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Downloading	and	Installing	Exercise	Data	for	this
Book

This	is	intended	as	a	hands-on	exercise	book	and	is	designed	to	give	you	as
much	handson	coding	experience	with	R	as	possible.	Many	of	the	exercises	in
this	book	require	that	you	load	data	from	a	file-based	data	source	such	as	a	CSV
file.	These	files	will	need	to	be	installed	on	your	computer	before	continuing
with	the	exercises	in	this	chapter	as	well	as	the	rest	of	the	book.	Please	follow
the	instructions	below	to	download	and	install	the	exercise	data

1.	In	a	web	browser	go	to	one	of	the	links	below	to	download	the	exercise	data:
https://www.dropbox.com/s/5p7j7nl8hgijsnx/IntroR.zip?dl=0.

https://s3.amazonaws.com/VirtualGISClassroom/IntroR/IntroR.zip
2.	This	will	download	a	file	called	IntroR.zip.

3.	The	exercise	data	can	be	unzipped	to	any	location	on	your	computer.	After
unzipping	the	IntroR.zip	file	you	will	have	a	folder	structure	that	includes	IntroR
as	the	top-most	folder	with	sub-folders	called	Data	and	Solutions.	The	Data
folder	contains	the	data	that	will	be	used	in	the	exercises	in	the	book,	while	the
Solutions	folder	contains	solution	files	for	the	R	script	that	you	will	write.

RStudio	can	be	used	on	Windows,	Mac,	or	Linux	so	rather	than	specifying	a
specific	folder	to	place	the	data	I	will	leave	the	installation	location	up	to	you.
Just	remember	where	you	unzip	the	data	because	you’ll	need	to	reference	the
location	when	you	set	the	working	directory.

4.	For	reference	purposes	I	have	installed	the	data	to	the	desktop	of	my	Mac
computer	under	IntroR\Data.	You	will	see	this	location	referenced	at	various
locations	throughout	the	book.	However,	keep	in	mind	that	you	can	install	the
data	anywhere.
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Introduction	to	R	and	RStudio

The	R	Project	for	Statistical	Computing,	or	simply	named	R,	is	a	free	software
environment	for	statistical	computing	and	graphics.	It	is	also	a	programming
language	that	is	widely	used	among	statisticians	and	data	miners	for	developing
statistical	software	and	data	analysis.	Over	the	last	few	years,	they	were	joined
by	enterprises	who	discovered	the	potential	of	R,	as	well	as	technology	vendors
that	offer	R	support	or	R-based	products.

Although	there	are	other	programming	languages	for	handling	statistics,	R	has
become	the	de	facto	language	of	statistical	routines,	offering	a	package
repository	with	over	6400	problem-solving	packages.	It	is	also	offers	versatile
and	powerful	plotting.	It	also	has	the	advantage	of	treating	tabular	and	multi-
dimensional	data	as	a	labeled,	indexed	series	of	observations.	This	is	a	game
changer	over	typical	software	which	is	just	doing	2D	layout,	like	Excel.

In	this	chapter	we’ll	cover	the	following	topics:

•	Introduction	to	RStudio
•	Creating	variables	and	assigning	data
•	Using	vectors	and	factors
•	Using	lists
•	Using	data	classes
•	Looping	statements
•	Decision	support	statements
•	Using	functions
•	Introduction	to	tidyverse

Introduction	to	RStudio

There	are	a	number	of	integrated	development	environments	(IDE)	that	you	can
use	to	write	R	code	including	Visual	Studio	for	R,	Eclipse,	R	Console,	and
RStudio	among	others.	You	could	also	use	a	plain	text	editor	as	well.	However,
we’re	going	to	use	RStudio	for	the	exercises	in	this	book.	RStudio	is	a	free,	open
source	IDE	for	R.	It	includes	a	console,	syntax-highlighting	editor	that	supports
direct	code	execution,	as	well	as	tools	for	plotting,	history,	debugging	and
workspace	management.



RStudio	is	available	in	open	source	and	commercial	editions	and	runs	on	the
desktop	(Windows,	Mac,	and	Linux)	or	in	a	browser	connected	to	RStudio
Server	or	RStudio	Server	Pro	(Debian/Ubuntu,	RedHat/CentOS,	and	SUSE
Linux).

Although	there	are	many	options	for	R	development,	we’re	going	to	use	RStudio
for	the	exercises	in	this	book.	You	can	get	more	information	on	RStudio	at

https://www.rstudio.com/products/rstudio/
The	RStudio	Interface

The	RStudio	Interface,	displayed	in	the	screenshot	below,	looks	quite	complex
initially,	but	when	you	break	the	interface	down	into	sections	it	isn’t	so
overwhelming.	We’ll	cover	much	of	the	interface	in	the	sections	below.	Keep	in
mind	though	that	the	interface	is	customizable	so	if	you	find	the	default	interface
isn’t	exactly	what	you	like	it	can	be	changed.	You’ll	learn	how	to	customize	the
interface	in	a	later	section.

To	simplify	the	overview	of	RStudio	we’ll	break	the	IDE	into	quadrants	to	make
it	easier	to	reference	each	component	of	the	interface.	The	screenshot	below
illustrates	each	of	the	quadrants.	We’ll	start	with	the	panes	in	quadrant	1	and
work	through	each	of	the	quadrants.



Files	Pane	–	(Q1)

The	Filespane	functions	like	a	file	explorer	similar	to	Windows	Explorer	on	a
Windows	operating	system	or	Finder	on	a	Mac.	This	tab,	displayed	in	the
screenshot	below,	provides	the	following	functionality:

1.	Delete	files	and	folders
2.	Create	new	folders
3.	Rename	folders
4.	Folder	navigation
5.	Copy	or	move	files
6.	Set	working	directory	or	go	to	working	directory
7.	View	files	
8.	Import	datasets

Plots	Pane	–	(Q1)

The	Plotspane,	displayed	in	the	screenshot	below,	is	used	to	view	output
visualizations	produced	when	typing	code	into	the	Console	window	or	running	a
script.	Plots	can	be	created	using	a	variety	of	different	packages,	but	we’ll
primarily	be	using	the	ggplot2	package	in	this	book.	Once	produced,	you	can
zoom	in,	export	as	an	image,	or	PDF,	copy	to	the	clipboard,	and	remove	plots.
You	can	also	can	navigate	to	previous	and	next	plots.



Packages	Pane	–	(Q1)

The	Packages	pane,	shown	in	the	screenshot	below,	displays	all	currently
installed	packages	along	with	a	brief	description	and	version	number	for	the
package.	Packages	can	also	be	removed	using	the	x	icon	to	the	right	of	the
version	number	for	the	package.	Clicking	on	the	package	name	will	display	the
help	file	for	the	package	in	the	Help	tab.	Clicking	on	the	checkbox	to	the	left	of
the	package	name	loads	the	library	so	that	it	can	be	used	when	writing	code	in
the	Console	window.



Help	Pane	–	(Q1)
The	Help	pane,	shown	in	the	screenshot	below,	displays	linked	help
documentation	for	any	packages	that	you	have	installed.



Viewer	Pane	–	(Q1)
RStudio	includes	a	Viewerpane	that	can	be	used	to	view	local	web	content.	For
example,	web	graphics	generated	using	packages	like	googleVis,	htmlwidgets,
and	RCharts,	or	even	a	local	web	application	created	with	Shiny.	However,	keep
in	mind	that	the	Viewer	pane	can	only	be	used	for	local	web	content	in	the	form
of	static	HTML	pages	written	in	the	session’s	temporary	directory	or	a	locally
run	web	application.	The	Viewer	pane	can’t	be	used	to	view	online	content.

Environment	Pane	–	(Q2)

The	Environment	pane	contains	a	listing	of	variables	that	you	have	created	for
the	current	session.	Each	variable	is	listed	in	the	tab	and	can	be	expanded	to
view	the	contents	of	the	variable.	You	can	see	an	example	of	this	in	the
screenshot	below	by	taking	a	look	at	the	df	variable.	The	rectangle	surrounding
the	df	variable	displays	the	columns	for	the	variable.



Clicking	the	table	icon	on	the	far-right	side	of	the	display	(highlighted	with	the
arrow	in	the	screenshot	above)	will	open	the	data	in	a	tabular	viewer	as	seen	in
the	screenshot	below.



Other	functionality	provided	by	the	Environment	pane	includes	opening	or
saving	a	workspace,	importing	dataset	from	text	files,	Excel	spreadsheets,	and
various	statistical	package	formats.	You	can	also	clear	the	current	workspace.

History	Pane	–	(Q2)

The	History	pane,	shown	in	the	screenshot	below,	displays	a	list	of	all
commands	that	have	been	executed	in	the	current	session.	This	tab	includes	a
number	of	useful	functions	including	the	ability	to	save	these	commands	to	a	file
or	load	historical	commands	from	an	existing	file.	You	can	also	select	specific
commands	from	the	History	tab	and	send	them	directly	to	the	console	or	an	open
script.	You	can	also	remove	items	from	the	History	pane.



Connections	Pane	–	(Q2)
The	Connectionstab	can	be	used	to	access	existing	or	create	new	connections	to
ODBC	and	Spark	data	sources.



Source	Pane	–	(Q3)

The	Sourcepane	in	RStudio,	seen	in	the	screenshot	below,	is	used	to	create
scripts,	and	display	datasets	An	R	script	is	simply	a	text	file	containing	a	series
of	commands	that	are	executed	together.	Commands	can	also	be	written	line	by
line	from	the	Console	pane	as	well.	When	written	from	the	Consolepane,	each
line	of	code	is	executed	when	you	click	the	Enter	(Return)	key.	However,	scripts
are	executed	as	a	group.

Multiple	scripts	can	be	open	at	the	same	time	with	each	script	occupying	a
separate	tab	as	seen	in	the	screenshot.	RStudio	provides	the	ability	to	execute	the
entire	script,	only	the	current	line,	or	a	highlighted	group	of	lines.	This	gives	you
a	lot	of	control	over	the	execution	the	code	in	a	script.



The	Source	pane	can	also	be	used	to	display	datasets.	In	the	screenshot	below,	a
data	frame	is	displayed.	Data	frames	can	be	displayed	in	this	manner	by	calling
the	View(<data	frame>)	function.

Console	Pane	–	(Q4)

The	Consolepane	in	RStudio	is	used	to	interactively	write	and	run	lines	of	code.
Each	time	you	enter	a	line	of	code	and	click	Enter(Return)	it	will	execute	that
line	of	code.	Any	warning	or	error	messages	will	be	displayed	in	the	Console



window	as	well	as	output	from	print()	statements.

Terminal	Pane	–	(Q4)

The	RStudio	Terminalpane	provides	access	to	the	system	shell	from	within	the
RStudio	IDE.	It	supports	xterm	emulation,	enabling	use	of	full-screen	terminal
applications	(e.g.	text	editors,	terminal	multiplexers)	as	well	as	regular
command-line	operations	with	lineediting	and	shell	history.

There	are	many	potential	uses	of	the	shell	including	advanced	source	control
operations,	execution	of	long-running	jobs,	remote	logins,	and	system
administration	of	RStudio.

The	Terminalpane	is	unlike	most	of	the	other	features	found	in	RStudio	in	that
it’s	capabilities	are	platform	specific.	In	general,	these	differences	can	be
categorized	as	either	Windows	capabilities	or	other	(Mac,	Linux,	RStudio
Server).

Customizing	the	Interface

If	you	don’t	like	the	default	RStudio	interface,	you	can	customize	the
appearance.	To	do	so,	go	to	Tool	|	Options	(RStudio	|	Preferenceson	a	Mac).



The	dialog	seen	in	the	screenshot	below	will	be	displayed.



The	Pane	Layout	tab	is	used	to	change	the	locations	of	console,	source	editor,
and	tab	panes,	and	set	which	tabs	are	included	in	each	pane.



Menu	Options

There	are	also	a	multitude	of	options	that	can	be	accessed	from	the	RStudio
menu	items	as	well.	Covering	these	items	in	depth	is	beyond	the	scope	of	this
book,	but	in	general	here	are	some	of	the	more	useful	functions	that	can	be
accessed	through	the	menus.

1.	Create	new	files	and	projects
2.	Import	datasets
3.	Hide,	show,	and	zoom	in	and	out	of	panes
4.	Work	with	plots	(save,	zoom,	clear)



5.	Set	the	working	directory
6.	Save	and	load	workspace
7.	Start	a	new	session
8.	Debugging	tools
9.	Profiling	tools
10.	Install	packages
11.	Access	help	system

You’ll	learn	how	to	use	various	components	of	the	RStudio	interface	as	we	move
through	the	exercises	in	the	book.

Installing	RStudio

If	you	haven’t	already	done	so,	now	is	a	good	time	to	download	and	install
RStudio.	There	are	a	number	of	versions	of	RStudio,	including	a	free	open
source	version	which	will	be	sufficient	for	this	book.	Versions	are	also	available
for	various	operating	systems	including	Windows,	Mac,	and	Linux.

1.	Go	to	https://www.rstudio.com/products/rstudio/download/	find	RStudio	for
Desktop,	the	Open	Source	License	version,	and	follow	in	the	instructions	to
download	and	install	the	software.
In	the	next	section	we’ll	explore	the	basic	programming	constructs	of	the	R
language	including	the	creation	and	assigning	of	data	to	variables,	as	well	as	the
data	types	and	objects	that	can	be	assigned	to	variables.

Installing	the	Exercise	Data

This	is	intended	as	a	hands-on	exercise	book	and	is	designed	to	give	you	as
much	handson	coding	experience	with	R	as	possible.	Many	of	the	exercises	in
this	book	require	that	you	load	data	from	a	file-based	data	source	such	as	a	CSV
file.	These	files	will	need	to	be	installed	on	your	computer	before	continuing
with	the	exercises	in	this	chapter	as	well	as	the	rest	of	the	book.	Please	follow
the	instructions	below	to	download	and	install	the	exercise	data.

1.	In	a	web	browser	go	to
https://www.dropbox.com/s/5p7j7nl8hgijsnx/	IntroR.zip?dl=0.	
2.	This	will	download	a	file	called	IntroR.zip.

3.	The	exercise	data	can	be	unzipped	to	any	location	on	your	computer.	After
unzipping	the	IntroR.zip	file	you	will	have	a	folder	structure	that	includes	IntroR



as	the	top-most	folder	with	sub-folders	called	Data	and	Solutions.	The	Data
folder	contains	the	data	that	will	be	used	in	the	exercises	in	the	book,	while	the
Solutions	folder	contains	solution	files	for	the	R	script	that	you	will	write.

RStudio	can	be	used	on	Windows,	Mac,	or	Linux	so	rather	than	specifying	a
specific	folder	to	place	the	data	I	will	leave	the	installation	location	up	to	you.
Just	remember	where	you	unzip	the	data	because	you’ll	need	to	reference	the
location	when	you	set	the	working	directory.

4.	For	reference	purposes	I	have	installed	the	data	to	the	desktop	of	my	Mac
computer	under	IntroR\Data.	You	will	see	this	location	referenced	at	various
locations	throughout	the	book.	However,	keep	in	mind	that	you	can	install	the
data	anywhere.

Exercise	1:	Creating	variables	and	assigning	data

In	the	R	programming	language,	like	other	languages,	variables	are	given	a	name
and	assigned	data.	Each	variable	has	a	name	that	represents	its	area	in	memory.
In	R,	variables	are	case	sensitive	so	use	care	in	naming	your	variable	and
referring	to	them	later	in	your	code.

There	are	two	ways	that	variables	can	be	assigned	in	R.	In	the	first	code	example
below,	a	variable	named	x	is	created.	The	use	of	a	less	than	sign	immediately
followed	by	a	dash	then	precedes	the	variable	name.	This	is	the	operator	used	to
assign	data	to	a	variable	in	R.	On	the	right-hand	side	of	this	operator	is	the	value
being	assign	to	the	variable.	In	this	case,	the	value	10	has	been	assigned	to	the
variable	x.	To	print	the	value	of	a	variable	in	R	you	can	simple	type	the	variable
name	and	then	click	the	Enter	key	on	your	keyboard.

x	<-	10
x
[1]	10

The	other	way	of	creating	and	assigning	data	to	a	variable	is	to	use	the	equal
sign.	In	the	second	code	example	we	create	a	variable	called	y	and	assign	the
value	10	to	the	variable.	This	second	method	of	creating	and	assigning	data	to	a
variable	is	probably	more	familiar	to	you	if	you’ve	used	other	languages	like
Python	or	JavaScript.



y	=	10
y
[1]	10

In	the	R	programming	language,	like	other	languages,	variables	are	given	a	name
and	assigned	data.	Each	variable	is	a	named	area	in	the	computer’s	memory.	In
R,	variables	are	also	case	sensitive	so	use	care	in	naming	your	variables	and
referring	to	them	later	in	your	code.	In	this	exercise	you’ll	learn	how	to	create
variables	in	R	and	assign	data.	1.	Open	RStudio	and	find	the	Console	window.	It
should	be	on	the	left-hand

side	of	your	screen	at	the	bottom.

2.	The	first	thing	you’ll	need	to	do	is	set	the	working	directory	for	the	RStudio
session.	The	working	directory	for	all	chapters	in	this	book	will	be	the	location
where	you	installed	the	exercise	data.	Please	refer	back	to	the	section	Installing
Exercise	Data	for	exercise	data	installation	instructions	if	you	haven’t	already
completed	this	step.

The	working	directory	can	be	set	by	typing	the	code	you	see	below	into	the
Console	pane	or	by	going	to	Session	|	Set	Working	Directory	|	Choose
Directory	from	the	RStudio	menu.	You	will	need	to	specify	the	location	of	the
IntroR\Data	folder	where	you	installed

setwd(<installation	directory	for	exercise	data>)

3.	As	I	mentioned	in	the	introduction	to	this	exercise,	there	are	two	ways	to
create	and	assign	data	to	variables	in	R.	We’ll	examine	both	in	this	section.	First,
create	a	variable	called	x	and	assign	the	value	10	as	seen	below.	Notice	the	use
of	the	less	than	sign	(<)	followed	immediately	by	a	dash	(-).	This	operator	can	be
used	to	assign	data	to	a	variable.	The	variable	name	is	on	the	left-hand	side	of
the	operator,	and	the	data	we’re	assigning	to	the	variable	is	on	the	right-hand
side	of	the	operator.

Note:	The	screenshot	below	displays	a	working	directory	of	~/Desktop/
IntroR/Data/	which	may	or	may	not	be	your	working	directory.	This	is	simply
the	working	directory	that	I’ve	defined	for	my	RStudio	session	on	a	Mac
computer.	This	will	depend	entirely	on	where	you	installed	the	exercise	data	for
the	book	and	the	working	directory	you	have	set	for	your	RStudio	session.



4.	The	second	way	of	creating	a	variable	is	to	use	the	equal	sign.	Create

a	second	variable	using	this	method	as	seen	in	the	screenshot	below.	Assign	the
value	as	y	=	20.	I	will	use	the	equal	sign	throughout	the	book	in	future	exercises
since	it	is	used	in	other	programming	languages	and	is	easier	to	understand	and
type.	However,	you	are	free	to	use	either	operator.

5.	Finally,	create	a	third	variable	called	z	and	assign	it	the	value	of	x	+	y.	The
variables	x,	y,	and	z	have	all	been	assigned	numeric	data.	Variables	in	R	can	be
assigned	other	types	of	data	as	well	including	characters	(also	known	as	strings),
Booleans,	and	a	number	of	data	objects	including	vectors,	factors,	lists,	matrices,
data	frames,	and	others.



6.	The	three	variables	that	you’ve	created	(x,	y,	and	z)	are	all	numeric	data	types.
This	should	be	self-explanatory,	but	any	number,	including	integers,	floating
point,	and	complex	numbers	are	inherently	defined	as	numeric	data	types.
However,	if	you	surround	a	number	with	quotes	it	will	be	interpreted	by	R	as	a
character	data	type.

7.	You	can	view	the	value	of	any	variable	simply	by	typing	the	variable	name	as
seen	in	the	screenshot	below.	Do	that	now	to	see	how	it	works.	Typing	the	name
of	a	variable	and	clicking	the	Enter\Return	key	will	implicitly	call	the	print()
function.



8.
The	same	thing	can	be	accomplished	using	the	print()	function	as	seen	below.

9.	Variables	in	R	are	case	sensitive.	To	illustrate	this,	create	a	new	variable	called
myName	and	assign	it	the	value	of	your	name	as	I	have	done	in	the	screenshot
below.	In	this	case,	since	we’ve	enclosed	the	value	with	quotes,	R	will	assign	it
as	a	character	(string)	data	type.	Any	sequence	of	characters,	whether	they	be
letters,	numbers,	or	special	characters,	will	be	defined	as	a	character	data	type	if
surrounded	by	quotes.

Notice	that	when	I	type	the	name	of	the	variable	(with	the	correct	case)	it	will
report	the	value	associated	with	the	variable,	but	when	I	type	myname	(all
lowercase)	it	reports	an	error.	Even	though	the	name	is	the	same	the	casing	is
different,	so	you	must	always	refer	to	your	variable	names	with	the	same	case
that	they	were	created.



10.	To	see	a	list	of	all	variables	in	your	current	workspace	you	can	type	the

ls()	function.	Do	that	now	to	see	a	list	of	all	the	variables	you	have	created	in	this
session.	Each	variable	and	its	current	value	is	also	displayed	in	the	Environment
pane	on	the	right-hand	side	of	RStudio.

11.	There	are	many	data	types	that	can	be	assigned	to	variables.	In	this	brief
exercise	we	assigned	both	character	(string)	and	numeric	data	to	variables.	As
we	dive	further	into	the	book	we’ll	examine	additional	data	types	that	can	be
assigned	to	variables	in	R.	The	syntax	will	remain	the	same	though	no	matter
what	type	of	data	is	being	assigned	to	a	variable.

12.	You	can	check	your	work	against	the	solution	file
Chapter1_1.R.

Exercise	2:	Using	vectors	and	factors

In	R,	a	vector	is	a	sequence	of	data	elements	that	have	the	same	data	type.
Vectors	are	used	primarily	as	container	style	variables	used	to	hold	multiple
values	that	can	then	be	manipulated	or	extracted	as	needed.	The	key	though	is



that	all	the	values	must	be	of	the	same	type.	For	example,	all	the	values	must	be
numeric,	character,	or	Boolean.	You	can’t	include	any	sort	of	combination	of
data	types.

To	create	a	vector	in	R	you	call	the	c()	function	and	pass	in	a	list	of	values	of	the
same	type.	After	creating	a	vector	there	are	a	number	of	ways	that	you	can
examine,	manipulate,	and	extract	data.	In	this	exercise	you’ll	learn	the	basics	of
working	with	vectors.

1.	Open	RStudio	and	find	the	Console	pane.	It	should	be	on	the	left-hand	side	of
your	screen	at	the	bottom.

2.	In	the	R	Console	pane	create	a	new	vector	as	seen	in	the	code	example	below.
The	c()	function	is	used	to	create	the	vector	object.	This	vector	is	composed	of
character	data	types.	Remember	that	all	values	in	the	vector	must	be	of	the	same
data	type.

layers	<-	c(‘Parcels’,	‘Streets’,	‘Railroads’,	‘Streams’,	‘Buildings’)
3.	Get	the	length	of	the	vector	using	the	length()	function.	This	should	return	a
value	of	5.
length(layers)	[1]	5

4.	You	can	retrieve	individual	items	from	a	vector	by	passing	in	an	index
number.	Retrieve	the	Railroads	value	by	passing	in	an	index	number	of	3,	which
corresponds	to	the	positional	order	of	this	value.	R	is	a	1	based	language	so	the
first	item	in	the	list	occupies	position	1.

layers[3]	[1]	“Railroads”
5.	You	can	extract	a	contiguous	sequence	of	values	by	passing	in	two	index
numbers	as	seen	below.
layers[3:5]
[1]	“Railroads”	“Streams”	“Buildings”
6.	Values	can	be	removed	from	a	vector	by	passing	in	a	negative	integer	as	seen
below.	This	will	remove	Streams
from	the	vector.

layers
[1]	“Parcels”	“Streets”	“Railroads”	“Streams”	“Buildings”	layers[-4]
[1]	“Parcels”	“Streets”	“Railroads”	“Buildings”



7.	Create	a	second	vector	containing	numbers	as	seen	below.
layerIds	<-	c(1,2,3,4)

8.	In	this	next	step	we’re	going	to	combine	the	layers	and	layerIds	vectors	into	a
single	vector.	You’ll	recall	that	all	the	items	in	a	vector	must	be	of	the	same	data
type.	In	a	case	like	this	where	one	vector	contains	characters	and	the	other
numbers,	R	will	automatically	convert	the	numbers	to	characters.	Enter	the
following	code	to	see	this	in	action.

layerIds	<-	c(1,2,3,4)
combinedVector	<-	c(layers,	layerIds)
combinedVector
[1]	“Parcels”	“Streets”	“Railroads”	“Streams”	“Buildings”	[6]	“1”	“2”	“3”	“4”

9.	Now	let’s	create	two	new	sets	of	vectors	to	see	how	vector	arithmetic	works.
Add	the	following	lines	of	code.
x	<-	c(10,20,30,40,50)	y	<-	c(100,200,300,400,500)
10.	Now	add	the	values	of	the	vectors.
x	+	y
[1]	110	220	330	440	550
11.	Subtract	the	values.
y	-	x
[1]	90	180	270	360	450
12.	Multiply	the	values.

10	*	x
[1]	100	200	300	400	500
20	*	y
[1]	2000	4000	6000	8000	10000

13.	You	can	also	use	the	built	in	R	function	against	the	values	of	a	vector.	Enter
the	follow	lines	of	codes	to	see	how	the	built-in	functions	work.
sum(x)	[1]	150

mean(y)
[1]	300
median(y)	[1]	300

max(y)	[1]	500	min(x)	[1]	10



14.	A	Factor	is	basically	a	vector	but	with	categories,	so	it	will	look	familiar	to
you.	Go	ahead	and	clear	the	R	Console	by	selecting	the	Edit	menu	item	and	then
Clear	Console	in	RStudio.

15.	Add	the	following	code	block.	Note	that	you	can	easily	use	line	continuation
in	R	simply	by	selecting	the	Enter	(Return)	key	on	your	keyboard.	It	will
automatically	add	the	“+”	at	the	beginning	of	the	line	indicating	that	it	is	simply
a	continuation	of	the	last	line.

land.type	<-	factor(c(“Residential”,	“Commercial”,	“Agricultural”,
“Commercial”,	“Commercial”,	“Residential”),	levels=c(“Residential”,
“Commercial”))

table(land.type)	land.type
Residential	Commercial	2	3

16.	Now	let’s	talk	about	ordering	of	factors.	There	may	be	times	when	you	want
to	order	the	output	of	the	factor.	For	example,	you	may	want	to	order	the	results
by	month.	Enter	the	following	code:

mons	<-	c(“March”,	“April”,	“January”,	“November”,	“January”,	+
“September”,	“October”,	“September”,	“November”,	“August”,	+	“January”,
“November”,	“November”,	“February”,	“May”,	“August”,	+	“July”,
“December”,	“August”,	“August”,	“September”,	“November”,	+	“February”,
“April”)

mons	<-	factor(mons)
table(mons)	mons

April	August	December	February	January	July	2	4	1	2	3	1	
March	May	November	October	September	1	1	5	1	3

17.	The	output	is	less	than	desirable	in	this	case.	It	would	be	preferable	to	have
the	months	listed	in	the	order	that	they	occur	during	the	year.	Creating	an
ordered	factor	resolves	this	issue.	Add	the	following	code	to	see	how	this	works.

mons	<-	factor(mons,	levels=c(‘January’,	‘February’,	‘March’,	+	‘April’,	‘May’,
‘June’,	‘July’,	‘August’,	‘September’,	+	‘October’,	‘November’,’December’),
ordered=TRUE)



table(mons)
mons
January	February	March	April	May	June

3	2	1	2	1	0	July	August	September	October	November	December	
1	4	3	1	5	1

Creating	an	ordered	factor	resolves	this	issue.	In	the	next	exercise	you’ll	learn
how	to	use	lists,	which	are	similar	in	many	ways	to	vectors	in	that	they	are	a
container	style	object,	but	as	you’ll	see	they	differ	in	an	important	way	as	well.
You	can	check	your	work	against	the	solution	file	Chapter1_2.R.

Exercise	3:	Using	lists

A	list	is	an	ordered	collection	of	elements,	in	many	ways	very	similar	to	vectors.
However,	there	are	some	important	differences	between	a	list	and	a	vector.	With
lists	you	can	include	any	combination	of	data	types.	This	differs	from	other	data
structures	like	vectors,	matrices,	and	factors	which	must	contain	the	same	data
type.	Lists	are	highly	versatile	and	useful	data	types.	A	list	in	R	acts	as	a
container	style	object	in	that	it	can	hold	many	values	that	you	store	temporarily
and	pull	out	as	needed.

1.	Clear	the	R
Console	by	selecting	the	Edit	menu	item	and	then	Clear	Console	in	RStudio.

2.	Lists	can	be	created	through	the	use	of	the	list()	function.	It’s	also	common	to
call	a	function	that	returns	a	list	variable	as	well,	but	for	the	sake	of	simplicity	in
this	exercise	we’ll	use	the	list()	function	to	create	the	list.

Each	value	that	you	intend	to	place	inside	the	list	should	be	separated	by	a
comma.	The	values	placed	into	the	list	can	be	of	any	type,	which	differs	from
vectors	that	must	all	be	of	the	same	type.	Add	the	code	you	see	below	in	the
Console	pane.

my.list	<-	list(“Streets”,	2000,	“Parcels”,	5000,	TRUE,	FALSE)
In	this	example	a	list	called	my.list
has	been	created	with	a	number	of	character,	numeric,	and	Boolean	values.

3.	Because	lists	are	container	style	objects	you	will	need	to	pull	values	out	of	a



list	at	various	times.	This	is	done	by	passing	an	index	number	inside	square
brackets,	with	the	index	number	one	referring	to	the	first	value	in	the	list,	and
each	successive	value	occupying	the	next	index	number	in	order.	However,
accessing	items	in	a	list	can	be	a	little	confusing	as	you’ll	see.	Add	the	following
code	and	then	we’ll	discuss.

my.list[2]	[[1]]
[1]	2000

The	index	number	2	is	a	reference	to	the	second	value	in	the	my.list	object,
which	in	this	case	is	the	number	2000.	However,	when	you	pass	an	index
number	inside	a	single	pair	of	square	braces	it	actually	returns	another	list
object,	this	time	with	a	single	value.	In	this	case,	2000	is	the	only	value	in	the
list,	but	it	is	a	list	object	rather	than	a	number.

4.	Now	add	the	code	you	see	below	to	see	how	to	pull	out	the	actual	value	from
the	list	rather	than	returning	another	list	with	a	single	value.
my.list[[2]]

In	this	case	we	pass	a	value	of	2	inside	a	pair	of	square	braces.	Using	two	square
braces	on	either	side	of	the	index	number	will	pull	the	actual	value	out	of	the	list
rather	than	returning	a	new	list	with	a	single	value.	In	this	case,	the	value	2000	is
returned	as	a	numeric	value.	This	can	be	a	little	confusing	the	first	few	times	you
see	and	use	this,	but	lists	are	a	commonly	used	data	type	in	R	so	you’ll	want	to
make	sure	you	understand	this	concept.

5.	There	may	be	times	when	you	want	to	pull	multiple	values	from	a	list	rather
than	just	a	single	value.	This	is	called	list	slicing	and	can	be	accomplished	using
syntax	you	see	below.	In	this	case	we	pass	in	two	index	numbers	that	indicate	the
starting	and	ending	position	of	the	values	that	should	be	retrieved.	Try	this	on
your	own.

new.list	<-	my.list[c(1,2)]	new.list
[[1]]
[1]	“Streets”

[[2]]
[1]	2000
6.	This	returned	a	new	list	object	stored	in	the	variable
new.list.	Using	basic	list	indexing	you	can	then	pull	a	value	out	of	this	list.



new.list[[2]]	[1]	2000

7.	You	can	get	the	number	of	items	in	a	list	by	calling	the	length()	function.	This
will	return	the	number	of	values	in	the	list,	not	including	any	nested	lists.	Calling
the	length()	function	in	this	exercise	on	the	my.list	variable	should	produce	a
result	of	6.

length(my.list)

8.	Finally,	there	may	be	times	when	you	are	uncertain	if	a	variable	is	stored	as	a
vector	or	a	list.	You	can	use	the	is.list()	function,	which	will	return	a	TRUE	or
FALSE	value	that	indicates	whether	the	variable	is	a	list	object.

is.list(my.list)	[1]	TRUE
9.	You	can	check	your	work	against	the	solution	file
Chapter1_3.R.

Exercise	4:	Using	data	classes

In	this	exercise	we’ll	take	a	look	at	matrices	and	data	frames.	A	matrix	in	R	is	a
structure	very	similar	to	a	table	in	that	it	has	columns	and	rows.	This	type	of
structure	is	commonly	used	in	statistical	operations.	A	matrix	is	created	using	the
matrix()	function.	The	number	of	columns	and	rows	can	be	passed	in	as
arguments	to	the	function	to	define	the	attributes	and	data	values	of	the	matrix.	A
matrix	might	be	created	from	the	values	found	in	the	attribute	table	of	a	feature
class.	However,	keep	in	mind	that	all	the	values	in	the	matrix	must	of	the	same
data	type.

Data	frames	in	R	are	very	similar	to	tables	in	that	they	have	columns	and	rows.
This	makes	them	very	similar	to	matrix	objects	as	well.	In	statistics,	a	dataset
will	often	contain	multiple	variables.	For	example,	if	you	are	analyzing	real
estate	sales	for	an	area	there	will	be	many	factors	including	income,	job	growth,
immigration,	and	others.

These	individual	variables	are	stored	as	the	columns	in	a	data	frame.	Data	frames
are	most	commonly	created	by	loading	an	external	file,	database	table,	or	URL
containing	tabular	information	using	one	of	the	many	functions	provided	by	R
for	importing	a	dataset.	You	can	also	manually	enter	the	values.	When	manually
entering	the	data	the	R	console	will	display	a	spreadsheet	style	interface	that	you



can	use	to	define	the	column	names	as	well	as	the	row	values.	R	includes	many
built-in	datasets	that	you	can	use	for	learning	purposes	and	these	are	stored	as
data	frames.

1.	Open	RStudio	and	find	the
Console	pane.	It	should	be	on	the	bottom,	lefthand	side	of	your	screen.

2.	Let’s	start	with	matrices.	In	the	R	Console	create	a	new	matrix	as	seen	in	the
code	example	below.	The	c()	function	is	used	to	define	the	data	for	the	object.
This	matrix	is	composed	of	numeric	data	types.	Remember	that	all	values	in	the
matrix	must	be	of	the	same	data	type.

matrx	<-	matrix(c(2,4,3,1,5,7),	nrow=2,	ncol=3,	byrow=TRUE)	matrx

[,1]	[,2]	[,3]	[1,]	2	4	3
[2,]	1	5	7

3.	You	can	name	the	columns	in	a	matrix.	Add	the	code	you	see	below	to	name
your	columns.

colnames(matrx)	<-	c(“POP2000”,	“POP2005”,	“POP2010”)	POP2000
POP2005	POP2010
[1,]	2	4	3
[2,]	1	5	7

4.	Now	let’s	retrieve	a	value	from	the	matrix	with	the	code	you	see	below.	The
format	is
matrix(row,	column).
matrx[2,3]
POP2010	
7
5.	You	can	also	extract	an	entire	row	using	the	code	you	see	below.	Here	we	just
provide	a	row	value	but	no	column.
matrx[2,]
POP2000	POP2005	POP2010	1	5	7
6.	Or	you	can	extract	an	entire	column	using	the	format	you	see	below.
matrx[,3]	[1]	3	7
7.	You	can	also	extract	multiple	columns	at	a	time.
matrx[,c(1,3)]



POP2000	POP2010
[1,]	2	3
[2,]	1	7

8.	You	can	also	access	columns	or	rows	by	name	if	you	have	named	them.
matrx[,	“POP2005”]	[1]	4	5
9.	You	can	use	the
colSums(),	colMeans()	or	rowSums()
functions	against	the	data	as	well.

colSums(matrx)
POP2000	POP2005	POP2010	
3	8	11	
>	colMeans(matrx)
POP2000	POP2005	POP2010	
1.5	4.0	5.5

10.	Now	we’ll	turn	our	attention	to	Data	Frames.	Clear	the	R	console	and
execute	the	data()	function	as	seen	below.	This	displays	a	list	of	all	the	sample
datasets	that	are	part	of	R.	You	can	use	any	of	these	datasets.

11.	For	this	exercise	we’ll	use	the	USArrests	data	frame.	Add	the	code	you	see
below	to	display	the	contents	of	the	USArrests	data	frame.



12.	Next,	we’ll	pull	out	the	data	for	all	rows	from	the	Assault	column.

USArrests$Assault
[1]	236	263	294	190	276	204	110	238	335	211	46	120	249	113	56	
115
[17]	109	249	83	300	149	255	72	259	178	109	102	252	57	159	285	
254
[33]	337	45	120	151	159	106	174	279	86	188	201	120	48	156	145	
81
[49]	53	161

13.	A	value	from	a	specific	row,	column	combination	can	be	extracted	using	the



code	seen	below	where	the	row	is	specified	as	the	first	offset	and	the	column	is
the	second.	This	particular	code	extracts	the	assault	value	for	Wyoming.

USArrests[50,2]	[1]	161
14.	If	you	leave	off	the	column	it	will	return	all	columns	for	that	row.
USArrests[50,]
Murder	Assault	UrbanPop	Rape	Wyoming	6.8	161	60	15.6

The	sample	datasets	included	with	R	are	good	for	learning	purposes,	but	of
limited	usefulness	beyond	that.	You’re	going	to	want	to	load	datasets	that	are
relevant	to	your	line	of	work,	and	many	of	these	datasets	have	a	tabular	structure
that	is	conducive	to	the	data	frame	object.	Most	of	these	datasets	will	need	to	be
loaded	from	an	external	source	that	may	be	found	in	delimited	text	files,
database	tables,	web	services,	and	others.	You’ll	learn	how	to	load	these	external
datasets	using	R	code	in	a	later	chapter	of	the	book,	but	as	you’ll	see	in	this	next
exercise	you	can	also	use	the	RStudio	interface	to	load	them	as	well.	15.	In
RStudio	go	to	the	File	menu	and	select	Import	Dataset	|	From	Text

(readr)	.	This	will	display	the	dialog	seen	in	the	screenshot	below.	We’ll	discuss
the	readr	package	in	much	more	detail	in	a	future	chapter,	but	this	package	is
used	to	efficiently	read	external	data	into	a	data	frame.

16.	Use	the	Browse	button	to	browse	to	the	StudyArea.csv	file	found	in	the	Data



folder	where	you	installed	the	exercise	data	for	this	book.	The	StudyArea.csv	file
is	a	comma	separated	list	of	wildfires	from	1980-2016	for	the	Western	United
States.

The	data	will	be	loaded	into	a	preview	window	as	seen	below.	There	are	a
number	of	import	options	along	with	the	code	that	will	be	executed.	You	can
leave	the	default	values	in	this	case.

17.	Click	Import	from	this	Import	Test	Data	dialog.	This	will	load	the	data

into	a	data	frame	(technically	called	a	Tibble	in	tidyverse)	called	StudyArea.	It
will	also	use	the	View()	function	to	display	the	results	in	a	tabular	view
displayed	in	the	screenshot	below.



18.	Messages,	warnings,	and	errors	from	the	import	will	be	displayed	in	the

Console	window.	You	can	ignore	these	messages	for	now.	We’ll	discuss	them	in
more	detail	in	a	later	chapter.



This	StudyArea	data	frame	can	then	be	used	for	data	exploration	and
visualization,	which	we’ll	cover	in	future	chapters.
19.	You	can	check	your	work	against	the	solution	file	Chapter1_4.R.

Exercise	5:	Looping	statements

Looping	statements	aren’t	used	as	much	in	R	as	they	are	in	other	languages
because	R	has	built	in	support	for	vectorization.	Vectorization	is	a	built-in
structure	that	automatically	loops	through	a	data	structure	without	the	need	to
write	looping	code.	However,	there	may	be	times	when	you	need	to	write
looping	code	to	accomplish	a	specific	task	that	isn’t	handled	by	vectorization	so
you	need	to	understand	the	syntax	of	looping	statements	in	R.	We’ll	take	a	look
at	a	simple	block	of	code	that	loops	through	the	rows	in	a	data	frame.



For	loops	are	used	when	you	know	exactly	how	many	times	to	repeat	a	block	of
code.	This	includes	the	use	of	data	frame	objects	that	have	a	specific	number	of
rows.	For	loops	are	typically	used	with	vector	and	data	frame	structures.

1.	For	this	brief	exercise	we’ll	use	the	StudyArea	data	frame	that	you	imported
from	an	external	file	in	the	last	exercise.	You	will	also	learn	how	to	create	an	R
script	and	learn	how	to	execute	the	script.	A	script	is	simply	a	series	of
commands	that	are	run	as	a	group	rather	than	entering	and	running	your	code
one	line	at	a	time	from	the	Console	window.

2.	Create	a	new	R	script	by	going	to	File	|	New	File	|	R	Script	from	the	RStudio
interface.

3.	Save	the	file	with	a	name	of	Chapter1_5.R.	You	can	place	the	script	file
wherever	you’d	like,	but	it	is	recommended	that	you	save	it	to	your	folder	where
your	exercise	data	is	loaded.

4.	Add	the	following	lines	of	code	to	the	Chapter1_5.R
script.

for	(fire	in	1:nrow(StudyArea))	{	print(StudyArea[fire,	“TOTALACRES”])
}

5.	Run	the	code	by	selecting
Code	|	Run	Region	|	Run	All	from	the	RStudio	menu	or	by	clicking	the	Source
button	on	the	script	tab.

This	will	produce	a	stream	of	data	that	looks	similar	to	what	you	see	below.	You
will	want	to	stop	the	execution	of	this	script	after	it	begins	displaying	data
because	of	the	amount	of	data	and	time	it	will	take	to	print	out	all	the
information.	The	for	loop	syntax	assigns	each	row	from	the	StudyArea	data
frame	to	a	variable	called	fire.	The	total	number	of	acres	burned	for	each	fire	is
then	printed.

#	A	tibble:	1	x	1	TOTALACRES

<dbl>
1	0.100
#	A	tibble:	1	x	1



TOTALACRES
<dbl>
1	3.
#	A	tibble:	1	x	1

TOTALACRES
<dbl>
1	0.500
#	A	tibble:	1	x	1

TOTALACRES
<dbl>
1	0.100
#	A	tibble:	1	x	1

TOTALACRES
<dbl>

As	I	mentioned	earlier,	you	won’t	often	need	to	use	for	loops	in	R	because	of	the
built-in	support	for	vectorization,	but	sooner	or	later	you’ll	run	into	a	situation
where	you	need	to	create	these	looping	structures.

6.	You	can	check	your	work	against	the	solution	file
Chapter1_5.R.

Exercise	6:	Decision	support	statements	–	if	|	else

Decision	support	statements	enable	you	to	write	code	that	branches	based	upon
specific	conditions.	The	basic	if	|	elsestatement	in	R	is	used	for	decision	support.
Basically,	ifstatements	are	used	to	branch	code	based	on	a	test	expression.	If	the
test	expression	evaluates	to	TRUE,	then	a	block	of	code	is	executed.	If	the	test
evaluates	to	FALSE	then	the	processing	skips	down	to	the	first	else	if	statement
or	an	elsestatement	if	you	don’t	include	any	else	if	statements.

Each	if	|	else	if	|	elsestatement	has	an	associated	code	block	that	will	execute
when	the	statement	evaluates	to	TRUE.	Code	blocks	are	denoted	in	R	using
curly	braces	as	seen	in	the	code	example	below.

You	can	include	zero	or	more	else	ifstatements	depending	on	what	you’re



attempting	to	accomplish	in	your	code.	If	no	statements	evaluate	to	TRUE,
processing	will	execute	the	code	block	associated	with	the	else	statement.
1.	In	this	exercise	we’ll	build	on	the	looping	exercise	by	adding	in	an	if	|

else	if	|	else	block	that	displays	the	fire	names	according	to	size.	2.	Create	a	new
R	script	by	going	to	File	|	New	File	|	R	Script	from	the	RStudio	interface.

3.	Save	the	file	with	a	name	of	Chapter1_6.R.	You	can	place	the	script	file
wherever	you’d	like,	but	it	is	recommended	that	you	save	it	to	your	folder	where
your	exercise	data	is	loaded.

4.	Copy	and	paste	the	for	loop	you	created	in	the	last	exercise	and	saved	to	the
Chapter1_5.R	file	into	your	new	Chapter1_6.R
file.

for	(fire	in	1:nrow(StudyArea))	{	print(StudyArea[fire,	“TOTALACRES”])
}

5.	Add	the	if	|	else	if	block	you	see	below.	This	script	loops	through	all	the	rows
in	the	StudyArea	data	frame	and	prints	out	messages	that	indicate	when	a	fire
has	burned	more	than	the	specified	number	of	acres	for	each	category.

for	(fire	in	1:nrow(StudyArea))	{
if(StudyArea[fire,	“TOTALACRES”]	>	100000)	{
print(paste(“100K	Fire:	“,	StudyArea[fire,	“FIRENAME”],	sep	=	“”))
}
else	if	(StudyArea[fire,	“TOTALACRES”]	>	75000)	{
print(paste(“75K	Fire:	“,	StudyArea[fire,	“FIRENAME”],	sep	=	“”))
}	else	if	(StudyArea[fire,	“TOTALACRES”]	>	50000)	{
print(paste(“50K	Fire:	“,	StudyArea[fire,	“FIRENAME”],	sep	=

“”))
}
}

6.	Run	the	code	by	selecting	Code	|	Run	Region	|	Run	All	from	the	RStudio
menu	or	by	clicking	the	Source	button	on	the	script	tab.	The	script	should	start
producing	output	in	the	Console	pane	similar	to	what	you	see	below.

[1]	“50K	Fire:	PIRU”



[1]	“100K	Fire:	CEDAR”
[1]	“50K	Fire:	MINE”
[1]	“100K	Fire:	24	COMMAND”
[1]	“50K	Fire:	RANCH”
[1]	“75K	Fire:	HARRIS”
[1]	“50K	Fire:	SUNNYSIDE	TURN	OFF”	[1]	“100K	Fire:	Range	12”

7.	You	can	optionally	add	an	else	block	at	the	end	that	will	print	a	message	for
any	fire	that	isn’t	greater	than	50,000	acres.	Most	of	the	fires	in	this	dataset	are
less	than	50,000	so	you’ll	see	a	lot	of	messages	that	indicate	this	if	you	add	the
else	block	below.

for	(fire	in	1:nrow(StudyArea))	{
if(StudyArea[fire,	“TOTALACRES”]	>	100000)	{
print(paste(“100K	Fire:	“,	StudyArea[fire,	“FIRENAME”],	sep	=	“”))	}
else	if	(StudyArea[fire,	“TOTALACRES”]	>	75000)	{
print(paste(“75K	Fire:	“,	StudyArea[fire,	“FIRENAME”],	sep	=	“”))	}
else	if	(StudyArea[fire,	“TOTALACRES”]	>	50000)	{
print(paste(“50K	Fire:	“,	StudyArea[fire,	“FIRENAME”],	sep	=	“”))	}
else	{
print(“Not	a	MEGAFIRE”)
}
}
8.	You	can	check	your	work	against	the	solution	file
Chapter1_6.R.

Exercise	7:	Using	functions

Functions	are	a	group	of	statements	that	execute	as	a	group	and	are	action-
oriented	structures	in	that	they	accomplish	some	sort	of	task.	Input	variables	can
be	passed	into	functions	through	what	are	known	as	parameters.	Another	name
for	parameters	is	arguments.	These	parameters	become	variables	inside	the
function	to	which	they	are	passed.

R	packages	include	many	pre-built	functions	that	you	can	use	to	accomplish
specific	tasks,	but	you	can	also	build	your	own	functions.	Functions	take	the
form	seen	in	the	screenshot	below.



Functions	are	assigned	a	name,	can	take	zero	or	more	arguments,	each	separated
by	a	comma,	have	a	body	of	statements	that	execute	as	a	group,	and	can	return	a
value.	The	body	of	a	function	is	always	enclosed	by	curly	braces.	This	is	where
the	work	of	the	function	is	accomplished.	Any	variables	defined	inside	the
function	or	passed	as	arguments	to	the	function	become	local	variables	that	are
only	accessible	from	inside	the	function.	The	return	keyword	is	used	to	return	a
value	to	the	code	that	initially	called	the	function.

The	way	you	call	a	function	can	differ	a	little.	The	basic	form	of	calling	a
function	is	to	reference	the	name	of	the	function	followed	by	any	arguments
inside	parentheses	just	after	the	name	of	the	function.	When	passing	arguments
to	the	function	using	this	default	syntax,	you	simply	pass	the	value	for	the
parameter,	and	it	is	assumed	that	you	are	passing	them	in	the	order	that	they
were	defined.	In	this	case	the	order	that	you	pass	in	the	arguments	is	very
important.	The	order	must	match	the	order	that	was	used	to	define	the	function.
This	is	illustrated	in	the	code	example	below.

myfunction(2,	4)
If	the	function	returns	a	value,	then	you	will	need	to	assign	a	variable	name	to
the	function	call	as	seen	in	the	code	example	below	that	creates	a	variable	called
z
.
z	=	myfunction(2,	4)

Finally,	while	you	don’t	have	to	specify	the	name	of	the	argument	you	can	do	so
if	you’d	like.	In	this	case	you	simply	pass	in	the	name	of	the	argument	followed
by	an	equal	sign	and	then	the	value	being	passed	for	that	argument.	The	code
example	below	illustrates	this	optional	way	of	calling	a	function.

myfunction(arg1=2,	arg2	=	4)
In	this	exercise	you’ll	learn	how	to	call	some	of	the	built-in	R	functions.



1.	R	includes	a	number	of	built	in	functions	for	generating	summary	statistics	for
a	dataset.	In	this	exercise	we’ll	call	some	of	the	functions	on	the	StudyArea	data
frame	that	was	created	in	Exercise	4:	Using	Data	Classes.	In	the	Console	pane
add	the	line	of	code	you	see	below	to	call	the	mean()	function.	In	this	case,	the
TOTALACRES	column	from	the	StudyArea	data	frame	will	be	passed	as	a
parameter	to	the	function.	This	function	calculates	the	mean	of	a	numeric
dataset,	which	in	this	case	will	be	191.0917.

mean(StudyArea$TOTALACRES)	[1]	191.0917
2.	Repeat	this	same	process	with	the	min(),	max(),	and	median()	functions.

3.	The	YEAR_	field	in	the	StudyArea	data	frame	contains	the	year	in	which	the
fire	occured.	The	substr()	function	can	be	used	to	extract	a	series	of	characters
from	a	variable.	Use	the	substr()	function	as	seen	below	to	extract	out	the	last
two	digits	of	the	year.

substr(StudyArea$YEAR_,	3,	4)

4.	You’ve	seen	examples	of	a	number	of	other	built	in	R	functions	in	previous
exercises	including	print(),	ls()	rm(),	and	others.	The	base	R	package	contains
many	functions	that	can	be	used	to	accomplish	various	tasks.	There	are
thousands	of	other	third-party	R	packages	that	you	can	use	as	well,	and	they	all
contain	additional	functions	for	performing	specific	tasks.	You	can	also	create
your	own	functions,	and	we’ll	do	that	in	a	future	chapter.

5.	You	can	check	your	work	against	the	solution	file	Chapter1_7.R.

Exercise	8:	Introduction	to	tidyverse

While	the	base	R	package	includes	many	useful	functions	and	data	structures
that	you	can	use	to	accomplish	a	wide	variety	of	data	science	tasks,	the	third-
party	tidyverse	package	supports	a	comprehensive	data	science	workflow	as
illustrated	in	the	diagram	below.	The	tidyverse	ecosystem	includes	many	sub-
packages	designed	to	address	specific	components	of	the	workflow.



Ttidyverse	is	a	coherent	system	of	packages	for	importing,	tidying,	transforming,
exploring,	and	visualizing	data.	The	packages	of	the	tidyverse	ecosystem	were
mostly	developed	by	Hadley	Wickham,	but	they	are	now	being	expanded	by
several	contributors.	Tidyverse	packages	are	intended	to	make	statisticians	and
data	scientists	more	productive	by	guiding	them	through	workflows	that
facilitate	communication,	and	result	in	reproducible	work	products.
Fundamentally,	the	tidyverse	is	about	the	connections	between	the	tools	that
make	the	workflow	possible.
Let’s	briefly	discuss	the	core	packages	that	are	part	of	tidyverse,	and	then	we’ll
do	a	deeper	dive	into	the	specifics	of	the	packages	as	we	move	through	the	book.
We’ll	use	these	tools	extensively	throughout	the	book.

readr

The	goal	of	readris	to	facilitate	the	import	of	file-based	data	into	a	structured
data	format.	The	readrpackage	includes	seven	functions	for	importing	file-based
datasets	including	csv,	tsv,	delimited,	fixed	width,	white	space	separated,	and
web	log	files.

Data	is	imported	into	a	data	structure	called	a	tibble.	Tibbles	are	the	tidyverse
implementation	of	a	data	frame.	They	are	quite	similar	to	data	frames,	but	are
basically	a	newer,	more	advanced	version.	However,	there	are	some	important
differences	between	tibbles	and	data	frames.	Tibbles	never	convert	data	types	of
variables.	They	never	change	the	names	of	variables	or	create	row	names.
Tibblesalso	have	a	refined	print	method	that	shows	only	the	first	10	rows,	and	all
columns	that	will	fit	on	the	screen.	Tibblesalso	print	the	column	type	along	with
the	name.	We’ll	refer	to	tibbles	as	data	frames	throughout	the	remainder	of	the
book	to	keep	things	simple,	but	keep	in	mind	that	you’re	actually	going	to	be
working	with	tibbleobjects.	In	the	next	chapter	you’ll	learn	how	to	use	the



read_csv()	function	to	load	csv	files	into	a	tibble	object.

tidyr

Data	tidying	is	a	consistent	way	of	organizing	data	in	R,	and	can	be	facilitated
through	the	tidyr	package.	There	are	three	rules	that	we	can	follow	to	make	a
dataset	tidy.	First,	each	variable	must	have	its	own	column.	Second,	each
observation	must	have	its	own	row,	and	finally,	each	value	must	have	its	own
cell.

dplyr

The	dplyr	package	is	a	very	important	part	of	tidyverse.	It	includes	five	key
functions	for	transforming	your	data	in	various	ways.	These	functions	include
filter(),	arrange(),	select(),	mutate(),	and	summarize().	In	addition,	these
functions	all	work	very	closely	with	the	group_by()function.	All	five	functions
work	in	a	very	similar	manner	where	the	first	argument	is	the	data	frame	you’re
operating	on,	and	the	next	N	number	of	arguments	are	the	variables	to	include.
The	result	of	calling	all	five	functions	is	the	creation	of	a	new	data	frame	that	is
a	transformed	version	of	the	data	frame	passed	to	the	function.	We’ll	cover	the
specifics	of	each	function	in	a	later	chapter.

ggplot2
The	ggplot2package	is	a	data	visualization	package	for	R,	created	by	Hadley
Wickham	in	2005	and	is	an	implementation	of	Leland	Wilkinson’s	Grammar	of
Graphics.

Grammar	of	Graphics	is	a	term	used	to	express	the	idea	of	creating	individual
blocks	that	are	combined	into	a	graphical	display.	The	building	blocks	used	in
ggplot2	to	implement	the	Grammar	of	Graphics	include	data,	aesthetic	mapping,
geometric	objects,	statistical	transformations,	scales,	coordinate	systems,
position	adjustments,	and	faceting.

Using	ggplot2you	can	create	many	different	kinds	of	charts	and	graphs	including
bar	charts,	box	plots,	violin	plots,	scatterplots,	regression	lines,	and	more.	There
are	a	number	of	advantages	to	using	ggplot2versus	other	visualization	techniques
available	in	R.	These	advantages	include	a	consistent	style	for	defining	the
graphics,	a	high	level	of	abstraction	for	specifying	plots,	flexibility,	a	built-in
theming	system	for	plot	appearance,	mature	and	complete	graphics	system,	and
access	to	many	other	ggplot2	users	for	support.



Other	tidyverse	packages

The	tidyverse	ecosystem	includes	a	number	of	other	supporting	packages
including	stringr,	purr,	forcats,	and	others.	In	this	book	we’ll	focus	primarily	on
the	package	already	described,	but	to	round	out	your	knowledge	of	tidyverse	you
can	reference	tidyverse.org.

Conclusion

In	this	chapter	you	learned	the	basics	of	using	the	RStudio	interface	for	data
visualization	and	exploration	as	well	as	some	of	the	basic	capabilities	of	the	R
language.	After	learning	how	to	create	variables	and	assign	data,	you	learned
some	of	the	basic	R	data	types	including	characters,	vectors,	factors,	lists,
matrices,	and	data	frames.	You	also	learned	about	some	of	the	basic
programming	constructs	including	looping,	decision	support	statements,	and
functions.	Finally,	you	received	an	overview	of	the	tidyverse	package.	In	the
next	chapter	you’ll	learn	some	basic	data	exploration	and	visualization
techniques	before	we	dive	into	the	specifics	in	future	chapters.

Chapter	2



The	Basics	of	Data	Exploration	and	Visualization	with
R

Now	that	you’ve	gotten	your	feet	wet	with	the	basics	of	R	we’re	going	to	turn
our	attention	to	covering	some	of	the	fundamental	concepts	of	data	exploration
and	visualization	using	tidyverse.	This	chapter	is	going	to	be	a	gentle
introduction	to	some	of	the	topics	that	we’re	going	to	cover	in	much	more
exhaustive	detail	in	coming	chapters.	For	now,	I	just	want	you	to	get	a	sense	of
what	is	possible	using	various	tools	in	the	tidyverse	package.

This	chapter	will	teach	you	fundamental	techniques	for	how	to	use	the	readr
package	to	load	external	data	from	a	CSV	file	into	R,	the	dplyr	package	to
massage	and	manipulate	data,	and	ggplot2to	visualize	data.	You’ll	also	learn
how	to	install	and	the	tidyverse	ecosystem	of	packages	and	load	the	packages
into	the	RStudio	environment.

As	I	mentioned	previously,	this	chapter	is	intended	as	a	gentle	introduction	to
what	is	possible	rather	than	a	detailed	inspection	of	the	packages.	Future
chapters	will	go	into	extensive	detail	on	these	topics.	For	now,	I	just	want	you	to
get	a	sense	of	what	is	possible	even	if	you	don’t	completely	understand	the
details.

In	this	chapter	we’ll	cover	the	following	topics:

•	Installing	and	loading	tidyverse
•	Loading	and	examining	a	dataset
•	Filtering	a	dataset
•	Grouping	and	summarizing	a	dataset
•	Plotting	a	dataset

Exercise	1:	Installing	and	loading	tidyverse

In	Chapter	1:	Introduction	to	R	you	learned	the	basics	concepts	of	the	tidyverse
package.	We’ll	be	using	various	packages	from	the	tidyverse	ecosystem
throughout	this	book	including	readr,	dplyr,	and	ggplot2	among	others.
Tidyverse	is	a	third-party	package	so	you’ll	need	to	install	the	package	using
RStudio	so	that	it	can	be	used	in	the	exercises	in	this	book.	In	this	exercise	you’ll



learn	how	to	install	tidyverse	and	load	the	package	into	your	scripts.

1.	Open	RStudio.

2.	The	tidyverse	package	is	really	more	an	ecosystem	of	packages	that	can	be
used	to	carry	out	various	data	science	tasks.	When	you	install	tidyverse	it	installs
all	of	the	packages	that	are	part	of	tidyverse,	many	of	which	we	discussed	in	the
last	chapter.	Alternatively,	you	can	install	them	individually	as	well.	There	are	a
couple	ways	that	you	can	install	packages	in	RStudio.

Locate	the	Packages	pane	in	the	lower	right	portion	of	the	RStudio	window.	To
install	a	new	package	using	this	pane,	click	the	Install	button	shown	in	the
screenshot	below.

In	the	Packages	textbox,	type	tidyverse.	Alternatively,	you	can	load	the
packages	individually	so	instead	of	typing	tidyverse	you	would	type	readr	or
ggplot2	or	whatever	package	you	want	to	install.	We’re	going	to	use	the	readr,
dplyr,	and	ggplot2	packages	in	this	chapter	and	in	many	others	so	you	can	either
install	the	entire	tidyverse	package,	which	includes	the	packages	we’ll	use	in	this
chapter	plus	a	number	of	others	or	install	them	individually.	Go	ahead	and	do
that	now.



3.	The	other	way	of	installing	packages	is	to	use	the	install.packages()	function
as	seen	below.	This	function	should	be	types	from	the	Console	pane.

install.packages(<package>)
For	example,	if	you	wanted	to	install	the	dplyr	package	you	would	type:
install.packages(“dplyr”)

4.	To	use	the	functionality	provided	by	a	package	it	also	needs	to	be	loaded
either	into	an	individual	script	that	will	use	the	package,	or	it	can	also	be	loaded
from	the	Packages	pane.	To	load	a	package	from	the	Packages	pane,	simply
click	the	checkbox	next	to	the	package	as	seen	in	the	screenshot	below.



5.	You	can	also	load	a	package	from	either	a	script	or	the	Console	pane	by
typing	library(<package>).	For	example,	to	load	the	readr	package	you	would
type	the	following:

library(readr)

Exercise	2:	Loading	and	examining	a	dataset

The	tidyverse	package	is	designed	to	work	with	data	stored	in	an	object	called	a
Tibble.	Tibbles	are	the	tidyverse	implementation	of	a	data	frame.	They	are	quite
similar	to	data	frames,	but	are	basically	a	newer,	more	advanced	version.

There	are	some	important	differences	between	tibbles	and	data	frames.	Tibbles
never	convert	the	data	types	of	variables.	Also,	they	never	change	the	names	of
variables	or	create	row	names.	Tibblesalso	have	a	refined	print	method	that
shows	only	the	first	10	rows,	and	all	columns	that	will	fit	on	the	screen.	Tibbles
also	print	the	column	type	along	with	the	name.	
We’ll	refer	to	tibbles	as	data	frames	throughout	the	remainder	of	this	chapter	to
keep	things	simple,	but	keep	in	mind	that	you’re	actually	going	to	be	working
with	tibble	objects	as	opposed	to	the	older	data	frame	objects.

Getting	data	into	a	tibbleobject	for	manipulation,	analysis,	and	visualization	is
normally	accomplished	through	the	use	of	one	of	the	read	functions	found	in	the
readr	package.	In	this	exercise	you’ll	learn	how	to	read	the	contents	of	a	CSV
file	into	R	using	the	read_	csv()	function	found	in	the	readr	package.

1.	Open	R	Studio.



2.	In	the	Packages	pane	scroll	down	until	you	see	the	readr	package	and	check
the	box	just	to	the	left	as	seen	below	as	seen	in	the	screenshot	from	the	last
exercise	in	this	chapter.	Note:	If	you	don’t	see	the	readr	package	in	the	Packages
pane	it	means	that	the	package	hasn’t	been	installed.	You’ll	need	to	go	back	to
the	last	exercise	and	follow	the	instructions	provided.

3.	You	will	also	need	to	set	the	working	directory	for	the	RStudio	session.	The
easiest	way	to	do	this	is	to	go	to	Session	|	Set	Working	Directory	|	Choose
Directory	and	then	navigate	to	the	IntroR\Data	folder	where	you	installed	the
exercise	data	for	this	book.

4.	The	read_csv()	function	is	going	to	be	used	to	read	the	contents	of	a	file	called
Crime_Data.csv.	This	file	contains	approximately	481,000	crime	reports	from
Seattle,	WA	covering	a	span	of	approximately	10	years.	If	you	have	Microsoft
Excel	or	some	other	spreadsheet	type	software	take	a	few	moments	to	examine
the	contents	of	this	file.

For	each	crime	offense	this	file	includes	date	and	time	information,	crime
categories	and	description,	police	department	information	including	sector,	beat,
and	precinct,	and	neighborhood	name.

5.	Find	the	RStudio	Console	pane	and	add	the	code	you	see	below.	This	will
read	the	data	stored	in	the	Crime_Data.csv	file	into	a	data	frame	(actually	a
tibble	as	discussed	in	the	introduction)	called	dfCrime.

dfCrime	=	read_csv(“Crime_Data.csv”,	col_names	=	TRUE)
6.	You’ll	see	some	messages	indicating	the	column	names	and	data	types	for
each	as	seen	below.

Parsed	with	column	specification:
cols(
`Report	Number`	=	col_double(),
`Occurred	Date`	=	col_character(),
`Occurred	Time`	=	col_integer(),
`Reported	Date`	=	col_character(),
`Reported	Time`	=	col_integer(),
`Crime	Subcategory`	=	col_character(),
`Primary	Offense	Description`	=	col_character(),
Precinct	=	col_character(),



Sector	=	col_character(),
Beat	=	col_character(),
Neighborhood	=	col_character()
)

7.	You	can	get	a	count	of	the	number	of	records	with	the
nrow()	function.
nrow(dfCrime)	[1]	481376
8.	The	View()	function	can	be	used	to	view	the	data	in	a	tabular	format	as	seen	in
the	screenshot	below.
View(dfCrime)

9.	It	will	often	be	the	case	that	you	don’t	need	all	the	columns	in	the	data	that
you	import.	The	dplyr	package	includes	a	select()	function	that	can	be	used	to
limit	the	fields	in	the	data	frame.	In	the	Packages	pane,	load	the	dplyr	library.
Again,	if	you	don’t	see	the	dplyr	library	then	it	(or	the	entire	tidyverse)	will	need
to	be	installed.

10.	In	this	case	we’ll	limit	the	columns	to	the	following:	Reported	Date,

Crime	Subcategory	,	Primary	Offense	Description,	Precinct,	Sector,	Beat,	and
Neighborhood.	Add	the	code	you	see	below	to	accomplish	this.

dfCrime	=	select(dfCrime,	‘Reported	Date’,	‘Crime	Subcategory’,	‘Primary
Offense	Description’,	‘Precinct’,	‘Sector’,	‘Beat’,	‘Neighborhood’)

11.	View	the	results.
View(dfCrime)

12.	You	may	also	want	to	rename	columns	to	make	them	more	reader	friendly	or
perhaps	simplify	the	names.	The	select()	function	can	be	used	to	do	this	as	well.
Add	the	code	you	see	below	to	see	how	this	works.	You	simply	pass	in	the	new
name	of	the	column	followed	by	an	equal	sign	and	then	the	old	column	name.



dfCrime	=	select(dfCrime,	‘CrimeDate’	=	‘Reported	Date’,	‘Category’	=	‘Crime
Subcategory’,	‘Description’	=	‘Primary	Offense	Description’,	‘Precinct’,
‘Sector’,	‘Beat’,	‘Neighborhood’)

Exercise	3:	Filtering	a	dataset

In	addition	to	limiting	the	columns	that	are	part	of	a	data	frame,	it’s	also
common	to	subset	or	filter	the	rows	using	a	where	clause.	Filtering	the	dataset
enables	you	to	focus	on	a	subset	of	the	rows	instead	of	the	entire	dataset.	The
dplyr	package	includes	a	filter()	function	that	supports	this	capability.	In	this
exercise	you’ll	filter	the	dataset	so	that	only	rows	from	a	specific	neighborhood
are	included.

1.	In	the	RStudio	Console	pane	add	the	following	code.	This	will	ensure	that
only	crimes	from	the	QUEEN	ANNE	neighborhood	are	included.
dfCrime2	=	filter(dfCrime,	Neighborhood	==	‘QUEEN	ANNE’)
2.	Get	the	number	of	rows	and	view	the	data	if	you’d	like	with	the	View()
function.
nrow(dfCrime2)	[1]	25172

3.	You	can	also	include	multiple	expressions	in	a	filter()	function.	For	example,
the	line	of	code	below	would	filter	the	data	frame	to	include	only	residential
burglaries	that	occurred	in	the	Queen	Anne	neighborhood.	There	is	no	need	to
add	the	line	of	code	below.	It’s	just	meant	as	an	example.	We’ll	examine	more
complex	filter	expressions	in	a	later	chapter.

dfCrime3	=	filter(dfCrime,	Neighborhood	==	‘QUEEN	ANNE’,	Category	==
‘BURGLARY-RESIDENTIAL’)

Exercise	4:	Grouping	and	summarizing	a	dataset

The	group_by()	function,	found	in	the	dplyr	package,	is	commonly	used	to	group
data	by	one	or	more	variables.	Once	grouped,	summary	statistics	can	then	be
generated	for	the	group	or	you	can	visualize	the	data	in	various	ways.	For
example,	the	crime	dataset	we’re	using	in	this	chapter	could	be	grouped	by
offense,	neighborhood	and	year	and	then	summary	statistics	including	the	count,
mean,	and	median	number	of	burglaries	by	year	generated.

It’s	also	very	common	to	visualize	these	grouped	datasets	in	different	ways.	Bar



charts,	scatterplots,	or	other	graphs	could	be	produced	for	the	grouped	dataset.	In
this	exercise	you’ll	learn	how	to	group	data	and	produce	summary	statistics.

1.	In	the	RStudio	console	window	add	the	code	you	see	below	to	group	the
crimes	by	police	beat.
dfCrime2	=	group_by(dfCrime2,	Beat)
2.	The
n()	function	is	used	to	get	a	count	of	the	number	of	records	for	each	group.	Add
the	code	you	see	below.
dfCrime2	=	summarise(dfCrime2,	n	=	n())
3.	Use	the	head()
function	to	examine	the	results.
head(dfCrime2)

#	A	tibble:	4	x	2	Beat	n
<chr>	<int>

1	D2	4373
2	Q1	88
3	Q2	10851
4	Q3	9860

Exercise	5:	Plotting	a	dataset

The	ggplot2	package	can	be	used	to	create	various	types	of	charts	and	graphs
from	a	data	frame.	The	ggplot()function	is	used	to	define	plots,	and	can	be
passed	a	number	of	parameters	and	joined	with	other	functions	to	ultimately
produce	an	output	chart.

The	first	parameter	passed	to	ggplot()	will	be	the	data	frame	you	want	to	plot.
Typically	this	will	be	a	data	frame	object,	but	it	can	also	be	a	subset	of	a	data
frame	defined	with	the	subset()function.	The	first	code	example	on	this	slide
passes	a	variable	called	housing,	which	contains	a	data	frame.	In	the	second	code
example,	the	subset()	function	is	passed	as	the	parameter.	This	subset	function
defines	a	filter	that	will	include	only	rows	where	the	State	variable	is	equal	to
MA	or	TX.

In	this	exercise	you	will	create	a	simple	bar	chart	from	the	data	frame	created	in
the	previous	exercises	in	this	chapter.



1.	In	the	RStudio	console	add	the	code	you	see	below.	The	ggplot()	function	in
this	case	is	passed	the	dfCrime	data	frame	created	in	a	previous	exercises.	The
geom_col()	function	is	used	to	define	the	geometry	of	the	graph	(bar	chart)	and
is	passed	a	mapping	parameter	which	is	defined	by	calling	the	aes()	function	and
passing	in	the	columns	for	the	x	axis	(Beat),	and	the	y	axis	(n	=	count).

ggplot(data=dfCrime2)	+	geom_col(mapping	=	aes(x=Beat,	y=n),	fill=”red”)	2.

This	will	produce	the	chart	you	see	below	in	the	Plots	pane.	

Exercise	6:	Graphing	burglaries	by	month	and	year

In	this	exercise	we’ll	create	something	a	little	more	complex.	We’ll	create	a
couple	bar	charts	that	display	the	number	of	burglaries	by	year	and	by	month	for
the	Queen	Anne	neighborhood.	In	addition	to	the	dplyr	and	ggplot2	packages	we
used	previously	in	this	chapter	we’ll	also	use	the	lubridate	package	to	manipulate
date	information.

1.	In	the	RStudio	Packages	pane,	load	the	lubridate	package.	The	lubridate
package	is	part	of	tidyverse	and	is	used	to	work	with	dates	and	times.	Also,
make	sure	the	readr,	dplyr	and	ggplot2	packages	are	loaded.

2.	Load	the	crime	data	from	the	Crime_Data.csv
file.
dfCrime	=	read_csv(“Crime_Data.csv”,	col_names	=	TRUE)
3.	Specify	the	columns	and	column	names.

dfCrime	=	select(dfCrime,	‘CrimeDate’	=	‘Reported	Date’,	‘Category’	=	‘Crime
Subcategory’,	‘Description’	=	‘Primary	Offense	Description’,	‘Precinct’,
‘Sector’,	‘Beat’,	‘Neighborhood’)

4.	Filter	the	records	so	that	only	residential	burglaries	in	the	Queen	Anne
neighborhood	are	retained.	
dfCrime2	=	filter(dfCrime,	Neighborhood	==	‘QUEEN	ANNE’,	Category	==
‘BURGLARY-RESIDENTIAL’)



5.	The	dplyr	package	includes	the	ability	to	dynamically	create	new	columns	in	a
data	frame	through	the	manipulation	of	data	from	existing	columns	in	the	data
frame.	The	mutate()	function	is	used	to	create	the	new	columns.	Here	the
mutate()	function	will	be	used	to	extract	the	year	from	the	CrimeDate	column.

Add	the	following	code	to	see	this	in	action.	The	second	parameter	creates	a	new
column	called	YEAR	and	populates	it	by	using	the	year()	function	from	the
lubridate	package.	Inside	the	year()	function	the	CrimeDate	column,	which	is	a
character	column,	is	converted	to	a	date	and	the	format	of	the	date

dfCrime3	=	mutate(dfCrime2,	YEAR	=	year(as.	Date(dfCrime2$CrimeDate,
format=’%m/%d/%Y’)))

6.	View	the	result.	Notice	the	YEAR	column	at	the	end	of	the	data	frame.	The
mutate()	function	always	adds	new	columns	to	the	end	of	the	data	frame.

View(dfCrime3)

7.	Now	we’ll	group	the	data	by	year	and	summarize	by	getting	a	count	of	the
number	of	crimes	per	year.	Add	the	following	lines	of	code.
dfCrime4	=	group_by(dfCrime3,	YEAR)
dfCrime4	=	summarise(dfCrime4,	n	=	n())
8.	View	the	result.
View(dfCrime4)



9.	Create	a	bar	chart	by	calling	the	ggplot()	and	geom_col()	functions	as	seen
below.	Define	YEAR	as	the	column	for	the	x	axis	and	the	number	of	crimes	for
the	y	axis.	This	should	produce	the	chart	you	see	below	in	the	Plots	pane.

ggplot(data=dfCrime4)	+	geom_col(mapping	=	aes(x=YEAR,	y=n),	fill=”red”)



10.	Now	we’ll	create	another	bar	chart	that	displays	the	number	of	crimes	by
month	instead	of	year.	First,	create	a	MONTH	column	using	the	mutate()
function.

dfCrime3	=	mutate(dfCrime2,	MONTH	=	month(as.	Date(dfCrime2$CrimeDate,
format=’%m/%d/%Y’)))
11.	Group	and	summarize	the	data	by	month.
dfCrime4	=	group_by(dfCrime3,	MONTH)	dfCrime4	=	summarise(dfCrime4,	n
=	n())
12.	View	the	result.
View(dfCrime4)
13.	Create	the	bar	chart.
ggplot(data=dfCrime4)	+	geom_col(mapping	=	aes(x=MONTH,	y=n),
fill=”red”)



14.	You	can	check	your	work	against	the	solution	file	Chapter2_6.R.

Conclusion

In	this	chapter	you	learned	some	basic	techniques	for	data	exploration	and
visualization	using	the	tidyversepackage	and	its	ecosystem	of	sub-packages.
After	installing	and	loading	the	package	using	RStudio	you	performed	a	number
of	tasks	using	the	R	programming	language	with	a	number	of	tidyverse	sub-
packages.	You	loaded	a	dataset	from	a	CSV	file	using	readr.	After,	you
manipulated	the	data	in	various	ways	using	the	dplyr	package.	The	select()
function	was	used	to	include	and	rename	columns,	and	the	contents	of	the	data
frame	were	filtered	using	the	filter()	function.	The	data	was	then	grouped	and
summarized,	and	finally	several	graphs	were	produced	using	ggplot2.

In	the	next	chapter	you	will	learn	how	more	about	how	to	use	the	readr	package
to	load	data	from	external	data	sources.
Chapter	3



Loading	Data	into	R

Large	data	objects,	typically	stored	as	data	frames	in	R,	are	most	often	read	from
external	files.	R,	along	with	tidyverse,	include	a	number	of	functions	that	can
read	external	data	files	from	a	wide	variety	of	sources	including	text	files	of
many	varieties,	relational	databases,	and	web	services.	External	text	files	need	to
have	a	specific	format	with	the	first	line,	called	the	header,	containing	the
column	names.	Each	additional	line	in	the	file	will	have	values	for	each	variable.
In	this	chapter,	we’ll	examine	a	number	of	functions	that	can	be	used	to	read
data.

There	are	a	number	of	common	data	formats	that	can	be	read	into	and	out	of	R.
This	includes	text	files	in	formats	such	as	csv,	txt,	html,	and	json.	It	also	includes
files	output	from	statistical	applications	including	SAS	and	SPSS.	Online
resources	including	web	services	and	HTML	pages	can	also	be	read	into	R.
Finally,	relational	and	non-relational	database	tables	can	be	read	as	well.	There
are	a	number	of	functions	provided	by	R	and	Tidyverse	which	will	enable	you	to
read	these	various	sources.

In	this	chapter	we’ll	cover	the	following	topics:

•	Loading	a	csv	file	with	read.table()
•	Loading	a	csv	file	with	read.csv()
•	Loading	a	tab	delimited	file	with	read.table()
•	Using	readr	to	load	data

Exercise	1:	Loading	a	csv	file	with	read.table()

The	first	function	we’ll	examine	is	read.table().	The	read.table()	function	is	a
built	in	R	function	that	can	be	used	to	read	various	file	formats	into	a	data	frame.
This	is	probably	the	most	common	internal	function	used	for	reading	simple	files
into	R.	However,	as	we’ll	see	later	in	the	module,	tidyverse	includes	similar
functions	which	are	actually	more	efficient	at	reading	external	data	into	R.

The	syntax	for	read.table()is	to	accept	a	filename,	which	will	be	the	path	and	file
name,	along	with	a	TRUE|FALSE	indicator	for	the	header.	If	set	to	TRUE	the
assumption	is	that	column	names	are	in	the	header	line	of	the	file.	The	path	is
not	necessary	if	you	have	already	set	the	working	directory.	The	output	of	the



read.table()	function	is	a	data	frame	object.

The	header	line,	if	included	in	the	text	file,	will	load	a	dataset	into	a	data	frame
object.	Default	values	will	be	used	for	the	column	headers	if	these	are	not
provided.	The	file.	choose()function	is	a	handy	function	that	you	can	use	to
interactively	select	the	file	you	want	imported	rather	than	having	to	hard	code
the	path	to	the	dataset.

In	this	exercise	you’ll	learn	how	to	use	the	read.table()	function	to	load	a	csv
format	file.	
1.	Open	RStudio	and	find	the	Console	pane.

2.	If	necessary,	set	the	working	directory	by	typing	the	code	you	see	below	into
the	Console	pane	or	by	going	to	Session	|	Set	Working	Directory	|	Choose
Directory	from	the	RStudio	menu.

setwd(<installation	directory	for	exercise	data>)

3.	The	Data	folder	contains	a	file	called	StudyArea.csv,	which	is	a	comma
separated	file	containing	wildfire	data	from	the	years	1980-2016	for	the	states	of
California,	Oregon,	Washington,	Idaho,	Montana,	Wyoming,	Colorado,	Utah,
Nevada,	Arizona,	and	New	Mexico.	There	are	a	little	over	439,000	records	in
this	file	and	there	are	37	columns	of	information	that	describe	each	fire	during
this	period.

Use	the	read.table()	function	to	load	this	data	into	a	new	data	frame	object.	What
happens	when	you	run	this	line	of	code?
df	=	read.table(“StudyArea.csv”,	header	=	TRUE)
You	will	get	an	error	message	when	you	attempt	to	run	this	line	of	code.	The
error	message	should	appear	as	seen	below.
Error	in	read.table(“StudyArea.csv”,	header	=	TRUE)	:	more	columns	than
column	names

The	reason	an	error	message	was	generated	in	this	case	is	that	the	read_	table()
function	uses	spaces	as	the	delimiter	between	records	and	our	file	uses	commas
as	the	delimiter.

4.	Update	your	call	to	read.table()	as	seen	below	to	include	the	sep	argument,
which	should	be	a	comma.	
df	=	read.table(“StudyArea.csv”,	sep=”,”,	header	=	TRUE)



When	you	run	this	line	of	code	you	‘ll	see	a	new	error.
Error	in	scan(file	=	file,	what	=	what,	sep	=	sep,	quote	=	quote,	dec	=	dec,	:	
line	12	did	not	have	14	elements

The	read.table()	function	will	NOT	automatically	fill	in	any	missing	values	with
a	default	value	such	as	NA	so	because	some	of	the	columns	are	empty	in	our
rows	we	get	an	error	message	that	indicates	a	particular	line	didn’t	have	all	14
columns	of	information.	We	can	fix	this	by	adding	the	fill	parameter	and	setting
it	equal	to	TRUE.

5.	Update	your	code	as	seen	below	to	add	the	fill	parameter.
df	=	read.table(“StudyArea.csv”,	header=TRUE,	fill=TRUE,	sep=”,”)

When	you	run	this	line	of	code	it	will	import	the	contents	of	the	file	into	a
dataframe	object.	However,	if	you	look	at	the	Environment	tab	in	R	Studio	you
will	see	that	it	only	loaded	153,095	records	and	yet	we	know	there	are	over
400,000	records	in	the	file.	Quotes	(single	or	double)	in	a	csv	file	can	cause
records	not	to	be	loaded.

6.	Let’s	add	one	more	parameter	to	handle	records	that	were	thrown	out	due	to
quotes.
df	=	read.table(“StudyArea.csv”,	header=TRUE,	fill=TRUE,	quote=””,	sep=”,”)

When	you	execute	this	line	of	code,	440,476	records	should	be	imported.	The
data	is	loaded	into	an	R	dataframe	object	which	is	a	structure	that	resembles	a
table.	Detailed	information	about	dataframe	objects	will	be	covered	in	a	later
section	of	the	course.	For	now,	you	can	think	of	them	as	tables	containing
columns	and	rows.

My	point	in	showing	you	this	is	to	show	how	difficult	it	can	be	to	use	the
read.table()	function	to	load	the	contents	of	a	csv	file.	The	read.table()	function
is	typically	used	to	load	tab	delimited	text	files,	but	many	people	will	attempt	to
use	the	read.table()	function	with	csv	format	files	without	understanding	all	the
parameters	that	may	need	to	be	included.	Instead,	you	should	use	read.csv()	as
we’ll	do	in	the	next	step.

7.	You	can	check	your	work	against	the	solution	file	Chapter3_1.R.

Exercise	2:	Loading	a	csv	file	with	read.csv()



The	read.csv()function	is	also	a	built	in	R	function	that	is	almost	identical	to
read.	table(),	with	the	exception	that	the	header	and	fill	arguments	are	set	to
TRUE	by	default.	In	this	step	you’ll	see	how	much	easier	it	is	to	load	a	csv	file
using	read.csv().

1.	The	read.csv()	function	automatically	handles	most	of	the	situations	you	are
required	to	identify	when	using	read.table()	to	load	a	csv	file.	Enter	and	run	the
code	you	see	below	to	see	how	much	easier	this	is	with	read.csv().

df	=	read.csv(“StudyArea.csv”)

2.	This	will	correctly	load	all	400,000+	records	from	the	csv	file!	See	how	much
easier	that	is?	There	will	be	a	few	records	missing,	but	overall	this	function	is
much	easier	to	use	than	read.table().

3.	You	can	check	your	work	against	the	solution	file	Chapter3_2.R.

Exercise	3:	Loading	a	tab	delimited	file	with	read.table()

The	read.table()	function	is	most	often	used	to	read	the	contents	of	a	tab
delimited	file.	In	this	step	you’ll	learn	how	to	do	that.

1.	Your	Data	folder	includes	a	file	called	all_genes_pombase.txt,	which	is	text
delimited.	Open	this	file	with	Excel	or	some	other	application	to	see	the	field
structure	and	delimiters.

2.	In	the	R	Console	window	enter	and	run	the	code	you	see	below	to	import	the
file.
df2	=	read.table(“all_genes_pombase.txt”,	header=TRUE,	sep=”\t”,	quote=””)

3.	This	should	load	7019	records	into	the	dataframe.	You’ll	notice	that	many	of
the	parameters	still	need	to	be	used	when	loading	the	dataset	so	it’s	not	as	easy	to
use	as	you	might	hope	even	in	this	case.

4.	You	can	check	your	work	against	the	solution	file	Chapter3_3.R.

Exercise	4:	Using	readr	to	load	data

So	far	in	this	chapter	we’ve	been	looking	at	various	built	in	R	functions	for



reading	external	files	into	R	as	data	frames.	The	tidyverse	package	includes	a
sub-package	called	readr	that	can	also	be	used	to	load	external	data.	The	readr
package	includes	a	read_csv()	function	that	loads	data	much	faster	than	the
internal	read.csv()	function.

In	addition	to	loading	the	data	faster	it	also	includes	a	progress	dialog	and	the
output	includes	the	data	frame	column	structure	along	with	any	parsing	errors.
Overall,	the	read_csv()	function	in	the	readr	package	is	preferred	over	the
functions	found	in	the	basic	installation	of	R.	The	readr	package	also	includes
some	other	functions	for	loading	various	file	formats	including	read_delim(),
read_csv2(),	and	read_tsv().	Each	of	the	functions	accept	the	same	parameters,
so	once	you’ve	learned	to	use	any	of	the	R	functions	for	loading	data	you	can
easily	use	any	of	the	others.

In	this	step	you’re	going	to	use	the	read_csv()	function	found	in	the	readr
package	to	load	data	into	a	data	frame.
1.	Load	the	readr	library.
library(readr)

2.	The	read_csv()	function	in	the	readr	package	can	be	used	to	load	csv	files.
Compared	to	the	base	loading	functions	we	looked	at	previously	in	this	exercise,
readr	functions	are	significantly	faster	(10x),	include	a	helpful	progress	bar	to
provide	feedback	on	the	progress	of	the	load	for	large	files,	and	all	the	functions
work	exactly	the	same	way.

Add	and	run	the	code	you	see	below.	Notice	how	much	more	quickly	the	data
loads	into	the	dataframe	object.	The	col_types	argument	was	used	in	this	case	to
load	all	the	columns	as	a	character	data	type	for	simplification	purposes.
Otherwise	we’d	have	to	do	some	additional	preprocessing	of	the	data	to	account
for	various	column	data	types.

dfReadr	=	read_csv(“StudyArea.csv”,	col_types	=	cols(.default	=	“c”),
col_names	=	TRUE)
Other	loading	functions	found	in	the	readr	package	include	read_	delim(),
read_csv2(),	read_tsv()

3.	Now	let’s	run	this	function	again,	but	this	time	take	off	the	col_types	argument
so	you	can	see	an	example	of	some	of	the	potential	loading	errors	that	can	occur.
Update	and	run	your	code	as	follows:



dfReadr	=	read_csv(“StudyArea.csv”,	col_names	=	TRUE)
4.	The	first	thing	you’ll	see	is	a	list	of	the	columns	that	will	be	imported	along
with	the	column	data	type.	Your	output	should	appear	as	follows:
Parsed	with	column	specification:

cols(
.default	=	col_character(),	FID	=	col_integer(),
UNIT	=	col_integer(),
FIRENUMBER	=	col_integer(),	SPECCAUSE	=	col_integer(),	STATCAUSE	=
col_integer(),	SIZECLASSN	=	col_integer(),	FIRETYPE	=	col_integer(),
PROTECTION	=	col_integer(),	FIREPROTTY	=	col_integer(),	YEAR_	=
col_integer(),	FiscalYear	=	col_integer(),	STATE_FIPS	=	col_integer(),	FIPS	=
col_integer(),
DLATITUDE	=	col_double(),	DLONGITUDE	=	col_double(),	TOTALACRES
=	col_double(),	TRPGENCAUS	=	col_integer(),	TRPSPECCAU	=
col_integer(),	Duplicate_	=	col_integer()

)
5.	A	warning	message	will	be	displayed	below	that	indicating	that	there	were
parsing	errors	on	the	load.	
Warning:	196742	parsing	failures.
row	#	A	tibble:	5	x	5	col
row	col	expected	actual	file	expected

<int>	<chr>	<chr>	<chr>	<chr>	actual	1	242621	UNIT	an	integer	EOR
‘StudyArea.csv’	file	2	242622	UNIT	an	integer	EOR	‘StudyArea.csv’	row	3
242623	UNIT	an	integer	EOR	‘StudyArea.csv’	col	4	242624	UNIT	an	integer
EOR	‘StudyArea.csv’	expected

5	242625	UNIT	an	integer	EOR	‘StudyArea.csv’
6.	You	can	use	the
problems()
function	to	get	a	list	of	the	parsing	errors.	Add	and	run	the	code	you	see	below.
problems(dfReadr)
#	A	tibble:	196,742	x	5
row	col	expected	actual	file

<int>	<chr>	<chr>	<chr>	<chr>	
1	242621	UNIT	an	integer	EOR	‘StudyArea.csv’



2	242622	UNIT	an	integer	EOR	‘StudyArea.csv’
3	242623	UNIT	an	integer	EOR	‘StudyArea.csv’
4	242624	UNIT	an	integer	EOR	‘StudyArea.csv’
5	242625	UNIT	an	integer	EOR	‘StudyArea.csv’
6	242626	UNIT	an	integer	EOR	‘StudyArea.csv’
7	242627	UNIT	an	integer	EOR	‘StudyArea.csv’
8	242628	UNIT	an	integer	EOR	‘StudyArea.csv’
9	242629	UNIT	an	integer	EOR	‘StudyArea.csv’	10	242630	UNIT	an	integer
EOR	‘StudyArea.csv’	#	...	with	196,732	more	rows

7.	From	the	looks	of	the	error	messages	it	appears	there	is	an	issue	with	the
UNIT	column.	If	you	look	back	up	to	the	list	of	columns	and	data	types,	you’ll
notice	that	the	UNIT	column	was	created	as	an	integer	data	type.	However,	if
you	open	the	StudyArea.csv	file	in	Excel	or	another	application	you’ll	quickly
see	that	not	all	the	values	are	numeric.	Some	include	letters.	This	accounts	for
the	parsing	errors	in	the	dataset.

Update	your	code	as	seen	below	and	run	it	again.	This	sets	the	UNIT	column	to
a	character	(text)	data	type.
dfReadr	=	read_csv(“StudyArea.csv”,	col_types	=	list(UNIT	=	col_	character()),
col_names	=	TRUE)

This	time	you	should	get	a	clean	load	of	the	dataset.	That	doesn’t	mean	the	data
won’t	need	some	additional	preparation	and	cleanup.	For	example,	there	are
some	date	fields	including	STARTDATED	that	were	loaded	as	character	but
might	be	better	off	as	date	fields.	We	can	save	this	additional	preparation	work
for	a	later	exercise	though.

8.	You	can	examine	the	first	few	lines	of	the	dataframe	by	entering	the	head()
function	as	seen	below.
head(dfReadr)
#	A	tibble:	6	x	14
FID	ORGANIZATI	UNIT	SUBUNIT	SUBUNIT2	FIRENAME	CAUSE
YEAR_

STARTDATED	CONTRDATED	OUTDATED	STATE	STATE_FIPS
<int>	<chr>	<chr>	<chr>	<chr>	<chr>	<chr>	<int>	
<chr>	<chr>	<chr>	<chr>	<int>
1	0	FWS	81682	USCADBR	San	Diego	Bay…	PUMP	HOU…	Human	2001	



1/1/01	0:00	1/1/01	0:…	NA	Cali…	6
2	1	FWS	81682	USCADBR	San	Diego	Bay…	I5	Human	2002	
5/3/02	0:00	5/3/02	0:…	NA	Cali…	6
3	2	FWS	81682	USCADBR	San	Diego	Bay…	SOUTHBAY	Human	2002	
6/1/02	0:00	6/1/02	0:…	NA	Cali…	6
4	3	FWS	81682	USCADBR	San	Diego	Bay…	MARINA	Human	2001	
7/12/01	0:…	7/12/01	0…	NA	Cali…	6
5	4	FWS	81682	USCADBR	San	Diego	Bay…	HILL	Human	1994	
9/13/94	0:…	9/13/94	0…	NA	Cali…	6
6	5	FWS	81682	USCADBR	San	Diego	Bay…	IRRIGATI…	Human	1994	
4/22/94	0:…	4/22/94	0…	NA	Cali…	6
#	...	with	1	more	variable:	TOTALACRES	<dbl>

9.	You	can	check	your	work	against	the	solution	file
Chapter3_4.R.

Conclusion

In	this	chapter	you	learned	various	functions	for	loading	an	external	data	file
including	the	built	in	R	functions	read.table()	and	read.csv().	While	these
functions	can	certainly	get	the	job	done,	the	read_csv()	function	found	in	the
readr	package	is	a	much	more	efficient	function	for	loading	external	data.
In	the	next	chapter	you	will	learn	how	to	transform	your	datasets	using	the	dplyr
package.	You’ll	learn	techniques	for	filtering	the	contents	of	a	data	frame,
selecting	specific	columns	to	be	used,	arranging	rows	in	ascending	or	descending
order,	and	summarize	and	group	a	dataset.

Chapter	4



Transforming	Data

Before	a	dataset	can	be	analyzed	in	R	it	often	needs	to	be	manipulated	or
transformed	in	various	ways.	The	dplyr	package,	part	of	the	larger	tidyverse
package,	provides	a	set	of	functions	that	allow	you	to	transform	a	dataset	in
various	ways.	The	dplyr	package	is	a	very	important	part	of	tidyverse	since	the
functions	provided	through	this	package	are	used	so	frequently	to	transform	data
in	different	ways	prior	to	doing	more	advanced	data	exploration,	visualization,
and	modeling.

There	are	five	key	functions	that	are	part	of	dplyr:	filter(),	arrange(),	select(),
mutate(),	and	summarize().All	five	functions	work	in	a	similar	manner	where	the
first	argument	is	the	data	frame	to	manipulate,	the	next	N	number	of	parameters
defined	the	columns	to	include,	and	all	return	a	data	frame	as	a	result.

The	dplyr	functions	are	often	used	in	conjunction	with	the	group_by()	dplyr
function	to	manipulate	a	dataset	that	has	been	grouped	in	some	way.	The	group_
by()	function	creates	a	new	data	frame	object	that	has	been	grouped	by	one	or
more	variables.

In	this	chapter	we’ll	cover	the	following	topics:

•	Filtering	records	to	create	a	subset
•	Narrowing	the	list	of	columns
•	Arranging	rows	in	ascending	or	descending	order
•	Adding	rows
•	Summarizing	and	grouping
•	Piping	for	code	efficiency

Exercise	1:	Filtering	records	to	create	a	subset

The	first	dplyrfunction	that	we’ll	examine	is	filter().	The	filter()	function	is	used
to	create	a	subset	of	records	based	on	some	value.	For	example,	you	might	want
to	create	a	data	frame	of	wildfires	containing	incidents	that	have	burned	more
than	25,000	acres.	As	long	as	you	have	an	existing	data	frame	that	includes	a
column	that	measures	the	number	of	acres	burned,	you	can	accomplish	the
creation	of	this	subset	using	the	filter()	function.



As	will	be	the	case	with	all	the	dplyrfunctions	we	examine,	the	first	argument
passed	to	the	filter()	function	is	a	data	frame	object.	Each	additional	parameter
passed	to	the	function	is	a	conditional	expression	used	to	filter	the	data	frame.
For	example,	take	a	look	at	the	line	of	code	below.	This	statement	calls	the
filter()	function	to	create	a	new	variable	called	df25k,	which	will	contain	only
rows	where	the	ACRES	column	contains	a	value	greater	than	25000.

df25k	=	filter(df,	ACRES	>=	25000)

This	is	an	example	of	calling	the	filter()	function	and	passing	a	single
conditional	expression.	In	the	next	code	example,	two	conditional	expressions
are	passed.	The	first	is	used	to	filter	records	so	that	the	number	of	acres	is	greater
than	or	equal	to	25000,	and	the	second	filter	records	so	that	only	records	where
the	Year	column	contains	a	value	of	2016	will	be	retained.

df25k	=	filter(df,	ACRES	>=	25000,	YEAR	==	2016)

In	this	case,	the	df25k	variable	will	include	records	where	both	conditions	are
matched:	acreage	burned	is	greater	than	25000	and	the	fire	year	was	2016.	This
can	also	be	rewritten	as	a	single	parameter	that	uses	the	&	operator	to	combine
expressions	as	seen	below.

df25k	=	filter(df,	ACRES	>=	25000	&	YEAR	==	2016)
In	this	exercise	you’ll	learn	how	to	use	the
filter()	function	to	create	a	subset	of	records	based	on	some	value.

1.	The	exercises	in	this	chapter	require	the	following	packages:	readr,	dplyr,
ggplot2.	They	can	be	loaded	from	the	Packages	pane,	the	Console	pane,	or	a
script.

2.	Open	RStudio	and	find	the	Console	pane.

3.	If	necessary,	set	the	working	directory	by	typing	the	code	you	see	below	into
the	Console	pane	or	by	going	to	Session	|	Set	Working	Directory	|	Choose
Directory	from	the	RStudio	menu.

setwd(<installation	directory	for	exercise	data>)

4.	The	Data	folder	contains	a	file	called	StudyArea.csv,	which	is	a	comma
separated	file	containing	wildfire	data	from	the	years	1980-2016	for	the	states	of



California,	Oregon,	Washington,	Idaho,	Montana,	Wyoming,	Colorado,	Utah,
Nevada,	Arizona,	and	New	Mexico.	There	are	a	little	over	439,000	records	in
this	file	and	there	are	37	columns	of	information	that	describe	each	fire	during
this	period.

Use	the	read_csv()	function	to	load	the	dataset	into	a	data	frame.
dfFires	=	read_csv(“StudyArea.csv”,	col_types	=	list(UNIT	=	col_character()),
col_names	=	TRUE)
5.	Use	the	nrow()	function	to	make	sure	that	the	approximately	439,000	records
were	loaded.	
nrow(dfFires)
[1]	439362

6.	Initially	we’ll	use	a	single	conditional	expression	with	the	filter()	function	to
create	a	subset	of	records	that	contains	only	wildfires	that	are	greater	than	25,000
acres.	Add	the	code	you	see	below	to	run	the	filter()	function.	All	dplyr
functions,	including	filter(),	return	a	new	data	frame	object	so	you	need	to
specify	a	new	variable	that	will	contain	the	output	data	frame.	The	df25k
variable	will	hold	the	output	data	frame	in	this	case.

df25k	=	filter(dfFires,	TOTALACRES	>=	25000)

Get	a	count	of	the	number	of	records	that	match	the	filter.	There	should	be	655
rows.	You	may	also	want	to	use	the	View(df25k)	function	to	see	the	data	in	a
tabular	format.

nrow(df25k)
[1]	655

7.	You	can	also	include	multiple	conditional	expressions	as	part	of	the	filter.
Each	expression	(argument)	is	combined	with	an	“and”	clause	by	default.	This
means	that	all	expressions	must	be	matched	for	a	recorded	to	be	returned.	Add
and	run	the	code	you	see	below	to	see	an	example.

df1k	=	filter(dfFires,	TOTALACRES	>=	1000,	YEAR_	==	2016)
nrow(df1k)
[1]	152

8.	You	can	also	combine	the	expressions	into	a	single	expression	with	multiple
conditions	as	seen	below.	This	will	accomplish	the	same	thing	as	the	previous



line	of	code.	Which	of	the	two	you	use	is	a	matter	of	personal	preference	in	this
case	since	we’re	using	an	“and”	clause.	The	&	character	is	the	“and”	operator.
You	would	need	to	use	the	|	character	to	include	an	“or”	operator.

df1k	=	filter(dfFires,	TOTALACRES	>=	1000	&	YEAR_	==	2016)

9.	Finally,	when	you	have	a	list	of	potential	values	that	you	want	to	be	included
by	the	filter	the	%in%	statement	can	be	used.	Add	the	line	of	code	below	to	see
how	this	works.	This	particular	line	of	code	would	create	a	data	frame	containing
fires	that	occurred	in	the	years	2010,	2011,	or	2012.

dfYear	=	filter(dfFires,YEAR_	%in%	c(2010,	2011,	2012))
10.	You	can	view	any	of	these	data	frames	in	a	tabular	view	using	the
View(<data	frame>)	syntax.	For	example,	
View(dfYear)	11.	You	can	check	your	work	against	the	solution	file
Chapter4_1.R.

Exercise	2:	Narrowing	the	list	of	columns	with	select()

Many	datasets	that	you	load	from	external	data	sources	include	dozens	of
columns.	The	StudyArea.csvfile	that	you’ve	been	working	with	in	the	exercises
includes	37	columns	of	information.	In	most	cases	you	won’t	need	all	the
columns.

The	select()	function	can	be	used	to	narrow	down	the	list	of	columns	to	include
only	those	needed	for	a	task.	To	use	the	select()	function,	simply	pass	in	the
name	of	the	data	frame	along	with	the	columns	to	include.

1.	Use	the	read_csv()	function	to	load	the	dataset	into	a	data	frame.

Note:	For	the	sake	of	completeness	you	will	be	loading	the	external	data	from
the	StudyArea.csv	file	to	the	dfFires	data	frame,	but	this	step	isn’t	absolutely
necessary	if	you’re	doing	the	exercises	in	sequence	in	the	same	R	Studio	session.

dfFires	=	read_csv(“StudyArea.csv”,	col_types	=	list(UNIT	=	col_character()),
col_names	=	TRUE)
2.	On	a	new	line,	add	a	call	to	the	select()
function	as	seen	below	to	limit	the	columns	that	are	returned.
dfFires2	=	select(dfFires,	FIRENAME,	TOTALACRES,	YEAR_)



3.	Display	the	first	few	rows	and	notice	that	we	now	have	only	three	columns.
head(dfFires2)

FIRENAME	TOTALACRES	YEAR_	<chr>	<dbl>	<int>	1	PUMP	HOUSE
0.100	2001	2	I5	3.00	2002	3	SOUTHBAY	0.500	2002	4	MARINA	0.100	2001	5
HILL	1.00	1994	6	IRRIGATION	0.100	1994

4.	Many	of	the	column	names	that	you	import	will	not	be	very	reader	friendly	so
it’s	not	uncommon	to	want	to	rename	the	columns	as	well.	This	can	be
accomplished	using	the	select()	function	as	well.	Rename	your	columns	by
adding	and	running	the	code	you	see	below.

dfFires2	=	select(dfFires,	“FIRE”	=	“FIRENAME”,	“ACRES”	=
“TOTALACRES”,	“YR”	=	“YEAR_”)
5.	Display	the	first	few	lines.
head(dfFires2)

FIRE	ACRES	YR	<chr>	<dbl>	<int>	1	PUMP	HOUSE	0.100	2001	2	I5	3.00
2002	3	SOUTHBAY	0.500	2002	4	MARINA	0.100	2001	5	HILL	1.00	1994	6
IRRIGATION	0.100	1994

6.	There	are	also	a	number	of	handy	helper	functions	that	you	can	use	with	the
select()	function	to	filter	the	returned	columns.	These	include	starts_with(),
ends_with(),	contains(),	matches(),	and	num_range().	To	see	how	this	works,	add
and	run	the	code	you	see	below.	This	will	return	any	columns	that	contain	the
word	DATE.

dfFires3	=	select(dfFires,	contains(“DATE”))
head(dfFires3)

STARTDATED	CONTRDATED	OUTDATED	<chr>	<chr>	<chr>	1	1/1/01	0:00
1/1/01	0:00	NA	2	5/3/02	0:00	5/3/02	0:00	NA	3	6/1/02	0:00	6/1/02	0:00	NA	4
7/12/01	0:00	7/12/01	0:00	NA	5	9/13/94	0:00	9/13/94	0:00	NA	6	4/22/94	0:00
4/22/94	0:00	NA

7.	You	can	also	make	multiple	calls	to	these	helper	functions.
dfFires3	=	select(dfFires,	contains(“DATE”),	starts_with(“TOTAL”))
head(dfFires3)

D	STARTDATED	CONTRDATED	OUTDATED	TOTALACRES	<chr>	<chr>



<chr>	<dbl>
1	1/1/01	0:00	1/1/01	0:00	NA	0.100
2	5/3/02	0:00	5/3/02	0:00	NA	3.00	
3	6/1/02	0:00	6/1/02	0:00	NA	0.500
4	7/12/01	0:00	7/12/01	0:00	NA	0.100
5	9/13/94	0:00	9/13/94	0:00	NA	1.00	6	4/22/94	0:00	4/22/94	0:00	NA	0.100

8.	You	can	check	your	work	against	the	solution	file
Chapter4_2.R.

Exercise	3:	Arranging	Rows

The	arrange()	function	in	the	dplyr	package	can	be	used	to	order	the	rows	in	a
data	frame.	This	function	accepts	a	set	of	columns	to	order	by	with	the	default
row	ordering	being	in	ascending	order.	However,	you	can	pass	the	desc()	helper
function	to	order	the	rows	in	descending	order.	Missing	values	will	be	placed	at
the	end	of	the	data	frame.

1.	Use	the	read_csv()
function	to	load	the	dataset	into	a	data	frame.
dfFires	=	read_csv(“StudyArea.csv”,	col_types	=	list(UNIT	=	col_character()),
col_names	=	TRUE)
2.	Filter	the	dataset	so	that	it	contains	only	fires	greater	than	1,000	acres	burned
from	the	year	2016.
df1k	=	filter(dfFires,	TOTALACRES	>=	1000,	YEAR_	==	2016)
3.	Add	and	run	the	code	you	see	below	to	create	a	subset	of	columns	and	rename
them.
df1k	=	select(df1k,	“NAME”	=	“FIRENAME”,	“ACRES”	=	“TOTALACRES”,
“YR”	=	“YEAR_”)
4.	Sort	the	rows	so	that	they	are	in	ascending	order.
arrange(df1k,	ACRES)

NAME	ACRES	YR	<chr>	<dbl>	<int>	1	Crackerbox	1000.	2016	2	Lakes	1000.
2016	3	Choulic	2	1008.	2016	4	Amigo	Wash	1020.	2016	5	Granite	1030.	2016	6
Tie	1031.	2016	7	Black	1040.	2016	8	Bybee	Creek	1072.	2016	9	MARSHES
1080.	2016	10	Bug	Creek	1089.	2016

5.	Use	the
desc()



helper	function	to	order	the	rows	in	descending	order.
arrange(df1k,	desc(ACRES))

NAME	ACRES	YR	<chr>	<dbl>	<int>	1	PIONEER	188404.	2016	2	Junkins
181320.	2016	3	Range	12	171915.	2016	4	Erskine	48007.	2016	5	Cedar	45977.
2016	6	Maple	45425.	2016	7	Rail	43799.	2016	8	North	Fire	42102.	2016	9
Laidlaw	39813.	2016	10	BLUE	CUT	36274.	2016

6.	You	can	use	the
View()	function	as	a	wrapper	around	these	calls	to	view	the	data	in	a	tabular	grid
view	by	adding	the	code	you	see	below.
View(arrange(df1k,	desc(ACRES)))	7.	You	can	check	your	work	against	the
solution	file	Chapter4_3.R.

Exercise	4:	Adding	Rows	with	mutate()

The	mutate()	function	is	used	to	add	new	columns	to	a	data	frame	that	are	the
result	of	a	function	you	run	on	other	columns	in	the	data	frame.	Any	new
columns	created	with	the	mutate()	function	will	be	added	to	the	end	of	the	data
frame.	This	function	can	be	incredibly	useful	for	dynamically	creating	new
columns	that	are	the	result	of	operations	performed	on	other	columns	from	the
data	frame.	In	this	exercise	you’ll	learn	how	the	mutate()	function	can	be	used	to
create	new	columns	in	a	data	frame.

1.	You’re	going	to	need	the	lubridate	package	for	this	exercise.	The	lubridate
package	is	part	of	tidyverse	and	is	used	to	work	with	dates	and	times.	In	R
Studio,	check	the	Packages	tab	to	make	sure	that	lubridate	has	been	installed
and	loaded	as	seen	in	the	screenshot	below.	If	not,	you’ll	need	to	do	so	now
using	the	instructions	for	installing	and	loading	a	package	covered	in	Chapter	1:
Introduction	to	R.

2.	Recall	from	Chapter	1:	Introduction	to	R	that	you	can	also	load	an	installed
library	using	the	syntax	seen	below.
library(lubridate)
3.	Use	the	read_csv()	function	to	load	the	dataset	into	a	data	frame.
dfFires	=	read_csv(“StudyArea.csv”,	col_types	=	list(UNIT	=	col_character()),
col_names	=	TRUE)
4.	Use	the	select()
function	to	define	a	set	of	columns	for	the	data	frame.



df	=	select(dfFires,	ORGANIZATI,	STATE,	YEAR_,	TOTALACRES,	CAUSE,
STARTDATED)

5.	Do	some	basic	filtering	of	the	data	so	that	only	fires	greater	than	1,000	acres
burned	and	have	a	cause	of	Human	or	Natural	are	included.	There	are	some
records	marked	as	Unknown	in	the	dataset,	so	we’ll	remove	those	for	this
exercise.

df	=	filter(df,	TOTALACRES	>=	1000	&	CAUSE	%in%	c(‘Human’,	‘Natural’))

6.	Use	the	mutate()	function	to	create	a	new	DOY	column	that	contains	the	day
of	the	year	that	the	fire	started.	The	yday()	function	from	the	lubridate	package	is
used	to	return	the	day	of	the	year	using	a	formatted	input	date	from	the
STARTDATED	column.

df	=	mutate(df,	DOY	=	yday(as.Date(df$STARTDATED,	format=’%m/%d/%y
%H:%M’)))
7.	View	the	resulting	DOY	column.
View(df)

8.	You	can	check	your	work	against	the	solution	file	Chapter4_4.R.

9.	In	the	next	exercise	the	mutate()	function	will	be	used	again	when	we	create	a
column	that	holds	the	decade	of	the	fire	and	then	calculates	the	total	acreage
burned	by	acreage.



Exercise	5:	Summarizing	and	Grouping

Summary	statistics	for	a	data	frame	can	be	produced	with	the	summarize()
function.	The	summarize()	function	produces	a	single	row	of	data	containing
summary	statistics	from	a	data	frame.	This	function	is	normally	paired	with	the
group_by()	function	to	produce	group	summary	statistics.

The	grouping	of	data	in	a	data	frame	facilitates	the	split-apply-combine
paradigm.	This	paradigm	first	splits	the	data	into	groups,	using	the	group_by()
function	in	dplyr,	then	applies	analysis	to	the	group,	and	finally,	combines	the
results.	The	group_by()	function	handles	the	split	portion	of	the	paradigm	by
creating	groups	of	data	using	one	or	more	columns.	For	example,	you	might
group	all	wildfires	by	state	and	cause.

In	this	step	you’ll	use	the	mutate(),	summarize(),	and	group_by()	functions	to
group	wildfires	by	decade	and	produce	a	summary	of	the	mean	wildfire	size	for
each	decade.
1.	Use	the	read_csv()	function	to	load	the	dataset	into	a	data	frame.

dfFires	=	read_csv(“StudyArea.csv”,	col_types	=	list(UNIT	=	col_character()),
col_names	=	TRUE)
2.	Select	the	columns	that	will	be	used	in	the	exercise.
df	=	select(dfFires,	ORGANIZATI,	STATE,	YEAR_,	TOTALACRES,	CAUSE)
3.	Filter	the	records.
df	=	filter(df,	TOTALACRES	>=	1000)

4.	Use	the	mutate()	function	to	create	a	new	column	called	DECADE	that
defines	the	decade	in	which	each	fire	occurred.	In	this	case	an	ifelse()	function	is
called	to	produce	the	values	for	each	decade.

function	is	called	to	produce	the	values	for	each	decade.

1989”,	ifelse(YEAR_	%in%	1990:1999,	“1990-1999”,	ifelse(YEAR_	%in%	
2000:2009,	“2000-2009”,	ifelse(YEAR_	%in%	2010:2016,	“2010-2016”,
“-99”)))))	5.	View	the	result.
View(df)



6.	Use	the	group_by()	function	to	group	the	data	frame	by	decade.
grp	=	group_by(df,	DECADE)
7.	Summarize	the	mean	size	of	wildfires	by	decade	using	the	summarize()
function.
sm	=	summarize(grp,	mean(TOTALACRES))
8.	View	the	result.
View(sm)

9.	Let’s	tidy
things	up	by	renaming	the	new	column	produced	by	the	summarize()
function.
names(sm)	<-	c(“DECADE”,	“MEAN_ACRES_BURNED”)

10.	Finally,	let’s	create	a	bar	chart	of	the	results.	We’ll	discuss	the	creation	of
many	different	types	of	charts	and	graphs	as	we	move	through	later	chapters	of
the	book	so	detailed	discussion	of	these	topics	will	be	saved	for	later.

ggplot(data=sm)	+	geom_col(mapping	=	aes(x=DECADE,	y=MEAN_ACRES_
BURNED),	fill=”red”)



11.	You	can	check	your	work	against	the	solution	file	Chapter4_5.R.

Exercise	6:	Piping

As	you’ve	probably	noticed	in	some	of	these	exercises,	it	is	not	unusual	to	run	a
series	of	dplyrfunctions	as	part	of	a	larger	processing	routine.	As	you’ll	recall,
each	dplyr	function	returns	a	new	data	frame,	and	this	data	frame	is	typically
used	as	the	input	to	the	next	dplyr	function	in	the	series.	These	data	frames	are
intermediate	datasets	not	needed	beyond	the	current	step.	However,	you	are	still
required	to	name	and	code	each	of	these	datasets.

Piping	is	a	more	efficient	way	of	handling	these	temporary,	intermediate
datasets.	In	sum,	piping	is	an	efficient	way	of	sending	the	output	of	one	function
to	another	function	without	creating	an	intermediate	dataset	and	is	most	useful
when	you	have	a	series	of	functions	to	run.	The	syntax	for	piping	is	to	use	the
%>%	characters	at	the	end	of	each	statement	that	you	want	to	pipe.	In	this
exercise	you’ll	learn	how	to	use	piping	to	chain	together	input	and	output	data
frames.



1.	In	the	last	exercise	the	select(),	filter(),	mutate(),	group_by(),	and	summarize()
function	were	all	used	in	a	series	that	ultimately	produced	a	bar	chart	showing
the	mean	acreage	burned	by	wildfires	in	the	past	few	decades.	Each	of	these
functions	return	a	data	frame,	which	is	then	used	as	input	to	the	next	function	in
the	series.	Piping	is	a	more	efficient	way	of	coding	this	chaining	of	function
calls.	Rewrite	the	code	produced	in	Exercise	4:	Adding	Rows	with	mutate()	as
seen	below	and	then	we’ll	discuss	how	piping	works.

library(lubridate)
df	=	read_csv(“StudyArea.csv”,	col_types	=	list(UNIT	=	col_character()),
col_names	=	TRUE)	%>%
select(ORGANIZATI,	STATE,	YEAR_,	TOTALACRES,	CAUSE,
STARTDATED)	%>%
filter(TOTALACRES	>=	1000	&	CAUSE	%in%	c(‘Human’,	‘Natural’))	%>%
mutate(DOY	=	yday(as.Date(STARTDATED,	format=’%m/%d/%y	%H:%M’)))
View(df)

The	first	line	of	code	reads	the	contents	of	the	external	StudyArea.csv	file	into	a
data	frame	variable	(df)	as	we’ve	done	in	all	the	other	exercises	in	this	chapter.
However,	you’ll	notice	the	inclusion	of	the	piping	statement	(%>%>)	at	the	end
of	the	line.	This	ensures	that	the	contents	of	the	df	variable	will	automatically	be
sent	to	the	select()	function.

Notice	that	the	select()	function	does	not	create	a	variable	like	we	have	done	in
the	past	exercises,	and	that	we	have	left	off	the	first	parameter,	which	would
normally	have	been	the	data	frame	variable.	It	is	implied	that	the	df	variable	will
be	passed	to	the	select()	function.
This	same	process	of	including	the	piping	statement	at	the	end	of	each	line	and
leaving	off	the	first	parameter	is	repeated	for	all	the	additional	lines	of	code
where	we	want	to	automatically	pass	the	df	variable	to	the	next	dplyr	function.
Finally,	we	view	the	contents	of	the	df	variable	using	the	View()	function	on	the
last	line.

Piping	makes	your	code	more	streamlined	and	easier	to	read	and	also	takes	away
the	need	to	create	and	populate	variables	that	are	only	used	as	intermediate
datasets.

2.	You	can	check	your	work	against	the	solution	file
Chapter4_6.R.



Exercise	7:	Challenge

The	challenge	step	is	optional,	but	it	will	give	you	a	chance	to	reinforce	what
you’ve	learned	in	this	module.	Create	a	new	data	frame	that	is	a	subset	of	the
original	dfFires	data	frame.	The	subset	should	contain	all	fires	from	the	State	of
Idaho	and	the	columns	should	be	limited	so	that	only	the	YEAR_,	CAUSE,	and
TOTALACRES	columns	are	present.	Rename	the	columns	if	you	wish.	Group
the	data	by	CAUSE	and	YEARand	then	summarize	by	total	acres	burned.	Plot
the	results.

Conclusion

In	this	chapter	you	learned	how	to	use	the	dplyr	package	to	perform	various	data
transformation	functions.	You	learned	how	to	limit	columns	with	the	select()
function,	filter	a	data	frame	based	on	one	or	more	expressions,	add	columns	with
mutate(),	and	summarize	and	group	data.	Finally,	you	learned	how	to	use	piping
to	make	your	code	more	efficient.

In	the	next	chapter	you’ll	how	to	create	tidy	datasets	with	the	tidyr	package.
Chapter	5



Creating	Tidy	Data

Let’s	first	describe	what	we	mean	by	“tidy	data”,	because	the	term	doesn’t
necessarily	fully	describe	the	concept.	Data	tidying	is	a	consistent	way	of
organizing	data	in	R	and	can	be	facilitated	through	the	tidyr	package	found	in	the
tidyverse	ecosystem.	There	are	three	rules	that	we	can	follow	to	make	a	dataset
tidy.	First,	each	variable	must	have	its	own	column.	Second,	each	observation
must	have	its	own	row,	and	finally,	each	value	must	have	its	own	cell.	This	is
illustrated	by	the	diagram	below.

There	are	two	main	advantages	of	having	tidy	data.	One	is	more	of	a	general
advantage	and	the	other	is	more	specific.	First,	having	a	consistent,	uniform	data
structure	is	very	important.	The	other	packages	that	are	part	of	tidyverse,
including	dplyr	and	ggplot2	are	designed	to	work	with	tidy	data	so	ensuring	that
your	data	is	uniform	facilitates	the	efficient	processing	of	your	data.	In	addition,
placing	variables	into	columns	allows	for	the	easily	facilitation	of	vectorization
in	R.

Many	datasets	that	you	encounter	will	not	be	tidy	and	will	require	some	work	on
your	end.	There	can	be	many	reasons	why	a	dataset	isn’t	tidy.	Oftentimes	the
people	who	created	the	dataset	aren’t	familiar	with	the	principles	of	tidy	data.
Unless	you	are	trained	in	the	practice	of	creating	tidy	datasets	or	spend	a	lot	of
time	working	with	data	structures	these	concepts	aren’t	readily	apparent.
Another	common	reason	that	datasets	aren’t	tidy	is	that	data	is	often	organized	to
facilitate	something	other	than	analysis.	Data	entry	is	perhaps	the	most	common
of	the	reasons	that	fall	into	this	category.	To	make	data	entry	as	easy	as	possible,
people	will	often	arrange	data	in	ways	that	aren’t	tidy.	So,	many	datasets	require
some	sort	of	tidying	before	you	can	begin	your	analysis.



The	first	step	is	to	figure	out	what	the	variables	and	observations	are	for	the
dataset.	This	will	facilitate	your	understanding	of	what	the	columns	and	rows
should	be.	In	addition,	you	will	also	need	to	resolve	one	or	two	common
problems.	You	will	need	to	figure	out	if	one	variable	is	spread	across	multiple
columns,	and	you	will	need	to	figure	out	if	one	observation	is	scattered	across
multiple	rows.	These	concepts	are	known	as	gathering	and	spreading.	We’ll
examine	these	concepts	further	in	the	exercises	in	this	chapter.

In	this	chapter	we’ll	cover	the	following	topics:

•	Gathering
•	Spreading
•	Separating
•	Uniting

Exercise	1:	Gathering

A	common	problem	in	many	datasets	is	that	the	column	names	are	not	variables
but	rather	values	of	a	variable.	In	the	figure	below,	the	1999	and	2000	columns
are	actually	values	of	the	variable	YEAR.	Each	row	in	the	existing	table	actually
represents	two	observations.	The	tidyrpackage	can	be	used	to	gather	these
existing	columns	into	a	new	variable.	In	this	case,	we	need	to	create	a	new
column	called	YEARand	then	gather	the	existing	values	in	the	1999	and	2000
columns	into	the	new	YEAR	column.

The	gather()	function	from	the	tidyr	package	can	be	used	to	accomplish	the
gathering	of	data.	Take	a	look	at	the	line	of	code	below	to	see	how	this	function
works.



gather(‘1999’,	‘2000’,	key	=	‘year’,	value	=	‘cases’)

There	are	three	parameters	of	the	gather()function.	The	first	is	the	set	of	columns
that	represent	what	should	be	values	and	not	variables.	These	would	be	the	1999
and	2000	columns	in	the	example	we	have	been	following.	Next,	you’ll	need	to
name	the	variable	of	the	new	column.	This	is	also	called	the	key,	and	in	this	case
will	the	year	variable.	Finally,	you’ll	need	to	provide	the	value,	which	is	the
name	of	the	variable	whose	values	are	spread	over	the	cells.

In	this	exercise	you’ll	learn	how	to	use	the	gather()	function	to	resolve	the	types
of	problems	we	discussed	in	the	introduction	to	this	topic.

1.	In	the	Data	folder	where	you	installed	the	exercise	data	for	this	book	is	a	file
called	CountryPopulation.csv.	Open	this	file,	preferably	in	Microsoft	Excel,	or
some	other	type	of	spreadsheet	software.	The	file	should	look	similar	to	the
screenshot	below.	This	spreadsheet	includes	should	look	similar	to	the
screenshot	below.	This	spreadsheet	includes	2017.	The	columns	for	each	year
represent	values,	not	variables.	These	columns	need	to	be	gathered	into	a	new
pair	of	variables	that	represent	the	Year	and	Population.	In	this	exercise	you’ll
use	the	gather()	function	to	accomplish	this	data	tidying	task.



2.	Open	RStudio	and	find	the	Console	pane.

3.	If	necessary,	set	the	working	directory	by	typing	the	code	you	see	below	into
the	Console	pane	or	by	going	to	Session	|	Set	Working	Directory	|	Choose
Directory	from	the	RStudio	menu.

setwd(<installation	directory	for	exercise	data>)
4.	If	necessary,	load	the	readr	and	tidyr	packages	by	clicking	the	check	boxes	in
the	Packages	pane	or	by	including	the	following	line	of	code.
library(readr)
library(tidyr)
5.	Load	the	CountryPopulation.csv	file	into	RStudio	by	writing	the	code	you	see
below	in	the	Console	pane.
dfPop	=	read_csv(“CountryPopulation.csv”,	col_names	=	TRUE)
You	should	see	the	following	output	in	the	Console
pane.
Parsed	with	column	specification:
cols(

`Country	Name`	=	col_character(),
`Country	Code`	=	col_character(),	`2010`	=	col_double(),
`2011`	=	col_double(),
`2012`	=	col_double(),
`2013`	=	col_double(),
`2014`	=	col_double(),
`2015`	=	col_double(),
`2016`	=	col_double(),
`2017`	=	col_double()



)
6.	Use	the
View()	function	to	display	the	data	in	a	tabular	structure.
View(dfPop)

7.	Use	the	gather()	function	as	seen	below.
dfPop2	=	gather(dfPop,	`2010`,	`2011`,	`2012`,	`2013`,	`2014`,	`2015`,	`2016`,
`2017`,	key	=	‘YEAR’,	value	=	‘POPULATION’)
8.	View	the	output.
View(dfPop2)	



9.	You	can	check	your	work	against	the	solution	file	Chapter5_1.R.

Exercise	2:	Spreading

Spreading	is	the	opposite	of	gathering	and	is	used	when	an	observation	is	spread
across	multiple	rows.	In	the	diagram	below,	table2should	define	an	observation
of	one	country	per	year.	However,	you’ll	notice	that	this	is	spread	across	two
rows.	One	row	for	cases	and	another	for	population.



We	can	use	the	spread()function	to	fix	this	problem.	The	spread()	function	takes
two	parameters:	the	column	that	contains	variable	names,	known	as	the	key	and
a	column	that	contains	values	from	multiple	variables	–	the	value.

spread(table2,	key,	value)
In	this	exercise	you’ll	learn	how	to	use	the	spread()	function	to	resolve	the	types
of	problems	we	discussed	in	the	introduction	to	this	topic.

1.	For	this	exercise	you’ll	download	some	sample	data	that	needs	to	be	spread.
Install	the	devtools	package	and	DSR	datasets	using	the	code	you	see	below	by
typing	in	the	Console	pane.	Alternatively,	you	can	use	the	Packages	pane	to
install	the	packages.

install.packages(“devtools”)
devtools::install_github(“garrettgman/DSR”)
2.	Load	the	DSR	library	by	going	to	Package	and	clicking	the	check	box	next	to
DSR.
3.	View	table2.	In	this	case,	an	observation	is	one	country	per	year,	but	you’ll
notice	that	each	observation	is	actually	spread	into	two	rows.	
View(table2)



4.	Use	the	spread()	function	to	correct	this	problem.
table2b	=	spread(table2,	key	=	type,	value	=	count)
5.	View	the	results.
View(table2b)	



6.	You	can	check	your	work	against	the	solution	file	Chapter5_2.R.

Exercise	3:	Separating

Another	common	case	involves	two	variables	being	placed	into	the	same
column.	For	example,	the	spreadsheet	below	has	a	State-County	Name	column
that	actually	contains	two	variables	separated	by	a	slash.

The	separate()function	can	be	used	to	split	a	column	into	multiple	columns	by
splitting	on	a	separator.	By	default,	the	separate()	function	will	automatically
look	for	any	nonalphanumeric	character	or	you	can	define	a	specific	character.



Here,	the	separate()	function	will	split	the	values	of	the	State-County	Name
column	into	two	variables:	StateAbbrev	and	CountyName.

The	separate()	function	accepts	parameters	for	the	name	of	the	column	to
separate	along	with	the	names	of	the	columns	to	separate	into,	and	an	optional
separator.	By	default,	separate()	will	look	for	any	non-alphanumeric	character	to
use	as	the	separator,	but	you	can	also	define	a	specific	separator.	You	can	see	an
example	of	how	the	separate()	function	works	below.

separate(table3,	rate,	into=c(“cases”,	“population”))
In	this	exercise	you’ll	learn	how	to	use	the	separate()	function	to	resolve	the
types	of	problems	we	discussed	in	the	introduction	to	this	topic.

1.	In	the	Data	folder	where	you	installed	the	exercise	data	for	this	book	is	a	file
called	usco2005.csv.	Open	this	file,	preferably	in	Microsoft	Excel,	or	some	other
type	of	spreadsheet	software.	The	file	should	look	similar	to	the	screenshot
below.

2.	Load	the	usco2005.csv	file	into	RStudio	by	writing	the	code	you	see	below	in



the	Console	pane.
df	=	read_csv(“usco2005.csv”,	col_names	=	TRUE)
3.	View	the	imported	data.
View(df)

4.	Use	the	separate()	function	to	separate	the	contents	of	the	StateCounty	Name
column	into	StateAbbrev	and	CountyName	columns.
df2	=	separate(df,”State-County	Name”,into	=	c(“StateAbbrev”,
“CountyName”))
5.	View	the	results.
View(df2)

6.	You	can	check	your	work	against	the	solution	file	Chapter5_3.R.

Exercise	4:	Uniting

The	Unite()function	is	the	exact	opposite	of	separate()	in	that	it	combines
multiple	columns	into	a	single	column.	While	not	used	nearly	as	often	as
separate()	,	there	may	be	times	when	you	need	the	functionality	provided	by
unite().	In	this	exercise	you’ll	unite	the	data	frame	that	was	separated	in	the	last
exercise.

1.	In	the	Console	pane,	add	the	code	you	see	below	to	unite	the	StateAbbrev	and



CountyName	columns	back	into	a	single	column.	
df3	=	unite(df2,	State_County_Name,	StateAbbrev,	CountyName)
2.	View	the	result.
View(df3)	

3.	You	can	check	your	work	against	the	solution	file	Chapter5_4.R.

Conclusion

In	this	chapter	you	were	introduced	to	the	tidyr	package	and	its	set	of	functions
for	creating	tidy	datasets.	The	next	chapter	will	teach	you	the	basics	of	data
exploration	using	R	and	tidyverse.

Chapter	6



Basic	Data	Exploration	Techniques	in	R

Exploratory	Data	Analysis	(EDA)	is	a	workflow	designed	to	gain	a	better
understanding	of	your	data.	The	workflow	consists	of	three	steps.	The	first	is	to
generate	questions	about	your	data.	In	this	step	you	want	to	be	as	broad	as
possible	because	at	this	point	you	don’t	really	have	a	good	feel	for	the	data.
Next,	search	for	answers	to	these	questions	by	visualizing,	transforming,	and
modeling	the	data.	Finally,	refine	your	questions	and	or	generate	new	questions.
In	R	there	are	two	primary	tools	that	support	the	data	exploration	process:	plots
and	summary	statistics.

Data	can	generally	be	divided	into	categorical	or	continuous	types.	Categorical
variables	consist	of	a	small	set	of	values,	while	continuous	variables	have	a
potentially	infinite	set	of	ordered	values.	Categorical	variables	are	often
visualized	with	bar	charts,	and	continuous	variables	with	histograms.	Both
categorical	and	continuous	data	can	be	represented	through	various	charts
created	with	R.

When	performing	basic	visualization	of	variables,	we	tend	to	measure	either
variation	or	covariation.	Variation	is	the	tendency	of	the	values	of	a	variable	to
change	from	measurement	to	measurement.	The	variable	being	measured	is	the
same	though.	This	would	include	things	like	the	total	acres	burned	by	a	wildfire
(continuous)	or	the	number	of	crimes	by	police	district	(categorical	data.
Covariation	is	the	tendency	of	the	values	of	two	or	more	variables	to	vary
together	in	a	related	way.

•	Measuring	categorical	variation	with	a	bar	chart
•	Measuring	continuous	variation	with	a	histogram
•	Measuring	covariation	with	boxplots
•	Measuring	covariation	with	symbol	size
•	Creating	2D	bins	and	hex	charts
•	Generating	summary	statistics

Exercise	1:	Measuring	Categorical	Variation	with	a	Bar	Chart

A	bar	chart	is	a	great	way	to	visualize	categorical	data.	It	separates	each	category
into	a	separate	bar	and	then	the	height	of	each	bar	is	defined	by	the	number	of



occurrences	in	that	category.

1.	The	exercises	in	this	chapter	require	the	following	packages:	readr,	dplyr,
ggplot2.	They	can	be	loaded	from	the	Packages	pane,	the	Console	pane,	or	a
script.

2.	Open	RStudio	and	find	the	Console	pane.

3.	If	necessary,	set	the	working	directory	by	typing	the	code	you	see	below	into
the	Console	pane	or	by	going	to	Session	|	Set	Working	Directory	|	Choose
Directory	from	the	RStudio	menu.

setwd(<installation	directory	for	exercise	data>)
4.	Use	the	read_csv()
function	to	load	the	dataset	into	a	data	frame.	
dfFires	<-	read_csv(“StudyArea.csv”,	col_types	=	list(UNIT	=	col_character()),
col_names	=	TRUE)

5.	For	this	analysis,	we’ll	filter	the	data	so	that	only	fires	that	burned	greater	than
1,000	acres	in	the	years	2010	through	2016	are	represented.	Add	the	code	you
see	below	to	filter	the	data	and	and	send	the	results	to	a	bar	chart.

df	<-	filter(df,	TOTALACRES	>=	1000,	YEAR_	%in%	c(2010,	2011,	2012,
2013,	2014,	2015,	2016))
ggplot(data	=	df)	+	geom_bar(mapping	=	aes(x	=	YEAR_))
This	will	produce	a	bar	chart	that	appears	as	seen	in	the	screenshot	below.



6.	Use	the	count()	function	to	get	the	actual	count	for	each	category.
View(count(df,	YEAR_))



Exercise	2:	Measuring	Continuous	Variation	with	a	Histogram

The	distribution	of	a	continuous	variable	can	be	measured	with	the	use	of	a
histogram.	In	this	exercise	you’ll	create	a	histogram	of	wildfire	acres	burned.
1.	On	a	new	line,	use	the	read_csv()	function	to	load	the	StudyArea.csv	file.
dfFires	<-	read_csv(“StudyArea.csv”,	col_types	=	list(UNIT	=	col_character()),
col_names	=	TRUE)

2.	Pipe	the	data	frame	and	use	the	select()	function	to	limit	the	columns	and	filter
the	rows	so	that	only	fires	greater	than	1,000	acres	are	included.	Since	we	have	a
large	number	of	wildfires	that	burned	only	a	small	number	of	acres	we’ll	focus
on	fires	that	are	a	little	larger	in	this	case.

df	%>%
select(ORGANIZATI,	STATE,	YEAR_,	TOTALACRES,	CAUSE)	%>%
filter(TOTALACRES	>=	1000)	%>%

3.	Create	the	histogram	using	ggplot()	with	geom_hist()	and	a	bin	size	of	500.
The	data	is	obviously	still	skewed	toward	the	lower	end	of	the	number	of	acres
burned.	Add	the	highlighted	code	you	see	below	to	produce	the	chart.

df	%>%
select(ORGANIZATI,	STATE,	YEAR_,	TOTALACRES,	CAUSE)	%>%
filter(TOTALACRES	>=	1000)	%>%



ggplot()	+	geom_histogram(mapping	=	aes(x=TOTALACRES),
binwidth=500)

4.	You	can	also	get	a	physical	count	of	the	number	of	fires	that	fell	into	each	bin.
From	viewing	the	histogram	and	the	count	it’s	obvious	that	the	vast	majority	of
fires	are	small.

df	%>%
count(cut_width(TOTALACRES,	500))

`cut_width(TOTALACRES,	500)`	n
<fct>	<int>
1	[750,1250]	154
2	(1250,1750]	178
3	(1750,2250]	144



4	(2250,2750]	82
5	(2750,3250]	70
6	(3250,3750]	39
7	(3750,4250]	59
8	(4250,4750]	42
9	(4750,5250]	40
10	(5250,5750]	37

5.	Challenge:	Recreate	the	histogram	using	a	bin	size	of	5000.	What	is	the	effect
on	the	output?

Exercise	3:	Measuring	Covariation	with	Box	Plots

Box	plots	provide	a	visual	representation	of	the	spread	of	data	for	a	variable.
These	plots	display	the	range	of	values	for	a	variable	along	with	the	median	and
quartiles.	Follow	the	instructions	provided	below	to	create	a	box	plot	that
measures	covariation	between	organization	and	total	acreage	burned.

1.	Use	the
read_csv()	function	to	load	the	dataset	into	a	data	frame.	
dfFires	<-	read_csv(“StudyArea.csv”,	col_types	=	list(UNIT	=	col_character()),
col_names	=	TRUE)

2.	Pipe	the	data	frame	and	filter	the	rows	so	that	only	fire	between	5000	and
1000	acres	are	included.	Then,	group	the	data	by	organization.	The
ORGANIZATI	column	in	the	dataset	contains	categorical	data	for	the	U.S.
federal	government	agencies	that	have	had	land	affected	by	wildfires.	Finally,
use	ggplot()	with	geom_boxplot()	to	create	a	boxplot	showing	the	distribution	of
wildfires	by	organization.

df	%>%
filter(TOTALACRES	>=	5000	&	TOTALACRES	<=	10000)	%>%
group_by(ORGANIZATI)	%>%
ggplot(mapping	=	aes(x	=	ORGANIZATI,	y	=	TOTALACRES))	+	geom_
boxplot()



The	organization	is	listed	on	the	X	axis	and	the	total	acreage	burned	on	the	Y
axis.	The	box	contains	a	horizontal	line	that	represents	the	median	for	the
variable	and	the	box	itself	is	known	as	the	Inter	Quartile	Range	(IQR).	The
vertical	lines	that	extend	on	either	side	of	the	box	are	known	as	the	whiskers	and
represent	the	first	and	fourth	quartile.	A	larger	box	and	whiskers	indicate	a	larger
distribution	of	data.

3.	Challenge:	Create	a	new	boxplot	that	maps	the	covariation	of
CAUSE	and	TOTALACRES.

Exercise	4:	Measuring	Covariation	with	Symbol	Size

The	geom_count()	function	can	be	used	with	ggplot()	to	measure	covariation
between	variables	using	different	symbol	sizes.	Follow	the	instructions	provided
below	to	measure	the	covariation	between	organization	and	wildfire	cause	using
symbol	size.

1.	Use	the	read_csv()	function	to	load	the	dataset	into	a	data	frame.	
dfFires	<-	read_csv(“StudyArea.csv”,	col_types	=	list(UNIT	=	col_character()),
col_names	=	TRUE)



2.	Pipe	the	data	frame	and	filter	the	rows	so	that	only	wildfires	that	originated
due	to	Natural	or	Human	causes	are	included.	This	will	remove	any	records	that
are	Unknown	or	have	missing	values.	Then,	use	geom_count()	to	create	a
graduated	symbol	chart	based	on	the	number	of	fires	by	organization.

df	%>%
filter(CAUSE	==	‘Natural’	|	CAUSE	==	‘Human’)	%>%
group_by(ORGANIZATI)	%>%
ggplot()	+	geom_count(mapping	=	aes(x	=	ORGANIZATI,	y	=	CAUSE))

3.	You	can	also	get	an	exact	count	of	the	number	of	fires	by	organization	and
cause.
df	%>%
count(ORGANIZATI,	CAUSE)

ORGANIZATI	CAUSE	n
<chr>	<chr>	<int>
1	BIA	Human	49
2	BIA	Natural	91
3	BLM	Human	187
4	BLM	Natural	386
5	FS	Human	158



6	FS	Natural	431
7	FWS	Human	10
8	FWS	Natural	7
9	FWS	Undetermined	6
10	NPS	Human	6
11	NPS	Natural	46

Exercise	5:	2D	bin	and	hex	charts

You	can	also	use	2D	bin	and	hex	charts	as	an	alternative	way	of	viewing	the
distribution	of	two	variables.	Follow	the	instructions	provided	below	to	create
2D	bin	and	hex	charts	that	visualize	the	relationship	between	the	year	and	total
acreage	burned.

1.	Use	the
read_csv()	function	to	load	the	dataset	into	a	data	frame.	
dfFires	<-	read_csv(“StudyArea.csv”,	col_types	=	list(UNIT	=	col_character()),
col_names	=	TRUE)
2.	Create	a	2D	bin	map	with	YEAR_	on	the	X	axis	and	TOTALACRES	on	the	Y
axis.
ggplot(data	=	dfFires)	+	geom_bin2d(mapping	=	aes(x=YEAR_,
y=TOTALACRES))



3.	Create	a	2D	hex	map	with	YEAR_	on	the	X	axis	and	TOTALACRES	on	the	Y
axis.
ggplot(data=df)	+	geom_hex(mapping	=	aes(x=YEAR_,	y=TOTALACRES))



Exercise	6:	Generating	Summary	Statistics

Another	basic	technique	for	performing	exploratory	data	analysis	is	to	generate
various	summary	statistics	on	a	dataset.	R	includes	a	number	of	individual
functions	for	generating	specific	summary	statistics	or	you	can	use	the
summary()	function	to	generate	a	set	of	summary	statistics.

1.	Reload	the	StudyArea.csv	file	into	a	data	frame.
df	<-	read_csv(“StudyArea.csv”,	col_types	=	list(UNIT	=	col_character()),
col_names	=	TRUE)
2.	Restrict	the	list	of	columns.
df	<-	select(df,	ORGANIZATI,	STATE,	YEAR_,	TOTALACRES,	CAUSE)
3.	Filter	the	list	to	include	only	wildfires	greater	than	1,000	acres.
df	<-	filter(df,	TOTALACRES	>=	1000)
4.	Call	the	mean()	function,	passing	in	a	reference	to	the	data	frame	and	the
TOTALACRES	column.
mean(df$TOTALACRES)
[1]	10813.06
5.	Call	the	median()	function.
median(df$TOTALACRES)	[1]	3240
6.	Instead	of	calling	the	individual	summary	statistics	functions	you	can	simply
use	the	summary()	function	to	return	a	list	of	summary	statistics.
summary(df$TOTALACRES)
Min.	1st	Qu.	Median	Mean	3rd	Qu.	Max.	1000	1670	3240	10813	8282	590620
7.	You	can	check	your	work	against	the	solution	file	Chapter6_6.R.

Conclusion

In	this	chapter	you	learned	some	basic	data	exploration	techniques	using	R.	You
learned	how	to	measure	categorical	and	continuous	variation	with	bar	charts	and
histograms,	and	covariation	with	box	plots	and	different	symbol	size.	Finally,
you	learned	how	to	generate	summary	statistics	and	create	2D	bins	and	hex
charts.

In	the	next	chapter	you’ll	learn	how	to	visualize	data	using	the	ggplot2	package.
Chapter	7



Basic	Data	Visualization	Techniques

The	ggplot2	package	is	a	library	that	enables	the	creation	of	many	types	of	data
visualization	including	various	types	of	charts	and	graphs.	This	library	was	first
created	by	Hadley	Wickham	in	2005	and	is	an	R	implementation	of	Leland
Wilkinson’s	Grammar	of	Graphics.	The	idea	behind	this	package	is	to	specify
plot	building	blocks	and	then	combine	them	to	create	a	graphical	display.
Building	blocks	of	ggplot2	include	data,	aesthetic	mapping,	geometric	objects,
statistical	transformations,	scales,	coordinate	systems,	position	adjustments,	and
faceting.

There	are	a	number	of	advantages	to	using	ggplot2versus	other	visualization
techniques	available	in	R.	These	advantages	include	a	consistent	style	for
defining	the	graphics,	a	high	level	of	abstraction	for	specifying	plots,	flexibility,
a	built-in	theming	system	for	plot	appearance,	mature	and	complete	graphics
system,	and	access	to	many	other	ggplot2	users	for	support.

In	this	chapter	we’ll	cover	the	following	topics:
•	Creating	a	scatterplot
•	Adding	a	regression	line	to	a	scatterplot
•	Plotting	categories
•	Labeling	the	graph
•	Legend	layouts
•	Creating	a	facet
•	Theming
•	Creating	bar	charts
•	Creating	violin	plots
•	Creating	density	plots

Step	1:	Creating	a	scatterplot

A	scatterplot	is	a	graph	in	which	the	values	of	two	variables	are	plotted	along
two	axes,	with	the	pattern	of	the	resulting	points	revealing	any	correlation
present.

1.	The	exercises	in	this	chapter	require	the	following	packages:	readr,	dplyr,
ggplot2.	They	can	be	loaded	from	the	Packages	pane,	the	Console	pane,	or	a



script.

2.	Open	RStudio	and	find	the	Console	pane.

3.	If	necessary,	set	the	working	directory	by	typing	the	code	you	see	below	into
the	Console	pane	or	by	going	to	Session	|	Set	Working	Directory	|	Choose
Directory	from	the	RStudio	menu.

setwd(<installation	directory	for	exercise	data>)
4.	Load	the	contents	of	the	StudyArea.csv	file	into	a	data	frame.	
dfWildfires	<-	read_csv(“StudyArea.csv”,	col_types	=	list(UNIT	=
col_character()),	col_names	=	TRUE)
5.	Create	a	subset	of	columns.
df	<-	select(dfWildfires,	ORGANIZATI,	STATE,	YEAR_,	TOTALACRES,
CAUSE)
6.	Group	the	records	by	year.
grp	<-	group_by(df,	YEAR_)
7.	Summarize	the	data	by	total	number	of	acres	burned.
sm	<-	summarize(grp,	totalacres	=	sum(TOTALACRES))
8.	Use	ggplot()	to	create	a	scatterplot	with	the	year	on	the	x	axis	and	the	total
acres	burned	on	the	y	axis.
ggplot(data=sm)	+	geom_point(mapping	=	aes(x=YEAR_,	y=totalacres))



9.	There	are	times	when	it	makes	sense	to	use	the	logarithmic	scales	in	charts
and	graphs.	One	reason	is	to	respond	to	skewness	towards	large	values,	i.e,	cases
in	which	one	or	a	few	points	are	much	larger	than	the	bulk	of	the	data.	In	the
graph	that	we	just	created	there	are	a	couple	points	that	fall	into	this	category	on
the	y	axis.

Create	the	graph	again,	but	this	time	use	the
log()	function	on	the	totalacres	column.
ggplot(data=sm)	+	geom_point(mapping	=	aes(x=YEAR_,	y=log(totalacres)))



10.	You	can	check	your	work	against	the	solution	file	Chapter7_1.R.

Step	2:	Adding	a	regression	line	to	the	scatterplot

Plots	constructed	with	ggplot()	can	have	more	than	one	geometry.	It’s	common
to	add	a	prediction	(regression)	line	to	the	plot.

1.	There	are	several	ways	that	you	can	add	a	regression	line	to	the	scatterplot,
one	of	which	is	to	use	the	geom_smooth()	function	with	the	method	set	to	lm
(straight	line)	and	the	se	parameter	set	to	FALSE.	Add	the	line	of	code	you	see
below	to	the	console	window.

ggplot(data=sm,	aes(x=YEAR_,	y=log(totalacres)))	+	geom_point()	+
geom_smooth(method=lm,	se=FALSE)



2.	Change	the	method	to	loess	the	effect	on	the	regression	line.
ggplot(data=sm,	aes(x=YEAR_,	y=log(totalacres)))	+	geom_point()	+
geom_smooth(method=loess,	se=FALSE)



3.	You	can	add	a	confidence	interval	around	the	regression	line	by	setting	se	=
TRUE.
ggplot(data=sm,	aes(x=YEAR_,	y=log(totalacres)))	+	geom_point()	+
geom_smooth(method=loess,	se=TRUE)	



4.	You	can	check	your	work	against	the	solution	file	Chapter7_2.R.

Step	3:	Plotting	categories

Rather	than	graphing	the	entire	set	of	wildfires	you	might	want	to	better
understand	the	trends	by	state.	In	this	step	you’ll	create	a	new	scatterplot	that
visualizes	wildfires	trends	over	time	by	state.

1.	Regroup	the	wildfires	data	frame	by	state	and	year.
grp	<-	group_by(df,	STATE,	YEAR_)
2.	Summarize	the	groups	by	total	acres	burned.
sm	<-	summarize(grp,	totalacres	=	sum(TOTALACRES))
3.	Add	a
colour	parameter	to	the	aes()	function	so	that	the	points	and	regression	line	are
mapped	according	to	the	state	in	which	they	occurred.
ggplot(data=sm,	aes(x=YEAR_,	y=totalacres,	colour=STATE))	+	geom_
point(aes(colour	=	STATE))	+	stat_smooth(method=lm,	se=FALSE)	



4.	You	can	check	your	work	against	the	solution	file	Chapter7_3.R

Step	4:	Labeling	the	graph

You	can	add	labels	to	your	graph	through	either	the	geom_text()	function	or	the
geom_	label()	function.
1.	Label	each	of	the	points	on	the	scatterplot	using	geom_text()	with	a	label	size
of	3
.

ggplot(data=sm,	aes(x=YEAR_,	y=log(totalacres)))	+	geom_point()	+
geom_smooth(method=loess,	se=TRUE)	+	geom_text(aes(label=STATE),
size=3)



Now	this	obviously	doesn’t	work	very	well.	The	display	is	extremely	cluttered
so	let’s	adjust	a	few	parameters	to	make	this	easier	to	read.
2.	You	can	use	the	check_overlap
parameter	to	remove	any	overlapping	labels.	Update	your	code	as	seen	below.

ggplot(data=sm,	aes(x=YEAR_,	y=log(totalacres)))	+	geom_point()	+
geom_smooth(method=loess,	se=TRUE)	+	geom_text(aes(label=STATE),
size=3,	check_overlap	=	TRUE)



3.	This	look	quite	a	bit	better	but	if	you	change	the	label	size	to	2	it	will	further
reduce	the	clutter	and	overlapping	while	hopefully	still	being	readable.



4.	You	may	have	noticed	that	the	labels	sit	directly	on	top	of	the	topics.	You	can
use	the	nudge_x	and	nudge_y	parameters	to	move	the	labels	relative	to	the	point.
Use	nudge_x	as	seen	below	to	see	how	this	moves	the	labels	horizontally.

ggplot(data=sm,	aes(x=YEAR_,	y=log(totalacres)))	+	geom_point()	+
geom_smooth(method=loess,	se=TRUE)	+	geom_text(aes(label=STATE),
size=2,	check_overlap	=	TRUE,	nudge_x	=	1.0)



5.	You	can	also	color	the	labels	by	category	by	adding	the	color	parameter	to	the
aes()	for	geom_text()
.

ggplot(data=sm,	aes(x=YEAR_,	y=log(totalacres)))	+	geom_point()	+
geom_smooth(method=loess,	se=TRUE)	+	geom_text(aes(label=STATE,
color=STATE),	size=2,	check_overlap	=	TRUE,	nudge_x	=	1.0)



6.	You	can	also	add	a	subtitle	and	caption	with	the	code	you	see	below.

ggplot(data=sm,	aes(x=YEAR_,	y=log(totalacres)))	+	geom_point()	+
geom_smooth(method=loess,	se=TRUE)	+	labs(title=paste(“Acreage	Burned	by
Wildfires	Has	Increased	In	the	Past	Few	Decades”),	subtitle=paste(“1980-
2016”),	caption=”Data	from	USGS”)



7.	You	can	also	update	the	X	and	Y
labels	for	the	graph.	Update	these	labels	on	your	graph	using	the	code	you	see
below.

ggplot(data=sm,	aes(x=YEAR_,	y=log(totalacres)))	+	geom_point()	+
geom_smooth(method=loess,	se=TRUE)	+	labs(title=paste(“Acreage	Burned	by
Wildfires	Has	Increased	In	the	Past	Few	Decades”),	subtitle=paste(“1980-
2016”),	caption=”Data	from	USGS”)	+	scale_y_continuous(name=”Log	of	Total
Acres	Burned”)	+	scale_x_	continuous(name=”Burn	Year”)



8.	You	can	check	your	work	against	the	solution	file	Chapter7_4.R

Step	5:	Legend	layouts

The	theme()	function	can	be	used	to	control	the	location	of	the	legend	and	the
guides()	function	can	be	used	to	provide	additional	legend	control.

1.	The	theme()	function	along	with	the	legend.postion	argument	is	used	to
control	the	location	of	the	legend	on	the	graph.	By	default,	the	legend	we’ve
seen	so	far	has	been	placed	on	the	right	side	of	the	graph	with	a	vertical
orientation.	Reposition	the	legend	to	the	bottom	with	the	code	below.

ggplot(data=sm,	aes(x=YEAR_,	y=log(totalacres),	color=STATE))	+
geom_point()	+	labs(title=paste(“Acreage	Burned	by	Wildfires	Has	Increased	In
the	Past	Few	Decades”),	subtitle=paste(“1980-2016”),	caption=”Data	from
USGS”)	+	scale_y_continuous(name=”Log	of	Total	Acres	Burned”)	+
scale_x_continuous(name=”Burn	Year”)	+	theme(legend.position=”bottom”)



2.	You	can	also	explicitly	remove	a	legend	by	setting	legend.position	=	“none”.
Try	that	now	if	you’d	like.

3.	Other	aspects	of	the	legend	such	as	the	number	of	rows	in	the	legend	as	well
as	the	symbol	size	can	be	control	through	the	guides()	function.	Use	the	code
you	see	below	to	update	the	legend	to	be	two	rows	and	with	each	symbol	set	to
size	4.

ggplot(data=sm,	aes(x=YEAR_,	y=log(totalacres),	color=STATE))	+	+
geom_point()	+
+	labs(title=paste(“Acreage	Burned	by	Wildfires	Has	Increased	In	the	Past	Few
Decades”),	subtitle=paste(“1980-2016”),	caption=”Data	from	USGS”)	+
+	scale_y_continuous(name=”Log	of	Total	Acres	Burned”)	+	+
scale_x_continuous(name=”Burn	Year”)	+
+	theme(legend.position	=	“bottom”)	+
+	guides(color=guide_legend(nrow=2,override.aes=list(size=4)))



4.	You	can	check	your	work	against	the	solution	file	Chapter7_5.R

Step	6:	Creating	a	facet

A	particularly	good	way	of	graphing	categorical	variables	is	to	split	your	plot
into	facets,	which	are	subplots	that	each	display	one	subset	of	the	data.	The
facet_wrap()	and	facet_grid()	function	can	be	used	to	create	facets.

1.	Use	the	facet_wrap()	function	displayed	in	the	code	below	to	create	a	facet
map	that	displays	total	acres	burned	by	state.
ggplot(data=sm,	mapping	=	aes(x=YEAR_,	y=log(totalacres)))	+	geom_
point()+	facet_wrap(~STATE)	+	geom_smooth(method=loess,	se=TRUE)	



2.	You	can	check	your	work	against	the	solution	file	Chapter7_6.R

Step	7:	Theming

includes	eight	built	in	themes	that	can	be	used	to	customize	the	styling	of	the
ggplot2
non-data	elements	of	your	plot.

1.	The	eight	themes	included	in	ggplot2	are	theme_bw,	theme_	classic,
theme_dark,	theme_gray,	theme_light,	theme_	linedraw,	theme_minimal,
theme_void.

Add	the	code	you	see	below	to	change	the	facet	to	theme_dark
.

ggplot(data=sm,	mapping	=	aes(x=YEAR_,	y=log(totalacres)))	+	geom_point()+
facet_wrap(~STATE)	+	geom_smooth(method=loess,	se=TRUE)	+	theme_dark()



2.	Experiment	with	the	themes	to	see	the	differences	in	styling.	3.	You	can	check
your	work	against	the	solution	file	Chapter7_7.R

Step	8:	Creating	bar	charts

You	can	use	geom_bar()	or	geom_chart()	to	create	bar	charts	with	ggplot2.
However,	there	is	a	significant	difference	between	the	two.	The	geom_bar()
function	will	generate	a	count	of	the	number	of	instances	of	a	variable.	In	other
words,	it	changes	the	statistic	that	has	already	been	generated	for	the	group.	The
geom_col()	function	keeps	the	variable	already	generated	for	the	group.	To	see
the	difference,	complete	the	following	steps.

1.	Load	the	StudyArea.csv	file	and	get	a	subset	of	columns.
dfWildfires	<-	read_csv(“StudyArea.csv”,	col_types	=	list(UNIT	=
col_character()),	col_names	=	TRUE)
df	<-	select(dfWildfires,	ORGANIZATI,	STATE,	YEAR_,	TOTALACRES,
CAUSE)
2.	Filter	the	data	frame	so	that	only	wildfires	for	California	are	included.
df	<-	filter(df,	STATE	==	‘California’)
3.	Group	the	data	frame	by	YEAR_.



grp	<-	group_by(df,	YEAR_)
4.	Plot	the	data	using	geom_bar()	as	seen	below.	Notice	that	the	bar	chart	that	is
produced	is	a	count	of	the	number	of	fires	for	each	year.
ggplot(data=grp)	+	geom_bar(mapping	=	aes(x=YEAR_),	fill=”red”)

5.	Now	use	geom_col()	to	see	the	difference.	The	TOTALACRES	variable	is
maintained	in	this	case.
ggplot(data=grp)	+	geom_col(mapping	=	aes(x=YEAR_,	y=TOTALACRES),
fill=”red”)
6.	You	can	check	your	work	against	the	solution	file	Chapter7_8.R

Step	9:	Creating	Violin	Plots

Violin	plots,	which	are	similar	to	box	plots,	also	show	the	probability	density	at
various	values.	Thicker	areas	of	the	violin	plot	indicate	a	higher	probability	at
that	value.	Typically,	violin	plots	also	include	a	marker	for	the	median	along
with	the	Inter-Quartile	Range	(IQR).	The	geom_violin()	function	is	used	to
create	violin	plots	in	ggplot2.

1.	Load	the	StudyArea.csv	file	and	get	a	subset	of	columns.
dfWildfires	<-	read_csv(“StudyArea.csv”,	col_types	=	list(UNIT	=



col_character()),	col_names	=	TRUE)
df	<-	select(dfWildfires,	ORGANIZATI,	STATE,	YEAR_,	TOTALACRES,
CAUSE)
2.	Filter	the	data	frame	so	that	only	wildfires	greater	than	5,000	acres	are
included.
dfWildfires	<-	filter(dfWildfires,	TOTALACRES	>=	5000)
3.	Group	the	wildfires	by	organization.
grpWildfires	<-	group_by(dfWildfires,	ORGANIZATI)
4.	Create	a	basic	violin	plot.
ggplot(data=grpWildfires,	mapping	=	aes(x=ORGANIZATI,
y=log(TOTALACRES)))	+	geom_violin()

5.	You	can	add	the	individual	observations	using	geom_jitter().

ggplot(data=grpWildfires,	mapping	=	aes(x=ORGANIZATI,
y=log(TOTALACRES)))	+	geom_violin()	+	geom_jitter(height	=	0,	width	=	0.1)

6.	The	mean	can	be	added	using
stat_summary()
as	seen	below.

ggplot(data=grpWildfires,	mapping	=	aes(x=ORGANIZATI,



y=log(TOTALACRES)))	+	geom_violin()	+	geom_jitter(height	=	0,	width	=	0.1)
+	stat_summary(fun.y=mean,	geom=”point”,	size=2,	color=”red”)

7.	The	box_plot()	function	can	be	used	to	add	the	mean	and	IQR.
ggplot(data=grpWildfires,	mapping	=	aes(x=ORGANIZATI,
y=log(TOTALACRES)))	+	geom_violin()	+	geom_boxplot(width=0.1)	8.	You
can	check	your	work	against	the	solution	file	Chapter7_9.R

Step	10:	Creating	density	plots

Density	plots,	created	with	geom_density()	computes	a	density	estimate,	which
is	a	smoothed	version	of	a	histogram	and	is	used	with	continuous	data.	ggplot2
can	also	compute	2D	versions	of	density	includes	contours	and	polygon	styled
density	plots.

1.	In	this	first	portion	of	the	exercise	you’ll	create	a	basic	density	plot.	Load	the
StudyArea.csv	file	and	get	a	subset	of	columns.
dfWildfires	<-	read_csv(“StudyArea.csv”,	col_types	=	list(UNIT	=
col_character()),	col_names	=	TRUE)
df	<-	select(dfWildfires,	ORGANIZATI,	STATE,	YEAR_,	TOTALACRES,



CAUSE)
2.	Filter	the	data	frame	so	that	only	wildfires	greater	than	1,000	acres	are
included.
dfWildfires	<-	filter(dfWildfires,	TOTALACRES	>=	1000)
3.	Create	a	density	plot	with	the	geom_density()	function.
ggplot(dfWildfires,	aes(TOTALACRES))	+	geom_density()

4.	You	may	also	want	to	create	the	same	density	plot	with	a	logged	version	of	the
data.
ggplot(dfWildfires,	aes(log(TOTALACRES)))	+	geom_density()



5.	Next,	you’ll	create	2D	plots	of	the	data	starting	with	contours.	Add	the	code
you	see	below.
ggplot(dfWildfires,	aes(x=YEAR_,	y=log(TOTALACRES)))	+	geom_point()	+
geom_density_2d()



6.	Finally,	create	a	2D	density	surface	using	stat_density_2d().

ggplot(dfWildfires,	aes(x=YEAR_,	y=log(TOTALACRES)))	+	geom_
density_2d()	+	stat_density_2d(geom=”raster”,	aes(fill=..	density..),
contour=FALSE)



7.	You	can	check	your	work	against	the	solution	file	Chapter7_10.R

Conclusion

In	this	chapter	you	learned	various	data	visualization	techniques	using	ggplot2.
We	started	with	basic	scatterplots,	added	regression	lines,	labeled	the	graphs	in
various	ways,	and	created	a	legend.	In	addition,	you	learned	how	to	create	facet
plots,	and	work	with	ggplot2s	built	in	theming	options.	You	also	learned	how	to
create	bar	charts,	violin	charts,	and	density	plots.

In	the	next	chapter	you	will	learn	how	to	create	maps	using	the	ggmap	package.
Chapter	8



Visualizing	Geographic	Data	with	ggmap

The	ggmappackage	enables	the	visualization	of	spatial	data	and	spatial	statistics
in	a	map	format	using	the	layered	approach	of	ggplot2.	This	package	also
includes	basemaps	that	give	your	visualizations	context	including	Google	Maps,
Open	Street	Map,	Stamen	Maps,	and	CloudMade	maps.	In	addition,	utility
functions	are	provided	for	accessing	various	Google	services	including
Geocoding,	Distance	Matrix,	and	Directions.

The	ggmap	package	is	based	on	ggplot2,	which	means	it	will	take	a	layered
approach	and	will	consist	of	the	same	five	components	found	in	ggplot2.	These
include	a	default	dataset	with	aesthetic	mappings	where	x	is	longitude,	y	is
latitude,	and	the	coordinate	system	is	fixed	to	Mercator.	Other	components
include	one	or	more	layers	defined	with	a	geometric	object	and	statistical
transformation,	a	scale	for	each	aesthetic	mapping,	coordinate	system,	and	facet
specification.	Because	ggmap	is	built	on	ggplot2	is	has	access	to	the	full	range	of
ggplot2	that	you	learned	about	in	a	previous	exercise.

In	this	chapter	we’ll	cover	the	following	topics:

•	Creating	a	basemap
•	Adding	operational	layers
•	Adding	layers	from	a	shapefile

Exercise	1:	Creating	a	basemap

There	are	two	basic	steps	to	create	a	map	with	ggmap.	The	details	are	more
complex	than	these	two	steps	might	imply,	but	in	general	you	just	need	to
download	the	map	raster	(basemap)	and	then	plot	operational	data	on	the
basemap.	The	first	step	is	to	download	the	map	raster,	also	known	as	the
basemap.	This	is	accomplished	using	the	get_map()	function,	which	can	be	used
to	create	a	basemap	from	Google,	Stamen,	Open	Street	Map,	or	CloudMade.
You’ll	learn	how	to	do	that	in	this	step.	In	a	future	step	you’ll	learn	how	to	add
and	style	operational	data	in	various	ways.

1.	Open	RStudio	and	find	the	Console	pane.

2.	If	necessary,	set	the	working	directory	by	typing	the	code	you	see	below	into



the	Console	pane	or	by	going	to	Session	|	Set	Working	Directory	|	Choose
Directory	from	the	RStudio	menu.

setwd(<installation	directory	for	exercise	data>)

3.	Load	the	ggmap	package	by	going	to	the	Packages	pane	in	RStudio	and
clicking	on	the	checkbox	next	to	the	package	name.	Alternatively,	you	can	load
it	from	the	Console	by	typing:

library(ggmap)
4.	Create	a	variable	called	myLocation	and	set	it	to	California.
myLocation	<-	“California”
5.	Call	the	get_map()	function	and	pass	in	the	location	variable	along	with	a
zoom	level	of	6.
myMap	<-	get_map(location	=	myLocation,	zoom	=	6)

6.	In	RStudio	you	should	see	some	return	messages	that	look	similar	to	the	code
you	see	below.	If	you	don’t	see	something	similar	to	this,	you	may	need	to	re-
execute	the	script.	It	isn’t	uncommon	to	get	an	error	message	when	calling	the
get_map()	function	from	R	Studio.	If	this	happens	simply	re-execute	the	code
until	you	get	something	that	is	similar	to	what	you	see	below.

Map	from	URL:	http://maps.googleapis.com/maps/api/staticmap?center
=California&zoom=6&size=640x640&scale=2&maptype=terrain&language=
en-EN&sensor=false
Information	from	URL	:	http://maps.googleapis.com/maps/api/	geocode/json?
address=California&sensor=false

7.	Call	the	ggmap()	function,	passing	in	the	myMap	variable.	The	Plots	pane
should	display	the	map	as	seen	below.	The	default	map	type	is	Google	Maps
with	a	style	of	Terrain.

ggmap(myMap)



The	Google	source	includes	a	number	of	map	types	including	those	you	see	in
the	screenshot	below.



8.	Add	and	execute	the	code	you	see	below	to	add	a	Google	satellite	map.

myMap	<-	get_map(location	=	myLocation,	zoom	=	6,	source=”google”,
maptype=”satellite”)
ggmap(myMap)

9.	There	are	a	number	of	ways	that	you	can	define	the	input	location:
longitude/latitude	coordinate	pair,	a	character	string,	or	a	bounding	box.	The
character	string	tends	to	be	a	more	practical	solution	in	many	situations	since
you	can	simply	pass	in	the	name	of	the	location.	For	example,	you	could	define



the	location	as	Houston	Texas	or	The	White	House	or	The	Grand	Canyon.	When
a	character	string	is	passed	to	the	location	parameter	it	is	then	passed	to	the
geocoding	service	to	obtain	the	latitude/longitude	coordinate	pair.	Add	the	code
you	see	below	to	see	how	passing	in	a	character	string	works.

myMap	<-	get_map(location	=	“Grand	Canyon,	Arizona”,	zoom	=	11)
ggmap(myMap)

The	zoom	level	can	be	set	between	3	and	21	with	3	representing	a	continent
level	view,	and	21	representing	a	building	level	view.	Take	some	time	to



experiment	with	the	zoom	level	to	see	the	effect	of	various	settings.

10.	You	can	check	your	work	against	the	solution	file
Chapter8_1.R

Exercise	2:	Adding	operational	data	layers

ggmap()	returns	a	ggplot	object,	meaning	that	it	acts	as	a	base	layer	in	the
ggplot2	framework.	This	allows	for	the	full	range	of	ggplot2	capabilities
meaning	that	you	can	plot	points	on	the	map,	add	contours	and	2D	heat	maps,
and	more.	We’ll	examine	some	of	these	capabilities	in	this	section.

1.	Initially	we’ll	just	load	the	wildfire	events	as	points.	Add	the	code	you	see
below	to	produce	a	map	of	California	that	displays	wildfires	from	the	years
1980-2016	that	burned	more	than	1,000	acres.

myLocation	<-	“California”
#get	the	basemap	layer
myMap	<-	get_map(location	=	myLocation,	zoom	=	6)

#read	in	the	wildfire	data	to	a	data	frame	(tibble)	dfWildfires	<-
read_csv(“StudyArea_SmallFile.csv”,	col_names	=	TRUE)

#select	specific	columns	of	information
df	<-	select(dfWildfires,	STATE,	YEAR_,	TOTALACRES,	DLATITUDE,
DLONGITUDE)

#filter	the	data	frame	so	that	only	fires	greater	than	1,000	acres	burned	in
California	are	present
df	<-	filter(df,	TOTALACRES	>=	1000	&	STATE	==	‘California’)

#use	geom_point()	to	display	the	points.	The	x	and	y	properties	of	the	aes()
function	are	used	to	define	the	geometry
ggmap(myMap)	+	geom_point(data=df,	aes(x	=	DLONGITUDE,	y	=
DLATITUDE))



2.	Now	let’s	do	something	a	little	more	interesting.	First,	use	the	dplyr	function
mutate()
to	group	the	fires	by	decade.

to	group	the	fires	by	decade.	
1989”,	ifelse(YEAR_	%in%	1990:1999,	“1990-1999”,	ifelse(YEAR_	%in%	
2000:2009,	“2000-2009”,	ifelse(YEAR_	%in%	2010:2016,	“2010-2016”,
“-99”)))))

3.	Next,	color	code	the	wildfires	by	DECADE	and	create	a	graduated	symbol
map	based	on	the	size	of	each	fire.	The	colour	property	defines	the	column	to



use	for	grouping,	and	the	size	property	define	the	column	to	use	for	the	size	of
each	symbol.

ggmap(myMap)	+	geom_point(data=df,	aes(x	=	DLONGITUDE,	y	=
DLATITUDE,	colour=	DECADE,	size	=	TOTALACRES))
This	should	produce	a	map	that	appears	as	seen	in	the	screenshot	below.	

4.	Let’s	change	the	map	view	to	focus	more	on	southern	California,	and	in
particular	the	area	just	north	of	Los	Angeles.

myMap	<-	get_map(location	=	“Santa	Clarita,	California”,	zoom	=	10)
ggmap(myMap)	+	geom_point(data=df,	aes(x	=	DLONGITUDE,	y	=
DLATITUDE,	colour=	DECADE,	size	=	TOTALACRES))



5.	Next,	we’ll	add	contour	and	heat	layers.	The	g	eom_density2d()	function	is
used	to	create	the	contours	while	the	stat_density2d()	function	creates	the	heat
map.	Add	the	following	code	to	produce	the	map	you	see	below.	You	can
experiment	with	the	colors	using	the	scale_fill_	gradient(low	and	high)
properties.	Here	we’ve	set	them	to	green	and	red	respectively,	but	you	may	want
to	change	the	color	scheme.

myMap	<-	get_map(location	=	“California”,	zoom	=	6)

ggmap(myMap,	extent	=	“device”)	+	geom_density2d(data	=	df,	aes(x	=
DLONGITUDE,	y	=	DLATITUDE),	size	=	0.3)	+	stat_density2d(data	=	df,	aes(x
=	DLONGITUDE,	y	=	DLATITUDE,	fill	=	..level..,	alpha	=	..level..),	size	=
0.01,	bins	=	16,	geom	=	“polygon”)	+	scale_fill_	gradient(low	=	“green”,	high	=
“red”)	+	scale_alpha(range	=	c(0,	0.3),	guide	=	FALSE)



6.	If	you’d	prefer	to	see	the	heat	map	without	contours,	the	code	can	be
simplified	as	follows:

ggmap(myMap,	extent	=	“device”)	+	stat_density2d(data	=	df,	aes(x	=
DLONGITUDE,	y	=	DLATITUDE,	fill	=	..level..,	alpha	=	..level..),	size	=
0.01,bins	=	16,	geom	=	“polygon”)	+	scale_fill_gradient(low	=	“green”,	high	=
“red”)	+	scale_alpha(range	=	c(0,	0.3),	guide	=	FALSE)



7.	Finally,	let’s	create	a	facet	map	that	depicts	hot	spots	for	each	year	in	the
current	decade.	Add	the	following	code	to	see	how	this	works.	The	dataset
contains	information	up	through	the	year	2016.

df	<-	filter(df,	YEAR_	%in%	c(2010,	2011,	2012,	2013,	2014,	2015,	2016))

ggmap(myMap,	extent	=	“device”)	+	stat_density2d(data	=	df,	aes(x	=
DLONGITUDE,	y	=	DLATITUDE,	fill	=	..level..,	alpha	=	..level..),	size	=
0.01,bins	=	16,	geom	=	“polygon”)	+	scale_fill_gradient(low	=	“green”,	high	=
“red”)	+	scale_alpha(range	=	c(0,	0.3),	guide	=	FALSE)	+	facet_wrap(~	YEAR_)



8.	You	can	check	your	work	against	the	solution	file	Chapter8_2.R

Exercise	3:	Adding	Layers	from	Shapefiles

While	they	are	somewhat	of	an	older	GIS	data	format,	shapefiles	are	still
commonly	used	to	represent	geographic	features.	With	a	little	bit	of
manipulation,	you	can	get	plot	data	from	shapefiles	onto	ggmap.

1.	For	this	exercise	you’ll	need	to	install	an	additional	package	called	rgdal.	Use
the	Packages	pane	to	find	and	install	rgdal	or	enter	the	code	you	see	below.



install.packages(“rgdal”)
2.	Load	the	rgdal	package	through	the	Packages	pane	or	enter	the	code	you	see
below.
library(rgdal)

3.	The	Data	folder	that	contains	the	exercise	data	for	this	book	contains	a
shapefile	called	S_USA.Wilderness.	You’ll	actually	see	a	number	of	files	with
this	name,	but	a	different	file	extension.	These	files	combine	to	create	what	is
called	a	shapefile.	This	file	contains	the	boundaries	of	designated	wilderness
areas	in	the	United	States.	Use	the	readOGR()	function	from	rgdal	to	load	the
data	into	a	variable.

wild	=	readOGR(‘.’,	‘S_USA.Wilderness’)

4.	The	fortify()	function,	which	is	part	of	ggplot2,	converts	all	the	individual
points	that	define	each	boundary	into	a	data	frame	that	can	then	be	used	to	plot
the	polygon	boundaries.

wild	<-	fortify(wild)

5.	Use	the	ggmap	qmap()	function	(qmap	means	quick	map)	to	create	the
basemap	that	will	be	used	as	the	reference	for	the	wilderness	boundaries.	Center
the	map	in	Montana.

montana	<-	qmap(“Montana”,	zoom=6)

6.	Before	plotting	the	wilderness	boundaries	as	polygons	on	the	map,	take	a	look
at	the	data	frame	that	was	created	by	the	fortify()	function	so	you’ll	have	a	better
understanding	of	the	structure	created	by	this	function.

View(wild)



Take	a	look	at	the	group	column.	This	column	uniquely	identifies	each
wilderness	boundary.	The	wilderness	boundaries	are	polygons,	and	polygons	are
defined	by	a	set	of	points	which	define	the	structure	of	the	polygon.	It’s	sort	of
like	playing	connect	the	dots,	where	each	dot	is	a	latitude/longitude	coordinate
pair	defined	by	the	long	and	lat	columns	in	the	data	frame.

For	example,	take	a	look	at	group	0.1.	Notice	that	there	are	multiple	rows	that
contains	the	value	0.1,	and	that	each	row	has	unique	long	and	lat	values.	These
are	all	the	points	used	to	define	the	boundaries	of	that	polygon.

7.	Now	plot	the	wilderness	boundaries	on	the	basemap.	Notice	the	use	of	the
group	column	for	grouping	the	polygons.	It	does	take	some	time	to	plot	the
boundaries	on	the	map	so	be	patient	with	this	step.	Eventually	you	should	see	a
map	similar	to	the	screenshot	below.

montana	+	geom_polygon(aes(x=long,y=lat,	group=group,	alpha=0.25),
data=wild,	fill=’white’)	+	geom_polygon(aes(x=long,y=lat,	group=group),



data=wild,	color=’black’,	fill=NA)

8.	Optional	–	Use	the	color,	fill,	and	alpha	(used	to	define	transparency)
parameters	to	change	the	symbology	to	different	colors	and	styles.	9.	You	can
check	your	work	against	the	solution	file	Chapter8_3.R

Conclusion

In	this	chapter	you	learned	how	to	use	the	ggmap	package	to	create	compelling
data	visualizations	in	map	format.	You	learned	how	to	created	basemaps	using
Google	as	a	data	source,	add	operational	data	layers,	create	various	types	of	map
visualizations	using	external	data	sources,	and	load	shapefiles.

In	the	next	chapter	you	will	learn	how	to	use	R	Markdown	to	share	your	work
with	others.
Chapter	9



R	Markdown

R	Markdown	is	an	authoring	framework	for	data	science	that	combines	code,
results,	and	commentary.	Output	formats	include	PDF,	Word,	HTML,
slideshows,	and	more.	An	R	Markdown	document	essentially	serves	three
purposes:	communication,	collaboration,	and	as	a	modern-day	lab	environment
that	captures	not	only	what	you	did,	but	also	what	you	were	thinking.	From	a
communication	perspective	it	enables	decision	makers	to	focus	more	on	the
results	of	your	analysis	rather	than	the	code.	However,	because	it	enables	you	to
also	include	the	code,	it	functions	as	a	means	of	collaboration	between	data
scientists.

R	Markdown	uses	the	rmarkdownpackage,	but	you	don’t	have	to	explicitly	load
the	package	in	RStudio.	RStudio	will	automatically	load	the	package	as	needed.
The	output	format	of	an	R	Markdown	file	is	a	plain	text	file	with	an	extension	of
Rmd.	These	files	contain	a	mixture	of	three	types	of	content	including	a	YAML
header,	R	code,	and	text	mixed	with	simple	text	formatting.

The	output	R	markdown	file	contains	both	code	and	the	output	of	the	code.
Using	the	RStudio	interface	you	can	run	sections	of	the	code	or	all	the	code	in
the	file.	You	can	see	an	example	of	this	in	the	screenshot	below.	Notice	that	the
code	is	enclosed	by	three	back-ticks	followed	by	the	output	of	the	code	below.



If	you	want	to	export	the	contents	to	a	specific	file	type	you	can	use	the	Knit
functionality	embedded	in	RStudio	to	export	to	HTML,	PDF,	and	Word	formats.
This	will	export	a	complete	file	containing	text,	code,	and	results.

In	this	chapter	we’ll	cover	the	following	topics:

•	Creating	a	R	Markdown	file
•	Adding	code	chunks	and	text	to	an	R	Markdown	file
•	Code	chunk	and	header	options
•	Caching
•	Using	Knit	to	output	an	R	Markdown	file



Exercise	1:	Creating	an	R	Markdown	file

An	R	Markdown	file	is	simply	a	plain	text	file	with	a	file	extension	of	.Rmd.
You	can	use	RStudio	to	create	new	markdown	files,	which	is	what	you’ll	do	in
this	brief	exercise.

1.	The	exercises	in	this	chapter	require	the	following	packages:	readr,	dplyr,
ggplot2,	and	ggmap.	They	can	be	loaded	from	the	Packages	pane,	the	Console
pane,	or	a	script.

2.	Open	RStudio	and	go	to	File	|	New	File	|	R	Markdown.	This	will	display	the
dialog	you	see	below.	There	are	different	types	of	markdown	that	can	be	created,
but	for	this	exercise	we’ll	keep	it	simple	and	create	a	document.

3.	Select	Document	(which	is	the	default),	give	it	a	title	of	Creating	Maps	with



R,	change	the	author	name	if	you’d	like,	and	select	PDF	as	the	output.

4.	This	will	create	a	file	with	some	header	information,	text,	and	code.	Your	file
should	look	similar	to	the	screenshot	below.



5.	At	the	very	top	of	the	file	is	the	header	information,	which	is	surrounded	by
dashes.	We’ll	add	some	content	to	this	section	in	a	later	exercise,	but	for	now
we’ll	leave	it	as	is.

6.	Code	sections	are



grouped	through	the	use	of	back-ticks	as	seen	in	the	screenshot	below.

7.	Plain	text	and	formatted	text	can	be	included	in	a	markdown	file	as	well.	Text
that	needs	to	be	formatted	must	follow	a	specific	syntax.	For	example,	you
format	text	for	italics,	bold	font,	headings,	links	and	images.	Below	is	an
example	of	both	plain	text	and	text	that	has	been	formatted.

8.	Other	than	the	header	information	we	aren’t	going	to	use	any	of	the	default
code	or	text	provided	so	go	ahead	and	delete	everything	other	than	the	header.

9.	Save	the	file	to	your	working	directory	with	a	name	of

CreatingMapsWithR.Rmd.

Exercise	2:	Adding	Code	Chunks	and	Text	to	an	R	Markdown
File

R	code	can	be	included	in	the	R	Markdown	file	through	the	use	of	chunks,	which
are	defined	through	the	use	of	three	back-ticks	followed	by	an	r	enclosed	within
curly	braces.	Inside	the	curly	braces	are	options	that	can	be	included.	These
options	can	include	TRUE	|	FALSE	parameters	for	turning	various	types	of
messaging	on	and	off.

Chunks	define	a	single	task,	sort	of	like	a	function.	They	should	be	self-
contained	and	tightly	defined	pieces	of	code.	There	are	three	ways	to	insert
chunks	into	an	R	Markdown	file:	Cmd/Ctrl-Alt-I,	the	Insertbutton	on	the	editor
toolbar,	and	by	manually	typing	the	chunk	delimiters.



You	can	also	add	plain	text	and	formatted	text	to	an	R	Markdown	file.	Formatted
text	has	to	be	defined	according	to	a	specific	syntax.	We’ll	see	various	examples
of	formatted	text	as	we	move	through	this	exercise.

In	this	exercise	you’ll	learn	how	to	add	code	chunks	to	an	R	Markdown	file.

1.	First,	we’ll	add	some	descriptive	text	that	will	be	included	in	the	output	R
Markup	file.	Add	the	text	you	see	below	to	the	file	just	below	the	header.	If	you
have	a	digital	copy	of	the	book	you	can	copy	and	paste	rather	than	typing
everything.	Notice	that	the	text	Step	1:	Creating	a	Basemap	has	been	preceded
by	two	pound	signs.	##Step	1:	Creating	a	Basemap.	The	pound	signs	are	used	to
define	headings.	In	this	case	two	pound	signs	would	translate	to	an	HTML	<h2>
tag,	which	simply	defines	the	size	of	the	text.	You’ll	also	notice	that	some	of	the
words	like	ggmap	and	ggplot	are	surrounded	by	single	quotes.	Single	quotes	are
used	to	define	a	different	style	for	the	word	that	indicates	this	word	is
programmatic	code.

The	`ggmap`	package	enables	the	visualization	of	spatial	data	and	spatial
statistics	in	a	map	format	using	the	layered	approach	of	`ggplot2`.	This	package
also	includes	basemaps	that	give	your	visualizations	context	including	Google
Maps,	Open	Street	Map,	Stamen	Maps,	and	CloudMade	maps.	In	addition,
utility	functions	are	provided	for	accessing	various	Google	services	including
Geocoding,	Distance	Matrix,	and	Directions.

The	`ggmap`	package	is	based	on	`ggplot2`,	which	means	it	will	take	a	layered
approach	and	will	consist	of	the	same	five	components	found	in	`ggplot2`.	These
include	a	default	dataset	with	aesthetic	mappings	where	x	is	longitude,	y	is
latitude,	and	the	coordinate	system	is	fixed	to	Mercator.	Other	components
include	one	or	more	layers	defined	with	a	geometric	object	and	statistical
transformation,	a	scale	for	each	aesthetic	mapping,	coordinate	system,	and	facet
specification.	Because	`ggmap`	is	built	on	`ggplot2`	it	has	access	to	the	full
range	of	`ggplot2`	functionality.
In	this	exercise	you’ll	learn	how	to	use	the	`ggmap`	package	to	plot	various
types	of	spatial	visualizations.

##Step	1:	Creating	a	Basemap
There	are	two	basic	steps	to	create	a	map	with	`ggmap`.	The	details	are	more
complex	than	these	two	steps	might	imply,	but	in	general	you	just	need	to
download	the	map	raster	and	then	plot	operational	data	on	the	basemap.	Step	1	is



to	download	the	map	raster,	also	known	as	the	basemap.	This	is	accomplished
using	the	`get_map()`	function,	which	can	be	used	to	create	a	basemap	from
Google,	Stamen,	Open	Street	Map,	or	CloudMade.	You’ll	learn	how	to	do	that	in
this	step.	In	a	future	step	you’ll	learn	how	to	add	and	style	operational	data	in
various	ways.

1.	First,	load	the	libraries	that	we’ll	need	for	this	exercise

2.	Click	Insert	and	then	R	to	insert	a	new	code	chunk	as	seen	below.	The	code
you	add	will	go	in	between	the	set	of	back-ticks.	Most	markdown	files	will	have
a	number	of	code	chunks,	with	each	defining	a	specific	task.	They	are	similar	in
many	ways	to	functions.

3.	For	this	code	chunk	we’ll	just	load	the	libraries	that	will	be	used	in	this
exercise.	Add	the	code	you	see	below	inside	the	code	chunk	boundaries.

```{r}
library(ggplot2)	library(ggmap)	library(readr)	library(dplyr)	```

4.	Add	some	additional	text	that	describes	the	next	step.

2.	Create	a	variable	called	`myLocation`	and	set	it	to	`California`.	Call	the
`get_map()`	function	with	a	zoom	level	of	
6,	and	plot	the	map	using	the	`ggmap()`	function,	passing	in	a	reference	to	the
variable	returned	by	the	`get_map()`	function.	The	default	map	type	is	Google
Maps	with	a	style	of	Terrain.

5.	Insert	a	new	code	chunk	just	below	the	descriptive	text	and	add	the	following
code.



```{r}
myLocation	<-	“California”
myMap	<-	get_map(location	=	myLocation,	zoom	=	6)	ggmap(myMap)

6.	Let’s	run	the	code	that	has	been	added	so	far	to	see	the	result.	Select	Run	|
Run	All	from	the	RStudio	interface.	This	should	produce	the	output	you	see
below.	The	output	is	included	inside	the	markdown	document.	If	not,	check	your
code	and	try	running	it	again.



7.	Add	descriptive	text	for	the	next	section.
3.	The	code	you	see	below	will	create	a	Google	satellite	basemap	layer.	Other
basemap	layers	include	Stamen,	OSM,	and	CloudMade.
8.	Create	a	new	code	chunk	and	add	the	code	you	see	below.

```{r}
myMap	<-	get_map(location	=	myLocation,	zoom	=	6,	source=”google”,
maptype=”satellite”)
ggmap(myMap)
```

9.	Add	descriptive	text	for	the	next	section.

4.	There	are	a	number	of	ways	that	you	can	define	the	input	location:
longitude/latitude	coordinate	pair,	a	character	string,	or	a	bounding	box.	The
character	string	tends	to	be	a	more	practical	solution	in	many	situations	since
you	can	simply	pass	in	the	name	of	the	location.	For	example,	you	could	define



the	location	as	Houston	Texas	or	The	White	House	or	The	Grand	Canyon.	When
a	character	string	is	passed	to	the	location	parameter	it	is	then	passed	to	the
geocoding	service	to	obtain	the	latitude/	longitude	coordinate	pair.	Add	the	code
you	see	below	to	see	how	passing	in	a	character	string	works.

10.	Create	a	new	code	chunk	and	add	the	code	you	see	below.

```{r}
myMap	<-	get_map(location	=	“Grand	Canyon,	Arizona”,	zoom	=	11)
ggmap(myMap)

11.	Let’s	stop	adding	code	for	now	and	run	what	is	currently	in	the	file	to	see	the
result.	Select	Run	|	Run	All.	Several	maps	will	be	produced	inside	the	markup
document	including	the	one	seen	below,	which	will	be	produced	at	the	very	end.
If	you	don’t	see	the	maps	you	may	need	to	check	your	code.	We	haven’t	yet
added	parameters	that	will	output	warnings	and	errors,	but	will	do	so	in	a	later
step.



12.	Add	descriptive	text	for	the	next	section.
The	zoom	level	can	be	set	between	3	and	21	with	3	representing	a	continent
level	view,	and	21	representing	a	building	level	view.

##Step	2:	Adding	Operational	Data	Layers
`ggmap()`	returns	a	`ggplot`	object,	meaning	that	it	acts	as	a	base	layer	in	the
`ggplot2`	framework.	This	allows	for	the	full	range	of	`ggplot2`	capabilities
meaning	that	you	can	plot	points	on	the	map,	add	contours	and	2D	heat	maps,
and	more.	We’ll	examine	some	of	these	capabilities	in	this	section.

1.	For	this	section	we’ll	use	the	historical	wildfire	information	found	in	the
StudyArea_SmallFile.csv	file.	Load	this	dataset	using	the	`read_csv()`	function.
You	can	download	this	file	at:	https://
www.dropbox.com/s/9ouh21a6ym62nsl/StudyArea.csv?dl=0

13.	Create	a	new	code	chunk	and	add	the	code	you	see	below.	This	will	load
wildfire	data	from	a	csv	file.	Note:	The	path	to	your	StudyArea_SmallFile.	csv



file	may	differ	from	the	one	you	see	below.

```{r}
dfWildfires	<-	read_csv(“~/Desktop/IntroR/Data/StudyArea_SmallFile.	csv”,
col_types	=	list(FIRENUMBER	=	col_character(),	UNIT	=	col_	character()),
col_names	=	TRUE)
```

14.	Add	descriptive	text	for	the	next	section.

2.	Initially	we’ll	just	load	the	wildfire	events	as	points.	Add	the	code	you	see
below	to	produce	a	map	of	California	that	displays	wildfires	from	the	years
1980-2016	that	burned	more	than	1,000	acres.

15.	Create	a	new	code	chunk	and	add	the	code	you	see	below.	This	code	chunk
will	display	each	of	the	wildfires	as	a	point	on	the	map.

```{r}
myLocation	<-	‘California’
#get	the	basemap
myMap	<-	get_map(location	=	myLocation,	zoom	=	6)
#	use	the	select()	function	to	limit	the	columns	from	the	data	frame
df	<-	select(dfWildfires,	STATE,	YEAR_,	TOTALACRES,	DLATITUDE,
DLONGITUDE)
#use	the	filter()	function	to	get	only	fires	in	California	with	acres
#burned	greater	than	1000
df	<-	filter(df,	TOTALACRES	>=	1000	&	STATE	==	‘California’)	#produce	the
final	map
ggmap(myMap)	+	geom_point(data=df,	aes(x	=	DLONGITUDE,	y	=
DLATITUDE))
```

16.	Add	the	following	descriptive	text.
3.	Now	let’s	do	something	a	little	more	interesting.	First,	use	the	`dplyr`
`mutate()`	function	to	group	the	fires	by	decade.

17.	Create	a	new	code	chunk	and	add	the	code	you	see	below.	The	mutate()
function	is	used	in	this	code	chunk	to	create	a	new	column	called	DECADE	and
then	populate	each	row	with	a	value	for	the	decade	in	which	the	fire	occurred.



```{r}

```{r}
1989”,	ifelse(YEAR_	%in%	1990:1999,	“1990-1999”,	ifelse(YEAR_	%in%
2000:2009,	“2000-2009”,	ifelse(YEAR_	%in%	2010:2016,	“2010-2016”,
“-99”)))))
```

18.	Add	the	following	descriptive	text.

4.	Next,	color	code	the	wildfires	by	`DECADE`	and	create	a	graduated	symbol
map	based	on	the	size	of	each	fire.	The	`colour`	property	defines	the	column	to
use	for	grouping,	and	the	`size`	property	defines	the	column	to	use	for	the	size	of
each	symbol.

19.	Create	a	new	code	chunk	and	add	the	code	you	see	below.	This	code	chunk
will	color	code	the	fires	by	decade.

```{r}
ggmap(myMap)	+	geom_point(data=df,	aes(x	=	DLONGITUDE,	y	=
DLATITUDE,	colour=	DECADE,	size	=	TOTALACRES))

20.	Let’s	stop	adding	code	for	now	and	run	what	is	currently	in	the	file	to	see	the
result.	Before	running	the	code	again	go	ahead	and	clear	the	past	results	by
clicking	the	small	X	in	the	upper	right	hands	corner	of	the	output	for	each	map
as	seen	in	the	screenshot	below.



21.	Select	Run	|	Run	All.	The	output	produced	will	include	several	maps	with
the	final	map	appearing	as	seen	in	the	screenshot	below.



5.	Let’s	change	the	map	view	to	focus	more	on	southern	California,	and	in
particular	the	area	just	north	of	Los	Angeles.

23.	Create	a	new	code	chunk	and	add	the	code	you	see	below.	This	code	chunk
will	color	code	the	fires	by	decade	and	size	the	symbols	according	the	total
acreage	burned.

```{r}
myMap	<-	get_map(location	=	“Santa	Clarita,	California”,	zoom	=	10)
ggmap(myMap)	+	geom_point(data=df,	aes(x	=	DLONGITUDE,	y	=
DLATITUDE,	colour=	DECADE,	size	=	TOTALACRES))
```

24.	Add	the	following	descriptive	text.

6.	Next	we’ll	add	contour	and	heat	layers.	The	`geom_density2d()`	function	is
used	to	create	the	contours	while	the	`stat_	density2d()`	function	creates	the	heat



map.	Add	the	following	code	to	produce	the	map	you	see	below.	You	can
experiment	with	the	colors	using	the	`scale_fill_gradient(low	and	high)`
properties.	Here	we’ve	set	them	to	green	and	red	respectively,	but	you	may	want
to	change	the	color	scheme.

25.	Create	a	new	code	chunk	and	add	the	code	you	see	below.	This	code	chunk
will	create	a	heat	map	and	add	contours.
```{r}
myMap	<-	get_map(location	=	“Santa	Clarita,	California”,	zoom	=	8)

ggmap(myMap,	extent	=	“device”)	+	geom_density2d(data	=	df,	aes(x	=
DLONGITUDE,	y	=	DLATITUDE),	size	=	0.3)	+	stat_density2d(data	=	df,	aes(x
=	DLONGITUDE,	y	=	DLATITUDE,	fill	=	..level..,	alpha	=	..level..),	size	=
0.01,	bins	=	16,	geom	=	“polygon”)	+	scale_fill_	gradient(low	=	“green”,	high	=
“red”)	+	scale_alpha(range	=	c(0,	0.3),	guide	=	FALSE)
7.	If	you’d	prefer	to	see	the	heat	map	without	contours,	the	code	can	be
simplified	as	follows:

27.	Create	a	new	code	chunk	and	add	the	code	you	see	below.	This	code	chunk
will	remove	the	contours.

```{r}
ggmap(myMap,	extent	=	“device”)	+	stat_density2d(data	=	df,	aes(x	=
DLONGITUDE,	y	=	DLATITUDE,	fill	=	..level..,	alpha	=	..level..),	size	=
0.01,bins	=	16,	geom	=	“polygon”)	+	scale_fill_gradient(low	=	“green”,	high	=
“red”)	+	scale_alpha(range	=	c(0,	0.3),	guide	=	FALSE)
```

28.	Add	the	following	descriptive	text.

8.	Finally,	let’s	create	a	facet	map	that	depicts	hot	spots	for	each	year	in	the
current	decade.	Add	the	following	code	to	see	how	this	works.	The	dataset
contains	information	up	through	the	year	2016.

29.	Create	a	code	chunk	and	add	the	code	you	see	below.

```{r}
df	<-	filter(dfWildfires,	STATE	==	‘California’)
df	<-	filter(df,	YEAR_	%in%	c(2010,	2011,	2012,	2013,	2014,	2015,	2016))
myMap	<-	get_map(location	=	“Santa	Clarita,	California”,	zoom	=	9)



ggmap(myMap,	extent	=	“device”)	+	stat_density2d(data	=	df,	aes(x	=
DLONGITUDE,	y	=	DLATITUDE,	fill	=	..level..,	alpha	=	..level..),	size	=
0.01,bins	=	16,	geom	=	“polygon”)	+	scale_fill_gradient(low	=	“green”,	high	=
“red”)	+	scale_alpha(range	=	c(0,	0.3),	guide	=	FALSE)	+	facet_wrap(~	YEAR_)

30.	That	completes	the	code	for	this	R	Markdown	file.	Go	ahead	and	run	the
code	again	to	see	the	final	output	by	selecting
Run	|	Run	All.

Exercise	3:	Code	chunk	and	header	options

Chunk	options	are	arguments	supplied	to	the	chunk	header.	Currently	there	are
approximately	60	such	options.	We’ll	examine	some	of	the	more	commonly	used
and	important	options	in	this	exercise.	All	code	chunk	options	are	placed	inside
the	{r}	block.

Code	chunks	can	be	given	an	optional	name	as	seen	in	the	example	code	below
where	the	code	chunk	has	been	given	a	name	of
MapSetup
.
```{r	MapSetup,	warning=FALSE,	error=FALSE,	message=FALSE}

The	advantages	of	naming	chunks	include	easier	navigation	using	the	code
navigator	in	RStudio,	useful	names	given	to	graphics	produced	by	chunks,	and
the	ability	to	cache	chunks	to	avoid	re-performing	computations	on	each	run.
This	last	advantage	is	perhaps	the	most	useful.
1.	The	R	Markdown	pane	includes	a	quick	access	menu	for	easily	navigating

to	different	sections	of	your	R	Markdown	page.	The	arrow	in	the	screenshot
below	displays	the	location	of	this	functionality.



2.	Click	on	the	quick	access	button	now	to	see	the	different	sections	of	the	R
Markdown	file.	You	should	see	something	similar	to	the	screenshot	below.
You’ll	notice	that	it	is	sectioned	by	headings	and	then	code	chunks.	To	make
navigation	easier	you	can	name	each	of	these	chunks.



Select	Chunk	1	under	Step	1:	Creating	a	Basemap	to	return	to	the	first	code
chunk	you	created	in	an	earlier	exercise.	This	code	chunk	simply	defines	the
libraries	that	will	be	used	in	the	file.

In	the	{r}	section	of	the	header	name	the	chunk	libs.
```{r	libs}
3.	Notice	that	the	value	has	now	been	updated	in	the	quick	access	dropdown
menu.



4.	Rename	the
rest	of	your	code	chunks.	You	can	use	whatever	name	makes	the	most	sense	for
each.

5.	Next,	we’ll	add	some	code	options.	Although	there	are	currently	60+	options
that	can	be	applied	to	a	code	chunk	we’ll	examine	only	a	few	of	the	more
important	options.	You	can	get	a	list	of	all	the	available	code	chunk	options	at
https://www.rstudio.com/wp-content/uploads/2015/03/	rmarkdown-
reference.pdf.

6.	Messaging	is	one	of	the	most	commonly	used	and	useful	options.	There	are
actually	three	messaging	options:	messages,	warnings,	errors.	All	three	are
TRUE	|	FALSE	values	that	can	be	set	and	all	are	set	to	FALSE	by	default.
Navigate	to	Chunk	2	and	add	the	options	you	see	highlighted	below.	This	will
turn	on	the	messaging	for	any	general	information	messages,	warnings,	and
errors.

```{r	error=TRUE,	warning=TRUE,	message=TRUE}



myLocation	<-	“California”
myMap	<-	get_map(location	=	myLocation,	zoom	=	6)
ggmap(myMap)
```

7.	Now	when	you	run	this	section	any	of	these	messages	will	be	printed	out
along	with	the	output.	Rather	than	running	the	entire	markdown	file	code	each
time	you	want	to	test	something	you	can	limit	the	run	to	a	particular	code	chunk
by	clicking	the	arrow	on	the	far-right	hand	side	of	the	code	chunk	as	seen	in	the
screenshot	below.

8.	The	output	window	includes	two	overview	windows:	the	output	visualization
and	the	R	Console.	If	you	click	the	R	Console	overview	window	as	seen	in	the
screenshot	below	it	will	display	any	messages	that	were	written	to	the	console	as
a	result	of	the	execution	of	this	code	block.



Clicking	the	R	Console	window	should	produce	an	output	similar	to	the
screenshot	below.

9.	Now	add	the	same	message,	warning,	and	error	options	to	your	other	code
chunks.	
10.	Run	the	code	chunks	one	at	a	time	an	examine	the	output.	Any	warning	and
errors	will	be	prominently	displayed	as	seen	in	the	screenshot	below.



11.	You	can	also	define	document	wide	options	as	well.	In	this	step	we’ll	look	at
a	common	option	defined	in	the	header.	The	content	of	the	header	defines
parameters	that	control	various	settings	for	the	entire	document.

The	header	can	include	basic	descriptive	information	including	the	title,	author,
date,	and	output	format	along	with	other	settings	including	parameters	and
bibliographies	and	citations.	
Parameters	are	used	when	you	need	to	re-render	the	same	report	but	with	distinct
values	for	inputs.	The	params	field	controls	these	parameters.

You’ll	notice	in	the	code	example	below	that	a	state	parameter	has	been	defined
with	a	value	of	California.	This	value	can	then	be	accessed	elsewhere	in	the	R
Markdown	file	using	the	syntax	params$<parameter>	or	params$state	in	this
example.



Add	the	params	options
with	a	parameter	of	state	and	set	it	equal	to	California
in	your	file	exactly	as	seen	in	the	screenshot	above.
12.	Navigate	to	Chunk	2	and	find	the	line	you	see	below.
myLocation	<-	“California”
13.	Change	this	line	as	seen	below	to	access	the	state	parameter.

```{r	error=TRUE,	warning=TRUE,	message=TRUE}
myLocation	<-	params$state
myMap	<-	get_map(location	=	myLocation,	zoom	=	6)	ggmap(myMap)
```

14.	Run	the	code	for	Chunk	2	only	and	you	should	see	the	same	output	map
centered	on	California.

15.	Clear	the	output	for	chunk	2	by	clicking	the	X	in	the	upper	right-hand	corner
of	the	output.
16.	Return	to	the	state	parameter	in	the	header	and	change	the	value	to	Montana.

--
title:	“Creating	Maps	with	R”
author:	“Eric	Pimpler”

date:	“7/18/2018”
output:	html_document
params:

state:	‘Montana’



--
17.	Run	code	chunk	2	again	and	now	the	map	should	be	centered	on	Montana.



Exercise	4:	Caching

Code	chunks	can	also	be	cached,	which	is	great	for	computation	that	takes	a	long
time	to	execute.	To	enable	caching	the	cache	parameter	should	be	set	to	TRUE.
This	will	save	the	output	of	the	code	chunk	to	a	specially	named	file	on	desk.	On
any	subsequent	runs,	knitr	checks	to	see	if	the	code	has	changed,	and	if	not,	it
will	reuse	the	cached	results.

You	do	need	to	be	careful	with	caching	though	as	it	will	only	re-run	a	code
chunk	if	the	code	changes.	However,	it	doesn’t	take	into	account	things	such	as
changes	to	underlying	data	sources.	For	example,	the	data	in	an	underlying	data
source	could	change,	but	because	the	R	Markdown	file	will	only	re-run	the	code
chunk	if	the	code	changes,	this	could	become	an	issue.



1.	Find	the	code	chunk	you	see	below	that	maps	the	individual	wildfire	points.
You	may	have	named	the	chunk	something	other	than	what	I	have	named	the
chunk	(point_map).

```{r	point_map,	error=TRUE,	warning=TRUE,	message=TRUE}	myLocation
<-	‘California’
#get	the	basemap
myMap	<-	get_map(location	=	myLocation,	zoom	=	6)
#	use	the	select()	function	to	limit	the	columns	from	the	data	frame
df	<-	select(dfWildfires,	STATE,	YEAR_,	TOTALACRES,	DLATITUDE,
DLONGITUDE)
#use	the	filter()	function	to	get	only	fires	in	California	with	acres
#burned	greater	than	1000
df	<-	filter(df,	TOTALACRES	>=	1000	&	STATE	==	‘California’)	#produce	the
final	map
ggmap(myMap)	+	geom_point(data=df,	aes(x	=	DLONGITUDE,	y	=
DLATITUDE))
```

2.	Add	the	cache	parameter	to	the	options	for	the	chunk	as	seen	below.
```{r	point_map,	cache=TRUE,	error=TRUE,	warning=TRUE,

3.	This	code	chunk	is	dependent	upon	the	data	in	the	dfWildfires	data	frame,
which	is	loaded	in	the	code	chunk	directly	preceding	this	chunk.	The	code	chunk
that	loads	the	data	from	a	csv	file	into	the	dfWidlfires	variable	can	be	seen
below.	You	may	have	named	the	chunk	differently	(load_data).

```{r	load_data,	error=TRUE,	warning=TRUE,	message=TRUE}	dfWildfires	<-
read_csv(“~/Desktop/IntroR/Data/StudyArea_SmallFile.	csv”,	col_types	=
list(FIRENUMBER	=	col_character(),	UNIT	=	col_	character()),	col_names	=
TRUE)
```

4.	Because	the	point_map	code	chunk	is	dependent	upon	the	data	in	the
dfWildfires	data	frame	you	need	to	add	a	dependson	parameter	to	the	point_map
code	chunk.

```{r	point_map,	cache=TRUE,	dependson=’load_data’,	error=TRUE,
warning=TRUE,	message=TRUE}



This	will	cover	situations	where	the	read_csv()	call	changes.	For	example,	a
different	file	might	be	read	by	the	function.

5.	Keep	in	mind	that	the	cache	and	dependson	parameters	only	monitor	for
changes	in	the	.Rmd	file.	What	would	happen	if	the	underlying	data	in	the
StudyArea_SmallFile.csv	file	changes?	The	answer	is	that	the	changes	wouldn’t
be	picked	up.	To	handle	this	sort	of	situation	you	can	use	the	cache.extra	option
along	with	the	file.info()	function.

```{r	load_data,	cache.extra	=	file.info(‘~/Desktop/IntroR/
Data/StudyArea_SmallFile.csv’)	error=TRUE,	warning=TRUE,

Exercise	5:	Using	Knit	to	output	an	R	Markdown	file

The	Knitfunctionality	built	into	RStudio	can	be	used	to	export	an	R	Markdown
file	to	various	formats	including	HTML,	PDF,	and	Word.	Knit	can	be	accessed
from	the	dropdown	menu	seen	in	the	screenshot	below.

1.	To	simplify	the	output	of	the	R	Markdown	file	you’re	going	to	remove	some
of	the	options	that	were	added	in	previous	exercise.	In	the



CreateMapsWithR.rmd	file	remove	cache,	dependson,	and	cache.	extra
parameters	added	in	the	last	exercise.

2.	Select	Knit	and	find	the	Knit	Directory	menu	item	from	the	RStudio	interface.
By	default,	it	is	set	to	Document	Directory.	This	simply	means	that	the	output
file	will	go	into	the	same	directory	where	the	R	Markdown	file	has	been	saved.

3.	Select	Knit	|	Knit	to	HTML.	Knit	will	begin	processing	the	file	and	you’ll	see
output	messaging	information	written	to	the	Console	pane.	If	everything	goes	as
expected	an	output	HTML	file	called	CreatingMapsWithR.html	will	be	created
in	the	same	folder	where	the	CreatingMapsWithR.Rmd	file	was	saved.	The
output	file	will	be	fairly	length,	but	the	top	part	should	look	similar	to	the
screenshot	below.



4.	You	can	check	your	work	against	the	CreatingMapsWithR.Rmd	solution	file.

Conclusion

In	this	chapter	you	learned	how	to	create	an	R	Markdown	file,	which	can	be	used
to	share	your	work	with	others	in	various	formats	including	PDF,	Word,	HTML,
slideshows,	and	more.	R	Markdown	files	can	include	code,	results,	and
commentary,	making	them	a	perfect	resource	for	explaining	not	only	the	results
of	a	project,	but	also	the	mechanics	of	how	the	work	was	accomplished.

In	the	next	chapter	you’ll	tackle	a	case	study	that	examines	wildfire	activity	in
the	western	United	States.

Chapter	10



Case	Study	–	Wildfire	Activity	in	the	Western	United
States

Studies	suggest	that	over	the	past	few	decades,	the	number	and	size	of	wildfires
have	increased	throughout	the	western	United	States.	The	average	length	of
wildfire	season	has	increased	significantly	as	well	in	some	areas.	According	to
the	Union	of	Concerned	Scientists	(UCS),	every	state	in	the	western	US	has
experienced	an	increase	in	the	average	annual	number	of	large	wildfires	(greater
than	1,000	acres)	over	the	past	few	decades.	The	Pacific	Northwest,	including
Washington,	Oregon,	Idaho,	and	the	western	half	of	Montana	have	had
particularly	challenging	wildfire	seasons	in	recent	years.

The	2017	wildfire	season	shattered	records	and	cost	the	U.S.	Forest	Service	an
unprecedented	$2	billion.	From	the	Oregon	wildfires	to	late	season	fires	in
Montana,	and	the	highly	unusual	timing	of	the	California	fires	in	December,	it
was	a	busy	year	in	the	western	United	States.	While	2017	was	a	particularly
notable	wildfire	season,	this	trend	is	nothing	new	and	research	suggests	we	can
expect	this	unfortunate	trend	to	continue	due	to	climate	change	and	other	factors.
A	recent	study	suggests	that	over	the	next	two	decades,	as	many	as	11	states	are
predicted	to	see	the	average	annual	area	burned	increase	by	500	percent.

Extensive	studies	have	found	that	large	forest	fires	in	the	western	US	have	been
occurring	nearly	five	times	more	often	since	the	1970s	and	80s.	Such	fires	are
burning	more	than	six	times	the	land	area	as	before	and	lasting	almost	five	times
longer.

Climate	change	is	thought	to	be	the	primary	cause	of	the	increase	in	large
wildfires	with	rising	temperatures	leading	to	earlier	and	decreased	volume	of
snow	melts,	decreased	precipitation,	and	forest	conditions	that	are	drier	for
longer	periods	of	time.	An	increase	in	forest	tree	disease	from	insect	disturbance
has	also	been	associated	with	climate	change	and	can	lead	to	large	areas	of
highly	flammable	dead	or	dying	forests.	Other	potential	causes	of	increased
wildfire	activity	include	forest	management	practices,	and	an	increase	in	human
caused	wildfires	due	to	accidents	or	arson.

In	this	case	study	you	will	use	the	skills	you	have	gained	in	this	book	along	with
wildfire	data	from	the	Federal	Wildland	Fire	Occurrence	Database,



(https://wildfire.cr.usgs.gov/	firehistory/data.html),	provided	by	the	U.S.
Geological	Survey	(USGS)	to	visualize	the	change	in	wildfire	activity	from	1980
to	2016.	Analysis	will	be	limited	to	the	western	United	States	including
California,	Arizona,	New	Mexico,	Colorado,	Utah,	Nevada,	Utah,	Oregon,
Washington,	Idaho,	Montana,	and	Wyoming.	We	were	particularly	interested	in
the	surge	of	large	wildland	fires,	categorized	as	fires	that	burn	greater	than	1,000
acres.

So,	has	wildfire	activity	and	size	actually	increased,	or	does	it	just	seem	that	way
because	we’re	tuned	in	more	to	bad	news	and	social	media?	In	this	chapter
you’ll	answer	those	questions	and	more	using	R	with	the	tidyverse	package.

In	this	chapter	we’ll	answer	the	following	questions:

•	Have	the	number	of	wildfires	increased	or	decreased	in	the	past	few	decades?
•	Has	the	acreage	burned	increased	over	time?
•	Is	the	size	of	individual	wildfires	increasing	over	time?
•	Has	the	length	of	the	fire	season	increased	over	time?
•	Does	the	acreage	burned	differ	by	federal	organization?

Exercise	1:	Have	the	number	of	wildfires	increased	or	decreased
in	the	past	few	decades?

The	StudyArea.csvfile	in	your	IntroR\Data	folder	contains	all	non-prescribed
wildfire	activity	from	1980-2016	for	the	11	states	in	our	study	area,	which
include	California,	Oregon,	Washington,	Idaho,	Nevada,	Arizona,	Utah,
Montana,	Wyoming,	Colorado,	and	New	Mexico.	We’ll	use	this	file	for	all	the
exercises	in	this	chapter.	We’re	going	to	focus	primarily	on	large	wildfires	in	this
study,	defined	here	as	any	non-prescribed	fire	greater	than	1,000	acres.

1.	In	your	IntroR	folder	create	a	new	folder	called	CaseStudy1.	You	can	do	this
inside	RStudio	by	going	to	the	Files	pane	and	selecting	New	Folder	inside	your
working	directory.

2.	In	RStudio	select	File	|	New	File	|	R	Script	and	then	save	the	file	to	the
CaseStudy1	folder	with	a	name	of	CS1_Exercise1.R
.	3.	At	the	top	of	the	script,	load	the	packages	that	will	be	used	in	this	exercise.

library(readr)	library(dplyr)	library(ggplot2)



4.	Use	the
read_csv()	function	from	the	readr	package	to	load	the	data	into	a	data	frame.
df	<-	read_csv(“StudyArea.csv”,	col_types	=	list(UNIT	=	col_character()),
col_names	=	TRUE)
5.	Check	the	number	of	rows	in	the	data	frame.	This	should	return	439362	or
something	close	to	that.
nrow(df)	[1]	439362
6.	We	only	need	a	few	of	the	columns	from	the	data	frame	for	this	exercise	so

use	the	select()	function	to	retrieve	the	STATE,	YEAR_,	TOTALACRES,	and
CAUSE	columns.	We’ll	also	rename	some	of	these	columns	in	this	step.	Piping
will	be	used	for	the	rest	of	the	code	in	this	exercise	so	begin	the	statement	as
seen	below.

df	%>%
select(STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,	CAUSE)	%>%
7.	Next,	filter	the	data	frame	so	that	only	wildfires	that	burned	1,000	acres	or
more	are	included.	Add	the	code	highlighted	in	bold	below.

df	%>%
select(STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,	CAUSE)	%>%
filter(ACRES	>=	1000)	%>%

8.	Group	the	records	by	year.

df	%>%
select(STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,	CAUSE)	%>%
filter(ACRES	>=	1000)	%>%
group_by(YR)	%>%

9.	Get	a	count	of	the	number	of	wildfires	for	each	year	by	using	the
summarize()	function	with	the	count=n()
parameter.

df	%>%
select(STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,	CAUSE)	%>%
filter(ACRES	>=	1000)	%>%
group_by(YR)	%>%
summarize(count=n())	%>%



10.	Finally,	create	a	scatterplot	with	a	regression	line	that	depicts	the	number	of
wildfires	over	the	years.

df	%>%
select(STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,	CAUSE)	%>%
filter(ACRES	>=	1000)	%>%
group_by(YR)	%>%
summarize(count=n())	%>%
ggplot(mapping	=	aes(x=YR,	y=count))	+	geom_point()	+
geom_smooth(method=lm,	se=TRUE)	+	ggtitle(“Large	Fires	Are	Becoming
More	Common	in	the	West	-	1980-2016”)	+	xlab(“Year”)	+	ylab(“Number	of
Wildfires”)

11.	You	can	check	your	work	against	the	solution	file
CS1_Exercise1.R.	12.	Save	the	script	and	then	click	the	Run	button.	If	you’ve
coded	everything	correctly	you	should	see	the	plot	displayed	in	the	screenshot
below.

13.	Based	on	this	visualization	it	appears	as	though	large	wildfires	have	indeed
become	more	common	over	the	past	few	decades.	But	let’s	expand	this	to	see	if
all	the	states	in	the	study	area	have	the	same	pattern.	14.	Create	a	new	R	script



and	save	it	with	a	name	of	CS1_Exercise1B.R.

15.	Add	the	following	code	to	your	script	and	save	it.	We’ll	discuss	the
differences	between	this	script	and	the	previous	afterward.

library(readr)	library(dplyr)	library(ggplot2)

df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)
df	%>%

select(STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,	CAUSE)	%>%
filter(ACRES	>=	1000)	%>%
group_by(STATE,	YR)	%>%
summarize(cnt	=	n())	%>%
ggplot(mapping	=	aes(x=YR,	y=cnt))	+	geom_point()+	facet_	wrap(~STATE)	+
geom_smooth(method=lm,	se=TRUE)	+	ggtitle(“Number	of	Fires	by	State	and
Year”)	+	xlab(“Year”)	+	ylab(“Number	of	Fires”)

16.	Save	the	script	and	then	run	it	to	see	the	output	shown	in	the	screenshot
below.



This	script	groups	the	dataset	by	STATE	and	YR	and	then	summarizes	the	data
by	generating	a	count	of	the	number	for	this	grouping.	Finally,	the	facet_	wrap()
function	is	used	with	ggplot()	to	create	the	facet	map	that	depicts	the	number	of
fires	by	state	over	time.	A	number	of	the	individual	states	show	a	slight	upward
trend	over	time,	but	many	have	an	almost	flat	regression	line.

17.	You	can	check	your	work	against	the	solution	file	CS1_Exercise1B.R
.

18.	Challenge	1:	Repeat	this	process	to	see	the	results	for	wildfires	greater	than
5,000	acres,	25,000	acres,	and	100,000	acres.	Are	these	finding	consistent	with
the	results	of	wildfires	greater	than	1,000	acres?

19.	Challenge	2:	Repeat	the	process	but	this	time	group	the	data	by	year	and	by
wildfires	that	are	naturally	occurring.	The	CAUSE	column	includes	a	value	of
Natural	that	can	be	used	to	group	the	data.	You’ll	need	a	compound	grouping
statement.

Exercise	2:	Has	the	acreage	burned	increased	over	time?



Measuring	the	number	of	fires	over	time	only	tells	part	of	the	story.	The	amount
of	acreage	burned	during	that	time	may	give	us	more	insight	into	the	patterns	in
wildfire	activity.	In	this	exercise	we’ll	create	visualizations	that	illustrate	how
much	acreage	is	being	burned	each	year	as	a	result	of	wildfires.

1.	In	RStudio	select	File	|	New	File	|	R	Script	and	then	save	the	file	to	the
CaseStudy1	folder	with	a	name	of	CS1_Exercise2.R.
2.	At	the	top	of	the	script,	load	the	packages	that	will	be	used	in	this	exercise.

library(readr)	library(dplyr)	library(ggplot2)

3.	The	first	few	lines	of	this	script	will	be	similar	to	the	previous	exercises,	so	I
won’t	discuss	the	details	of	each	line.	By	now	you	should	be	able	to	determine
what	each	of	these	lines	will	accomplish	anyway.	Add	the	lines	shown	below.

df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)	df	%>%

select(STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,	CAUSE)	%>%
filter(ACRES	>=	1000)	%>%
4.	Group	the	data	by	year.

df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)	df	%>%

select(STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,	CAUSE)	%>%
filter(ACRES	>=	1000)	%>%
group_by(YR)	%>%

5.	Use	the
summarize()
function	to	sum	the	total	acreage	burned	by	year.

df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)	df	%>%

select(STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,	CAUSE)	%>%
filter(ACRES	>=	1000)	%>%
group_by(YR)	%>%
summarize(totalacres	=	sum(ACRES))	%>%



6.	Create	a	scatterplot	with	regression	line	that	displays	the	total	acreage	burned
by	year.	In	this	case	you’ll	convert	the	total	acres	burned	to	a	logarithmic	scale
as	well.

df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)	df	%>%

select(STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,	CAUSE)	%>%
filter(ACRES	>=	1000)	%>%
group_by(YR)	%>%
summarize(totalacres	=	sum(ACRES))	%>%

ggplot(mapping	=	aes(x=YR,	y=log(totalacres)))	+	geom_point()	+
geom_smooth(method=lm,	se=TRUE)	+	ggtitle(“Total	Acres	Burned”)	+
xlab(“Year”)	+	ylab(“Log	of	Total	Acres	Burned”)

7.	You	can	check	your	work	against	the	solution	file
CS1_Exercise2.R
.

8.	Save	the	script	and	then	run	it	to	see	the	output	shown	in	the	screenshot	below.
It’s	clear	from	this	graph	that	there	has	been	a	significant	increase	in	the	acreage
burned	over	the	past	few	decades.



9.	Now	let’s	see	if	this	trend	is	significant	for	all	states	in	the	study	area.	In
RStudio	select	File	|	New	File	|	R	Script	and	then	save	the	file	to	the	CaseStudy1
folder	with	a	name	of	CS1_Exercise2B.R.

10.	At	the	top	of	the	script,	load	the	packages	that	will	be	used	in	this	exercise.

library(readr)
library(dplyr)
library(ggplot2)

11.	The	first	few	lines	of	this	script	will	be	similar	to	the	previous	exercises,	so	I
won’t	discuss	the	details	of	each	line.	Add	the	lines	shown	below.

df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)	df	%>%

select(STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,	CAUSE)	%>%



filter(ACRES	>=	1000)	%>%
12.	Group	the	data	by
STATE	and	YR
.

df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)	df	%>%

select(STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,	CAUSE)	%>%
filter(ACRES	>=	1000)	%>%
group_by(STATE,	YR)	%>%

13.	Use	the
summarize()
function	to	calculate	the	total	acreage	burned	by	state.

df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)	df	%>%

select(STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,	CAUSE)	%>%
filter(ACRES	>=	1000)	%>%
group_by(STATE,	YR)	%>%
summarize(totalacres	=	sum(ACRES))	%>%

14.	Create	a	facet	plot	that	displays	the	total	acreage	burned	by	state	and	year.

df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)	df	%>%

select(STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,	CAUSE)	%>%
filter(ACRES	>=	1000)	%>%
group_by(STATE,	YR)	%>%
summarize(totalacres	=	sum(ACRES))	%>%
ggplot(mapping	=	aes(x=YR,	y=log(totalacres)))	+	geom_point()	+
facet_wrap(~STATE)	+	geom_smooth(method=lm,	se=TRUE)	+
ggtitle(“Total	Acres	Burned”)	+	xlab(“Year”)	+	ylab(“Log	of	Total	Acres
Burned”)

15.	You	can	check	your	work	against	the	solution	file
CS1_Exercise2B.R



.

16.	Save	the	script	and	then	run	it	to	see	the	output	shown	in	the	screenshot
below.	It’s	clear	from	this	graph	that	there	has	been	an	increase	in	the	acreage
burned	over	the	past	few	decades	for	all	the	states	in	the	study	area.

17.	You	may	have	wondered	if	there	is	a	difference	in	the	size	of	wildfires	that
were	caused	naturally	as	opposed	to	human	induced.	In	the	next	few	steps	we’ll
write	a	script	to	do	just	that.	In	RStudio	select	File	|	New	File	|	R	Script	and	then
save	the	file	to	the	CaseStudy1	folder	with	a	name	of	CS1_Exercise2C.R.

18.	At	the	top	of	the	script,	load	the	packages	that	will	be	used	in	this	exercise.

library(readr)	library(dplyr)	library(ggplot2)

19.	The	first	few	lines	of	this	script	will	be	similar	to	the	previous	exercises,	so	I
won’t	discuss	the	details	of	each	line.	Add	the	lines	shown	below.



df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)	df	%>%

select(STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,	CAUSE)	%>%

20.	For	this	script	we’ll	filter	so	that	only	Natural	and	Human	values	are	selected
from	the	CAUSE	column	in	addition	to	requiring	that	only	fires	greater	than
1,000	acres	be	included.

There	are	additional	values	in	the	CAUSE	column	including	UNKNOWN	and	a
few	other	random	values	so	that’s	why	we’re	taking	this	extra	step.	The	dataset
does	not	include	prescribed	fires,	so	we	don’t	have	to	worry	about	that	in	this
case.

The	%in%
operator	can	be	used	with	a	vector	in	R	to	define	multiple	values	as	is	the	case
here.

df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)
df	%>%

select(STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,	CAUSE)	%>%
filter(ACRES	>=	1000	&	CAUSE	%in%	c(‘Human’,	‘Natural’))	%>%
21.	Group	the	data	by	CAUSE	and	YR.

df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)
df	%>%

select(STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,	CAUSE)	%>%
filter(ACRES	>=	1000	&	CAUSE	%in%	c(‘Human’,	‘Natural’))	%>%
group_by(CAUSE,	YR)	%>%

22.	Sum	the	total	acreage	burned.

df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)
df	%>%



select(STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,	CAUSE)	%>%
filter(ACRES	>=	1000	&	CAUSE	%in%	c(‘Human’,	‘Natural’))	%>%
group_by(CAUSE,	YR)	%>%
summarize(totalacres	=	sum(ACRES))	%>%

23.	Plot	the	dataset.	Use	the
colour	property	from	the	aes()	function	to	color	code	the	values	by	CAUSE
.

df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)
df	%>%

select(STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,	CAUSE)	%>%
filter(ACRES	>=	1000	&	CAUSE	%in%	c(‘Human’,	‘Natural’))	%>%
group_by(CAUSE,	YR)	%>%
summarize(totalacres	=	sum(ACRES))	%>%
ggplot(mapping	=	aes(x=YR,	y=log(totalacres),	colour=CAUSE))	+
geom_point()	+	geom_smooth(method=lm,	se=TRUE)	+	ggtitle(“Total	Acres
Burned”)	+	xlab(“Year”)	+	ylab(“Log	of	Total	Acres	Burned”)

24.	You	can	check	your	work	against	the	solution	file	CS1_Exercise2C.R.
25.	Save	the	script	and	then	run	it	to	see	the	output	shown	in	the	screenshot
below.	Both	human	and	naturally	caused	wildfires	have	seen	a	significant
increase	in	the	amount	of	acreage	burned	over	the	past	few	decades,	but	the
amount	of	acreage	burned	by	naturally	occurring	fires	appear	to	be	increasing	at
a	more	rapid	pace.



26.	Finally,	let’s	create	a	violin	plot	to	see	the	distribution	of	acres	burned	by
state.	In	RStudio	select	File	|	New	File	|	R	Script	and	then	save	the	file	to	the
CaseStudy1	folder	with	a	name	of	CS1_Exercise2D.R.

27.	At	the	top	of	the	script,	load	the	packages	that	will	be	used	in	this	exercise.

library(readr)
library(dplyr)
library(ggplot2)

28.	The	first	few	lines	of	this	script	will	be	similar	to	the	previous	exercises,	so	I
won’t	discuss	the	details	of	each	line.	Add	the	lines	shown	below.
df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)
df	%>%

select(ORGANIZATI,	STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,



CAUSE)	%>%
filter(ACRES	>=	1000)	%>%
group_by(STATE)	%>%

29.	Create	a	violin	plot	with	an	embedded	box	plot.

df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)
df	%>%

select(ORGANIZATI,	STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,
CAUSE)	%>%
filter(ACRES	>=	1000)	%>%
group_by(STATE)	%>%
ggplot(mapping	=	aes(x=STATE,	y=log(ACRES)))	+	geom_violin()	+
geom_boxplot(width=0.1)	+	ggtitle(“Wildfires	by	State	Greater	than	1,000
Acres”)	+	xlab(“State”)	+	ylab(“Acres	Burned	(Log)”)

30.	You	can	check	your	work	against	the	solution	file
CS1_Exercise2D.R.	31.	Save	the	script	and	then	run	it	to	see	the	output	shown	in
the	screenshot	below.



Exercise	3:	Is	the	size	of	individual	wildfires	increasing	over	time?

In	the	last	exercise	we	found	that	the	number	of	wildfires	appears	to	be
increasing	over	the	past	few	decades.	In	this	exercise	we’ll	determine	whether
the	size	of	those	fires	has	increased	as	well.	The	StudyArea.csvfile	contains	a
TOTALACREScolumn	that	defines	the	number	of	acres	burned	by	each	fire.
We’ll	group	the	fires	by	year	and	then	by	decade	and	determine	the	mean	and
median	fire	size	for	each.

1.	In	RStudio	select	File	|	New	File	|	R	Script	and	then	save	the	file	to	the
CaseStudy1	folder	with	a	name	of	CS1_Exercise3.R
.	2.	At	the	top	of	the	script,	load	the	packages	that	will	be	used	in	this	exercise.

library(readr)	library(dplyr)	library(ggplot2)

3.	The	first	few	lines	of	this	script	will	be	the	same	as	the	previous	exercises,	so	I
won’t	discuss	the	details	of	each	line.	By	now	you	should	be	able	to	determine



what	each	of	these	lines	will	accomplish	anyway.	Add	the	lines	shown	below.

dfWildfires	<-	read_csv(“StudyArea.csv”,	col_types	=	list(UNIT	=
col_character()),	col_names	=	TRUE)
df	<-	select(dfWildfires,	STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,
CAUSE)
df	<-	filter(df,	ACRES	>=	1000)
grp	<-	group_by(df,	CAUSE,	YR)

4.	Summarize	the	data	by	determining	the	mean	acreage	burned	for	each	group.
sm	<-	summarize(grp,	mean(ACRES))

5.	The	summarize()	function	will	create	a	new	column	called	mean(ACRES)	and
add	it	to	the	output	data	frame.	This	isn’t	exactly	a	user-friendly	name,	so	we’ll
change	the	name	of	this	column	in	the	next	step.	You	can	see	the	output	of	the
summarize()	function	in	the	screenshot	below.

6.	Change	the	column	name.
colnames(sm)[3]	<-	‘MEAN’
7.	Create	a	scatterplot	of	the	results.

ggplot(data=sm,	mapping	=	aes(x=YR,	y=MEAN))	+	geom_point()	+
geom_smooth(method=lm,	se=TRUE)	+	ggtitle(“Average	Size	of	Wildfires	Has
Increased	for	both	Human	and	Natural	Causes”)	+	xlab(“Year”)	+	ylab(“Average
Wildfire	Size”)

8.	The	entire	script	should	appear	as	seen	below.



library(readr)
library(dplyr)
library(ggplot2)

dfWildfires	<-	read_csv(“StudyArea.csv”,	col_types	=	list(UNIT	=
col_character()),	col_names	=	TRUE)
df	=	select(dfWildfires,	STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,
CAUSE)
df	<-	filter(df,	ACRES	>=	1000)
grp	<-	group_by(df,	CAUSE,	YR)
sm	<-	summarize(grp,	mean(ACRES))
colnames(sm)[3]	<-	‘MEAN’
ggplot(data=sm,	mapping	=	aes(x=YR,	y=MEAN))	+	geom_point()	+
geom_smooth(method=lm,	se=TRUE)	+	ggtitle(“Average	Size	of	Wildfires	Has
Increased	for	both	Human	and	Natural	Causes”)	+	xlab(“Year”)	+	ylab(“Average
Wildfire	Size”)

9.	You	can	check	your	work	against	the	solution	file
CS1_Exercise3.R
.

10.	Save	and	run	the	script.	If	everything	has	been	coded	correctly	you	should
see	the	following	output.	This	graph	indicates	a	clear	trend	toward	larger
wildfires	over	time.



11.	Now	let’s	look	group	the	wildfires	by	decade,	sum	the	total	acreage	burned
during	that	time,	and	create	a	bar	chart	to	display	the	results.	12.	In	RStudio
select	File	|	New	File	|	R	Script	and	then	save	the	file	to	the	CaseStudy1	folder
with	a	name	of	CS1_Exercise3B.R
.	13.	At	the	top	of	the	script,	load	the	packages	that	will	be	used	in	this	exercise.

library(readr)
library(dplyr)
library(ggplot2)

14.	Load,	select,	and	filter	the	data	in	the	same	way	we’ve	done	with	the	other
exercises	in	this	chapter.

dfWildfires	<-	read_csv(“StudyArea.csv”,	col_types	=	list(UNIT	=
col_character()),	col_names	=	TRUE)
df	<-	select(dfWildfires,	ORGANIZATI,	STATE,	YR	=	YEAR_,	ACRES	=
TOTALACRES,	CAUSE)
df	<-	filter(df,	ACRES	>=	1000)

15.	In	this	step	we’ll	use	the	mutate()	function	along	with	an	ifelse()	function	to
create	a	new	column	called	DECADE	and	then	populate	the	contents	of	this
column	based	on	the	value	of	the	YR	column	for	each	row.	Add	the	code	you	see
below.

df	<-	mutate(df,	DECADE	=	ifelse(YR	%in%	1980:1989,	“1980-1989”,
ifelse(YR	%in%	1990:1999,	“1990-1999”,	ifelse(YR	%in%	2000:2009,	“2000-
2009”,	ifelse(YR	%in%	2010:2016,	“2010-2016”,	“-99”)))))

16.	Group	the	dataset	by
DECADE.
grp	<-	group_by(df,	DECADE)
17.	Summarize	the	data	by	calculating	the	mean	value	of	acres	burned.
sm	<-	summarize(grp,	mean(ACRES))
18.	Rename	the	column	created	by	the	summarize()	function.z
names(sm)	<-	c(“DECADE”,	“MEAN_ACRES_BURNED”)
19.	Use	the	geom_col()	function	along	with	ggplot()	to	create	a	bar	chart	that
displays	the	mean	wildfire	size	by	decade.
ggplot(data=sm)	+	geom_col(mapping	=	aes(x=DECADE,	y=MEAN_ACRES_
BURNED),	fill=”red”)



20.	You	can	check	your	work	against	the	solution	file	CS1_Exercise3B.R
.

21.	Save	and	run	the	script.	If	everything	has	been	coded	correctly	you	should
see	the	following	output.	This	bar	chart	indicates	a	clear	trend	toward	larger
wildfires	with	each	passing	decade,	although	it	should	be	noted	that	the	dataset
only	extends	through	2016	so	the	results	for	the	current	decade	may	be	different
in	a	few	years.

Exercise	4:	Has	the	length	of	the	fire	season	increased	over	time?

Wildfire	season	is	generally	defined	as	the	time	period	between	the	year’s	first
and	last	large	wildfires.	The	infographic	below,	from	the	Union	of	Concerned
Scientists	(https://	www.ucsusa.org/global-warming/science-and-
impacts/impacts/infographic-wildfiresclimate-change.html#.W1cji9hKj_Q),
highlights	the	length	of	the	wildfire	season	for	the	Western	U.S.	as	a	region.
Local	wildfire	seasons	vary	by	location	but	have	almost	universally	become
longer	over	the	past	40	years.



In	this	exercise	we’ll	measure	the	length	of	the	wildfire	season	over	the	past	few
decades	for	the	region	as	a	whole,	as	well	as	individual	states.
1.	In	RStudio	select	File	|	New	File	|	R	Script	and	then	save	the	file	to	the
CaseStudy1	folder	with	a	name	of	CS1_Exercise4.R.

2.	At	the	top	of	the	script,	load	the	packages	that	will	be	used	in	this	exercise.
Note	that	you	will	need	to	load	the	lubridate	library	for	this	exercise	since	we’ll
be	dealing	with	dates.

library(readr)
library(dplyr)
library(lubridate)
library(ggplot2)

3.	The	first	few	lines	of	this	script	will	be	similar	to	the	previous	exercises,	so	I
won’t	discuss	the	details	of	each	line.	By	now	you	should	be	able	to	determine
what	each	of	these	lines	will	accomplish	anyway.	Add	the	lines	shown	below	to
load	the	data,	select	the	columns,	and	filter	the	data.

df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)
df	%>%

select(ORGANIZATI,	STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,
CAUSE,	STARTDATED)	%>%
filter(ACRES	>=	1000)	%>%

4.	To	measure	the	length	of	the	wildfire	season	we’re	going	to	convert	the	start
date	of	each	fire	into	the	day	of	the	year.	For	example,	if	a	fire	occurred	on



February	1st,	it	would	be	the	32nd	day	of	the	year.	Use	the	mutate()	function	as
seen	below	to	accomplish	this.	The	mutate()	function	uses	the	yday()	lubridate
function	to	convert	the	value	for	the	STARTDATED	column	into	the	day	of	the
year.

df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)
df	%>%

select(ORGANIZATI,	STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,
CAUSE,	STARTDATED)	%>%
filter(ACRES	>=	1000)	%>%
mutate(DOY	=	yday(as.Date(STARTDATED,	format=’%m/%d/%y
%H:%M’)))

%>%
5.	Group	the	data	by	year.

df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)
df	%>%

select(ORGANIZATI,	STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,
CAUSE,	STARTDATED)	%>%
filter(ACRES	>=	1000)	%>%
mutate(DOY	=	yday(as.Date(STARTDATED,	format=’%m/%d/%y	%H:%M’)))

%>%
group_by(YR)	%>%
6.	Get	the	earliest	and	latest	start	dates	of	the	wildfires	using	the
summarize()
function.

df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)
df	%>%

select(ORGANIZATI,	STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,
CAUSE,	STARTDATED)	%>%
filter(ACRES	>=	1000)	%>%



mutate(DOY	=	yday(as.Date(STARTDATED,	format=’%m/%d/%y	%H:%M’)))

%>%
group_by(YR)	%>%
summarize(dtEarly	=	min(DOY,	na.rm=TRUE),	dtLate	=	max(DOY,

na.rm=TRUE))	%>%

7.	Finally,	use	ggplot	with	two	calls	to	geom_line()	to	create	two	line	graphs	that
display	the	earliest	start	and	latest	end	dates	by	year.	You’ll	also	add	a	smoothed
regression	line	to	both	line	graphs.

df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)
df	%>%

select(ORGANIZATI,	STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,
CAUSE,	STARTDATED)	%>%
filter(ACRES	>=	1000)	%>%
mutate(DOY	=	yday(as.Date(STARTDATED,	format=’%m/%d/%y	%H:%M’)))

%>%
group_by(YR)	%>%
summarize(dtEarly	=	min(DOY,	na.rm=TRUE),	dtLate	=	max(DOY,

na.rm=TRUE))	%>%
ggplot()	+	geom_line(mapping	=	aes(x=YR,	y=dtEarly,	color=’B’))	+
geom_line(mapping	=	aes(x=YR,	y=dtLate,	color=’R’))	+	geom_
smooth(method=lm,	se=TRUE,	aes(x=YR,	y=dtEarly,	color=”B”))	+
geom_smooth(method=lm,	se=TRUE,	aes(x=YR,	y=dtLate,	color=”R”))	+
xlab(“Year”)	+	ylab(“Day	of	Year”)	+	scale_colour_manual(name	=
“Legend”,	values	=	c(“R”	=	“#FF0000”,	“B”	=	“#000000”),	labels	=	c(“First
Fire”,	“Last	Fire”))

8.	You	can	check	your	work	against	the	solution	file
CS1_Exercise4.R
.

9.	Save	and	run	the	script.	If	everything	has	been	coded	correctly	you	should	see
the	following	output.	This	chart	shows	a	clear	lengthening	of	the	wildfire	season



with	the	first	fire	date	coming	significantly	earlier	in	recent	years	and	the	start
date	of	the	last	fire	increasing	as	well.

10.	The	last	script	examined	the	trends	in	wildfire	season	length	for	the	entire
study	area,	but	you	might	want	to	examine	these	trends	at	a	state	level	instead.
This	can	be	easily	accomplished	by	adding	a	second	statement	to	the	filter.
Update	the	filter	as	seen	below	and	re-run	the	script	to	see	the	result.

df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)
df	%>%
select(ORGANIZATI,	STATE,	YR	=	YEAR_,	ACRES	=	TOTALACRES,
CAUSE,	STARTDATED)	%>%
filter(ACRES	>=	1000	&	STATE	==	‘Arizona’)	%>%
mutate(DOY	=	yday(as.Date(STARTDATED,	format=’%m/%d/%y	%H:%M’)))

%>%
group_by(YR)	%>%



summarize(dtEarly	=	min(DOY,	na.rm=TRUE),	dtLate	=	max(DOY,

na.rm=TRUE))	%>%
ggplot()	+	geom_line(mapping	=	aes(x=YR,	y=dtEarly,	color=’B’))	+
geom_line(mapping	=	aes(x=YR,	y=dtLate,	color=’R’))	+	geom_
smooth(method=lm,	se=TRUE,	aes(x=YR,	y=dtEarly,	color=”B”))	+
geom_smooth(method=lm,	se=TRUE,	aes(x=YR,	y=dtLate,	color=”R”))	+
xlab(“Year”)	+	ylab(“Day	of	Year”)	+	scale_colour_manual(name	=	“Legend”,
values	=	c(“R”	=	“#FF0000”,	“B”	=	“#000000”),	labels	=	c(“First	Fire”,	“Last
Fire”))

The	State	of	Arizona	shows	an	even	bigger	trend	toward	longer	wildfire	seasons.
Try	a	few	other	states	as	well.

Exercise	5:	Does	the	average	wildfire	size	differ	by	federal
organization

To	wrap	up	this	chapter	we’ll	examine	if	the	average	wildfire	size	differs	by
federal	organization.	The	StudyArea.csvfile	includes	a	column	(ORGANIZATI)



that	indicates	the	jurisdiction	where	the	fire	started.	This	column	can	be	used	to
group	the	wildfires.

1.	In	RStudio	select	File	|	New	File	|	R	Script	and	then	save	the	file	to	the
CaseStudy1	folder	with	a	name	of	CS1_Exercise5.R
.	2.	At	the	top	of	the	script,	load	the	packages	that	will	be	used	in	this	exercise.

library(readr)	library(dplyr)	library(ggplot2)

3.	The	first	few	lines	of	this	script	will	be	similar	to	the	previous	exercises,	so	I
won’t	discuss	the	details	of	each	line.	By	now	you	should	be	able	to	determine
what	each	of	these	lines	will	accomplish	anyway.	Add	the	lines	shown	below	to
load	the	data,	select	the	columns,	and	filter	the	data.

df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)
df	%>%

select(ORG	=	ORGANIZATI,	STATE,	YR	=	YEAR_,	ACRES	=
TOTALACRES,	CAUSE,	STARTDATED)	%>%
filter(ACRES	>=	1000)	%>%

4.	Group	the	dataset	by
ORG	and	YR
.

df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)
df	%>%

select(ORG	=	ORGANIZATI,	STATE,	YR	=	YEAR_,	ACRES	=
TOTALACRES,

CAUSE,	STARTDATED)	%>%
filter(ACRES	>=	1000	&	ORG	%in%	c(‘BIA’,	‘BLM’,	‘FS’,	‘FWS’,	‘NPS’))
%>%
group_by(ORG,	YR)	%>%

5.	Summarize	the	data	by	calculating	the	mean	acreage	burned	by	organization
and	year.



df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)
df	%>%

select(ORG	=	ORGANIZATI,	STATE,	YR	=	YEAR_,	ACRES	=
TOTALACRES,	CAUSE,	STARTDATED)	%>%
filter(ACRES	>=	1000	&	ORG	%in%	c(‘BIA’,	‘BLM’,	‘FS’,	‘FWS’,	‘NPS’))
%>%
group_by(ORG,	YR)	%>%
summarize(meanacres	=	mean(ACRES))	%>%

6.	Create	a	facet	plot	for	the	mean	acreage	burned	by	year	for	each	organization.

df	<-	read_csv(“StudyArea.csv”,	col_types	=	
list(UNIT	=	col_character()),	col_names	=	TRUE)
df	%>%

select(ORG	=	ORGANIZATI,	STATE,	YR	=	YEAR_,	ACRES	=
TOTALACRES,	CAUSE,	STARTDATED)	%>%
filter(ACRES	>=	1000	&	ORG	%in%	c(‘BIA’,	‘BLM’,	‘FS’,	‘FWS’,	‘NPS’))
%>%
group_by(ORG,	YR)	%>%
summarize(meanacres	=	mean(ACRES))	%>%
ggplot(mapping	=	aes(x=YR,	y=log(meanacres)))	+	geom_	point()+
facet_wrap(~ORG)	+	geom_smooth(method=lm,	se=TRUE)	+	ggtitle(“Acres
Burned	by	Federal	Organization”)	+	xlab(“Year”)	+	ylab(“Log	of	Total
Acres	Burned”)

7.	You	can	check	your	work	against	the	solution	file	CS1_Exercise5.R.
8.	Save	and	run	the	script.	If	everything	has	been	coded	correctly	you	should	see
the	following	output.	It	appears	as	though	all	the	federal	agencies	have
experienced	similar	increases	in	the	size	of	wildfires	since	1980.



Chapter	11



Case	Study	–	Single	Family	Residential	Home	and
Rental	Values

The	Zillow	Research	group	publishes	several	different	measures	of	homes	values
on	a	monthly	basis	including	median	list	prices,	median	sale	prices,	and	the
Zillow	Home	Value	Index	(ZHVI).	The	ZHVI	is	based	on	Zillow’s	internal
methodology	for	measuring	home	values	over	time.	In	addition,	Zillow	also
publishes	a	similar	measure	of	rental	values	(ZRI)	as	well	as	a	number	of	other
real	estate	related	datasets.

The	methodology	for	ZHVI	can	be	read	in	detail	at	https://www.zillow.com/
research/zhvi-methodology-6032/,	but	the	simple	explanation	is	that	Zillow
takes	all	estimated	home	values	for	a	given	region	and	month	(Zestimate),	takes
a	median	of	these	values,	applies	some	adjustments	to	account	for	seasonality	or
errors	in	individual	home	estimates,	and	then	does	the	same	across	all	months
over	the	past	20	years	and	for	many	different	geography	levels	(ZIP,
neighborhood,	city,	county,	metro,	state,	and	country).	For	example,	if	ZHVI	was
$400,000	in	Seattle	one	month,	that	indicates	that	50	percent	of	homes	in	the
area	are	worth	more	than	$400,000	and	50	percent	are	worth	less	(adjusting	for
seasonal	fluctuations–	e.g.	prices	tend	to	be	low	in	December).

Zillow	recommends	using	ZHVI	to	track	home	values	over	time	for	the	very
simple	reason	that	ZHVI	represents	the	whole	housing	stock	and	not	just	the
homes	that	list	or	sell	in	a	given	month.	Imagine	a	month	where	no	homes
outside	of	California	sold.	A	national	median	price	series	or	median	list	series
would	both	spike.	ZHVI,	however,	would	remain	a	median	of	all	homes	across
the	country	and	wouldn’t	skew	toward	California	any	more	than	in	the	previous
month.	ZHVI	will	always	reflect	the	value	of	all	homes	and	not	just	the	ones	that
list	or	sell	in	a	given	month.	In	this	chapter	we’ll	use	some	basic	R	visualization
techniques	to	better	understand	residential	real	estate	values	and	rental	prices	in
the	Austin,	TX	metropolitan	area.

In	this	chapter	we’ll	cover	the	following	topics:

•	What	is	the	trend	for	home	values	in	the	Austin	metropolitan	area?
•	What	is	the	trend	for	rental	values	in	the	Austin	metropolitan	area?
•	Determining	the	price-rent	ratio	for	the	Austin	metropolitan	area.



•	Comparing	residential	home	values	in	Austin	to	other	Texas	metropolitan	areas

Exercise	1:	What	is	the	trend	for	home	values	in	the	Austin	metro
area

The	County_Zhvi_SingleFamilyResidence.csv	file	in	your	IntroR\Data	folder
contains	home	value	data	from	Zillow.	The	Zillow	Home	Value	Index	(ZHVI)	is
a	smoothed,	seasonally	adjusted	measure	of	the	median	estimated	home	value
across	a	given	region	and	housing	type.	It	is	a	dollar-denominated	alternative	to
repeat-sales	indices.	Zillow	also	publishes	home	value	and	other	housing	data	for
local	markets,	as	well	as	a	more	detailed	methodology	and	a	comparison	of
ZHVI	to	the	S&P	CoreLogic	Case-Shiller	Home	Price	Indices.	We’ll	use	this	file
for	this	particular	exercise.

In	this	first	exercise	we’ll	examine	home	values	over	the	past	couple	of	decades
from	the	Austin	metropolitan	area.

1.	In	your	IntroR	folder	create	a	new	folder	called	CaseStudy2.	You	can	do	this
inside	RStudio	by	going	to	the	Files	pane	and	selecting	New	Folder	inside	your
working	directory.

2.	In	RStudio	select	File	|	New	File	|	R	Script	and	then	save	the	file	to	the
CaseStudy1	folder	with	a	name	of	CS2_Exercise1.R.
3.	At	the	top	of	the	script,	load	the	packages	that	will	be	used	in	this	exercise.

library(readr)	library(dplyr)	library(ggplot2)

4.	Use	the
read_csv()	function	from	the	readr
package	to	load	the	data	into	a	data	frame.
df	<-	read_csv(“County_Zhvi_SingleFamilyResidence.csv”,col_names	=	TRUE)
5.	Start	a	piping	expression	and	define	the	columns	that	should	be	included	in
the	data	frame.
df	%>%

select(RegionName,	State,	Metro,	`1996`	=	`1996-05`,	`1997`	=	`1997-05`,
`1998`	=	`1998-05`,	`1999`	=	`1999-05`,`2000`	=	=	`1997-05`,	`1998`	=	`1998-
05`,	`1999`	=	`1999-05`,`2000`	=	=	`1997-05`,	`1998`	=	`1998-05`,	`1999`	=
`1999-05`,`2000`	=	05`,	`2007`	=	`2007-05`,	`2008`	=	`2008-05`,	`2009`	=



`2009-05`,	`2010`	=	`2010-05`,	`2011`	=	`2011-05`,	`2012`	=	`2012-05`,	`2013`
=	`2013-05`,	`2014`	=	`2014-05`,	`2015`	=	`2015-05`,	`2016`	=	`2016-05`,
`2017`	=	`2017-05`,	`2018`	=	`2018-05`)	%>%

6.	Filter	the	data	frame	to	include	the	Austin	metropolitan	area	from	the	state	of
Texas.

df	%>%
select(RegionName,	State,	Metro,	`1996`	=	`1996-05`,	`1997`	=	`1997-05`,
`1998`	=	`1998-05`,	`1999`	=	`1999-05`,`2000`	=	=	`1997-05`,	`1998`	=	`1998-
05`,	`1999`	=	`1999-05`,`2000`	=	=	`1997-05`,	`1998`	=	`1998-05`,	`1999`	=
`1999-05`,`2000`	=	05`,	`2007`	=	`2007-05`,	`2008`	=	`2008-05`,	`2009`	=
`2009-05`,	`2010`	=	`2010-05`,	`2011`	=	`2011-05`,	`2012`	=	`2012-05`,	`2013`
=	`2013-05`,	`2014`	=	`2014-05`,	`2015`	=	`2015-05`,	`2016`	=	`2016-05`,
`2017`	=	`2017-05`,	`2018`	=	`2018-05`)	%>%	filter(State	==	‘TX’	&	Metro
==	‘Austin’)	%>%

7.	If	you	were	to	view	the	structure	of	the	data	frame	at	this	point	it	would	look
like	the	screenshot	below.	A	common	problem	in	many	datasets	is	that	the
column	names	are	not	variables	but	rather	values	of	a	variable.	In	the	figure
provided	below,	the	columns	that	represent	each	year	in	the	study	are	actually
values	of	the	variable	YEAR.	Each	row	in	the	existing	table	actually	represents
many	annual	observations.	The	tidyr	package	can	be	used	to	gather	these
existing	columns	into	a	new	variable.	In	this	case,	we	need	to	create	a	new
column	called	YR	and	then	gather	the	existing	values	in	the	annual	columns	into
the	new	YR	column.

In	the	next	step	we’ll	use	the	gather()	function	to	accomplish	this.	

8.	Use	the	gather()	function	to	tidy	up	the	data	so	that	a	new	YR	column	is
created,	and	rows	for	each	county	(RegionName)	and	year	value	are	added.

df	<-	read_csv(“County_Zhvi_SingleFamilyResidence.csv”,col_names	=	TRUE)
df	%>%



select(RegionName,	State,	Metro,	`1996`	=	`1996-05`,	`1997`	=	`1997-05`,
`1998`	=	`1998-05`,	`1999`	=	`1999-05`,`2000`	=	=	`1997-05`,	`1998`	=	`1998-
05`,	`1999`	=	`1999-05`,`2000`	=	=	`1997-05`,	`1998`	=	`1998-05`,	`1999`	=
`1999-05`,`2000`	=	05`,	`2007`	=	`2007-05`,	`2008`	=	`2008-05`,	`2009`	=
`2009-05`,	`2010`	=	`2010-05`,	`2011`	=	`2011-05`,	`2012`	=	`2012-05`,	`2013`
=	`2013-05`,	`2014`	=	`2014-05`,	`2015`	=	`2015-05`,	`2016`	=	`2016-05`,
`2017`	=	`2017-05`,	`2018`	=	`2018-05`)	%>%	filter(State	==	‘TX’	&	Metro	==
‘Austin’)	%>%
gather(`1996`,	`1997`,	`1998`,	`1999`,	`2000`,	`2001`,	`2002`,	`2003`,	`2004`,
`2005`,	`2006`,	`2007`,	`2008`,	`2009`,	`2010`,	`2011`,	`2012`,	`2013`,	`2014`,
`2015`,	`2016`,	`2017`,	`2018`,key=’YR’,	value=’ZHVI’)	%>%

9.	If	you	were	to	view	the	result,	the	data	frame	would	now	appear	as	seen	in	the
figure	below.



10.	Now	we’re	ready	to	plot	the	data.	Add	the	code	you	see	below	to	create	a
point	plot	that	is	grouped	by	RegionName
(County).



df	<-	read_csv(“County_Zhvi_SingleFamilyResidence.csv”,col_names	=	TRUE)
df	%>%

select(RegionName,	State,	Metro,	`1996`	=	`1996-05`,	`1997`	=	`1997-05`,
`1998`	=	`1998-05`,	`1999`	=	`1999-05`,`2000`	=	=	`1997-05`,	`1998`	=	`1998-
05`,	`1999`	=	`1999-05`,`2000`	=	=	`1997-05`,	`1998`	=	`1998-05`,	`1999`	=
`1999-05`,`2000`	=	05`,	`2007`	=	`2007-05`,	`2008`	=	`2008-05`,	`2009`	=
`2009-05`,	`2010`	=	`2010-05`,	`2011`	=	`2011-05`,	`2012`	=	`2012-05`,	`2013`
=	`2013-05`,	`2014`	=	`2014-05`,	`2015`	=	`2015-05`,	`2016`	=	`2016-05`,
`2017`	=	`2017-05`,	`2018`	=	`2018-05`)	%>%	filter(State	==	‘TX’	&	Metro	==
‘Austin’)	%>%
gather(`1996`,	`1997`,	`1998`,	`1999`,	`2000`,	`2001`,	`2002`,	`2003`,	`2004`,
`2005`,	`2006`,	`2007`,	`2008`,	`2009`,	`2010`,	`2011`,	`2012`,	`2013`,	`2014`,
`2015`,	`2016`,	`2017`,	`2018`,key=’YR’,	value=’ZHVI’)	%>%
ggplot(mapping	=	aes(x=YR,	y=ZHVI,	colour=RegionName))	+	geom_
point()	+	geom_smooth(method=lm,	se=TRUE)	+	ggtitle(“Single	Family
Homes	Values	Have	Increased	in	the	Austin	Metro	Area”)	+	xlab(“Year”)	+
ylab(“Home	Values”)

11.	You	can	check	your	work	against	the	solution	file
CS2_Exercise1.R
.

12.	Save	the	script	and	then	run	it	to	see	the	output	shown	in	the	screenshot
below.	All	counties	in	the	Austin	metropolitan	area	have	experienced
significantly	increased	values	in	the	past	couple	decades.	The	increase	has	been
particularly	noticeable	since	2012.



13.	Instead	of	a	simple	dot	plot	you	might	want	to	create	a	bar	chart	instead.
Comment	out	the	line	of	code	that	calls	the	existing	ggplot()	function	and	add	a
new	line	as	seen	below.

ggplot(mapping	=	aes(x=YR,	y=ZHVI,	colour=RegionName))	+	geom_	col()	+
ggtitle(“Single	Family	Homes	Values	Have	Increased	in	the	Austin	Metro	Area”)
+	xlab(“Year”)	+	ylab(“Home	Values”)

14.	Save	and	run	the	script	and	the	output	should	now	appear	as	seen	in	the
screenshot	below.	The	upward	trend	in	values	seems	even	more	obvious	when
viewed	in	this	manner.



Exercise	2:	What	is	the	trend	for	rental	rates	in	the	Austin	metro
area?

The	County_Zri_SingleFamilyResidenceRental.csvfile	in	your	IntroR\Data
folder	contains	single	family	residential	real	estate	values	Zillow.	Zillow	Rent
Index	(ZRI)	is	a	smoothed,	seasonally	adjusted	measure	of	the	median	estimated
market	rate	rent	across	a	given	region	and	housing	type.	ZRI	is	a	dollar-
denominated	alternative	to	repeatrent	indices.

In	this	exercise	we’ll	examine	rent	values	over	the	past	few	years	from	the
Austin	metropolitan	area.
1.	In	RStudio	select	File	|	New	File	|	R	Script	and	then	save	the	file	to	the
CaseStudy1	folder	with	a	name	of	CS2_Exercise2.R
.	2.	At	the	top	of	the	script,	load	the	packages	that	will	be	used	in	this	exercise.

library(readr)	library(dplyr)	library(ggplot2)

3.	Use	the
read_csv()	function	from	the	readr
package	to	load	the	data	into	a	data	frame.



df	<-	read_csv(“County_Zhvi_SingleFamilyResidence.csv”,col_names	=	TRUE)

4.	Select	the	columns	and	filter	the	data.	This	dataset	contains	data	from	2010
going	forward.	We’ll	use	data	from	December	of	the	years	2010	to	2017	for	the
Austin,	TX	metropolitan	area.

df	<-	read_csv(“County_Zri_SingleFamilyResidenceRental.csv”,col_	names	=
TRUE)
df	%>%

select(RegionName,	State,	Metro,	`2010`	=	`2010-12`,	`2011`	=	`2011-12`,
`2012`	=	`2012-12`,	`2013`	=	`2013-12`,	`2014`	=	`2014-12`,	`2015`	=	`2015-
12`,	`2016`	=	`2016-12`,	`2017`	=	`2017-12`)	%>%
filter(State	==	‘TX’	&	Metro	==	‘Austin’)	%>%

5.	Gather	the	data.

df	<-	read_csv(“County_Zri_SingleFamilyResidenceRental.csv”,col_	names	=
TRUE)
df	%>%

select(RegionName,	State,	Metro,	`2010`	=	`2010-12`,	`2011`	=	`2011-12`,
`2012`	=	`2012-12`,	`2013`	=	`2013-12`,	`2014`	=	`2014-12`,	`2015`	=	`2015-
12`,	`2016`	=	`2016-12`,	`2017`	=	`2017-12`)	%>%
filter(State	==	‘TX’	&	Metro	==	‘Austin’)	%>%
gather(`2010`,	`2011`,	`2012`,	`2013`,	`2014`,	`2015`,	`2016`,
`2017`,key=’YR’,	value=’ZRI’)	%>%

6.	Call	the
ggplot()
function	to	plot	the	data.	In	this	plot	we’ll	also	add	labels	to	each	point.

df	<-	read_csv(“County_Zri_SingleFamilyResidenceRental.csv”,col_	names	=
TRUE)
df	%>%

select(RegionName,	State,	Metro,	`2010`	=	`2010-12`,	`2011`	=	`2011-12`,
`2012`	=	`2012-12`,	`2013`	=	`2013-12`,	`2014`	=	`2014-12`,	`2015`	=	`2015-
12`,	`2016`	=	`2016-12`,	`2017`	=	`2017-12`)	%>%
filter(State	==	‘TX’	&	Metro	==	‘Austin’)	%>%



gather(`2010`,	`2011`,	`2012`,	`2013`,	`2014`,	`2015`,	`2016`,	`2017`,key=’YR’,
value=’ZRI’)	%>%
ggplot(mapping	=	aes(x=YR,	y=ZRI,	colour=RegionName))	+	geom_	point()
+	geom_text(aes(label=ZRI,	vjust	=	-0.5),	size=3)	+	ggtitle(“Single	Family
Rental	Values	Have	Increased	in	the	Austin	Metro	Area”)	+	xlab(“Year”)	+
ylab(“Rental	Values”)

7.	You	can	check	your	work	against	the	solution	file	CS2_Exercise2.R.
8.	Save	the	script	and	then	run	it	to	see	the	output	shown	in	the	screenshot	below.



Exercise	3:	Determining	the	Price-Rent	Ratio	for	the	Austin
metropolitan	area

The	price-to-rent	ratio	is	a	measure	of	the	relative	affordability	of	renting	and
buying	in	a	given	housing	market.	It	is	calculated	as	the	ratio	of	home	prices	to
annual	rental	rates.	So,	for	example,	in	a	real	estate	market	where,	on	average,	a
home	worth	$200,000	could	rent	for	$1000	a	month,	the	price-rent	ratio	is	16.67.
That’s	determined	using	the	formula:	$200,000	÷	(12	x	$1,000).	In	general,	the
lower	the	ratio,	the	more	favorable	to	real	estate	investors	looking	for	residential
property.

In	this	exercise	you’ll	join	the	Zillow	home	value	data	to	the	rental	data,	create	a
new	column	to	hold	the	price-rent	ratio,	calculate	the	ratio,	and	plot	the	data	as	a
bar	chart.	1.	In	RStudio	select
File	|	New	File	|	R	Script	and	then	save	the	file	to	the	CaseStudy1	folder	with	a
name	of	CS1_Exercise3.R
.	2.	At	the	top	of	the	script,	load	the	packages	that	will	be	used	in	this	exercise.

library(readr)	library(dplyr)	library(ggplot2)



3.	In	this	step	you’ll	read	the	residential	valuation	information	from	the	Zillow
file,	define	the	columns	that	should	be	used,	filter	the	data	and	gather	the	data.	In
this	case	we’re	going	to	filter	the	data	so	that	only	Travis	County	is	included.
Add	the	following	lines	of	code	to	your	script	to	accomplish	this	task.

dfHomeVals	<-	read_csv(“County_Zhvi_SingleFamilyResidence.
csv”,col_names	=	TRUE)
dfHomeVals	<-	select(dfHomeVals,	RegionName,	State,	Metro,`2010`	=
dfHomeVals	<-	select(dfHomeVals,	RegionName,	State,	Metro,`2010`	=	12`,
`2014`	=	`2014-12`,	`2015`	=	`2015-12`,	`2016`	=	`2016-12`,	`2017`	=	`2017-
12`)
dfHomeVals	<-	filter(dfHomeVals,	State	==	‘TX’	&	Metro	==	‘Austin’	&
RegionName	==	‘Travis’)
dfHomeVals	<-	gather(dfHomeVals,	`2010`,	`2011`,	`2012`,	`2013`,	`2014`,
`2015`,	`2016`,	`2017`,key=’YR’,	value=’ZHVI’)

4.	Now	do	the	same	for	the	rental	data.

dfRentVals	<-	read_csv(“County_Zri_SingleFamilyResidenceRental.
csv”,col_names	=	TRUE)
dfRentVals	<-	select(dfRentVals,	RegionName,	State,	Metro,	`2010`	=	`2010-
12`,	`2011`	=	`2011-12`,	`2012`	=	`2012-12`,	`2013`	=	=	`2010-12`,	`2011`	=
`2011-12`,	`2012`	=	`2012-12`,	`2013`	=	12`,	`2017`	=	`2017-12`)
dfRentVals	<-	filter(dfRentVals,	State	==	‘TX’	&	Metro	==	‘Austin’	&
RegionName	==	‘Travis’)
dfRentVals	<-	gather(dfRentVals,	`2010`,	`2011`,	`2012`,	`2013`,	`2014`,	`2015`,
`2016`,	`2017`,key=’YR’,	value=’ZRI’)

5.	The	two	previous	steps	created	data	frames	for	the	residential	home	value	and
rental	data.	In	this	step	we’ll	join	those	two	data	frames	together	using	the	dplyr
package.	Add	the	line	of	code	you	see	below	to	your	script.	This	uses	the
inner_join()	function,	which	is	the	simplest	type	of	join.	An	inner	join	matches
pairs	of	observations	whenever	their	keys	are	equal.

df	<-	inner_join(dfHomeVals,	dfRentVals,	by	=	‘YR’)

6.	If	you	were	to	view	the	resulting	data	frame	at	this	point	it	would	look	like	the
screenshot	below.	Notice	that	the	ZHVI	(residential	home	value)	and	ZRI	(rental
value)	columns	are	attached.



7.	Next,	use	the	mutate()	function	to	create	a	column	called	
PriceRentRatio,	and	populate	the	rows	using	the	calculation	seen	below.

df	<-	mutate(df,	PriceRentRatio	=	ZHVI	/	(12	*	ZRI))

8.	If	you	were	to	view	the	results	of	the	mutate()	function	it	would	appear	as
seen	in	the	screenshot	below.	Notice	that	each	year	includes	a	PriceRentRatio
value	that	has	been	calculated.

9.	Finally,	create	a	bar	chart	using	geom_col()	with	PriceRentRatio	as	the	y	axis,
and	YR	as	the	x
axis.
ggplot(data=df)	+	geom_col(mapping	=	aes(x=YR,	y=PriceRentRatio),
fill=”red”)
10.	Your	entire	script	should	appear	as	seen	below.

library(readr)
library(dplyr)
library(ggplot2)

dfHomeVals	<-	read_csv(“County_Zhvi_SingleFamilyResidence.
csv”,col_names	=	TRUE)
dfHomeVals	<-	select(dfHomeVals,	RegionName,	State,	Metro,`2010`	=



dfHomeVals	<-	select(dfHomeVals,	RegionName,	State,	Metro,`2010`	=	12`,
`2014`	=	`2014-12`,	`2015`	=	`2015-12`,	`2016`	=	`2016-12`,	`2017`	=	`2017-
12`)
dfHomeVals	<-	filter(dfHomeVals,	State	==	‘TX’	&	Metro	==	‘Austin’	&
RegionName	==	‘Travis’)
dfHomeVals	<-	gather(dfHomeVals,	`2010`,	`2011`,	`2012`,	`2013`,	`2014`,
`2015`,	`2016`,	`2017`,key=’YR’,	value=’ZHVI’)

dfRentVals	<-	read_csv(“County_Zri_SingleFamilyResidenceRental.
csv”,col_names	=	TRUE)
dfRentVals	<-	select(dfRentVals,	RegionName,	State,	Metro,	`2010`	=	`2010-
12`,	`2011`	=	`2011-12`,	`2012`	=	`2012-12`,	`2013`	=	=	`2010-12`,	`2011`	=
`2011-12`,	`2012`	=	`2012-12`,	`2013`	=	12`,	`2017`	=	`2017-12`)
dfRentVals	<-	filter(dfRentVals,	State	==	‘TX’	&	Metro	==	‘Austin’	&
RegionName	==	‘Travis’)
dfRentVals	<-	gather(dfRentVals,	`2010`,	`2011`,	`2012`,	`2013`,	`2014`,	`2015`,
`2016`,	`2017`,key=’YR’,	value=’ZRI’)

#join	the	two	df
df	<-	inner_join(dfHomeVals,	dfRentVals,	by	=	‘YR’)
df	<-	mutate(df,	PriceRentRatio	=	ZHVI	/	(12	*	ZRI))
ggplot(data=df)	+	geom_col(mapping	=	aes(x=YR,	y=PriceRentRatio),
fill=”red”)

11.	You	can	also	check	your	work	against	the	solution	file
CS2_Exercise3.R
.

12.	Save	the	script	and	then	run	it	to	see	the	output	shown	in	the	screenshot
below.	Price-rent	ratios	have	been	steadily	increasing	during	the	current	decade.



Exercise	4:	Comparing	residential	home	values	in	Austin	to	other
Texas	and	U.S.	metropolitan	areas

In	this	exercise	we’ll	compare	residential	home	values	from	the	Austin
metropolitan	area	to	other	large	metropolitan	areas	in	Texas	including	San
Antonio,	Dallas,	and	Houston.	For	this	exercise	we’ll	create	a	box	plot	contained
within	a	violin	plot.

1.	In	RStudio	select
File	|	New	File	|	R	Script	and	then	save	the	file	to	the	CaseStudy1	folder	with	a
name	of	CS2_Exercise4.R
.	2.	At	the	top	of	the	script,	load	the	packages	that	will	be	used	in	this	exercise.

library(readr)	library(dplyr)	library(ggplot2)

3.	Use	the
read_csv()	function	from	the	readr
package	to	load	the	data	into	a	data	frame.
df	<-	read_csv(“County_Zhvi_SingleFamilyResidence.csv”,col_names	=	TRUE)



4.	Select	the	columns	and	filter	the	data.	This	dataset	contains	data	from	2010
going	forward.	We’ll	use	data	from	December	of	the	years	2010	to	2017	for	the
Austin,	TX	metropolitan	area.

dfHomeVals	<-	read_csv(“County_Zhvi_SingleFamilyResidence.
csv”,col_names	=	TRUE)
dfHomeVals	%>%

select(RegionName,	State,	Metro,`2010`	=	`2010-12`,	`2011`	=	`2011-12`,
`2012`	=	`2012-12`,	`2013`	=	`2013-12`,	`2014`	=	`2014-12`,	`2015`	=	`2015-
12`,	`2016`	=	`2016-12`,	`2017`	=	`2017-12`)	%>%

5.	Filter	the	data	frame	to	include	only	Austin,	San	Antonio,	Dallas-Fort	Worth,
and	Houston.	These	are	the	four	major	metropolitan	areas	in	the	state.

dfHomeVals	<-	read_csv(“County_Zhvi_SingleFamilyResidence.
csv”,col_names	=	TRUE)
dfHomeVals	%>%

select(RegionName,	State,	Metro,`2010`	=	`2010-12`,	`2011`	=	`2011-12`,
`2012`	=	`2012-12`,	`2013`	=	`2013-12`,	`2014`	=	`2014-12`,	`2015`	=	`2015-
12`,	`2016`	=	`2016-12`,	`2017`	=	`2017-12`)	%>%
filter(State	==	‘TX’	&	Metro	%in%	c(“Austin”,	“San	Antonio”,	“Dallas-
Fort	Worth”,	“Houston”))	%>%

6.	Gather	the	data	frame.

dfHomeVals	%>%
select(RegionName,	State,	Metro,`2010`	=	`2010-12`,	`2011`	=	`2011-12`,
`2012`	=	`2012-12`,	`2013`	=	`2013-12`,	`2014`	=	`2014-12`,	`2015`	=	`2015-
12`,	`2016`	=	`2016-12`,	`2017`	=	`2017-12`)	%>%
filter(State	==	‘TX’	&	Metro	%in%	c(“Austin”,	“San	Antonio”,	“Dallas-Fort
Worth”,	“Houston”))	%>%
gather(`2010`,	`2011`,	`2012`,	`2013`,	`2014`,	`2015`,	`2016`,
`2017`,key=’YR’,	value=’ZHVI’)	%>%

7.	Group	the	data	by	metropolitan	area.

dfHomeVals	<-	read_csv(“County_Zhvi_SingleFamilyResidence.
csv”,col_names	=	TRUE)



dfHomeVals	%>%

select(RegionName,	State,	Metro,`2010`	=	`2010-12`,	`2011`	=	`2011-12`,
`2012`	=	`2012-12`,	`2013`	=	`2013-12`,	`2014`	=	`2014-12`,	`2015`	=	`2015-
12`,	`2016`	=	`2016-12`,	`2017`	=	`2017-12`)	%>%
filter(State	==	‘TX’	&	Metro	%in%	c(“Austin”,	“San	Antonio”,	“Dallas-Fort
Worth”,	“Houston”))	%>%
gather(`2010`,	`2011`,	`2012`,	`2013`,	`2014`,	`2015`,	`2016`,	`2017`,key=’YR’,
value=’ZHVI’)	%>%
group_by(Metro)	%>%

8.	Use
ggplot()	with	geom_violin()	and	geom_boxplot()
to	create	the	plot.

dfHomeVals	<-	read_csv(“County_Zhvi_SingleFamilyResidence.
csv”,col_names	=	TRUE)
dfHomeVals	%>%

select(RegionName,	State,	Metro,`2010`	=	`2010-12`,	`2011`	=	`2011-12`,
`2012`	=	`2012-12`,	`2013`	=	`2013-12`,	`2014`	=	`2014-12`,	`2015`	=	`2015-
12`,	`2016`	=	`2016-12`,	`2017`	=	`2017-12`)	%>%
filter(State	==	‘TX’	&	Metro	%in%	c(“Austin”,	“San	Antonio”,	“Dallas-Fort
Worth”,	“Houston”))	%>%
gather(`2010`,	`2011`,	`2012`,	`2013`,	`2014`,	`2015`,	`2016`,	`2017`,key=’YR’,
value=’ZHVI’)	%>%
group_by(Metro)	%>%
ggplot(mapping	=	aes(x=Metro,	y=ZHVI))	+	geom_violin()	+
geom_boxplot(width=0.1)	+	ggtitle(“ZHVI	for	Metro	Texas”)	+
xlab(“Metro”)	+	ylab(“ZHVI”)

9.	You	can	also	check	your	work	against	the	solution	file
CS2_Exercise4.R
.

10.	Save	the	script	and	then	run	it	to	see	the	output	shown	in	the	screenshot
below.



11.	Challenge:	Update	the	script	to	include	the	following	metropolitan	areas:
Austin,	Denver,	Phoenix,	Salt	Lake	City,	Boise,	Portland.	You	can	check	your
code	against	the	solution	file	CS2_Exercise4.R.	The	output	plot	should	appear	as
seen	in	the	screenshot	below.



12.	Finally,	we’ll	create	a	script	that	displays	the	ZHVI	values	for	each
metropolitan	area	in	a	facet	plot.	In	RStudio	select	File	|	New	File	|	R	Script	and
then	save	the	file	to	the	CaseStudy1	folder	with	a	name	of	CS2_Exercise4B.R.

13.	At	the	top	of	the	script,	load	the	packages	that	will	be	used	in	this	exercise.

library(readr)
library(dplyr)
library(ggplot2)

14.	Use	the
read_csv()	function	from	the	readr
package	to	load	the	data	into	a	data	frame.
df	<-	read_csv(“County_Zhvi_SingleFamilyResidence.csv”,col_names	=	TRUE)
15.	Define	the	columns	to	use.	In	this	case	we’ll	use	the	years	2000-2017.

dfHomeVals	%>%
select(RegionName,	State,	Metro,	`2000`	=	`2000-05`,	`2001`	=
select(RegionName,	State,	Metro,	`2000`	=	`2000-05`,	`2001`	=
select(RegionName,	State,	Metro,	`2000`	=	`2000-05`,	`2001`	=	05`,	`2008`	=
`2008-05`,	`2009`	=	`2009-05`,	`2010`	=	`2010-05`,	`2011`	=	`2011-05`,	`2012`



=	`2012-05`,	`2013`	=	`2013-05`,	`2014`	=	`2014-05`,	`2015`	=	`2015-05`,
`2016`	=	`2016-05`,	`2017`	=	`2017-05`,	`2018`	=	`2018-05`)	%>%

16.	Filter	the	data	frame	to	include	only	specific	metropolitan	areas.

dfHomeVals	<-	read_csv(“County_Zhvi_SingleFamilyResidence.
csv”,col_names	=	TRUE)
dfHomeVals	%>%

select(RegionName,	State,	Metro,	`2000`	=	`2000-05`,	`2001`	=

select(RegionName,	State,	Metro,	`2000`	=	`2000-05`,	`2001`	=

select(RegionName,	State,	Metro,	`2000`	=	`2000-05`,	`2001`	=	05`,	`2008`	=
`2008-05`,	`2009`	=	`2009-05`,	`2010`	=	`2010-05`,	`2011`	=	`2011-05`,	`2012`
=	`2012-05`,	`2013`	=	`2013-05`,	`2014`	=	`2014-05`,	`2015`	=	`2015-05`,
`2016`	=	`2016-05`,	`2017`	=	`2017-05`,	`2018`	=	`2018-05`)	%>%
filter(Metro	%in%	c(“Austin”,	“Denver”,	“Phoenix”,	“Portland”,	“Salt
Lake	City”))	%>%

17.	Gather	the	data.

dfHomeVals	<-	read_csv(“County_Zhvi_SingleFamilyResidence.
csv”,col_names	=	TRUE)
dfHomeVals	%>%

select(RegionName,	State,	Metro,	`2000`	=	`2000-05`,	`2001`	=

select(RegionName,	State,	Metro,	`2000`	=	`2000-05`,	`2001`	=

select(RegionName,	State,	Metro,	`2000`	=	`2000-05`,	`2001`	=	05`,	`2008`	=
`2008-05`,	`2009`	=	`2009-05`,	`2010`	=	`2010-05`,	`2011`	=	`2011-05`,	`2012`
=	`2012-05`,	`2013`	=	`2013-05`,	`2014`	=	`2014-05`,	`2015`	=	`2015-05`,
`2016`	=	`2016-05`,	`2017`	=	`2017-05`,	`2018`	=	`2018-05`)	%>%
filter(Metro	%in%	c(“Austin”,	“Denver”,	“Phoenix”,	“Portland”,	“Salt	Lake
City”))	%>%
gather(`2000`,	`2001`,	`2002`,	`2003`,	`2004`,	`2005`,	`2006`,	`2007`,	`2008`,
`2009`,	`2010`,	`2011`,	`2012`,	`2013`,	`2014`,	`2015`,	`2016`,
`2017`,key=’YR’,	value=’ZHVI’)	%>%



18.	Group	the	data	by	metropolitan	area.

dfHomeVals	<-	read_csv(“County_Zhvi_SingleFamilyResidence.
csv”,col_names	=	TRUE)
dfHomeVals	%>%

select(RegionName,	State,	Metro,	`2000`	=	`2000-05`,	`2001`	=

select(RegionName,	State,	Metro,	`2000`	=	`2000-05`,	`2001`	=

select(RegionName,	State,	Metro,	`2000`	=	`2000-05`,	`2001`	=	05`,	`2008`	=
`2008-05`,	`2009`	=	`2009-05`,	`2010`	=	`2010-05`,	`2011`	=	`2011-05`,	`2012`
=	`2012-05`,	`2013`	=	`2013-05`,	`2014`	=	`2014-05`,	`2015`	=	`2015-05`,
`2016`	=	`2016-05`,	`2017`	=	`2017-05`,	`2018`	=	`2018-05`)	%>%
filter(Metro	%in%	c(“Austin”,	“Denver”,	“Phoenix”,	“Portland”,	“Salt	Lake
City”))	%>%
gather(`2000`,	`2001`,	`2002`,	`2003`,	`2004`,	`2005`,	`2006`,	`2007`,	`2008`,
`2009`,	`2010`,	`2011`,	`2012`,	`2013`,	`2014`,	`2015`,	`2016`,
`2017`,key=’YR’,	value=’ZHVI’)	%>%
group_by(Metro)	%>%

19.	Plot	the	data	as	a	facet	plot.

dfHomeVals	<-	read_csv(“County_Zhvi_SingleFamilyResidence.
csv”,col_names	=	TRUE)
dfHomeVals	%>%

select(RegionName,	State,	Metro,	`2000`	=	`2000-05`,	`2001`	=

select(RegionName,	State,	Metro,	`2000`	=	`2000-05`,	`2001`	=

select(RegionName,	State,	Metro,	`2000`	=	`2000-05`,	`2001`	=	05`,	`2008`	=
`2008-05`,	`2009`	=	`2009-05`,	`2010`	=	`2010-05`,	`2011`	=	`2011-05`,	`2012`
=	`2012-05`,	`2013`	=	`2013-05`,	`2014`	=	`2014-05`,	`2015`	=	`2015-05`,
`2016`	=	`2016-05`,	`2017`	=	`2017-05`,	`2018`	=	`2018-05`)	%>%
filter(Metro	%in%	c(“Austin”,	“Denver”,	“Phoenix”,	“Portland”,	“Salt	Lake
City”))	%>%
gather(`2000`,	`2001`,	`2002`,	`2003`,	`2004`,	`2005`,	`2006`,	`2007`,	`2008`,
`2009`,	`2010`,	`2011`,	`2012`,	`2013`,	`2014`,	`2015`,	`2016`,
`2017`,key=’YR’,	value=’ZHVI’)	%>%



group_by(Metro)	%>%
ggplot(mapping	=	aes(x=YR,	y=ZHVI))	+	geom_point()	+	facet_
wrap(~Metro)	+	geom_smooth(method=lm,	se=TRUE)	+	ggtitle(“ZHVI	by
Metro	Area”)	+	xlab(“Year”)	+	ylab(“ZHVI”)

20.	You	can	also	check	your	work	against	the	solution	file
CS2_	Exercise4B.R.
21.	Save	the	script	and	then	run	it	to	see	the	output	shown	in	the	screenshot
below.



Data	Visualization	and	Exploration	with	R

Today,	data	science	is	an	indispensable	tool	for	any	organization,	allowing	for
the	analysis	and	optimization	of	decisions	and	strategy.	R	has	become	the
preferred	software	for	data	science,	thanks	to	its	open	source	nature,	simplicity,
applicability	to	data	analysis,	and	the	abundance	of	libraries	for	any	type	of
algorithm.

This	book	will	allow	the	student	to	learn,	in	detail,	the	fundamentals	of	the	R
language	and	additionally	master	some	of	the	most	efficient	libraries	for	data
visualization	in	chart,	graph,	and	map	formats.	The	reader	will	learn	the
language	and	applications	through	examples	and	practice.	No	prior	programming
skills	are	required.

We	begin	with	the	installation	and	con	figuration	of	the	R	environment	through
RStudio.	As	you	progress	through	the	exercises	in	this	hands-on	book	you’ll
become	thoroughly	acquainted	with	R’s	features	and	the	popular	tidyverse
package.	With	this	book,	you	will	learn	about	the	basic	concepts	of	R
programming,	work	efficiently	with	graphs,	charts,	and	maps,	and	create
publication-ready	documents	using	real	world	data.	The	detailed	step-by-step
instructions	will	enable	you	to	get	a	clean	set	of	data,	produce	engaging
visualizations,	and	create	reports	for	the	results.

What	you	will	learn	how	to	do	in	this	book:

Introduction	to	the	R	programming	language	and	R	Studio

Using	the	tidyverse	package	for	data	loading,	transformation,	and
visualization

Get	a	tour	of	the	most	important	data	structures	in	R

Learn	techniques	for	importing	data,	manipulating	data,
performing	analysis,	and
producing	useful	data
visualization

Data	visualization	techniques	with	ggplot2



Geographic	visualization	and	maps	with	ggmap

Turning	your	analyses	into	high	quality	documents,	reports,	and
presentations	with	R	Markdown.

Hands	on	case	studies	designed	to	replicate	real	world	projects	and
reinforce	the	knowledge	you	learn	in	the	book

For	more	information	visit	geospatialtraining.com!




