Pi  Ltd, Maurice Wilkes Building, Cambridge, CB4 0DS. The publisher, editor 
and contributors accept no responsibility in respect of any omissions or errors relating to goods, products or services referred 
to or advertised in the magazine. Except where otherwise noted, content in this magazine is licensed under a Creative 
Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0). ISBN: 978-1-912047-77-2.

GET IN TOUCH magpi@raspberrypi.comFIND US ONLINE magpi.cc

This bookazine is printed on paper sourced from 
sustainable forests and the printer operates an 
environmental management system which has 
been assessed as conforming to ISO 14001.

DISTRIBUTION 
Seymour Distribution Ltd
2 East Poultry Ave, London,
EC1A 9PT  |  +44 (0)207 429 4000

MAGAZINE SUBSCRIPTIONS
Unit 6, The Enterprise Centre, 
Kelvin Lane, Manor Royal, 
Crawley, West Sussex,  
RH10 9PE   |  +44 (0)207 429 4000
magpi.cc/subscribe
magpi@subscriptionhelpline.co.uk

GET BACK IN TIME
WITH RETRO GAMES
The 1980s was a golden era for video games. It was a vibrant, creative 

period where games were made by small teams and even individuals. 
Those early video game creators became famous, at least amongst the 

small crew of gamers eagerly following every new release.
Projects were personal and inspiration was taken from the everyday. 

There were games about regular jobs, like Trashman, or games set in 
developer’s home towns, like Jack the Nipper. Not everybody had to be a 
Sabatour ninja or Turbo Lotus Esprit driver (although there were plenty of 
big dreams along the way). 

This book enables you to rediscover the joy of retro gaming with 
Raspberry Pi, a small computer costing from just $35.

We show you how to transform this small computer into a games 
console, attach a controller, and get some classic games to play. With the 
right software, Raspberry Pi becomes a Mega Drive, Commodore Amiga, 
Sinclair Spectrum, or just about any other computer or console. 

You can learn to make your own games, just like the classics you used 
to play. We’ll show you how to make retro hits using a simple computer 
language called Python.

If you are up for a challenge, we will even show you how to build a full-
sized arcade machine. Free to play forever.

We hope you enjoy this journey back in time.

Lucy Hattersley

WELCOME

www.dbooks.org

http://criticalmedia.co.uk
mailto:russell@raspberrypi.com
mailto:charlotte.milligan@raspberrypi.com
mailto:magpi@raspberrypi.com
http://magpi.cc
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://magpi.cc/subscribe
mailto:magpi@subscriptionhelpline.co.uk
https://itunes.apple.com/gb/app/the-magpi-the-official-raspberry-pi-magazine/id972033560?mt=8
https://play.google.com/store/apps/details?id=com.raspberry.magpi&hl=en_GB
https://www.dbooks.org/


CONTENTS
08 	� Raspberry Pi  

QuickStart Guide 
Set up your Raspberry Pi  
and operating system

14 	� Set up RetroPie 
Get gaming straight away with our 
straightforward RetroPie guide

20 	� PiBoy DMG 
This classic handheld-style case is 
more than just aesthetics

22 	� PicoSystem 
A modern handheld for creating 
and playing old games

24 	� Deluxe Arcade  
Controller Kit 
All-in-one joystick and case

26 	� ZX Spectrum Next 
The next generation of Speccy, 
perfect for 80s kids

28 	� Picade 
Mini-bartop arcade cabinet

32 	� Legal Emulation 
A comprehensive guide to what 
you’re allowed to emulate

38 	� Retro CD-ROM console 
Play your classic CD-based 
games with this tutorial

44 	� Build a handheld console 
Your very own portable system

48 	� Use a retro DB9 joystick 
Connect a classic joystick to GPIO 
pins for that Spectrum experience

52 	� Commodore 64 Revamp 
Using a Raspberry Pi to resurrect a 
classic computer

54 	� Legal C64 emulator 
Get VICE working on Raspberry Pi

58 	� Raspberry Pi Amiga 600 
3D print and power up your own 
Amiga 600

60 	� Turn Raspberry Pi into 
an Amiga 
Recapture the glory days of  
16-bit computing 

62 	� Lunchbox Arcade Game 
Sandwiches and superb games

06 SET UP YOUR SYSTEM

18 RETRO GAMING 
HARDWARE

30 RETRO COMPUTING

38

28

32

44

48

Contents04



69 	� Make games with 
Raspberry Pi 
All the ways to build your own game

78 	� Get started with  
Pygame Zero 
Start writing computer games on 
Raspberry Pi

84 	� Simple Brian 
Recreate a classic electronic game 
using Pygame Zero

90 	� PiVaders – part 1 
Start making a single-screen 
shoot-’em-up

98 	� PiVaders – part 2 
Add sound effects, high scores, 
levels, and more

106 	�Hungry Pi-Man – part 1 
Create a classic maze game with 
Pygame Zero

114 	� Hungry Pi-Man – part 2 
Add better enemy AI, power-ups, 
levels, and sound

124 	�Learn gave development 
Resources for making games, from 
lessons to free assets

128 	�Make your own 
pinball machine 
Build a table with this  
step-by-step guide

134 	�Build an arcade machine 
How to get the parts for your  
dream arcade cabinet

138 	�Assemble your cabinet 
Top tips on how to construct your 
arcade machine

144 	�Command and control 
Setting up and connecting your 
Raspberry Pi to the cab

150 	�Decorate your cabinet 
Adding vinyl decals and edge 
moulding for an authentic look

156   RetroPie and Steam Link 
Emulating retro games and 
streaming modern games

66 MAKE YOUR 
OWN GAMES

90

134

106

128

126 ARCADE PROJECTS

150

05Retro Gaming with Raspberry Pi

www.dbooks.org

https://www.dbooks.org/


EVERYTHING YOU NEED  
TO GET UP AND RUNNING

• �Gather all the equipment required

• �Set up your Raspberry Pi hardware

• �Prepare your microSD card

Get gaming straight away with our 
straightforward RetroPie guide

08 	� RASPBERRY PI 
QUICKSTART GUIDE

14 	� SET UP RETROPIE

SET UP  
YOUR SYSTEM

 �Turning a Raspberry Pi 
device into a retro games 
console is a fun project 

Set up your system06



07Retro Gaming with Raspberry Pi

www.dbooks.org

https://www.dbooks.org/


08

Setting up Raspberry Pi is pretty straightforward. 
Just follow the advice of Rosie Hattersley

C ongratulations on becoming a Raspberry Pi explorer. 
We’re sure you’ll enjoy discovering a whole new world 
of computing and the chance to handcraft your own 

games, control your own robots and machines, and share 
your experiences with other Raspberry Pi fans.

Getting started won’t take long: just corral the extra bits 
and bobs you need on our checklist. Useful additions include 
some headphones or speakers if you’re keen on using 
Raspberry Pi as a media centre, or a gamepad for use as a retro 
games console.

To get set up, simply use your pre-written microSD card 
(or use Raspberry Pi Imager to set up a card) and connect all 
the cables. This guide will lead you through each step. You’ll 
find the Raspberry Pi OS, including coding programs and 
office software, all available to use. After that, the world of 
digital making with Raspberry Pi awaits you.

What you need
All the bits and bobs you need  
to set up a Raspberry Pi computer

A Raspberry Pi 
Whether you choose the new Raspberry 
Pi 400; or a Raspberry Pi 4, 3B+, 3B; 
Raspberry Pi Zero, Zero 2 W (or an older 
model of Raspberry Pi), basic setup is the 
same. All Raspberry Pi computers run 
from a microSD card, use a USB power 
supply, and feature the same operating 
systems, programs, and games.

Raspberry Pi 
QuickStart Guide

08 Quickstart Guide

TUTORIAL



09

8GB microSD card 
You’ll need a microSD card with a capacity of 
8GB or greater. Your Raspberry Pi uses it to store 
games, programs, and boot the operating system. 
Many Raspberry Pi computer kits come with a card 
pre-written with Raspberry Pi OS. If you want to 
reuse an old card, you'll need a card reader: either 
USB or a microSD to full-sized SD (pictured).

Windows/Linux PC or Mac computer
You’ll need a computer to write Raspberry Pi OS 
to the microSD card. It doesn’t matter what 
operating system this computer 
runs, because it’s just for 
installing the OS using 
Raspberry Pi Imager 
(magpi.cc/imager).

USB keyboard
Like any computer, you need a means to enter 
web addresses, type commands, and otherwise 
control Raspberry Pi. The new Raspberry Pi 400 
comes with its own keyboard. Raspberry Pi sells an 
official Keyboard and Hub (magpi.cc/keyboard) 
for other models.

USB mouse
A tethered mouse that physically attaches to your 
Raspberry Pi via a USB port is simplest and, unlike a 
Bluetooth version, is less likely to get lost just when 
you need it. Like the keyboard, we think it’s best to 
perform the setup with a wired mouse. Raspberry Pi 
sells an Official Mouse (magpi.cc/mouse).

Power supply
Raspberry Pi 4 and Raspberry Pi 400 
need a USB Type-C power supply.  
Raspberry Pi sells power supplies 
(magpi.cc/usbcpower), which 
provide a reliable source of power. 
Raspberry Pi 1, 2, 3, and Zero models 
need a micro USB power supply 
(magpi.cc/universalpower).

Display and HDMI cable
A standard PC monitor is ideal, as 
the screen will be large enough 
to read comfortably. It needs 
to have an HDMI connection, 
as that’s what’s fitted on your 
Raspberry Pi board. Raspberry 
Pi 4 and 400 can power two HDMI 
displays, but require a micro-
HDMI to HDMI cable. Raspberry 
Pi 3B+ and 3A+ both use regular 
HDMI cables; Raspberry Pi 
Zero W needs a mini-HDMI to 
HDMI cable (or adapter).

USB hub
Raspberry Pi Zero and Model A boards have a 
single USB socket. To attach a keyboard 
and mouse (and other items), you 
should get a four-port USB hub (or 
use the official USB Keyboard   
and Hub which includes three ports). 
Instead of standard-size USB ports, 
Raspberry Pi Zero has a micro USB port 
(and usually comes with a micro USB to 
USB-A adapter). 

TUTORIAL

09Retro Gaming with Raspberry Pi

www.dbooks.org

http://magpi.cc/imager
http://magpi.cc/keyboard
http://magpi.cc/mouse
http://magpi.cc/usbcpower
http://magpi.cc/universalpower
https://www.dbooks.org/


10

01 Connect a mouse
Connect a wired USB mouse to the white 

USB connection on the rear of Raspberry Pi 400. 
The two blue USB 3.0 connectors are faster and best 
reserved for external drives and other equipment 
that need the speed.

02 Attach the micro-HDMI cable
Next, connect a micro-HDMI cable to one of 

the micro-HDMI sockets on the rear of Raspberry 
Pi 400. The one next to the microSD card slot is 
the first one, but either connection should work. 
Connect the other end of the HDMI cable to an 
HDMI monitor or television.

03 The microSD
If you purchased a Raspberry Pi 400 

Personal Computer Kit, the microSD card will come 
with Raspberry Pi OS pre-installed. All you need 
to do is connect the power and follow the welcome 
instructions. If you do not have a Raspberry Pi OS 
pre-installed microSD card, follow the instructions 
later in ‘Set up the software’.

Raspberry Pi 400 has its own keyboard 
– all you need to connect is the mouse 
and power

Set up 
Raspberry Pi 400

The Ethernet socket can be used to connect 
Raspberry Pi 400 directly to a network router (such 
as a modem/router at home) and get internet 
access. Alternatively, you can choose a wireless 
LAN network during the welcome process

The USB-C socket is used to connect power 
to the Raspberry Pi 400. You can use a 
compatible USB-C power adapter (found 
on recent mobile phones) or use a bespoke 
power adapter such as the Raspberry Pi 
15.3 W USB-C Power Supply

TUTORIAL

10 Quickstart Guide



01 Hook up the keyboard
Connect a regular wired PC (or Mac) 

keyboard to one of the four larger USB-A sockets 
on a Raspberry Pi 4 / 3B+/ 3. It doesn’t matter 
which USB-A socket you connect it to. It is possible 
to connect a Bluetooth keyboard, but it’s much 
better to use a wired keyboard to start with.

02 Connect a mouse
Connect a USB wired mouse to one of the 

other larger USB-A sockets on Raspberry Pi. As 
with the keyboard, it is possible to use a Bluetooth 
wireless mouse, but setup is much easier with a 
wired connection.

03 HDMI cable
Next, connect Raspberry Pi to your display 

using an HDMI cable. This will connect to one 
of the micro-HDMI sockets on the side of a 
Raspberry Pi 4, or full-size HDMI socket on a 
Raspberry Pi 3/3B+. Connect the other end of the 
HDMI cable to an HDMI monitor or television.

A regular wired mouse is connected 
to any of the USB-A sockets. A wired 
keyboard is connected to another 
of the USB-A sockets. If you have a 
Raspberry Pi 4, it's best to keep the 
faster (blue) USB 3.0 sockets free for 
flash drives or other components

Raspberry Pi 4 / 3B+ / 3 has plenty of 
connections, making it easy to set up

Set up 
Raspberry Pi

An HDMI cable, such as ones used by most 
modern televisions, is used to connect 
Raspberry Pi to a TV or display. You'll need a 
micro-HDMI to HDMI cable (or two) to set up 
a Raspberry Pi 4. Or a regular HDMI cable for 
Raspberry Pi 3B+ / 3 (or older) models

TUTORIAL

11Retro Gaming with Raspberry Pi

www.dbooks.org

https://www.dbooks.org/


12

01 Get it connected
If you’re setting up a smaller Raspberry 

Pi Zero or new Zero 2 W, you’ll need to use a 
micro USB to USB-A adapter cable to connect the 
keyboard to the single micro USB connection on 
a Raspberry Pi Zero. The latter model has only a 
single micro USB port, which means you'll need 
to get a small USB hub or use an all-in-one mouse 
and keyboard with your Raspberry Pi Zero. 

02 Mouse and keyboard
You can either connect your mouse to a 

USB socket on your keyboard (if one is available), 
then connect the keyboard to the micro USB 
socket (via the micro USB to USB-A adapter). 
Or, you can attach a USB hub to the micro USB 
to USB-A adapter.

03 More connections 
Now connect your full-sized HDMI cable 

to the mini-HDMI to HDMI adapter, and plug the 
adapter into the mini-HDMI port in the middle of 
your Raspberry Pi Zero W. Connect the other end of 
the HDMI cable to an HDMI monitor or television. 

You'll need a couple of adapters to  
set up a Raspberry Pi Zero / Zero 2 W

Set up
Raspberry
Pi Zero

Raspberry Pi Zero models 
feature a mini-HDMI socket. 
You'll need a mini-HDMI to 
full-sized HDMI adapter like 
this to connect Raspberry Pi 
Zero to an HDMI display

You'll need this micro USB to USB-A 
adapter to connect wired USB devices 
such as a mouse and keyboard to your 
Raspberry Pi Zero computer

TUTORIAL

12 Quickstart Guide



13

Use Imager to install Raspberry Pi 
OS on your microSD card and start 
your Raspberry Pi

Set up  
the software

N ow you’ve got all the pieces together, it’s 
time to install an operating system on 
your Raspberry Pi so you can start using 

it. Raspberry Pi OS is the official software for 
Raspberry Pi, and the easiest way to set it up on 
your Raspberry Pi is to use Raspberry Pi Imager. 
See the ‘You’ll Need’ box and get your kit together.

 
 
 
 
 

01 Download Imager
Raspberry Pi Imager is available for 

Windows, Mac, and Linux computers. You can 
also install it on Raspberry Pi computers, to make 
more microSD cards once you are up-and-running. 
Open a web browser on your computer and visit 
magpi.cc/imager. Once installed, open Imager and 
plug your microSD card into your computer.

You’ll Need 

> � �A Windows/Linux 
PC or Apple Mac 
computer

> � �A microSD card 
(8GB or larger)

> � �A microSD to 
USB adapter (or 
a microSD to 
SD adapter and 
SD card slot on 
your computer)

> � ��Raspberry Pi Imager 
magpi.cc/imager

First, insert your microSD 
card into Raspberry Pi

With the microSD card 
fully inserted, connect 
your power supply cable 
to Raspberry Pi. A red 
light will appear on the 
board to indicate the 
presence of power

Top Tip
Is your card 
ready?

You don't need 
to do this if 
your Raspberry 
Pi came with a 
card pre-written 
with Raspberry 
Pi OS.

02 Choose OS
Click on ‘Choose OS’ in Raspberry Pi Imager 

and select Raspberry Pi OS (32-bit). Click ‘Choose 
SD card’ and select the microSD card you just 
inserted (it should say 8GB or the size of the card 
next to it). Click on ‘Write’. Your computer will take 
a few minutes to download the Raspberry Pi OS files, 
copy them to the microSD card, and verify that the 
data has been copied correctly.

 
 
 
 
 

03 Set up Raspberry Pi
When Raspberry Pi Imager has finished 

verifying the software, you will get a notification 
window. Remove the microSD card and put it in your 
Raspberry Pi. Plug in your Raspberry Pi power supply 
and, after a few seconds, a blue screen will appear 
with ‘Resizing Filesystem’. It will quickly vanish and 
be replaced by ‘Welcome to Raspberry Pi’. Click on 
Next and follow the on-screen instructions to set up 
Raspberry Pi OS and start using your new computer.

13Retro Gaming with Raspberry Pi

TUTORIAL

www.dbooks.org

http://magpi.cc/imager
http://magpi.cc/imager
https://www.dbooks.org/


 PUT IT TOGETHER 

01 Install RetroPie
RetroPie allows you to emulate several 

game systems. We advise using Raspberry Pi 
Imager (magpi.cc/imager) to put RetroPie onto 
your microSD card. Attach your microSD card to 
your computer and open Imager. Click ‘Choose 
OS’, select ‘Emulation and game OS’ then 
‘RetroPie’; choose the version that matches your 
Raspberry Pi model: ‘RPI 1/Zero’, ‘RPI 2/3’ or 
‘RPI 4/400’. Click ‘Choose Storage’, select your 
microSD card. Finally, click ‘Write’.

02 Install Raspberry Pi
Before setting up RetroPie, it’s a good idea 

to install your Raspberry Pi into your selected case. 
We like the Argon One M.2 for a few reasons – it’s 
secure, it keeps your Raspberry Pi cool, it can use a 
Nanosound DAC if that’s your thing, and it routes 
all the inputs to the rear of the case. Because it 

has all these bells and whistles, it does take an 
extra step to install. The instruction manual that 
comes with the Argon One shows you how to add 
the daughterboard to Raspberry Pi. Follow the 
instructions supplied with your case.

03 Hook it up
For first-time setup, we recommend 

connecting a USB keyboard, along with having it 
connected to a monitor instead of a TV for comfort 
– however, connecting it to your 
selected TV is also fine. If you 
also plan to use a wired game 
controller, connecting it now 
is also a good idea. The last 
thing to connect should be 
the power supply.

 INITIAL SETUP 

01 First boot
With a power supply plugged in and 

switched on, press the power button on the back 
of the case to boot up your Raspberry Pi. RetroPie 
will do some initial automated setup stuff, then 
ask you to configure your games controller 

	 �Press the relevant buttons to configure your games 
controller; hold any button to skip a function

	 �Raspberry Pi Imager makes it easy to install 
RetroPie – choose the RPI 4/400 version

Build a retro gaming box and install RetroPie

Set up RetroPie

If you want 
to add an M.2 
SSD drive for 

increased internal 
storage, do 

so now!

FEATURE

14 Set up RetroPie

http://magpi.cc/imager


buttons. If you don’t have a controller connected 
yet, you can press F4 on the keyboard to get to 
the main menu. If you’ve run out of buttons to 
assign, hold down any button and it will skip the 
function. Keep doing this until you get to the end, 
and confirm ‘OK’ to finish.

If you’re using a wired network and controllers, 
you can stop here! Just add ROMs over the 
network or via a USB stick to play games!

02 Wireless connection
If you don’t intend to use an Ethernet 

connection, you can connect to your wireless 
network in the RetroPie menu. Select ‘Configure 
WiFi’ and it will open a text 
menu. Select ‘Connect to 
WiFi’ and choose your 
network from the list. 
Enter your password and 
hit OK – you may need 
to wait a moment or two, 
but it should then be 
fully connected.

03 Bluetooth controllers
Press F4 and you’ll open the command line. 

From there, make sure Bluetooth is installed using 
the command:

sudo apt install pi-bluetooth

Type exit to return to the graphical interface. Go 
to the menu and select Bluetooth Configuration. 
Select Register and Connect Bluetooth Devices 
while your Bluetooth controller is in pairing 
mode, then select it from the screen and follow 
the pairing instructions. Once connected, you 
may need to reboot your Raspberry Pi before 
configuring the buttons – make sure you turn the 
controller on just after the reboot.

 �Make sure you turn the 
controller on just after  
the reboot 

	 �Select the Configure WiFi option from the RetroPie menu and enter your network details

For troubleshooting 
and tips on specific 
controllers, 
especially for Sony, 
Microsoft, and 
Nintendo consoles, 
look at the docs: 
retropie.org.uk/
docs

To 
transfer 

ROMs over the 
network, go to  

\\RETROPIE in the 
Windows File Explorer, or 
smb://retropie on Mac, 

and open up the  
roms folder

RetroPie allows you to use Steam Link 
software to stream games from a gaming 
PC straight to your TV! To do this, go to the 
RetroPie menu and then RetroPie Setup. 
Go down to Manage Packages and choose 
Experimental Packages from it. In that list will 
be ‘steamlink’ – install it and it will then appear 
in the main games menu, ready for you to start streaming from a gaming 
PC running Steam with Remote Play on.

Stream from Steam

Install Argon 
ONE software
To install the fan 
control to the 
system, press 
F4 to get to the 
command line, and 
enter the following:

curl https://
download.argon40.
com/argon1.sh | 
bash

15Retro Gaming with Raspberry Pi

FEATURE

www.dbooks.org

http://retropie.org.uk/docs
https://download.argon40.com/argon1.sh
https://www.dbooks.org/


SUBSCRIBE TODAY  
FROM ONLY £5

 Email: magpi@subscriptionhelpline.co.uk

 Subscribe online: magpi.cc/subscribe
 Subscribe by phone: 01293 312193

Low monthly cost (from £5)
Cancel at any time
Free delivery to your door
Available worldwide

Rolling Monthly Subscription

£55 (UK) 	 £90 (USA)

£80 (EU) 	 £90 (Rest of World)
Free Raspberry Pi Zero 2 W with 12 Month upfront 
subscription only (no Raspberry Pi Zero 2 W with 
Rolling Monthly Subscription)

Subscribe for 12 Months

Subscriber Benefits

FREE Delivery 
Get it fast and for FREE

Exclusive Offers 
Great gifts, offers, and discounts

Great Savings 
Save up to 35% compared to stores

SUBSCRIPTION

Subscribe16

mailto:magpi@subscriptionhelpline.co.uk
http://magpi.cc/subscribe


JOIN FOR 12 MONTHS AND GET A

SUBSCRIBE 
on app stores

FREE Raspberry Pi Zero 2 W
WITH YOUR FIRST 
12-MONTH SUBSCRIPTION

Subscribe in print 
today and get a 
FREE computer!

	� A full Raspberry 
Pi desktop 
computer

	� Learn to code and 
build your own 
projects

	� Make your own 
retro games 
console, media 
player, magic 
mirror and much, 
much more

Buy now: magpi.cc/subscribe

This is a limited 
offer. Not included 

with renewals. Offer 
subject to change or 

withdrawal at any time.

SUBSCRIPTION

WORTH

$15

17Retro Gaming with Raspberry Pi

www.dbooks.org

https://itunes.apple.com/gb/app/the-magpi-the-official-raspberry-pi-magazine/id972033560?mt=8
https://play.google.com/store/apps/details?id=com.raspberry.magpi&hl=en_GB
http://magpi.cc/subscribe
http://magpi.cc/subscribe
https://www.dbooks.org/


Retro gaming hardware18

REVIEWS OF THE TOP  
KIT FOR RETRO GAMERS

RETRO GAMING 
HARDWARE

20 	� PIBOY DMG 
This classic handheld-
style case is more than just 
aesthetics

22 	� PICOSYSTEM 
A modern handheld for creating 
and playing old games

24 	� DELUXE ARCADE 
CONTROLLER KIT 
An all-in-one arcade joystick 
and case

26 	� ZX SPECTRUM NEXT 
The next generation of Speccy, 
perfect for 80s kids

28 	� PICADE 
Pimoroni’s mini-bartop  
arcade cabinet

 �Retro gaming consoles need 
a controller – arcade games 
are little fun to play with a 
keyboard and mouse 



19Retro Gaming with Raspberry Pi

www.dbooks.org

https://www.dbooks.org/


A Raspberry Pi retro gaming case based 
around a classic handheld design is not 
exactly uncommon, and you might have 

turned the page here and been a bit sceptical. We 
were too when it landed on our desk; however, we 
were pleasantly surprised because that’s the only 
feature of the PiBoy DMG that it shares with other 
similar devices.

Even on paper it has some interesting features 
– sure, it has a ton of buttons and a battery etc. 
(read the specs box for all that), but it also has 
an active cooling fan, an analogue joystick, and 
even a brightness control wheel for the screen – 
something very reminiscent of the contrast control 
on the original handheld console.

Usually, a lot of these kits can feel very cheap 
and rough, using standard 3D-printed parts for 
everything that can feel uncomfortable and flimsy 
and don’t really have the nicest aesthetic. The 
PiBoy feels more like the real deal: the main case 
is sturdy, the buttons are nice to use, and even 
the analogue stick has a little click-down thing. 
Unfortunately, like a lot of original form factor 
builds, the ‘shoulder’ buttons on the rear are a 
bit fiddly. With six face buttons, though, you’re 
probably set for playing any games up until the 
16-bit era.

Pocket emulation
Speaking of playing games, the software on the 
PiBoy is a slightly modified version of RetroPie, 

Is this seemingly ultimate handheld worth 
the price? Rob Zwetsloot investigates

 	� The PiBoy DMG takes 
its design cues from 
classic handheld 
consoles

 	� If you really fancy connecting a portable console to Ethernet, 
you can do that!

  Experimental Pi     magpi.cc/piboydmg     £90 / $120

PiBoy DMG 
CONTROLS: 
Ten buttons, 
eight-way 
D-pad, analogue 
joystick

POWER: 
4500 mAh LiPo 
battery

DISPLAY: 
3.5-inch LCD DPI 	
640×480

EXTRAS: 
On/off button, 
HDMI out

SPECS

20

REVIEW

PiBoy DMG

http://magpi.cc/piboydmg


with specific Experimental Pi splash screens and 
branding to the startup. Thanks to this, you’re 
only really limited by your Raspberry Pi choice, 
with Raspberry Pi Zero, Raspberry Pi 3/3B+, and 
Raspberry Pi 4 supported.

Because of this, the kind of games you’d be 
running on RetroPie systems run as smoothly as 
you’d expect. The LCD screen outputs at a fairly 
reduced resolution anyway, which reduces some of 
the load. With the fan on the rear of the PiBoy, we 
didn’t find it getting too hot with a Raspberry Pi 4 
in it, although the whining of the fan is slightly 
unnerving for a handheld and sounds like a CD. You 
can play the PiBoy in any position you wish without 
scratching anything, thankfully.

The various adapters and such for the PiBoy allow 
for all the output and input options of the installed 
Raspberry Pi to be accessible. As well as USB sticks 
which can be used for storage, and easy access to the 
microSD card, you can even plug in headphones and 
use a (regular size) HDMI cable to plug it into your TV. 
Use the available USB ports for some USB controllers 
and you have a very portable plug-and-play box.

 	� The battery case 
is the same as the 
original, albeit this one 
uses a much more 
powerful battery

 	� Different, simple adapters need to be used depending  on which 
Raspberry Pi you install

 The LCD screen outputs at 
a fairly reduced resolution 

Amazingly, it also has a special Steam Link 
function. You’ll likely be connected to wireless 
LAN on the PiBoy and if you have a decent 
connection, it’s amazing to play some games in 
your hands in your own home.

It’s a pretty fantastic piece of kit, and we 
think it earns its price tag. Just don’t rely on 
the shoulder buttons. /10

Verdict
An incredible 
portable retro 
gaming build, 
this has just 
about everything 
you’d want from 
a Raspberry Pi-
based handheld 
console kit.

10
21

REVIEW

Retro Gaming with Raspberry Pi

www.dbooks.org

https://www.dbooks.org/


E xtremely tiny handheld consoles have not 
always had the best track record in the 
microcomputer space. A few Raspberry Pi 

Zero efforts ended up being just a little too small 
and finnicky for actual use, and it didn’t quite help 
that they often used hard 3D-printed buttons that 
were uncomfortable. We’re pleased to say that 
Pimoroni’s PicoSystem, while still small, manages 
to avoid this.

It’s made from milled aluminium, has proper 
buttons, and a nice little square screen with 
240×240 pixels. It feels nice to hold – there’s a 
bit of heft – and holding it is not uncomfortable. 
It comes with a game pre-installed: Super Square 
Bros, a platformer. However, the main draw really 
is that you can make games for it yourself.

Make your own fun
PicoSystem uses its own official API, which 
works MicroPython and C++ - just like a standard 

Raspberry Pi Pico or other RP2040-based systems, 
allowing you to easily transfer skills over from 
elsewhere. CircuitPython, which is based on 
MicroPython is supported as well, and there’s even 
a 32blit SDK, allowing you to port over games from 
Pimoroni’s 32blit handheld console.

The standard C++ and MicroPython API adds 
loads of functions to make creating games slightly 
easier, including camera control, linking to buttons, 
and primitives for drawing sprites more easily than 
building them pixel by pixel. There are different in-
engine effects you can apply to text and such – it’s 
a meaty API that you can get a lot out of for just a 
simple pixel game on a limited piece of hardware.

The current games available for PicoSystem 
run absolutely fine as well, although the lack of 
a proper speaker is a little noticeable. The piezo 
buzzer sounds are quite charming in their own 
way, though, and smart use of it can create some 
nice retro bleeps and bloops.

A handheld console built around RP2040 and with 
game development in mind. Rob Zwetsloot boots it up.

  Pimoroni     magpi.cc/picosystem      £59 / $66

 	� There are already 
some fun games that 
have been made for it

PicoSystem
INTERNALS: 
RP2020 chip 
(dual Arm 
Cortex-M0+ 
running at up 
to 133MHz 
with 264kB of 
SRAM), 16MB 
of QSPI flash 
supporting XiP

DISPLAY: 
1.54˝ colour 
SPI IPS LCD 
(240×240 pixels)

FEATURES: 
D-pad and 
buttons, 
525 mAh 
LiPo battery, 
piezo buzzer/
speaker, 
CNC-milled 
aluminium 
case, wrist 
strap

SPECS

22

REVIEW

PicoSystem

http://magpi.cc/picosystem


Pocket games
Switching out games is a little more tricky than 
changing cartridges, though – there’s limited 
space on the PicoSystem, and you need to connect 
it to a computer to do a quick re-flashing to play 
a different game. It’s not too frustrating,  as it’s 
pretty quick, so for development you don’t have 
to wait too long. If you’re out and about with it 
hanging from your wrist, though (it comes with a 
cool lanyard), you will be fairly limited.

Yet that hasn’t really stopped us. It’s lovely to 
take around with you, the battery lasts for ages and 
charges pretty quickly, and you can make some 
really beautiful stuff for it. We look forward to see 
what kind of games people make for it. 10

Verdict
An incredibly cool, 
tiny handheld 
that you can fairly 
easily develop 
games for. We 
just wish it had  
more storage.

/

 T�he main draw really 
is that you can make 
games for it yourself 

9

 	� The PicoSystem is 
beautifully designed 
and feels premium

 	� It has a charm loop 
holder bit which is 
extremely important

23

REVIEW

Retro Gaming with Raspberry Pi

www.dbooks.org

https://www.dbooks.org/


O n page 134 of this book, we take you through 
a comprehensive arcade machine build, 
including a complete wooden build of the 

cabinet itself. While it’s certainly impressive, not 
everyone has the space, time, or money for one. 
This is where awesome little kits like this one from 
Monster Joysticks come in.

You’ve probably seen this type of kit before – it’s 
an all-in-one arcade joystick and case for your 
Raspberry Pi that turns it into a small and portable 
arcade machine. Just hook it up to the nearest 
television and you’re ready for some serious retro 
gaming action.

Unlike the stocking filler plug-and-play 
consoles, this kit requires you to build your 
gaming system and supply a Raspberry Pi board 
to power it. Construction is very simple, though: 
there are six acrylic panels for each side of the 
box and only eight screws required to fasten them 
all together.

Quality components
The kit comes with nine genuine Sanwa arcade 
buttons and a Sanwa joystick, which just simply 
click into the acrylic panels as you build them.

To wire up the buttons and joystick, a little add-
on board is provided with colour-coded wires. 
They can be a little tricky to properly attach to the 
connections as the connectors themselves are a bit 
tight, but you don’t have to worry too much about 
wires getting tangled up. You may also need to 
push down the top panel a bit due to resistance of 
all the wires, but otherwise it all fits fairly neatly 
inside. You can find the full build instructions on 
the Monster Joysticks website: magpi.cc/2i3iQp8.

The build took us just shy of three episodes of 
The Simpsons, so make sure you set aside about an 
hour for the job. Our only real complaint about the 
build is that, while all the ports and even microSD 
card slot are readily accessible, your Raspberry Pi 
can only be removed by taking the case apart. It 

Rob Zwetsloot builds a mini arcade machine with this 
all-in-one controller kit from Monster Joysticks

  Monster Joysticks     monsterjoysticks.com      £100 / $127

Deluxe Arcade 
Controller Kit

REVIEW

Deluxe Arcade Controller Kit24

http://magpi.cc/2i3iQp8
http://monsterjoysticks.com


will only take a couple of minutes to remove it, but 
we’d have preferred it to be a little easier.

The final part of the build involves attaching 
little rubber feet to the bottom – very welcome, as 
the case had been slipping a bit on the glass table it 
had been built on.

The stick feels solid and has a decent weight to 
it thanks to the included components, so you feel 
pretty safe giving the buttons and joystick a proper 
workout. The included Sanwa components are 
quite important as not only are they high-quality 
and can survive a bit of classic button mashing/
frame-perfect combo-timing, they’re also quite 
customisable. For instance, if you don’t fancy the 
button colour scheme, you can always swap them 
out. The joystick itself can also be customised: 
the version that comes with the kit has square 
four-way gates, but they can be upgraded to an 
octagonal eight-way gate, or any other gate style if 
you prefer.

Quick configuration 
Software customisation for RetroPie is also very 
simple. With a custom add-on board to connect 

the controls to Raspberry Pi over GPIO, we 
initially feared we’d have to download custom 
scripts for the job. Not so, though, and while you 
do need to go into the RetroPie configuration 
menu and install an extra driver, it’s all quick 
and included in the RetroPie archive. Once that’s 
done, you can configure the stick controls, as 
well as any extra controllers you’ve plugged into 
the USB ports.

This kit is a great, solid package and it looks 
good as well. We recommend investing in some 
nice, long HDMI and USB cables to power the 
box and don’t be afraid to put some sticks or a 
little custom decal onto the case as well. With 
Christmas coming up, it may just be the perfect 
gift for someone. 10

Verdict
A great little kit. 
It’s a fun build 
but also a good 
quality product to 
use. We’d prefer 
our Raspberry Pi 
to be a bit more 
accessible, but 
otherwise the high 
customisability is a 
big plus.

/8

 ��The stick feels solid and 
has a decent weight 
to it thanks to the 
included components 

REVIEW

25Retro Gaming with Raspberry Pi

www.dbooks.org

https://www.dbooks.org/


F ollowing several years of development, 
The ZX Spectrum Next Accelerated – a 
reimagining of the popular 1980s computer 

– has finally arrived. Part of the Spectrum’s 
modernisation is a Raspberry Pi Zero acting as an 
accelerator, melding the power of a 1980s classic 
with the greatest computer of the modern age.

Inside the box you’ll find the ZX Spectrum Next 
computer, a power supply, and a spiral-bound 
user manual which is pleasingly similar to the 
original but packed with information from BASIC 
programming to machine code.

The keyboard is a thing of beauty. The keys are 
responsive, although the layout is a bit weird after 
years of muscle memory bonded to PC.

It’s packed with connections: HDMI and VGA 
for video out; 3.5 mm ear and mic mini-jacks; PS/2 
for keyboard and mouse; plus the mini HDMI and 
micro USB ports of Raspberry Pi Zero; and two 
9B9 joystick ports (compatible with Kempston, 
Cursor, and ZX Interface 2 Protocols). To the left 

of the device sits a full-size SD card slot and three 
buttons: Reset, Drive, and NMI. And the original 
Expansion port provides compatibility with 
classic hardware.

The NMI button opens a menu that enables you 
to flick between turbo modes: 3.5MHz, 7MHz, 
14MHz, and 28MHz. You can also enter POKE files, 
browse memory banks, and adjust various sound, 
graphical, and memory settings. Some period 
games become wonderfully playable when cranked 
up to 28MHz: Sentinel, originally an achingly slow 
trudge, becomes a fast-paced and tense 3D puzzler.

Z80 and beyond
The heart of the Spectrum Next is a Xilinx 
Spartan-6 XC6SLX16 FPGA (field-programmable 
gate array, magpi.cc/spartan6). FPGA isn’t 

Raspberry Pi Zero adds audio and realistic loading to this 
reimagined ZX Spectrum computer. By Lucy Hattersley

  SpecNext     specnext.com      £230 / $288

 	� A range of modern 
and classic 
ports make for a 
versatile computer

ZX Spectrum  
Next Accelerated

PROCESSOR: 
Z80 on Xilinx 
Spartan-6 
XC6SLX16 FPGA

MEMORY: 
1MB RAM 
(expandable to 
2MB internally)

AUDIO:  
3 × AY-3-8912 
audio chips with 
stereo output

WIRELESS: 
ESP8266 WiFi 
module

ACCELERATOR 
BOARD: 
Raspberry Pi 
Zero W

SPECS

 	� The keyboard, designed by Rick Dickinson, 
has come together perfectly

26

REVIEW

ZX Spectrum Next Accelerated

http://magpi.cc/spartan6
http://specnext.com


emulation: the programmable logic blocks create a 
perfect representation of the Z80 chip.

You can take the FPGA beyond the Z80 with 
processor cores. We turned our ZX Spectrum 
Next into a BBC Micro B and BBC Master 
using BeebFPGA (magpi.cc/beebfpga). Victor 
Trucco has made a range of Intel 8080 cores 
available, including MSX, NES, and Colecovision 
(magpi.cc/specnextcores).

A separate Anti-Brick core protect users from 
breaking the machine when messing around with 
cores, and can be used at any time to switch back to 
its original state.

Alongside this sits a Raspberry Pi Zero, which 
enables you to load digital .tzx files as analogue 
cassette tape (screeches, loading screen, and all). 
It also brings SID (Sound Interface Device) support 
to the table, enabling better audio for games. 
There are plans afoot for Raspberry Pi Zero’s 
micro USB port to act as a digital joystick port, and 
the mini HDMI output may be used down the line 
to add a second display. Beyond that, Raspberry 
Pi Zero adds a 1GHz CPU and 512MB of RAM to the 
hardware – plenty of extra headroom for ambitious 
game developers.

We’re impressed. From a design and build 
quality perspective, ZX Spectrum Next has 
achieved all we wanted from a new Spectrum. 
And it’s a great example of using the power of 
Raspberry Pi to add oomph to a project. From a 
licensing and business perspective, managing 
to maintain this purity of focus while blending 
multiple open-source and proprietary software 
projects, all while juggling licensing owned by (to 
our count) 15 separate organisations including 
Amstrad/Sky, is seriously impressive stuff. Bravo, 
SpecNext, bravo! 

 	� Its classic design is very 
similar to that of the ZX 
Spectrum 128, but it 
packs far more power

10

Verdict
The ZX Spectrum 
Next is a lovely 
piece of kit. 
Well-designed 
and well-built: 
authentic to the 
original, and with 
technology that 
nods to the past 
while remaining 
functional and 
relevant in the 
modern age. 

/9

 It’s a great example of using 
the power of Raspberry Pi to 
add oomph to a project  	� Attached to the motherboard, a Raspberry Pi Zero acts as a sound 

system, enabling files to be loaded as if they were tapes

27

REVIEW

Retro Gaming with Raspberry Pi

www.dbooks.org

http://magpi.cc/beebfpga
http://magpi.cc/specnextcores
https://www.dbooks.org/


N ew versions of products are usually billed 
as ‘bigger and better’, but Pimoroni’s new 
Picade is smaller than its original mini-

bartop arcade cabinet. The display is still 8 inches 
(a 10-inch model is also available for £195 / $206), 
however. This time it’s an IPS (in-plane switching) 
panel with wide viewing angles, higher resolution 
(1024×768 compared to the earlier 800×600), and 
a new Pimoroni-designed driver board with HDMI 
input and keypad controls for an on-screen menu.

Another key improvement is the new Picade X 
HAT, which works with any 40-pin Raspberry 
Pi. Also available separately (£15) for those who 
want to build their own custom arcade cabinet, 
the HAT has easy-to-use DuPont connectors 
for the numerous joystick and button wires. An 
additional ‘Hacker’ header breaks out the few 
remaining unused GPIO pins and I2C, which 
could be used to add extra buttons. The HAT 
also features power management and a 
built-in I2S DAC with 3W amplifier for mono 
audio – this time there’s only one speaker 
included, although it’s plenty loud enough.

The new Picade model is sleeker 
with a host of improved features.  
Phil King relives his misspent  
youth down the arcades

  Pimoroni     magpi.cc/iLOfHv     £150 / $159

  �The new Picade is 
easier to build and 
looks fabulous sitting 
on your coffee table

Picade

REVIEW

Picade28

http://magpi.cc/iLOfHv


Before you play on your new Picade, you’ll need 
to assemble it. Taking two to three hours, this is an 
easier process than before, although there are still 
fiddly bits – mainly involving holding the tiny M3 
nuts in hard-to-access places while screwing bolts 

(tip: use Blu Tack). Full instructions are supplied 
on the reverse of an A1 poster, but we found 
the appended online ones, with videos, easier 
to follow. Assembly is aided by some excellent  
packaging, with separate colour-coded boxes for  
the cabinet, screen, fixings, and accessories.

Arcade assembly
Firstly, a few of the black powder-coated MDF 
panels need to be screwed together with plastic 
brackets. Placed upside-down onto a clear acrylic 
panel, the screen display is connected to its rear-
mounted driver board by a short flat flex ribbon 
cable and care needs to be taken not to pull out 
the connector tabs too far when inserting it. 

Next, add the 30 mm push-fit arcade buttons 
and a microswitched joystick with ball top. Since 
these are standard parts, you could potentially 
customise your Picade by using different (possibly 
illuminated) buttons and joystick topper.

The wiring is easier than on the original Picade 
due to the DuPont connectors on the HAT, so you 
simply push in the pins of the wires, although the 
other ends still have spade connectors (and there 
are push-fit connectors for the speaker wires). As 
long as you get each wire loom the right way round 

at the HAT end, you should be able to make the 
correct connections for the joystick and buttons. 
In addition to the six control buttons, there are 
four utility buttons placed around the cabinet and a 
light-up yellow power button – simply press this to 
turn the Picade on and off, automatically shutting 
down Raspberry Pi safely – a really nice touch.

Playtime
Before turning on, you’ll need to download 
RetroPie and write it to a microSD card – and 
uncomment a line in the boot/config.txt file to 
force HDMI output, to make the display work. 
The card can then be inserted into the Pi mounted 
inside the cabinet via a handy access hole. 
Alternatively, the back panel can easily be removed 
for easy access to all the components.

A 5 V USB-C power supply (not included) powers 
the Picade X HAT, which in turn powers Raspberry 
Pi, and the display via a USB cable. Hit the power 
button and away you go. Well, not quite. You’ll 
first need to connect a keyboard to Raspberry Pi 
and install the Picade X HAT driver with a one-line 
Terminal command.

Then it’s just a matter of setting up the joystick 
directions and buttons in the EmulationStation 
menu and – after adding files to RetroPie – playing 
your favourite homebrew games!  

10

Verdict
A fun, if at times 
fiddly build, 
this all-new 
Picade features 
high-quality 
components and 
feels sturdy. Major 
improvements 
over the original 
version include a 
vivid, higher-res 
IPS display and 
easier-to-connect 
Picade X HAT.

/

SCREEN: 
8-inch 
IPS panel, 
1024×768 pixels

BOARD: 
Picade X HAT

CONTROLS: 
Joystick, 6 × 
arcade buttons

SPEAKER: 
3-inch, 5 W, 4 Ω

DIMENSIONS: 
350 × 230 × 
210 mm

SPECS

 �The Picade X HAT has 
easier-to-use connections, 
including a ‘Hacker‘ header

  �Just like the one at 
your local arcade, only 
much smaller!

 �Before you can play on  
your new Picade, you’ll  
need to assemble it 

9

REVIEW

29Retro Gaming with Raspberry Pi

www.dbooks.org

https://www.dbooks.org/


Retro gaming hardware30

EMULATE CLASSIC COMPUTERS 
WITH RASPBERRY PI

32 	� LEGAL EMULATION 
A comprehensive guide to what you’re 
allowed to emulate

38 	� RETRO CD-ROM 
CONSOLE 
Play your classic CD-based games  
with this tutorial

44 	� BUILD A HANDHELD 
CONSOLE 
Your very own portable system

48 	� USE A RETRO DB9 
JOYSTICK 
Connect a classic joystick to GPIO pins for 
that Spectrum experience

52 	� COMMODORE 64 REVAMP 
Using a Raspberry Pi to resurrect a classic 
computer

54 	� LEGAL C64 EMULATOR 
Get VICE working on Raspberry Pi

58 	� RASPBERRY PI AMIGA 600 
3D print and power up your own Amiga 600

60 	� �TURN RASPBERRY PI INTO 
AN AMIGA 
Recapture the glory days of  
16-bit computing

62 	� LUNCHBOX ARCADE GAME 
Sandwiches and superb games

RETRO  
COMPUTING

 �Back in the day, you could learn a lot 
by typing in the code given away with 
computer magazines 



31Retro Gaming with Raspberry Pi

www.dbooks.org

https://www.dbooks.org/


Play classic console 
games legally on 
Raspberry Pi

C onsole emulation has been firmly in the 
mainstream in recent years. However, 
hobbyist emulation and DIY consoles run the 

risk of involving you with illegal copyrighted content.
But you don’t have to be a bootlegger to build 

your own home multi-console emulation with 
Raspberry Pi and RetroPie. 

Emulators themselves are strictly legal, and 
we’ve talked in the past about the wide range 
of homebrew and legal ROM images available 
(magpi.cc/legalroms).

In this tutorial we’re going to look at a much 
broader range of legal console ROMs. Some can 
be purchased legally, while others have been 
developed and are distributed for free.

So let’s set up a RetroPie console and play some 
classic games.

Discover a range of ways to buy and source 
classic games legally for Raspberry Pi

Thriving scene
Sega’s Mega Drive Classics collections include ROM 
images of the games that you run on any emulator 
you like, and brand new commercial releases for 
Sega and other platforms are thriving, as are active 
homebrew scenes bringing innovative new games 
to console formats that went out of production 
over 25 years ago.

Sega is incredibly supportive of its emulation 
community, and is happy to just sell you some 
classic Mega Drive ROMs, included in the Sega 
Mega Drive Classics collections for Windows, 
macOS, and Linux. You can buy 50 classic Mega 
Drive games on Steam (magpi.cc/segaclassics), 
either individually or as a pack.

Once bought, to find the ROMs, open the title’s 
Steam Library page, clear the gear icon on the 
right, select properties Properties, select the 
Local files tab, and then click Browse local files. 
You’ll find all the ROMs in the clearly labelled 
uncompressed ROMs directory. Rename all files 
with ‘.68K’ and ‘.SGD’ extensions to ‘.bin’ and 
copy them over to Raspberry Pi using a USB stick or 
via its Samba share (magpi.cc/samba).

Buy new classics
If you’re after new games for classic systems, itch.io  
should be your first port of call. It has legal 
homebrew games developed for popular 8-bit 
consoles. The Mega Drive has won the hearts of 16-
bit devs, who develop new games for it (and other 

K.G. 
Orphanides

K.G. is a writer, 
maker of odd 
games and software 
preservation 
enthusiast. They will 
fight anyone who 
claims that piracy 
is the only thing 
emulation’s good for.

@KGOrphanides

M
A

K
ER

	 �Ecco the Dolphin is just one of the classic games in the Mega 
Drive Classics collections

TUTORIAL 

32 Play classic console games legally on Raspberry Pi

http://magpi.cc/legalroms
http://magpi.cc/segaclassics
http://magpi.cc/samba
http://itch.io
https://twitter.com/KGOrphanides


16-bit consoles from that era). Be careful to get 
games that are sanctioned by the makers.

We’ve made itch.io collections for each of 
those platforms, going out of our way to avoid 
unauthorised ports and ROM hacks. These include 
both commercial and freeware games, plus a 
couple of open-source titles.

That’s not the only place that you’ll find 
releases for those platforms. In the tutorial, we 
download Mystery World Dizzy by the Oliver 
Twins. It’s a wonderful example of a lost game 
that was recovered by its creators and released as 
freeware to the fan community, but it’s also rare 
to find similar high-profile games from that era 
re-released with their creators’ blessing. Unlike 
Sega, other large gaming companies don’t look 
fondly on ROM hacks, fan games, and the like.

On the homebrew side of things, projects 
such as Retrobrews (retrobrews.github.io) 
and sites like vintageisthenewold.com and 
indieretronews.com compile collections and 
lists of homemade games for classic consoles, but 
watch out for the odd unauthorised port slipping 
into their catalogues.

There’s a small but lively industry releasing 
cartridges for retro consoles, and a number of 
developers and publishers make the ROM files 
available online, either for free or a small price. 
Among these are RetroSouls (retrosouls.net), 
the team behind Old Towers, and Miniplanets 
publisher Playonretro (playonretro.itch.io).

You’ll want to enable wireless LAN to easily 
copy over games, but RetroPie also includes 
more sophisticated networking features 
including online multiplayer game hosting

If you want to install extra 
emulators or update drives, 
you’ll find all that in the 
RetroPie Setup menu

	 � If you buy Sega’s 
Mega Drive Classics 
collection on Steam, 
you’ll get emulator-
friendly ROM files for 
50 games, including 
Golden Axe, Ecco the 
Dolphin, and Sonic 
the Hedgehog

Eight modern Mega Drive games
Here are some of the best new Mega Drive games:

Tanglewood – magpi.cc/tanglewood
Miniplanets – magpi.cc/miniplanets
Devwill Too – magpi.cc/devwilltoo
Arkagis Revolution – magpi.cc/arkagis
L’Abbaye des Morts – magpi.cc/labbaye
Old Towers – magpi.cc/oldtowers
Irena: Genesis Metal Fury (demo) – magpi.cc/irena
Cave Story MD – magpi.cc/cavestory

 �Sega is incredibly supportive of its 
emulation community 

TUTORIAL 

33Retro Gaming with Raspberry Pi

www.dbooks.org

http://itch.io
http://retrobrews.github.io
http://vintageisthenewold.com
http://indieretronews.com
http://retrosouls.net
http://playonretro.itch.io
http://magpi.cc/tanglewood
http://magpi.cc/miniplanets
http://magpi.cc/devwilltoo
http://magpi.cc/arkagis
http://magpi.cc/labbaye
http://magpi.cc/oldtowers
http://magpi.cc/irena
http://magpi.cc/cavestory
https://www.dbooks.org/


01 Image your RetroPie drive 
Download the Raspberry Pi Imager for your 

operating system from magpi.cc/imager. Insert a 
microSD card – 8GB will be fine if you plan to limit 
yourself to 8- and 16-bit games, but if you want to 
emulate more powerful consoles in future, a 32GB 
card is a good investment.

Run Raspberry Pi Imager and pick RetroPie from 
the choose operating system list. You want the 
most powerful Raspberry Pi you can lay your hands 
on, but a Raspberry Pi Zero will do the trick if you 
stick to emulating relatively early systems, and is 
great for embedded console projects.

Choose your microSD card, click Write, and give 
the software permission to overwrite any data 
on the microSD card. Wait for the image to be 
downloaded and flashed.

02 Plug it in, baby
Insert the microSD card and connect 

Raspberry Pi to a keyboard, mouse, and monitor. 
If you’ve got controllers or joysticks, plug them in 
before you power up.

After the image boots, you’ll be prompted to 
assign your gamepad’s buttons, if you have one. 
Trigger buttons on some controllers – notably Xbox 
360 compatible gamepads – may not register when 
pressed. Press and hold any other button to skip 
configuring them for now. If you make a mistake, 
you’ll be able to go back and correct it when you get 
to the end of the configuration list.

03 Fix your triggers (optional)
If the triggers are unresponsive on your 

Xbox 360 compatible controller, you should update 
the xpad driver. Go to RetroPie configuration and 
select RetroPie Setup. From the ncurses menu, 
select Manage Packages > Manage Driver Packages 
> 847 Xpad Driver, then Update.

Exit back to the main EmulationStation 
interface and open the Menu. You may find that 
this has been remapped from Start to the Right 
Trigger button after the update. Scroll down and 
select Configure Input.

	 �New developers 
publish games for 
classic consoles 
on popular indie 
platform itch.io

Itch.io console games
Use these links to find new games for classic 
consoles on itch.io:

Mega Drive games: magpi.cc/itchmd
8-bit games: magpi.cc/itchnes
Master System games: magpi.cc/itchms
16-bit games: magpi.cc/itchsnes

Top Tip
Handheld 
paradise

If you’d rather 
build a handheld 
console, then 
that’s a very 
viable prospect 
using a chassis 
such as the 
Retroflag GPi 
Case or the 
Waveshare 
Game HAT.

TUTORIAL 

34 Play classic console games legally on Raspberry Pi

http://magpi.cc/imager
http://itch.io
http://Itch.io
http://itch.io:
http://magpi.cc/itchmd
http://magpi.cc/itchnes
http://magpi.cc/itchms
http://magpi.cc/itchsnes


	 �It takes a little 
getting used to, but 
EmulationStation’s 
controller 
configuration tool 
means that RetroPie 
can handle almost 
any gamepad you 
want to use with it

04 Set me up
With your controller configured, you’ll be 

taken to the main interface. You won’t see any 
emulators on offer until you’ve copied over games 
for them to play. Press A on RetroPie to enter the 
config menu.

Select WiFi. Press OK at the following menu 
to go on to connect to a wireless network. 
Choose from the network list and enter the 
network key. Select Exit to return to the main 
EmulationStation config menu.

Some 1920×1080 displays will show a black 
border. If this is the case, select raspi-config. Go 
to Advanced Options, then Overscan – this will 
get rid of the black border. Select No to disable 
overscan compensation. You’ll need to reboot for 
this to take effect.

05 Get some ROMs
Before we go any further, you’ll need some 

games to run on RetroPie’s suite of emulators. For 
our first ROM, we’ll grab the Oliver Twins’ Mystery 
World Dizzy. Go to yolkfolk.com/mwd and click 
Download. To test Mega Drive emulation, go to 
arkagis.com and click ‘Download trial version’ 

Four modern 	
8-bit games
These new games are excellent examples of modern 
retro game development:

Micro Mages – magpi.cc/micromages
From Below – magpi.cc/frombelow
Wolfling – magpi.cc/wolfling
Legends of Owlia – magpi.cc/owlia

to take Arkagis Revolution’s great rotating field 
navigation for a spin.

It’s easiest to download ROMs on another 
computer and copy them across your local 
network to RetroPie’s Samba share at  
retropie.local using your file manager. Each 
console has its own subdirectory under the roms 
directory. Windows users should ensure that 
network discovery is enabled.

 �It’s easiest to download ROMs on another 
computer and copy them across 

TUTORIAL 

35Retro Gaming with Raspberry Pi

www.dbooks.org

http://yolkfolk.com/mwd
http://arkagis.com
http://magpi.cc/micromages
http://magpi.cc/frombelow
http://magpi.cc/wolfling
http://magpi.cc/owlia
https://www.dbooks.org/


06 Time to play
Back on Raspberry Pi, restart 

EmulationStation: press Start on your controller, 
select Quit, then Restart System. Restart the 
interface every time you add games to force it to 
re-check its ROM directories.

If you have a keyboard connected, it’s quicker 
to press and hold F4 to quit to the command line, 
then type exit to restart EmulationStation.

As you scroll to the left or right, you should see a 
logo for the Mega Drive. Press A to enter the menu, 
then press A while highlighting the game you want 
to play. Right and left directional controls switch 
between different consoles. 07 Shortcuts, mods, and fixes

Remember the Hotkey you defined during 
controller configuration? You’ll be using that 
a great deal, as it serves as a mode switch for 
controller shortcuts. You’ll find more info at 
magpi.cc/hotkeys, but these are the most useful:

Hotkey + Start – quit the game

Hotkey + Right Shoulder – Save

Hotkey + Left Shoulder – Load

Hotkey + B – Reset

Hotkey + X – Open quick menu for save states, screenshots, 

recording and similar

If you don’t get any audio from Raspberry Pi 4, 
make sure the HDMI lead connecting your monitor 
is plugged into the HDMI 0 port, nearest to the 
power connector. 

Direct download ROMs
Although it’s easiest to copy ROMs over from another computer, you can just 
download them at the command line of your RetroPie box if you have the URL. 
Press and hold F4 to exit to the command terminal. You can download the ROM 
files directly to their directories using wget:

wget -P /home/pi/RetroPie/roms/nes/ http://yolkfolk.com/
flash/mwdidd.nes

Restart EmulationStation by typing exit at the command prompt. If you’d rather 
just download all your files to a single location and move them later, the Midnight 
Commander file manager accessible from the Configuration menu makes this fairly 
hassle-free too.

Top Tip
What’s a ROM? 

ROM (read-only 
memory) files are 
data images of a 
non-rewritable 
storage medium, 
usually a game 
cartridge or 
– more rarely 
– computer or 
console firmware.

	 �Micro Mages is 
a commercial 
modern game with 
fantastic graphics 
and tight single- 
and multiplayer 
gameplay for up to 
four people

	 �Old Towers is a new homebrew Mega Drive game, available as 
a digital download or even as a cartridge!

TUTORIAL 

36 Play classic console games legally on Raspberry Pi

http://magpi.cc/hotkeys
http://yolkfolk.com/flash/mwdidd.nes
http://yolkfolk.com/flash/mwdidd.nes


www.dbooks.org

https://vilros.com/
https://www.dbooks.org/


W orking with original CD-ROMs is critical 
to software preservation, backup 
maintenance, and full emulation.  

This month, we’ll add a disc drive to Raspberry 
Pi 4, connect a TV to make the most of CRT-
era graphics, and overclock Raspberry Pi for an 
emulation performance boost

We’ll use this hardware to add disc support to 
the system we made in our DOS emulation tutorial 
(see magpi.cc/dosemulation) and to emulate early 
disc-based consoles. We’ll also explore the best 
legal landscape of disc emulation.

This project works best with Raspberry Pi 4 and a 
freshly installed Raspberry Pi OS (32-bit).

Images, discs, and the law
In the UK, you’re not allowed to make copies of 
software, video, or music discs you’ve bought 
(magpi.cc/ukgovcopying); there are no exceptions 
(magpi.cc/copyexceptions) for backups or 
transcoding to play on another platform. 

Unlike some PC software, permission to make 
copies for personal use is never granted in console 
games’ End User License Agreements (EULAs). You 
have to use the original discs.

More obviously, you can’t download disc images 
that someone else has made (even if you already 

Connect a PC DVD-ROM drive and CRT TV to Raspberry Pi to 
play original disc games for 1990s computers and consoles

Build a retro  
CD-ROM console

own the game) or console operating system BIOS 
files. This means we’ll be restricting ourselves to 
emulators that can actually play games from disc 
and which have a High Level Emulation (HLE) BIOS.

This peculiar combination of laws currently 
rules out a number of normally viable emulation 
platforms, such as the Amiga CD32, for which BIOS 
images are legally available via Cloanto’s Amiga 
Forever (amigaforever.com), as the emulators that 
use them expect you to work with CD ISOs rather 
than original discs.

Similarly, although the RetroArch Disc Project 
(magpi.cc/retroarchdisc) is doing fine work on 
introducing disc support to certain Mega CD, Saturn 
and 3DO emulators, most of the emulators that 
currently have real disc support require BIOS images 
that you won’t be able to legally obtain in the UK.

Read on, though, because that still leaves a few 
disc-based gaming platforms you can bring back to 
life with Raspberry Pi.

Disc support
USB disc drives and Raspberry Pi can be an 
awkward combination. Modern bus-powered 
drives often use dual power/data USB connections 
that require more power than Raspberry Pi can 
readily supply, and don’t play nicely with USB hubs 
or external 5 V power adapters.

Emulation adds to these problems, as early 
consoles often expected the disc to be spinning at 
all times, which many portable USB disc readers are 
unhappy with. Similarly, avoid Blu-ray drives: their 
spin and spin-down speeds frequently don’t mesh 
well with the expectations of emulated consoles.

Warning! CRT

Cathode-ray tube 
television sets can be 

dangerous to repair. Be 
careful if opening up a 

CRT device.

magpi.cc/crt
	 �Early DOS CD-ROM games like Conspiracy were designed 

to run directly from the disc

 This project is an excellent 
use for any old PC CD or DVD 
drives you might have 

TUTORIAL 

38 Build a retro CD-ROM console

http://magpi.cc/dosemulation
http://magpi.cc/ukgovcopying
http://magpi.cc/copyexceptions
http://amigaforever.com
http://magpi.cc/retroarchdisc
http://magpi.cc/crt


A standard internal DVD-ROM drive is perfect: 
this build used a 2008 Sony NEC Optiarc AD-7203S 
SATA DVD-RW. Drives in this range are widely 
available for around £15, and this project is an 
excellent use for any old PC CD or DVD drives you 
might have lying around.

To connect it, you’ll need either an external disc 
drive enclosure or SATA to USB adapter that takes 
external mains power. The kit photo above shows 
a StarTech USB2SATAIDE, which also supports IDE 
CD-ROM drives and hard disks. While this adapter 
is a little pricey at £42, similar hardware can be 
bought for about £20.

01 Connect your disc drive
Plug the SATA data and power connectors of 

your adapter into the back of your DVD-ROM drive, 
plug the adapter’s USB connector into Raspberry 
Pi, and its mains adapter into a plug socket or 
power strip.

This also works with externally powered drive 
boxes, which look better if you want a tidy and 
portable final product, but will require a little more 
assembly to the tune of a few screws.

02 Overclock Raspberry Pi (Optional)
Emulation can be demanding, so GPU and 

CPU overclocking makes sense, although it’s 
not absolutely necessary for this project. In a 
Terminal, type:

sudo mousepad /boot/config.txt 

And add the following lines:

over_voltage=6
arm_freq=1750
gpu_freq=700 

These were stable during testing, but if Raspberry 
Pi fails to boot, power-cycle it and hold down 
SHIFT to boot into recovery mode. Then knock 
the settings down a bit. See magpi.cc/overclock 
for further information on overclocking 
Raspberry Pi 4.

If you overclock, you should use a stand 
or, better still, an active or passive cooling 
case. A FLIRC Raspberry Pi 4 Case worked well 
here (magpi.cc/flirc).

You’ll Need 

> � �Full-sized 
internal desktop 
DVD‑ROM drive

> � �Mains-powered 
SATA to USB2 
adapter or 
drive enclosure

> � �Optional: Active 
or passive cooling 
Raspberry Pi case

> � �Optional: CRT TV

They aren’t essential, 
but a cooling case and 
controller are useful 
additions to this build

This system can play DOS 
CD-ROM titles from disc as 
well as original games

If you want to make the Disc System 
more portable, the SATA DVD drive 
can be mounted in a drive enclosure 
instead of connected via an adapter. 
Make sure it’s mains-powered

TUTORIAL 

39Retro Gaming with Raspberry Pi

www.dbooks.org

http://magpi.cc/overclock
http://magpi.cc/flirc
https://www.dbooks.org/


and even 3D graphics of the era were optimised to 
work with the display artefacts of CRT.

Raspberry Pi supports composite video out. 
Connect a 4-pole 3.5 mm AV cable to the 3.5 mm 
port on Raspberry Pi and connect the other end to 
your TV. Using a composite to SCART adapter can 
improve picture stability.

Note that Raspberry Pi’s 4-pole connector 
expects video to be connected to the sleeve and 
ground to ring 2, so ensure that you use a fully 
compatible cable (magpi.cc/monitorconnection). 
The wrong cable selection can result in non-
functional sound, misordered cables, or even 
damage to your hardware.

06 Output composite video (Optional)
If you’re using a typical 4:3 PAL TV, make 

the following changes to /boot/config.txt to 
correctly position your display – small alterations 
may be required for different models.

disable_overscan=0
overscan_left=16
overscan_right=16
sdtv_mode=2

03 Enable OpenGL
We’ll want OpenGL support for some 

emulators, such as PCSXR, In a Terminal, enter 
sudo raspi-config. Select Advanced Options > GL 
Driver > GL (Fake KMS), then exit and allow the 
system to reboot.

Open /boot/config.txt and make sure the 
following option is present and not commented out:

dtoverlay=vc4-fkms-v3d

04 Drop your resolution
Dropping your display resolution is an easy 

way of improving emulator performance. If you’re 
using a standard 1920×1080 widescreen monitor, 
you won’t need that resolution to play older games. 

Open the menu and go to Preferences > Screen 
configuration and set your resolution to 720×576 
(or 640×480) if you either have a 4:3 display or can 
live with a bit of screen stretching in exchange for 
smooth full-screen graphics. Choose 1280×720 if 
you don’t mind playing in a window on emulators 
that can’t do aspect ratio correction.  

05 Connect an elderly TV (Optional)
A 4:3 aspect ratio display is ideal here, and 

older display tech has the edge for 1990s console 
and computer games, too.  

Using a CRT TV rather than a modern LCD 
flatscreen can improve graphical quality as sprite 

Quick Tip
Clean your 
discs 

The condition 
of discs can 
lead to choppy 
sound and video 
identical to a 
disc drive that’s 
spinning too fast 
for the emulator, 
so use a clean, 
unscratched 
game while 
testing.

	 �The source code 
may be lost 
forever, but you 
can still play Silent 
Hill in its original 
glory – complete 
with tank controls

	 �To control fixed-path disc mounting for DOSBox using 
pmount, you’ll have to disable the File Manager’s default 
volume management behaviour

 Dropping your display 
resolution is an easy way 
of improving emulator 
performance 

TUTORIAL 

40 Build a retro CD-ROM console

http://magpi.cc/monitorconnection


Add the following line to the file, then save 	
and exit:

/dev/sr0

On the desktop, open File Manager. Go to Edit > 
Preferences > Volume Management and untick all 
the Auto-mount options. Reboot Raspberry Pi.

09 Mount and swap CDs
Now, to mount a disc, insert it, open a 

Terminal window and type:

pmount /dev/sr0

To unmount it:

pumount /dev/sr0

Repeat the first pmount command to mount a new 
disc. Now, every disc will have a fixed mount point 
of /media/sr0/. This means that, in DOSBox, you’ll 
just need to mount D /media/sr0/ once. 

When you want to swap discs, whether at the 
DOS prompt or in-application, hop over to a 
Linux Terminal window, run through the pmount 
commands and then, back in DOSBox, press 
CTRL+F4 to update cached information about your 
mounted drives.

10 Play original discs
PCSXR – the R stands for either Reloaded 

or ReARMed, depending on which version you’re 
using – is an open-source emulator.

In a Terminal, enter sudo raspi-config, then go to 
Advanced Options, Pi 4 Video Output, and Enable 
analogue TV output. Finish and reboot.

07 Mount a CD in DOSBox
If you’ve been following these tutorials, you 

may already have DOSBox or DOSBox-X installed. 
If not, at a Terminal:

sudo apt install dosbox
dosbox

To mount a disc at the DOS prompt, type:

mount D /media/YourDiscName/ -t cdrom -usecd 
0 -ioctl

To unmount a disc in DOSBox, type:

mount -u D

By default, each individual disc has to be manually 
mounted in DOSBox, as mount point names are 
automatically generated based on the volume 
name of the disc. This can be a problem if you need 
to swap DOS CDs during play or installation. 

08 Create a fixed mount point
To work around this, we can use the pmount 

command. From the Terminal, let’s first make 
sure it’s installed and then configure it:

sudo apt install pmount
sudo mousepad /etc/pmount.allow

	 �If you’re going to be playing on a PAL CRT television, you’ll 
need a 720×576 full-screen resolution

	 �Getting PCSXR’s 
disc drive settings 
right is critical. Too 
high a speed or too 
fast a spindown 
can make games 
judder and stutter

Quick Tip
Composite 
Zero 

Raspberry Pi Zero 
lacks its siblings’ 
composite 
video out port, 
but instead has 
a TV header 
which you can 
use to connect 
an RCA cable. 
For detailed 
instructions, see 
magpi.cc/
rcapizero.

TUTORIAL 

41Retro Gaming with Raspberry Pi

www.dbooks.org

http://magpi.cc/rcapizero
https://www.dbooks.org/


It also has a genuinely good emulated bios, so 
you don’t need to download anything dodgy to 
make it work. The desktop version works best for 
original discs. Open a Terminal and type:

sudo apt install pcsxr

It can run games including Final Fantasy VII, Silent 
Hill, GTA, Sheep, and Resident Evil either perfectly 
or with only minor errors, but you’ll have to adjust 
some settings first.

11 Configure PCSXR’s graphics
Go to the Configuration menu and select 

Plugins & BIOS. From the Graphics pull-down, 
select OpenGL Driver 1.1.78. Click on the window 
icon directly to the right of the pull-down.

Starting with the Windows options tab, 
assuming you’re using the PAL resolution we 
configured, enter a width of 720, a height of 576, 
and tick the Fullscreen box. On the Textures tab, 
set Quality to Don’t care, Filtering to None, and 
HiRes Tex to None.

In the Framerate tab, ensure that ‘Use FPS 
limit’ is ticked and set to auto-detect. Moving to 
the Compatibility tab, select Standard offscreen 
drawing, a Black framebuffer, and Emulated Vram 

Quick Tip
Stand it up

If you don’t have 
a cooling case, 
you can increase 
airflow around 
Raspberry Pi by 
using a stand 
to support it 	
on edge.

for framebuffer access. Make sure the Mask bit 
and Alpha multipass boxes are ticked.

In the Misc tab, tick Untimed MDECs, Force 
15 bit framebuffer updates, and Use OpenGL 
extensions. The ‘Special game features’ tab 
includes game-specific options, such as battle 
cursors for Final Fantasy VII. Click Okay to save 
your changes.

12 Configure PCSXR’s sound 
and CD-ROM

Click on the window icon next to the Sound 
pulldown in the configuration window. Set Volume 
to Low, Reverb to Off, and Interpolation to None. 
Unsick everything except Single channel sound. 
Click Close, then open the CD-ROM settings.

Set read mode to Normal (No Cache), Spindown 
time to 2 minutes, Cdrom Speed to 2min, and tick 
Emulated subchannel read.

While you may need to adjust these settings 
for individual games or experiment with higher 
resolutions, this combination allows the vast 
majority of titles to run reasonably smoothly from 
their original discs.

To test this, insert a disc into the drive, wait for 
it to load, then click on the CD icon at top left of 
the PCSXR window. 

	 �This build included 
an internal PC 
DVD-ROM drive, 
an externally 
powered SATA-
to-USB adapter, a 
composite video out 
cable and SCART 
adapter, a heat-sink 
case, and controller

TUTORIAL 

42 Build a retro CD-ROM console



	 Set up your Raspberry Pi 
Pico and start using it

	 Start writing programs 
using MicroPython

	 Control and sense 
electronic components

	 Discover how to use Pico’s 
unique Programmable IO

Get started with

on Raspberry Pi Pico
MicroPython

Learn how to use your new 
Raspberry Pi Pico microcontroller 
board and program it using 
MicroPython. Connect hardware 
to make your Pico interact with 
the world around it. Create 
your own electro-mechanical 
projects, whether for fun or to 
make your life easier.

Available now: magpi.cc/picobook
www.dbooks.org

http://magpi.cc/picobook
https://www.dbooks.org/


keyboard is properly configured. TAB to Finish on 
the main menu, press ENTER, and reboot.

At the command prompt, type ifconfig to 
confirm that your wireless network is connected
Finally, on a single line, type:

wget -O - "https://raw.githubusercontent.
com/RetroFlag/retroflag-picase/master/
install_gpi.sh" | sudo bash

This will download and run the safe shutdown 
installer before restarting Raspberry Pi Zero. Power 
down and unplug the system.

03 Add display support
Return the microSD card to the system 

you’re using to prepare the OS for use. Download 
the patch zip file from magpi.cc/gpicasepatch 
and unzip it.

The readme file includes instructions for 
Windows and macOS – the latter also applies to 
Linux operating systems including Raspberry Pi OS.

From the boot partition of your RetroPie disk, 
copy config.txt to the original_files directory in 
the patch’s folder and replace it with the one that 
you’ll find in the patch_files subdirectory.

Similarly, back up dpi24.dtbo from RetroPie’s 
/boot/overlays folder to the supplied overlays 
directory, then copy over dpi24.dtbo and 
pwm‑audio-pi-zero.dtbo from the patch_files 
subdirectory to RetroPie’s overlays folder.

04 Prepare the case
The Retroflag GPi Case comes with a helpful 

illustrated installation guide, a USB power cable, 
plus the screwdriver and four screws you’ll need to 
assemble your handheld.

Forget the TV, a dedicated handheld is the pinnacle of retro 
gaming. Whether you play in bed or in the garden, we’ve got 
builds for under £100 and under £200

T his month, we’re going to build handheld 
consoles powered by two different 
Raspberry Pi computers, in two different 

cases. The Retroflag GPi Case for Raspberry 
Pi Zero, supplied by The Pi Hut, has a total of 
eight buttons plus a digital pad and a 2.8-inch 
320×240 colour screen. It’ll run for hours on three 
AA batteries and is small enough to carry in a 
generously sized coat pocket.

The PiBoy DMG is more expensive, chunkier, 
and much more powerful. It has a 3.5-inch 
640×480 display, both digital and analogue 
controls, and a total of ten buttons. You can 
access all Raspberry Pi 4’s USB ports and there’s 
an optional mini-HDMI pass-through. It won’t 
run off AAs, so the full kit ships with a 4500 mAh 
rechargeable battery.

Build 1: Raspberry Pi Zero

01 Install RetroPie
Use the Raspberry Pi Imager for Windows, 

Linux, and macOS to download and write RetroPie 
(RPI 1/ZERO) on a microSD card. 8GB capacity 
should be fine for our purposes, as none of the 
systems we’ll be emulating involve large files.

Before you install Raspberry Pi Zero in the GPi 
Case, you connect it to a monitor, a keyboard, and 
the internet to install Retroflag’s safe shutdown 
script. Insert your microSD card and connect your 
peripherals. Allow RetroPie to boot, then press F4 
to quit to the command prompt.

02 Basic config & safe shutdown
Type sudo raspi-config. Now go to Network 

Options. Go to Wi-Fi and set your country, network 
name (SSID), and password. In Localization 
options, Change Keyboard to make sure your 

Build a 
handheld console 

You’ll Need 

> � �Retroflag GPi case 
(£60) 
magpi.cc/gpi

> � �microSD card 
(8GB+)

> � �Raspberry Pi Imager
magpi.cc/
downloads

> � �Monitor, USB-to-
micro USB adapter, 
keyboard (briefly)

> � �3 × AA batteries

Alert! Copyright

Many classic games are 
protected by copyright. 
Stick to homebrew and 

legal ROMs.

magpi.cc/legalroms

TUTORIAL 

44 Build a handheld console

https://raw.githubusercontent.com/RetroFlag/retroflag-picase/master/install_gpi.sh
https://raw.githubusercontent.com/RetroFlag/retroflag-picase/master/install_gpi.sh
https://raw.githubusercontent.com/RetroFlag/retroflag-picase/master/install_gpi.sh
http://magpi.cc/gpicasepatch
http://magpi.cc/gpi
http://magpi.cc/downloads
http://magpi.cc/downloads
http://magpi.cc/legalroms


06 Power up and configure
Flip the power switch at the top right and 

RetroPie will boot. The GPi Case registers as an 
Xbox 360 pad, less a few buttons, though left and 
right buttons are hidden on the back of the case.

Hold any button to start configuration. When 
you get to a button that doesn’t exist, press and 
hold any button. Skip hotkey configuration and 
allow RetroPie to auto-configure it as Select when 
prompted. You’ll be able to exit to the menu from 
games by pressing Start and Select at the same time.

In the front end, tap A to enter the RetroPie 
menu, scroll to RetroPie Setup, and tap A. Go to 
Configuration / tools, select Samba, and Install 
RetroPie Samba share to create a network share 
so you can easily copy game files over to the 
console’s ~/RetroPie/roms directory. RetroPie 
Setup also allows you to install new emulators.

Open the battery compartment at the back and 
flip the Safe Shutdown switch to the ‘on’ position. 
Make sure the main console power switch is in the 
off position.

Remove the ‘cartridge’ – actually a Raspberry Pi 
Zero case – from the slot at the top of the console; 
turn it so that the sticker’s facing you and gently 
but firmly pull it apart. 

Remove the microSD card from Raspberry Pi and 
the microSD cover from the case. 

05 Install Raspberry Pi
Place Raspberry Pi loosely into position on 

the four mounting posts in the shell, with the SD 
slot facing the gap you removed the cover from. 

Connect the micro USB extension ribbon 
cable from the I/O conversion board that comes 
installed in shell 2 to Raspberry Pi’s USB port (the 
rightmost – the other one is only for power). Now 
seat Raspberry Pi into shell 1 and position the I/O 
board on top of it. Make sure both the posts and 
GPIO pogo pins are lined up.

Reinsert the microSD cover, clip the cartridge 
halves back together, and install the supplied 
screws into the holes on the back to secure it. 
Open the SD card cover, insert your card, close it, 
and slide the cartridge back into the main body of 
the case. Insert three AA batteries. 

Top Tip
The right 
emulator

For improved 
Raspberry Pi 
Zero emulation, 
use lr-picodrive 
for Mega Drive, 
lr‑pce-fast for PC 
Engine, and lr-
genesis-plus-gx 
for Master System.

	� A micro USB port 
under the GPi’s battery 
cover can provide USB 
peripheral connectivity 
via a powered hub, but 
reliability varies greatly 
from hub to hub

The Retroflag GPi will just about 
fit in a jeans pocket, so you can 
play From Below wherever you go

The larger screen size and chunkier 
dimensions of the PiBoy DMG make it 
feel like playing a horizontal console 
despite its vertical form factor

45Retro Gaming with Raspberry Pi

www.dbooks.org

https://www.dbooks.org/


02 Chassis preparation
Experimental Pi’s illustrated online 

assembly instructions for the PiBoy DMG are 
among the best we’ve seen, so keep them on hand 
during this build: magpi.cc/piboydmgbuild.
The PiBoy DMG Full Kit comes with the battery, 
screws, screwdriver, buttons, and blanking plates 
that you’ll need to build it. It’s worth adding the 
HDMI adapter to your order, too.

Unscrew the back of the case, and then unscrew 
and lift off the fan assembly that’ll keep Raspberry 
Pi cool in situ.

03 Install Raspberry Pi
Slip the supplied faceplate over Raspberry 

Pi’s ports – and, if you’re using it, fit the PiBoy 
HDMI adapter to the rightmost micro-HDMI port 
and slide its faceplate on.

Gently push the SD card adapter ribbon cable 
into Raspberry Pi’s microSD slot, then lower the 
computer and HDMI adapter onto the standoffs. 
Screw the HDMI adapter into position. If you’re 
not going to use this adapter, fit a blanking plate 
in its place.

Build 2: Raspberry Pi 4

01 Image your microSD card
Experimental Pi has its own fork of 

RetroPie, tweaked to fully support the handheld’s 
features. Download and extract the operating 
system image via magpi.cc/piboydmgimage and 
flash it to your microSD card using the Raspberry 
Pi Imager tool.

Alternatively, you can install RetroPie – or any 
other Raspberry Pi OS / Raspbian-based operating 
system – but will have to add Experimental Pi’s 
safe shutdown and on-screen display scripts, 
available at magpi.cc/piboydmgscripts.

You’ll Need 

> � �PiBoy DMG – Full 
Kit ($120) 
magpi.cc/
piboydmg

> � �Optional PiBoy 
DMG HDMI adapter 
($10)

> � �microSD card 
(32GB+)

> � �Raspberry Pi Imager
magpi.cc/
downloads

Top Tip
Windows 
required

PiBoy DMG 
kits should 
have the latest 
firmware, but 
future updates 
(magpi.cc/
piboyfirmware) 
will require a 
Windows PC.

 �It’s worth enabling Samba 
for ease of transferring 
software to the console 

	� The ‘cartridge’ that slots 
into the GPi Case is really 
a swappable Raspberry Pi 
Zero case, so you could keep 
different game collections on 
separate systems

	� Even on a backlit 
colour screen, 
modern 8-bit games 
feel right on a 
handheld

TUTORIAL 

46 Build a handheld console

http://magpi.cc/piboydmgbuild
http://magpi.cc/piboydmgimage
http://magpi.cc/piboydmgscripts
http://magpi.cc/piboydmg
http://magpi.cc/piboydmg
http://magpi.cc/downloads
http://magpi.cc/downloads
http://magpi.cc/piboyfirmware
http://magpi.cc/piboyfirmware


Save the file, unmount the card, return it to your 
handheld, and boot. From the RetroPie menu, 
select ‘Wifi’, then import WiFi credentials from  
/boot/wifikeyfile.txt.

As with the Retroflag build, it’s worth enabling 
Samba for ease of transferring software to the 
console (see Build 1, Step 6). Transfer your games, 
and you’re ready to play on the move.  

04 Fit the fan
Add the fan board: making sure that it’s 

lined up with the GPIO, gently seat it into place – a 
rocking motion works well for this. Make sure all 
cables are correctly lined up and screw the board 
down. Line up and gently press into the place the 
IPS screen cable.

Place the supplied power switch onto the switch 
on the top right of the board and screw the rear of 
the case back on. Fit the rechargeable battery – it’ll 
only connect one way round, but there are also 
polarity markings to help. 

05 Go wireless
Slide the microSD card you imaged earlier 

into position and power up. To add wireless 
networking to our handheld build, mount its 
microSD hard disk on any other computer. In 
the top-level /boot directory, create a file called 
wifikeyfile.txt. It should contain these lines:

ssid="wifi_name"
psk="password"

Top Tip
Why HDMI?

Adding the micro-
HDMI adapter to 
the PiBoy DMG 
means you can 
connect it to a TV, 
add a couple of 
USB controllers, 
and enjoy classic 
multiplayer 
gaming.

	� The Pi Boy DMG 
case has a built-in 
fan, which makes 
it a little noisy but 
also means you can 
overclock it to run 
demanding games

Handheld homebrew
To help you find the latest games for your favourite 
classic handhelds, here are six more game 
collections on indie platform itch.io.

 magpi.cc/itchgb

 magpi.cc/itchgbc

 magpi.cc/itchgba

 magpi.cc/itchlynx

 magpi.cc/itchpsp

 magpi.cc/itchpce

TUTORIAL 

47Retro Gaming with Raspberry Pi

www.dbooks.org

http://itch.io
http://magpi.cc/itchgb
http://magpi.cc/itchgbc
http://magpi.cc/itchgba
http://magpi.cc/itchlynx
http://magpi.cc/itchpsp
http://magpi.cc/itchpce
https://www.dbooks.org/


R aspberry Pi 400 is, with its integrated 
keyboard and tweaked performance, a 
modern home micro. This month, we pay 

tribute to one of the computers that helped inspire 
its look by emulating Sinclair’s ZX Spectrum, 
complete with the latest games and retro joysticks 
connected via GPIO. These use the D-sub connector 
popularly called DB9, also known as DE-9.

01 Install the Free Unix
Spectrum Emulator

Also available in the RetroPie emulation distro we’ve 
used in previous tutorials, the FUSE ZX Spectrum 
emulator can be found in Raspberry Pi OS’s standard 
repositories, so installation is a bare minimum of 
fuss. Open a Terminal window and type:

sudo apt install fuse-emulator* spectrum-
roms opense-basic libspectrum8

This will install FUSE, its GTK and SDL front ends, 
and both open-source system ROMs and the 
original Spectrum system ROMs. Permission has 
been granted for free modification and distribution 
of the latter (magpi.cc/SpecROMs).

While the open-source ROM can only handle 
a limited selection of files, that spectrum-roms 
package will allow you to play a wide array 
of games, including the latest generation of 
technically spectacular releases for the platform.

02 Test FUSE
Next, we’ll make sure FUSE is working with 

the ZX Spectrum port of Locomalito’s open-source 
classic, L’Abbaye Des Morts. In a Terminal, type:

wget https://spectrumcomputing.co.uk/zxdb/
sinclair/entries/0030109/AbbayeDesMorts.tzx.zip

fuse-sdl

Press F2 to open FUSE’s file browser, navigate 
to AbbayeDesMorts.tzx.zip, and press ENTER. 
The game should load and run automatically. 
For full-screen mode, press F1, go to Options, 
and select ‘Full screen’. Take note of the Filter 
option in the same menu, which lets you choose 
the emulator’s upscaling method: ‘TV 3x’ gives 
you some pleasing scan lines and the correct 
aspect ratio.

03 Wire up your joystick port
Standard DB9 connectors split the nine pins 

of your cable into nine screw-down terminals. We 
found it most convenient to use male-to-female 
jumper cables for this, clamping the male tips into 
our DB9 breakout connector.

For a classic single-button joystick like the 
Competition Pro Retro we used, pin 1 is up, pin 2 is 
down, pin 3 is left, pin 4 is right, and pin 6 is fire. 
Pin 8 connects to ground – we recommend using a 
green cable for it. Some joysticks may require you 
to connect port 7 to a 3.3 V power connector on the 
GPIO, but the Competition Pro does not.

See the ‘DB9 pins’ box (overleaf) for an at-a-
glance DB9 connection table.

04 Wire up Raspberry Pi
Wiring up the DB9 port to Raspberry Pi’s 

GPIO is a fairly simple process, although you’ll 
have to do some careful pin counting. On Raspberry 
Pi 400, pin 1 is at the top right of the horizontally 

Get the classic ZX Spectrum experience with Raspberry Pi 400 and a GPIO joystick

Use a retro DB9 joystick 
with Raspberry Pi 400

You’ll Need 

> � �DB9 joystick

> � �DB9 breakout 
board magpi.cc/
db9breakout

> � �10–20 male-to-
female jumper 
cables magpi.cc/
mfjumpers

> � �DB9 GPIO driver 
source magpi.cc/
db9gpiogit

 �Wiring up the DP9 port to 
Raspberry Pi’s GPIO is a 
fairly simple process 

TUTORIAL 

48 Use a retro DB9 joystick with Raspberry Pi 400

Warning! 
Copyright

Many (but not all) 
Spectrum games can be 
legally downloaded. See 

our Legal ROMS page 
for more information.
magpi.cc/legalroms

http://magpi.cc/SpecROMs
https://spectrumcomputing.co.uk/zxdb/sinclair/entries/0030109/AbbayeDesMorts.tzx.zip
https://spectrumcomputing.co.uk/zxdb/sinclair/entries/0030109/AbbayeDesMorts.tzx.zip
http://magpi.cc/db9breakout
http://magpi.cc/db9breakout
http://magpi.cc/mfjumpers
http://magpi.cc/mfjumpers
http://magpi.cc/db9gpiogit
http://magpi.cc/db9gpiogit
http://magpi.cc/legalroms


Get the classic ZX Spectrum experience with Raspberry Pi 400 and a GPIO joystick

DB9 breakout boards are 
silk-screened with pin 
numbers, making it easy to 
connect your jumper leads Any classic or modern 

reproduction 9-pin (DB9) joystick 
will work for this

oriented GPIO port and pin 40 is at the bottom left. 
Remember that GPIO numbers don’t correspond 
with pin position numbers. 

For a reminder of where everything is, open a 
Terminal and type: pinout.

Our diagram (Figure 1, overleaf) shows where 
the female jumpers connected to your DB9 port 
need to go on Raspberry Pi. For a single one-button 
joystick, up goes to GPIO 4, down to GPIO 7, left to 
GPIO 8, right to GPIO 9, and fire to GPIO 10.

05 Build the DB9 joystick driver
Let’s build the driver. Enter this in a 

Terminal window: 

sudo apt install dkms raspberrypi-kernel-
headers
git clone https://github.com/marqs85/db9_

gpio_rpi.git
cd db9_gpio_rpi
sudo cp -r db9_gpio_rpi-1.2 /usr/src/db9_

gpio_rpi-1.2/
sudo dkms add db9_gpio_rpi/1.2
sudo dkms build db9_gpio_rpi/1.2
sudo dkms mkdeb db9_gpio_rpi/1.2 --source-

only
sudo modprobe --first-time db9_gpio_rpi 

map=1,1

#!/bin/bash
# fix for db9_gpio_rpi driver issue https://github.com/marqs85/
db9_gpio_rpi/issues/8
# RPi 4 and 400 need this tweak to speak to db9_gpio_rpi gpio 
connected controllers as some inputs need explicit pullup
# ensure that you’re applying the pullups to the correct pins - 
this is for a standard deployment of the driver
#
# Use:
# chmod pullup.sh +x
# add /path/to/pullup.sh to /etc/rc.local to load on boot

# Joyport /dev/input/js0
raspi-gpio set 4 ip pu
raspi-gpio set 7 ip pu
raspi-gpio set 8 ip pu
raspi-gpio set 9 ip pu
raspi-gpio set 10 ip pu
raspi-gpio set 11 ip pu
raspi-gpio set 14 ip pu
# Joyport /dev/input/js1 - if we connect a second joystick
raspi-gpio set 15 ip pu
raspi-gpio set 17 ip pu
raspi-gpio set 18 ip pu
raspi-gpio set 22 ip pu
raspi-gpio set 23 ip pu
raspi-gpio set 24 ip pu
raspi-gpio set 25 ip pu

pullup.sh

001.
002.

003.

004.

005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.

>  Language: Bash magpi.cc/pullupfix

DOWNLOAD  
THE FULL CODE:

TUTORIAL 

49Retro Gaming with Raspberry Pi

www.dbooks.org

https://github.com/marqs85/db9_gpio_rpi.git
https://github.com/marqs85/db9_gpio_rpi.git
https://github.com/marqs85/db9_gpio_rpi/issues/8
https://github.com/marqs85/db9_gpio_rpi/issues/8
http://magpi.cc/pullupfix
https://www.dbooks.org/


DB9 pins
�For a one-button joystick – including multi-button 
sticks with only single-button functionality – connect 
these pins on your DB9 breakout board.

That map option defines what kind of joystick you’re 
using, with each number classifying a different type 
of joystick As we’re using a one-button joystick, 
map=1,0 would do it, but 1,1 means we can connect a 
second stick of the same type to a second port.

06 Test your joystick
Building and loading the driver won’t 

quite get us to a functional joystick, as the 
driver isn’t fully compatible with Raspberry Pi 
OS’s recent use of raspi-gpio instead of gpio. 
However, this is a great time to test your joystick 
to make sure that it’s wired up correctly.

sudo apt install jstest-gtk
jstest-gtk

You should see your joystick in the peripherals 
list. When you click into it, if you’re using a 
Competition Pro Retro or similar joystick, you’re 
likely to find that the fire button is jammed on and 
that the horizontal x axis is stuck at the left.

07 Pull-ups are good for you
This is because your GPIO needs to be set 

up to handle the joystick’s pull-up switches. On 
a standard DB9 GPIO configuration, the script 
you’ll find at magpi.cc/pullupfix will do this for 
you. Create it using your preferred text editor 
and save it somewhere handy. We’ve put ours 
in /home/pi/pullup.sh. Test it by running:

sh /home/pi/pullup.sh
jstest-gtk

If the joystick is now aligned properly and the button 
isn’t stuck on, you’re in business.

chmod +x /home/pi/pullup.sh

Finally, let’s load those pull-up settings on boot.

sudo mousepad /etc/rc.local

Above the exit line, enter the following:

/home/pi/pullup.sh

You can also place the pull-up code directly in 
rc.local if you wish.

08 Load on boot
Once you’re satisfied that your joysticks 

work, you’ll want to load the driver module on boot.

sudo mousepad /etc/modules

…and add:

db9_gpio_rpi

After saving and exiting the file, enter:

sudo mousepad /etc/modprobe.d/db9.conf

This file should contain the following line:

	 �The jstest-gui program allows you to test your joystick and also 
indicates whether it’s working as it’s supposed to

Top Tip
GPIO reference

If you’re 
flummoxed 
by GPIO pin 
numbering, see 
the official docs at 
magpi.cc/gpio.

DB9 pin Joystick function

1 UP

2 DOWN

3 LEFT

4 RIGHT

5 -

6 FIRE

7 -

8 GROUND

9 -

 Although many Spectrum games support 
joysticks, you’ll often have to enable 
support for these 

TUTORIAL 

50 Use a retro DB9 joystick with Raspberry Pi 400

http://magpi.cc/pullupfix
http://magpi.cc/gpio


options db9_gpio_rpi map=1,1

If you’re using a different joystick and 
configuration, you’ll need an appropriate map, and 
possibly some extra GPIO connections, which you 
can find at magpi.cc/db9gpio.

Reboot Raspberry Pi and use jstest-gtk to 
ensure that everything is working as it should. 
You can now use the driver as a generic controller 
input device.

09 FUSED joysticks
FUSE doesn’t enable joystick support by 

default, so we’ll have to set that up. Run fuse‑sdk, 
then press F1 for the menu. Go to Options > 
Peripherals > General. Press SPACE to enable 
Kempston joystick support, then press ENTER.

Press F1, then Navigate to Options > Peripherals 
> Joysticks and make sure both Joystick 1 and 
Joystick 2 are set to Kempston. If not, press 
ENTER, press ENTER again to open the Joystick 
type options, navigate to Kempston on the list, and 
press ENTER again.

Note that some games may default to using 
Joystick 2, so you’ll want to configure both, even if 
you only have a single stick connected.

When you’re happy with your settings, open the 
Options menu and select Save.

10 Game configuration
Although many Spectrum games support 

joysticks, you’ll often have to enable support for 
these. L’Abbaye des Morts enables joystick support 
by default, but its menus provide a good example of 
what to look for.

Load the game and then press C on the keyboard 
to access the control configuration. Pressing 1 here 
enables and disables Kempston joystick support. 
In other titles, you may need to explicitly choose to 
use your joystick to control the game if you want it 
to work.

11 Get game
The Spectrum’s been a long-time homebrew 

favourite, with software continuing to come out for 
years past its original availability. There’s been a 
resurgence in popularity of the platform with the 
release of a number of successors, most recently 
the ZX Spectrum Next.

As ever, the indie-friendly itch.io digital 
distribution platform is one of the best places 

to find both free and commercial releases for 
the Spectrum, and we’ve put together a list 
at magpi.cc/zxspectrumgames.

12 Boot to black
Finally, let’s start FUSE on boot 

for that authentic Spectrum ambience. In  
/home/pi/.config/autostart create a text file called 
fuse.desktop. If the directory doesn’t exist, create 
it. Add the following lines to your new file:

[Desktop Entry]
Type=Application
Name=FUSE
Exec=/usr/bin/fuse-sdl --full-screen

You can exit FUSE at any point to return to 
Raspberry Pi OS’s familiar desktop.  

Top Tip
Get in touch

Is retro gaming 
your hobby? Drop 
KG a message 
on Twitter  
@KGOrphanides 
if you have any 
early-2000s 
physical Linux 
game releases.

	 �Figure 1 GPIO 
connection points 
for two single-
button joysticks, 
corresponding to the 
‘GPIO connections’ 
table (below). Joystick 
1 is purple, joystick 2 
is orange. Use your 
choice of ground pins 
for each controller: 
ground pins 6 and 
14 are marked in 
green here

BUTTON Joystick 1 GPIO PIN Joystick 2 GPIO PIN

UP GPIO 4 GPIO 15

DOWN GPIO 7 GPIO 17

LEFT GPIO 8 GPIO 18

RIGHT GPIO 9 GPIO 22

FIRE GPIO 10 GPIO 23

GPIO connections
GPIO connection table for two one-button joysticks. The db9_gpio_rpi driver 
uses these pins by default for single-button joysticks. You will also need a 
ground connection for each.

Figure 1

TUTORIAL 

51Retro Gaming with Raspberry Pi

www.dbooks.org

http://magpi.cc/db9gpio
http://itch.io
http://magpi.cc/zxspectrumgames
https://twitter.com/KGOrphanides
https://www.dbooks.org/


A s many readers will know, Raspberry Pi 
can be turned into a brilliant, action-
packed retro gaming arcade. Using 

operating systems like RetroPie, you can easily 
switch between emulators of many age-old home 
computers and consoles, and scores of makers 
have made use of this in various weird and 
wonderful ways.

In this instance, Stephen Williams has brought 
a broken Commodore 64 (C64) computer back to 
life. He’s stripped out the original motherboard, 
replaced it with a Raspberry Pi computer, and 
used Lego® bricks to build the internal housing. 
It reminds us of Christian Simpson’s fantastic 
Brixty Four project (magpi.cc/brixtyfour). But 
while that sought to create a new C64 case out of 
Lego, Stephen’s project retains the original, iconic 
‘breadbin’ plastic.

Be like Stephen Williams and bring an old computer 
back to life. David Crookes takes a look

Commodore 64 
Revamp

Stephen 
Williams

Stephen is an 
original 1980s retro-
computer owner 
and a jack-of-all-
trades who is happy 
to try new things. 
When not tinkering, 
he likes getting 
outdoors, exploring, 
and spending time 
with his family.

magpi.cc/
c64revamp

M
A

K
ER

“I’ve played with Raspberry Pi since the 
computer first came out, making and discovering 
new things along the way,” he tells us. “I had 
a truly broken Commodore 64 that I felt would 
benefit from a new lease of life. My project 
blends retro with a modern twist, and brings 
together some of the things I’ve liked to play 
with over the years – notably Lego, the C64, 
Raspberry Pi, and Arduino.”

Building the project
Stephen turned to Lego for a practical reason. “I 
didn’t have access to a 3D printer, and Lego has so 
many different pieces that it’s really versatile to 
experiment with,” he says. “I already had a Lego 
Raspberry Pi case, so it seemed to make sense to 
build around it. I wasn’t sure what the fit would 
be like inside the C64, so I bought a mix of pieces 
from a market stall to see what would work.”

He says it was important to build a solid base 
inside the C64 and position the USB, HDMI, and 
other ports in the right places. “I didn’t want to 
modify the computer’s case in any way and Lego 
helped me to do all of this.” The rest of the build 
was rather straightforward and involved inserting 
a Raspberry Pi computer into the case so that the 
ports were accessible, inserting a microSD card 
with RetroPie installed on it, and connecting to the 
C64 keyboard.

To do this, Stephen used an Arduino Micro. “It 
provides the mechanism to get a fully working C64 
keyboard for Raspberry Pi,” he explains. “The basic 
idea is to scan the pin readings on the Arduino 
which are connected to the row and column pins 
on the C64’s matrix keyboard. Using the Arduino 

	� Externally, the Commodore 64 Revamp 
appears identical to the original. 
Keyboard mapping software is used to 
communicate with Raspberry Pi

52

PROJECT SHOWCASE

Commodore 64 Revamp

http://magpi.cc/brixtyfour
http://magpi.cc/c64revamp
http://magpi.cc/c64revamp


 �Lego has so many different 
pieces, so it’s really versatile 
to experiment with 

Raspberry Pi sits within the 
Multicomp Pi-BLOX case which 
Stephen bought from The Pi Hut

The cables are routed to the 
original holes in the C64 case and 
they’re connected to Keystone 
inserts to provide accessible USB, 
HDMI, and network ports

Using Lego inside the 
original Commodore 64 case 
enabled Stephen to keep the 
components firmly in place

> � �No coding or 
electronic skills  
are needed

> � �The original C64 
case is not  
modified either

> � �It’s a great way to 
revive a broken C64

> � �You can even use 
USB joysticks

> � �Try applying the 
build to VIC-20 and 
C16 computers

Quick FACTS

software libraries, the row and column pins are 
scanned, and the mapped keystrokes are sent to 
the computer connected to the Arduino via USB.”

Pulling it apart
Since creating this project, Stephen has acquired a 
3D printer. As such, he’s been replacing the Lego 
using printed parts, again for practical reasons. 
“When Raspberry Pi 4 came out, I wanted to use it 
but because I needed to install a fan, I couldn’t use 
the Lego Pi case any more,” he says. “The 3D build 
means I’ve been able to get closer to the original 
Commodore 64 regarding the location of the power 
socket and switch.”

Even so, he’s not always entirely faithful to the 
C64. “Since RetroPie brings many emulators into 
one place, it’s been a bit surreal playing a Spectrum 
game with the C64 sitting in front of me, but I’ve 
become used to it. RetroPie is also easy to extend 
to include things such as homebrew programs, 
media players, and bespoke themes. It’s been fun 
to dabble with these too.” 

	� The 3D-printed build, 
for comparison. 
Different cable 
requirements are 
also needed for 
Raspberry Pi 4 
setups due to it using 
micro HDMI and 
USB-C ports

53Retro Gaming with Raspberry Pi

PROJECT SHOWCASE

www.dbooks.org

https://www.dbooks.org/


Commodore’s firmware is legally available for free 
via current licence holder Cloanto.

A fork of VICE 3.4, the most recent version of 
the emulator that runs smoothly on Raspberry Pi, 
has been created. This fork is stripped of any ROMs 
whose licensing status is unclear. It ships with a 
script to integrate Cloanto’s ROMs.

This tutorial stands alone to give you a 
copyright-compliant C64 emulator on Raspberry 
Pi 400, but can also build on last month’s Spectrum 
emulation project, using the same GPIO joystick 
controller setup.

UK copyright law puts C64 emulation enthusiasts in a difficult position. This new 
VICE emulator fork replaces system files of unknown origin with official versions

I f you’re a fan of Commodore’s classic 8-bit 
computers, you’ll have noticed that the 
VICE emulator is nowhere to be found in 

Raspberry Pi OS’s software repositories. Unlike 
some emulators, which use clearly authorised or 
reverse-engineered ROM images of the original 
computers’ firmware, the ROMs included in VICE 
are ambiguously sourced, with little explicit 
licensing information.

That’s a problem for anyone who wants to 
use VICE in the UK, as British copyright law is 
particularly stringent. Fortunately, almost all of 

Turn Raspberry Pi 400 
into a legal C64 emulator

Warning! 
Copyright

Only some C64 
games can be legally 
downloaded. See our 
Legal ROMs page for 

more information.  
magpi.cc/legalroms

Raspberry Pi 400 doesn’t 
support CRT displays, but 
VICE is well optimised 
for full-screen play on a 
standard 1920×1080 monitor

This build uses the same 
DB9 joystick connector 
and driver that we built for 
the Spectrum emulation 
project in issue 101

You’ll Need 

> � �VICE 3.4 copyright 
compliant fork 
magpi.cc/vice

> � �C64 Forever 
c64forever.com

K.G. Orphanides

K.G. makes, writes 
about, and helps to 
preserve unusual 
gaming software 
and hardware.

@KGOrphanides

M
A

K
ER

TUTORIAL 

54 Turn Raspberry Pi 400 into a legal C64 emulator

http://magpi.cc/legalroms
http://magpi.cc/vice
http://c64forever.com
https://twitter.com/KGOrphanides


01 Preparation
If you followed last month’s tutorial in its 

entirety, you’ll probably want to undo the final 
step, which opens FUSE on boot. Delete or rename 
/home/pi/.config/autostart/fuse.desktop.

Next, we’ll download Cloanto’s legal Commodore 
ROM set, C64 Forever (c64forever.com). It’s only 
available as a Windows MSI file. If you have a 
Windows PC, simply install it. 

If you have an x86-based Linux or macOS 
system, Wine 5.0 and above (winehq.org) includes 
full MSI file support, so you can similarly install 
that, run the installer from your file manager, 
locate your Wine prefix directory (~/.wine by 
default), and you’re good to go. Users of older 
versions can open a command terminal and run:

wine msiexec -i c64forever8.msi

If Raspberry Pi is your only computer, you 
can use Box86 (magpi.cc/box86) to run an x86 
version of Wine; that’s an extensive emulation 
project in its own right, but the TwisterOS image 
(magpi.cc/twisteros) comes loaded with Box86 and 
Wine to make this a little easier.

02 Locate your system ROMs
C64 Forever Express is free and includes all 

the ROMs you’ll need for most Commodore 8-bit 
systems, except the PET and the C64 Direct-to-TV 
released by Ironstone. It also lacks Creative Micro 
Designs’ SuperCPU ROM, but our fork uses an 
SCPU64-compatible ROM created by the VICE team.

After installation, you’ll find the ROMs in  
/users/Public/Documents/CBM Files/Shared/rom 
of your Windows system drive. Copy this directory 
over to Raspberry Pi.

A full C64 Forever Plus licence ($15 / £11 from 
c64forever.com) includes extra features for 
Windows and Wine users, and it’s also the obvious 
choice if you wish to support Cloanto financially.

Both versions include a collection of around 100 
games that Cloanto licensed from its developers and 
publishers, including Jack the Nipper, Stormlord, 
and Auf Wiedersehen Monty. Registered users will 
find the games on their Windows system drive at  
/users/Public/Documents/CBM Files/Games – copy 
that over, too, for later use.

03 Get ready to build VICE
We’ll be using a version of VICE 3.4 that 

includes no copyrighted firmware ROMs. It won’t 
build or work without ROMs, so we’ll replace 
these using a script that ships with this fork. In a 
Terminal, enter the following two commands:

sudo apt install autoconf automake build-
essential byacc dos2unix flex libavcodec-
dev libavformat-dev libgtk2.0-cil-dev 
libgtkglext1-dev libmp3lame-dev libmpg123-
dev libpcap-dev libpulse-dev libreadline-
dev libswscale-dev libvte-dev libxaw7-dev 
subversion texi2html texinfo yasm libgtk3.0-
cil-dev xa65 libsdl2-dev libsdl2-
image-dev

git clone https://gitlab.
com/mighty-owlbear/vice-3-4-
copyright-compliant-uk.git

Now copy the rom directory from 
C64 Forever into your unpacked 
vice-3-4-copyright-compliant-
uk directory.

Top Tip
RTFM

The VICE manual 
is a chunky but 
vital reference. 
Read it online 
at magpi.cc/
vicemanual.

	� With pin-sharp controls, Sarah Jane Avory’s award-winning 
Zeta Wing is a stunning example of the new wave of 
commercial C64 games

	� VICE’s menu is hugely 
comprehensive, but 
you’ll mostly  
interact with its 
Machine, Drive, and 
Video settings

	� Physical games are 
still published for the 
C64, like this 5.25-inch 
floppy disk release 
of Dungeoneer’s 
Akalabeth port, 
but you need extra 
hardware to use them

TUTORIAL 

55Retro Gaming with Raspberry Pi

www.dbooks.org

http://c64forever.com
http://winehq.org
http://magpi.cc/box86
http://magpi.cc/twisteros
http://c64forever.com
https://gitlab.com/mighty-owlbear/vice-3-4-copyright-compliant-uk.git
https://gitlab.com/mighty-owlbear/vice-3-4-copyright-compliant-uk.git
https://gitlab.com/mighty-owlbear/vice-3-4-copyright-compliant-uk.git
http://magpi.cc/vicemanual
http://magpi.cc/vicemanual
https://www.dbooks.org/


04 Build and install
The copyrom script supplied with this 

version of VICE looks for official ROM files in a 
directory called rom and copies and renames them 
as expected by VICE. Not all system ROMs are 
available; where this is the case, the script creates 
dummy files. If further ROMs are officially released, 
these can be replaced in an installed version by 
manually overwriting the files in usr/local/lib/vice.

cd vice-3-4-copyright-compliant-uk
./copyrom.sh
./autogen.sh
./configure --enable-sdlui2 --without-

oss --enable-ethernet --disable-catweasel 
--without-pulse --enable-x64
make -j $(nproc)
sudo make install

Note that you have to build VICE --without-pulse, 
as above, for working audio. If you’d rather install 
VICE to a user directory, you can add --prefix= 
/home/pi/viceinstall_3.4_clean and run make 
install as a standard user, instead of using sudo. 

05 Test VICE
Although VICE includes several different 

emulators, we’re primarily interested in the C64. 
Two different C64 emulators are supplied: x64sc 
is more accurate, while the older x64 emulator – 
which we specifically built using the --enable-x64 
parameter above – is less CPU intensive, making it 
the best choice for Raspberry Pi. 

In the Terminal, we’ll create a directory for 
your C64 game collection, download Kryoflux’s 
authorised C64 release of Cinemaware’s Defender of 
the Crown, and use it to test the emulator.

cd
mkdir C64 && cd C64
wget http://www.kryoflux.com/download/

DEFENDEROFTHECROWN.zip
x64

VICE should open with a blue window and an 
invitation to press F12. Do so, and marvel at the 
sheer number of configurable options available. 
Fortunately, we’ll only need a few of them. But let’s 
start by loading that game…

Press ENTER on ‘Autostart image’, browse to 
DEFENDEROFTHECROWN.zip, press ENTER, go 
down to the PRG file called "!"V-MAX! and press 
ENTER to load it.

06 Configure inputs
The GPIO joystick setup we built works 

perfectly with VICE 3.4, as will any USB joystick or 
joypad, but you’ll notice that it initially only works 
in the menus.

Press F12 to open the menu. Go to Machine 
settings > Joystick settings > 
Joystick device 2. Press ENTER 
to select it, scroll down to 
Joystick at the bottom, and 
press ENTER again.

Press left on your keyboard 
or joystick to go back up one 
level to the Joystick settings 
menu. Go down to ‘Joystick 2 
mapping’ and select it. Select 
each of Up, Down, Left, Right, 
and Fire in turn, and tap the 
joystick button you want within 
the five-second configuration 
period to assign it.

If you accidentally assign the 
wrong button to one of these, 

	� C64 Forever is a 
native Windows 
program, but both 
its free Express 
and paid-for Plus 
editions include fully 
licensed Commodore 
ROMs for use 
with emulators

	� Cinemaware’s 
Defender of the 
Crown is one of a 
couple of games 
licensed for exclusive 
distribution by 
Kryoflux as a 
demonstration of its 
imaging system’s 
handling of copy-
protected C64 disks

TUTORIAL 

56 Turn Raspberry Pi 400 into a legal C64 emulator

http://www.kryoflux.com/download/DEFENDEROFTHECROWN.zip
http://www.kryoflux.com/download/DEFENDEROFTHECROWN.zip


use the keyboard to navigate back and reset it. Press 
ESC to return to your game.

Note that most, but not all, single-player C64 
games default to using Joystick 2.

07 Tweaking VICE
VICE x64 works smoothly on Raspberry 

Pi 400, but you’ll want to delve into its settings 
menu to get the most out of it.

First, go to Video settings > Size settings and 
enable Fullscreen. To provide a bit more screen real 
estate, go to Video settings > VICII border mode 
and select None. Test your setup again with your 
favourite game or demo.

Getting rid of the border on a 1920×1080 display 
may result in some graphical overspill to the right-
hand side on some programs that use unusual 
parallax scrolling tricks, but it’s a very minor and 
generally invisible issue.

Once satisfied with your configuration, go to 
Settings management > Save current settings.

08 Homebrew haven
VICE supports vanilla PRG program files, 

D64 disk images, CRT cartridge images, and 
T64 and TAP tape images, among others. As 
usual in these tutorials, we largely recommend 
modern C64 software, which is often distributed 
digitally, as the easiest way to get top-notch free 
and commercial games for your emulated retro 
system. You can find an itch.io C64 collection 
at magpi.cc/itchc64.

Specialist publishers such as Psytronik 
(psytronik.itch.io), Double Sided Games 

(doublesidedgames.com), Protovision 
(protovision.itch.io), and BitmapSoft  
(bitmapsoft.co.uk) also continue to put out 
spectacular commercial games for the C64. 

Meanwhile, passion projects have seen authorised 
ports of games from other systems, such as 
Dungeoneer’s C64 version of Richard ‘Lord British’ 
Garriott’s Akalabeth (magpi.cc/akalabeth) and 
Double Sided’s release of L’Abbaye Des Morts 
(magpi.cc/desmorts).

09 Using C64 Forever’s RP9 files
If you wish to use the games that came with 

C64 Forever, you’ll have to rename them from the 
default RP9 extension. On Raspberry Pi OS, you can 
use the rename command-line tool for this. Drop 
the entire zip files into your C64 games directory, 
open a Terminal in the directory, and enter 
these commands:

sudo apt install rename unzip
rename -v 's/.rp9/.zip/' *.rp9

Once renamed, you’ll find that the zip files contain 
either D64 disk images or T64 tape images. 
Extracting them makes it easier to distinguish one 
format from the other.

unzip -o \*.zip
rm *xml *.txt *.png *.zip

Although many of the game files supplied are 
cracked versions, Cloanto makes it clear that 
licences to distribute the titles have been obtained 
from their original developers. Licensing details are 
provided in the Cloanto EULA. 

Top Tip
Demoscene 
conversion

Demos show off 
the C64’s sound 
and graphics 
capabilities. 
Try The Elder 
Scrollers from 
magpi.cc/
c64scrolls.

	� Published by 
Protovision, Lasse 
Öörni’s MW Ultra 
is one of many 
modern C64 games 
to get both physical 
and digital releases

TUTORIAL 

57Retro Gaming with Raspberry Pi

www.dbooks.org

http://itch.io
http://magpi.cc/itchc64
http://psytronik.itch.io
http://doublesidedgames.com
http://protovision.itch.io
http://bitmapsoft.co.uk
http://magpi.cc/akalabeth
http://magpi.cc/desmorts
http://magpi.cc/c64scrolls
http://magpi.cc/c64scrolls
https://www.dbooks.org/


E ven though the Amiga range of computers 
ceased production in 1996 following a 
successful eleven-year run, many users 

remain determined to keep its memory alive.
Not only has a new magazine recently emerged 

(Amiga Addict), but Commodore’s machine has 
resurfaced in various guises over the years. Its 
operating system, AmigaOS, continues to be 
updated, and there was even an A500 MINI released 
recently with classic games installed.

Such news excites Amiga fans. “The price of used 
Amigas has skyrocketed over the last five years and 
it’s not an easy task to preserve an old computer,” 
explains Billy Nesteroulis, aka DJ Nest. “If you 
own an old Amiga, it will eventually break: their 
electrolytic capacitors tend to leak. You’ll need 
a new power supply, and some kind of memory 
expansion is ideal.”

With a Raspberry Pi computer, however, such 
costs can be significantly lowered. As Billy has 
shown, it’s possible to build an Amiga 600 from 
scratch with a Raspberry Pi 4 as the main unit. 

“Raspberry Pi can emulate an Amiga with AmigaOS 
and you can use it to play games and software made 
for the machine,” he continues.

Stars in their eyes
Certainly, Raspberry Pi has proven to be the 
perfect platform for Amiga emulation. “Dimitris 
Panokostas has done a remarkable job creating 
the Amiberry emulator and because Raspberry 
Pi hardware is small, it can fit easily almost 
everywhere,” Billy says.

In this instance, the single-board computer has 
been fitted inside a full-size, 3D-printed replica of 
an Amiga 600 case, allowing use of its USB ports 
and wireless LAN. A specially designed keyboard 
that was originally designed as a replacement for 
ageing Amiga machines is connected and modern 
adapters will allow use of the nine-pin joysticks of 
old for added authenticity.

“The Cherry MX keyboard is illuminated and it 
was designed to fit the case that I 3D-printed,” 
Billy explains. “The joystick adapter is plug-and-
play with no drivers needed and you can also use 
Amiga CD32 joypads with their eight buttons.” 
Other parts include a micro HDMI extender, SD 
card extender, power supply unit, USB extenders, a 
power switch, and LAN extender.

Billy 
Nesteroulis 
(DJ Nest)

Billy is an Amiga 
musician and a 
member of the 
Vintage Computers 
Society of Athens. 
His team specialises 
in 3D prints and he 
loves to experiment 
with Raspberry Pi.

magpi.cc/djnest

M
A

K
ER

Billy Nesteroulis has created an Amiga computer 
for the modern user, as David Crookes explains

Raspberry Pi Amiga 600

	� With Amibian and 
Amiberry as the main 
emulator, you can 
emulate any Amiga 
model you like

	� A nine-pin joystick from an original Amiga 
computer can be used with the USB adapter 
by Retronic Design (retronicdesign.com)

58 Amiga Pi 600 

PROJECT SHOWCASE

http://magpi.cc/djnest
http://retronicdesign.com


The files for the 3D-printed case 
were created by Jens Mühlenberg 
and cost $20 to download from 
magpi.cc/projjulia

The Cherry MX keyboard is specific and 
designed to fit the case. You have a choice 
of a black or white keyboard with standard 
white lighting or RGB

Raspberry Pi has been overclocked from 1.5GHz to 
2.1GHz, with the GPU running at 700MHz (up from 
500MHz). A CPU heatsink with a fan is also used

To ensure everything runs smoothly, Billy uses 
the Amibian distro (“the most complete experience 
of the classic Amiga environment”). He also 
likes that – in exchange for a small donation – he 
can use the Amibian 1.5 Extended Edition made 
by Gunnar Kristjánsson. “The Extended Edition 

includes Raspbian Buster V10 OS with the look and 
feel of the Amiga OS 4,” Billy says. “It has a modern 
browser, the VLC media player, and the Qmmp 
audio player. You can even use LibreOffice Writer.”

A modern touch 
Amibian also allows users to update software and 
Amiga emulators through its configuration tool. 
All of which has meant Billy’s set up expands the 
potential of the machine, beyond matching the real 
A600. “It’s allowed me to bond classic computing 
with modern computing,” he says.

 �Raspberry Pi can emulate 
an Amiga with AmigaOS 
and you can use it to play 
games and software 

> � �The project costs 
around $250 in total

> � �It can emulate 
Amiga 500s to 
Amiga 4000s

> � �But the case is 
modelled on an 
Amiga 600

> � �You can plug it into 
a modern monitor

> � �Amiga novices 
could use the 
PiMIGA emulator

Quick FACTS

Indeed, Raspberry Pi 600 gives the same feeling 
and experience of the A600, but with the modern 
touch of the Raspberry Pi hardware. “It has the 
required juice to run specific software such the 
classic pixel-art package Deluxe Paint, games play 
without issues, and you can build your own system 
and adapt it to your needs,” Billy says. “For many 
people, it’s the best Amiga solution in 2021.” 

	� Raspberry Pi Amiga 600 is the 
same size as the original A600

59Retro Gaming with Raspberry Pi

PROJECT SHOWCASE

www.dbooks.org

http://magpi.cc/projjulia
https://www.dbooks.org/


TUTORIAL

Turn Raspberry Pi into an Amiga60

Recapture the glory days of 16-bit computing by turning 
your Raspberry Pi into a faithful Amiga emulator

T he Commodore Amiga’s top-notch sound 
and graphics made it one of the most 
desirable home computers of the 1980s and 

early 1990s, at a time when your average IBM 
PC was still plodding along with EGA graphics 
and an internal beeper. Amiga games from the 
era have aged incredibly well, and look and play 
brilliantly on everything from a portable display 
to a widescreen TV. We’ll take you through 
turning your Raspberry Pi into a perfect modern-
day Amiga emulator. You’ll need a Windows, 
macOS, or Linux desktop operating system to copy 
the Amibian Linux distribution to your SD card 
and unpack the Kickstart ROMs required to make 
it work smoothly.

Start by downloading the Amibian distro. 
Format a microSD card, decompress the Amibian 
RAR file, and use Win32DiskImager or Linux’s dd 
command to copy the IMG file to the card. A 4GB 
card should be plenty, as Amibian only occupies 
around 300MB. Slot the microSD card into your 
Raspberry Pi and power up. It’ll boot directly into 
the UAE4ARM emulator, but there’s some extra 
configuration to do before we start playing. Quit 
UAE4ARM to get to the command line and run:

raspi-config

Select Expand Filesystem, which will give you 
access to the entirety of the SD card’s capacity for 
storage, then Exit and select Yes to reboot.

If your Raspberry Pi won’t output sound via 
HDMI properly, enter this at the command line:

nano /boot/config.txt

Make sure the following lines are present and 
aren’t commented out with a preceding hash (#):

hdmi_drive=1
hdmi_force_hotplug=1
hdmi_force_edid_audio=1

Save and return to raspi-config:

raspi-config

Select Advanced Options > Audio > Force HDMI 
and then reboot.

Kickstart me up
To run Amiga programs, you’ll need a Kickstart 
ROM – firmware from the original computers. 
UAE4ARM comes with the open-source AROS ROM, 
which can run only some Amiga programs, so we 

Turn Raspberry Pi  
into an Amiga

You’ll Need 

> � �microSD card

> � USB stick

> � Wired Xbox 	
 360 controller 

> � �Amiga Kickstart 
ROMs 
amigaforever.com

> � �Amibian 
bit.ly/Amibian

You can load and 
create emulated 
hardware 
configurations for 
specific Amiga 
computers

Game controllers, 
mouse, and 
keyboard 
configurations can 
be selected and 
tweaked in Input

Once you’ve set 
up your emulated 
hardware and 
firmware config, just 
mount a floppy disk 
image and click Start

http://amigaforever.com
http://bit.ly/Amibian


TUTORIAL

61Retro Gaming with Raspberry Pi

recommend using genuine Amiga Kickstarts for 
reliability. The Kickstart ROMs and Workbench 
GUI are still being maintained, thanks to Italian 
firm Cloanto. Amiga Forever Plus Edition, priced at 
€29.95, gets you a complete, legal set of Kickstarts 
for every Amiga computer and console. As there’s 
no Raspberry Pi edition, yet, you’ll currently have 
to install Amiga Forever on a Windows PC or Wine 
and copy the files onto a USB stick.

There are other ways of obtaining Kickstart 
ROMs, but most are legal grey areas. You can 
extract them from an Amiga using a tool such as 
TransRom or find them on abandonware sites, 
but we strongly recommend supporting Cloanto’s 
continued development of Amiga Forever.

Classic Amiga software is even easier to find. 
You’ll get 50 games with Amiga Forever Plus, 
while some major publishers have made the 
Amiga versions of their games available for free.

One true path
As Amibian doesn’t include a window manager, 
it’s easiest to download and copy everything to a 
USB stick using your operating system of choice. 
Helpfully, UAE4ARM can read Amiga ADF floppy 
images even if they’re in a ZIP file.

We advise copying everything to your microSD 
card. Start Raspberry Pi, exit UAE4ARM, and run:

mc

Copy your game files from /media/usb to  
/root/amiga/floppys, and your Kickstart ROMs, 
including a Cloanto rom.key file if you have 
one, to /root/amiga/kickstarts. Quit Midnight 
Commander and reboot: 

reboot

In the latest version 1.313 of Amibian, two 
different versions of UAE4ARM are supplied. 

If you plan on using two Xbox 360 controllers, 
button mapping on controller two works best 
using the ‘old’ version, although the ‘new’ edition 
generally provides more options. To switch 
between the two, at the command line type either 
rpiold or rpinew. The following configuration 
instructions work with both versions.

Configure UAE4ARM
First, go to the Paths tab and click Rescan ROMs 
so UAE4ARM knows where to find everything. 
The Configurations tab lets you select from several 
preset hardware emulations, with the default 
being an A1200 – just select and Load your chosen 
computer. You can tweak your virtual hardware in 
the CPU and FPU, Chipset, and RAM tabs. 

Your configuration selection doesn’t always set 
the relevant Kickstart ROM for you, so check the 
ROM tab, where you can choose Kickstarts from a 
pull-down menu. Note that many games require 
a specific ROM or hardware configuration to work 
properly, depending on which system they were 
originally released for.

To run most software, you’ll need the Floppy 
drives tab. Just press the … icon next to drive 
DF0’s Eject button, select the desired disk image, 
and click Start. By default only drive DF0 is active, 
and most titles expect this configuration. To swap 
disks when prompted, press F12, eject the disk 
image in DF0, select the disk image you’re asked 
for, and click Resume.

F12 will always pause and return you to 
UAE4ARM’s main interface, so you can create a 
save state – a stored image of your progress in a 
game – or give up and load something new. The 
Reset, Quit, and Start/Resume buttons are always 
visible in UAE4ARM’s GUI. Reset completely 
reboots your emulation and Resume returns you 
to your current game.

UAE4ARM automatically detects Xbox 
controllers. You can use two controllers 
for multiplayer gaming - if the second is 
unresponsive, you may need to press F11 to disable 
your mouse and switch control to the pad. If you’re 
running the ‘new’ version of the emulator, first 
select your controllers from the pull-down Port0 
and Port1 menus in the Input settings.

Now you’ve got your Amiga emulator up and 
running, there’s plenty of scope to build on the 
project, from setting up virtual hard disks to 
install Workbench and other software onto, to 
creating floppy images from your own original 
Amiga disks and using Raspberry Pi’s GPIO to 
connect a classic 1980s joystick. 

Top Tip
Publisher-
approved  
game 
downloads

Amigaland
amigaland.de

Ami Sector One
magpi.cc/2dDLElL

Gremlin Graphics 
World
magpi.cc/2dDKZ3S

www.dbooks.org

http://amigaland.de
http://magpi.cc/2dDLElL
http://magpi.cc/2dDKZ3S
https://www.dbooks.org/


A fondness for school lunches might be 
unusual, but we’re sure Rich Jones isn’t 
the only person nostalgic for a much-

loved lunchbox. The engineer, from north Wales, 
found himself idly searching for lunchboxes 
emblazoned with his favourite game, Pac-Man, 
but baulked at the hefty price tags on eBay 
and Amazon. 

He eventually chose one celebrating a different 
game, kicking off his Raspberry Pi-based Lunchbox 
Arcade Game project. 

“I used to have a cool metal Pac-Man lunch box 
for school but trying to get a Pac-Man one is nearly 
impossible, and ones that do come up go for silly 
money on eBay,” he explains. At more than £60 a 
tin, he couldn’t bring himself to drill holes in an 
original 1980s version. Instead, Rich decided to 
modify a Gauntlet one.

Most of the parts, for what became a 
roughly £250 build, were sourced from Arcade 
World (magpi.cc/arcadeworld).

Lunch bunch
Rich had already built three Windows-based arcade 
machines having moved on from assembling his 
own PCs, plus one using Raspberry Pi. For his 
Lunchbox Arcades, Raspberry Pi was a shoo-in. 

“So much power in such a small form factor 
makes Raspberry Pi a great choice for mini arcade 
machines,” says Rich. “With all my machines the 
sound quality is important, so I’ve fitted the largest 
speakers the lunchbox could realistically support.” 
He strengthened the tin all round using plywood in 
the base and fitted new rivets into the metal sides. 

Next came the lid. He removed the original 
hinge, realising it wasn’t strong enough to support 

A gaming fan dumped his sandwiches to become a legend 
in his own lunch hour. Rosie Hattersley finds out how

Lunchbox 
Arcade Game

Rich Jones

Engineer Rich lives 
in north Wales and 
has built several 
PCs over the years. 
He recently began 
focusing on building 
arcade machines, 
hence his YouTube 
tag ‘Arcade Dad’. 

magpi.cc/
arcadedad

M
A

K
ER

	� Enjoy some lunchtime classic 
arcade action with this 
compact gaming system

62 Lunchbox Arcade Game

PROJECT SHOWCASE

http://magpi.cc/arcadeworld
http://magpi.cc/arcadedad
http://magpi.cc/arcadedad


The Sanwa joystick has a detachable 
shaft that can be packed away inside 
the lunchbox arcade

Inspired by his love of classics, Rich 
Jones came up with a retro arcade that 
fits inside a games-themed lunch tin

> � �The project took 
around a week 	
to build

> � �For v2, Rich will be 
fitting a Raspberry 
Pi 4

> � �…as well as adding 
battery power and 
charge circuits 

> � �He’s also on 
the lookout for 
a widescreen 
lunchbox 

> � �...for a 16:9 RetroPie 
console, of course

Quick FACTS

A heatsink needed to be repositioned, 
which Rich cleverly disguised using a 
3D-printed fan grille

63

PROJECT SHOWCASE

Retro Gaming with Raspberry Pi

Alert! 
Voltage Reducer
This project uses mains 
electricity with a voltage 
reducer. Be careful when 
working with electricity.

magpi.cc/
electricalsafety

www.dbooks.org

http://magpi.cc/electricalsafety
http://magpi.cc/electricalsafety
https://www.dbooks.org/


the LCD screen. “I was able to gain some height 
with new hinges. This allows the screen to fold 
inside the casing, giving a seamless look when 
shut,” Rich says. “The joystick is removable to 
allow the lid to close. It’s a modified Sanwa joystick 
shaft with a quick release system. The sprung 
release shaft comes off easily and can be stored in 
the back of the machine. The original latch holds 
the lid shut.”

It wasn’t all straightforward, though: “Airflow 
was also important, so a 60 mm fan forces air 
inside over Raspberry Pi and out of two slots cut in 
the control panel.” With hindsight, says Rich, this 
could have gone on the rear rather than where the 
handle is. A Gauntlet fan grille he created on a 3D 
printer now covers it up a bit.

Power play 
“The Lunchbox Arcade runs off a 12 V, 6 A power 
supply. A buck voltage reducer takes this down 
to 5 V for Raspberry Pi and the screen. “The buck 
voltage PCB will also look after a rechargeable 
battery, so I’m trying to source a 12 V battery that 
will fit in the case and also provide a good few 
hours playtime,” says Rich.

	� The sound quality was really important, so Rich bought a tin he 
liked but that wasn’t so expensive that he had qualms about 
cutting it up to accommodate large speakers

	� Rich has embarked on a mini 
arcade collection having 
previously custom-made 
a cabinet for another of 
his self-built Raspberry Pi 
games machine

	� A modified Sanwa joystick 
shaft with a quick-release 
system for easy removal

64

PROJECT SHOWCASE

Lunchbox Arcade Game



 �So much power in such a small form factor 
makes Raspberry Pi a great choice for mini 
arcade machines 

Although the project has the potential to be self-
powered, he didn’t want to compromise on the 
speakers. “The speakers and amp were the whole 
reason behind the 12 volt power supply. I didn’t 
want some tiny speakers and a 5 V amp.” Despite 
having to reposition the heatsink to accommodate 
the amp, the audio setup proved worth the extra 
hassle. “The speakers sound really good as they 
resonate through the tin and have good bass, 
which surprised me,” says Rich. 

He thinks others might enjoy making something 
similar. Raspberry Pi is perfect for this size of 
machine. It has plenty of power, great visuals, 
and no slow-down in the games,” he enthuses. If 
you’re embarking on your own arcade project he 
advises, “Always think about maintenance and 
how you’re going to access all the components in 
the future. The controls need to be easy to remove, 
so making up some sort of quick wiring connect 
that you can just unplug will save a lot of hassle in 
the future.” 

Box clever

Connect Raspberry Pi to the LCD screen 
using an HDMI cable, then plug in an amp to 

the 3.5 mm audio jack. 

01

03 The control block enables the arcade to safely 
shut down via the power button on the front. 

Attach it to Raspberry Pi using the GPIO pins.

02 Use a USB keyboard converter as a control 
block to convert arcade buttons to keystrokes. 

Rich suggests sourcing these from petrockblock.com. 

	� RetroPie and RetroArch 
games provide plenty of 
retro gaming options

Source a metal lunch box that’s large enough to 
accommodate Raspberry Pi, speakers, and amp. You’ll 
also need a joystick, ideally with a removable shaft so 
it can pack away inside your mini arcade box. 

65

PROJECT SHOWCASE

Retro Gaming with Raspberry Pi

www.dbooks.org

http://petrockblock.com
https://www.dbooks.org/


Make your own games66

PROGRAM RETRO-STYLE 
GAMES WITH PYGAME ZERO

69 	� MAKE GAMES WITH RASPBERRY PI 
All the ways to build your own game

78 	� GET STARTED WITH PYGAME ZERO 
Start writing computer games on Raspberry Pi

84 	� SIMPLE BRIAN 
Recreate a classic electronic game

90 	� PIVADERS – PART 1 
Start making a single-screen shoot-’em-up

98 	� PIVADERS – PART 2 
Add sound effects, high scores, levels, and more

106 	�HUNGRY PI-MAN – PART 1 
Code your own classic maze game

114 	� HUNGRY PI-MAN – PART 2 
Add better enemy AI, power-ups, levels, and sound

124 	�LEARN GAME DEVELOPMENT 
Resources for making games, from lessons to free assets

MAKE YOUR 
OWN GAMES

 �Pygame Zero is a great choice 
for anyone who wants to start 
writing computer games 



67Retro Gaming with Raspberry Pi

www.dbooks.org

https://www.dbooks.org/


Available now: magpi.cc/store

This stunning 224-page hardback book not only tells 

the stories of some of the seminal video games of the 

1970s and 1980s, but shows you how to create your 

own games inspired by them using Python and Pygame 

Zero, following examples programmed by Raspberry Pi 

founder Eben Upton.

  Get game design tips and 
tricks from the masters

  Explore the code listings and 
find out how they work

  Download and play game 
examples by Eben Upton

  Learn how to code your own 
games with Pygame Zero

http://magpi.cc/store


 

Did you know that Raspberry Pi is a game-creation machine? There are many 
ways to write games and Mark Vanstone will show you a few to get you started

Mark Vanstone

Educational games 
author from the 
1990s, author of the 
ArcVenture series, 
disappeared into the 
corporate software 
wasteland. Rescued 
by Raspberry Pi!

magpi.cc/
technovisual

M
A

K
ER

MAKE GAMES WITHMAKE GAMES WITH

RASPBERRY PIRASPBERRY PI
T he UK computer games industry has grown 

and grown since its origin in the eighties; 
grown so much that it’s on a par with the 

UK film industry. This trend is true in many other 
areas of the world. If you are learning how to write 
games, then Raspberry Pi is a great way to get your 
teeth into the subject. There are many ways to write 
games and get started quickly.

If you are just starting out and not ready for text-
based coding, don’t worry. There are block-based 
systems like Scratch where you can lay out your 
game graphics on the screen. You can code games 
using blocks that you drag and drop into place to 
create your program. Once you have mastered that, 
you may want to move on to text-based coding like 
Python and Pygame. If you aim to start a career in 
the games industry, you will find that these days 
game designers use both methods: visual block 
editing and text-based programming. One of the 
most popular game engines, Unreal Engine uses a 
block editor called Blueprint that is underpinned by 
libraries of C++ code.

Game programming is a great way to learn a 
wide range of techniques that are useful for other 
areas of programming. You don’t need to start 
with advanced scripting but can easily get quick 
results with the tools in this article. Let’s make 
some games!

FEATURE

69Retro Gaming with Raspberry Pi

www.dbooks.org

http://magpi.cc/technovisual
http://magpi.cc/technovisual
https://www.dbooks.org/


MAKE GAMES WITH MAKE GAMES WITH SCRATCHSCRATCH
Scratch is an ideal place to start making games, with a great online community 
of creators who share their games so that you can see how they were made

The Script Area. Blocks are 
dragged to the area in the middle 
to create scripts (programs) that 
control the sprites

The Stage Area. 
You can see 
the effects your 
program has in 
the stage area 
while you are 
programming

The Sprite Info Pane. 
Sprites are the characters 
and objects in your game. 
Manage them in this area

The Block Palette. Scratch 
programming is done by 
dragging and dropping blocks 
that join up to each other

S cratch is a block-based visual editing 
programming language. Instead of writing 
commands in text, you click and drag 

objects (known as ‘sprites’) and control them 
with block commands. It’s designed to make 
object-oriented programming easy to understand, 
and is a great way to get to grips with coding 
concepts. Due to its visual nature, it’s ideal for 
creating basic games and interactive stories. 

There are several versions of Scratch that 
are compatible with all versions of Raspberry 
Pi although the latest version, Scratch 3 is 
recommended for Raspberry Pi 3 and Raspberry Pi 4. 
 

01 Get Raspberry Pi ready
It’s always a good idea to keep your system 

files up-to-date. You can either download a fresh 

install of Raspberry Pi OS to your system card 
using the instructions at magpi.cc/imager or 
from your Terminal window use the commands 
sudo apt update and then sudo apt upgrade. It is 
wise to always go through this procedure before 
installing anything new on your Raspberry Pi to 
make sure you have the latest version of all the 
system files. Of course, for any installs or updates, 
you will need a connection to the internet. 

02 Install Scratch
There are three versions of Scratch and an 

online editor. You can install Scratch 3 by clicking 
on Menu > Preferences > Recommended Software. 
In the Programming section, you will see Scratch 3. 
Place a tick in the Install checkbox to the right and 
click Apply. 

Using sounds

If you want to use 
sound in your 
project, you can 
go to the Sounds 
tab. You will find a 
cat meow sound 
to start you off.

Top Tip

sudo apt update

FEATURE

70 Make games with Raspberry Pi

http://magpi.cc/imager


03 Your first Scratch
If you have not used Scratch before, you 

probably want to jump straight in and make 
something happen. With Scratch, you can do just 
that. You’ll find Scratch in Menu > Programming > 
Scratch 3. You will see a cartoon cat on the right-
hand side and a set of blue boxes on the left. Drag 
the turn 15 degrees block into the Script area 
in the middle (this is where you assemble your 
program). Click the turn 15 degrees block and the 
cat will rotate.

04 The green flag
Our rotation block is good, but what if you 

want something more? We can build a program of 
blocks by joining them together. Click Control in 
the sidebar and then drag and drop the repeat 10 
block into the Script area. Then move your turn 15 
degrees block so that it’s inside the repeat block. 
Then click Events in the Blocks palette and drag 
the when (green flag) clicked block to sit on top of 
the repeat block. Now if you click the green flag at 
the top of the window, the program will run.

05 Customising your sprites
In Scratch, a sprite is a graphic on the 

screen that you are controlling. You can change 

RASPBERRY PI 
SCRATCH PROJECTS
Go to the projects section of Raspberry Pi’s website, 
magpi.cc/projects. In the ‘Find a Project’ section, 
select Games from the Topic drop-down, and 
Scratch from the Software drop-down. You will be 
shown a selection of game projects for Scratch. 
Each of these projects is laid out as a step-by-
step tutorial to help you build the game. There are 
lots of different game projects available, so you 
shouldn’t run out!

Or you can try PICO-8
PICO-8 is a fantasy console for making, sharing, and 
playing tiny games and other computer programs. It 
feels like a regular console and runs on a variety of 
platforms. It has a suite of cartridge creation tools 
and an online cartridge browser called SPLORE. The 
programs are distributed in the form of a PNG file 
and each program has a memory limit of 32kB, so 
it is like programming a retro-style, 8-bit computer. 
The PICO-8 development system costs £11 / $15 
and can be downloaded from magpi.cc/pico8.

Loading 
and saving

You can load/save 
Scratch projects to 
your Raspberry Pi. 
The online version 
can save projects 
to the Scratch 
server if you log in.

what it looks like by loading in your graphics or 
editing the image. Select the Costumes tab at 
the top of the screen. From there you can use the 
painting tools to make a new image or alter the 
one that is already there. Try drawing some lines or 
filling in some shapes to see how it works. You can 
also write text. If you select items with the arrow 
tool, you can also change their colour.

06 Exploring the Scratch community
You will probably want to find out lots more 

about how to use Scratch, and there are lots of 
tutorials if you select the Tutorials section in the 
top menu bar of the desktop or online version. You 
can also get lots more help from the main Scratch 
web page at scratch.mit.edu/ideas. If you look at 
the Explore section on the website, you will be able 
to find lots of projects that other people have made 
and if you find one you like, you can see how they 
did it by selecting the ‘See inside’ button at the 
top-right corner.  

Top Tip

	� The costume editor allows 
you to edit and design 
graphics for your games

FEATURE

71Retro Gaming with Raspberry Pi

www.dbooks.org

http://magpi.cc/projects
http://magpi.cc/pico8
http://scratch.mit.edu/ideas
https://www.dbooks.org/


CODE PYTHON GAMES WITH CODE PYTHON GAMES WITH PYGAMEPYGAME
Raspberry Pi can be used to make some super games and Pygame gives you a great head start

Type your Python code into the 
Thonny editor. Pygame Zero 
uses the two default functions 
draw() to display screen 
elements and update() to 
update variables and data

To run your Pygame or 
Pygame Zero programs just 
press the green Run button

O ne of the best ways to get started with text-
based programming on your Raspberry Pi 
is to jump straight into Pygame or Pygame 

Zero. These are both available with the Python 
programming language and all three are already 
installed by default with Raspberry Pi OS. If you are 
not familiar with Python, you can get it running 
from the Programming menu by selecting the 
Thonny Python IDE. This will open up an editor to 
use Python 3. Python is easy -to learn and read, and 
this article will show you how to use it with Pygame 
and Pygame Zero. 
 

01 First Pygame Zero
Pygame Zero was designed to require as 

little code as possible to get a game running. If you 
launch the Thonny Editor (IDE) and type import 
pgzrun to load the Pygame Zero module and then 
after that, write pgzrun.go() to start the game, you 
can then save the file and run it (with the green 
play button). If you have typed the code correctly, 
you will see a black window appear titled ‘Pygame 
Zero Game’. You have written your first Pygame 
Zero game! It’s not a great game yet but that’s all 
you need to get the game engine running.

02 More than zero
Let’s get a graphic moving on the screen. 

You will need to find a suitable image to use, 
perhaps a spaceship or little green man. Have 
a look at the ‘Graphics Resources’ section near 
the end of this feature about where to find 
graphics. A PNG is best; you can find our rocket 
at magpi.cc/rocketart. Now make a subdirectory 
in the same place as you saved your Python file 
and call it images and put your graphic file inside 
that directory. Now load that graphic into an 
Actor object in your code. Name your graphic file 
rocket.png (you must keep to lower-case letters) 
and load it by typing myrocket = Actor('rocket', 
center=(400, 500)).

03 Seeing the rocket
Now to get our rocket to display on the 

screen, we need to add some code to draw it. We do 
this with a draw() function, so type def draw(): and 
press RETURN, then type myrocket.draw(). Then, to 
make the rocket move up the screen, we need to add 
an update() function by typing def update(): and 
underneath type myrocket.y -=1. If we save and run 
this program, we should see the rocket moving up 

Mix and Match

Even if you start 
your program with 
Pygame Zero, if you 
need a function 
from Pygame you 
can include parts 
of the Pygame 
module too!

Top Tip

FEATURE

72 Make games with Raspberry Pi

http://magpi.cc/rocketart


Raspberry Pi can be used to make some super games and Pygame gives you a great head start

the screen. If you don’t, check the rocket.py code 
to see what you have done differently. It may have 
some drawing left behind, so add screen.clear() at 
the beginning of the draw() function. If all is well, 
you have the start of your Pygame Zero game.

WHERE TO 
GET IDEAS
Did you know that 
The MagPi’s sister 
magazine, Wireframe, 
features a section 
called Source Code 
every month with 
Pygame Zero game 
examples? wfmag.cc

04 Moving on to Pygame 
Pygame Zero makes it very quick and easy to 

get games working on your Raspberry Pi, but if you 
want more flexibility you may find that Pygame is 
what you require. You will need to write a bit more 
code, but you will be able to access some functions 
like using game controllers. To start a Pygame 
program, you will need to import the pygame module 
using import pygame and then after that, make a call 
to pygame.init(). This starts the game engine off, 
but we won’t see anything happen if we run it.

05 Making a screen
We make a screen for our game by calling 

a function called pygame.display.set_mode() and 
give it the width and height that we want the 
screen to be. Once that is set up, we will need to 
start a loop (in this case a while loop) to check 
that the program is still running – and in the loop 
we blank the screen, draw our graphics on an 
invisible buffered screen, and then flip the screen 
from the buffer to the visible screen. All this 
keeps happening until the user exits the program 
by using the window close icon. Have a look at 
pgtest.py to see how all this is done with Pygame. 

import pgzrun

myrocket = Actor('rocket', center=(400, 500))

def draw():
    screen.clear()
    myrocket.draw()

def update():
    myrocket.y -= 1

pgzrun.go() 

06 Taking it further 
Both of these examples are very simple, just 

to get you started, but there are lots of amazing 
games that can be made with Pygame and Pygame 
Zero. Over the years, The MagPi magazine has 
featured many tutorials about making games in 
Python and has even produced three books dedicated 
to teaching Python Games by example: Retro Gaming 
with Raspberry Pi (magpi.cc/retrogaming) and 
Code the Classics – Volume 1 (magpi.cc/ctc1) which 
have many Pygame Zero example games, and the 
other is called Essentials - Make Games with Python 
(magpi.cc/essentialgames) which takes you through 
game creation with Pygame.  

Watch your 
naming

When you save 
your code, don’t 
call it ‘pygame’ 
or Python will 
think that you are 
referring to the 
pygame module.

Top Tip

	� Lots of Pygame game 
developers share their 
creations online like this 
game called Dynamite

import pygame
pygame.init()

screen = pygame.display.set_mode([400, 400])
running = True

while running:
    # Get events from the user
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            running = False
    # Fill the screen
    screen.fill((0, 0, 0))
    # Draw a red circle at 200,200 with 

radius of 50 
    pygame.draw.circle(screen, (255, 0, 0), 

(200, 200), 50)
    # Switch from buffered screen to visible
    pygame.display.flip()

# Quit the program
pygame.quit()

Language: Python

Language: Python

ROCKET.PY

PGTEST.PY

FEATURE

73Retro Gaming with Raspberry Pi

www.dbooks.org

http://wfmag.cc
http://magpi.cc/retrogaming
http://magpi.cc/ctc1
http://magpi.cc/essentialgames
https://www.dbooks.org/


MAKE GREAT GAMES WITH MAKE GREAT GAMES WITH APPGAMEKITAPPGAMEKIT
With AppGameKit you can develop professional-looking games, not just for Raspberry Pi 
but also for desktop and even mobile devices

AppGameKit includes 
a full code editor to 
develop and run games

AppGameKit code is a form 
of BASIC, so very easy for 
beginners to understand

A ppGameKit provides a cross-platform 
development system that was originally 
for PC desktops, but recently it has become 

available to download free for Raspberry Pi. You 
can use the same system on other platforms too, 
and develop on one system to run on a different 
one. You can even publish your games and earn 
money without paying any royalties. The engine 
has many tools to help you build your game, like 2D 
sprites, 3D, physics, sound, and even virtual reality. 
This guide will get you started with AppGameKit so 
that you can explore all the features.

Compatibility alert
Until recently, AppGameKit was compatible 
with all Raspberry Pi computers, but at the 
time of writing, it is difficult to get running on 
Raspberry Pi 4. Some system updates are needed 
for other Raspberry Pi computers, even with the 
latest version of Raspberry Pi OS. Make sure you 
have backed up any data from your Raspberry Pi 
microSD card before you start. 

 

01 Get the download
First, we need to get the AppGameKit files. 

You’ll need to go to the website appgamekit.com 
and sign up for an account. When that’s done, go 
to the ‘AppGameKit For Raspberry Pi’ section in 
the ‘Classic’ menu item and download the editor 
files (they are free). Double-click the gzip file to 
open it and extract the files to somewhere suitable 
like your home directory. When it’s unpacked, 
you will see a directory called AGKPi. Inside that, 
you will find the AGK launcher. Double-click to 
open the editor. If you want to see an error log 
when it’s running, select ‘Execute in Terminal’ 
when prompted.

02 Doing the update 
If you try to run any of the samples 

provided with AGK, you may find that you get 
some errors. This may only be an issue at the time 
of writing as there are regular updates available. 

Top Tip
GPIO pins

If you are feeling 
adventurous, you 
could try out the 
AGK features that 
allow you to read 
and write to and 
from the GPIO pins.

FEATURE

74 Make games with Raspberry Pi

http://appgamekit.com


MAKE GREAT GAMES WITH MAKE GREAT GAMES WITH APPGAMEKITAPPGAMEKIT

GRAPHICS RESOURCES
There are many graphics resources that are free to download. You can get 
images, animations and programs. Here are a few places to visit:

opengameart.org has a wide range of artwork for backgrounds and character 
images to include in your games free of charge.

●spriters-resource.com specialises in sprites, which are the characters to include 
in games. They are often available in sprite sheets which have all the frames in 
one image file.

●free3d.com has many free (and paid-for) 3D models for you to download and 
use. There are models for just about any situation, some of them specifically 
designed for games.

gimp.org is a great image manipulation program and should be all you need for 
creating 2D graphics for your games. It can be installed using sudo apt install 
gimp in a Terminal window. 

blender.org is best for creating a game with 3D graphics. Install Blender free 
from your Terminal with sudo apt install blender. Discover a range of 
Blender projects on Raspberry Pi’s website (magpi.cc/blenderprojects).

Raspberry Pi 4

Feeling brave and 
want to run AGK 
on a Raspberry 
Pi 4? Check out 
the forum post at: 
magpi.cc/agkpi4 
for instructions.

a listing of the base code you need to start your 
game. Run it and you will see a black window open 
with the title ‘test’.

06 The sky’s the limit
Have a look through the samples to see the 

range of what AGK can do. You will find a huge 
range of tutorials at magpi.cc/agkyt and there is 
a full user guide at magpi.cc/agkguide. There is 
also an active and helpful community forum at 
magpi.cc/agkforum where you will find more hints 
and tips to help you on your way. If you are having a 
problem with something, you’ll find someone who 
has solved it and will tell you how. Don’t be afraid to 
get stuck in and just start coding: the compiler will 
give you feedback on anything you get wrong. 

Top Tip

From a Terminal window, enter sudo apt update,  
followed by sudo apt upgrade, just to make sure 
we have everything up to date. Then, if you are 
getting errors about libgles2 (graphics library), 
type sudo apt install libgles2-mesa libsdl2-
dev, which will install the necessary libraries. 
Then enter sudo rpi-update – this is a firmware 
update, so a bit more extreme than the usual 
updates, and the reason why you should make a 
backup of your memory card before issuing this 
command. Now reboot your Raspberry Pi. 

03 Load a sample
A good sample to start with, to make 

sure everything is working, is the Space Shooter 
game. Select the Open icon on the toolbar of the 
editor and then navigate to the SpaceShooter 
directory, which is found in the Games folder 
inside Projects. Open the .agk file and you will 
see several files open in the editor. AGK uses a 
language very much like BASIC, so if you have 
used BASIC before you should be right at home. If 
you haven’t learnt BASIC, then it’s quite easy as it 
was designed for beginners. 
 

04 Run the game
If everything has gone well with the install 

and updates, when you press the green Run arrow 
you should see a window open up titled AGK and a 
Start Game screen with spaceships floating about. If 
you don’t see that, then check the Terminal window 
that launched the editor to see if there are any 
errors. You may see some warnings there anyway 
as some of the shader modes are not supported on 
Raspberry Pi, but the game should work fine. Start 
the game by clicking the screen and move the player 
ship up and down with cursor keys.

05 Make your program
Now you have the editor building a game, 

why not start your own? Start a new project by 
clicking the New icon on the toolbar. You will be 
asked for a name for the new project and a base 
path. Select the folder icon to the right of the 
base path input box, and navigate to somewhere 
suitable inside your home directory. Select Create 
and you will see a new file called main.agc open 
in the editor. In that file, there will already be 

	� With the AppGameKit 
samples, you can quickly 
see how to build many 
types of games

You’ll Need 
 � �AppGameKit: 
appgamekit.com

 � �Raspberry Pi SDK: 
appgamekit.com/
agk-pi 

FEATURE

75Retro Gaming with Raspberry Pi

www.dbooks.org

http://opengameart.org
http://spriters-resource.com
http://free3d.com
http://gimp.org
http://blender.org
http://magpi.cc/blenderprojects
http://magpi.cc/agkpi4
http://magpi.cc/agkyt
http://magpi.cc/agkguide
http://magpi.cc/agkforum
http://appgamekit.com
http://appgamekit.com/agk-pi
http://appgamekit.com/agk-pi
https://www.dbooks.org/


MAKE ADVENTURE GAMES WITH MAKE ADVENTURE GAMES WITH REN’PYREN’PY
This game engine is for storytelling. Use Raspberry Pi to combine words, 
images, and sounds to create interactive visual novels and life simulation games

From the Ren’Py Launcher 
you can access all the parts 
of your project, edit scripts, 
and build your game

Open your project 
and see how it will 
look when it runs

R en’Py is open-source and free to download 
and use. You can even share your creations 
without paying a penny in royalties or 

licences. Ren’Py includes a simple scripting 
language to control the flow of your story and add 
interactivity to the pages. The engine also includes a 
wide selection of animation and transition effects to 
bring your games and graphic novels to life without 
needing to learn complicated animation software 
and supports the most common graphics and sound 
formats like JPG, PNG, MP3, and a whole lot more.

01 Get the files
First, download the install files from the 

Ren’Py website at renpy.org/latest.html. You will 
need the .bz2 version for Raspberry Pi. When it 
has downloaded, double-click to open the archive 

and extract it to a suitable place such as your 
home directory. You will also need to download 
and extract Raspberry Pi support files from the 
Additional Downloads section. Once this is all in 
place, you will find a file in the directory you have 
extracted called renpy.sh. Double-click this file 
and select ‘Execute’. After a few seconds, you will 
see the Ren’Py Launcher open. 

02 Tutorial time 
Ren’Py includes a getting started tutorial, 

which is probably the best place to begin. By 
selecting the Tutorial project from the launcher, 
you will be introduced to Ren’Py’s features by 
Eileen. She will show you how to start a new 
project and the ways to set colours and screen 
sizes. There are also sections in the tutorial to 

Top Tip
Embed Python

Ren’Py scripting 
is quite similar to 
Python, but if you 
need to embed a 
Python program 
inside your Ren’Py 
game, you can do 
that too.

FEATURE

76 Make games with Raspberry Pi

http://renpy.org/latest.html


cover adding your images, text, and sound to your 
pages. It then goes on to creating interactions and 
transitions to make your game engaging for your 
audience. Have a look at the Choices and Python 
section to see how scripting is used to ask 
questions and branch to different options.

03 Let’s make a game
Going back to the Ren’Py Launcher, start a 

new project with the ‘Create New Project’ link on 
the left-hand side. You will then be asked where 
you want to save your project and what it should 
be named.  Next, choose what screen resolution 
you want your production to use and the colour 
scheme that you would like. After a short pause 
for processing, your project will be created and 
listed with the tutorial in the Projects section in 
the Launcher. 
 

04 Let’s get scripting 
Start scripting the game by selecting the 

‘script.rpy’ option under Edit File in the Launcher. 
It will ask you to select the editor you want to use 
and then open the script. From there you can 
make changes to the default script. When you 
want to test your changes, select your project and 
Launch Project, then select ‘Start’ from the list on 

SOUND RESOURCES
If you need to find sounds for your games, you can get a whole range of sound 
effects and background soundtracks from freesound.org, zapsplat.com, or 
musopen.org/music, all of which provide free downloads.

You may need to edit your sounds, in which case use Audacity – available for you 
to install using sudo apt install audacity from your Terminal window.

the left of the window that opens. If you make 
changes to your script, you can then press 
SHIFT+R to reload your script and start the game 
again. If you need further help, select the 
Documentation link at the bottom left of the 
Launcher window, or check out the forums 
at magpi.cc/renpyforum.  

	� Ren’Py includes a tutorial 
where Eileen talks you 
through all the features of 
the system

	� Audacity enables you to edit sound files in a variety of formats such as WAV and MP3

FEATURE

77Retro Gaming with Raspberry Pi

www.dbooks.org

http://freesound.org
http://zapsplat.com
http://musopen.org/music
http://magpi.cc/renpyforum
https://www.dbooks.org/


TUTORIAL

Get started with Pygame Zero78

Pygame Zero is a great choice for anyone who wants 
to start writing computer games on Raspberry Pi

I f you’ve done some Python coding and wanted 
to write a game, you may have come across 
Pygame. The Pygame module adds many 

functions that help you to write games in Python. 
Pygame Zero goes one step further to let you skip 
over the cumbersome process of making all those 
game loops and setting up your program structure. 
You don’t need to worry about functions to load 
graphics or keeping data structures for all the game 
elements. If you just want to get stuck in and start 
making things happen on the screen without all 
the fluff, then Pygame Zero is what you need.

01 Loading a suitable program editor
The first really labour-saving thing about 

Pygame Zero is that you can write a program in a 
simple text editor. We advise using the Thonny 
Python editor, as Pygame Zero needs to be 
formatted like Python with its indents and you’ll 
get the benefit of syntax highlighting to help you 
along the way. So the first step in your journey 
will be to open Thonny, found in the Programming 
section of the Raspberry Pi OS main menu (click 
the raspberry icon). You’ll be presented with a 
window featuring three panes.

Get started with 
Pygame Zero

You’ll Need 

> � �An image 
manipulation 
program such  
as GIMP

> � �A little imagination

> � A keyboard
The Pygame Zero 
game appears in a 
separate window

The Terminal window 
– enter the command 
to run our program

Our program listing. 
shown in the top pane 
of the Thonny IDE

Mark 
Vanstone

Educational 
software author 
from the nineties, 
author of the 
ArcVenture series, 
disappeared into 
the corporate 
software wasteland. 
Rescued by the 
Raspberry Pi!

magpi.cc/YiZnxl

@mindexplorers

M
A

K
ER

Pa
rt

 0
1

http://magpi.cc/YiZnxl
https://twitter.com/MindExplorers


02 Writing a Pygame Zero program
The top pane is where you will write your 

code. To start writing your first Pygame Zero 
program, click the Save icon and save your blank 
program – we suggest saving it as pygame1.py  
in your default user folder (just save the file 
without changing directory). And that’s it: you 
have written your first Pygame Zero program! 
The Pygame Zero framework assumes that you 
will want to open a new window to run your game 
inside, so even a blank file will create a running 
game environment. Of course at this stage your 
game doesn’t do very much, but you can test it to 
make sure that you can get a program running.

03 Running your first 		
Pygame Zero program

With other Python programs, you can run them 
directly from the Python file window. While there 
is a method to enable you to do so with a Pygame 
Zero program (see part 2 of this tutorial series), 
let’s use the simple alternative for now. All you 
need to do then is open a Terminal window from 
the main Raspbian menu, and type cd pygame-
zero and type in pgzrun pygame1.py (assuming 
you called your program pygame1.py) and then 
hit RETURN. After a few seconds, a window titled 
‘Pygame Zero Game’ should appear. 

04 Setting up the basics
By default, the Pygame Zero window opens 

at the size of 800 pixels wide by 600 pixels high. 
If you want to change the size of your window, 
there are two predefined variables you can set. If 
you include WIDTH = 700 in your program, then 
the window will be set at 700 pixels wide. If you 
include HEIGHT = 800, then the window will be set 
to 800 pixels high. In this tutorial we’ll be writing 
a simple racing game, so we want our window to be 
a bit taller than it is wide. When you have set the 
WIDTH and HEIGHT variables, you could save your file 
as race1.py and test it like before by typing pgzrun 
race1.py into the Terminal window.

05 Look! No game loop!
When writing a Python game, normally 

you would have a game loop – that’s a piece of 
code that is run over and over while the game is 

from random import randint
import pgzrun

WIDTH = 700 # Width of window
HEIGHT = 800 # Height of window
car = Actor("racecar") # Load in the car Actor image
car.pos = 250, 700 # Set the car screen position
SPEED = 4
trackCount = 0
trackPosition = 250
trackWidth = 120
trackDirection = False
trackLeft = []  # list of track barriers left
trackRight = []  # list of track barriers right
gameStatus = 0

def draw(): # Pygame Zero draw function
    global gameStatus
    screen.fill((128, 128, 128))
    if gameStatus == 0:
        car.draw()
        b = 0
        while b < len(trackLeft):
            trackLeft[b].draw()
            trackRight[b].draw()
            b += 1
    if gameStatus == 1:
        # Red Flag
        screen.blit('rflag', (318, 268))
    if gameStatus == 2:
        # Chequered Flag
        screen.blit('cflag', (318, 268))

def update(): # Pygame Zero update function
    global gameStatus , trackCount
    if gameStatus == 0:
        if keyboard.left: car.x -= 2
        if keyboard.right: car.x += 2
        updateTrack()
    if trackCount > 200: gameStatus = 2 # Chequered flag state

def makeTrack(): # Function to make a new section of track
    global trackCount, trackLeft, trackRight, trackPosition, trackWidth
    trackLeft.append(Actor("barrier", pos = (trackPosition-trackWidth,0)))
    trackRight.append(Actor("barrier", pos = (trackPosition+trackWidth,0)))
    trackCount += 1   

def updateTrack(): # Function to update where the track blocks appear
    global trackCount, trackPosition, trackDirection, trackWidth, 
gameStatus
    b = 0
    while b < len(trackLeft):
        if car.colliderect(trackLeft[b]) or car.colliderect(trackRight[b]):
            gameStatus = 1  # Red flag state
        trackLeft[b].y += SPEED
        trackRight[b].y += SPEED
        b += 1 
    if trackLeft[len(trackLeft)-1].y > 32:
        if trackDirection == False: trackPosition += 16
        if trackDirection == True: trackPosition -= 16
        if randint(0, 4) == 1: trackDirection = not trackDirection
        if trackPosition > 700-trackWidth: trackDirection = True
        if trackPosition < trackWidth: trackDirection = False
        makeTrack()
                            
# End of functions
makeTrack() # Make first block of track

pgzrun.go()

race1.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.
029.
030.
031.
032.
033.
034.
035.
036.
037.
038.
039.
040.
041.
042.
043.
044.
045.
046.
047.
048.
049.	

050.
051.
052.
053.
054.
055.
056.
057.
058.
059.
060.
061.
062.
063.
064.
065.
066.
067.
068.

>  Language: Python magpi.cc/pgzero1

DOWNLOAD  
THE FULL CODE:

www.dbooks.org

http://magpi.cc/pgzero1
https://www.dbooks.org/


TUTORIAL

Get started with Pygame Zero80

WIDTH = 700 
HEIGHT = 800 

def draw(): 
    screen.fill((128, 128, 128))

figure1.py

001.
002.
003.
004.
005.

>  Language: Python

running. Pygame Zero does away with this idea 
and provides predefined functions to handle 
each of the tasks that the game loop normally 
performs. The first of these we will look at is 
the function draw(). We can write this function 
into our program the same as we would normally 
define a function in Python, which is def draw():. 
Then, so that you can see the draw function doing 
something, add a line underneath indented by one 
tab: screen.fill((128, 128, 128)). This is shown 
in the figure1.py listing overleaf.

06 The Python format
You may have noticed that in the previous 

step we said to indent the screen.fill line by one 
tab. Pygame Zero follows the same formatting 
rules as Python, so you will need to take care to 
indent your code correctly. The indents in Python 
show that the code is inside a structure. So if you 
define a function, all the code inside it will be 
indented by one tab. If you then have a condition 

or a loop, for example an if statement, then the 
contents of that condition will be indented by 
another tab (so two in total).

07 All the world’s a stage
The screen object used in Step 5 is a 

predefined object that refers to the window we’ve 
opened for our game. The fill function fills the 
window with the RGB value (a tuple value) provided 
– in this case, a shade of grey. Now that we have 
our stage set, we can create our actors. Actors 
in Pygame Zero are dynamic graphic objects, 
much the same as sprites in other programming 
systems. We can load an actor by typing car = 
Actor("racecar"). This is best placed near the top 
of your program, before the draw() function.

08 It’s all about image
When we define an actor in our program, 

what we are actually doing is saying ‘go and get 
this image’. In Pygame Zero our images need to 
be stored in a directory called images, next to 
our program file. So our actor would be looking 
for an image file in the images folder called 
racecar.png. It could be a GIF or a JPG file, but it 
is recommended that your images are PNG files 
as that file type provides good-quality images 
with transparencies. You can get a full free image 
creation program called GIMP by typing sudo 
apt‑get install gimp in your Terminal window. 
If you want to use our images, you can download 
them from magpi.cc/pgzero1.

	 �Figure 1 To set the 
height and width 
of a Pygame Zero 
window, just set the 
variables HEIGHT and 
WIDTH. Then you can 
fill the screen with 
a colour

	 �To respond to key 
presses, Pygame 
Zero has a built-
in object called 
keyboard. The arrow 
key states can be 
read with keyboard.
up, keyboard.down, 
and so on

Top Tip
The graphics

If you use PNG 
files for your 
graphics rather 
than JPGs, you 
can keep part 
of the image 
transparent.

http://magpi.cc/pgzero1


TUTORIAL

81Retro Gaming with Raspberry Pi

def makeTrack(): # Function to make a new section of track
    global trackCount, trackLeft, trackRight, 
trackPosition, trackWidth
    trackLeft.append(Actor("barrier", pos = 
(trackPosition-trackWidth,0)))
    trackRight.append(Actor("barrier", pos = 
(trackPosition+trackWidth,0)))
    trackCount += 1   

figure2.py

001.
002.

003.

004.

005.

>  Language: Python

def updateTrack(): # Function to update where the track 
blocks appear
    global trackCount, trackPosition, trackDirection, 
trackWidth
    b = 0
    while b < len(trackLeft):
        trackLeft[b].y += SPEED
        trackRight[b].y += SPEED
        b += 1 
    if trackLeft[len(trackLeft)-1].y > 32:
        if trackDirection == False: trackPosition += 16
        if trackDirection == True: trackPosition -= 16
        if randint(0, 4) == 1: trackDirection = not 
trackDirection
        if trackPosition > 700-trackWidth: trackDirection = 
True
        if trackPosition < trackWidth: trackDirection = False
        makeTrack()

figure3.py

001.

002.

003.
004.
005.
006.
007.
008.
009.
010.
011.

012.

013.
014.

>  Language: Python

09 Drawing your Actor
Once you have loaded in your image by 

defining your actor, you can set its position on 
the screen. You can do this straight after loading 
the actor by typing car.pos = 250, 500 to set it at 
position 250, 500 on the screen. Now, when the 
draw() function runs, we want to display our race 
car at the coordinates that we have set. So, in our 
draw() function, after the screen.fill command 
we can type car.draw(). This will draw our race 
car at its defined position. Test your program to 
make sure this is working, by saving it and running 
pgzrun race1.py, as before.

10 I’m a control freak!
Once we have our car drawing on the 

screen, the next stage is to enable the player 
to move it backwards and forwards. We can 
do this with key presses; in this case we are 
going to use the left and right arrow keys. We 
can read the state of these keys inside another 
predefined function called update(). We can 
type in the definition of this function by adding 
def update(): to our program. This function is 
continually checked while the game is running. 
We can now add an indented if statement to 
check the state of a key; e.g., if keyboard.left:.

11 Steering the car
We need to write some code to detect 

key presses of both arrow keys and also to do 
something if we detect that either has been 
pressed. Continuing from our if keyboard.left: 
line, we can write car.x -= 2. This means subtract 
2 from the car’s x coordinate. It could also be 
written in long-hand as car.x = car.x – 2. Then, 
on the next line and with the same indent as the 
first if statement, we can do the same for the right 
arrow; i.e., if keyboard.right: car.x += 2. These 
lines of code will move the car actor left and right.

12 The long and winding road
Now that we have a car that we can steer, we 

need a track for it to drive on. We are going to build 
our track out of actors, one row at a time. We will 
need to make some lists to keep track of the actors 
we create. To create our lists, we can write the 
following near the top of our program: trackLeft = 

	 �Figure 2 The 
makeTrack() function. 
This creates two 
new Actors with the 
barrier image  
at the top of  
the screen

	 �Figure 3 The 
updateTrack() 
function. Notice 
the constant 
SPEED – we need 
to define this at the 
top of our program, 
perhaps starting 
with the value 4

[] (note the square brackets) and then, on the next 
line, trackRight = []. This creates two empty lists: 
one to hold the data about the left side of the track, 
and one to hold the data about the right-hand side.

13 Building the track
We will need to set up a few more variables 

for the track. After your two lists, declare the 
following variables: trackCount = 0 and then 
trackPosition = 250, then trackWidth = 120, 
and finally trackDirection = false. Then let’s 
make a new function called makeTrack(). Define 
this function after your update() function. See 
the figure2.py listing for the code to put inside 

www.dbooks.org

https://www.dbooks.org/


TUTORIAL

Get started with Pygame Zero82

makeTrack(). The function will add one track actor 
on the left and one on the right, both using the 
image barrier.png. Each time we call this function, 
it will add a section of track at the top of the screen.

14 On the move
The next thing that we need to do is to 

move the sections of track down the screen 
towards the car. Let’s write a new function called 
updateTrack(). We will call this function in our 
update() function after we do the keyboard checks. 
See the figure3.py listing for the code for our 
updateTrack() function. In this function we are 
using randint(). This is a function that we must 
load from an external module, so at the top of our 
code we write from random import randint. We use 
this function to make the track curve backwards 
and forwards.

15 Making more track
Notice at the bottom of the updateTrack() 

function, there is a call to our makeTrack() 
function. This means that for each update when 
the track sections move down, a new track section 
is created at the top of the screen. We will need 
to start this process off, so we will put a call to 
makeTrack() at the bottom of our code. If we run 
our code at the moment, we should see a track 
snaking down towards the car. The only problem 
is that we can move the car over the track barriers 

def draw(): # Pygame Zero draw function
    global gameStatus
    screen.fill((128, 128, 128))
    if gameStatus == 0:
        car.draw()
        b = 0
        while b < len(trackLeft):
            trackLeft[b].draw()
            trackRight[b].draw()
            b += 1
    if gameStatus == 1:
        # Red Flag
        
    if gameStatus == 2:
        # Chequered Flag
        
def update(): # Pygame Zero update function
    global gameStatus , trackCount
    if gameStatus == 0:
        if keyboard.left: car.x -= 2
        if keyboard.right: car.x += 2
        updateTrack()
    if trackCount > 200: gameStatus = 2 # Chequered 
flag state

figure4.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.

>  Language: Python

	 �The race car with 
barriers making up a 
track to stay within. 
The track pieces are 
created by random 
numbers so each 
play is different

	 �Figure 4 The draw() 
function and the 
update() function 
with conditions 
(if statements) to 
do different things 
depending on the 
value of gameStatus



TUTORIAL

83Retro Gaming with Raspberry Pi

and we want to keep the car inside them with some 
collision detection.

16 A bit of a car crash
We need to make sure that our car 

doesn’t touch the track actors. As we are 
looking through the existing barrier actors in 
our updateTrack() function, we may as well test 
for collisions at the same time. We can write 
if car.colliderect(trackLeft[b]) or  
car.colliderect(trackRight[b]): and then, 
indented on the next line, gameStatus = 1. We have 
not covered gameStatus yet – we’ll use this variable 
to show if the game is running, the car has crashed, 
or we’ve reached the end of the race. Define your 
gameStatus variable near the top of the program as 
gameStatus = 0. You will also need to add it to the 
global variables in the updateTrack() function.

17 Changing state
In this game we will have three different 

states to the game stored in our variable gameStatus. 
The first or default state will be that the game is 
running and will be represented by the number 0. 
The next state will be set if the car crashes, which 
will be the number 1. The third state will be if 
we have finished the race, which we’ll set as the 
number 2 in gameStatus. We will need to reorganise 
our draw() function and our update() function to 
respond to the gameStatus variable. See the  
figure4.py listing for how we do that.

18 Finishing touches
All we need to do now is to display 

something if gameStatus is set to 1 or 2. If 
gameStatus is 1 then it means that the car has 
crashed and we should display a red flag. We can 
do that with the code: screen.blit('rflag', (318, 
268)). To see if the car has reached the finish, we 
should count how many track sections have been 
created and then perhaps when we get to 200, set 
gameStatus to 2. We can do this in the update() 
function as in figure4.py. Then, in the draw() 
function, if the gameStatus is 2, then we can write 
screen.blit('cflag', (318, 268)). Have a look at 
the full code listing to see how this all fits together. 

19 Did you win?
If you didn’t get the program working first 

time, you are not alone – it’s quite rare to have 
everything exactly right first time. Check that 
you have written all the variables and functions 
correctly and that the capital letters are in the right 
places. Python also insists on having code properly 
formatted with indents. When it’s all in place, 
test your program as before and you should have a 
racing game with a chequered flag at the end! 

	 �Each of the barrier 
blocks is checked 
against the car to 
detect collisions. If 
the car hits a barrier, 
the red flag graphic 
is displayed

	 �The official Pygame 
Zero documentation 
can be found at 
magpi.cc/fBqznh

Top Tip
Changing the 
speed

If you want to 
make the track 
move faster 
or slower, try 
changing the 
value of SPEED 
at the start of 
the program.

Top Tip
Run from IDE

Since the upgrade 
to version 1.2, 
programs can be 
run straight from 
Thonny by adding 
import pgzrun 
to the top of the 
code and pgzrun.
go() at the bottom.

www.dbooks.org

http://magpi.cc/fBqznh
https://www.dbooks.org/


TUTORIAL

Pygame Zero: Simple Brian84

Recreate a classic electronic game using Pygame Zero

L ong, long ago, before Raspberry Pi existed, 
there was a game. It was a round plastic 
box with four coloured buttons on top 

and you had to copy what it did. To reconstruct 
this classic game using Pygame Zero, we’ll first 
need a name. To avoid any possible trademark 
misunderstandings and because we are using 
the Python language, let’s call it ‘Brian’. The 
way the game works is that Brian will show you 
a colour sequence by lighting up the buttons and 
then you have to copy the sequence by pressing 
the coloured buttons in the same sequence. Each 
round, an extra button is added to the sequence 
and you get a point for each round you complete 
correctly. The game continues until you get the 
sequence wrong.

01 Run, run as fast as you can
In the previous tutorial (page 48), we ran 

code by typing the pgzrun command in a Terminal 
window. With the 1.2 update of Pygame Zero, 
however, there is now a way to run your programs 
directly from a Python editor such as Thonny, by 
adding a couple of lines of code (see figure1.py).

02 The stage is set
We’ll need some images that make up the 

buttons of the Brian game. You can make your own 
or get ours from GitHub at magpi.cc/pgzero2. The 
images will need to be in an images directory next 
to your program file. We have called our starting 
images redunlit, greenunlit, blueunlit, and 
yellowunlit because all the buttons will be unlit at 
the start of the game. We have also got a play button 
so that the player can click on it to start the game.

03 Getting the actors on stage
We can create actors by supplying an image 

name and a position on the screen for it to go. 
There are several ways of supplying the position 
information. This time we’ll use position handles 
to define where the character appears. We will 

Pygame Zero 
Simple Brian

You’ll Need 

> � �An image 
manipulation 
program such 
as GIMP, or 	
images from 	
magpi.cc/pgzero2

> � ��The latest 
version of 
Pygame Zero

> � �A good memory

import pgzrun

# Your program code will go here

pgzrun.go()

figure1.py

001.
002.
003.
004.
005.

>  Language: Python 

Instructions are 
displayed here

The game has four 
coloured buttons that light 
up when they are pressed

Pa
rt

 0
2

http://figure1.py
http://magpi.cc/pgzero2
http://magpi.cc/pgzero2


TUTORIAL

85Retro Gaming with Raspberry Pi

use the same coordinates for each quadrant of the 
whole graphic, but we’ll change the handle names 
we use. For these actors we can use bottomright, 
bottomleft, topright, and topleft, as well as the 
coordinates (400,270), which is the centre point of 
our whole graphic. Take a look at figure2.py.

04 Look at the state of that
We now need to add some logic to determine 

if each button is on or off and show it lit or unlit 
accordingly. We can do this by adding a variable to 
each of our actors. We want it to be either on or off, 
so we can set this variable as a Boolean value, i.e. 
True or False. If we call this variable state, we can 
add it to the Actor by writing (for the first button): 
myButtons[0].state = False. We then do the same 
for each of the button actors with their list numbers 
1, 2, and 3 because we defined them as a list.

05 Light goes on, light goes off
We have defined a state for each button; 

now we have to write some code to react to that 
state. First, let’s make a couple of lists which hold 
the names of the images we will use for the two 
states. The first list will be the images we use for 
the buttons being lit, which would be: buttonsLit = 
['redlit', 'greenlit', 'bluelit', 'yellowlit']. 
We then need a list of the unlit buttons: 
buttonsUnlit = ['redunlit', 'greenunlit', 
'blueunlit', 'yellowunlit']. Then we can use 
these lists in an update() function to set the image 
of each button to match its state. See figure3.py.

06 Switching images
We can see from figure3.py that each time 

our update() function runs, we will loop through 

	� There are nine positions that an Actor’s co-ordinates can 
be aligned to when the Actor is created

import pgzrun

myButtons = []
myButtons.append(Actor('redunlit', bottomright=(400,270)))
myButtons.append(Actor('greenunlit', bottomleft=(400,270)))
myButtons.append(Actor('blueunlit',topright=(400,270)))
myButtons.append(Actor('yellowunlit',topleft=(400,270)))
playButton = Actor('play', pos=(400,540))

def draw(): # Pygame Zero draw function
    screen.fill((30, 10, 30))
    for b in myButtons: b.draw()
    playButton.draw()

pgzrun.go()

figure2.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.

>  Language: Python magpi.cc/pgzero2

DOWNLOAD  
THE FULL CODE:

import pgzrun

myButtons = []
myButtons.append(Actor('redunlit', bottomright=(400,270)))
myButtons[0].state = False
myButtons.append(Actor('greenunlit', bottomleft=(400,270)))
myButtons[1].state = False
myButtons.append(Actor('blueunlit',topright=(400,270)))
myButtons[2].state = False
myButtons.append(Actor('yellowunlit',topleft=(400,270)))
myButtons[3].state = False
buttonsLit = ['redlit', 'greenlit', 'bluelit', 'yellowlit']
buttonsUnlit = ['redunlit', 'greenunlit', 'blueunlit', 
'yellowunlit']
playButton = Actor('play', pos=(400,540))

def draw(): # Pygame Zero draw function
    screen.fill((30, 10, 30))
    for b in myButtons: b.draw()
    playButton.draw()

def update(): # Pygame Zero update function
    bcount = 0
    for b in myButtons:
        if b.state == True: b.image = buttonsLit[bcount]
        else: b.image = buttonsUnlit[bcount]
        bcount += 1
        
pgzrun.go()

figure3.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.

014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.

>  Language: Python 

www.dbooks.org

http://magpi.cc/pgzero2
https://www.dbooks.org/


TUTORIAL

Pygame Zero: Simple Brian86

our button list. If the button’s state is True, we 
set the image of the button to the image in the 
buttonsLit list. If not (i.e. the state variable is 
False), we set the image of the button to the image 
in the buttonsUnlit list.

07 What happens if I press this button?
We need to write a way to allow the user 

to press the buttons and make them light up. 
We can do this with the Pygame Zero functions  
on_mouse_down() and on_mouse_up(). If the mouse 
has been clicked down, we should set our button 
state to True. We also need to test if the mouse 
button has been released; if so, all the buttons 
should be set to False. We can test the value we are 
passed (pos) into these functions with the method 
collidepoint(), which is part of the actor object.

08 Ups and downs
We can write a test in on_mouse_down() 

for each button, to see if it has been pressed, 
and then change the state of the button if it has 
been pressed. We can then write code to set all 
the button states to False in the on_mouse_up() 
function, and our update() and draw() functions 
will now reflect what we need to see on the screen 
from those actions. Look at figure4.py and you will 
see how we can change the state of the buttons as 
a response to mouse events. When you have added 
this to your program, test it to make sure that the 
buttons light up correctly when clicked.

09 Write a list
Now that we have our buttons working, we 

will need to make a way to use them in two different 
ways. The first will be for the game to display a 
sequence for the player to follow, and the second is 
to receive input from the player when they repeat 
the sequence. For the first task we will need to build 
a list to represent the sequence and then play that 
sequence to the player. Let’s define our list at the 
top of the code with buttonList = [] and then make 
a function def addButton(): which will create an 
additional entry into the sequence each round.

def on_mouse_down(pos):
    global myButtons
    for b in myButtons:
        if b.collidepoint(pos): b.state = True

def on_mouse_up(pos):
    global myButtons
    for b in myButtons: b.state = False

figure4.py

001.
002.
003.
004.
005.
006.
007.
008.

>  Language: Python 

def playAnimation():
    global playPosition, playingAnimation
    playPosition = 0
    playingAnimation = True

def addButton():
    global buttonList
    buttonList.append(randint(0, 3))
    playAnimation()

figure5.py

001.
002.
003.
004.
005.
006.
007.
008.
009.

>  Language: Python 

def update(): # Pygame Zero update function
    global myButtons, playingAnimation, playPosition
    if playingAnimation:
        playPosition += 1
        listpos = math.floor(playPosition/LOOPDELAY)
        if listpos == len(buttonList):
            playingAnimation = False
            clearButtons()
        else:   
            litButton = buttonList[listpos]
            if playPosition%LOOPDELAY > LOOPDELAY/2: 
litButton = -1
            bcount = 0
            for b in myButtons:
                if litButton == bcount: b.state = True
                else: b.state = False
                bcount += 1

figure6.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.

012.
013.
014.
015.
016.

>  Language: Python 

	� When the mouse is clicked on a button, we switch the unlit 
image for the lit image



TUTORIAL

87Retro Gaming with Raspberry Pi

10 That’s a bit random
We can generate our sequence by generating 

random integers using the random module. We 
can use this module by importing it at the top of 
our code with: from random import randint. As 
we only need the randint() function, we import 
that function specifically. To add a new number to 
the sequence in the addButton() function, we can 
write buttonList.append(randint(0, 3)), which 
will add a number between 0 and 3 to our list. Once 
we have added our new number, we will want to 
show the player the sequence, so add a line in the 
addButton() function: playAnimation().

11 Playing the animation
We have set up our function to create the 

sequence. Now we need a system to play the latter 
so the player can see it. We’ll do this with a counter 
variable called playPosition. We define this at the 
start of our code: playPosition = 0. We’ll also need 
a variable to show that our animation is playing: 
playingAnimation = False, also written at the start 
of the code. We can then define our playAnimation() 
function that we used in the previous step. Look 
at figure5.py to see how the addButton() and 
playAnimation() functions are written.

12 Are we playing?
So, once we have set our animation going, 

we will need to react to that in our update() 
function. We know that all we need to do is change 
the state of the buttons and the draw() function 
will handle the visuals for us. In our update() 
function, we have to say: “If the animation is 
playing then increment our animation counter, 
check that we haven’t reached the end of the 
animation and if not then light the button (change 
its state to True) which is indicated by our sequence 
list.” This is a bit of a mouthful, so in figure6.py 
we can see how this translates into code.

13 Getting a bit loopy
We can see from figure6.py that we are 

incrementing the play position each time update() 
is called. What we want to do is keep each button 
in the sequence lit for several refreshes, so we 
divide the playPosition by a predefined number 
(LOOPDELAY) to get our list position that we want to 

display. We round the result downwards with the 
math.floor() function (to use this, we import the 
math module at the top of the code). So if LOOPDELAY 
is 80, we’ll move from one list position (listpos) to 
the next every 80 times update() is called.

14 A dramatic pause
Still in figure6.py, we check to see if we have 

reached the end of the buttonList with listpos. If 
we have then we stop the animation. Otherwise, 
if we are still running the animation, we work out 
which button should be lit from our buttonList. We 
could just say “light that button and set the rest 
to unlit”, but before we do that we have a line that 
basically says: “If we are in the second half of our 
button lighting loop, set all the buttons to unlit.” 
This means that we will get a pause in between each 
button being lit when no buttons are lit. We can 
then just loop through our buttons and set their 
state according to the value of litButton.

15 Testing the animation
Now, ignoring the fact that we have a play 

button ready and waiting to do something, we 
can test our animation by calling the addButton() 
function. This function adds a random button 
number to the list and sets the animation in 
motion. To test it, we can call it a few times at the 
bottom of our code, just above pgzrun.go(). If we 
call the addButton() function three times then three 
numbers will be added to the buttonList and the 
animation will start. If this all works, we are ready 
to add the code to capture the player’s response.

16 I need input
We can collect the player’s clicks on the 

buttons just by adding another list, playerInput, to 
the definitions at the top of the code and adding a 
few lines into our on_mouse_down() function. Add 
a counter variable bcount = 0 at the top of the 
function and then add one to bcount at the end of 
the loop. Then, after if b.collidepoint(pos): we 
add playerInput.append(bcount). We can then test 
the player input to see if it matches the buttonList 
we are looking for. We will write this as a separate 
function called checkPlayerInput() and call it 
at the end of our on_mouse_down() function. As 
we now have the basis of our game, refer to the 

Top Tip
Globals

You can read 
global variables 
inside a function, 
but if you change 
the value of the 
variable, you 
must declare it 
as global in the 
function.

Top Tip
Modulo or %

The % symbol 
is used to get 
the remainder 
after a division 
calculation. 
It’s useful for 
creating smaller 
repeats within a 
larger loop.

www.dbooks.org

https://www.dbooks.org/


TUTORIAL

Pygame Zero: Simple Brian88

full listing to see how the rest of the code comes 
together as we go through the final steps.

17 Game over man
The checkPlayerInput() function will check 

the buttons that the player has clicked against 
the list held in buttonList, which we have been 
building up with the addButton() function. So we 
need to loop through the playerInput list with 
a counter variable – let’s call it ui, and write if 
playerInput[ui] != buttonList[ui]: gameOver(). 
If we get to the end of the list and both playerInput 
and buttonList are the same length then we know 
that the player has completed the sequence and we 
can signal that the score needs to be incremented. 
The score variable is defined at the top of the code 
as score = 0. In our on_mouse_up() function, we can 
then respond to the score signal by incrementing 
the score and setting the next round in motion.

18 Just press play
We still haven’t done anything with that 

play button actor that we set up at the beginning. 
Let’s put some code behind that to get the game 
started. Make sure you have removed any testing 
calls at the bottom of your code to addButton() 
(Step 15).  We’ll need a variable to check if the 
game is started, so put gameStarted = False at the 
top of the code with the other variables and then 
in our on_mouse_up() function we can add a test: if 
playButton.collidepoint(pos) and gameStarted 
== False: and then set the gameStarted variable to 
True. We can set a countdown variable when the 
play button is clicked so that there is a slight pause 
before the first animation starts.

19 Finishing touches
We’re nearly there with our game: we have 

a way to play a random sequence and build that list 
round by round, and we have a way to capture and 
check user input. The last things we need are some 
instructions for the player, which we can do with 
the Pygame Zero screen.draw.text() function. We 
will want an initial ‘Press Play to Start’ message, a 
‘Watch’ message for when the animation is playing, 
a ‘Now You’ message to prompt the player to 
respond, and a score message to be displayed when 
the game is over. Have a look in the draw() function 
in the complete listing to see how these fit in.

There are many ways we can enhance our game; 
for example, the original electronic game featured 
sound – something we cover later (see page 74). 

import pgzrun
from random import randint
import math
WIDTH = 800
HEIGHT = 600

myButtons = []
myButtons.append(Actor('redunlit', 
bottomright=(400,270)))
myButtons[0].state = False
myButtons.append(Actor('greenunlit', 
bottomleft=(400,270)))
myButtons[1].state = False
myButtons.append(Actor('blueunlit', 
topright=(400,270)))
myButtons[2].state = False
myButtons.append(Actor('yellowunlit', 
topleft=(400,270)))
myButtons[3].state = False
buttonsLit = ['redlit', 'greenlit', 
'bluelit', 'yellowlit']
buttonsUnlit = ['redunlit', 
'greenunlit', 'blueunlit', 
'yellowunlit']
playButton = Actor('play', 
pos=(400,540))
buttonList = []
playPosition = 0
playingAnimation = False
gameCountdown = -1
LOOPDELAY = 80
score = 0
playerInput = []
signalScore = False
gameStarted = False

def draw(): # Pygame Zero draw 
function
    global playingAnimation, score
    screen.fill((30, 10, 30))
    for b in myButtons: b.draw()
    if gameStarted:
        screen.draw.text("Score 
: " + str(score), (310, 540), 
owidth=0.5, ocolor=(255,255,255), 
color=(255,128,0) , fontsize=60)
    else:
        playButton.draw()
        screen.draw.
text("Play", (370, 525), 
owidth=0.5, ocolor=(255,255,255), 
color=(255,128,0) , fontsize=40)
        if score > 0:
            screen.draw.text("Final 

brian.py

001.
002.
003.
004.
005.
006.
007.
008.	

009.
010.	

011.
012.	

013.
014.	

015.
016.
	
017.
	
	
018.
	
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.
029.	

030.
031.
032.
033.
034.
	
	
	
035.
036.
037.
	
	
	
038.
039.

>  Language: Python 3  Top Tip
Changing 	
the delay

We have used 
the constant 
LOOPDELAY for 
timing our loops, 
if the game is 
running too 
slow, decrease 
this value at the 
top of the code.

Top Tip
Using text

If you are going 
to use text, it’s 
a good idea to 
display some on 
the first screen 
as it can take 
a while to load 
fonts for the first 
time. You may 
get unwanted 
delays if you 
load it later.



TUTORIAL

89Retro Gaming with Raspberry Pi

>  Language: Python 3  

Score : " + str(score), (250, 20), owidth=0.5, 
ocolor=(255,255,255), color=(255,128,0) , 
fontsize=60)
        else:
            screen.draw.text("Press Play to Start", 
(220, 20), owidth=0.5, ocolor=(255,255,255), 
color=(255,128,0) , fontsize=60)
    if playingAnimation or gameCountdown > 0:
        screen.draw.text("Watch", (330, 20), 
owidth=0.5, ocolor=(255,255,255), color=(255,128,0) 
, fontsize=60)
    if not playingAnimation and gameCountdown == 0:
        screen.draw.text("Now You", (310, 20), 
owidth=0.5, ocolor=(255,255,255), color=(255,128,0) 
, fontsize=60)
    
def update(): # Pygame Zero update function
    global myButtons, playingAnimation, 
playPosition, gameCountdown
    if playingAnimation:
        playPosition += 1
        listpos = math.floor(playPosition/LOOPDELAY)
        if listpos == len(buttonList):
            playingAnimation = False
            clearButtons()
        else:   
            litButton = buttonList[listpos]
            if playPosition%LOOPDELAY > LOOPDELAY/2: 
litButton = -1
            bcount = 0
            for b in myButtons:
                if litButton == bcount: b.state = True
                else: b.state = False
                bcount += 1
    bcount = 0
    for b in myButtons:
        if b.state == True: b.image = 
buttonsLit[bcount]
        else: b.image = buttonsUnlit[bcount]
        bcount += 1
    if gameCountdown > 0:
        gameCountdown -=1
        if gameCountdown == 0:
            addButton()
            playerInput.clear()

def gameOver():
    global gameStarted, gameCountdown, playerInput, 
buttonList
    gameStarted = False
    gameCountdown = -1
    playerInput.clear()
    buttonList.clear()
    clearButtons()

def checkPlayerInput():
    global playerInput, gameStarted, score, 
buttonList, gameCountdown, signalScore
    ui = 0
    while ui < len(playerInput):
        if playerInput[ui] != buttonList[ui]: 
gameOver()
        ui += 1
    if ui == len(buttonList): signalScore = True
      
def on_mouse_down(pos):
    global myButtons, playingAnimation, 
gameCountdown, playerInput
    if not playingAnimation and gameCountdown == 0:
        bcount = 0
        for b in myButtons:
            if b.collidepoint(pos):
                playerInput.append(bcount)
                b.state = True
            bcount += 1
        checkPlayerInput()
   
def on_mouse_up(pos):
    global myButtons, gameStarted, gameCountdown, 
signalScore, score
    if not playingAnimation and gameCountdown == 0:
        for b in myButtons: b.state = False
    if playButton.collidepoint(pos) and gameStarted 
== False:
        gameStarted = True
        score = 0
        gameCountdown = LOOPDELAY
    if signalScore:
        score += 1
        gameCountdown = LOOPDELAY
        clearButtons()
        signalScore = False

def clearButtons():
    global myButtons
    for b in myButtons: b.state = False

def playAnimation():
    global playPosition, playingAnimation
    playPosition = 0
    playingAnimation = True

def addButton():
    global buttonList
    buttonList.append(randint(0, 3))
    playAnimation()

pgzrun.go()

	
	
	
040.
041.
	
	
042.
043.
	
	
044.
045.	
	

046.
047.
048.	

049.
050.
051.
052.
053.
054.
055.
056.
057.	

058.
059.
060.
061.
062.
063.
064.
065.	

066.
067.
068.
069.
070.
071.
072.
073.
074.
075.	

076.
077.
078.
079.
080.

081.
082.
083.	

084.
085.
086.	

087.
088.
089.
090.
091.	

092.
093.
094.
095.
096.
097.
098.
099.
100.
101.
102.	

103.
104.
105.	

106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.

www.dbooks.org

https://www.dbooks.org/


TUTORIAL

Pygame Zero: Pivaders90

There must be very few people who have not played a 
shooting game, and for some it may have been their 
very first experience of a computer game

T he shooting-style game format requires 
quite a few different coding techniques to 
make it work. For some time, if your author 

needed to learn a new coding language, he would 
task himself to write an invaders game in it. This 
would give a good workout through the syntax and 
functions of the language.

This tutorial will be split into two parts.  
In the first we will build a basic shooting game 
with aliens, lasers, defence bases, and a score. 
The second part (page 98) will add all the 
extra bits that make it into a game similar to the 
one that appeared in amusement arcades and 
sports halls in the late 1970s.

Pygame Zero  
PiVaders

You’ll Need 

> � �An image 
manipulation 
program such  
as GIMP, or 
images from 
magpi.cc/pgzero4

> � �The latest version of 
Pygame Zero

> � �A cool head as the 
lasers rain down 
on you

The defence bases block alien 
lasers, but reduce in size each time 
they are hit until they are gone

The aliens move across 
the screen in a regular 
formation, moving 
towards the player’s bases

The player ship can be 
moved left and right 
with the arrow keys

The player scores points for 
every alien that is destroyed

Pa
rt

 0
3

https://github.com/themagpimag/retro-gaming/tree/master/Part%2004%20-%20Pivaders%201


TUTORIAL

91Retro Gaming with Raspberry Pi

01 Let’s get stuck in
If you have read the previous tutorials, 

you will know how we set up a basic Pygame Zero 
program, so we can jump right in to getting things 
on the screen. We will need some graphics for the 
various elements of the game – you can design them 
yourself or use ours from: magpi.cc/pgzero4. The 
Pygame Zero default screen size is 800 width by 600 
height, which is a good size for this game, so we 
don’t need to define WIDTH or HEIGHT.

02 A bit of a player
Let’s start with getting the player ship on 

the screen. If we call our graphic player.png, then 
we can create the player Actor near the top of 
our code by writing player = Actor("player", 
(400, 550)).

We will probably want something a bit more 
interesting than just a plain black window, so we 
can add a background in our draw() function. If we 
draw this first, everything else that we draw will 
be on top of it. We can draw it using the blit() 
function by writing screen.blit('background', 
(0, 0)) – assuming we have called our background 
image background.png. Then, to draw the player, 
just add player.draw() afterwards.

 

03 Let’s get moving
We need the player ship to respond to key 

presses, so we’ll check the Pygame Zero keyboard 
object to see if certain keys are currently pressed. 
Let’s make a new function to deal with these 
inputs. We will call the function checkKeys() and 
we’ll need to call it from our update() function.

In the checkKeys() function, we write if 
keyboard.left: and then if player.x > 40: 
player.x -= 5. We need to declare the player 
Actor object as global inside our checkKeys() 
function. We then write a similar piece of code to 
deal with the right arrow key; figure1.py shows 
how this all fits together.    

04 An alien concept
We now want to create a load of aliens 

in formation. You can have them in whatever 
format you want, but we’ll set up three rows of 
aliens with six on each row. We have an image 
called alien.png and can make an Actor for each 

import pgzrun

player = Actor("player", (400, 550)) # Load in the player 
Actor image

def draw(): # Pygame Zero draw function
    screen.blit('background', (0, 0))
    player.draw()

def update(): # Pygame Zero update function
    checkKeys()

def checkKeys():
    global player
    if keyboard.left:
        if player.x > 40: player.x -= 5
    if keyboard.right:
        if player.x < 760: player.x += 5

pgzrun.go()

figure1.py
001.
002.
003.

004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.

alien that we will store in a list so that we can 
easily loop through the list to perform actions 
on them. When we create the alien Actors, we 
will use a bit of maths to set the initial x and y 
coordinates. It would be a good idea to define 
a function to set up the aliens – initAliens() 
– and because we will want to set up other 
elements too, we could define a function init(), 
from which we can call all the setup functions.

05 Doing the maths
To position our aliens and to create them as 

Actors, we can declare a list – aliens = [] – and 
then create a loop using for a in range(18):. In 
this loop, we need to create each Actor and then 
work out where their x and y coordinates will be 
to start. We can do this in the loop by writing: 
aliens.append(Actor("alien1", (210+(a % 
6)*80,100+(int(a/6)*64)))). This may look 
a little daunting, but we can break it down by 
saying ‘x is 210 plus the remainder of dividing 
by 6 multiplied by 80’.

This will provide us with x coordinates starting 
at 210 and with a spacing of 80 between each. The 
y calculation is similar, but we use normal division, 
make it an integer, and multiply by 64.

  �Functions to create 
a player ship and 
background, display 
them, and handle 
moving the player ship

www.dbooks.org

https://github.com/themagpimag/retro-gaming/tree/master/Part%2004%20-%20Pivaders%201
https://www.dbooks.org/


TUTORIAL

Pygame Zero: Pivaders92

06 Believing the strangest things
After that slightly obscure title reference, 

we shall introduce the idea of the alien having a 
status. As we have seen in previous instalments, 
we can add extra data to our Actors, and in this case 
we will want to add a status variable to the alien 
after we have created it. We’ll explain how we are 
going to use this a bit later. Now it’s time to get 
the little guys on the screen and ready for action. 
We can write a simple function called drawAlien() 
and just loop through the alien list to draw them 
by writing: for a in range(len(aliens)): 
aliens[a].draw() . Call the drawAlien() function 
inside the draw() function.

07 The aliens are coming!
We are going to create a function that 

we call inside our update() function that keeps 
track of what should happen to the aliens. We’ll 
call it updateAliens(). We don’t want to move 
the aliens every time the update cycle runs, so 
we’ll keep a counter called moveCounter and 
increment it each update(); then, if it gets to a 
certain value (moveDelay), we will zero the counter. 
If the counter is zero, we call updateAliens(). 
The updateAliens() function will calculate how 
much they need to move in the x and y directions to 
get them to go backwards and forwards across the 
screen and move down when they reach the edges.

08 Updating the aliens
To work out where the aliens should move, 

we’ll make a counter loop from 0 to 40. From 0 to 
9 we’ll move the aliens left, on 10 we’ll move them 
down, then from 11 to 29 move them right. On 30 
they move down and then from 31 to 40 move left. 
Have a look at figure2.py to see how we can do 
this in the updateAliens() function and how that 
function fits into our update() function. Notice how 
we can use the Pygame Zero function animate() 
to get them to move smoothly. We can also add a 
switch between images to make their legs move.

09 All your base are belong to us
Now we are going to build our defence 

bases. There are a few problems to overcome in 
that we want to construct our bases from Actors, 
but there are no methods for clipping an Actor 
when it is displayed. Clipping is a term to describe 
that we only display a part of the image. This is a 
method we need if we are going to make the bases 
shrink as they are hit by alien lasers. What we will 
have to do is add a function to the Actor, just like 
we have added extra variables to them before.

10 Build base
We will make three bases which will be 

made of three Actors each. If we wanted to display 
the whole image (base1.png), we would create 
a list of base Actors and display each Actor with 
some code like bases[0].draw(). What we want to 
do is add a variable to the base to show how high 
we want it to be. We will also need to write a new 
function to draw the base according to the height 
variable. Have a look at figure3.py to see how we 
write the new function and attach it to each Actor. 
This means we can now call this function from 
each base Actor using: bases[b].drawClipped(), 
as shown in the drawBases() function.

11 Can I shoot something now?
To make this into a shooting game, let’s add 

some lasers. We need to fire lasers from the player 
ship and also from the aliens, but we are going to 
keep them all in the same list. When we create a 
new laser by making an Actor and adding it to the 

def updateAliens():
    global moveSequence, moveDelay
    movex = movey = 0
    if moveSequence < 10 or moveSequence > 30: movex = -15
    if moveSequence == 10 or moveSequence == 30:
        movey = 50
    if moveSequence >10 and moveSequence < 30: movex = 15
    for a in range(len(aliens)):
        animate(aliens[a], pos=(aliens[a].x + movex, 
aliens[a].y + movey), duration=0.5, tween='linear')
        if randint(0, 1) == 0:
            aliens[a].image = "alien1"
        else:
            aliens[a].image = "alien1b"
    moveSequence +=1
    if moveSequence == 40: moveSequence = 0

figure2.py
001.
002.
003.
004.
005.
006.
007.
008.
009.

010.
011.
012.
013.
014.
015.

Top Tip
Beware 
of deleting 
elements 
of a list

If you delete 
a list element 
while you are 
looping through 
it with range 
(len(list)), 
when you get to 
the end of the 
loop it will run out 
of elements and 
return an error 
because the range 
of the loop is the 
original length of 
the list.

  �The updateAliens() 
function. Calculate 
the movement for the 
aliens based on the 
variable moveSequence



TUTORIAL

93Retro Gaming with Raspberry Pi

list lasers[], we can give the Actor a type. In this 
case we’ll make alien lasers type 0 and player lasers 
type 1. We’ll also need to add a status variable. 
The creation and updating of the lasers is similar 
to other elements we’ve looked at; figure4.py 
(overleaf) shows the functions that we can use.

12 Making the lasers work
You can see in figure4.py that we can create 

a laser from the player by adding a check for the 
SPACE key being pressed in our checkKeys() 
function. We will use the blue laser image called 
laser2.png. Once the new laser is in our list of 
lasers, it will be drawn to the screen if we call the 
drawLasers() function inside our draw() function. 
In our updateLasers() function we loop through 
the list of lasers and check which type it is. So if it is 
type 1 (player), we move the laser up the screen and 
then check to see if it hit anything. Notice the calls 
to a listCleanup() function at the bottom. We will 
come to this in a bit.

13 Collision course
Let’s look at checkPlayerLaserHit() first. 

We can detect if the laser has hit any aliens by 
looping round the alien list and checking with the 
Actor function – collidepoint((lasers[l].x, 

lasers[l].y)) – to see if a collision has occurred. 
If an alien has been hit, this is where our status 
variables come into play. Rather than just removing 
the laser and the alien from their lists, we need to 
flag them as ready to remove. The reason for this is 
that if we remove anything from a list while we are 

def drawClipped(self):
    screen.surface.blit(self._surf, (self.x-32, self.y-
self.height+30),(0,0,64,self.height))

def initBases():
    global bases
    bases = []
    bc = 0
    for b in range(3):
        for p in range(3):
            bases.append(Actor("base1", 
midbottom=(150+(b*200)+(p*40),520)))
            bases[bc].drawClipped = drawClipped.__get__
(bases[bc])
            bases[bc].height = 60
            bc +=1

def drawBases():
    for b in range(len(bases)): bases[b].drawClipped()

figure3.py
001.
002.

003.
004.
005.
006.
007.
008.
009.
010.

011.

012.
013.
014.
015.
016.

  �Setting up an 
extension function 
to draw an Actor 
with clipping

Top Tip
Write functions 
for each 
collective 
action

To make coding 
easier to read 
rather than 
having lots of 
code associated 
with one type 
of element 
in the draw() 
or update() 
functions, send it 
out to a function 
like drawLasers() 
or checkKeys().

www.dbooks.org

https://www.dbooks.org/


TUTORIAL

Pygame Zero: Pivaders94

looping through any of the lists then by the time we 
get to the end of the list, we are an element short 
and an error will be created. So we set these Actors 
to be removed with status and then remove them 
afterwards with listCleanup().

14 Cleaning up the mess
The listCleanup() function creates a 

new empty list, then runs through the list that is 
passed to it, only transferring items to the new 
list that have a status of 0. This new list is then 
returned back and used as the list going forward. 
Now that we have made a system for one type of 
laser we can easily adapt that for our alien laser 
type. We can create the alien lasers in the same 
way as the player lasers, but instead of waiting 
for a keyboard press we can just produce them at 
random intervals using if randint(0, 5) == 0: 
when we are updating our aliens. We set the type to 
0 rather than 1 and move them down the screen in 
our updateLasers() function.

15 Covering the bases
So far, we haven’t looked at what happens 

when a laser hits one of the defence bases. Because 
we are changing the height of the base Actors, 
the built-in collision detection won’t give us the 
result we want, so we need to write another custom 
function to check laser collision on the base Actor. 
Our new function, collideLaser() will check the 
laser coordinates against the base’s coordinates, 
taking into account the height of the base. We then 
attach the new function to our base Actor when 
it is created. We can use the new collideLaser() 
function for checking both the player and the alien 
lasers and remove the laser if it hits – and if it is 
an alien laser, reduce the height of the base that 
was hit.

16 Laser overkill
We may want to change the number of lasers 

being fired by the aliens, but at the moment our 
player ship gets to fire a laser every update() cycle. 
If the SPACE key is held down, a constant stream 
of lasers will be fired, which not only is a little bit 
unfair on the poor aliens but will also take its toll 
on the speed of the game. So we need to put some 
limits on the firing speed and we can do this with 
another built-in Pygame Zero object: the clock. If 
we add a variable laserActive to our player Actor 
and set it to zero when it fires, we can then call 
clock.schedule(makeLaserActive, 1.0) to call 
the function makeLaserActive() after 1 second.

17 I’m hit! I’m hit!
We need to look now at what happens 

when the player ship is hit by a laser. For this we 
will make a multi-frame animation. We have five 
explosion images to put into a list, with our normal 
ship image at the beginning, and attach it to our 
player Actor. We need to import the Math module, 
then in each draw() cycle we write: player.image 
= player.images[math.floor(player.status/6)], 
which will display the normal ship image while 
player.status is 0. If we set it to 1 when the player 
ship is hit, we can start the animation in motion. 
In the update() function we write: if player.
status > 0: player.status += 1. As the status 
value increases, it will start to draw the sequence 
of frames one after the other. 

def checkKeys():
    global player, lasers
    if keyboard.space:
        l = len(lasers)
        lasers.append(Actor("laser2", 
(player.x,player.y-32)))
        lasers[l].status = 0
        lasers[l].type = 1

def drawLasers():
    for l in range(len(lasers)): lasers[l].draw()

def updateLasers():
    global lasers, aliens
    for l in range(len(lasers)):
        if lasers[l].type == 0:
            lasers[l].y += (2*DIFFICULTY)
            checkLaserHit(l)
            if lasers[l].y > 600: lasers[l].status = 1
        if lasers[l].type == 1:
            lasers[l].y -= 5
            checkPlayerLaserHit(l)
            if lasers[l].y < 10: lasers[l].status = 1
    lasers = listCleanup(lasers)
    aliens = listCleanup(aliens)

figure4.py
001.
002.
003.
004.
005.

006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.

Top Tip
Collect all your 
setup code in 
one place

If possible, it is 
good to have 
as much of the 
code that sets 
everything back 
to the beginning 
in one place so 
that you can easily 
restart the game.

  �Checking the keys 
that are pressed, 
creating lasers, 
moving them, and 
checking if they have 
collided with anything



TUTORIAL

95Retro Gaming with Raspberry Pi

def init():
    global lasers, score, player, moveSequence, 
moveCounter, moveDelay
    initAliens()
    initBases()
    moveCounter = moveSequence = player.status = score = 
player.laserCountdown = 0
    lasers = []
    moveDelay = 30
    player.images = ["player","explosion1","explosion2", 
"explosion3","explosion4","explosion5"]
    player.laserActive = 1

figure5.py
001.
002.

003.
004.
005.

006.
007.
008.

009.

18 Initialisation
Now, it may seem a bit strange to be dealing 

with initialisation near the end of the tutorial, but 
we have been adding and changing the structure of 
our game elements as we have gone along and only 
now can we really see all the data that we need to 
set up before the game starts. In Step 04 we created 
a function called init() that we should call to get 
the game started. We could also use this function 
to reset everything back to start the game again. 
If we have included all the initialisation functions 
and variables we have talked about, we should have 
something like figure5.py.

19 They’re coming in too fast!
There are a few finishing touches to do to 

complete this first part. We can set a DIFFICULTY 
value near the top of the code and use it on various 
elements to make the game harder. We should also 
add a score, which we do by adding 1000 to a global 
variable score if an alien is hit, and then display 
that in the top right of the screen in the draw() 

function. When the game finishes (the player 
has been hit or all the aliens are gone), we should 
display a suitable message. Have a look at the 
complete listing to see how these bits fit in. When 
that’s all done, we should have the basis of a Space 
Invaders game. In the next part, we will add more 
into the game, such as levels, lives, sound, bonus 
aliens, and a leaderboard.   

Top Tip
Define several 
variables at 
once

If you are setting 
several variables 
to the same value, 
you can combine 
them into one line 
by writing a = b = 
c = 0 to set a, b, 
and c to zero.

  �The initialisation of 
our data. Calling this 
function sets our 
variables back to their 
start values

  �It’s game over for now, 
but we‘ll be back in 
the second part to 
improve the game

www.dbooks.org

https://www.dbooks.org/


TUTORIAL

Pygame Zero: Pivaders96

import pgzrun
from random import randint
import math
DIFFICULTY = 1
player = Actor("player", (400, 550)) # Load in the 
player Actor image

def draw(): # Pygame Zero draw function
    screen.blit('background', (0, 0))
    player.image = 
player.images[math.floor(player.status/6)]
    player.draw()
    drawLasers()
    drawAliens()
    drawBases()
    screen.draw.text(str(score), topright=
(780, 10), owidth=0.5, ocolor=(255,255,255), 
color=(0,64,255), fontsize=60)
    if player.status >= 30:
        screen.draw.text("GAME OVER\nPress Enter 
to play again" , center=(400, 300), 
owidth=0.5, ocolor=(255,255,255), 
color=(255,64,0), fontsize=60)
    if len(aliens) == 0 :
        screen.draw.text("YOU WON!\nPress Enter 
to play again" , center=(400, 300), owidth=0.5, 
ocolor=(255,255,255), color=(255,64,0) , 
fontsize=60)
        
def update(): # Pygame Zero update function
    global moveCounter,player
    if player.status < 30 and len(aliens) > 0:
        checkKeys()
        updateLasers()
        moveCounter += 1
        if moveCounter == moveDelay:
            moveCounter = 0
            updateAliens() 
        if player.status > 0: player.status += 1
    else:
        if keyboard.RETURN: init()

def drawAliens():
    for a in range(len(aliens)): aliens[a].draw()

def drawBases():
    for b in range(len(bases)):
        bases[b].drawClipped()

def drawLasers():
    for l in range(len(lasers)): lasers[l].draw()

def checkKeys():
    global player, lasers
    if keyboard.left:
        if player.x > 40: player.x -= 5
    if keyboard.right:
        if player.x < 760: player.x += 5
    if keyboard.space:
        if player.laserActive == 1:
            player.laserActive = 0
            clock.schedule(makeLaserActive, 1.0)
            l = len(lasers)
            lasers.append(Actor("laser2", 
(player.x,player.y-32)))
            lasers[l].status = 0
            lasers[l].type = 1

def makeLaserActive():
    global player
    player.laserActive = 1
            
def checkBases():
    for b in range(len(bases)):
        if l < len(bases):
            if bases[b].height < 5:
                del bases[b]

def updateLasers():
    global lasers, aliens
    for l in range(len(lasers)):
        if lasers[l].type == 0:
            lasers[l].y += (2*DIFFICULTY)
            checkLaserHit(l)
            if lasers[l].y > 600:
                lasers[l].status = 1
        if lasers[l].type == 1:
            lasers[l].y -= 5
            checkPlayerLaserHit(l)
            if lasers[l].y < 10:
                lasers[l].status = 1
    lasers = listCleanup(lasers)
    aliens = listCleanup(aliens)

def listCleanup(l):
    newList = []
    for i in range(len(l)):
        if l[i].status == 0: newList.append(l[i])
    return newList
    
def checkLaserHit(l):
    global player

pivaders1.py

001.
002.
003.
004.
005.

006.
007.
008.
009.

010.
011.
012.
013.
014.

015.
016.

017.
018.

019.
020.
021.
022.
023.
024.
025.
026.
027.
028.
029.
030.
031.
032.
033.
034.
035.
036.
037.
038.
039.
040.
041.

>  Language: Python   

042.
043.
044.
045.
046.
047.
048.
049.
050.
051.
052.
053.
054.

055.
056.
057.
058.
059.
060.
061.
062.
063.
064.
065.
066.
067.
068.
069.
070.
071.
072.
073.
074.
075.
076.
077.
078.
079.
080.
081.
082.
083.
084.
085.
086.
087.
088.
089.
090.
091.



TUTORIAL

97Retro Gaming with Raspberry Pi

    if player.collidepoint((lasers[l].x, 
lasers[l].y)):
        player.status = 1
        lasers[l].status = 1
    for b in range(len(bases)):
        if bases[b].collideLaser(lasers[l]):
            bases[b].height -= 10
            lasers[l].status = 1

def checkPlayerLaserHit(l):
    global score
    for b in range(len(bases)):
        if bases[b].collideLaser(lasers[l]):
            lasers[l].status = 1
    for a in range(len(aliens)):
        if aliens[a].collidepoint((lasers[l].x, 
lasers[l].y)):
            lasers[l].status = 1
            aliens[a].status = 1
            score += 1000
            
def updateAliens():
    global moveSequence, lasers, moveDelay
    movex = movey = 0
    if moveSequence < 10 or moveSequence > 30:
        movex = -15
    if moveSequence == 10 or moveSequence == 30:
        movey = 50 + (10 * DIFFICULTY)
        moveDelay -= 1
    if moveSequence >10 and moveSequence < 30:
        movex = 15
    for a in range(len(aliens)):
        animate(aliens[a], pos=(aliens[a].x + movex, 
aliens[a].y + movey), duration=0.5, tween='linear')
        if randint(0, 1) == 0:
            aliens[a].image = "alien1"
        else:
            aliens[a].image = "alien1b"
            if randint(0, 5) == 0:
                lasers.append(Actor("laser1", 
(aliens[a].x,aliens[a].y)))
                lasers[len(lasers)-1].status = 0
                lasers[len(lasers)-1].type = 0
        if aliens[a].y > 500 and player.status == 
0:
            player.status = 1
    moveSequence +=1
    if moveSequence == 40: moveSequence = 0

def init():
    global lasers, score, player, moveSequence, 

moveCounter, moveDelay
    initAliens()
    initBases()
    moveCounter = moveSequence = player.status = 
score = player.laserCountdown = 0
    lasers = []
    moveDelay = 30
    player.images = 
["player","explosion1","explosion2", 
"explosion3","explosion4","explosion5"]
    player.laserActive = 1

def initAliens():
    global aliens
    aliens = []
    for a in range(18):
        aliens.append(Actor("alien1", (210+
(a % 6)*80,100+(int(a/6)*64))))
        aliens[a].status = 0

def drawClipped(self):
    screen.surface.blit(self._surf, (self.x-32, 
self.y-self.height+30),(0,0,64,self.height))

def collideLaser(self, other):
    return (
        self.x-20 < other.x+5 and
        self.y-self.height+30 < other.y and
        self.x+32 > other.x+5 and
        self.y-self.height+30 + self.height > 
other.y
    )

def initBases():
    global bases
    bases = []
    bc = 0
    for b in range(3):
        for p in range(3):
            bases.append(Actor("base1", 
midbottom=(150+(b*200)+(p*40),520)))
            bases[bc].drawClipped = 
drawClipped.__get__(bases[bc])
            bases[bc].collideLaser = 
collideLaser.__get__(bases[bc])
            bases[bc].height = 60
            bc +=1
    
init()
pgzrun.go()

092.

093.
094.
095.
096.
097.
098.
099.
100.
101.
102.
103.
104.
105.
106.

107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.

123.
124.
125.
126.
127.
128.

129.
130.
131.

132.
133.
134.
135.
136.
137.

138.
139.
140.

141.
142.
143.

144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.

156.
157.
158.
159.
160.
161.
162.

163.
164.
165.
166.
167.
168.
169.
170.
171.

172.

173.

174.
175.
176.
177.
178.

magpi.cc/pgzero4

DOWNLOAD  
THE FULL CODE:

www.dbooks.org

http://magpi.cc/pgzero4
https://www.dbooks.org/


TUTORIAL

Pygame Zero: PiVaders part 298

I n part one, last issue, we set up the basics for 
our PiVaders single-screen shoot-’em-up  with 
our player ship controlled by the keyboard, 

defence bases, the aliens moving backwards and 
forwards across the screen, and lasers flying 
everywhere. In this part we will add lives and 
levels to the game, introduce a bonus alien, code a 
leader board for high scores, and add some groovy 
sound effects. We may even get round to adding an 
introduction screen if we get time. We are going to 
start from where we left off in part one. If you don’t 
have the part one code and files, you can download 
them from GitHub at magpi.cc/pgzero4.

This arcade shooter may be the first computer game that springs to 
mind for a lot of people. Here in part two we will take our basic PiVaders 
game from part one and add all the extras

Pygame Zero  
PiVaders: part 2

You’ll Need 

> � �An image 
manipulation 
program such 
as GIMP, or 
images from 
magpi.cc/pgzero5

> � �The latest version 
of Pygame Zero

> � �The Audacity 
sound editor or 
similar or sounds 
available from 
magpi.cc/pgzero5

> � �Speakers or 
headphones

If the player shoots all the aliens, 
they move on to the next level

Introduction screen 
with input field for 
player’s name

The player has three lives 
at the start of the game

A bonus or ‘boss’ alien 
appears from time to time

Scores from previous 
games are listed on the 
leader-board screen

01 You only live thrice
It was a tradition with Space Invaders to be 

given three lives at the start of the game. We can 
easily set up a place to keep track of our player 
lives by writing player.lives = 3 in our init() 
function. While we are in the init() function, let’s 
add a player name variable with player.name = "" 
so that we can show names on our leader board, but 
we’ll come to that in a bit. To display the number of 
lives our player has, we can add drawLives() to our 
draw() function and then define our drawLives() 
function containing a loop which ‘blits’ life.png 
once for each life in the top left of the screen.

Pa
rt

 0
4

https://github.com/themagpimag/retro-gaming/tree/master/Part%2004%20-%20Pivaders%201
http://magpi.cc/pgzero5
http://magpi.cc/pgzero5


TUTORIAL

99Retro Gaming with Raspberry Pi

02 Life after death
Now we have a counter for how many lives 

the player has, we will need to write some code to 
deal with what happens when a life is lost. In part 
one we ended the game when the player.status 
reached 30. In our update() function we already 
have a condition to check the player.status and 
if there are any aliens still alive. Where we have 
written if player.status == 30: we can write 
player.lives -=1. We can also check to see if the 
player has run out of lives when we check to see if 
the RETURN (aka ENTER) key is pressed.

03 Keep calm and carry on
Once we have reduced player.lives by 

one and the player has pressed the RETURN key, 
all we need to do to set things back in motion is to 
set player.status = 0. We may want to reset the 
laser list too, because if the player was hit by a flurry 
of lasers we may find that several lives are lost 
without giving the player a chance to get out of the 
way of subsequent lasers. We can do this by writing 
lasers = []. If the player has run out of lives at 
this point, we will send them off to the leader‑board 
page. See figure1.py to examine the code for dealing 
with lives. 

04 On the level
The idea of having levels is to start the game 

in an easy mode; then, when the player has shot all 
the aliens, we make a new level which is a bit harder 
than the last. In this case we are going to tweak a 
few variables to make each level more difficult. To 
start, we can set up a global variable level = 1 in 
our init() function. Now we can use our level 
variable to alter things as we increase the value. 
Let’s start by speeding up how quickly the aliens 
move down the screen as the level goes up. When 
we calculate the movey value in updateAliens(), 
we can write movey = 40 + (5*level) on the 
condition that moveSequence is 10 or 30.

05 On the up
To go from one level to the next, the player 

will need to shoot all the aliens. We can tell if 
there are any aliens left if len(aliens) = 0. So, 
with that in mind, we can put a condition in our 
draw() function with if len(aliens) == 0: and 

then draw text on the screen to say that the level 
has been cleared. We can put the same condition 
in the section of the update() function where 
we are waiting for RETURN to be pressed. When 
RETURN is pressed and the length of the aliens list 
is 0, we can add 1 to level and call initAliens() 
and initBases() to set things ready to start the 
new level.

def draw()
    # additional drawing code
    drawLives()
    if player.status >= 30:
        if player.lives > 0:
            drawCentreText(
"YOU WERE HIT!\nPress Enter to re-spawn")
        else:
            drawCentreText(
"GAME OVER!\nPress Enter to continue")

def init():
    # additional player variables
    player.lives = 3
    player.name = ""

def drawLives():
    for l in range(player.lives):
        screen.blit("life", (10+(l*32),10))

def update():
    # additional code for life handling
    global player, lasers
    if player.status < 30 and len(aliens) > 0:
        if player.status > 0:
            player.status += 1
            if player.status == 30:
                player.lives -= 1
    else:
        if keyboard.RETURN:
            if player.lives > 0:
                player.status = 0
                lasers = []
            else:
                # go to the leader-board
                pass;

def drawCentreText(t):
    screen.draw.text(t , center=(400, 300), owidth=0.5, 
ocolor=(255,255,255), color=(255,64,0) , fontsize=60)

figure1.py
001.
002.
003.
004.
005.
006.

007.
008.

009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.
029.
030.
031.
032.
033.
034.
035.
036.
037.

	� Code to deal 
with player 
lives. Notice the 
drawCentreText() 
function to short-cut 
printing text to the 
centre of the screen

www.dbooks.org

https://www.dbooks.org/


TUTORIAL

Pygame Zero: PiVaders part 2100

06 Front and centre
You may have noticed in figure1.py 

that we made a couple of calls to a function 
called drawCentreText() which we have not 
yet discussed. All that this function does is to 
shorten the process of writing text to the centre 
of the screen. We assume that the text will be 
positioned at coordinates (400, 300) and will 
have a set of standard style settings and colours, 
and the function definition just contains one 
line: screen.draw.text(t , center=(400, 
300), owidth=0.5, ocolor=(255,255,255), 
color=(255,64,0), fontsize=60) – where t is 
passed into the function as a parameter.

07 Flying like a boss
To liven up our game a little bit, we are 

going to add in a bonus or boss alien. This could 
be triggered in various ways, but in this case we 
will start the boss activity with a random number. 
First we will need to create the boss actor. Because 
there will only ever be one boss alien on screen at 
any time, we can just use one actor created near 
the start of our code. In this case we don’t need to 

give it coordinates as we will start the game with 
the boss actor not being drawn. We write boss = 
Actor("boss").

08 Keeping the boss in the loop
We want to start the game with the boss 

not being displayed, so we can add to our init() 
function boss.active = False and then in our 
draw() function if boss.active: boss.draw(), 
which will mean the boss will not be drawn until 
we make it active. In our update() function, along 
with our other functions to update elements, 
we can call updateBoss(). This function will 
update the coordinates of the boss actor if it is 
active or, if it is not, check to see if we need to 
start a new boss flying. See figure2.py for the 
updateBoss() function.

09 Did you hear that?
You may have noticed that in figure2.py 

we have an element of Pygame Zero that we have 
not discussed yet, and that is sound. If we write 
sounds.explosion.play(), then the sound file 
located at sounds/explosion.wav will be played. 
There are many free sound effects for games on the 
internet. If you use a downloaded WAV file, make 
sure that it is fairly small. You can edit WAV sound 
files with programs like Audacity. We can add 
sound code to other events in the program in the 
same way, like when a laser is fired. 

10 More about the boss
Staying with figure2.py, note how we can 

use random numbers to decide when the boss 
becomes active and also when the boss fires 
a laser. You can change the parameters of the 
randint() function to alter the occurrence of these 

def updateBoss():
    global boss, level, player, lasers
    if boss.active:
        boss.y += (0.3*level)
        if boss.direction == 0: boss.x -= (1* level)
        else: boss.x += (1* level)
        if boss.x < 100: boss.direction = 1
        if boss.x > 700: boss.direction = 0
        if boss.y > 500:
            sounds.explosion.play()
            player.status = 1
            boss.active = False
        if randint(0, 30) == 0:
            lasers.append(Actor("laser1", 
(boss.x,boss.y)))
            lasers[len(lasers)-1].status = 0
            lasers[len(lasers)-1].type = 0
    else:
        if randint(0, 800) == 0:
            boss.active = True
            boss.x = 800
            boss.y = 100
            boss.direction = 0

figure2.py
001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.

015.
016.
017.
018.
019.
020.
021.
022.

	� Code to update the 
boss or bonus alien. 
This code runs when 
the boss is active 
or uses random 
numbers to see if it’s 
time to make it active

	� Lasers can be very bad for your health. Best to avoid them



TUTORIAL

101Retro Gaming with Raspberry Pi

events. You can also see that we have a simple path 
calculating system for the boss to make it move 
diagonally down the screen. We use the level 
variable to alter aspects of the movement. We treat 
the boss lasers in the same way as the normal alien 
lasers, but we need to have a check to see if the 
boss is hit by a player laser. We do this by adding a 
check to our checkPlayerLaserHit() function.

11 Three strikes and you’re out
In the previous episode, the game ended if 

you were hit by a laser. In this version we have three 
chances before the game ends, and when it does, we 
want to display a high score table or leader board to 
be updated from one player to the next. There are a 
few considerations to think about here. We need a 
separate screen for our leader board; we need to get 
players to enter their name to put against each score 
and we will have to save the score information. 
In other programs in this series we have used the 
variable gameStatus to control different screens, 
so let’s bring that back for this program.

12 Screen switching with 
gameStatus

We will need three states for the gameStatus 
variable. If it is set to 0 then we should display an 
intro screen where we can get the player to type 
in their name. If it is set to 1 then we want to run 
code for playing the game. And if it is set to 2 then 
we display the leader-board page. Let’s first deal 
with the intro screen. Having set our variable to 0 
at the top of the code, we need to add a condition to 
our draw() function: if gameStatus == 0:. Then, 
under that, use drawCentreText() to show some 
intro text and display the player.name string. To 
start with, player.name will be blank.

13 A name is just a name
Now to respond to the player typing their 

name into the intro screen. We will write a very 
simple input routine and put it in the built-in 
Pygame Zero function on_key_down(). figure3.py 
shows how we do this. With this code, if the 
player presses a key, the name of the key is added 
to the player.name string unless the key is the 
BACKSPACE key, in which case we remove the last 
character. Notice the rather cunning way of doing 

that with player.name = player.name[:-1]. We 
also ignore the RETURN key, as we can deal with 
that in our update() function.

14 Game on
When the player has entered their name 

on the intro screen, all we need to do is detect a 
press of the RETURN key in our update() function 
and we can switch to the game part. We can easily 
do this by just writing if gameStatus == 0: 
and then under that, if keyboard.RETURN and 
player.name != "": gameStatus = 1. We will 
also now need to put our main game update code 
under a condition, if gameStatus == 1:. We will 
also need to have the same condition in the draw() 
function. Once this is done, we have a system for 
switching from intro screen to game screen.

15 Leader of the pack
So now we come to our leader-board screen. 

It will be triggered when the player loses the third 
life. When that happens, we set gameStatus to 2 
and put a condition in our draw() and update() 
functions to react to that. When we switch to our 
leader board, we need to display the high score 
list – so, we can write in our draw() function:  
if gameStatus == 2: drawHighScore(). Going 
back to figure1.py, you’ll see that we left a section 
at the end commented out, ready for the leader 
board. We can now fill this in with some code.

16 If only I learned to read and write
We are going to save all our scores in a 

file so that we can get them back each time the 

def on_key_down(key):
    global player
    if gameStatus == 0 and key.name != "RETURN":
        if len(key.name) == 1:
            player.name += key.name
        else:
            if key.name == "BACKSPACE":
                player.name = player.name[:-1]

figure3.py
001.
002.
003.
004.
005.
006.
007.
008.

	� Code for capturing 
keyboard input for 
the player to input 
their name on the 
introduction screen

www.dbooks.org

https://www.dbooks.org/


TUTORIAL

Pygame Zero: PiVaders part 2102

game is played. We can use a simple text file for 
this. When a new score is available, we will have 
to read the old score list in, add our new score to 
the list, sort the scores into the correct order, and 
then save the scores back out to create an updated 
file. So, the code we need to write in our update() 
function will be to call a readHighScore() 
function, set our gameStatus to 2, and call a 
writeHighScore() function.

17 Functions need to function
We have named three functions that 

need writing in the last couple of steps: 
drawHighScore(), readHighScore(), and 
writeHighScore().Have a look at figure4.py to see 
the code that we need in these functions. The file 
reading and writing are standard Python functions. 
When reading, we create a list of entries and 
add each line to a list. We then sort the list into 
highest-score-first order. When we write the file, 
we just write each list item to the file. To draw the 
leader board, we just run through the high-score 
list that we have sorted and draw the lines of text 
to the screen.

18 Sort it out
It’s worth mentioning the way we are 

sorting the high scores. In figure4.py we are 
adding a key sorting method to the list sorting 
function. We do this because the list is a string 
but we want to sort by the high score, which is 
numerical, so we break up the string and convert 
it to an integer and sort based on that value rather 
than the string. If we didn’t do this and sorted as 
a string then all the scores starting with 9 would 
come first, then all the 8s, then all the 7s and so 
on, with 9000 being shown before 80 000, which 
would be wrong. 

19 Well, that’s all folks
That’s about all we need for our Pygame 

Zero PiVaders game other than all the additions 
that you could make to it. For example, you could 
have different graphics for each row of aliens. 
We’re sure you can improve on the sounds that 
we have supplied, and there are many ways that 
the level variable can be worked into the code 
to make the different levels more difficult or 
more varied. 

	� Code for reading, 
writing, sorting, and 
drawing the high 
score leader board

def readHighScore():
    global highScore, score, player
    highScore = []
    try:
        hsFile = open("highscores.txt", "r")
        for line in hsFile:
            highScore.append(line.rstrip())
    except:
        pass
    highScore.append(str(score)+ " " + player.name)
    highScore.sort(key=natural_key, reverse=True)

def natural_key(string_):
    return [int(s) if s.isdigit() else s for s in 
re.split(r'(\d+)', string_)]

def writeHighScore():
    global highScore
    hsFile = open("highscores.txt", "w")
    for line in highScore:
        hsFile.write(line + "\n")

def drawHighScore():
    global highScore
    y = 0
    screen.draw.text("TOP SCORES", midtop=(400, 30), 
owidth=0.5, ocolor=(255,255,255), color=(0,64,255) , 
fontsize=60)
    for line in highScore:
        if y < 400:
            screen.draw.text(line, midtop=(400, 100+y), 
owidth=0.5, ocolor=(0,0,255), color=(255,255,0) , 
fontsize=50)
            y += 50
    screen.draw.text("Press Escape to play again" , 
center=(400, 550), owidth=0.5, ocolor=(255,255,255), 
color=(255,64,0) , fontsize=60)

figure4.py
001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.

015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.

026.
027.
028.

029.
030.

	� All the aliens have been destroyed. It’s time to move up a level

http://figure4.py


TUTORIAL

103Retro Gaming with Raspberry Pi

import pgzrun, math, re, time
from random import randint
player = Actor(“player”, (400, 550))
boss = Actor(“boss”)
gameStatus = 0
highScore = []

def draw(): # Pygame Zero draw function
    screen.blit(‘background’, (0, 0))
    if gameStatus == 0: # display the title page
        drawCentreText(“PIVADERS\n\n\nType your 
name then\npress Enter to start\n(arrow keys move, 
space to fire)”)
        screen.draw.text(player.name , 
center=(400, 500), owidth=0.5, ocolor=(255,0,0), 
color=(0,64,255) , fontsize=60)
    if gameStatus == 1: # playing the game
        player.image = player.images[math.
floor(player.status/6)]
        player.draw()
        if boss.active: boss.draw()
        drawLasers()
        drawAliens()
        drawBases()
        screen.draw.text(str(score) 
, topright=(780, 10), owidth=0.5, 
ocolor=(255,255,255), color=(0,64,255) , 
fontsize=60)
        screen.draw.text(“LEVEL “ + str(level) , 
midtop=(400, 10), owidth=0.5, ocolor=(255,255,255), 
color=(0,64,255) , fontsize=60)
        drawLives()
        if player.status >= 30:
            if player.lives > 0:
                drawCentreText(“YOU WERE HIT!\
nPress Enter to re-spawn”)
            else:
                drawCentreText(“GAME OVER!\nPress 
Enter to continue”)
        if len(aliens) == 0 :
            drawCentreText(“LEVEL CLEARED!\nPress 
Enter to go to the next level”)
    if gameStatus == 2: # game over show the 
leaderboard
        drawHighScore()

def drawCentreText(t):
    screen.draw.text(t , center=(400, 300), 
owidth=0.5, ocolor=(255,255,255), color=(255,64,0) 
, fontsize=60)
    
def update(): # Pygame Zero update function
    global moveCounter, player, gameStatus, lasers, 
level, boss
    if gameStatus == 0:

        if keyboard.RETURN and player.name != “”: 
gameStatus = 1
    if gameStatus == 1:
        if player.status < 30 and len(aliens) > 0:
            checkKeys()
            updateLasers()
            updateBoss()
            if moveCounter == 0: updateAliens()
            moveCounter += 1
            if moveCounter == moveDelay: 
moveCounter = 0
            if player.status > 0:
                player.status += 1
                if player.status == 30:
                    player.lives -= 1
        else:
            if keyboard.RETURN:
                if player.lives > 0:
                    player.status = 0
                    lasers = []
                    if len(aliens) == 0:
                        level += 1
                        boss.active = False
                        initAliens()
                        initBases()
                else:
                    readHighScore()
                    gameStatus = 2
                    writeHighScore()
    if gameStatus == 2:
        if keyboard.ESCAPE:
            init()
            gameStatus = 0
            
def on_key_down(key):
    global player
    if gameStatus == 0 and key.name != “RETURN”:
        if len(key.name) == 1:
            player.name += key.name
        else:
            if key.name == “BACKSPACE”:
                player.name = player.name[:-1]
    
def readHighScore():
    global highScore, score, player
    highScore = []
    try:
        hsFile = open(“highscores.txt”, “r”)
        for line in hsFile:
            highScore.append(line.rstrip())
    except:
        pass
    highScore.append(str(score)+ “ “ + player.name)
    highScore.sort(key=natural_key, reverse=True)

pivaders2.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.

012.

013.
014.

015.
016.
017.
018.
019.
020.

021.

022.
023.
024.
025.

026.
027.

028.
029.

030.

031.
032.
033.
034.

035.
036.
037.

038.

>  Language: Python   

039.

040.
041.
042.
043.
044.
045.
046.
047.

048.
049.
050.
051.
052.
053.
054.
055.
056.
057.
058.
059.
060.
061.
062.
063.
064.
065.
066.
067.
068.
069.
070.
071.
072.
073.
074.
075.
076.
077.
078.
079.
080.
081.
082.
083.
084.
085.
086.
087.
088.
089.
090.
091.

magpi.cc/pgzero5

DOWNLOAD  
THE FULL CODE:

www.dbooks.org

http://magpi.cc/pgzero5
https://www.dbooks.org/


TUTORIAL

Pygame Zero: PiVaders part 2104

def natural_key(string_):
    return [int(s) if s.isdigit() else s for s in 
re.split(r’(\d+)’, string_)]

def writeHighScore():
    global highScore
    hsFile = open(“highscores.txt”, “w”)
    for line in highScore:
        hsFile.write(line + “\n”)

def drawHighScore():
    global highScore
    y = 0
    screen.draw.text(“TOP SCORES”, midtop=(400, 
30), owidth=0.5, ocolor=(255,255,255), 
color=(0,64,255) , fontsize=60)
    for line in highScore:
        if y < 400:
            screen.draw.text(line, midtop=(400, 
100+y), owidth=0.5, ocolor=(0,0,255), 
color=(255,255,0) , fontsize=50)
            y += 50
    screen.draw.text(“Press Escape to play 
again” , center=(400, 550), owidth=0.5, 
ocolor=(255,255,255), color=(255,64,0) , 
fontsize=60)

def drawLives():
    for l in range(player.lives): screen.
blit(“life”, (10+(l*32),10))

def drawAliens():
    for a in range(len(aliens)): aliens[a].draw()

def drawBases():
    for b in range(len(bases)): bases[b].
drawClipped()

def drawLasers():
    for l in range(len(lasers)): lasers[l].draw()

def checkKeys():
    global player, score
    if keyboard.left:
        if player.x > 40: player.x -= 5
    if keyboard.right:
        if player.x < 760: player.x += 5
    if keyboard.space:
        if player.laserActive == 1:
            sounds.gun.play()
            player.laserActive = 0
            clock.schedule(makeLaserActive, 1.0)
            lasers.append(Actor(“laser2”, 
(player.x,player.y-32)))
            lasers[len(lasers)-1].status = 0
            lasers[len(lasers)-1].type = 1
            score -= 100

def makeLaserActive():

    global player
    player.laserActive = 1
    
def checkBases():
    for b in range(len(bases)):
        if l < len(bases):
            if bases[b].height < 5:
                del bases[b]

def updateLasers():
    global lasers, aliens
    for l in range(len(lasers)):
        if lasers[l].type == 0:
            lasers[l].y += 2
            checkLaserHit(l)
            if lasers[l].y > 600: lasers[l].
status = 1
        if lasers[l].type == 1:
            lasers[l].y -= 5
            checkPlayerLaserHit(l)
            if lasers[l].y < 10: lasers[l].status 
= 1
    lasers = listCleanup(lasers)
    aliens = listCleanup(aliens)

def listCleanup(l):
    newList = []
    for i in range(len(l)):
        if l[i].status == 0: newList.append(l[i])
    return newList
    
def checkLaserHit(l):
    global player
    if player.collidepoint((lasers[l].x, 
lasers[l].y)):
        sounds.explosion.play()
        player.status = 1
        lasers[l].status = 1
    for b in range(len(bases)):
        if bases[b].collideLaser(lasers[l]):
            bases[b].height -= 10
            lasers[l].status = 1

def checkPlayerLaserHit(l):
    global score, boss
    for b in range(len(bases)):
        if bases[b].collideLaser(lasers[l]): 
lasers[l].status = 1
    for a in range(len(aliens)):
        if aliens[a].collidepoint((lasers[l].x, 
lasers[l].y)):
            lasers[l].status = 1
            aliens[a].status = 1
            score += 1000
    if boss.active:
        if boss.collidepoint((lasers[l].x, 
lasers[l].y)):
            lasers[l].status = 1
            boss.active = 0

092.
093.

094.
095.
096.
097.
098.
099.
100.
101.
102.
103.
104.

105.
106.
107.

108.
109.

110.
111.
112.

113.
114.
115.
116.
117.
118.

119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.

135.
136.
137.
138.
139.

140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.

156.
157.
158.
159.

160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.

172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.

184.
185.

186.
187.
188.
189.
190.

191.
192.



TUTORIAL

105Retro Gaming with Raspberry Pi

            score += 5000
        
def updateAliens():
    global moveSequence, lasers, moveDelay
    movex = movey = 0
    if moveSequence < 10 or moveSequence > 30: 
movex = -15
    if moveSequence == 10 or moveSequence == 30:
        movey = 40 + (5*level)
        moveDelay -= 1
    if moveSequence >10 and moveSequence < 30: 
movex = 15
    for a in range(len(aliens)):
        animate(aliens[a], pos=(aliens[a].x 
+ movex, aliens[a].y + movey), duration=0.5, 
tween=’linear’)
        if randint(0, 1) == 0:
            aliens[a].image = “alien1”
        else:
            aliens[a].image = “alien1b”
            if randint(0, 5) == 0:
                lasers.append(Actor(“laser1”, 
(aliens[a].x,aliens[a].y)))
                lasers[len(lasers)-1].status = 0
                lasers[len(lasers)-1].type = 0
                sounds.laser.play()
        if aliens[a].y > 500 and player.status == 
0:
            sounds.explosion.play()
            player.status = 1
            player.lives = 1
    moveSequence +=1
    if moveSequence == 40: moveSequence = 0

def updateBoss():
    global boss, level, player, lasers
    if boss.active:
        boss.y += (0.3*level)
        if boss.direction == 0: boss.x -= (1* 
level)
        else: boss.x += (1* level)
        if boss.x < 100: boss.direction = 1
        if boss.x > 700: boss.direction = 0
        if boss.y > 500:
            sounds.explosion.play()
            player.status = 1
            boss.active = False
        if randint(0, 30) == 0:
            lasers.append(Actor(“laser1”, 
(boss.x,boss.y)))
            lasers[len(lasers)-1].status = 0
            lasers[len(lasers)-1].type = 0
    else:
        if randint(0, 800) == 0:
            boss.active = True
            boss.x = 800
            boss.y = 100
            boss.direction = 0

def init():
    global lasers, score, player, moveSequence, 
moveCounter, moveDelay, level, boss
    initAliens()
    initBases()
    moveCounter = moveSequence = player.status = 
score = player.laserCountdown = 0
    lasers = []
    moveDelay = 30
    boss.active = False
    player.images = 
[“player”,”explosion1”,”explosion2”,”explosion3”, 
”explosion4”,”explosion5”]
    player.laserActive = 1
    player.lives = 3
    player.name = “”
    level = 1

def initAliens():
    global aliens, moveCounter, moveSequence
    aliens = []
    moveCounter = moveSequence = 0
    for a in range(18):
        aliens.append(Actor(“alien1”, (210+(a % 
6)*80,100+(int(a/6)*64))))
        aliens[a].status = 0

def drawClipped(self):
    screen.surface.blit(self._surf, (self.x-32, 
self.y-self.height+30),(0,0,64,self.height))

def collideLaser(self, other):
    return (
        self.x-20 < other.x+5 and
        self.y-self.height+30 < other.y and
        self.x+32 > other.x+5 and
        self.y-self.height+30 + self.height > 
other.y
    )

def initBases():
    global bases
    bases = []
    bc = 0
    for b in range(3):
        for p in range(3):
            bases.append(Actor(“base1”, 
midbottom=(150+(b*200)+(p*40),520)))
            bases[bc].drawClipped = drawClipped.__
get__(bases[bc])
            bases[bc].collideLaser = 
collideLaser.__get__(bases[bc])
            bases[bc].height = 60
            bc +=1
    
init()
pgzrun.go()

193.
194.
195.
196.
197.
198.

199.
200.
201.
202.

203.
204.

205.
206.
207.
208.
209.
210.

211.
212.
213.
214.

215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.

226.
227.
228.
229.
230.
231.
232.
233.
234.

235.
236.
237.
238.
239.
240.
241.
242.
243.

244.
245.

246.
247.
248.

249.
250.
251.
252.

253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.

264.
265.
266.
267.

268.
269.
270.
271.
272.
273.
274.

275.
276.
277.
278.
279.
280.
281.
282.
283.

284.

285.

286.
287.
288.
289.
290.

www.dbooks.org

https://www.dbooks.org/


TUTORIAL

Pygame Zero: Hungry Pi-Man106

Maze games have been popular since the 1980s. Here we will be 
using more advanced Python programming techniques to create our 
own addition to the genre 

T he concept of Hungry Pi-Man is quite simple. 
Pi-Man eats green dots (peas) in a maze to 
score points. Avoid the flames unless you 

have just eaten a power-up, in which case you 
can eat them. In this series we have gradually 
introduced new elements of Pygame Zero and also 
concepts around writing games. This is the first 
instalment in a two-part tutorial which will show 
you some more tricks to writing arcade games with 
Pygame Zero. We will also use some more advanced 
programming concepts to make our games even 
better. In this first part, we will put together the 
basics of the Hungry Pi-Man game and introduce 
the concept of adding extra Python modules to 
our program.

01 Let’s get stuck in
As with the more recent episodes of this 

series, let’s jump straight in, assuming that 
we have our basic Pygame Zero setup done. 
Let’s set our window size to WIDTH = 600 and 
HEIGHT = 660. This will give us room for a roughly 
square maze and a header area for some game 
information. We can get our gameplay area set up 
straight away by blitting two graphics – ‘header’ 
and ‘colourmap’ – to 0,0 and 0,80 respectively in 
the draw() function. You can make these graphics 
yourself or you can use ours, which can be found 
at magpi.cc/pgzero6.

02 It’s amazing
Our maze for the game has a specific 

layout, but you can make your own design if you 
want. If you do make your own, you’ll also have 

Pygame Zero 
Hungry Pi-Man

You’ll Need 

> � �An image 
manipulation 
program such as 
GIMP, or images 
available from 
magpi.cc/pgzero6

> � �The latest version 
of Pygame Zero

> � �USB joystick or 
gamepad (optional)

Pa
rt

 0
5

to create two more maps (we’ll come to those in 
a bit) which help with the running of the game. 
The main things about the map is that it has a 
central area where the flames start from and it 
doesn’t have any other closed-in areas that the 
flames are likely to get trapped in (they can be a bit 
stupid sometimes). 

03 Pie and peas
Our next challenge is to get a player actor 

moving around the maze. To fit our Hungry Pi-Man 
theme, for this we will have a hungry pie that goes 
around eating green peas – yes, it’s a rather surreal 
idea, but no stranger than the themes of many 
1980s arcade games!

We’ll need two frames for our character: one 
with the mouth open and one with it closed. We 
can create our player actor near the top of the code 
using player = Actor("piman_o"). This will 
create the actor with the mouth-open graphic. 
We will then set the actor’s location in an init() 
function, as in previous programs.

	� Our hungry Pi-Man explores the maze, gobbling green peas 
while avoiding flames

http://magpi.cc/pgzero6
https://github.com/themagpimag/retro-gaming/tree/master/Part%2006%20-%20Hungry%20Pi-Man%201


TUTORIAL

107Retro Gaming with Raspberry Pi

04 Modulify to simplify
We can get our player onto the play area by 

setting player.x = 290 and player.y = 570 in 
the init() function and then call player.draw() 
in the draw() function, but to move the player 
character we’ll need to get some input from the 
player. Previously we have used keyboard and 
mouse input, but this time we are going to have the 
option of joystick or gamepad input. Pygame Zero 
doesn’t currently directly support gamepads, but 
we are going to borrow a bit of the Pygame module 
to get this working. We are also going to make a 
separate Python module for our input.

05 It’s a joystick.init
Setting up a new module is easy. All we need 

to do is make a new file, in this case gameinput.py,  
and in our main program at the top, write import 
gameinput. In this new file we can import the 
Pygame functions we need with from pygame 
import joystick, key and from pygame.locals 
import *. We can then initialise the Pygame 
joystick object (this also includes gamepads) by 
typing joystick.init(). We can find out how 
many joysticks or gamepads are connected by using 
joystick_count = joystick.get_count(). If we 
find any joysticks connected, we need to initialise 
them individually – see figure1.py.

06 Checking the input
We can now write a function in our 

gameinput module to check input from 
the player. If we define the function with 
def checkInput(p): we can get the x axis of a 
joystick using joyin.get_axis(0) and the y axis 
by using joyin.get_axis(1). The numbers that 
are returned from these calls will be between -1 
and +1, with 0 being the central position. We can 
check to see if the values are over 0.8 or under 
-0.8, as, depending on the device, we may not 
actually see -1 or 1 being returned. You may like to 
test this with your gamepad or joystick to see what 
range of values are returned.

07 Up, down, left, or right
The variable p that we are passing into our 

checkInput() function will be the player actor. We 

Top Tip
Modules

Using separate 
modules means 
not only is your 
code easier 
to follow, but 
it’s easier for 
a team to 
work on.

# gameinput Module

from pygame import joystick, key
from pygame.locals import *

joystick.init()
joystick_count = joystick.get_count()

if(joystick_count > 0):
    joyin = joystick.Joystick(0)
    joyin.init()
    # For the purposes of this tutorial
    # we are only going to use the first
    # joystick that is connected.    

figure1.py
001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.

The maze is made of 
corridors and maze walls

Flames move around the 
maze, looking for Pi-Man

The player is represented 
by the Pi-Man character 
that moves around the 
maze, eating dots

www.dbooks.org

https://www.dbooks.org/


TUTORIAL

Pygame Zero: Hungry Pi-Man108

can test each of the directions of the joystick at the 
same time as the keyboard and then set the player 
angle (so that it points in the correct direction for 
movement) and also how much it needs to move. 
We’ll set these by saying (for example, if the left 
arrow is pressed or the joystick is moved to the 
left) if key.get_pressed()[K_LEFT] or xaxis < 
-0.8: and then p.angle = 180 and p.movex = -20. 
See figure2.py for the full checkInput() function. 

08 Get a move on!
Now we have our input function set up, we 

can call it from the update() function. Because this 
function is in a different module, we need to prefix 
it with the module name. In the update() function 
we write gameinput.checkInput(player). After 
this function has been called, if there has been any 
input, we should have some variables set in the 
player actor that we can use to move. We can say 
if player.movex or player.movey: and then use 
the animate() function to move by the amount 
specified in player.movex and player.movey.

09 Hold your horses
The way we have the code at the moment 

means that any time there is some input, we fire 
off a new animation. This will soon mean that 
layers of animation get called over the top of each 
other, but what we want is for the animation to run 
and then start looking for new input. To do this we 
need an input locking system. We can call an input 
lock function before the move and then wait for 
the animation to finish before unlocking to look for 
more input. Look at figure3.py to see how we can 
make this locking system.

10 You can’t just move anywhere
Now, here comes the interesting bit. We 

want our player actor to move around the maze, but 
at the moment it will go though the walls and even 
off the screen. We need to restrict the movement 
only to the corridors of the maze. There are several 
different ways we could do this, but for this game 
we’re going to have an image map marking the 

figure2.py
001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.

def checkInput(p):
    global joyin, joystick_count
    xaxis = yaxis = 0
    if joystick_count > 0:
        xaxis = joyin.get_axis(0)
        yaxis = joyin.get_axis(1)
    if key.get_pressed()[K_LEFT] or xaxis < -0.8:
        p.angle = 180
        p.movex = -20
    if key.get_pressed()[K_RIGHT] or xaxis > 0.8:
        p.angle = 0
        p.movex = 20
    if key.get_pressed()[K_UP] or yaxis < -0.8:
        p.angle = 90
        p.movey = -20
    if key.get_pressed()[K_DOWN] or yaxis > 0.8:
        p.angle = 270
        p.movey = 20        

figure3.py
001.
002.
003.
004.
005.

006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.

# inside update() function

    if player.movex or player.movey:
        inputLock()
        animate(player, pos=(player.x + player.
movex, player.y + player.movey), duration=1/SPEED, 
tween='linear', on_finished=inputUnLock)

# outside update() function

def inputLock():
    global player
    player.inputActive = False

def inputUnLock():
    global player
    player.movex = player.movey = 0
    player.inputActive = True

	� You can plug a gamepad or joystick into one of the USB ports 
on your Raspberry Pi



TUTORIAL

109Retro Gaming with Raspberry Pi

areas that the player actor can move within. The 
map will be a black and white one, showing just the 
corridors as black and the walls as white. We will 
then look at the map in the direction we want to 
move and see if it is black; if it is, we can move.

11 Testing the map
To be able to test the colour of a part of an 

image, we need to borrow a few functions from 
Pygame again. We’ll also put our map functions 
in a separate module. So make a new Python file 
and call it gamemaps.py and in it we’ll write 
from pygame import image, Color.

We must also load in our movement map, which 
we need to do in the Pygame way: moveimage = 
image.load('images/pimanmovemap.png'). Then 
all we need to do is write a function to check that 
the direction of the player is valid. See figure4.py 
for this function.

12 Using the movemap
To use this new module, we need to 

import gamemaps at the top of our main code 
file and then, before we animate the player (but 
after we have checked for input), we can call 
gamemaps.checkMovePoint(player),which will 
zero the movex and movey variables of the player 
if the move is not possible. So now we should find 
that the player actor can only move inside the 
corridors. We do have one special case that you 
may have noticed in figure4.py, and that is because 
there is one corridor where the player can move 
from one side of the screen to the other. 

13 You spin me round
There is one more aspect to the movement 

of the player actor, and that is the animation. As 
Pi-Man moves, the mouth opens and shuts and 
points in the direction of the movement. The 
mouth opening and closing is easy enough: we 
have an image for open and one for closed and 
alternate between the two. For pointing in the 
correct direction, we can rotate the player actor. 
Unfortunately, this has a slight problem that 
Pi‑Man will be upside-down when moving left. So 
we just need to have one version that is switched 
the other way round. See figure5.py for a function 
that sorts out all of this.

figure4.py
001.
002.
003.
004.
005.
006.
007.
008.
009.

010.

# gamemaps module
from pygame import image, Color
moveimage = image.load('images/pimanmovemap.png')

def checkMovePoint(p):
    global moveimage
    if p.x+p.movex < 0: p.x = p.x+600
    if p.x+p.movex > 600: p.x = p.x-600
    if moveimage.get_at((int(p.x+p.movex), int(p.y+
p.movey-80))) != Color('black'):
        p.movex = p.movey = 0

figure5.py
001.
002.
003.
004.
005.
006.
007.
008.
009.

010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.

def getPlayerImage():
    global player
    # we need to import datetime at the top of our code
    dt = datetime.now()
    a = player.angle
    # this next line will give us a number between
    # 0 and 5 depending on the time and SPEED
    tc = dt.microsecond%(500000/SPEED)/(100000/SPEED)
    if tc > 2.5 and (player.movex != 0 or 
player.movey !=0):
        # this is for the closed mouth images
        if a != 180:
            player.image = "piman_c"
        else:
            # reverse image if facing left
            player.image = "piman_cr"
    else:
        # this is for the open mouth images
        if a != 180:
            player.image = "piman_o"
        else:
            player.image = "piman_or"
    # set the angle on the player actor
    player.angle = a

Top Tip
Pygame

Pygame Zero is based on Pygame, but if you want 
to use some of the Pygame functions, best to do it 
in a separate module to avoid confusion.

www.dbooks.org

https://www.dbooks.org/


TUTORIAL

Pygame Zero: Hungry Pi-Man110

14 Spot on
So when we have put in a call to 

getPlayerImage() just before we draw the player 
actor, we should have Pi-Man moving around, 
chomping and pointing in the correct direction. 
Now we need something to chomp. We are going 
to create a set of dots at even spacings along most 
of the corridors. An easy way to do this is to use 
a similar technique that we’re using for testing 
where the corridors are. If we make an image map 
of the places the dots need to go and loop over the 

whole map, only placing dots where it is black, we 
can get the desired effect.

15 Tasty, tasty dots
To get our dots doing their thing, we’ll need 

to code a few things. We need to initialise actors 
for each dot, we need to draw each dot, and if the 
player eats the dot, we need to stop drawing it; 
figure6.py shows how we can do each of these 
jobs. We need initDots(), we need to add another 
function to gamemaps.py to work out where 
to position the dots, and we need to add some 
drawing code to the draw() function. In addition 
to the code in figure6.py, we need to add a call to 
initDots() in our init() function.

16 Avoid the flames
Now that we have our Pi-Man happily 

munching green peas, we must introduce our 
villains to the mix. Four hot flames, each rendered 
in a different colour, roam the maze looking for 
Pi-Man, starting from an enclosure in the centre 
of the map. We can initialise each flame as an 
actor to appear at the centre of the maze and keep 
them in a list called flames[]. To start off with, 
we’ll just make them move around randomly. The 
way we can do this is to set a random direction 
(flames[g].dir) for each and then keep them 
moving until they hit a wall.

17 Random motion
We can use the same system that we used to 

check player movement for the flames. Each time 
we move a flame – moveFlames() – we can get a list 
of which directions are available to it. If the current 
direction (flames[g].dir) is not available, then we 
randomly pick another direction until we find one 
that we can move in. We can also have a random 
occurrence of changing direction, just to make it a 
bit less predictable – and if the flames collide with 
each other, we could do the same. When we have 
moved the flames with the animate() function, 
we get it to count how many flames have finished 
moving. When they are all done, we can call the 
moveFlames() function again. 

figure6.py
001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.

012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.

024.
025.
026.
027.
028.
029.
030.
031.
032.
033.
034.
035.
036.
037.

# This goes in the main code file.

def initDots():
    global piDots
    piDots = []
    a = x = 0
    while x < 30:
        y = 0
        while y < 29:
            if gamemaps.checkDotPoint(10+x*20, 10+y*20):
                piDots.append(Actor("dot",(10+x*20, 
90+y*20)))
                piDots[a].status = 0
                a += 1
            y += 1
        x += 1

# This goes in the gamemaps module file.

dotimage = image.load('images/pimandotmap.png')

def checkDotPoint(x,y):
    global dotimage
    if dotimage.get_at((int(x), int(y))) == 
Color('black'):
        return True
    return False

# This bit goes in the draw() function.

    piDotsLeft = 0
    for a in range(len(piDots)):
        if piDots[a].status == 0:
            piDots[a].draw()
            piDotsLeft += 1
        if piDots[a].collidepoint((player.x, player.y)):
            piDots[a].status = 1
    # if there are no dots left, the player has won
    if piDotsLeft == 0: player.status = 2



TUTORIAL

111Retro Gaming with Raspberry Pi

gameinput.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.
029.
030.

>  Language: Python 3  

# gameinput Module

from pygame import joystick, key
from pygame.locals import *

joystick.init()
joystick_count = joystick.get_count()

if(joystick_count > 0):
    joyin = joystick.Joystick(0)
    joyin.init()

def checkInput(p):
    global joyin, joystick_count
    xaxis = yaxis = 0
    if joystick_count > 0:
        xaxis = joyin.get_axis(0)
        yaxis = joyin.get_axis(1)
    if key.get_pressed()[K_LEFT] or xaxis < -0.8:
        p.angle = 180
        p.movex = -20
    if key.get_pressed()[K_RIGHT] or xaxis > 0.8:
        p.angle = 0
        p.movex = 20
    if key.get_pressed()[K_UP] or yaxis < -0.8:
        p.angle = 90
        p.movey = -20
    if key.get_pressed()[K_DOWN] or yaxis > 0.8:
        p.angle = 270
        p.movey = 20

18 Light a flame
The last thing to do with our flames is to 

actually draw them to the screen. We can create 
a function called drawFlames() where we loop 
through the four flames and draw them to the 
screen. One of the details of the original game 
was that the eyes of the flames would follow the 
player; we can do this by setting the flame image 
to reverse if the player is to the left of the flame. 
We have numbered images so that flame one is 
flame1.png and flame two is flame2.png, etc. Have 
a look at the full piman1.py program listing to see 
all the functions that make the flames work.

19 Game over
Of course, we need to deal with the end-of-

the-game conditions and, as before, we can use 
a status variable. In this case we have previously 
set player.status = 2 if the player wins.  We 
can check to see if a flame collides with the player 
and set player.status = 1. Then we just need to 
display some text in the draw() function based on 
this variable. And that’s it for part one. In the next 
part we’ll be giving the flames more brains, adding 
levels, lives, and power-ups – and adding some 
sweet, soothing music and sound effects.  

	� Three maps are used: one 
which we see, one to check 
possible movements, and 
one to check where dots 
are to be placed

Top Tip
Animations

When using the animate() function, it is best to use 
the callback function to see when it has finished, as 
different systems may work at different speeds.

Movement MapColour Map Dot Location Map

www.dbooks.org

https://www.dbooks.org/


TUTORIAL

Pygame Zero: Hungry Pi-Man112

import pgzrun
import gameinput
import gamemaps
from random import randint
from datetime import datetime
WIDTH = 600
HEIGHT = 660

player = Actor("piman_o") # Load in the player Actor image
SPEED = 3

def draw(): # Pygame Zero draw function
    global piDots, player
    screen.blit('header', (0, 0))
    screen.blit('colourmap', (0, 80))
    piDotsLeft = 0
    for a in range(len(piDots)):
        if piDots[a].status == 0:
            piDots[a].draw()
            piDotsLeft += 1
        if piDots[a].collidepoint((player.x, player.y)):
            piDots[a].status = 1
    if piDotsLeft == 0: player.status = 2
    drawFlames()
    getPlayerImage()
    player.draw()
    if player.status == 1: screen.draw.text("GAME OVER" 
, center=(300, 434), owidth=0.5, ocolor=(255,255,255), 
color=(255,64,0) , fontsize=40)
    if player.status == 2: screen.draw.text("YOU WIN!" 
, center=(300, 434), owidth=0.5, ocolor=(255,255,255), 
color=(255,64,0) , fontsize=40)

def update(): # Pygame Zero update function
    global player, moveFlamesFlag, flames
    if player.status == 0:
        if moveFlamesFlag == 4: moveFlames()
        for g in range(len(flames)):
            if flames[g].collidepoint((player.x, player.y)):
                player.status = 1
                pass
        if player.inputActive:
            gameinput.checkInput(player)
            gamemaps.checkMovePoint(player)
            if player.movex or player.movey:
                inputLock()
                animate(player, pos=(player.x + player.movex, 
player.y + player.movey), duration=1/SPEED, tween='linear', 
on_finished=inputUnLock)

def init():

piman1.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.

028.

029.
030.
031.
032.
033.
034.
035.
036.
037.
038.
039.
040.
041.
042.
043.

044.
045.

>  Language: Python 3  

gamemaps.py

001.
002.
003.
004.

005.

006.
007.
008.
009.

010.

011.

012.
013.
014.
015.
016.

017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.

029.
030.

031.
032.

033.
034.

035.

>  Language: Python 3  

# gamemaps module

from pygame import image, Color
moveimage = image.load('images/
pimanmovemap.png')
dotimage = image.load('images/
pimandotmap.png')

def checkMovePoint(p):
    global moveimage
    if p.x+p.movex < 0: p.x = 
p.x+600
    if p.x+p.movex > 600: p.x = p.x-
600
    if moveimage.get_at((int(p.x+p.
movex), int(p.y+p.movey-80))) != 
Color('black'):
        p.movex = p.movey = 0

def checkDotPoint(x,y):
    global dotimage
    if dotimage.get_at((int(x), 
int(y))) == Color('black'):
        return True
    return False

def getPossibleDirection(g):
    global moveimage
    if g.x-20 < 0:
        g.x = g.x+600
    if g.x+20 > 600:
        g.x = g.x-600
    directions = [0,0,0,0]
    if g.x+20 < 600:
        if moveimage.get_at(
(int(g.x+20), int(g.y-80))) == 
Color('black'): directions[0] = 1
    if g.x < 600 and g.x >= 0:
        if moveimage.get_at(
(int(g.x), int(g.y-60))) == 
Color('black'): directions[1] = 1
    if g.x-20 >= 0:
        if moveimage.get_at(
(int(g.x-20), int(g.y-80))) == 
Color('black'): directions[2] = 1
    if g.x < 600 and g.x >= 0:
        if moveimage.get_at(
(int(g.x), int(g.y-100))) == 
Color('black'): directions[3] = 1
    return directions



TUTORIAL

113Retro Gaming with Raspberry Pi

046.
047.
048.
049.
050.
051.
052.
053.
054.
055.
056.
057.
058.
059.

060.
061.
062.
063.
064.
065.
066.
067.
068.
069.
070.
071.
072.
073.
074.
075.
076.
077.
078.
079.
080.
081.
082.
083.
084.
085.

086.

087.
088.
089.
090.
091.
092.
093.

magpi.cc/pgzero6

DOWNLOAD  
THE FULL CODE:

    global player
    initDots()
    initFlames()
    player.x = 290
    player.y = 570
    player.status = 0
    inputUnLock()

def getPlayerImage():
    global player
    dt = datetime.now()
    a = player.angle
    tc = dt.microsecond%(500000/SPEED)/(100000/SPEED)
    if tc > 2.5 and (player.movex != 0 or 
player.movey !=0):
        if a != 180:
            player.image = "piman_c"
        else:
            player.image = "piman_cr"
    else:
        if a != 180:
            player.image = "piman_o"
        else:
            player.image = "piman_or"
    player.angle = a

def drawFlames():
    for g in range(len(flames)):
        if flames[g].x > player.x:
            flames[g].image = "flame"+str(g+1)+"r"
        else:
            flames[g].image = "flame"+str(g+1)
        flames[g].draw()

def moveFlames():
    global moveFlamesFlag
    dmoves = [(1,0),(0,1),(-1,0),(0,-1)]
    moveFlamesFlag = 0
    for g in range(len(flames)):
        dirs = gamemaps.getPossibleDirection(flames[g])
        if flameCollided(flames[g],g) and randint(0,3) 
== 0: flames[g].dir = 3
        if dirs[flames[g].dir] == 0 or randint(0,50) == 
0:
            d = -1
            while d == -1:
                rd = randint(0,3)
                if dirs[rd] == 1:
                    d = rd
            flames[g].dir = d
        animate(flames[g], pos=(flames[g].x 

+ dmoves[flames[g].dir][0]*20, flames[g].y + 
dmoves[flames[g].dir][1]*20), duration=1/SPEED, 
tween='linear', on_finished=flagMoveFlames)

def flagMoveFlames():
    global moveFlamesFlag
    moveFlamesFlag += 1

def flameCollided(ga,gn):
    for g in range(len(flames)):
        if flames[g].colliderect(ga) and g != gn:
            return True
    return False
    
def initDots():
    global piDots
    piDots = []
    a = x = 0
    while x < 30:
        y = 0
        while y < 29:
            if gamemaps.checkDotPoint(10+x*20, 10+y*20):
                piDots.append(Actor("dot",(10+x*20, 
90+y*20)))
                piDots[a].status = 0
                a += 1
            y += 1
        x += 1

def initFlames():
    global flames, moveFlamesFlag
    moveFlamesFlag = 4
    flames = []
    g = 0
    while g < 4:
        flames.append(Actor("flame"+str(g+1) 
,(270+(g*20), 370)))
        flames[g].dir = randint(0, 3)
        g += 1

def inputLock():
    global player
    player.inputActive = False

def inputUnLock():
    global player
    player.movex = player.movey = 0
    player.inputActive = True
    
init()
pgzrun.go()

094.
095.
096.
097.
098.
099.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.

114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.

126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.

www.dbooks.org

https://github.com/themagpimag/retro-gaming/tree/master/Part%2006%20-%20Hungry%20Pi-Man%201
https://www.dbooks.org/


TUTORIAL

Pygame Zero: Hungry Pi-Man part 2114

I n part one, we created a maze for our player to 
move around, and restricted movement to just 
the corridors. We provided some dots (green 

peas) to eat and some flames to avoid. In this 
part we are going to give the flames some more 
brains so that they are a bit more challenging to 
the player. We will also add the bonus power-ups 
which turn the flames into tasty edibles, give Pi-
Man some extra levels to explore and some extra 
lives. So far in this series we have not dealt with 
music, so we will have a go at putting some music 
and sound effects into the game.

01 Need more brains
Also in part one, we left our flames 

wandering around the maze randomly without 
much thought for what they were doing, which was 
a bit unfair as Pi-Man could evade them without 
too much trouble. In the original game, each flame 
had a program that it followed to characterise its 
movements. We are going to add some brains to 
two of the flames. The first we will make follow 
Pi-Man, and the second we will get to ambush 
by moving ahead of Pi-Man. We will still leave in 
some random movement, otherwise it may get a 
bit too difficult.

02 Follow the leader
First, let’s get the red flame to follow 

Pi-Man. We already have a moveFlames() function 

In part two of our tutorial, we add some groovy features to the 
basic game created last time, including better enemy AI, power-
ups, levels, and sound

Pygame Zero 
Hungry Pi-Man:
part 2

Pa
rt

 0
6

You’ll Need 

> � �An image 
manipulation 
program such as 
GIMP, or images 
available from 
magpi.cc/pgzero7

> � �The latest version 
of Pygame Zero 
(1.2)

> � �USB joystick or 
gamepad (optional)

> � �Headphones 
or speakers

Pi-Man gets points for eating dots, 
and flames after eating power-ups

If all the dots are eaten, Pi-Man 
moves up a level; he has three lives 
before the game is over

If Pi-Man eats a power-up, the 
flames turn dark and are edible

https://github.com/themagpimag/retro-gaming/tree/master/Part%2007%20-%20Hungry%20Pi-Man%202


TUTORIAL

115Retro Gaming with Raspberry Pi

from part one and we can add a condition to see 
if we are dealing with the first flame: if g == 0: 
followPlayer(g, dirs). This calls followPlayer() 
if it’s the first flame. The followPlayer() function 
receives a list of directions that the flame can 
move in. It then tests the x coordinate of the player 
against the x coordinate of the flame and, if the 
direction is valid, sets the flame direction to move 
toward the player. Then it does the same with 
the y coordinates.

03 Y over x
The keen-witted among you will have 

noticed that if x and y movements towards the 
player are both valid, then the y direction will 
always win. We could throw in another random 
number to choose between the two, but in testing 
this arrangement it doesn’t cause any significant 
problem with the movement. See figure1.py for 
the followPlayer() function. You will see there is a 
special condition aboveCentre() when we check the 
downward movement. We are checking that the 
flame is not just above the centre, otherwise it will 
go back into its starting enclosure.

04 The central problem
If we go back to the moveFlames() function, 

we need another centre-related condition: if 
inTheCentre(flames[g]). This is because if we leave 
the flame to randomly move around our centre 
enclosure, it may take a long time to get out. In 
part one, you may have noticed that from time 

figure1.py
001.
002.
003.
004.
005.
006.
007.
008.
009.

010.
011.
012.
013.
014.
015.

016.
017.

def followPlayer(g, dirs):
    d = flames[g].dir
    if d == 1 or d == 3:
        if player.x > flames[g].x and dirs[0] == 1:
            flames[g].dir = 0
        if player.x < flames[g].x and dirs[2] == 1:
            flames[g].dir = 2
    if d == 0 or d == 2:
        if player.y > flames[g].y and dirs[1] == 1 and not 
aboveCentre(flames[g]): flames[g].dir = 1
        if player.y < flames[g].y and dirs[3] == 1:
            flames[g].dir = 3

def aboveCentre(ga):
    if ga.x > 220 and ga.x < 380 and ga.y > 300 and ga.y 
< 320:
        return True
    return False

to time one flame would get stuck in the centre. 
What we do is, if we detect that a flame is in the 
centre, we always default to direction 3, which is 
up. If we run the game with this condition and 
the followPlayer() function, we should see all 
the flames making their way straight out of the 
centre and then the red flame making a bee-line 
towards Pi-Man.

	� Adding a brain to 
a flame to follow 
the player

www.dbooks.org

https://www.dbooks.org/


TUTORIAL

Pygame Zero: Hungry Pi-Man part 2116

05 It’s an ambush!
So, the next brain to implant is for 

the second flame. We will add a function 
ambushPlayer() in the same way we did for the first 
flame, but this time if g == 1:. The ambushPlayer() 
function works very much like the followPlayer() 
function, but this time we just check the direction 
that Pi-Man is currently moving and try to move in 
that direction. We, of course, cannot know which 
direction the player is going to move, and this may 
seem a bit of a simplistic approach to ambushing 
the player, but it is surprising how many times 
Pi‑Man ends up wedged between these two flames 
with this method.

06 Scores on the doors
Brain functions could be added to all the 

flames, but we are going to leave the flame brains 
for now as there is plenty more to do to get our 

figure2.py
001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.

# This code goes in the update() function

    if player.status == 1:
        i = gameinput.checkInput(player)
        if i == 1:
            player.status = 0
            player.x = 290
            player.y = 570

# This code goes in the gameinput module
# in the checkInput() function

    if joystick_count > 0:
        jb = joyin.get_button(1)
    else:
        jb = 0
    if p.status == 1:
        if key.get_pressed()[K_RETURN] or jb:
            return 1

	� Checking to see if ENTER 
or button A has been 
pressed and resetting the 
player actor

	� Pi-Man gets three lives. 
You can use the gamepad 
or joystick buttons to ask 
for input from the player



TUTORIAL

117Retro Gaming with Raspberry Pi

game completed. Before we go any further, we 
ought to get a scoring system going and reward Pi-
Man for all the dots eaten. We can attach the score 
variable to the player actor near the top of our code 
with player.score = 0 and then each time a dot 
is eaten we add 10 to the score with player.score 
+= 10. We can also display the score in the draw() 
function (probably top right is best) with screen.
draw.text().

07 Three strikes and you’re out!
As is the tradition in arcade games, you 

get three lives before it’s game over. If you 
followed our previous tutorial for PiVaders, you 
will already know how we do this. We just add a 
lives variable to the player actor and then each 
time Pi-Man is caught by a flame, we take a life off, 
set player.status = 1, and print a message to say 
press ENTER. When pressed, we set player.status 
= 0 and send Pi-Man back to the starting place. 
Then we continue. Have a look at figure2.py to see 
the code we add to reset Pi-Man to the start.

08 Printing lives
We have the system for keeping track of 

the player.lives variable, but we also need to 
show the player how many lives they have left. 
We can do this with a simple loop like we used 
in the previous PiVaders tutorial. We can have 
a drawLives() function which we call from our 
draw() function. In that function, we go round a 
loop for the number of lives we have by saying for 
l in range(player.lives): and then we can use 
the same image that we use for the player and say 
screen.blit("piman_o", (10+(l*32),40)).

09 Which button to press
You may notice in figure2.py that in our 

gameinput module we are checking a joystick 
button as well as the ENTER key. You may want to 
do a few tests with the gamepads or joysticks that 
you’re using, as the buttons may have different 
numbers. You can also prompt the player to press 
(in this case) the A button to continue. If you were 
designing a game that relied on several buttons 
being used, you might want to set up a way of 
mapping the buttons to values depending on what 
type of gamepad or joystick is being used. 

figure3.py
001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.

013.
014.
015.
016.
017.

018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.

029.
030.
031.
032.

# This code is in our main code file (piman2.py)

def initDots():
    global piDots
    piDots = []
    a = x = 0
    while x < 30:
        y = 0
        while y < 29:
            d = gamemaps.checkDotPoint(10+x*20, 10+y*20)
            if d == 1:
                piDots.append(Actor("dot",(10+x*20, 
90+y*20)))
                piDots[a].status = 0
                piDots[a].type = 1
                a += 1
            if d == 2:
                piDots.append(Actor("power",(10+x*20, 
90+y*20)))
                piDots[a].status = 0
                piDots[a].type = 2
                a += 1
            y += 1
        x += 1

# This code is in the gamemaps module

def checkDotPoint(x,y):
    global dotimage
    if dotimage.get_at((int(x), int(y))) == 
Color('black'):
        return 1
    if dotimage.get_at((int(x), int(y))) == Color('red'):
        return 2
    return False

10 I have the power!
The next item on our list is power-ups. 

These are large glowing dots that, when eaten, 
turn all the flames dark. In their dark form they 
can be eaten for bonus points and they return to 
the centre of the maze. First, let’s devise a way to 
place the power-ups in the maze. We have updated 
the pimandotmap.png image to include some red 
squares, instead of black, in the positions where we 
want our power-ups to be. Then, when we initialise 
our dots and call checkDotPoint(x,y), we look for 
red as well as black – figure3.py shows how we 
change our code to do this.

	� Updated code to 
include the creation 
of power-ups

www.dbooks.org

https://www.dbooks.org/


TUTORIAL

Pygame Zero: Hungry Pi-Man part 2118

eaten, so we need to add more code to handle the 
event of a power-up being eaten. In the draw() 
function, where we look to see if the player has 
collided with a dot using collidepoint(), we then 
check the status of the dot (to make sure it’s still 
there) and after this we can add a new condition: 
if piDots[a].type == 2:.

12 High status flames
As we have determined that we are dealing 

with a power-up (type 2), we can add a loop that 
goes through the list of flames and changes the 
status of the flame. Normally the status for a flame 
is 0. What we are going to do is change the status 
to a fairly high number (try 1200 to start with). This 
will indicate that the flames are in their alternate 
state and we will use the status as a countdown. 
We will decrement this value each time update() is 
called; when it reaches 0, the flames will turn back 
to normal.

13 Why so dark?
To make our flame turn dark, we are going 

to add some conditions to our drawFlames() 
function. We want them to be dark when the status 
is more than 0, but just to make it interesting 
we will make them flash when they are about 
to turn back. So we can write if flames[g].
status > 200 or (flames[g].status > 1 and 
flames[g].status%2 == 0): flames[g].image = 
"flame"+str(g+1)+"-". What this is saying is that 
if the status is over 200 then make the flame dark, 
but if it’s less that 200 but greater than 1 then 
make it dark every other frame. We then have an 
else condition underneath that will set the image 
to its normal colour.

from pygame import image, surface, Color
moveimage = image.load('images/pimanmovemap.png')
dotimage = image.load('images/pimandotmap.png')

def checkMovePoint(p):
    global moveimage
    if p.x+p.movex < 0: p.x = p.x+600
    if p.x+p.movex > 600: p.x = p.x-600
    if moveimage.get_at((int(p.x+p.movex), int(p.y+
p.movey-80))) != Color('black'):
        p.movex = p.movey = 0

def checkDotPoint(x,y):
    global dotimage
    if dotimage.get_at((int(x), int(y))) == 
Color('black'):
        return 1
    if dotimage.get_at((int(x), int(y))) == 
Color('red'):
        return 2
    return False

def getPossibleDirection(g):
    global moveimage
    if g.x-20 < 0:
        g.x = g.x+600
    if g.x+20 > 600:
        g.x = g.x-600
    directions = [0,0,0,0]
    if g.x+20 < 600:
        if moveimage.get_at((int(g.x+20), 
int(g.y-80))) == Color('black'): directions[0] = 1
    if g.x < 600 and g.x >= 0:
        if moveimage.get_at((int(g.x), int(g.y-60))) 
== Color('black'): directions[1] = 1
    if g.x-20 >= 0:
        if moveimage.get_at((int(g.x-20), 
int(g.y-80))) == Color('black'): directions[2] = 1
    if g.x < 600 and g.x >= 0:
        if moveimage.get_at((int(g.x), int(g.y-100))) 
== Color('black'): directions[3] = 1
    return directions

gamemaps.py

001.
002.
003.
004.
005.
006.
007.
008.
009.

010.
011.
012.
013.
014.

015.
016.

017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.

029.
030.

031.
032.

033.
034.

035.

>  Language: Python 3  

11 Not all dots are the same
We now have a system to place our power-

ups in the maze. The next thing to do is to change 
what happens when Pi-Man eats a power-up 
compared to a normal dot. At the moment we 
just add ten points to the player’s score if a dot is 

	� Pi-Man gets three lives before it's game 
over. Change the player.lives = 3 
variable in the code to give your player 
more (or fewer) lives to play with.



TUTORIAL

119Retro Gaming with Raspberry Pi

14 The tables have turned
Now we have our flames all turning dark 

when a power-up is eaten, we need to change what 
happens when Pi-Man collides with them. Instead 
of taking a life from the player.lives variable, we 
are going to add to the player.score variable and 
send the flame back to the centre. So, the first job 
is to add a condition in update() when we check the 
flame collidepoint() with the player, which would 
be if flames[g].status > 0:. We then add 100 to 
the player.score and animate() the flame back to 
the centre. See figure4.py for the updated code.

15 Back to the start
You will notice that when Pi-Man comes 

into contact with a dark flame, we just animate 
the actor straight back to the centre in the same 
time that we normally animate a flame from one 
position to the next. This is so that we don’t hold 
up the animation on the other flames waiting 
for the eaten one to get back to the centre. In the 
original game, the flames would turn into a pair of 
eyes and then make their way back to the centre 
along the corridors, but that would take too much 
extra code for this tutorial.

from pygame import joystick, key
from pygame.locals import *

joystick.init()
joystick_count = joystick.get_count()

if(joystick_count > 0):
    joyin = joystick.Joystick(0)
    joyin.init()

def checkInput(p):
    global joyin, joystick_count
    xaxis = yaxis = 0
    if p.status == 0:
        if joystick_count > 0:
            xaxis = joyin.get_axis(0)
            yaxis = joyin.get_axis(1)
        if key.get_pressed()[K_LEFT] or xaxis < -0.8:
            p.angle = 180
            p.movex = -20

        if key.get_pressed()[K_RIGHT] or xaxis > 0.8:
            p.angle = 0
            p.movex = 20
        if key.get_pressed()[K_UP] or yaxis < -0.8:
            p.angle = 90
            p.movey = -20
        if key.get_pressed()[K_DOWN] or yaxis > 0.8:
            p.angle = 270
            p.movey = 20
    if joystick_count > 0:
        jb = joyin.get_button(1)
    else:
        jb = 0
    if p.status == 1:
        if key.get_pressed()[K_RETURN] or jb:
            return 1
    if p.status == 2:
        if key.get_pressed()[K_RETURN] or jb:
            return 1

gameinput.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.

>  Language: Python 3  

figure4.py
001.
002.
003.
004.
005.

006.
007.
008.

009.
010.
011.
012.
013.
014.

# This code is in the update() function

        for g in range(len(flames)):
            if flames[g].status > 0: flames[g].status -= 1
            if flames[g].collidepoint((player.x, 
player.y)):
                if flames[g].status > 0:
                    player.score += 100
                    animate(flames[g], pos=(290, 370), 
duration=1/SPEED, tween='linear', 
on_finished=flagMoveFlames)
                else:
                    player.lives -= 1
                    if player.lives == 0:
                        player.status = 3
                    else:
                        player.status = 1    

021.
022.
023.
024.
025.
026.
027.
028.
029.
030.
031.
032.
033.
034.
035.
036.
037.
038.
039.

16 Time for some music
So far in this series, we have not covered 

adding music to games. In the documentation of 
Pygame Zero, music is labelled as experimental, 
so we will just have to try it out and see what 

	� Updated flame 
collision code to 
send them back to 
the centre if Pi-Man 
eats them

www.dbooks.org

https://www.dbooks.org/


TUTORIAL

Pygame Zero: Hungry Pi-Man part 2120

import pgzrun
import gameinput
import gamemaps
from random import randint
from datetime import datetime
WIDTH = 600
HEIGHT = 660

player = Actor("piman_o") # Load in the player Actor image
player.score = 0
player.lives = 3
level = 0
SPEED = 3

def draw(): # Pygame Zero draw function
    global piDots, player
    screen.blit('header', (0, 0))
    screen.blit('colourmap', (0, 80))
    piDotsLeft = 0
    for a in range(len(piDots)):
        if piDots[a].status == 0:
            piDots[a].draw()
            piDotsLeft += 1
        if piDots[a].collidepoint((player.x, player.y)):
            if piDots[a].status == 0:
                if piDots[a].type == 2:
                    for g in range(len(flames)): flames[g].status = 1200
                else:
                    player.score += 10
            piDots[a].status = 1
    if piDotsLeft == 0: player.status = 2
    drawFlames()
    getPlayerImage()
    player.draw()
    drawLives()
    screen.draw.text("LEVEL "+str(level) , topleft=(10, 10), owidth=0.5, 
ocolor=(0,0,255), color=(255,255,0) , fontsize=40)
    screen.draw.text(str(player.score) , topright=(590, 20), owidth=0.5, 
ocolor=(255,255,255), color=(0,64,255) , fontsize=60)
    if player.status == 3: drawCentreText("GAME OVER")
    if player.status == 2: drawCentreText(
"LEVEL CLEARED!\nPress Enter or Button A\nto Continue")
    if player.status == 1: drawCentreText(
"CAUGHT!\nPress Enter or Button A\nto Continue")

def drawCentreText(t):
    screen.draw.text(t , center=(300, 434), owidth=0.5, 
ocolor=(255,255,255), color=(255,64,0) , fontsize=60)

def update(): # Pygame Zero update function
    global player, moveFlamesFlag, flames

piman2.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.
029.
030.
031.
032.
033.
034.
035.
036.

037.

038.
039.

040.

041.
042.
043.

044.
045.
046.

>  Language: Python 3  happens. In the sample GitHub files for this 
tutorial, there is a directory called music and 
in that directory is an MP3 file that we can use 
as eighties arcade game background music. 
To start our music, all we need to do is write  
music.play("pm1") in our init() function to start 
the music/pm1.mp3 file. You may also want to set 
the volume with music.set_volume(0.3).

17 More sound effects
The MP3 file will continue playing in a 

loop until we stop it, so when the game is over 
(player.lives = 0) we can fade the music out with 
music.fadeout(3). At this stage we can also add 
some sound effects for when Pi-Man is eating dots. 
We have a sound in our sounds directory called 
pi1.mp3 which we will use for this purpose and we 
can add a line of code just before we animate the 
player: sounds.pi1.play(). This will play the sound 
every time Pi-Man moves. We can do the same 
with pi2.mp3 when a life is lost.

18 Level it up
The last thing we need to put into our 

game is to allow the player to progress to the next 
level when all the dots have been eaten. We could 
incorporate several things to make each level 
harder, but for the moment let’s concentrate on 
resetting the screen and changing the level. If we 
define our level variable near the top of our code 
as level = 0, then inside our init() function we 
say level += 1, then each time we call init() we 
will increase our level variable. This means that 
instead of saying that the player has won, we just 
prompt them to continue, and call init() to reset 
everything and level up.

19 So much to do
The Pi-Man game has many more things 

that can be added to it. For instance, you could 
include bonus fruits to collect, the flames might 
move faster as the levels continue, there could be 
animations between some of the levels, and the 
power-ups might run out quicker. You could add 
all of these things to this game, but we will have to 
leave you to do that yourself. In the next tutorial, 
we’ll be starting a new Pygame Zero game with 
isometric 3D graphics. 



TUTORIAL

121Retro Gaming with Raspberry Pi

magpi.cc/pgzero7

DOWNLOAD  
THE FULL CODE:

    if player.status == 0:
        if moveFlamesFlag == 4: moveFlames()
        for g in range(len(flames)):
            if flames[g].status > 0: flames[g].status -= 1
            if flames[g].collidepoint((player.x, 
player.y)):
                if flames[g].status > 0:
                    player.score += 100
                    animate(flames[g], pos=(290, 370), 
duration=1/SPEED, tween='linear', 
on_finished=flagMoveFlames)
                else:
                    player.lives -= 1
                    sounds.pi2.play()
                    if player.lives == 0:
                        player.status = 3
                        music.fadeout(3)
                    else:
                        player.status = 1
        if player.inputActive:
            gameinput.checkInput(player)
            gamemaps.checkMovePoint(player)
            if player.movex or player.movey:
                inputLock()
                sounds.pi1.play()
                animate(player, pos=(player.x + 
player.movex, player.y + player.movey), duration=1/SPEED, 
tween='linear', on_finished=inputUnLock)
    if player.status == 1:
        i = gameinput.checkInput(player)
        if i == 1:
            player.status = 0
            player.x = 290
            player.y = 570
    if player.status == 2:
        i = gameinput.checkInput(player)
        if i == 1:
            init()

def init():
    global player, level
    initDots()
    initFlames()
    player.x = 290
    player.y = 570
    player.status = 0
    inputUnLock()
    level += 1
    music.play("pm1")
    music.set_volume(0.2)

def drawLives():
    for l in range(player.lives): screen.blit("piman_o", 
(10+(l*32),40))

def getPlayerImage():
    global player
    dt = datetime.now()
    a = player.angle
    tc = dt.microsecond%(500000/SPEED)/(100000/SPEED)
    if tc > 2.5 and (player.movex != 0 or player.movey 
!=0):
        if a != 180:
            player.image = "piman_c"
        else:
            player.image = "piman_cr"
    else:
        if a != 180:
            player.image = "piman_o"
        else:
            player.image = "piman_or"
    player.angle = a

def drawFlames():
    for g in range(len(flames)):
        if flames[g].x > player.x:
            if flames[g].status > 200 or (flames[g].status 
> 1 and flames[g].status%2 == 0):
                flames[g].image = "flame"+str(g+1)+"-"
            else:
                flames[g].image = "flame"+str(g+1)+"r"
        else:
            if flames[g].status > 200 or (flames[g].status 
> 1 and flames[g].status%2 == 0):
                flames[g].image = "flame"+str(g+1)+"-"
            else:
                flames[g].image = "flame"+str(g+1)
        flames[g].draw()

def moveFlames():
    global moveFlamesFlag
    dmoves = [(1,0),(0,1),(-1,0),(0,-1)]
    moveFlamesFlag = 0
    for g in range(len(flames)):
        dirs = gamemaps.getPossibleDirection(flames[g])
        if inTheCentre(flames[g]):
            flames[g].dir = 3
        else:
            if g == 0: followPlayer(g, dirs)
            if g == 1: ambushPlayer(g, dirs)
        
        if dirs[flames[g].dir] == 0 or randint(0,50) == 0:

047.
048.
049.
050.
051.

052.
053.
054.

055.
056.
057.
058.
059.
060.
061.
062.
063.
064.
065.
066.
067.
068.
069.

070.
071.
072.
073.
074.
075.
076.
077.
078.
079.
080.
081.
082.
083.
084.
085.
086.
087.
088.
089.
090.
091.
092.

093.
094.

095.
096.
097.
098.
099.
100.
101.

102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.

117.
118.
119.
120.
121.

122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.

www.dbooks.org

https://github.com/themagpimag/retro-gaming/tree/master/Part%2007%20-%20Hungry%20Pi-Man%202
https://www.dbooks.org/


TUTORIAL

Pygame Zero: Hungry Pi-Man part 2122

            d = -1
            while d == -1:
                rd = randint(0,3)
                if aboveCentre(flames[g]) and rd == 1:
                    rd = 0
                if dirs[rd] == 1:
                    d = rd
            flames[g].dir = d
        animate(flames[g], pos=(flames[g].x 
+ dmoves[flames[g].dir][0]*20, flames[g].y + 
dmoves[flames[g].dir][1]*20), duration=1/SPEED, 
tween='linear', on_finished=flagMoveFlames)

def followPlayer(g, dirs):
    d = flames[g].dir
    if d == 1 or d == 3:
        if player.x > flames[g].x and dirs[0] == 1: 
flames[g].dir = 0
        if player.x < flames[g].x and dirs[2] == 1: 
flames[g].dir = 2
    if d == 0 or d == 2:
        if player.y > flames[g].y and dirs[1] == 1 and not 
aboveCentre(flames[g]): flames[g].dir = 1
        if player.y < flames[g].y and dirs[3] == 1: 
flames[g].dir = 3

def ambushPlayer(g, dirs):
    d = flames[g].dir
    if player.movex > 0 and dirs[0] == 1: flames[g].dir = 0
    if player.movex < 0 and dirs[2] == 1: flames[g].dir = 2

    if player.movey > 0 and dirs[1] == 1 and not 
aboveCentre(flames[g]): flames[g].dir = 1
    if player.movey < 0 and dirs[3] == 1: flames[g].dir = 3

def inTheCentre(ga):
    if ga.x > 220 and ga.x < 380 and ga.y > 320 and ga.y < 
420:
        return True
    return False

def aboveCentre(ga):
    if ga.x > 220 and ga.x < 380 and ga.y > 300 and ga.y < 
320:
        return True
    return False

def flagMoveFlames():
    global moveFlamesFlag
    moveFlamesFlag += 1

def flameCollided(ga,gn):
    for g in range(len(flames)):
        if flames[g].colliderect(ga) and g != gn:
            return True
    return False
    
def initDots():
    global piDots
    piDots = []
    a = x = 0
    while x < 30:
        y = 0
        while y < 29:
            d = gamemaps.checkDotPoint(10+x*20, 10+y*20)
            if d == 1:
                piDots.append(Actor("dot",(10+x*20, 
90+y*20)))
                piDots[a].status = 0
                piDots[a].type = 1
                a += 1
            if d == 2:
                piDots.append(Actor("power",(10+x*20, 
90+y*20)))
                piDots[a].status = 0
                piDots[a].type = 2
                a += 1
            y += 1
        x += 1

def initFlames():
    global flames, moveFlamesFlag
    moveFlamesFlag = 4
    flames = []
    g = 0
    while g < 4:
        flames.append(Actor("flame"+str(g+1),(270+(g*20), 
370)))
        flames[g].dir = randint(0, 3)
        flames[g].status = 0
        g += 1

def inputLock():
    global player
    player.inputActive = False

def inputUnLock():
    global player
    player.movex = player.movey = 0
    player.inputActive = True
    
init()
pgzrun.go()

140.
141.
142.
143.
144.
145.
146.
147.
148.

149.
150.
151.
152.
153.

154.

155.
156.

157.

158.
159.
160.
161.
162.
163.
164.
165.

166.
167.
168.
169.

170.
171.
172.
173.
174.

175.
176.
177.
178.
179.
180.
181.

182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.

198.
199.
200.
201.
202.

203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.

216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.



3 ISSUES  
FOR £5

 Email: magpi@subscriptionhelpline.co.uk

 Subscribe online: magpi.cc/subscribe
 Subscribe by phone: 01293 312193

www.dbooks.org

mailto:magpi@subscriptionhelpline.co.uk
https://raspberrypipress.imbmsubscriptions.com/the-magpi/
https://www.dbooks.org/


Itch corp 

Price:  
Free / Percentage 
of sales

itch.io

CR
EA

TO
R

Get a head start with Raspberry Pi game creation with this resource list. By Mark Vanstone

Learn game development		
with Raspberry Pi

For most developers of games, 
the main reason to create a 
game is to challenge others to 
play their game. So the first 
question is: how can we make a 
game available for other people 
to play? That’s where itch.io 
comes in. The website provides 
an app store-style platform for 
independent developers to 
upload and sell their games. 

Games can be built and 
uploaded in all kinds of formats. 
They can be built as executables, 
source code downloads, or online 
browser games. There is a large 
active community, and regular 
competitions to reward the best 
games. The itch.io site is free to 
use and provides lots of support 

for new developers and if you 
want to sell your game, they will 
deal with all the payment 
process but, of course, ask for a 
small cut of the profits. 

Currently there are over 
300,000 games hosted on itch.io, 

so you can have a good look 
around and see what everyone 
else has uploaded, and get ideas 
about how to present your new 
game to the world, get feedback 
from players, and even make a 
bit of money.

itch.io

Books for game development

ADVENTURES IN MINECRAFT
A treasure-trove of a book, both 

paper-based and for download. 

Learn to build games using 

the Minecraft engine, and even 

program external controllers to 

trigger events in-game.

magpi.cc/advminecraft

CODE THE CLASSICS
Learn how to create your own 

versions of retro games from 

scratch using Python and Pygame 

Zero. Five classic video games 

are remade, ranging from Pong to 

Sensible Soccer.

magpi.cc/codetheclassics

MAKE GAMES WITH PYTHON
An in-depth look at game creation 

with Python and Pygame. From your 

first game to physics simulations 

and alien invaders, this book is 

packed full of useful techniques 

and listings.

magpi.cc/makegamespython

Paper-based or online books for reference and tutorial

124

RESOURCES

Learn game development with Raspberry Pi

http://itch.io
http://itch.io
http://itch.io
http://itch.io
http://itch.io
http://magpi.cc/advminecraft
http://magpi.cc/codetheclassics
http://magpi.cc/makegamespython


Scratch 
Foundation 
Price:  
Free

scratch.mit.edu

CR
EA

TO
R

Raspberry Pi 
Foundation

Price:  
From £19.99

magpi.cc/projects

CR
EA

TO
R Since the launch of Raspberry 

Pi, the Raspberry Pi Foundation 
has been producing example 
projects of all kinds on its 
website. In the game section, 
there are around 60 projects 

for you to delve into and find 
out how they were made and 
download the elements you 
need to build them. There are 
projects for Scratch, Python, 
web browsers, and even games 
to play with external hardware, 
like the Sense HAT. Each project 
describes what you will need 
to make it, shows the finished 
project, and then walks you 
through, step by step, what 
you need to do from beginning 
to end. You will also find 
suggestions for other projects to 
look at after you have finished, to 
progress further with your game 
development experience. 

Scratch is available as a game 
and animation development 
system, both in a browser and 
as an offline program. Both 
work and look very similar. 
Scratch is an excellent 
introduction to programming, 
and provides a visual block 
interface to create interactive 
content. You can share games 
that are created with Scratch, 
and there are lots of examples on 

Raspberry Pi’s website for you to 
see what others have done with 
Scratch. Graphics and sounds are 
included in the Scratch library, 
but you can also create your own 
using the built-in pixel editor or 
a separate paint package. There 
are extra extensions you can add 
to connect to external projects, 
and a whole range of tutorials to 
show you how to get started 
making the game of your choice.

Raspberry Pi Game Projects

Scratch
Game 
Creator 
Resources

Get free game 
resources online

PI GAME DEV
Pi Game Dev is a well-

organised site dedicated 

solely to resources for making 

games on Raspberry Pi. There 

are comprehensive lists and 

links to game engines, art and 

music tools, code editors, and 

game assets.

pigame.dev

OPENGAMEART.ORG
OpenGameArt is a go-to, 

one-stop, free shop for 2D 

and 3D game graphics and 

sound effects. Searchable and 

categorised, this site features 

thousands of submissions from 

designers. You can submit 

your own creations to give 

something back.

opengameart.org

SPRITERS RESOURCE
Sprite sheets are bitmaps 

full of animation frames, and 

Spriters Resource has all the 

retro game graphics in sprite 

sheet format. Just search 

for your favourite game and 

there’s likely to be a sprite 

sheet or two for it.

spriters-resource.com

125

RESOURCES

Retro Gaming with Raspberry Pi

www.dbooks.org

http://scratch.mit.edu
http://magpi.cc/projects
http://OpenGameArt.org
http://opengameart.org
http://spriters-resource.com
https://pigame.dev/
https://pigame.dev/
https://www.dbooks.org/


Arcade projects126

INSPIRING PROJECTS  
AND STEP-BY-STEP BUILDS

128 	�MAKE YOUR OWN PINBALL 
MACHINE 
Build a table with this step-by-step guide

134 	�BUILD AN ARCADE MACHINE 
How to get the parts for your dream 
arcade cabinet

138 	�ASSEMBLE YOUR CABINET 
Top tips on how to construct your 
arcade machine

144 	�COMMAND AND CONTROL 
Setting up and connecting your Raspberry Pi 
to the cab

150 	�DECORATE YOUR CABINET 
Adding vinyl decals and edge moulding for an 
authentic look

156   RETROPIE AND STEAM LINK 
Emulating retro games and streaming 
modern games

ARCADE  
PROJECTS

 �Build your own perfect and 
brand new arcade emulation 
machine with Raspberry Pi 



127Retro Gaming with Raspberry Pi

www.dbooks.org

https://www.dbooks.org/


This step-by-step guide breaks down the key 
stages of building the Princess Pinball table. 
While your table could be very different, the key 
components and techniques apply to a wide range 
of builds. 

Every pinball table will need a shooter, flippers, 
bumpers, and rubbers. And tips – like using 
adjustable legs to help you get the perfect angle 
on your table – hold true across many different 
build styles.

Similarly, Martin Kauss’s GPIO connection 
configuration and software to run your table’s 
lights, sensors, sound, and scoring are powerful 
tools for any pinball build.

01 Set up the software
Start with a Raspberry Pi and a clean 

install of Raspberry Pi OS. You’ll need an internet 
connection, and your life will be easier if you 

connect a monitor, which we’ll also use later to 
track the player’s score, keyboard, and mouse. 

Open a Terminal window and type:

sudo apt install python-pygame
git clone https://github.com/bishoph/

pinball.git
cd pinball
python pinball_machine.py

Pressing Q exits the program. Fonts aren’t 
included, so to run the program you’ll need to find 
your own pinball.ttf and comicfx.ttf TrueType files 
and copy them into /usr/local/share/fonts/ – both 
are freeware and available online.

02 Vision on
Setting everything up is much easier if 

you’ve got a monitor connected to your Raspberry 

PINBALL MACHINE

A connector strip links 
Raspberry Pi’s GPIO pins 
to all of the electronics on 
and under the playfield

This eight-channel relay board 
is one of a pair that allows 
Raspberry Pi to trigger the 

table’s moving parts

MAKE YOUR OWN

FEATURE

Make your own pinball machine128

https://github.com/bishoph/pinball.git
https://github.com/bishoph/pinball.git


Pi, but our pinball table’s Python scripts can also 
make use of an external display. We’ll use this to 
show the player’s current score, the number of 
balls left to play, the table’s high score, and a few 
fun visual effects. 

If you’re feeling really sharp, you could use a 
VESA mount to affix the monitor to a backboard or 
stand attached to the table; or, if you’re working 
with a bed frame like Martin, find space to attach 
it to the one-time head of the bed.

03 Face the music
You can play sounds through the integrated 

speaker of a monitor or by connecting speakers to 
Raspberry Pi’s 3.5 mm audio output. Sounds are 
defined in the effects.py script, which we installed 
in Step 01. You’ll have to source your own audio 
files – Martin got some from freesfx.co.uk. 

Place them in the /home/pi/pinball/sounds 
directory and edit effects.py accordingly. The 
script triggers sounds when the table is powered 
up, when your ball heads down the shooter alley, 
when it falls out of play by going down the outlane, 
and when it triggers the spinner or pop bumpers. 

Samples in a bank called s2 are triggered as 
random events when the table is idle.

04 Frame and fortune
Martin Kauss’s pinball table began life as 

a child’s bed, decorated with colourful Disney 
princess imagery, but you could also build your own 
frame out of wood, buy a table base kit, or even 
make one out of K’nex or Meccano. 

The frame measures 145×77 cm and for the 
playfield – the surface of the pinball table, where all 
the action happens – Martin used a piece of 230 mm 
thick multiplex board (plywood) with a black finish.

Beneath the playfield, you’ll need space for your 
wiring and power supplies.

Flipper 
Finger 
Button

EOS Left

5 10 13 15

Z-Diode
214-8 N 
6 RB
10%

Coil
FL 11630

Relay

Raspberry Pi

	 �Left flipper: the flipper fingers 
are the table’s most complex 
bit of wiring, and their circuit 
includes a Zener diode for 
voltage regulation

	 �As this early incarnation of 
the flipper wiring shows, a 
dedicated two-channel relay is 
triggered by Raspberry Pi’s GPIO 
pins to active the flipper coils

Test first
Make sure your 

components 

and connections 

work as 

intended before 

you permanently 

screw them 

into place.

FEATURE

129Retro Gaming with Raspberry Pi

www.dbooks.org

http://effects.py
http://freesfx.co.uk
http://effects.py
https://www.dbooks.org/


05 More power, Igor!
This build calls for both a 5 V PSU, which 

handles the lights, and a 36 V one for the coils used 
to power the flippers and bumpers, which have 
comparatively high voltage requirements.

For example, although the pop bumper’s coil is 
connected to the 36 V supply, its built-in LED light, 
like those elsewhere on the table, is powered by the 
5 V PSU. For ease of connection, a GPIO stacking 
header is mounted on Raspberry Pi’s GPIO. 

From that, GPIO cables run to a connector strip. 
That includes both inputs and outputs, and all 
powered components such as lights and coils are 
wired up via relay boards. The relays are powered 
from Raspberry Pi (via physical pins 2 and 6) 
and the trigger action for each comes from the 
respective output GPIO pin.

It’s useful to screw a small four-way plug bar to 
the rear or underside of your table, as you’ll need 
separate power supplies for your monitor and 
Raspberry Pi.

06 Tilt! Tilt! Tilt!
Pinball tables can’t be flat, but getting 

the correct angle to ensure that the ball rolls 
towards the bottom at the correct speed can be 
tricky. Adjustable legs mean that you can easily 
set and change the table’s incline.

In this case, four square wooden battens 
measuring 4.5×4.5×100 cm at the front and 
4.5×4.5×110 cm for the rear have been used 
to make front and rear legs. The front pair 
have been made adjustable by using screw-in 
plastic feet which can be raised or lowered, 
allowing for a bit of trial-and-error engineering 
during construction.

07 Plan, sketch & drill
Once you’ve got your frame and a table 

surface to fit it, it’s time to outline its features. 
Carefully measure, test-place, photograph, and 
draw around the flippers, shooter, slingshot, and 

	 �Spinner: the spinner itself is 
passive, but a microswitch is 
activated every time the ball 
flips it, triggering scoring, 
sound, and lights

	� You’ll need a healthy 
selection of tools, electronic 
components, and other parts 
for a project like this, as well 
as the space to build it

Warning! 
High Voltage!

The pinball machine 
uses a relay to control 
high voltage. Please 

be careful when using 
mains electricity.

FEATURE

Make your own pinball machine130



bumpers you want to include. You’ll also want 
to place side-mounted flipper buttons.

As well as these components, you’ll need to use 
wood and metal strips for your lanes, an outlane 
area to direct the ball back to the shooter alley 
when it’s lost, and the curved upper part of the 
table. Once you’ve marked up and double-checked, 
drill the holes you’ll need to bolt on and wire up 
your components.

Remember to leave enough space at the bottom 
of the table for your electronics and Raspberry Pi!

08 Assemble the plunger
The plunger, also known as the ball shooter, 

is the first critical bit of your table to assemble. You 
can buy the whole assembly as a kit, including a 
rod, springs, housing, and mounting components 
such as the external trim plate.

You’ll want to put it at the left of your table, 
with the knob and external parts protruding 
from the front of your pinball machine. A 
length of wooden batten forms the lane that 
the ball will travel down, and the drain beneath 
the flippers should direct lost balls back to the 
shooter assembly. A high-tension spring holds 
a lane closure flap shut until it’s forced open 
by the velocity of the ball coming through from 
the shooter.

09 They see me rollin’
Most of the lanes and structural parts of 

this design are made from wood or aluminium strip 
bent into shape and held in place using wooden 
blocks screwed into the table, all of which makes 
for a pretty forgiving build. But you’ll want your 
Raspberry Pi to be able to tell when the ball passes 
through those lanes.

For that, you’ll need some rollover 
microswitches from a pinball part supplier, which 
you can fit to the table from below. Cut a channel 

 �Remember to leave 
enough space at the 
bottom of the table 
for your electronics  

	 �The pop bumper is assembled 
with its coil below the table 
and its skirt and cap above

in the playfield using either a router or a drill and 
jigsaw. Mount the switch on a strip of wood, and 
position it beneath the channel so that the switch 
protrudes enough to be triggered by the weight of 
the ball as it passes.

This build has rollover switch at the end of the 
shooter alley and on all the outlanes that take 

FEATURE

131Retro Gaming with Raspberry Pi

www.dbooks.org

https://www.dbooks.org/


the ball out of play, plus one at the very end, just 
before the ball re-enters the shooter alley, so the 
table knows when the ball leaves the playfield.

They’re all connected to Raspberry Pi’s GPIO 
header – via a connector strip – so they can trigger 
events such as lights sound and scoring.

10 Flip the finger
A pinball table’s flippers are its most 

important components. You’ll need a 36 V, 5 A PSU 
to give the flipper coils enough of a kick, and a 
two-channel relay to activate them when triggered 
by Raspberry Pi’s GPIO. 

Because we’re using a Raspberry Pi to control 
everything, we’ll need a modern flipper assembly 
with a normally open (NO) end-of-stroke (EOS) 
switch. The coils are mounted beneath the table’s 
flipper fingers. For each flipper, you’ll need to 
connect a button on the side of the cabinet to one 
GPIO pin, the EOS switch to another, and then 
another two pins – via the relay – to the flipper coil 
units, which actually have two different wire coils 
wrapped around them.

The first coil, HIGH, provides low resistance 
and makes the flipper finger move hard and fast, 
while the second, HOLD, has high resistance and 
allows you to hold down the flipper buttons to keep 
them upright.

	 Pin	 Connector  Strip Terminal	 Type	 Description	 Relay Connection

	 3	 1	 IN	 Flipper button right

	 5	 2	 IN	 Flipper button left

	 8	 3	 IN	 Flipper finger EOS right

	 10	 4	 IN	 Flipper finger EOS left

	 7	 5	 IN	 Spinner microswitch

	 11	 6	 OUT	 Flipper finger right HIGH	 Relay #1,1

	 12	 7	 OUT	 Flipper finger right HOLD	 Relay #1,2

	 13	 8	 OUT	 Flipper finger left HIGH	 Relay #2,1

	 15	 9	 OUT	 Flipper finger left HOLD	 Relay #2,2

	 16	 10	 IN	 Shooter alley microswitch

	 18	 11	 IN

	 19	 12	 IN

	 21	 13	 IN

	 22	 14	 IN	 Bumper #1 switch

	 23	 15	 IN	 Bumper #2 switch

	 2	 16	 IN	 Slingshot switch

	 26	 17	 OUT

	 29	 18	 OUT

	 31	 19	 OUT

	 32	 20	 OUT	 Light #1, shooter alley	 Relay #3,1

	 33	 21	 OUT	 Light #2, slingshots	 Relay #3,2

	 35	 22	 OUT	 Light #3, bumper	 Relay #3,3

	 36	 23	 OUT	 Light #4, bumper	 Relay #3,4

	 37	 24	 IN	 Outlane microswitches, one signal!

	 38	 25	 IN	 Bumper #1, coil	 Relay #4,1

	 40	 26	 IN	 Bumper #2, coil	 Relay #4,2

Go online 
for more 
details
For extra 

information 

and a maker’s 

blog about the 

Princess Pinball 

table, check out 

Martin Kauss’s 

website at  

magpi.cc/iimYKq

FEATURE

Make your own pinball machine132

http://magpi.cc/iimYKq


Fingers  
to yourself
Don’t touch 

the coils or 

moving parts 

during testing, 

as the rapid 

contraction of 

the solenoid 

can deliver a 

painful pinch.

11 Into the slingshot
Slingshot bumpers are the wedge-shaped 

components positioned just above your flippers, 
helping to bounce your ball back to them on its 
journey around the table.

They’re made up of a set of star posts – brightly 
coloured plastic mounts that a rubber ring can 
fit around and a rubber surround for the ball to 
bounce off. A microswitch sensor detects when the 
ball hits, racking up points, and triggering noises 
and lights.

A pair of fancy slingshot covers rounds out the 
look, and a lane – made of wood – runs below them 
to provide a route to the flippers.

12 Add a bumper or two
Mushroom-shaped pop bumpers are among 

the most iconic elements of a pinball table. They’re 
available in complete kits and most work by 
detecting, via an integrated microswitch, when the 
ball hits their plastic skirt. A coil then pulls down 
the bumper’s rod and ring assembly to kick the 
ball away.

You can use the bumper’s base to mark out 
where you want to mount it, with the coil mounted 
below the playfield surface. The coils are powered 
by the 36 V PSU and connected to Raspberry Pi via 
the eight-channel relay.

13 Add a spinner, connected  
via screw terminals

A spinner, or spinning target, is a classic 
pinball table component with its own lane and 
a microswitch that triggers lights and a score 
increment when the player hits it. 

Here, the lane is created using a metal rail 
of aluminium threshold strip. The spinner is 
mounted using some DIY-shop metal brackets 
and bolts, plus star posts and rubber rings from 
a pinball supply firm. 

A straight-wire actuator microswitch is 
connected to the spinner to detect the ball’s 
passage and rack up points and flash lights 
around the table in response.

14 Lights! Action!
A pinball table is nothing without flashing 

lights. This project uses a 2 m LED light strip 
connected to the 5 V PSU to add some pizzazz to 
the table’s shooter alley and orbit – the upper loop 
of aluminium strip that helps keep the ball rolling 
around the table.

There are also individual lights in each of two 
bumpers and the slingshot bumpers – a total of 
four GPIO connections on Raspberry Pi. The Python 
script we’re running will activate the lights when 
the ball enters the playfield, hits bumpers, triggers 
the spinner, or passes over rollover switches. The 
lights are also triggered by the script at random 
events if there is no input or action on the table. 

	� The Princess Pinball table 
has proven to be a massive 
hit with Martin’s kids and all 
their friends, complete with 
requests for a future multi-
ball feature

FEATURE

133Retro Gaming with Raspberry Pi

www.dbooks.org

https://www.dbooks.org/


Build an arcade machine: 
Get the parts 
If you’ve ever wanted to build your own arcade machine, here’s your guide. 
This month: the parts you’ll need, how to choose them, and where to buy them

O ver the following pages, we’ll go 
through the process of sourcing, 
building, connecting, and installing a 

Raspberry Pi-based arcade cabinet.
While you can restore and convert a former 

JAMMA cabinet for use with Raspberry Pi, 
or build a cab entirely from scratch, we’ll be 
taking the flat-pack route. This lets you build 
the cabinet of your dreams relatively easily, 
somewhat cheaply, and without recourse to 
full-on home woodworking. 

This tutorial series will use an LCD screen 
due to the inconvenience of sourcing and 
potential issues with installing a CRT model, 
which carries the risk of a dangerous electric 
shock if not correctly discharged.

01 Choose your cabinet style
If you’re after a classic upright one- or 

two-player cabinet, then you’ll want either an all-
in-one model or a ‘bartop’ cabinet with a pedestal 
or stand. Bartop cabinets can also be bought 
without the optional stand and placed on a table.

Flat ‘cocktail’ or ‘coffee table’ style cabinets 
are available in models for between one and four 
seated players and often use a vertically oriented 
screen, which can be split by software into two 
horizontal views for multiplayer games.

Other models include seated upright cabinets 
(often designed to take very large screens), 
angular tabletop models, and mini-bartops with 
10-inch displays for those short on space.

K.G. 
Orphanides

K.G. is a writer, 
maker of 
odd games, 
and software 
preservation 
enthusiast. Their 
family fully 
supports the idea of 
an arcade machine 
in the living room.

@KGOrphanides

M
A

K
ER

Pa
rt

 0
1

02 Big screen glamour?
The size of your screen dictates the size of your 

cabinet, and vice versa. Before you start shopping, 
work out where you want the cabinet to live, and take 
height, width, and depth measurements.

If you’re working with a 19-inch monitor, 
you’ll likely get a bartop cab that’s a little under 
50 cm wide. This is the most practical choice 
if available space is limited. A 22-inch screen 
translates to a cabinet of a little under 60 cm, and 
a 24- or 25-inch screen means a cabinet width 
of a bit under 65 cm. You’re generally fine fitting 
a smaller screen in a larger cabinet, but the end 
result won’t look quite so polished.

Check the internal measurements of the cabinet 
against those of the monitor, including its bezel.
 

TUTORIAL 

134 Build an arcade machine: Get the parts

http://keyboard.up


Top Tip
Button 
positioning

We’re going 
with a six-button 
Japanese-style 
layout. Check 
out magpi.cc/
joysticklayout 
to see some 
alternatives.

You’ll need a monitor with VESA mount 
points: 75×75 mm and 100×100 mm are 
the most common. When your cab is 
finished, you’ll probably want to apply a 
vinyl bezel graphic surround to hide the 
monitor bezel and fittings

This Omniretro bartop kit is 
drilled for Japanese-style 
30 mm buttons, but US-style 
28 mm button holes are also an 
option from most suppliers

05 Finish and decoration
Regardless of the materials used, you’ll 

probably want some plastic edging strip. This 
plastic trim helps to protect the edges of your 
cabinet, makes it easier to clean, and looks a lot 
more professional than exposed MDF edges.

Two types are popular. T-Molding is more 
secure but requires a slot to be cut for it to clip 
into – some DIY kits have ready-cut slots for this 
purpose, but budget models frequently do not. 

U-Molding just clips over the edge. Cabinet 
makers will usually tell you how much moulding 

03 A good fit
Depending on the era of games you want 

to play, a large 1920×1080 widescreen display 
may not be the most authentic choice, but it is 
the most flexible, and modern emulators handle 
HD displays well.

Most cabinets have a VESA mount, usually in the 
form of a monitor support bar drilled for 75×75 and 
100×100 mount points. Make sure your monitor 
has mounting points that match.

Finally, ensure that your monitor will work with 
Raspberry Pi: anything with a standard HDMI input 
should be fine, but older DVI and VGA displays 
require inconvenient adapter arrangements.

04 Materials
Self-assembly cabinets are usually made in 

MDF, but laminate, melamine, and veneer finishes 
are also widely available. 

MDF swells badly if exposed to water, so if you’re 
going to have drinks anywhere near your cabinet, 
a water-resistant finish is strongly recommended. 
If you buy an untreated MDF kit, apply and sand 
down between multiple coats of an MDF-specific 
solvent-based primer, then paint it to your heart’s 
content, ideally with oil-based paint. 

18 mm MDF is common, but you’ll find cabinets 
in anything down to 10 mm for budget models. 
18 mm or thicker construction materials may 
require a longer shaft or extender for your joystick. 
If in doubt, talk to the kit’s supplier.

	 �You can get kits 
containing all the 
joysticks, buttons, and 
connectors you’ll need; 
just make sure your 
button and cabinet 
hole sizes match

TUTORIAL 

135Retro Gaming with Raspberry Pi

www.dbooks.org

http://magpi.cc/joysticklayout
http://magpi.cc/joysticklayout
https://www.dbooks.org/


Sample shopping list
Here is an illustrative price list. The prices include VAT 
but not shipping or additional costs.

their kit will need and can usually supply the 
required quantity and type of edging.

Many arcade cabinet suppliers also sell a range 
of decorative and protective graphical vinyl sticker 
wraps. These should be applied with care to an 
appropriately finished surface (check with the 
sticker manufacturer for any finish requirements).

06 A giant screen protector
To protect your screen and create a 

flush finish, you can – and should – opt for an 
acrylic (polymethyl methacrylate, also known 
as plexiglass) screen protector. Again, this is 
something most self-assembly kits are designed 
to take and the majority of retailers will happily 
sell you one as either a standard part of the kit 
or an optional extra. Make sure you do opt in, as 
cutting your own plexiglass to precise dimensions 
can be a pain. Toughened glass and UV-resistant 
polycarbonate can also be used. You may need to 
add some standoffs to stop front monitor buttons 
being pressed by the screen protector.  

07 The marquee club
Also included in kits as a matter of routine 

is a strip of acrylic for your cabinet’s top marquee. 
You’ll probably want to get a backlight-ready 
vinyl marquee (available from print shops, arcade 
suppliers, and on Etsy) to stick to this, but you 
could also decorate your own.

While you’re at it, you may wish to get acrylic 
or metal panels to surround your buttons and 
joystick. These can be decorated, and protect your 
cabinet’s surface, as well as providing a smoother 
feel. Button layouts tend to be standard, but these 
should ideally be bought from the same supplier as 
your kit for the best fit.

08 Raid the button tin
We’ll be building a cabinet with an eight-

way joystick and six 30 mm buttons, plus Start 
and Select buttons, for each player. A variety of 
alternative sizes and brands are available, with 
Sanwa perhaps being the most recognisable. 
You can order a cabinet with holes for extra side 
buttons if you’re into digital pinball. 

An easy cross-platform connection solution is a 
USB arcade encoder. Models by Zero Delay and Xin-
Mo are popular, but the I-PAC 2 keyboard encoder 
has slightly lower latency.

Item Price

24-inch LCD monitor £125.00

Bartop cabinet £170.00

Bartop stand £100.00

10 m T-Molding £25.00

Acrylic control 
panel guard

£25.00

Two-player USB joystick + 
button kit

£70.00

Amp, speaker & cover kit £25.00

Amp power supply £12.00

Printed marquee £6.00

LED strip lighting £15.00

Molex power adapter 
for LEDs

£15.00

5-way plug bar £15.00

TOTAL £603.00

	 �A variety of compact 
bus- and mains-
powered amp and 
speaker kits are 
available: this one 
takes power from the 
USB port and audio 
from the 3.5 mm port

TUTORIAL 

136 Build an arcade machine: Get the parts



09 Pick a driver
You can connect controls to 

Raspberry Pi’s GPIO, using either the Adafruit 
Retrogame (magpi.cc/adaretrogame) or  
mk_arcade_joystick_rpi (magpi.cc/mkjoystick) 
drivers – we’ll be using the latter.

Arcade joysticks generally use a five-pin JST 
connector, while non-illuminated buttons each have 
a pair of quick-connect spade connector fittings, one 
of which must go to ground. Spade to DuPont GPIO 
cables are uncommon, but can be bought either 
individually or as part of a kit from specialist retailers 
such as SmallCab. Illuminated button kits are 
available with an extra external PSU. 

10 The sound of success
It’s a good idea to order your cabinet with a 

couple of pre-drilled speaker holes and covers to go 
over them. The most common option for audio is an 
externally powered stereo amp, connected to Raspberry 
Pi’s 3.5 mm port, and 10 cm/4-inch speakers, but USB-
powered kits are also available. If you have one lying 
around, you could also consider mounting a compact 
USB sound bar behind your speaker grilles.

11 More power, Igor!
A major advantage of this kind of arcade 

machine build is that there are no internal power 
supplies to bother with. There’s enough space to 
mount a plug bar inside most cabinets, and you can 
use this to power the monitor, Raspberry Pi, and any 
extra transformers required for lights or speakers. 

Where to buy
There are a number of UK and EU retailers 
specialising in self-assembly arcade cabinets and 
components. While it’s easiest to get everything in 
one place, you have to mix and match for specialist 
components such as GPIO-compatible wiring looms. 
•	 Arcade World UK – arcadeworlduk.com – supplies a 

wide range of kits and components; discount codes 
available for most non-furniture items

•	 Bitcade – magpi.cc/bitcadekits – UK arcade 
machine maker that also supplies kits

•	 Omnireto – omniretro.com – Spanish firm with a 
notable budget range

•	 Rockstar Print – rockstarprint.co.uk – custom 
marquee and wrap printer

•	 SmallCab – smallcab.net – French supplier of arcade 
kits and hardware including GPIO-friendly wiring

LED strip lighting is a popular choice for marquee 
panels, but you’ll need to buy a Molex power adapter 
to go with it, or repurpose a PC power supply. You 
can run a plug lead out of the back or optionally 
install an external power socket and switch, if you’re 
comfortable with simple electrical wiring.

12 Room to build
Before you start ordering, consider not only 

the space you have to house your cabinet, but also 
how much room you have to build in. Don’t get an 
untreated MDF cabinet unless you have a large, 
ventilated (and paint-resistant!) space where you 
can apply primer to each part, as well as appropriate 
eye and breathing protection. 

Warning! 
Paint and dust

When sanding, sawing, 
or painting, be sure to 

use appropriate eye and 
breathing protection in a 

well-ventilated space.

magpi.cc/diysafety

 �LED strip lighting is 
a popular choice for 
marquee panels 

	� If you want to use USB, the Ultimarc I-PAC 2 encoder is a 
popular choice that’ll work with most computers. Check out 
magpi.cc/ultimarcgit for advanced configuration

	 �You’ll want to source 
durable joysticks 
and buttons for your 
arcade machine

TUTORIAL 

137Retro Gaming with Raspberry Pi

www.dbooks.org

http://magpi.cc/adaretrogame
http://magpi.cc/mkjoystick
http://arcadeworlduk.com
http://magpi.cc/bitcadekits
http://omniretro.com
http://rockstarprint.co.uk
http://smallcab.net
http://magpi.cc/diysafety
http://magpi.cc/ultimarcgit
https://www.dbooks.org/


Build an arcade machine: 
Assemble your cabinet
Once your arcade cabinet kit arrives, it’s time to put everything together

I n this tutorial, we will assemble an 
arcade cabinet, fit controls, and mount 
a monitor. You should follow the video or 

written assembly instructions for the model 
you buy, but we’ll go through the process so 
you know what to expect and how to handle the 
awkward bits.

Kits don’t necessarily come with the screws 
and bolts you’ll need to attach parts such as 
speakers, speaker grilles, and monitors, so 
check that you have all the hardware you’ll 
need before you start.

Our cabinet is an Omniretro Bartop Arcade 
King with a stand (magpi.cc/kingbartop), 
made of 16 mm black melamine laminate, and 
we are using a 24-inch monitor.

01 Lay out your parts
MDF and melamine laminate are light, 

cheap, and sturdy when assembled, but can be 
susceptible to damage if dropped or pivoted hard 
on an edge or corner.

Make some space and put down towels to 
protect the cabinet parts and your floor from one 
another. If your unit consists of a separate bartop 
and stand, build them one at a time. Read or 
watch the manufacturer’s instructions and make 
sure that you have all parts, fixings, and tools to 
hand before you start.

Pa
rt

 0
2

02 Preparation
Assembly varies from brand to brand. If 

access to the assembled cabinet is restrictive, you 
may have to fit your buttons and joystick to it before 
you put it together. 

Similarly, attach speakers to the inside of the 
marquee bottom and speaker grilles to the outside 
before you assemble the cabinet. If you’re working 
with laminate, mark up the screw positions through 
their holes with a paint pen and use a 3 mm bit to 
drill pilot holes.

If you’ve already decided on your marquee, control 
panel and bezel graphics, your life will be easier if you 
apply these to their acrylic sheets before assembly 
(we’ll be looking at this in detail in a later tutorial).

03 Assembly
If you’re comfortable with self-assembly 

furniture, an arcade cabinet shouldn’t present 
too much trouble, but a second person can be 
helpful for fitting and moving awkward parts.

Ours has a control panel with a hinged access 
door beneath it, so we attached this hinge first 

 �Put down towels to protect 
the cabinet parts and your 
floor from one another 

TUTORIAL 

138 Build an arcade machine: Assemble the cabinet

http://magpi.cc/kingbartop


Build an arcade machine: 
Assemble your cabinet

Top Tip
Snap-out

Snap-in buttons 
can be hard to 
remove without 
damage. The 
ButterCade 
Snap-out tool 
for push‑buttons 
(magpi.cc/
snapout) is a 
plastic device to 
help with this.

It’s a good idea to fit your speakers 
and grilles before assembling the 
cabinet, but it’s possible, if fiddly, 
to do it afterwards

We have put U-moulding onto 
the edges of the cabinet now to 
protect them, loosely secured 
with standard double-sided tape 
at the ends. We’ll re-secure this 
properly after decorating the cab

You’ll Need 

> � �Screwdrivers, 
spanners, Allen 
keys, crimping tool

> � �Cordless drill

> � �Drill bit set. 
Screwdriver 
bits, drill bits, 
countersinks, 
tank cutters

> � �Additional bolts, 
screws, female 
spade connectors 
(to mount 
components)

> � �Dremel 
(recommended) 
and 3 mm drill

> � �Paint pen (silver 
if you have black 
laminate, black 
for MDF)

> � �Old towels 
or sheets to 
protect parts

> � �Foam cleanser and 
microfibre cloths (to 
clean your cabinet 
and acrylics)

TUTORIAL 

139Retro Gaming with Raspberry Pi

www.dbooks.org

http://magpi.cc/snapout
http://magpi.cc/snapout
https://www.dbooks.org/


then set the panel aside. We then attached the 
hinge for the bartop’s rear access door and base, 
lined this part up with the cabinet’s hood-like 
top, and bolted all of these parts to one side 
panel laid on top of them.

Lining bolts up with pre-drilled holes for this 
kind of build can be fiddly. If you have trouble, 
screw the bolts through the side panel until 
they’re protruding, and use them to help find the 
correct positions.

04 The control panel
With one side now in place, slide in the 

control panel and bolt it to the same side as the 
other parts. Next, attach the marquee bottom 
that houses the speakers, which should already be 
mounted at this point.

With this model, we then close the latch on 
the rear access door and carefully flip the entire 
cabinet over onto the now-secure side panel. This 
is the best time to slide the marquee and screen 
acrylic panels into place. If you’ve not already 
applied graphics to them, leave their protective 
film on – it’s easy to peel off later.

We now position the second side panel. We 
recommend again screwing in the bolts until they 
just protrude from the opposite side to help you 
lower the panel securely and accurately onto its 
pre-drilled holes.

05 Feel the power 
Drill a hole at the back of your bartop and 

run the power bar’s cable out through it to 
connect directly to a plug socket.

Some suppliers will wire a socket and bar for 
you, but note that international plug standards 
differ. Use a plug bar that can be surface-mounted 
inside of the cabinet.

While you’re back there, cut a hole to 
accommodate a booted Ethernet cable or, more 
tidily, a screw-down Ethernet extension port. This 
will make Steam Link game streaming easier.

06 Extending your shaft 
If your cabinet is over 16 mm thick, you’ll 

want a longer than standard joystick shaft. 
Shafts are easy to swap, but watch out for parts 
dropping out.

Like most sticks, our Sanwa JLF-TP-8YT’s shaft 
is held in place at the bottom by an e-clip. Hold 
the unit upside down, press on the bottom of the 
shaft with your thumb, and use a small flat-head 
screwdriver in your other hand to pull the clip off, 
using the slots in it. Pull the old shaft gently out 
from the top and push the new one in, carefully 
setting the pivot at the top and the spring and 
black plastic actuator at the bottom into place.

Use a thumbnail to depress the actuator and 
slide the e-clip back into place. You can also use 
pliers or your screwdriver to help push it on. 
For a demonstration, see this YouTube video on 
changing joystick shafts: magpi.cc/joystickshafts.

	 �The underside of a 
Sanwa JLF-TP-8YT 
joystick. Note the 
e-clip securing the 
central shaft

	 �To fit the VESA mount, place the cabinet face-down, then put the 
mounted monitor face-down on the front acrylic screen. Use a tape 
measure to help with positioning

Warning! 
Mains electricity 
& power tools

Be careful when 
handling projects 

with mains electricity. 
Insulate your cables 

and disconnect power 
before touching them. 
Also, be careful when 

using power tools during 
this build.

magpi.cc/drillsafety 

magpi.cc/

electricalsafety

TUTORIAL 

140 Build an arcade machine: Assemble the cabinet

http://magpi.cc/joystickshafts
https://www.hse.gov.uk/pUbns/guidance/cn3.pdf
https://www.hse.gov.uk/toolbox/electrical.htm


07 Installing your joystick
Two plastic dust washers come with Sanwa 

joysticks. Slide one onto the shaft before you mount 
the stick onto the underside of your control panel. 

When mounting your joystick, position it, mark 
up the position of the top right screw-hole on the 
joystick’s baseplate with a paint pen, and drill a pilot 
hole, being careful not to go all the way through. 

Attach your joystick by that screw, make sure 
it’s centred, and mark up the next hole or holes. 

Cable tidy
Cable lacing is a cable management technique 
where a nylon cord is used to bind wires together. 
It can be used to create incredibly neat builds, like 
this Arcade Stick by Gordon Hollingworth, Raspberry 
Pi’s Chief Product Officer. 

Gordon learnt to cable-tidy this way as an 
apprentice for the MOD. “Tying the knot has to 
be done in a very specific way to avoid it looking 
untidy,” he tells us, “basically a capital offence 
in the apprenticeship!” Gordon’s cables have 
knots regularly at 1 cm, which keeps them smart. 
“We learnt this way because when you put a box 
into a plane or tank with some equipment in it, 
the vibration will shake apart pretty much any 
connection in the first hour. So this was the way it 
was done when electronics was more about wires 
connecting things than PCBs.”

You can buy nylon cord and learn more from RS 
Components (magpi.cc/cablelacing).

There’s room to slide the screw slots on most 
joystick mounting plates, so you’ve got a bit of 
wiggle room when it comes to the final fit.

Don’t worry too much about the orientation of 
your joystick – position it where it won’t get in the 
way of the rest of your wiring. These are nominally 
designated up, down, left, and right positions; you 
can reassign these through wiring and in software.

Finally, slide the second dust washer onto the 
shaft on the other side and screw the joystick’s 
ball on.

08 World of buttons
Snap-in buttons are ideal for thick wooden 

cabinets – plastic clips hold them in position 
inside the holes drilled for them. If you have an 
acrylic cover for your control panel, the buttons 
will hold it in place.

It’s a good idea to attach your spade connectors to 
DuPont GPIO jumper cables before installing them, 
but you’ll have to connect the shared ground cable 
after they’re in place. We wired GPIO to the right 
and shared ground to the left connector on each 
button, but it doesn’t matter which goes where.

Where you have longer stretches between 
buttons, skip a connector on the ground chain to 
give yourself some extra cable to play with. 

You can label the end of each GPIO cable for later 
ease of connection to Raspberry Pi, but they’re not 
too hard to trace in most cabinets.

 �There’s room to slide 
the screw slots on most 
joystick mounting plates 

	� Snap-in buttons 
are held in place by 
plastic clips. Connect 
your DuPont GPIO 
cables first to make 
internal wiring easier

Top Tip
Foot the bill

To help the 
cabinet stand on 
an uneven floor, 
you can fit four 
rubber feet to 
its underside.

TUTORIAL 

141Retro Gaming with Raspberry Pi

www.dbooks.org

http://magpi.cc/cablelacing
https://www.dbooks.org/


09 Bolt screen to VESA mount
Screen mounting can be fiddly. Most 

cabinets come with a baton-like wooden VESA 
mount that’s designed to be screwed into place 
from the inside. Start by bolting your monitor 
to the mount. Unless you’re working with a 
specialist cab designed for giant screens, you’ll 
be using a 75 mm or 100 mm VESA mount. These 
usually take M4 bolts and have a depth of 10 mm. 
So if bolts aren’t included, you’ll need four, at 
a depth of 10 mm plus the depth of your mount, 
although you can get away with shorter if you 
countersink them.

10 Screw VESA mount to the cabinet 
Place the bartop face-down on the ground, 

protecting it with a towel. Take the protective 
plastic off the acrylic on the inside of the cabinet. 
Clean the acrylic with a microfibre cloth and anti-
static foam cleanser

Lay the monitor, attached to the cabinet’s 
VESA mount, face-down on the acrylic inside your 
cabinet. On the interior sides of the cabinet, mark 
up the position of the holes in the brackets on 
each edge of the VESA mount. Remove the mount, 
drill pilot holes, then replace and screw down the 
display and its mount. 

If your monitor has a front power button, you 
can use adhesive chair leg floor protectors as 
soft spacers to stop it from being pressed by the 
acrylic screen. 

11 Don’t panic
If you miss a stage in your build and find 

that you now can’t reach or fit a part, don’t panic. 
Speakers – and any other components in need of 
securing – can be attached internally using strong 
double-sided foam tape. 

Most external parts can be drilled and fitted in 
situ. If you want to deal with decoration last, then 
you can sometimes pop out your acrylic panels or, 
better, remove one side and reattach it.

As you’ll see from the photos, we have 
temporarily applied U-moulding to protect the 
edges of the cabinet. U-moulding is easy to 
remove and refit or replace, assuming you don’t 
glue it down, but T-moulding is a little harder to 
remove cleanly. 

We’re now ready to connect Raspberry Pi. That 
will be covered in the next tutorial. 

 �If you find that you now 
can’t reach or fit a part, 
don’t panic 

	 �To make it easier to 
line up the sides of 
your cabinet with their 
pre-drilled recieving 
holes, partially screw in 
each bolt until a couple 
of millimetres protrude 
on the far side

	 �Before construction, 
lay out the parts 
of your bartop on 
some old towels to 
protect them

TUTORIAL 

142 Build an arcade machine: Assemble the cabinet



SUBSCRIPTION

143Buy online: magpi.cc/store

	 QuickStart guide to setting up 
your Raspberry Pi computer

	 Updated with Raspberry Pi Pico 
and all the latest kit

	 The very best projects built by 
your Raspberry Pi community

	 Discover incredible kit and 
tutorials for your projects

200 PAGES OF RASPBERRY PI

www.dbooks.org

http://magpi.cc/store
https://www.dbooks.org/


Build an arcade machine: 
Command and control
We’ve assembled our cabinet. Now it’s time to put 
Raspberry Pi to work with the Recalbox arcade OS

W ith our arcade cabinet built, it’s 
finally time to get emulating with 
Raspberry Pi. We’re using the 

Recalbox emulation distro for this project, 
which has excellent GPIO arcade controller 
support, a slick front end, and a handy web 
interface to help you configure and manage it. 

The RetroPie distro is a popular choice 
for arcade machines, and adds Steam Link 
support, but requires manual installation and 
pull-up switch reconfiguration to get GPIO 
arcade controls working.

01 Wire up your controls
Last month, when we added buttons 

to our cabinet, we recommended attaching 

Pa
rt

 0
3

the spade-to-DuPont cables that will connect to 
Raspberry Pi’s GPIO before inserting the buttons. 
If you didn’t, it’s time to open the back of your cab, 
grab a torch, and get in there to fit them.

Connect a spade-to-DuPont cable to each button 
and connect a shared ground cable to each of the 
left and right button banks. Where you have longer 
stretches of buttons – for example between the 
central hot button connected to player one’s rig and 
the player one start button – it’s a good idea to skip 
a connector on the ground chain to give yourself 
some extra cable to play with.

Plug the 5-pin cable into the joystick. Looking 
at our Sanwa stick from below, the bottom-most 
pin, which connects to the black cable strand on 
standard-coloured 5-pin wiring harness, is ground.

02 Connect to GPIO
This is the fiddly bit. We suggest using a case 

for Raspberry Pi that fully exposes the GPIO pins. 
The GPIO wiring diagram shows which buttons, 
directional controls, and ground connections should 
be attached to each pin. While buttons and controls 
can be reconfigured in software, ground cannot. Our 
setup uses a total of 25 GPIO inputs, plus four ground 
connections. Input 25 is for a dedicated hotkey button.

03 Install and power up
Open Raspberry Pi Imager, connect 

your microSD card writer, and Choose OS > 
Emulation and game OS > Recalbox and the 
version of Recalbox that matches your Raspberry 

	 �Recalbox’s main menu takes a 
couple of button presses to get 
to but has a comprehensive set 
of configuration options

TUTORIAL 

144 Build an arcade machine: Command and control



A fully rigged two-player GPIO 
controller setup looks complex. Velcro 
cable ties can help to keep it under 
control, but still easily modifiable

Pi. Click Write and wait for the image file to be 
written to the microSD card. When Imager has 
finished, remove the microSD card and insert 
it into the Raspberry Pi in your arcade build. 
Connect the cabinet’s monitor and speakers 
to Raspberry Pi. Plug in a keyboard on a long 
cable. Plug in Raspberry Pi’s power and it will 
boot to Recalbox’s EmulationStation interface, 
which you can immediately navigate using the 
keyboard. However, we still have to enable our 
GPIO arcade controls, wireless networking, and 
other configuration options.

04 Connecting Recalbox
Recalbox has SSH and Samba enabled by 

default, as well as a web interface available via your 
browser on recalbox.local. Recalbox should appear 
on your network as RECALBOX (File Sharing). 

Each player’s buttons have a shared 
ground, although you can connect both 
players’ buttons to a single ground. Use 
any free GPIO ground pin. Skip spade 
connectors if you need more cable 
length between buttons

A wired Ethernet connection will give 
you immediate access to these. If you don’t 
have one, press ENTER to open the menu, 
scroll to Main Menu, and select it with A on 
the keyboard, then select Network Settings, 
enable WiFi, select your SSID, and then select 
‘Wifi Key’ to enter your password. Recalbox 
only has a root user. The default username is 
root and the password is recalboxroot.

05 Configure Recalbox 
You can access Recalbox’s config file - 

recalbox.conf - by connecting via SSH, by 
browsing to the system directory in the 
Recalbox (File Sharing) Samba share, by 
pressing F4 and then ALT+F2 at the cabinet 
to exit to the console, or by going to  
http://recalbox.local/ and selecting the 
recalbox.conf tab in the left-hand menu pane.

Under ‘A - System options, Arcade 
metasystem’, remove the semicolon that 
comments out emulationstation.arcade=1. This 
will make the arcade category the first entry in 
Recalbox’s EmulationStation interface.

 �Recalbox has SSH and 
Samba enabled by default, 
as well as a web interface 

You’ll Need 

> � �Spade to 
DuPont cables

> � �Spade to 
DuPont shared 
ground cables

> � �Joystick to 
DuPont cables

> � �At least one 
Neo Geo Classics 
Collection game 
magpi.cc/ironclad

TUTORIAL 

145Retro Gaming with Raspberry Pi

www.dbooks.org

https://www.recalbox.com/
http://magpi.cc/ironclad
https://www.dbooks.org/


Under D2 - GPIO controllers, set  
controllers.gpio.enabled=1. Save your changes 
and, at the arcade cabinet, open the menu, go to 
Quit > Fast restart Recalbox.

06 Optional: Take control 
Recalbox will now automatically detect 

GPIO controllers and, if all your buttons are wired 
as it expects, will already have the correct button 
configurations. Use the bottom-left button (B) to 
select options and the bottom-centre button (A) 
to go back. Left and right navigate between 
systems; up and down navigate between games or 
options within a menu. Press Start to open the 
configuration menu. 

If your buttons aren’t connected in that order, 
or if you prefer an alternative layout, open the 
menu and go to main menu > controllers settings 
> configure a controller. Press down to skip an 
entry that you don’t have buttons for. If you don’t 
have a hotkey button for one or more players, set 
it to Select.

07 Sounds good
If you have no sound, open the menu, select 

sound settings, and check the output device. We 
had to switch to ‘headphones – analog’ output 
to use our cabinet’s speakers, connected to the 
3.5 mm output on Raspberry Pi.

Recalbox plays background music all the time 
by default. This is charming, but a bit much for a 
cabinet that lives in the sitting room. Switch the 
Audio Mode to ‘Video sound only’ – to only hear 
the splash screens on boot – or ‘No sound’.

If you prefer, you can add your own music by 
copying it to Recalbox’s share/music directory.

08 Getting to know Recalbox
Recalbox comes preloaded with a number 

of freeware and open-source games. Because we 
enabled arcade mode, this category appears first. 
There are already four games loaded into it.

Select the category by pressing button B and scroll 
through them with the joystick. Gridlee, released in 
1982, looks great for the era. Press B to load it.

Press Select to add credits and press Start when 
you’re ready to play. When you’ve had enough, 
press the hotkey button and Start together to quit 
back to the Arcade menu.

You can press A to go back to the top menu, and 
use the joystick to navigate up and down through 
the list. But it’s easier to use the right and left 
directional controls to navigate through each 
console’s full library.

	 �A web interface at 
http://recalbox.local 
gives you control 
over almost every 
aspect of your arcade 
machine’s setup

	 �Viewed from below, 
a standard Sanwa 
joystick’s 5-pin 
connector goes to up, 
down, left, right, and 
ground. The diagram 
shows standard 
colour coding

 �Press the hotkey button 
and Start together to quit 
back to the Arcade menu 

Top Tip
USB controls

To convert your 
controls to USB, 
use a Xinmotek 
board (magpi.cc/
xinmotec) instead 
of connecting 
to GPIO.

TUTORIAL 

146 Build an arcade machine: Command and control

http://magpi.cc/xinmotec
http://magpi.cc/xinmotec
https://www.recalbox.com/


09 recalbox.local
Once your arcade machine is connected 

to your local network, you’ll be able to access it 
in a web browser via http://recalbox.local. On 
the main page, you’ll see shortcuts to a virtual 
gamepad, keyboard, and touchpad, which allow 
you to navigate through the arcade machine’s 
menus remotely.

To add some authenticity to older titles, go to 
Systems and set the Shader set to Retro, which 
will apply community-favourite shader and 
scanlines settings to each game. On the other 
hand, if performance is poor, disable shaders and 
rewinding here. Click Save at the bottom of the 
page to store your changes.

Below, the Configuration tab lets you set 
networking options, enable and disable the Kodi 
media player, and configure the behaviour of the 
EmulationStation front end and the hotkey.

10 Manage game & BIOS files 
The easiest way to manage your game 

ROMs on Recalbox is via the web interface, where 
the ROMs tab lets you select the directory for your 
desired console, stop the EmulationStation front 
end, upload games, and restart EmulationStation 
to load them.

You can also copy games over to the roms 
directory in Recalbox’s Samba share. Even if you 

don’t plan on emulating a specific console, don’t 
delete the containing folders for its games, as 
they’re required. 

Recalbox also shares a bios directory, where you 
can add freeware or legally purchased computer or 
console BIOS files.

11 Buy and install a game
ROMs and a functional BIOS set for a 

number of Neo Geo maker SNK Corporation’s 
games are available to buy as part of the Neo Geo 
Classics Collection (magpi.cc/neogeoclassics). 

You’ll need a Windows, macOS, or Linux PC to 
install or extract these. You’ll find the ROM and 
BIOS files in the install directory; for example, 
ironclad.zip and neogeo.zip respectively for the 
fantastic scrolling shoot-’em-up Ironclad. If 
you don’t want the whole collection, you can buy 
Ironclad alone at magpi.cc/ironclad.

Connect to Recalbox via SMB and copy the game 
ROMs into roms, and neogeo.zip into bios.

Restart EmulationStation and you should find 
your new games in the Arcade game list. Not all of 
them will work out of the box. Start any of them 
and press the hotkey and B buttons to open the 
Libretro emulation interface. Scroll down and 
select Options > Neo-Geo mode > Use UNIBIOS 
Bios. We aren’t using UniBios here, but the file 
supplied by SNK is compatible with this setting. 

	� Button and joystick 
correspondences for 
player controls. The 
joystick maps to the 
D-pad. L and R correspond 
to L1 and R1, equivalent 
to the shoulder buttons of 
modern joypads

Top Tip
Preconfigured 
USB support

If your cabinet 
uses a USB 
controller 
board, then 
RetroPie won’t 
need any extra 
drivers to detect 
your controls.

Warning! 
Mains electricity 
& power tools

Be careful when 
handling projects 

with mains electricity. 
Insulate your cables 

and disconnect power 
before touching them. 
Also, be careful when 

using power tools during 
this build.

magpi.cc/drillsafety 

magpi.cc/

electricalsafety

TUTORIAL 

147Retro Gaming with Raspberry Pi

www.dbooks.org

http://magpi.cc/neogeoclassics
http://magpi.cc/ironclad
http://magpi.cc/drillsafety
http://magpi.cc/electricalsafety
https://www.recalbox.com/
https://www.dbooks.org/


Press A twice to go back and select Resume. Your 
game should start.

12 Tweak your games entries 
To hide the games that come with 

Recalbox, from EmulationStation press Start > 
Main menu > Games settings > Hide preinstalled 
games. Unfortunately, you can’t pick and choose 
which get hidden, but you can manually download 
and re-add any that you’d like to keep.

You can also disable the ports category by 
editing recalbox.conf to include:

emulationstation.collection.ports=1
emulationstation.collection.ports.hide=1

If you want to add images or change the titles of 
the games you’ve added to Recalbox, the easiest 
approach is to use the built-in scraper. Highlight 
the game in the menu, press Start > Edit game 
> Scrape. You can also add your own ratings and 
keywords in this menu.

13 Get more games 
The creators of the MAME emulator have 

been given permission to distribute some early 
arcade games, which you can find for download at 
magpi.cc/mameroms.

Many other emulated arcade games have been 
released for use on modern computers, but some 
– including collections by SNK, Capcom, Irem, 

	 �SNK has made 
plenty of its arcade 
ROMs available to 
buy. Ironclad for 
Neo Geo-based 
arcade machines is a 
particular favourite

	 �GPIO wiring: Connect 
your joysticks and 
buttons to Raspberry 
Pi’s GPIO as shown.  
Image by 
digitalLumberjack of 
the Recalbox project, 
licensed under GPL2

and Namco – require an additional extraction and 
re-bundling stage. You can find tools and game 
lists to help you buy and use these at RED-project 
(magpi.cc/redproject) and SF30ac-extractor 
(magpi.cc/sf30ac). Linux GOG users may also 
require innoextract (magpi.cc/innoextract). 
Non‑Neo Geo arcade games should go into the 
roms/MAME directory.

The homebrew scenes for arcade games tend 
to focus on physical releases, but we’ve had luck 
with Codename: Blut Engel for Neo Geo and 
Santaball (magpi.cc/neogeohomebrew) for Neo 
Geo CD.

For more  retro and homebrew games 
that work well with arcade controls, 
including Sega’s Mega Drive Classics 
collection, see magpi.cc/legalgameemu and  
magpi.cc/legalroms. 

Warning! 
Copyright alert!

It is illegal to download 
copyrighted game or 
BIOS ROMs in the UK 

without the permission of 
the copyright holder. Only 
use official purchased or 
freeware ROMs that are 

offered for download 
with the consent of the 

rights holder.

magpi.cc/legalroms

TUTORIAL 

148 Build an arcade machine: Command and control

http://magpi.cc/mameroms
http://magpi.cc/redproject
http://magpi.cc/sf30ac
http://magpi.cc/innoextract
http://magpi.cc/neogeohomebrew
http://magpi.cc/legalgameemu
http://magpi.cc/legalroms
http://magpi.cc/legalroms


Inside:
• Learn how to set up your Raspberry Pi, 

install an operating system, and start using it 

� • Follow step-by-step guides to code your 
own animations and games, using both the 

Scratch 3 and Python languages

• Create amazing projects by connecting 
electronic components to Raspberry Pi’s 

GPIO pins

Plus much, much more!

The only guide you 
need to get started 
with Raspberry Pi

£10 with FREE 
worldwide delivery

THE OFFICIAL

Beginner’s Guide
Raspberry Pi

Buy online: magpi.cc/BGbook

Now
includes 

Scratch 3 
projects!

www.dbooks.org

https://store.rpipress.cc/products/the-official-raspberry-pi-beginners-guide-3rd-edition
https://www.dbooks.org/


Build an arcade machine: 
Decorate your cabinet
You’ve built an arcade cabinet, but vinyl 
decals and edge moulding will bring it to life

M ost arcade cabinet kit suppliers print 
pre-designed or custom vinyl decals 
to decorate your cabinet. Third-

party printers can produce vinyls to your 
specification, but make sure that you provide 
accurate measurements. 

Our vinyl decals, bought from Omniretro 
(magpi.cc/omniretro), arrived on a roll and 
had to be cut out, but some firms will die-cut 
vinyls for you. We’ll use a wet application 
process, which makes it easier to remove and 
reposition decals for a short while after initial 
placement, to help you get a perfect alignment. 

Pa
rt

 0
4

01 Flatten your vinyl decals
If your vinyls all came on a single roll, the first 

step is to cut each of them out. First separate them, if 
they’re on a single roll, but leave generous margins. 
Spread them out on a table or on the floor and weigh 
them down – coffee table books and textbooks are 
good for this. Leave them for at least an hour or two: 
24 hours is better.

02 Cutting out
Now they’re flat, it’s time to cut out your 

vinyls. Try to get rid of all white matter on straight 
edges. The easiest way is to line up a long metal 
ruler so that it just covers the edge of the printing, 
and run a scalpel down the outside of it. Curved 
sections for the cabinet side panels are trickier, 
but you don’t need to worry about these as they’re 
easy to trim down once fitted. For now, trim them 
freehand and leave as much white overmatter as 
you feel comfortable with.

03 Partial disassembly
Depending on the design of your cabinet, 

you may need to remove a side panel to take out the 
acrylic marquee and screen panels. Before doing this, 
use a liquid chalk pen and ruler to mark the edges of 
your LCD display on the acrylic, so we can accurately 
hide the bezel.

If you’ve previously fitted joysticks and buttons to 
your control panel, this is the time to remove them 
too. Apply steady pressure to the rear of snap-in 
style buttons to pop them out of the cabinet. People 
with large fingers may find a ButterCade Snap Out 
Tool useful for this.

	 �Mark up in chalk pen and 
use a metal ruler to help cut 
your screen decal to size

TUTORIAL 

150 Build an arcade machine: Decorate your cabinet

http://magpi.cc/omniretro


Build an arcade machine: 
Decorate your cabinet

The glowing logo is created 
using light-permeable vinyl 
on acrylic, with an LED strip 
mounted just behind it

Ghouls ’N Ghosts is available 
to buy in the Capcom Arcade 
Stadium collection on Steam 
(magpi.cc/ghoulsnghosts)

04 Applying vinyl to 
your marquee acrylic

Two acrylic parts require individual application of 
vinyls: the marquee and the screen that goes in 
front of your monitor. The former is easy: remove 
the backing from the vinyl marquee decal and any 
protective film from the acrylic. Spray both the 
acrylic and the adhesive back of the vinyl with 
two or three squirts of application fluid. You want 
them to be damp all over but not awash.

Pick up the vinyl decal in both hands and, starting 
at one end of the acrylic, line it up with the edges 
and paste it down. If you’re not happy with the 
positioning, firmly hold the vinyl and snap it back 
up – the application fluid will help it release easily.

Once it’s positioned, use your applicator and 
a cloth to smooth it down, drive out any excess 
water, and remove any trapped air bubbles under 
the vinyl. Trim any excess vinyl spilling off the 
edge of the acrylic with a knife.

05 Measuring your screen acrylic
Cutting your screen decal to size is 

awkward. Before removing the screen acrylic 
from the cab, we marked the inner position of our 
monitor’s bezel on the acrylic using a chalk pen. If 
your cabinet has a detachable VESA mount, bring 
the monitor with you to help line everything up.

Measure the distance between the edge of the 
acrylic and the chalk line you drew on it. Measure 
in multiple places to be sure of distances. Our 
24‑inch monitor’s positioning and bezel size 
means that we cut 35 mm in at the top and sides, 
and 65 mm from the bottom – yours will differ.

06 Cutting your screen decal
Once you’ve taken the measurements, 

grab your screen vinyl and mark up the area to cut 
out. Mark on the side showing the picture, paying 
particular care to the corner positions. Double-
check these by placing the acrylic on top to make 
sure both sets of marks line up.

A join between this 
bartop cabinet and 
its stand is rendered 
invisible by a large 
vinyl decal

 �Grab your screen vinyl 
and mark up the area to 
cut out 

TUTORIAL 

151Retro Gaming with Raspberry Pi

www.dbooks.org

http://magpi.cc/ghoulsnghosts
https://www.dbooks.org/


Grab your metal ruler, place it along your 
marked line, and cut a rectangle out of the middle 
of the vinyl decal with a blade. If in doubt, err 
towards leaving too much vinyl rather than too 
little. To check positioning, put the acrylic over 
your monitor, and your vinyl over the acrylic: they 
should all line up.

07 Screen decal application 
Now, turn the vinyl upside down, remove its 

backing, spray it and the acrylic with the application 
solution, and stick it down using an applicator and 
cloth. Residual chalk marks can be wiped off using a 
bit more of the application solution.

Allow both the marquee and screen decals to 
dry for a day, trim them if needed, slide them 
back into your cabinet, and reattach anything 
you removed. This will probably be the last time 

you do this, so make sure the side panels are on 
securely and are correctly lined up and bolted to 
your stand, if you have one.

If you plan on back-lighting your marquee, 
this is a good time to put in your light. We used 
adhesive tape and supplied clips to mount a 50 cm 
USB-powered LED light on the underside of the 
marquee, just in front of the speakers.

08 Applying flat vinyls
If you have a full-height cabinet or a bartop 

and stand, you’ll probably have a number of flat, 
front-facing areas to decorate – in our case, the 
front cupboard door of our stand, its base, and the 
front of its foot. Do these next to get your hand in.

The drill is the same for all of them: place the 
vinyl decal face-down on the floor, remove its 
backing, spray both it and the surface you’re 

	 �Use a vinyl applicator 
and a cloth to stick 
down, remove 
excess moisture, and 
eliminate air bubbles 
from your decals

	 �We marked the inner 
position of our monitor’s 
bezel on the acrylic 
using a chalk pen

You’ll Need 

> � �Vinyl decals

> � �U-moulding/
T‑moulding

> � �Scalpels/craft 
knives

> � �Strong scissors

> � �Liquid chalk 
marker pen 

> � �Metal rulers, tape 
measures 

> � �Vinyl application 
fluid

> � �Vinyl applicator

> � �Neoprene glue

TUTORIAL 

152 Build an arcade machine: Decorate your cabinet



applying it to, position your decal, and smooth it 
out with your applicator. Use a scalpel to trim off 
any overmatter. For the door, we applied the decal 
with the door in place – knob removed, starting 
at the top. We had to open the door to flatten and 
trim the vinyl in places.

09 Control panel decals
Most control panel decals wrap around the 

top and front of your panel. Buttons and joysticks 
should not be present during application. This is 
a relatively easy section to apply, but watch your 
position if there are decorative patterns designed 
to surround specific buttons or joysticks.

You may need to trim overmatter from the sides 
with a scalpel to get the decal to fold over the front 
face properly. Be careful when smoothing the vinyl 
on this fold, as it can be prone to both trapped air 
bubbles and damage from the join beneath.

10 Cabinet positioning
Side panels are the largest pieces of vinyl 

you’ll be applying, but they’re less intimidating 
than they seem. For a standalone bartop, one 
person can mount them in a vertical position 
with little fuss, as shown in Omniretro’s video at 
magpi.cc/omniretrovinyl. 

Full-height cabinets present more of a challenge 
due to their height and the size of the vinyl - a 
second person is useful here. You can apply long 
vinyls in an upright position, but we’d already 
attached rubber feet to our cabinet, so we used 
these to help pivot the cab down to lie on a sheet of 
cardboard on the floor.

11 Apply side panel vinyls 
Lying flat and sprayed down as before, it’s 

easy to line up the side-panel decal. Make sure 
everything’s covered – with two people, it’s easy 
to snap the decal back up if you make a mistake, 
then use a cloth and applicator to drive out excess 
moisture. Use a Stanley knife to trim the vinyl to 
size – its solid metal body makes it easy to follow 
the line of the cabinet’s curves.

Go around again to remove any air bubbles and 
ideally leave the vinyl to dry for at least a couple 
of hours before pivoting the cabinet back up and 
lowering it to expose the opposite side. Repeat 
the process.

	� You can leave some white-space 
overmatter on side panel decals 
before application, as they’re easy 
to trim with a knife afterwards

Top Tip
Screen materials

Acrylic scratches 
really easily, so 
tinted tempered 
glass is an excellent 
alternative for your 
cabinet screen.

If your cabinet has separate stand and bartop 
parts, but uses a single sticker, there will be a 
slight ridge where these join. However, careful 
application (and a sympathetic vinyl design) 
makes this effectively invisible. Just be careful 
smoothing around it.

 �Side panels are the largest 
pieces of vinyl you’ll 
be applying 

153Retro Gaming with Raspberry Pi

TUTORIAL 

www.dbooks.org

http://magpi.cc/omniretrovinyl
https://www.dbooks.org/


12 Moulding
We used U-moulding on our cabinet, with 

neoprene glue to hold it in place securely. First, 
measure and use scissors to cut two strips to go 
above and below the marquee – it’s better to cut 
these a few millimetres too long and then trim than 
it is to have a gap.

Use a spatula to help apply neoprene glue 
along the edge you’re working on, then use the 
tube’s nozzle to apply glue to the inside of the 
U-moulding. 

To lock U-moulding into place, bend it backwards 
to spread the U-shaped section, push that onto 
the edge you’re applying it to, and then roll the 
moulding down along the edge, using a finger to 
push it into place.

When applying it to a long section, such as each 
side of your cabinet, start at the front underside 
– rubber feet help access here – apply glue to the 
cabinet edge and the first 50 cm of your roll of 
moulding, and have someone else feed it to you as 
you work up and around the cabinet. When you get 
to the bottom at the back, cut off your moulding 
with scissors.

T-moulding locks into a pre-cut groove along the 
edges of your cabinet, making it more secure, but 
it’s still a good idea to apply glue to the flat surfaces 
for security. Either way, use a rubber mallet to 
gently tap down your moulding at the end.

You can use acetone to clean the glue off your 
hands and the moulding, but keep it away from 
the vinyl. 

Warning! 
Solvents

Always use solvents in 
a well-ventilated area 
and keep away from 

open flames.

magpi.cc/solvents

	 �Demonstrated here without glue, 
flex U-moulding backwards and 
use a finger or thumb to press it 
into place on a cabinet edge

	 �Highly flexible, U- and 
T-moulding are used 
to give a clean finish 
to the cabinet edges

TUTORIAL 

154 Build an arcade machine: Decorate your cabinet

http://magpi.cc/solvents


	 �After spraying the vinyl decal, and the acrylic, with our homemade 
fluid, we applied it and smoothed down with an applicator and cloth 13 Finishing moves 

Use a scalpel to cut out the vinyl above the 
button holes: locate a hole, pierce it with the blade, 
slice until you find the edge of the hole, and then 
follow the hole round to remove all the vinyl. Do 
this for all your joystick and button holes.

As described in The MagPi #105 (magpi.cc/105), 
screw your joysticks back into place from the inside. 
If you’re going to put protective acrylic panels over 
your control panel, this is the time to do it – they’re 
held on solely by the buttons. 

However, because our cabinet is for home use, 
we’ve left the vinyl bare for a more comfortable and 
attractive finish. If your cabinet will see lots of play, 
acrylic will protect it and cut down on wear and tear. 
Whichever you choose, connect a DuPont cable to 
each button and pop them into place. 

Follow the instructions from issue 106 to connect 
your buttons and peripherals to Raspberry Pi. 

Warning! 
Sharp objects

Take care when using 
knives and scalpels. 

magpi.cc/handknives

Vinyl application fluid
You can buy commercial vinyl application 
fluid (magpi.cc/vinylfluid), widely used by 
car customisation enthusiasts to apply decals, 
but we filled a spray bottle with the following 
homemade formula:

•	 66 ml surgical spirit
•	 132 ml water
•	 2 drops washing up liquid

You can use warm water with a drop of washing up 
liquid alone, but the surgical spirit reduces drying 
times, which means less waiting between different 
stages of application and decorating.

155Retro Gaming with Raspberry Pi

TUTORIAL 

www.dbooks.org

http://magpi.cc/105
http://magpi.cc/handknives
http://magpi.cc/vinylfluid
https://www.dbooks.org/


Build an arcade machine: 
RetroPie and stream 
from Steam
Use RetroPie as your arcade operating system and add extra emulators with 
support for Steam Link. Stream games from a powerful PC to Rasbperry Pi

L ast month, we used Recalbox for our 
main arcade cabinet operating system, 
but it’s not your only choice. In this final 

instalment of the ‘Build an arcade machine’ 
series, we’ll use the RetroPie distribution, 
currently at version 4.7, to provide extra 
features such as Steam Link support, as well 
as taking a longer look at where to buy arcade 
games and how to get them onto your system. 
This tutorial assumes that you already have a 
fully assembled and wired arcade cabinet.

01 Install and prepare RetroPie
Fire up Raspberry Pi Imager, connect your 

microSD card writer, and install RetroPie from its 
Choose OS menu. Re-mount the microSD card 
once you’ve finished flashing it, because we’ve 
got some changes to make. 

Pa
rt

 0
5

As with our DB9 joystick project in issue 101 
(magpi.cc/101), we have to tell the GPIO to treat 
the controls as pull-up switches. Recalbox, by 
comparison, implements this by default.

Create the pullup.sh file we’ve supplied 
(magpi.cc/pullupfix). You can put it anywhere you 

like – we stuck ours in /home/pi/. Now open /etc/
rc.local on the SD card and, above the exit line, add:

/home/pi/pullup.sh

This will load your pull-up settings on boot. If you’re 
setting up your disk on a Linux system, you can set 
pullup.sh as executable now. Otherwise, we’ll do that 
on first boot.

02 First boot
Make sure you have a keyboard plugged 

into your cabinet for this bit. We left ours 
propped up against the marquee acrylic during 
setup for easy access. A Bluetooth keyboard is a 
viable alternative, but it’s easier to start with a 
wired connection.

Plug in Raspberry Pi’s power. It should boot to the 
EmulationStation interface, but we can’t configure 
the controls until we’ve set our pull-up script 
executable. Press F4 to exit to the command line 
and type:

chmod /home/pi/pullup.sh +x

While we’re here, let’s enable SSH:

sudo raspi-config
1 system option
s3 password

	 �More button 
assignments are 
available on RetroPie 
than you have arcade 
controls. You can skip 
the ones that don’t 
match up

TUTORIAL 

156 Build an arcade machine: RetroPie and stream from Steam

http://magpi.cc/101
http://magpi.cc/pullupfix


Raspberry Pi is powerful 
enough to run most games, 
and you can stream classic and 
modern arcade titles from a 
separate PC on your network 
via Steam Link

enter a new password
3 interface options
enable ssh
yes

You can now SSH into Raspberry Pi from another 
PC using a client such as Remmina or PuTTY.

03 Add hotkey button support
If, like ours, your arcade cabinet’s GPIO 

controller setup has either one or two extra hotkey 
buttons for easy access to save, load, and exit 
shortcuts while playing, then the standard version 
of the mk_arcade_joystick_rpi driver available from 
RetroPie’s package manager won’t support them. 
We’ll have to manually add an updated version from 
maintainer Recalbox’s GitLab repo. 

At the command line, type:

git clone --branch v0.1.9 https://gitlab.
com/recalbox/mk_arcade_joystick_rpi.git
sudo mkdir /usr/src/mk_arcade_joystick_rpi-

0.1.9/
cd mk_arcade_joystick_rpi/
sudo cp -a * /usr/src/mk_arcade_joystick_

rpi-0.1.9/
nano /usr/src/mk_arcade_joystick_rpi-0.1.9/

dkms.conf

In this file, change PACKAGE_VERSION="$MKVERSION" 
to PACKAGE_VERSION="0.1.9". Press CTRL+X to exit, 
then Y to save. 

Back at the command line, enter:

sudo dkms build -m mk_arcade_joystick_rpi 
-v 0.1.9
sudo dkms install -m mk_arcade_joystick_rpi 

-v 0.1.9

reboot

Steam Link lets you create 
a dedicated control map. 
Remember to map your hotkey 
button to its guide button

 �We’ll use the RetroPie 
distribution to provide extra 
features such as Steam 
Link support 

magpi.cc/rpipullupfix

DOWNLOAD  
THE FULL CODE:

TUTORIAL 

157Retro Gaming with Raspberry Pi

www.dbooks.org

https://gitlab.com/recalbox/mk_arcade_joystick_rpi.git
https://gitlab.com/recalbox/mk_arcade_joystick_rpi.git
https://gitlab.com/mighty-owlbear/mk_arcade_joystick_rpi-pullup-fix
https://www.dbooks.org/


04 Optional: Load your hotkey driver
When Raspberry Pi has rebooted, SSH back 

in and type: 

sudo modprobe mk_arcade_joystick_rpi map=1,2

Go over to the arcade machine and press F4 to get 
to the command line and test your controllers:

jstest /dev/input/js0
jstest /dev/input/js1

If that works, it’s time to load that module on 
boot. At the command line:

sudo nano /etc/modules

In this file, add the following on a new line, then 
save and exit.

mk_arcade_joystick_rpi 

Next, at the command line:

sudo nano /etc/modprobe.d/mk_arcade_
joystick.conf

In this file, add the following:

options mk_arcade_joystick_rpi map=1,2

Now save, exit and reboot.

05 Configure RetroPie
There’s a bit more configuration to do 

before RetroPie is ready to go. SSH in and type:

sudo ~/RetroPie-Setup/retropie_setup.sh 

…to open the ncurses configuration menu.
If you did not manually install a hotkey version 

of the mk_arcade_joystick driver in the previous 
steps and do not need one, go to:

P manage packages
driver
819 mkarcadejoystick

…and install it.
If you need to connect any Bluetooth keyboards 

or controllers, go to:

C Configuration / tools
804 bluetooth

Press R to register a device and follow the 
pairing instructions.

832 samba in the configuration menu sets up 
Samba shares so you can easily transfer ROMs and 
BIOS images over your local network

You can add extra emulators here, but we’ll 
come to that later. For now, select the R Perform 
reboot option from the main menu.

06 Input configuration
When RetroPie reboots, it should inform 

you that it can detect two GPIO controllers. Press 
and hold any button on the left-hand button 
bank to configure controls for player 1. Because 
arcade controls don’t map perfectly to a gamepad, 
you’ll have to skip some buttons by pressing and 
holding any key.

Map up, down, left, and right on the arcade 
stick to the D-pad. Follow our button assignment 
diagram to map the top row to button Y, X, and 
L(eft shoulder), and the button below to buttons 
B, A, R(ight shoulder).

Map Start to player 1’s left-hand front function 
button and Select to their right-hand front 
function button – this will be their ‘insert coin’ 

	 �Button and joystick 
correspondences 
for player controls; 
we recommend this 
configuration for use 
with RetroPie. L and R 
map to the right and 
left shoulder buttons

 �When RetroPie reboots, it 
should inform you that it can 
detect two GPIO controllers 

TUTORIAL 

158 Build an arcade machine: RetroPie and stream from Steam



Top Tip
Steam Link 
smoothly

Use a wired 
Ethernet 
connection for 
optimal Steam 
Link game 
streaming.

button. In our wiring configuration, our single 
hotkey button – the last we set – is associated 
with player 1.

Approve your configuration, then set up 
player 2’s controls in the same way.

07 Getting to know RetroPie 
With your controllers configured, RetroPie’s 

main interface will open. Press A to select menus 
and items and B to go back. Press Start to open the 
main menu and Select to open the options menu. 
Press the same button again to close each of these.

As you have yet to put any games on the system, 
only the RetroPie menu will be available. Here, 
you’ll find easy access links to configuration 
tools, including some we used earlier. Install 
new emulators and drivers from the RetroPie 
Setup menu.

You’ll probably need to disable overscan to get 
rid of a black border around the screen. In the 
ReotroPie menu, select Raspi-config > Display 
options > Underscan > No and then reboot to solve 
the problem. Note that button B is mapped to the 
ENTER key in this set of menus.

When you add any new games, ROMs or 
emulators, you’ll have to restart EmulationStation 
by pressing Select, going to Quit, and then 
Restart EmulationStation.

08 Install more emulators
Although this is an arcade machine, 

you can play what you like on it. The core 
lr‑mame2003 and lr-fbneo emulators are 
included, along with those for popular consoles 

	� You’ll probably want 
to reconfigure your 
controls in Steam 
Link to better match 
its Steam Controller-
based expectations

such as the Sega Mega Drive, used in some 
arcade systems and for which original games are 
legally available.

Some emulators require system BIOS images. 
Sadly, very few of these have been made 
legally available to emulation enthusiasts. SNK 
distributes a UniBIOS compatible BIOS set in its 
40th Anniversary Collection. We recommend 
adding the following:

opt > 327 opentyrian – arcade-like DOS shoot-
’em-up Tyrian 2.1 is now freeware.

exp > 241 lr-mame – a more up-to-date 
version of MAME that supports a wider range of 
ROMs. Install from source for bleeding edge.

exp > 307 digger – a sanctioned remaster of 
Windmill Software’s Dig-Dug.

exp > 334 steamlink – this allows you to stream 
less emulation-friendly titles directly from a 
Steam installation on a Windows or Linux PC.

09 Configure your emulator
Once you’ve installed a new emulator, such 

as lr-mame, you’ll have to configure the libretro 
back end to use it by default for either all games 
or selected titles. The easiest way to do this is 
to browse to the game you want to play in the 
EmulationStation front end.

Go to the Arcade menu, press B to start any 
game – it doesn’t matter if it currently works or 
not – and then press B again when you’re briefly 
prompted to ‘press a button to configure’. Select 
option 1 to set the default emulator for arcade 

159Retro Gaming with Raspberry Pi

TUTORIAL 

www.dbooks.org

https://www.dbooks.org/


games and choose lr-mame. Option 2 allows you 
to select a different emulator for anything that 
doesn’t work well with this.

10 Connect Steam Link
Linking Steam to your arcade cabinet lets 

you stream a wealth of modern and classic arcade 
games to Raspberry Pi from a more powerful PC, 
like Melty Blood, Guilty Gear, Horizon Chase Turbo, 
and Street Fighter V. After you’ve installed it and 
restarted EmulationStation, go to the Ports menu 
and select Steam Link.

It’ll download updates – you will need a keyboard 
plugged in to approve these – and then run. 
Make sure Steam is running on a PC on your local 
network and that Enable Remote Play is ticked 
under Settings > Remote Play.

On the arcade machine, select the computer you 
want to link to. Steam Link will show a code. Enter 
this in your PC’s Steam client when prompted. To 
avoid a resolution mismatch, run Steam with a 
monitor that matches the resolution of your arcade 
machine set as your primary display.

11 Configure Steam Link 
You may want to reconfigure your controls, 

as Steam Link doesn’t inherit the control layout 
from RetroPie’s EmulationStation, and some 
games do better with alternative button 
assignments – for example, to more closely match 

an Xbox or Steam Controller, which swaps the 
position of the B and A buttons.

To set these, launch Steam Link, press up to 
highlight the gear icon, press A (per our button 
assignment diagram), go right to highlight 
Controller and press A. Select the controller you 
wish to configure, then press down and right 
twice, and select Setup Controller.

Hit the button you want to associate with each 
Steam Controller-style button as it’s displayed 
on screen. Use a keyboard or your second set of 
controls to use the skip button at the bottom to 
bypass extraneous buttons.

12 Why use Steam Link?
Steam Link is an invaluable tool for arcade 

emulation enthusiasts, not only because you can 
play more CPU-intensive games, but also because 
it’s the best way of ensuring copyright compliance 
for a number of re-released arcade games.

We’ve been playing Ghouls ’N Ghosts from the 
Capcom Arcade Stadium on our cabinet via Steam 
Link. Unlike some SNK and Sega re-releases, 
Capcom doesn’t supply emulator-ready ROM files 
and the EULA for that compilation doesn’t allow 
you to extract its PAK files.

Neil Brown of decoded.legal opines (magpi.cc/
romextractionlegal) that “when even a legitimate 
Steam purchaser extracts the ROMs and runs them 
on their own Raspberry Pi, they infringe Capcom’s 
copyright”, making streaming these titles your 
best option for fully legal home arcade action. 

	 �RetroPie is 
significantly more 
configurable than 
Recalbox, although its 
interface doesn’t look 
quite as slick

Top Tip
A screw loose

If the ball on your 
joystick is loose, 
use a screwdriver 
in the slot on the 
underside of the 
stick or cloth-
wrapped pliers to 
hold the shaft still 
while you tighten 
the ball.

TUTORIAL 

160 Build an arcade machine: RetroPie and stream from Steam

http://magpi.cc/romextractionlegal
http://magpi.cc/romextractionlegal


Join us as we lift the lid  
on video games

Visit wfmag.cc to learn more

www.dbooks.org

http://wfmag.cc
https://www.dbooks.org/


162 Travel in time

THE FINAL WORD

P eople get excited about old 
games. It’s not exactly a 
secret, given the ongoing 

boom in remakes, remasters, and 
repackaged classics. But there’s 
something special about trying 
to come as close as you can to the 
original gaming experience.

Perhaps the most surprising thing 
I’ve found over years of building 
emulation systems is how broad their 
appeal is. Kids who’ve never known a 
time without HD screens and 
realistic 3D take to pixelated 
platformers and EGA edutainment 
software without a blink.

Even the difficulty spikes of old-
school arcade classics, designed to 
separate players from their money as 
efficiently as possible, become artful 
punctuation in the language of play, 
thanks to the save states and infinite 
credits of an emulator-based 
arcade cabinet.

With greater access to development 
tools, approachable languages, and 
supportive communities, game 
creation is also being radically 
democratised. And just as there are 
many people who love to play retro 

games, there are plenty of individuals 
and development teams who’ve set 
out to create their own.

This can go as far as full-scale 
releases on physical cartridges and 
major digital platforms, particularly 
when it comes to the rich world of 
Sega Mega Drive and other classic 
consoles, but both the aesthetic and 
the inherent technical limitations  
of developing for older hardware 
have appeal.

Technical limitations in resolution, 
memory size and audio voices can 
make your game simpler to program. 
This has directly led to the rise of 

Fantasy Consoles, virtual 8-bit 
machines that run on your computer. 
Priced at $15 (£11), Pico-8 (magpi.cc/
pico8) is the best known of these, 
with official support for Raspberry Pi 
and a great community.

Pixel art is still going through a 
years-long renaissance, with many 
artists deliberately adopting 256-, 
16- and even four-colour palettes. 
You’ll see these choices reflected in 
games as disparate as Unpacking 
(through its EGA camera filter) and 
The Eternal Castle, a ‘remake’ of a 

game that never existed. If you want 
to start making pixel art on 
Raspberry Pi, Aseprite  
(magpi.cc/aseprite) can be compiled, 
and an unofficial ARM build of 
Pixelorama (magpi.cc/pixelorama) is 
now available.

More modern retro aesthetics can 
be found in the low-rez horror games 
exemplified by the Haunted PS1 
Demo Disc series  
(magpi.cc/hauntedps1itch.io).

Although Unity and Unreal Engine 
don’t run on Raspberry Pi, the 
impressive Godot engine does 
(magpi.cc/godot), albeit with a  
few limitations.

We’ve got you covered if you want 
to begin your journey into retro game 
programming right here with PyGame 
Zero (magpi.cc/pygamezero). 

Meanwhile, for those who want to 
get a feel for techniques from the 
past and present, BBC BASIC  
(magpi.cc/bbcbasic) is available for 
Raspberry Pi, while developing with 
using C++ and SDL is far more fun 
that it has any right to be.  

 Pixel art is still going through a  
years-long renaissance 

K.G. Orphanides

K.G. variously makes weird games, DIY 
emulation consoles, music, documentation, 
lost software archives and quixotic builds.

@KGOrphanides

A
U

T
H

O
R

K.G. Orphanides wants you to play and program imaginary retro games

Travel in time

http://magpi.cc/pico8
http://magpi.cc/pico8
http://magpi.cc/aseprite
http://magpi.cc/pixelorama
http://magpi.cc/hauntedps1itch.io
http://magpi.cc/godot
http://magpi.cc/pygamezero
http://magpi.cc/bbcbasic
https://twitter.com/KGOrphanides


www.dbooks.org

https://vilros.com/
https://www.dbooks.org/


Retro Gaming with Raspberry Pi shows you how 
to set up a Raspberry Pi to play classic games. Build your 

own games console or full-size arcade cabinet, install 
emulation software and download classic arcade games 

with our step-by-step guides. Want to make games? Learn 
how to code your own with Python and Pygame Zero.

  Set up Raspberry Pi for 
retro gaming

  Emulate classic 
computers and consoles

  Learn to code your 	
own retro-style games

  Build a console, 
handheld, and full-size 
arcade machine

Price: £10

9 781912 047772




