

www.dbooks.org

https://www.dbooks.org/

By

Dirk Strauss

Foreword by Daniel Jebaraj

 3

Copyright © 2021 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

ISBN: 978-1-64200-209-6

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: Courtney Wright

Acquisitions Coordinator: Tres Watkins, VP of content, Syncfusion, Inc.

Proofreader: Graham High, senior content producer, Syncfusion, Inc.

www.dbooks.org

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/
https://www.dbooks.org/

 4

Table of Contents

The Story Behind the Succinctly Series of Books ... 7

About the Author ... 9

Chapter 1 The History of C# ..10

C# language version ..10

C# version 1.0 ..11

C# version 1.2 ..11

C# version 2.0 ..11

C# version 3.0 ..12

C# version 4.0 ..12

C# version 5.0 ..12

C# version 6.0 ..13

C# version 7.0 ..13

C# version 7.1 ..13

C# version 7.2 ..14

C# version 7.3 ..14

C# version 8.0 ..15

Chapter 2 C# 7 Features Recap...16

out variables ...16

Discards ...18

Tuples ..19

Tuple equality ..20

Using a tuple as a method return type ...20

Pattern matching ..22

Local functions ...24

 5

Expression-bodied members for constructors and finalizers ...27

Generalized async return types ..28

Chapter 3 C# 8.0 Features ...31

Default interface methods ...31

Nullable reference types ...32

The null-forgiving operator ...34

Asynchronous streams ...35

Asynchronous disposable ...37

Indices and ranges ...38

Switch expressions ...40

Readonly members ..41

Using declarations ..42

Static local functions ...43

Disposable ref structs ...45

Null-coalescing assignment ..46

Unmanaged constructed types ...47

Enhancement of interpolated verbatim strings ..49

Enabling C# 8 in any .NET project ..49

Not all types are included ...52

Indexes and ranges ...52

Using Directory.Build.props ...53

Chapter 4 The Future of C# and C# 9..54

Top-level programs ..54

Relational and logical patterns ..56

Target-typed new expressions ..59

Init-only properties ..60

www.dbooks.org

https://www.dbooks.org/

 6

Init accessors and readonly fields ...61

Records ..61

More C# 9.0 goodies ..62

Chapter 5 .NET Productivity Features in Visual Studio ...63

Developer PowerShell inside Visual Studio ..63

The Visual Studio Git Window ..64

Drag and drop projects to add a reference ...69

Searching Visual Studio ...71

Code analyzers ..73

File header support in .editorconfig...75

C# language resources ..77

C# language reference ..77

C# language proposals ..77

C# language design meetings ..77

C# language design ...77

 7

The Story Behind the Succinctly Series

 of Books

Daniel Jebaraj, Vice President

Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the

Microsoft platform. This puts us in the exciting but challenging position of always

being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about

every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the internet and more and more books are

being published, even on topics that are relatively new, one aspect that continues to inhibit us is

the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for

relevant blog posts and other articles. Just as everyone else who has a job to do and customers

to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that

would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can

be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything

wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The

book you now hold in your hands, and the others available in this series, are a result of the

authors’ tireless work. You will find original content that is guaranteed to get you up and running

in about the time it takes to drink a few cups of coffee.

S

www.dbooks.org

https://www.dbooks.org/

 8

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.

Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader

frameworks than anyone else on the market. Developer education greatly helps us market and

sell against competing vendors who promise to “enable AJAX support with one click,” or “turn

the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at

succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic

of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the

word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

 9

About the Author

Dirk Strauss is a software developer from South Africa with over 13 years of programming

experience. He has extensive experience in SYSPRO customization, with a focus on C# and

web development. He studied at Nelson Mandela University, where he wrote software part-time

to gain a better understanding of the technology. He remains passionate about writing code and

sharing what he learns with others.

www.dbooks.org

https://www.dbooks.org/

 10

Chapter 1 The History of C#

C# is continuing to evolve and improve with each major release of the language. As the C#
team is innovating and adding features to C#, its members share their thought process around
the design of C# with the community.

If you head over to the dotnet/Roslyn repository on GitHub, you will see detailed language
feature statuses as well as features that the C# team is considering for upcoming releases. You
can also view a history C# on the Microsoft Docs. As of this writing, of particular interest are the
planned features surrounding C# 9. Later in this book, we will have a look at what is planned for
C# 9.

The C# build tools will default the language version to the latest major release. As of C# 7.0,
however, developers started seeing more point releases in the form of versions C# 7.1, C# 7.2,
and C# 7.3.

C# language version

When creating a new project in Visual Studio, the C# compiler figures out which version of C# to
use based on the target framework of your project. This ensures you do not use a language
version that requires types or runtime behavior not available in the target framework of the
project.

It is worth mentioning that C# 8.0 and higher will only be supported on .NET Core 3.x and later.
Table 1 outlines the C# language defaults based on the target framework.

Table 1: Language version default mapping

Target framework Version C# language default

.NET Core 3.x C# 8.0

.NET Core 2.x C# 7.3

.NET Standard 2.1 C# 8.0

.NET Standard 2.0 C# 7.3

.NET Standard 1.x C# 7.3

.NET Framework All C# 7.3

As you will see later in this book, you can override the default language version. You can do this
by:

• Manually editing your .csproj file (explained later).

https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-version-history

 11

• Configuring multiple projects using a Directory.Build.props file.
• Configuring the -langversion compiler option.

For more on the -langversion compiler option, refer to this .NET documentation.

C# version 1.0

The release of Visual Studio .NET 2002 brought with it C# 1.0, a Java-looking, general-purpose,
object-oriented language. It didn’t contain LINQ or generics, but what it did offer developers was
a viable alternative to Java, on a Windows platform.

C# 1.0 included the following:

• Classes
• Structs
• Interfaces
• Events
• Properties
• Delegates
• Expressions
• Statements
• Attributes

Having a look at these features today, one would be excused for feeling a little spoiled with the
features available in C# 8.0.

C# version 1.2

Visual Studio .NET 2003 shipped with C# 1.2 and only contained a few small feature
enhancements. It is here that code generated in foreach loops would call Dispose on an

IEnumerator if it implemented IDisposable.

C# version 2.0

When Visual Studio 2005 was released in 2005, we saw some nice features, such as:

• Generics
• Partial classes
• Anonymous methods
• Nullable value types
• Iterators
• Covariance and contravariance

Existing features were also improved, such as:

• Getter/setter separate accessibility.

www.dbooks.org

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/langversion-compiler-option
https://www.dbooks.org/

 12

• Method group conversions (simply assigning the name of a method to a delegate without
using a new operator).

• Static classes.
• Delegate inference.

In many respects, C# 2.0 was a turning point in the language, especially with the introduction of
generics and iterators.

C# version 3.0

In the latter part of 2007, Visual Studio 2008 was released. The language features it provided
came with the release of the .NET Framework 3.5. These were as follows:

• Auto-implemented properties.
• Anonymous types.
• Query expressions (LINQ).
• Lambda expressions.
• Expression trees.
• Extension methods.
• Implicitly typed local variables.
• Partial methods.
• Object and collection initializers.

LINQ was one of the killer features of C#. This allowed you to write SQL-style, declarative
queries on collections, for example. Initially, I struggled with LINQ (and I’m not the only one).
These days, it is just quicker and more concise to write. C# 3.0 was truly a groundbreaking
release.

C# version 4.0

Visual Studio 2010 brought C# 4.0. The features added in version 4.0 were:

• Dynamic binding.
• Named/optional arguments.
• Generic covariant and contravariant.
• Embedded interop types.

For me, the introduction of optional parameters was a breath of fresh air, but it was the addition
of the dynamic keyword in version 4.0 that stole the show.

C# version 5.0

C# version 5.0 was released with Visual Studio 2012 and made another groundbreaking
addition to the C# language—the introduction of async and await for asynchronous

programming. C# 5.0 introduced:

• Asynchronous members

 13

• Caller info attributes

Asynchrony was now baked into C# as a first-class citizen.

C# version 6.0

Visual Studio 2015 brought C# version 6.0, and it is here that we started seeing smaller features
that made developers more productive. These included:

• using static (no more Console.this and Console.that).
• Read-only auto-properties.
• Auto-property initializers.
• Expression-bodied function members.
• Null-conditional operators.
• String interpolation.
• Exception filters.
• The nameof expression.
• await in Catch and Finally blocks.

I remember Mads Torgersen saying that C# 6.0 added a lot of syntactic sugar to the language. I
agree with him 100 percent.

C# version 7.0

Visual Studio 2017 saw C# version 7.0 released to the developer community. It introduced the
following language features:

• out variables.
• Tuples.
• Discards.
• Pattern matching.
• ref locals and returns.
• Local functions.
• More expression-bodied members.
• throw expressions.
• Generalized async return types.
• Numeric literal syntax improvements.

Developers could now write cleaner code and be more productive.

C# version 7.1

With C# 7.0, we started seeing point releases on C#, starting with version 7.1. This marked an
increased release cadence for C#. New language features for this release were:

• async Main method.
• default literal expressions.

www.dbooks.org

https://www.dbooks.org/

 14

• Inferred tuple element names.
• Pattern matching on generic type parameters.

C# 7.1 also added the language version selection configuration element, as well as new
compiler behavior.

C# version 7.2

C# 7.2 added a few more smaller language features to C#. These were:

• The addition of code enhancements allowing developers to write safe, efficient code:
o The in modifier on parameters.
o The ref readonly modifier on method returns.
o The readonly struct declaration.
o The ref struct declaration.

• Non-trailing named arguments.
• Leading underscores in numeric literals.
• private protected access modifier.
• Conditional ref expressions.

You can read more on writing safe and efficient code in C# here.

C# version 7.3

The point releases of C# 7 allowed developers to get their hands onto new language features
sooner rather than later. It was the release of C# 7.3 that had two main themes. One theme
allowed safe code to be as performant as unsafe code, and the other provided additional
improvements to existing features.

From a better performant safe code perspective, we saw:

• The accessing of fields without pinning.
• Reassigning ref local variables.
• The use of initializers on stackalloc arrays.
• Using fixed statements with any type that supports a pattern.
• Additional generic constraints (you will see this in action with the unmanaged constraint

later on in this book).

From an enhancement perspective, we saw:

• Being able to compare tuple types with == and !=.
• The use of expression variables in more locations.
• Attaching attributes to the backing field of auto-implemented properties.
• Improved method resolution when arguments differ by in.
• Fewer ambiguous cases for overload resolution.

We also saw new compiler options: -publicsign to enable open-source software signing of

assemblies, and -pathmap to provide a mapping for source directories.

https://docs.microsoft.com/en-us/dotnet/csharp/write-safe-efficient-code

 15

C# version 8.0

C# 8.0 specifically targets .NET Core. This is what this book is all about, and why I would
imagine you are reading it.

The following features and enhancements were added to C# 8.0:

• Readonly members.
• Default interface methods.
• Pattern matching enhancements.
• Using declarations.
• Static local functions.
• Disposable ref structs.
• Nullable reference types.
• Asynchronous streams.
• Indices and ranges.
• Null-coalescing assignment.
• Unmanaged constructed types.
• Stackalloc in nested types.
• Enhancements to interpolated verbatim strings.

There is a lot to consume here. If you have little experience with C#, the best place to start is C#
7. This book will take a look at C# 7 before delving into the new features of C# 8.0.

If you are already comfortable with C# 7, then dive straight into the chapter on C# 8.0. Are you
ready? Let’s go.

www.dbooks.org

https://www.dbooks.org/

 16

Chapter 2 C# 7 Features Recap

To appreciate what C# 8.0 has to offer developers, it is important that we revisit some of the

features available in C# 7. The C# language has been evolving, but it feels like the incremental

releases of C#, which bring new features to the language, have been increasing in recent years.

 Note: Most of the code examples in this ebook are presented as instance
methods rather than static methods. If you wish to experiment with the example
methods, you may want to decorate the examples with the static modifier so you
can call them directly as opposed to placing them inside a class definition,
instantiating an object instance, and then calling the method.

Please note that the public Demo used in some of the code samples is the constructor for a

class called Demo. I encourage you to download the code for this book from GitHub.

out variables

C# allows developers to use out variables. You might have used them before, and they are

quite handy in certain circumstances. One thing that has always bugged me, though (before C#
7 was released), was the need for creating a “loose-hanging” variable. Consider Code Listing 1.
The declaration of the numberOfCopies variable in the constructor of the Demo class was

necessary in order to use out variables in C#.

Code Listing 1: The out variable before C# 7

public Demo()
{
 int numberOfCopies = 0;
 GetNumberOfCopies(out numberOfCopies);
}

private void GetNumberOfCopies(out int numCopies)
{
 numCopies = 20;
}

Here is this (in my opinion) ugly-looking code required to make use of a truly neat language
feature in C#. Along comes C# 7, and shakes things up a little with an improved syntax for out

variables. Let’s consider the same code (in the constructor of the Demo class) from Code Listing

1, and rewrite it slightly:

https://github.com/SyncfusionSuccinctlyE-Books/CSharp-Features-Succinctly

 17

Code Listing 2: The out variable in C# 7

public Demo()
{
 GetNumberOfCopies(out int numberOfCopies);
}

private void GetNumberOfCopies(out int numCopies)
{
 numCopies = 20;
}

You will notice that C# 7 allowed developers to get rid of the unnecessary variable declaration
int numberOfCopies = 0; and declare the out variable in the argument list of the

GetNumberOfCopies method call.

This results in much cleaner code and makes the code easier to read. But C# 7 allows
developers to go one step further. If you have been following along in Visual Studio, you will see
a green squiggly line under the int in your argument list of the GetNumberOfCopies method

call.

 Note: If you do not see a code style suggestion, you might have suppressed this
code style rule in an EditorConfig file or your code style preferences. For more
information on code style preferences, see this article in Microsoft Docs.

This squiggly line is suggesting that you replace the int with the var keyword, as seen in Code

Listing 3.

Code Listing 3: Replacing the int with var

public Demo()
{
 GetNumberOfCopies(out var numberOfCopies);
}

private void GetNumberOfCopies(out int numCopies)
{
 numCopies = 20;
}

If you think about it, this is perfectly logical. The type of numberOfCopies is inferred from the

type in the method signature of the GetNumberOfCopies method. This syntax can be used for

any out variable, such as in a TryParse.

Code Listing 4: The out variable in a TryParse

if (int.TryParse("3", out var factor))
{

www.dbooks.org

https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup?view=vs-2019
https://www.dbooks.org/

 18

}

Code Listing 4 illustrates the use of the out variable in a TryParse. The benefit of using the

improved syntax for out variables is:

• It improves code readability by declaring the out variable only where you use it.
• Because the declaration happens where you use it, you need not assign an initial value.

The syntax change to the out variable in C# 7 is but one of the improved language features

aimed at making your code more readable and concise.

Discards

In the previous section, we had a look at out variables. We saw that we can declare the out

variable right where we need it, without having to assign an initial value. What if we don’t care

about the value assigned to the out variable?

C# now supports discards to allow developers to indicate that they don’t care for the variable.
The discard is a write-only variable, and is denoted by using an underscore _ in your

assignment.

Think of the discard as an unassigned variable. It can be used in the following situations:

• When used as out parameters.
• With the is and switch statements.
• As a standalone identifier.
• During the deconstruction of tuples (more on tuples in the next section) or user-defined

types.

Let’s have a look back at Code Listing 4. If all we want to do is check if the value parses to an
integer value, we can use a discard variable instead of declaring the variable factor, as shown

in Code Listing 5.

Code Listing 5: Using a discard

if (int.TryParse("3", out var _))
{

}

I like using extension methods. A favorite use for extension methods is to check if a string value
is an integer. Admittedly, the extension method can do so much more than the simple example
in Code Listing 6. What I want to focus your attention on, however, is the use of the discard
variable here.

 19

Code Listing 6: Using a discard in an extension method

public static bool ToInt(this string value)
{
 return int.TryParse(value, out var _);
}

I don’t care about the value—I just want to check if it’s an integer—and the discard is a perfect
candidate for this type of situation.

 Tip: You can further simplify the code in Code Listing 6 by using an expression
body.

Tuples

Sometimes developers need to pass structures containing multiple data elements to methods.

Tuples were added to C# to provide data structures containing multiple fields (up to a maximum

of eight items) representing the data members.

C# 7.0 also introduced language support for tuples that enabled semantic names for the tuple

fields using new tuple types. Code Listing 7 illustrates a basic example of a tuple.

Code Listing 7: Field names specified in tuple initialization expression

var foundedDates = (Microsoft: 1975, Apple: 1976, Amazon: 1994);

Console.WriteLine($"Microsoft founded in {foundedDates.Microsoft}");
Console.WriteLine($"Apple founded in {foundedDates.Apple}");
Console.WriteLine($"Amazon founded in {foundedDates.Amazon}");

Here in Code Listing 7, you can see that the field names are explicitly specified in the tuple
initialization expression. You can also specify the field names in the tuple type definition, as
seen in Code Listing 8.

Code Listing 8: Field names specified in the type definition

(int Microsoft, int Apple, int Amazon) foundedDates = (1975, 1976, 1994);

Console.WriteLine($"Microsoft founded in {foundedDates.Microsoft}");
Console.WriteLine($"Apple founded in {foundedDates.Apple}");
Console.WriteLine($"Amazon founded in {foundedDates.Amazon}");

C# will also allow you to infer the field names from the variable names in the tuple initialization
expression. This is illustrated in Code Listing 9.

www.dbooks.org

https://www.dbooks.org/

 20

Code Listing 9: Tuple field names inferred

var distanceToEarth = 384400;
var radius = 1737.1;
var moon = (distanceToEarth, radius);

Console.WriteLine($"The moon is {moon.distanceToEarth} km from Earth.");
Console.WriteLine($"The moon has a radius of {moon.radius} km.");

The field names are therefore inferred, so it’s probably a good idea think about them before
arbitrarily naming variables. For example, if distanceToEarth was simply named distance,

then the tuple field would read as moon.distance, which somewhat obfuscates the intent.

Tuple equality

Tuple types also have support for == and != operators. This means that the code in Code

Listing 10 will equate to true.

Code Listing 10: Comparing tuples

var teamOne = (JohnScore: 15, MikeScore: 27);
var teamTwo = (SallyScore: 15, MelissaScore: 27);

Console.WriteLine(teamOne == teamTwo); // Equates to true

You can only compare tuples when:

• Each tuple has the same number of elements. If teamOne had an additional score, then
Visual Studio would tell you that the tuple types must have matching cardinalities.

• For every tuple position, the elements from the left-hand and right-hand tuple operands
are comparable with the == and != operators.

This means the following code would not be comparable.

Code Listing 11: Non-comparable tuples

var teamOne = (JohnScore: 15, MikeScore: "27");
var teamTwo = (SallyScore: 15, MelissaScore: 27);

Console.WriteLine(teamOne == teamTwo); // Results in a compile-time error

This is because == cannot be applied to operands of type string and int.

Using a tuple as a method return type

Methods can also return tuple types. Consider the method illustrated in Code Listing 12.

 21

Code Listing 12: Method returning a tuple

private (int Age, DateTime BirthDate, string Fullname) ReadPersonInfo()
{
 var personData = (age: 0, birthday: DateTime.MinValue, fullName: "");
 // Read data from somewhere
 personData.fullName = "Joe Soap";

 var today = DateTime.Now;
 personData.birthday = today.AddYears(-44);
 personData.age = today.Year - personData.birthday.Year;

 return personData;
}

The method simply returns a tuple, which can then be used by the calling code, as illustrated in
Code Listing 13.

Code Listing 13: Calling method with tuple return type

var person = ReadPersonInfo();
Console.WriteLine($"{person.Fullname} was born on {person.BirthDate:dd MMMM
yyyy} and is {person.Age} years old.");

If you wanted to, you could also deconstruct the tuple instance into separate variables, as
illustrated in Code Listing 14.

Code Listing 14: Deconstruct tuples into explicit variable types

(int age, DateTime DOB, string fullName) = ReadPersonInfo();
Console.WriteLine($"{fullName} was born on {DOB:dd MMMM yyyy} and is {age}
years old.");

This allows me to explicitly specify the variable types to deconstruct the tuple into. I can also let
the compiler do all the work for me by implicitly declaring the deconstructed variables. For this, I
can use the var keyword, as illustrated in Code Listing 15.

Code Listing 15: Using the var keyword for implicit deconstruction

var (age, DOB, fullName) = ReadPersonInfo();
Console.WriteLine($"{fullName} was born on {DOB:dd MMMM yyyy} and is {age}
years old.");

This is great for when you are not sure of the return type, or if you simply don’t want to specify
the return type for each deconstructed variable.

www.dbooks.org

https://www.dbooks.org/

 22

Pattern matching

Patterns in C# test whether a value has a certain shape. When one hears the word “test,” one

thinks of if or switch statements in C#. When the test results in a match, that value being

tested can be used to extract information.

Consider the following classes.

Code Listing 16: Shape Classes

public class Cylinder
{
 public double Length { get; }
 public double Radius { get; }

 public Cylinder(double length, double radius)
 {
 Length = length;
 Radius = radius;
 }
}

public class Sphere
{
 public double Radius { get; }

 public Sphere(double radius)
 {
 Radius = radius;
 }
}

public class Pyramid
{
 public double BaseLength { get; }
 public double BaseWidth { get; }
 public double Height { get; }

 public Pyramid(double baseLength, double baseWidth, double height)
 {
 BaseLength = baseLength;
 BaseWidth = baseWidth;
 Height = height;
 }
}

Using the is type pattern expression, we can check what the type of the volumeShape variable

is, and then perform a specific action based on that type to calculate the volume. This is
illustrated in Code Listing 17 in a generic method called CalculateVolume.

 23

Code Listing 17: Using is type pattern expression

private double CalculateVolume<T>(T volumeShape)
{
 if (volumeShape is Cylinder c)
 return Math.PI * Math.Pow(c.Radius, 2) * c.Length;
 else if (volumeShape is Sphere s)
 return 4 * Math.PI * Math.Pow(s.Radius, 3) / 3;
 else if (volumeShape is Pyramid p)
 return p.BaseLength * p.BaseWidth * p.Height / 3;

 throw new ArgumentException(message: "Unrecognized object", paramName:
nameof(volumeShape));
}

Calling the generic CalculateVolume method is done as illustrated in Code Listing 18.

Code Listing 18: Calling the CalculateVolume method

var cylinder = new Cylinder(20, 2.5);
var sphere = new Sphere(2.5);
var pyramid = new Pyramid(2.5, 3, 16);

var cylinderVol = CalculateVolume(cylinder);
var sphereVol = CalculateVolume(sphere);
var pyramidVol = CalculateVolume(pyramid);

Console.WriteLine($"The volume of the Cylinder is
{Math.Round(cylinderVol,2)}");
Console.WriteLine($"The volume of the Sphere is {Math.Round(sphereVol,
2)}");
Console.WriteLine($"The volume of the Pyramid is
{Math.Round(pyramidVol,2)}");

This allows developers to simplify their code and make it more readable. We can also apply
pattern matching to switch statements, as illustrated in Code Listing 19.

Code Listing 19: Using pattern matching switch statements

private double CalculateVolume<T>(T volumeShape)
{
 switch (volumeShape)
 {
 case Cylinder c:
 return Math.PI * Math.Pow(c.Radius, 2) * c.Length;
 case Sphere s:
 return 4 * Math.PI * Math.Pow(s.Radius, 3) / 3;
 case Pyramid p:

www.dbooks.org

https://www.dbooks.org/

 24

 return p.BaseLength * p.BaseWidth * p.Height / 3;
 default:
 throw new ArgumentException(message: "Unrecognized object",
paramName: nameof(volumeShape));
 }
}

Traditionally, the switch statement supported the constant pattern, allowing you to compare a

variable to any constant in the case statement. This was limited to numeric and string types.

In C# 7 those restrictions don’t apply anymore, and you can use type patterns in switch

statements.

Furthermore, you can also use when clauses in your case expressions. Consider the code in

Code Listing 20.

Code Listing 20: Using when clauses in case expressions

private double CalculateVolume<T>(T volumeShape)
{
 switch (volumeShape)
 {
 case Sphere s when s.Radius == 0:
 return 0;
 case Cylinder c:
 return Math.PI * Math.Pow(c.Radius, 2) * c.Length;
 case Sphere s:
 return 4 * Math.PI * Math.Pow(s.Radius, 3) / 3;
 case Pyramid p:
 return p.BaseLength * p.BaseWidth * p.Height / 3;
 default:
 throw new ArgumentException(message: "Unrecognized object",
paramName: nameof(volumeShape));
 }
}

The change is subtle, but syntactically important. The case statement for the Sphere reads as

case Sphere s when s.Radius == 0: which tells the compiler something important

regarding the variable s. If the Radius of the variable s is equal to 0, do not even attempt the

volume calculation, because it makes no difference. The result will always be 0, so just return 0.

Local functions

Local functions are by far one of my favorite features of C# 7. When the use of a specific

method makes sense in only a single place, then it can be easily made local to only that specific

enclosing method.

 25

So if a method called CalculateVolume is only used by a single method called

TotalObjectVolume, then it can be made local to TotalObjectVolume. Let’s illustrate this by

using some simplified code.

Code Listing 21: Simplified code

private string MethodOne()
{
 var getText = MethodTwo();
 return getText;
}

private string MethodTwo()
{
 return "I am method two";
}

As you would expect, calling MethodOne with Console.WriteLine(MethodOne()); results in

the text I am method two being displayed.

Introducing a local function called MethodTwo inside the body of MethodOne will now result in

the text I am local function two being displayed.

Code Listing 22: Introducing a local function

private string MethodOne()
{
 string MethodTwo()
 {
 return "I am local function two";
 }

 var getText = MethodTwo();
 return getText;
}

private string MethodTwo()
{
 return "I am method two";
}

This means local functions take precedence when used by code inside the scope of the
enclosing method. If the use of MethodTwo only made sense from within MethodOne, then it

would do fine as a local function.

Let’s swing back to the TotalObjectVolume method that uses the CalculateVolume local

function, illustrated in Code Listing 23.

www.dbooks.org

https://www.dbooks.org/

 26

Code Listing 23: CalculateVolume local function

private double TotalObjectVolume((Cylinder c, Sphere s, Pyramid p)
volumeShapes)
{
 var cylinderVol = CalculateVolume(volumeShapes.c);

 double CalculateVolume<T>(T volumeShape)
 {
 switch (volumeShape)
 {
 case Sphere s when s.Radius == 0:
 return 0;
 case Cylinder c:
 return Math.PI * Math.Pow(c.Radius, 2) * c.Length;
 case Sphere s:
 return 4 * Math.PI * Math.Pow(s.Radius, 3) / 3;
 case Pyramid p:
 return p.BaseLength * p.BaseWidth * p.Height / 3;
 default:
 throw new ArgumentException(message: "Unrecognized object",
paramName: nameof(volumeShape));
 }
 }

 var sphereVol = CalculateVolume(volumeShapes.s);
 var pyramidVol = CalculateVolume(volumeShapes.p);

 return Math.Round(cylinderVol + sphereVol + pyramidVol, 2);
}

The TotalObjectVolume method takes a tuple called volumeShapes as a parameter and uses

the local function CalculateVolume to calculate the volume of the Cylinder, Sphere, and

Pyramid types.

It also allows us to call the local function anywhere inside the enclosing TotalObjectVolume

method. You can even place the local function after the return statement, as seen in Code

Listing 24.

Code Listing 24: Local function after return

private double TotalObjectVolume((Cylinder c, Sphere s, Pyramid p)
volumeShapes)
{
 var cylinderVol = CalculateVolume(volumeShapes.c);
 var sphereVol = CalculateVolume(volumeShapes.s);
 var pyramidVol = CalculateVolume(volumeShapes.p);

 return Math.Round(cylinderVol + sphereVol + pyramidVol, 2);

 27

 // Local functions here
 double CalculateVolume<T>(T volumeShape)
 {
 switch (volumeShape)
 {
 case Sphere s when s.Radius == 0:
 return 0;
 case Cylinder c:
 return Math.PI * Math.Pow(c.Radius, 2) * c.Length;
 case Sphere s:
 return 4 * Math.PI * Math.Pow(s.Radius, 3) / 3;
 case Pyramid p:
 return p.BaseLength * p.BaseWidth * p.Height / 3;
 default:
 throw new ArgumentException(message: "Unrecognized object",
paramName: nameof(volumeShape));
 }
 }
}

Local functions are a fantastic addition to C# that allow developers to be quite specific in their
intent. If you see a local function, then you know that it only makes sense for use within the
enclosing method.

Expression-bodied members for constructors and finalizers

C# 6 introduced developers to expression-bodied members. These only apply to member

functions and read-only properties. With C# 7 we can now use expression-bodied members on

constructors and destructors, as well as on get and set accessors on properties and indexers.

Consider the Circle class illustrated in Code Listing 25.

The class contains a constructor and a destructor, as well as a property that returns the square
of the radius.

Code Listing 25: The Circle class

public class Circle
{
 public double Radius { get; }
 public double RadiusSquared
 {
 get
 {
 return Math.Pow(Radius, 2);
 }

www.dbooks.org

https://www.dbooks.org/

 28

 }

 public Circle(double radius)
 {
 Radius = radius;
 }

 ~Circle()
 {
 Console.WriteLine("Run cleanup statements");
 }
}

Using expression-bodied members, we can cut down on unnecessary code and make the class
very readable. Consider the modified Circle class in Code Listing 26.

Code Listing 26: The Circle class using expression-bodied members

public class Circle
{
 public double Radius { get; }
 public double RadiusSquared
 {
 get => Math.Pow(Radius, 2);
 }

 public Circle(double radius) => Radius = radius;

 ~Circle() => Console.WriteLine("Run cleanup statements");
}

The code is more readable and succinct.

Generalized async return types

Let’s briefly discuss async methods before C# 7. Every async method was required to return

Task, Task<T>, or void. The use of void-returning methods should only be used with async

event handlers. Generally, an event handler is a case of fire and forget: I don’t care what the

result of the event is.

If an async method is not returning a value, then Task is used. If the method does return a

value, then Task<T> is used.

Since Task is a reference type, an object is allocated when using it. In situations where the

async method will return a cached result or complete synchronously, these additional

allocations can impact performance.

 29

In C# 7, the ValueTask type has been added to solve this problem.

 Note: To make use of ValueTask, you must install the
System.Threading.Tasks.Extensions NuGet package.

Your async methods return types are no longer limited to Task, Task<T>, and void. Have a

look at Code Listing 27 and Code Listing 28, which illustrate this language feature.

In Code Listing 27, we have a static class that will act as the cache.

Code Listing 27: The static cache class

public static class ValueCache
{
 public static int CachedValue { get; set; } = 0;
 public static DateTime TimeToLive { get; set; } = DateTime.MinValue;
}

I have added Console.WriteLine statements throughout the code to make the output clearer.

The code only calls the DoSomethingAsync method when the TimeToLive value has expired. If

the TimeToLive is still valid, the cached result is returned.

Code Listing 28: Using ValueTask

static async Task Main()
{

 Console.WriteLine(await GetSomeValueAsync());
 Console.WriteLine($"Wait 1 second");
 await Task.Delay(1000);
 Console.WriteLine("");

 Console.WriteLine(await GetSomeValueAsync());
 Console.WriteLine($"Wait 7 seconds");
 await Task.Delay(7000);
 Console.WriteLine("");

 Console.WriteLine(await GetSomeValueAsync());

 _ = Console.ReadLine();
}

public static async ValueTask<int> GetSomeValueAsync()
{
 Console.WriteLine($"DateTime.Now = {DateTime.Now.TimeOfDay}");
 Console.WriteLine($"ValueCache.TimeToLive =
{ValueCache.TimeToLive.TimeOfDay}");

www.dbooks.org

https://www.dbooks.org/

 30

 if (DateTime.Now <= ValueCache.TimeToLive)
 {
 Console.WriteLine($"Return Cached value");
 return ValueCache.CachedValue;
 }

 var val = await DoSomethingAsync();
 ValueCache.CachedValue = val;
 Console.WriteLine($"Set time to live at 5 seconds");
 ValueCache.TimeToLive = DateTime.Now.AddSeconds(5.0);

 Console.WriteLine($"Return value");
 return val;
}

private static async Task<int> DoSomethingAsync()
{
 await Task.Delay(1);
 return DateTime.Now.Second;
}

You can see the output of this in Code Listing 29.

Code Listing 29: Console output

DateTime.Now = 17:16:39.8923332
ValueCache.TimeToLive = 00:00:00
Set time to live at 5 seconds
Return value
39
Wait 1 second

DateTime.Now = 17:16:40.9243327
ValueCache.TimeToLive = 17:16:44.9223377
Return Cached value
39
Wait 7 seconds

DateTime.Now = 17:16:47.9273331
ValueCache.TimeToLive = 17:16:44.9223377
Set time to live at 5 seconds
Return value
47

It must be noted that the returned type still needs to satisfy the async pattern. This means that

the GetAwaiter method must be accessible.

 31

Chapter 3 C# 8.0 Features

With the release of C# 8.0, developers have been given more features and enhancements to

improve their codebases with, such as pattern matching enhancements. This will become

evident when we look at switch expressions later on in this book.

C# 8.0 is supported on .NET Core 3.x and .NET Standard 2.1.

Default interface methods

This change to interfaces in C# 8.0 might be somewhat controversial for some, depending on

your views. The logic, however, behind the feature in C# 8.0 is welcome. To understand the

change, we need to explain a scenario.

An application creates orders. For this scenario, an interface called IOrder has been created,

and is implemented by your application. This interface is also used in an external codebase
maintained by a different team of developers. The interface and implementation look as
illustrated in Code Listing 30.

Code Listing 30: The IOrder Interface

public class SalesOrder : IOrder
{
 public void CreateOrder(DateTime orderDate) { }
}

public interface IOrder
{
 void CreateOrder(DateTime orderDate);
}

Changes to some logic in the program require developers to be able to default the order date.
The change, therefore, needs to be made in the interface to provide the ability to create an
order without specifying a date. This will then simply default to the current date.

The problem with this approach is that once interfaces are released, they are considered
immutable. Adding logic to the IOrder interface is a breaking change, as seen in Figure 1.

www.dbooks.org

https://www.dbooks.org/

 32

Figure 1: Modifying the interface introduces a breaking change

This is because the addition of the CreateOrder() method requires implementation in all

classes that use the interface. In C# 8.0, however, we can provide a default implementation
when upgrading an interface.

Code Listing 31: Default Interface method

public class SalesOrder : IOrder
{
 public void CreateOrder(DateTime orderDate) { }
}

public interface IOrder
{
 void CreateOrder(DateTime orderDate);
 void CreateOrder() => CreateOrder(DateTime.Now);
}

Now, implementors of the interface that do not know about the new member are not affected.
The default implementation is ignored.

Nullable reference types

One of the biggest changes with regards to developer impact is one that probably has the

smallest syntactic impact. Developers can now express whether or not a specific reference can

be null.

 Note: Did you know that null has been around in OOP programming for over 50
years?

The question now is: what happens if the list of students is null? Consider the following code.

 33

Code Listing 32: The ListStudents method

private void ListStudents(IEnumerable<Student> students)
{
 foreach (Student student in students)
 {
 Console.WriteLine(student.FirstName);
 }
}

There is no way we can tell the compiler that the Student object might be null. With nullable

reference types, we can express this more clearly. To enable this feature, you need to add
<Nullable>enable</Nullable> to your .csproj file, as shown in Code Listing 33.

Code Listing 33: Enabling nullable reference types

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp3.1</TargetFramework>
 <Nullable>enable</Nullable>
 </PropertyGroup>

</Project>

This will now enable more concise compiler feedback to allow you to get the code right the first
time. A nullable reference type is indicated by using the same syntax as nullable value types: by
adding a ? to the type of the variable, as seen in the method signature of the ListStudents

method in Code Listing 34.

Code Listing 34: Specifying that Student can be null

private void ListStudents(IEnumerable<Student?> students)
{
 foreach (Student student in students)
 {
 Console.WriteLine(student.FirstName);
 }
}

Once you do that, the compiler generates more concise warnings regarding the use of the
Student variable, as seen in Figure 2.

www.dbooks.org

https://www.dbooks.org/

 34

Figure 2: Compiler warnings for null reference

You are now in a better position to code defensively against null reference exceptions.

The null-forgiving operator

Those of you who have worked with the Swift programming language might be familiar with the
following syntax. In C# 8.0 we call it the null-forgiving operator, and it is implemented using the
! operator.

Consider the Student class example used in Code Listing 34. To ensure that we have a valid

Student class, I have created an extension method that ensures my Student class is not null,

and that the FirstName property will have a value. This is illustrated in Code Listing 35.

Code Listing 35: The IsValid extension method

public static class ExtensionMethods
{
 public static bool IsValid(this Student student)
 {
 return student != null && !string.IsNullOrEmpty(student.FirstName);
 }
}

If I now had to use this in a method that gets the FirstName property of the Student class, I

would see that I still receive the warning when accessing the FirstName property.

 35

Figure 3: Applying the IsNull extension method

But I am confident that in this instance, because I am calling the IsValid extension method on

my Student class, the FirstName property will not be null. I can therefore safely add the null-

forgiving operator to my code that reads the FirstName property, as seen in Code Listing 36.

Code Listing 36: Applying the null-forgiving operator

private void GetStudentName(Student? student)
{
 if (student.IsValid())
 {
 Console.WriteLine(student!.FirstName);
 }
}

The warning is removed and the intent of my code is quite clear.

Asynchronous streams

The introduction of asynchronous programming has forever changed the way developers write

code. With the addition of async and await in .NET, C# developers could leverage asynchrony

easily. Developers could not, however, consume streams of data asynchronously. That is, not

until C# 8.0 introduced IAsyncEnumerable<T>.

If this looks familiar, that’s because it is. IAsyncEnumerable<T> is similar to IEnumerable<T>,

which is used to iterate over collections. The only difference is that IAsyncEnumerable<T>

allows developers to iterate through a collection asynchronously. This means our code can wait
for the next element in a collection without blocking a thread.

www.dbooks.org

https://www.dbooks.org/

 36

Methods that return asynchronous streams have three properties:

• They must be declared with the async modifier.
• They return an IAsyncEnumerable<T>.
• They contain yield return statements to return successive elements in the

asynchronous stream.

It is also worth noting that the stream elements are processed in the captured context. To
disable this behavior, you need to use the
TaskAsyncEnumerableExtensions.ConfigureAwait extension method.

For more on this, see Microsoft Docs.

To illustrate IAsyncEnumerable<T>, let us assume that you need to return some data from a

data store. It’s great if you can get all that data in a single call. You can just perform
asynchronous calls to get the data, and return it to the calling code.

The challenge, however, exists when you can’t get all that data at once. Sometimes the data
needs to be returned in pages as it becomes available.

It is here that asynchronous streams shine. You can now send the data back to the calling code
as soon as that data is available. To appreciate IAsyncEnumerable<T>, let’s try to illustrate the

problem we are faced with by creating an asynchronous method that mimics the behavior of
getting data that is paged.

Consider the following code.

Code Listing 37: Read a stream of data asynchronously

static async Task<IEnumerable<int>> GetSomethingAsync()
{
 var iValues = new List<int>();
 for (var i = 0; i <= 10; i++)
 {
 await Task.Delay(1000);
 iValues.Add(i);
 }
 return iValues;
}

When you call this method, as shown in Code Listing 38, the application will wait 10 seconds
and then display all the numbers at once in the console window.

Code Listing 38: Iterate asynchronously

foreach (var item in await GetSomethingAsync())
{
 Console.WriteLine(item);
}

https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskasyncenumerableextensions.configureawait?view=dotnet-plat-ext-3.1

 37

To display the numbers on by one as they are generated, let’s modify the GetSomethingAsync

method by changing the Task<IEnumerable<int>> to IAsycEnumerable<int> and adding

yield, as seen in Code Listing 39.

Code Listing 39: Using IAsyncEnumerable<T>

static async IAsyncEnumerable<int> GetSomethingAsync()
{
 for (var i = 0; i <= 10; i++)
 {
 yield return i;
 await Task.Delay(1000);
 }
}

The yield keyword performs a stateful iteration and returns the values of a collection one by

one. To consume the asynchronous stream, move the await keyword before the foreach so

that your code looks as illustrated in Code Listing 40.

Code Listing 40: Consuming the asynchronous stream

await foreach (var item in GetSomethingAsync())
{
 Console.WriteLine(item);
}

Running this code will display the numbers in the console window one by one, as they are
available.

Asynchronous disposable

If you have a .NET class that makes use of unmanaged resources, then you should see the

IDisposable interface implemented in that class. This is to allow for the release of unmanaged

resources synchronously.

In C# 8.0 you can now do this asynchronously by using IAsyncDisposable. This gives you a

mechanism for performing resource-intensive dispose operations without blocking the main UI
thread.

Having a look at the IAsyncDisposable.DisposeAsync method, we see that it returns a

ValueTask representing the asynchronous dispose operation. You can see more on this here.

When you implement IAsyncDisposable on an object in your application, you should call

DisposeAsync when you are finished using that object. A good practice is to put the code

implementing IAsyncDisposable in a using statement. This ensures that the code releasing

the resources will still do so in the event of an exception being thrown.

www.dbooks.org

https://docs.microsoft.com/en-us/dotnet/api/system.iasyncdisposable.disposeasync?view=dotnet-plat-ext-3.1
https://www.dbooks.org/

 38

Indices and ranges

Indices and ranges provide a better and concise way, using bracket notation, to look at a single

element from the start or end of an array. They can also be used to look at a range inside of an

array.

 Note: I use an array as an example here, but it can refer to any sequence of
elements.

Consider the code illustrated in Code Listing 41. (Notice that I am using static
System.Console.)

Code Listing 41: Reading months using indices

string[] months =
{ // From Start From End
 "January", // 0 ^12
 "February", // 1 ^11
 "March", // 2 ^10
 "April", // 3 ^9
 "May", // 4 ^8
 "June", // 5 ^7
 "July", // 6 ^6
 "August", // 7 ^5
 "September", // 8 ^4
 "October", // 9 ^3
 "November", // 10 ^2
 "December" // 11 ^1
};

WriteLine(months[3]); // From array start
WriteLine(months[^12]); // From array end

We know that C# is zero-based, meaning that the first item in the array starts at 0. Have a look
at the ^ operator (some call it the hat operator). Quite controversially, this starts at ^1. The

reason for this is that ^0 denotes the length of the array. Consider the code illustrated in Code

Listing 42.

Code Listing 42: Get items to the end of the array

var slice = months[^4..^0];
foreach (var s in slice) WriteLine(s);

It reads as follows: get me the months, starting from the fourth element from the end (^4) for the

length (^0) of the array. Therefore, ^0 is one past the end, and points to the very end of the

array.

We also see that the code in Code Listing 43 output the same element in the array.

 39

Code Listing 43: Using Length - 1 and ^1

WriteLine(months[months.Length - 1]);
WriteLine(months[^1]);

You can also pull out a range of values, as illustrated in Code Listing 44.

Code Listing 44: Find a range of values

var year = months[..];
foreach (var s in year) WriteLine(s); // January to December

var quarter = months[..3];
foreach (var s in quarter) WriteLine(s); // Quarter 1 - January to March

var restOfYear = months[3..];
foreach (var s in restOfYear) WriteLine(s); // April to December

Let’s recap some of the rules for indexes:

• Index 0 = months[0]
• Index ^0 = months.Length
• Typing months[^n] is the same as months[months.Length - n] where n is any

number.
• A range specifies the start and end of a range with the start of the range being inclusive,

and the end of the range being exclusive. Therefore:
o The range months[..3] excludes April.
o The range months[3..] includes April.
o The range months[0..^0] represents January to December.

You can also assign variables, as illustrated in Code Listing 45.

Code Listing 45: Assign variables to index and range

var july = ^6;
WriteLine(months[july]); // July

var firstSemester = 0..6;
var semester = months[firstSemester];
foreach (var s in semester) WriteLine(s); // January to June

As noted earlier, ranges and indices work with any sequence of elements. You can use them
with string, Span<T>, or ReadOnlySpan<T>.

www.dbooks.org

https://www.dbooks.org/

 40

Switch expressions

I have always disliked using switch statements. Personally, the switch statement always felt

so cumbersome and unnecessarily clunky. Now with C# 8.0, we can be much more concise in
the way we express ourselves by using switch expressions. Consider the traditional switch

statement that returns a string from a method called GetBirthStone, as illustrated in Code

Listing 46.

Code Listing 46: Traditional switch statement

private string GetBirthstone(Months month)
{
 switch (month)
 {
 case Months.January:
 return "Ruby or Rose Quartz";
 case Months.March:
 return "Bloodstone and Aquamarine";
 case Months.April:
 return "Diamond";
 case Months.May:
 return "Emerald";
 case Months.June:
 return "Pearl, Alexandrite, and Moonstone";
 case Months.July:
 return "Ruby";
 case Months.August:
 return "Sardonyx and Peridot";
 case Months.September:
 return "Sapphire";
 case Months.October:
 return "Opal and The Tourmaline";
 case Months.November:
 return "Topaz";
 case Months.December:
 return "Turquoise and Zircon";
 default:
 return $"Did not find a birth stone for {month}";
 }
}

Compare this with the more concise switch expression returned from the modified

GetBirthStone method illustrated in Code Listing 47.

Code Listing 47: The new switch expression

private string GetBirthstone(Months month) =>
 month switch
 {

 41

 Months.January => "Ruby or Rose Quartz",
 Months.March => "Bloodstone and Aquamarine",
 Months.April => "Diamond",
 Months.May => "Emerald",
 Months.June => "Pearl, Alexandrite, and Moonstone",
 Months.July => "Ruby",
 Months.August => "Sardonyx and Peridot",
 Months.September => "Sapphire",
 Months.October => "Opal and The Tourmaline",
 Months.November => "Topaz",
 Months.December => "Turquoise and Zircon",
 _ => $"Did not find a birth stone for {month}",
 };

We should note a few things here:

• Because the GetBirthStone method just returns the value from the switch, it can be
changed to use an expression body.

• In the switch expression, the need for case and break keywords are removed.
• The switch expression puts the variable month before the switch keyword.
• The case and : have been replaced with a single =>, which (for me anyway) looks much

nicer.
• The default case has been replaced with the _ discard.

This expression body makes for cleaner, better-looking, and more readable code. To change a
switch statement to a switch expression, place your cursor on the switch keyword and press

Ctrl+. and select Convert switch statement to expression.

Readonly members

You can now add readonly modifiers to struct members. This is helpful if you need to

indicate that a member does not modify state, and gives you a more fine-tuned approach than
simply applying the readonly modifier to a struct declaration.

Consider the mutable struct in Code Listing 48.

Code Listing 48: Struct to calculate days since a given date

public struct DaysSince
{
 public DateTime GivenDate { get; set; }
 public double Number => Math.Round((DateTime.Now -
GivenDate).TotalDays, 0);

 public override string ToString() => $"Days since {GivenDate} =
{Number} days";
}

www.dbooks.org

https://www.dbooks.org/

 42

We can see that the ToString method will not change the state, and you can indicate this by

adding the readonly modifier to the ToString declaration. When you do this, however, you will

receive a compiler warning, as seen in Figure 4.

Figure 4: Compiler warning

This happens because the Number property is not marked as readonly, and the compiler will

display this warning when it needs to create a defensive copy. We know that the Number

property will not change the state, so we can safely add a readonly modifier to the declaration.

Code Listing 49: Add readonly modifier to a struct member

public struct DaysSince
{
 public DateTime GivenDate { get; set; }
 public readonly double Number => Math.Round((DateTime.Now -
GivenDate).TotalDays, 0);

 public readonly override string ToString() => $"Days since {GivenDate}
= {Number} days";
}

Be aware that the readonly modifier is only necessary on read-only properties. The compiler

will not assume that get accessors don’t modify state, so you must specify that. The only

exception is with auto-implemented properties where all auto-implemented getters are regarded
as readonly by default. This is the reason that the GivenDate property didn’t generate a

compiler warning.

Using declarations

You should be familiar with the using statement in C#. It provides a way to ensure that your

code adheres to the correct usage of IDisposable objects; when the code execution moves

past the using statement’s scope, the objects in that scope are properly disposed of.

Consider the using statement in Code Listing 50.

Code Listing 50: Using statement to read a file

private void ReadFile()
{
 using (var reader = new
System.IO.StreamReader("C:\\temp\\TextDocument.txt"))
 {
 var lines = reader.ReadToEnd();

 43

 }
}

With C# 8.0, you can now make use of using declarations instead, as illustrated in Code Listing

51.

Code Listing 51: Using declaration to read a file

private void ReadFile()
{
 using var reader = new
System.IO.StreamReader("C:\\temp\\TextDocument.txt");
 var lines = reader.ReadToEnd();
}

What we notice about the using declaration is that the using keyword precedes the var

keyword. This tells the compiler that the variable called reader that is being declared must be

disposed of at the end of the enclosing scope.

Static local functions

Local functions are another one of my favorite language features. First appearing in C# 7, you
can now add the static modifier to a local function in C# 8.0. When we see a static local

function, we know that it does not use any of the arguments contained in its outer scope. This
means that the compiler can optimize the code accordingly.

Consider the following code.

Code Listing 52: Static local functions

private double TotalObjectVolume((Cylinder c, Sphere s, Pyramid p)
volumeShapes)
{
 var cylinderVol = CalculateVolume(volumeShapes.c);
 var sphereVol = CalculateVolume(volumeShapes.s);
 var pyramidVol = CalculateVolume(volumeShapes.p);

 return Math.Round(cylinderVol + sphereVol + pyramidVol, 2);

 // static local functions here
 static double CalculateVolume<T>(T volumeShape)
 {
 return volumeShape switch
 {
 Sphere s when s.Radius == 0 => 0,
 Cylinder c => Math.PI * Math.Pow(c.Radius, 2) * c.Length,

www.dbooks.org

https://www.dbooks.org/

 44

 Sphere s => 4 * Math.PI * Math.Pow(s.Radius, 3) / 3,
 Pyramid p => p.BaseLength * p.BaseWidth * p.Height / 3,
 _ => throw new ArgumentException(message: "Unrecognized
object", paramName: nameof(volumeShape)),
 };
 }
}

You will notice that this is the same method we used in the Local Functions demo when
discussing C# 7 earlier in the book. The only difference is that now it uses a switch expression,

as allowed in C# 8.0.

The local function called CalculateVolume has been marked as static. The compiler knows

that it does not use any of the arguments in the outer scope. To see what this means, add the
following static local function to the TotalObjectVolume method.

Code Listing 53: Static local function with a compiler error

static double GetCylinderRadius()
{
 var cylinder = volumeShapes.c; // Compiler error
 return cylinder.Radius;
}

The code for the TotalObjectVolume method should now look like Code Listing 54.

Code Listing 54: The TotalObjectVolume method

private double TotalObjectVolume((Cylinder c, Sphere s, Pyramid p)
volumeShapes)
{
 var cylinderVol = CalculateVolume(volumeShapes.c);
 var sphereVol = CalculateVolume(volumeShapes.s);
 var pyramidVol = CalculateVolume(volumeShapes.p);

 return Math.Round(cylinderVol + sphereVol + pyramidVol, 2);

 // static local functions here
 static double CalculateVolume<T>(T volumeShape)
 {
 return volumeShape switch
 {
 Sphere s when s.Radius == 0 => 0,
 Cylinder c => Math.PI * Math.Pow(c.Radius, 2) * c.Length,
 Sphere s => 4 * Math.PI * Math.Pow(s.Radius, 3) / 3,
 Pyramid p => p.BaseLength * p.BaseWidth * p.Height / 3,
 _ => throw new ArgumentException(message: "Unrecognized
object", paramName: nameof(volumeShape)),

 45

 };
 }

 static double GetCylinderRadius()
 {
 var cylinder = volumeShapes.c; // Compiler error
 return cylinder.Radius;
 }
}

You will notice that the code we added for the GetCylinderRadius local function will generate

a compiler error, as illustrated in Figure 5.

Figure 5: The compiler error on a static local function

This is because the local function is marked as static, but it references volumeShapes, which

is contained in the outer scope.

Disposable ref structs

In C# 7 we were allowed to declare a struct with the ref modifier. What we couldn’t do,

however, was implement any interfaces on such structs. This means that the code in Code
Listing 55 will generate a compiler error.

Code Listing 55: A ref struct implementing an interface

ref struct StudentScores : IDisposable
{

}

As seen in Figure 6, the compiler is telling us that we can’t implement an interface on our struct.

www.dbooks.org

https://www.dbooks.org/

 46

Figure 6: Compiler error on ref struct

This leaves us in a bit of a predicament. What if we needed to perform some cleanup for our
struct? In C# 8.0 we can now do just that by adding a publicly accessible void Dispose

method, as seen in Code Listing 56.

Code Listing 56: A ref struct with a Dispose method

ref struct StudentScores
{
 public void Dispose()
 {
 // perform clean up
 }
}

We can use it in our code in a using declaration, as illustrated in Code Listing 57.

Code Listing 57: Using declaration for struct

using var scores = new StudentScores();

You can also use disposable ref structs with readonly ref struct declarations.

Null-coalescing assignment

C# 8.0 also introduced the null-coalescing assignment operator: ??=. This operator can now be

used to assign the value of its right-hand operand to its left-hand operand only in the event of
the left-hand operand evaluating to null.

How often have you seen code like the following?

Code Listing 58: Checking for null and assigning

private void AddUpdateScores(List<int> lstScores)
{
 if (lstScores == null)
 {
 lstScores = new List<int>();

 47

 }

 // Add/Update scores
}

In C# 8.0 the null-coalescing assignment operator makes this check almost negligible, as seen
in Code Listing 59.

Code Listing 59: Checking for null using null-coalescing assignment

private void AddUpdateScores(List<int> lstScores)
{
 lstScores ??= new List<int>();

 // Add/Update scores
}

If you read through the code too fast, you might miss it. It’s such a small change, but it has quite
a big impact. It is also important to note that if the lstScores variable is not null; the

assignment is simply skipped.

Unmanaged constructed types

Unmanaged types are not types defined in unmanaged code. It is a type that is not a reference
type, and does not contain reference type fields at any level of nesting. Therefore, with C# 8.0, a
constructed value type is unmanaged if it contains fields of unmanaged types only.

Consider the code in Code Listing 60.

Code Listing 60: A generic struct

public struct MyStruct<T>
{
 public T One;
 public T Two;
}

In Code Listing 61, we have an extension method with the unmanaged constraint on T.

Code Listing 61: A generic extension method with an unmanaged constraint

public unsafe static PropertyInfo[] GetProps<T>(this T obj) where T :
unmanaged
{
 var t = obj.GetType();

www.dbooks.org

https://www.dbooks.org/

 48

 return t.GetProperties();
}

This means that if we create our struct as illustrated in Code Listing 62, we can call the
extension method on the instance of that struct because it is an unmanaged constructed type.

Code Listing 62: Calling the extension method

var mystruct = new MyStruct<int> { One = 1, Two = 2 };
var props = mystruct.GetProps();

This is because int is an unmanaged type. If we had to use string, then we would no longer

have an unmanaged constructed type, because string is not an unmanaged type, and

mystruct2 would violate the unmanaged constraint on the extension method.

Figure 7: Not-unmanaged constructed type

The following types are unmanaged types:

• sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double, decimal,
or bool.

• Any enum type.
• Any pointer type.
• Any user-defined struct type containing only unmanaged type fields and is not a

constructed type pre-C# 7.3.

C# 7.3 introduced the unmanaged constraint, as seen in the extension method in Code Listing
61. This means we can use the unmanaged constraint directly in the definition of the generic
struct, as seen in Code Listing 63.

Code Listing 63: The unmanaged constraint on the generic struct

public struct MyStruct<T> where T : unmanaged
{
 public T One;
 public T Two;
}

 49

This would generate a compiler error, as seen in Figure 8, because the creation of mystruct2

violates the unmanaged constraint on the generic struct definition.

Figure 8: The MyStruct<string> violates the constraint

We can see that a generic struct can be the source of both unmanaged and not unmanaged
constructed types. Where you place the constraint is up to you and what you need to achieve.

Enhancement of interpolated verbatim strings

In C# 8.0 the $ and @ tokens used with interpolated strings can be either $@”..” or @$”..”, and

both are now valid interpolated verbatim strings. Before C# 8.0, the $ token had to appear

before the @ token.

This means var msg = $@"The \t student is {studentName}"; will produce the exact

same output as var msg = @$"The \t student is {studentName}"; in the console

window.

Enabling C# 8 in any .NET project

It is possible to enable C# 8.0 in any .NET project. There are a few provisos, but I will get to
those in a minute. To see this in action, create a .NET console application using the .NET
Framework, as seen in Figure 9.

www.dbooks.org

https://www.dbooks.org/

 50

Figure 9: A console app using .NET Framework

When this project is created, add the shape classes seen in Code Listing 64 to your console
application. These are the same classes that we used earlier in the book, but I’m presenting
them here again for convenience.

Code Listing 64: Shape classes

public class Cylinder
{
 public double Length { get; }
 public double Radius { get; }

 public Cylinder(double length, double radius)
 {
 Length = length;
 Radius = radius;
 }
}

public class Sphere
{
 public double Radius { get; }

 51

 public Sphere(double radius)
 {
 Radius = radius;
 }
}

public class Pyramid
{
 public double BaseLength { get; }
 public double BaseWidth { get; }
 public double Height { get; }

 public Pyramid(double baseLength, double baseWidth, double height)
 {
 BaseLength = baseLength;
 BaseWidth = baseWidth;
 Height = height;
 }
}

Let’s add our TotalObjectVolume method to our project that uses a static local function, which

also uses a switch expression. The code is illustrated in Code Listing 65.

Code Listing 65: A static local function using a switch expression

private double TotalObjectVolume((Cylinder c, Sphere s, Pyramid p)
volumeShapes)
{
 var cylinderVol = CalculateVolume(volumeShapes.c);
 var sphereVol = CalculateVolume(volumeShapes.s);
 var pyramidVol = CalculateVolume(volumeShapes.p);

 return Math.Round(cylinderVol + sphereVol + pyramidVol, 2);

 // static local functions here
 static double CalculateVolume<T>(T volumeShape)
 {
 return volumeShape switch
 {
 Sphere s when s.Radius == 0 => 0,
 Cylinder c => Math.PI * Math.Pow(c.Radius, 2) * c.Length,
 Sphere s => 4 * Math.PI * Math.Pow(s.Radius, 3) / 3,
 Pyramid p => p.BaseLength * p.BaseWidth * p.Height / 3,
 _ => throw new ArgumentException(message: "Unrecognized
object", paramName: nameof(volumeShape)),
 };

www.dbooks.org

https://www.dbooks.org/

 52

 }
}

At this point, you will see a whole bunch of compiler errors in your static local function. The
compiler errors will most likely tell you that you are trying to use C# 8.0 language features in an
earlier version of C# (probably C# 7.3, depending on the .NET Framework you are using).

To use C# 8.0 in your console application on the .NET Framework (not .NET Core—remember,
we created a regular console app using the .NET Framework), you need to modify your .csproj
file as seen in Code Listing 66.

Change the <LangVersion> to 8.0 in your .csproj file. If there isn’t a <LangVersion>, just add

one.

Code Listing 66: Add LangVersion to .csproj file

<PropertyGroup>
 <Configuration Condition=" '$(Configuration)' == ''
">Debug</Configuration>
 <Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
 <ProjectGuid>{16C8CC63-DC92-4D68-BD4E-B10D602777DB}</ProjectGuid>
 <OutputType>Exe</OutputType>
 <RootNamespace>NetFxConsoleApp</RootNamespace>
 <AssemblyName>NetFxConsoleApp</AssemblyName>
 <TargetFrameworkVersion>v4.7.2</TargetFrameworkVersion>
 <LangVersion>8.0</LangVersion>
 <FileAlignment>512</FileAlignment>
 <AutoGenerateBindingRedirects>true</AutoGenerateBindingRedirects>
 <Deterministic>true</Deterministic>
</PropertyGroup>

Save your .csproj file and reload your project if needed. That’s all there is to it. There are some
provisos to this, though.

Not all types are included

Some types, such as IAsyncEnumerable, are not included. There is a workaround, though—

you can install the Microsoft.Bcl.AsyncInterfaces and Microsoft.Bcl.HashCode NuGet packages.

Indexes and ranges

By using C# 8.0 in non-.NET Core 3 or non-.NET Standard 2.1 projects, you will not be able to
use indexes and ranges. This is because these are runtime features, and your code simply will
not compile.

 53

Using Directory.Build.props

If you want each project in your solution to target C# 8.0, or if you need to add any custom
property to all your projects, you can create a file called Directory.Build.props in the root of
your solution and add the <LangVersion> in there.

This is illustrated in Code Listing 67.

Code Listing 67: The Directory.Build.props file

<Project>
 <PropertyGroup>
 <LangVersion>8.0</LangVersion>
 </PropertyGroup>
</Project>

I am not so sure that I would necessarily enable C# 8.0 on any .NET project. I would probably
take the time to create a .NET Core application from the get-go, but this solution isn’t without its
merits. This could be useful in situations where you are dealing with an existing .NET project
that has had a lot of development effort invested, and that can’t easily be rewritten from scratch
in .NET Core.

In this situation, jimmying the .csproj file to enable C# 8.0 makes sense.

www.dbooks.org

https://www.dbooks.org/

 54

Chapter 4 The Future of C# and C# 9

There are some nice features planned for C# 9. While all these planned features might not
make it into the final release—and some things that do make it in might change between the
writing of this book and then—they still give a nice overview of the direction the C# team is
taking.

Top-level programs

Code Listing 68 illustrates the code that we have all seen, with a Program class followed by the

Main method.

Code Listing 68: Classes implementing IShape interface

using static System.Console;

class Program
{
 static void Main(string[] args)
 {
 var t = new Triangle
 {
 Base = 5.0,
 Height = 10.5
 };

 DisplayArea(t);

 // static local functions
 static void DisplayArea<T>(T shape) where T : IShape
 {
 WriteLine(shape.Area());
 }
 }
}

class Triangle : IShape
{
 public double Height { get; set; }
 public double Base { get; set; }

 public double Area() => Height * Base / 2;
}

class Rectangle : IShape

 55

{
 public double Length { get; set; }
 public double Width { get; set; }

 public double Area() => Length * Width;

}

public interface IShape
{
 double Area();
}

In C# 9, developers will be allowed to simply omit the Program class and the Main method. The

code will look as illustrated in Code Listing 69.

Code Listing 69: Omitting the static void Main

using static System.Console;

var t = new Triangle
{
 Base = 5.0,
 Height = 10.5
};

DisplayArea(t);
ReadLine();

// static local functions
static void DisplayArea<T>(T shape) where T : IShape
{
 WriteLine(shape.Area());
}

class Triangle : IShape
{
 public double Height { get; set; }
 public double Base { get; set; }

 public double Area() => Height * Base / 2;
}

class Rectangle : IShape
{
 public double Length { get; set; }

www.dbooks.org

https://www.dbooks.org/

 56

 public double Width { get; set; }

 public double Area() => Length * Width;

}

public interface IShape
{
 double Area();
}

This means you can just write top-level statements at the top of your file. The top-level
statements remain part of your Main method, and the DisplayArea local function remains a

local function; it’s just called from the top-level statements.

Top-level statements must precede namespaces and type declarations, and can only appear in
one file.

Another great feature is that if you place your await statements as top-level statements, then

the Main becomes an async Task Main. At this point, I bet you are wondering what will

become of the args argument in the Main method.

This is not in any of the previews just yet, but there is a possibility that args will become a

magic keyword. This means the C# team will make a variable available in the top-level
statements called args. The magic variable makes me think of value in a property setter.

Relational and logical patterns

C# 9.0 will introduce patterns that correspond to relational operators, such as < and <=. You will

also be able to combine patterns with logical operators such as and, or, and not. Consider the

code in Code Listing 70.

Code Listing 70: Method with switch expression

public AreaSize DoSomething<T>(T shape, int numberOfShapes) where T :
IShape
{
 var area = shape switch
 {
 Square s => s.Area() * numberOfShapes,
 Circle c => c.Area() * numberOfShapes,
 null => throw new ArgumentNullException(nameof(shape)),
 _ => throw new ArgumentException(message: $"Unknown shape:
{shape}", paramName: nameof(shape))
 };

 if (area < 3.0)

 57

 return AreaSize.small;
 else if (area < 5.0)
 return AreaSize.medium;
 else if (area < 7.0)
 return AreaSize.large;
 else
 return AreaSize.huge;
}

We have checked for null in the switch expression, and if the shape is null, we throw an

ArgumentNullException. We can move the null => to the top of the switch expression if we

want to (because if it is null, why carry on?). The position here doesn’t matter, but what is clear

is that if we reach the discard _ =>, we know that the shape is not null.

Consider the code in Code Listing 71. At this point in the switch expression, we can be certain

that shape is not null.

Code Listing 71: The discard in the switch expression

_ => throw new ArgumentException(message: $"Unknown shape: {shape}",
paramName: nameof(shape))

This means we can make our intent clearer by using the not logical operator, as illustrated in

Code Listing 72.

Code Listing 72: Using the not logical operator

not null => throw new ArgumentException(message: $"Unknown shape: {shape}",
paramName: nameof(shape))

Secondly, because C# 9.0 will add relational patterns, we can modify the if/else statement, as

illustrated in Code Listing 73.

Code Listing 73: The if else statement to convert

if (area < 3.0)
 return AreaSize.small;
else if (area < 5.0)
 return AreaSize.medium;
else if (area < 7.0)
 return AreaSize.large;
else
 return AreaSize.huge;

Interestingly enough, Visual Studio 2019 version 16.7.0 Preview 4.0 supports converting this
statement to a switch expression using relational patterns, as seen in Figure 10.

www.dbooks.org

https://www.dbooks.org/

 58

Figure 10: Convert to switch expression

The converted switch expression looks nice and succinct, as illustrated in Code Listing 74.

Code Listing 74: A switch expression using a relational pattern

public AreaSize DoSomething<T>(T shape, int numberOfShapes) where T :
IShape
{
 var area = shape switch
 {
 Square s => s.Area() * numberOfShapes,
 Circle c => c.Area() * numberOfShapes,
 null => throw new ArgumentNullException(nameof(shape)),
 not null => throw new ArgumentException(message: $"Unknown shape:
{shape}", paramName: nameof(shape))
 };

 //Relational pattern(min 21)
 return area switch
 {
 < 3.0 => AreaSize.small,
 < 5.0 => AreaSize.medium,
 < 7.0 => AreaSize.large,
 _ => AreaSize.huge

 59

 };
}

Taking logical patterns further, we can now get rid of unwieldy double parentheses for if

conditions. Consider the code in Code Listing 75.

Code Listing 75: Standard if not condition

if (!(shape is Circle)) { }

We can now replace this with the code in Code Listing 76.

Code Listing 76: New if not condition using a logical pattern

if (shape is not Circle) { }

If a shape can be a Circle or a Square, we can do the following:

Code Listing 77: Logical or pattern

if (shape is Circle or Square) { }

This will give developers a fantastic way to express the intent of their code clearly and
succinctly.

Target-typed new expressions

Before C# 9.0, whenever you wrote a new expression in C#, you were required to specify the

type. The only exception was implicitly typed arrays, where you would create the following array:

Code Listing 78: Implicitly typed array

var planets = new[] { "Mars", "Saturn", "Jupiter" };

In C# 9.0, you will be allowed to omit the type when it’s clear what type the expression is being
assigned to. Consider the following code.

Code Listing 79: The new expression for creating a Circle

Circle c = new Circle(5);

In C# 9.0, this code can simply be written as follows.

www.dbooks.org

https://www.dbooks.org/

 60

Code Listing 80: The target-typed new expression

Circle c = new (5);

This code looks neater and conveys exactly what it should. I do, however, think that those of us
using var will probably not use target-typed new expressions too often.

Init-only properties

C# allows developers to use object initialization, which is a very convenient and flexible way of
creating a new object. Consider the SalesOrder class in Code Listing 81. It currently uses an

auto-property for OrderNumber.

Code Listing 81: The SalesOrder class

public class SalesOrder
{
 public string OrderNumber { get; set; }
}

One limitation is that the properties have to be mutable for object initializers to work. The
object’s default, parameterless constructor is called, and then the property is assigned. But you
can set the property to a different value after initialization because it is mutable, as seen in Code
Listing 82.

Code Listing 82: Initializing the SalesOrder class

var salesOrder = new SalesOrder
{
 OrderNumber = "123"
};

salesOrder.OrderNumber = "345";

With init-only properties, this mutability is fixed. The init accessor is a variant of the set

accessor, and can only be called during object initialization. If you modify your property to use
init, as seen in Code Listing 83, then any subsequent assignments to the OrderNumber

property will result in a compile-time error.

Code Listing 83: Setting init-only property on SalesOrder class

public class SalesOrder
{
 public string OrderNumber { get; init; }
}

 61

Visual Studio will tell you that your assignment after object initialization is not allowed.

Figure 11: Subsequent assignment results in a compile-time error

This is because the OrderNumber property is not mutable.

Init accessors and readonly fields

Consider the same SalesOrder class we had a look at earlier. Modifying it as illustrated in

Code Listing 84, you will notice the following.

Code Listing 84: Init accessor on the readonly field

public class SalesOrder
{
 private readonly string orderNumber;
 public string OrderNumber
 {
 get => orderNumber;
 init => orderNumber = (value ?? throw new
ArgumentNullException(nameof(OrderNumber)));
 }
}

This is possible because init accessors can only be called during initialization. This means

that they can mutate readonly fields in the enclosing class.

Records

In the previous code listings, we saw that we can make individual properties immutable by using
the init accessor. As seen in Code Listing 85, we can make the whole SalesOrder class

become immutable and behave like a value by adding the data keyword.

Code Listing 85: Creating a record

public data class SalesOrder
{

www.dbooks.org

https://www.dbooks.org/

 62

 public string OrderNumber { get; init; }
}

Adding the data keyword to the class declaration marks the class as a record. This means

records are seen more as values, and less as objects—they don’t have a mutable encapsulated
state. To represent any change over time, you must create a new record that represents the
new state, meaning they are defined by their contents.

More C# 9.0 goodies

These are only some of the planned features for C# 9.0. While I know a lot could change before
its release, the code illustrated in the previous examples gives us a nice glimpse of where the
C# team is headed. If you want to keep up to date on what is happening around C# 9.0, swing
over to the Language Feature Status page on GitHub. This allows you to see planned C# 9.0
features and their current states.

https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md

 63

Chapter 5 .NET Productivity Features in
Visual Studio

There are a variety of nice productivity features in Visual Studio that can enhance your workflow
and make your day-to-day tasks easier. Currently, I am using Visual Studio 2019 version 16.7
preview 5.0, but some of these features are also available in the current release of Visual Studio
2019.

Developer PowerShell inside Visual Studio

Inside Visual Studio, if you press Ctrl+`, you will open the Visual Studio terminal.

 Tip: The ` or backtick is located on the same key as ~ on the keyboard. It is also
the same keystroke as used in Visual Studio Code. This makes Ctrl+` a very
convenient, one-handed keystroke used to open the terminal inside Visual Studio.

Launching the terminal opens the integrated Developer PowerShell instance, as seen in Figure
12.

Figure 12: Developer PowerShell

If you are not comfortable using PowerShell, you can switch to using the Developer Command
Prompt, as seen in Figure 13.

www.dbooks.org

https://www.dbooks.org/

 64

Figure 13: Developer Command Prompt

You can easily select whichever terminal you want from the drop-down, as seen in Figure 14.

Figure 14: Selecting different terminals

You no longer need to leave Visual Studio to use the terminal window. This is definitely a time-
saver.

The Visual Studio Git Window

Visual Studio will now include a new Git window. This is currently available in the Preview
edition of Visual Studio 2019.

 65

Figure 15: The new Git window

As seen in Figure 15, the new Git window is laid out rather nicely, and contains everything you
would expect to see.

www.dbooks.org

https://www.dbooks.org/

 66

You can click the branch (currently set to master in Figure 16) and create a new branch.

Figure 16: Managing branches

This will display the window in Figure 17. Here you can specify a branch name and select the
branch you want to base your new branch on.

 67

Figure 17: Creating a new branch

Once the new branch is created, it is available under the branches drop-down (Figure 18).

Figure 18: Branches in the Git window

www.dbooks.org

https://www.dbooks.org/

 68

Managing your branch is also easily done from the drop-down next to the branch name, as seen
in Figure 19.

Figure 19: Managing your branch

It is here that you can checkout, merge, rebase, rename, delete, or view the branch history.

 69

Double-clicking a file will show you the code changes in the diff view right inside your editor, as
seen in Figure 20.

Figure 20: View code changes

The Git window also allows you to do the usual tasks such as stashing, staging, undoing
changes, fetching, pulling, pushing, and syncing. According to Mika Dumont, a Program
Manager on .NET and Visual Studio, the purpose of the Git window was to streamline the Git
experience as the Team Explorer user interface was becoming somewhat busy.

Drag and drop projects to add a reference

In Figure 21, you will notice that I have two projects in the solution. These are:

• CSharpPreview
• CSharpPreview.Core

If I want to add a reference to CSharpPreview.Core from my CSharpPreview project, I can
simply click and drag the CSharpPreview.Core project onto the CSharpPreview project.

www.dbooks.org

https://www.dbooks.org/

 70

Figure 21: Adding a project reference

A reference to CSharpPreview.Core will be added, as seen in Figure 22.

Figure 22: Project reference added

There’s no more right-clicking and adding a reference. You can also drag a file from File
Explorer to the Solution Explorer and drop it inside a project. The file will then get copied to your
source. Nice!

 71

Searching Visual Studio

Another nice feature in Visual Studio is Ctrl+Q, a great keyboard shortcut that gives the Search
text box in Visual Studio focus, allowing you to start typing immediately (Figure 23).

Figure 23: Search Visual Studio

You can further filter your search results by only viewing results in Visual Studio or results in
your code (Figure 24).

Figure 24: Searching code via camel case

www.dbooks.org

https://www.dbooks.org/

 72

Interestingly enough, you can search your code in Visual Studio by only typing in camel case,
as seen in Figure 24. This is great, especially if someone in the team decided to create a
SalesOrderFunctionalPreProcessor class.

Figure 25: Partial camel case character search

Being able to type in SOF in this instance (Figure 25), makes searching code quick and easy.

Figure 26: Search commands to run

The search also allows you to run commands (Figure 26). This enables you to run tests, for
example, and includes the keyboard shortcut, which is super helpful.

 73

Code analyzers

Code analyzers ensure that your code is more readable, and they will give you suggestions as
you go along. Consider Figure 27.

Figure 27: Lightbulb code suggestion

The lightbulb will suggest improvements to your code as you write it. Some of these suggestions
can, however, be easily missed. Consider Figure 28.

Figure 28: Code fix suggestion

If you look carefully at intFactors.Count – 1, you will notice the ellipsis (three dots) below

the “in” portion of the variable intFactors.

www.dbooks.org

https://www.dbooks.org/

 74

If you click on the ellipsis, you will see the code fix suggestion (Figure 29). In this example, the
suggestion is to use the index operator. Have a look at Code Listing 41 for more on the index
operator.

Figure 29: Use index operator suggestion

You can also change the severity of this code fix suggestion by changing the severity from the
same place you applied the code fix (Figure 30).

Figure 30: Configure severity

Changing this code fix to a warning will give you a squiggly line under the code being analyzed,
as seen in Figure 31.

Figure 31: Severity promoted to warning

Code analyzers are a fantastic feature of Visual Studio, and they help developers and teams
maintain good coding practices.

 75

File header support in .editorconfig

The .editorconfig file is a universal way to enforce a specific code style or code quality options
across your team (Figure 32).

Figure 32: The .editorconfig file

This can be checked into source control and can travel with your solution to new team
members.

www.dbooks.org

https://www.dbooks.org/

 76

If you open the .editorconfig file (Figure 33), you will notice the warning we added for the index
operator in Figure 30. The .editorconfig now includes file header support. I can now add file
headers to files in my solutions using my .editorconfig file. To do this, add the text you want to
the file_header_template as seen in Figure 33, and save your .editorconfig.

Figure 33: Modifying the .editorconfig file

In a code file, place your cursor at the very top before the first using statement, and click the

lightbulb that is displayed (Figure 34).

Figure 34: Add file header

 77

You are now able to include this file header in your code file. You can also choose to add it to
the document, project, or solution.

C# language resources

Microsoft has made many resources available to developers. There is a rich body of code
online, as well as various communities that allow developers to find help if they need it. Here are
a few resources you might find useful.

C# language reference

This Introduction document is probably the one you will be reading the most.

C# language proposals

Language proposals should be seen as living documents, and would be the place to go to see
what the current thinking is surrounding a specific language feature.

C# language design meetings

The language design meetings (also known as LDM) is where the C# team investigates,
designs, and decides on features being added to the C# language. You can read the meeting
notes here.

C# language design

This is the official repo for the C# language.

www.dbooks.org

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/introduction
https://github.com/dotnet/csharplang/tree/master/proposals
https://github.com/dotnet/csharplang/tree/master/meetings
https://github.com/dotnet/csharplang/tree/master/meetings
https://github.com/dotnet/csharplang
https://www.dbooks.org/

	Table of Contents
	The Story Behind the Succinctly Series of Books
	taying on the cutting edge
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	About the Author
	Chapter 1 The History of C#
	C# language version
	C# version 1.0
	C# version 1.2
	C# version 2.0
	C# version 3.0
	C# version 4.0
	C# version 5.0
	C# version 6.0
	C# version 7.0
	C# version 7.1
	C# version 7.2
	C# version 7.3
	C# version 8.0

	Chapter 2 C# 7 Features Recap
	out variables
	Discards
	Tuples
	Tuple equality
	Using a tuple as a method return type

	Pattern matching
	Local functions
	Expression-bodied members for constructors and finalizers
	Generalized async return types

	Chapter 3 C# 8.0 Features
	Default interface methods
	Nullable reference types
	The null-forgiving operator

	Asynchronous streams
	Asynchronous disposable
	Indices and ranges
	Switch expressions
	Readonly members
	Using declarations
	Static local functions
	Disposable ref structs
	Null-coalescing assignment
	Unmanaged constructed types
	Enhancement of interpolated verbatim strings
	Enabling C# 8 in any .NET project
	Not all types are included
	Indexes and ranges
	Using Directory.Build.props

	Chapter 4 The Future of C# and C# 9
	Top-level programs
	Relational and logical patterns
	Target-typed new expressions
	Init-only properties
	Init accessors and readonly fields
	Records
	More C# 9.0 goodies

	Chapter 5 .NET Productivity Features in Visual Studio
	Developer PowerShell inside Visual Studio
	The Visual Studio Git Window
	Drag and drop projects to add a reference
	Searching Visual Studio
	Code analyzers
	File header support in .editorconfig
	C# language resources
	C# language reference
	C# language proposals
	C# language design meetings
	C# language design

